Paul Gastin
Francois Laroussinie (Eds.)

CONCUR 2010 -
Concurrency Theory

21st International Conference, CONCUR 2010
Paris, France, August/September 2010
Proceedings

LNCS 6269

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

6269

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA



Paul Gastin Francois Laroussinie (Eds.)

CONCUR 2010 —
Concurrency Theory

21st International Conference, CONCUR 2010
Paris, France, August 31 - September 3, 2010
Proceedings

@ Springer



Volume Editors

Paul Gastin

Laboratoire Spécification et Vérification (LSV)
ENS de Cachan & CNRS

94235 Cachan cedex, France

E-mail: paul.gastin@lsv.ens-cachan.fr

Frangois Laroussinie

LIAFA, Université Paris Diderot

75205 Paris cedex 13, France

E-mail: francois.laroussinie @liafa.jussieu.fr

Library of Congress Control Number: 2010933357

CR Subject Classification (1998): D.2, FE3,C.2,D.3, H4,D.2.4
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15374-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15374-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 06/3180 543210



Preface

This volume contains the proceedings of the 21st Conference on Con-
currency Theory (CONCUR 2010), held in Paris, at Université Denis
Diderot, August 31-September 3, 2010. CONCUR 2010 was organized by
CNRS, INRIA, ENS Cachan and the Université Denis Diderot.

The purpose of the CONCUR conference is to bring together
researchers, developers, and students in order to advance the theory of
concurrency and promote its applications. The principal topics include
basic models of concurrency such as abstract machines, domain theoretic
models, game theoretic models, process algebras, and Petri nets; logics
for concurrency such as modal logics, probabilistic and stochastic logics,
temporal logics, and resource logics; models of specialized systems such as
biology-inspired systems, circuits, hybrid systems, mobile and collabora-
tive systems, multi-core processors, probabilistic systems, real-time sys-
tems, service-oriented computing, and synchronous systems; verification
and analysis techniques for concurrent systems such as abstract inter-
pretation, atomicity checking, model checking, race detection, pre-order
and equivalence checking, run-time verification, state—space exploration,
static analysis, synthesis, testing, theorem proving, and type systems; re-
lated programming models such as distributed, component-based, object-
oriented, and Web services.

This edition of the conference attracted 107 submissions. We wish to
thank all their authors for their interest in CONCUR, 2010. After careful
discussions, the Program Committee selected 35 papers for presentation
at the conference. Each submission was refereed by three reviewers, who
delivered detailed and insightful comments and suggestions. The confer-
ence Chairs warmly thank all the members of the Program Committee
and all their referees for the excellent support they gave, as well as for
the friendly and constructive discussions. We would also like to thank
the authors for having revised the papers to address the comments and
suggestions by the referees.

The conference program was enriched by the outstanding invited talks
by:

— Frank S. de Boer (CWI, Amsterdam, The Netherlands)
— Maurice Herlihy (Brown University, Providence, USA)
— Holger Hermanns (Saarland University, Saarbriicken, Germany)



VI Preface

— Anca Muscholl (LaBRI, University Bordeaux 1, France)
— Vladimiro Sassone (ECS, University of Southampton, UK)

The conference this year was co-located with the 17th International
Symposium on Temporal Representation and Reasoning (TIME 2010).
Additionally, CONCUR 21010 included the following satellite workshops:

Structural Operational Semantics (SOS 2010)

— Expressiveness in Concurrency (EXPRESS 2010)

— Security in Concurrency (SecCo 2010)

— Foundations of Interface Technologies (FIT 2010)

— GASICS Workshop on Games for Design, Verification and Synthesis

Foundations of Coordination Languages and Software Architectures

(FOCLASA 2010)

— International Workshop on Distributed Open and Timed Systems
(DOTS 2010)

— Young Researchers Workshop on Concurrency Theory (YR-CONCUR)

We would like to thank all the people who contributed to the success
of CONCUR 2010, in particular the Organizing Committee and the ad-
ministrative staff. We gratefully acknowledge the generous support from
Digiteo, Région Ile de France, CNRS, INRIA, ENS Cachan, the Ministere
de 'enseignement supérieur et de la recherche, and the Université Denis
Diderot - Paris 7. We are also grateful to Andrei Voronkov for his excellent
EasyChair conference system, which we used for the eletronic submission
of papers, the refereeing process, and the Program Committee work.

June 2010 Paul Gastin
Francois Laroussinie



Conference Organization

Program Chairs

Paul Gastin
Francois Laroussinie

LSV, ENS Cachan, France
LIAFA, Université Denis Diderot - Paris 7,
France

Program Committee

Martin Abadi

Parosh Abdulla
Jos Baeten

Steffen van Bakel
Julian Bradfield
Luis Caires

Luca Cardelli
Vincent Danos
Daniele Gorla
Anna Ingdélfsdottir
Petr Jancar

Joost-Pieter Katoen

Kim Larsen

Nancy Lynch

Ugo Montanari
Markus Miiller-Olm
K. Narayan Kumar
Catuscia Palamidessi
Prakash Panangaden
Wojciech Penczek
Shaz Qadeer

Jan Rutten

Roberto Segala

P.S. Thiagarajan
Walter Vogler

UC Santa Cruz and Microsoft Research, CA,
USA
Uppsala University, Sweden
Eindhoven University of Technology,
The Netherlands
Imperial College London, UK
University of Edinburgh, UK
Universidade Nova de Lisboa, Portugal
Microsoft Research Cambridge, UK
University of Edinburgh, UK
Universita di Roma “La Sapienza”, Italy
Reykjavik University, Iceland
Technical University of Ostrava,
Czech Republic
RWTH Aachen University, Germany
and University of Twente, The Netherlands
Aalborg University, Denmark
Massachusetts Institute of Technology, USA
Universita di Pisa, [taly
Miinster University, Germany
Chennai Mathematical Institute, India
LIX, INRIA, France
McGill School of Computer Science, Canada
IPI PAN, University of Podlasie, Poland
Microsoft Research Redmond, WA, USA
CWI, The Netherlands
Universita di Verona, Italy
National University of Singapore
University of Augsburg, Germany



VIII Conference Organization

Steering Committee

Roberto Amadio PPS, Université Paris Diderot - Paris 7, France

Jos Baeten Eindhoven University of Technology,
The Netherlands

Eike Best Carl von Ossietzky Universitat Oldenburg,
Germany

Kim Larsen Aalborg University, Denmark

Ugo Montanari Universita di Pisa, [taly

Scott Smolka SUNY, Stony Brook University, USA

Organizing Committee

Benedikt Bollig LSV, CNRS, France

Stefan Haar LSV, INRIA, France

Florian Horn LIAFA, CNRS, France

Stefan Schwoon LSV, INRIA, France

Olivier Serre LIAFA, CNRS, France

Mihaela Sighireanu LIAFA, Université Denis Diderot - Paris 7,
France

External Reviewers

Roberto M. Amadio Filippo Bonchi
Suzana Andova Tomas Brazdil
Tadashi Araragi Franck van Breugel
Farhad Arbab Vaclav Brozek
Mohamed Faouzi Atig Roberto Bruni
Franco Barbanera Marco Carbone
Massimo Bartoletti Pietro Cenciarelli
Emmanuel Beffara Taolue Chen

Nick Benton Yu-Fang Chen
Josh Berdine Corina Cirstea
Marco Bernardo Dave Clarke
Nathalie Bertrand Thomas Colcombet
Dietmar Berwanger Alejandro Cornejo
Chiara Bodei Flavio Corradini
Frank S. de Boer Pedro R. D’Argenio
Bernard Boigelot Ugo de’Liguoro

Benedikt Bollig Stéphane Demri



Yuxin Deng

Rocco De Nicola
Mariangiola Dezani
Maria Rita Di Berardini
Alessandro D’Innocenzo
Lucas Dixon
Laurent Doyen
Deepak D’Souza
Jérémy Dubreil
Ross Duncan
Tayfun Elmas

Javier Esparza
Yuan Feng

Jérome Feret

Bernd Finkbeiner
Cormac Flanagan
Vojtéch Forejt
Martin Franzle
Carsten Fritz

Fabio Gadducci
Philippa Gardner
Simon Gay

Blaise Genest
Nargess Ghahremani
Marco Giunti

Stefan Goller

Alexey Gotsman
Carlos Gregorio-Rodriguez
Marcus Groesser
Julian Gutierrez
Peter Habermehl
Serge Haddad
Frédéric Haziza
Thomas Hildebrandt
Peter Hofner

Espen Hgjsgaard
Lukas Holik
Chih-Duo Hong
Hans Hiittel

Radha Jagadeesan

Conference Organization

Agata Janowska
Mariusz Jarocki
Christophe Joubert
Bartek Klin
Michat Knapik
Alexander Knapp
Sophia Knight
Natallia Kokash
Barbara Konig
Beata Konikowska
Martin Kot
Christian Krause
Jean Krivine
Dietrich Kuske
Akash Lal

Peter Lammich
Mikkel Larsen Pedersen
Jérome Leroux
Jean-Jacques Lévy
Xinxin Liu

Kamal Lodaya
Michele Loreti
Etienne Lozes

Bas Luttik
Pasquale Malacaria
Radu Mardare
Nicolas Markey
Jasen Markovski
Tomas Masopust
Mieke Massink
Richard Mayr
Antoni Mazurkiewicz
Damiano Mazza
Frank McSherry
Alexandru Mereacre
Massimo Merro
Roland Meyer
Marino Miculan
Rémi Morin
Madan Musuvathi

IX



X Conference Organization

Wojtek Nabiatek
Sebastian Nanz
Daniel Neider
Calvin Newport
Dejan Nickovié
Artur Niewiadomski
Thomas Noll
Gethin Norman
Jan Obdrzalek
Petur Olsen
Rotem Oshman
Luca Padovani
David Parker
Jorge A. Perez
Tain Phillips
Sophie Pinchinat
Nir Piterman
Sanjiva Prasad
Rosario Pugliese
Paola Quaglia
Sriram Rajamani
R. Ramanujam
Anténio Ravara
Ahmed Rezine
Pau Ruet

Joshua Sack
Arnaud Sangnier
Ivano Salvo
Davide Sangiorgi
Zdenék Sawa
Jens-Wolfhard Schicke
Alan Schmitt
Sven Schneider
Stefan Schwoon
Anil Seth
Jaroslav Seveik
Ali Sezgin
Mihaela Sighireanu
Alexandra Silva
Robert Simmons

Anu Singh

Satnam Singh
Pawel Sobocinski
Ana Sokolova
Monika Solanki
Jeremy Sproston
Jit{ Srba

Christian Stahl
Jan Strejcek

Georg Struth

Rong Su

Kohei Suenaga
Jun Sun

S.P. Suresh

Maciej Szreter
Andrzej Tarlecki
Claus Thrane
Francesco Tiezzi
Frank Valencia
Bjorn Victor

Hugo Vieira
Saleem Vighio
Maria Grazia Vigliotti
Erik de Vink

Marc Voorhoeve
Igor Walukiewicz
Alexander Wenner
Jézef Winkowski
Verena Wolf
Weng-Fai Wong
Bozena Wozna-Szczesniak
Tobias Wrigstad
Alex Yakovlev
Nobuko Yoshida
Kenneth Yrke Jgrgensen
Gianluigi Zavattaro
Marc Zeitoun
Lijun Zhang



Table of Contents

Dating Concurrent Objects: Real-Time Modeling and Schedulability

Analysis (Invited Talk) ... o i 1
Frank S. de Boer, Mohammad Mahdi Jaghoori, and
Einar Broch Johnsen

Applications of Shellable Complexes to Distributed Computing
(Invited Talk) .. ..o 19
Maurice Herlihy

Concurrency and Composition in a Stochastic World (Invited Talk) .. .. 21
Christian Fisentraut, Holger Hermanns, and Lijun Zhang

Taming Distributed Asynchronous Systems (Invited Talk) ............. 40
Anca Muscholl

Trust in Anonymity Networks (Invited Talk) ........... .. ... ... ... 48
Viadimiro Sassone, Sardaouna Hamadou, and Mu Yang

Learning I/O Automata . ...........eueeiiiiiiiiin... 71
Fides Aarts and Frits Vaandrager

Constrained Monotonic Abstraction: A CEGAR for Parameterized
Verification. . . ..ot 86
Parosh Aziz Abdulla, Yu-Fang Chen, Giorgio Delzanno,
Frédéric Haziza, Chih-Duo Hong, and Ahmed Rezine

Information Flow in Interactive Systems .............. ... ... ... .... 102
Mario S. Alvim, Miguel E. Andrés, and Catuscia Palamidessi

From Multi to Single Stack Automata ............ ... ... ... ........ 117
Mohamed Faouzi Atig

A Geometric Approach to the Problem of Unique Decomposition of
Processes . ... e 132
Thibaut Balabonski and Emmanuel Haucourt

A Logic for True CONCUITENCY . . .o vv vttt it et a e 147
Paolo Baldan and Silvia Crafa

A Theory of Design-by-Contract for Distributed Multiparty
Interactions . . ... ..o 162
Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida

Bisimilarity of One-Counter Processes Is PSPACE-Complete .......... 177
Stanislav Bohm, Stefan Goller, and Petr Jancar



XII Table of Contents

Nash Equilibria for Reachability Objectives in Multi-player Timed

Patricia Bouyer, Romain Brenguier, and Nicolas Markey

Stochastic Real-Time Games with Qualitative Timed Automata
ODbJectives . ..ot
Tomd$ Brdzdil, Jan Krédl, Jan Kretinsky, Antonin Kucera, and

Vojtéch Rehdk

Session Types as Intuitionistic Linear Propositions ...................
Luis Caires and Frank Pfenning

Session Types for Access and Information Flow Control ...............
Sara Capecchi, Ilaria Castellani,
Mariangiola Dezani-Ciancaglini, and Tamara Rezk

Simulation Distances .............. i
Pavol Cerny, Thomas A. Henzinger, and Arjun Radhakrishna

Mean-Payoff Automaton Expressions .. ................ ...,
Krishnendu Chatterjee, Laurent Doyen, Herbert Edelsbrunner,
Thomas A. Henzinger, and Philippe Rannou

Obliging Games . ..........ioii it
Krishnendu Chatterjee, Florian Horn, and Christof Liding

Multipebble Simulations for Alternating Automata
(Extended ADStract) ..........cooouii
Lorenzo Clemente and Richard Mayr

Parameterized Verification of Ad Hoc Networks . .....................
Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro

Termination in Impure Concurrent Languages .......................
Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi

Buffered Communication Analysis in Distributed Multiparty Sessions . . .
Pierre-Malo Deniélou and Nobuko Yoshida

Efficient Bisimilarities from Second-Order Reaction Semantics for
T-Calculus . ..o o
Pietro Di Gianantonio, Svetlana Jaksié, and Marina Lenisa

On the Use of Non-deterministic Automata for Presburger
Arithmetic ... ..o
Antoine Durand-Gasselin and Peter Habermehl

Reasoning about Optimistic Concurrency Using a Program Logic for
HiStory . .o
Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang



Table of Contents XIII

Theory by Process . ... i 403
Yuzi Fu
On the Compositionality of Round Abstraction ...................... 417

Dan R. Ghica and Mohamed N. Menaa

A Linear Account of Session Types in the Pi Calculus ................ 432
Marco Giunti and Vasco T. Vasconcelos

Generic Forward and Backward Simulations II: Probabilistic
SImulation ... ... 447
Ichiro Hasuo

Kleene, Rabin, and Scott Are Available ............ ... ... .. ... ... 462
Jochen Hoenicke, Roland Meyer, and Ernst-Ridiger Olderog

Reversing Higher-Order Pi . ... .. . 478
Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani

Modal Logic over Higher Dimensional Automata ..................... 494
Cristian Prisacariu

A Communication Based Model for Games of Imperfect Information.... 509
R. Ramanujam and Sunil Simon

Flat Coalgebraic Fixed Point Logics . ....... ... ... o i oo, 524
Lutz Schrdoder and Yde Venema

Conditional Automata: A Tool for Safe Removal of Negligible Events ... 539
Roberto Segala and Andrea Turrini

Representations of Petri Net Interactions........... ... .. ... ... .... 554
Pawel Sobocinski

Communicating Transactions (Extended Abstract) ................... 569
Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Consistent Correlations for Parameterised Boolean Equation Systems
with Applications in Correctness Proofs for Manipulations ............ 584
Tim A.C. Willemse

Author Index . .. ... ... .. 599



Dating Concurrent Objects: Real-Time
Modeling and Schedulability Analysis*

Frank S. de Boer"?, Mohammad Mahdi Jaghoori'?, and Einar Broch Johnsen?

1 CWI, Amsterdam, The Netherlands
2 LIACS, Leiden, The Netherlands
3 University of Oslo, Norway

Abstract. In this paper we introduce a real-time extension of the con-
current object modeling language Creol which is based on duration state-
ments indicating best and worst case execution times and deadlines. We
show how to analyze schedulability of an abstraction of real-time con-
current objects in terms of timed automata. Further, we introduce tech-
niques for testing the conformance between these behavioral abstractions
and the executable semantics of Real-Time Creol in Real-Time Maude.

As a case study we model and analyze the schedulability of thread
pools in an industrial communication platform.

1 Introduction

In the object-oriented modeling language Creol [913], objects are concurrent; i.e.,
conceptually, each object encapsulates its own processor. Therefore, each object
has a single thread of execution. Creol objects communicate by asynchronous
message passing. The message queue is implicit in the objects. Furthermore,
the scheduling policy is underspecified; i.e., messages in the queue are processed
in a nondeterministic order. The running method can voluntarily release the
processor using special primitives, allowing another message to be scheduled. For
example, a method can test whether an asynchronous call has been completed,
and if not, release the processor; thus modeling synchronous calls.

In this paper we extend Creol with real-time information about the deadlines
of messages and the best and worst execution times of the (sequential) control
statements. We formalize the semantics of Real-Time Creol with respect to given
intra-object scheduling policies in the real-time extension of Maude [5]. This
formalization of a Real-Time Creol model provides a refinement of the underlying
untimed model in the sense that it only restricts its behaviors.

Schedulability analysis. In general analyzing schedulability of a real time system
consists of checking whether all tasks are accomplished within their deadlines.

* This research is partly funded by the EU projects IST-33826 CREDO:
Modeling and Analysis of Evolutionary Structures for Distributed Services
(http://credo.cwi.nl) and FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Methods (http://www.hats-project.eu).

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 1{18] 2010.
© Springer-Verlag Berlin Heidelberg 2010



2 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

We employed automata theory in our previous work [7U8] to provide a high-
level framework for modular schedulability analysis of concurrent objects. In
order to analyze the schedulability of an open system of concurrent objects,
we need some assumptions about the real-time arrival patterns of the incoming
messages; in our framework, this is contained in the timed automata [I] modeling
the behavioral interface of the open system. A behavioral interface captures the
overall real-time input/output behavior of an object while abstracting from its
detailed implementation in its methods; a deadline is assigned to each message
specifying the time before which the corresponding method has to be completed.
Further, we use timed automata to describe an abstraction of the system of
objects itself including its message queues and a given scheduling policy (e.g.,
Earliest Deadline First). The analysis of the schedulability of an open system of
concurrent objects can then be reduced to model-checking a timed automaton
describing the interactions between the behavioral abstraction of the system and
its behavioral interface (representing the environment).

Conformance. We test conformance between the Real-Time Creol model of
an open system of concurrent objects and its behavioral abstraction in timed
automata with respect to a given behavioral interface. Our method is based
on generating a timed trace (i.e., a sequence of time-stamped messages) from
the automaton constructed from its behavioral abstraction and interface. Using
model-checking techniques we next generate for each time specified in the trace
additional real-time information about all possible observable messages. This
additional information allows us to find counter-examples to the conformance.
To do so, we use the Real-Time Maude semantics as a language interpreter to
execute the real-rime Creol model driven by the given trace. Then we look for
counter-examples by incrementally searching the execution space for possible
timed observations that are not covered in the extended timed trace.

Case Study. Thread pools are an important design pattern used frequently in
industrial practice to increase the throughput and responsiveness of software
systems, as for instance in the ASK system [2]. The ASK system is an industrial
communication platform providing mechanisms for matching users requiring in-
formation or services with potential suppliers. A thread pool administrates a
collection of computation units referred to as threads and assigns tasks to them.
This administration includes dynamic creation or removal of such units, as well
as scheduling the tasks based on a given strategy like ‘first come first served’ or
priority based scheduling.

The abstraction from the internal message queue of each object and the related
scheduling policies is one of the most important characteristics of Creol which
allows for abstractly modeling a variety of thread pools. In this paper, we give
an example of an abstract model in Creol of a basic pool where the threads
share the task queue. The shared task queue is naturally represented implicitly
inside a Creol object (called a resource-pool) that basically forwards the queued
tasks to its associated threads also represented as Creol objects. We associate
real-time information to the tasks concerning their deadlines and best and worst
case execution times.



Dating Concurrent Objects: Real-Time Modeling 3

We perform schedulability analysis on a network of timed automata con-
structed from the automata abstraction and behavioral interface of the thread
pool model in order to verify whether tasks are performed within their deadlines.
In the context of the ASK system, schedulability ensures that the response times
for service requests are always bounded by the deadlines. We use UPPAAL [12]
for this purpose. Further, we test conformance between the Real-Time Creol
model of a thread pool and its behavioral abstractions as described above.

Related work. We extend Creol with explicit scheduling strategies and a du-
ration statement to specify execution delays. Creolgr [11] is another real-time
extension of Creol with clocks and time-outs. Our work follows a descriptive
approach to specifying real-time information suitable for schedulability analy-
sis, whereas the prescriptive nature of time in Creolgr can affect the functional
behavior of an object.

Schedulability analysis in this paper can be seen as the continuation of our
previous work [7] on modular analysis of a single-threaded concurrent object with
respect to its behavioral interface. In this paper, we extend the schedulability
analysis to an open system of concurrent objects in a way similar to [4].

The work of [6/10] is based on extracting automata from code for schedula-
bility analysis. However, they deal with programming languages and timings are
usually obtained by profiling the real system. Our work is applied on high-level
models. Therefore, our main focus is on studying different scheduling policies
and design decisions.

We test conformance between a Creol implementation and abstract automata
models. Our notion of conformance is similar to tioco introduced by Schmaltz
and Tretmans [I6/15], but we do not directly work with timed input/output
transition systems; an innovation of our work is dealing with conformance be-
tween different formalisms, namely Creol semantics in rewrite logic on one hand
and timed automata on the other hand. Furthermore, we focus on generating
counterexamples during testing along the lines of our previous work [§], which
is novel in testing.

Outline. The real-time extension of the concurrent object language Creol is
explained in Section Pl As explained in Section [B] abstract models of concurrent
objects, specified in timed automata, are analyzed to be schedulable. To be
able to argue about the schedulability of Real-Time Creol models, we need to
establish conformance between our Creol and automata models; this is explained
in Section @ We conclude in section Bl

2 Concurrent Objects in Real-Time Creol

Creol is an abstract behavioral modeling language for distributed active ob-
jects, based on asynchronous method calls and processor release points. In Creol,
objects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;



4 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

Syntactic

categories. Definitions.

g in Guard IF ::= interface I {[S¢] }

s in Stmt CL = classC (I z)| [implements | {[[ z;] M}

x in Var Sg =1 m ([I z)

e in Expr M:=Sg{[Iz]s}

o in ObjExpr gu=blz?|gAglgVyg

b in BoolExpr su=xz:=e|z:=eget|skip | release | await g | returne
d in Time | s;s | [o]!m(e,d) | if b then{s}else{s} | duration(d,d)

ex:=zx|o|b|newcC(e)|[o]!lm(e,d)|this | deadline

Fig. 1. Syntax of the Real-Time Creol kernel. Terms such as e and x denote lists over
the corresponding syntactic categories and square brackets denote optional elements.

these may be seen as triggers of concurrent activity, resulting in new activities
(tasks) in the called object. Objects are dynamically created instances of classes,
declared attributes are initialized to some arbitrary type-correct values. An op-
tional init method may be used to redefine the attributes during object creation.
An object has a set of tasks to be executed, which stem from method activations.
Among these, at most one task is active and the others are suspended on a task
queue. The scheduling of tasks is by default non-deterministic, but controlled
by processor release points in a cooperative way. Creol is strongly typed: for
well-typed programs, invoked methods are supported by the called object (when
not null), such that formal and actual parameters match. In this paper, pro-
grams are assumed to be well-typed. This section introduces Real-Time Creol,
explaining Creol constructs (for further details, see, e.g., [93]) and their relation
to real-time scheduling policies.

Figure [l gives the syntax for a kernel of Real-Time Creol, extending a subset
of Creol (omitting, e.g., inheritance). A program consists of interface and class
definitions and a main method to configure the initial state. Let C, I, and m
be in the syntactic category of Names. IF' defines an interface with name I and
method signatures Sg. A class implements a list I of interfaces, specifying types
for its instances. C'L defines a class with name C, interfaces I, class parameters
and state variables x (of types I), and methods M. (The attributes of the class
are both its parameters and state variables.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types I.
M defines a method with signature Sg and a list of local variable declarations
x of types I and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters. Statements for assign-
ment x := e, sequential composition s1;s2, skip, i1f, while, and return e
are standard. The statement release unconditionally releases the processor by
suspending the active task. In contrast, the guard g controls processor release in
the statement await ¢, and consists of Boolean conditions which may contain
return tests x? (see below). If g evaluates to false, the current task is suspended
and the execution thread becomes idle. When the execution thread is idle, an



Dating Concurrent Objects: Real-Time Modeling 5

enabled task may be selected from the pool of suspended tasks by means of a
user-provided scheduling policy.

Expressions e include declared variables x, object identifiers o, Boolean expres-
sions b, and object creation new C'(e). As usual, the reserved read-only variable
this refers to the identifier of the object. Note that remote access to attributes is
not allowed. (The full language includes a functional expression language with stan-
dard operators for data types such as strings integers lists, sets, maps, and tuples.
These are omitted in the core syntax, and explained when used in the examples.)

Time. In Real-Time Creol, the local passage of time is expressed in terms of
duration statements. We consider a dense time model represented by the sort
Time which ranges over non-negative real numbers and is totally ordered by
the less-than operator. Furthermore, we denote by co a term of sort Time such
that for all ¢1,t9 # 0o, t1 + t2 < co. The statement duration(b, w) expresses
the passage of time, given in terms of an interval between the best case b and
the worst case w (assuming b < w). All other statements are assumed to be
instantaneous, except the get statement which lets time pass while it is blocking
(see below).

Communication in Real-Time Creol is based on asynchronous method calls,
denoted by expressions olm(e, d), and future variables. (Local calls are written
Im(e, d).) Thus, after making an asynchronous method call z := olm(e, d), the
caller may proceed with its execution without blocking on the method reply.
Here z is a future variable, o is an object expression, e are (data value or object)
expressions, and d is a deadline for the method invocation. This deadline speci-
fies the relative time before which the corresponding method should be scheduled
and executed. The local variable deadline refers to the remaining permitted
ezecution time of the current method activation. We assume that message trans-
mission is instantaneous, so the deadline expresses the time until a reply is re-
ceived; i.e., it corresponds to an end-to-end deadline. As usual, if the return value
of a call is of no interest, the call may occur as a statement. The future variable
x refers to a return value which has yet to be computed. There are two opera-
tions on future variables, which control synchronization in Creol. First, the guard
await z7 suspends the active task unless a return to the call associated with
x has arrived, allowing other tasks in the object to execute. Second, the return
value is retrieved by the expression x.get, which blocks all execution in the ob-
ject until the return value is available. Standard usages of asynchronous method
calls include the statement sequence x := olm(e,d); v := z.get which encodes
a blocking call, abbreviated v := o.m(e,d) (often referred to as a synchronous
call), and the statement sequence z := olm(e,d); await z?; v := z.get which
encodes a non-blocking, preemptible call, abbreviated await v := o.m(e, d).

2.1 Object-Oriented Modeling of Thread-Pools

Figure ] shows a Creol model of a thread pool. The model defines a Thread
class and the ResourcePool class. The task list is modeled implicitly in terms
of the message queue of an instance of the ResourcePool class. The variable



6 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

class Thread(ResourcePool myPool) implements Thread {

Void run() { myPool!finish(this) }

Void start() { skip; duration(5,6); myPool!finish(this) }
}

class ResourcePool (Int size) implements ResourcePool {
Set [Thread] pool;

Void init() { Thread thr; pool := {};

while (size>0) { thr := new Thread(this); size := size-1 }
}
Void invoke () {

Thread thread; await —isempty(pool);

thread := choose(pool); pool := remove(pool, thread);

thread!start (deadline)

}
Void finish (Thread thr) { pool := add(pool,thr) }

Fig. 2. The thread pool

size represents the number of available threads, i.e., instances of the Thread
class. The variable pool is used to hold a reference to those threads that are
currently not executing a task. Tasks are modeled in terms of the method start
inside the Thread class. For our analysis the functional differences between
tasks is irrelevant, so the method is specified in terms of its duration only and
a subsequent call to the method finish of the ResourcePool object which
adds that thread to its pool of available threads.

Tasks are generated (by the environment) with (asynchronous) calls of the
invoke method of the ResourcePool object. In case there are no available
threads, the execution of the invoke method suspends by the execution of the
await statement which releases control (so that a call of the £inish method
can be executed). When multiple tasks are pending and a thread becomes avail-
able, the scheduling strategy of the ResourcePool object determines which
task should be executed next when the current task has been completed.

2.2 Real-Time Execution in Real-Time Maude
Real-Time Maude [14] defines real-time rewrite theories (X, E, IR, T R), where:

— (X, E) is a theory in membership equational logic [13] with a signature X
and a set F of conditional equations. The system’s state space is defined as
an algebraic data type in (X, F), which is assumed to contain a specification
of a sort Time capturing the (dense or discrete) time domain.

— IR is a set of labeled conditional instantaneous rewrite rules specifying the
system’s local transitions, written exl [l]1:¢t — ¢ if cond, wherelisa
name for the rule. Such a rule specifies a one-step transition (in zero-time)
from an instance of a pattern ¢ to the corresponding instance of a pattern ¢’,
provided the condition cond holds. As usual in rewriting logic [13], the rules
are applied modulo the equations in E.



Dating Concurrent Objects: Real-Time Modeling 7

— TR is a set of timed rewrite rules (or tick rules) capturing the progression
of time, written exl [I]: {t} — {¢'} in time 7 if cond where T is
a term of sort Time which denotes the duration of the rewrite. Observe that
{_} is the built-in constructor of sort GlobalSystem, so tick rules apply
to the entire state of the system which allows time to advance uniformly.

Initial states must be ground terms of sort GlobalSystem, which reduce to
terms of the form {t} by the equations in E. The form of the tick rules then
ensures that time advances uniformly throughout the system. Real-time rewrite
theories are executable under reasonable assumptions and Real-Time Maude
provides different analysis methods [14]. For example, timed “fair” rewrite sim-
ulates one behavior of the system up to a certain duration and is written

(tfrew t in time <7 .)

for an initial state t and a ground term 7 of sort Time. Furthermore, timed
search searches breadth-first for states that are reachable from a given initial
state t within time 7, match a search pattern, and satisfy a search condition.
The command which searches for one state satisfying the search criteria is written

(tsearch [1] t —* pattern such that cond in time <7 .)

Creol’s semantics in Maude. Creol has a semantics defined in Rewriting logic [13]
which can be used directly as a language interpreter in Maude [5]. The semantics
is explained in detail in [9] and can be used for the analysis of Creol programs.
In this section we focus on the extension of Creol’s semantics in order to define
a semantics for Real-Time Creol in Real-Time Maude.

The state space of Creol’s operational semantics is given by terms of the
sort Configuration which is a set of objects, messages, and futures. The
empty configuration is denoted none and whitespace denotes the associative and
commutative union operator on configurations. Objects are defined as tuples

(o, a, q )

where o is the identifier of the object, a is a map which defines the values of the
attributes of the object, and ¢ is the task queue. Tasks are of sort Task and
consist of a statement s and the task’s local variables . We denote by {l|s} o ¢
the result of appending the task {I|s} to the queue ¢. For a given object, the first
task in the queue is the active task and the first statement of the active task to
be executed is called the active statement.

Let o and ¢’ be maps, = a variable name, and v a value. Then o(z) denotes
the lookup for the value of x in o, o[z — v] the update of o such that x maps
to v, o o ¢’ the composition of o and ¢’, and dom(o) the domain of o. Given
a mapping, we denote by [e]S the evaluation of an expression e in the state
given by ¢ and the global configuration ¢ (the latter is only used to evaluate the
polling of futures; e.g., await x?).

Rewrite rules execute statements in the active task in the context of a con-
figuration, updating the values of attributes or local variables as needed. For
an active task {l| s}, these rules are defined inductively over the statement s.



8 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

rl [skipl: (o, a, {l|skip;s} o q) — {0, a, {l|s} o q) .

rl [assign]: (o, a, {l|z=e;s} o q)
— if z € dom(l) then (o, a, {llz— [e]?/°] |s} o q)
else (o, alz+ [e]7o1°), {l]|s} o q) £i .

rl [releasel: (o, a, {l|release;s} o q) — (o, a, schedule({l|s},q))

crl [awaitl]: {{o, a, {l|await e;s} o q) c}
— {(o0, a, {l|s} o q) c} if [e]¢

aol

crl [await2]: {{o, a,{l|await e;s} o ¢) c}
— {(0, a, {l|release;await e;s} o q) c} if —[e]S,, .

Fig. 3. The semantics of Creol in Maude

Some (representative) rules are presented in Figure Bl Rule skip shows the gen-
eral set-up, where a skip statement is consumed by the rewrite rule. Rule assign
updates either the local variable or the attribute x with the value of an expres-
sion e evaluated in the current state. The suspension of tasks is handled by rule
release, which places the active task in the task queue. The auxiliary function
schedule in fact defines the (local) task scheduling policy of the object, for
example first in first out (FIFO) or earliest deadline first (EDF). Rules awaitl
and await2 handle conditional suspension points.

Real-Time Creol’s semantics in Real-Time Maude. The rewrite rules of the
Real-Time Creol semantics are given in Figure @l The first rule ensures that
a duration statement may terminate only if its best case execution time has
been reached. In order to facilitate the conformance testing discussed below, we
define a global clock clock (t) in the configurations (where t is of sort Time)
to time-stamp observable events. These observables are the invocation and re-
turn of method calls. Rule async-call emits a message to the callee [[e]]?533’ with
method m, actual parameters [e] ?{fg’ﬁ including the deadline, a fresh future iden-
tifier n, which will be bound to the task’s so-called destiny variable [3], and,
finally, a time stamp ¢. In the (method) activation rule, the function task trans-
forms such a message into a task which is placed in the task queue of the callee
by means of the scheduling function schedule. The function task creates a
map which assigns the values of the actual parameters to the formal parameters
(which includes the deadline variable) and which assigns the future identity
to the destiny variable. The statement of the created task consist of the body
of the method. Rule return adds the return value from a method call to the
future identified by the task’s destiny variable and time stamps the future at
this time. Rule get describes how the get operation obtains the returned value.

The global advance of time is captured by the rule tick. This rule applies
to global configurations in which all active statements are duration statements
which have not reached their worst execution time or blocking get statements.
These conditions are captured by the predicate canAdvance in Figure[ll When
the tick rule is applicable, time may advance by any value ¢t below the limit
determined by the auxiliary mazimum time elapse [14] function mte, which



Dating Concurrent Objects: Real-Time Modeling

crl [duration]: (o, a, {l|duration(b,w);s} o ¢q)
— {0, a, {l|s} oq) if b<O .

crl [async-calll: (o, a,{l|xz:=e!'m(e);s} o q) clock(t)

— (o0, a,{llz—nl|s} o q) m(t,[e]tre, [e]rore,n) n if fresh(n)

crl [activation]: (o, a,{l|s} o q) m(t 0,7)
— (o0, a,{l]|s} o schedule(task(m(o,?)).q))

crl [return]: (o, a,{l|return(e);s} o ¢) mn clock(t)
— {0, a, {l|s} o q) clock(t) <n,[[e]]?(fgll§,t) if n =1[(destiny)

crl [get]: (o, a,{l|xz:=ec.get;s} o q) (n,v,t)

— (o, a,{l|z:=v;s} o q) (n,v,t) if [e]?*=n .

crl [tick]: {C} — {§(C)} in time ¢ if ¢t <mte(C) A canAdvance(C)

Fig. 4. The semantics of Real-Time Creol in Real-Time Maude

op canAdvance: Configuration — Bool .

eq canAdvance(Cl C2) = canAdvance(Cl) A canAdvance(C2)

eq canAdvance({(o, a, {l|duration(b,w);s} o ¢q))= w>0 .

eq canAdvance({o, a,{l|z:=e.get;s} o ¢ ) n) =true if n= [[m]]zmo’z;
a

eq canAdvance(C) = false [owise]

op mte: Configuration — Time .

eq mte(Cl C2) = min(mte(Cl), mte(C2))
eq mte ({0, a,{l|duration(b,w);s} o ¢ )) = w .
eq mte (C) = o0 [owise]

op 41: Task Time — Task .
eq 01 ({l|s},t) = {l[deadline + Il(deadline) — ¢t]|s}

op J2: TaskQueue Time — TaskQueue .
eq &2({l[s} o qt)=a({lls}ht)o d2(q.t) .
eq da2(e,t) =€

op Jd3: Task Time — Task .
eq J03({l|duration(b,w);s},t)

= {l[deadline — l(deadline) — t] | duration(b — t,w — t); s} .
eq 63({ls},t) = {l{[deadline > I(deadline) — t]|s} [owise]

op §: Configuration Time — Configuration .

eq 0(Cl C2, t) = d(Cl,t) §(C2,t)

eq d(clock(t'),t) = clock(t +1t) .

eq §({o, a, {lsto q),t) = (o, a, 83({lls})o d2(q))
eq §(C, t) = C [owise]

Fig. 5. Definition of Auxiliary Functions



10 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

Creol Classes: I Env I I ResourcePooII I Thread I

I I

invoke - |
start

| [ |

I [ finish |

| | |

v v v
Corresponding Behavioral Scheduler/ Task
Automata: Interface Queue

Fig. 6. Sequence diagram of a scenario from generation until completion of a task

finds the lowest remaining worst case execution time for any active task in any
object in the configuration. Note that the blocking get operation allows time
to pass arbitrarily while waiting for a return.

When time advances, the function §, besides advancing the global clock, de-
termines the effect of advancing time on the objects in the configuration, using
the auxiliary functions d;, for i = 1,2, 3, defined in Figure[d to update the tasks.
The function §; decreases the deadline of a task. The function do applies d; to
all queued tasks; do has no effect on an empty queue e. The function 03 addi-
tionally decreases the current best and worst case execution times of the active
duration statements.

3 Schedulability Analysis

Schedulability analysis consists of checking whether tasks can be accomplished
before their deadlines. For analysis, Real-Time Maude uses tick rules that ad-
vance time in discrete time steps, therefore verification of dense time models in
Real-Time Maude is incomplete. Timed automata verification tools, e.g., UP-
PAAL, use symbolic time and thus cover the whole dense time space. In this
section, we explain how to use timed automata for abstractly modeling concur-
rent objects and performing schedulability analysis. In this abstract modeling,
infinite Creol programs are mapped to finite state automata.

We present a generalization of the automata-theoretic framework in [7] for
schedulability analysis of concurrent objects. The overall real-time input/output
behavior of an object is to be specified in an automaton called its behavioral
interface. A behavioral interface abstracts from the detailed implementation of
the object, which is in turn given in terms of its output behavior, given in the
automata modeling the methods; and, the input enabled scheduler automaton
that includes a queue to buffer the messages waiting to be executed.

In this paper we extend the schedulability analysis to an open system of con-
current objects. We explain this extension in terms of the thread pool example
introduced in Section [ZJl Such a model can be synthesized from the sequence
diagram in Figure [ which depicts the life-cycle of a task from its generation
until its completion. To allow communication between different automata, we



Dating Concurrent Objects: Real-Time Modeling 11

cl1>=2
deadline=D1,¢c1 =0 O
invoke[task][self][Env]!
cl1>=3
invoke[task][self][Env]!
deadline=D2, c1 =0

Fig. 7. Modeling a task generation pattern (right)

define a channel for each action in this diagram: Channel invoke has three
parameters; namely, task name, the receiver and the sender. The parameters to
channel start capture the task to be executed, the thread assigned to it, and the
current object’s identifier. Channel £inish is parameterized in the identifiers of
the executing thread and object. Next we discuss the different automata models
corresponding to the three different life-lines in Figure

Behavioral interfaces. The behavioral interface captures the overall real-time in-
put/output behavior of an object while abstracting from its detailed implemen-
tation. Figure [1 shows a possible behavioral interface for our model of thread
pools. This automaton is parameterized in the identifier of the thread pool, writ-
ten self, and an identifier Env that represents any entity that may invoke a
task on the thread pool. Since we only assume one task type in this example, we
define a global constant task that will be used to identify this task.

We use a clock c1 for modeling inter-arrival times and the global variable
deadline is used for associating deadlines to each task generated. The tasks
with different deadlines are interleaved and there is at least 2 and 3 time units of
inter-arrival time between two consecutive task instances. This shows an example
of non-uniform task generation pattern.

Scheduler and queue. The queue and the scheduling strategy are modeled in
separate automata; together they represent the ResourcePool class. To model
the ResourcePool, every thread is assumed to have a dedicated processing unit,
but they share one task queue. We assume a fixed number TRD of threads given
a priori. We separate the task queue in two parts: an ezecution part, consisting
of the slots 0 to TRD-1, and a buffer part consisting of the rest of the queue.
The execution part includes the tasks that are being executed. This part needs
one slot for each thread and is therefore as big as the number of threads. The
selection of a task from the buffer part to start its execution is based on a given
scheduling strategies, e.g., EDF, FPS, etc.; in our example, we use EDF.
Figure B(a) shows a queue of size MAX which stores the tasks in the order of
their arrival; the queue is modeled by the array g and tail points to the first
empty element in the queue. This automaton is parameterized in s which holds
the identity of this object. This automaton can accept any task (whose identifier
is between 0 and the constant MSG) by any caller (whose identifier is between 0
and the constant OBJ); this is seen as the UPPAAL ‘select’ statement over msg
and caller on the invoke channel. This transition is enabled if the queue is
not yet full (tail < MAX). To check for deadlines, a clock x is assigned to each



12 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

msg : int[0,MSG], i:int[0,MAX-1] i:int[TRD,MAX-1] start[q[t]][t][s] !
caller : int [0,0BJ] counteri] > 0 (i < tail &&
tail < MAX orall (m : int TRD,MAX-1])

&& xX[il>d[i]

@nvoke[msg][s][caller] ?

(X[ca i]ﬂ'x[ca[m]]>d[ca[i]]-d[ca[m]]) tail <= TRD
nsertinvoke(msg, caller |[s]?

finish[t][s]? finish[t][s]?
contextSwitch(s, t, i) contextSwitch(s,t,TRD)

(a) A queue shared between threads (b) An EDF scheduler for each thread

Fig. 8. Allowing parallel threads to share a queue

task in the queue, which is reset when the task is added, i.e., in insertInvoke
function. The queue goes to Error state if a task misses its deadline (x[1] >
dl[i]) or the queue is full (tail == MAX).

Figure [B(b) shows how a scheduling strategy can be implemented. This au-
tomaton should be replicated for every thread, thus parameterized in thread
identity t as well as the object identity s. There will be one instance of this
automaton for each slot g[t] in the execution part of the queue. This exam-
ple models an EDF (earliest deadline first) scheduling strategy. The remain-
ing time to the deadline of a task at position i in the queue is obtained by
x[cal[i]]-dlcali]]. When the thread t finishes its current task (i.e. a syn-
chronization on finish[t] [s]), it selects the next task from the buffer part
of the queue for execution by putting it in g[t]; this task is then immediately
started (start[qglt]][t][s]).

To perform schedulability analysis by model checking, we need to find a rea-
sonable queue length to make the model finite. The execution part of the queue
is as big as the number of threads, and the buffer part is at least of size one.
As in single-threaded situation of objects [7], a system is schedulable only if it
does not put more than [Dy,4,/Bmin | messages in its queue, where Do, is the
biggest deadline in the system, and B,,;, is the best-case execution time of the
shortest task. As a result, schedulability is equivalent to the Error state not
being reachable with a queue of length [Dynaz/Bmin |-

Tasks. A simple task model is given in Figure [ In this model, the task has a
computation time of between 5 to 6 time units. This corresponds to the model
of the task given in the Creol code, which is defined in the start method of the
Thread class and contains a skip statement followed by a duration. In general,
a task model may be an arbitrarily complex timed automaton.

For schedulability analysis, one can experiment with different parameters. For
example, one can choose different scheduling policies, like FCFS, EDF, etc. Since
we assume that threads run in parallel, with more threads, we can handle more
task instances (i.e., smaller inter-arrival times). Furthermore, if deadlines are
too tight, schedulability cannot be guaranteed. Schedulability analysis amounts
to checking whether the Error location in the queue automaton is reachable.
Analysis shows that in the chosen settings, i.e., the selected inter-arrival times
for the tasks and an EDF scheduler, this model cannot be schedulable with 2



Dating Concurrent Objects: Real-Time Modeling 13

execute

X <=6 complete

start[task][r][self]?

x=0

O)-=
@/ﬁnish [rlself]!

Fig. 9. Modeling a task

parallel threads, no matter how big the deadlines are. Intuitively, every 5 time
units, two instances of the task may be inserted in the queue, and each task may
take up to 6 time units to compute. With three parallel threads, these tasks can
be scheduled correctly even with the deadline value of 6 time units for each task
instance.

4 Conformance Testing

Our overall methodology for the schedulability analysis of a Real-Time Creol
model consists of the following: We model the real-time pattern of incoming
messages in terms of a timed automaton (the behavioral interface of the Creol
model). Next we develop on the basis of sequence diagrams, which describe the
observable behavior of the Creol model, automata abstractions of its overall real-
time behavior. We analyze the schedulability of the product of this abstraction
and the given behavioral interface (in for example UPPAAL). Further, we define
conformance between the Real-Time Creol model and its timed automaton ab-
straction with respect to the given behavioral interface in terms of inclusion of
the timed traces of observable actions.

More specifically, let C denote a Creol model, i.e., a set of Creol classes, B
a timed automaton specifying its behavioral interface and A a timed automata
abstraction of the overall behavior of C. We denote by O(A || B) the set of timed
traces of observable actions of the product of the timed automata A and B. The
set of timed traces of the timed automaton B we denote by T'(B). Further, given
any timed trace 6 € T'(B), the Creol class Tester(d) denotes a Creol class which
implements 6 (see, for example, the class Tester in Figure [[T]). This class simply
injects the messages at the times specified by 6. We denote by O(C, Tester(f))
the set of timed traces of observable actions generated by the Real-Time Maude
semantics of the Creol model C driven by 6. We now can define the conformance
relation C <g A by

O(C, Tester(f)) C O(A || B),

for every timed trace of observable actions 6 € T'(B).

In this section we illustrate a method for testing conformance by searching for
counter-examples to the conformance in terms of our running example. Note that
a counter-example to the above conformance consist of a timed trace 6 € T'(B)
such that O(C, Tester(9)) \ O(A || B) # 0.



14 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

global == global == global ==
invoke[task][0][0]! _ /) invoke[task][0][0]! _ /) invoke[task][0][0]!
finishir][0]? deadline :RD11 finish[r][0]? deadhnphz D2 finish[r][0]? deadline ;3{31
1int[0 - r:int{0,TRD-1 r:int{0,TRD-1
global <=2 global <=5 global <=7

inish[2][0]!

~finish[1][0]?

r:int[0,TRD-1]
finish[r][0]?
global < 10

finish[2][0]?

r:int{0,TRD-1]
finish[r][0]?
global < 8

r:int{0,TRD-1] R4
finish[r][0]?

global < 12

R5

Fig. 10. Generating ready sets

4.1 Generating a Test Case

We first generate a timed trace = (t1,a1), ..., (tn, ay) by simulating the ab-
stract timed automaton model A together with the behavioral interface B. To
this end, we add a dummy automaton with a fresh clock global and an integer
time which is incremented every time unit. This way we can find the absolute
time interval in which every action in the trace has happened. In order to be
able to search for a counter-example to conformance, we generate ready sets of
observable actions generated by the behavioral abstraction of the Creol model.
For each time interval between ¢; 1 and ¢; in this trace and for every observable
action a, we are interested in the following timed reachability property:

“BE<> t;_1 <= global && global <t; && a_f£f”,

where a_f denotes whether the observable action a has occurred in this interval.
Instead of checking this property directly for every action, we encode it into one
automaton as explained below (see Figure [[Tl). This way, we avoid the need to
add flags like a_ f for every observable action and to go deep in the model to set
it true when the corresponding action happens.

The algorithm to construct the automaton in Figure [[0l for generating ready
sets is as follows. Given a trace § = (t1,a1), ..., (tn, an), we first create a linear
timed automaton Ty with the locations L = {l; | 1 < ¢ < n + 1}. By going
from [; to l;41, this automaton should ensure that action a; happens at time
x == t;. This is done differently for inputs and outputs. Since the abstract
UppPAAL model A (i.e., excluding the behavioral interface) is input-enabled, the
input actions only need to inject the task at the required time; namely with a
transition from [; to [;41 with an invoke action. This transition should provide
the required deadline. The output action finish is, however, produced by a
task and consumed by the scheduler. To intercept this action, this automaton
first mimics the scheduler by accepting the action, i.e., finish?, and then it
mimics the task by issuing finish!.

We add to Ty a location R;; for each time interval between ¢;_; and t; and
for each observable output action o; € O(A || B), with one transition from [; to



Dating Concurrent Objects: Real-Time Modeling 15

R;; with a guard global < t; accepting the output action o;; if a; is the same
as oj, this transition is guarded by global < ¢;. In our example, there is only
one observable output action namely finish, but since a task can be taken by
different threads, the finish action can be issued by different threads; there-
fore, the transitions for receiving this action should allow any thread identity r
between 0 and TRD-1.

Finally, the reachability of the location R;; implies that o; must be included in
the ready set R;. We observe that in our example, only R3 and R4 are reachable;
this is due to the possibility of finishing the first task instance in the interval [7, §].
The consequent task instances can finish in the intervals [10,11] and [12,13],
therefore, their completion does not contribute to an action in the ready sets.
The test case including the ready sets and deadlines is:

(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish}) (8, finish, {finish})
(10, finish, {}) (12, finish, {})

4.2 Executing a Test Case in RT-Maude

Executing a test case amounts to injecting the inputs at the right times and
looking for the right outputs at the right times. The system is input-enabled, so
it accepts all the inputs. If the system under test cannot produce the expected
output at the right time, the test fails. If along the test execution, the system
under test can do an observable action that is neither the expected output nor in
the ready-set, it is a counter-example to conformance. If the system can produce
all expected outputs and no counter-example is found, the test passes in the sense
that we are more confident that refinement holds and that the Creol model is
schedulable. Notice that a counterexample to refinement does not necessarily
imply non-schedulability in itself, but it shows an execution path that is likely
to miss a deadline. We demonstrate this with the test-case from the previous
subsection, repeated below:

(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish}) (8, finish, {finish})
(10, finish, {}) (12, finish, {})

We encode the input behavior given in the test-case as a complementary class
that calls the methods of the model under test at the required times. For our
running example, the code for the trace from previous subsection is given in
Figure [[] (assuming D1 = D2 = 6).

By generating one instance of the ResourcePool class (with size 3 which gives
us a schedulable UPPAAL model, cf. Section [B)) and one instance of the Tester
class, we can check the output behavior of the Creol model against the test-
case with consecutive search commands in Real-Time Maude as shown in Figure
In our case, the only observable output action is £inish. To find a counter-
example along this trace, we need to check whether a finish action can happen
when it is not expected in the ready set, i.e., before time 2, between 2 and 5,
between 8 and 10, or between 10 and 12. For each search command, we need to
specify as time bound the duration since its start configuration, e.g., to search
from C2 which is at time 5, we only need to search for another 2 time units to
reach time 7.



16 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

class Tester (mut:ResourcePool) {
void run() {
duration (2

mut‘lnvoke(6

7

duration (3,3 // 5-2 =3
mut!invoke(6) ;
duration (2,2 // 7-5 = 2

2);
)i
)i
)i
)i
)i

mut!invoke (6

Fig. 11. Tester Class

tsearch [1] {init} —" {Confl finish(T,M,E,N)} in time <2

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:

tsearch [1] {init} —" {Confl invoke(2,M,E,N)} in time <2

If this search is not successful, then the test fails; otherwise, if Maude answers
C1 — Confl then we continue with the following search:

tsearch [1] {C1 invoke(2,M,E,N)} —* {Conf2 finish(T,M,E,N)} in time <3

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:

tsearch [1] {C1 invoke(2,M,E,N)} —* {Conf2 invoke(5,M,E,N)} in time <3

If this search is not successful, then the test fails; otherwise, if Maude answers
C2 — Conf2 then we continue with the following search:

tsearch [1] {C2 invoke(5,M,E,N)} —* {Conf3 invoke(7,M,E,N)} in time <2
If this search is not successful, then the test fails; otherwise, if Maude answers
C3 — Conf3 then we continue with the following search:

tsearch [1] {C3 invoke(7,M,E,N)} —* {Conf4 finish(8, M,E,N)} in time <1
If this search is not successful, then the test fails; otherwise, if Maude answers
C4 — Conf4 then we continue with the following search:

tsearch [1] {C4 finish (8§, M,E,N)} —* {Conf5 finish(T,M,E,N)} in time <2

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:

tsearch [1] {C4 finish (8, M,E,N)} —* {Conf5 finish(10,M,E,N)} in time <2

If this search is not successful, then the test fails; otherwise, if Maude answers
C5 — Confb then we continue with the following search:

tsearch [1] {C5 finish (10,M,E,N)} —* {Conf6 finish(T,M,E,N)} in time <2

If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:

tsearch [1] {C5 finish (10,M,E,N)} —* {Conf6 finish(12,M,E,N)} in time <2

Fig. 12. Executing the test-case for the thread-pools



Dating Concurrent Objects: Real-Time Modeling 17

It is possible to write a meta-level Maude script to automate the consecutive
execution of these search commands, such that each search starts from the re-
sulting configuration of the previous one. The technical details of how this can
be done is beyond the scope of this paper.

5 Conclusion

We bridge the gap between automata theory and object orientation. We exploit
the expressive power of Real-Time Maude to define the semantics of Real-Time
Creol. We complement it with the analytical power of timed automata analysis
tools like UPPAAL. Based on this, we explained a methodology for schedulability
analysis of open concurrent systems and applied it to the design and analysis
of thread pools in an industrial communication platform. This methodology
provides a separation of concerns between high-level modeling of architectural
features of concurrent systems (in Creol) and their analysis for schedulability
(using timed automata).

Behavioral interfaces are central to the analyses. Thread pools are analyzed for
schedulability with respect to the task generation pattern given in the behavioral
interfaces modeling the work-load. We also derive test cases from the behavioral
interfaces for checking conformance between the timed automata abstractions
and the Creol models, thus bridging the gap between the two levels of abstrac-
tion. We described a testing technique that is able to find counter-examples to
conformance.

Future work consists, first of all, of an implementation of the method for
testing conformance between a Creol model of a thread-pool and the timed
automata models. Another line of future research consists of real-time extensions
of the Creol language itself to support a full development cycle, so that one can
generate code for application-specific schedulers from Creol models.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183-235 (1994)

2. The ASK community systems, http://www.ask-cs.com/

3. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: de
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316-330. Springer, Heidelberg
(2007)

4. de Boer, F.S., Grabe, 1., Jaghoori, M.M., Stam, A., Yi, W.: Modeling and analysis
of thread-pools in an industrial communication platform. In: Breitman, K., Caval-
canti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 367-386. Springer, Heidelberg
(2009)

5. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2), 187243 (2002)


http://www.ask-cs.com/

18

10.

11.

12.

13.

14.

15.

16.

F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

. Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.: TAXYS:
A tool for the development and verification of real-time embedded systems. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 391-395.
Springer, Heidelberg (2001)

. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402-416
(2009)

. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and com-
patibility of real time asynchronous objects. In: Proc. Real Time Systems Sympo-
sium, pp. 70-79. IEEE CS, Los Alamitos (2008)

. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed

concurrent objects. Software and Systems Modeling 6(1), 35-58 (2007)

Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, application specific

schedulers for heterogeneous real-time systems. In: Proc. 15th Euromicro Confer-

ence on Real-Time Systems (ECRTS 2003), pp. 287-294. IEEE Computer Society,

Los Alamitos (2003)

Kyas, M., Johnsen, E.B.: A real-time extension of creol for modelling biomedical

sensors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.) FMCO 2008.

LNCS, vol. 5751, pp. 42-60. Springer, Heidelberg (2009)

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134-152

(1997)

Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. The-

oretical Computer Science 96(1), 73-155 (1992)

Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.

Higher-Order and Symbolic Computation 20(1-2), 161-196 (2007)

Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,

F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250-264. Springer, Hei-

delberg (2008)

Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,

R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1-38.

Springer, Heidelberg (2008)



Applications of Shellable Complexes to
Distributed Computing
(Invited Talk)

Maurice Herlihy

Brown University
Computer Science Department

Introduction

This talk describes recent Joint work with Sergio Rajsbaum [3].

For models of concurrent computation in which processes may fail by crash-
ing, each possible computation can be characterized as a simplicial complex,
a geometric structure constructed by “gluing together” simplexes in a regular
manner [6]. Informally, a complex is k-connected if it has no “holes” in dimen-
sion k or lower. It is known that if the complex corresponding to every such
computation is k-connected, then one cannot solve (k + 1)-set agreement [45]/6].

A simplicial complex is shellable if it can be constructed by gluing a sequence
of n-simplexes to one another along (n — 1)-faces only. Shellable complexes have
been studied in the combinatorial topology literature [TJ2I7] because they have
many nice combinatorial properties.

We can exploit these properties complexes to derive new and remarkably
succinct tight (or nearly tight) lower bounds both on the connectivity of the
associated complexes, and on solutions to the k-set agreement task in these
models.

We consider a round-by-round model of computation, where we view each
round as a map carrying simplexes to complexes. The principal insight is that
if the single-round complex is shellable, then multi-round compositions preserve
connectivity under certain easily-checkable conditions. These are theorems of
combinatorial topology, independent of any model of computation.

We then show that for many classical models of computation, such as the syn-
chronous, asynchronous, and semi-synchronous message-passing models, along
with the asynchronous read-write memory model, each single-round complex
is indeed shellable, so it becomes a straightforward exercise to derive tight (or
nearly tight) bounds on when and if one can solve k-set agreement.

For asynchronous shared-memory models in which processes have access to
“black-box” objects that solve consensus or k-set agreement, matters are a lit-
tle more complicated. The single-round complex, while not itself shellable, is a
simple union of shellable complexes, with a shellable nerve, and the same con-
sequences follow.

Moreover, our results apply not just to the usual wait-free or t-resilient failure
models, but to general adversary schedulers that can cause certain subsets of
processes to fail, perhaps in a non-uniform way.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 19[20] 2010.
© Springer-Verlag Berlin Heidelberg 2010



20 M. Herlihy

These results illustrate the power and continuing usefulness of topological
methods for analyzing concurrent computation. Using a few well-known concepts
from Combinatorial Topology, such as connectivity, nerves, and shellability, we
can impose a common framework on a collection of heretofore unrelated models
of computation, resulting in remarkably succinct proofs, not only of known re-
sults in each of these models, but also of new, previously-unknown results that
extend classical wait-free and t-resilient bounds to general adversaries.

References

1. Bjorner, A.: Shellable and Cohen-Macaulay partially ordered sets. Transactions of
the American Mathematical Society (1), 159-183 (July 1980)

2. Bruggesser, H., Mani, P.: Shellable decompositions of cells and spheres. Math.
Scand. 29, 197-205 (1971)

3. Herlihy, M., Rajsbaum, S.: Concurrent computing and shellable complexes (submit-
ted for Publication)

4. Herlihy, M., Rajsbaum, S.: Set consensus using arbitrary objects (preliminary ver-
sion). In: PODC 1994: Proceedings of the thirteenth annual ACM symposium on
Principles of distributed computing, pp. 324-333. ACM, New York (1994)

5. Herlihy, M., Rajsbaum, S.: Algebraic spans. Mathematical Structures in Computer
Science 10(4), 549-573 (2000)

6. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J.
ACM 46(6), 858-923 (1999)

7. Kozlov, D.: Combinatorial Algebraic Topology. Springer, Heidelberg (2007)



Concurrency and Composition in a Stochastic World

Christian Eisentraut!, Holger Hermanns'-2, and Lijun Zhang?

! Saarland University, Saarbriicken, Germany
2 INRIA Grenoble, Rhone-Alpes, France
3 DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract. We discuss conceptional and foundational aspects of Markov au-
tomata [22]. We place this model in the context of continuous- and discrete-time
Markov chains, probabilistic automata and interactive Markov chains, and pro-
vide insight into the parallel execution of such models. We further give a de-
tailled account of the concept of relations on distributions, and discuss how this
can generalise known notions of weak simulation and bisimulation, such as to
fuse sequences of internal transitions.

1 Introduction

Petri nets are a model of concurrency. Among the most successful and widespread vari-
ations we find a class of models tailored to performance and dependability evaluation,
Generalised Stochastic Petri nets (GSPNs) [38/39]]. GSPNs support stochastically timed
behaviour and weighted immediate choices. A simple example GSPN is depicted in
Figure [l What we see are places and transitions, connected by directed arrows. There
are two types of transitions, timed (drawn white) and immediate (drawn black) tran-
sitions. If enabled, the latter fire immediately, while the earlier fire after a delay that
is distributed according to a negative exponential distribution. Immediate transitions
have priority over timed transitions. Evaluation of a GSPN proceeds at the level of the

t(} t4

Fig. 1. A confused GSPN

reachability graph. That graph is reduced to a continuous-time Markov chain (CTMC),
for which efficient steady-state and transient solvers are at hand [[14/17]. Due to their
formality, visual representation, and the availability of efficient evaluation support,

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 21539.12010.
(© Springer-Verlag Berlin Heidelberg 2010



22 C. Eisentraut, H. Hermanns, and L. Zhang

GSPNs have found widespread application in many diverse disciplines, including man-
ufacturing, logistics, systems biology and so on [11150443l24]].

Astonishingly, the above evaluation trajectory is incomplete. It is restricted to the
class of confusion-free GSPNs. The net depicted in Figure [Il is confused. Confusion
arises if a firing sequence admits the simultaneous enabling of multiple non-conflicting
immediate transitions. Priorities and weights can eliminate confusion, but with strange
effects. To shed some light on this phenomenon, assume that all weights of immediate
transitions and also all rates of timed transitions are 1 for the above example. In this
case, the steady state probability of a token being present in place ps is 4/11. This
probability changes to 2/5 if one replaces the immediate transition ¢ and place ps by a
direct arc from ¢; to p3. In other words, adding or removing an immediate ’stutter step’
somewhere in a weighted confused net may change the performance figures obtained
for such nets. The issue of confusion has been discussed in the literature [[1311537.6],
but even after 25 years of pragmatic use, the final word on the foundational semantics
of GSPNss is yet to be spoken.

Petri nets are visual, but not compositional. Process calculi provide compositional
theories for complex systems, especially those involving communicating, concurrently
executing components [8]. This paper is not about Petri nets with stochastically timed
behaviour and weighted immediate choices. It is not about Petri nets at all. It is about
compositional theories in a setting with stochastically timed behaviour and weighted
immediate choices. The paper revolves around Markov automata [22], a model that
indeed solves the semantic challenges hinted at above. This is achieved by harvest-
ing and intertwining results established independently for two process calculi that each
extend classical concurrency models in simple yet conservative fashions: Probabilistic
automata [4417I12]] (PA), and interactive Markov chains [23] (IMC). Though different
in flavour, both are equipped with compositional theories for strong and weak bisimi-
larities and corresponding equational theories.

In probabilistic automata, there is no global notion of time. Concurrent processes
may perform random experiments inside a transition. This is represented by transitions
of the form s> 1, where s is a state, a is an action label, and . is a probability distribu-
tion over states. Labelled transition systems are instances of this model family, obtained
by restricting to Dirac distributions (assigning full probability to single states). Thus,
foundational concepts and results of standard concurrency theory are retained in their
full beauty, and extend smoothly to the model of probabilistic automata. By restrict-
ing to Dirac distributions (assigning full probability to single states), labelled transition
systems arise, and standard concurrency theoretical concepts and results are retained in
their full beauty, and these extend smoothly to the model of probabilistic automata. In
Markov automata, probabilistic automata are employed to give a genuine semantics to
weighted immediate choices and their sequential or concurrent execution.

Interactive Markov chains in turn arise from classical concurrency models by adding
a second type of transitions PRCIY , that can embody random delays governed by a
negative exponential distribution with some parameter A. This twists the model to one
that is running on a continuous time line, and where executions of actions take no time
and happens immediately — unless an action can be blocked by the environment. This
is linked to the process algebraic notion of maximal progress for internal actions. By



Concurrency and Composition in a Stochastic World 23

dropping the second type of transitions, again, standard concurrency theory is regained
in its entirety, and extends smoothly to the full IMC model. In Markov automata, IMC
are used to represent stochastic timed behaviour and principal interaction possibilities.

Markov automata stand on the shoulders of PA and IMC. In a nutshell, the resulting
model encompassed the expressiveness of GSPNs without semantic glitches, and with
an entirely compositional theory. Due to the different time scales present in this model,
this is a demanding endeavour. As in plain IMCs, internal immediate probabilistic transi-
tions cannot be blocked and take no time to execute. Consequently, MA support fusing
sequences of them. This implies that we need to partially ignore the branching structure
of our probabilistic automata induced substructures when defining equalities, especially
weak bisimilarity, on them. This is achieved by defining bisimulation as a relation on
distributions over states, rather than as a relation on states, and by using the concept
of distribution splitting, which is a concept of interest beyond the concrete Markov au-
tomata context. It allows for a surprisingly simple formulation of how transitions are
fused, and allows to present various seemingly distinct preorders and equivalences in a
unifying framework.

In this paper, we discuss conceptional and foundational aspects of Markov automata,
partly rephrasing and complementing [22l]. We place it in the context of some well-
known and established models of concurrent computation that involve stochastically
timed behaviour and weighted immediate choice, especially continuous- and discrete-
time Markov chains, probabilistic automata and interactive Markov chains. We espe-
cially give insight into the parallel execution of such models, and discuss simulation
and bisimulation relations on them. We show that the concept of relations on distri-
butions generalises the respective standard relational notions. With this perspective on
the different notions of bisimulation it becomes apparent how weak bisimulation for
Markov automata appears as a natural generalisation of the constituent relations.

2 Preliminaries

(Sub-)distributions. A subdistribution p over a set S is a function y : .S — [0, 1] such
that ) ¢ u(s) < 1. We denote by Supp(u) = {s € S| u(s) > 0} the support of p
and define the probability of S’ C S with respect to yu as u(S") := > g pu(s). Let
|| := p(S) denote the size of the subdistribution p. We say p is a full distribution,
or distribution, if || = 1. Let Dist(S) and Subdist(S) be the set of distributions and
subdistributions over S, respectively. For s € S, we let A, € Dist(S) denote the Dirac
distribution for s, i.e., As(s) = 1. Let p and i be two subdistributions. We define the
subdistribution p” = p & ' by p’(s) = u(s) + p'(s), if |u”’| < 1. Conversely, we
say that " can be split into p and p’. Or that (u, ') is a splitting of 1"’ Moreover, if
z - |u| < 1, we let zp denote the subdistribution defined by: (xu)(s) = - u(s).
(Sub-)distributions can also be considered as sets over S x (0, 1], where (s1,71),
(s2,7m2) € S x (0,1] A s1 = s implies r; = r2, and where the second components of
the elements sum up to a number smaller or equal to 1. The set view on subdistribution
will be widely used throughout the paper. For example, to denote the distribution p
with p(s1) = 0.75 and p(s2) = 0.25, we may write p = [(s1,0.75), (s2,0.25)].
Let for an element s € S and a subdistribution u over S the expression p—s denote



24 C. Eisentraut, H. Hermanns, and L. Zhang

the subdistribution that is obtained from p by removing the pair (s, u(s)) from g, if it
exists. To make clear when we talk about sets representing subdistributions and when
about general sets, we use [ and | for subdistributions, { and } for sets. Since @ is
associative and commutative, we may use the notation &, for arbitrary sums over a
finite index set I.

Labelled trees. For 0,0’ € N*>0 we write o < ¢’ if there exists a (possibly empty) ¢
such that 0 = ¢’. A partial function 7 : N, — L, which satisfies

— iffor 0,0’ € NJ: 0 < 0’ and ¢’ € dom(T) then o € dom(7)

— if 04 € dom(T) fori > 1, then also o (i — 1) € dom(7T)

- ¢ €dom(T)
is called an (infinite) L-labelled tree. Let o € dom(7): o is called a leaf of 7 if there
isno o’ € dom(T) such that ¢ < ¢’. The empty word ¢ is called the root of 7. We
denote the set of all leaves of 7 by Leafr and the set of all inner nodes by Innery. If
the tree has only one node, the root node, then this node is contained in both Innery
and Leafr. In any other case the two sets are disjoint. For a node o of a tree 7 let
Children(c) = {oi | 0i € dom(7T)}. In this paper, we consider L-labelled trees with
finite branching, i.e., |Children(c)| < oo for all node o.

3 Markov Automata

We integrate probabilistic automata and interactive Markov chains into one model, de-
fined by means of a twofold transition relation — and == [22]:

Definition 1. A Markov automaton MA is a quintuple (S, Act, —, = s,), where
— S is a nonempty finite set of states,
— Act is a set of actions containing the internal action T,
- —>= C 8 x Act x Dist(S) is a set of immediate transitions, and
— == C 8 xRx¢ x Sisa set of timed transitions, and
— 8, € S is the initial state.

We let s, u,v,t, E, F, G and their variants with indices range over S. For timed transi-
tions, A, u € R>( denote rates of exponential distributions. For immediate transitions,
a ranges over Act, and p ranges over Dist(S). A immediate transition (E, a, u) € —»
is also denoted by F -y, similarly we define E+*F. We say an action a € Act is
enabled in F, if there exists an immediate transition Ei’/i. A state £ € S is called
stable if T is not enabled in F. If F is stable, we use the shorthand notation £'|. We
employ the maximal progress assumption. This means that if a state is not stable, time is
not allowed to progress, making timed transitions out of this state irrelevant [28]. As in
IMC, this assumption is not evident in the model, but is part of the equivalences defined
on it.

We define a (nonnegative) real-valued function rateps : S x S — R, that calcu-
lates the rate to reach a state s’ from a state s by

ratepa(s, s') = Z{)\ | s+8e5').



Concurrency and Composition in a Stochastic World 25

Moreover, we define rateya(s) == »_, ratema(s, s’) as the exit rate of s. The index is
omitted if clear from the context. The delay associated with a state s that enables timed
transitions is (negative) exponentially distributed with the exit rate rate(s). In general,
the probability to move from s to the successor state in s’ equals the probability that the
timed transitions that lead from s to ’ wins the race. Therefore, the discrete branching

mrf[(:(’ss) ) Fors € S, weuse P(s,-) to

probability to move to s’ is given by P(s, s') :=
denote this discrete branching distributions.

A Dirac distribution assigns full probability to a single outcome. We say that —»
is Dirac if the distributions occurring as third components of — are all Dirac, is de-
terministic it E-" 1, and E = 5 implies that ;11 = f15. Markov automata subsume

many concurrent systems, which are discussed below.

1. Labelled Transition Systems: If == = () and — is Dirac, we obtain labelled
transition systems.

2. Discrete-time Markov chains: If = = (j and |Act| = 1 and — is deterministic,
we obtain discrete-time Markov chains (DTMCs). In this case one usually ignores
the single action, and writes it as a triple (S, P, so) where P is called the probability
matrix, and is given by P(s, s’) := u(s’) provided s> .

3. Continuous-time Markov chains: If —= = () we obtain continuous-time Markov
chains (CTMCs). It is commonly represented as a triple (.5, Q, so) where Q is
called the infinitesimal generator matrix, and is given by Q(s, s’) := rate(s, s)
provided s # s' and Q(s, s) = rate(s, s) — rate(s). The latter reflects that in the
original mathematical formulation of CTMC:s it is impossible to make a difference
between staying in state s, and jumping back to s from s.

4. Probabilistic Automata: If == = () we obtain probabilistic automata. If addition-
ally — is deterministic, we arrive at Markov decision processes (MDPs).

5. Interactive Markov chains: If —= is Dirac, we get interactive Markov chains
(IMCs).

4 Parallel Composition

This section introduces parallel composition of MAs, and places it in the context of
general operators for parallel composition, also motivating the rationale behind the se-
mantic choices of the parallel operators in PA and IMC.

Assuming we are given two MAs MA; = (S', Act', —=1, =1 s1) and MA; =
(82, Act?, —=2, =2 52), we consider a family of parallel operators || 4 indexed by
some set A C (Act' U Act?) — {}. For a clear presentation we use these operators
as syntactical means to denote some state s ||a $2, which arises by the parallel com-
position of s; and s5. As syntactic sugar, we lift them to subdistributions as follows:
for subdistributions p; € Subdist(S1) and ps € Subdist(S2), 11 ||a pe2 denotes the
subdistribution in Dist(S; x S2) by distributing ||a element-wise. As an example, we

have (1 [[a p2)(s1 [[a s2) := pa(s1) - pa(s2).

Definition 2. Let MA,, MAsy and A be as discussed above. The parallel operator
can be applied to the two MAs to form the parallel composition MA; ||a MA2 =
(S, Act' U Act?, —=, === s,) of processes where



26 C. Eisentraut, H. Hermanns, and L. Zhang

- S={s1]|las2 | (s1,82) € St x §2},
= (s1]la s2,a, 1 |[a p2) € —= iff either
e a € Aand (s;,a,p;) € —" foreachi € {1,2}, or
e aZ Aand (s1,a,p11) € =1 A s = A, or (sa,a, u2) € —=2 Ay = Ay,
— (81 ||la s2,A, 8] ||a 85) € »»= iff either
o if for each i € {1,2}, ratema,(si,s;) > 0 AN s = s} then A\ =
ratepa, (1, 81) + ratema, (s2, $5), otherwise
o )\ = rateya, (81, 8)) and sh, = sa, or A = ratema, (82, sh) and s} = s1,
— 8o =8 ||a 82 € ST x S? is the initial state.

In a process algebraic setting, the style of defining this operator can be made more
elegant [34]], but this is not the topic of this paper.

4.1 The Roots of MA Parallel Composition
It is illustrative to relate this operator to the ones it is derived from.

1. Whenever MA; and MA; are labelled transitions systems, MA; || 4 MAs reduces
to LOTOS-style parallel composition [9].

2. Whenever MA; and MA; are discrete-time Markov chains over the same singleton
set Act, MA; || act MAs reduces to the synchronous product of the models, where
both Markov chains proceed in lockstep.

3. Whenever MA; and MA, are continuous-time Markov chains, MA; ||g MAs re-
duces to the independent and concurrent execution of the two Markov chains, jus-
tified by the memoryless property.

4. Whenever MA; and MA; are probabilistic automata, MA; || 4 MA agrees with
the essence of the parallel composition for PA [43] (neglecting minor differences
in synchronisation set constructions).

5. Whenever MA; and MA; are interactive Markov chains, MA; || 4 MA reduces to
the parallel composition for IMC [25].

A few further remarks are in order (despite they may seem obvious to many readers):
MA takes the LOTOS-style parallel operator || 4 as a basis, but we could have equally
well opted for CCS style [40], CSP style [30], asynchronous or synchronous 7-calculus
style [41]], I/O style [36]], etc. From a pragmatic perspective, the || 4-operator is a con-
venient ’Swiss army knife’. It can, as special cases, express asynchronous interleav-
ing (||g), synchronous product (|| 4.t with |Act| = 1). It can also be used to encode
shared variable communication, as well as asynchronous message passing communi-
cation. Shared variables can be modelled as separate MA, where states correspond to
variable valuations, and transitions are put in place for reading and updating the state.
Similarly, asynchronous message passing channels can be encoded as MA that keep
memory of the messages in transit (see e.g. [4, Chapter 2] for details).

We mention this to make clear that a properly and well understood semantics for this
one operator is the nucleus for a well understood semantics of essentially any prevailing
communication paradigms found in the real world. Since the models developed with
MA (just like GSPN, IMC, PA) are meant to be designed and evaluated in order to
provide insight into performance and dependability of the system being modelled, a
well understood semantics is essential.



Concurrency and Composition in a Stochastic World 27

4.2 A Connection between DTMCs and CTMCs

To shed some more light on the parallel behaviour of these models, we state an inter-
esting observation relating the interleaving semantics for CTMCs to the synchronous
semantic for DTMCs. They are both derived from our single parallel composition for
MAs, but why do they make sense after all? This section establishes a probably aston-
ishing connection between the two.

Geometric and Exponential Distributions. It is well known — and we thus here take it
for granted — that for any state in a CTMC, the sojourn time of that state is exponentially
distributed, and likewise, that for any state in a DTMC, the sojourn time of that state is
geometrically distributed.

Furthermore, the exponential distribution can be considered as the limit of the ge-
ometric distribution, in the following sense: Let continuous random variable X be
exponentially distributed with parameter A > 0, i.e. its density is fx(t) = e .
Further, for A > 0 with p = AA < 1, we consider the geometrically distributed dis-
crete random variable X, o with parameter A4, i.e., with density function fx, , (k) =
AA(1 — MA)F~1, Then the definition of Euler’s number implies that the density of X
at time point ¢ > 0 can be approximated by the density function of X 4 at step [2},
formally:

V> 0. fx(t) = lim fi,.,([1/A])/4

One may consider A as a step size in continuous time (used to perform a single
Bernoulli experiment, from which the geometric distribution is derived). This view is
helpful in the discussion that follows.

Discretised Markov Chain. Let M = (S, Q, so) be a CTMC, and A be a sufficiently
small step size. In the classical terminology [33]], this CTMC is a family {C(t)} of
random variables each taking values in S, indexed by (continuous) time ¢, that obeys the
Markov property. From this, we can derive a A-discretised DTMC Ma = (S, P a, so)
by: Pa(s,s’) = Prob(C(A) = s’ | C(0) = s). It holds that:

- Pa(s,s') equals Q(s,s')A + o(A), provided s # s', and otherwise
- Pa(s,s) equals 1 + Q(s, s)A + o(A).

Here, o(A) subsumes the probabilities to pass through intermediate states between s
and s’ during the interval A, and we have P a(s, s) € (0, 1) — for sufficiently small A.
Moreover, the rate between s and s’ can be derived from the derivative:

- Q(s,8') =lima_oPa(s,s')/A, provided s # s', and otherwise
- Q(s,8) = lima—o(— gz Pals, s')/A).

This observation justifies that the behaviour of a CTMC can be approximated arbitrarily
closely by a A-discretised DTMC, just by choosing A small enough, since in the limit
Q =lima_,o(Pa —1I)/A, where I denotes the identity matrix. The limit is understood
element-wise. All the above facts can, albeit usually stated in a different flavour, be
found in many textbooks on Markov chains, for example in [47].



28 C. Eisentraut, H. Hermanns, and L. Zhang

What is not found in textbooks is the question whether this approximation is com-
patible with parallel composition: For two CTMCs M and M, let M 5 and M, denote
the corresponding A-discretised DTMCs respectively, which we assume labelled over
the same singleton set Act. We now consider the synchronous product Ma || ace M,
where the two Markov chains evolve in lockstep with the step size — on a continuous
time line — being A. Now, how does this product relate to M ||y M’, the parallel com-
position of the CTMCs M and M’ under interleaving semantics? The following lemma
answers this.

Lemma 1. Let M = (S,Q, so) and M' = (5',Q’, s() be two CTMCs, let M, M,
denote the probability matrices in the discretised DTMCs, respectively. Moreover, let
M [lg M = (S ]y 8", Qll, 50) and Ma || acs My = (S || act S', P!}, 50). Then,

qQll = iiLnO(PQ ~T)/A

Proof. Let s,t € Sand s',t' € S’. We consider a few cases:
1. Assume s # t and s’ # t'. By the synchronised product in the DTMCs, we have:

Pl(s [lace &'t lact ) = Pals,t) - PL(s, ) = Q(s,)Q (s, ¢) A% + o( 4)

It holds now lima_,o Pg(s llact 8’5t || act t')/A = 0. By definition of ||y we also
have Q(s ||y ', [ly /) = 0.

2. Now we consider the case s = ¢ and s’ # t'. Under this assumption we have that
Qll(s ||g ', t||g t') = Q'(s', '), and moreover, P A(s, s) = 1+Q(s, s) A+o(A).
The rest can be shown similarly as previous case.

3. Finally we consider the case s = ¢ and s’ = t’. In this case we have

Pl (s [lact 85 |lace 8') = (1 + Q(s,5) A+ 0(A)) - (1 + Q'(s',8') A + 0o(A))
=1+ (Q(s,8) +Q'(s,8) A+ o(A)

Thus: limA_A)(PQ(s llact 8’58 ||lact 8) —1)/A =Q(s,s) + Q'(s',5"), which is
exactly Q1 (s [lp 5,5 llo o)-

The above lemma derives the interleaving semantics for CTMCs through the limiting
behaviour of their discretised DTMCs evolving synchronously.

5 Simulations and Bisimulations

We now discuss equivalences and preorders for MA and submodels thereof. We first
introduce a notation that makes our further discussion more compact, at the price of
mildly reduced readability. It enables a uniform treatment of immediate and timed tran-
sitions. In doing so, we introduce the special action x(r) to denote the exit 7 rate of a
state. Moreover, we let Act® := Act U {x(r) | € R>o}, and a, (3, ... range over this
set.

Definition 3. Let MA = (S, Act, —, =, 5,) be an MA. Let E € S and oo € Act™.
We write E — i if

- E%~puNa€ Actor

— ElAr=rate(E)Na=x(r) Au=P(E,").



Concurrency and Composition in a Stochastic World 29

5.1 Strong Simulations and Bisimulation

Strong Simulations. Strong simulations for DTMCs were originally introduced [31]]
using the concept of weight functions. Weight function have since become a standard
way of formalising specification and refinement relations between probabilistic pro-
cesses. Given distributions i, ¢/ and a relation R, a weight function ¢ requires assign-
ing weights in [0, 1] for every pair of states in R, such that y(s) = Y, s 0(s,s’) and
symmetrically 4/(s") = > g 0(s,s’). Owed to the need of assigning these weights,
many proofs need human ingenuity and become certainly nontrivial. This is felt, for
instance, in the proof of transitivity of strong similarity. As a consequence, a few
equivalent reformulations of weight functions have emerged. One of them is based on
computing the maximum flow on a particular network constructed out of u, p' and R
[2]. This has been successfully exploited in decision procedures for various simula-
tion preorders [2I52|21]]. Below, we use another, rather recent, reformulation [S1/21]:
the existence of a weight function for distributions u, 1/ with respect to R is equiva-
lent to the statement that, p(A) < u(R(A)) for every set A of states. Here, we write
R(A) :={s'| (s,s') € R N s € A}. This alternative characterisation of weight func-
tion provides a very intuitive interpretation: for every set A, u’ assigns a higher proba-
bility to the related set R(A) relative to u. The inspiration for this definition stems from
[19], in which strong simulation relations are, in addition, required to be preorders.

Definition 4 (Strong Simulations). Lert MA = (S, Act, —, == s,) be an MA. Let
R be a binary relation on S. Then, R is a strong simulation iff ERF implies:

1. forall « € Act: E = pimplies F —— ' for some distribution 1’ such that
w(A) < W/'(R(A)) forall AC S, and

2. forallr € Rxg : E X0, w implies F' 2, ' for some distribution i’ and

r’ € Rxq such that r < v’ and pu(A) < /' (R(A)) forall A C S.

State F' strongly simulates E, written £ 3 F, if (F, F) is contained in some strong
simulation.

On labelled transitions systems = coincides with standard strong similarity [42//1]].
On discrete-time Markov chains % coincides with strong similarity [31].

On continuous-time Markov chains = coincides with strong similarity [3].

On probabilistic automata 3 coincides with strong similarity [46].

On interactive Markov chains = coincides with strong similarity [32] if strength-
eningr <71’ tor =1,

Nk =

Strong Bisimulations. Strong bisimilarity in its diverse flavours is the most prominent
equivalence relation for probabilistic models. For MA, the obvious combination of
strong bisimilarity for IMC and strong bisimilarity for PA can be phrased as follows:

Definition 5. Let MA = (S, Act, —, =, s,) be an MA. Let R be an equivalence
relation on S. Then, R is a strong bisimulation iff ERF implies for all o € Act*:
E %5 pimplies F = p with i(C) = i/ (C) for all C € S/R.



30 C. Eisentraut, H. Hermanns, and L. Zhang

Two states FE and F' are strongly bisimilar, written E ~ F, if (F, F) is contained in
some strong bisimulation.

1. On labelled transitions systems ~ is strong bisimilarity [42/40].

2. On discrete-time Markov chains ~ coincides with strong bisimilarity [35]] and cor-
responds to lumpability [33]].

3. On continuous-time Markov chains ~ coincides with lumping equivalence [26].

4. On probabilistic automata ~ coincides with strong bisimilarity [46].

5. On interactive Markov chains ~ coincides with strong bisimilarity [25].

For PA, coarser relations than strong bisimilarity and strong similarity — still treat-
ing internal transitions as ordinary transitions — are established based on the concept
of combined transitions. The resulting relations are called strong probabilistic (bi-
Jsimilarities [46[45]]. They can also be defined directly in our setting, by replacing
F % 1/ by a convex combination of several a-labelled transitions starting in F. De-
tails are left to the interested reader.

5.2 Weak Transitions

Weak transitions for probabilistic systems have been defined in the literature via prob-
abilistic executions in [44], trees [20], or infinite sums [[18]. We adopt the tree notation
here. The material presented below concerning weak transitions provides no innovation
over the classical treatment, it is included for the benefit of the reader.

We consider in the following S x R>q x Act* U {e}-labelled trees. Briefly, a node
in such trees is labelled by the corresponding state, probability of reaching this node,
and the chosen action (including the special action for timed transitions) to proceed.
For a node o we write Sta; (o) for the first component of ¢(o), Prob; (o) for the second
component of t(o) and Act;(o) for the third component of ¢(o).

Definition 6. Let MA = (S, Act, —, »=, s,) be an MA. A (weak) transition tree 7
isaS x Rso x Act* U {e}-labelled tree that satisfies the following condition:

1. 0 < Probr(e) <1
2. Vo € Leaf(T) : Actr(c) = e.
3. Vo € Inner(T) \ Leaf(T) : A : Stag (o)

Actr (o) " and

Probr (o) - p = [(Star (o), Probz (¢")) | ¢’ € Childrent (o)]

4. Y ocrear Probr (o) = Probr(e).
We call the tree weak, if Probr(g) < 1.

Restricting ActX to Act, a transition tree 7 corresponds to a probabilistic execution
fragment: it starts from Staz (¢), and resolves the non-deterministic choice by executing
the action Acty (o) at the inner node o. The second label of o is then the probability
of reaching Stas (o), starting from Staz(e¢) and following the selected actions. If in a
node o the timed transition is chosen, the third label Acty (o) € R represents the



Concurrency and Composition in a Stochastic World 31

exit rate of Stay (). In this case, a child ¢’ is reached with Probz (o) times the discrete
branching probability P(Star (o), Star(c”)).

An internal transition tree T is a transition tree where each Actr (o) is either 7 or e.
Let 7 be a transition tree. Then the subdistribution associated with 7, denoted by 7,

is defined as
pr= P [(Star (o), Probr(0))].

oELeafr
We say subdistribution p7 is induced by 7. Obviously, pg is a full distribution if

we have Proby(¢) = 1. With the above definitions we are now able to express weak
transitions:

Definition 7. For E € S and u a full distribution we write

— FE = pif pis induced by some internal transition tree T with Star(¢) = E.

- E =% i if pu is induced by some transition tree T with Staz(¢) = E, where on
every maximal path from the root at least one node o is labelled Acty(c) = . In
case that o # T, then there must be exactly one such node on every maximal path.
And all other inner nodes must be labelled by T.

-E=pifa=71and E = por E == p.

For all three transition relations we say that the transition tree that induces p also
induces the transition to .

Note that £ = Ag and F = A £ holds independently of the actual transitions £

can perform, whereas £ == Ag only holds if E-~Ag. Forall a # 7, E == pis
identical to F == w. Below we define the notion of combined transitions [44], which
arise as convex combination of a set of transitions with the same label, including the
label representing timed transitions.

Definition 8. We write E ==¢ p, if « € ActX and there is a finite indexed
set {(ci, pi)};c; of pairs of positive real valued weights and distributions such that

E == yu; for eachi € Tandy ,  ci =1and p= @, cipti-

We say that E ==>c p is justified by the set {(c;, p;)};c;- Transitions rela-
tions from states to distributions can be generalised to take (sub)distributions p to
(sub)distributions, by weighting the result distribution of the transition of each element

E € Supp(p) by pu(E).

Definition 9. Let ~~ € {5,2& —, »>,—>}. Then, we write |, ~» v if v =
@siESupp(u) w(8;) i, where s; ~ p; holds for all s; € Supp(u).
We say that 1 ~~ 7 is justified by the transitions s; ~> ;.

5.3 Weak Simulations and Bisimulations over Subdistributions

Weak simulations and bisimulations are means to abstract from internal transitions and
sequences thereof. In our setting this means that we intend to fuse distributions that arise
from sequences of internal transitions in an MA into single, accumulated distributions.



32 C. Eisentraut, H. Hermanns, and L. Zhang

Relating distributions. Bisimulations for PA and IMC have in the past been defined as
relations on states, akin to bisimulations for LTS. The latter reside in a single state at
every point in time during their execution, thus bisimulation relations on states are all
that is needed to capture their behaviour adequately. In contrast, a stochastic system
resides — for every point in time — in a certain state with a certain probability. The
system behaviour is thus not correctly determined by the states occupied, but instead by
probability distributions over states in which a system can reside at any point in time.
It thus seems natural to define bisimulation relation as relations on distributions over
states.

Several simulation relations for PA adopt this approach [46/44/48]] in an asymmetric
way, simulating a state by a distribution over states. Among these relations, probabilis-
tic forward similarity [44] is the coarsest. We denote it by <y,q. In Figure Dl state u
is forward simulated by state v and vice versa. In an asymmetric way, <r,q achieves
exactly what we intend to achieve for MA: we aim at fusing distribution along internal
immediate transition sequences. It is however not obvious how to extend the definition
of forward simulation, which relates states to distributions, to a bisimulation setting,
which should then relate distributions to distributions. Even partially state-based ap-
proaches seem to fail, since in order to equate « and v, the two distributions [(v', 1)]
and [(E, 3), (F, 2)] must be considered equivalent. However, from a state-based point
of view, the two distributions must be different, assuming that E and F’ represent states
of different equivalence classes, since neither E nor F' alone can then be equivalent to
state v’ .

> fwd
<fwd a
a T
1 2 XPA 1 2
3 3 3 3
E F E F

Fig. 2. Probabilistic forward simulation versus probabilistic weak bisimulation

We instead advocate a bisimulation-over-distribution approach to define a notion of
weak bisimilarity that satisfies our demands [22]. In the sequel, we reiterate and
rephrase several interesting aspects of this approach, and characterise the semantical
relationship between weak bisimilarity and the standard bisimilarities of PA and IMC.

Naive Weak Bisimulation over States. In the following, we will show that the standard
bisimulations of PA and IMC can easily by cast as relations over distributions. In favour
of a concise presentation, we will not consider the standard bisimulations for PAs and
IMC separately, but only investigate a relation =<, which we define as a direct combina-
tion of IMC and PA weak bisimilarity, such that on the IMC submodel we obtain IMC
weak bisimilarity [23], and on the PA submodel, we obtain (a divergence sensitive vari-
ation) of PA weak bisimilarity, namely stable weak bisimilarity. The variation in the
latter case is owed to the maximal progress assumption, inherited from IMC and nec-
essary for general MAs. This has, however, no influence on the technical development.



Concurrency and Composition in a Stochastic World 33

We have first introduced this relation in [22, Def. 10], as a naive approach of defining a
suitable weak equivalence for MAs. As we have argued there, this relation is, however,
not suitable to achieve the intended effect of fusing internal transitions. We thus call
this relation naive weak bisimulation.

Definition 10 (Naive Weak Bisimulation). Let MA = (S, Act, —, = ,s,) be a
MA. For two states s,s' € S, s < s’ holds if (s,s’) € & for some equivalence relation
& on S for which EEF implies for all « € Act™ and for all equivalence classes C' of

&, E - yimplies F == ¢ ~ for some y and VC € S/E : u(C) = v(O).

Weak (Bi-)simulations over Subdistributions. We will now introduce two weak bisim-
ulation — and also two weak simulation — relations that relate distributions (or subdis-
tributions, to be precise). One of them is weak bisimulation for Markov automata as
introduced in [22| Def. 11], the other bisimulation appears new. We will show that this
new bisimulation relation on distributions induces a bisimilarity on states that coincides
with naive weak bisimulation, which itself is defined directly over states. This strong
connection bridges between the state-based and distribution-based approach and allows
us to make precise their relationship. We call the new relation semi-weak bisimulation,
since it is weak, meaning partially oblivious to internal transitions, but yet finer than
weak bisimulation for Markov automata.

Both relations rely on the idea of equating subdistributions exactly when they can
be split into subdistributions, such that for each component in one splitting there ex-
ists a related component of the other splitting that exhibits identical behaviour, and
vice versa. Remarkably, the definitions only differ in one specific point. For semi-weak
(bi)simulation, splittings need to be immediately related to match their behaviour. For
weak (bi)simulation, we relax the conditions such that it suffices if equated distributions
are able to reach distributions that can then be split suitably by internal transitions. To
make explicit that the relations only differ in the way subdistributions are split, we de-
fine two sets of possible splittings of a subdistribution.

— For weak (bi)simulation, we use a set

split(p) = {(p1, p2) | I p=c /' A’ = 11 @ po}

where each splitting of an internal successor subdistribution of y is a valid splitting.
— For semi-weak (bi)simulation, we use a more restricted set

split® (1) = {(p1, p2) [ 1= p1 & p2}
where only direct splittings of u are valid splittings.

Since weak and semi-weak bisimulation only differ in this one point, we will define
them simultaneously in one definition. In what follows, the expression split(o) needs to
be replaced by split in order to obtain weak bisimulation. Semi-weak bisimulation is
obtained by replacing it by split°.

Definition 11 (Weak Bisimulations). A relation R on subdistributions over S is called
a (semi-)weak bisimulation iff whenever (11 R o then for all « € Act*: |p1| = |pe| and



34 C. Eisentraut, H. Hermanns, and L. Zhang

1. VE € Supp(p1): Ipa?, pa®: (22, pa®) € split® (uz) and

(i) [(E,p1(E)] R p2f and (m—E) R p2®

(ii) whenever E — 11}, for some i} then j129 == p' and (1 (E) - i1y) R
2. VF € Supp(u2): 9, pua®: (u19, 11%) € split(o)(,ul) and

(i) m? R [(F,pa(F))] and pr® R (p2—F)

(ii) whenever F == ity for some iy then 11,9 ==c p" and pi"" R (p2(F) - ih)

"

Two subdistributions y and ~ are (semi-)weak bisimilar, denoted by p ~(°) ~, if the
pair (u,7y) is contained in some (semi-)weak bisimulation.

It is worth noting that the weak bisimilarity ~ in the above definition is identical to [22}
Def. 11]. We immediately obtain simulation relations by removing Condition 2.

Definition 12 (Weak Simulations). A relation R on subdistributions over S is called
a (semi-)weak simulation iff whenever 11 R o then for all o € Act™: |p1| = |p2| and

VE € Supp(in1): Iua?, p2®: (129, p2®) € split® (u2) and

(i) [(E, i (E))] R p2f and (11 —E) R p2®
(ii) whenever E = 1} for some i), then 119 ==¢ p" and (1 (E) - pi}) R p"

Two subdistributions p and vy are (semi-)weak similar, denoted by | ;(o) 7, if the pair
(w,7y) is contained in some (semi-)weak simulation.

It is not obvious that these relations are indeed equivalence relations and preorders, re-
spectively. Reflexivity and symmetry is straightforward. The latter holds, because the
union of two (semi-)weak bisimulations is again a (semi-)weak bisimulation. Since
the pioneering work of Larsen and Skou [35]], it has become a standard for bisimi-
larity notions defined in the stochastic setting, to presuppose the bisimulations to be
equivalence relations on states. Because this property is not closed under union, several
otherwise standard properties become difficult to establish. Owed to the distribution
perspective on these relations illustrated above, the equivalence relation presupposition
can be dropped, simplifying an easy exercise. Only transitivity needs a technical and
involved proof. The proof for ~ can be found in [22|23]. The crucial idea for this proof
is that we can define (bi)simulation relations up-to-splitting. We refer the reader to [22]
for further details. The proof for ~° follows exactly the lines of that proof, but needs to
distinguish fewer cases.

Lemma 2. 3 and 3° are preorders, = and =° are equivalence relations.
It is apparent that ~ and  are weaker notions than ~° and Z° respectively:
Theorem 1. ~° C and J°CR

The relations defined above relate subdistributions, but they induce relations on states in
the obvious way: We call two states I, F' (semi-)weak bisimilar, denoted by £ %(AO) F,
if Ap ~(°) Ap. Analogously, we call two states F, F' (semi-)weak similar, denoted by
EZRY Fif Ap ZQ) Ap.

In the following we establish that =< and ~9, coincide. Since < is the naive (state-
based) integration of PA and IMC weak bisimulation, this fact provides insight into the
twist achieved by moving from semi-weak to weak formulation.



Concurrency and Composition in a Stochastic World 35

Theorem 2. = = &9

Proof. We first prove that the lifting of semi-weak bisimilarity to states, ~%,, is also a
state-based bisimulation in the sense of Definition[10l The crucial point in this proof is
the claim, that p ~° -y implies VC' € S/=x% : p(C) = ~(C), since then the conditions
of Definition[I0]follow immediately. To see the claim, note that ~° itself is a semi-weak
bisimulation. Then, by repeated application of the left hand side of clause (7) in the def-
inition of ~°, we can split y into a family of subdistribution {~g} BeSupp(p)? such that
every E € Supp(u) is matched by one of these distributions, and u(E)Ag =° vg
holds. In turn, we can split y4(E)Ag into a family {u% } FeSupp(vi) accordingly, such

that each state F' € Supp(yg) is matched by the subdistribution pZ , satisfying
u? ~° vp(F)Ar. Every subdistributions ug must be of the form vg(F)Ag. Hence,
we know that v (F)Agp ~° vg(F)Ap. In total, we have split 4 and ~y into sets of
subdistributions, such that there is a total matching of subdistribution of one set with
subdistributions of the other set. Matched subdistributions have the same size and the
single elements of their supports are equivalent up to ~% . From here we can immedi-
ately conclude that VC € S/~¢, : u(C) = v(C) holds.

For the other direction we show that the relation

R ={(1,7) |VC € 5/=:pu(C) =~(C)}

is a semi-weak bisimulation. Then, whenever E < F, the pair (Ag, Ar) is contained
in the semi-weak bisimulation R, which implies £ =9, F. Let us consider an arbi-
trary pair (u,y) € R. By symmetry it suffices to check the necessary conditions for
an arbitrary £ € Supp(u). Let C be the equivalence class of < containing E. Since
w(C) = v(C), there exists a splitting v9 @ v* of v with Supp(v9) = {F1,..., Fi} and
F; < E foreach F;, and furthermore, VC € S/=< : v*(C) = (u—FE)(C). Hence Condi-
tion (7) is satisfied. Whenever £ -, 1/, following Condition (i), then for each F; we
immediately deduce from E < F; that F; ==¢ vr, andVC € S/< : i/(C) = v, (C).
Letus set p := @D;_; , 7Vr- Itis then straightforward to show that in total 79 ==¢ p
and that VC' € S/=< : u(E) - 1/ (C) = p(C). By the choice of R this immediately
implies (u(F)y', p) € R, which suffices to establish Condition (7). |

Just like =, most existing weak relations for systems with probabilistic or stochastic
timed transitions can be recast as relations on distributions, which can be formulated as
slight adaptations of ~° and 3°, respectively. So, with ~° and Z° at hand, the exact
extra power of the distribution-based perspective, combined with distribution splitting,
becomes apparent: =° and = only differ in their use of split®(u) and split(y1), respec-
tively. The latter allows additional internal transition sequences, and is the key to fuse
distributions along sequences thereof. It is thus a natural generalisation comparable to
the classical passage from strong transitions to weak transitions.

Discussion. We will now summarise the relationship between the respective standard
notions of weak (bi-)similarity on the submodels and weak (bi-)similarity for Markov
automata. Since all of these relations are defined over states, we will compare them to
~a and =9.



36 C. Eisentraut, H. Hermanns, and L. Zhang

1. On labelled transitions systems, both ~ 4 and ~% coincide with stable weak bisim-
ilarity [49]. They both coincide with standard weak bisimilarity [40] if no infinite
sequences of internal transitions appear in the LTS. This difference is inherited
from IMC, and owed to the maximal progress assumption [28]. The same applies to
<A, <%, and weak similarity on LTS [40].

2. Ondiscrete-time Markov chains, ~ a and ~%, coincide with weak bisimilarity [3.5].
We claim that S A and Z can be adapted such that they both coincide with weak
similarity for state-labelled DTMC [J5]].

3. On continuous-time Markov chains, ~ and =9, coincide with lumping equiva-
lence [26]], due to the fact that our weak transitions do not affect timed transitions.
For this reason we see no obvious way to adapt < and % such that they match
weak similarity for state-labelled CTMC [3].

4. On probabilistic automata, ~9, coincides with weak bisimilarity [44], if restricting
to models without infinite sequences of internal transition. This slight restriction
is again a legacy of the maximal progress assumption. This technical discrepancy
carries over to all other relations defined on PA. If instead we adapt the definition
and remove the stability condition, the adapted version of ~%, and weak bisimilarity
on PA [44] coincide. The same holds for Z% and weak similarity for PA [44].
Remarkably, § A and probabilistic forward similarity <y,q [44] coincide.

5. On interactive Markov chains =~ and ~¢, coincide with weak bisimulation [25].
A weaker variant is found in [[10]. To the best of our knowledge no weak similarity
relations for IMC have been introduced in the literature so far, so the one jointly
induced by 3 and Z° is new.

The fact that on PA S A and <jp,q agree is especially interesting, since a bisimulation
variant of this relation was not known to date, but is now at hand with ~ 4. Furthermore,
~ A has a selection of distinguishing properties. We refer the reader to [22]] for details.
We mention only briefly, that =4 is a congruence with respect to parallel composi-
tion. The congruence property can be established for other standard process algebraic
operators — with the usual root condition being needed to arrive at a congruence for
non-deterministic choice.

We finally want to correct our claim [22l], that a reformulation of PA weak bisim-
ilarity as a relation on distribution would not be compositional with respect to sub-
distribution composition, now turns out to be wrong. It is easy to show that ~° is
indeed compositional with respect to this operator, and since on PA, ~° coincides with
PA weak bisimilarity (except for divergence behaviour), this also holds for PA weak
bisimilarity.

6 Conclusions

This paper has tried to provide insight into the foundational aspects of Markov au-
tomata, a model that integrates probabilistic automata and interactive Markov chains.
We have laid out the principal ingredients of a compositional theory for MA, and have
discussed how a lifting of relations to (sub)distributions, together with the notion of dis-
tribution splitting, enables us to cast a variety of existing simulations and bisimulations
in a uniform setting, making subtle differences and semantic choices apparent.



Concurrency and Composition in a Stochastic World 37

Markov automata target a domain of concurrency modelling and evaluation, where
designers find it adequate to work with durations that are memoryless, and need to
represent branching probabilities as well as concurrency in a convenient manner. In
this area, GSPNs have seen broad applicability, but, as we have highlighted, only with
incomplete semantic understanding. The MA model changes the picture, it can serve
as a semantic foundation for GSPN, and, since it is compositional in a strict sense,
we think it is the nucleus for a fully compositional and usable language for this mod-
elling domain. Noteworthy, the MA model is — just like IMC — rich enough to allow for
non-exponential distributions, namely by approximating them as phase-type distribu-
tions [27]], albeit at the price of a state space increase.

PA as well as IMC are supported by mature software tools, PRISM [29] and
CADP [16]. We are eagerly exploring possibilities to arrive at tool support for the anal-
ysis of MA.

In this paper, we have restricted our attention to finite and finitely-branching mod-
els. It remains for further work to establish the results of this paper in a setting with
(un)countably many states or transitions.

Acknowledgements. Christian Eisentraut and Holger Hermanns are supported by the
DFG as part of the Transregional Collaborative Research Centre SFB/TR 14 AVACS, by
the European Community’s Seventh Framework Programme under grant agreement n°
214755 QUASIMODO, and by the NWO-DFG bilateral project ROCKS. The work of
Lijun Zhang has received partial support from M7-LAB, a VKR Centre of Excellence.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretrical Computer Sci-
ence 82(2), 253-284 (1991)

2. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for
probabilistic processes. J. Comput. Syst. Sci. 60(1), 187-231 (2000)

3. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg,
0. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119-130. Springer, Heidelberg (1997)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking, 1st edn. MIT Press, Cambridge (2008)

5. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for
Markov chains. Information and Computation 200(2), 149-214 (2005)

6. Balbo, G.: Introduction to generalized stochastic Petri nets. In: Bernardo, M., Hillston, J.
(eds.) SFM 2007. LNCS, vol. 4486, pp. 83—131. Springer, Heidelberg (2007)

7. Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spi-
rakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370-381. Springer,
Heidelberg (2001)

8. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier, Amsterdam
(2001)

9. Bolognesi, T., Brinksma, E.: Introduction to the iso specification language lotos. Computer
Networks 14, 25-59 (1987)

10. Bravetti, M.: Revisiting interactive markov chains. Electr. Notes Theor. Comput. Sci. 68(5)
(2002)

11. Busch, H., Sandmann, W., Wolf, V.: A numerical aggregation algorithm for the enzyme-
catalyzed substrate conversion. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210,
pp- 298-311. Springer, Heidelberg (2006)



15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

C. Eisentraut, H. Hermanns, and L. Zhang

. Cheung, L., Stoelinga, M., Vaandrager, FW.: A testing scenario for probabilistic processes.

J. ACM 54(6) (2007)

. Chiola, G., Donatelli, S., Franceschinis, G.: GSPNs versus SPNs: What is the actual role of

immediate transitions? In: PNPM, pp. 20-31. IEEE, Los Alamitos (1991)

. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical editor and

analyzer for timed and stochastic Petri nets. Perf. Eval. 24(1-2), 47-68 (1995)

Chiola, G., Marsan, M.A., Balbo, G., Conte, G.: Generalized stochastic Petri nets: A defini-
tion at the net level and its implications. IEEE TSE 19(2), 89-107 (1993)

Coste, N., Garavel, H., Hermanns, H., Hersemeule, R., Thonnart, Y., Zidouni, M.: Quan-
titative evaluation in embedded system design: Validation of multiprocessor multithreaded
architectures. In: DATE, pp. 88-89 (2008)

Courtney, T., Daly, D., Derisavi, S., Gaonkar, S., Griffith, M., Lam, V.V., Sanders, W.H.: The
Mobius modeling environment: Recent developments. In: QEST, pp. 328-329. IEEE, Los
Alamitos (2004)

Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Testing finitary probabilistic pro-
cesses. In: CONCUR, pp. 274-288 (2009)

. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled Markov

processes. Inf. Comput. 184(1), 160-200 (2003)

Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is sound and
complete for PCTL*. Inf. Comput. 208(2), 203-219 (2010)

Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes:
Logic, simulation and games. In: QEST, pp. 264-273 (2008)

Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuos time. In:
LICS. IEEE, Los Alamitos (to appear, 2010)

Eisentraut, C., Hermanns, H., Zhang, L.: Probabilistic automata in continuous time. Reports
of SFB/TR 14 AVACS 62, Saarland University (April 2010), http://www.avacs.org
Florio, V.D., Donatelli, S., Dondossola, G.: Flexible development of dependability services:
An experience derived from energy automation systems. In: ECBS, pp. 86-93. IEEE, Los
Alamitos (2002)

Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428, p. 57. Springer, Heidelberg
(2002)

Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theo-
retical Computer Science 274(1-2), 43-87 (2002)

Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation for a plain-
old telephone system. Science of Comp. Progr. 36(1), 97-127 (2000)

Hermanns, H., Lohrey, M.: Priority and maximal progress are completely axioatisable (ex-
tended abstract). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 237-252. Springer, Heidelberg (1998)

Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for automatic veri-
fication of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441-444. Springer, Heidelberg (2006)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs
(1985)

Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS,
pp- 266-277. IEEE, Los Alamitos (1991)

Katoen, J.-P., Klink, D., Neuhiufer, M.R.: Compositional abstraction for stochastic systems.
In: Ouaknine, J., Vaandrager, EW. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 195-211.
Springer, Heidelberg (2009)

Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains, 2nd edn. Springer,
Heidelberg (1976)


http://www.avacs.org

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Concurrency and Composition in a Stochastic World 39

Klin, B., Sassone, V.: Structural operational semantics for stochastic process calculi. In:
Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 428-442. Springer, Heidelberg
(2008)

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Compu-
tation 94(1), 1-28 (1991)

Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. In:
PODC, pp. 137-151 (1987)

Marsan, M. A., Balbo, G., Chiola, G., Conte, G.: Generalized stochastic Petri nets revisited:
Random switches and priorities. In: PNPM, pp. 44-53. IEEE, Los Alamitos (1987)

Marsan, M.A., Balbo, G., Chiola, G., Conte, G., Donatelli, S., Franceschinis, G.: An intro-
duction to generalized stochastic Petri nets. Microel. and Rel. 31(4), 699-725 (1991)
Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Gen-
eralized Stochastic Petri Nets. John Wiley & Sons, Chichester (1995)

Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)
Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-
calculi. Mathematical Structures in Computer Science 13(5), 685-719 (2003)

Park, D.M.R.: Concurrency and automata on infinite sequences. Theoretical Computer Sci-
ence, pp. 167-183 (1981)

Sandmann, W., Wolf, V.: Computational probability for systems biology. In: Fisher, J. (ed.)
FMSB 2008. LNCS (LNBI), vol. 5054, pp. 33-47. Springer, Heidelberg (2008)

Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Laboratory for Computer Science, Massachusetts Institute of Technology (1995)
Segala, R.: Probability and nondeterminism in operational models of concurrency. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64-78. Springer, Heidelberg
(2006)

Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing 2(2), 250-273 (1995)

Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis
of Performance Modeling. Princeton University Press, Princeton (2009)

Stoelinga, M., Vaandrager, F.W.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.)
AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 53-74.
Springer, Heidelberg (1999)

van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E. (ed.) CONCUR
1993. LNCS, vol. 715, pp. 66-81. Springer, Heidelberg (1993)

Wolf, V.. Modelling of biochemical reactions by stochastic automata networks.
ENTCS 171(2), 197-208 (2007)

Zhang, L.: Decision Algorithms for Probabilistic Simulations. PhD thesis, Universitit des
Saarlandes (2008)

Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: Efficient decision algo-
rithms for probabilistic simulations. Logical Methods in Computer Science 4(4) (2008)



Taming Distributed Asynchronous Systems

Anca Muscholl

LaBRI, University Bordeaux, France

Abstract. This extended abstract surveys some analysis techniques for
distributed, asynchronous systems with two kinds of synchronization,
shared variables and fifo channels.

1 Introduction

Modeling distributed, asynchronous systems so that computer-assisted analysis
becomes feasible, is an on-going challenge in both theory and practice. Several
automata-based models for such systems have been proposed and studied over
the past twenty years, capturing various aspects of distributed behavior. De-
pending on the motivation, such models fall into two large categories. In the
first one we find rather simple models, capturing basic synchronization mech-
anisms: Petri nets, communicating automata, .... They were studied for algo-
rithmic properties and/or their expressive power. In the second category we see
more sophisticated models, that were conceived for supporting practical system
design, like Harel’s statecharts, or Lynch’s I/O automata. It is clear that being
able to develop automated verification techniques requires a good understanding
of the simpler models, in particular since more complex ones are often built as
a combination of basic models.

In this survey we address the issue of analyzing networks of (mostly finite-
state) processes with two kinds of communication mechanisms, unbounded fifo
channels and shared variables. We also go one step beyond verification, or model-
checking, by addressing the synthesis problem in the shared-variable case. Syn-
thesis, and in particular controller synthesis, is a challenging problem even for
such simple models as the ones considered in this survey, since it essentially
amounts to solve distributed games. This topic is still rather poorly understood
and open for future research, in spite of considerable efforts and partial results
obtained during the past decade.

2 Models of Distributed Computation

The architecture of a distributed asynchronous system consists of a set of pro-
cesses P related by links, and we will consider it as fized. Such links may cor-
respond for instance to communication channels or to shared variables. We do
not discuss here other synchronization mechanisms that appear in the literature,
like e.g. state observation or signals.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 402010.
© Springer-Verlag Berlin Heidelberg 2010



Taming Distributed Asynchronous Systems 41

Zielonka’s asynchronous automata is an asynchronous model based on shared
variables. It has its roots in the theory of Mazurkiewicz traces [28], which came
up in the late seventies in connection with the semantics of 1-safe Petri nets
(the reader may find in [I1] a wealth of results about traces). Asynchronous au-
tomata provide one of the first highly non-trivial examples of distributed (closed)
synthesis, as expressed in Theorem [I] below.

Given a finite set P of processes, we consider an alphabet of actions X' and
a location function dom : ¥ — (2% \ ), associating with each action a non-
empty set of processes. The location mapping dom defines in a natural way
an independence relation I: two actions a,b € X are independent (denoted as
(a,b) € I) if they synchronize disjoint sets of processes, i.e., if dom(a)Ndom(b) =
(). One can define the relation ~; on X* as the equivalence generated by all pairs
(uabv, ubav), for (a,b) € T and u,v € X*. A trace is then a ~j-equivalence class,
and a trace language is a word language closed under ~7j.

Alternatively, traces can be viewed as labeled pomsets (see an example in
Figure [I)), and the set of (labeled) linearizations of such a pomset corresponds
to the ~r-equivalence class [u] of any of these linearizations u € X*.

A (deterministic) asynchronous automaton is a tuple

"4 = <{Sp}p€737 S0, {5(1}0,627 F> )

where

— Sp is a finite set of (local) states of process p,

— 50 € [[ep Sp is a (global) initial state,

— 0a : HpEdom(a) Sp — Hpedom(a) Sp is a transition relation; so on a letter
a € X it is a partial function on tuples of states of processes in dom(a),

— F C[,cp Spis a set of final (accepting) states.

An asynchronous automaton can be seen as a sequential automaton with the
state set S = HpeP S, and transitions s — s’ if ((8p)pedom(a)» (8p)pedom(a)) €
da, and s, = s, for all ¢ ¢ dom(a). By L(A) we denote the set of words labeling
accepting runs. This definition has an important consequence. If (a,b) € I then
the same state is reached on the words ab and ba. More generally, whenever
u ~y v and u € L(A) then v € L(A), too. This means that L(A) is a trace
language.

Ezample 1. Let us consider the asynchronous automaton A defined by S, =
{0}, S = S, = {0,1}, and transition function d,(sp, sq) = (Sp, 8q) if 54 =1
(undefined otherwise), d4(s,) = —s, if s, = 1 (undefined otherwise), dy(sq, 8r) =
(1,1) if s4 A s, = 0 (undefined otherwise) and d.(sp) = sp. Starting with so =
(0,0,0), an accepting run of .4 checks that between any two successive b-events,
there is either an a or a d (or both), and there is a b-event before all a and d.

One of the deepest results of trace theory is Zielonka’s construction of a deter-
ministic asynchronous automaton from a finite-state one. One can see it as an
example of distributed closed synthesis, i.e., without any environment.



42 A. Muscholl

: o e

Fig. 1. The pomset associated with the trace t = [cbadcbadb], with dom(a) = {p, ¢},
dom(b) = {q,r}, dom(c) = {p}, dom(d) = {r}.

Theorem 1. [J0] Given a finite automaton A accepting the trace language
L(A), a deterministic asynchronous automaton B can be effectively constructed

with L(A) = L(B).

The above construction has received a lot of interest, and a series of papers
aimed at improving it algorithmically (see e.g. [T0,B0,T9L17]). Currently the best
construction starting with a DFA A is polynomial in the size of A and simply ex-
ponential in the number of processes. Surprisingly, it is rather difficult to come
up with a matching lower bound (see [I7] for partial results). As explained in Sec-
tion Bl this construction plays a fundamental role in other settings of distributed
synthesis, as for instance for communicating automata, that we present next.

A communicating automaton (CA for short) is parametrized by a set P of
processes, a set of point-to-point fifo channels Ch C P? \ idp, and a set of
message contents Msg. It is a tuple A = ((Ap)pepr, X, F) where

— each A, = (Sp, —p,sD) is a finite labeled transition system with state space
Sp, transition relation —, C S, x X, x S, and initial state s) € S,; the
local action alphabet X, consists of send actions (denoted as plg(m), with
(p,q) € Ch, m € Msg), receive actions (denoted as p?r(m), with (r,p) € Ch,
m € Msg), and local actions.

— F C HpeP Sp is a set of global final states.

We denote the product S := HpeP Sp as set of global states.

The behavior of a CA is defined as the behavior of an infinite labeled transition
system, by considering the possible (local) transitions on the set of configurations
of the CA. A configuration of the CA A consists of a global state, together with
a word from Msg" for each channel (p,q) € Ch. Transitions are defined in the
usual way: the effect of an action a € ¥, is to change the S, state component
according to A,, and to perform the obvious modification on one channel of p,
according to a being a send of message m from p to ¢ (written as a = plg(m))
or a receive of m on p from r (written as a = p?r(m)).

Example 2. The CA in the figure below describes the communication between
two (finite-state) processes C' and S, connected through one channel in each



Taming Distributed Asynchronous Systems 43

direction. The set of message contents is Msg = {0, 1, $}. From the initial config-
uration ((co, S0), (g,€)) (say, (C, S) is the first channel) one can reach e.g. the con-

figurations ((c1, s0), (010,¢)) and {(co, o), (101, $)), but not ((co, so), (0101, $)).

For instance, {(co, 0), (£,2)) = {(e1, 50), (0,2)) =% ((co,50), (01, 2)) P20

((c1,50),(010,¢)).

start a start a

C1S(0) $7C(0)
CIS(1), C78($) S?7C(1), SIC($)

Like traces being partially ordered representations of runs of asynchronous
automata, runs of CA have a natural interpretation in terms of labeled pomsets,
too. The pomsets associated with such runs are called message sequence charts,
and represent in a diagrammatic way messages exchanged between processes.

3 Analyzing Communicating Automata

In spite of their simplicity, communicating automata are Turing-powerful, as it
can be easily seen (by simulating e.g. Post tag systems). From the verification
viewpoint this immediately implies that one needs to accept approximated or
semi-algorithmic solutions.

Simple approximated solutions, like ignoring the order of messages in the chan-
nels or imposing a limit on their size, are of course too coarse. Acceleration meth-
ods using some finitary representation of possibly infinite sets of configurations
(called symbolic representations), are a more powerful example of under-
approximation. In the case of communicating automata, such symbolic represen-
tations are based on finite automata or some extended automata models with good
algorithmic properties [4l[B[7]. The general idea is to speed-up the naive enumer-
ation of reachable configurations, by computing the result of loop iteration.

A nice example for over-approximating methods are lossy channel systems. Of
course, such a model may be interesting in its own right, since it allows to model
imperfect channels. Lossy channels are a particular instance of well-structured
transition systems [13[2]. In particular, questions like control-state reachability
and termination are decidable [2L[I4], albeit of non-primitive recursive complex-
ity [36]. On the other hand, liveness properties or boundedness of lossy channels
are undecidable [I1,27].

Whereas the above mentioned approaches emphasize symbolic representations
of sets of (reachable) configurations, there is a complementary, language-oriented
approach based on partial orders. The language-theoretical viewpoint emphasizes



44 A. Muscholl

the (partially-ordered) executions, instead of the channel contents. This kind of
event-based reasoning arises very naturally when communicating automata are
viewed as sequential automata synchronizing over communication events. The main
advantage it offers is that the synthesis problem can be stated in a natural way.

Undecidability of various questions about communicating automata has ac-
tually two sources: the first, obvious one, is the unboundedness of channels. The
second, more subtle, comes up when the specification formalism (e.g. regular
ones like LTL) is incompatible with the partially-ordered model. As a conse-
quence, getting solutions for model-checking or synthesis requires both channel
restrictions and partial order specifications.

A universally channel-bounded automaton is one where there is a uniform
bound on the size of channels, over all reachable configurations. So a universally
bounded automaton is just a finite state system. A much less restrictive notion
is an existential channel-bound. Such a bound roughly means that any execution
can be rescheduled in such a way that it can be executed with bounded chan-
nels. In particular, existential bounds admit channels of arbitrary size. A simple
example illustrating the idea is a pair of processes, a producer and a consumer,
where the producer keeps sending messages to the consumer, who is supposed
to accept every message. Since there is no control on the relative speed of these
two processes, there is no bound on the number of messages in transit. But for
verifying many properties, like e.g. control-state reachability, it suffices to rea-
son about schedulings where messages are consumed without delay, i.e. where
executions can be scheduled with a channel of size one.

The main result obtained in this setting is a solution for closed synthesis,
that can be stated as a Kleene-Biichi theorem about communicating automata
with channel bounds [211[I§]. A main ingredient of these constructions is the link
between automata with channel bounds and trace languages and in particular,
Zielonka’s construction of asynchronous (trace) automata. Model-checking ex-
istentially bounded automata w.r.t. partial order specifications like MSO [24],
closed regular specifications [20] or PDL [f], is also decidable.

Several promising, recent research directions can be mentioned. One of them
is motivated by the need of analyzing distributed recursive programs, and aims
at identifying reasonable, tractable subclasses of communicating automata ex-
tended by additional capabilities for the single processes, like for instance push-
down storage [8LBIL22]. A second, quite challenging perspective for future work
is the general synthesis problem for communicating systems. This problem can
be stated in many different ways, depending on the degree of completeness of
the specification (specifications may e.g. talk only about external messages).
However, one probably needs first a solution for the problem described in the
next section, before working out a general solution for synthesizing or controlling
communicating automata.

4 Distributed Control for Asynchronous Automata

In the simplest case, the synthesis problem asks to find a model for a given spec-
ification, so it is just a satisfiability problem, where one is given some formalism



Taming Distributed Asynchronous Systems 45

for the specification (e.g. logics) and one for the model (e.g. finite automata). In
a more refined version one is also given a system (or plant, usually an automa-
ton) and is asked to find a controller such that the controlled system satisfies
the given specification. The control consists in forbidding some actions of the
plant, but not every action can be forbidden, and the control has also to ensure
that the system does not block completely.

Synthesis was first considered in a synchronous (hardware) setting by Church [9].
In his model, the specification is a relation between input variables, which are
controlled by the environment, and output variables, controlled by the (cen-
tralized) system. Church’s problem stimulated a fruitful research direction on
2-person, zero-sum infinitary games, starting with the fundamental results of [8]
34.135] (see also [3738] for recent surveys).

Distributed controller synthesis is a more recent research topic, that was initi-
ated by Pnueli and Rosner [33], who show that only very restricted architectures
admit a decidable synthesis problem. Undecidability of distributed synthesis fol-
lows already from the work of Peterson and Reif on “multiple-person alternating
machines” [32].

Various versions of distributed synthesis appear in the literature. One impor-
tant distinction is to be made between synchronous and asynchronous systems,
respectively. In the synchronous case, processes execute a step at each (global)
clock tick, whereas in the asynchronous case they are decoupled. Another distinc-
tion is how much information is allowed to be exchanged between processes. At
least two different classes of models were studied here. In the model considered
by [B3,23,[12,16], a distributed system is given by an architecture describing
(synchronous) channels between processes, and the information conveyed via
the channels between processes, is finite. In the model studied in [15]26][31],
the distributed system is an asynchronous automaton (and the controller is also
required to be such an automaton). Here, the information exchanged between
processes corresponds to the causal past of events, therefore it is unbounded.

Decidability for synchronous synthesis basically requires a pipeline architec-
ture where information flows in a single direction (see [33}123,[2529,[12,[16] for
various refinements). To state it informally, the reasons for undecidability are
either global specifications or “information forks”, like the case where two inde-
pendent processes can be “observed” by a third one.

Compared with the synchronous case, our understanding of asynchronous
controller synthesis is still unsatisfactory. For instance, it is open whether this
problem is decidable! Two decidability results are known in this setting. The
first one [I5] was obtained by restricting the (in)dependencies between letters
of the input alphabet. The second paper [26] shows decidability by restricting
the plant: roughly speaking, the restriction requires that if two processes do not
synchronize during a long amount of time, then they won’t synchronize ever
again. The proof of [26] goes beyond the controller synthesis problem, by coding
it into monadic second-order theory of event structures and showing that this
theory is decidable when the criterion on the asynchronous automaton holds.



46

A. Muscholl

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite state systems. In: LICS 1996, pp. 313-323. IEEE Computer Society,
Los Alamitos (1996)

. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inform.

and Comput. 127(2), 91-101 (1996)

Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic net-
works of pushdown systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 356-371. Springer, Heidelberg (2008)

Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996.
LNCS, vol. 1102, pp. 1-12. Springer, Heidelberg (1996)

Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172-186. Springer, Heidelberg
(1997)

Bollig, B., Kuske, D., Meinecke, I.: Propositional Dynamic Logic for message-
passing systems. Logical Methods in Computer Science (to appear, 2010)
Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configurations. Theor. Comp. Science 221(1-2),
211-250 (1999)

Biichi, J., Landweber, L.: Definability in the monadic second order theory of suc-
cessor. J. of Symb. Logic 34(2), 166-170 (1969)

Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, vol. 1, pp. 3-50. Cornell
Univ. (1957)

Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous
cellular automata. Inform. and Comput. 106, 159-202 (1993)

Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
1995

](F‘inkb)einer7 B., Schewe, S.: Uniform distributed synthesis. In: LICS 2005, pp. 321—
330. IEEE Computer Society Press, Los Alamitos (2005)

Finkel, A.: A generalization of the procedure of Karp and Miller to well structured
transition systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499
508. Springer, Heidelberg (1987)

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comp. Science 256(1-2), 63-92 (2001)

Gastin, P.; Lerman, B., Zeitoun, M.: Distributed games with causal memory are
decidable for series-parallel systems. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2004. LNCS, vol. 3328, pp. 275-286. Springer, Heidelberg (2004)

Gastin, P., Sznajder, N., Zeitoun, M.: Distributed synthesis for well-connected
architectures. Formal Methods in System Design 34(3), 215-237 (2009)

Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Optimal Zielonka-type
construction of deterministic asynchronous automata. In: ICALP 2010. LNCS.
Springer, Heidelberg (2010)

Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking al-
gorithms for existentially bounded communicating automata. Inform. and Com-
put. 204(6), 920-956 (2006)

Genest, B., Muscholl, A.: Constructing exponential-size deterministic Zielonka au-
tomata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4052, pp. 565-576. Springer, Heidelberg (2006)



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Taming Distributed Asynchronous Systems 47

Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
Model-checking and realizability. J. Comput. Syst. Sci. 72(4), 617-647 (2006)
Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.: A theory

of regular MSC languages. Inform. and Comput. 202(1), 1-38 (2005)

HeufBner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-

nicating pushdown systems. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014,

pp. 267-281. Springer, Heidelberg (2010)

Kupferman, O., Vardi, M.: Synthesizing distributed systems. In: LICS 2001. IEEE
Computer Society Press, Los Alamitos (2001)

Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256—267.
Springer, Heidelberg (2001)

Madhusudan, P., Thiagarajan, P.: Distributed control and synthesis for local speci-

fications. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,

vol. 2076, pp. 396-407. Springer, Heidelberg (2001)

Madhusudan, P., Thiagarajan, P.S.,; Yang, S.: The MSO theory of connectedly

communicating processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS,

vol. 3821, pp. 201-212. Springer, Heidelberg (2005)

Mayr, R.: Undecidable problems in unreliable computations. Theor. Comp. Sci-

ence 297(1-3), 337-354 (2003)

Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. PB 78, Aarhus University, Aarhus (1977)

Mohalik, S., Walukiewicz, I.: Distributed games. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 338-351. Springer, Heidelberg (2003)
Mukund, M., Sohoni, M.: Gossiping, asynchronous automata and Zielonka’s theo-

rem. Report TCS-94-2, School of Mathematics, SPIC Science Foundation, Madras,

India (1994)

Muscholl, A., Walukiewicz, 1., Zeitoun, M.: A look at the control of asynchronous
automata. In: Perspectives in Concurrency Theory. IARCS-Universities, Universi-

ties Press (2009)

Peterson, G.L., Reif, J.H.: Multi-person alternation. In: FOCS 1979, pp. 348-363.
IEEE Computer Society Press, Los Alamitos (1979)

Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS 1990, pp. 746-757. IEEE Computer Society Press, Los Alamitos (1990)
Rabin, M.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1-35 (1969)

Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Providence (1972)

Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-

plexity. Inform. Proc. Lett. 83(5), 251-261 (2002)

Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E-W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1-13. Springer, Heidelberg
1995

(Thom)as, W.: Church’s problem and a tour through automata theory. In: Avron, A.,
Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800,

pp. 635-655. Springer, Heidelberg (2008)

Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent

queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,

vol. 4963, pp. 299-314. Springer, Heidelberg (2008)

Zielonka, W.: Notes on finite asynchronous automata. RAIRO - Informatique
Théorique et Applications 21, 99-135 (1987)



Trust in Anonymity Networks

Vladimiro Sassone, Sardaouna Hamadou, and Mu Yang

ECS, University of Southampton

Abstract. Anonymity is a security property of paramount importance, as we
move steadily towards a wired, online community. Its import touches upon sub-
jects as different as eGovernance, eBusiness and eLeisure, as well as personal
freedom of speech in authoritarian societies. Trust metrics are used in anonymity
networks to support and enhance reliability in the absence of verifiable identities,
and a variety of security attacks currently focus on degrading a user’s trustworthi-
ness in the eyes of the other users. In this paper, we analyse the privacy guarantees
of the Crowps anonymity protocol, with and without onion forwarding, for stan-
dard and adaptive attacks against the trust level of honest users.

1 Introduction

Protecting online privacy is an essential part of today’s society and its importance is in-
creasingly recognised as crucial in many fields of computer-aided human activity, such
as eVoting, eAuctions, bill payments, online betting and electronic communication. One
of the most common mechanisms for privacy is anonymity, which generally refers to the
condition of being unidentifiable within a given set of subjects, known as the anonymity
set.

Many schemes have been proposed to enforce privacy through anonymity networks
(e.g. [6,115,119,124, 125]). Yet, the open nature of such networks and the unaccountability
which results from the very idea of anonymity, make the existing systems prone to
various attacks (e.g. [10, [18, 22, 23]). An honest user may have to suffer repeated
misbehaviour (e.g., receiving infected files) without being able to identify the malicious
perpetrator. Keeping users anonymous also conceals their trustworthiness, which in turn
makes the information exchanged through system transactions untrustworthy as well.
Consequently, a considerable amount of research has recently been focussing on the
development of trust-and-reputation-based metrics aimed at enhancing the reliability of
anonymity networks [[7-9, 11,131, 33].

Developing an appropriate trust metric for anonymity is very challenging, due to the
fact that trust and anonymity are seemingly conflicting notions. Consider for instance
the trust networks of Figure[Il In (a) peer A trusts B and D, who both trust C. Assume
now that C wants to request a service from A anonymously, by proving her trustworthi-
ness to A (i.e., the existence of a trust link to it). If C can prove that she is trusted by
D without revealing her identity (using e.g. a zero-knowledge proof [3]), then A cannot
distinguish whether the request originated from C or E. Yet, A’s trust in D could be
insufficient to obtain that specific service from A. Therefore, C could strengthen her re-
quest by proving that she is trusted by both D and B. This increases the trust guarantee.
Unfortunately, it also decreases C’s anonymity, as A can compute the intersection of

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 48170 b010.
© Springer-Verlag Berlin Heidelberg 2010



Trust in Anonymity Networks 49

0%

@ A5
Q% 60%
o0, (=)
0%
(a) (s

Fig. 1. Trust networks [3]

peers trusted by both D and B, and therefore restrict the range of possible identities for
the request’s originator, or even identify C uniquely. Indeed, consider Figure[I(b). Here
the trust level between two principals is weighted, and trust between two non-adjacent
principals is computed by multiplying the values over link sequences in the obvious
way. Assume that the reliability constraint is that principal X can send (resp. receive) a
message to (from) principal Y if and only if her trust in Y is not lower than 60%. Prin-
cipal E can therefore only communicate through principal D. So, assuming that trust
values are publicly known, E cannot possibly keep her identity from D as soon as she
tries to interact at all. These examples document the existence of an inherent trade-off
between anonymity and trust. The fundamental challenge is to achieve an appropriate
balance between practical privacy, and acceptable network performance.

Community-based reputation systems are becoming increasingly popular both in the
research literature and in practical applications. They are systems designed to estimate
the trustworthiness of principals participating in some activity, as well as predict their
future behaviour. Metrics for trustworthiness are primarily based on peer-review, where
peers can rate each other according to the quality they experienced in their past mutual
interactions [[12, 13, 20]. A good reputation indicates a peer’s good past behaviour, and
is reflected in a high trust value. Recent research in this domain has raised fundamental
issues in the design of reputation management systems for anonymous networks. In
particular,

1. what metrics are suitable for computing trust for a given application field?

2. how to ensure the integrity of the peers’ trust values, i.e., how to securely store and
access trust values against malicious peers?

3. how to ensure that honest users accurately rate other members?

The latter issue requires a mechanism to distinguish a user’s bad behaviour resulting
from her being under attack, from a deliberately malicious behaviour. This is a chal-
lenging and fundamental problem. Indeed, if we cannot accurately tell these two sit-
uations apart, malicious users will target honest members in order to deteriorate their
performance, and hence reduce other members’ trust in them, while maintaining their
apparent good behaviour. Thus, honest users may in the long term end up enjoying



50 V. Sassone, S. Hamadou, and M. Yang

very low trust levels, while attackers might see their reputation increased, and so they
increase their probability of being trusted by others. Over time this will, of course,
severely affect the system’s anonymity performance. Nevertheless, although a consid-
erable effort has recently been devoted to tackle the first two issues [7,[8,31], to the best
of our knowledge the latter has been so far relatively ignored.

In this paper we investigate the effect of attacks to the trust level of honest users on
the security of existing anonymity networks, such as the Reiter and Rubin’s CrowDs
protocol [28] and onion routing networks [10].

The Crowps protocol allows Internet users to perform anonymous web transactions
by sending their messages through a random chain of users participating in the proto-
col. Each user in the ‘crowd’ must establish a path between her and a set of servers
by selecting randomly some users to act as routers (or forwarders). The formation of
such routing paths is performed so as to guarantee that users do not know whether
their predecessors are message originators or just forwarders. Each user only has ac-
cess to messages routed through her. It is well known that CRowps cannot ensure strong
anonymity in presence of corrupt participants [5, 28], yet when the number of corrupt
users is sufficiently small, it provides a weaker notion of anonymity known as probable
innocence. Informally, a sender is probably innocent if to an attacker she is no more
likely to be the message originator than not to be.

Networks based on Onion Routing are distributed anonymising networks that use
onion routing [32] to provide anonymity to their users. Similarly to Crowps, users
choose randomly a path through the network in which each node knows its predecessor
and successor, but no other node. The main difference with respect to Crowbs is that
traffic flows through the path in cells, which are created by the initiator by successively
encrypting the message with the session keys of the nodes in the path, in reverse order.
Each node in the act of receiving the message peels the topmost layer, discovers who
the next node is, and then relays it forward. In particular, only the last node can see the
message in clear and learn its final destination.

In the paper we propose two variants of the congestion attacks in the literature, aimed
at deteriorating the trust level of target users in different extension of the CrRowps proto-
col. More specifically, we first extend the protocol so that trust is used to inform the se-
lection of forwarding users. Our analysis of this extension shows that a DoS type attack
targeting a user who initially enjoys satisfactory anonymity protection, may threaten
her privacy, as her trust level quickly decreases over the time. We then extend the proto-
col further with a more advanced message forwarding technique, namely onion routing.
While this extension offers much better protection than the previous one, our analysis
ultimately shows that it suffers from similar DoS attacks as the others.

Related work. Anonymity networks date back thirty years, to when Chaum introduced
the concept of Mix-net [6]] for anonymous communications, where different sources
send encrypted messages to a mix which forwards them to their respective destinations.
Various designs [, 110, 15, 2426, 28, 29, [32] have since been proposed to improve
Chaum’s mixes, e.g., by combinations of artificial delays, variation in message ordering,
encrypted message formats, message batching, and random chaining of multiple mixes.

A variety of attacks [2, 4, 10,14, (18, 2123, 27] have since been discovered against
such anonymity systems. Those most related to the present work are the so-called con-



Trust in Anonymity Networks 51

gestion or clogging attacks. In an congestion attack, the adversary monitors the flow
through a node, builds paths through other nodes, and tries to use all of their available
capacity [2]. The idea is that if the congested node belongs to the monitored path, the
variation in the messages’ arrival times will reflect at the monitored node. In [23], Mur-
doch and Danezis describe a congestion attack that may allow them to reveal all Tor’s
routers (cf. [[10]) involved in a path. However, although their attack works well against
a Tor network of a relatively small size, it fails against networks of typical sizes, count-
ing nodes in the thousands. More recently, Evans et al. [14] improved Murdoch and
Danezis’s attack so as to practically de-anonymise Tor’s users in currently deployed
system. A similar attack against MorphMix [29] was recently described by Mclach-
lan and Hopper [21], proving wrong the previously held view that MorphMix is robust
against such attacks [34]. Finally, a congestion attack is used by Hopper et al. [18] to
estimate the latency between the source of a message and its first relay in Tor. In loc. cit.
the authors first use a congestion attack to identify the path, and then create a parallel
circuit throughout the same path to make their measurements.

Numerous denial of service (DoS) attacks have been reported in the literature. In
particular, the ‘packet spinning’ attack of [27] tries to lure users into selecting mali-
cious relays by targeting honest users by DoS attacks. The attacker creates long circular
paths involving honest users and sends large amount of data through the paths, forcing
the users to employ all their bandwidth and then timing out. These attacks motivate
the demand for mechanisms to enhance the reliability of anonymity networks. In recent
years, a considerable amount of research has been focusing on defining such mecha-
nisms. In particular, trust-and-reputation-based metrics are quite popular in this domain
[3, 749, [11), 131}, 133]. Enhancing the reliability by trust, not only does improve the sys-
tem’s usability, but may also increase its anonymity guarantee. Indeed, a trust-based
selection of relays improves both the reliability and the anonymity of the network, by
delivering messages through ‘trusted’ routers. Moreover, the more reliable the system,
the more it may attract users and hence improve the anonymity guarantee by grow-
ing the anonymity set. Introducing trust in anonymity networks does however open the
flank to novel security attacks, as we prove in this paper.

In a recent paper of ours [30] we have analysed the anonymity provided by CRowps
extended with some trust information, yet against a completely different threat model.
The two papers differ in several ways. Firstly, [30] considers a global and ‘credential-
based’ trust notion, unlike the individual-and-reputation-based trust considered here.
Secondly, in [30] we considered an attack scenario where all protocol members are
honest but vulnerable to being corrupted by an external attacker. The global and fixed
trust in a user contrasts with the local and dynamic trust of this paper, as is meant
to reflect the user’s degree of resistance against corruption, that is the probability that
the external attacker will fail to corrupt her. The paper derives necessary and sufficient
conditions to define a ‘social’ policy of selecting relays nodes in order to achieve a
given level of anonymity protection to all members against such attackers, as well as a
‘rational’ policy maximise one’s own privacy.

Structure of the paper. The paper is organised as follows: in §2] we fix some basic
notations and recall the fundamental ideas of the Crowbs protocol and its properties,
including the notion of probable innocence. In §3] we present our first contribution: the



52 V. Sassone, S. Hamadou, and M. Yang

Crowbps protocol extended with trust information in the form of a forwarding policy
of its participating members, and the privacy properties of the resulting protocol are
studied; §4 repeats the analysis for an extension of the protocol with a more advanced
forwarding technique inspired by onion routing. Finally, §3] introduces a new ‘adap-
tive’ attack scenario, and presents some preliminary results on its analysis, both for the
protocol with and without onion forwarding.

2 CRrowbs

In this section, we briefly revise the CRowbps protocol and the notion of probable inno-
cence.

2.1 The Protocol

Crowps is a protocol proposed by Reiter and Rubin in [28] to allow Internet users
to perform anonymous web transactions by protecting their identities as originators
of messages. The central idea to ensure anonymity is that the originator forwards the
message to another, randomly-selected user, which in turn forwards the message to a
third user, and so on until the message reaches its destination (the end server). This
routing process ensures that, even when a user is detected sending a message, there is a
substantial probability that she is simply forwarding it on behalf of somebody else.

More specifically, a crowd consists of a fixed number of users participating in the
protocol. Some members (users) of the crowd may be corrupt (the attackers), and they
collaborate in order to discover the originator’s identity. The purpose of the protocol is
to protect the identity of the message originator from the attackers. When an originator
—also known as initiator— wants to communicate with a server, she creates a random
path between herself and the server through the crowd by the following process.

— Initial step: the initiator selects randomly a member of the crowd (possibly herself)
and forwards the request to her. We refer to the latter user as the forwarder.

— Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 — p, she delivers the request to the end server. With probability p,
she selects randomly a new forwarder (possibly herself) and forwards the request
to her. The new forwarder repeats the same forwarding process.

The response from the server to the originator follows the same path in the opposite
direction. Users (including corrupt users) are assumed to only have access to messages
routed through them, so that each user only knows the identities of her immediate pre-
decessor and successor in the path, as well as the server.

2.2 Probable Innocence

Reiter and Rubin have proposed in [[28] a hierarchy of anonymity notions in the context
of Crowns. These range from ‘absolute privacy, where the attacker cannot perceive
the presence of an actual communication, to ‘provably exposed, where the attacker can
prove a sender-and-receiver relationship. Clearly, as most protocols used in practice,



Trust in Anonymity Networks 53

Crowbs cannot ensure absolute privacy in presence of attackers or corrupted users, but
can only provide weaker notions of anonymity. In particular, in [28] the authors propose
an anonymity notion called probable innocence and prove that, under some conditions
on the protocol parameters, CRowps ensures the probable innocence property to the
originator. Informally, they define it as follows:

A sender is probably innocent if, from the attacker’s
point of view, she appears no more likely to be the ()
originator than to not be the originator.

In other words, the attacker may have reason to suspect the sender of being more likely
than any other potential sender to be the originator, but it still appears at least as likely
that she is not.

We use capital letters A, B to denote discrete random variables and the corresponding
small letters a, b and calligraphic letters A, B for their values and set of values respec-
tively. We denote by P(a), P(b) the probabilities of a and b respectively and by P(a, b)
their joint probability. The conditional probability of a given b is defined as

P(a, b
P(a|b) = ;f(zb))

Bayes Theorem relates the conditional probabilities P(a | b) and P(a | b) as follows

P(bla)P
Palb) = (L‘(’;) @

2
Let n be the number of users participating in the protocol and let ¢ and n — ¢ be the
number of the corrupt and honest members, respectively. Since anonymity makes only
sense for honest users, we define the set of anonymous events as A = {a;, az, ..., dy-c},
where g; indicates that user i is the initiator of the message.

As it is usually the case in the analysis of Crowps, we assume that attackers will
always deliver a request to forward immediately to the end server, since forwarding it
any further cannot help them learn anything more about the identity of the originator.
Thus in any given path, there is at most one detected user: the first honest member to
forward the message to a corrupt member. Therefore we define the set of observable
events as O = {01, 02, ..., 0,—c}, Where o; indicates that user j forwarded a message to
a corrupted user. In this case we also say that user j is defected by the attacker.

Reiter and Rubin [28] formalise their notion of probable innocence via the condi-
tional probability that the initiator is detected given that any user is detected at all. This
property can be written in our setting as the probability that user i is detected given
that she is the initiator, that is the conditional probability P(o; | a,-) Probable innocence
holds if

Vi Po:|ai) < ; 3)

! We are only interested in the case in which a user is detected, although for the sake of sim-
plicity we shall not note that condition explicitly.



54 V. Sassone, S. Hamadou, and M. Yang

Reiter and Rubin proved in [28] that, in CrowbDs, the following holds:

n—-c-1 .
= pri=]j
P(0j|£li) = 1 (4)
P
nPf L+ ]

Therefore, probable innocence (@) holds if and only if

Py
n=
pr—1/2

As previously noticed in several papers (e.g., [J]), there is a mismatch between the idea
of probable innocence expressed informally by (1)), and the property actually proved
by Reiter and Rubin, viz. (3). The former seems indeed to correspond to the following
interpretation given by Halpern and O’ Neill [16]:

1
(c+1) and ps=> )

1
i, j. P(ailoj) < 5 (5)

In turn, this has been criticised for relying on the probability of users’ actions, which
the protocol is not really in control of, and for being too strong. However, both (3) and
(@) work satisfactorily for Crowps, thanks to its high symmetry: in fact, they coincide
under its standard assumption that the a priori distribution is uniform, i.e., that each
honest user has equal probability of being the initiator, which we follow in this paper
too.

We remark that the concept of probable innocence was recently generalised in [[17].
Instead of just comparing the probability of being innocent with the probability of being
guilty, the paper focusses on the degree of innocence. Formally, given a real number
a € [0, 1], a protocol satisfies @-probable innocence if and only if

Vi, j. P(ai|0)) < @ (6)

Clearly a-probable innocence coincides with standard probable innocence for @ = 1/2.

3 Trust in CrRowbps

In the previous section, we have revised the fundamental ideas of the Crowps protocol
and its properties under the assumption that all members are deemed equal. However,
as observed in Il this is clearly not a realistic assumption for today’s open and dy-
namic systems. Indeed, as shown by the so-called ‘packet spinning’ attack [27], mali-
cious users can attempt to make honest users select bogus routers by causing legitimate
routers time out. The use attributes relating to some level of trust is therefore pivotal to
enhance the reliability of the system. In this section, we firstly reformulate the Crowbs
protocol under a novel scenario where the interaction between participating users is
governed by their level of mutual trust; we then evaluate its privacy guarantees using
property (6). We then focus on the analysis of attacks to the trust level of honest users
and their impact on the anonymity of the extended protocol. Finally, we investigate the
effect of a congestion attack [[14] to the trust level of honest users.



Trust in Anonymity Networks 55

3.1 Crowbs Extended

We now extend the Crowbs protocol to factor in a notion of trust for its participating
members. To this end, we associate a trust level #;; to each pair of users i and j, which
represents user i’s trust in user j. Accordingly, each user i defines her policy of forward-
ing to other members (including herself) based on her trust in each of them. A policy
of forwarding for user i is a discrete probability distribution {g;, g2, - , qin}, Where
qij denotes the probability that i chooses j as the forwarder, once she has decided to
forward the message.

A natural extension of Crowps would obviously allow the initiator to select her first
forwarder according to her own policy, and then leave it to the forwarder to pick the next
relay, according to the forwarder’s policy. This would however have the counterintuitive
property that users may take part in the path which are not trusted by the initiator, just
because they are trusted by a subsequent forwarder. We rather take the same view as
most current systems, that the initiator is in charge of selecting the entire path which
will carry her transactions. When an initiator wants to communicate with a server, she
selects a random path through the crowd between herself and the server by the following
process.

— First forwarder: with probability g;; the initiator i selects a member j of the crowd
(possibly herself) according to her policy of forwarding {gi1, g, - - , qin}-

— Subsequent forwarders: the initiator flips a biased coin; with probability 1 — py the
current forwarder will be the last on the path, referred to as the path’s exit user.
Otherwise, with probability ps X gi, she selects k (possibly herself) as the next
forwarder in the path; and so on until a path’s exit user is reached.

The initiator then creates the path iteratively as follows. She establishes a session key
by performing an authenticated key exchange protocol, such as Diffie-Hellmanfl with
the first forwarder F;. At each of subsequent iteration i > 2, the initiator uses the
partially-formed path to send F;_; an encrypted key exchange message to be relayed to
F;. In this way, the path is extended to F;, and the use of session keys guarantees that
any intermediary router only knows her immediate predecessor and successor. Once the
path is formed, messages from the initiator to the server are sent in the same way as in
the normal Crowps. Thus, all the nodes in the path have access to the contain of the
message and, obviously, to the end server. In particular, this means that the notion of
detection remains the same in the extended protocol as in the original one.

Then we use our probabilistic framework to evaluate Crowbs extended protocol. We
start by evaluating the conditional probability P(o;|a;). Let n; (resp. {; = 1 — ;) be the
overall probability that user i chooses a honest (resp. corrupt) member as a forwarder.

Then we have the following result.
Proposition 1
qijdiPs
P . ) = €+ R
(0] | al) {zfzj 1 - nips

1 i=j
where 11; = Yjcin-c) Qits $i = Dik<c ik and &; = {0 i¢§

2 We assume that public keys of participating users are known.



56 V. Sassone, S. Hamadou, and M. Yang

Proof. Let k denote the position occupied by the first honest user preceding an attacker
on the path, with the initiator occupying position zero. Let P(0; | a;)) denote the prob-
ability that user j is detected exactly at position k. Only the initiator can be detected at
position zero, and the probability that this happens is equal to the overall probability
that the initiator chooses a corrupt member as a forwarder. Therefore

Plojta), = {§ 137

Now the probability that j is detected at position k > 0 is given by

— the probability that she decides to forward k times and picks k — 1 honest users,
ie. ,p’} ! f‘ ! (recall that at the initial step she does not flip the coin),
— times the probability of choosing j as the kth forwarder, i.e., g;;,

— times the probability that she picks any attacker at stage k + 1, i.e., {ipy.

Therefore
_ k=1 k.
Vk > 1, P(ojlai)(k) = Ppdifdi

and hence

Ms

P(ojla,-) =

P (Of | ai)(k)

~
Il

0

fi€ij + Z 1; _lpl}qz‘j{i

8

8

- {lez] + Z nfplfﬁ—lql](l

= i€ij + prqijdi Z Tlf'cpl}
=0

qiilipy
— é’E + .
T - nipy

An immediate consequence is that when user i initiates a transaction, user j is not
detectable if and only if the initiator’s policy of forwarding never chooses an attacker
or j as forwarder.

Corollary 1. P(o; | a;) = 0 if and only if one of the following holds:

1. {iZO;
2. gij=0and i+ j

Now, let us compute the probability of detecting a user P(0;). We assume a uniform
distribution for anonymous events.



Trust in Anonymity Networks 57

Proposition 2. If the honest members are equally likely to initiate a transaction, then

1 qijdips
P(Oj)_n—c({j-'- Z 1-n; )’
idoe) - TPS

where {; and n; are defined as in Proposition[l]

Proof. Since the anonymous events are uniformly distributed then P(a;) = 1/(n — ¢) for
all i. Thus

Po)= Y P(ojlai)Play)

i<(n—c)
1
= P(Oj | a,-)
is(nz—c) n=-c¢
1
= P(Oj | a,-)
n-c is(nz—c)
1 qijsip
L S )
n-c i<(n—c) — Pt
1 qijdiny )
= P+ .
n—c({] Z 1 -nips

i<(n—c)

As one could expect, a user j is not detectable if both herself and any user i that
might include j in her path never choose a corrupted member as a forwarder. Formally:

Corollary 2. P(o;) =0 if and only if
;=0 and Vi (g;j=00r{i=0).

Now from Propositions[Iland P]and Bayes Theorem (@), we have the following expres-
sion for the degree of anonymity provided by the extended protocol, which holds when
P (0 j) # 0.

Proposition 3. If the honest members are equally likely to initiate a transaction, then

Gie + qiiips
1 —nipy
Plaitos) = aieps
&+ Z -
k<(n—c) Py

where {; and nj are defined as above.

It is now easy to see that if all honest users have uniform probability distributions as
forwarding policies, the extended protocol reduces to the original Crowps protocol.



58 V. Sassone, S. Hamadou, and M. Yang

Corollary 3. Ifforalliand j, qij = 1/n, then ; = (n — ¢)/n and {; = c/n. Therefore

n—-c—1 L
1- " Df i=j
P((li|0j)= 1
P
nPf L7 ]

3.2 On the Security of Extended Crowps

Here we show that the absence of a uniform forwarding policy makes it very hard to
achieve probable innocence as defined by Halpern and O’Neill (3). Indeed consider
the following instance of the protocol, where three honest users {1, 2, 3 } face a single
attacker {4}. Assume that the honest users are aware of the malicious behaviour of 4,
and choose their forwarding policies as follows: py = 2/3, and q1; = q»; = 1/3, and
q3j = 0.33 for all j < 3. In other words, the first two choose uniformly any honest
users as a forwarder and never pick the attacker, whilst the third one may choose the
attacker, though with a small probability g34 = 0.01. Thus, {1 = & = q14 = 24 = 0
and {3 = g34 = 0.01. It follows that P(az|o;) = 1, for all j, and the instance does not
ensure probable innocence, even though the third user’s policy is after all very similar
to those of the other honest users. This is because if someone is detected, then user 3 is
necessarily the initiator, as she is the only one who might possibly pick the attacker in
her path.

Observe however that this instance of the protocol ensures probable innocence in
Reiter and Rubin’s formulation: indeed, for all honest users i and j, P(o;|a;) < 0.0165.
The key difference at play here is that Halpern and O’Neill’s definition is stronger,
as it focuses on the probability that a specific user is the initiator once somebody has
been detected, regardless of the probability of the detection event. On the other hand,
Reiter and Rubin’s formula measures exactly (the conditional probability of) the latter.
This means that if the probability of detection is small, as in this case, systems may
be classified as statistically secure even when one such detection event may lead to
complete exposure for some initiators, as in this case.

Attackings trust. As already observed by its authors, Crowps is vulnerable to denial of
service (DoS) attacks: it is enough that a single malicious router delays her forwarding
action to severely hinder the viability of an entire path. This kind of attack is in fact
hard for the initiator to respond to. Just because the creation of multiple paths by any
single user substantially increases their security risk, the initiator has a strong incentive
to keep using the degraded path. Indeed, it is advisable in Crowps to modify a path
only when it has collapsed irremediably, e.g. due to a system crash of a router, or their
quitting the crowd. In this case the path is re-routed from the node preceding the failed
router. As a consequence, recent research has been devoted to developing ‘trust metrics’
meant enhance the reliability of anonymity systems [(7, 8, 31].

Although the primary goal of incorporating trust in anonymity networks is to ‘en-
hance’ the privacy guarantees by routing messages through trusted relays, preventing
the presence of attackers in forwarding paths is in itself not sufficient. External attackers



Trust in Anonymity Networks 59

1
09 -
08 -
0.7 A
06 -
05 A
04

P(ai|oj)

P(ai]oi)

03 trrrrrr AL T AL LR k e,
1 7 13 19 25 31 37 43 43

1 7 43 15 25 31 37 43 45

(@i=j=17 byi#j=17

Fig. 2. Crowps extended

may in fact target honest users with DoS attacks independent of the protocol, to make
them look unreliable and/or unstable. In this way, the target users will gradually loose
others members’ trust, whilst internal attackers may keep accruing good reputations.
Thus, over the time the trust mechanisms may become counterproductive.

Let us illustrate an attack of this kind. Consider an instance of the protocol where
seven honest users {1,2,---,7} face a single attacker {8}, assume that 7 is the honest
user targeted by the attack, and that all users are equally likely to initiate a transaction.
Recall that a path in CRowbs remains fixed for a certain amount of time —typically one
day— known as a session. In practice, all transactions initiated by a given user follow
the same path, regardless of their destination servers. At the end of the session then,
all existing paths are destroyed, new members can join the crowd, and each member
willing to initiate anonymous transactions creates a new path. Trust level updates play
therefore their role at the beginning of each session. For the purpose of this example, we
assume that the protocol is equipped with mechanisms to detect unstable routers (e.g.,
by monitoring loss of messages, timeouts, variations in response time and so on); upon
realising that her path is unstable, an initiator will notify all members of the identity
of the unstable node (in this case 7)E When a node is reported as unstable, all other
honest nodes decrease their trust in her at the beginning of the following session. For
simplicity, we assume that all users start with the same trust level 7, and that the target
user remains fixed over time. The following policies of forwarding are therefore in place
for each session, withn = 8, ¢ = 1 and 7 = 50.

i=7
n
*) _ T—k . .
9; = HX Tk i#7and j=7
T
j#7and j# 7.
nxt-—k ! andJ

In words, honest users other that the target decrease their trust in her by one and re-
distributed it uniformly to the remaining users. On the other hand, the target has no

3 This contrasts with the approach of [[11/], where the initiator would directly decrease her trust
in all users in the path.



60 V. Sassone, S. Hamadou, and M. Yang

reason to change her trust, as there is no evidence to suspect anybody as the source of
the external attack. Thus, her policy remains the same over the time. Hence, we have

c
i=7
n
(k) _
¢ =
T .
otherwise.
nxt—k

Assuming that the forwarding probability is py = 0.7, Figure [2l shows the probability
that the target will be identified over time. Clearly, the target’s privacy deteriorates
quickly, as it becomes increasingly unlikely that users other than herself pick her when
building a path. In particular, after seven sessions the protocol can no longer ensure
probable innocence as the probability P(a; | 07) becomes greater than 0.5.

4 Onion Forwarding in Crowps

In the previous section we analysed the privacy protection afforded by Crowbs extended
with a notion of trust. Following a similar pattern, in this section we focus on the privacy
guarantees offered by our protocol when equipped with ‘onion forwarding, a superior
forwarding technique used in systems actually deployed, such as Tor [10].

In Crowps, any user participating in a path has access to the cleartext messages
routed through it. In particular, as all relay requests expose the message’s final destina-
tion, a team of attackers will soon build up a host of observations suitable to classify the
behaviour of honest participants. We recently proved in [[17] that such extra attackers’
knowledge makes it very difficult to achieve anonymity in Crowps. The most effec-
tive technique available against such a risk is onion forwarding, originally used in the
‘Onion Routing’ protocol [32], and currently implemented widely in real-world sys-
tems. The idea is roughly as follows. When forming a path, the initiator establishes a
set of session encryption keys, one for each user in it, which she then uses to repeat-
edly encrypt each message she routes through, starting with the last node on the path,
and ending with the first. Each intermediate user, in the act of receiving the message
decrypts it with her key. Doing so, she ‘peels’ away the outmost layer of encryption,
discovers who the next forwarder is, and relays the message as required. In particular,
only the last node sees the message in clear and learns its actual destination. Thus, a
transaction is detected only if the last user in the path, also known as the ‘exif node,’ is
an attacker, and the last honest user in the path is then detected.

4.1 Privacy Level of the Onion Forwarding

Next we study the privacy ensured to each member participating in the protocol under
the onion forwarding scheme. As we did earlier, we begin with computing the condi-
tional probability P(o;| a;).

Proposition 4
qij &ipf

Pojla)=(1-ps) ey + Lty



Trust in Anonymity Networks 61

Proof. Let k denote the last position occupied by an honest user preceding an attacker
on the path, i.e., the position of the detected user. We denote by P(o, | a;)) the probabil-
ity that user j is detected exactly at position k. Again, only the initiator can be detected
at position zero, and the probability that this happens is equal to the overall probability
that the initiator chooses a corrupt member as a forwarder, multiplied by the probability
that the latter is the last node in the path. Therefore

_Jd=-ppd& i=j
P<0f|a")<0> - {0 i #j

Now the probability that j is detected at position k > 0 is given by

— the probability that she decides to forward k times and picks k£ — 1 users (does not
matter whether honest or not, as non-exit attackers cannot see the messages), i.e.,
pl}_ ! (recall that at the initial step she does not flip the coin),

— times the probability of choosing j as the kth forwarder, i.e. g,

— times the probability that she picks any number k' of attackers at the end of the
path,ie. X, p’}/ {f’ (I =pp).

Therefore

k-1 k' ok’
V21, P(oj|a) © Z(pf qiijfé (l—pf)),

k=1 k=1

and hence

(o)
ojla ZPojla(k)
k=0

= =ppgie;+ Y (P a Y PN = pp)
k=1 k=1

00 00

= -pp)|di€j+qij Z(Pl}_l Z Pl}flk)]
. = =l
[ > 4 Lipy
== pp)| e+ Y P |
fﬁzu ]; f 1—,(1'17/'
[ qij6ivy 1
= (1 pp)| e + |
POV~ pr 1=

qijipys ]
A-ppd=&Gpp 1

Corollary 4. P(o;|a;) = 0 if and only if one of the following holds:

= =py) >§i5ij +

1. {iZO;
2. qij=0 and i # j.



62 V. Sassone, S. Hamadou, and M. Yang
Now on the probability of detecting a user P(0;). Assuming uniform distribution of
anonymous events we have the following result.
Proposition 5. [f the honest member are equally likely to initiate a transaction then.
1 4i; Cipy
Ploj)= ((1—pf)gj+ l’i )
n=-c¢ i<(n—c) {lpf

Proof. Since the anonymous events are uniformly distributed then P(a;) = 1/(n — ¢) for
all i. Thus

Po)= > Plojla)P@)

i<(n—c)
- iS;C)P(oj | a;) . i .
- ! ) is;dp(oj )

We then have the same conditions of non-detectability as in the previous section; that
is, the following result holds.

Corollary 5. P(o0;) = 0 if and only if
{i=0 and Vi.(qij=00r{i=0).
Now from Propositiond and Bl and the Bayes theorem, we have the following result.
Proposition 6. If the honest members are equally likely to initiate a transaction, then
q9ij i Py
(I =ppd =4ipy)
Gr 2 ,ffﬁff .

k<(n—c)

Jigij +
P(Cl,' | Oj) =

Now from Propositions[3land[6l we can prove effectively that the privacy level ensured
by the onion version is better than those offered by the versions where messages are
forwarded in cleartext. More formally, let [P(ai o j)]CR and [P(a,- |o j)]OR denote the
probability that i is the initiator given that j is detected under cleartext routing and
onion routing, respectively. Then the following holds.

Theorem 1. [P(a,- | o)) ]OR < [P(ai | Oj)]CR .



Trust in Anonymity Networks 63

4.2 On the Security of the Onion Forwarding Version

As mentioned before, onion forwarding is the forwarding technique of choice in several
real-world systems. Recent work [14, [18, [21H23] shows that such systems are vulnera-
ble to so-called congestion attacks, which intuitively work as follows. Assume that the
initiator selects a path which contains a corrupt user as the exit node. The attacker can
then observe the pattern of arrival times of the initiator’s requests, and tries to identify
the entire path by selectively congesting the nodes she suspect to belong to it. Precisely,
to determine whether or not a specific node occurs in the path, she asks a collaborat-
ing attacker to build a long path looping on the target node and ending with a corrupt
node. Using this, the attacker perturbs the flow through the target node, so that if the
latter belongs also to the path under observation, the perturbation will reflect at its exit
node.

Attacker

Fig. 3. Congestion attack

Here we use a variant of the congestion attack which, similarly to the previous sec-
tion, allows internal attackers to deteriorate the reputation of a targeted honest user, and
does not require the attacker to belong to a path. Figure [3] illustrates the attack, where
a long path is built looping as many times as possible over the target, preferably using
different loops involving different users. Thank to such properties, the target user will be
significantly busy handling the same message again and again, whilst no other member
of the path will be congested.

Figure @illustrates the effect of this attack using the same example as in the cleartext
forwarding version in §3l The results are completely in tune with those presented by
Figure 2 even though the target node initially enjoys a better anonymity protection,
her anonymity will unequivocally fall, although more smoothly than in §3| In partic-
ular, after twenty sessions, the protocol no longer ensures probable innocence, as the
probability of identifying the target node becomes greater than 0.5.

5 Adaptive Attackers

We have worked so far under the assumption that protocol participants either behave
always honestly or always maliciously. Arguably, this is a rather unrealistic hypothesis



64 V. Sassone, S. Hamadou, and M. Yang

5a | P(ai| oi) i P(ai]oj)

@i=j=17 b)yi+j=7
Fig. 4. Onion forwarding

in open and dynamic systems, where honest nodes can become malicious upon being
successfully attacked. In this section we take the more realistic view that nodes may
become corrupt, and study a new kind of attackers, which we dub ‘adaptive,” and the
relative attacks.

Adaptive attackers differ from those we considered so far in the paper —and indeed
from those considered so far in the literature on CRowps— in that when they intercept
a message, rather than just reporting its sender as the initiator, they attempt to travel
the path back in order to improve their chance to catch the actual originator. They
do so by trying to corrupt the sender of the message, say j;. If the attack succeeds,
then the attacker effectively learns from j; all she needs to identify j,’s predecessor
on the path, say j,, and repeat the adaptive attack on j,, having moved a step closer to
the initiator. The process is repeated iteratively until the attacker either fails to
corrupt the current node (or timeouts whilst trying to) or reaches the beginning of the
path. When that happens, the attacker reports the current node, say ji, which is obvi-
ously a better candidate than j; to have originated the transaction.

We regard this as a significant and realistic kind of attack, as there clearly are a multi-
tude of ways in which the adaptive attacker may attempt to corrupt a node. These range
from brute force attacks via virus and worms which gains the attacker complete control
over the node, to milder approaches based on luring the target to give away some bit of
information in exchange for some form of benefit, and in general are entirely indepen-
dent of the Crowps protocol. We therefore do not postulate here about the means which
may be available to the attacker to carry out her task, make no assumptions whatsoever
about her power, and take the simplified view that each node has at all time the same
probability 7 to become corrupted.

In the rest of the section we re-evaluate the privacy guarantees afforded by Crowps
extended —with and without onion forwarding— under this new adaptive attack scenario.
We shall however carry out the analysis under the unrealistic assumption that it is nec-
essary for attackers to corrupt a node each time they meet her on the path. Recall in fact
that a single node will typically appear several times in a path. Therefore, an adaptive
attacker in her attempt to travel the path backwards towards the initiator will in general
meet the each node several times. The reason why our assumption may be justified is
when the attacks only gain the attacker access to just enough data to get to the node’s
last predecessor on the path, rather than to the entire set of them. On the other hand, the



Trust in Anonymity Networks 65

reason why this assumption is ultimately unsatisfactory is that it is overly dangerous
to make limiting assumptions as to the degree of success of an attack, and assess spec-
ulatively the extent to which a node’s integrity is compromised, the methodologically
correct attitude being to assume that the attacker has gained total control over the target.
And when she has, by definition she simply has no need to corrupt the node again, and
no new knowledge may be acquired by doing so. In the concluding section, we discuss
a few preliminary ideas on how to remove this restriction in future work.

5.1 Crowps Extended

Our technical development proceeds mutatis mutandis as in §3] and §4l In particular,
as before we first evaluate the conditional probability P(o;|a;), then under the hy-
pothesis that all honest users are equally likely to initiate a transaction, we compute
P(0,), and finally, using Bayes Theorem, we obtain P(q; | 0;). In this section we omit all
proofs.

The probabilities P(o0;|a;)o) and P(o;|a;)q+) that node i is detected at the initiator
position or at any position after that can be expressed respectively as

pfm{iﬂ( 1 n )
Ploilai) ~=di+ - )
(0 |a)(0) ¢ -7 \l1-pm; 1-npsy;

P( | ) qij i Py g imi Py
o;la; = - ’
Pan T 1=pry (L=m(1=pr)

which gives the following result, where again ¢;; = 1 if i = j, and O otherwise.

The key to these formulae is to consider that when a user is detected at position £,
this is potentially due to a detection at position i +k, for any k > 0, whereby the attacker
has successively travelled back k positions on the path, by either corrupting honest users
with probability 7 or by meeting other attackers. The situation would be quite different
were we to take into account that the attacker only needs to corrupt a honest user once,
as m would not anymore be a constant.

Proposition 7

P(ojla,-)zeijP(oiIa,-) +P(0]~|a,-)

©) 1+’

Under the hypothesis of a uniform distribution of anonymous events, it is easy to prove
the following.

Proposition 8. If the honest members are equally likely to initiate a transaction, then
1
Plop=_ C(P(oj|aj)(0) ) P(ojlar), . ) .
k<(n—c)

Now from Proposition[7land [§]and Bayes Theorem, we have the following.



66 V. Sassone, S. Hamadou, and M. Yang
1 012
0o P(ai] oi) 01 - P(ai| oj)
0.8 008
07
006
06
o5 0.04 -
04 0.02
03 T e -
1 7 13 19 25 31 37 43 49 1 7 13 19 25 31 37 43 49
(@i=j=77=0.02 b i+j=7,71=0.02
1 012
0o P(ai] oi) 01 - P(ai| oj)
0.8 008
07
006
06
o5 0.04 -
04 0.02
03 T e ... S
1 7 13 19 25 31 37 43 49 1 7 13 19 25 31 37 43 49

(©i=j=7,71=05

(di#j=7,7=05

Fig. 5. Example in Crowps extended against adaptive attack

Proposition 9. If the honest members are equally likely to initiate a transaction, then

E,’jP(O,' | 61,’)(0) + P(Oj | ai)(l+)

P (ai | o j) = .
P(0f|af)(0) + z:kS("—C)P(Of|a")(1+)

Of course, in case the attacker’s attempts to travel back the path never succeed, the
formula reduces to the one we found previously.

Corollary 6. If m = 0, that is the attacker is not adaptive, then

G + qiilips
L —mnipys
P(ai | Oj) = ’

0+ Z lqk_jé’kpf
k<(n—c) Py

which is the same as Proposition[3

Figure[lillustrates the formulae P(a | 07) and P(a; | 07) for i # 7 on our running exam-
ple, where we add 7 = 0.02 and & = 0.5 to the existing parameters, viz.,n = 8 ,c = 1,
pr = 0.7,and 7 = 50. It is interesting here to observe the effect of the attacker’s corrup-
tion power, insofar as that is represented by x: the larger &, the more lethal the attacker,
the farther away the protocol from the standard, and the more insecure. In particular, for
7 = 0.5 the system fails by a large margin to guarantee probable innocence even before
the attack to 7’s trust level starts.



Trust in Anonymity Networks 67

5.2 Onion Forwarding

Under onion forwarding, the adaptive attackers must appear as the last node on the path,
and from there, starting with her predecessor, try to corrupt nodes back towards the
originator. Following the same proof strategy as before, we define obtain the following
formulae.

prnidin(l—py) 1 Pis
P(o,-la,-) :(l—pf){i+ 4 4 ( - ),
© (I=prl)A—-m\l—mip;r 1—mnpy
2
e PeNidimqij 1
P(0j|a,-) = q]é’pf + f / ( — d ),
an  1=-Gpr A-prl)A-m\l—-nipy 1-7nipy

and therefore:

Proposition 10

Plojla) = &sP(orlai) , + Plojlai)

Now on the probability of detecting a user P(0;).

Proposition 11. If the honest members are equally likely to initiate a transaction, then

P(Oj):nic(P(Oflaf)(o)Jr Z P(Of|ak)(1+))'

k<(n—c)
As before, the result below follows from Propositions[I0land[[Tland Bayes Theorem.

Proposition 12. [f the honest members are equally likely to initiate a transaction then.

E,’jP(O,' | Cl,')(o) + P(Oj | Cl,')(H)

Plailoj) =
(a’ 0]) P(Ojlaj)«»J“st(n—c) P (oflak)

1+

Corollary 7. If m = 0, that is the attacker after all not adaptive, then

qii¢ipy

Ligj+
1= pp =g
P(ailo;) = (=pp=dipp)

‘ qrjkD ¢
o ks(zn;c) (A =pp)A=Lpp)

which coincides with Proposition|6l

Finally, Figure [6] illustrates P(a7|o07) and P(a;|o07) for i # 7 on our running example,
for 7 = 0.5. Although the graphs are shaped as in the previous cases, it is possible to
notice the increase security afforded by the onion forwarding.



68

V. Sassone, S. Hamadou, and M. Yang

08
08
07
06
05
04

P(ai] oi)

1

7

03 T T T T T T T T T

13 19 25 31 37 43 49

0.12 A

0.1 -
0.08 -
006 -
0.04 -
0.02 -

P(ai|oj)

1 7 13 19 25 31 37 43 45

@i=j=1

by i#j=7

Fig. 6. Onion forwarding against adaptive attacks

6 Conclusion

In this paper we have presented an enhancement of the CRowbs anonymity protocol via
a notion of trust which allows crowd members to route their traffic according to their
perceived degree of trustworthiness of other members. We formalised the idea quite
simply by means of (variable) forwarding policies, with and without onion forwarding
techniques. Our protocol variation has the potential of improving the overall trustwor-
thiness of data exchanges in anonymity networks, which may naturally not be taken
for granted in a context where users are actively trying to conceal their identities. We
then analysed the privacy properties of the protocol quantitatively, both for Crowps and
onion forwarding, under standard and adaptive attacks.

Our analysis in the case of adaptive attacks is incomplete, in that it assumes that
attackers whilst attempting to travel back over a path towards its originator, need to
corrupt each honest node each time they meet her. Arguably, this is not so. Typically a
node j will act according to a routing table, say 7';. This will contain for each path’s id
a translation id and a forwarding address (either another user, or the destination server)
and, in the case of onion forwarding, the relevant encryption key. (Observe that since
path’s id are translated at each step, j may not be able to tell whether or not two entries
in T'; actually correspond to a same path and, therefore, may not know how many times
she occurs on each path.) It is reasonable to assume that upon corruption an attacker
¢ will seize T}, so that if she ever reaches j again, ¢ will find all the information to
continue the attack just by inspecting T';.

Observe now that the exact sequence of users in the path is largely irrelevant to
compute P(0; | a;). It only matters how many times each of them appears in between the
attacker at the end of the path and the detected node. Using some combinatorics, it is
therefore relatively easy to write a series for P(0; | a;) based on summing up a weighted
probability for all possible occurrence patterns of n — ¢ honest users and c attackers in
the path. Quite a different story is to simplify that series to distill a usable formula. That
is a significant task which we leave for future work.

Acknowledgements. We thank Ehab ElSalamouny and Catuscia Palamidessi for their
insights and for proofreading.



Trust in Anonymity Networks 69

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Abe, M.: Universally verifiable Mix-net with verification work indendent of the number

of Mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 437-447.
Springer, Heidelberg (1998)

Back, A., Moller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity pro-
viding systems. In: Moskowitz, 1.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 245-257. Springer,
Heidelberg (2001)

Backes, M., Lorenz, S., Maffei, M., Pecina, K.: Anonymous webs of trust. In: 10th Privacy
Enhancing Technologies Symposium, PETS 2010. LNCS. Springer, Heidelberg (to appear,
2010)

Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of security? In:
Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and
Communications Security, pp. 92-102. ACM, New York (2007)

Chatzikokolakis, K., Palamidessi, C.: Probable innocence revisited. Theor. Comput.
Sci. 367(1-2), 123-138 (2006)

Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM 24(2), 84-88 (1981)

Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Pesenti, M., Samarati, P., Zara, S.: Fuzzy
logic techniques for reputation management in anonymous peer-to-peer systems. In: Wa-
genknecht, M., Hampel, R. (eds.) Proceedings of the 3rd Conference of the European Society
for Fuzzy Logic and Technology, pp. 43—48 (2003)

Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., Violante, F.: A reputation-
based approach for choosing reliable resources in peer-to-peer networks. In: Atluri, V. (ed.)
ACM Conference on Computer and Communications Security, pp. 207-216. ACM, New
York (2002)

Dingledine, R., Freedman, M.J., Hopwood, D., Molnar, D.: A reputation system to in-
crease mix-net reliability. In: Moskowitz, 1.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 126-141.
Springer, Heidelberg (2001)

Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion router. In:
USENIX Security Symposium, pp. 303-320. USENIX (2004)

Dingledine, R., Syverson, P.F.: Reliable MIX cascade networks through reputation. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 253-268. Springer, Heidelberg (2003)
ElSalamouny, E., Krukow, K.T., Sassone, V.: An analysis of the exponential decay principle
in probabilistic trust models. Theor. Comput. Sci. 410(41), 40674084 (2009)
ElSalamouny, E., Sassone, V., Nielsen, M.: HMM-based trust model. In: Degano, P.,
Guttman, J.D. (eds.) Formal Aspects in Security and Trust. LNCS, vol. 5983, pp. 21-35.
Springer, Heidelberg (2010)

Evans, N.S., Dingledine, R., Grothoff, C.: A practical congestion attack on Tor using long
paths. In: Proceedings of the 18th USENIX Security Symposium (2009)

Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer. In: Atluri,
V. (ed.) ACM Conference on Computer and Communications Security, pp. 193-206. ACM,
New York (2002)

Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Jour-
nal of Computer Security 13(3), 483-512 (2005)

Hamadou, S., Palamidessi, C., Sassone, V., ElISalamouny, E.: Probable innocence in the pres-
ence of independent knowledge. In: Degano, P., Guttman, J.D. (eds.) Formal Aspects in Se-
curity and Trust. LNCS, vol. 5983, pp. 141-156. Springer, Heidelberg (2010)

Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network latency
leak? ACM Trans. Inf. Syst. Secur. 13(2) (2010)



70

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

V. Sassone, S. Hamadou, and M. Yang

Jakobsson, M.: Flash mixing. In: Annual ACM Symposium on Principles of Distributed
Computing, PODC 1999, pp. 83—-89 (1999)

Krukow, K., Nielsen, M., Sassone, V.: A logical framework for history-based access control
and reputation systems. Journal of Computer Security 16(1), 63—101 (2008)

McLachlan, J., Hopper, N.: Don’t clog the queue! circuit clogging and mitigation in P2P
anonymity schemes. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 31-46. Springer,
Heidelberg (2008)

McLachlan, J., Tran, A., Hopper, N., Kim, Y.: Scalable onion routing with Torsk. In: Al-
Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Computer and Communica-
tions Security, pp. 590-599. ACM, New York (2009)

Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of tor. In: IEEE Symposium on Security
and Privacy, pp. 183-195. IEEE Computer Society, Los Alamitos (2005)

Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity. In: Juels,
A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communi-
cations Security, pp. 17-26. ACM, New York (2006)

Neft, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM Conference
on Computer and Communications Security, pp. 116-125 (2001)

Ohkubo, M., Abe, M.: A length-invariant hybrid mix. In: Okamoto, T. (ed.) ASIACRYPT
2000. LNCS, vol. 1976, pp. 178-191. Springer, Heidelberg (2000)

Pappas, V., Athanasopoulos, E., Ioannidis, S., Markatos, E.P.: Compromising anonymity us-
ing packet spinning. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS,
vol. 5222, pp. 161-174. Springer, Heidelberg (2008)

Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. Inf. Syst.
Secur. 1(1), 66-92 (1998)

Rennhard, M., Plattner, B.: Introducing MorphMix: peer-to-peer based anonymous internet
usage with collusion detection. In: Jajodia, S., Samarati, P. (eds.) Proceedings of the 2002
ACM workshop on Privacy in the Electronic Society, WPES, pp. 91-102. ACM, New York
(2002)

Sassone, V., ElSalamouny, E., Hamadou, S.: Trust in Crowds: probabilistic behaviour in
anonymity protocols. In: Symposium on Trustworthy Global Computing, TGC 2010. LNCS,
vol. 6084. Springer, Heidelberg (2010)

Singh, A., Liu, L.: Trustme: Anonymous management of trust relationships in decentralized
P2P systems. In: Shahmehri, N., Graham, R.L., Caronni, G. (eds.) Peer-to-Peer Computing,
pp- 142-149. IEEE Computer Society, Los Alamitos (2003)

Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion rout-
ing. In: IEEE Symposium on Security and Privacy, pp. 44-54. IEEE Computer Society, Los
Alamitos (1997)

Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In: Shahmehri,
N., Graham, R.L., Caronni, G. (eds.) Peer-to-Peer Computing. IEEE Computer Society, Los
Alamitos (2003)

Wiangsripanawan, R., Susilo, W., Safavi-Naini, R.: Design principles for low latency anony-
mous network systems secure against timing attacks. In: Brankovic, L., Coddington, P.D.,
Roddick, J.F.,, Steketee, C., Warren, J.R., Wendelborn, A.L. (eds.) Proc. Fifth Australasian
Information Security Workshop (Privacy Enhancing Technologies), AISW 2007. CRPIT,
vol. 68, pp. 183-191. Australian Computer Society (2007)



Learning I/O Automata*

Fides Aarts and Frits Vaandrager

Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. Links are established between three widely used modeling
frameworks for reactive systems: the ioco theory of Tretmans, the in-
terface automata of De Alfaro and Henzinger, and Mealy machines. It
is shown that, by exploiting these links, any tool for active learning of
Mealy machines can be used for learning I/O automata that are deter-
ministic and output determined. The main idea is to place a transducer
in between the I/O automata teacher and the Mealy machine learner,
which translates concepts from the world of I/O automata to the world
of Mealy machines, and vice versa. The transducer comes equipped with
an interface automaton that allows us to focus the learning process on
those parts of the behavior that can effectively be tested and/or are of
particular interest. The approach has been implemented on top of the
LearnLib tool and has been applied successfully to three case studies.

1 Introduction

Model-based system development is becoming an increasingly important driving
force in the software and hardware industry. In this approach, models become
the primary artifacts throughout the engineering lifecycle of computer-based sys-
tems. Requirements, behavior, functionality, construction and testing strategies
of computer-based systems are all described in terms of models. Models are not
only used to reason about a system, but also used to allow all stakeholders to
participate in the development process and to communicate with each other,
to generate implementations, and to facilitate reuse. The construction of mod-
els typically requires significant manual effort, implying that in practice often
models are not available, or become outdated as the system evolves. Automated
support for constructing behavioral models of implemented components would
therefore be extremely useful.

The problem of inducing, learning or inferring grammars and automata has
been studied for decades, but only in recent years grammatical inference a.k.a.
grammar induction has emerged as an independent field with connections to
many scientific disciplines, including bio-informatics, computational linguistics
and pattern recognition [I0]. Also recently, some important developments have
taken place on the borderline of verification, testing and machine learning, see

* This research was supported by European Community’s Seventh Framework Pro-
gramme under grant agreement no 214755 (QUASIMODO).

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 71 2010.
© Springer-Verlag Berlin Heidelberg 2010



72 F. Aarts and F. Vaandrager

e.g. [6II6/23], and researchers have shown that it is possible (at least in princi-
ple) to apply grammatical inference for learning models of software components.
Grammatical inference techniques aim at building a grammar or automaton for
an unknown language, given some data about this language. Within the setting
of active learning, it is assumed that a learner interacts with a teacher. Inspired
by work of Angluin [5] on the L* algorithm, Niese [20] developed an adaptation
of the L* algorithm for active learning of deterministic Mealy machines. This
algorithm has been further optimized in [23]. In the algorithm it is assumed that
the teacher knows a deterministic Mealy machine M. Initially, the learner only
knows the action signature (the sets of input and output symbols I and O) and
her task is to learn a Mealy machine that is equivalent to M. The teacher will
answer two types of questions — output queries (“what is the output gener-
ated in response to input i € I?”) and equivalence queries (“is an hypothesized
machine H correct, i.e., equivalent to the machine M?”). The learner always
records the current state g of Mealy machine M. In response to query 4, the
current state is updated to ¢’ and answer o is returned to the learner. At any
point the learner can “reset” the teacher, that is, change the current state back
to the initial state of M. The answer to an equivalence query H is either yes
(in case M =~ H) or no (in case M # H). Furthermore, the teacher will give the
learner a counterexample that proves that the learner’s hypothesis is wrong with
every negative equivalence query response, that is, an input sequence u € I'* such
that obspq(u) # obsp(u). This algorithm has been implemented in the LearnLib
tool [23]. In practice, when a real implementation is used instead of an ideal-
ized teacher, the implementation cannot answer equivalence queries. Therefore,
LearnLib “approximates” such queries by generating a long test sequence that is
computed by standard methods such as state cover, transition cover, W-method,
and the UIO method (see [15]). LearnLib has been applied successfully to learn
computer telephony integrated (CTI) systems [I1], and more recently to learn
parts of the SIP and TCP protocols [I] and the new biometric passport [2].

Currently, LearnLib is able to automatically learn Mealy machines with up
to 30.000 states. Nevertheless, a lot of further research will be required to make
automata based learning tools suitable for routine use on industrial case stud-
ies. An important issue, clearly, is the development of abstraction techniques
in order to be able to learn much larger state spaces (see [I], also for further
references). Another issue is the extension of automata learning techniques to
nondeterministic systems (see e.g. [29]). In this paper, we address a third issue
that hinders the application of the LearnLib tool. In practice, the restriction
of Mealy machines that each input corresponds to exactly one output is felt as
being overly restrictive. Sometimes several inputs are required before a single
output occurs, sometimes a single input triggers multiple outputs, etc.

The I/O automata of Lynch & Tuttle [I8/I7] and Jonsson [I3] constitute
a popular modelling framework which does not suffer from the restriction that
inputs and outputs have to alternate. Our aim is to to develop efficient algorithms
for active learning of I/O automata. Hence we assume that the teacher knows
an I/O automaton .A. We consider a setting in which the task of the learner is to



Learning I/O Automata 73

partially learn A. More specifically, we assume that the learner initially knows
an interface automaton P in the sense of De Alfaro and Henzinger []], called
the learning purpose, and that she has to learn the part of A whose behavior
is compatible with P. We think there are several good reasons to extend the
framework of active learning with a notion of a learning purpose. In principle,
the systems that we model using I/O automata will accept any input in any
state. But in practice, a learner may not be able (e.g., not fast enough) to
effectively provide any input in any state. Also, systems are often designed to
be used in a certain manner, and their behavior may become unspecified and/or
nondeterministic when they are used improperly. In such cases a learner may
decide to interact with the system following the specified interaction protocol,
for instance “after providing an input a user should wait for the system to
become quiescent before she may provide a next input”. A final motivation for
using learning purposes is that often the state space of practical systems is very
big and cannot be fully explored. By not providing certain inputs (in certain
states), the learner may focus on interesting parts of the behavior that can be
effectively learned.

Rather than developing and implementing an algorithm from scratch, we will
use LearnLib. Our idea is to place a transducer in between the IOA teacher
and the Mealy machine learner, which translates concepts from the world of
I/O automata to the world of Mealy machines, and vice versa. The transducer
and Mealy machine learner together then implement an IOA learner. Note that
this architecture is very similar to the architecture proposed in [I], where a
transducer is used to relate the large parameter spaces of realistic communication
protocols to small sets of actions that can effectively be handled by state-of-the-
art automata learning tools.

As a spin-off of our research, we establish links between three widely used
modeling frameworks for reactive systems: the ioco theory of Tretmans [26]27],
the interface automata of De Alfaro and Henzinger [§], and Mealy machines.
In particular, we present behavior preserving maps between interface automata
and Mealy machines, and we link the ioco preorder to alternating simulation.

The rest of this paper is structured as follows. Section ] recalls interface au-
tomata and links alternating simulation to the ioco preorder. Section [Bladdresses
a basic question: what is the I/O behavior of an I/O automaton? Section H re-
calls Mealy machines and discusses translations between interface automata and
Mealy machines. Section [l describes our framework for learning I/O automata.
In Section [, we describe the implementation of our approach and its applica-
tion to three case studies. Finally, Section [l wraps up with some conclusions and
suggestions for further research.

2 Interface Automata

An interface automaton models a reactive system that can interact with its
environment. It is a simple type of state machine in which the transitions are as-
sociated with named actions. The actions are classified as either input or output.



74 F. Aarts and F. Vaandrager

The output actions are assumed to be under the control of the system whereas
the input actions are under control of the environment. The interface automata
that we study in this paper are a simplified version of the interface automata of
De Alfaro and Henzinger [8] without internal actions. Within ioco theory [26127]
interface automata are called labelled transition systems with inputs and out-
puts. Interface automata are similar to the I/O automata of Lynch & Tuttle
[18/17]) and Jonsson [I3]. The main difference is that in an I/O automaton input
actions are required to be enabled in every state. In an interface automata cer-
tain input actions may be illegal in certain states: they are not enabled and we
assume that the environment will not generate such inputs.

In this paper, an interface automaton (IA) is defined to be a tuple A =
(I,0,Q,q° —), where I, O and Q are finite, nonempty sets of input actions,
output actions, and states, respectively, with I and O disjoint, ¢° € @ the initial
state, and —C @Q x (I UO) x @ the transition relation. We write ¢ = ¢ if
(¢,a,q') €—. An action a is enabled in state g, notation ¢ =, if ¢ % ¢/, for some
state ¢'. We write out a(q), or just out(q) if A is clear from the context, for the
set {a € O | ¢ %} of output actions enabled in state ¢. For S C Q a set of
states, we write out4(S) for [J{outa(q) | ¢ € S}. An I/O automaton (I0A) is
an interface automaton in which each input action is enabled in each state, that

is ¢ =, for all ¢ € Q and all i € I. A state ¢ is called quiescent if it enables no
output action. An interface automaton A is

— input deterministic if for each state ¢ € Q and for each action a € I there is
at most one outgoing transition of ¢ with label a: ¢ = g1 Aq = g2 = q1 = ¢a;

— output deterministic if for each state ¢ € @ and for each action a € O there is
at most one outgoing transition of ¢ with label a: ¢ = 1 Aq = g2 = q1 = ¢o;

— deterministic if it is both input and output deterministic;

— output determined if each state has at most one outgoing output transition:

ngl/\ngg/\{ol,OQ}gOéol:02/\q1:q2.

Figure [ displays a simple example of a deterministic IOA that is also output
determined. The initial state is marked with an extra circle, there is a single
input action in and there are two output actions outl and out2.

Fig. 1. A deterministic, output determined IOA

Let Ay = (1,0,Q1,4Y,—1) and A2 = (I,0,Q2,¢5, —2) be interface automata
with the same signature. Let A = I U O and let X,Y C A. A binary relation
R C @1 X Q2 is an XY -simulation from A; to Az if whenever (¢,r) € R and
a € A it holds that:



Learning I/O Automata 75

— if ¢ %1 ¢’ and a € X then there exists a7’ € Qq s.t. 7 =5 " and (¢',7') € R.
— ifr %57/ and @ € Y then there exists a ¢ € Q1 s.t. ¢ —1 ¢ and (¢',7') € R.

We write A1 <xy Az if there exists an XY -simulation from 4; to A, that
contains (¢?, ¢3). AA-simulations are commonly known as bisimulations and OI-
simulations are known as alternating simulations [4]. De Alfaro and Henzinger
[8] propose alternating simulations as the primary notion of refinement for IAs.
In their approach, one IA refines another if it has weaker input assumptions and
stronger output guarantees. We often write A; <, As instead of A; <oy As and
A1 =~ As instead of A1 <g4 As. There are several obvious inclusions between
the different preorder, e.g. it follows that A; <ay As implies A; <xy As.

Figure[2 shows an example of an alternating simulation between two IAs with
inputs {in1,in2} and outputs {out!, out2,d}.

outl d

Fig. 2. Example of alternating simulation (from left to right IA)

Suppose that A; <, As and that R is the largest alternating simulation from
Aj to Az. We define AS( A1, Az), the alternating simulation interface automaton
induced by A; and As, as the structure (1,0, R, (¢?,q3), —) where

(¢,7) % (¢,r") & q¢ 51 ¢ and r So v,

Figure [B] shows the alternating simulation IA induced by the IAs of Figure 2
The following lemma follows easily from the definitions.

in1

d out1

Fig. 3. TA induced by alternating simulation of Figure

Lemma 1. Suppose Ay <, As. Then A1 <oa AS(A1, As) <ar As.

Larsen, Nyman and Wasowski [T4] criticize interface automata and alternating
simulations for being unable to express liveness properties and since they allow
for trivial implementations: an TA 7 with a single state that accepts all inputs
but never produces any output is a refinement of any IA over the same sig-
nature. In order to fix this problem, Larsen, Nyman and Wasowski [14] define
model automata, an extension of interface automata with modality. In this pa-
per, we propose a different solution, which is very simple and in the spirit of I/O
automata and ioco theory: we make quiescence observable.



76 F. Aarts and F. Vaandrager

Let A= (I,0,Q,q°,—) be an IA and let § be a fresh symbol (not in I U O).
Then the §-extension of A, notation A%, is the IA obtained by adding é-loops
to all the quiescent states of A. Formally, A° = (I,05,Q,q°, —') where Os =

O U {4} and —'=— U{q 2 qlqeq qulescent} For A; and A, IAs with the
same signature, we define A; <,5 Az < A <, AS.

Observe that in general A; <,s Az implies .A1 <4 Ag, but A; <, As does not
imply A; <45 Asz: even though 7 <, A, for any TA .A with the same signature as
our trivial IA 7', we do in general not have 7 <,; A. If A? enables a sequence of
input actions leading to a state r from which an output is possible, then 7% must
enable the same sequence of inputs leading to a related state g. But whereas ¢
enables a §-transition, r does not enable a matching J-transition. In order to
argue that <,5 indeed is a reasonable notion of implementation, we will now
show that — under certain determinacy assumptions — <, coincides with the
well-known ioco preorder of [26]27].

We extend the transition relation to sequences by defining, for o € (I U O)*,
2 to be the least relation that satisfies, for ¢,¢’,¢” € Q and a € TU O,

1=q
q:0->q//\q/i>q//:>ng//
Here e denotes the empty sequence. We say that ¢ € (I UO)* is a trace of A
if ¢° 2 ¢, for some state ¢, and write Traces(A) for the set of traces of A. We
write A after o for the set {¢ € Q | ¢° = ¢} of states of A that can be reached

with trace o. Let A; and As be TA with the same signature. Then A; and As
are input-output conforming, notation 4; ioco A,, if

Vo € Traces(A3) : out(AS after o) C out(AS after o)

The results below link alternating simulation and the ioco preorder. These results
generalize a similar, recent result of Veanes and Bjgrner [28], which is stated in
a setting of fully deterministic systems. We first state a small technical lemma.

Lemma 2. Let A; and Ay be IAs with the same action signature such that Ay
is input deterministic and As is output deterministic. Let R be an alternating
simulation from Ay to As. Let 0 € (I1UO)*, ¢1 € Q1 and g2 € Q2 such that
09 09

@} = q1 and ¢ = q2. Then (q1,92) € R.

Theorem 1. Let A; and As be [As with the same action signature such that Ay
18 input deterministic and Asg is output deterministic. Then Ay <,s5 Ao implies

A; ioco As.

Theorem 2. Let A; and As be IAs with the same action signature such that Ay
1s input enabled and Ao is deterministic. Then A; ioco As implies A1 <,5 As.

Corollary 1. Let Ay be an input deterministic IOA and let Ay be a determin-
istic IA with the same action signature. Then Ay ioco As iff A1 <.5 As.

Observe that all the determinacy conditions in the above results are essential:
as soon as one assumption is left out the corresponding result no longer holds.



Learning I/O Automata 7

3 The I/O Behavior of I/O Automata

In order to be able to learn I/O automata, we need to decide which type of
questions the learner may ask to the teacher. One obvious proposal would be to
allow for membership queries of the form “Is sequence v € (IUO)* a (quiescent)
trace of the IOA?”. However, there is strong evidence that this is an inefficient
approach. In his PhD thesis [20], Niese compared two algorithms for learning
Mealy machines. The first algorithm, an optimized version of Angluin’s [5] L*
algorithm, allowed for membership queries “Is sequence u € (I x O)* a trace
of the MM?”. The second algorithm supported membership queries “What is
the output generated by the MM in response to input sequence v € I*?7”. Niese
showed that the second algorithm has a much better performance and requires
less membership queries. We expect that for IOAs the situation is very similar.

Lynch & Tuttle [I8J17] and Jonsson [I3] do not define a notion of input/output
behavior for I/O automata, that is, given a stream of input values that is pro-
vided by the environment, the stream of output values that is computed by the
I/O automaton. The main reason for this is that such a notion of behavior is
not compositional. Instead, the behavior of an IOA is defined in terms of traces,
sequences of input and output actions that may be observed during runs of the
automaton. Henzinger [9] links determinism to predictability and calls a reactive
system deterministic if, for every stream of input values that is provided by the
environment, the stream of output values that is computed by the system is
unique. The example IOA of Figure [l is not deterministic in this sense since the
input stream in in may either lead to the output stream outl or to the output
stream out2. One obvious way to proceed is to restrict the class of IOA that one
calls deterministic, and and to study a notion of input/output behavior for this
restricted class. This route is explored by Panangaden and Stark [2I] in their
study of “monotone” processes. We will explore a different route, in which the
power of testers is slightly increased and the IOA of Figure [Il becomes again
behavior deterministic.

If a system is predictable then one may expect that, for any history of input
and output actions, the time required by the system to produce its next output
(if any) is more or less known. Predictability is at the basis of the assumption
in ioco theory that quiescence is observable: whenever a test is carried out,
it is assumed that if a system does not produce an output within some fixed
time T after the last input, it will never produce an output. By the same line
of reasoning, one could assume that there exists a fixed time ¢ such that the
system never produces an output within time ¢ after an input. Hence, if one
assumes that the tester can compute faster than the IUT, then in principle the
tester always has the choice to either wait for the next output of the ITUT or to
generate its next input before time ¢, that is, before occurrence of the output.
Based on these considerations, we slightly increase the power of the testers: at
any point we let the tester decide who is going to perform the next step, the
IUT or the tester itself.

Formally, we introduce a fresh delay action A. By performing A, the envi-
ronment gives an IOA the opportunity to perform its next output (if any). Let



78 F. Aarts and F. Vaandrager

In = I'U{A}. The behavior of an environment can then be described by an
environment sequence in (Ix)*, that is, a sequence of input actions interleaved
with delay actions. Let A = (I,0,Q,q°,—) be an IA and let ¢, ¢ € Q, e € (Ia)*

and u € (I UOs)*. We write g e:/g ¢’ to indicate that as a result of offering envi-
ronment sequence e in state ¢, As may produce trace u and end up in state ¢’.

Formally, e:/f is the least relation that satisfies g 6:/>6 q and:

q(az/;lq’Aq’Lq”/\iGIéqu:/;LZq”
. A
qez/gq’/\q’iq”/\oe()(séqe :/>uoq”

For each environment sequence e € (Ia)*, we define obs(e) to be the set of
traces that may be observed when offering e to Ajs, that is, obsa(e) = {u €

(IUOs)* | 3g€Q:¢° £ q}. Let A; and Ay be two IOAs with the same
sets I and O of input and output actions, respectively, We write A; C As,
if obsa,(e) C obsa,(e), for all environment sequences e € (Ia)*. If Ais a
deterministic and output determined IOA then obs4(e) contains exactly one
element for each input sequence e. Thus, with this notion of observable behavior,
a deterministic and output determined IOA is also behavior deterministic in the
sense of Henzinger [9].

Even though our notion of observation is based on a stronger notion of testing
than ioco theory, the resulting notion of preorder is the same.

Theorem 3. Let Ay and As be IOAs with the same inputs and outputs. Then
.Al iOCO .AQ Zﬁ .Al E Az.

4 From Interface Automata to Mealy Machines and Back

A (nondeterministic) Mealy machine (MM) is a tuple M = (I,0,Q,q", —),
where I, O and @ are finite, nonempty sets of inputs, outputs, and states, re-
spectively, ¢° € Q is the initial state, and —=C Q x I x O x @ is the transition

relation. We write ¢ v q if (¢,i,0,q") €—, and q 2 if there exists a q' such that
q e q'. Mealy machines are assumed to be input enabled: for each state ¢ and in-
put i, there exists an output o such that ¢ Zﬁ: The transition relation is extended

to sequences by defining “4* to be the least relation that satisfies, for ¢,¢’, ¢ € Q,

s i/o ui/so
/ 1

ue]*,seO*,iGI,andon:qez/;qandquéq’/\q =q" = ¢ =

A state g € Q is called reachable if ¢° u:/; q, for some u and s. A Mealy machine
is deterministic iff given a state ¢ and an input ¢ there is exactly one output o
and exactly one state ¢’ such that ¢ He q.

For ¢ € Q and u € I*, define 0bs (g, u) to be the set of output sequences that

may be produced when offering input sequence u to M, that is, obsa(q,u) =

{s€O0*"|3q:¢q u:/; q}. Two states q,q' € Q are observation equivalent, notation



Learning I/O Automata 79

g~ ¢, if obsp(q,u) = obsa(q',u), for all input strings u € I*. Write obsaq(u)
as a shorthand for 0bs((q°, u). Two Mealy machines M; and My with the same
sets of inputs I are observation equivalent, notation My = My, if obsa, (u) =
0bs am, (1), for all input strings w € I'*. If M is deterministic then obsa(u) is a
singleton set for each input sequence u. Thus a deterministic Mealy machine is
also behavior deterministic in the sense of Henzinger [9].

We call an interface automaton active if each state enables an output action.
Observe that for any interface automaton A, the §-extension A° is active. Active
interface automata can be translated to equivalent Mealy machines. We translate

each input transition ¢ — ¢’ to a transition ¢ /—> ¢’ in the Mealy machine, where
+ is a fresh output action denoting that the input is accepted. If input i is not

enabled in state ¢, then we add a self-loop ¢ g q to the Mealy machine. Here
— is a fresh output symbol denoting that the input is illegal. The fresh input
action A (“delay”) is used to probe for possible outputs: each output transition

A
g > ¢ translates to a transition ¢ /o ¢’ in the Mealy machine.
Formally, for active IA A = (I,0,Q,¢",—), the Mealy machine T'(A) is
defined as the structure (1,0 U {+,—},@Q, % —'), where
z/+
i€INgSqd =qg—"¢
i i/=
icINgt =q—'q
Alo
0€EONGSqd =q—"¢

Figure @ illustrates transformation T. We now define transformation R, the

Fig. 4. Result of applying T to the d-extension of the IA of Figure Bl

inverse of transformation 7', which takes a Mealy machine and turns it into
an IA. Let M = (Ix,0U{+,-},Q,q° —) be a Mealy machine. Then R(M) is
the TIA (1,0, Q, ¢, —'), where

. i/t ‘ ro / °
i€lINg = q¢d = qg—'¢ and 0cOANqg =S¢ = q—'¢
If one takes any total IA A and applies first 7' and then R, one gets back A.
Theorem 4. Let A be a total TA. Then A= R(T(A)).

Observe that if A is deterministic and output determined then T'(A) is de-
terministic, and if M is deterministic then R(M) is deterministic and output



80 F. Aarts and F. Vaandrager

determined. In order to obtain a dual version of Theorem ] we need to impose
three additional conditions on M. Let M be a Mealy machine whose inputs
include A and whose outputs include + and —. Then M is separated if an input
in I always leads to an output 4+ or —, and input A always leads to an output
in O: ¢ e ¢ = (i=A%co0¢€0). Mis consistent if there exists no state ¢
and input 4 for which both outputs + and — are possible: (g Eay Nq Z/—T) M
is stable if an output — does not lead to a change of state: ¢ iy qd = q=¢.
Clearly, for any total TA A, T(A) is separated, consistent and stable. Note that
deterministic Mealy machines are consistent. Using the conditions of separation,
consistency and stability, it is easy to prove M = T'(R(M)).

Theorem 5. Let M be a separated, consistent and stable Mealy machine with
inputs Ia and outputs O U {+,—}. Then M =T (R(M)).

5 Learning I/O Automata

In this section, we present our approach for active learning of I/O automata.
We assume that the teacher knows a deterministic and output determined IOA
A= (I1,0,Q,q¢°,—). We consider a setting in which the task of the learner is to
partially learn A: the learner initially knows a deterministic interface automaton
P = (1,04, P,p°, —'), called the learning purpose, and has to learn the part of
A whose behavior is compatible with . We require A% <, P.

The teacher and learner play the following game. The teacher records the
current state of A, which initially is ¢, and the learner records the current state

of P, which initially is p°. Suppose that the teacher is in state ¢ and the learner is
i
in state p. The learner now can do four things: (1) If an input transition p —' p’

is enabled then it may jump to p’ and present input 7 to the teacher, which will

then jump to the state ¢’ such that ¢ = ¢’. (2) The learner may present a delay
A to the teacher. If the teacher enables some output o, then it will jump to the
unique state ¢’ such that ¢ — ¢’ and return answer o to the learner. If no output
action is enabled in ¢ then the teacher returns §. The learner then jumps to the
unique state p’ that can be reached by the answer o or § that it has just received
(by the assumption that A° <, P we know this state exists). (3) The learner
may return to its initial state and ask the teacher to do the same (“reset”). (4)
The learner may pose a preorder query (“is an hypothesized TA H correct?”).
An hypothesis is a deterministic, output determined IA H such that HO <ar P.
An hypothesis is correct if A <,s H. If H is correct then the teacher returns the
answer yes. If an hypothesis is not correct then, by Corollary [ H? has a trace
o such that the unique output o enabled by A? after ¢ differs from the unique
output enabled by H® after o. The teacher then returns the answer no together
with counterexample o o.

In order to appreciate our learning framework, consider the trivial learning
purpose Py, displayed in Figure [l (left). Here notation ¢ : I means that we
have an instance of the transition for each input ¢ € I. Notation o : O is defined



Learning I/O Automata 81

o g oo o “
A AR

Fig.5. A trivial learning purpose (left) and a learning purpose with a nontrivial §
transition (right)

similarly. If H is an hypothesis, then by definition H° <47 Pirin. This just
means that H is input enabled. If H is correct then A <,s H. Since both A
and H are deterministic, output determined IAs, this means that A and H are
bisimilar! The following lemma provides some key insight in our approach in
case of an arbitrary learning purpose. It implies that if hypothesis H is correct,
H?® is bisimilar to AS(A?,P).

Lemma 3. Suppose A1, Ay and A3 are IAs, Ay is active and input determinis-
tic, Ao is output determined, As is output deterministic, and A; <, A3z <ay As.
Then Az =~ AS(A1, As).

It is important that a learning purpose may contain nontrivial § transitions. As
an example, consider the TA of Figure[H (right). This learning purpose expressing
that after an input one has to wait until the system gets into a quiescent state
before offering the next input. It is not possible to express this without §’s. But
since in the end we want to learn IAs without §’s, we need an operation that
eliminates all §-transitions from an automaton. Let A = (I, Os,Q, ¢", —) be an

TA. Let = be the smallest equivalence relation that contains 2, Then we define
p(A) to be the quotient IA (I,0,Q/=,q"/ =, —') where

o/ =5d/=eIrrq=rAr S Ar =

The following lemma implies that under certain conditions operation p preserves
bisimulation equivalence.

Lemma 4. Suppose A1 and As are deterministic, output determined IAs, Ay
has outputs O, As has outputs Og, and both IAs share the same sets of inputs I.
Suppose furthermore that Az satisfies the following triangle property, for i € I:

q 2, dNg>q"=q 5 q". Then A ~y Ay implies Ay ~p p(Az).

We always assume that the learning purpose P satisfies the triangle property.
Under this assumption, it follows using the above lemma that, if hypothesis H
is correct, H is bisimilar to p(AS(A%, P)).

Rather than developing and implementing an algorithm from scratch, we use
the LearnLib tool [23] to implement our learning approach. We place a trans-
ducer in between the IOA teacher and the Mealy machine learner, which records
the current state p of the learning purpose P and translates concepts from the



82 F. Aarts and F. Vaandrager

world of I/O automata to the world of Mealy machines, and vice versa, using the
translation functions defined in the previous section. Initially, the MM learner
only knows a signature consisting of inputs Ia and outputs Os U {4, —}. The
behavior of the transducer is as follows:

— Whenever the transducer receives an output query i € I from the MM
learner, it checks if ¢ is enabled in the current state of P. If the input is
not enabled (“illegal”) then the transducer returns an output — to the MM
learner. If the output is enabled then the transducer returns an output + to
the MM learner, updates state p to the unique state p’ with an ¢-transition
from p to p’, and forwards 7 to the IOA teacher.

— Whenever the transducer receives an output query A this is forwarded di-
rectly to the IOA teacher. When it receives a response o € Oy, the transducer
updates state p accordingly, and forwards o to the MM learner.

— Whenever the transducer receives a “reset” from the MM learner, it resets
its state to p°, and forwards the “reset” to the IOA teacher.

— Whenever the transducer receives an equivalence query H from the MM
learner, then it first checks whether p(R(H)) <ar P (since both IAs are
deterministic, this can be done in time linear in the size of their synchronous
product). If p(R(H)) does not conform to learning purpose P, then an answer
no is returned to the MM learner, together with a distinguishing trace in
which all output symbols are replaced by A. If p(R(H)) <as; P then the
transducer forwards the preorder query p(R(H)) to the IOA teacher. The
transducer forwards a subsequent response of the IOA teacher to the MM
learner, but with all output symbols replaced by A. If the response is yes
then the transducer has successfully learned an TA p(R(H)) that meets all
the requirements.

Observe that when LearnLib is used, equivalence queries are always separated
and stable. We claim that the algorithm always terminates and that the trans-
ducer indeed learns an IOA that is equivalent to p(AS(A%, P)). In order to see
why this claim is true, a key observation is that the IOA teacher and transducer
together behave like a teacher for Mealy machine T'(AS(A%, P)).

Lemma 5. The I0A teacher and transducer together behave like a teacher for
Mealy machine T(AS(A°, P)).

The main technical result of this article is that the MM learner and the trans-
ducer together will succeed in learning p(AS(A?, P)), that is, the subautomaton
of A induced by the learning purpose P:

Theorem 6. The composition of MM learner and transducer behaves like a
learner for 1I/0 automata, that is, execution will terminate after a finite num-
ber of queries, and upon termination the transducer has learned an IA that is
bisimilar to p(AS(A°, P)).



Learning I/O Automata 83

6 Experiments

We have implemented and applied our approach to infer three types of 1/O
automata. In this section, we first describe our experimental setup, thereafter
its application to the three case studies[]

To serve as IOA teacher, we read in an I/O automaton specified in Aldebaran
format [3]. We connect the IOA teacher to a transducer equipped with an inter-
face automaton, which is also described in Aldebaran format. As MM learner in
our framework, we use the LearnLib library [22].

In our first (trivial) case study we learned the IOA shown in Figure[Il Because
the interaction with this automaton is not constrained, we used an interface au-
tomaton that accepts every input and output, see Figure Bl The inferred Mealy
machine model can be transformed to the IOA by transformations R and p.

A model of the electronic passport [I27] has been inferred in a second exper-
iment. We provided the IOA teacher with a model of the protocol taken from
Mostowski et al. [T9]. Analyzing the behavior of the automaton revealed that
almost always the passport reacts like a Mealy machine: 13 out of 14 inputs gen-
erate an output symbol before a new input symbol can be transferred. Following
this information, we defined an interface automaton in which inputs alternate
with outputs or quiescence, see Figure [f] (left). Because no output is generated
in response to a Reset input in the IOA, an output § occurs within the Mealy
machine that is learned. In fact, the inferred Mealy machine has one additional
state, which can only be reached by a A/§ transition. After applying trans-
formation R and p, we obtained the corresponding subautomaton of the IOA
that was given to the teacher. With respect to learning performance, we observe
that inferring an IOA requires more membership queries than learning the same
behavior as a Mealy machine having i/o instead of i/4+ and A/o transitions.
Inferring an IOA of the electronic passport required 44294 membership queries,
whereas learning the corresponding Mealy machine with i/o transitions merely
needed 1079 queries. The difference can be explained by the fact that 80,72%
of the membership queries asked to infer the passport IOA comprised unspec-
ified input sequences. Because of the Mealy machine behavior of the IOA, no
outputs are defined for most consecutive inputs. Moreover, membership queries
were asked for the additional state.

In a third case study we applied our approach to learn a model of the Session
Initiation Protocol (SIP) [25)24]. The teacher is supplied with an IOA based
on a Mealy machine generated using inference and abstraction techniques [IJ.
Analyzing the structure of the automaton showed that each input symbol is
followed by one or more outputs. Furthermore, in the initial state only certain
inputs are allowed. To concentrate the learning on this restricted behavior, we
used the interface automaton shown in Figure [f] (right). Again, by applying
transformation p and R, the inferred Mealy machine could be converted to the
corresponding subautomaton of the IOA given to the teacher.

1 All TOAs and interface automata used in the different case studies as well as the
corresponding learned Mealy machines can be found at the URL
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/LearningI0As/.


http://www.mbsd.cs.ru.nl/publications/papers/fvaan/LearningIOAs/

84 F. Aarts and F. Vaandrager

Fig. 6. IA in which each input is followed by at most one output (left) and IA in which
initially only certain inputs are allowed and two consecutive inputs are not allowed (right)

7 Conclusions and Future Work

We have presented an approach for active learning of deterministic and output
determined I/0 automata. By eliminating the restriction from Mealy machines
that inputs and outputs have to alternate, we have extended the class of models
that can be learned. Our approach has been implemented on top of the LearnLib
tool and has been applied successfully to three case studies. A new idea intro-
duced in this paper is to use interface automata to focus the learning process to
interesting/relevant parts of the behavior. Both in the passport and the SIP case
study, the use of interface automata greatly reduced the number of queries. The
efficiency of our learning approach can be improved by integrating this notion
of interface automata within LearnLib: in this way it will be possible to further
reduce the number of membership queries. Obvious topics for future research are
to extend our approach to automata with nondeterminism and silent transitions,
and to integrate our transducers with the ones used in [I] for data abstraction.

Acknowledgement. Many thanks to Bengt Jonsson, Bernhard Steffen, Jan
Tretmans and the anonymous referees for inspiring discussions and/or pointers
to the literature, and to Falk Howar for his generous LearnLib support.

References

1. Aarts, F.: Inference and Abstraction of Communication Protocols. Master thesis,
Radboud University Nijmegen and Uppsala University (November 2009)

2. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport (May 2010)

3. ALDEBARAN manual,
http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html

4. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement rela-
tions. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp.
163-178. Springer, Heidelberg (1998)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87-106 (1987)

6. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
correspondence between conformance testing and regular inference. In: Cerioli, M.
(ed.) FASE 2005. LNCS, vol. 3442, pp. 175-189. Springer, Heidelberg (2005)

7. BSI. Advanced security mechanisms for machine readable travel documents - ex-
tended access control (eac) - version 1.11. Technical Report TR-03110, German
Federal Office for Information Security (BSI), Bonn, Germany (2008)

8. de Alfaro, L., Henzinger, T.: Interface automata. In: ESEC/FSE 2001. Software
Engineering Notes, vol. 26, pp. 109-120. ACM Press, New York (2001)


http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Learning I/O Automata 85

. Henzinger, T.: Two challenges in embedded systems design: Predictability and

robustness. Philosophical Trans. of the Royal Society A 366, 3727-3736 (2008)
Higuera, C.d.: Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, Cambridge (2010)

Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
315-327. Springer, Heidelberg (2003)

ICAO. Doc 9303 - machine readable travel documents - part 1-2. Technical report,
International Civil Aviation Organization, 6th edn. (2006)

Jonsson, B.: Modular verification of asynchronous networks. In: PODC 1987, pp.
152-166 (1987)

Larsen, K., Nyman, U., Wasowski, A.: Modal i/o automata for interface and prod-
uct line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64-79.
Springer, Heidelberg (2007)

Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines
— a survey. Proceedings of the IEEE 84(8), 1090-1123 (1996)

Leucker, M.: Learning meets verification. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127-151. Springer,
Heidelberg (2007)

Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fran-
cisco (1996)

Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms.
In: PODC 1987, pp. 137-151 (1987)

Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-
based testing of electronic passports. In: FMICS 2009, pp. 207-209. Springer,
Heidelberg (2009)

Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-
versity of Dortmund (2003)

Panangaden, P., Stark, E.: Computations, residuals, and the power of indeter-
minancy. In: Lepistd, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp.
439-454. Springer, Heidelberg (1988)

Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and
experimentation. In: FMICS 2005, pp. 62-71. ACM Press, New York (2005)
Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrap-
olating behavioral models. STTT 11(5), 393-407 (2009)

Rosenberg, J., Schulzrinne, H.: Reliability of Provisional Responses in Session Ini-
tiation Protocol (SIP). RFC 3262 (Proposed Standard) (June 2002)

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol. RFC 3261 (Pro-
posed Standard). Updated by RFCs 3265, 3853, 4320, 4916, 5393 (June 2002)
Tretmans, J.: Test generation with inputs, outputs, and repetitive quiescence.
Software-Concepts and Tools 17, 103-120 (1996)

Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1-38.
Springer, Heidelberg (2008)

Veanes, M., Bjgrner, N.: Input-output model programs. In: Leucker, M., Morgan,
C. (eds.) Theoretical Aspects of Computing - ICTAC 2009. LNCS, vol. 5684, pp.
322-335. Springer, Heidelberg (2009)

Willemse, T.: Heuristics for ioco-based test-based modelling. In: Brim, L.,
Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006.
LNCS, vol. 4346, pp. 132-147. Springer, Heidelberg (2007)



Constrained Monotonic Abstraction: A CEGAR
for Parameterized Verification

Parosh Aziz Abdulla', Yu-Fang Chen?, Giorgio Delzanno®, Frédéric Haziza!,
Chih-Duo Hong?, and Ahmed Rezine!

! Uppsala University, Sweden
2 Academia Sinica, Taiwan
3 Universita di Genova, Italy

Abstract. In this paper, we develop a counterexample-guided abstrac-
tion refinement (CEGAR) framework for monotonic abstraction, an
approach that is particularly useful in automatic verification of safety prop-
erties for parameterized systems. The main drawback of verification using
monotonic abstraction is that it sometimes generates spurious counterex-
amples. Our CEGAR algorithm automatically extracts from each spuri-
ous counterexample a set of configurations called a “Safety Zone” and uses
it to refine the abstract transition system of the next iteration. We have
developed a prototype based on this idea; and our experimentation shows
that the approach allows to verify many of the examples that cannot be
handled by the original monotonic abstraction approach.

1 Introduction

We investigate the analysis of safety properties for parameterized systems. A
parameterized system consists of an arbitrary number of identical finite-state
processes running in parallel. The task is to verify correctness regardless of the
number of processes.

One of the most widely used frameworks for infinite-state verification uses
systems that are monotonic w.r.t. a well-quasi ordering < [2122]. This framework
provides a scheme for proving termination of backward reachability analyses,
which has already been used for the design of verification algorithms of various
infinite-state systems (e.g., Petri nets, lossy channel systems) [S120/2T]. The main
idea is the following. For a class of models, we find a preorder < on the set
of configurations that satisfies the following two conditions (1) the system is
monotonic w.r.t. < and (2) < is a well-quasi ordering (WQO for short). Then,
backward reachability analysis from an upward closed set (w.r.t. <) is guaranteed
to terminate, which implies that the reachability problem of an upward closed
set (w.r.t. <) is decidable.

However, there are several classes of systems that do not fit into this frame-
work, since it is hard to find a preorder that meets the aforementioned two
conditions at the same time. An alternative solution is to first find a WQO = on
the set of configurations and then apply monotonic abstraction [6/47] in order to
force monotonicity. Given a preorder < on configurations, monotonic abstraction

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 864101}, 2010.
© Springer-Verlag Berlin Heidelberg 2010



Constrained Monotonic Abstraction 87

defines an abstract transition system for the considered model that is monotonic
w.r.t. <. More precisely, it considers a transition from a configuration c¢; to a
configuration ¢z to be possible if there exists some smaller configuration ¢} < ¢;
that has a transition to cy. The resulting abstract transition system is clearly
monotonic w.r.t =< and is an over-approximation of the considered model. More-
over, as mentioned, if < is a WQO, the termination of backward reachability
analysis is guaranteed in the abstract transition system.

Monotonic abstraction has shown to be useful in the verification of heap ma-
nipulating programs [I] and parameterized systems such as mutual ezclusion and
cache coherence protocols [4J6]. In most of the benchmark examples for these
classes, monotonic abstraction can generate abstract transition systems that are
safe w.r.t to the desired properties (e.g. mutual exclusion). The reason is that, for
these cases, we need only to keep track of simple constraints on individual vari-
ables in order to successfully carry out verification. However, there are several
classes of protocols where we need more complicated invariants in order to avoid
generating spurious counterexamples. Examples include cases where processes
synchronize via shared counters (e.g. readers and writers protocol) or reference
counting schemes used to handle a common set of resources (e.g. virtual memory
management). For these cases, monotonic abstraction often produces spurious
counterexamples, since it is not sufficiently precise to preserve the needed invari-
ants. Therefore, we introduce in this paper a counterezample-guided abstraction
refinement (CEGAR) approach to automatically and iteratively refine the ab-
stract transition system and remove spurious counterexamples.

The idea of the CEGAR algorithm is as follows. It begins with an initial
preorder =, which is the one used in previous works on monotonic abstrac-
tion [6]. In the i-th iteration, it tries to verify the given model using monotonic
abstraction w.r.t. the preorder <;_;. Once a counterexample is found in the ab-
stract transition system, the algorithm simulates it on the concrete transition
system. In case the counterexample is spurious, the algorithm extracts from it a
set S of configurations called a “Safety Zone”. The computation of the “Safety
Zone”is done using interpolation [28/26]. The set S (“Safety Zone”) is then
used to strengthen the preorder that will be used in the next iteration. Mono-
tonic abstraction produces a more accurate abstract transition system with the
strengthened preorder. More precisely, in the (i + 1)-th iteration, the algorithm
works on an abstract transition system induced by monotonic abstraction and a
preorder <;:= {(¢,¢')| ¢ %=1 ¢ and ¢/ € S = ¢ € S}. Intuitively, the strength-
ened preorder forbids configurations inside a “Safety Zone”to use a transition
from some smaller configuration (w.r.t <;_;) outside the “Safety Zone”.

The strengthening of the preorder has an important property: It preserves
WQO. That is, if <;_1 is a WQO, then =; is also a WQO, for all i > 0. There-
fore, the framework of monotonic systems w.r.t. a WQO can be applied to each
abstract transition system produced by monotonic abstraction and hence ter-
mination is guaranteed for each iteration. Based on the method, we have im-
plemented a prototype, and successfully used it to automatically verify several
non-trivial examples, such as protocols synchronizing by shared counters and



88 P.A. Abdulla et al.

reference counting schemes, that cannot be handled by the original monotonic
abstraction approach.

Outline. We define parameterized systems and their semantics in Section Pl In
Section [3 we first introduce monotonic abstraction and then give an overview
of the CEGAR algorithm. In Section Fl we describe the details of the CEGAR
algorithm. We introduce a symbolic representation of infinite sets of configura-
tions called constraint. In Section [, we show that all the constraint operations
used in our algorithm are computable. In Section [6 we show that the termina-
tion of backward reachability checking is guaranteed in our CEGAR algorithm.
Section [1] describes some extension of our model for parameterized system. In
Section [§ we describe our experimentation. Finally, in Section [@ we conclude
with a discussion of related tools and future works.

2 Preliminaries

In this section, we define a model for parameterized systems. We use B to denote
the set {true, false} of Boolean values, N to denote the set of natural numbers,
and Z to denote the set of integers. Let P be a set and < be a binary relation
on P. The relation =< is a preorder on P if it is reflexive and transitive. Let
@ C P, we define a strengthening of < by @, written <g, to be the binary
relation =g ={(c,d)| ¢ < and ¢ € Q = c € Q}. Observe that < is also a
preorder on P.

Let Xn be a set of numerical variables ranging over N. We use N (Xy) to
denote the set of formulae which have the members of {x —yoc,zoc| z,y €
Xn,c € Z,o € {>,=,<}} as atomic formulae, and which are closed under the
Boolean connectives -, A, V. Let Xp be a finite set of Boolean variables. We use
B(Xg) to denote the set of formulae which have the members of Xp as atomic
formulae, and which are closed under the Boolean connectives -, A, V. Let X’
be the set of primed variables {z’ | x € X}, which refers to the “next state”
values of X.

2.1 Parameterized System

Here we describe our model of parameterized systems. A simple running example
of a parameterized system is given in Fig.[Il More involved examples can be found
in the tech. report [3]. The example in Fig. [Ilis a readers and writers protocol
that uses two shared variables; A numerical variable cnt (the read counter) is
used to keep track of the number of processes in the “read” state and a Boolean
variable lock is used as a semaphore. The semaphore is released when the writer
finished writing or all readers finished reading (cnt decreased to 0).

A parameterized system consists of an unbounded but finite number of identi-
cal processes running in parallel and operating on a finite set of shared Boolean
and numerical variables. At each step, one process changes its local state and
checks/updates the values of shared variables. Formally, a parameterized sys-
tem is a triple P = (@, T, X ), where @ is the set of local states, T is the set of



Constrained Monotonic Abstraction 89

transition rules, and X is a set of shared variables. The set of shared variables
X can be partitioned to the set of variables X ranging over N and Xp rang-
ing over B.

A transition rule ¢ € T is of the form [q — T stmt], where ¢, € @ and
stmt is a statement of the form ¢y A ¢, where ¢ € N(Xy U X)) and ¢p €
B(XpUX%5). The formula ¢ controls variables ranging over N and ¢p controls
Boolean variables. Taking the rule r; in Fig. Il as an example, the statement
says that: if the values of shared variables cnt = 0 and lock = true, then we are
allowed to increase the value of cnt by 1, negate the value of lock, and change
the local state of a process from ¢ to r.

shared lock: Boolean, cnt: nat

ri: [t—>7":cntzO/\cnt':cnt—|—1/\lock/\ﬁlock’]
ro: [t—>r:cnt>:1/\cnt':cnt+1]
ra: [r—>t:cnt>:1Acnt':cnt—1]
ra: [r—>t:cnt:1/\cnt':cnt—l/\—'lock/\lock’]
w1 [t — w : lock N\ ﬁlock’]
wa: [

Initial: ¢, lock

Fig.1. Readers and writers protocol. Here ¢,r,w are “think”, “read”, and “write”
states, respectively.

2.2 Transition System

A parameterized system P = (Q, T, X) induces an infinite-state transition sys-
tem (C, —) where C is the set of configurations and — is the set of transitions.

A configuration ¢ € C is a function @ U X — N UB such that (1) ¢(q) € N
gives the number of processes in state g if ¢ € @, (2) ¢(z) € Nif x € X and
(3) c(z) € Bif x € Xp. We use [x]',252,...,20",b1,ba,...,by] to denote a
configuration ¢ such that (1) ¢(z;) = v for 1 <4 < n and (2) ¢(b) = true iff
be {bl,bg, .. .,bm}.

The set of transitions is defined by —:= J,cpr — Let ¢, € C be two
configurations and ¢ = [q — T stmt] be a transition rule. We have (¢, ¢’) €
(written as ¢ —— ¢) if (1) ¢(¢) = ¢(¢)—1, (2) ¢(r) = ¢(r)+1, and (3) substitut-
ing each variable x in stmt with ¢(x) and its primed version &’ in stmt with ¢/(x)
produces a formula that is valid. For example, we have [ro, w?, 3, ent?, lock] AN

[Tl, w?, 2, cntl] in the protocol model of Fig. [l We use —— to denote the tran-
sitive closure of — .

3 Monotonic Abstraction and CEGAR

We are interested in reachability problems, i.e., given sets of initial and bad con-
figurations, can we reach any bad configuration from some initial configuration
in the transition system induced by a given parameterized system.



90 P.A. Abdulla et al.

We first recall the method of monotonic abstraction for the verification of param-
eterized systems and then describe an iterative and automatic CEGAR approach.
The approach allows to produce more and more precise over-approximations of
a given transition system from iteration to iteration. We assume a transition
system (C, —) induced by some parameterized system.

3.1 Monotonic Abstraction

Given an ordering < defined on C, monotonic abstraction produces an abstract
transition system (C,~) that is an over-approximation of (C, —) and that is
monotonic w.r.t. <.

Definition 1 (Monotonicity). A transition system (C,~+) is monotonic (w.r.t.
<) if for each c1,ca,c3 € C, c1 Jea Ay g = ey 03 D eg Aeg b ey

The idea of monotonic abstraction is the following. A configuration c is allowed
to use the outgoing transitions of any smaller configuration ¢ (w.r.t <). The
resulting system is then trivially monotonic and is an over-approximation of
the original transition system. Formally, the abstract transition system (C,~»)
is defined as follows. The set of configurations C' is identical to the one of the
concrete transition system. The set of abstract transitions is defined by ~»:=
User L, where (c1,¢3) el (written as ¢q L cg) iff Jea < eq. o s ey Tt is
clear that ~>D— for all t € T, i.e., (C,~) over-approximates (C, —).

In our previous works [4J6], we defined < to be a particular ordering <C C'xC
such that ¢ < ¢ iff (1) Vg € Q.c(q) < (q), (2) Vn € Xn. ¢(n) < (n), and (3)
Vb € Xpg. ¢(b) = ¢/(b). Such an ordering has shown to be very useful in shape
analysis [I] and in the verification of safety properties of mutual exclusion and
cache coherence protocols [4J6]. In the CEGAR algorithm, we use < as the initial
preorder.

3.2 Refinement of the Abstraction

Figure[2 gives an overview of the counterexample-guided abstraction refinement
(CEGAR) algorithm. The algorithm works fully automatically and iteratively.

(07 _>) ) jO
Reachability Checker “Safe”
(Algorithm [T])
Strengthened
Ordering <; “No”, Trace
“Real Error”
Counterexample Analyzer Trace
“Spurious Error” (Algorithm [2])

Fig. 2. An overview of the CEGAR algorithm (Algorithm [3])



Constrained Monotonic Abstraction 91

In the beginning, a transition system (C, —) and an initial preorder <o (which
equals the preorder < defined in the previous subsection) are given. The CEGAR,
algorithm (Algorithm B]) consists of two main modules, the reachability checker
(Algorithm [[) and the counterezample analyzer (Algorithm [2). In the i-th iter-
ation of the CEGAR algorithm, the reachability checker tests if bad configura-
tions are reachable in the abstract transition system obtained from monotonic
abstraction with the preorder <;_;. In case bad configurations are reachable,
a counterezample is sent to the counterezample analyzer, which reports either
“Real Error” or “Spurious Error”. The latter comes with a strengthened order
=; (i.e., 2;C=i_1). The strengthened order =; will then be used in the (i + 1)-
th iteration of the CEGAR loop. Below we describe informally how =<;_; is
strengthened to =<;. The formal details are given in Section [l

Strengthening the Preorder. As an example, we demonstrate using the
protocol of Fig. [[l how to obtain <; from =y. The set of bad configurations
Bad = {c | ¢(r) > 1 A c(w) > 1} contains all configurations with at least one
process in the “write” state and one process in the “read” state. The set of ini-
tial configurations Init = {c | c(w) = ¢(r) = c(ent) = 0 A c¢(lock)} contains all
configurations where all processes are in the “think” state, the value of the “cnt”
equals 0, and the “lock” is available.

By Bs

—c(lock)
c(ent)>1
c(t)>1
c(r)>1

B2 Bl

—c(lock)
c(ent)>1
c(r)>2

c(lock)
c(r)>1
c(t)>1

c(lock)
c(t)>2

Fig. 3. The counterexample produced by backward reachability analysis on the readers
and writers protocol. Notice that in the counterexample, Init N By # 0.

In iteration 1 of the CEGAR algorithm, the reachability checker produces a
counterexample (described in Fig.[B]) and sends it to the counterexample analyzer.
More precisely, the reachability checker starts from the set Bad and finds the
set Bj contains all configurations that have (abstract) transitions ~3 to the set
Bad. That is, each configuration in B, either has a concrete transition —- to
Bad or has some smaller configuration (w.r.t <o) with a concrete transition —-
to Bad. It then continues the search from B; and finds the set By that have
(abstract) transitions in ~3 to B;. The sets Bz and By can be found in a similar
way. It stops when By is found, since By N Init # ().

The counterexample analyzer simulates the received counterexample in the
concrete transition system. We illustrate this scenario in Fig. @l It starts from the
set of configuration Fy = InitN B and checks if any bad configurations can be

. oy ™1 ) T4 w1 . .
reached following a sequence of transitions —;——;——;—. Starting from Fy, it

! The set of initial configurations that can reach bad configurations follows the se-
L T T2 T4 W1 . oy
quence of transitions ~»;~3:~%:~> in the abstract transition system



92 P.A. Abdulla et al.

B3 B B
InitNBy Bad
MRIOIBLE
N

Fig. 4. Simulating the counterexample on the concrete system. Here F4 = Init N By =
{c]c(t) > 2Nc(w) = c(r) = clent) = 0A c(lock)}, Fz = {c | c(t) > 1 A c(w) =
0Ac(r) = c(ent) = 1A —c(lock)}, Fo = {c | c(ent) = ¢(r) = 2 A c(w) = 0 A —e(lock)},
and Fy = {c | c(ent) = 1 Ac(r) > 1 A —c(lock)}

finds the set F3 which is a subset of B3 and which can be reached from Fy via the
transition —%. It continues from Fs and then finds the set F} in a similar manner
via the transition —. However, there exists no transition — starting from any
configuration in Fy = {c | ¢(ent) = ¢(r) = 2 A e(w) = 0 A ~c(lock)}. Hence the
simulation stops here and concludes that the counterexample is spurious.

In the abstract transition system, all configurations in F5 are able to reach By
via transition ~> and from which they can reach Bad via transition ~+. Notice
that there exists no concrete transition —- from Fj to Bi, but the abstract
transition ~3 from F to By does exist. The reason is that all configurations in
F, have some smaller configuration (w.r.t. <¢) with a transition 4, to By. Let
F} be the set of configurations that indeed have some transition — to Bj. It is
clear that F» and Fj are disjoint.

Therefore, we can remove the spurious counterexample by preventing config-
urations in Fy from falling to some configuration in F, (thus also preventing
them from reaching Bj). This can be achieved by first defining a set of configu-
rations S called a “Safety Zone”with F» C S and Fj NS = () and then use it to
strengthen the preorder =g, i.e., let <1:= {(¢,¢')| ¢ 29 and ¢ € S = c € S}.
In Section M we will explain how to use interpolation techniques [2826] in order
to automatically obtain a “Safety Zone” from a counterexample.

4 The Algorithm

In this section, we describe our CEGAR algorithm for monotonic abstraction.
First, we define some concepts that will be used in the algorithm. Then, we ex-
plain the two main modules, reachability checker and counterexample analyzer.
The reachability checker (Algorithm [I]) is the backward reachability analysis
algorithm on monotonic systems [2], which is possible to apply since the ab-
straction induces a monotonic transition system. The counterexample analyzer
(Algorithm ) checks a counterexample and extracts a “Safety Zone”from the
counterexample if it is spurious. The CEGAR algorithm (Algorithm []) is ob-
tained by composing the above two algorithms. In the rest of the section, we
assume a parameterized system P = (Q, T, X) that induces a transition system
(C,—).



Constrained Monotonic Abstraction 93

4.1 Definitions

A substitution is a set {x1 < e1,x2 < ea,..., T, «— ey} of pairs, where z; is a
variable and e; is a variable or a value of the same type as z; for all 1 < i < n.
We assume that all variables are distinct, i.e., z; # z; if i # j. For a formula
6 and a substitution S, we use 0[S] to denote the formula obtained from 6 by
simultaneously replacing all free occurrences of x; by e; for all z; «+ e; € S. For
example, if § = (21 > x3) A (22 + 23 < 10), then 0[z1 — y1, 22 «— 3,23 «— y2] =
(y1 > y2) A (34 y2 < 10).

Below we define the concept of a constraint, a symbolic representation of
configurations which we used in our algorithm. In this section, we define a num-
ber of operations on constraints. In Section [5 we show how to compute those
operations.

We use Q7 to denote the set {¢* | ¢ € Q} of variables ranging over N in which
each variable ¢# is used to denote the number of processes in the state g. Define
the set of formulae @ := {¢n A ¢p | on € N(Q¥ U Xn), 5 € B(Xp)} such
that each formula in @ is a constraint that characterizes a potentially infinite
set of configurations. Let ¢ be a constraint and ¢ be a configuration. We write
¢k if 6l{g* — c(q) | ¢ € QNl{w — c(@) | & € Xn}[{b — c(®) | b € Xp)]
is a valid formula. We define the set of configurations characterized by ¢ as
[¢] :={c|ce CAcE ¢}. We define an entailment relation C on constraints,
where ¢1 C @9 iff [¢1] C [p2]. We assume that the set of initial configurations
Init and bad configurations Bad can be characterized by constraints ¢;,;; and
P Bad, Tespectively.

For a constraint ¢, the function Pre;(¢) returns a constraint characterizing the
set {c| 3¢ € [¢]Ac - ¢}, i.e., the set of configurations from which we can reach
a configuration in [¢] via transitions in —; and Post,(¢) returns a constraint
characterizing the set {c | 3¢’ € [¢] A ¢/ -5 ¢}, i.e., the set of configurations
that can be reached from some configuration in [¢] via transitions in ——. For a
constraint ¢ and a preorder =< on the set of configurations, the function Up~(¢)
returns a constraint such that [Up<(¢)] = {¢' | 3¢ € [¢] Ac = ¢}, ie., the
upward closure of [¢] w.r.t. the ordering <. A trace (from ¢; to ¢,+1) in the
abstract transition system induced by monotonic abstraction and the preorder
= is a sequence ¢1;t1;...; Gn;itn; Pni1, where ¢; = Up(Preq, (¢ip1)) and t; € T
for all 1 <4 < n. A counterezample (w.r.t. <) is a trace ¢1;t1;...; Onitn; i1
with [¢1] N [@rmit] # 0 and édnt+1 = dBad-

We use Var(¢) to denote the set of variables that appear in the constraint
¢. Given two constraints ¢4 and ¢p such that ¢4 A ¢p is unsatisfiable. An
interpolant ¢ of (¢, dp) (denoted as ITP(¢4, pp)) is a formula that satisfies (1)
P4 = ¢, (2) pA¢p is unsatisfiable, and (3) Var(¢) C Var(¢pa)NVar(¢p). Such
an interpolant can be automatically found, e.g., using off-the-shelf interpolant
solvers such as FOCI [28] and CLP-prover [29]. In particular, since ¢4, ¢p € &, if
we use the “split solver” algorithm equipped with theory of difference bound [26]
to compute an interpolant, the result will always be a formula in @ (i.e., a
constraint).



94 P.A. Abdulla et al.

4.2 The Reachability Checker

Algorithm 1. The reachability checker

input : A preorder =< over configurations, constraints ¢t and ¢paq
output: “Safe” or “No” with a counterexample ¢1;t1;...;Pn;tn; Bad
Next := {(¢Bad, PBad)}, Processed := {};
while Next is not empty do
Pick and remove a pair (¢cur, Trace) from Next and add it to Processed;
if [¢cur A dmit] # 0 then return “No”, Trace;
foreach t € T do
brre = Up_(Pres(dcur);
old = 3(¢,e) € Next U Processed.¢p C ¢ pye;
if —old then Add (@pre, pre;t; Trace) to Next;
return “Safe”;

© 00N O A W N

Let < be a preorder on C and (C,~) be the abstract transition system in-
duced by the parameterized system P and the preorder <. Algorithm [ checks if
the set [@rmit] is backward reachable from [¢p.4] in the abstract transition sys-
tem (C,~). It answers “Safe” if none of the initial configurations are backward
reachable. Otherwise, it answers “No”. In the latter case, it returns a counterez-
ample ¢1;t1;...; Onitn; PBad- The algorithm uses a set Next to store constraints
characterizing the sets of configurations from which it will continue the back-
ward search. Each element in Next is a pair (¢, Trace), where ¢ is a constraint
characterizing a set of backward reachable configurations (in the abstract transi-
tion system) and Trace is a trace from ¢ to ¢pqq. Initially, the algorithm puts in
Next the constraint ¢ p.q, which describes the bad configurations, together with
a trace contains a singleton element namely ¢pqq itself (Line 1). In each loop
iteration (excepts the last one), it picks a constraint ¢ oy, (together with a trace
t0 ¢ Baa) from Next (Line 3). For each transition rule ¢ € T', the algorithm finds a
constraint ¢ p,. characterizing the set of configurations backward reachable from
[¢cur] via & (Line 6). If there exists no constraint in Next that is larger than
Opre (W.rt. C), ¢pre (together with a trace to ¢pp.q) is added to Next (Line 7).

4.3 The Counterexample Analyzer

Given a counterexample ¢1;t1;...; On;tn; dni1, Algorithm ] checks whether it
is spurious or not. If spurious, it returns a constraint ¢g that describes a “Safety
Zone”that will be used to strengthen the preorder.

As we explained in Section Bl we simulate the counterexample forwardly (Line
1-6). The algorithm begins with the constraint ¢; A ¢ni¢. If the counterexample
is spurious, we will find a constraint ¢ in the i-th loop iteration for some i :
1 < i < n such that none of the configurations in [¢] has transition L to
[¢i+1] (Line 3). For this case, it computes the constraint ¢’ characterizing the

set of configurations with transitions L to [¢i+1] (Line 4) and then computes
a constraint characterizing a “Safety Zone”.



Constrained Monotonic Abstraction 95

Algorithm 2. The counterexample analyzer.

input : A counterexample ¢1;t1;...; On;tn; Ont1
output: “Real Error” or “Spurious Error” with a constraint ¢g
¢ = b1 N\ Prnit;

for i =1 ton do
if [Post¢, (¢)] = 0 then
¢’ = Pre, (¢it1);
return “Spurious Error”, ITP(¢,¢');
¢ = Postr, (¢) A ¢it1;
return “Real Error”;

N O Ok W N

As we explained in Section Bl a “Safety Zone”is a set S of configurations
that satisfies (1) [¢] C S and (2) SN [¢'] = 0. Therefore, the constraint ¢g
characterizing the “Safety Zone”should satisfy (1) ¢ = ¢s and (2) ¢g A
¢’ is not satisfiable. The interpolant of (¢, ¢') is a natural choice of ¢g that
satisfies the aforesaid two conditions. Hence, in this case the algorithm returns
ITP(¢,¢") (Line 5). If the above case does not happen, the algorithm computes
a constraint characterizing the next set of forward reachable configurations in
the counterexample (Line 6) and proceeds to the next loop iteration. It returns
“Real Error” (Line 7) if the above case does not happen during the forward
simulation.

4.4 The CEGAR Algorithm of Monotonic Abstraction

Algorithm 3. A CEGAR algorithm for monotonic abstraction

input : An initial preorder <o over configurations, constraints ¢mi: and ¢paq
output: “Safe” or “Real Error” with a counterexample ¢1;t1;...;¢0n;tn; PBad
1 = 0;
while true do
result = ReachabilityChecker(=;, ¢ rmit, PBad);
if result=“No”, Trace then
type = CounterexampleAnalyzer(Trace);
if type= “Spurious Error”, ¢s then i =i+ 1, <;:= Str(=Xi-1, ¢s);
else return “Real Error”, Trace
else return “Safe”

® N0 oA W N

In Algorithm Bl we describe the CEGAR approach for monotonic abstraction
with the initial preorder <y. As described in Section Bl the algorithm works
iteratively. In the ¢-th iteration, in Line 3, we invoke the reachability checker
(Algorithm[T]) using a preorder <;_1. When a counterexample is found, the coun-
terexample analyzer (Algorithm [2)) is invoked to figure out if the counterexample
is real (Line 8) or spurious. In the latter case, the counterezample analyzer gen-
erates a constraint characterizing a “Safety Zone”and from which Algorithm [3]
computes a strengthened preorder <; (Line 6 and 7). The function Str(=<;_1, ¢s)
in Line 8 strengthens the preorder <;_; by the set of configurations [¢s].



96 P.A. Abdulla et al.

5 Constraint Operations

In this section we explain how to compute all the constraint operations used in
the algorithms in Section @ Recall that ¢ denotes the set of formulae {¢n A o5 |
on € N(Q7 U Xn),¢5 € B(Xp)}, where each formula in @ is a constraint
representing a set of configurations. We define ¥ := {¢n A ¢p | dn € N(Q# U
Q"' UXnN UXY), o € B(XpUXY)}, where each formula in ¥ defines a relation
between sets of configurations. Observe that formulae in ¢ and in ¥ are closed
under the Boolean connectives and substitution.

Lemma 1. [19] Both ® and ¥ are closed under projection (existential quantifi-
cation) and the projection functions are computable.

Lemma 2. [T9] The satisfiability problem of formulae in & and ¥ is decidable.

Below we explain how to preform the constraint operations used in the algo-
rithms in Section [l For notational simplicity, we define V := Q#UXnNUXp and
V=Q#* U Xy UXp. Let ¢ be a formula in @ (respectively, ¥) and X a set of
variables in V (respectively, VU V'), we use 3X. ¢ to denote some formula ¢’ in
& (respectively, ¥) obtained by the quantifier elimination algorithm (Lemma [I]).

Pre and Post. The transition relation —— for ¢t = [q -7 stmt] € T can be
described by the formula 6 := stmt A q#/ =g#¥ — 1A r# =% 4 1, which is
in ¥. For a constraint ¢, Pre;(¢) = IV'. (' A ¢p[{z «— 2’ | x € V}]) € & and
Post:(¢) = (3V. (0* A p))[{z’ < z | € V}] € ®. Both functions are computable.

Entailment. Given two constraints ¢; and ¢2, we have ¢1 T ¢o iff ¢1 A —¢po is
unsatisfiable, which can be automatically checked. In practice, constraints can
be easily translated into disjunctions of difference bound matrices (DBM) and
hence a sufficient condition for entailment can be checked by standard DBM
operations [19].

Intersection with Initial States. Let ¢,;; be a constraint characterizing the
initial configurations and ¢p be a constraint characterizing a set of configura-
tions. We have [¢ ] N [¢5] # 0 iff ¢ A ¢ is satisfiable.

Strengthening. Here we explain how to strengthen an ordering < w.r.t a con-
straint ¢g € @, providing that < is expressed as a formula ¢< € ¥. The strength-
ened order can be expressed as the formula ¢<g := ¢ A (psVps{x — 2’ |z €
V}]). Intuitively, for two configurations ¢; and cg, the formula says that ¢; <g c2
iff ¢; < ¢o and either ¢ is in the “Safety Zone” or co is not in the “Safety Zone”.

Remark 1. The initial preorder =<y of our algorithm can be expressed as the
formula A, couixy. sreqriux) - TS ' A Npexy, yexy - (bADY)V (=bA D),
which is in ¥. The constraint extracted from each spurious counterexample is in
& if the algorithm in [26] is used to compute the interpolant. Since the initial
preorder is a formula in ¥ and the constraint used for strengthening is in @, the
formula for the strengthened order is always in ¥ and computable.



Constrained Monotonic Abstraction 97

Upward Closure. We assume that the ordering < is expressed as a formula
¢< € ¥ and the constraint ¢ € @. The upward closure of ¢ w.r.t. < can be
captured as Up<(¢) := (3V. (¢ A ¢<))[{z’ < z | x € V}], which is in &.

6 Termination

In this section, we show that each loop iteration of our CEGAR algorithm ter-
minates. We can show by Dickson’s lemma [I8] that the initial preorder < is a
WQO. An ordering over configurations is a WQO iff for any infinite sequence
Co, C1,Ca, ... of configurations, there are ¢ and j such that ¢ < j and ¢; = ¢;.
Moreover, we can show that the strengthening of a preorder also preserves WQO.

Lemma 3. Let S be a set of configurations. If < is a WQO over configurations
then =g is also a WQO over configurations.

If a transition system is monotonic w.r.t. a WQO over configurations, back-
ward reachability analysis, which is essentially a fix-point calculation, termi-
nates within a finite number of iterations [2]. The abstract transition system
is monotonic. In Section Bl we show that all the constraint operations used in
the algorithms are computable. Therefore, in each iteration of the CEGAR algo-
rithm, the termination of the reachability checker (Algorithm [I]) is guaranteed.
Since the length of a counterexample is finite, the termination of the counterez-
ample analyzer (Algorithm P) is also guaranteed. Hence, we have the following
lemma.

Lemma 4. Fach loop iteration of the CEGAR algorithm (Algorithm[3) is guar-
anteed to terminate.

7 Extension

The model described in Section [ can be extended to allow some additional
features. For example, (1) dynamic creation of processes [- — q:stmt], (2)
dynamic deletion of processes [q — stmt], and (3) synchronous movement
[ql, Q2y oy Qn = T1,T9, e, Tyt stmt]. Moreover, the language of the statement
can be extended to any formula in Presburger arithmetic. For all of the new fea-
tures, we can use the same constraint operations as in Section Bt the extended
transition rule still can be described using a formula in ¥, Presburger arithmetic
is closed under Boolean connectives, substitution, and projection and all the
mentioned operations are computable.

8 Case Studies and Experimental Results

We have implemented a prototype and tested it on several case studies of clas-
sical synchronization schemes and reference counting schemes, which includes



98 P.A. Abdulla et al.

Table 1. Summary of experiments of case studies. Interpolant denotes the kind of in-
terpolant prover we use, where DBM denotes the difference bound matrix based solver,
and CLP denotes the CLP-prover. Pass indicates whether the refinement procedure
can terminate with a specific interpolant prover. Time is the execution time of the pro-
gram, measured by the bash time command. #ref is the number of refinements needed
to verify the property. #cons is the total number of constraints generated by the reach-
ability checker. For each model, we use #t, #I, #s to denote the number of transitions,
the number of local variables, and the number of shared variables, respectively. All case
studies are described in details in tech. report [3].

model interpolant pass time #ref #cons #t #1 #s
readers/writers DBM v 0.04sec 1 90 6 5 2
CLP v/ 0.08sec 1 90
refined readers/writers DBM v 39sec 2 3037 8 5 3
priority to readers CLP X - - -
refined readers/writers DBM v/ 35sec 1 2996 2 7 5
priority to writers CLP v 68sec 4 39191
sleeping DBM v 39sec 1 1518 10 15 1
barbers CLP v 4lsec 1 1518
pmap reference DBM v 0lsec 1 249 25 4 7
counting CLP v 0lsec 1 249
reference DBM v 0.02sec 1 19 74 1
counting gc CLP v 0.05sec 1 19
missionary & DBM X - - - 771
cannibals CLP v 0lsec 3 86
swimming DBM v 02sec 2 59 6 0 10
pool v2 CLP v 02sec 2 55

readers/writers protocol, sleeping barbers problem, the missionaries/cannibals
problem [IT], the swimming pool protocol [1123], and virtual memory manage-
ment. These case studies make use of shared counters (in some cases protected
by semaphores) to keep track of the number of current references to a given re-
source. Monotonic abstraction returns spurious counterexamples for all the case
studies. In our experiments, we use two interpolating procedures to refine the
abstraction. One is a homemade interpolant solver based on difference bound ma-
trices [26]; the other one is the CLP-prover [29], an interpolant solvers based on
constraint logic programming. The results, obtained on an Intel Xeon 2.66GHz
processor with 8GB memory, are listed in Table [l It shows that our CEGAR
method efficiently verifies many examples in a completely automatic manner.
We compare our approach with three related tools: the ALV tool [14], the
Interproc Analyzer [24], and FASTer [II] based on several examples (and their
variants) from our case studies. The results are summarized in Table 2l Note
that these tools either perform an exact forward analysis where the invariant
is exactly represented (FASTer), or try to capture all possible invariants of a
certain form (ALV and Interproc Analyzer). In these two approaches, the ver-
ification of the property is deduced from the sometimes expensively generated
invariants. The main difference between our approach and the other ones is that



Constrained Monotonic Abstraction 99

Table 2. Summary of tool comparisons. For cma, we selected the best results among
the ones obtained from DBM and CLP. For FASTer, we tested our examples with
library MoONA and the backward search strategy. For the other tools, we just used
the default settings. In our experiment, ALV outputted “unable to verify” for the
missionaries/cannibals model and failed to verify the other test cases after one day of
execution. FASTer failed to verify four of the six test cases within a memory limit of
8GB. Interproc Analyzer gave false positives for examples other than the swimming
pool protocol and the missionaries/cannibals model. That is, it proved reachability for
models where the bad states were not reachable.

Model Tool Pass Result Model Tool Pass Result
swimming cma Vv 0.2 sec pmap cma Vv 0.1 sec
FASTer X oom FASTer 4/ 85 sec
pool Interproc  +/ 2.7 sec referellice Interproc X false positive
protocol v2 ALV X timeout counting ALV X timeout
Model Tool Pass Result Model Tool Pass Result
missionary . C™ V4 0.1 sec readers cma Vv 3.9 sec
FASTer X oom . FASTer / 3 min 44 sec
& writers ..
cannibals Interproc +/ 2 sec pri. readers Interproc X false positive
ALV X cannot verify ALV X timeout
Model Tool Pass Result Model Tool Pass Result
. cma V4 0.2 sec readers cma Vv 0.5 sec
mlssznary FASTer X oom writers FASTer X oom
cannibals v2 Interproc X false positive pri. readers Interproc X false positive
ALV X timeout v2 ALV X timeout

we concentrate on minimal constraints to track the violation of the property at
hand. Using upward closed sets as a symbolic representation efficiently exploits
the monotonicity of the abstract system where the analysis is exact yet efficient.

9 Related and Future Work

We have presented a method for refining monotonic abstraction in the context
of verification of safety properties for parameterized systems. We have imple-
mented a prototype based on the method and used it to automatically ver-
ify parameterized versions of synchronization and reference counting schemes.
Our method adopts an iterative counter-example guided abstraction refinement
(CEGAR) scheme. Abstraction refinement algorithms for forward /backward anal-
ysis of well-structured models have been proposed in [25/16]. Our CEGAR scheme
is designed instead for undecidable classes of models. Other tools dealing with the
verification of similar parameterized systems can be divided into two categories:
exact and approximate. In Section[8] we compare our method to a representative
from each category. The results confirm the following. Exact techniques, such as
FASTer [I1], restrict their computations to under-approximations of the set of
reachable states. They rely on computing the exact effect of particular categories
of loops, like non-nested loops for instance, and may not terminate in general.
On the contrary, our method is guaranteed to terminate at each iteration.On the



100 P.A. Abdulla et al.

other hand, approximate techniques like ALV and the Interproc Analyzer [14124],
rely on widening operators in order to ensure termination. Typically, such opera-
tors correspond to extrapolations that come with a loss of precision. It is unclear
how to refine the obtained over-approximations when false positives appear in
parameterized systems like those we study.

Also, the refinement method proposed in the present paper allows us to au-
tomatically verify new case studies (e.g. reference counting schemes) that can-
not be handled by regular model checking [27IT7/9/T2I30/13], monotonic abstrac-
tions [6J4U7] (they give false positives), environment abstraction [15], and invisi-
ble invariants [I0]. It is important to remark that a distinguished feature of our
method with respect to methods like invisible invariants and environment ab-
straction is that we operate on abstract models that are still infinite-state thus
trying to reduce the loss of precision in the approximation required to verify a
property.

We currently work on extensions of our CEGAR scheme to systems in which
processes are linearly ordered. Concerning this point, in [5] we have applied a
manually supplied strengthening of the subword ordering to automatically verify
a formulation of Szymanski’s algorithm (defined for ordered processes) with non-
atomic updates.

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziz, F., Rezine, A.: Monotonic ab-
straction for programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 341-354. Springer, Heidelberg (2008)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS 1996, pp. 313-321 (1996)

3. Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.:
Constrained monotonic abstraction: a cegar for parameterized verification. Tech.
report 2010-015, Uppsala University, Sweden (2010)

4. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145-157. Springer, Heidelberg (2007)

5. Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated context-sensitive analysis
for parameterized verification. In: FMOODS 2009/FORTE 2009, pp. 41-56 (2009)

6. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721-736. Springer,
Heidelberg (2007)

7. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling parameterized
systems with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck,
L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 22-36. Springer, Heidelberg (2008)

8. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Info. Com-
put. 127(2), 91-101 (1996)

9. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and efficient. In: Brim, L., Jancar, P., Kfetinsky, M., Kucera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 116-130. Springer, Heidelberg (2002)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Constrained Monotonic Abstraction 101

Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 221-234. Springer, Heidelberg (2001)
Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63-66. Springer, Heidelberg (2006)
Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223-235. Springer,
Heidelberg (2003)

Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372-386. Springer,
Heidelberg (2004)

Bultan, T., Yavuz-Kahveci, T.: Action language verifier. In: ASE 2001, p. 382
2001

glark?e, E., Talupur, M., Veith, H.: Environment abstraction for parameterized ver-
ification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 126-141. Springer, Heidelberg (2005)

Cousot, P., Ganty, P., Raskin, J.-F.: Fixpoint-guided abstraction refinements.
LNCS. Springer, Heidelberg (2007)

Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon,
H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286-297. Springer, Heidelberg
2001

](Dicksz)n7 L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math. 35, 413-422 (1913)

Dill, D.: Timing assumptions and verification of finite-state concurrent systems.
In: AVMFSS 1989, pp. 197-212 (1989)

Emerson, E., Namjoshi, K.: On model checking for non-deterministic infinite-state
systems. In: LICS 1998, pp. 70-80 (1998)

Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS 1999 (1999)

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!
TCS 256(1-2), 63-92 (2001)

Fribourg, L., Olsén, H.: Proving safety properties of infinite state systems by com-
pilation into Presburger arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 213-227. Springer, Heidelberg (1997)

Gal Lalire, M.A., Jeannet, B.: A web interface to the interproc analyzer,
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Geeraerts, G., Raskin, J.-F., Begin, L.V.: Expand, enlarge and check... made ef-
ficient. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
394-404. Springer, Heidelberg (2005)

Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459-473. Springer, Heidelberg (2006)

Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. TCS 256, 93-112 (2001)

McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 101-121. Springer, Heidelberg (2004)
Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346-362.
Springer, Heidelberg (2007)

Touili, T.: Regular Model Checking using Widening Techniques. ENTCS 50(4)
(2001)


http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Information Flow in Interactive Systems

Mirio S. Alvim?, Miguel E. Andrés2, and Catuscia Palamidessi®

1 INRIA and LIX, Ecole Polytechnique Palaiseau, France
2 TInstitute for Computing and Information Sciences, The Netherlands

Abstract. We consider the problem of defining the information leakage in in-
teractive systems where secrets and observables can alternate during the com-
putation. We show that the information-theoretic approach which interprets such
systems as (simple) noisy channels is not valid anymore. However, the principle
can be recovered if we consider more complicated types of channels, that in Infor-
mation Theory are known as channels with memory and feedback. We show that
there is a complete correspondence between interactive systems and such kind of
channels. Furthermore, we show that the capacity of the channels associated to
such systems is a continuous function of the Kantorovich metric.

1 Introduction

Information leakage refers to the problem that the observable parts of the behavior of
a system may reveal information that we would like to keep secret. In recent years,
there has been a growing interest in the quantitative aspects of this problem, partly
because it is convenient to represent the partial knowledge of the secrets as a probability
distribution, and partly because the mechanisms to protect the information may use
randomization to obfuscate the relation between the secrets and the observables.

Among the quantitative approaches, some of the most popular ones are based on
Information Theory [5/12/4J16]. The system is interpreted as an information-theoretic
channel, where the secrets are the input and the observables are the output. The channel
matrix is constituted by the conditional probabilities p(b | a), defined as the measure
of the executions that give observable b within those which contain the secret a. The
leakage is represented by the mutual information, and the worst-case leakage by the
capacity of the channel.

In the above works, the secret value is assumed to be chosen at the beginning of
the computation. In this paper, we are interested in Interactive systems, i.e. systems
in which secrets and observables can alternate during the computation, and influence
each other. Examples of interactive protocols include auction protocols like [21418117].
Some of these have become very popular thanks to their integration in Internet-based
electronic commerce platforms [9/10/14]]. As for interactive programs, examples in-
clude web servers, GUI applications, and command-line programs [3]].

We investigate the applicability of the information-theoretic approach to interactive
systems. In [8] it was proposed to define the matrix elements p(b | a) as the measure of
the traces with (secret, observable)-projection (a, b), divided by the measure of the trace
with secret projection a. This follows the definition of conditional probability in terms
of joint and marginal probability. However, it does not define an information-theoretic

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 1024116.2010.
(© Springer-Verlag Berlin Heidelberg 2010



Information Flow in Interactive Systems 103

channel. In fact, by definition a channel should be invariant with respect to the input
distribution, and such construction is not, as shown by the following example.

Example 1. Figure [M represents a web-based interaction between one seller and two
possible buyers, rich and poor. The seller offers two different products, cheap and ex-
pensive, with given probabilities. Once the product is offered, each buyer may try to
buy the product, with a certain probability. For simplicity we assume that the buyers
offers are exclusive. We assume that the offers are observables, in the sense that they
are made public in the website, while the identity of the buyer that actually buys the
product should be secret to an external observer. The symbols r, s, t, r, s, t represent
the probabilities, with the convention that r = 1 — 7.

Following [8]] we can compute the conditional probabili-
ties as p(bla) = p}gﬁf)’) , thus obtaining the matrix on Table Il
However, the matrix is not invariant with respect to the
input distribution. For instance, if we fix r = r = 0.5 and
consider two different input distributions, obtained by vary-
ing the values of (s, t), we get two different matrices of condi-
tional probabilities, which are represented in Table 2] Hence
when the secrets occur after the observables we cannot con- Fig. 1. Inter. System
sider the conditional probabilities as representing a (classical)
channel, and we cannot apply the standard information-theoretic concepts. In particular,
we cannot adopt the (classical) capacity to represent the worst-case leakage, since the
capacity is defined using a fixed channel matrix over all possible input distributions.
The first contribution of this paper is to consider an
extension of the theory of channels which makes the Table 1. Cond. probabilities
information-theoretic approach applicable also the case of of Example[l]
interactive systems. It turns out that a richer notion of chan-
nels, known in Information Theory as channels with mem- e o
ory and feedback, serves our purposes. The dependence of rstrt  rstrt
inputs on previous outputs corresponds to feedback, and  rich TSTN TS’IN
the dependence of outputs on previous inputs and outputs
corresponds to memory.

cheap expensive

poor

Table 2. Two different channel matrices induced by two different input distributions

cheap expensive Input dist. cheap expensive Input dist.
poor g g p(poor) = ; poor }1 i p(poor) = é
rich 3 2 p(rich) =} rich - p(rich) = 3
_ 1 ._24,_3 _ 1 ._ 1 4_3
@r=;,s=;,t=_ d)r=,,5=0t= 1%

A second contribution of our work is the proof that the channel capacity is a con-
tinuous function of the Kantorovich metric on interactive systems. This was pointed
out also in [8]], however their construction does not work in our case due to the fact that



104 M.S. Alvim, M.E. Andrés, and C. Palamidessi

(as far as we understand) it assumes that the probability of a secret action, in any point
of the computation, is not 0. This assumption is not guaranteed in our case and therefore
we had to proceed differently.

A more complete version of this paper (with proofs) is on line [1]].

2 Preliminaries

2.1 Concepts from Information Theory

For more detailed information on this part we refer to [6]]. Let A, B denote two random
variables with corresponding probability distributions pa(-), ps(-), respectively. We
shall omit the subscripts when they are clear from the context. Let A = {a4,...,a,},
B = {by,...,b,,} denote, respectively, the sets of possible values for A and for B.

The entropy of A is defined as H(A) = — ) , p(a;) log p(a;) and it measures the
uncertainty of A. It takes its minimum value H(A) = 0 when p4(-) is a delta of Dirac.
The maximum value H(A) = log |.A| is obtained when p4(+) is the uniform distribu-
tion. Usually the base of the logarithm is set to be 2 and the entropy is measured in
bits. The conditional entropy of A given B is H(A|B) = — > 5zp(b;) > 4 p(a;]b;)
log p(a,|b;), and it measures the uncertainty of A when B is known. We can prove that
0 < H(A|B) < H(A). The minimum value, 0, is obtained when A is completely de-
termined by B. The maximum value H (A) is obtained when A and B are independent.
The mutual information between A and B is defined as I(A; B) = H(A) — H(A|B),
and it measures the amount of information about A that we gain by observing B. It can
be shown that I(A; B) = I(B; A) and 0 < I(A; B) < H(A).

The entropy and mutual information respect the chain laws. Namely, given a se-

quence of random variables Ay, Ao, ..., Ay and B, we have:
k
H(Ay, Ag,..., Ag) =) H(Ai|A1,..., Aiy) (1)
i=1
k
I(A1, Ag,..., Ag; B) = > I(A;B|Ay, ..., Aiy) 2)

i=1
A (discrete memoryless) channel is a tuple (A, B,p(-|-)), where A, B are the sets of
input and output symbols, respectively, and p(b;|a;) is the probability of observing
the output symbol b; when the input symbol is a;. An input distribution p(a;) over A
determines, together with the channel, the joint distribution p(a;, b;) = p(a,|b;) - p(a;)
and consequently 7(A; B). The maximum I(A; B) over all possible input distributions
is the channel’s capacity. Shannon’s famous result states that the capacity coincides
with the maximum rate by which information can be transmitted using the channel.

In this paper we consider input and output sequences instead of just symbols.

Convention 1. Let A = {a,...,a,} be a finite set of n different symbols (alphabet).
When we have a sequence of symbols (ordered in time), we use a Greek letter o, to
denote the symbol at time t. The notation o' stands for the sequence oy, . . . o,. For
instance, in the sequence asa-as, we have o, = a, and o = aza,.



Information Flow in Interactive Systems 105

Convention 2. Let X be a random variable. Xt denotes the sequence of t consecutive
occurrences X1, ..., Xt of the random variable X.

When the channel is used repeatedly, the discrete memoryless channel described above
represents the case in which the behavior of the channel at the present time does not
depend upon the past history of inputs and outputs. If this assumption does not hold,
then we have a channel with memory. Furthermore, if the outputs from the channel can
be fed back to the encoder, thus influencing the generation of the next input symbol,
then the channel is said to be with feedback; otherwise it is without feedback.

Equation [3] makes explicit the probabilistic behavior of channels regarding those
classifications. Suppose a general channel from A to B with the associated random vari-
ables A for input and B for output. Using the notation introduced in Convention[I] the
channel behavior after 7" uses can be fully described by the joint probability p(a®’, 7).

Using probability laws we derive:

T
p(a®,87) = Hp(at|at*1, B Np(B,lat, B171)  (by the expansion law) (3)

t=1

The first term p(a,|a’~t, 3'~1) indicates that the probability of a, depends not only
on o!~1, but also on B1~! (feedback). The second term p(3,|at, 3'~1) indicates that
the probability of each 3, depends on previous history of inputs o’ and outputs 3'~*
(memory).

If the channel is without feedback, then we have that p(a,|a? =1, 371) =p(a,|al 1),
and if the channel is without memory, then we have also p(8;|at, B71) = p(B;|a,).
From these we derive p(57 o) = Hz;l (B, ), which is the classic equation for
discrete memoryless channels without feedback.

Let (V, K) be a Borel space and let (X, By ) and (), By) be Polish spaces equipped
with their Borel o-algebras. Let p(dz|v) be a family of measures on X" given V. Then
p(dz|v) is a stochastic kernel if and only if and only if p(-|v) is a random variable from
YV into the power set P(X).

2.2 Probabilistic Automata

A function p: S — [0, 1] is a discrete probability distribution on a countable set S if
> scs t(s) = 1and pu(s) > 0 for all s. The set of all discrete probability distributions
onSis D(S).

A probabilistic automaton [15] is a quadruple M = (S, L, §,9) where S is a count-
able set of states, L a finite set of labels or actions, § the initial state, and ¥ a transition
functiony : S — p¢(D(L x S)). Here pf(X) is the set of all finite subsets of X. If
I(s) = g) then s is a terminal state. We write s—p for u € 9(s), s € S. Moreover, we
write s—r for s, € S whenever s—u and u(¢,r) > 0. A fully probabilistic automa-
fon is a probabilistic automaton satisfying |9(s)| < 1 for all states. When 9(s) # 0 we
overload the notation and denote ¥(s) the distribution outgoing from s.

. o . ¢ ¢
A path in a probabilistic automaton is a sequence 0 = sg - s 3 .- where
si €S, 4; € Land s; 'ﬁlsiﬂ. A path can be finite in which case it ends with a state.
A path is complete if it is either infinite or finite ending in a terminal state. Given a



106 M.S. Alvim, M.E. Andrés, and C. Palamidessi

finite path o, last(o) denotes its last state. Let Pathss (M) denote the set of all paths,
Paths* (M) the set of all finite paths, and CPathss (M) the set of all complete paths
of an automaton M, starting from the state s. We will omit s if s = 5. Paths are ordered
by the prefix relation, which we denote by <. The frace of a path is the sequence of
actions in £* U £ obtained by removing the states, hence for the above o we have
trace(o) = lily.... If L' C L, then traces: (o) is the projection of trace(o) on the
elements of £’.

Let M = (S,L,§,9) be a (fully) probabilistic automaton, s € S a state, and let
o € Paths(M) be a finite path starting in s. The cone generated by o is the set of
complete paths (o) = {0’ € CPathss(M) | ¢ < ¢'}. Given a fully probabilistic
automaton M = (S, L, §,9) and a state s, we can calculate the probability value,

denoted by P (o), of any finite path o starting in s as follows: Ps(s) = 1and Ps(c —
s') =Ps(o) u(l, s"), where last(c) — p.

Let 2, £ CPaths,(M) be the sample space, and let F; be the smallest o-algebra
generated by the cones. Then P induces a unique probability measure on Fs (which we
will also denote by P,) such that Ps((c)) = P(c) for every finite path o starting in
s. For s = 5 we write P instead of P.

Given a probability space (2, F, P) and two events A, B € F with P(B) > 0, the
conditional probability of A given B, P(A | B), is defined as P(AN B)/P(B).

3 Discrete Channels with Memory and Feedback

We adopt the model proposed in [19] for discrete channels with memory and feedback.
Such model, represented in Figure 2 can be decomposed in sequential components
as follows. At time ¢ the internal channel’s behavior is represented by the conditional
probabilities p(3,|at, 4~1). The internal channel takes the input v, and, according to
the history of inputs and outputs up to the moment o, 3=, produces an output symbol
0, The output is then fed back to the encoder with delay one. On the other side, at time
t the encoder takes the message and the past output symbols 3‘~!, and produces a
channel input symbol «,. At final time 7" the decoder takes all the channel outputs 37
and produces the decoded message . The order is the following:

Message W, «aq,0;, «9,05, ..., ap,0p, DecodedMessageW

Let us describe such channel in more detail. Let A and B be two finite sets. Let { A; }7_;
(channel’s input) and { B; }7__; (channel’s output) be families of random variables in .4
and B respectively. Moreover, let AT and BT represent their T-fold product spaces. A
channel is a family of stochastic kernels {p(g3,|at, 3*~1)}L ;.

Let F; be the set of all measurable maps ¢, : B!~ — A endowed with a probability
distribution, and let F} be the corresponding random variable. Let F T FT denote the
Cartesian product on the domain and the random variable, respectively. A channel code
function is an element T = (¢y,...,¢5) € FL.

Note that, by probability laws, p(¢?) = H* 1 p(
FT is uniquely determined by a sequence {p(¢;|o*

©"(B'71) to represent the A-valued t-tuple (¢, 0o (3

¢'~1). Hence the distribution on

1T ,. We will use the notation

)
); - (BH).

¢l
-1
1



Information Flow in Interactive Systems 107

r—-————------ -~ P -
| |
W Fucnoc(tli(:ns ©4 Encoder Channel By ! Decoder W
o7 | {ae = (BN} {p(Blat, BN} : W =~(8") ’
| |
| |
| |
qff]
Time 0 : Delay < : Time T + 1
| |
I Time |
! t=1...T !
L - - - - _

Fig. 2. Model for discrete channel with memory and feedback

In Information Theory this kind of channels are used to encode and transmit mes-
sages. If WV is a message set of cardinality M with typical element w, endowed with
a probability distribution, a channel code is a set of M channel code functions ¢ [w],
interpreted as follows: for message w, if at time ¢ the channel feedback is ﬂtfl, then
the channel encoder outputs ¢,[w](3~!). A channel decoder is a map from BT to W
which attempts to reconstruct the input message after observing all the output history
BT from the channel.

3.1 Directed Information and Capacity of Channels with Feedback

In classical Information Theory, the channel capacity, which is related to the channel’s
transmission rate by Shannon’s fundamental result, can be obtained as the supremum of
the mutual information over all possible input’s distributions. In presence of feedback,
however, this correspondence does not hold anymore. More specifically, mutual infor-
mation does not represent any longer the information flow from o to 7. Intuitively,
this is due to the fact that mutual information expresses correlation, and therefore it
is increased by feedback. But the feedback, i.e the way the output influences the next
input, is part of the a priori knowledge, and therefore should not be counted when we
measure the output’s contribution to the reduction of the uncertainty about the input. If
we want to maintain the correspondence with the transmission rate and with information
flow, we need to replace mutual information with directed information [13].

Definition 1. In a channel with feedback, the directed information from input A” to
output BT is defined as I(AT — BT) = ZZ;I I(a%; 8,|B71Y). In the other di-
rection, the directed information from BT to AT is defined as: (BT — AT) =
Sim Loy B o).

Note that the directed information defined above are not symmetric: the flow from A”
to BT takes into account the correlation between o! and 0,, while the flow from BT
to AT is based on the correlation between Bt~ and o, . Intuitively, this is because at
influences (3,, but, in the other direction, it is Bt~ that influences Q.

It can be proved [19] that I(AT; BT) = (AT — BT)+1(BT — AT).1f a channel
does not have feedback, then I(BT — AT) = 0 and I(AT; BT) = (AT — BT).

In a channel with feedback the information transmitted is the directed information,
and not the mutual information. The following example should help understanding why.



108 M.S. Alvim, M.E. Andrés, and C. Palamidessi

Example 2. Consider the discrete memoryless channel with input alphabet A= {a,, a5}
and output alphabet B = {b,, by} whose matrix is represented in Table[3]

Suppose that the channel is used with feedback, in such a

way that, for all t’s, o,y = ay if B, = by, and o = ay if Table 3. Channel matrix

B, = b,. It is easy to show that if ¢ > 2 then I(A?; BY) # 0. for Example 2

However, there is no leakage from from A to B?, since the by by
rows of the matrix are all equal. We have indeed that I(A* — a; 0505
B') = 0, and the mutual information I(A*; B") is only due to ay 0.50.5

the feedback information flow I(B! — A?).

The concept of capacity is generalized for channels with feedback as follows. Let
Dr = {{p(a,|at=t, B871)}E;} be the set of all input distributions. For finite 7', the
capacity of a channel {p(3,|at, B*~1)} L, is:

1
Cr = sup I(AT — BT) 4)
pr T

4 Interactive Systems as Channels with Memory and Feedback

(General) Interactive Information Hiding Systems ([2]]), are a variant of probabilistic
automata in which we separate actions in secret and observable; “interactive” means
that secret and observable actions can interleave and influence each other.

Definition 2. A general ITHS is a quadruple I = (M, A, B, L), where M is a prob-
abilistic automaton (S,L,§,9), L = AU B U L, where A, B, and L, are pair-
wise disjoint sets of secret, observable, and internal actions respectively, and 9(s) C
DB U L; x S) implies |9(s)| < 1, for all s. The condition on ¥ ensures that all
observable transitions are fully probabilistic.

Assumption. In this paper we assume that general ITHSs are normalized, i.e. once un-
folded, all the transitions between two consecutive levels have either secret labels only,
or observable labels only. Moreover, the occurrences of secret and observable labels
alternate between levels. We will call secret states the states from which only secrets-
labeled transitions are possible, and observable states the others. Finally, we assume
that for every s and £ there exists a unique r such that s £ 7. Under this assumption we
have that the traces of a computation determine the final state, as expressed by the next
proposition. In the following trace 4 and tracep indicate the projection of the traces on
secret and observable actions, respectively. Given a general ITHS, it is always possible
to find an equivalent one that satisfies this assumptions. The interested reader can find
in [[1] the formal definition of the transformation.

Proposition 1. Ler I = (M, A, B, L;) be a general IIHS. Consider two paths o and
o'. Then, trace 4(0) = traceo(c’) and tracep(c) = traceg(o’) implies o = o’.

In the following, we will consider two particular cases: the fully probabilistic 1IHSs,
where there is no nondeterminism, and the secret -nondeterministic IIHSs, where each
secret choice is fully nondeterministic. The latter will be called simply ITHSs.



Information Flow in Interactive Systems 109

Definition 3. LetJ = ((S, L, §,9), A, B, L) be a general ITHS. Then J is:

— fully probabilistic if ¥(s) C D(A x S) implies |9(s)| < 1 foreach s € S.
— secret-nondeterministic if 9(s) C D(A x S) implies that for each s € S there exist
si” such that 9(s) = {0(as, $i) 1.

We show now how to construct a channel with memory and feedback from ITHSs. We
will see that an ITHS corresponds precisely to a channel as determined by its stochastic
kernel, while a fully probabilistic IIHS determines, additionally, the input distribution.
In the following, we consider an ITHS J = ((S, L, §,9), A, B, L;) is in normalized
form. Given a path o of length 2t — 1, we denote trace 4(o) by af, and traces(o) by

ﬁtfl_

Definition 4. For each t, the channel’s stochastic kernel corresponding to J is defined
as p(B,]at, B71) = 9(q)(B,, '), where q is the state reached from the root via the path
o whose input-trace is o' and output trace 311

Note that g and ¢’ in previous definitions are well defined: by Proposition[ll ¢ is unique,
and since the choice of j, is fully probabilistic, ¢’ is also unique.

If J is fully probabilistic, then it determines also the input distribution and the depen-
dency of o, upon 3'~1 (feedback) and o'~ 1.

Definition 5. If J is fully probabilistic, the associated channel has a conditional input
distribution for each t defined as p(a, |t~ B8=1) = 9(q)(«y, ¢), where q is the state
reached from the root via the path o whose input-trace is o'~ and output trace is 31

4.1 Lifting the Channel Inputs to Reaction Functions

Definitions@and Bldefine the joint probabilities p(at, 3t) for a fully probabilistic ITHS.
We still need to show in what sense these define a information-theoretic channel.

The {p(3,|at, 3*71)}L_, determined by the ITHS correspond to a channel’s stochas-
tic kernel. The problem resides in the conditional probability of {p(a,|a’~t, B¢~} .
In an information-theoretic channel, the value of o, is determined in the encoder by a
deterministic function ¢, (3?~1). However, inside the encoder there is no possibility for
a probabilistic description of «,. Furthermore, in our setting the concept of encoder
makes no sense as there is no information to encode. A solution to this problem is to
externalize the probabilistic behavior of : the code functions become simple reaction
functions ¢, that depend only on 3¢~! (the message w does not play a role any more),
and these reaction functions are endowed with a probability distribution that generates
the probabilistic behavior of the values of c,.

Definition 6. A reactor is a distribution on reaction functions, i.e., a stochastic ker-
nel {p(p,|0'~1)}L,. A reactor R is consistent with a fully probabilistic ITHS Z if it
induces the compatible distribution Q(pT,a™, ) such that, for every 1 < t < T,
Qaylat=t B8 = p(ay|at=t, B11), where the latter is the probability distribution
induced by 1.

The main result of this section states that for any fully probabilistic ITHS there is a
reactor that generates the probabilistic behavior of the ITHS.



110 M.S. Alvim, M.E. Andrés, and C. Palamidessi

Theorem 3. Given a fully probabilistic ITHS J, we can construct a channel with mem-
ory and feedback, and probability distribution Q(o™, o™, BT, which corresponds to J
in the sense that, for every t, o' and 8¢, with1 <t < T, Q(cat, 5°) def dopr QT al,
B = p(at, BY) holds, where p(at, 3') is the joint probability of input and output
traces induced by 1.

Corollary 1. LetaJ be afully probabilistic 1THS. Let {p(3,|at, 3'~1)}L_| bea sequence
of stochastic kernels and {p(a,|at=1, Bt =)}, a sequence of input distributions de-
fined by J according to Definitions dl and Bl Then the reactor R = {p(¢,|¢t~ 1)},
compatible with respect to the J is given by:

p(p1) = p(a1|a0, ﬂo) = p(ay) %)
plede™") = [] ple.(B Ml (B72), 871, 2<t<T (6)
Bt—l

Figure 3] depicts the model for ITHS. Note that, in relation to Figure Pl there are some
simplifications: (1) no message w is needed; (2) the decoder is not used. At the begin-
ning, a reaction function sequence ¢ is chosen and then the channel is used 7" times. At
each usage t, the encoder decides the next input symbol o, based on the reaction func-
tion ¢, and the output fed back 3*~!. Then the channel produces an output 3, based on
the stochastic kernel p(3,|at, 3~1). The output is then fed back to the encoder with a
delay one.

r--—-——~>~~>>>~>"_ -~ -~ -~ - -— - - - - == ~

Reaction- . I “Interactor” Channel 5 !
Functions |——4 vl p(B,lat, BN} L
o7 1| o= (B (b8’ = [

| |

| |

I 5, [ [

| Delay |
L -

Fig. 3. Channel with memory and feedback model for ITHS

We conclude this section by remarking an intriguing coincidence: The notion of
reaction function sequence ¢, on the ITHSs, corresponds to the notion of deterministic
scheduler. In fact, each reaction function ¢, selects the next step, o, on the basis of the
Bt~ and ot ! (generated by ¢'~1), and B'~!, o’ ! represent the path until that state.

5 Leakage in Interactive Systems

In this section we propose a notion of information flow based on our model. We fol-
low the idea of defining leakage and maximum leakage using the concepts of mutual
information and capacity (see for instance [4]), making the necessary adaptations.

Since the directed information I (A” — BT is a measure of how much information
flows from AT to BT in a channel with feedback (cfr. Section 3.1, it is natural to
consider it as a measure of leakage of information by the protocol.



Information Flow in Interactive Systems 111

Definition 7. The information leakage of an 1IHS is defined as: 1(AT — BT) =
Simy H(AJATY, B — H(AT|BT).

Note that Zthl H(A;|A*=1 Bt~1) can be seen as the entropy H g of reactor R.
Compare this definition with the classical Information-theoretic approach to infor-
mation leakage: when there is no feedback, the leakage is defined as:

I(A";B") = H(A") - H(A"|B") ™)

The principle behind () is that the leakage is equal to the difference between the a pri-
ori uncertainty H(A™) and the a posteriori uncertainty H(A™|B™) (gain in knowledge
about the secret by observing the output). Our definition maintains the same principle,
with the proviso that the a priori uncertainty is now represented by H .

5.1 Maximum Leakage as Capacity

In the case of secret-nondeterministic IIHS, we have a stochastic kernel but no distri-
bution on the code functions. In this case it seems natural to consider the worst leakage
over all possible distributions on code functions. This is exactly the concept of capacity.

Definition 8. The maximum leakage of an IIHS is defined as the capacity Ct of the
associated channel with memory and feedback.

6 Modeling ITHSs as Channels: An Example

In this section we show the application of our approach to the Cocaine Auction Proto-
col [[1'7]]. Let us imagine a situation where several mob individuals are gathered around
a table. An auction is about to be held in which one of them offers his next shipment
of cocaine to the highest bidder. The seller describes the merchandise and proposes a
starting price. The others then bid increasing amounts until there are no bids for 30
consecutive seconds. At that point the seller declares the auction closed and arranges a
secret appointment with the winner to deliver the goods.

The basic protocol is fairly simple and is organized as a succession of rounds of
bidding. Round 1 starts with the seller announcing the bid price b; for that round. Buyers
have ¢ seconds to make an offer (i.e. to say yes, meaning “I’m willing to buy at the
current bid price b;”). As soon as one buyer anonymously says yes, he becomes the
winner w; of that round and a new round begins. If nobody says anything for ¢ seconds,
round ¢ is concluded by timeout and the auction is won by the winner w;_; of the
previous round, if one exists. If the timeout occurs during round 0, this means that
nobody made any offers at the initial price by, so there is no sale.

Although our framework allows the forrmalization of this protocol for an arbitrary
number of bidders and bidding rounds, for illustration purposes, we will consider the
case of two bidders (Candlemaker and Scarface) and two rounds of bids. Furthermore,
we assume that the initial bid is always 1 dollar, so the first bid does not need to be
announced by the seller. In each turn the seller can choose how much he wants to
increase the actual bid. This is done by adding an increment to the last bid. There



112 M.S. Alvim, M.E. Andrés, and C. Palamidessi

are two options of increments, namely inc; (1 dollar) and incs (2 dollars). In that way,
b;41 is either b; 4 incy or b; + incy. We can describe this protocol as a normalized
MHS 7 = (M, A, B, L), where A = {Candlemaker, Scarface, a*} is the set of secret
actions, B = {incy,ince, b, } is the set of observable actions, £, = () is the set of
hidden actions, and the probabilistic automaton M is represented in Figure[dl For clarity
reasons, we omit transitions with probability 0 in the automaton. Note that the special
secret action a, represents the situation where neither Candlemaker nor Scarface bid.
The special observable action b, is only possible after no one has bidden, and signalizes
the end of the auction and, therefore, no bid is allowed anymore.

P16

inceg incy incs
433 434 35

incy incy
33 439

incs incy
q23 24

incy incy
II{* q32 Ill)* q37

Fig. 4. Cocaine Auction example

Table [ shows all the stochastic kernels for this example. The formalization of this
protocol in terms of ITHSs using our framework makes it possible to prove the claim
in[[17] suggesting that if the seller knows the identity of the bidders then the (strong)
anonymity guaranties are not provided anymore.

Table 4. Stochastic kernels for the Cocaine Auction example

ay, P, 00 — Po Cheap Expensive b,
Candlemaker,incy ,Candlemaker g2z q23 0
Candlemaker,inci ,Scarface 24 q25 0
Candlemaker,incy ,a, 0 0 1
Candlemaker,inca,Candlemaker — qar Q28 0
o — By inc incg b, Candlemaker,incz ,Scarface q29 q30 0
Candlemaker,incs,a, 0 0 1

Candlemaker qa qs 0 .
Scarface,inci,Candlemaker Q32 q33 0

Scarface g6 qr 0 .
o 0 0 | Scarface,inci ,Scarface q34 qss 0
Scarface,inci ,a, 0 0 1
Scarface,incs,Candlemaker q37 qss 0

a)t=1 130 -

@ P(Brfe’, 57) Scarface,incs ,Scarface q39 G40 0
Scarface,incs,a, 0 0 1
Aysb.\a, 0 0 1
All other lines 0 0 1

(b) t = 2,p(Ba]a?, ')



Information Flow in Interactive Systems 113

7 Topological Properties of [IHSs and Their Capacity

In this section we show how to extend to IIHSs the notion of pseudometric defined
in [8] for Concurrent Labelled Markov Chains, and we prove that the capacity of the
corresponding channels is a continuous function on this pseudometric. The metric con-
struction is sound for general IIHSs, but the result on capacity is only valid for secret-
nondeterministic [IHSs.

Given a set of states .S, a pseudometric (or distance) is a function d that yields a non-
negative real number for each pair of states and satisfies the following: d(s,s) = 0;
d(s,t) = d(t,s), and d(s,t) < d(s,u) + d(u,t). We say that a pseudometric d is
c-bounded if Vs, t : d(s,t) < ¢, where ¢ is a positive real number. We now define a
complete lattice on pseudometrics, and define the distance between IIHSs as the greatest
fixpoint of a distance transformation, in line with the coinductive theory of bisimilarity.

Definition 9. M is the class of 1-bounded pseudometrics on states with the ordering
d=difVs, s €S:d(s,s)>d(s,s).

It is easy to see that (M, <) is a complete lattice. In order to define pseudometrics on
ITHSs, we now need to lift the pseudometrics on states to pseudometrics on distributions
in D(L x S). Following standard lines [20l8/7]], we apply the construction based on the
Kantorovich metric [[11]].

Definition 10. For d € M, and p, 1’ € D(L x S), we define d(u, 1') (overloading
the notation d) as d(p, pt') = maxy ., yerpws(ti(lissi) — W' (€, si))x; where the
maximization is on all possible values of the x;’s, subject to the constraints 0 < x; < 1
and z; — x; < cf((&,si),(ﬁj,sj)), where d((ﬁi,si),(ﬁj,sj)) = 1ifl; # ¢, and
d((4;, s), (45,55)) = d(si, s;) otherwise.

It can be shown that with this definition m is a pseudometric on D(L x ).

Definition 11. d € M is a bisimulation metric if, for all e € [0,1), d(s, s") < e implies
that if s — p, then there exists some ' such that s' — p' and d(p, p1') < e

The greatest bisimulation metric is dimqe, = | {d € M | d is a bisimulation metric}.
We now characterize d.,,, as a fixed point of a monotonic function ¢ on M. For sim-
plicity, from now on we consider only the distance between states belonging to different
ITHSs with disjoint sets of states.

Definition 12. Given two IIHSs with transition relations 0 and 6’ respectively, and a
preudometric d on states, define ® : M — M as:

max; d(s;, s}) if () = {0(ay,51)> - - )
and ’19/(8/) = {5(%,5/1),.. (5(am,s }
B(d)(s,s') = { A, 1) if 9(s) = {pu} and 9'(s") = {1’}
0 ifd(s)=9'(s") =0
1 otherwise




114 M.S. Alvim, M.E. Andrés, and C. Palamidessi

It is easy to see that the definition of @ is a particular case of the function F' defined
in [8U7]. Hence it can be proved, by adapting the proofs of the analogous results in
[8/7]], that F'(d) is a pseudometric, and that d is a bisimulation metric iff d < @&(d).
This implies that dy,q; = | [{d € M | d = &(d)}, and still as a particular case of
F'in [87], we have that ¢ is monotonic on M. By Tarski’s fixed point theorem, d,;, 5
is the greatest fixed point of @. Furthermore, in [1] we show that d,,,, is indeed a
bisimulation metric, and that it is the greatest bisimulation metric. In addition, the finite
branchingness of IIHSs ensures that the closure ordinal of @ is w (cf. Lemma 3.10 in
the full version of [8]). Therefore one can show that d,ne; = {®(T) | i € N}, where
T is the greatest pseudometric (i.e. T (s, s’) = 0 for every s, s'), and °(T) = T.

Given two ITHSs J and J’, with initial states s and s’ respectively, we define the dis-
tance between J and ' as d(J,7") = dnaz (s, s”). Next theorem states the continuity of
the capacity w.r.t. the metric on ITHSs. It is crucial that they are secret-nondeterministic
(while the definition of the metric holds in general).

Theorem 4. Consider two normalized THSs J and J', and fixa T > 0. For every € > 0
there exists v > 0 such that if d(J3,7') <v then |Cr(J)—Cr(7)| <e.

We conclude this section with an example showing that the continuity result for the
capacity does not hold if the construction of the channel is done starting from a system
in which the secrets are endowed with a probability distribution. This is also the reason
why we could not simply adopt the proof technique of the continuity result in [8]] and
we had to come up with a different reasoning.

Example 3. Consider the two following programs, where a1, as are secrets, by, by are
observable, || is the parallel operator, and -+, is a binary probabilistic choice that assigns
probability p to the left branch, and probability 1 — p to the right one.

) (send(a1) +p send(az)) || receive(z).output(bs)
t) (send(a1)+4 send(a2)) || receive(z).if x = a1 then output(b1) else output(bs).

Table |5 shows the fully probabilistic IIHSs corresponding to these programs, and their
associated channels, which in this case (since the secret actions are all at the top-level)
are classic channels, i.e. memoryless and without feedback. As usual for classic chan-
nels, they do not depend on p and q. It is easy to see that the capacity of the first channel
is 0 and the capacity of the second one is 1. Hence their difference is 1, independently
from p and q.

(@ (b)
Table 5. The IIHSs of Example[3land their corresponding channels



Information Flow in Interactive Systems 115

Let now p = 0 and ¢ = e. It is easy to see that the distance between s and ¢ is e.
Therefore (when the automata have probabilities on the secrets), the capacity is not a
continuous function of the distance.

8 Conclusion and Future Work

In this paper we have investigated the problem of information leakage in interactive sys-
tems, and we have proved that these systems can be modeled as channels with memory
and feedback. The situation is summarized in Table[6(a). The comparison with the clas-
sical situation of non-interactive systems is represented in (b). Furthermore, we have
proved that the channel capacity is a continuous function of the kantorovich metric.

IIHSs as automata IIHSs as channels Notion of leakage

Normalized IIHSs with nondeterministic Sequence of stochastic kernels Leakage as capacity
inputs and probabilistic outputs {p(B:lat, B},
Normalized ITHSs with a deterministic ~ Sequence of stochastic kernels
scheduler solving the nondeterminism  {p(8;|a’, 81}y +
reaction function seq. ¢
Fully probabilistic normalized IIHSs Sequence of stochastic kernels Leakage as directed

{p(Belat, B}, + information I(AT — BT)
reactor {p(w¢|" 1) iy
(a)
Classical channels Channels with memory and feedback
The protocol is modeled in independent uses of The protocol is modeled in several
the channel, often a unique use. consecutive uses of the channel.
The channel is from AT — BT, i.e., its input  The channel is from F — B, i.e. its
is a single string o7 = a; ... ap of secret input is a reaction function ¢, and its
symbols and its output is a single string 37 = output is an observable £3;.
B1 ... B of observable symbols.
The channel is memoryless and in general The channel has memory. Despite the fact that the
implicitly it is assumed the absence of channel from F — B does not have
feedback. feedback, the internal stochastic kernels
do.
The capacity is calculated using information ~ The capacity is calculated using mutual
I(AT; BT). directed information (AT — BT).
(b)
Table 6.

For future work we would like to provide algorithms to compute the leakage and
maximum leakage of interactive systems. These problems result very challenging given
the exponential growth of reaction functions (needed to compute the leakage) and the
quantification over infinitely many reactors (given by the definition of maximum leak-
age in terms of capacity). One possible solution is to study the relation between deter-
ministic schedulers and sequence of reaction functions. In particular, we believe that
for each sequence of reaction functions and distribution over it there exists a proba-
bilistic scheduler for the automata representation of the secret-nondeterministic ITHS.



116 M.S. Alvim, M.E. Andrés, and C. Palamidessi

In this way, the problem of computing the leakage and maximum leakage would reduce
to a standard probabilistic model checking problem (where the challenge is to compute
probabilities ranging over infinitely many schedulers).

In addition, we plan to investigate measures of leakage for interactive systems other
than mutual information and capacity.

References

1. Alvim, M.S., Andrés, M.E., Palamidessi, C.: Information Flow in Interactive Systems (2010),
http://hal.archives-ouvertes.fr/inria-00479672/en/

2. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage of
information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 373-389. Springer, Heidelberg (2010)

3. Bohannon, A., Pierce, B.C., Sjoberg, V., Weirich, S., Zdancewic, S.: Reactive noninterfer-
ence. In: Proc. of CCS, pp. 79-90. ACM, New York (2009)

4. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Inf. and Comp. 206(2-4), 378401 (2008)

5. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language. In: Proc. of
QAPL 2004. ENTCS, vol. 112, pp. 149-166. Elsevier, Amsterdam (2005)

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. J. Wiley & Sons, Inc., Chich-
ester (1991)

7. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative tran-
sition systems. In: Proc. of QAPL. ENTCS, vol. 153, pp. 79-96. Elsevier, Amsterdam (2006)

8. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak
bisimulation for probabilistic processes. In: Proc. of LICS, pp. 413-422. IEEE, Los Alamitos
(2002)

9. Ebay website, http://www.ebay.com/

10. Ebid website, http://www.ebid.net/

11. Kantorovich, L.: On the transfer of masses (in Russian). Doklady Akademii Nauk 5(1), 1-4
(1942); Translated in Management Science 5(1), 1-4 (1958)

12. Malacaria, P.: Assessing security threats of looping constructs. In: Proc. of POPL, pp.
225-235. ACM, New York (2007)

13. Massey, J.L.: Causality, feedback and directed information. In: Proc. of the 1990 Intl. Sym-
posium on Information Theory and its Applications (1990)

14. Mercadolibre website, http://www.mercadolibre.com/

15. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis. Tech. Rep. MIT/LCS/TR-676 (1995)

16. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288-302. Springer, Heidelberg (2009)

17. Stajano, F., Anderson, R.J.: The cocaine auction protocol: On the power of anonymous broad-
cast. In: Information Hiding, pp. 434447 (1999)

18. Subramanian, S.: Design and verification of a secure electronic auction protocol. In: Proc. of
SRDS, pp. 204-210. IEEE, Los Alamitos (1998)

19. Tatikonda, S., Mitter, S.K.: The capacity of channels with feedback. IEEE Transactions on
Information Theory 55(1), 323-349 (2009)

20. van Breugel, F., Worrell, J.: Towards quantitative verification of probabilistic transition sys-
tems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,
pp. 421-432. Springer, Heidelberg (2001)

21. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. The Journal of
Finance 16(1), 8-37 (1961)


http://hal.archives-ouvertes.fr/inria-00479672/en/
http://www.ebay.com/
http://www.ebid.net/
http://www.mercadolibre.com/

From Multi to Single Stack Automata

Mohamed Faouzi Atig

LIAFA, CNRS & Univ. of Paris 7, Case 7014, 75205 Paris 13, France
atig@liafa.jussieu. fr

Abstract. We investigate the issue of reducing the verification problem of multi-
stack machines to the one for single-stack machines. For instance, elegant (and
practically efficient) algorithms for bounded-context switch analysis of multi-
pushdown systems have been recently defined based on reductions to the reach-
ability problem of (single-stack) pushdown systems [10J18]]. In this paper, we
extend this view to both bounded-phase visibly pushdown automata (BVMPA)
[16] and ordered multi-pushdown automata (OMPA) [1]] by showing that each
of their emptiness problem can be reduced to the one for a class of single-stack
machines. For these reductions, we introduce effective generalized pushdown au-
tomata (EGPA) where operations on stacks are (1) pop the top symbol of the
stack, and (2) push a word in some (effectively) given set of words L over the
stack alphabet, assuming that L is in some class of languages for which checking
whether L intersects regular languages is decidable. We show that the automata-
based saturation procedure for computing the set of predecessors in standard
pushdown automata can be extended to prove that for EGPA too the set of all
predecessors of a regular set of configurations is an effectively constructible reg-
ular set. Our reductions from OMPA and BVMPA to EGPA, together with the
reachability analysis procedure for EGPA, allow to provide conceptually simple
algorithms for checking the emptiness problem for each of these models, and to
significantly simplify the proofs for their 2ETIME upper bounds (matching their
lower-bounds).

1 Introduction

In the last few years, a lot of effort has been devoted to the verification problem for
models of concurrent programs (see, e.g., [SI3U16l912]). Pushdown automata have been
proposed as an adequate formalism to describe sequential programs with procedure
calls [814]. Therefore, it is natural to model recursive concurrent programs as multi-
stack automata. In general, multi-stack automata are Turing powerful and hence come
along with undecidability of basic decision problems [13]. To overcome this barrier,
several subclasses of pushdown automata with multiple stacks have been proposed and
studied in the literature.

Context-bounding has been proposed in [12] as a suitable technique for the analysis
of multi-stack automata. The idea is to consider only runs of the automaton that can be
divided into a given number of contexts, where in each context pop and push operations
are exclusive to one stack. Although the state space which may be explored is still
unbounded in presence of recursive procedure calls, the context-bounded reachability

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 117, 2010.
(© Springer-Verlag Berlin Heidelberg 2010



118  MF Atig

problem is NP-complete even in this case [[L1]. In fact, context-bounding provides a
very useful tradeoff between computational complexity and verification coverage.

In [[16], La Torre et al. propose a more general definition of the notion of a context.
For that, they define the class of bounded-phase visibly multi-stack pushdown automata
(BVMPA) where only those runs are taken into consideration that can be split into
a given number of phases, where each phase admits pop operations of one particular
stack only. In the above case, the emptiness problem is decidable in double exponential
time by reducing it to the emptiness problem for tree automata.

Another way to regain decidability is to impose some order on stack operations. In
[6]], Breveglieri et al. define ordered multi-pushdown automata (OMPA), which impose
a linear ordering on stacks. Stack operations are constrained in such a way that a pop
operation is reserved to the first non-empty stack. In [1]], we show that the emptiness
problem for OMPA is 2ETIME-completd}. The proof of this result lies in a complex
encoding of OMPA into some class of grammars for which the emptiness problem is
decidable.

In this paper, we investigate the issue of reducing the verification problem of multi-
stack machines to the one for single-stack machines. We believe that this is a general
paradigm for understanding the expressive power and for establishing decidability re-
sults for various classes of concurrent program models. For instance, elegant (and prac-
tically efficient) algorithms for bounded-context switch analysis of multi-pushdown
systems have been recently defined based on reductions to the reachability problem
of (single-stack) pushdown systems [10/18]. We extend this view to both OMPA and
BVMPA by showing that each of their emptiness problem can be reduced to the one
for a class of single-stack machines. For these reductions, we introduce effective gen-
eralized pushdown automata (EGPA) where operations on stacks are (1) pop the top
symbol of the stack, and (2) push a word in some (effectively) given set of words L over
the stack alphabet, assuming that L is in some class of languages for which checking
whether L intersects a given regular language is decidable. Observe that L can be any
finite union of languages defined by a class of automata closed under intersection with
regular languages and for which the emptiness problem is decidable (e.g., pushdown
automata, Petri nets, lossy channel machines, etc). Then, we show that the automata-
based saturation procedure for computing the set of predecessors in standard pushdown
automata [4] can be extended to prove that for EGPA too the set of all predecessors of a
regular set of configurations is a regular set and effectively constructible. As an imme-
diate consequence of this result, we obtain similar decidability results of the decision
problems for EGPA like the ones obtained for pushdown automata.

Then, we show that, given an OMPA M with n stacks, it is possible to construct
an EGPA P, whose pushed languages are defined by OMPA with (n — 1) stacks, such
that the emptiness problem for M is reducible to its corresponding problem for P. The
EGPA P is constructed such that the following invariant is preserved: The state and the
content of the stack of P are the same as the state and the content of the n-th stack of
M when its first (n — 1) stacks are empty. Then, we use the saturation procedure for

! Recall that 2ETIME is the class of all decision problems solvable by a deterministic Turing
machine in time 22*" for some constant d.



From Multi to Single Stack Automata 119

EGPA to show, by induction on the number of stacks n, that the emptiness problem of
an OMPA is in 2ETIME with respect to n (matching its lower-bound [[1]).

Another application of EGPA is to show that, given a k-phase BVMPA M with n
stacks, it is possible to construct an EGPA P, whose pushed languages are defined by
(k — 1)-phase BVMPA with n stacks, such that the emptiness problem of M can be
reduced to compute the set of predecessors of a regular set of configurations of P. Then,
we exploit the saturation procedure for EGPA to show, by induction on the number of
phases k, that the emptiness problem for a BVMPA is in 2ETIME with respect to k
(matching its lower-bound [[17])).

Related works: To the best of our knowledge, the class of effective generalized push-
down automata that we define in this paper is the first non-trivial extension of pushdown
automata that allows to push a non-regular language (e.g., Petri nets languages) into the
stack which is not the case of prefix-recognizable graphs [7]. Moreover, our reductions
from OMPA and BVMPA to EGPA, together with the reachability analysis procedure
for EGPA, provide conceptually simple algorithms for checking the emptiness problem
for each of these models, and proving their 2ETIME upper bounds.

2 Preliminaries

In this section, we introduce some basic definitions and notations that will be used in
the rest of the paper.

Integers: Let N be the set of natural numbers. For every i, j € N such that 7 < j, we
use [i, 7] (resp. [¢, j[) to denote the set {k € N|i < k < j} (resp. {k e N|i < k < j}).

Words and languages: Let X be a finite alphabet. We denote by X* (resp. X T) the
set of all words (resp. non empty words) over X, and by e the empty word. A language
is a (possibly infinite) set of words. We use X and Lang(X') to denote respectively the
set X U {e} and the set of all languages over Y. Let u be a word over X. The length of
u is denoted by |ul|. For every j € [1, |u|], we use u(j) to denote the j*" letter of u. We
denote by u” the mirror of u.

Let © be a subset of X. Given a word v € X*, we denote by v|o the projection
of v over O, i.e., the word obtained from v by erasing all the symbols that are not in
©. This definition is extended to languages as follows: If L is a language over X, then
Llg ={v|le | ve L}

Transition systems: A transition system is a triplet 7 = (C, X', —) where: (1) C'is a
(possibly infinite) set of configurations, (2) X' is a finite set of labels (or actions) such
that C N X = (), and (3) =C C x X, x C is a transition relation. We write ¢ —~7 ¢’
whenever ¢ and ¢’ are two configurations and a is an action such that (¢, a, ') €—.

Given two configurations ¢, ¢’ € C, a finite run p of 7 from c to ¢ is a finite se-
quence cpaicy - - - nCy, for some n > 1, such that: (1) ¢g = ¢ and ¢, = ¢, and (2)
€ —, ¢it+1 forall ¢ € [0, n[. In this case, we say that p has length n and is labelled
by the word ajas - - - a,.

Let ¢,¢ € C and u € X*. We write c::>7 ¢’ if one of the following two cases

holds: (1) n» = 0, ¢ = ¢, and u = ¢, and (2) there is a run p of length n from ¢ to



120 MF Atig

' labelled by u. We also write ¢ :u>*7 c (resp. c :u>}r ¢) to denote that ¢ == ¢’ for
n

some n > 0 (resp. n > 0).

For every C1,Co C C, let Tracesr(C1,C2) = {u € X*|3(c1,¢c2) € C1 X
Cs, é>*7 co} be the set of sequences of actions generated by the runs of 7 from
a configuration in Ci to a configuration in C, and let Pre-(Cy) = {c € C'|3(c',u) €
Cy xX* ¢ :u>*7 '} be the set of predecessor configurations of C.

Finite state automata: A finite state automaton (FSA) is a tuple A = (Q, X, A, I, F)
where: (1) @ is the finite non-empty set of states, (2) X' is the finite input alphabet, (3)
A C (Qx X x Q) is the transition relation, (4) I C @ is the set of initial states, and (5)
F C @ is the set of final states. We represent a transition (g, a,q’) in A by ¢ >4 ¢'.
Moreover, if I’ and F’ are two subsets of (), then we use A(I’, F’) to denote the finite
state automaton defined by the tuple (Q, X, A, I, F’).

The size of A is defined by |A| = (|Q| +|X]). Weuse T (A) = (Q, X, A) to denote
the transition system associated with 4. The language accepted (or recognized) by A is
givenby L(A) = Tracesz(a)(I, F).

3 Generalized Pushdown Automata

In this section, we introduce the class of generalized pushdown automata where oper-
ations on stacks are (1) pop the top symbol of the stack, and (2) push a word in some
(effectively) given set of words L over the stack alphabet. A transition ¢ is of the form
5(p,7,a,p’) = L where L is a (possibly infinite) set of words. Being in a configuration
(¢, w) where g is a state and w is a stack content, ¢ can be applied if both p = ¢ and the
content of the stack is of the form yw’ for some w’. Taking the transition and reading
the input letter @ (which may be the empty word), the system moves to the successor
configuration (p’, uw’) where u € L (i.e., the new state is p’, and = is replaced with a
word u belonging to the language L). Formally, we have:

Definition 1 (Generalized pushdown automata). A generalized pushdown automa-
ton (GPA for short) is a tuple P = (P, X, I, 6, po, Yo, F') where: (1) P is the finite
non-empty set of states, (2) X is the input alphabet, (3) I" is the stack alphabet, (4)
0 : PxI xX.x P — Lang(I') is the transition function, (5) po € P is the initial
state, (6) o € I is the initial stack symbol, and (7) F C P is the set of final states.

Definition 2 (Effectiveness Property). A GPA P = (P, X, I, §, po, Y0, F') is effective
if and only if for every finite state automaton A over the alphabet I, it is decidable
whether L(A) N 6(p,~,a,p’) # O forallp,p’ € P,y €I',anda € X..

A configuration of a GPA P = (P, X, I, 6, po, Y0, F') is a pair (p, w) where p € P
and w € I'*. The set of all configurations of P is denoted by Conf(P). Similarly to
the case of pushdown automata [4], we use the class of P-automata as finite symbolic
representation of a set of configurations of GPA. Formally, a P-automaton is a FSA
A = (Qa, I, Au,La, Fy) such that T4 = P. We say that a configuration (p,w) of
P is accepted (or recognized) by A if w € L(A({p}, Fa)). The set of all configura-
tions recognized by A is denoted by Lp(A). A set of configurations of P is said to be
recognizable if and only if it is accepted by some P-automaton.



From Multi to Single Stack Automata 121

The transition system 7 (P) associated with the generalized pushdown automaton
P is defined by the tuple (Conf(P), X, —) where — is the smallest transition re-
lation such that: For every p,p’ € P,~v € I',and a € X, if 6(p,v,a,p’) # 0,
then (p,yw) =7 (py(p/,uw) for all uw € d(p,7v,a,p’) and w € I'*. Let L(P) =
Tracestpy({(Po,70)}, F' x {€}) denote the language accepted by P.

Observe that pushdown automata can be seen as a particular class of effective GPA
where 6(p, vy, a, p’) is a finite set of words for all (p,~, a,p’).

On the other hand, we can show that the class of effective GPA is closed under
concatenation, union, Kleene star, projection, homomorphism, and intersection with a
regular language. However, effective GPA are not closed under intersection.

4 Computing the Set of Predecessors for a GPA

In this section, we show that the set of predecessors of a recognizable set of configu-
rations of an effective GPA is recognizable and effectively constructible. This is done
by adapting the construction given in [4]]. On the other hand, it is easy to observe that
the set of successors of a recognizable set of configurations of an effective GPA is not
recognizable in general.

Theorem 1. For every effective generalized pushdown automaton P, and every P-
automaton A, it is possible to construct a P-automaton recognizing Pre}(m (Lp(A)).

Proof. Let P = (P, X, I, po,v0,F) be an effective generalized pushdown au-
tomata and A = (Qu, I, A4, I4,F4) be a P-automaton. Without loss of gener-
ality, we assume that A has no transition leading to an initial state. We compute
Prei p)(Lp(A)) as the set of configurations recognized by a P-automaton Apre- =
(Qua, I, Aprex, La, F4) obtained from A by means of a saturation procedure. Initially,
we have Ay~ = A. Then, the procedure adds new transitions to A,;.-, but no new
states. New transitions are added according to the following saturation rule:

Foreveryp,p' € P,y€ I',anda € X, if §(p,v,a,p’) # 0, then for every q € Q 4
such that §(p, v, a, ") VL(Apre- ({0}, {q})) # 0, add the transition (p,~, q) to Apyex

It is easy to see that the saturation procedure eventually reaches a fixed point be-
cause the number of possible new transitions is finite. Moreover, the saturation pro-
cedure is well defined since the emptiness problem of the language (5 (p,v,a,p") N
L(Apre= ({p'}, {q}))) is decidable ( P is an effective GPA). Then, the relation between
the set of configurations recognized by Aprc+ and the set Prei ) (Lp(A)) is estab-
lished by Lemmal[Il

Lemma 1. Lp(Aper) = Pre*T(P)(Lp(A)). O

As an immediate consequence of Theorem [Il we obtain the decidability of the empti-
ness problem and the membership for effective generalized pushdown automata.

Theorem 2 (EMPTINESS, MEMBERSHIP). The emptiness and the membership prob-
lems are decidable for effective generalized pushdown automata.



122 MPF Atig

5 Ordered Multi-Pushdown Automata

In this section, we first recall the definition of multi-pushdown automata. Then ordered
multi-pushdown automata [6l1]] appear as a special case of multi-pushdown automata.

5.1 Multi-pushdown Automata

Multi-pushdown automata have one read-only left to right input tape and n > 1
read-write memory tapes (stacks) with a last-in-first-out rewriting policy. A transi-
tion is of the form ¢t = (¢,71,---,7m) —(¢, 1, ..., ). Being in a configuration
(p,w1, ..., wy,), which is composed of a state p and a stack content w; for each stack i,
t can be applied if both ¢ = p and the i-th stack is of the form ~;w} for some wy}. Taking
the transition and reading the a (which might be the empty word), the system moves to
the successor configuration (¢’, aqw?, . .., apwl,).

Definition 3 (Multi-pushdown automata). A multi-pushdown automaton (MPA) is a
tuple M = (n,Q, X, I', A, qo, Y0, F) where:

— n > 1 is the number of stacks.
Q is the finite non-empty set of states.
2 is the finite set of input symbols.
I is the finite set of stack symbols containing the special stack symbol 1.
- AC(Q X (I)™) x Xe x (Q x (I'™)™) is the transition relation such that, for all
((¢;715---5m)a, (¢ a1,...,an)) € Aandi € [1,n], we have:
o |ay| <2
o Ifvi# L thena, € (I'\ {L})*
o Ifvy; =1, then a; = &L for some o € I..
— ¢o € Q is the initial state.
- 70 € (I"\ {L}) is the initial stack symbol.
— F C Q is the set of final states.

The size of M, denoted by | M|, is defined by (n + |Q| + |X| + |I'|). In the rest of
this paper, we use (¢, V1, .-, Vn) —m{q’, a1, ..., ) to denote that the transition
((g,715---,vn) 0, (¢ a1, ..., ap)) is in A. Moreover, we denote by M(q,~, q’) the
multi-pushdown automaton defined by the tuple (n, Q, X, I', A, q, 7, {q'}).

A stack content of M is a sequence from Stack(M) = (I" \ {L})*{L}. A con-
figuration of M is a (n + 1)-tuple (q, w1, ..., w,) with ¢ € @, and wy,...,w, €
Stack(M). A configuration (¢, w1, ..., w,) is finalif¢g € Fandw; = --- = w,, = L.
The set of configurations of M is denoted by Conf (M).

The behavior of the MPA M is described by its corresponding transition system
7 (M) defined by the tuple (Conf (M), X, —) where — is the smallest transition re-
lation satisfying the following condition: if {q, V1, ..., Vn) ——m{q’, a1, ..., ay), then
(¢, M1W1,s - -+, Ynwp) i>T(M)(q’, Q1w . - ., @pwy) forallwsy, ..., w, € I'* such that
VIW, - - -, YnWy € Stack(M). Observe that the symbol | marks the bottom of a stack.
According to the transition relation, L can never be popped.

The language accepted (or recognized) by M is defined by the set L(M) = {7 €
2% (goyyoL, L,..., L) :T>*T(M) ¢ for some final configuration c}.



From Multi to Single Stack Automata 123

5.2 Ordered Multi-pushdown Automata

An ordered multi-pushdown automaton is a multi-pushdown automaton in which one
can pop only from the first non-empty stack (i.e., all preceding stacks are equal to ).
In the following, we consider only ordered multi-pushdown automata in normal form
with respect to the definitions in [[1]].

Definition 4 (Ordered multi-pushdown automata). An ordered multi-pushdown au-
tomaton (OMPA for short) is a multi-pushdown automaton (n,Q, X, I', A, qo, Y0, F')
such that A contains only the following types of transitions:

—{q, 7,6y €) (Y'Y €, €) for some q,q' € Q, v,y € (I'\ {L})
and a € Y.

- g, 7,6y €) {6 6,7 €, .. €) forsome q,q' € Q, v,y € (I'\{L})
and a € Y. (7' is pushed on one of stacks 2 to n).

- g, L, L6 €) =g Y L L L€ e, .. €) for some q, ¢ € Q,
v,y € (I'\{L}) and a € X (v is popped from one of the stacks 2 to n).

- g,V 6,6 —=(q¢€,...,€) forsome q,q € Q,v € (I'\{L}) anda € X,

We introduce the following abbreviations: (1) For n > 1, we call a MPA/OMPA a n-
MPA/n-OMPA, respectively, if its number of stacks is n, and (2) A MPA over X is a
MPA with input alphabet 2.

Next, we recall some properties of the class of languages recognized by n-OMPA.

Lemma 2 ([6]). If My and M are two n-OMPAs over an alphabet X, then it is pos-
sible to construct a n-OMPA M over X such that: (1) L(M) = L(M1)UL(My) and
M| = O(IMi| + [Ma]).

Lemma 3 ([6]]). Let X' be an alphabet. Given a n-OMPA M over X and a finite
state automaton A over X, then it is possible to construct a n-OMPA M’ such that:

L(M') = L(M) 1 L(A) and | M| = O(|M| - | A)).

6 The Emptiness Problem for a n-OMPA Is in 2ETIME

In this section, we show that the emptiness problem for ordered pushdown automata is
in 2ETIME. (We provide here a simpler proof of the 2ETIME upper bound than the one
given in [[1].) To this aim, we proceed as follows:

— First, we show that, given a n-OMPA M with n > 1, it is possible to construct
a GPA P with transition languages defined by (n — 1)-OMPAs of size O(|]M|?)
such that the emptiness problem of M can be reduced to the emptiness problem
of P. Let us present the main steps of this construction. For that, let us con-
sider an accepting run p of M. This run can be seen as a sequence of runs of
the form ¢1016209 - - - 0, such that pop operations are exclusive to the first
(n—1)-stacks (resp. the n-th stack) of M during the sequence of runs 1, <2, . . ., S,
(resp. 01,09, ...,0.,). Observe that, by definition, the first (n — 1)-stacks of M
are empty along the runs oy, 09, ..., 0,,. Moreover, at the beginning of the runs



124  MF Atig

$1,%2, - - -, Sm, the OMPA M is in some configuration ¢ where the first stack of M
contains just one symbol and the stacks from 2 to n — 1 are empty (i.e., ¢ of the
form (¢, vL, L,..., L, w)).

Then, we construct P such that the following invariant is preserved during the sim-
ulation of M: The state and the content of the stack of P are the same as the state
and the content of the n-th stack of M when its first (n — 1)-stacks are empty (and
so, L(P) # 0 if and only if L(M) # ). To this aim, a pushdown operation of
M that pops a symbol v from the n-th stack is simply simulated by a pushdown
operation of P that pops the symbol +. This implies that a run of the form o;, with
1 <4 < m, that pops the word u; from the n-th stack of M is simulated by a run of
P that pops the same word u;. Now, for every j € [1,m], we need to compute the
pushed word v; into the n-th stack of M during the run ¢; in order to be pushed also
by P. For that, let L(, -4 be the set of all possible pushed words v into the n-th
stack of M by a run (¢,vL,L,..., L, w) :T>*T(M) (¢',L,1,..., 1 uw) where
pop operations are exclusive to the first (n — 1)-stacks of M. We show that this
language L, o) can be defined by a (n — 1)-OMPA M’(q,~,q") over the stack
alphabet of M that: (1) performs the same operations on its state and (n — 1)-
stacks as the one performed by M on its state and its first (n — 1) stacks while
discarding the pop operations of M over the n'”* stack, and (2) makes visible as
transition labels the pushed symbols over the nt" stack of M. Now, to simulate the
runs; = (g5,v;L, L, ..., L, wj) %*T(M) (qév,J_,J_, ..., L ujw;) of M, P can
push into its stack the word u; € L(M'(gj,7;,4}))-

— Then, we prove, by induction on n, that the emptiness problem for the n-OMPA
M is in 2ETIME with respect to the number of stacks. For that, we assume that
the emptiness problem for (n — 1)-OMPAs can be solved in 2ETIME. This implies
that the GPA P (that simulates M) is effective (see Definition [2] and Lemma [3)).
Now, we can use Theorem 2] to prove the decidability of the emptiness problem
of the effective GPA P (and so, of the n-OMPA M). To show that the emptiness
problem of P and M is in 2ETIME, we estimate the running time of our saturation
procedure, given in section ] under the assumption that the emptiness problem for
(n — 1)-OMPAs can be solved in 2ETIME.

Let us give in more details of the proof described above.

6.1 Simulation of a n-OMPA by a GPA

In the following, we prove that, given an OMPA M, we can construct a GPA P, with
transition languages defined by (n — 1)-OMPAs of size O(|]M|?), such that the empti-
ness problem for M is reducible to the emptiness problem for P.

Theorem 3. Givenan OMPAM = (n,Q, X, I', A, qo,v0, F) withn > 1, it is possible
to constructa GPAP = (P, X', I, 8, po, L,{py}) suchthat P = QU{po,pr}, X' = Q,
and we have:

- L(M) # 0 if and only if L(P) # 0, and



From Multi to Single Stack Automata 125

— Forevery p1,p2 € P,a € X/, and~y € I, there is a (n — 1)-OMPA M, ~ a.p,)
R
over I' s.t. LMy, ~.ap)) = (6(p1,7,0,p2)) " and [Mp, +.a.p)| = O(M[?).

The proof of Theorem [is structured as follows. First, we define a (n — 1)-OMPA M’
over the alphabet I that: (1) performs the same operations on its state and (n—1)-stacks
as the one performed by M on its state and its first (n — 1) stacks while discarding the
pop operations of M on the n'”* stack, and (2) makes visible as transition labels the
pushed symbols over the n'" stack of M. Intuitively, depending on the initial and final
configurations of M’, the “language” of M’ summarizes the effect of a sequence of
pop operations of M over the first (n — 1)-stacks on the n*" stack of M. So, if we are
interested only by the configurations of M where the first (n — 1) stacks are empty, a
run of M can be seen as a sequence of alternations of a pop operation of M over the
n'" stack and a push operation over the n'" stack of a word in the “language” of M.

Then, we construct a generalized pushdown automaton P such that the state and the
stack content of P are the same as the state and the n‘"-stack content of M when the
first (n — 1) stacks of M are empty. In the definition of P, we use the (n — 1)-OMPA
M’ to characterize the pushed word on the n'" stack of M due to a sequence of pop
operations of M on the (n — 1) first stacks of M. This implies that the emptiness
problem for M is reducible to its corresponding problem for P

Constructing the (n — 1)-OMPA M’: Let us introduce the following the n-OMPA
M = (0,Q, X, I, A1 n[; qo, Y0, F) such that A ,,p = AN (Q x ()"t x
{e}) X Ze x (Q x (I'*)™)). Intuitively, My ,, is built up from M by discarding pop
operations of M over the n'” stack. Then, let M’ = (n — 1,Q, I, I', A, qo, 0, F) be
the (n — 1)-OMPA, built out from My ,,[, which (1) performs the same operations on
the first n—1 stacks of My ,,[, and (2) makes visible as transition label the pushed stack
symbol over the n*” stack of M1 - Formally, A’ is defined as the smallest transition
relation satisfying the following conditions:

-If (g7 V1,6 =y (@01, ano1,€) for some ¢,¢ € Q,
Y1y -y Yn—1 e I, a € XY, and ai,...,qn_1 € I'*, then
<Q7717~~'77n71>L}M’<q/7alv”~aan71>~

- If (g, v, 6., €) S ampy . (@56 69) forsome q,¢' € Q,a € X, andy,7' €
(C\{L}), then {q,v,¢€,...,€) — = (q € ... €).

Let us now give the relation between the effect of a sequence of operations of M ;|
on the nt"-stack and the language of M’.

Lemma 4. For every q,q € Q, and wi,wy,...,ws,w, € Stack(Mp ),
(g, wr, ..., wy) :T>*T(M[1.n[) (¢, wy,...,wl,) for some T € X* if and only if there is
w € I'* such that (q, w1, ..., wp_1) :u>*T(M,) (¢, wh,...,w_) and w!, = ulw,.

Constructing the GPA P: We are ready now to define the generalized pushdown
automaton P = (P, X", I',0,po, L, {ps}), with P = Q U {po,ps} and X’ = (), that
keeps track of the state and the content of the n-th stack of M when the first (n — 1)
stacks are empty. Formally, P is built from M as follows: For every p,p’ € P, q € X/,
and v € I', we have:



126  MF Atig

-Ifp =po.v = L.g = qoand p' € Q, then 6(p,7,q,p') = {ufL | u €
LM (g0, 70, 7)) }-

Ifpe F,y=_1,qg=¢andp = py, thend(p,~,q,p") = {¢}.

Ifp,p' € Qv # L and g € Q, then 6(p,7,4,p') = U e pr (LM (¢,7,0)))
where I" ={v' €' |Jae€ X, (p, L,..., L,y) “—m{q, vy L, L,..., L e}
Otherwise, 6(p,~, q,p’) = 0.

R

Observe that for every p1,ps € P, q € Q., and v € I', we can construct an
R

(n — 1)-OMPA M, ~.q.po) OVer I' such that L(M,, +.4p.)) = (5(p1,7,q,p2))

and M, ~.q.p.)| = O(|M|?). This can be easily proved using Lemma[2l

To complete the proof of Theorem[3] it remains to show that the emptiness problem
for M is reducible to its corresponding problem for P. This is stated by Lemmal[3l

Lemma 5. L(M) # 0 if and only if L(P) # 0.

6.2 Emptiness of a n-OMPA Is in 2ETIME
In the following, we show that the emptiness problem for a n-OMPA is in 2ETIME.

Theorem 4. The emptiness problem for a n-OMPA M can be solved in time

n

O(\M|2d ) for some constant d.

Proof. Let M = (n,Q, X, I', A, qo,v0, F) be a n-OMPA. To prove Theorem [ we
proceed by induction on n.

Basis. n = 1. Then, M is a pushdown automaton. From [4]], we know that the emptiness
problem for M can be solved in time polynomial in | M.

Step. n > 1. Then, we can apply Theorem [3] to construct a generalized pushdown
automaton P = (P, Q, I, 6,po, L, {ps}), with P = Q U {po, ps}, such that:

- L(P) # () if and only if L(M) # (), and
— Forevery p1,p2 € P,a € Qc,and y € I, there is a (n — 1)-OMPA My, 4 »,)

R
over I' s.t. L(Mp, ~.aps)) = (6(p1,7,a,p2))" and [Mp, 5 0.0 = O(M?).

It is easy to observe that P is an effective generalized pushdown automaton. This is
established by the following lemma.

Lemma 6. P is an effective generalized pushdown automaton.

From Theorem 2] Theorem [3] and Lemma [6] we deduce that the emptiness problem
for the n-OMPA M is decidable. Let us now estimate the running time of the decision
procedure. From Theorem 2] we know that the emptiness problem of P is reducible to
compute the set of predecessors of the configuration (py, €) since L(P) # 0 if and only
if (po, L) € Prep) ({ps} x {€}).

Let A be the P-automaton that recognizes the configuration (p¢, €) of P. It is easy
to see that such P-automaton A, with | A| = O(|]M)|), is effectively constructible. Now,



From Multi to Single Stack Automata 127

we need to analysis the running time of the saturation procedure (given in section M)
applied to A. For that, let Ay, ..., .A; be the sequence of P-automaton obtained from
the saturation procedure such that Ag = A and Lp(A;) = Prezpy(Lp(A)). Then,
we have i = O(|M|?) since the number of possible new transitions of A is finite.
Moreover, at each step 7, with 0 < j < 4, we need to check, for every ¢ € Q 4,
p,p) € P,y eI,anda € Q., whether L(A;)({p'}, {q}) N d(p,~,a,p") # 0.

Using Lemma 3] we can construct, in time polynomial in |[M], a (n — 1)-OMPA
M; such that L(M(, . ) = (L(A){p'}, {g}) " N L(M(p.5.0,)) and
| (0, %a,p,)\ < ¢(|M|?) for some constant c. Now, we can apply the induction hy-
pothesis to M', and we obtain that the problem of checking whether L(M/, ) #

q,0,7,a,p")
i

0 can be solved in time O((c |M\3)2d(n71)). Putting together all these equations, we
obtain that the problem of checking whether (po, L) € Prez(py({ps} x {€}) can be
solved in time O (| M3 M?(c|M |3y24 7 ). By taking a constant d as big as needed,
we can show that the problem of checking whether L(M) # ) can be solved in time
O(IMP™). O

7 Bounded-Phase Visibly Multi-Pushdown Automata

In this section, we recall the definition of visibly multi-pushdown automata [16]], an-
other subclass of MPA, where an action is associated with a particular stack oper-
ation. An action can be a push, pop, or internal action. Formally, a visibly multi-
pushdown automaton (VMPA for short) is a tuple ¥V = (M, type) where M =
(n,Q, X, T, A, qo,7v0, F) is a MPA and type : X — ({Push, Pop} x [1,n]) U {Int}

is a function satisfying, for all transitions (¢, 71, - - -, ¥n) ——=m (¢, a1, .. ., an):
- a#e,
- if type(a) = (Push,i) for some i € [I,n],theny; = ... = v, = €, a; €

(I'\ {L}),and a; = eforall j € [1,n]\ {i},

— if type(a) = (Pop,i) for some i € [1,n], theny; € I', a; € {L} U {e}, and
v; = a; =eforall j € [1,n]\ {3}, and

— if type(a) = Int, then v, = a; = e forall i € [1,n].

If, in a VMPA, we restrict the number of phases, where in one phase pop opera-
tions are exclusive to one stack, then we obtain bounded-phase visibly multi-pushdown
automata. A bounded-phase visibly multi-pushdown automaton (BVMPA for short) is
a triple B = (M, type,7) where M = (n,Q, X, I, A, qo,v, F) is a MPA, 7 is a
word over [1,n], and (M, type) is a VMPA. For every i € [1,n], let X; = {a €
Y| #j # i, type(a) = (Pop,5)}. The language accepted by B is defined as follows:
L(B) = LIM) N (X7 1y 27 ) -+ 27 1)

In the rest of this paper, we use a 7-phase n-BVMPA over X to denote a BVMPA of
the form (M, type, 7) with M is a n-MPA over Y.

Next, we show that the class of languages accepted bounded-phase visibly multi-
pushdown automata is closed under intersection with a regular languages.



128  MF Atig

Lemma 7. Let X be an alphabet. Given a T-phase n-BVMPA B = (M, type, 1)
over X and a FSA A over X, it is possible to construct a T-phase n-BVMPA B' =
(M, type, ) such that L(B") = L(B) N L(A) and |M'| = O(|M||A]).

Proof. Similar to the proof of Lemmal[3] O

8 The Emptiness Problem for a 7-Phase n-BVMPA Is in 2ETIME

In this section, we show that the emptiness problem for bounded-phase visibly multi-
pushdown automata is in 2ETIME with respect to the length of 7. To this aim, we
proceed as follows: First, we prove that the emptiness for a 7-phase n-BVMPA is re-
ducible to the emptiness problem for a generalized pushdown automaton with transition
languages defined by 7’'-phase n-BVMPAs with 7 = 7/ - 7(|7]). Then, we use the sat-
uration procedure, given in Section [ to prove, by induction on |7|, that the emptiness
problem for a 7-phase n-BVMPA is in 2ETIME.

For the rest of this section, let us fix a BVMPA B = (M, type, 7) where M =
(n,Q, X, T, A, qo,v0, F) is a MPA. We assume w.l.o.g that ¥’ N I" = (). For every
i€[l,n],let X; = {a € ¥|Pj # i, type(a) = (Pop, j)}. Moreover, let us assume
that k = 7(|7|) and 7 = 7'k.

8.1 Simulation of a 7-Phase n-BVMPA by a GPA

In the following, we prove that it is possible to construct a GPA P such that the empti-
ness problem for B is reducible to the emptiness problem for P.

Theorem 5. Assume that k > 1. Then, it is possible to construct a GPA P =
(P, X, I,6,po, L,{ps}) such that P = Q U {po,pys} and we have:
— L(B) # 0 if and only if L(P) # 0, and

— Foreveryp,p' € P,a € X, and~ € I, there is a 7'-phase n-BVMPA B(;, . o /) =
(Mpy.ap), type', 7') over X' such that I' C X', | My .01 = O(M]?), and

3,y ap) = (LBpapy)r)) { LY.

Proof. By definition, L(B) # 0 if and only if there are ¢ € F and 0; € 22

)
for all j € [1,|]] such that p = (qo,v0L,L,...,L) %*T(M) (¢, L,...,1).
Thus, the emptiness problem for B can be reduced to the problem of check-
ing whether there are ¢ € Q, wi,...,w, € Stack(M), ¢ € F, and 0; €
Xy for all j o€ [1,[r]] such that: (1) wy = L for all I € [I,n] and

l # k’ (2) p1 = (QOaWOJ—aJ—a"'vJ—) %;(M) (q/7'lU1,.-.,’ll}n), and (3)

p2 = (¢ wi,...,wy) &V‘T(M) (¢, L,...,L). Observe that at the configuration

(¢’,w1,...,wy,) only the content of the k-stack of M can be different from L. More-
over, during the run p, pop and push operations are exclusive to the k-th stack of M.
So, in order to prove Theorem[3] it is sufficient to show that all possible contents wy, of
the k-stack of M reached by the run p; can be characterized by a language accepted



From Multi to Single Stack Automata 129

by a 7'-phase n-BVMPA B, = (Mg, type’,7’") over X’ such that I’ C X' (ie.,
wy € ((L(Bg)Ir)) R{J_}). Once this is done, we can construct a GPA P that simulates
B. The automaton P proceeds as follows: First, it pushes in its stack the content wy, of
the k-th stack of M reached by the run p; using the language of B/. Then, P starts to
simulate the run po by performing the same operations on its state and its stack as the
ones performed by M on its state and its k-th stack. This is possible since along the run
p2 pop and push operations of M are exclusive to k-th stack. Finally, P checks if the
current configurations is final and moves its state to the final state py.

Constructing the 7’'-phase n-BVMPA B,: In the following, we show that it is
possible to construct, for every ¢ € @, a 7'-phase n-BVMPA B, such that wy, €
((L(Bq/)\p))R{J_} if and only if there are o; € X7 for all j € [L,|7|[ such

TLO(r| 1),

that (qo,voL,L,..., L) —TM (¢',wy,...,w,) where w; = L for all
I € [1,n] and I # k. For that, let us define the n-MPA M’ that contains all the
transitions of M and that have the ability to push the new fresh symbol f instead of
any possible pushed symbol by M into the k-th stack. Moreover, the symbol f can be
popped from the k-th stack at any time by M’ without changing its state. Formally, M’
is defined by the tuple (n,Q, X", I"", A’ qo, Y0, F') where I = ' U {#} is the stack
alphabet, X/ = X U I" U {f} is the input alphabet, and A’ is the smallest transition
relation satisfying the following conditions:

- ACA.
- If {q1,71,-- V) —m{q,a1,...,a,) and type(a) = (Push,k), then
(q1,715 -, Vn) %Mq/ (g2,04,...,a)) with o) = oy forall I # k and o, = #.

— Foreveryq € Q, (¢, 71, ,Yn) LMQ, (q,af,...;al)ifyy = eforall | # k,
v =fanda; =... =, =€

Let B’ = (M, type’, 7') be a /-phase n-BVMPA where the function type’ : X' —
({ Push, Pop} x [1,n])U{Int} is defined as follows: type’(a) = type(a) forall a € X,
type’ (8) = (Pop, k), and type’(y) = (Push, k) forall v € I

Let =5 = {a € X' |type’(a) = (Pop,k)}. Then, from Lemma [7] it is possible
to construct, for every ¢, a 7'-phase n-BVMPA By = (M, type’,7’) from B’ such
that L(By) = L((M’(q0,70,4"), type’, 7)) N (XU I')*{§}*(X" \ =x)*. The relation
between B, and M is given by Lemma[8 which can be proved by induction.

Lemma 8. For every ¢ € Q, wy, € ((L(By)|r)®{L}) iff there are o; € 27 for

g1 0(r|-1)

all j € [1,|7|[ such that (g0, oL, L,..., L) :>*T(M) (¢, wi,...,wy,) where
wy =L foralll € [1,n] andl # k.

Constructing the GPA P: Formally, the transition function ¢ is defined as follows: for
every p,p’ € P,y € I',and a € X, we have:

- Initialization: d(p, v, a,p’) = (L(By)|r){L}if p = qo.»' € Q,v = L, and
a = €. This transition pushes in the stack of P the content of the k-th stack of M
reached by the run p;.



130 MF Atig

— Simulation of a push operation on the k-th stack of M: §(p,v,a,p’) = {arv]|
Dy Y15+ s Yn) ——m P a1, ... an)} if p,p’ € Q, and a € Xy such that
type(a) = (Push, k).

— Simulation of a pop operation on the k-th stack of M: §(p,v,a,p') =
{ak | <p7717~~'77n> L)M<p/va17"'aan>v’y = 'Vk} lfpvp/ € Q and a € Zk
such that type(a) = (Pop, k).

— Simulation of an internal operation of M: é(p,v,a,p’) = {7} if p,p’ € @ and
a € Xy, such that type(a) = Int.

- Final configuration: 6(p, v, a,p’) = {e}ifpe F,p' =ps,y=L,anda = e.

— Otherwise: 6(p, v, a,p’) = 0.

Then, it is easy to see that L(83) # () if and only if L(P) # (. a

As an immediate consequence of Theorem[3] we obtain that the emptiness problem for
a 7-phase n-BVMPA is in 2ETIME.

Theorem 6. The emptiness problem for a BVMPA B = (M, type, T) can be solved in
time O(|.M |2dm ) for some constant d.

The proof of Theorem[f]is similar to the proof of Theorem[4]

9 Conclusion

In this paper, we have shown that the emptiness problem for both OMPA and BVMPA
can be reduced to the one for the class of effective generalized pushdown automata. We
provide here simple algorithms for checking the emptiness problem for each of these
models and proving their 2ETIME upper bounds.

Recently, A. Seth has showed in [15] that the set of predecessors of a regular set of
configurations of a BVMPA is a regular set and effectively constructible. We believe
that our automata-based saturation procedure for computing the set of predecessors for
an effective GPA can be used to show (by induction on the number of stacks) that the
set of predecessors of a regular set of configurations of an OMPA is a regular set and
effectively constructible (which may answer to a question raised in [[15]]).

It is quite easy to see that the model-checking problems for omega-regular proper-
ties of effective generalized pushdown automata are decidable. This can be done by
adapting the construction given in [4]. This result can be used to establish some decid-
ability/complexity results concerning the model-checking problems for omega-regular
properties of both OMPA and BVMPA.

References

1. Atig, M.F,, Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-
complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 121-133. Springer,
Heidelberg (2008)

2. Atig, M.F.,, Bouajjani, A., Touili, T.: On the reachability analysis of acyclic networks of push-
down systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
356-371. Springer, Heidelberg (2008)



10.

11.

12.

13.

14.

15.

16.

17.

18.

From Multi to Single Stack Automata 131

. Bouajjani, A., Esparza, J.: Rewriting models of boolean programs. In: Pfenning, F. (ed.) RTA

2006. LNCS, vol. 4098, pp. 136-150. Springer, Heidelberg (2006)

. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-

tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135-150. Springer, Heidelberg (1997)

. Bouajjani, A., Miiller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks

of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp- 473-487. Springer, Heidelberg (2005)

. Breveglieri, L., Cherubini, A., Citrini, C., Crespi Reghizzi, S.: Multi-push-down languages

and grammars. International Journal of Foundations of Computer Science 7(3), 253-292
(1996)

. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf

der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194-205. Springer,
Heidelberg (1996)

. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis.

In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14-30. Springer, Heidelberg
(1999)

. Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decidability of

pairwise cfl-reachability for threads communicating via locks. In: LICS, pp. 27-36. IEEE
Computer Society, Los Alamitos (2009)

Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential anal-
ysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37-51. Springer, Hei-
delberg (2008)

Qadeer, S.: The case for context-bounded verification of concurrent programs. In: Havelund,
K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 3-6. Springer,
Heidelberg (2008)

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93—107. Springer, Heidel-
berg (2005)

Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst. 22(2), 416—430 (2000)

Reps, T.W., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-
procedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 189-213.
Springer, Heidelberg (2003)

Seth, A.: Global reachability in bounded phase multi-stack pushdown systems. In: CAV
2010. LNCS. Springer, Heidelberg (2010)

La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In:
Proceedings of LICS, pp. 161-170. IEEE, Los Alamitos (2007)

La Torre, S., Madhusudan, P., Parlato, G.: An infinite automation characterization of dou-
ble exponential time. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
33-48. Springer, Heidelberg (2008)

La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent reachability
to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 477-492. Springer, Heidelberg (2009)



A Geometric Approach
to the Problem of
Unique Decomposition of Processes*

Thibaut Balabonski! and Emmanuel Haucourt?

! Laboratoire PPS, Université Paris Diderot and CNRS, UMR 7126
thibaut.balabonski@pps. jussieu.fr
2 CEA, LIST, Gif-sur-Yvette, F-91191, France
emmanuel .haucourt@cea.fr

Abstract. This paper proposes a geometric solution to the problem of
prime decomposability of concurrent processes first explored by R. Milner
and F. Moller in [MMO93]. Concurrent programs are given a geometric
semantics using cubical areas, for which a unique factorization theorem is
proved. An effective factorization method which is correct and complete
with respect to the geometric semantics is derived from the factorization
theorem. This algorithm is implemented in the static analyzer ALCOOL.

Keywords: Concurrency, Milner problem, Decomposition of processes,
Geometric semantics.

1 Introduction: Parallel Programming Problem

This paper aims at introducing some new static analysis technology for concur-
rent programs. The work presented here gives a new insight into the problem of
decomposition of processes, which was first explored by R. Milner and F. Moller
in [MMO93]. The main new results are an algorithm maximally decomposing con-
current programs into independent processes (Section F) and the proof that this
prime decomposition is unique in the considered class of programs (Theorem [2)).
They are derived from a study of algebraic properties of cubical areas.

Given an associative and commutative operator || for parallel composition of
two processes (with the empty process as unit), decomposing a concurrent pro-
gram P into a multiset { Py, ..., P,,} such that P = P ||...|| P, and the P;s are inde-
pendent has several interests. For instance the decomposition may be relevant for
the allocation of processors to subprograms. Another important concern is the
static analysis of concurrent programs, whose complexity grows exponentially
with the number of concurrent processes: finding independent subprograms that
can be analyzed separately could dramatically decrease the global complexity

* This work has been partially supported by Agence Nationale pour la Recherche via
the project PANDA (Parallel and Distributed Analysis) ANR-09-BLAN-0169-02.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 132 2010.
© Springer-Verlag Berlin Heidelberg 2010



A Geometric Approach to the Problem of Unique Decomposition 133

of the static analysis. Hence this paper aims at finding the finest decomposition
(and proving its uniqueness) for a wide class of concurrent programs.

Let us first take a look at a nontrivial example of independent processes,
in the so-called PV language introduced by E.W. Dijkstra [Dij6§| as a simple
framework for the study of concurrency with shared resources. The only instruc-
tions are P(name) and V(name, where name is an identifier which refers to
a resource. The idea is to have some common pool of resources which can be
taken (with P) and released (with V') by concurrent processes. The resources
are formalized by semaphores which, depending on their arity, can be held si-
multaneously by a certain number of processes (arity n allows at most n — 1
simultaneous processes).

Now suppose c¢ is the name of a ternary semaphore, which means it can be
held by at most two processes, and a, b are the names of binary semaphores, also
called mutex for mutual exclusion.

Ezample 1.

Y :=m = Pa.PcVcVa
|| m2 = Pb.Pc.VeVb
|| 73 = Pa.Pc.VeVa
|| 74 = Pb.Pc.VeVb

A naive syntactic analysis would stamp this program as indecomposable since
all processes share the resource ¢, but the following finer analysis can be made:
thanks to mutex a (respectively b), the processes w1 and 73 (respectively w5 and
m4) cannot both hold an occurrence of the resource ¢ at the same time. Then
there are never more than two simultaneous requests over ¢, which means that
the instructions Pc and V¢ play actually no role in determining the semantics of
the program. And without ¢, X' can be split in two independent systems (they use
disjoint resources). Basically, this example is based on the fact that semaphores
are not the real resources, but mere devices used to guard their access. And it
may be that some guards are redundant.

This work is based on a geometric semantics for concurrency. The semantics
for PV programs was implicitly given in [Dij6§], then explicited by Carson et
al.[CR8T]. Roughly speaking, the instructions of a process are pinned upon a 1-
dimensional “directed” shape, in other words track along which the instructions
of the program to execute are written. If IV sequential processes run together, one
can consider their N instruction pointers as a multidimensional control point.

Although we have made the construction explicit for PV programs only, the
result applies to any synchronisation or communication mechanism whose ge-
ometric interpretation is a so-called cubical area (the notion is formalized in
Section B.H). See for instance [GHO5| for the geometric semantics of synchronisa-
tion barriers, monitors and synchronous or asynchronous communications (with
finite or infinite message queues): their geometrical shape is the complement of
an orthogonal polyhedron [BMP99, [Tha09], which is a special case of cubical
area.

! P and V stand for the dutch words “Pakken” (take) and “Vrijlaten” (release).



134 T. Balabonski and E. Haucourt

Outline of the paper

The paper is organized as follows. Section 2 provides the mathematics of the
geometric semantics, detailed for PV programs. Section 3 establishes the link
between algebraic properties of the semantics and independence of subprograms,
and then states and proves prime decomposability theorems for algrebraic frame-
works encompassing the geometric semantics (Theorems [[l and [P]). Section 4
describes the corresponding algorithm and implementation as well as a detailed
example and some benchmarks.

2 The Geometric Semantics

The geometric semantics of a PV program is a subset of the finite dimensional
real vector space whose dimension is the number N of processes running con-
currently: then each process is associated with a coordinate of RY. Yet given a
mutex a, the instructions P(a) and V(a) that occur in the k' process should
be understood as opening and closing parentheses or more geometrically as the
least upper bound and the greatest lower bound of an interval I, of R. The for-
bidden area generated by a mutex a is thus the finite union of hyperrectangles@
of the following form (with k < k')

Rt x - xR x I, xRT x--- xRt x Iy x R" x--- x R*
~ ~ -
product of N terms

For example, P(a) .V(a) || P(a).V(a) is a pro-

gram written in PV language. Assuming that a Va9t

is a mutex (semaphore of arity 2), its geometric 2
model is (RT)2\[1,2[2. Intuitively, a point p in P(a)

[1,2[2 would correspond to the situation where i
both processes hold the semaphore a, which is g /:\

forbidden by the semantics of mutices.
In the sequel of this section we formalize the PV language syntax as well as the
construction of the geometric semantics.

Denote the positive half-line [0, +o0o[ by R*. For each a € N\{0, 1} let S, be
an infinite countable set whose elements are the semaphores of arity « of the PV
language. A PV process is a finite sequence on the alphabet

A:={P(s),V(s) | s € US(,}

a>2

and a PV program is a finite (and possibly empty) multiset of PV processes.
The parallel operator then corresponds to the multiset addition therefore it is
associative and commutativdd. Given a semaphore s and a process 7, the se-

2 However we will more likely write “cube” instead.

3 The collection of multisets over a set A forms a monoid which is isomorphic to the
free commutative monoid over A. The first terminology is usually used by computer
scientists while mathematicians prefer the second one. Anyway it will be described
and caracterized in the Section 3.



A Geometric Approach to the Problem of Unique Decomposition 135

quences (x)ren and (yx)ren are recursively defined as follows: set y_1 = 0
and

— a2 =min{n € N | n > y,_y and m(n) is P(s)}
— yp =min{n € N | n >z and w(n) is V(s)}

with the convention that min ) = oo, m(n) denotes the n™ term of the process
7 and its first term is 7(1). Then, the busy area of s in 7 i

Bs(ﬂ—) = U [l'kayk[

keN

Actually this description implies some extra assumptions upon the way instruc-
tions are interpreted. Namely a process cannot hold more than one occurrence of
a given resource. Thus a process already holding an occurrence of a semaphore
s ignores any instruction P(s), and similarly a process holding no occurrence of
s ignores any instruction V(s). Then denote by x7T : R — R the characteristic
function of By defined by

x| lifz € By(nm)
X5 (@) = {O otherwise
Because the sequence 7 is finite, there exists some k such that zp = oo and for
any such k and any k&’ > k, one also has xy/ = oco. In particular, if the instruction
P(s) does not appear in m, then Bg(w) is empty and x7 is the null map. The
geometric model of a PV program with N processes running concurrently is a
subpospace of [0, +oo["V defined as follows:
- Call IT = (m,...,7n) the program to model.
- Given a semaphore s of arity a define the forbidden area of s in II as

F, = {?6[0,+00[N|>?;-?2a}

N
where 7 = (z1,...,2n), Xo = (X™,...,x™) and Xs - = Y. x%(x;). The
i=1

value Y, - @ indicates how many occurrences of the semaphore s are held when
the instruction pointer is at position = . Note that Fy is a finite union of hyper-
rectangles which may be empty even if s appears in the program II. In the end,
the forbidden area of the program I is the following union over S the union
of all the sets S,.

F:=|JF

seS

Because there are finitely many resource names s appearing in a PV program,
there are finitely many nonempty sets Fs. Hence the previous union is still a
finite union of hyperrectangles. The state space or geometric model of I7 is

% Including the greatest lower bound and removing the least upper bound is the math-
ematical interpretation of the following convention: the changes induced by an in-
struction are effective exactly when the instruction pointer reaches it.



136 T. Balabonski and E. Haucourt

then [0, +oo[V\F, and is denoted by [IT]. Remark that the geometric model is
also a finite union of hyperrectangles.

In other words, the state space of II is the set of positions of the “multi-
dimensional instruction pointer” for which the number of occurrences of each
semaphore s is strictly below its arity «. If IT is made of N concurrent process,
this space is a N-dimensional euclidean space with (cubical) holes. As an exam-
ple, Figure [[] shows the construction of the geometric model of the PV program
P(a)P(D)V(D)V (a) || P(b)P(a)V (a)V (b) (refered to as the swiss flag). Figure 2
gives a simplified version of Example [Tl fitting in three dimensions.

V(b) ; V(b)
V(@) ' V(a)
a Fb F
P(a)q S P(a)q  *em
P(b) - P(b) -
I I T
® O GG OECEICEO

Fig. 1. Construction of a geometric model: the swiss flag

Y*:=m = Pa.PcVcVa
|m =  PcVe
|| 73 = Pa.Pc.Vc.Va

Fig. 2. Example in three dimensions

Intuitively, the graphs pictured here correspond to the essential components of the state
space, see [GHO7] for developments on this topic. The little cube on the left picture is
the forbidden area of the semaphore ¢, which is contained in the forbidden area of the
mutex a (in the full —and 4D— example X' the forbidden area of ¢ is contained in the
union of the forbidden areas of a and b).

3 The Problem of Unique Decomposition

Now that the geometric semantics of programs is defined, let us refocus on the
main goal: finding the independent parts of a concurrent program. Hence the
question: what does independence mean in this geometrical setting?



A Geometric Approach to the Problem of Unique Decomposition 137

3.1 Parallel Composition vs. Cartesian Product

A general definition has to be given for independence: say a program IT is
independent from another program I’ when its behaviour is unaffected by par-
allel composition with II’, whatever the way II’ is executed. That means, the
presence of IT’, as well as its instruction pointer, has no effect on the semantics of
I1. A geometric translation of this assertion is: in the geometric model of IT||IT’,
the cylindelﬁ over any state of IT’ (i.e. the subspace of all points with given fix
coordinates for the IT" component) is equal to the model of IT.

Hence two programs IT and I’ of geometric models [IT] and [II'] are inden-
pendent if and only if the geometric model [IT||II'] of their parallel composition
is isomorphic to the cartesian product [II] x [/I']. Thus the decompositions of
a program correspond to the factorizations if its geometric model (with respect
to the cartesian product). The next subsection reminds some algebraic settings
and results needed for a notion like factorization to make sense.

3.2 Free Commutative Monoids

The reader not familiar with this notion can refer for instance to [Lan02]. Let
M be a commutative monoid. Any element of M which has an inverse is called
a unit. A non-unit element x of M is said to be irreducible when for all y and
z in M, if x = yz then y or z is a unit. The set of irreducible elements of M is
denoted by I(M).

For any elements x and y of M, say x divides y when there is an element z’
of M such that zz’ = y. A non-unit element x of M is said to be prime when
for all y and z in M, if x divides yz then x divides y or x divides z. The set of
prime elements of M is denoted by P(M).

Given a set X, the collection of maps ¢ from X to N such that {z € X | ¢(x) #
0} is finite, together with the pointwise addition, forms a commutative monoid
whose neutral element is the null map: we denote it by F(X). Yet, given any
subset X of a commutative monoid M, the following map

%X . F(X) M
&1 ~ [T x¢®
zeX

is a well-defined morphism of monoids. A well-known result asserts that the
following are equivalent [Lan02]:

. (M
1. The mapping 451\2 )

2. The set I(M) generatedd M and I(M)=P(M)

3. Any element of M can be written as a product of irreducible elements in a
unique way up to permutation of terms (unique decomposition property).

is an isomorphism of monoids

5 Categorists would write “fibre” instead of “cylinder”.

8 X C M generates M when all its elements can be written as a product of elements of
X. The product of the empty set being defined as the neutral element. Remark then
that “I(M) generates M” implies that the only unit of M is its neutral element.



138 T. Balabonski and E. Haucourt

If M satisfies any of the preceding assertions, then it is said to be a free commu-
tative monoid. Two standard examples of free commutative monoids are given
by the set of nonzero natural numbers N\{0} together with multiplication (the
unit is 1 and the irreducible elements are the prime numbers) and the set of
natural numbers N together with addition (the unit is 0 and the only irreducible
element is 1).

3.3 Cartesian Product and Commutation

The geometric model of a concurrent program is a set of points in an euclidean
space of finite dimension. Each point is represented by the tuple of its coor-
dinates so a geometric model is a set of tuples (whose length corresponds to
the dimension of the space). The cartesian product on such structures is the
following:

X xY = { ($17"'7$nay17"'7yk) ’ (.Tl, axn) € X’ (ylv"'vyk) ey }

However, this operator is not commutative whereas the parallel composition of
programs should be so. Thus, in order to model parallel composition, we make
the operator x commutative by allowing the permutation of coordinates. In the
next subsection we prove a freeness theorem for a monoid generalizing this idea:
tuples of (real) coordinates are replaced by words over an arbitrary (potentially
infinite) alphabet. We will define a free commutative monoid of which every
geometric model of a PV program is an element. From the decomposition of
such models we will deduce the processes factorization.

3.4 Homogeneous Sets of Words

Let A be a set called the alphabet. The noncommutative monoid of words A*
consists on the finite sequences of elements of A together with concatenation.
Given words w and w’ of length n and n’, the word w * w’ of length n + n’ is
defined by
(w*w’)k:{wk if 1<k<n
wp_, if n+l<k<n+n

The length of a word w is also refered to as ¢(w). A subword of w is a word of
the form w o ¢ where ¢ is a strictly increasing map {1,...,n} — {1,...,¢(w)}.
Hence a subword of w is also entirely characterized by the image of the increasing
map ¢ i.e. by a subset of {1,...,¢(w)}. If A is the image of ¢ then we write wo A
instead of w o ¢.

The n't symmetric group &,, (the group of permutations of the set {1,...,n})
acts on the set of words of length n by composing on the right, that is for all
o € 6,, and all words w of length n we have

o w:i=woo = (Wea1) " We(n))
The concatenation extends to sets of words. Given S, S’ C A*, define
SxS :={w*w |weS;uw €S}

Remark that this concatenation of sets corresponds to the cartesian product.



A Geometric Approach to the Problem of Unique Decomposition 139

The set P(A*) of subsets of A* is thus endowed with a structure of non-
commutative monoid whose neutral element is {e}: the singleton containing the
empty word. Note that the empty set () is the absorbing element of P(A*), that
is for all S C A* we have

PxS=85«0=10

A subset S of A* is said to be homogeneous when all the words it contains
share the same length n. By analogy with the geometric construction, n is called
the dimension of S and denoted by d(.S). The symmetric group &,, acts on the
set of homogeneous sets of dimension n in a natural way by applying the same
permutation to all words:

c-S:={c-w|weS}

The homogeneous subsets of A* form a sub-monoid P (A*) of P(A*) and
can be equipped with an equivalence relation as follows: write S ~ S’ when
d(S) = d(5’) = n and there exists ¢ € &,, such that S’ = ¢-5. Moreover, for two
permutations ¢ € &,, and ¢’ € &,,/, define the juxtaposition o ® ¢/ € &,
as:

/ L o(k) if 1<k<n
o ®a (k)= { (a’(k;—n)) +n if n+l<<k<n+n

A Godement-like exchange law is satisfied, which ensures that ~ is actually a
congruence:

(c-S)x(0c-S)=(c®d) (Sx5)

Hence the quotient Pp(A*)/~ from which the absorbing element has been re-
moved is still a monoid called the homogeneous monoid over A and denoted
by H(A). Moreover the homogeneous monoid is commutative and its only unit
is the singleton {e}. Remark that if the alphabet A is a singleton (resp. the
empty set) then the homogeneous monoid H(A) is isomorphic to (N, +,0) (resp.
the null monoid). From now on the elements of Py (A*) are denoted by capital
letters S, S’, Sk (and so on) while capital letters H, H', Hy, are used to denote
the elements of H(A). As they are ~-equivalence classes, the elements of H(A)
are subsets of Py (A*). In particular for any H € H(A) and any S,5" € H we
have d(S) = d(S’) so we can soundly define the dimension of H as d(H) := d(S).

Theorem 1. For any set A the homogeneous monoid over A is free.

Proof. We check the characterizing condition 2 of the Section 3.2. From the
equality d(H =« H') = d(H) 4+ d(H’) and a straightforward induction on the
dimension of elements of H(A) we deduce they can all be written as products of
irreducible elements: I(H(A)) generates H(A).

Now suppose H is an irreducible element of H(A) which divides Hy * Hz and
pick S, S; and S5 respectively from the equivalence classes H, H; and Hs. Define
n = d(5), n1 = d(S1) and ny = d(S2), and remark that n < n; + na. There
exists o € &, and some S3 such that o - (51 * S3) = S % S3 in Pp(A*). Suppose



140 T. Balabonski and E. Haucourt

in addition that H does not divide Hy nor Ha, then we have Ay C {1,...,n;}
and Ay C {1,...,n2} s.t. Ay # 0, A2 # 0 and o(A; U A}) = {1,...,n} where
A5 :={a+n1 | a € As}. Then we have a nontrivial factoring S = S/ % S5 where

S = {woA1|weSl} and S} := {woA2|w652}

This contradicts irreducibility of H. Hence H divides Hi or Hy and thus H is
prime. So any irreducible element of H(A) is prime: I(H(A)) C P(H(A)).

Finally, suppose H is a prime element of H(A) such that H = H; * Hs. In
particular H divides Hy * Ho, and since H is prime it divides H; or Hs. Both
cases being symmetrical, suppose H divides H;. In particular d(H) < d(H;). On
the other hand d(H) = d(H1) + d(Hz), and thus d(Hz) < 0. Dimensions being
natural numbers, we deduce that d(Hz) = 0 and then that Hy = {¢}. Hence H
is irreducible, and I(H(A)) = P(H(A)).

A useful feature of the construction is that any binary relation ¢ over Pp(A*)
which is compatible with the product and satifies

VS, 5" € Pu(A*) (d(S) = d(S") and 50 5" = Vo € Sys) (0-5) o (a-5))

can be extended to a relation on H(A) which is still compatible with the prod-
uct. Actually it suffices to set H o H' when d(H) = d(H') and there exists a
representative S of H and a representative S’ of H' such that for all o € &4x)
we have (o -5) ¢ (0-5’). In addition, if the relation ¢ satisfies

VS, 5" € Pr(A*) SoS' = d(S)=d(S')

then the quotient map is compatible with ¢ and its extension. The relation of
inclusion C over Pp,(A*) obviously satisfies these properties and therefore extends

to H(A).

3.5 Cubical Areas

The monoid Pp,(R*) is ordered by inclusion, according to the preceding section
the relation C is then extended to H(R) by setting H < H' when d(H) = d(H')
and there exist S € H and S’ € H’ such that for all ¢ € &4y we have
c-SCo-95.

A cube of dimension n is a word of length n on the alphabet Z of nonempty
intervals of R so it can also be seen as a subset of R™. In particular, given
S € Py(Z*) we can define the set theoretic union

Uc

ces

as a subset of R™ and thus an element of Pj,(R*) provided we identify any word
of length n over R with a point of R".

The elements of H(Z) are called the cubical coverings and we will use the
capital letters F', F’ or F}, (k € N) to denote them. Furthermore the homogeneous



A Geometric Approach to the Problem of Unique Decomposition 141

monoid H(Z) is endowed with a preorder arising from the inclusion on Z. Indeed,
given two homogeneous sets of cubes of the same dimension S and S’ we write
S < S" when for all cubes C € S there exists a cube C’ € S’ such that C C C’.
The relation < provides the monoid Py (Z*) with a preorder that can be extended
to H(Z) by setting F' < F’ when d(F) = d(F’) and there exist S € F and S’ € F’
such that for all 0 € G4y we have 0 - S < 0 - S’. We now establish a Galois
connection between (H(R), <) and (H(Z),<). Given a cubical covering F one
can check that the following is actually an element of H(R).

v(F)::{UC‘SGF}

ces

The mapping ~ is a morphism of monoids and if F' 5 F’ then y(F) < v(F”).
Conversely, given some S € Pp(R*) the collection of n-dimensional cubes C
such that C' C S, ordered by inclusion, is a semilattice whose maximal elements
are called the maximal cubes of S. The set Mg of maximal cubes of S is
homogeneous and for all 0 € &,,, 0 Mg = M,.g. Then given H € H(R) one
can check that the following is actually an element of H(Z).

a(H) = {MS ’ S e H}

Furthermore « is a morphism of monoids and if H < H’ then a(H) < a(H').
Then we have a Galois connection:

Proposition 1. yoa = idymg) and idyz) < ao7y.

Given H € H(R) and F € H(Z) we say that F is a cubical covering of H when
~(F) = H. The cubical areas are the elements H of H(R) which admit a finite
cubical covering. The collection of cubical areas (resp. finite cubical coverings)
forms the submonoid Are of H(R) (resp. Cov of H(Z)). The restrictions of the
morphisms v and « to Cov and Are induce another Galois connection.

Proposition 2. yoa = idgre and idgy < a0 7.

Moreover, the morphisms v and « of Proposition[2induce a pair of isomorphisms
of commutative monoids between Are and the collection of fixpoints of o y. A
submonoid of a free commutative monoid may not be free. Yet, under a simple
additional hypothesis this pathological behaviour is no more possible. We say
that a submonoid P of a monoid M is pure when for all z,y € M, xxy € P =
re Pandye P.

Lemma 1. Every pure submonoid of a free commutative monoid is free.

Proof. Let P be a pure submonoid of a free commutative monoid M. Let p be an
element of P written as a product z1 - - - &, of irreducible elements of M. Each



142 T. Balabonski and E. Haucourt

x; is obviously an irreducible element of P so any element of P can be written
as a product of irreducible elements of P. Furthermore any irreducible element
of P is also an irreducible element of M because P is pure in M. It follows that
any elements of P can be written as a product of irreducible elements of P in a
unique way i.e. P is free. Then we have:

Theorem 2. The commutative monoid of cubical areas is free.

Proof. Let X and X’ be two elements of H(R) and suppose X * X’ belongs to
Are. Since both « and 7 are morphisms of monoids we have a o y(X = X') =
aoy(X)*aoy(X’) which is finite. It follows that both a0 y(X) and a0 y(X")
are finite. Hence X and X’ actually belongs to Are, which is thus free as a pure
submonoid of H(R).

Moreover one can check that for any n € N and any finite family C1, ..., Cy of
bounded? n-dimensional cubes, R™\(Cy U---UCYy) is irreducible. Therefore the
commutative monoid of cubical areas has infinitely many irreducible elements.

The Theorem Pl is the theoretical cornerstone of our method: the geometric
model of a PV program is an element of H(Z) so we obtain from its decomposition
the expected processes factorization.

4 Effective Factoring of Cubical Areas

Beyond their theoretical usefulness, the maximal cubes provide the data struc-
ture which allows to handle algorithmically cubical areas, as in the static analyzer
ALCOOL which is devoted to the study of parallel programs.

4.1 Implementation

We need an algorithm which performs decompositions in H(A), its implemen-
tation is directly based on the proof of Theorem [[t H € H(A) is reducible if
and only if there exists some representative S of H which admits a nontrivial
decomposition in Pp(A*). In order to describe the algorithm we define

SoA:={woA|weS}

for any S € Py (A*) and A C {1, ...,d(S)}. Moreover for w' € A* with £(w') = |A|
and A€ the complement of A (in {1,...,d(S)}), we define the set of words

U(w',A,9):={woA°|weS and woAd=uw'}

Then the class [S o A] € H(A) divides H if and only if for all w’ € S o A one
has ¥ (w', A, S) =[S o A°]. In particular the choice of S € H does not alter the
result of the test and we have

[SoA]%[So A =H

" An n-dimensional cube C' is bounded when C' C [~r,r]™ for some r > 0.



A Geometric Approach to the Problem of Unique Decomposition 143

Then we look for some divisor of H by testing all the nonempty subsets A of
{1,...,d(S)} (each test requires that we look over all the elements of S o A)
according to the following total ordering

A< A when |[A] <|A| or (JA|=|A"| and AT A)

where Ciey is the lexicographic ordering (A Ciex A’ is recursively defined by
min(A) < min(A’) or (min(A) = min(A’) and A\{min(A)} Ciex A"\{min(4")}).
Doing so, we know that if A is the first value such that [S o A] divides H, then
[SoA] is irreducible. Moreover we have d([SoA]) = | A| and for all Hy, H1 € H(A),
d(Ho x Hy) = d(Hp) + d(H;) hence we can suppose

(H)

4 < ¢
2

The software ALCOOL is entirely written in 0Caml. The complexity of the decom-
position algorithm implemented in it is exponential in the dimension n of the
cubical area since it checks all the subsets of {0, ...,n —1}. However, it is worth
remarking that our algorithm is efficient when the cubical area to decompose is
actually the product of several irreducible cubical areas of small dimension (see
Subsection for benchmarks). This remark should be compared with the fact
that the standard decomposition algorithm of integer into primes is very efficient
on products of small prime numbers.

We treat the case of the program X given in Example [[I Denote by H its
geometric model, we are actually provided with some representative S € H.
With the preceding notation we then check that [So A] divides H for A := {1, 3}.
Applying the permutation (2, 3) we have

(273) : {{1’3}7 {274}} = {{17 2}’ {314}}
then (2,3) - S can be decomposed in Pp(R*) as

2
([0,1[*[0,—[ | [4,-0%[0,-[ || [0,-[*[0,1[ || [o,—[*[4,—[)

and it follows that in the program X' the sets of processes {m1, 73} and {72, 74}
run independently from each other.

4.2 Benchmarks

We describe some programs upon which the algorithm has been tested. The
program X, .. is made of k groups of processes: for alli € {1, ..., k} it contains
n; copies of the process

P(a;).P(b).V(b).V(a;)

where a; is a mutex and b is a semaphore of arity k+ 1. All processes then share
the resource b, but as for X in Example [Tl the k£ groups are actually independent.
On the other hand the program X} . is the same as Xy, ., but with b
of arity only k, which forbids any decomposition. The n-philosophers programs



144 T. Balabonski and E. Haucourt

implement the standard n dining philosophers algorithm. The benchmark table
of Figure Bl has been obtained using the Unix command time which is not accu-
rate. Hence these results have to be understood as an overapproximation of the
mean execution time.

Example  Time (in sec.) Decomp.

6 philosophers 0.2 No
7 philosophers 0.7 No
8 philosophers 3.5 No
9 philosophers 21 No
10 philosophers 152 No
Example Time (in sec.) Decomp. Example Time (in sec.) Decomp.
P 0.1 {1,3}{2, 4} DI 0.1 No
3222 0.1 {1,4}{2,5}{3, 6} X500 0.3 No
X33 0.13 {1,3,5}{2,4,6} DA 0.52 No
22222 0.13 {1,5}{2,6}{3,7}{4,8} X554, 7.1 No
XY 1 {1,3,5,7}{2,4,6,8} Xha 33 No
X333 1.5 {1,4,7}{2,5,8}{3,6,9} X333 293 No
X5 6.1 {1,3,5,7}{2,4,6,8} s 327 No
Y55 50 {1,3,5,7,9}{2,4,6,8,10}  Xi; 2875 No

Fig. 3. Benchmarks

5 Conclusion

Related work

The problem of decomposition of concurrent programs in CCS-style has been
studied in [GM92] and [MMO93]. By the possibility of using semaphores of arbi-
trary arity, our work seems to go beyond this previous approach. Also note that
the silent and synchronous communication mechanism of CCS can be given a
straightforward geometric interpretation which falls in the scope of the present
discussion. However, the link between bisimilarity in CCS and isomorphic geo-
metric interpretations is still to be explored to make clear the relations between
these works.

In [LvOO05] B. Luttik and V. van Oostrom have characterized the commutative
monoids with unique decomposition property as those which can be provided
with a so-called decomposition order. In the case where the property holds,
the divisibility order always fits. Yet, there might exist a more convenient one.
Unfortunately, in the current setting the authors are not aware of any such
order yielding direct proofs. Nevertheless it is worth noticing that this approach
is actually applied for decomposition of processes in a normed ACP theory for
which a convenient decomposition order exists.

One can also think of using this method to optimize the implementation
of parallel programs. In the same stream of ideas, [CGR97] defines a preorder



A Geometric Approach to the Problem of Unique Decomposition 145

over a simple process algebra with durational actions in order to compare the
implementations of a same algorithm according to their efficiency.

Conclusion

This paper uses a geometric semantics for concurrent programs, and presents a
proof of a unique decomposition property together with an algorithm working
at this semantic level (Theorem [2]). The main strength of this work is that it
applies to any concurrent program yielding a cubical area. Example of features
allowed in this setting are: semaphores, synchronisation barriers, synchronous as
well as asynchronous communications (with finite or infinite message queues),
conditional branchings. In fact we can even consider loops provided we replace
the set Z of intervals of the real line R by the set A of arcs of the circle.

Future work

Any cubical area naturally enjoys a pospaceﬁ structure. Pospaces are among the
simplest objects studied in Directed Algebraic Topology. In particular, a cubical
area is associated with its category of components [FGHR04, [GHO5| [Hau06] and
[GHO7], which is proven to be finite, loop—freeﬁ and in most cases connected.
Then, as the cubical areas do, these categories together with cartesian product
form a free commutative monoid. It is worth noticing this is actually the gener-
alization of a result concerning finite posets which has been established in the
early fifties [Hasb1]. Therefore a program IT can be decomposed by lifting the
decomposition of the category of components of its geometric model [II]. In
general, the relation between the decomposition of a cubical area and the one of
its category of components is a theoretical issue the authors wish to investigate.

Another important concern is a clarification of the control constructs com-
patible with cubical areas: replacing in some dimensions the intervals of the real
line by the arcs of the circle as mentioned above corresponds to a global loop,
but some richer structures may be useful.

A final point of interest is the investigation of the exact relation between
our decomposition results and the ones of [GM92] MMO93|, [LvO05]. Indeed they
use C'C'S-like syntaxes to describe some classes of edge-labelled graphs modulo
bisimilarity, whereas the category of components of our models correspond to
some other graphs modulo directed homotopy. Hence the question: what is in
this setting the relation between bisimilarity and directed homotopy?

References

[BMP99] Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation
and computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC
1999. LNCS, vol. 1569, p. 46. Springer, Heidelberg (1999)

[CR87] Carson, S.D., Reynolds Jr., P.F.: The geometry of semaphore programs.
ACM Transactions on Programming Languages and Systems, 25-53 (1987)

8 Shorthand for “partially ordered spaces” [Nac68].
9 Loop-free categories were introduced in [Hae91l, [Hae92] as “small categories without
loop” or “scwols” in a context far away from ours.



146 T. Balabonski and E. Haucourt

[CGR97]

[Dij68]

[FGHRO4]

[GHO5)

[GHO7]

[GM92]

[Hae91]
[Hae92]
[Has51]
[Hau06]
[Lan02]
[LvO05]
[MM93]
[Nac65]
[Tha09]

[Win95]

Corradini, F., Gorrieri, R., Roccetti, R.: Performance Preorder and Com-
petitive Equivalence. Acta Inf. 34, 805-835 (1997)

Dijkstra, E.W.: Cooperating sequential processes. In: Programming Lan-
guages: NATO Advanced Study Institute, pp. 43-112. Academic Press,
London (1968)

Fajstrup, L., Goubault, E., Haucourt, E., Raulen, M.: Component cate-
gories and the fundamental category. App. Cat. Struct. 12, 81-108 (2004)
Goubault, E., Haucourt, E.: A practical application of geometric semantics
to static analysis of concurrent programs. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 503-517. Springer, Heidelberg (2005)
Goubault, E., Haucourt, E.: Component categories and the fundamental
category II. App. Cat. Struct. 15 (2007)

Groote, J.F., Moller, F.: Verification of Parallel Systems via Decompo-
sition. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp.
62-76. Springer, Heidelberg (1992)

Haefliger, A.: Complexes of groups and orbihedra. In: Group theory from
a geometrical viewpoint, pp. 504-540. World Scientific, Singapore (1991)
Haefliger, A.: Extension of complexes of groups. Annales de 'institut Four-
rier 42(1-2), 275-311 (1992), http://www.numdam.org/

Hashimoto, J.: On direct product decomposition of partially ordered sets.
Annals of Mathematics 54, 315-318 (1951)

Haucourt, E.: Categories of components and Loop-free categories. Theory
and Applications of Categories 16(27), 736-770 (2006)

Lang, S.: Algebra. Springer, Heidelberg (2002) (4th corrected printing)
Luttik, B., van Oostrom, V.: Decomposition orders: another generalisation
of the fundamental theorem of arithmetic. Theor. Comp. Sci. 335, 147186
(2005)

Milner, R., Moller, F.: Unique Decomposition of Processes. Theor. Comp.
Sci. 107, 357-363 (1993)

Nachbin, L.: Topology and Order. Van Nostrand Mathematical Studies,
vol. 4. Van Nostrand, Princeton (1965)

Thao, D.: Methods and Tools for Computer Aided Design of Embedded
Systems. HDR Thesis, ch. 5 (2009)

Winskel, G.: Handbook of Logic in Computer Science. Semantic Modelling,
vol. 4. ch. 1. Oxford University Press, Oxford (1995)


http://www.numdam.org/

A Logic for True Concurrency*

Paolo Baldan and Silvia Crafa

Department of Pure and Applied Math, University of Padova

Abstract. We propose a logic for true concurrency whose formulae
predicate about events in computations and their causal dependencies.
The induced logical equivalence is hereditary history preserving bisimi-
larity, and fragments of the logic can be identified which correspond to
other true concurrent behavioural equivalences in the literature: step,
pomset and history preserving bisimilarity. Standard Hennessy-Milner
logic, thus (interleaving) bisimilarity, is also recovered as a fragment. We
believe that this contributes to a rational presentation of the true con-
current spectrum and to a deeper understanding of the relations between
the involved behavioural equivalences.

1 Introduction

In the semantics of concurrent and distributed systems, a major dichotomy op-
poses the interleaving approaches, where concurrency of actions is reduced to
the non-deterministic choice among their possible sequentializations, to true-
concurrent approaches, where concurrency is taken as a primitive notion. In both
cases, on top of the operational models a number of behavioural equivalences
have been defined by abstracting from aspects which are considered unobserv-
able [T12].

For the interleaving world, a systematic and impressive picture is taken in the
linear-time branching-time spectrum [I]. Quite interestingly, the equivalences in
the spectrum can be uniformly characterised in logical terms. Bisimilarity, the
finest equivalence, corresponds to Hennessy-Milner (HM) logic: two processes
are bisimilar if and only if they satisfy the same HM logic formulae [3]. Coarser
equivalences correspond to suitable fragments of HM logic.

In the true-concurrent world, relying on models like event structures or tran-
sition systems with independence [4], several behavioural equivalences have been
defined, ranging from hereditary history preserving (hhp-) bisimilarity, to pom-
set and step bisimilarity. Correspondingly, a number of logics have been studied,
but, to the best of our knowledge, a unifying logical framework encompass-
ing the main true-concurrent equivalences is still missing. The huge amount of
work on the topic makes it impossible to give a complete account of related ap-
proaches. Just to give a few references (see Section [l for a wider discussion), [5]
proposes a general framework encompassing a number of temporal and modal

* Supported by the MIUR Projects SisteR and AIDA2007, and the project AVIAMO of
the University of Padova.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 147 2010.
© Springer-Verlag Berlin Heidelberg 2010



148 P. Baldan and S. Crafa

logics that characterize pomset and weak history preserving bisimilarities as
well as interleaving bisimilarity. However, finer equivalences are not considered
and a single unitary logic is missing. History preserving (hp-) bisimilarity has
been characterised in automata-theoretic terms using HD-automata [6] or Petri
nets [7]. More recently, hp-bisimilarity has been obtained as a logical equiva-
lence, using a separation fixpoint modal logic where it is possible to check the
causal dependence/independence of the last executed action [89]. Concerning
hhp-bisimilarity, several logics with modalities corresponding to the “retraction”
or “backward” execution of computations have been proposed [TOJTTI2]. In ab-
sence of autoconcurrency they are shown to capture hhp-bisimilarity, while the
general case complicates the picture and requires some adjustments.

In this paper we propose a behavioural logic for concurrency and we show that
it allows to characterise a relevant part of the truly concurrent spectrum. More
specifically, the full logic is shown to capture hhp-bisimilarity, the finest equiva-
lence in the spectrum [2]. Then suitable fragments of the logic are shown to scale
down to the characterisation of other coarser equivalences, i.e., history preserv-
ing, pomset and step bisimilarity. Standard HM logic, and thus (interleaving)
bisimilarity, is also recovered as a fragment.

Our logic allows to predicate about events in computations together with their
causal and independence relations. It is interpreted over prime event structures,
but it could naturally be interpreted over any formalism with a notion of event,
causality and consistency. A formula is evaluated in a configuration representing
the current state of the computation, and it predicates on a set of possible future
evolutions starting from that state. The logic is event-based in the sense that it
contains a binder that allows to refer later to the events the formula predicates
on. In this respect, it is reminiscent of the modal analogue of independence-
friendly modal logic as considered in [13].

The logic contains two main operators. The formula (z,y < a z)¢ declares that
an a-labelled future event exists, which causally depends on the event bound to
z, and is independent from the event bound to y. Such an event is bound to
variable z so that it can be later referred to in ¢. In general, x and y can
be replaced by lists of variables. A second operator allows to “execute” events
previously bound to variables. The formula (z) ¢ says that the event bound to
z is enabled in the current state, and after its execution ¢ holds.

Different behavioural equivalences are induced by fragments of the logics
where we suitably restrict the set of possible futures the formulae are able to
refer to. Namely, hhp-bisimilarity, that is captured by the full logic, corresponds
to the ability of observing the existence of a number of legal but (possibly) in-
compatible futures, without executing such futures. Interestingly, the definition
of hhp-bisimilarity is normally given in terms of backward transitions, whereas
our logical characterization has a “forward flavor”. By restricting to a fragment
where future events can be observed only by executing them (any occurrence
of the binding operator is immediately followed by a corresponding execution),
we get hp-bisimilarity. Pomset bisimilarity is induced by a fragment of the logic
obtained by further restricting that for hp-bisimilarity, with the requirement



A Logic for True Concurrency 149

that propositional connectives are used only on closed (sub)formulae. Roughly
speaking, this fragment predicates about the possibility of executing pomset
transitions and the closedness requirement prevents pomset transitions from
being causally linked to the events in the past. Finally, quite intuitively, step
bisimilarity corresponds to the possibility of observing only currently enabled
concurrent actions.

We believe that this work contributes to the definition of a logical counterpart
of the true concurrent spectrum and shades further light on the relations between
the involved behavioural equivalences.

2 Background

In this section we provide the basics of prime event structures which will be used
as models for our logic. Then we define some common behavioural concurrent
equivalences which will play a basic role in the paper.

2.1 Event Structures

Prime event structures [I4] are a widely known model of concurrency. They
describe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper A denotes a fixed set of labels ranged
over by a,b,c ...

Definition 1 (prime event structure). A (A-labelled) prime event structure
(PES) is a tuple & = (E,<,#,)\), where E is a set of events, A : E — A is
a labelling function and <, # are binary relations on E, called causality and
conflict respectively, such that:

1. < is a partial order and [e] = {e¢’ € E | ¢ < e} is finite for all e € E;
2. # is irreflexive, symmetric and hereditary with respect to <, i.e., for all
e, e, e’ € E, if e#te’ < e’ then e#te”.

In the following, we will assume that the components of an event structure £
are named as in the definition above. Subscripts carry over to the components.

Definition 2 (consistency, concurrency). Let £ be a PES. We say that e, e’ €
E are counsistent, written e ~¢’, if ~(efte’). Moreover, we say that e and €’ are
concurrent, written e || e, if (e < ¢e'), =(e’ <e) and —(efe’).

Causality and concurrency will be sometimes used on set of events. Given X C F
and e € F, by X < e we mean that for all ¢’ € X, ¢’ < e. Similarly X || e, resp.
X ~e, means that for all ¢’ € X, €' || e, resp. €’ ~e. We write [X] for [J,cx[e].

The idea of (concurrent) computation is captured, in event structures, by the
notion of configuration.

Definition 3 (configuration). Let £ be a PES. A (finite) configuration in & is
a (finite) subset of events C C E pairwise consistent and closed w.r.t. causality
(i.e., [C] = C). The set of finite configurations of £ is denoted by C(E).



150 P. Baldan and S. Crafa

Hereafter, unless explicitly stated otherwise, all configurations will be assumed
to be finite. A pairwise consistent subset X C F of events will be always seen as
the pomset (partially ordered multiset) (X, <x,Ax), where <x and Ax are the
restrictions of < and A to X. Given X,Y C E we will write X ~Y if X and Y
are isomorphic as pomsets.

Definition 4 (pomset transition and step). Let £ be a PES and let C €
CE). Gwen) # X CE, if CNX =0 and C' = CUX € C(€) we write
X

C —— (' and call it a pomset transition from C to C'. When the events in

X
X are pairwise concurrent, we say that C —— C' is a step. When X = {e}

e {e}
we write C —— C' instead of C .

A pEs £ is called image finite if for any C € C(£) and a € A, the set of events
{e€e E|C . A A(e) = a} is finite. All the PESs considered in this
paper will be assumed to be image finite. As it commonly happens when relating
modal logics and bisimilarities, this assumption is crucial for getting the logical
characterisation of the various bisimulation equivalences in Section [l

2.2 Concurrent Behavioural Equivalences

Behavioural equivalences which capture to some extent the concurrency features
of a system, can be defined on the transition system where states are configura-
tions and transitions are pomset transitions.

Definition 5 (pomset, step bisimulation). Let &, & be PESs. A pomset
bisimulation s a relation R C C(&1) x C(&2) such that if (C1,C2) € R and

(o L CY then Coy & Ch, with X1 ~ X5 and (C},CY%) € R, and wvice
versa. We say that €1, & are pomset bisimilar, written &1 ~, £2, if there exists
a pomset bisimulation R such that (0,0) € R.

Step bisimulation is defined analogously, replacing general pomset transitions
with steps. We write 1 ~s E; when £, and & are step bisimilar.

While pomset and step bisimilarity only consider the causal structure of the
current step, (hereditary) history preserving bisimilarities are sensible to the
way in which the executed events depend on events in the past. In order to
define history preserving bisimilarities the following definition is helpful.

Definition 6 (posetal product). Given two PESs &1, &2, the posetal product
of their configurations, denoted C(E1)XC(E2), is defined as

{(Cl,f, 02) : (€ C(gl), Cy € C(gg), f :C1 — Oy isomorphism}

A subset R C C(E1)xC(&2) is called a posetal relation. We say that R is down-
ward closed when for any (Ch, f,C2), (C1, f',C4) € C(E1)XC(E2), if (Ch1, f,Ca) C
(C1, [, CY) pointwise and (C1, f',CY) € R, then (C1, f,C2) € R.



A Logic for True Concurrency 151

Definition 7 ((hereditary) history preserving bisimulation). A history
preserving (hp-)bisimulation is a posetal relation R C C(E1)XC(Es) such that if

(C1,f,Co) € Rand C —— C} then Cy —— C%, with (C}, fle1 > ea],C%) €
R, and vice versa. We say that £1, > are history preserving (hp-)bisimilar and
write &y ~py E2 if there exists an hp-bisimulation R such that (0,0,0) € R.

A hereditary history preserving (hhp-)bisimulation is a downward closed hp-
bisimulation. The fact that &1, €5 are hereditary history preserving (hhp-)bisimilar
is denoted £1 ~ppp Es.

3 A Logic for True Concurrency

In this section we introduce the syntax and the semantics of our logic, where
formulae predicate about events in computations and their dependencies as prim-
itive concepts. The logic is interpreted over PESs, but it could be equivalently
interpreted over any formalism with a notion of event, causality and consistency.

As a first step we define a quite general syntax and the semantics of the two
distinctive operators. Our logic for concurrency will then be obtained by filtering
out formulae which do not satisfy a suitable well-formedness condition.

In order to keep the notation simple, lists of variables like x1, ..., z, will be
denoted by x and, abusing the notation, lists will be sometimes used as sets.

Definition 8 (syntax). Let Var be a denumerable set of variables ranged over
by x,y,2,.... The syntax of the formulae over the set of labels A is defined as
follows:

p u= (y<az)p | (2)el oAp | mp | T

The operator (x,y < az) acts as a binder for variable z, as clarified by the
following notion of free variables in a formula.

Definition 9 (free variables). The set of free variables of a formula ¢ is
denoted fu(p) and it is inductively defined by:

fol(m,y <az)p) = (fulp) \{z})) Uz Uy fo({2)¢) = fu(p) U{z}
foler Apa) = fo(pr) U fulez) fo(M) =0 fo(=p) = fo(p)
The satisfaction of a formula is defined with respect to a configuration, repre-

senting the state of the computation. Moreover a partial function n : Var — E
is fixed, called an environment, in order to bind free variables in ¢ to events.

Definition 10 (semantics). Let € = (E,<,#,\) be a PES. For C € C(€) a
configuration, ¢ a formula and n : Var — E an environment such that fv(y) C
dom(n), satisfaction €,C =, ¢ is defined as follows:

E.CE,(z,y<az)p if there is e € E\ C, such that
-Ae) =a and C~e, n(z) <e, n(y)||e
-E,C Ey p, where ' =nlz — €]

=)
£,Cky ()¢ e L O and £,C" =, ¢



152 P. Baldan and S. Crafa

The semantics of propositional connectives is defined as usual. We say that a
PES & satisfies a closed formula @, written £ = ¢, when £, =g ¢.

Intuitively, the formula

(1.0 Ty Y1 Ym < az)p

holds in C if in the future of such a configuration there is an a-labelled event e,
and binding e to the variable z, the formula ¢ holds. Such an event is required
to be caused (at least) by the events already bound to z; ...z,, and to be in-
dependent (at least) from those bound to y; ...y,. We stress that the event
e might not be currently enabled; it is only required to be consistent with the
current configuration, meaning that it could be enabled in the future of the cur-
rent configuration. The formula (z) ¢ says that the event bound to z is currently
enabled, hence it can be executed producing a new configuration which satisfies
formula . To simplify the notation we write (az) ¢ for ( < az) ¢ and we often
omit trailing T at the end of the formulae.

b d b~~~ d b b b
N S
a~~c a a b~d a ~ a a
81 82 83 84 85
Fig. 1.

As an example, consider the PES &; in Fig. [[I corresponding to the CCS
process a.b + c.d, where curly lines represent immediate conflict and the causal
order proceeds upwards along the straight lines. The empty configuration sat-
isfies the closed formula (bz), ie., & = (bz), even if the b-labelled event is
not immediately enabled. Also & E (bxz) A (dy), since there are two possi-
ble (incompatible) computations that starts from the empty configuration and
contain, respectively, a b-labelled and a d-labelled event. On the other hand, if
v =(az){z)((bx)A(dy)) then & [~ ¢ since after the execution of the a-labelled
event, & reaches a configuration that does not admit a future containing an
event labelled by d. As a further example, the formula ¢ above is satisfied by
the PESs & and &3 in Fig. [l corresponding respectively to the process a.(b + d)
and a | (b+ d), whereas the formula (a z)(z) (# < bz) is satisfied only by &s.

It is worth noticing that the semantics of the binding operator does not pre-
vent from choosing for z an event e that has been already bound to a different
variable, i.e., the environment function 7 needs not to be injective. This is essen-
tial to avoid the direct observation of conflicts. Consider for instance the PESs
associated to the hhp-equivalent processes a + a and a: in order to be also log-
ically equivalent, they both must satisfy the formula (az)(az’). Hence for the
second PES, both z and 2’ should be bound to the unique a-labelled event. On



A Logic for True Concurrency 153

the other hand, observe that both PESs falsify the formula (az)(az’)(z) (z'),
since either z and 2’ will be bound to the same event, which cannot be executed
twice, or they will be bound to conflicting events.

Still, the logic as it is defined up to now is too powerful since it allows to ob-
serve conflicts through a combination of the binder and the execution modality.
For instance, consider the PESs £, and & in Fig.[Il corresponding to the processes
a.b+ a.b and a.b and take formula ¢ = (a z)(b y)(z) =(y) . Then & ¥ ¢, while
&4 E ¢, since only in &, the variables z and y can be bound to conflicting events
(e.g., z could be bound to the a-labelled event on the left and y to the b-labelled
event on the right). In a similar way, the logic allows one to distinguish the PESs
corresponding to any process from that corresponding to the non-deterministic
choice between that process and itself, which instead are equated by virtually
any behavioural equivalence.

In order to disallow the observation of conflicts and avoid this phenomenon,
we restrict our logic to well-formed formulae, that “syntactically” ensure that (i)
the free variables in any subformula will always refer to events consistent with
the current configuration and (ii) the variables which are used as causes/non-
causes, i.e., ¢ and y in (¢,y < az)p, will be bound to be pairwise consistent
events.

This is formalised by the definition below. Consistency constraints are rep-
resented by a relation on variables Co C Var x Var, where (x,y) € Co means
that  and y must be bound to consistent events. We write (x,y) for the set

{(v,y):zex N yey,x#y}.

Definition 11 (£: the logic of well-formed formulae). A formula ¢ is
called well-formed if Co & ¢, for some Co C Var x Var, where the entailment
relation - is defined by the rules below:

(xUy,zUy) CCo CoU(z,zUy) k¢ {z}, fo(p)) € Co Cok

Cobt (z,y <az)y Colk (2)p
Col ¢ Col o1 Col g
Col —p Col o1 Ao Cok T

We denote by L the logic consisting of the well-formed formulae.

According to the first rule, the formula (x,y < az)p is well-formed if the con-
straints in C'o ensure that x U y is pairwise consistent and ¢ can be proved
well-formed using also the fact that the chosen z will be consistent with  and
y. The second rule, instead, says that (z) ¢ is well-formed when the constraints
in Co ensure that z is consistent with the free-variables used in ¢ and ¢ itself is
well-formed in Clo.

As an example, the formula (az)(b y)(z) (y) is not well-formed (since it “exe-
cutes” z and y which, in principle, can be bound to events in conflict) as opposed
to (az)(x < b y)(z) (y), where the two executed events are certainly consistent
(they are causally dependent). Notice that the formula (az)(z < b y)(y) (z) is
also well formed, even if it is always false since it tries to execute an event before



154 P. Baldan and S. Crafa

executing one of its causes. Finally, according to the rules (ax)(z) (b y){y) is also
deemed a well-formed formula even though there is no constraint on y. This can
be understood recalling that the semantics of the binding operator requires y to
be bound to an event that is consistent with the current state, hence consistent
with the event bound to z.

When dealing with the semantics of formulae in £ we will always consider
environments 7 that reflect the corresponding consistency constraints.

Definition 12 (legal environment). Let £ be a PES. Given a configuration
C € C(€) and a formula ¢ in L, a legal environment for C' and ¢ is an envi-
ronment 1 : Var — E such that fo(p) C dom(n), n(fv(y)) is consistent with C
and there exists Co such that Cot- ¢ and ¥(z,y) € Co, n(z) ~n(y).

The semantics of the logic £ is then formally defined as in Definition [IT, where
n is assumed to be a legal environment for C' and ¢. It is easy to see that
this assumption properly fits with Definition [IQ] i.e., whenever we recur on a
subformula, we are surely checking satisfiability in an environment legal for the
configuration and the formula.

Definition 13 (logical equivalence). Let L' be a fragment of L. We say that
two PES &1, &> are logically equivalent in L', written £1 =, € when they satisfy
the same closed formulae.

3.1 Examples and Notation

In this subsection we provide some more examples illustrating the expressiveness
of the logic. We start by introducing some handy notation, which will improve
the readability of the formulae.

Immediate execution. We will write

(z,y <azhy

for the formula (x,y < az)(z) ¢ that chooses a consistent event not belonging
to the current configuration, and immediately executes it.

Steps. We introduce a notation also to predicate the existence, resp., the im-
mediate execution, of concurrent events, specifying also their dependencies. We
will write

(wyy<az)®(x,y <bz))e and e,y <az)e(a',y <bz'))p

to declare the existence, resp., the immediate execution, of two concurrent events,
labelled a and b, which are bound to z and z’, and then ¢ holds. These nota-
tions correspond, respectively, to the formulae (z,y < az)(x’,y’, 2z < bz')p and
((z,y <az)®(a',y < bz’))(z) (') ¢. In particular, the ability to perform a
step consisting of two concurrent events labelled by a and b is simply expressed
by the formula (az)) ® (by). Clearly, this notation can be generalised to the
quantification and the immediate execution of any number of concurrent events.



A Logic for True Concurrency 155

Es E7 Es &g
Fig. 2.

Ezxample 1 (Interleaving vs. True-concurrency). As a first example, consider the
PESs & and &7 in Fig. Bl They are equated by interleaving equivalences and kept
distinct by any true-concurrent equivalence. The formula o1 = (az){z < by) =
({az) ® (by)) is true only on &7, while o = (az){z < by) is true only on &.

Ezxample 2 (Dependent vs Independent Events). The need of considering both
causal dependency and independency in the binding operator of our logic is ex-
emplified below. Consider the PESs £ and & in Fig. 2l They are distinguished by
any true-concurrent equivalence, but since they have the same causal structure,
in order to pinpoint how they differ, the logic must be able to express the presence
of two concurrent events: indeed & = (az) ® (by)), while & = (az) ® (by).
On the other hand, expressing causal dependencies between events is essential to
distinguish, for instance, the PESs £7 and &y. These are equated by step bisimula-
tion and distinguished by any equivalence which observes causality, e.g., pomset
bisimulation.

Ezample 3 (Conflicting Futures). Consider the following two PESs, which can be
proved to be hp-bisimilar but not hhp-bisimilar:

d c c d
o AN X
a  be~——a _b a_ b~~~ a b

Intuitively, they differ since the causes of the c-labelled and d-labelled events are
in conflict in the first PES and independent in the second one. This is captured by
the formula ¢ = ((az) ® (by))((x < cz1) A (y < dz2)), which is satisfied only by
the right-most PES. Notice that the formula ¢ exploits the ability of the logic £
of quantifying over events in conflict with previously bound events: formula ¢ is
satisfied in the rightmost PES by binding x and y to the rightmost a-labelled and
b-labelled events; then both z; and 2z are bound to events which are in conflict
with either x or y. For this, the possibility of quantifying over an event without
executing it is essential: the formula ¢’ = ({az) @ (by]))((x < cz1) A (y < dz2))
would be false in both PESs since the execution of the first two events leads to a
configuration that is no further extensible.

As a final example, consider the two CCS processes P = a|(b4¢)+a|b+b|(a+c)
and @ = a|(b+c¢) + b|(a+c). They contain no causal dependencies, but they
exhibit a different interplay between concurrency and branching. Accordingly,



156 P. Baldan and S. Crafa

the corresponding PESs can be proved to be hp-bisimilar but not hhp-bisimilar.
Intuitively, this difference comes from the fact that only the process P includes
two concurrent events a and b such that, independently from their execution
order, no c-labelled event will be enabled. Such a difference can be expressed in
L by the formula ((az) ® (by))(—(z < cz) A=(y < cz’)), which is satisfied only
by the PES corresponding to P.

4 A Logical Characterisation of Concurrent Equivalences

In this section we study the logical equivalences induced by fragments of £. We
have already argued that no formula in £ distinguishes the PESs a and a#a, hence
the logical equivalence induced by L is surely coarser than isomorphism. We next
show that the logical equivalence induced by L is hhp-bisimulation. Moreover,
we identify suitable fragments of £ corresponding to coarser equivalences.

Theorem 1 (hhp-bisimilarity). Let & and & be PESs. Then & ~ppp E2 iff
51 =r 52,

4.1 From Hennessy-Milner Logic to HP-Logic

Hhp-bisimilarity is the finest equivalence in the spectrum of true concurrent
equivalences in [2]. Coarser equivalences such as step, pomset and hp-bisimilarity,
can be captured by suitable fragments of £ summarised in Fig. Bl which can be
viewed as the logical counterpart of the true concurrent spectrum.

Interestingly, in each of these fragments after predicating the existence of
an event we must execute it. As a consequence, differently from what happens
in the full logic, in the fragments it is impossible to refer to events in con-
flict with already observed events. Intuitively, behavioural equivalences up to
hp-bisimilarity observe events only by executing them. Hence they cannot fully
capture the interplay between concurrency and branching, which is indeed dis-
tinctive of hhp-equivalence.

HM Logic  Luam ¢ == {azhe | pAe | mp | T

Step Logic L, = ((arz) @ - ®@(anzn)) @ | A@ | mp | T

A
|

Pomset Logic L, p = (ryy<azhe | ¢ | oA | T
where —, A are used only on closed formulae.

HP Logic Lrp ¢ u= (zyy<azhp | ¢ | oA | T

Fig. 3. Fragments corresponding to behavioral equivalences



A Logic for True Concurrency 157

Hennessy-Milner Logic. A first simple observation is that Hennessy-Milner
logic can be recovered as the fragment of £ where only the derived modality
(az)p (with no references to causally dependent/concurrent events) is allowed.
In words, whenever we state the existence of an enabled event we are forced to
execute it. Moreover, since no dependencies can be expressed, the bound variable
z is irrelevant. The induced logical equivalence is thus bisimilarity [3] (recall that
we consider only image finite PES’s).

Step logic. A fragment L, corresponding to step bisimilarity naturally arises as
a generalisation of HM logic, where we can refer to sets of concurrently enabled
events. More precisely, as shown in Fig. Bl £; is the fragment of £ where only
the derived modality (a1 1) ® ---® (an x,)) is used, allowing to predicate on
the possibility of performing a parallel step, but without any reference to causal
dependencies. Note that all formulae in £, are closed, and thus environments
are irrelevant in their semantics (as well as the names of the bound variables).

As an example, consider the two PESs & and &7 in Fig.[2l They are bisimilar
but not step bisimilar since only &7 can execute the step consisting of a and b;
accordingly, the formula (a) ® (b)) in £ is true only on &7.

Theorem 2 (step bisimilarity). Let & and & be PESs. Then & ~s & iff
51 =L, 52,

Pomset logic. The logic £, for pomset bisimilarity consists of a fragment of
L which essentially predicates about the possibility of executing pomset transi-
tions. Even in £, the events must be immediately executed when quantified, but
it is now possible to refer to dependencies between events. However, propositional
connectives (negation and conjunction) can be used only on closed formulae.

Intuitively, in this logic closed formulae characterize the execution of a pomset.
Then, the requirement that the propositional operators are used only on closed
(sub)formulae prevents pomset transitions from being causally linked to the
events in the past. These ideas are formalised by the results below, starting
with a lemma showing that the execution of a pomset can be characterized as a
formula in £,.

Definition 14 (pomsets as formulae in £,). Let p, = ({z1,..., 20}, <p,,
Ap.) be a labelled poset, whose elements {x1,...,x,} are variables ordered by
<p,- Given a formula ¢ € L,, we denote by (py)¢ the formula inductively
defined as follows. If p, is empty then (pihe = . If py = pl, U {x}, where x is
magzimal with respect to <, , then if y = {2’ € pl, | 2/ <, x}, z =p, \y, and
Ap. (x) = a, then {pa)o = (P} {y, 2 <az)ep.

Lemma 1 (pomsets in £,). Let £ be a PES and let C € C(E) be a configura-
tion. Given a labelled poset py = ({x1,...,Zn}, <p,, Ap.), then

X
C —— C' where X ={e1,...,en} is a pomset s.t. X ~ p,
and E,C" =y @, with ' = nlz1 — e1,...,Tn — €]



158 P. Baldan and S. Crafa

As an example, consider the two PESs & and & in Fig. Bl They are step
bisimilar but not pomset bisimilar since only the second one can execute the
pomset ({a,b},a < b). Accordingly, the formula ¢ = (az){z < by) in £, is
satisfied only by &.

Theorem 3 (pomset bisimilarity). Let & and & be PESs. Then & ~p &
Zﬁ 51 Ellp 52.

History preserving logic. The fragment L, corresponding to hp-bisimilarity
is essentially the same as for pomset logic, where we relax the condition about
closedness of the formulae the propositional connectives are applied to. Intu-
itively, in this way a formula ¢ € Lp,, besides expressing the possibility of
executing a pomset p,, also predicates about its dependencies with previously
executed events (bound to the free variables of ¢).

The two PESs below can be proved to be pomset equivalent but not hp-
equivalent:

b b

At

a b a~a ~p

Intuitively, they allow the same pomset transitions, but they have a different
“causal branching”. Indeed, only in the left-most PESs after the execution of
an a-labelled event we can choose between an independent and a dependent b-
labelled event. Formally, the formula (az)({z < by) A({z < bz)) in Ly, is true
only on the left-most PES.

Theorem 4 (hp-bisimilarity). Let & and & be PESs. Then & ~pnp & iff
51 E[;hp 52.

5 Conclusions: Related and Future Work

We have introduced a logic for true concurrency, which allows to predicate on
events in computation and their mutual dependencies (causality and concur-
rency). The logic subsumes standard HM logic and provides a characterisation of
the most widely known true concurrent behavioural equivalences: hhp-bisimilarity
is the logical equivalence induced by the full logic, and suitable fragments are iden-
tified which induce hp-bisimilarity, pomset and step bisimilarity.

As we mentioned in the introduction, there is a vast literature relating logical
and operational views of true concurrency, however, to the best of our knowledge,
a uniform logical counterpart of the true concurrent spectrum is still missing.
An exhaustive account of the related literature is impossible; we just recall here
the approaches that most closely relate to our work.

In [BITHII6] the causal structure of concurrent systems is pushed into the logic.
The paper [5] considers modalities which describe pomset transitions, thus pro-
viding an immediate characterization of pomset bisimilarity. Moreover, [BIT5T6]
show that by tracing the history of states and adding the possibility of reverting



A Logic for True Concurrency 159

pomset transitions, one obtains an equivalence coarser than hp-bisimilarity and
incomparable with pomset bisimilarity, called weak hp-bisimilarity. (We remark
that, despite its name, weak hp-bisimilarity is not related to silent actions.) Our
logic intends to be more general by also capturing the interplay between concur-
rency and branching, which is not observable at the level of hp-bisimilarity.

A recent work [89] introduces a fixpoint modal logic for true concurrent mod-
els, called Separation Fixpoint Logics (SFL). This includes modalities which
specify the execution of an action causally dependent/independent on the last
executed one. Moreover, a “separation operator” deals with concurrently enabled
actions. The fragment of the logic without the separation operator is shown to
capture hp-bisimilarity, while the full logic induces an equivalence which lies in
between hp- and hhp-bisimilarity, still being decidable for finite state systems.
The approach of [8/9] is inspired by the so-called Independence-Friendly Modal
Logic (IFML) [13], which includes a modality that allows to specify that the
current executed action is independent from a number of previously executed
ones. In this sense IFML is similar in spirit to our logic. Although, most of the
equivalences induced by fragments of IFML are not standard in the true concur-
rent spectrum, a deeper comparison with this approach represents an interesting
open issue.

Several classical papers have considered temporal logics with modalities corre-
sponding to the “retraction” or “backward” execution of computations. In par-
ticular [TOTTT2] study a so-called path logic with a future perfect (also called
past tense) modality: @a ¢ is true when ¢ holds in a state which can reach
the current one with an a-transition. When interpreted over transition systems
with independence, in absence of autoconcurrency, the logic characterises hhp-
bisimilarity. In [T0] it is shown that, taking autoconcurrency into account, the
result can be extended at the price of complicating the logic (roughly, the logic
needs an operator to undo a specific action performed in the past).

Compared to these works, the main novelty of our approach resides in the
fact that the logic £ provides a characterisation of the different equivalences in
a simple, unitary logical framework. In order to enforce this view, we intend to
pursue a formal comparison with the logics for concurrency introduced in the
literature. It is easy to see that the execution modalities of [8J9] can be encoded
in £ since they only refer to the last executed event, while the formulae in £
can refer to any event executed in the past. On the other hand, the “separation
operator” of [8J9], as well as the backward modalities mentioned above (past
tense, future perfect, reverting pomset transitions) are not immediately encod-
able in L. A deeper investigation would be of great help in shading further light
on the truly concurrent spectrum. Moreover £ suggests an alternative, forward-
only, operational definition of hhp-bisimulation, which could be inspiring also
for other reverse bisimulations [17].

As a byproduct of such an investigation, we foresee the identification of in-
teresting extensions of the concurrent spectrum, both at the logical and at the
operational side. For instance, a preliminary investigation suggests that the frag-
ment of £ where only events consistent with the current environment can be



160 P. Baldan and S. Crafa

quantified induces an equivalence which admits a natural operational definition
and lies in between hp- and hhp-bisimilarity, still being different from the equiv-
alences in [89]. Moreover, the logic in its present form only allows to describe
properties of finite, bounded computations. A more powerful specification logic,
well-suited for describing properties of unbounded, possibly infinite computa-
tions can be obtained by enriching £ with some form of recursion. In particular,
from some first experiments, the idea of “embedding” our logic into a first order
modal mu-calculus in the style of [I8/19] seems promising. For this purpose, also
the fixpoint extension of the Independence-Friendly Modal Logic in [20] could
be inspiring. The resulting logic would allow to express non-trivial causal prop-
erties, like “any a action can be always followed by a causally related b action
in at most three steps”, or “an a action can be always executed in parallel with
a b action”.

Connected to this, model-checking and decidability issues are challenging di-
rections of future investigation (see [2I] for a survey focussed on partial order
temporal logics). It is known that hhp-bisimilarity is undecidable, even for finite
state systems [22], while hp-bisimilarity is decidable. Characterising decidable
fragments of the logic could be helpful in drawing a clearer separation line be-
tween decidability and undecidability of concurrent equivalences. A promising
direction is to impose a bound on the “causal depth” of the future which the logic
can quantify on. In this way one gets a chain of equivalences, coarser than hhp-
bisimilarity, which should be closely related with n-hhp bisimilarities introduced
and shown to be decidable in [23]. As for verification, we aim at investigating the
automata-theoretic counterpart of the logic. In previous papers, hp-bisimilarity
has been characterised in automata-theoretic terms using HD-automata [6] or
Petri nets [7]. It seems that HD-automata [6] could provide a suitable automata
counterpart of the fragment Lj;,. Also the game-theoretical approach proposed
in [89] for the fixpoint separation logic can be a source of inspiration.

References

1. van Glabbeek, R.: The linear time — branching time spectrum I; the semantics of
concrete, sequential processes. In: Handbook of Process Algebra, pp. 3-99. Elsevier,
Amsterdam (2001)

2. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5), 229-327 (2001)

3. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32, 137-161 (1985)

4. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in Com-
puter Science, vol. 4. Clarendon Press, Oxford (1995)

5. De Nicola, R., Ferrari, G.: Observational logics and concurrency models. In: Veni
Madhavan, C.E., Nori, K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 301-315.
Springer, Heidelberg (1990)

6. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving
bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 413-425. Springer, Heidelberg (1997)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Logic for True Concurrency 161

. Vogler, W.: Deciding history preserving bisimilarity. In: Leach Albert, J., Monien,

B., Rodriguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 495-505.
Springer, Heidelberg (1991)

. Gutierrez, J., Bradfield, J.C.: Model-checking games for fixpoint logics with par-

tial order models. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 354-368. Springer, Heidelberg (2009)

. Gutierrez, J.: Logics and bisimulation games for concurrency, causality and conflict.

In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 48-62. Springer,
Heidelberg (2009)

Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation.
Nordic Journal of Computing 2(2), 221-249 (1995)

Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Polish Academy of
Sciences (1991)

Hennessy, M., Stirling, C.: The power of the future perfect in program logics.
Information and Control 67(1-3), 23-52 (1985)

Bradfield, J., Froschle, S.: Independence-friendly modal logic and true concurrency.
Nordic Journal of Computing 9(1), 102-117 (2002)

Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325-392. Springer, Heidelberg (1987)

Pinchinat, S., Laroussinie, F., Schnoebelen, P.: Logical characterization of truly
concurrent bisimulation. Technical Report 114, LIFIA-IMAG, Grenoble (1994)
Cherief, F.: Back and forth bisimulations on prime event structures. In: Etiem-
ble, D., Syre, J.-C. (eds.) PARLE 1992. LNCS, vol. 605, pp. 843-858. Springer,
Heidelberg (1992)

Phillips, I., Ulidowski, I.: Reverse bisimulations on stable configuration structures.
In: Proc. of SOS 2009. Electronic Proceedings in Theoretical Computer Science,
vol. 18, pp. 62-76 (2010)

Dam, M.: Model checking mobile processes. Information and Computation 129(1),
35-51 (1996)

Dam, M., Fredlund, L.A., Gurov, D.: Toward parametric verification of open dis-
tributed systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS
1997. LNCS, vol. 1536, pp. 150-185. Springer, Heidelberg (1998)

Bradfield, J., Kreutzer, K.: The complexity of independence-friendly fixpoint logic.
In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 355-368. Springer, Heidelberg
(2005)

Penczek, W.: Branching time and partial order in temporal logics. In: Time and
Logic: A Computational Approach, pp. 179-228. UCL Press, London (1995)
Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Information and Computation 184(2), 343-368 (2003)

Froschle, S., Hildebrandt, T.: On plain and hereditary history-preserving bisimu-
lation. In: Kutylowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS,
vol. 1672, pp. 354-365. Springer, Heidelberg (1999)



A Theory of Design-by-Contract for
Distributed Multiparty Interactions™

Laura Bocchi!, Kohei Honda?, Emilio Tuosto!, and Nobuko Yoshida®

' University of Leicester
2 Queen Mary
University of London
3 Imperial College London

Abstract. Design by Contract (DbC) promotes reliable software development
through elaboration of type signatures for sequential programs with logical pred-
icates. This paper presents an assertion method, based on the rt-calculus with full
recursion, which generalises the notion of DbC to multiparty distributed inter-
actions to enable effective specification and verification of distributed multiparty
protocols. Centring on global assertions and their projections onto endpoint as-
sertions, our method allows clear specifications for typed sessions, constraining
the content of the exchanged messages, the choice of sub-conversations to follow,
and invariants on recursions. The paper presents key theoretical foundations of
this framework, including a sound and relatively complete compositional proof
system for verifying processes against assertions.

1 Introduction

This paper introduces an assertion method for specifying and verifying distributed mul-
tiparty interactions, drawing ideas from a framework known as Design-by-Contract
(DbC), which is widely used in practice for sequential computation [[13.18]. DbC [25]
specifies a contract between a user and a sequential program by elaborating the type
signature of the program with pre/post-conditions and invariants. Instead of saying “the
method fooBar should be invoked with a string and an integer: then it will return (if
ever) another string”, DbC allows us to say “the method fooBar should be invoked with
a string representing a date d between 2007 and 2008 and an integer n less than 1000
then it will (if ever) return a string representing the date n days after d”. A type signature
describes a basic shape of how a program can interact with other programs, stipulating
its key interface to other components, which may be developed by other programmers.
By associating signatures with logical predicates, DbC enables a highly effective frame-
work for specifying, validating and managing systems’ behaviour, usable throughout all
phases of software development [21,23/28]. As a modelling and programming practice,
DbC encourages engineers to make contracts among software modules precise [14.25],
and build a system on the basis of these contracts.

The traditional DbC-based approaches are however limited to type signature of se-
quential procedures. A typical distributed application uses interaction scenarios that are

* This work is partially supported by EPSRC EP/F003757, EP/F002114, EP/G015635 and
EP/G015481, Leverhulme Trust Award “Tracing Networks”.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 1624{176,]2010.
(© Springer-Verlag Berlin Heidelberg 2010



A Theory of Design-by-Contract for Distributed Multiparty Interactions 163

(0) Add predicates to Global Types Assertion method

(1) Check well-assertedness

(2) Project G obtaining a well asserted Endpoint Assertion 71 for each role
(3a) Refine 71 to suit Asserted Process Pi

(3b) Validate Pi against 77"

Global Type
0. Assert '

Global G Well asserted Well asserted Asserted
Assertion Endpoint Endpoint ’
Assertions 71| € Assertions 71’ Process p1
1. Check Well asserted Well asserted
4 2 I ) BT I e
Assertions 72, Assertions T2 P2
Well asserted g e —
Global Assertion ‘ Well asserted c Well asserted Asserted
Endpoint Endpoint Pr
‘ Assertions T3 AssertionsT3' ’ ocess pg
2. Project 3a. Refine 3b. Validate

Fig. 1. The assertion method

much more complex than, say, request-reply. To build a theory that extends the core idea
of DbC to distributed applications, we consider a generalised notion of type signature
for distributed interactions centring on abstraction units, called sessions. A session con-
sists of a structured series of message exchanges among multiple participants. Each ses-
sion follows a stipulated protocol, given as a type called session type [3,19,20], which
prescribes a conversation scenario among its participants. Two or more sessions can
interleave in a single endpoint. For example, a session for an electronic commerce will
run interleaved with one for a financial transaction for payment. The communications
in a distributed application are articulated as a collection of such sessions.

On this basis, we introduce a theory of assertions for distributed interactions centring
on global assertions. A global assertion specifies a contract for participants in a multi-
party session by elaborating a session type with logical predicates. A session type only
specifies a skeletal protocol: it does not, for example, refer to constraints on message
values except their types. Just as in the traditional DbC, the use of logical predicates
allows us to specify more refined protocols, regarding, among others, content of mes-
sages, how choice of sub-conversations is made based on preceding interactions, and
what invariants may be obeyed in recursive interactions. The key ideas are presented in
Figure[Tl which we illustrate below.

(0,1) A specification for a multiparty session is given as a global assertion G, namely a
protocol structure annotated with logical predicates. A minimal semantic criterion,
well-assertedness of G (§ B.1)), characterises consistent specifications with respect
to the temporal flow of events, to avoid unsatisfiable specifications.

(2) G is projected onto endpoints, yielding one endpoint assertion (‘I;) for each partic-
ipant, specifying the behavioural responsibility of that endpoint (§ ). The consis-
tency of endpoint assertions are automatically guaranteed once the original global
assertion is checked to be well-asserted.

(3) Asserted processes, modelled with the n-calculu annotated with predicates (§ 3.1)),
are verified against endpoint assertions (§ through a sound and relatively

I For the sake of a simpler presentation, the present paper does not treat name passing in full
generality, except for private channel passing in session initiation. The theory however can
incorpoate these elements, as explained in Section[7l



164 L. Bocchi et al.

Buxer Seller Bank

Ht<100>(p_vo:int) ——»>|
i - | oint——— predicates
A A = {p vo = 100}
- - --hag:----eeeees _
= 9 <= Al = {vo z 100}
t<vo>—— 2 A2 = {vo > p vo}
g A3 = {vo = vp}
(P R— OK cooeeeeeeas A4 = {true}
vp:int . —>
1€—Vva:Boo——

Fig. 2. Global assertion for the protocol

complete compositional proof system (§ [6). Completeness, proved through gen-
eration of principal formulae, yields a relative decision procedure for satisfiability.

Our contributions include an algorithmic validation of consistency of global assertions
(Prop. B.2] and [4.3); semantic foundations of global assertions through labelled transi-
tions (Prop. and[6.3); a compositional proof system for validating processes against
assertions (Theorem[6.3), leading to predicate error freedom (Theorem[6.6) which en-
sures that the process will meet its obligations assuming that the remaining parties do
so0. Theorem[6.7]is completeness. § [7] concludes with further results and related work.

2  DDbC for Distributed Multiparty Interactions

The theory we present centres on the notion of global assertion. A global assertion uses
logical formulae to prescribe, for each interaction specified in the underlying session
type, what the sending party must guarantee, and dually what the receiving party can
rely on. Concretely:

1. Each message exchange in a session is associated with a predicate which constrains
the values carried in the message (e.g., “the quantity on the invoice from seller to
buyer equals the quantity on the order”);

2. Each branch in a session is associated with a predicate which constrains the selec-
tion of that branch (e.g., “seller chooses the ‘sell” option for a product if the ordered
quantity does not exceed the stock™);

3. Each recursion in a session is associated with an invariant representing an obliga-
tion to be maintained by all parties at each repetition of the recursion (e.g., “while
negotiating, seller and buyer maintain the price per unit about a fixed threshold”).

As an illustration, Figure Pldescribes a simple multiparty session among the participants
Buyer, Seller, and Bank exchanging messages whose content is represented by the
interaction variables v,, v, (of type Int) and v, (of type Bool). Buyer asynchronously
sends an offer v,, then Seller selects either to recursively start negotiating (hag) or
to accept the offer (ok). In the latter case, Buyer instructs Bank to make a payment v,,.
Finally, Bank sends Seller an acknowledgement v,. The recursion parameter p v, is
initially set to 100 and, upon recursive invocation, it takes the value that v, had in the
previous recursive invocation. This allows us to compare the current content of v, with



A Theory of Design-by-Contract for Distributed Multiparty Interactions 165

the one of the previous recursion instance (cf. A2 below). In Figure 2] the recursion
invariant A states that p v, is always greater or equal than 100; Buyer guarantees Al
which, dually, Seller relies upon; by A2, Buyer has to increase the price during ne-
gotiations until an agreement is reached; the value of the (last) offer and the payment
must be equal by A3, while A4 does not constrain v,.

3 Global Assertions

We use the syntax of logical formulae, often called predicates, as follows.
AB = ¢ =e | e1>ex | Oler,...,en) | AAB | —A | Iv(A)

where e; ranges over expressions (which do not include channels) and ¢ over pre-
defined atomic predicates with fixed arities and types [24, §2.8]. We denotes the set
of free variables of A with var(A), similarly for var(e). We fix a model of the predi-
cates, called underlying logic, for which we assume the validity of closed formulae to
be decidable.

Global assertions (ranged over by G, G, ...) elaborate global session types in [20]
with logical formulae. The syntax is given below:

G = p—p: k(i 8{A).G | &) - p,p/,.. are participants,
| p—p kAN G | G, G’ - kK. are.channe.ls, .
N — u,v,.. are interaction variables,

| ue)(v:5)iA}.G | end - §8.8',.. are sorts.
Interactionp — p': k(V: §){A}.G describes a communication between a sender p and
a receiver p’ via the k' session channel (k is a natural number), followed by G. The
variables in the vector ¥ are called interaction variables and bind their occurrences in
A and G; interaction variables are sorted by sorts S (Bool, Int, ...) that denote types for
first-order message values. The predicate A constrains the content of 7: the sender p
guarantees A and the receiver p’ relies on A (like in the rely-guarantee paradigm [22]).

Branching p — p’: k{{A;}l;: G;}jcs allows the selector p to send to participant p/,
through k, a label /; from {I j} jes (J is a finite set of indexes) if p guarantees A; (upon
which p’ can rely). Once /; is selected, G; is to be executed by all parties.

Recursive assertion ut(é)(v: §){A}.G (cf. [11], t is an assertion variable) specifies
how a recursive session, which may be repeated arbitrarily many times, should be car-
ried out through interactions among participants. The formal parameters ¥ are a vector
of pairwise distinct variables sorted by a vector of sorts S of the same length (each v; in
7 has sort S; of S); ¥ binds their free occurrences in A. The initialisation vector & denotes
the initial values for the recursion, each e; instantiating v; in ¥. The recursion invariant
A specifies the condition that needs be obeyed at each recursion instantiation; recursion
instantiation, of the form t{€), is to be guarded by prefixes, i.e. the underlying recursive
types should be contractive. A recursive assertion can be unfolded to an infinite tree, as
in the equi-recursive view on recursive types [30].

Composition G, G' represents the parallel interactions specified by G and G’, while
end represents the termination. Sorts and trailing occurrences of end are often omitted.

We write p € G when p occurs in §G. For the sake of simplicity we avoid linearity-
check [3] by assuming that each channel in G is used (maybe repeatedly) only between
two parties: one party for input/branching and by the other for output/selection.



166 L. Bocchi et al.

Example 3.1 (Global Assertions). The protocol described in § Plis modelled by
Greg = ut{100)(p v, : Int){A}. Buyer — Seller: ki (v, : Int){A1}.
Seller — Buyer: kp{{A2}hag: t{v,), {true}ok: G,.}
Gok = Buyer — Bank: k3 (v, : Int){A3}. Bank — Seller: k4 (v, : Bool){A4}. end
where ki, kp, k3, and k4 are channels and the recursion parameter p v, (initially set to
100) denotes the offer of Buyer in the previous recursion instance.

3.1 Well Asserted Global Assertions

When setting up global assertions as a contract among multiple participants, we should
prevent inconsistent specifications, such as those in which it is logically impossible
for a participant to meet the specified obligations. Below we give two constraints on
predicates of global assertions that guarantee consistency.

Let I(G) be the set of variables occurring in G; a participant p knows ve I1(G) if v
occurs in an interaction of G involving p (this relation can be computed effectively, see
[31]1). I(G) I p denotes the set of variables of G that p € G knows.

History-sensitivity. A predicate guaranteed by a participant p can only contain those
interaction variables that p knows.

Temporal-satisfiability. For each possible set of values satisfying A and, for each pred-
icate A’ appearing after A, it is possible to find values satisfying A’.

Consider the following examples:

pa — ps: ki (v:Int){true}. pg — pc: ko (V' : Int){true}. pc — pa: k3 (z: Int){z > v}. end
pa—pr: ki (v:Int){v <10} pg = pa: k2 (z: Int){v >z A 7> 6}. end.

The first global assertion violates history-sensitivity since pc has to send z such that
z > v without knowing v. The second global assertion violates temporal-satisfiability
because if py sends v = 6, which satisfies v < 10, then pg will not be able to find a value
that satisfies 6 > z A z> 6.

Assertions satisfying history-sensitivity and temporal-satisfiability are called well-
asserted assertions. For the formal definitions, including inductive rules to check well-
assertedness, see [31]].

Proposition 3.2 (Well-assertedness). Checking well-assertedness of a given global
assertion is decidable if the underlying logic is decidable.

4 Endpoint Assertions and Projection
Endpoint assertions, ranged over by 7,7, .., specify the behavioural contract of a ses-
sion from the perspective of a single participant. The grammar is given as follows.

T = K SART | i@ (7 :S{ALT | k&AM Tikier
| K20 S{ALT | Ke) | k@ {{A;};: Ti}jer | end

In k!(v: S§){A}; T, the sender guarantees that the values sent via k (denoted by S-sorted
variables ) satisfy A, then behaves as 7; dually for the receiver k?(7: S){A}; 7.



A Theory of Design-by-Contract for Distributed Multiparty Interactions 167

In k® {{A;}l;: Tj}er the selector guarantees A; when choosing /; on k; dually
k&{{A;}l;: Tj}ier states that A; can be assumed when branching at k on a label /;.
Assertion ut(e)(v : §){A}.T constrains parameters ¥ of type S which initially take val-
ues é; the invariant of the recursion is A.

The projection of predicate A on participant p, written A | p, existentially quantifies
all the variables of A that p does not know, and is defined as 3V, (A) where V,y =
var(A)\I(G) |'p. Also, é | p are the expressions in € including only such that var(e;)
I(G) ! p. The projection function in Definition [4.1] maps global assertions, predicates
and participants to endpoint assertions.

Definition 4.1 (Projection). Given G and A, the projection of G for a participant p wrt
A is denoted by (G) l’; and, assuming pj # pa, recursively defined as follows.

ki(7: 8){A}.(G") 1o if p=p
(1) (p1 = p2: k(7:8){A}.G") Ip"= { k2(0: §){(A A Ap) IP}.(G') La™" ifp=p»
(G") 15" otw
k@ {{A: (G) Lo ™ Yier if p=p
(2) (p1 —p2: k{{A}i: Gitier) 187 = k&{{(A AAP> Mo}t (Gi) ié“‘"}fz if p=1p>
(G) bV (= (G LoV MY otw
4 | (G)1p" ifpeGandp¢ Gji# je{1,2}
(3) (G1,G2) Ip _{end P ifp¢ G andp¢gjz
(4) (ut@)(7: $){A}.G) 1a7= ut(@ Ip)(7 Ip: ){A 1 p}.(G) 13"
(5) (&) lp"=1te1p) (6) (end) Jp= end

I no side condition applies, (§) l? is undefined. The projection of G on p, denoted
G I'p.is givenas (G) JIve.

In (1), value passing interactions are projected. For a send, the projection of a predicate
A consists of A itself. Notice that if G is well-asserted then p; knows all variables in
A (i.e., A [ p; = A). For a receive, it is not sufficient to verify the non-violation of the
current predicate only. Consider the following well-asserted global assertion:

Seller — Buyer: kj (cost : Int){cost > 10}.Buyer — Bank: k; (pay : Int){pay = cost}.end

The predicate pay > cost is meaningless to Bank since Bank does not know cost; rather
the projection on Bank should be k,?(pay : Int){3cost(cost > 10 A pay = cost)}, which
incorporates the constraint between Buyer and Seller. Thus (1) projects all the past
predicates while hiding incorporating the constraints on interactions p, does not partic-
ipate through existential quantification. This makes (1) the strongest precondition i.e. it
is satisfied iff p, receives a legal message, avoiding the burden of defensive program-
ming (e.g. the programmer of Bank can concentrate on the case pay < 10).

In (2), the “otw” case says the projection should be the same for all branches. In (3),
each participant is in at most a single global assertion to ensure each local assertion
is single threaded. In (4), the projection to p is the recursive assertion itself with its
predicate projected on p by existential quantification, similarly in (5).



168 L. Bocchi et al.

Example 4.2 (Projection). The projection of Gee (Example[3.I) on Seller is

Tser = pt{100>(p vo : Int){p v, = 100};k12(v, : Int){B}; D
D =k@®{{vo > p vothag: v,),{true}ok: T}
Tok = G [ Seller = k4?(v, : Bool){B'}
where B=p v, > 100 Av, > 100and B’ =3p v,.B A v, = Vp.

Below well-assertedness can be defined on endpoint assertions as for global assertions,
characterising the same two principles discussed in §3.11

Proposition 4.3 (Projections). Let G be a well-asserted global assertion. Then for
eachp € G, if G | p is defined then G | p is also well-asserted.

5 Compositional Validation of Processes

5.1 The n-Calculus with Assertions

We use the mt-calculus with multiparty sessions [20, §2], augmented with predicates for
checking (both outgoing and incoming) communications.
The grammar of asserted processes or simply processes (P,Q,...) is given below.

P :=a[2.0](3).P request | s <T{A};P select Py =P | (V§)Py
| atp1 (5).P accept | s> {{A;i}i: Pi}icr branch |s:h
| (va)P hide |P|Q parallel | errH | enT
| si&>(D){A}; P send | uX{ety(vs).P rec def ex=nlene..
| s2(7){A}; P receive | X{&5) rec call n ::=a|true | false
| if e then P else Q  conditional | 0 idle h =1

On the left, we define programs. af2.n1(§).P multicasts a session initiationrequest to
each app] (§).P (with 2 < p < n) by multiparty synchronisation through a shared name
a. Send, receive, and selection, all through a session channel s, are associated with a
predicate. Branch associates a predicate to each label. Others are standard.

Runtime processes Py, given in the third column in the grammar, extend programs
with runtime constructs. Process s: h1..h, represents messages in transit through a ses-
sion channel s, assuming asynchronous in-order delivery as in TCP, with each &; denot-
ing either a branching label or a vector of sessions/values. The empty queue is written
s: . Processes errH and errT denote two kinds of run-time assertion violation: errH
(for “error here”) indicates a predicate violation by the process itself; and errT (“error
there”) a violation by the environment.

Example 5.1 (Seller’s Process). We set Buyer, Seller, Bank to be participants 1,2, 3
and define a process implementing the global assertion Gy, in Examples[3.Tland 4.2 as
Preg = a12,31(5).Py | ai21(8).P» | ar31(5).P3. Let us focus on the Seller

Py = pX<100,5)(p vo,5).51?(vo){B}: Q2
0, = if e then (sp <hag; X{v,,5)) else (s <0k;Ppr) where Py =54?(v4){B'};0

where B and B’ are as in Example 2] § = s1,..,54, and Q5 uses a policy e to select a
branch (e.g., e = {v, > 200 A v, > p v, }).



A Theory of Design-by-Contract for Distributed Multiparty Interactions 169

ar2.n1(8).Py | a21(5).Py | ... | aml1 (8).Py = (V) (PL | P | oo | P s1: D | oo | 02 D) [R-LNK]
sW&YP){A};P | s:h— P[/7] | s:h & (el aAA[R/P] | true) [R-sEND]
s?(V){A};P|s:n h— P[a/?] |s:h  (A[a/¥] | true) [R-RECV]

s> {{Ai} it Pilier | st 71—)Pj |S:/7l (jeTandA; | true) [R-BRANCH]
s<{A}:P|s:h—P|s:h I (A ] true) [r-sELECT]

if ethen Pelse Q — P (e | true) ifethen Pelse Q— QO (e false) [R-1F]
sKeY(P){A} ;P —errH (8| & AA[R/7] | false) [R-SENDERR ]

s?(M{A};P|s:d h—enT|s:h (A[f/7] | false) [R-RECVERR ]

s> {{A;}i: Pitier | s:1; h—enT|s:h (jelandA; | false) [R-BRANCHERR |
s<{{A}:P—erH (A false) [R-SELECTERR ]

Fig. 3. Reduction: non-error cases (top) - error cases (bottom)

The reduction rules with predicate checking are given in Figure Bl which generate
— by closing the induced relation under | and v and taking terms modulo the standard
structural equahty@ [20]. The satisfaction of the predicate is checked at each commu-
nication action: send, receive, selection and branching, where we write A | true (resp.
¢ | n) for a closed formula A (resp. expression &) when it evaluates to true (resp. ii).
When initiating a session, [R-LINK] establishes a session through multiparty synchro-
nisation, generating queues and hiding all session channels. The remaining rules are
standard, modelling communications in a session via queues [3.20].

5.2 Validation Rules

For validation, we use judgements of the form C;I" - P> A, which reads: “under
C and T, process P is validated against A”. Here, C is an assertion environment,
which incrementally records the conjunction of predicates; hereafter, I' - P = A ab-
breviates true;I" — P=>A. T is a global assertion assignment that is a finite function
mapping shared names to well-asserted global assertions and process variables to the
specification of their parameters (we write I' - a : G when I' assigns G to a and
X:(v: 5)‘2] @p;... T, @p, when I" maps X to the vector of endpoint assertions
T, @p;...T, @p, using the variables ¥ sorted by S). A is an endpoint assertion as-
signment which maps the channels for each session, say §, to a well-asserted endpoint
assertion located at a participant, say 7 @ p.

The validation rules are given in Figure dl In each rule, we assume all occurring
(global/endpoint) assertions to be well-asserted. The rules validate the process against
assertions, simultaneously annotating processes with the interaction predicates from
endpoint assertions. We illustrate the key rules.

Rule [SnD] validates that participant p sends values € on session channel k, pro-
vided that é satisfy the predicate under the current assertion environment; and that the

2 The structural equality includes uX<{&)(¥si...5,).P = P[ (951...5,).P/X][é/P] where
X{&'§ H[uX (751 ...8,).P/X] is defined as ,uX<~’“’ (17~ .5n).P



170 L. Bocchi et al.

CoAle/d] C.T+ P[é/i]=>A,5:T[é/9)])@p THé:§

C.TE s &0 )AL P=A k()AL T @p )
CAATV:SHP=A §5:T@p
CTE 527 : ){ALPEA, 5:k2(0: )AL T @p "
CoA; CI'-P=AS5:T,@p jel
CTE st <A} PoA, 5:k® ({A T Tl @p o)
CAA;THP>AS.T@p Viel Bra]

C:T = s> {{Ai}i: Pilic>A,5:k&{{A;};: T}ies @p

CIEP=A5:(I'(a)[p)@p px1 CIEP=As:(T@)l)@1
C:TF alpl (5).P=>A C;TFa2.01(5).P=>A

CreI'P>A CA—e;IT'HQO>A C.T—P=A C;FI—Q|>A' A end only
C.Tifethen Pelse 0=>A (IF] CTEP[O=AN [CONCl =T 0= AIPLE)
C:T,a:G+-P>A a¢in(C,T,A) CiTEP=AN CoC ANDA
C:TH(va: G)P=A (HIDE] CTFP=A [ConsEQl
Ti[é/7),...,T,[é/?] well-asserted and well-typed under T',7 : §

C;I,X:(v:8)7 @p1..7, @py - X{&5)..5,) =51 : 71 [é/V] @p,,..,5,: Ty [¢/7] @p,
C:T,X:(#:5)7 @p,..7,@p, - Pr>51:7] @p,..5,: T, @p,

C; T+ uX{e5,..5,)(951..5,) . P> §1:T1[e/7] @p,..5;,: Ty [¢/] @p,

[MAcc]

[MCAST]

[VAR]

[REC]
Fig. 4. Validation rules for program phrases

continuation is valid, once v gets replaced by é. Dually, rule [Rcv] validates a value
input against the continuation of the endpoint assertion under the extended assertion
environment C A A (i.e., the process can rely on A for the received values after the input).
Rules [SEL] and [BRA] are similar. Rules [Macc] and [McasT] for session acceptance
and request validate the continuation against the projection of the global assertion onto
that participant (n is the number of participants in G and p is one of them).

Rule [IF] validates a conditional against A if each branch is validated against the
same A, under the extended environment C Ae or C A —e, as in the corresponding rule
in Hoare logic. As in the underlying typing [20], rule [Conc] takes a disjoint union of
two channel environments, and rule [IDLE] takes A which only contains end as endpoint
assertions. Rule [HIDE] is standard, assuming a is not specified in C.

Rule [CONSEQ] uses the refinement relation 3 on endpoint assertions. If T 5 77,
T specifies a more refined behaviour than T, in that T strengthens the predicates for
send/selection, so it emits/selects less; and weakens those for receive/branching, so it
can receive/accept more. Example 5.2]illustrates this intuition.

Example 5.2 (Refinement). Below, endpoint assertion Z; refines 7, (i.e., Zs D L,):

T =ki!(v:Int){v > 10}; kr?(z: Int){z > 0}; k3 &{{true}I1: T1,{v > 100}12: T}
Ty =ki!(v:Int){v>0}; ky?(z:Int){z > 10}; k3&{{v > 100}11: 7;}

T, has a stronger obligation on the sent value v, and a weaker reliance on the received
value z; while 7; has a weaker guarantee at 11 and offers one additional branch.

The formal definition is in [31], where we also show that the refinement relation is
decidable if we restrict the use of recursive assertions so that only those in identical
shapes are compared, which would suffice in many practical settings.



A Theory of Design-by-Contract for Distributed Multiparty Interactions 171

Rule [VAR] validates an instantiation of X with expressions against the result of per-
forming the corresponding substitutions over endpoint assertions associated to X (in
the environment). In [REC], a recursion is validated if the recursion body P is validated
against the given endpoint assertions for its zero or more sessions, under the same end-
point assumptions assigned to the process variable X. The validity of this rule hinges
on the partial correctness nature of the semantics of the judgement.

Example 5.3 (Validating Seller Process). We validate the Seller part of Py, in Ex-
ample [5.1] using Z;,; from Example 3.1 We focus on one branch of Q5 in P, and
associate each s1,...,54 of P, to a channel ki, ... ks of T, respectively. Recall that
B=pv,2100Av,>100,A1 =v, > p vy, and A2 =Fv,.p v, =100 Av, = 100 AV, =
vp. Below Q= 542(v4){B'};0.
(BA—eAB)THO0>t:end@2
(BA—e),TH542(vg){B'};0>5: kg (v, : INt){B'};end @ 2
(BA—e) DAl (BA—e),TF Qur5: Ty @2
B A —e, T 57 <10K; Qi =5 : kp @ {{true}ok : Tpr,{Al}hag : t{v,>} @2
B,T |- if e then (s < hag; X{v,,5)) else (s2 <0k;s4?(vq){B'};0)=>5: T @2
[Rev]
true, T 512(vo){B}; 02 =5: k1 ?(vo : Int){B}; T, @2 <

[IDLE]
[Rev]
(substituting)
[SEL]
[IF]

The ... on the premise of [IF] indicates the missing validation of the first branch. The
interested reader may refer to [31]] for a complete validation example with recursion.

6 Error-Freedom and Completeness

6.1 Semantics of Assertions

The semantics of asserted processes is formalised as a labelled transition relation that
uses the following labels
o=al2.n](8) | ali](5) | s\E | s | | sl | s>l |t

for session requesting/accepting, value sending/receiving, selection, branching, and the
silent action, respectively. We write P = Q when P has a one-step transition o to Q.
The transition rules are the standard synchronous oned] except that: (i) predicates are
checked at each communication action and, if the predicate is violated, in the case of
input/branching action the process moves to errT, in the case of an output/selection the
process moves to errH with t-action, (i7) they include the reduction semantics given in
§B1(.e., P— Qinduces P 5 Q).

The semantics of endpoint assertions is defined as another labelled transition relation,
of form (I",AY % (I, A", which reads: the specification {T',A) allows the action o,
with {I" A" as the specification for its continuation. In this transition relation, only
legitimate (assertion-satisfying) actions are considered.

We define the semantic counterpart of I - P >A by using a simulation between
the transitions of processes and those of assertions. The simulation (Definition [6.1]),

3 The synchronous transition suites our present purpose since it describes how a process
places/retrieves messages at/from queues, when message content may as well be checked.



172 L. Bocchi et al.

requires an input/branching action to be simulated only for “legal” values/labels, i.e. for
actions in which predicates are not violated. Intuitively, we demand conformance to a
proper behaviour only if the environment behaves properly. Below we use the predicate
erasure to show that the validation can prevent bad behaviour even without runtime
predicate checking, writing erase(P) for the result of erasing all predicates from P.
Similarly erase(I") and erase(A) erase predicates from the underlying session types,
giving the typing environments. P is closed if it is without free variables.

Definition 6.1 (Conditional Simulation). Let & be a binary relation whose elements
relate a closed process P without errH or erT and a pair of assignments (I", A) such that
erase(I’) | erase(P) cerase(A) in the typing rules in [20, §4]. Then R_is a conditional
simulation if, for each (P,<T',A)) € R.:

1. for each input/branching/session input P = P’, (I, A) has a respective move at
sbj(ot) (the subject of o) and, if (I',A) > (I, A’) then (P',({I",A’)) € R..
2. for each output/selection/t/session output move P — P', (', AY > (I", A’) such that
(P' T, A")) e R.
If R is a conditional simulation we write P < (T',A) for (P,<{T",A)) € R..

The conditional simulation requires P to be well-typed against erase(I") and erase(A).
Without this condition, the inaction 0 would conditionally simulate any A. This stringent
condition can be dropped, but our interest is to build an assertion semantics on the basis
of the underlying type discipline.

Definition 6.2 (Satisfaction). Let P be a closed program and A an end-point assertion
assignment. If P < (T",A) then we say that P satisfies A under T, and write T’ = P=>A.
The satisfaction is extended to open processes, denoted C;T" = P = A, by considering
all closing substitutions respecting I" and C over A and P.

The judgement I |= P = A in Definition [6.2] states that (1) P will send valid messages
or selection labels; and (2) P will continue to behave well (i.e., without going into
error) w.r.t. the continuation specification after each valid action in (1) as well as after
receiving each valid message/label (i.e. which satisfies an associated predicate). The
satisfaction is about partial correctness since if P (is well-typed and) has no visible
actions, the satisfaction trivially holds.

6.2 Soundness, Error Freedom and Completeness

To prove soundness of the validation rules, we first extend the validation rules to pro-
cesses with queues, based on the corresponding typing rules in [3.20].

Proposition 6.3 (Subject Reduction). Let ' - P>A be a closed program and suppose
we have (T, AY *5" (T A'>. Then P “5" P’ implies T - P' A

The proof uses an analysis of the effects of t-actions on endpoint assertions, observing
the reduction at free session channels changes the shape of the session typing [3:20].

Let AD A’ be a point-wise extension of 3 (defined when dom(A) = dom(A")); Propo-
sition says that a process satisfying a stronger specification also satisfies a weaker
one. Using these results we obtain Theorem [6.3]

Proposition 6.4 (Refinement). IfT'|=P=>Aand AD A’ thenT |=P=A'.



A Theory of Design-by-Contract for Distributed Multiparty Interactions 173

Theorem 6.5 (Soundness of Validation Rules). Let P be a program. Then C;T
P=A implies C;T'EPeA.

A direct consequence of Theorem[6.3is the error freedom of validated processes. Below
we say (I', A) allows a sequence of actions 0;..0,, (n = 0) if for some {I";A") we have

(I,A) 415 (A,
Theorem 6.6 (Predicate Error Freedom). Suppose P is a closed program, T' - P=>A

and P "' 3" P’ such that {T',A) allows 01..0,,. Then P’ contains neither ertH nor errT.
The proof system is complete relative to the decidability of the underlying logic for
processes without hidden shared names. We avoid name restriction since it allows us
to construct a process which is semantically equivalent to the inaction if and only if
interactions starting from a hidden channel terminate. Since we can simulate arbitrary
Turing machines by processes, this immediately violates completeness. In this case,
non-termination produces a dead code, i.e. part of a process which does not give any
visible action, which causes a failure in completeness%

For each program without hiding, we can compositionally construct its “principal as-
sertion assignment” from which we can always generate, up to D, any sound assertion
assignment for the process. Since the construction of principal specifications is compo-
sitional, it immediately gives an effective procedure to check |= as far as D is decidable
(which is relative to the underlying logic). We conclude:

Theorem 6.7 (Completeness of Validation Rules for Programs without Hiding).
For each closed program P without hiding, if T = P>A then T = P>A. Further T |=
P>Ais decidable relative to the decidability of 3.

7 Extensions and Related Work

Extensions to shared and session channel passing. The theory we have introduced in
the preceding sections directly extends to shared channel passing and session channel
passing, or delegation, carrying over all formal properties. In both cases, we have only
to add predicate annotations to channels in assertions as well as in asserted processes.
The shape of the judgement and the proof rules do not change, similarly the semanics
of the judgement uses a conditional simulation. We obtain the same soundness result as
well as completeness of the proof rules for the class of processes whose newly created
channels are immediately exported. Since the presentation of such extension would
require a detailed presentation of the notion of refinement, for space constraints and
simplicity of presentation we relegate it to [31].

Hennessy-Milner logic for the n-calculus. Hennessy-Milner Logic (HML) is an
expressive modal logic with an exact semantic characterisation [17]. The presented the-
ory addresses some of the key challenges in practical logical specifications for the -
calculus, unexplored in the context of HML. First, by starting from global assertions, we
gain in significant concision of descriptions while enjoying generality within its scope
(properties of individual protocols). Previous work [2/11]] show how specifications in

4 Not all dead codes cause failure in completeness. For example a dead branch in a branching/-
conditional does not cause this issue since the validation rules can handle it.



174 L. Bocchi et al.

HML, while encompassing essentially arbitrary behavioural properties of processes,
tend to be lengthy from the practical viewpoint. In this context, the direct use of HML
is tantamount to reversing the methodology depicted in Figure [l of § I} we start from
endpoint specifications and later try to check their mutual consistency, which may not
easily yield understandable global specifications.

As another practical aspect, since D is decidable for practically important classes as-
sertions [|31]], the present theory also offers algorithmic validation methods for key engi-
neering concerns [32] including consistency of specifications (cf. §3.1) and correctness
of process behaviours with full recursion against non-trivial specifications (cf. Theo-
rem [6.7), whose analogue may not be known for the general HML formulae on the
n-calculus. The use of the underlying type structures plays a crucial role.

From the viewpoint of logical specifications for name passing, the present theory
takes an extensional approach: we are concerned with what behaviours will unfold start-
ing from given channels, than their (in)equality [11]. While our approach does reflect
recommended practices in application-level distributed programming (where the direct
use of network addresses is discouraged), it is an interesting topic to study how we can
treat names as data as studied in [11].

Corresponding assertions and refinement/dependent types. The work [[6] combines
session-types with correspondence assertions. The type system can check that an as-
sertion end L, where L is a list of values (not a logical formula), is matched by the
corresponding begin effect.

The use of session types to describe behavioural properties of objects and compo-
nents in CORBA is studied in [33]. In another vein, the refinement types for channels
(e.g. [I5]) specify value dependency with logical constraints. For example, one might
write ?(x: int,!{y : int | y > x}) using the notations from [13/34]. It specifies a depen-
dency at a single point (channel), unable to describe a constraint for a series of inter-
actions among multiple channels. Our theory, based on multiparty sessions, can verify
processes against a contract globally agreed by multiple distributed peers.

Contract-based approaches to functions and communications and functions. Veri-
fication using theories of contracts for programming functional languages, with appli-
cations to the validation of financial contracts, is studied in [29/35]. Our theory uses
the mt-calculus with session types as the underlying formalism to describe contracts for
distributed interactions. We observe that a contract-based approach for sequential com-
puting is generally embeddable to the present framework (noting that function types are
a special form of binary session types and that the pre/post conditions in sequential con-
tracts are nothing but predicates for interactions resulting from the embedding); it is an
interesting subject of study to integrate these and other sequential notions of contracts
into the present framework, which would enable a uniform reasoning of sequential and
concurrent processes.

In [8112] use c-semirings to model constraints that specify a Service Level Agree-
ment. It would be interesting to consider global assertions where the logical language
is replaced with c-semirings. This would allow global assertions to express soft con-
straints but it could affect the effectiveness of our approach. However c-semirings do
not feature negation and the decidability of logics based on c-semrings has not been
deeply investigated.



A Theory of Design-by-Contract for Distributed Multiparty Interactions 175

The global consistency checking is used in advanced security formalisms. In [16]
a rely-guarantee technique is applied to a trust-management logic. The main technical
difference is that users have to directly annotate each participant with assertions because
of the the absence of global assertions. In [4] cryptography is used to ensure integrity
of sessions but logical contracts are not considered.

Theories of contracts for web services based on advanced behavioural types are pro-
posed, including those using CCS [7], m-calculus [[1Q], and conversation calculus [9].
Some of the authors in this line of study focus on compliance of client and services,
often defining compliance in terms of deadlock-freedom, e.g., in [1]] a type system guar-
anteeing a progress property of clients is defined.

Our approach differs from the preceding works in its use of global assertions for
elaborating the underlying type structure, combined with the associated compositional
proof system. This permits us to express and enforce fine-grained contracts of chore-
ographic scenarios. Global/endpoint assertions can express constraints over message
values (including channels), branches and invariants, which cannot be represented by
types alone, cf. [20]. The enriched expressiveness of specifications introduces technical
challenges: in particular, consistency of specifications becomes non-trivial. The pre-
sented consistency condition for global assertions is mechanically checkable relatively
to the decidability of the underling logic, and ensures that the end-point assertions are
automatically consistent when projected. On this basis a sound and relatively complete
proof system is built that guarantees semantic consistency.

As a different DbC-based approach to concurrency, an extension of DbC has been
proposed in [27], using contracts for SCOOP [26] in order to reason about liveness prop-
erties of concurrent object-oriented systems. The main difference of our approach from
[27] is that our framework specifies focuses on systems based on distributed message
passing systems while [27] treats shared resources. The notion of pre-/post-conditions
and invariants for global assertions centring on communications and the use of projec-
tions are not found in [27]. The treatment of liveness in our framework is an interesting
topic for further study.

References

1. Acciai, L., Borale, M.: A type system for client progress in a service-oriented calculus. In:
Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 625-641. Springer, Heidelberg (2008)

2. Berger, M., Honda, K., Yoshida, N.: Completeness and logical full abstraction for modal
logics for the typed m-calculus. In: Aceto, L., Damgérd, 1., Goldberg, L.A., Halldérsson,
M.M., Ingdlfsdéttir, A., Walukiewicz, 1. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
99-111. Springer, Heidelberg (2008)

3. Bettini, L., et al.: Global Progress in Dynamically Interfered Multiparty Sessions. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418—433. Springer,
Heidelberg (2008)

4. Bhargavan, K., Corin, R., Deniélou, P.M., Fournet, C., Leifer, J.: Cryptographic protocol
synthesis and verification for multiparty sessions. In: CSF, pp. 124-140 (2009)

5. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol code by
typing. In: POPL, pp. 445-456 (2010)

6. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence assertions for process synchro-
nization in concurrent communications. JFC 15(2), 219-247 (2005)



176

7.

8.

18.

19.

20.

21.
22.

23.
24.
25.
26.
27.

28.
29.

30.
31.
32.
33.
34.

35.

L. Bocchi et al.

Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party service com-
position. Fundamenta Informaticae XX, 1-28 (2008)

Buscemi, M., Montanari, U.: CC-Pi: A constraint-based language for specifying service level
agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18-32. Springer,
Heidelberg (2007)

Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285-300. Springer, Heidelberg (2009)

Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 211-228. Springer, Heidelberg (2009)

. Dam, M.: Proof systems for pi-calculus logics. In: Logic for Concurrency and Synchronisa-

tion. Trends in Logic, Studia Logica Library, pp. 145-212. Kluwer, Dordrecht (2003)
De Nicola, R., et al.: A Basic Calculus for Modelling Service Level Agreements. In: Coor-
dination. LNCS, vol. 3454, pp. 33-48. Springer, Heidelberg (2005)

. Floyd, R.W.: Assigning meaning to programs. In: Proc. Symp. in Applied Mathematics,

vol. 19 (1967)
Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley,
Chichester (2003)

. Freeman, T., Pfenning, F.: Refinement types for ml. SIGPLAN Not. 26(6), 268-277 (1991)

Guttman, J.D., et al.: Trust management in strand spaces: A rely-guarantee method. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325-339. Springer, Heidelberg (2004)

. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. JACM 32(1)

(1985)

Hoare, T.: An axiomatic basis of computer programming. CACM 12 (1969)

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 22—-138. Springer, Heidelberg (1998)

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL, pp.
273-284. ACM, New York (2008)

The Java Modeling Language (JML) Home Page

Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp. 321-332
(1983)

Leino, K.R.M.: Verifying object-oriented software: Lessons and challenges. In: Grumberg,
O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, p. 2. Springer, Heidelberg (2007)
Mendelson, E.: Introduction to Mathematical Logic. Wadsworth Inc., Bermont (1987)
Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40-51 (1992)

Meyer, B.: Object-Oriented Software Construction, ch. 31. Prentice Hall, Englewood Cliffs
(1997)

Nienaltowski, P., Meyer, B., Ostroff, J.S.: Contracts for concurrency. Form. Asp. Com-
put. 21(4), 305-318 (2009)

OMG: Object Constraint Language Version 2.0 (May 2006)

Peyton Jones, S., et al.: Composing contracts: an adventure in financial engineering. In: ICFP,
pp- 281-292. ACM, New York (2000)

Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)

Full version of this paper, http://www.cs.le.ac.uk/people/1bl48/fullpaper.html
SAVARA JBoss Project webpage, http://www.jboss.org/savara

Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of objects and components
using session types. Fundamenta Informatice 73(4), 583-598 (2006)

Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL, pp. 214-227.
ACM, New York (1999)

Xu, D., Peyton Jones, S.: Static contract checking for Haskell. In: POPL, pp. 41-52. ACM,
New York (2009)


http://www.cs.le.ac.uk/people/lb148/fullpaper.html
http://www.jboss.org/savara

Bisimilarity of One-Counter Processes Is
PSPACE-Complete

Stanislav Bohm'*, Stefan Goller2, and Petr Jan&ar!

! Techn. Univ. Ostrava (FEI VSB-TUO), Dept of Computer Science, Czech Republic
2 Universitit Bremen, Institut fiir Informatik, Germany

Abstract. A one-counter automaton is a pushdown automaton over a singleton
stack alphabet. We prove that the bisimilarity of processes generated by nonde-
terministic one-counter automata (with no e-steps) is in PSPACE. This improves
the previously known decidability result (Jancar 2000), and matches the known
PSPACE lower bound (Srba 2009). We add the PTIME-completeness result for
deciding regularity (i.e. finiteness up to bisimilarity) of one-counter processes.

1 Introduction

Among the various notions of behavioral equivalences of (reactive) systems, (strong)
bisimilarity plays an important rdle (cf, e.g., [16]). For instance, various logics can be
characterized as the bisimulation-invariant fragment of richer logics. A famous theorem
due to van Benthem states that the properties expressible in modal logic coincide with
the bisimulation-invariant properties expressible in first-order logic [28]]. Similar such
characterizations have been obtained for the modal p-calculus [8] and for CTL* [17].
Another important notion is weak bisimilarity that generalizes (strong) bisimilarity by
distinguishing e-moves corresponding to internal behavior. There are numerous further
notions of equivalences. For a more detailed treatment of the different behavioral equiv-
alences in the context of concurrency theory, the reader is referred to [4].

The (weak/strong) bisimilarity problem consists in deciding if two given states of a
given transition system are weakly/strongly bisimilar. On finite transition systems both
weak and strong bisimilarity is well-known to be complete for deterministic polynomial
time [1]]. Moreover, on finite transition systems weak bisimilarity can be reduced to
strong bisimilarity in polynomial time by computing the transitive closure.

In the last twenty years a lot of research has been devoted to checking behavioral
equivalence of infinite-state systems, see [23] for an up-to-date record. In the setting
of infinite-state systems, see also [[14] for Mayr’s classification of infinite-state systems,
the situation is less clear. There are numerous classes of infinite-state systems for which
decidability of bisimilarity is not known. Three such intricate open problems are (i)
weak bisimilarity on basic parallel processes (BPP, a subclass of Petri nets), (ii) strong
bisimilarity of process algebras (PA), and (iii) weak bisimilarity of basic process alge-
bras (BPA). On the negative side, we mention undecidability of weak bisimilarity of PA
by Srba [22]]. On the positive side we mention an important result by Sénizergues who

* S. Bohm and P. Jancar are supported by the Czech Ministry of Education, project No. IM0567.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 1775191.b010.
(© Springer-Verlag Berlin Heidelberg 2010



178 S. Béhm, S. Goller, and P. JanCar

shows that bisimilarity on equational graphs of finite out degree [19] (a slight general-
ization of pushdown graphs) is decidable. See also Stirling’s unpublished paper [25]] for
a shorter proof of this, using ideas from concurrency theory. For normed PA processes
Hirshfeld and Jerrum prove decidability of strong bisimilarity [7].

When focussing on the computational complexity of bisimilarity checking of infinite-
state systems for which this problem is decidable, the situation becomes even worse.
There are only very few classes of infinite-state systemss for which the precise compu-
tational complexity is known. For instance, when coming back to one of the above-
mentioned positive results by Sénizergues/Stirling concerning (slight extensions of)
pushdown graphs, a primitive recursive upper bound is not yet known. However,
EXPTIME hardness of this problem was proven by Kucera and Mayr [13]]. As one of
the few results on infinite systems where the upper and lower complexity bounds match,
we can mention [10] where it is shown that bisimilarity on basic parallel processes is
PSPACE-complete.

In this paper we study the computational complexity of deciding strong bisimilar-
ity over processes generated by one-counter automata. One-counter automata are push-
down automata over a singleton stack alphabet. This model has been extensively studied
in the verification community; we can name, e.g., [215l6l3126] as recent works. Weak
bisimilarity for one-counter processes is shown to be undecidable in [13], via a reduc-
tion from the emptiness problem of Minsky machines.

For strong bisimilarity the third author established decidability in [9], however with-
out providing any precise complexity bounds. In an unpublished article [29] Yen anal-
yses the approach of [9], deriving a triply exponential space upper bound. A PSPACE
lower bound for bisimilarity is proven by Srba [24]. This lower bound already holds
over one-counter automata that cannot test for zero and whose actions can moreover be
restricted to be visible (so called visibly one-counter nets), i.e. that the label of the action
determines if the counter is incremented, decremented, or not modified respectively. For
visibly one-counter automata it is proven in [24] that strong bisimilarity is in PSPACE
via reduction to the model checking problem of the modal p-calculus over one-counter
processes [20]. For bisimilarity on general one-counter processes, in particular when
dropping the visibility restriction, the situation is surely more involved.

Our main result closes the complexity gap for bisimilarity of one-counter processes
from above, thus establishing PSPACE-completeness. In a nutshell, we provide a non-
deterministic algorithm implementable in polynomial space which generates a bisim-
ulation relation on-the-fly. The algorithm uses a polynomial-time procedure which,
given a pair p(m), g(n) of processes, either gives a definite answer ‘surely bisimilar’ or
‘surely non-bisimilar’, or declares the pair as a candidate. For each fixed m there are
(only) polynomially many candidates (p(m), g(n)), and the algorithm processes each
m =0,1,2,... in turn, guessing the bisimilarity status of all respective candidates and
verifying the (local) consistency of the guesses. A crucial point is that it is sufficient to
stop the processing after exponentially many steps, since then a certain periodicity is
guaranteed, which would enable to successfully continue forever.

We also consider the problem of deciding regularity (finiteness w.r.t. bisimilarity)
which asks if, for a given one-counter process, there is a bisimilar state in some finite
system. Decidability of this problem was proven in [9] and according to [24] it follows



Bisimilarity of One-Counter Processes Is PSPACE-Complete 179

from [[1I] and [21]] that the problem is also hard for P. We give a simpler P-hardness
proof, but we also show that the regularity problem is in P, thus establishing its P-
completeness. It is appropriate to add that Kucera [12] showed a polynomial algorithm
deciding bisimilarity between a one-counter process and a (given) finite system state.

The paper is organized as follows. Section 2] contains the basic notions, definitions,
and recalls some auxiliary results. Section Blrecalls and enhances some useful notions
which were used in [9] and elsewhere. Section 4] contains the crucial technical results,
which have enabled to replace the decision algorithm from [9]] with a polynomial space
algorithm. The algorithm is elaborated in Section 3] and its correctness is shown in
Section[@l Section[7lthen shows PTIME-completeness of ~-regularity.

2 Preliminaries

N denotes the set {0,1,2,...}. Foraset X, by | X| we denote its cardinality.

Transition systems. A (labelled) transition system is a structure T = (S, A, {-%|
a € A}), where S is a set of states, A a set of actions, and -4,C 8 x S is a set of
a-labeled transitions, for each action a € A. We define —= Uae A -2, and prefer
to use the infix notation s; —— s (resp. s; — o) instead of (s1,52) €— (resp.
(s1,82) €—). T is a finite transition system if S and A are finite; we then define the
size of T as |T| = |S| + |Al + 3 ,cn -2

Bisimulation equivalence. Let 7 = (S, A, {-%+| a € A}) be a transition system.
A binary relation R C S x S is a bisimulation if for each (s1, s2) € R the following
bisimulation condition holds:

- foreach s} € S, a € A, where s; —— s, there is some s}, € S such that so —— s/,
and (s, s5) € R, and

— foreach s, € S, a € A, where s5 —— s}, there is some s} € S such that s; —— s}
and (s, s5) € R.

We say that states s; and so are bisimilar, abbreviated by s; ~ so, if there is a bisimu-
lation R containing (s1, s2). Bisimilarity ~ is obviously an equivalence. We also note
that the union of bisimulations is a bisimulation, and that ~ is the maximal bisimulation
on S. Bisimilarity is naturally defined also between states of different transition systems
(by considering their disjoint union).

One-counter automata. A one-counter automaton is a tuple M = (Q, A, =g, 00),
where () is a finite nonempty set of control states, A is a finite set of actions, d—g C
Q x{0,1} x Ax @ is a finite set of zero transitions, and 69 C Q x {—1,0,1} x Ax Q
is a finite set of positive transitions. (There are no e-steps in M.)

The size of M is defined as |M| = |Q| + |A| + |0=0| + |0>0|- Each one-counter
automaton M = (Q, A, 6—g, 0~0) defines the transition system Ty = (Q x N, A, {-%|
a € A}), where (¢,n) —% (¢/,n + 1) iff either n = 0 and (¢, 4, a,¢’) € 5—=g, orn > 0
and (q,1,a,q’) € dso.

A one-counter net is a one-counter automaton, where d—g C 5>0.



180 S. Béhm, S. Goller, and P. JanCar

A state (g,m) of Ty is also called a configuration of M, or a one-counter pro-
cess; we usually write it as g(m). Elements of d—¢ U d~( are called transitions.
The notion of a path p(m) —— q(n), where o is a sequence of transitions, is de-
fined in the natural way. A transition sequence 3 in (Js¢)" is called an elemen-
tary cycle if it induces an elementary cycle in the control state set @, i.e., if § =
(q1,71,01,92), (g2, 92,02, G3), - - - (Gm> im;s Qm, Gmo1) Where g; # g for 1 < i < j <
m and g, +1 = ¢q1. We note that such a cycle has length at most |Q|, and its effect (i.e.,
the caused change) on the counter value is in the set {—|Q|, —|Q| + 1,...,|Q|}.

Decision problems. We are interested in the following two decision problems.

BISIMILARITY ON OCA

INPUT: A one-counter automaton M with two states po(mo) and g (no) of Ty,
where both mg and n( are given in binary.
QUESTION: Is Po (mo) ~ qo (TL()) ?

We say that a one-counter process q(n), i.e. a configuration g(n) of a one-counter au-
tomaton M, is ~-regular (or finite up to bisimilarity) if there is a finite transition system
with some state s such that g(n) ~ s.

~REGULARITY ON OCA

INPUT: A one-counter automaton M and a state ¢(n) of Ty (n given in binary).
QUESTION: Is g(n) ~-regular?

Stratified bisimilarity. Given a transition system 7' = (S,A, {-%| a € A}), on S
we define the family of i-equivalences, i € N, ~¢ D ~; D ~9 D --- as follows. We put
~p= S x S, and we have s1 ~;11 s if the following two conditions hold:

- foreach s] € S, a € A, where s1 BN s}, there is some s}, € S such that so LN sh
and s ~; s5;
- foreach s, € S, a € A, where s9 BN sh, there is some s} € S such that s; LN 8]
and s} ~; sh.
The following proposition is an instance of the result for image finite systems [16].

Proposition 1. On states of Ty we have ~ = (1,5 ~i-

2.1 Some Useful Observations

The next proposition captures the locality of the bisimulation condition for one-counter
automata, implied by the fact that the counter value can change by at most 1 in a move.

Proposition 2. Given a one-counter automaton M = (Q,A,d—o,d>0) and a rela-
tion R C (@ x N) x (Q x N), for checking if a pair (p(m),q(n)) € R sat-
isfies the bisimulation condition it suffices to know the restriction of R to the set
NEIGHBOURS(m,n) = { (p'(m'),¢'(n")) | Im' —m| < 1,|n' —n| <1}.

Standard partition arguments [[11/18] imply the following proposition for finite systems.



Bisimilarity of One-Counter Processes Is PSPACE-Complete 181

Proposition 3. Given a finite transition system F = (Q,A,{-%=| a € A}), where
k = |Q|, we have ~j_1 =~ =~ on Q. Moreover, (the partition of Q corresponding
to) ~ can be computed in polynomial time.

3 Underlying Finite Automaton and the Set INC

Most of the notions, claims and ideas in this section appeared in [9] and elsewhere;
nevertheless, we present (and extend) them in a concise self-contained way.

If the context does not indicate otherwise, in what follows we (often implicitly) as-
sume a fixed one-counter automaton M = (Q, A, 6o, I>¢), using k for |Q|. We start
by observing that if the counter value is large, then M behaves, for a long time, like a
(nondeterministic) finite automaton. By F); we denote the finite transition system un-
derlying M; we put Fyr = (Q, A, {-%+| a € A}), where —~= {(q1,q2) € QxQ | Ji :
(g,%,0a,q") € d>0}. (Fas thus behaves as if the counter is positive, ignoring the counter
changes.) In what follows, p, g, € @ are viewed as control states of M or as states
of F)s, depending on context. Our observation is formalized by the next proposition
(which is obvious, by induction on m).

Proposition 4. [fm’ > m then p(m') ~p, p.
(Here p(m') is a state of Ty, whereas p is a state of Fiy.)

This implies, e.g., that if p £ ¢ (i.e., p %k ¢ by Proposition[3) and m,n > k, then

p(m) sy q(n) (and thus p(m) % q(n)), since p(m) ~g p, q(n) ~ g and ~y is an
equivalence. If p ~ ¢ then we can have p(m) 7 g(n), due to the possibility of reaching
zero. For making this more precise, we define the following set

INC={r(f) |VgeQ:r(l) rq}.

The configurations in INC are incompatible with F; in the sense that they are not
bisimilar up to £ moves with any state of Fj;.

Proposition 5. If r(¢) € INC then { < k. Moreover, INC can be constructed in poly-
nomial time.

Proof. If £ > k then r(€) ~j 7, and thus r(¢) ¢ INC. To construct INC, we can
start with the set containing all k& pairs (r(), q), where £ < k all such pairs belong
to ~o. We then delete the pairs not belonging to ~1, then those not belonging to ~o,
etc., until ~. The configurations r(¢) for which no pair ((¢), g) survived, are in INC.
(This process can be done simultaneously for the pairs (p, q) in Fps; we also use the
fact r(k) ~g r.) O

The arguments of the previous proof also induce the following useful proposition.
Proposition 6. The question if p(m) ~k q(n) can be decided in polynomial time.

We note that if p(m) € INC and g(n) ¢ INC then p(m) £ ¢(n) (in fact, p(m) 74
q(n)). More generally, if two one-counter processes are bisimilar then they must agree
on the distance to INC; this is formalized by the next lemma. We define

dist(p(m))



182 S. Béhm, S. Goller, and P. JanCar

as the length of the shortest transition sequence o such that p(m) —— INC (i.e.,
p(m) -2 r(¢) for some r(¢) € INC); we put dist(p(m)) = w if there is no such
sequence, i.e., when INC is unreachable, denoted p(m) /4* INC.

Lemma 7. If p(m) ~ q(n) then dist(p(m)) = dist(q(n)).

Proof. For the sake of contradiction, suppose that p(m) ~ ¢(n) and d = dist(p(m)) <
dist(q(n)), for the least d; necessarily d > 0, since we cannot have p(m) € INC,
q(n) ¢ INC. Thus there is a move p(m) —— p’(m’) with dist(p’(m’)) = d—1, which
must be matched by some q(n) —— ¢'(n’) where p’(m’) ~ ¢/ (n’). Necessarily d—1 =
dist(p’(m’)) < dist(¢’(n’)), which contradicts the minimality of d. O

The next lemma clarifies the opposite direction in the case of infinite distances.

Lemma 8. If dist(p(m)) = w then p(m) ~ r for some v € Q. Thus if dist(p(m)) =
dist(q(n)) = w then p(m) ~ q(n) iff there is some v € Q such that p(m) ~p T ~
q(n).

Proof. If dist(p(m)) = w, i.e. p(m) /* INC, then in particular p(m) ¢ INC, and
there is thus 7 € @ such that p(m) ~, r. We can easily check that

R={(p(m),r) | p(m) ~pr, p(m) /7 INC}

is a bisimulation: if p(m) - p'(m’) and r - ¢’ where p/(m’) ~j_1 1, then
p'(m’) 4* INC and the fact p’(m’) ¢ INC implies that 7" ~ p'(m’) ~p_q 1’ for
some r”’ € @; hence 7’ ~j_1 r" and thus 7’ ~j, 7" (by Proposition[3)), which means
p'(m') ~p 1. a

In the next section we look in more detail at the function dist(p(m)), which provides
a useful constraint on bisimilar pairs. But before that, we partition the set (Q x N) x
(Q x N) into three categories. We say that a pair (p(m), ¢(n)) is

— surely-positive if dist(p(m)) = dist(q(n)) = w and p(m) ~j g(n)
(and thus surely p(m) ~ ¢(n), by Lemmal[g),
— surely-negative if p(m) 7y q(n) or dist(p(m)) # dist(q(n))
(and thus surely p(m) 7% ( ),
- candidate otherwise, i.e., if p(m) ~j q(n) and dist(p(m)) = dist(q(n)) < w.

By SUREPOS we denote the set of all surely-positive pairs, and we note the following
obvious proposition.

Proposition 9. SUREPOS is a bisimulation.
It will be also useful to view the set CAND of all candidate pairs as the union

CAND = CANDy U CAND; UCANDo U ---

where CAND; contains the candidate pairs at level i, i.e. the pairs (p(m),q(n)) €
CAND with m = 1.



Bisimilarity of One-Counter Processes Is PSPACE-Complete 183

4 Distance to INC

In this section we look at the distance function dist(p(m)) in more detail (Lemma[T0)
and derive some consequences (Lemma [TT)) which will be useful for the design and
analysis of our later algorithm.

We start with sketching some intuition which is then formalized in Lemma [I0l To

reach INC from p(m) most quickly, for a large m, one uses a suitable prefix arriving

at a ‘most effective’ elementary cycle g(—) R q(—) (which decreases the counter

by k = |@Q| at most), let us call it a d-cycle, then repeats the d-cycle sufficiently many
times, and finishes with a suffix arriving at INC. It is not difficult to anticipate that one
can bound the length (and thus also the counter change) of the prefix and the suffix by
a (small degree) polynomial pol(k). We now state the lemma. For technical reasons,
we do not require explicitly that the d-cycle is elementary; it is sufficient to bound its
length by k.

Lemma 10. There is a polynomial pol : N — N (independent of M ) such that for any
p(m) with dist(p(m)) < w there is a shortest path p(m) —Z» INC with the transition
sequence o of the form o = a 3"y where length(ay) < pol(k) and (3 is a decreasing
cycle of length < k.

Proof. To give acomplete formal proof requires some technical work. Since the essence
of the claim is not original and similar technical results appear in the previous works on
one-counter automata, we do not provide a self-contained proof, but we use Lemma 2
from an older paper [27]; in our notation, this lemma is formulated as follows:

Claim. If there is a positive path (using positive transitions) from p(m) to g(n)

and m—n > k% and n > k? then there is a shortest path p(m) 2+ g(n) such
that 0 = o 3"y where length(ay) < k? and length(8) < k.

(Although [27] studies deterministic one-counter automata, the lemma obviously ap-
plies to our nondeterministic case as well, since we can view the transitions themselves
as the actions.) We note that if m—n > k% + k then 3 is necessarily a decreasing cycle
(i > 2 in this case). It is also clear that the (shortest) path p(m) —— ¢(n) in the Claim
does not visit any ¢/(n’) with n’ > m + k% + k; we say that the path moves in the
“< (m+k?+k) area” (note that the prefix o moves in the “< (m-+k?) area” and the
suffix v moves in the “< (n+k?) area”).

Recalling that ¢ < k for each r(¢) € INC, we note that any shortest path
p(m) —Z» INC either moves in the “< k2-area”, in which case its length is bounded
by k3 (since no configuration is visited twice), or can be presented in the form
p(m) 25 (k) 25 go(k?) 25 o0 2 g (K2 5 INC where 1 < m < k
and q1(k?),q2(k?),...,qm(k?) are all configurations on the path which have the
counter value k2. By the above considerations, the segment ¢;(k?) 2% moves in the
“< (3k% + k) area”, and its length is thus bounded by & - (3k%+k). The segment
p(m) 2% ¢y (k?) either moves in the “< 2k? area”, in which case its length is bounded

by 2k3, or it can be written p(mn) —= p'(m’) —2 q1(k®) where m’ > 2k? and o
(which might be empty) is bounded by 2k?. The statement of our Lemma thus follows

from the above Claim applied to the segment p’(m’) —2 ¢y (k2). a



184 S. Béhm, S. Goller, and P. JanCar

The next lemma lists some important consequences. A main point is to clarify the distri-
bution of the set CAND. Informally speaking, the candidate pairs are contained inside
polynomially many linear belts, each belt having a rational slope, being a fraction of
polynomially bounded integers, as well as a polynomially bounded (vertical) thickness.

Remark. 1t is helpful to think in geometrical notions. Every relation R C (Q x N) x
(Q x N) can be viewed as a ‘coloring’” xg : @ X Q@ x N x N — {e, o}; for each
p,q € Q it prescribes a black-white coloring of the plane (grid) N x N. This was more
formalized in [9]]; here we just informally use Figure [Tl

Lemma 11

1. There is a polynomial-time algorithm computing dist(p(m)) for any p, m; here the
size of the input is | M| 4 log m (m is written in binary).

2. If dist(p(m)) < w then

dist(p(m)) = " (m+di) +ds = "m + ¢
C2 C2
for some integers 0 < ¢; < k, 1 < ¢cg <k, |d1] < poly(k), 0 < dy < poly (k)
where pol, is a polynomial (independent of M ); the values c1, ca,dy, da generally
depend on p, m.
Moreover, for the rational number ¢ = ! dy + dg we have [{p| < (k+1) - pol, (k).

3. If dist(p(m)) = dist(q(n)) < w then
n=p-m+¢&
where (the slope) p is either 0 or of the form z;z%,for c1,c0,¢h,ch€{1,2,...,k},
and |&| is bounded by a polynomial pol,, (k).

(This formalizes the above announced polynomially many belts, with the vertical
thickness 1 + 2 - poly(k).)

4. There is a polynomial pol, such that for each m > poly(k) we have py - m +
poly(k) + 1 < p2 - (m—1) — poly(k), where p1 < po are (different) slopes from
Point 3, pol, also being taken from there.

(Le., for levels m > poly(k) the belts are separated, in the sense that no two pairs
from different belts are neighbours.)

5. There is a polynomial-time algorithm which, given i (in binary), computes the set
CAND:; of all candidate pairs at level i (all pairs (p(i), q(n)) such that p(i) ~p
q(n) and dist(p(i)) = dist(qg(n)) < w). We have |CAND;| < pols(k) for a
polynomial pol,.

6. If A is a multiple of the effects of all decreasing cycles of length < k (the absolute
values of the effects are in the set {1,2,...,k}) then for each m > k + pol(k),
where pol is taken from LemmallQl we have:

p(m) —=* INC iff p(m+ A) —* INC.



Bisimilarity of One-Counter Processes Is PSPACE-Complete 185

7. If m,n > k + pol(k) then
(p(m),q(n)) € SUREPOS & Vi, j € N: (p(m +1iA),q(n+ jA)) € SUREPOS
(where pol and A are as in Point 6).

Proof Point 1. By Lemmal[I0 we know that a shortest path p(m) —— INC (if there is
any) is of the form

p(m) = q(m+ey) R qg(m+e1—ca) 2, q(m-+e1—2c¢9) N
LN q(l—eatc2) 2, q(l—ez) - r(£) € INC
where e is the effect (the counter change) of the prefix a, cg is the absolute value of
the effect of the d-cycle (3, and e is the effect of the suffix v ; we put ¢; = length((),
cs = length(a), c4 = length(v). Let us recall that 0 < ¢o < ¢; < k and that the
absolute values of other integers are bounded by pol(k) from Lemma[I0

(Independently of p, m,) we thus have polynomially many possibilities (in k) for the
tuple q, e1, c1, Ca, C3, C4, €2, T, {; these possible tuples can be processed in turn. For each
tuple we can check if (m-+e;)—(¢—e2) is divisible by co and then verify if the tuple
is realizable by some appropriate «, 3, 7; this verification is done by using straightfor-
ward graph reachability algorithms. (Regarding the d-cycle, it is sufficient to verify the
realizability of the first segment ¢(m+e;) — g(m+e;—c2) and of the final segment
q(l—eatca) — q(£—ez).) With each realizable tuple we associate the value c3 + ¢4
when ¢co = 0 and ¢3 + ¢4 + g ((m—i—el)—(ﬁ—eg)) when ¢o > 0. We associate w with
each non-realizable tuple. The value dist(p(m)) is obviously the minimal value asso-
ciated with the above tuples.

Point 2. This follows immediately from the analysis in the proof of Point 1. (Since
dy = c3 + ¢4, d1 = e3—{+eq, it suffices to take pol, (k) = k + pol(k), for pol from
Lemma[IQl The consequence for 1) is obvious.)

Point 3. From dist(p(m)) = lm+ ¢ = Zi n+ ¢ = dist(q(n)), we derive n =
Sem Y I ep = 0or ¢ = O then dist(p(m)) = dist(q(n)) < (k+1)-pol, (k),
and thus n < k + (k+1) - pol; (k) (and we can put p = 0). We can thus take pol, (k) =
2 (k+1) - poly (k) - k.

Point 4. Recalling the slopes from Point 3, we note that p; <p implies p2 > p1+ k14 .
Since p1 < k?, it is sufficient to have pol, (k) + 1 < ,ym — k* — i — pol, (k).

Point 5. Given 1, for each p € ) in turn we compute z = dist(p(i)) and all polyno-
mially many n such that 2 (n+dy)+ds = z, where ¢1, ca, di, ds satisfy the constraints
from Point 2. For each such n and each ¢ € @) we check if (p(i), g(n)) € CAND,, i.e.,
if dist(q(n)) = z and p(i) ~ q(n); Point 1 and Proposition [6] show that this can be
done in polynomial time.

Point 6. Since m > k + pol(k), the length of (each) ¢ such that p(m) -2 INC is
greater than pol(k). Increasing or decreasing the number of repeating the d-cycle does
the job.

Point 7. From Point 6 we know that for m > k4 pol(k) we have dist(p(m)) = w iff
dist(p(m+1iA)) = wforalli € N. Thus for m,n > k+pol(k) we have p(m+1iA) ~y,
qg(n + jA) and dist(p(m + iA)) = dist(q(n + jA)) = w if and only if p ~j, ¢ and
dist(p(m)) = dist(q(n)) = w. O



186 S. Béhm, S. Goller, and P. JanCar

5 A Polynomial Space Algorithm

The next lemma follows from Lemmal[IT] Point 1, and Proposition[6]

Lemma 12. There is a polynomial-time algorithm which, given (M and) a pair
(p(m), q(n)), decides if the pair is in SUREPOS, or in CAND, or is surely-negative.

We might be tempted to try to resolve the question of bisimilarity of the can-
didate pairs by looking for additional polynomially checkable conditions. But the
PSPACE-hardness result for (visibly) one-counter processes [24] discourages us from
doing so; we should be satisfied with solving our problem in polynomial space.
Thus a nondeterministic algorithm working in polynomial space is sufficient (since
PSPACE=NPSPACE by Savitch’s Theorem). We start with noting the following two
obvious propositions; this will give rise to a main algorithmic idea.

Proposition 13. For a candidate pair (po(mo), go(no)) € CAND we have:
po(mo) ~ qo(no) iff there is a subset B C CAND such that
(po(mo), qo(ng)) € B and B U SUREPOS is a bisimulation.

The following (infinite) algorithm builds a certain B C CAND as the union of (non-
deterministically chosen) sets By € CANDgy, By € CAND;, By C CANDeo, ...,
while checking the bisimulation condition for their elements on the fly (recall the local-
ity captured by Proposition[)). If its computation does not fail, then it is infinite and the
respective set B C CAND (which would result as the limit) satisfies that BUSUREPOS
is a bisimulation.

— We start with putting m = 0, compute the set CANDg and (nondeterministically)
choose a set By C CAND,.
— Then we successively process m = 0,1,2..., where processing m means the
following:
e Compute CAND,,, 11 (recall Point 5 of Lemma[IT)) and (nondeterministically)
choose By,+1 € CAND,, 1.
e Verify that (each pair in) B,, is (locally) correct, using B,,,—1 (when m > 0)
and B, 41, and the polynomial procedure deciding membership in SUREPOS
(cf. Lemmal[I2).
o (If B,, is not correct, the computation fails.)

If we force the algorithm to include the input pair (po(mo), go(n0)) into By, then an
infinite run is possible if and only if po(mo) ~ go(n). We also note that it is sufficient
for the algorithm to keep only the current number m, and the sets B,,—1 (if m > 0),
B, Bmt1 in memory. (By Point 5 of Lemma [Tl this consists of at most 3 - pol3(k)
pairs, while the bit-size of the numbers is polynomial in k£ and in the bit-size of m, i.e.
in logm.)

A final crucial point is that the algorithm, getting po(myo), go(no) in the input, will
halt (answering po(mo) ~ qo(ng)) after it has successfully processed the following
levels.

m=0,1,2,...,z where z=mg+ pol,(k)+ opols (k) . 93k logh (D



Bisimilarity of One-Counter Processes Is PSPACE-Complete 187

Here pol,, is from Point 4 of Lemmal[ITl and we put pol; (k) = 2-k? - (1 + 2 - poly(k)),
where pol, is from Point 3 of Lemma [T} With this halting condition, the algorithm
obviously runs in polynomial space (when given M and a pair (po(mo), go(no))). What
remains to show is the correctness of the halting condition.

6 Correctness of (The Halting Condition of) the Algorithm

Recall Points 3 and 4 of Lemma[IT} the candidate pairs are contained inside polynomi-
ally many linear belts with vertical thickness (1 4 2 - pol,(k)), which are separated for
m > poly(k).

Informally speaking, if the algorithm (successfully) processes sufficiently many (ex-
ponentially many) numbers m after processing m, then the pigeonhole principle guar-
antees that a certain ‘pumpable’ segment appears inside each belt (this is visualized in
Figure[T). At that time we are guaranteed that the relation

R = {(p(m),q(n)) € By U SUREPOS | m < mg}

can be extended with certain pairs (p’(m’),q'(n’)), with m’ > my, so that the result-
ing relation is a bisimulation. (These pairs (p'(m’), ¢’ (n’)), m’ > mg, may differ from
those which were actually included in B,,, by the algorithm.) We now make this infor-
mal argument more precise.

Suppose that our algorithm successfully halts for the input pair (po(mo), go(n0)),
and consider the following subsequence of the sequence ().

ml, mlh 4+ A3 ml + 2A°% mi + 343, ... mf + 2P (F) A3 2)

where m{, = max{my, pol,(k)} and A = k!; hence A < k¥, and so A3 < 23klogk,
Remark. We have chosen A so that Points 6 and 7 of Lemmal[ITl can be applied.

The chosen period A? has the following useful property. We are guaranteed that pA? is
a multiple of A for each slope p = 2?? (c1,ca,¢),ch € {1,2,...,k}) from Point 3 of
LemmalITl by Point 7 of Lemmal[lTl we thus also get for each m > pol, (k):

(p(m), g(n)) € SUREPOS < Vi € N : (p(m+iA%), g(n+ipA®)) € SUREPOS. (3)

(In the proof of Lemma [[I} we have actually derived pol, satisfying pol, (k) >
k+pol(k). But any polynomial pol, satisfying Point 4 could be replaced with a big-
ger one to satisfy also pol, (k) > k+pol(k) anyway.)

For a relation R C (@ x N) x (@ x N) and a belt, identified with its slope p from
Point 3 of LemmalT]] we define the R-cut of the belt p at level m as

CUTA, (R) = { (p(m), q(n)) € R | pm — poly(k) < n < pm + poly(k) }.

Figure [l illustrates two cuts CUT/, (R), CUT#, (R) (the black points representing el-
ements of R, the white points being non-elements); the depicted cuts are ‘the same’ in
the sense that one arises by shifting the other.

Our choice of the subsequence (@) guarantees a repeat of a ‘2-thick cut’:



188 S. Béhm, S. Goller, and P. JanCar

mi m2

(Qk,Qk)

(q%7q2)

q1,q1)

[

Fig. 1. Two isomorphic belt cuts in a coloring

Proposition 14. For every R and ‘belt’ p there are my, ms in (), where m1 < mso,
Mo = mq + cA3, such that

= (p(m1),q(n)) € cuTh, (R) & (p(m2),q(n+ pcA?)) € cuts, (R),
= (p(m1+41),q(n)) € cuty, 1 (R) & (p(ma+1),q(n+pcd?)) € cuty . (R).

Proof. We first note that our choice of A also guarantees that pcA? is integer. De-
scribing cuT, (R) and cuT), ,,(R) (for any m) obviously amounts to determine a
(black-point) subset of a set with (at most) 2- k2 - (1 +2 - pol,(k)) elements; this is how
we defined pol; (k) in the halting condition of our algorithm (cf. (I))). There are opols (k)
such subsets; thus the claim follows by the pigeonhole principle. O

Our aim is to define some relation R’ so that R’ U SUREPOS is a bisimulation and
it coincides with B U SUREPOS for the pairs (p(m), ¢(n)) with m < my; the set B
consists of the candidate pairs included by (the successfully halting computation of) our
algorithm into B,,, form = 0,1,2,..., z as in ().

Let us now consider a particular belt p. Let m1, mo, where m; < my = my + cA3,
be the levels guaranteed by Proposition [I4] for the relation R = B U SUREPOS. Inside
the belt p, the suggested R’ will coincide with R for all levels m < mo+1. For all
levels m = ma+2, ma+3, ma+4, .. ., we define R’ inside the belt p by the following
inductive definition: for each m, n, where m > mgo+1 and [n — pm| < poly(k):



Bisimilarity of One-Counter Processes Is PSPACE-Complete 189

(p(m), q(n)) € R"iff (p(m—cA?), q(n—pcAd®)) € R'.

We note that this condition is, in fact, satisfied also for m € {ma, ma+1}, due to our
choice of my, ms. We get the whole R’ after having defined it inside all belts.

Proposition 15. R’ U SUREPOS is a bisimulation.

Proof. Suppose there is a pair (p(m), ¢(n)) € R'USUREPOS which does not satisfy the
bisimulation condition (which is determined by the restriction to NEIGHBOURS(m, n);
recall Proposition[). We take such a pair with the least m. It is clear that (p(m), g(n)) &
SUREPOS (recall Proposition [0); moreover, the restriction of R’ U SUREPOS to
NEIGHBOURS (m, n) cannot be the same as for BUSUREPOS (where the algorithm ver-
ified the bisimulation condition). Hence (m, n) lies in a belt p, and m > mq+1 for the
respective may = my +cA3. Then the pair (p(m—cA3), ¢(n—pcA3)) belongs to R’ and
satisfies the bisimulation condition; moreover, this pair enables the same transitions as
the pair (p(m), g(n)). So there must be some (p’(m’), ¢’(n’)) € NEIGHBOURS(m, n)
such that (p'(m’),q'(n')) € R’ U SUREPOS and (p'(m'—cA3),q (n'—pcA?)) €
R’ U SUREPOS. But this contradicts the definition of R’ or the equivalence (). O

Our halting condition is thus correct, and we have proved:

Theorem 16. There is a polynomial space algorithm which, given a one-counter au-
tomaton M and a pair po(mo), qo(no), decides if po(mo) ~ qo(no)-

Remark. As in [9], we could derive that the bisimilarity ~ (i.e., the maximal bisimu-
lation) is ‘belt-regular’. Our results here show that a natural (finite) description of this
(semilinear) relation can be written in exponential space.

7 ~-Regularity

We can easily derive the next lemma, which tells us that p(m) is not ~-regular iff it
allows to reach states with arbitrarily large finite distances to INC.

Lemma 17. Given p(m) for a one counter automaton M, p(m) is not ~-regular iff for
any d € N there is q(n) such that p(m) —* q(n) and d < dist(q(n)) < w.

The next proposition gives a more convenient characterization.

Proposition 18. p(m) is not ~-regular iff p(m) —* q(m+2k) —* INC for some
q € Q. (Recall that k = |Q)| for the set Q of control states of M.)

Proof. ‘Only if’ is obvious.

On any path p(m) 2% q(m + 2k) 2% INC we have to cross the level (m + k) when
going up as well as when going down to INC (recall that £ < k for any r(¢) € INC).
The elementary cycles, which must necessarily appear when going up and down, can
be suitably pumped to show the condition in Lemmal[l7} a

Lemma 19. Deciding ~-regularity of one-counter processes is in PTIME.



190 S. Béhm, S. Goller, and P. JanCar

Proof. We check the condition from Proposition[I8] Given p(m), we can compute all
q(m+2Ek) which have finite distances to INC by a polynomial algorithm (recall Point 1
of Lemma[IT). When m = 0, the reachability of a suitable ¢(2k) (¢(2k) —* INC) can
be checked straightforwardly. So we can compute all p such that p’(0) is not ~-regular.
Thus p(m) is not ~-regular iff it can reach one of the computed ¢(m + 2k) and p’(0) by
positive transitions. The polynomiality follows by the ideas similar to those discussed
in the proof of Lemmal[lQl O

Lemma 20. Deciding ~-regularity (even) of one-counter nets is PTIME-hard.

Proof. We use a logspace reduction from bisimilarity on finite transition systems which
is PTIME-complete [1]]. Given a finite transition system (Q, A, { ——}4ca) and f,g €
@, we construct a one counter net which has the following behaviour: in so(m), m > 0,

it has transitions so(m) —— so(m + 1), so(m) —= so(m — 1), so(m) LN flm),

so(m) —2 g(m). In 50(0) we only have so(0) — so(1) and s(0) —= £(0). Any
state f(n) just mimicks f (not changing the counter); similarly g(n) mimicks g. It is
easy to verify that so(n) is regular iff f ~ g. 0

Theorem 21. Deciding ~-regularity of one-counter processes is PTIME-complete.

Acknowledgements. We thank the reviewers for useful comments and suggestions.

References

1. Balcézar, J.L., Gabarrd, J., Santha, M.: Deciding Bisimilarity is P-Complete. Formal Asp.
Comput. 4(6A), 638—648 (1992)

2. Brazdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-Counter Markov Deci-
sion Processes. In: Proc. of SODA, pp. 863-874. IEEE, Los Alamitos (2010)

3. Demri, S., Sangnier, A.: When Model-Checking Freeze LTL over Counter Machines Be-
comes Decidable. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 176-190.
Springer, Heidelberg (2010)

4. Glabbeek, R.v.: The Linear Time — Branching Time Spectrum I; The Semantics of Concrete,
Sequential Processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process
Algebra, ch. 1, pp. 3-99. Elsevier, Amsterdam (2001)

5. Goller, S., Mayr, R., To, A.W.: On the Computational Complexity of Verifying One-Cotinter
Processes. In: Proc. of LICS, pp. 235-244. IEEE Computer Society Press, Los Alamitos
(2009)

6. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and paramet-
ric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 369-383. Springer, Heidelberg (2009)

7. Hirshfeld, Y., Jerrum, M.: Bisimulation Equivalence Is Decidable for Normed Process Al-
gebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 412-421. Springer, Heidelberg (1999)

8. Janin, D., Walukiewicz, I.: On the Expressive Completeness of the Propositional mu-
Calculus with Respect to Monadic Second Order Logic. In: Sassone, V., Montanari, U. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 263-277. Springer, Heidelberg (1996)

9. Jancar, P.: Decidability of Bisimilarity for One-Counter Processes. Information Computa-
tion 158(1), 1-17 (2000)



14.
15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Bisimilarity of One-Counter Processes Is PSPACE-Complete 191

Jancar, P.: Strong Bisimilarity on Basic Parallel Processes is PSPACE-complete. In: Proc. of
LICS, pp. 218-227. IEEE Computer Society, Los Alamitos (2003)

. Kanellakis, P.C., Smolka, S.A.: CCS Expressions, Finite State Processes, and Three Prob-

lems of Equivalence. Information and Computation 86(1), 43—-68 (1990)

Kucera, A.: Efficient Verification Algorithms for One-Counter Processes. In: Welzl, E., Mon-
tanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 317-328. Springer, Hei-
delberg (2000)

. Kucera, A., Mayr, R.: On the Complexity of Checking Semantic Equivalences between Push-

down Processes and Finite-state Processes. Inf. Comput. 208(7), 772-796 (2010)

Mayr, R.: Process Rewrite Systems. Information and Computation 156(1), 264-286 (2000)
Mayr, R.: Undecidability of Weak Bisimulation Equivalence for 1-Counter Processes. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 570-583. Springer, Heidelberg (2003)

Milner, R.: Communication and Concurrency. International Series in Computer Science.
Prentice Hall, Englewood Cliffs (1989)

. Moller, F., Rabinovich, A.M.: Counting on CTL*: on the expressive power of monadic path

logic. Inf. Comput. 184(1), 147-159 (2003)

Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Comput-
ing 16(6), 973-989 (1987)

Sénizergues, G.: The Bisimulation Problem for Equational Graphs of Finite Out-Degree.
SIAM J. Comput. 34(5), 1025-1106 (2005)

Serre, O.: Parity games played on transition graphs of one-counter processes. In: Aceto, L.,
Ingo6lfsdattir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337-351. Springer, Heidelberg
(2006)

Srba, J.: Strong Bisimilarity and Regularity of Basic Process Algebra Is PSPACE-Hard. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 716-727. Springer, Heidelberg (2002)

Srba, J.: Undecidability of Weak Bisimilarity for PA-Processes. In: Ito, M., Toyama, M. (eds.)
DLT 2002. LNCS, vol. 2450, pp. 197-208. Springer, Heidelberg (2003)

Srba, J.: Roadmap of Infinite results. Formal Models and Semantics, vol. 2. World Scientific
Publishing Co., Singapore (2004), http://www.brics.dk/~srba/roadmap

Srba, J.: Beyond Language Equivalence on Visibly Pushdown Automata. Logical Methods
in Computer Science 5(1:2) (2009)

Stirling, C.: Decidability of Bisimulation Equivalence for Pushdown Processes (2000) (un-
published manuscript)

To, A.W.: Model Checking FO(R) over One-Counter Processes and beyond. In: Grédel, E.,
Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 485-499. Springer, Heidelberg (2009)
Valiant, L.G., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3),
340-350 (1975)

van Benthem, J.: Modal Correspondence Theory. PhD thesis, University of Amsterdam
(1976)

Yen, H.-C.: Complexity Analysis of Some Verification Problems for One-Counter Machines
(20xx) (unpublished manuscript)


http://www.brics.dk/~srba/roadmap

Nash Equilibria for Reachability Objectives
in Multi-player Timed Games*

Patricia Bouyer, Romain Brenguier, and Nicolas Markey

LSV, ENS Cachan & CNRS, France

{bouyer ,brenguie,markey}@lsv.ens-cachan.fr

Abstract. We propose a procedure for computing Nash equilibria in
multi-player timed games with reachability objectives. Our procedure
is based on the construction of a finite concurrent game, and on a
generic characterization of Nash equilibria in (possibly infinite) concur-
rent games. Along the way, we use our characterization to compute Nash
equilibria in finite concurrent games.

1 Introduction

Timed games. Game theory (especially games played on graphs) has been used
in computer science as a powerful framework for modelling interactions in em-
bedded systems [10, [15]. Over the last fifteen years, games have been extended
with the ability to depend on timing informations. Timed games allows for a
more faithful representation of reactive systems, while preserving decidability
of several important properties, such as the existence of a winning strategy for
one of the agents to achieve her goal, whatever the other agents do [3]. Efficient
algorithms exist and have been implemented, e.g. in the tool UPPAAL TiGA [4].

Zero-sum vs. non-zero-sum games. In this purely antagonist view, games can be
seen as two-player games, where one agent plays against another one. Moreover,
the objectives of those two agents are opposite: the aim of the second player is
simply to prevent the first player from winning her own objective. More generally,
a (positive or negative) payoff can be associated with each outcome of the game,
which can be seen as the amount the second player will have to pay to the first
player. Those games are said to be zero-sum.

In many cases, however, games can be non-zero-sum, especially when they
involve more than two agents, whose objectives may not be complementary.
Such games appear e.g. in various problems in telecommunications, where sev-
eral agents try to send data on a network [9]. Focusing only on surely-winning
strategies in this setting may then be too narrow: surely-winning strategies must
be winning against any behaviour of the other agents, and does not consider the
fact that the other agents also try to achieve their own objectives.

Nash equilibria. In the non-zero-sum game setting, it is then more interesting
to look for equilibria. For instance, a Nash equilibrium is a behaviour of the

* This work is partly supported by projects DOTS (ANR-06-SETI-003), QUASI-
MODO (FP7-ICT-STREP-214755) and GASICS (ESF-EUROCORES LogiCCC).

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 192{206./2010.
© Springer-Verlag Berlin Heidelberg 2010



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 193

agents in which they play rationally, in the sense that no agent can get a better
payoff if she, alone, modifies her strategy |13]. This corresponds to stable states
of the game. Notice that a Nash equilibrium need not exist in general, and is not
necessarily optimal: several equilibria can coexist, possibly with very different
payoffs.

Our contribution. We extend the study of Nash equilibria for reachability ob-
jectives (where the payoff is 1 when the objective is reached, and 0 otherwise)
in the setting of timed games, as defined in [§] (but extended to n players in
the obvious way). Since timed games are non-deterministic, we introduce the
notion of pseudo-Nash equilibrium, in which non-determinism is solved “opti-
mally” (i.e., only the best outcome is considered). This corresponds to letting
the players “optimally” solve non-determinism, in such a way that they have no
incentive to change their choice.

As is usual in the timed setting, we rely on a region-based abstraction, which
in our context is a finite concurrent game. In order to prove that the abstrac-
tion preserves Nash equilibria, we define a characterization of Nash equilibria
in (possibly infinite-state) concurrent games. This characterization is built on
the new concept of repellor sets: the repellor set for a subset A of agents is,
roughly, the set of states from which players in A will not be winning in any
Nash equilibrium. We explain how to compute those sets, and how they can be
used to characterize Nash equilibria.

We also use repellor sets to effectively compute Nash equilibria in finite games,
which solves open problems in the setting of equilibria in finite games and gives
a complete solution to our original problem.

Related work. Nash equilibria (and other related solution concepts such as
subgame-perfect equilibria, secure equilibria, ...) have recently been studied in
the setting of (untimed) games played on a graph |6, (1,14, [16-H19]. Most of them,
however, focus on turn-based games. In the setting of concurrent games, mixed
strategies (i.e., strategies involving probabilistic choices) are arguably more rel-
evant than pure (i.e., non-randomized) strategies. However, adding probabilities
to timed strategies (over both delays and actions) involves several important
technical issues (even in zero-sum non-probabilistic timed games), and we defer
the study of mixed-strategy Nash equilibria in timed games to future works.

For lack of space, only sketches of proofs are given in the paper. Full proofs
can be found in [5].

2 Preliminaries
We begin with defining concurrent games and Nash equilibria.

2.1 Concurrent Games

A transition system is a 2-tuple S = (States, Edg) where States is a (possibly
uncountable) set of states and Edg C States x States is the set of transitions.



194 P. Bouyer, R. Brenguier, and N. Markey

Given a transition system S, a path 7 in S is a non-empty sequence (8;)o<i<n
(where n € NU{+400}) of states of S such that (s;,s;+1) € Edg for all i <n —1.
The length of m, denoted by |x|, is n — 1. The set of finite paths (also called
histories in the sequel) of S is denoted b Hists, the set of infinite paths (also
called plays) of S is denoted by Playg, and Paths = Hists U Playg is the set of
paths of S. Given a path m = (s;)o<i<n and an integer j < n, the j-th prefic
of 7, denoted by 7<;, is the finite path (s;)o<i<j+1- If # = (8i)o<i<n is a history,
we write last(m) = 5.

We extend the definition of concurrent games given e.g. in [2] with non-
determinism:

Definition 1. A non-deterministic concurrent game is a 7-tuple G = (States,
Edg, Agt, Act, Mov, Tab, x) in which:

— (States, Edg) is a transition system;

— Agt is a finite set of players (or agents);

— Act is a (possibly uncountable) set of actions;

— Mov: Statesx Agt — 2A%~ {@} is a mapping indicating the actions available
to a given player in a given state;

— Tab: States x Act8t — 2Ede {@} associates, in a given state, a set of
moves of the players with the resulting set of transitions. It is required that
if (s',8") € Tab(s,(ma)acagt), then s’ = s.

— X Agt — 2States”xStates” jognes  for each player, a quasi-ordering on the
runs of G, called preference relation. We simply write <4 for < (A).

In the rest of this paper, we restrict to simple qualitative preference relations
given by reachability conditions for each player. Formally, we assume that the
preference relation is given as a tuple (£24) acagt of sets of states, and is defined
as follows: if a path 7 visits {24, then we let va(m) = 1, otherwise v4(m) = 0;
we then say that path 7’ is preferred by Player A over path 7, which is written
T <4 7, whenever either m = 7/ or va(7) < va(n).

A deterministic concurrent game is a concurrent game where Tab(s, (ma) Acagt)
is a singleton for every s € States and (ma)aeagt With ma € Mov(s, A). A turn-
based game is a concurrent game for which there exists amapping Owner: States —
Agt such that, for every state s € States, the set Mov(s, A) is a singleton unless
A = Owner(s).

In a non-deterministic concurrent game, from some state s, each player A
selects one action m4 among its set Mov(s, A) of allowed actions (the resulting
tuple (ma)aeagt, which we may also write mag: in the sequel, is called a move).
This corresponds to a set of transitions Tab(s, (m.4) acagt), one of which is applied
and gives the next state of the game. In the sequel, we abusively write Histg,
Playg and Pathg for the corresponding set of paths in the underlying transition
system of G. We also write Histg(s), Playg(s) and Pathg(s) for the respective
subsets of paths starting in state s.

! For this and the coming definitions, we indicate the underlying transition system as
a subscript. This may be omitted in the sequel if no ambiguity may arise.



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 195

Definition 2. Let G be a concurrent game, and A € Agt. A strategy for A
is a mapping oa: Hist — Act such that for any m € Hist it holds oa(w) €
Mov(last(r), A).

Given a coalition (i.e., a subset of agents) P C Agt, a strategy op for coali-
tion P is a tuple of strategies, one for each player in P. We write op = (04) acp
for such a strategy. A strategy profile is a strategy for the coalition Agt. We write
Strat‘g for the set of strategies of player A in G, and Profg for the set of strategy
profiles in G.

Notice that we only consider non-randomized (pure) strategies in this paper.

Let G be a concurrent game, P be a coalition, and op be a strategy for P.
A path ™ = (s;)o<j<|x| IS compatible with the strategy op if, for all k& < |r| -1,
there exists a move mag such that:

— my € Mov(sy, A) for all A € Agt,
— ma = O'A(Trgk) for all A € P,
- (Skask-‘rl) S Tab(sk,mAgt).

We write Outg(op) for the set of paths (also called outcomes) in G that are
compatible with strategy op of coalition P. We write Outé (resp. Outg’) for the
finite (resp. infinite) outcomes, and Outg(s,op), Outg(s,op) and Outg(s,op)
for the respective sets of outcomes of op with initial state s.

Notice that, in the case of deterministic concurrent games, any strategy profile

has a single infinite outcome. This might not be the case for non-deterministic

concurrent games.
kﬂu (m ’ k

(Q, 6)’ (6

2

Fig.1. A 3-player turn-based game Fig. 2. A 2-player concurrent game

Exzample 1. Figure [ displays an example of a three-player turn-based game.
The shape of a node indicates its owner, and the goal states are those marked
in grey: for instance, Player [] controls square states, and her objective is to
reach L. She cannot achieve this on her own (she has no winning strategy), but
can achieve it with the help of Player <& (both should play action b).

Figure2lis a two-player concurrent game: from the left-most state, both play-
ers choose between actions a and b, and the game goes to the top state (which
is a goal state for player A;) if they play the same action, and to the bottom
state otherwise (which is a goal state for player As).

Given a move mag and an action m’ for some player B, we write magt[B — m/]
for the move nag with n4a = ma when A # B and np = m/'. This notation is



196 P. Bouyer, R. Brenguier, and N. Markey

extended to strategies in the natural way. In the context of non-zero-sum games,
several notions of equilibria have been defined. We present here a refinement of
Nash equilibria towards non-deterministic concurrent games.

Definition 3. Let G be a non-deterministic concurrent game, and s be a state
of G. A pseudo-Nash equilibrium in G from s is a pair (0ag, ™) where oag €
Profg and m € Out(s,oag) is such that for all B € Agt and all o' € Strat®, it
holds:

Vr' € Out(s,opgt[B — o']). @’ <p 7.

Such an outcome 7 is called an optimal play for the strategy profile o ag:. The pay-
off of a pseudo-Nash equilibrium (cagt, ™) is the function v: Agt — {0,1} where
v(A) = 1if w visits 24 (the objective of Player A), and v(A) = 0 otherwise.

In the case of deterministic games, 7 is uniquely determined by oag, and pseudo-
Nash equilibria coincide with Nash equilibria as defined in [13]: they are strategy
profiles where no player has an incentive to unilaterally deviate from her strategy.

In the case of non-deterministic games, a strategy profile for an equilibrium
may give rise to several outcomes. The choice of playing the optimal play m
is then made cooperatively by all players: once a strategy profile is fixed, non-
determinism is resolved by all players choosing one of the possible outcomes in
such a way that each player has no incentive to unilaterally changing her choice
(nor her strategy). To our knowledge, this cannot be encoded by adding an extra
player for solving non-determinism. Notice that solution concepts involving an
extra player for solving non-determinism can be handled by our algorithm since
it yields a deterministic game (leading to real Nash equilibria).

Ezample 1 (cont’d). In the (deterministic) game of Fig. [l the strategy profile
where all players play a is not a Nash equilibrium from [], since player O would
better play b and reach her winning state. The profile where they all play b is
a Nash equilibrium. Actually, deterministic turn-based games such as this one
always admit a Nash equilibrium [7].

Now, consider the same game as depicted in Fig.[Il but in which player < has
only one action available, say a, which non-deterministically leads to either []
or ©. Then none of the two outcomes [ I~—1 and [F=O—O is globally
better than the other one, hence they do not correspond to a pseudo-Nash equi-
librium. The reader can check that, for any strategy profile, there never exists
an optimal play, so that this modified, non-deterministic turn-based game does
not admit any pseudo-Nash equilibrium.

Regarding the concurrent game of Fig. 2 it is easily seen that it also does not
admit a (non-randomized) Nash equilibrium.

2.2 Decision Problems

In this paper we are interested in several decision problems related to the ex-
istence of pseudo-Nash equilibria. Let S be a class of concurrent games. In the
sequel, we consider the following problems: given G = (States, Edg, Agt, Act, Mov,



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 197

Tab, %) a concurrent game in class § with reachability objectives 24 C States
for every player A, and a state s € States:

Problem 1 (Existence). Does there exists a pseudo-Nash-equilibrium in G from s?

Problem 2 (Verification). Given a payoff v: Agt — {0,1}, does there exists a
pseudo-Nash-equilibrium in G from s with payoff v?

Problem 3 (Constrained-Existence). Given a constraint (given asasubset P C Agt
and a function w: P — {0,1}), does there exists a pseudo-Nash-equilibrium in G
from s with some payoff v satisfying the constraint (i.e., s.t. v(A) = w(A) for
all A € P)?

Notice that Problems [0 and [2] are trivially logspace-reducible to Problem [3l To-
gether with these problems, we also consider the corresponding function prob-
lems: for the verification problem (“does the given payoff vector correspond to
some equilibrium?”), the function problem asks to build a strategy profile that is
an equilibrium for this payoff. For the other two problems, the function problem
asks to compute a possible payoff function, and a corresponding strategy profile.

3 Qualitative Nash Equilibria

We now explain a procedure to describe pseudo-Nash equilibria in our setting.
To this aim, we introduce the notion of repellor sets.

3.1 The Repellor Sets

Definition 4. We define the set of suspect players for an edge e = (s, ') given
a move mage, which we denote with Suspg(e, magt), as the set:

{B € Agt| Im’ € Mov(s, B) s.t. e € Tab(s, mag|[B — m/])}.

We extend this notion to a finite path m = (sp)p<|x| given strategies oag as
follows:
Susp(m, oag)) = () Susp((sp, sp+1), (04 (T<p)) acAgt)-
p<|x|

Intuitively, Player B is suspect for an edge e, given a move magt, whenever she can
unilaterally change her action (while the other actions are unchanged) and take
edge e. Notice that if e € Tab(s,magt), then Susp(e,mag:) = Agt. Player B is
then suspect for a finite path m, given a tuple of strategies oagt, whenever she has a
strategy to enforce path 7 under the strategies (04) acagt~ {5} 0f the other players.

Lemma 5. Given oag € Prof and m € Hist, the following three propositions are
equivalent:

(1) B € Susp(m,oagt)

(i1) 3o’ € Strat®. w € Out! (0 ageB — 0'])
(iii) 7w € Out’ ((04) aenge-(5})

We now define the central notion of this paper, namely the repellor sets.



198 P. Bouyer, R. Brenguier, and N. Markey

Definition 6. Let G be a non-deterministic concurrent game. Given a sub-
set P C Agt, the repellor set of P, denoted by Repg(P), is defined inductively
on P as follows: as the base case, Repg(@) = States; Then, assuming that
Repg(P') has been defined for all P' C P, we let Repg(P) be the largest sefd
satisfying the following two conditions:

o VAc P Repg(P)N2y=0 (1)
o Vs € Repg(P). 3mag € Act™'. Vs’ ¢ States.
s’ € RePg(P n SUSPg((Sa S/)v mAgt)) (2)

Intuitively, from a state in Repg(P), the players can cooperate in order to stay
in this repellor set (thus never satisfying the objectives of players in P) in such
a way that breaking the cooperation does not help fulfilling one’s objective.

Lemma 7. If P C P’, then Rep(P’) C Rep(P).

Remark 8. Because deterministic turn-based games are determined, they enjoy
the property that Rep({A}) = States \ Win({A}), where Win({A}) is the set
of states from which player A has a winning strategy for reaching her objective
against the coalition Agt \ {A}. Notice that this does not hold in concurrent
games: in the game depicted on Fig.[2 the initial state is neither in the repellor
set nor in the winning set of any player.

The sets of secure moves for staying in Rep(P) is defined as:

Secureg(s, P) = {(mi) a,eag € Act"® | Vs’ € States.
s’ € Rep(P N Susp((s, s'), magt))

We define the transition system Sg(P) = (States, Edg’) as follows: (s,s’) € Edg’
iff there exists some mag € Secure(s, P) such that (s,s’) € Tab(s, mag). Note
in particular that any s € Rep(P) has an outgoing transition in Sg(P).

Ezample 2. In the game of Fig. 1l state < is in the repellor set of {{], <>} and
of {O, <} but not in that of {{],O}. Intuitively, from that state, Player < can

prevent one of the other two players to reach her objective, but not both of them

at the same time. It can be checked that Rep({{J, <)) = {{J;O; <, O1.
Looking now at the same game but with non-determinism in state <, the

repellor sets are different; in particular, state < is no longer in Rep({{J}) nor in

Rep({O}).

3.2 Using the Repellor to Characterize (pseudo-)Nash Equilibria

We now draw the link between the repellor sets and (pseudo-)Nash equilibria.

2 This is uniquely defined since if two sets satisfy both conditions, then so does their
union.



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 199

\ o
S m =
@) @D

Fig. 3. S({o,¢}) for the det. game Fig. 4. S({¢}) for the non-det. game

Lemma 9. Let P C Agt, and s € States. Then s € Rep(P) if and only if there
exists an infinite path m in S(P) starting from s.

Repellor sets characterize those states from which one can find equilibria that
avoid the reachability objectives of players in P:

Proposition 10. Let P C Agt, and 7 € Play(s) be an infinite play with initial
state s. Then m is a path in S(P) if and only if there exists oage € Prof such that
7 € Out(s,oagt) and for all B € P and all o' € Strat® it holds:

Vr € Out(s,opage|B +— 0']). m does not visit 2p.

Theorem 11. Let G = (States, Edg, Agt, Act, Mov, Tab, %) be a concurrent game,
with reachability objectives 24 C States for each player A € Agt, and s € States.
There is a pseudo-Nash equilibrium from s with payoff v iff, letting P be the set
{A € Agt | v(A) = 0}, there is an infinite path © in S(P) which starts in s
and which wvisits 24 for every A not in P. Furthermore, 7 is the optimal play
of some pseudo-Nash equilibrium.

This gives a generic procedure to decide the existence of pseudo-Nash equilibria
in non-deterministic concurrent games. It is not effective yet (remember that we
allow uncountably-infinite games), but will yield algorithms when instantiated
on finite games and timed games in the forthcoming sections.

Proof (of Theorem[I). (=) Let (oagt, ™) be a pseudo-Nash equilibrium: oag is
a strategy profile, and m € Out(s, oag:) is such that for any player B and any
strategy ¢’ for B, it holds

Vr' € Out(s, oagt[B +— o']). n’ visits 25 = 7 visits 25.

Moreover, 7 visits 25 iff B ¢ P. According to Proposition[I0] 7= must be a path
in the transition system S(P).

(<) Let 7 be an infinite path in S(P) such that for every B ¢ P, 7w visits
some state in f2g. According to Proposition [I0, there is a strategy profile such
that 7 is one of its outcomes and if any player A € P deviates, no outcome
visits £24. Together with 7, this forms a pseudo-Nash equilibrium. a

Theorem [[] gives a (necessary and sufficient) condition for the existence of
a pseudo-Nash equilibrium in a game. In case an equilibrium exists, repellor
sets (and the corresponding transition systems) also contain all the necessary
information for effectively computing a pseudo-Nash equilibrium:



200 P. Bouyer, R. Brenguier, and N. Markey

Proposition 12. If 7 is an infinite path in S(P) from s wvisiting 25 for ev-
ery B ¢ P, then there is a pseudo-Nash equilibrium (o age, ™) where strategies o ag:
consist in playing secure moves in the transition system S(PNP’"), for some P'.

Proof (Sketch). The strategy profile should contain 7 as one of its outcomes,
which can be done by selecting the relevant moves from S(P). Now, if the play
ever gets outside of 7 but still in Rep(P) (which may occur because of non-
determinism, or because some player, who would have won, has deviated from
her strategy), then the strategy profile should select secure moves to stay in this
set. Finally, if the history exits Rep(P), this indicates that (at least) one player
in P is trying to deviate from her selected strategy. The strategy profile must
ensure that she cannot win: this is achieved by detecting the set P’ of players
who may be responsible for the deviation, and play secure moves in S(P N P’).

d

Ezample 3. For the game of Fig. [Tl consider for instance the transition system
S({o,¢}), which is depicted on Fig.[Bl There are two infinite paths from state [];
they correspond to the outcomes of the two Nash equilibria in the game of Fig.[I],
both of which have payoff (L]— 0, O 1,<> — 0).

In the same game with non-determinism in state <>, the transition system
S({o,¢}) can be checked to contain no edges, so that there is no pseudo-Nash
equilibria with payoff (J — 0,0 — 1, — 0). Now, if we look at S({o}),
which is depicted at Fig.dl there are four possible infinite paths in this transition
system, but none of them visits both [ and O. It does not give us a pseudo-Nash
equilibrium and in fact there is none in this game.

4 Application to Finite Games

In this section, we apply the previous generic procedure to finite concurrent
games. We consider four classes of finite concurrent games: €"4 is the whole class
of finite concurrent non-deterministic games, €4 is the restriction to deterministic
games, TB" is the restriction to turn-based games, and TB¢ is the intersection
of ¢4 and TB".

We also consider subclasses where the number of players is bounded a pri-
ori, and thus is not taken into account in the complexity. Our results can be
summarized as follows (in grey are previously known results [7, Corollary 1]@):

erd) gd, gopnd T
bounded general bounded general
Existence P-c. NP-c. True True
Verification  P-c. NP-c. P-c. NP-c.
Constr. Ex.  P-c. NP-c. P-c. NP-c.

These results all follow from the following Proposition:

3 The results in |[17] concern parity objectives, and do not encompass reachability
objectives.



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 201

Proposition 13. 1. The following problems are P-hard with bounded number
of players and NP-hard in the general case:
(a) checking that a payoff v corresponds to a Nash equilibrium in TR
(b) deciding the existence of a pseudo-Nash equilibrium in ‘I‘B"d;
(c) deciding the existence of a Nash equilibrium in €<,

2. Solving the constrained-existence problem in €% is in P for a bounded num-
ber of players, and in NP in the general case.

Proof (Sketch of proof). P- and NP-hardness results are obtained by straight-
forward encodings of the CIRCUIT-VALUE and 3SAT problems, respectively.

The NP algorithm for the constrained existence problem is obtained by first
guessing the payoff function, and then checking that Theorem [l holds. This is
achieved by guessing a sequence of states in S(P), and checking that it is indeed
a path in S(P) and that it visits the correct sets in 2ag:. A naive implementation
of this procedure runs in exponential time (because computing S(P) may require
the computation of intermediate sets Rep(P N P’) for many subsets P’ of Agt,
which may result in up to 2/Z! computation steps), but using non-determinism,
we can select polynomially many intermediate repellor sets that must be com-
puted. The procedure thus runs in non-deterministic polynomial time.

In the case where the number of agents is bounded, the naive approach above
is already polynomial, and the number of payoff functions is also polynomial.
We can then enumerate all payoff functions, build the transition system S(P)
for each of them, and check the existence of a “witness” path in this transition
system. O

Remark 14. In the case of turn-based games, the set of suspects is always either
empty, or a singleton, or the whole set of players. As a consequence, the naive
implementation of the procedure above will not result in computing 217! repellor
sets, but only |P|. The global algorithm still runs in NP, because finding a path
in S(P) with several reachability constraints is NP-complete.

5 Application to Timed Games

5.1 Definitions of Timed Games

A wvaluation over a finite set of clocks X is an application v: X — Ry. If v is a
valuation and ¢ € R4, then v + ¢ is the valuation that assigns to each z € X the
value v(z) + t. If v is a valuation and Y C X, then [V < Ov is the valuation
that assigns 0 to each y € Y and v(z) to each x € X \ Y. A clock constraint
over X is a formula built on the grammar: €(X)>g = x~c | gAg, where
x ranges over X, ~ € {<, <, =,> >}, and cis an integer. The semantics of clock
constraints over valuations is natural, and we omit it.

We now define the notion of timed games that we will use in this paper.
Our definition follows that of [g].



202 P. Bouyer, R. Brenguier, and N. Markey

Definition 15. A timed game is a 7-tuple G = (Loc, X, Inv, Trans, Agt, Owner, <)
where:

— Loc is a finite set of locations;

— X is a finite set of clocks;

— Inv: Loc — €(X) assigns an invariant to each location;

— Trans C Loc x &(clocks) x 2% x Loc is the set of transitions;

— Agt is a finite set of agents (or players);

— Owner: Trans — Agt assigns an agent to each transition;

— X Agt — 2(StatesxRy )" x(StatesxR1)” Jofines. for each player, a quasi-ordering
on the runs of G, called preference relation.

As in the previous sections, we restrict here to the case where < is given in terms
of reachability objectives (£24) acagt, with 24 C Loc for each A € Agt.

A timed game is played as follows: a state of the game is a pair (¢,v) where £ is
a location and v is a clock valuation, provided that v |= Inv(¢). From each state
(starting from an initial state so = (¢,0), where 0 maps each clock to zero and
is assumed to satisfy Inv({)), each player A chooses a nonnegative real number d
and a transition ¢, with the intended meaning that she wants to delay for d time
units and then fire transition §. There are several (natural) restrictions on these
choices:

— spending d time units in £ must be allowedd i.e., v + d = Inv(£);

— 6= (4 g,z/0) belongs to player A, i.e., Owner(d) = A;

— the transition is firable after d time units (i.e., v+ d |= g), and the invariant
is satisfied when entering ¢’ (i.e., [z < 0](v + d) = Inv(£)).

If (and only if) there is no such possible choice for some player A (e.g. if no
transition from ¢ belongs to A), then she chooses a special move, denoted by L.

Given the set of choices mag of all the players, with m4 € (R4 x Trans)U{_L},
a player B such that dp = min{da | A € Agt and m4 = (da,d4)} is selected
(non-deterministically), and the corresponding transition dp is applied, leading
to a new state (¢, [z — 0](v + d)).

This semantics can naturally be expressed in terms of an infinite-state non-
deterministic concurrent game. Timed games inherit the notions of history, play,
path, strategy, profile, outcome and (pseudo-)Nash equilibrium wvia this corre-
spondence.

In the sequel, we consider only non-blocking timed games, i.e., timed games
in which, for any reachable state (¢, v), at least one player has an allowed action:

[T Mov((£,v), 4) # {(L) acag)-

AcAgt

* Formally, this should be written v + d' = Inv(¢) for all 0 < d’ < d, but this is
equivalent to having only v |= Inv(¢) and v + d |= Inv({) since invariants are convex.



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 203

5.2 Computing Pseudo-nash Equilibria in Timed Games

Let G = (Loc, X, Inv, Trans, Agt, Owner, <) be a timed game, where < is given
in terms of reachability objectives (£24)aeage- In this section, we explain how
pseudo-Nash equilibria can be computed in such reachability timed games, using
Theorem [Tl This relies on the classical notion of regions [1], which we assume
the reader is familiar with.

We define the region game R = (Statesg, Edgr, Agt, Actr, Movg, Tabr, <r)
as follows:

— Statesg = {(¢,r) € Loc xR | r = Inv({) }, where R is the set of clock regions;
— Edgy is the set of transitions of the region automaton underlying G;

— Actg ={(r,p,0) | r € R, pe{1;2;3} and § € Trans} U {L};

— Movg : Statesg x Agt — 2A%® \ @} is such that

Movg ((¢,7), A) = {(r',p,d) | " € Succ(r), " |= Inv({),
p € {1;2;3} if 7 is time-elapsing, else p = 1,
d=(¢,g,2,0") € Trans is such that ' = g
and [z < 0]r" = Inv(¢')and Owner(8) = A}

if it is non-empty, and Movg ((¢,r), A) = { L} otherwise. Roughly, the index p
allows the players to say if they want to play first, second or later if their
region is selected.

— Tabg : Statesg x Actr 8" — 2F98= \ {@7} is such that for every (¢, r) € Statesg
and every magt € [[ 4epge Movr((£,7), A), if we write r’ foxé min{rs | ma =
(ra,pa,da)} and p’ for min{pa | ma = (+',pa,04)},

TabR((ga T)amAgt) = {((K’T)’ (637 [ZB — O]TB)) ‘
mp = (rg,pp,0p) with rg =1', pg=p’ and ég = ({, 95, 25,(5)}

— The preference relation < is defined in terms of reachability objectives for
each player, where the set of objectives (£2)a,eagt (£24) acagt is defined, for
each A € Agt, as 2y = {((,r) | £ € 24,7 € R}.

Proposition 16. Let G be a timed game, and R its associated region game.
Then there is a pseudo-Nash equilibrium in G from (s,0) iff there is a pseudo-
Nash equilibria in R from (s,[0]), where [0] is the region associated to O.
Furthermore, this equivalence is constructive.

Proof (Sketch of proof). The proof is in three steps: we first define a kind of
generic simulation relation between games, which gives information on their
respective repellor sets and transition systems:

5 This is well-defined for two reasons: first, not all m;’s may be L, since we consider
non-blocking games; second, the set of regions appearing in a move from (¢,7) only
contains successors of r, and is then totally ordered.



204 P. Bouyer, R. Brenguier, and N. Markey

Lemma 17. Consider two games G and G’ involving the same set of agents,
with preference relations defined in terms of reachability conditions (£24) AcAgt
and (£24) acagt, Tespectively. Assume that there exists a binary relation < between
states of G and states of G' such that, if s < s', then:

1. if ' € {2 then s € 24 for any A € Agt;

2. for all move mag: in G, there exists a move my,, in G' such that:
o foranyt’ inG', thereist <t"inG s.t. Susp((s',t"), mip,) C Susp((s;t), Magt);
e for any (s,t) in Tab(s,mag), there is a (s',t") in Tab(s',mjy,,) s.t. tat’.

Then for any P C Agt and for any s and s’ such that s < s', it holds:

1. if s is in Repg(P), then s’ is in Repg/ (P);

2. for any (s,t) € Edgge,, there exists (s',1') in Edg;;,ep s.t. t 9t’, where Edgg,,
and Edgfqep are the set of edges in the transition systems Sg(P) and Sg/(P),
respectively.

It remains to show that a timed game and its associated region game simulate
one another in the sense of Lemma [I7] which entail that they have the same sets
of repellors. This is achieved by defining two functions A, mapping moves in G
to equivalent moves in R, and p, mapping moves in R to equivalent moves in G,
in such a way that v < r iff r is the region containing v. Theorem [IT] concludes
the proof. O

Because the region game R has size exponential in the size of G, we get:

Theorem 18. The constrained existence problem (and thus the existence- and
verification problems) in timed game can be solved in EXPTIME.

Remark 19. Given a pseudo-Nash equilibrium (aag, 7) in the region game, we
can obtain one in the timed game for the same payoff vector. Assume that
(cvagt, m) is a pseudo-Nash equilibrium in R. Given a history h in G and its pro-
jection proj(h) in R, if (wa(proj(h)))acagt = (T4,P4,04)AcAgt IS a secure move
in R, then so is (1a)aeagt = p(last(h), (cca(proj(h))) acagt), where i is the func-
tion used in the proof of Proposition[Iflto simulate moves from R in G. Moreover,
there exists a play m' € Out((¢,v), (1a)aeagt) such that proj(n’) = , therefore
the payoff function for these two plays is the same. Hence ((11a)acagt), 7’) is a
pseudo-Nash equilibrium in the timed game.

Our algorithm is optimal, as we prove EXPTIME-hardness of our problems:

Proposition 20. The constrained-ezistence and verification problems for de-
terministic turn-based timed games with at least two clocks and two players is
EXPTIME-hard. The existence problem is EXPTIME-hard for concurrent timed
games (with at least two clocks and two players).

This is proved by encoding countdown games [11]. The second part of the Propo-
sition requires the use of a timed game with no equilibria; an example of such a
game is depicted on Fig. Bl

Remark 21. Since deterministic turn-based timed games yield deterministic turn-
based region games, they always admit a Nash equilibrium.



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 205

Fig. 5. A timed game with no equilibria (the solid transition belongs to the first player,
the dashed one to the second one)

6 Conclusion

In this paper we have described a procedure to compute qualitative pseudo-
Nash equilibria in multi-player concurrent (possibly non-deterministic) games
with reachability objectives. The development of this procedure has required
technical tools as the repellor sets, which can be seen as an alternative to the
classical attractor sets for computing equilibria in games. We have applied this
procedure to finite concurrent games and to timed games, yielding concrete
algorithms to compute equilibria in those games. We have furthermore proved
that those algorithms have optimal complexities.

Multiple extensions of this work are rather natural:

— First we would like to apply the generic procedure to other classes of systems,
for instance to pushdown games [20]. Note that we are not aware of any result
on the computation of equilibria in pushdown games.

— Then our procedure only applies to reachability objectives for every player.
It would be interesting to adapt it to other w-regular winning objectives.
This is a priori non-trivial as this will require developing new tools (the
repellor sets are dedicated to reachability objectives).

— We have applied our procedure to concurrent games as defined e.g. in |2],
where the transition table of the game is given in extensive form (for each
tuple of possible actions, there is an entry in a table). In [12], a more compact
way of representing concurrent game is proposed, which assumes a symbolic
representation of the transition table. It would be interesting to study how
this does impact on the complexity of the computation of Nash equilibria. In
particular the argument for having an NP algorithm (Proposition [[3]) does
not hold anymore.

— Finally other notions of equilibria (subgame-perfect equilibria, secure equi-
libria, etc) could be investigated, and extensions of concurrent games with
probabilities could also be investigated.

References

. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183-235 (1994)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic.
J. ACM 49, 672-713 (2002)

. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed
automata. In: Proc. IFAC Symp. System Structure and Control, pp. 469-474. El-
sevier, Amsterdam (1998)



206

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Bouyer, R. Brenguier, and N. Markey

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121-125. Springer, Heidelberg (2007)

Bouyer, P., Brenguier, R., Markey, N.: Nash equilibria for reachability objectives
in multi-player timed games. Research report LSV-10-12, Lab. Spécification &
Vérification, ENS Cachan, France (June 2010)

Chatterjee, K., Henzinger, T.A., Jurdziriski, M.: Games with secure equilibria. In:
LICS 2006, pp. 160-169. IEEE Comp. Soc. Press, Los Alamitos (2006)
Chatterjee, K., Majumdar, R., Jurdzinski, M.: On Nash equilibria in stochastic
games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26-40. Springer, Heidelberg (2004)

de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The ele-
ment of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 142-156. Springer, Heidelberg (2003)

Félegyhazi, M., Hubaux, J.-P., Buttyan, L.: Nash equilibria of packet forward-
ing strategies in wireless ad hoc networks. IEEE Trans. Mobile Computing 5(5),
463476 (2006)

Henzinger, T.A.: Games in system design and verification. In: TARK 2005, pp.
1-4. Nat. Univ., Singapore (2005)

Jurdzinski, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed
automata with one or two clocks. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 170-184. Springer, Heidelberg (2007)

Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of
ATL. LMCS 4(2:7) (2008)

Nash, J.F.: Equilibrium points in n-person games. Proc. National Academy of
Sciences of the USA 36(1), 48-49 (1950)

Paul, S., Simon, S.: Nash equilibrium in generalised Muller games. In: FSTTCS
2009. LIPIcs, vol. 4, pp. 335-346. LZI (2009)

Thomas, W.: Infinite games and verification (extended abstract of a tutoral). In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58—64. Springer,
Heidelberg (2002)

Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212-223. Springer, Heidelberg (2006)

Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 20-34. Springer,
Heidelberg (2008)

Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in simple stochastic
multiplayer games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 297-308. Springer,
Heidelberg (2009)

Ummels, M., Wojtczak, D.: Decision problems for Nash equilibria in stochastic
games. In: Gradel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 515-530.
Springer, Heidelberg (2009)

Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 234-263. Springer,
Heidelberg (1996)



Stochastic Real-Time Games with Qualitative Timed
Automata Objectives*

Tomds Bréazdil, Jan Krédl, Jan Kfetinsky**, Antonin Kucera, and Vojtéch Rehdk

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{brazdil,krcal,kucera,rehak}@fi.muni.cz, jan.kretinsky@in.tum.de

Abstract. We consider two-player stochastic games over real-time probabilistic
processes where the winning objective is specified by a timed automaton. The
goal of player O is to play in such a way that the play (a timed word) is accepted
by the timed automaton with probability one. Player <& aims at the opposite. We
prove that whenever player O has a winning strategy, then she also has a strategy
that can be specified by a timed automaton. The strategy automaton reads the
history of a play, and the decisions taken by the strategy depend only on the
region of the resulting configuration. We also give an exponential-time algorithm
which computes a winning timed automaton strategy if it exists.

1 Introduction

In this paper, we study stochastic real-time games (SRTGs) which are obtained as
a natural game-theoretic extension of generalized semi-Markov processes (GSMP)
[L3120i21] or real-time probabilistic processes (RTP) [2]. Intuitively, all of these for-
malisms model systems which react to certain events, such as message receipts, subsys-
tem failures, timeouts, etc. A common characteristic of all events is that they are delayed
(it takes some time before an initiated event actually occurs) and concurrent (there can
be several previously initiated events that are currently awaited). For example, if two
messages e and e’ are sent, it takes some (random) time before they arrive, and one can
specify, or approximate, the densities f,, f. of their arrival times. When e arrives (say,
after 20 time units), the system reacts to this event by changing its state, and awaits e’
in a new state. The arrival time of ¢’ in the new state is measured from zero again, and
its density f,/jpo is obtained from f,- by incorporating the condition that ¢’ is delayed for
at least 20 time units. That is, forpo(x) = fo(x +20)/ J;; f.(v) dy. Note that if the delays
of all events are exponentially distributed, then f, = f,, for every b € Ry, and thus we
obtain continuous-time Markov chains (see, e.g., [[17]) and continuous-time stochastic
games [[10J18] as restricted forms of RTPs and SRTGs, respectively.

Intuitively, a SRTG is a finite graph (see Fig. [[) with three types of nodes—states
(drawn as large circles), controls, where each control can be either internal or adver-
sarial (drawn as boxes and diamonds, respectively), and actions (drawn as small filled

* The authors are supported by the Alexander von Humboldt Foundation (T. Brazdil), the In-
stitute for Theoretical Computer Science, project No. 1M0545 (J. Krcal), Brno Municipality
(J. Kfetinsky), and the Czech Science Foundation, grants No. P202/10/1469 (A. Kucera) and
No. 201/08/P459 (V. Rehik).

** On leave at TU Miinchen, Boltzmannstr. 3, Garching, Germany.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 207£221], 2010.
© Springer-Verlag Berlin Heidelberg 2010



208 T. Bréazdil et al.

€3
€] ,—YE‘ 0.3 ]\ e

1
0.7 0.5
1

T 0.4 0.5
e { o.6j/ €

Fig. 1. An example of a stochastic real-time game

circles). In each state s, there is a finite subset E(s) of events scheduled in s (the events
scheduled in s are those which are “awaited” in a given state; the other events are dis-
abled. Each state s can react to every event of E(s) by entering a designated control c,
where player O or player ¢ chooses some of the available actions. Each action is as-
sociated with a fixed probability distribution over states. In general, both players can
use randomized strategies, which means that they do not necessarily select just a sin-
gle action but a probability distribution over the available actions, which is multiplied
with the distributions associated to actions. Then, the next state is chosen randomly
according to the constructed probability distribution, and the play goes on. Whenever
a new state s’ is entered from a previous state s along a play, each event scheduled in
s’ is assigned a new delay which is chosen randomly according to the corresponding
(conditional) density. The state s’ then “reacts” to the event with the least delay (under
the assumptions adopted in this paper, the probability of assigning the same delay to
different events is zero).

Our contribution. In this work we consider SRTGs with deterministic timed automata
(DTA) objectives. Intuitively, a timed automaton “observes” a play of a given SRTG and
checks that certain timing constraints are satisfied. A simple example of a property that
can be encoded by a DTA is “whenever a new request is generated, it is either serviced
within the next 10 time units, or the system eventually enters a safe state”. In this case,
we want to setup the internal controls so that the above property holds for almost all
plays, no matter what decisions are taken in adversarial controls. Hence, the aim of
player O is to maximize the probability that a play is accepted by a given timed automa-
ton, while player ¢ aims at the opposite. By applying the result of [[14], we obtain that
SRTGs with DTA objectives have a value, i.e., sup,, inf; P>”" = inf, sup, P”", where o
and 7 range over all strategies of player O and player <, and P is the probability of all
plays satisfying a given DTA objective. This immediately raises the question whether
the players have optimal strategies which guarantee the equilibrium value against every
strategy of the opponent. We show that the answer is negative. Then, we concentrate
on the gualitative variant of the problem, which is perhaps most interesting from the
practical point of view. An almost-sure winning strategy for player O is a strategy such
that for every strategy of player <, the probability of all plays satisfying a given DTA
objective is equal to one. The main result of this paper is the following: We show that



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 209

if player O has some almost-sure winning strategy, then she also has a DTA almost-
sure winning strategy, which can be encoded by a deterministic timed automaton A
constructible in exponential time. The automaton (A reads the history of a play, and the
decision taken by the corresponding DTA strategy depends only on the region of the
resulting configuration entered by A.

Our constructions and proofs are combinations of standard techniques (used for
timed automata and finite-state games) and some new non-trivial observations that are
specific for the considered model of SRTGs. We also adapt some ideas presented in [2]]
(in particular, we use the concept of §-separation).

Related work. Continuous-time (semi)Markov chains are a classical and deeply studied
model with a mature mathematical theory (see, e.g., [17019]). Continuous-time Markov
decision processes (CTMDPs) [7U5016] combine probabilistic and non-deterministic
choice, but all events are required to be exponentially distributed. Two player games
over continuous-time Markov chains were considered only recently [10/18]]. Timed au-
tomata [3] were originally introduced as a non-stochastic model with time. Probabilis-
tic semantics of timed automata was proposed in [4J6], and a more general model of
stochastic games over timed automata was considered in [9]]. In this paper we build
mainly on the previous work about GSMPs [13l20/21] and RTPs [2!1] and interpret
timed automata as a model-independent specification language which can express im-
portant properties of timed systems. This view is adopted also in [12]] where continuous-
time Markov chains are checked against timed-automata specifications.

Let us note that our technical treatment of events is somewhat different from the one
used for GSMPs and RTPs. Intuitively, in GSMPs (and RTPs), each event is assigned its
delay only when it is newly scheduled, and this delay is just updated when moving from
state to state (by subtracting the elapsed time) until the event happens or it is disabled.
For example, if two messages e and ¢’ are sent, both of them are assigned randomly
chosen delays d, and d,.. The smaller of the two delays (say d.) triggers a transition
to the next state, where the delay of d, is updated by subtracting d,. Since the current
delays of all events are explicitly recorded in the state-space of GSMPs and RTPs, this
formalism cannot be directly extended to perfect-information games (the players would
“see” the delays assigned to events, i.e., they would know what is going to happen in the
future). In our model of SRTGs, we always assign a new random delay to all events that
are scheduled in a given control state, but we adjust the corresponding densities (from
a “probabilistic” point of view, this approach is equivalent to the one used for GSMPs
and RTPs).

Due to space constraints, most of the proofs are omitted and can be found in a full
version of this paper [[11].

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, real numbers, pos-
itive real numbers, and non-negative real numbers are denoted by N, Ny, R, R.¢, and
Ry, respectively.

Let A be a finite or countably infinite set. A probability distribution on A is a func-
tion f : A — Ry such that )., f(a) = 1. We say that f is rational if f(a) is rational



210 T. Brazdil et al.

for every a € A. The set of all distributions on A is denoted by D(A). A o-field over a
set Qis a set ¥ C 29 that includes 2 and is closed under complement and countable
union. A measurable space is a pair (2, F) where Q is a set called sample space and 7
is a o-field over Q whose elements are called measurable sets. A probability measure
over a measurable space (2, ) is a function  : ¥ — Ry such that, for each countable
collection {X;};; of pairwise disjoint elements of ¥, P(|U;c; Xi) = >ie; P(X;), and more-
over P(Q) = 1. A probability space is a triple (Q, F,P), where (2, F) is a measurable
space and % is a probability measure over (2, 7). We say that a property A C Q holds
for almost all elements of a measurable set Y if P(Y) > 0,ANY e F,andP(A|Y) = 1.

Let us note that all of the integrals used in this paper should be understood as
Lebesgue integrals, although we use Riemann-like notation.

2.1 Stochastic Real-Time Games

Let & be a finite set of events, which are independent of each other. To every e € & we
associate its lower bound €, € Ny, upper bound u, € N U {oo}, and a density function
fe : R = R which is positive on (£, u,.) such that fg fe(x)dx = 1. Further, for every
b € Ry we also define the conditional density function Jfep : R = R as follows:

fe(x +b)
[ fmay],,

Here [-]:0 : R — R is a function which for a given x returns either x or 1 depending on
whether x # 0 or not, respectively. The function f, defines the density of delaying the
evente, i.e., for every time ¢ € Ry, the probability of delaying e for at most ¢ is equal to
fot fe(x) dx. Note that the integral fot Jep(x) dx s equal to the conditional probability of
delaying e for at most b + ¢ under the condition that e is delayed for at least b. Since all
events are mutually independent, for every subset E’ C E we have that the conditional
probability of delaying all events in E’ for at least b + ¢ under the condition that all
events in E’ are delayed for at least b is equal to [].cx f; * Sep(x) dx.

Jap(x) =

Definition 1. A stochastic real-time game (SRTG) is a tuple G =
(S, E,Cg,Csy,Act, F, A, 1g) where S is a finite set of states, E : S — 2% assigns
to each s € S the set of events scheduled to occur in s, Cy and Cy are finite disjoint
sets of controls of player O and player ©, Act € D(S) is a finite set of actions, F is a
flow function which to every pair (s, e), where s € S and e € E(s), assigns a control of
CaUCq, A: CqUC, — 24 assigns to each control ¢ a non-empty finite set of actions
enabled at ¢, and py € D(S) is an initial distribution.

A stamp is an element (s,t,e) of S X R.9 X & where e € E(s). A (computational)
history of G is a finite sequence ) = (s, o, €0), - - - , (S, In, €,) Of stamps. Intuitively, #;
is the time spent in s; while waiting for some of the events scheduled in s;, and e; is
the event that triggered a transition to the next state s;;.;. A strategy of player ©, where

€ {O, ¢}, is a measurable function which to every history (s, t9, €0), - - - » (Sus tns €1)
such that F(s,,e,) = ¢ € Cy assigns a probability distribution over the set A(c) of
actions that are enabled at c¢. The set of all strategies of player O and player ¢ are
denoted by 2" and /7, respectively.



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 211

Let (o, m) € 2 x I1. The corresponding play of G is initiated in some sy € S (with
probability uo(sp)). Then, each event e € E(sp) is assigned a randomly chosen delay
d? € R.g according to the density f, (note that f, = fio). Let tp = min{d’ | e €
E(s0)} be the minimal delay of all events scheduled in sy, and let trigger, be the set
of all e € E(sg) such that dg = 1o. The event egp which “triggers” a transition to the
next state is the least element of trigger, w.r.t. some fixed linear ordering < (note that
the probability of assigning the same delay to different events is zero, and hence the
choice of < is irrelevant; we need this ordering just to make our semantics well defined).
The event ey determines a control ¢ = F(sg, ep), where the responsible player makes a
decision according to her strategy 7, i.e., selects a distribution 7(f)) over A(c) where
b = (s0, f0, €o) is the current history. Hence, the next state s; is chosen with probability
2ueae) TO)(W) - u(s1). In 51, we assign a randomly chosen delay d! to every e € E(s))
according to the conditional density f;,, where b is determined as follows: If e was
scheduled in the previous state sg and e # ey, then b = fy; otherwise b = 0. The event
e; is the least event (w.r.t. <) with the minimal delay #; = min{d; | e € E(s1)}. The next
state s, is chosen randomly by combining the strategy of the respective player with the
corresponding actions. In general, after entering a state s;, every e € E(s;) is assigned a
randomly chosen delay d’ according to the conditional density f,, where b is the total
waiting time for e accumulated in the history of the play.

To formalize the intuition given above, we define a suitable probability space
(Play, 7, SD;”” ) over the set Play of all infinite sequences of stamps, where b is a
history of steps “performed previously” (the technical convenience of Iy becomes ap-
parent later in Section [3} the definition given below is perhaps easier to understand
in the special case when b is empty). For the rest of this section, we fix a history
b = (50,20, €0), ..., (Sn, tn,€n) Where n € Nog U {—1}. If n = —1, then b is empty. A
template is a finite sequence of the form B = (su+1, Ln+15 €ns1)s - - - » (Snms s €nem)
such that m > 1, e¢; € E(s;), and [; is an interval in R.g foreveryn + 1 < i < n+ m.
Each such B determines the corresponding cylinder Play(B) C Play consisting of all
sequences of the form (Su+1, tu+1s €n+1)s - - - » (Snms tntms €ntm)s - - . Where t; € I; for all
n+1 <i < n+m The o-field ¥ is the Borel o-field generated by all cylinders. For
each cylinder Play(B), the probability Pi)”"(Play(B)) is defined in the way described be-
low. Then, P;)’ " is extended to ¥ (in the unique way) by applying the extension theorem
(see, e.g., [8]).

It remains to show how to define the probability Pg’”(Play(B)) of a given cylin-
der Pla)’(B), where B = (Su11, Int1s €n1)s - - > Sntms Lnvms €nim)- We put Pg’”(Pla)’(B)) =
T,+1, where the expression T; is defined inductively foralln + 1 < i <n+m+ 1 as
follows:

T fIiSl‘Cll‘ei'VVini'TH]dl‘i ifn+l1<i<n+m
l 1 ifi=n+m+ 1.

Observe that T, is an expression with m nested integrals. Further, note that when
constructing T;,1, we already have 1y, . .., ¢; at our disposal (each ¢; is either fixed in b,
or it is a variable used in some of the preceding integrals).

The subterm State; corresponds to the probability that s; is chosen as the next state,
assuming that the current history is (so, f, €o), - - - » (Si—1, ti-1, €;—1). Hence, we define



212 T. Brazdil et al.

o State, 1 = Uo(sq+1) if b is empty, otherwise State,+; = Zﬂe Ae) T - u(sq11), where
c = F(sy,e,), and 71 is either o or &, depending on whether ¢ € Cy or ¢ € Cg,
respectively.

o State; = Y,eae) T - u(si), where n+l < i < n+m, ¢ = F(si1,ei1), ) =
(80, 0, €0), - - -, (Si—1, ti—1, €i-1), and 7 is either o or 7, depending on whether ¢ € C or
¢ € C,, respectively.

The most complicated part is the definition of Win; which intuitively corresponds to the

probability that the event e; “wins” the competition among the events scheduled in s;.

In order to define Win;, we have to overcome a technical obstacle that the events
scheduled in s; might have been scheduled also in the preceding states. For each e €

E(s;), let K(e, i) be the minimal index such that 0 < K(e,i) < i and for all K(e,i) < j<i

we have thate € E(s;) and e # e;. We put b(e, i) = tg(, + - - - + ti_1. Intuitively, b(e, i) is

the total waiting time for e accumulated in the history of the play. Note that if K(e, i) = i,

then the defining sum of b(e, i) is empty and hence equal to zero. We put

Win; = feipteni(t) 1_[ f Selp(e.y(x) dx.

ecE(s;) li
e+e;

2.2 Deterministic Timed Automata

Let X be a finite set of clocks. A valuation is a function v : X — Ry. For every
valuation v and every subset X C X of clocks, we use v[X := 0] to denote the unique
valuation such that v[X := 0](x) = O for all x € X, and v[X := 0](x) = v(x) for all
x € X \ X. Further, for every valuation v and every § € Ry, the symbol v + § denotes
the unique valuation such that (v + §)(x) = v(x) + ¢ for all x € X.

A clock constraint (or guard) is a finite conjunction of basic constraints of the form
x > ¢, where x € X, = € {<,<,>, >}, and ¢ € Ny. For every valuation v and every
clock constraint g we have that v either does or does not satisfy g, written v |= g or
v [~ g, respectively (the satisfaction relation is defined in the expected way). Sometimes
we slightly abuse our notation and identify a guard g with the set of all valuations that
satisfy g (for example, we write gNg’). The set of all guards over X is denoted by B(X).

Definition 2. A deterministic timed automaton (DTA) is a tuple A =
(0,2,X,—,q0,T), where Q is a nonempty finite set of locations, X is a finite
alphabet, X is a finite set of clocks, go € Q is an initial location, T C Q is a set of
target locations, and — C Q X X x B(X) x 2X x Q is an edge relation such that for all
q € Q and a € X we have the following:

1. the guards are deterministic, i.e., for all edges of the form (q,a, g1, X1,q1) and
(g,a, g2, Xo, q2) such that gy N gr # O we have that g = g», X1 = Xo, and q1 = q»;

2. the guards are total, i.e., for all g € Q, a € X, and every valuation v there is an
edge (q,a,g,X,q") such that v E g.

A configuration of A is a pair (q,v), where ¢ € Q and v is a valuation. An infinite
timed word is an infinite sequence w = cpcjc; ... where each ¢; is either a letter of
2 or a positive real number denoting a time stamp (note that letters and time stamps



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 213

are not required to alternate in w). The run of A on w is the unique infinite sequence

(g0, v0) co (q1,Vv1) c1 -..such that gg is the initial location of A, vy = 0, and for each

i € Ny we have that

o if ¢; is a time stamp ¢ € Ry, then ;41 = ¢; and viy; = v; + 1,

e if ¢; is an input letter a € 2, then there is a unique edge (¢;, a, g, X, q) such thatv; = g,
and we require that ¢, = g and v;4; = v;[X = 0].

We say that w is accepted by A if the run of A on w visits a configuration (g, v) where

q € T. Without restrictions, we may assume that each g € T is absorbing, i.e., all of the

outgoing edges of ¢ lead back to g.

In this paper, we use DTA for two different purposes. Firstly, DTA are used as a
generic specification language for properties of timed systems. In this case, a given
DTA is constructed so that it accepts the set of all “correct” runs (timed words)
of a given timed system. Formally, for a fixed SRTG G with a set of states S,
a finite set Ap of atomic propositions and a labeling L : § — 24, every play
o = (80,10, €0),(s1,1,€1),... of G determines a unique infinite timed word Ap(o) =
L(so) to L(s)) t1 .... A DTA A with alphabet 247 then either accepts Ap(o) or not. In-
tuitively, the automaton A encodes some desirable property of plays, and the aim of
player O and player < is to maximize and minimize the probability of all plays accepted
by A, respectively. We denote Play(A) C Play the set of all plays o such that Ap(p) is
accepted by A. Note that the DTA does not read any information about the events that
occurred. However, one can easily encode the information about the last event into the
subsequent state by considering copies s, of each state s for every event e.

Secondly, we use DTA to encode strategies in stochastic real-time games. Here,
the constructed DTA “observes” the history of a play, and the decisions taken by
the corresponding strategy depend only on the resulting configuration (gq,v). Ac-
tually, we require that the decision depends only on the region of (q,v) (see [3]
or Section [3.J), which makes DTA strategies finitely representable. Formally, ev-
ery history b = (so,%o,€0) -+ (Sn, I, €n) Of G can be seen as a (finite) timed word
50,0, €0, - -+ » Sn» Iy, €y, Where the states and events are seen as letters, and the delays
are seen as time stamps. We define DTA strategies as follows.

Definition 3. A DTA strategy is a strategy T such that there is a DTA A with alpha-
bet S U & satisfying the following: for every history ) we have that ©(b) is a rational
distribution which depends only on the region of (q,v), where (q,v) is the configuration
entered by A after reading the word Y.

3 Results

For the rest of the paper, we fix an SRTG G = (S, E, Cp, Co, Act, F, A, 1), a finite set Ap
of atomic propositions, a labeling L : S — 247, and a DTA A = (Q, 2*?, X, —, g0, T).

As observed in [[14]], the determinacy result for Blackwell games [15] implies de-
terminacy of a large class of stochastic games. This abstract class includes the games
studied in this paper, and thus we obtain the following:

Proposition 1. Let §) be a history of G. Then

sup inf P (Play(A)) = inf sup P (Play(A))
oy nell ) well oy )



214 T. Brazdil et al.

®e|—| ° @e qu {Pl}xﬁlo{M}XS]E
L'j {po},x<1,x:=0 {p1)

Fig. 2. Player O does not have an optimal strategy

The value of G (with respect to 1), denoted by valy, is defined by the above equality.

The existence of valy implies the existence of e-optimal strategies for both players.
However, note that player O does not necessarily have an optimal strategy which would
achieve the outcome valy, or better against every strategy of player ¢, even if valy = 1
and C¢ = 0. A simple counterexample is given in Fig.[2l Here f, is the uniform density
on (0, 1) (i.e., fo(x) = 1 forall x € (0, 1)), Ap = {po, p1}, L(so) = po, L(s1) = p1, and the
only target location is gray. All of the “missing” edges in the depicted DTA (which are
needed to satisfy the requirement that the guards are total) lead to a “garbage” location.
The initial distribution po assigns 1 to so. Now observe that valy, = 1 (where | is the
empty history), because for every & > 0, player O can “wait” in sy until e is fired so
that its delay is smaller than ¢ (this eventually happens with probability 1), and then she
moves to s;. The probability that e is assigned a delay at most 1 — gin s; is 1 — g, and
hence the constructed DFA accepts a play with probability 1 —&. However, player O has
no optimal strategy.

In this paper we consider the existence and effective constructability of almost-sure
winning strategies for player O. Formally, a strategy o € X' is almost-sure winning for
a history ) if for every strategy m € I/ we have that Pg T (Play(A)) = 1. We show the
following:

Theorem 1. Let ) be a history. If player O has (some) almost-sure winning strategy for
b, then she also has a DTA almost-sure winning strategy for V). The existence of a DTA
almost-sure winning strategy for Y is decidable in exponential time, and if it exists, it
can be constructed in exponential time.

A proof of Theorem[I]is not immediate and requires several steps. First, in Section 3.]
we construct a product game G of G and A and show that G # can be examined instead
of G and A. The existence of a DTA almost-sure winning strategy in G4 is analyzed
in Section[3.2 Finally, in Section we present an algorithm which computes a DTA
almost-sure winning strategy if it exists.

3.1 The Product Game

Intuitively, the product game of G and A, denoted by G4, is constructed by simulat-
ing the execution of A on-the-fly in G. Waiting times for events and clock valuations
are represented explicitly in the states of G4, and hence the state-space of G4 is un-
countable. Still, G is in many aspects similar to &, and therefore we use a suggestive
notation compatible with the one used for G. To distinguish among the notions related
to G and G 4, we consistently use the “p-” prefix. Hence, G has stamps, states, histories,
etc., while G4 has p-stamps, p-states, p-histories, etc.



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 215

Let n = |&| +|X|. The clock values of A and the delays of currently scheduled events
are represented by a p-vector ¢ € RY,. The set of p-states is S X O X RS, and the sets of
p-controls of player O and player ¢ are Cp X QO X RYj and Co X O X RY, respectively.

S0

The dynamics of G4 is determined as follows. First, we define a}?-ﬂow function
F #, which to a given p-stamp (s, g, &, t, e) assigns the p-control (c, ¢, &), where ¢ =
F(s,e), and ¢’, & are determined as follows. Let (g, L(s), g, X, ¢") be the unique edge
of A such that the guard g is satisfied by the clock valuation stored in & + 7. We put
& = (€ +5D[(e U X) :=0]. The operator “+, ¢ adds ¢ to all clocks stored in & and to all
events scheduled in s, and (e U X) := 0 resets all clocks of X to zero and assigns zero
delay to e. Second, we define the set of p-actions. For every p-control (c, ¢, &) and an
action a € A(c), there is a corresponding p-action which to a given p-state (s/, g,&’),
where & = £[(E\ E(s")) := 0], assigns the probability a(s’).

A p-stamp is an element (s, q,&,t,e) of S X QO X R’;O X R.o X & Now we define
p-histories and p-plays as sequences of p-stamps. In the game G we allowed arbitrary
sequences of stamps, whereas in the product game we need the automaton part of the
product to be consistent with the game part. We say that a p-stamp x; = (s1, q1,&1, 11, €1)
is consistent with a p-stamp xo = (s, o, &0, fo, €0) if the image of xo under the p-flow
function is a p-control (c, g1, &) such that & = €’[A := 0] where A is the set of actions
not enabled in s;.

A p-history is a finite sequence of p-stamps p = Xxp...x, such that x; is
consistent with x;;; for all 0 < i < n. A p-play is an infinite sequence of
p-stamps xpxj ... where each finite prefix xp...x; is a p-history. Each p-history
P = (50,90, €0, 10, €0), - - - » (Sus Gns> €n, tn, €n) can be mapped to a unique history H(p) =
(80, 20, €0), - - - » (8, 1y, €,). Note that H is in fact a bijection, because each history in-
duces a unique finite execution of the DTA ‘A and the consistency condition reflects
this unique execution. By the last p-control of a p-history p we denote the image of the
last p-stamp of p under the p-flow function.

Region relation. Although the state-space of G is uncountable, we can define a vari-
ant of region relation over p-histories which has a finite index, and then work with
finitely many regions.

For a given x € Ry, we use frac(x) to denote the fractional part of x, and in#(x) to
denote the integral part of x. For x,y € Ry, we say that x and y agree on integral part
if int(x) = int(y) and neither or both x, y are integers. A relevant bound of a clock x is
the largest constant ¢ that appears in all guards. A relevant bound of an event e is u, if
u, < oo, and €, otherwise. We say that an element a € EU X is relevant for £ if £(a) < r
where r is the relevant bound of a. Finally, we put ¢ = & if
o for all relevant a € & U X we have that & (a) and &, (a) agree on integral parts;

o for all relevant a,b € & U X we have that frac(é(a)) < frac(é1(b)) if and only if
frac(&>(a)) < frac(&(D)).

The equivalence classes of = are called time areas. Now we can define the promised

region relation ~ on p-histories. Let p; and p, be p-histories such that (¢, g1, ;) is the

last p-control of p; and (cz, g2, &>) is the last p-control of p,. We put p; ~ py iff ¢ = ¢,

q1 = q» and &; = &,. Note that ~ is an equivalence with a finite index. The equivalence



216 T. Brazdil et al.

classes of ~ are called regions. A target region is a region that contains such p-histories
whose last p-controls have a target location in the second component. The sets of all
regions and target regions are denoted by R and Ry, respectively.

Remark 1. Let us note that the region construction described above can also be applied
to configurations of timed automata, where it coincides with the standard region con-
struction of [3]].

Strategies in the product game. Note that every pair of strategies (o, 7) € X2 X [T
defined for the original game G can also be applied in the constructed product game
G« (we just ignore the extra components of p-stamps). By re-using the construction of
Section 2] for every p-history p and every pair of strategies (o, ) € 2 x I, we define
a probability measure £, on the Borel o-field 7 over the p-plays in G# (the details
are given in [[L1]).

For every S € R, let Reach(S) be the set of all p-plays that visit a region of S
(i.e., some prefix of the p-play belongs to some r € S). We say that a strategy o € X
is almost-sure winning in G4 for a p-history p if for every 7 € Il we have that
sog "(Reach(Rr)) = 1. The relationship between almost-sure winning strategies in G and
G« is formulated in the next proposition.

Proposition 2. Let o € X and p be a p-history. Then o is almost-sure winning for p in
Ga iff o is almost-sure winning for H(p) in G.

Another observation about strategies in G# which is heavily used in the next sections
concerns strategies that are constant on regions. Formally, a strategy 7 € X2 U I] is
constant on regions if for all p-histories p; and p, such that p; ~ p, we have that

7(p1) = 7(P2).
Proposition 3. Every strategy T € XUII which is constant on regions is a DTA strategy.

Proof (Sketch). We transform 7 into a DTA Ag, whose regions are in one-to-one cor-
respondence with the regions of G#. The automaton Ag, reads a sequence of stamps
of G and simulates the behavior of G4. It has a special clock for every clock of A and
every event of &, and uses its locations to store also the current state of the game. The
details are given in [[11]]. O

Note that due to Proposition 3] every strategy constant on regions can be effectively
transformed into a DTA strategy.

3.2 Almost-Sure Winning Strategies
In this section, we outline a proof of the following theorem:

Theorem 2. Let p be a p-history. If there is a strategy o € X which is almost-sure
winning in G for v, then there is a DTA strategy o € X which is almost-sure winning
for p.

Note that due to Proposition[3] it suffices to show that there is an almost-sure winning
strategy in G4 for p which is constant on regions.



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 217

Observe that if o € 2 is an almost-sure winning strategy in G4 for p, then for every
€ II the plays of G# may visit only regions from which it is still possible to visit
a target region. Hence, a good candidate for an almost-sure winning DTA strategy in
G« for p is a strategy which never leaves this set of “safe” regions. This motivates
the following definition (in the rest of this section we often write p € S, where p is a
p-history and S a set of regions, to indicate that p € | J,cg 7).

Definition 4. A DTA strategy o € X is a candidate on a set of regions S C R if for
every m € II and every p-history p € S we have that ;" (Reach(R\ S)) = 0 and
P (Reach(Rr)) > 0.

In the following, we prove Propositions[ and [l that together imply Theorem 21

Proposition 4. Let o be an almost-sure winning strategy in G« for a p-history po. Then
there is a set S C R and a DTA strategy o such that pg € S and o is a candidate on S.

Proof (Sketch). We define S as the set of all regions reached with positive probability
in an arbitrary play where player O uses the strategy o and player < uses some 7 € I1.
For every action a, let p-hist, be the set of all p-histories where o assigns a positive
probability to a. For every region r € S, we denote by A, the set of all a € Act for which
there is 7 € /7 such that P} (p-hist, N r) > 0.

o Firstly, we show that every DTA strategy o that selects only the actions of A, in
every r € S has to satisfy SD(D’/’"(Reach(R \S)) =0forall 7 € IT and p € S. To see
this, realize that when we use only the actions of A,, we do not visit (with positive
probability) any other regions than we did with o~. Hence, we stay in S almost surely.

e Secondly, we prove that from every p-history in S, we can reach a target region with
positive probability. We proceed in several steps.

— Let us fix a region r € S. Realize that then there is a p-history p € r for which o
is almost-sure winning (since o is almost-sure winning and for every r € S there
is m € II such that r is visited with positive probability, there must be a p-history
p € r for which o is almost-sure winning). In particular, P, (Reach(Rr)) > 0
for every m € I1. We show how to transform o into a DTA strategy o such that
P7 " (Reach(Rr)) > 0.

Let us first consider one-player games, i.e., the situation when C, = (. Then
there must be a sequence of regions ry, . . ., 1, visited on the way from p to a target,
selecting some actions ay, . . ., a,—1. We fix these actions for the respective regions
(if some region is visited several times, we fix the last action taken) and thus obtain
the desired DTA strategy o’

In the general case of two-player games, we have to consider a tree of regions
and actions instead of a single sequence, because every possible behaviour of the
opponent in the first n steps has to be taken into account.

— Then we prove that for every p’ € r we have that P‘;’"(Reach(RT)) > 0 for every
nt € I1. For the p-histories p, p’ € r, consider the probability that taking an action
a results in reaching a given region in one step. These probabilities are either both
positive or both zero. This one-step qualitative equivalence is then extended to

arbitrary many steps. Hence, P‘;’"(Reach(RT)) > 0.



218 T. Brazdil et al.

— Letus now drop the fixed region r. We need to “stitch” the DTA strategies described
above for each region into one DTA strategy 0. We construct o* as follows. In
the first step, we take an arbitrary region reachable with positive probability (e.g.,
the initial one containing pg) and fix the decisions in the regions ry, . .., r, (Where
r, € Rr) discussed above. Let us denote this set of regions by F. In the second
step, we take an arbitrary region v € S\ F. Again, we take a sequence of regions
rs -+ 1y, ending in Ry U F. We fix the actions in these regions accordingly and
get a set F>. We repeat this step until F;, = S. In the other regions, o is defined
arbitrarily requiring only it is constant on each region. O

Proposition 5. If a DTA strategy o is a candidate on a set of regions S C R, then for
every p € S and every r € I we have that P, " (Reach(Rr)) = 1.

Note that we are guaranteed that for every p-history in every region in S, the probability
of reaching a target is positive. However, it can be arbitrarily small. Therefore, even if
we pass through these regions infinitely often and never leave them, it is not clear that
we eventually reach a target almost surely. This would be guaranteed if the probabilities
were bounded from below by a positive constant.

Remark 2. If we considered the restricted case of one-player games with bounded inter-
vals and exponentially distributed unbounded events, we can already easily prove that
o™ is winning using [3]] as follows. Fixing o resolves all non-determinism and yields a
system of the type considered by [3]. Since we are guaranteed the positive probability
of reaching the target, we may apply Lemma 3 of [3]]. However, in the setting of two-
player games, we cannot use this argument directly and some (non-trivial) changes are
required.

Intuitively, the reason why the probabilities of reaching a target
are generally not bounded from below is that when the frac-
tional parts of the clocks are too close, the probability of reach-
ing a given region may approach zero. The figure on the left
7 shows the region graph of a system with two clocks and a sin-
7 r gle state. There is also a single event, which is positive on (0, 1)
P and its associated clock is not depicted. Now observe that if p
comes closer and closer to the diagonal, the probability that the
(only) event happens in the region r is smaller and smaller.

Nevertheless, we can bound the probabilities if we restrict ourselves to a smaller set
of positions. We define -separated parts of regions, where the differences of p-clocks
are at least ¢ (and hence we are at least 9-away from the boundary of the region) or zero
due to a synchronization of the clocks of the original automaton. Being away from the
boundary by a fixed ¢ then guarantees that we reach the next region with a probability
bounded from below.

Definition 5. Let 6 > 0. We say that a set D C Ry is §-separated if for every x,y € D
either frac(x) = frac(y) or |[frac(x)—frac(y)| > 6. Further, we say that a p-history with the
last p-control (s, q, £) is 6-separated if the set {0} U{&(a) | a € EU KX, a is relevant for &}
is 0-separated.



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 219

Now we prove that the probabilities of reaching a target region are bounded from below
if we start in a §-separated p-history.

Proposition 6. Let 0* be a DTA strategy candidate on a set of regions S. For every
0 > 0 there is € > 0 such that for every 6-separated p-history p € S and every strategy
7 we have that Py " (Reach(Rr)) > &.

Proof (Sketch). We prove that for every § > O there is € > 0 such that starting in
a o-separated p-history, the probability of reaching a target in at most |R| steps is
greater than e. For this we use the observation that after performing one step from
a d-separated p-history, we end up (with a probability bounded from below) in a
¢’-separated p-history. This can be generalized to an arbitrary (but fixed) number of
steps. Now it suffices to observe that for every 7 € I7 and a d-separated p-history p
there is a sequence of regions ry,.. ., r; with k < |R|, such that p € r|, r, € Ry, and the
probability of reaching r;;; from 7; in one step using o and x is positive. O

Nevertheless, there is a non-zero probability of falling out of safely separated parts of
regions. To finish the proof of Proposition [3l we need to know that we pass through
o-separated p-histories infinitely often almost surely (since the probability of reaching a
target from §-separated p-histories is bounded from below by Proposition[@] a target is
eventually visited with probability one). For this, it suffices to prove that we eventually
return to a 0-separated part almost surely. Hence, the following proposition makes our
proof complete.

Proposition 7. There is 6 > 0 such that for every DTA strategy o € X and every it € 11,
a 6-separated p-history is reached almost surely from every p-history p.

Proof (Sketch). We prove that there are n € N, § > 0, and € > 0 such that for every
p-history p and every m € I1, the probability of reaching a d-separated p-history in n
steps is greater than €. Then, we just iterate the argument. O

3.3 The Algorithm

In this section, we show that the existence of a DTA almost-sure winning strategy is
decidable in exponential time, and we also show how to compute such a strategy if it
exists. Due to Proposition[2] this problem can be equivalently considered in the setting
of the product game G#. Due to Proposition 3 an almost-sure winning DTA strategy
can be constructed as a strategy that is constant on every region of G#. We show that
this problem can be further reduced to the problem of computing wining strategies in
a finite stochastic game G' with reachability objectives induced by the product game
Ga. Note that the game G”' can be solved by standard methods (e.g., by computing the
attractor of a target set). First, we define the game G”' and show how to compute it. The
complexity discussion follows.

The product G 4 induces a game G™ whose vertices are the regions of G as follows.
Player ©, where © € {O, ¢}, plays in regions (c, g, [f]z) where ¢ € Cy. In a region

! Note that a region is a set of p-histories such that their last p-controls share the same control c,
location ¢, and equivalence class [£].. Hence, we can represent a region by a triple (c, g, [£]~)-



220 T. Bréazdil et al.

r = (c,q,[£]~), she chooses an arbitrary action a € A(c) and this action a leads to a
stochastic vertex (r,a) = ((c, g, [£]~), a). From this stochastic vertex there are transi-
tions to all regions ' = (¢, ¢’, [¢’]~), such that 7’ is reachable from all p € r in one step
using action a with some positive probability in the product G#. One of these proba-
bilistic transitions is taken at random according to the uniform distribution. From the
next region the play continues in the same manner. Player O tries to reach the set Ry of
target regions (which is the same as in the product game) and player < tries to avoid it.
We say that a strategy o of player O is almost-sure winning for a vertex v if she reaches
Rr almost surely when starting from v and playing according to o

At first glance, it might seem surprising that we set all probability distributions in
G as uniform. Note that in different parts of a region r, the probabilities of moving
to r’ are different. However, as noted in the sketch of proof of Propositiond] they are
all positive or all zero. Since we are interested only in qualitative reachability, this is
sufficient for our purposes.

Moreover, note that since we are interested in non-zero probability behaviour, there
are no transitions to regions which are reachable only with zero probability (such as
when an event occurs at an integral time).

We now prove that the reduction is correct. Observe that a strategy for the product
game G4 which is constant on regions induces a unique positional strategy for the
game G7, and vice versa. Slightly abusing the notation, we consider these strategies to
be strategies in both games.

Proposition 8. Let G be a game and A a deterministic timed automaton. For every

p-history p in a region r, we have that

e a positional strategy o is almost-sure winning for r in G*V iff it is almost-sure winning
forpinGa,

e player O has an almost-sure winning strategy for r in G iff player 0 has an almost-
sure winning strategy for v in G .

The algorithm constructs the regions of the product G # and the induced game graph of
the game G™ (see [[L1]]). Since there are exponentially many regions (w.r.t. the number
of clocks and events), the size of G™ is exponential in the size of G and A. As we
already noted, two-player stochastic games with qualitative reachability objectives are
easily solvable in polynomial time, and thus we obtain the following:

Theorem 3. Let ) be a history. The problem whether player O has a (DTA) almost-sure
winning strategy for }) is solvable in time exponential in |G| and |A|, and polynomial in
[bl. A DTA almost-sure winning strategy is computable in exponential time if it exists.

4 Conclusions and Future Work

An interesting question is whether the positive results presented in this paper can be
extended to more general classes of objectives that can be encoded, e.g., by determin-
istic timed automata with w-regular acceptance conditions. Another open problem are
algorithmic properties of e-optimal strategies in stochastic real-time games.



Stochastic Real-Time Games with Qualitative Timed Automata Objectives 221

References

1.

11.

12.

16.

17.

18.

19.
20.

21.

Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for probabilistic real-time sys-
tems. In: Leach Albert, J., Monien, B., Rodriguez-Artalejo, M. (eds.) ICALP 1991. LNCS,
vol. 510, pp. 115-136. Springer, Heidelberg (1991)

. Alur, R., Courcoubetis, C., Dill, D.L.: Verifying automata specifications of probabilistic real-

time systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX
1991. LNCS, vol. 600, pp. 28—44. Springer, Heidelberg (1992)

. Alur, R, Dill, D.: A theory of timed automata. TCS 126(2), 183-235 (1994)
. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Groer, M.: Almost-sure model checking

of infinite paths in one-clock timed automata. In: Proceedings of LICS 2008, pp. 217-226.
IEEE, Los Alamitos (2008)

. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-

bounded reachability probabilities in uniform continuous-time Markov decision processes.
TCS 345, 2-26 (2005)

. Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking of one-clock

timed automata under probabilistic semantics. In: Proceedings of Sth Int. Conf. on Quantita-
tive Evaluation of Systems (QEST 2008), pp. 55-64. IEEE, Los Alamitos (2008)

. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont

(2007)

. Billingsley, P.: Probability and Measure. Wiley, Chichester (1995)
. Bouyer, P., Forejt, V.: Reachability in stochastic timed games. In: Albers, S., Marchetti-

Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS,
vol. 5556, pp. 103—114. Springer, Heidelberg (2009)

. Brazdil, T., Forejt, V., Kr¢al, J., Kfetinsky, J., KuCera, A.: Continuous-time stochastic games

with time-bounded reachability. In: Proceedings of FST&TCS 2009. LIPIcs, vol. 4, pp.
61-72. Schloss Dagstuhl (2009)

Brazdil, T., Kr¢dl, J., Kietinsky, J., Kucera, A., Rehdk, V.: Stochastic real-time games with
qualitative timed automata objectives. Technical report FIMU-RS-2010-05, Faculty of Infor-
matics, Masaryk University (2010)

Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-
time Markov chains against timed automata specifications. In: Proceedings of LICS 2009,
pp- 309-318. IEEE, Los Alamitos (2009)

. Haas, PJ., Shedler, G.S.: Regenerative generalized semi-Markov processes. Stochastic Mod-

els 3(3), 409-438 (1987)

. Maitra, A., Sudderth, W.: Finitely additive stochastic games with Borel measurable payoffs.

Int. Jour. of Game Theory 27, 257-267 (1998)

. Martin, D.A.: The determinacy of Blackwell games. Journal of Symbolic Logic 63(4),

1565-1581 (1998)

NeuhéuBler, M., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in continuous-time
Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp.
364-379. Springer, Heidelberg (2009)

Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)

Rabe, M., Schewe, S.: Optimal time-abstract schedulers for CTMDPs and Markov games.
In: Eighth Workshop on Quantitative Aspects of Programming Languages (2010)

Ross, S.M.: Stochastic Processes. Wiley, Chichester (1996)

Schassberger, R.: Insensitivity of steady-state distributions of generalized semi-Markov pro-
cesses. Advances in Applied Probability 10, 836-851 (1978)

Whitt, W.: Continuity of generalized semi-Markov processes. Mathematics of Operations
Research 5(4), 494-501 (1980)



Session Types as Intuitionistic Linear Propositions

Luis Caires' and Frank Pfenning?

L CITI and Departamento de Informatica, FCT, Universidade Nova de Lisboa
2 Department of Computer Science, Carnegie Mellon University

Abstract. Several type disciplines for 7-calculi have been proposed in which
linearity plays a key role, even if their precise relationship with pure linear logic
is still not well understood. In this paper, we introduce a type system for the -
calculus that exactly corresponds to the standard sequent calculus proof system
for dual intuitionistic linear logic. Our type system is based on a new interpreta-
tion of linear propositions as session types, and provides the first purely logical
account of all (both shared and linear) features of session types. We show that our
type discipline is useful from a programming perspective, and ensures session
fidelity, absence of deadlocks, and a tight operational correspondence between
m-calculus reductions and cut elimination steps.

1 Introduction

Linear logic has been intensively explored in the analysis of 7-calculus models for com-
municating and mobile system, given its essential ability to deal with resources, effects,
and non-interference. The fundamental way it provides for analyzing notions of shar-
ing versus uniqueness, captured by the exponential “!”, seems to have been a source of
inspiration for Milner when introducing replication in the w-calculus [22]. Following
the early works of Abramsky [[1], several authors have exploited variants of m-calculi to
express proof reductions (e.g., [5]) or game semantics (e.g., [19]) in systems of linear
logic. In the field of concurrency, many research directions have also drawn inspiration
from linear logic for developing type-theoretic analyses of mobile processes, motivated
by the works of Kobayashi, Pierce, and Turner [21]]; a similar influence is already no-
ticeable in the first publications by Honda on session types [16]. Many expressive type
disciplines for m-calculi in which linearity frequently plays a key role have been pro-
posed since then (e.g., [20018126l15]). However, linearity has been usually employed
in such systems in indirect ways, exploiting the fine grained type context management
techniques it provides, or the assignment of usage multiplicities to channels [21]], rather
than the deeper type-theoretic significance of linear logical operators.

In this paper we present a type system for the 7-calculus that exactly corresponds to
the standard sequent calculus proof system for dual intuitionistic linear logic. The key
to our correspondence is a new, perhaps surprising, interpretation of intuitionistic linear
logic formulas as a form of session types [[16/18]], in which the programming language is
a session-typed m-calculus, and the type structure consists precisely of the connectives
of intuitionistic linear logic, retaining their standard proof-theoretic interpretation.

In session-based concurrency, processes communicate through so-called session
channels, connecting exactly two subsystems, and communication is disciplined by ses-
sion protocols so that actions always occur in dual pairs: when one partner sends, the

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 222 2010.
(© Springer-Verlag Berlin Heidelberg 2010



Session Types as Intuitionistic Linear Propositions 223

other receives; when one partner offers a selection, the other chooses; when a session
terminates, no further interaction may occur. New sessions may be dynamically created
by invocation of shared servers. Such a model exhibits concurrency in the sense that
several sessions, not necessarily causally related, may be executing simultaneously, al-
though races in unshared resources are forbidden; in fact this is the common situation
in disciplined concurrent programming idioms. Mobility is also present, since both ses-
sion and server names may be passed around (delegated) in communications. Session
types have been introduced to discipline interactions in session-based concurrency, an
important paradigm in communication-centric programming (see [[L1]]).

It turns out that the connectives of intuitionistic linear logic suffice to express all
the essential features of finite session disciplines. While in the linear A-calculus types
are assigned to terms (denoting functions and values), in our interpretation types are
assigned to names (denoting communication channels) and describe their session pro-
tocol. The essence of our interpretation may already be found in the interpretation of
the linear logic multiplicatives as behavioral prefix operators. Traditionally, an object
of type A—o B denotes a linear function that given an object of type A returns an object
of type B [14]. In our interpretation, an object of type A— B denotes a session x that
first inputs a session channel of type A, and then behaves as B, where B specifies again
an interactive behavior, rather than a closed value. Linearity of —o is essential, other-
wise the behavior of the input session after communication could not be ensured. An
object of type A ® B denotes a session that first sends a session channel of type A and
afterwards behaves as B. But notice that objects of type A ® B really consist of two
objects: the sent session of type A and the continuation session, of type B. These two
sessions are separate and non-interfering, as enforced by the canonical semantics of the
linear multiplicative conjunction (®). Our interpretation of A ® B appears asymmet-
ric, in the sense that, of course, a channel of type A ® B is in general not typable by
B ® A. In fact, the symmetry captured by the proof of A ® B+ B ® A is realized by
an appropriately typed process that coerces any session of type A ® B to a session of
type B ® A. The other linear constructors are also given compatible interpretations, in
particular, the ! A type is naturally interpreted as a type of a shared server for sessions of
type A, and additive product and sum, to branch and choice session type operators. We
thus obtain the first purely logical account of both shared and linear features of session
types.

We briefly summarize the contributions of the paper. We describe a system of session
types for the w-calculus (Section[3)) that corresponds to the sequent calculus for dual in-
tuitionistic linear logic DILL (Sectiond)). The correspondence is bidirectional and tight,
in the sense that (a) any 7-calculus computation can be simulated by proof reductions
on typing derivations (Theorem [3.3)), thus establishing a strong form of subject reduc-
tion (Theorem[3.6)), and (b) that any proof reduction or conversion corresponds either
to a computation step or to a process equivalence on the w-calculus side (Theorems[3.4]
and[3.3). An intrinsic consequence of the logical typing is a global progress property,
that ensures the absence of deadlock for systems with an arbitrary number of open ses-
sions (Theorem[3.8)). Finally, we illustrate the expressiveness of our system (Section [6)
with some examples and discussion.



224 L. Caires and F. Pfenning

2 Process Model

We briefly introduce the syntax and operational semantics of the process model: the
synchronous 7-calculus (see [24]) extended with (binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set A of names (z,y, z,u,v), the set of
processes (P, Q, R) is defined by

Pi=0 | P1Q | wy)P | s)P | 2(y)P | la(y).P
| .inl; P | x.inr; P | z.case(P, Q)

The operators 0 (inaction), P | @ (parallel composition), and (vy) P (name restriction)
comprise the static fragment of any w-calculus. We then have z(y).P (send y on x
and proceeds as P), x(y).P (receive a name z on x and proceed as P with the input
parameter y replaced by z), and !z(y). P which denotes replicated (or persistent) input.
The remaining three operators define a minimal labeled choice mechanism, comparable
to the n-ary branching constructs found in standard session 7-calculi (see eg., [18]). For
the sake of minimality and without loss of generality we restrict our model to binary
choice. In restriction (vy) P and input x(y). P the distinguished occurrence of the name
y is binding, with scope the process P. For any process P, we denote the set of free
names of P by fu(P). A process is closed if it does not contain free occurrences of
names. We identify process up to consistent renaming of bound names, writing =,
for this congruence. We write P{x/y} for the process obtained from P by capture
avoiding substitution of x for y in P. Structural congruence expresses basic identities
on the structure of processes, while reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P = Q), is the least congruence relation on
processes such that

Plo=P (S0) P=,Q=P=Q (Sa)
PlQ=Q|r (SI6) PI@Q|R)=(P[Q)|R (S|A)
(vz)0=0 (Sv0) z&fm(P)= P | (vx)Q = (vz)(P| Q) (Sv|)

(v2)(vy) P = (vy)(va)P (Svv)

Definition 2.3. Reduction (P — Q), is the binary relation on processes defined by:

2(4).Q | 2().P — Q| Ply/>} (RC)
2()-Q |12(2).P — Q| Ply/2} | \a(=) P (RY

2.inl; P | x.case(Q,R) — P | Q (RL)
z.inr; P | z.case(Q,R) > P | R (RR)
Q-Q=PlQ—P|Q (R)

P—Q= (vy)P— (vy)Q (Rv)
P=P . P—-Q,.Q=Q=P—Q (R=)

Notice that reduction is closed (by definition) under structural congruence. Reduction
specifies the computations a process performs on its own. To characterize the interac-
tions a process may perform with its environment, we introduce a labeled transition
system; the standard early transition system for the m-calculus [24] extended with ap-
propriate labels and transition rules for the choice constructs. A transition P = Q



Session Types as Intuitionistic Linear Propositions 225

P :) Q (res) P :) Q (par) P= PT Q=@ (com)
(vy)P = (vy)Q PIR=QIR PlQ—-P|Q
(vy)z(y) z(y) z(y)
P _)T Pe—=aq (close) P=Q (open) z{y).P =y P (out)
PIQZ wy)(P'| Q) ()P 22 g

x.inl

z(y).P pS P{z/y} (in) lz(y).P =) P{z/y} | 'z(y).P (rep) x.inl; P = P (lout)

x.inl x.inr

m.inr;Pm‘—i?rP(rout) z.case(P,Q) = P (lin) =z.case(P,Q) = Q@ (rin)

Fig. 1. m-calculus Labeled Transition System

denotes that process P may evolve to process ) by performing the action represented
by the label .. Transition labels are given by

az=z(y) | z(y) | (vy)x(y) | z.inl | z.inr | z.inl | z.inr

Actions are input z(y), the left/right offers x.inl and x.inr, and their matching co-
actions, respectively the output z(y) and bound output (vy)x(y) actions, and the left/
right selections x.inl and z.inr. The bound output (vy)z(y) denotes extrusion of a
fresh name y along (channel) z. Internal action is denoted by T, in general an action
a (o) requires a matching « («) in the environment to enable progress, as specified by
the transition rules. For a label «, we define the sets fi(«) and bn(«) of free and bound
names, respectively, as usual. We denote by s(«) the subject of « (e.g., x in z(y)).

Definition 2.4 (Labeled Transition System). The relation labeled transition (P = Q)
is defined by the rules in Figure [l subject to the side conditions: in rule (res), we
require y & fn(a); in rule (par), we require bn(a) N fm(R) = 0; in rule (close), we
require y & fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We recall some basic facts about reduction, structural congruence, and labeled tran-
sition, namely: closure of labeled transitions under structural congruence, and coinci-
dence of T-labeled transition and reduction [24]: (1) if P =2 Q, then P &= Q, and
(2) P — Qif and only if P 5= Q. We write p; p, for relation composition (e.g, »=).

3 Type System

We first describe our type structure, which coincides with intuitionistic linear logic [[14/3]],
omitting atomic formulas and the additive constants T and O.

Definition 3.1 (Types). Types (A, B, C) are given by
AB:=1|1A|A®B|A—-B|A®B|A&B
Types are assigned to (channel) names, and may be conveniently interpreted as a form

of session types; an assignment x: A enforces that the process will use = according to
the discipline A. A ® B is the type of a session channel that first performs an output



226 L. Caires and F. Pfenning

AP T
A zl1-P:T (T1L) I';-F0:x:1 (TIR)

I''A-PuyA I'A'FQ 2B
DA A F (vy)z(y).(P| Q) s x:A® B

I A y:Aje:BEP T
IN'Ajz:A® BFa(y).P =T

(T®R)

(T®L)

APy A A, 2:BRQ:T I Ay:A- P x:B

I AVA 2 A—BF (vy)z(y).(P| Q) = T (=l I'sAba(y).P:a:A—B (=
CraarwrIa M TRt g paer
T I;ZIZ 6(%;:(; PT 7 (Teopy)

S g
S AL oy ks B ey A
APz A T'TARQ ::x:B (T&R) A AP T (T&L1)

' AF z.case(P,Q) = :A& B

AR P x:A (TGRy) I'y A\F P: x:B
' AFz.inl; P 2:A® B ! ' AFzinr; P AP B

A x:A&BFEz.inl; P T

(T@R2)

Fig.2. The Type System 7DILL

(sending a session channel of type A) to its partner before proceeding as specified by B.
In a similar way, A—o B types a session channel that first performs an input (receiving
a session channel of type A) from its partner, before proceeding as specified by B. The
type 1 means that the session terminated, no further interaction will take place on it.
Notice that names of type 1 may still be passed around in sessions, as opaque values.
A @ B types a session that either selects “left” and then proceed as specified by A, or
else selects “right”, and then proceeds as specified by B. Dually, A& B types a session
channel that offers its partner a choice between an A typed behavior (“left” choice) and
a B typed behavior (“right” choice). The type ! A types a non-session (non-linearized,
shared) channel (called standard channel in [[13]), to be used by a server for spawning
an arbitrary number of new sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments, of the form = : A where
2 is a name and A a type, the names being pairwise disjoint. Following the insights
behind dual intuitionistic linear logic, which goes back to Andreoli’s dyadic system
for classical linear logic [2], we distinguish two kinds of type environments subject
to different structural properties: a linear part A and an unrestricted part I', where
weakening and contraction principles hold for I" but not for A. A judgment of our
system has then the form I'; A - P :: z:C' where name declarations in " are always
propagated unchanged to all premises in the typing rules, while name declarations in
A are handled multiplicatively or additively, depending on the nature of the type being
defined. The domains of I, A and z:C are required to be pairwise disjoint.



Session Types as Intuitionistic Linear Propositions 227

Intuitively, such a judgment asserts: P is ensured to safely provide a usage of name z
according to the behavior (session) specified by type C', whenever composed with any
process environment providing usages of names according to the behaviors specified by
names in I'; A. As shown in Section[3] in our case safety ensures that the behavior is
free of communication errors and deadlock. A pure client () that just relies on external
services, and does not provide any, will be typed as I'; A - @ :: —:1. In general, a pro-
cess P suchthat I'; A+ P :: z:C represents a system providing behavior C at channel
z, building on “services” declared in I'; A. Of particular interest is a system typed as
I'; A R z:lA, representing a shared server. Quite interestingly, the asymmetry in-
duced by the intuitionistic interpretation of ! A enforces locality of shared names but not
of linear (session names), which exactly corresponds to the intended model of sessions.

We present the rules of our type system 7DILL in Fig.2l We use T, S for right hand
side singleton environments (e.g., z:C). The interpretation of the various rules should
be clear, given the explanation of types given above. Notice that since in ®R the sent
name is always fresh, our typed calculus conforms to a session-based internal mobil-
ity discipline [23\7], without loss of expressiveness. The composition rules (cut and
cut') follow the “composition plus hiding” principle [], extended to a name passing
setting. More familiar linear typing rules for parallel composition (e.g., as in [21]) are
derivable (see Section [f). Since we are considering m-calculus terms up to structural
congruence, typability is closed under = by definition. 7¥DILL enjoys the usual proper-
ties of equivariance, weakening in I and contraction in I". The coverage property also
holds: if I'; A+ P :: z: A then fn(P) C I'UAU{z}. In the presence of type-annotated
restrictions (vz:A) P, as usual in typed 7-calculi [24], type-checking is decidable.

We illustrate the type system with a simple example, frequently used to motivate ses-
sion based interactions (see e.g., [13]). A client may choose between a “buy” operation,
in which it indicates a product name and a credit card number to receive a receipt, and
a “quote” operation, in which it indicates a product name, to obtain the product price.
From the client perspective, the session protocol exposed by the server may be specified
by the type

ServerProto = (N—ol—(N®1)) & (N—(I ® 1))

We assume that N and [ are types representing shareable values (e.g., strings N and
integers I). To simplify, we set N = I = 1. Assuming s to be the name of the session
channel connecting the client and server, consider the code

QClntBody, = s.inr; (vtea)s(tea).s(pr).0

QCintBody, specifies a client that asks for the price of tea (we simply abstract away
from what the client might do with the price after reading it). It first selects the quoting
operation on the server (s.inr), then sends the id of the product to the server (s{tea)),
then receives the price s(pr) from the server and finally terminates the session (0). Then

.35 : ServerProto = QClIntBody, :: —:1

is derivable (by T'1R, T®L, T—L and T'&Ls). Here we wrote — for an anonymous
variable that does not appear in QCIntBody. This is possible even in a linear type dis-
cipline since the inactive process O is typed by x:1 and does not use x. Concerning the
server code, let SrvBody, = s.case( s(pn).s(cn).(vrc)s(rc).0, s(pn).(vpr)s(pr).0).



228 L. Caires and F. Pfenning

I'A-D:C
F;A,x:ll—leD:C(lL) I's-F1R: 1 (aR)
I;Ay:Ax:BED:C @L) I';5AED: A F;A’FE:B(@R)
I'Ajz: A BF®Lz (yx. D): C AAFRRDE: AR B
I';sAED: A IAyz:BFE:C (L) r;Ay:A-D:B (—oR)
I'AJA' )z : A—~BF —oLz D (2. E): C I'Ns A+ —R (y.D): A—B
I'NAFD:A I'Az: AFE: C I'stD:A TNu: A;ARE:C .

(cut) (cut’)

I'A/A'Feut D (z.E): C 'iAvrcut' D (u. E) : C
Nu:A;Ay:A-D:C
Iu:A; Ab copy u (y. D) :

I's--D: A Nu:A;A-D: C
I's'FRD:!A ;A z: ALz (uD): C

r'sAjz: A-D:C I';sAjz:BFD:C

A z: ABF&L z (z.D): C IAz: AKBF&Lyz (2.D): C
INA-D:A I'T A-E:B I'Az:A-D:C I'iAjx:BRHE:C
I'NAF&RDE:A&B I'Ajx:A@BrF@lLz (z. D) (z. E): C

I'iAED: A I'iA-D:B
I'AF®R; D: A B I'’AF®R, D: AG B

c (copy)

('R) (L)

(&Ly1) (&L2)

(&R) (®L)

(®R1) (®R2)

Fig. 3. Dual Intuitionistic Linear Logic DILL

Then -;- F SrvBody, :: s:ServerProto is derivable, by T'&R. By T'cut we obtain for
the system QSimple = (vs)(SrvBody, | QCIntBody,) the typing -; - - QSimple :: —:1.
In this example we have only introduced processes interacting in a single session, but
clearly the system accomodates all the generality of session types, e.g., a simple process
interacting in different sessions is x:A—1,y:A ® 1 F y(w).(vk)z(k).0 :: —:1.

4 Dual Intuitionistic Linear Logic

As presented, session type constructors correspond directly to intuitionistic linear logic
connectives. Typing judgments directly correspond to sequents in dual intuitionistic
linear logic, by erasing processes [3/10]. In Figure 3l we present the DILL sequent cal-
culus. In our presentation, DILL is conveniently equipped with a faithful proof term
assignment, so sequents have the form I'; A = D : C where I' is the unrestricted
context, A the linear context, C' a formula (= type) and D the proof term that faith-
fully represents the derivation of I'; A + C'. Our use of names in the proof system
will be consistent with the proof discipline, u, v, w for variables in I" and x, y, z for
variables in A. This is consistent with standard usage of names in 7-calculi. Given
the parallel structure of the two systems, if I'; A - D : A is derivable in DILL then
there is a process P and a name z such that I'; A + P :: z:A is derivable in 7DILL,
and the converse result also holds: if I'; A - P :: z:A is derivable in 7DILL there is a



Session Types as Intuitionistic Linear Propositions 229

D ~ D? D ~ D?

1R ~ 0 @R, D ~ z.inl; D*

1Lz D ~ D? ®Ry E ~ zinr; B

QR D E ~ (vy) z{y). (ﬁy | Ez) oLz (x.D) (z. E) ~ m.case(ﬁz, Ez)

®Lz (yx.D) ~ x(y).?z cut D (z. E) ~ (va)(D® | E7)
—R(y.D)  ~2z2(y).D* R

—oLz D (z.E) ~ (vy)z(y). (DY | E*) RD ~ lz(y). DY

&R D E ~ z.case(D? E?) 'Lz (u.D) ~ D*{z/u}

&Ly z (x.D)  ~» x.inl; D? copy u (y. D) ~ (vy)uly). D*

&Ly z (z. E)  ~» x.inr; B* cut' D (u. E) ~ () (('u(y). DY) | E?)

Fig. 4. Proof D extracts to process D*

derivation D that proves I'; A = D : A. This correspondence is made explicit by a
translation from faithful proof terms to processes, defined in Fig. d forI'; A D:C
we write D? for the translation of D such that I'; A+ D?* :: z:C.

Definition 4.1 (Typed Extraction). We write I'; A+ D ~» P :: z:A, meaning “proof
D extracts to P”, whenever I'; A D : Aand I'; A P :: z:Aand P = D?.

Typed extraction is unique up to structural congruence, in the sense that if I'; A F
D~ Pz Aand I'; AR D~ @ i z:Athen P = (@, as a consequence of closure
of typing under structural congruence. The system DILL as presented does not admit
atomic formulas, and hence has no true initial sequents. However, the correspondence
mentioned above yields an explicit identity theorem:

Proposition 4.2. For any type A and distinct names x,y, there is a process id s(z,y)
and a cut-free derivation D such that -;2:A = D ~ id o(z,y) = y: A.

The id 4(x,y) process, with exactly the free names x,y, implements a synchronous
mediator that bidirectionally plays the protocol specified by A between channels x and
y. For example, we analyze the interpretation of the sequent A ® B - B ® A. We have

2 AQ BF F ~ x(2).(vn)y(n).(P | Q) = y:B® A

where F = QL z (z.2. ®R D E), P = idp(x,n) and Q = id s(z,y). This process is
an interactive proxy that coerces a session of type A® B at z to a session of type B® A
at y. It first receives a session of type A (bound to z) and after sending on y a session
of type B (played by copying the continuation of = to n), it progresses with a session
of type A on y (copying the continuation of z to y).

As processes are related by structural and computational rules, namely those in-
volved in the definition of = and —, derivations in DILL are related by structural and
computational rules, that express certain sound proof transformations that arise in cut-
elimination. The reductions (Figure Q) generally take place when a right rule meets a
left rule for the same connective, and correspond to reduction steps in the process term
assignment. On the left, we show the usual reductions for cuts; on the right, we show the
corresponding reductions (if any) of the process terms, modulo structural congruence.
Since equivalences depend on variable occurrences, we write D, if £ may occur in D.



230 L. Caires and F. Pfenning

The structural conversions in Figure [6] correspond to structural equivalences in the
m-calculus, since they just change the order of cuts, e.g., (cut/—/cut; ) translates to

(va)(D* | (vy)(EY | F2)) = (vy)((va)(D* | EY) | F?)

In addition, we have two special conversions. Among those, (cut/1R/1L) is not needed
in order to simulate the 7-calculus reduction, while (cut/!R/IL) is. In cut-elimination
procedures, these are always used from left to right. Here, they are listed as equivalences
because the corresponding 7-calculus terms are structurally congruent. The root cause
for this is that the rules 1L and !L are silent: the extracted terms in the premise and
conclusion are the same, modulo renaming. For 1L, this is the case because a terminated
process, represented by 0 :: — : 1 silently disappears from a parallel composition by
structural congruence. For !L, this is the case because the actual replication of a server
process is captured in the copy rule which clones u:A to y: A, rule rather than !L. It is
precisely for this reason that the rule commuting a persistent cut (cut') over a copy rule
(copy) is among the computational conversions.

The structural conversions in Figure [§] propagate cut'. From the proof theoretic per-
spective, because cut' cuts a persistent variable u, cut' may be duplicated or erased.
On the w-calculus side, these no longer correspond to structural congruences, but, quite
remarkably, to behavioral equivalences, derivable from known properties of typed pro-
cesses, the (sharpened) Replication Theorems [24]. These hold in our language, due to
our interpretation of ! types. Our operational correspondence results also depend on six
commuting conversions, four in Figure [7lplus two symmetric versions. The commuting
conversions push a cut up (or inside) the 1L and !L rules. During the usual cut elimina-
tion procedures, these are used from left to right. In the correspondence with the sequent
calculus, the situation is more complex. Because the 1L and !L rules do not affect the
extracted term, cuts have to be permuted with these two rules in order to simulate -
calculus reduction. From the process calculus perspective, such conversions correspond
to identity. There is a second group of commuting conversions (not shown), not nec-
essary for our current development. Those do not correspond to structural congruence
nor to strong bisimilarities on m-calculus, as they may not preserve process behavior in
the general untyped setting, since they promote an action prefix from a subexpression
to the top level. We conjecture that such equations denote behavioral identities under a
natural definition of typed observational congruence for our calculus.

Definition 4.3 (Relations on derivations induced by conversions). (/) = : the least
congruence on derivations generated by the structural conversions (I) and the com-
muting conversions (Il): (2) ~: the least congruence on derivations generated by all
structural conversions (I-111). We extend ~ 4 to processes as the congruence generated
by the process equations on the right. (3) = the reduction on derivations obtained by
orienting all conversions in the direction shown, from left to right or top to bottom.

As discussed above, ~ is a typed behavioral equivalence on processes.
5 Computational Correspondence, Preservation, and Progress

We now present the results stating the key properties of our type system and logical
interpretation. Theorem [5.3] states the existence of a simulation between reductions in



Session Types as Intuitionistic Linear Propositions 231

C:L;t (@R D1 Ds) (z.@L @ (y.a. Eay))  ~ (va)((vy)2(y). (DY | DF)) | a(y). E7)
cut Dy (y.cut Dy (z. Eay)) ~ (va)(vy)(DY | D | E#)

C:L;t (=R (y.Dy)) (x.—L @ B (2. B2e)) ~ (va)((x(y). D*) | (vy) x(y). (EY | E3))
cut (cut By (y.Dy)) (. Eag) ~ (va)(vy)(D® | BY | E3)

cut (&R D1 D3) (z.&L; x (z. Ey)) ~ (vz)(x.case(DY, D) | x.inl; E¥)

= —

cut D; (x. Ex) - (va)(Df | B7)

cut (®R; D) (z.®L z (2. E1z) (z. E2;)) ~ (vz)(z.inl; D* | z.case(EF, E3))

= —

cut D (2. Ei) - (va)(D" | )

c:l;t! D (u.copy u (y. Euy)) ~ (vu)((tu(y). DY) | (vy) uly). B)

cut D (y.cut' D (u. Eyy)) ~ (l/y)(ﬁy \ (Vu)(('u(y)by) | EZ))

Fig. 5. Computational Conversions

(cut/—/cut1) cut D (z.cut By (y. Fy)) =cut(cut D (z.Ey)) (y. Fy)
(cut/—/cutz) cut D (z.cut E (y. Foy)) =cutE (y.cut D (z. Fyy))
(cut/cut'/=) cut (cut' D (u. E,)) (z. Fy) = cut' D (u.cut E, (z. F;))
(cut/—/cut') cut D (z.cut' E (u. Fry)) = (cut' E (u.cut D (z. Fry))
(cut/1R/1L) cut 1R (z.1L z D) D

(cut/!IR/IL)  cut (IR D) (z.!L = (u. E)) cu

t' D (u. E)
Fig. 6. Structural Conversions (I): Cut Conversions

cut/1L/=) cut (1L y D) (z. Fy)

( 1Ly (cut D (z. Fy))
Ecut/!L/—) cut (L y (u. Dy)) (z. Fy)
(

1L Yy (’LL. cut Du (LUFT))
1L y (cut' D (u. Ey))
ILy (v. cut' D (u. Euy))

cut'/—/1L) cut' D (u. 1L y Ey,)
cut'/—/IL) cut' D (u.'Ly (v. Euv))

Fig. 7. Structural Conversions (II): Commuting Conversions

cut' D (u.cut Ey (y. Fuy)) ~ (vu
~ (vy

cut (cut' D (u. Eu)) (y. cut' D (u. Fuy))

)(lu(y).DY | (vy)(EY | F7))
)((vu)(tu(y).DY | E¥) |

O uu().DY | F))
Slt! D (u.cut' By, (v. Fyy)) ~ Q/u)(!u(y).Dy | (vv)(W(y).EY | F?))
- (vv

cut! (cut' D (u. E,)) (v. cut' D (u. Fyp)) V(" (y)-(vu) (Mu(y).DY | EAi’)) | R
(vu)(tu(y).D¥ [ 7))

S.lt! (cut' D (u. Ey)) (v. Fy) ~ Q/U)(!U(y).(yu)(!u(y).f)y | EY)) | F#)
cut' D (u.cut' B, (v. F,)) ~o (l/u)(!u(y).?y | (AZ/’U)(!’U(y).Ey | F%))
cut' D (u. E) ~ (vu)(lu(y).DY | E#)

E w B (foru ¢ FN(E%))

Fig. 8. Structural Conversions (III): Cut! Conversions



232 L. Caires and F. Pfenning

the typed m-calculus and proof conversions / reductions, expressing a strong form of
subject reduction for our type system. The proof relies on several auxiliary lemmas,
which we mostly omit, among them a sequence of lemmas relating process reduction
with derivation reduction, from which we select two typical examples.

Lemma 5.1. Assume (a) I'; Ay - D ~ P :: :A; @ Ao with P (vw)ely) P'; and (b)

' Ag, A1 @ As B E ~ Q i 2:C with Q =) Q' Then(c)cut D (z.E) === F
forsome F; (d) I'; Ay, Ao b F ~» R :: z: C for R = (vy)(vz)(P' | Q).

Lemma 5.2. Assume (a) I';- = D ~ P :: 2:A; (b) I'u:A; As B E ~ Q =2 2:C with

Q (w)uls) Q'. Then (c) cut' D (u. E) === F for some F; (d) I'; AFF ~ R :: z2:C
for some R = (vu)(lu(x).P | (vy)(P{y/z} | Q")).

Theorem 5.3. Let I'; A+ D ~~ P 0 z2:A and P — Q. Then there is E such that
D===FandI';AFE~~Q:zA

Proof. By induction on the structure of derivation D. The possible cases for D are
D=1Ly D',D =Lz (u.D"), D = cut Dy (z.D5),and D = cut' D; (. D3),
in all other cases P ~. Key cases are the cuts, where we rely on a series of reduction
lemmas, one for each type C' of cut formula, which assign certain proof conversions
to process labeled transitions. For example, for C' = C7 ® C5, we rely on Lemma
B.1 The case of cut', similar to the case C' = !C”, relies on Lemma 5.2} We show
such case in detail. Let D = cut' Dy (u. D2). We have P = (vu)(lu(w).Py | Ps),
I'sE Dy~ Py o x:C,and I'Ju : C;A &+ Dy ~ Py it z:A by inversion. Since
P — @, there two cases: (1) P, — Q2 and Q = (vu)(lu(w).P; | Q2),0r (2) P = Qo
where @ = (vy)aly) and Q = (vu)(tu(w).Py | (vy)(Pi{y/a} | Q). Case (1)
We have Iu : C; A F Dy ~ Qo :: z:A for E' with Dy === E’ by i.h. Then
cut' Dy (u. Dy) === cut' D; (u. E') by congruence. Let E = cut' Dy (u. E'). So
I''AF E ~ Q :: z:Aby cut'. Case (2): By Lemma 5.2, cut' Dy (u. Dy) === F
forsome F,and I'; A E~ R zzAwith R=Q . (]

Theorems[3.4] and 5.5 state that any proof reduction or conversion also corresponds to
either a process equivalence or to a reduction step on the m-calculus.

Theorem 5.4. Let I'; A D ~ P:: z2:Aand D ~4 E. Then there is (Q where P ~, ()
and I'; AF E ~ Q :: z: A
Proof. Following the commuting squares relating =, ~ and ~ in Figures[@] [/ and[8 (I

Theorem 5.5. Let I'; A+ D ~ P:: z:A and D = E. Then there is Q such that
P—Qand I'; AF E ~ Q@ :: z: A

Proof. Following the commuting squares relating =, ~» and — in Figure (]

Notice that the simulation of 7-calculus reductions by proof term conversions provided
by Theorem [3.3] and from which subject reduction follows, is very tight indeed, as
reduction is simulated up to structural congruence, which is a very fine equivalence
on processes. To that end, structural conversions need to be applied symmetrically
(as equations), unlike in a standard proof of cut-elimination, where they are usually
considered as directed computational steps. Under the assumptions of Theorem[3.3] we
can also prove that there is an F such that D == Fand ['; A+ E ~» R :: z:A, for



Session Types as Intuitionistic Linear Propositions 233

@ ~5 R. Thus, even if one considers the proof conversions as directed reduction rules
(&), we still obtain a sound simulation up to typed strong behavioral congruence.

We now state type preservation and progress results for our type system. The subject
reduction property (Theorem[3.6)) directly follows from Theorem[5.3]

Theorem 5.6 (Subject Reduction). [f [;AFP::z:Aand P— Q then [';AFQ ::z: A

Together with direct consequences of linear typing, Theorem ensures session fi-
delity. Our type discipline also enforces a global progress property. For any P, define

live(P) iff P=(vn)(r.Q | R) forsomen.Q,R,n

where 7.Q) is a non-replicated guarded process. We first establish the following contex-
tual progress property, from which Theorem[3.8]follows as a corollary.

Lemma 5.7. Let I'; At D ~» P :: z:C. If live(P) then there is Q) such that either
1. P—Q,or
2. P 5 Qforawhere s(a) € (2,1, A). More: if C = A for some A, then s() # 2.

Proof. Induction on derivation D. The key cases are D = cut Dy (y. D) and D =
cut' Dy (u. D). In the case of cut, we rely on lemmas that characterize the possible
actions of a process on name y: A, depending on type A. These lemmas show that a syn-
chronization between dual actions must occur. For cut', an inversion lemma is needed,
stating that free names of a non-live process can only be typed by 1 or ! A types. (]

Theorem 5.8 (Progress). If ;- =D ~ P:: x:1 and live(P) then exists Q st. P — Q.
Proof. By Lemma and the fact that P cannot perform any action o with subject
s(a) = x since z:1 (by the action shape characterization lemmas). (]

6 Discussion and Further Examples

We further compare our linear type system for (finite) session types with more familiar
session type systems [21J18l13]. An immediate observation is that in our case types
are freely generated, while traditionally there is a stratification of types in “session”
and “standard types” (the later corresponding to our ! A types, typing session initiation
channels). In our interpretation, a session may either terminate (1), or become a repli-
cated server (!A), which is more general and uniform, and a natural consequence of the
logical interpretation. Concerning parallel composition, usually two rules can be found,
one corresponding to the cancellation of two dual session endpoints (a name restriction
rule), and another corresponding to independent parallel composition, also present in
most linear type systems for mobile processes. In our case, cut combines both princi-
ples, and the following rule is derivable:

AP —1 IARQ T

AANEP|Q:T

A consequence of the logical composition rules cut and cut' is that typing intrinsically
enforces global progress, unlike with traditional session type systems [[18/13]], which do
not ensure progress in the presence of multiple open sessions, as we do here. Techniques
to ensure progress in sessions, but building on extraneous devices such as well-founded
orderings on events, have been proposed [20U12]. It would be interesting to further com-
pare the various approaches, as far as process typability is concerned.

(comp)



234 L. Caires and F. Pfenning

Channel “polarities” are captured in our system by the left-right distinction of se-
quents, rather than by annotations on channels (cf. ™, 27). Session and linear type
systems [21J1813]] also include a typing rule for output of the form

I'’AE P aC

Ay A a(y).P AR C

In our case, an analogous rule may be derived by ®R and the copycat construction,
where a “proxy” for the free name y, bidirectionally copying behavior A, is linked to z.

I'’AE P aC

I Ay AE (v2)a(z).(ida(y, 2) | P) st A® C

The copycat id 4 (y, z) plays the role of the “link” processes of [23/7]. Notice that in our
case the definition of the “link” is obtained for free by the interpretation of identity ax-
ioms (Proposition[4.2). The two processes can be shown to be behaviorally equivalent,
under an adequate notion of observational equivalence, as in [7].

We now elaborate on the example of Section [3| in order to illustrate sharing and
session initiation. Consider now a different client, that picks the “buy” rather than the
“quote” operation, and the corresponding composed system.

BCintBody, = s.inl; (vcof)s{cof).(vpin)s(pin).s(rc)0
BSimple (vs)(SrvBody, | BCIntBody,)

We have the typings -; s:ServerProto = BCIntBody, :: —:1 and -; - - BSimple :: —:1.
In these examples, there is a single installed pair client-server, where the session is
already initiated, and only known to the two partners. To illustrate sharing, we now
consider a replicated server. Such a replicated server is able to spawn a fresh session
instance for each initial invocation, each one conforming to the general behavior spec-
ified by ServerProto, and can be typed by !ServerProto. Correspondingly, clients must
initially invoke the replicated server to instantiate a new session (cf. the Tcopy rule).

QClient = (vs)c(s).QCIntBodys BClient = (vs)c(s). BCIntBodys
Server £ lc(s).SrvBodys SharSys = (vc)(Server | BClient | QClient)

For the shared server, by T!R, we type ;- = Server :: c:\ServerProto. We also
have, for the clients, by Tcopy the typings c:ServerProto ; - F BClient :: —:1 and
c:ServerProto ; - = QClient :: —:1. By (comp), T'L, and Tcut we obtain the intended
typing for the whole system: -; - = SharSys :: — : 1. Notice how the session instantia-
tion protocol is naturally explained by the logical interpretation of the ! operator.

1> >

7 Related Work and Conclusions

We have established a tight correspondence between a session-based type discipline for
the m-calculus and intuitionistic linear logic: typing rules correspond to dual intuitionistic
linear sequent calculus proof rules, moreover process reduction may be simulated in a
type preserving way by proof conversions and reductions, and vice versa. As a result,
we obtain the subject reduction property, from which session fidelity follows. Our basic
typing discipline intrinsically ensures global progress, beyond the restricted “progress
on a single session” property obtained in pure session type systems.



Session Types as Intuitionistic Linear Propositions 235

Other works have investigated m-calculus models of linear logic proofs. Bellin and
Scott [3] establish a mapping from linear logic proofs to a variant of the 7-calculus
and some connections between proof reduction and m-calculus reduction. However,
this mapping results in complex encodings, so that their system could hardly be con-
sidered a type assignment system for processes, which has been achieved in this work.
Moreover, no relation between behavioral descriptions and logical propositions was
identified, as put by the authors: “[our encodings] have less to do with logic than one
might think, they are essentially only about the abstract pluggings in proof structures”.
A realizability interpretation for a linear logic augmented with temporal modalities (cf.
Hennessy-Milner) was proposed in [4]], also based on a w-calculus variant. A recent
related development is [[17], where a correspondence between (independently formu-
lated) proof nets and an 10-typed 7-calculus is established. In our case, the type system
and the logic proof system are exactly the same, and we reveal a direct connection be-
tween pure linear logic propositions and behavioral types on w-calculus, that covers all
(both shared and linear) features of finite session types. A development of session types
as linear process types (in the sense of [21]]) is presented in [15], where linearity and
sharing are expressed by special annotations, unrelated to a linear logic interpretation.

We have also analyzed the relation between our type discipline and (finite, deadlock-
free) session types. It is important to notice that our interpretation does not require
locality for session (linear) channels (under which only the output capability of names
could be transmitted), which seems required in other works on linearity for 7-calculi
(e.g., [26]). On the other hand, our intuitionistic discipline enforces locality of shared
channels, which, quite interestingly, seems to be the sensible choice for distributed im-
plementations of sessions. Interesting related topics would be the accommodation of
recursive types, logical relations [8]], and the characterization of observational equiva-
lences under our typing discipline. In particular, we expect that all conversions (includ-
ing commuting conversions) between DILL derivations correspond to observational
equivalences on our typed m-calculus.

One important motivation for choosing a purely logical approach to typing is that
it often suggests uniform and expressive generalizations. In ongoing work, we have
also established an explicit relationship between session-based concurrency and func-
tional computation where in both cases determinacy (no races) and progress (deadlock-
freedom) are expected features. In particular, we have been investigating new encodings
of A-calculi into the 7-calculus that arise from translations from DILL natural deduc-
tion into sequent calculus. We also believe that dependent generalizations of our system
of simple linear types, perhaps along the lines of LLF [9] or CLF [25], may be able
to capture many additional properties of communication behavior in a purely logical
manner. Already, some systems of session types have dependent character, such as [6]
that, among other properties, integrates correspondence assertions into session types.
Acknowledgments. To FCT/MCTES (INTERFACES NGN44), and the ICTT at Carnegie-
Mellon. Thanks also to Bernardo Toninho, Nobuko Yoshida, and Andre Platzer.

References

1. Abramsky, S.: Computational Interpretations of Linear Logic. TCS 111(1&2) (1993)
2. Andreoli, J.-M.: Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic
and Computation 2(3), 197-347 (1992)



236

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

L. Caires and F. Pfenning

. Barber, A., Plotkin, G.: Dual Intuitionistic Linear Logic. Technical Report LFCS-96-347,

Univ. of Edinburgh (1997)

. Beffara, E.: A Concurrent Model for Linear Logic. ENTCS 155, 147-168 (2006)
. Bellin, G., Scott, P.: On the w-Calculus and Linear Logic. TCS 135, 11-65 (1994)
. Bonelli, E., Compagnoni, A., Gunter, E.L.: Correspondence Assertions for Process Synchro-

nization in Concurrent Communications. J. of Func. Prog. 15(2), 219-247 (2005)

. Boreale, M.: On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoreti-

cal Computer Science 195(2), 205-226 (1998)

. Caires, L.: Logical semantics of types for concurrency. In: Mossakowski, T., Montanari,

U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 16-35. Springer, Heidelberg
(2007)

. Cervesato, 1., Pfenning, F.: A Linear Logical Framework. Inf. & Comput. 179(1) (2002)
. Chang, B.-Y.E., Chaudhuri, K., Pfenning, F.: A Judgmental Analysis of Linear Logic. Tech-

nical Report CMU-CS-03-131R, Carnegie Mellon University (2003)

. Dezani-Ciancaglini, M., de’ Liguoro, U.: Sessions and Session Types: an Overview. In:

6th Intl. Workshop on Web Services and Formal Methods WS-FM 2009. LNCS. Springer,
Heidelberg (2010)

. Dezani-Ciancaglini, M., de’ Liguoro, U., Yoshida, N.: On Progress for Structured Commu-

nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912,
pp- 257-275. Springer, Heidelberg (2008)

Gay, S., Hole, M.: Subtyping for Session Types in the Pi Calculus. Acta Informatica 42(2-3),
191-225 (2005)

Girard, J.-Y., Lafont, Y.: Linear Logic and Lazy Computation. In: Ehrig, H., Kowalski, R.A.,
Levi, G., Montanari, U. (eds.) TAPSOFT 1987 and CFLP 1987. LNCS, vol. 250, pp. 52-66.
Springer, Heidelberg (1987)

Giunti, M., Vasconcelos, V.T.: A Linear Account of Session Types in the Pi-Calculus. In:
Gastin, P., Laroussinie, F. (eds.) 21st International Conference on Concurrency Theory, Con-
cur 2010. Springer, Heidelberg (2010)

Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp- 509-523. Springer, Heidelberg (1993)

Honda, K., Laurent, O.: An Exact Correspondence between a Typed pi-calculus and Po-
larised Proof-Nets. Theoretical Computer Science (to appear, 2010)

Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122-138. Springer, Heidelberg (1998)

Hyland, J.M.E., Luke Ong, C.-H.: Pi-Calculus, Dialogue Games and PCF. In: WG2.8 Con-
ference on Functional Programming Languages, pp. 96-107 (1995)

Kobayashi, N.: A Partially Deadlock-Free Typed Process Calculus. ACM Tr. Progr. Lang.
Sys. 20(2), 436-482 (1998)

Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. In: 23rd Symp. on
Principles of Programming Languages, POPL 1996, pp. 358-371. ACM, New York (1996)
Milner, R.: Functions as processes. Math. Struc. in Computer Sciences 2(2), 119-141 (1992)
Sangiorgi, D.: Pi-Calculus, Internal Mobility, and Agent Passing Calculi. Theoretical Com-
puter Science 167(1&2), 235-274 (1996)

Sangiorgi, D., Walker, D.: The 7-calculus: A Theory of Mobile Processes. CUP, Cambridge
(2001)

Watkins, K., Cervesato, 1., Pfenning, F., Walker, D.: Specifying properties of concurrent com-
putations in CLF. In: Schiirmann, C. (ed.) 4th Intl. Workshop on Logical Frameworks and
Meta-Languages (LFM 2004), Cork, Ireland, July 2004. ENTCS, vol. 199 (2004)

Yoshida, N., Honda, K., Berger, M.: Linearity and Bisimulation. J. Logic and Algebraic
Programming 72(2), 207-238 (2007)



Session Types for Access and Information Flow Control*

Sara Capecchi!, Ilaria Castellani?,
Mariangiola Dezani-Ciancaglini', and Tamara Rezk?

1 Dipartimento di Informatica, Universita di Torino, corso Svizzera 185, 10149 Torino, Italy
2 INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France

Abstract. We consider a calculus for multiparty sessions with delegation, en-
riched with security levels for session participants and data. We propose a type
system that guarantees both session safety and a form of access control. More-
over, this type system ensures secure information flow, including controlled forms
of declassification. In particular, the type system prevents leaks that could result
from an unrestricted use of the control constructs of the calculus, such as session
opening, selection, branching and delegation. We illustrate the use of our type
system with a number of examples, which reveal an interesting interplay between
the constraints used in security type systems and those used in session types to
ensure properties like communication safety and session fidelity.

Keywords: concurrency, communication-centred computing, session types, ac-
cess control, secure information flow.

1 Introduction

With the advent of web technologies and the proliferation of programmable and inter-
connectable devices, we are faced today with a powerful and heterogeneous computing
environment. This environment is inherently parallel and distributed and, unlike pre-
vious computing environments, it heavily relies on communication. It therefore calls
for a new programming paradigm which is sometimes called communication-centred.
Moreover, since computations take place concurrently in all kinds of different devices,
controlled by parties which possibly do not trust each other, security properties such
as the confidentiality and integrity of data become of crucial importance. The issue is
then to develop models, as well as programming abstractions and methodologies, to
be able to exploit the rich potential of this new computing environment, while mak-
ing sure that we can harness its complexity and get around its security vulnerabilities.
To this end, calculi and languages for communication-centred programming have to be
security-minded from their very conception, and make use of specifications not only for
data structures, but also for communication interfaces and for security properties.

The aim of this paper is to investigate type systems for safe and secure sessions.
A session is an abstraction for various forms of “structured communication” that may
occur in a parallel and distributed computing environment. Examples of sessions are

* Work partially funded by the INRIA Sophia Antipolis COLOR project MATYSS, by the ANR-
SETI-06-010 and ANR-08-EMER-010 grants, and by the MIUR Projects DISCO and IPODS.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 237{252,[2010.
(© Springer-Verlag Berlin Heidelberg 2010



238 S. Capecchi et al.

a client-service negotiation, a financial transaction, or a multiparty interaction among
different services within a web application.

Language-based support for sessions has now become the subject of active research.
Primitives for enabling programmers to code sessions in a flexible way, as well as type
systems ensuring the compliance of programs to session specifications (session types),
have been studied in a variety of calculi and languages in the last decade. Session types
were originally introduced in a variant of the pi-calculus [20]. We refer to [[7] for a
survey on the session type literature. The key properties ensured by session types are
communication safety, namely the consistency of the communication patterns exhibited
by the partners (implying the absence of communication errors), and session fidelity,
ensuring that channels which carry messages of different types do it in a specific or-
der.

Enforcement of security properties via session types has been studied in [3U15].
These papers propose a compiler which, given a multiparty session description, imple-
ments cryptographic protocols that guarantee session execution integrity. The question
of ensuring access control in binary sessions has been recently addressed in [[13]] for the
Calculus of Services with Pipelines and Sessions of [4], where delegation is absent. On
the other hand, the property of secure information flow has not been investigated within
session calculi so far. This property, first studied in the early eighties [9], has regained
interest in the last decade, due to the evolution of the computing environment. It has
now been thoroughly studied for both programming languages (cf [[16] for a review)
and process calculi [8/10/12].

In this paper, we address the question of incorporating mandatory access control and
secure information flow within session types. We consider a calculus for multiparty
sessions with delegation, enriched with security levels for both session participants and
data, and providing a form of declassification for data [[18], as required by most practical
applications. We propose a type system that ensures access control, namely that each
participant receives data of security level less than or equal to its own. For instance, in
a well-typed session involving a Customer, a Seller and a Bank, the secret credit card
number of the Customer will be communicated to the Bank, but not to the Seller. More-
over, our type system prevents insecure flows that could occur via the specific constructs
of the language, such as session opening, selection, branching and delegation. Finally,
we show that it allows controlled forms of declassification, namely those permitted by
the access control policy. Our work reveals an interesting interplay between the con-
straints of security type systems and those used in session types to ensure properties
like communication safety and session fidelity.

The rest of the paper is organised as follows. In Section [2| we motivate our access
control and declassification policies with an example. Section [3] introduces the syn-
tax and semantics of our calculus. In Section [l we define the secure information flow
property. In Section 3] we illustrate this property by means of examples. Section
presents our type system for safe and secure sessions and theorems establishing its
soundness. Section [7] concludes with a discussion on future work. The reader is re-
ferred to the full paper (available at http://hal.inria.fr/INRIA) for complete definitions
and proofs.



Session Types for Access and Information Flow Control 239

2 A First Example on Access Control and Declassification

In this section we illustrate by an example the basic features of our typed calculus, as
well as our access control policy and its use for declassification. The question of secure
information flow will only be marginal here. It will be discussed in Sections 4 and 3
A client C sends the title of a book to a bookseller S. Then S delegates to a bank B
both the reception of the credit card number of C and the control of its validity. This
delegation is crucial for assuring the secrecy of the credit card number, which should
be read by B but not by S. Then B notifies S about the result of the control: for this a
declassification is needed. Finally, if the credit card is valid, C receives a delivery date
from S, otherwise the deal falls through. More precisely, the protocol is as follows:

1. Copens a connection with S and sends a title to S;

2. S opens a connection with B and delegates to B part of his conversation with C;

3. C sends his secret credit card number apparently to the untrusted party S but really
- thanks to delegation - to the trusted party B;

4. B delegates back to S the conversation with C;

5. B selects the answer ok or ko for S depending on the validity of the credit card, thus
performing a declassification;

6. S sends to C either ok and a date, or just ko, depending on the label ok or ko chosen
by B.

In our calculus, which is an enrichment with security levels of the calculus in [2], this
scenario may be described as the parallel composition of the following processes, where
security levels appear as superscripts on both data and operators (here we omit unnec-
essary levels on operators and use L to mean “public” and T to mean “secret”):

I =al2] |b[)
= a[1](ey).0u!(2, Title™).0q 1 (2, CreditCard ' ).y & (2, {ok : 01 2(2,date™).0,ko : 0})

S = a[2](en).00?(1,x).b[2](B2) B2 (1, ). Ba?((1, ).
Ba&(1,{ok : £ P (1,0k).£!(1,Date").0,ko : { ® (1,ko).0})

= b[1](B1).B12((2,0))-£27 (2,cc™). B (. 2).
if valid(cc™) then By @ (2,0k).0 else B; @ (2,ko).0

A session is a particular activation of a service, involving a number of parties with pre-
defined roles. Here processes C and S communicate by opening a session on service a,
while processes S and B communicate by opening a session on service b. The initiators
a[2] and b[2] specify the number of participants of each service. We associate integers
with participants in services: here C=1, S=2 in service a and B=1, S=2 in service b.

In process C, the prefix a[1]( o) means that C wants to act as participant 1 in service
a using channel «;, matching channel oy of participant 2, who is S. When the session
is established, C sends to S a title of level 1 and a credit card number of level T,
indicating (by the superscript L on the output operator) that the credit card number
may be declassified to L. Then he waits for either ok, followed by a date, or ko.

indent Process S receives a value in service a and then enters service b as participant
2. Here the output 3,!((1,05)) sends channel o, to the participant 1 of b, who is B,
thus delegating to B the use of 0. Then S waits for a channel { from B. Henceforth,



240 S. Capecchi et al.

Table 1. Global types of the B, C, S example

B— S : {ok:end,ko:end}

1.C— S <StringJ‘>

2.518 S— B : (T)
3.C— S <NumberT“>

4.578 B— S : (T
5.

6

.8— C: {ok:S—C: <Stringl>;end,ko:end}

S communicates using both channels 8, and {: on channel 3, he waits for one of the
labels ok or ko, which he then forwards to C on {, sending also a date if the label is ok.

Forgetting session opening and abstracting from values to types, we may represent
the whole communication protocol by the global types of Table[Il (where we use B, C, S
instead of 1, 2), where the left-hand side and right-hand side describe services a and b,
respectively. Line 1 says that C sends a String of level L to S. In line 2, SP'6 means that
the channel from S to C is delegated: this delegation is realised by the transmission of
the channel (with type T') from S to B, as shown on the right-hand side. Line 3 says that
C sends a Number of level T to S, allowing him to declassify it to L. Notice that due
to the previous delegation the Number is received by B and not by S. Line 4 describes
a delegation which is the inverse of that in Line 2: here the (behavioural) type of the
channel has changed, since the channel has already been used to receive the Number.
Line 5 says that B sends to S one of the labels ok or ko. Finally, line 6 says that S sends
to C either the label ok followed by a String of level L, or the label ko. Since B’s choice
of the label ok or ko depends on a test on the Number, it is crucial that Number be
previously declassified to L, otherwise the reception of a String of level L by C would
depend on a value of level T (this is where secure information flow comes into play).

Type T represents the conversation between C and S after the first communication,
seen from the viewpoint of S. Convening that ?(—),!(—) represent input and output in
types, that “;” stands for sequencing and that &(—{—}) represents the choice of sending
one among different labels, it is easy to see that the session type T is:

? <C7 NumberTu> ;D <C7 {ok:! <C,Stringl> ;end, ko : end}>
where the communication partner of S (namely C) is explicitly mentioned. The session
type T' is the rest of type T after the first communication has been done:
&) <C7 {ok:! <C7 Stringl> ;end, ko : end}>

To formalise access control, we will give security levels to service participants, and
require that a participant of a given level does not receive data of higher or incomparable
level. Since the only secret data in our example is CreditCard, it is natural to associate L
with S in both services a and b, and T with B in service b. Notice that C may indifferently
have level T or L, since it only sends, but does not receive, the high data CreditCard.

3 Syntax and Semantics

Our calculus for multiparty asynchronous sessions is essentially the same as that con-
sidered in [2]], with the addition of runtime configurations and security levels.



Session Types for Access and Information Flow Control 241

Table 2. Syntax of expressions, processes, queues, and configurations

P = ii[n] n-ary session initiator
| ulp)(a).P p-th session participant ¢ ::= o | | s[p] Channel
| c!¥(IT,e).P Value sending ¢ ;.= ¢ | 2
| e (px").P Value receiving | eandé’ |note... Expression
| !{q,c')).P Delegation sending ' )
| ¢?((p,)).P Delegation reception D =X, o) =P Declaration
| c&(I1,A).P Selection [T ::= {p} | [TU{p} Set of participants
| & (p. {2 Phier) Branching
| if ethen P else O Conditional 8 e | S[P]Z | Y Message content
| P|O Parallel
| 0 Inaction m ::= (p,II,8) Message in transit
| (va')P Name hiding
| def DinP Recursion /5= m-h | & Queue
| X{e,c) Process call
H:= HU{s:h} | 0 Q-set
uz=x'|d Identifier = 4¢ |5 Service/Session Name
vi=a |true |[false | ... Value

Syntax. Let (., C) be a finite lattice of security levels, ranged over by £,¢'. We denote
by LI and Il the join and meet operations on the lattice, and by | and T its minimal and
maximal elements.

We assume the following sets: service names, ranged over by a,b, ... each of which
has an arity n > 2 (its number of participants) and a security level ¢, value variables,
ranged over by x,y, ..., all decorated with security levels, identifiers, i.e., service names
and value variables, ranged over by u,w, ..., all decorated with security levels, channel
variables, ranged over by «, 3, ..., labels, ranged over by A, A’,... (acting like labels
in labelled records). Values v are either service names or basic values (boolean values,
integers, etc.). When treated as an expression, a value is decorated with a security level
¢; when used in a message, it is decorated with a declassified level of the form ¢ | ¢/,
where ¢/ < / (in case ¢ = ¥, we will write simply £ instead of £ | £).

Sessions, the central abstraction of our calculus, are denoted with s,s".... A session
represents a particular instance or activation of a service. Hence sessions only appear at
runtime. We use p, q,...to denote the participants of a session. In an n-ary session (a
session corresponding to an n-ary service) p, q are assumed to range over the natural
numbers 1,...,n. We denote by IT a non empty set of participants. Each session s has
an associated set of channels with role s[p], one for each participant. Channel s[p] is the
private channel through which participant p communicates with the other participants
in the session s. A new session s on an n-ary service a’ is opened when the initiator
a'[n] of the service synchronises with n processes of the form a'[p](a).P. We use ¢
to range over channel variables and channels with roles. Finally, we assume a set of
process variables X,Y, ..., in order to define recursive behaviours.

The set of expressions, ranged over by e, ¢’, ..., and the set of processes, ranged over
by P,Q..., are given by the grammar in Table 2] where syntax occurring only at runtime
appears shaded . The primitives are decorated with security levels. When there is no
risk of confusion we will omit the set delimiters {, }.



242 S. Capecchi et al.

As in [[11], in order to model TCP-like asynchronous communications (with non-
blocking send but message order preservation between a given pair of participants),
we use queues of messages, denoted by h; an element of 7 may be a value message
(p, I, véw), indicating that the value v' is sent by participant p to all participants in IT,
with the right of declassifying it from £ to #'; a channel message (p,q, s[p']*), indicating
that p delegates to q the role of p’ with level £ in the session s; and a label message
(p,IT,A"), indicating that p selects the process with label A among the processes offered
by the set of participants I'1. The empty queue is denoted by €, and the concatenation
of a new message m to a queue i by - m. Conversely, m - h means that m is the head of
the queue. Since there may be nested and parallel sessions, we distinguish their queues
by naming them. We denote by s : h the named queue h associated with session s. We
use H, K to range over sets of named queues, also called Q-sets.

Operational Semantics. The operational semantics is defined on configurations. A
configuration is a pair C =< P, H > of a process P and a Q-set H, possibly restricted
with respect to service and session names, or a parallel composition of configurations,
denoted by C||C . In a configuration (vs) < P, H >, all occurrences of s[p] in P and H
and of s in H are bound. By abuse of notation we will often write P instead of <P, 0 >.

We use a structural equivalence = [[14] for processes, queues and configurations.
Modulo =, each configuration has the form (v¥) < P, H >, where (vF)C stands for
(vry)---(vre)C, if #=ry -1y In (va') C, we assume that a-conversion on the name
a' preserves the level . Among the rules for queues, we have one for commuting inde-
pendent messages and another one for splitting a message for multiple recipients.

The transitions for configurations have the form C — C’. They are derived using
the reduction rules in Table 3l Rule [Link] describes the initiation of a new session
among n processes, corresponding to an activation of the service a’ of arity n. After
the connection, the participants share a private session name s and the corresponding
queue, initialised to s : €. The variable g, in each participant P, is replaced by the
corresponding channel with role s[p]. The output rules [Send], [DelSend] and [Label]
push values, channels and labels, respectively, into the queue s : 4. In rule [Send], e | v
denotes the evaluation of the expression e to the value v, where ¢ is the join of the
security levels of the variables and values occurring in e. The superscript £’ on the output
sign indicates that v/ can be declassified to level ¢/, when received by an input process
s[q]?’(p,x"").P. This is why the value is recorded with both levels in the queue. The rules
[Rec], [DelRec] and [Branch] perform the corresponding complementary operations.
As usual, we will use —* for the reflexive and transitive closure of —.

4 Information Flow Security in Sessions

We turn now to the question of ensuring secure information flow [6] within sessions. We
shall be interested in the property of noninterference (NI) [9], combined with a limited
form of declassification [[1], which may only take place during a value communication.
The property of NI requires that there is no flow of information from objects of a given
level to objects of lower or incomparable level [21/19/16]. To set the stage for our
information flow analysis, the first questions to ask are:



Session Types for Access and Information Flow Control 243

1. Which objects of the calculus should carry security levels?
2. Which information leaks can occur and how can they be detected?

As concerns objects, we shall see that besides values, also labels, delegated channels
and services will need security levels. Since this question requires some discussion,
which is best understood through examples, we defer it to the next section, just assum-
ing here as a fact that queue messages have the form (p,I1, %), where ¥ may be e,
A% or s[p]’. In the rest of this section, we will focus on the observation model, which
will be based on bisimulation, as is now standard for concurrent processes [19117].

We assume that the observer can see the content of messages in session queues.
To fix ideas, one may view the observer as a kind of buffer through which messages
may transit while reaching or leaving a session queue. We do not want to go as far
as allowing an observer to take part in a session, since that could affect the behaviour
of other processes. In other words, we assume a passive observer rather than an active
one.

What matters for security is observation relative to a given set of levels. Given a
downward-closed subset .Z of ., a .Z-observer will only be able to see messages
whose level belongs to .Z. A notion of .Z-equality =« on Q-sets is then introduced,
representing indistinguishability of Q-sets by a .Z-observer. Based on = ¢, a notion of
Z-bisimulation ~ ¢ will formalise indistinguishability of processes by a .Z-observer.

Formally, a queue s : & is .Z-observable if it contains some message with a level
in .Z. Then two Q-sets are .Z-equal if their Z-observable queues have the same
names and contain the same messages with a level in .. This equality is based on
a Z-projection operation on Q-sets, which discards all messages whose level is not
in Z.

Definition 1. Let the functions levy and lev| be defined by:
levT(véw) =/, levl(véw) =/, andlev;(s[p]’) =lev;(A") = L =1lev|(s[p]’) = lev|(A").

Definition 2. The projection operation |} £ is defined inductively on messages, queues
and Q-sets as follows:

Table 3. Reduction rules (excerpt)

a'll)(an).Py | ... | @' [n)(ow). Py | @[n] — (vs) < P{s[1]/au} | ... | Pufs[n] /et } , s:€ >  [Link]
<s[pll (M, e).P,s:h>—<P, s h-(p, IV Y)>  (e]h) [Send]
<s[a?(p,x").P, s: (p,g, V) h > —< P XY s h> [Rec]
<slpl(@ PP, s h>—<P,s:h-(p,qs[p]") > [DelSend]
<sl@?(p,@))-P, s: (pq,s'[p']") -h >—< P{s'[p]/a}, s:h> [DelRec]

<slp| @' UL,A).P,s:h>—<P, s:h-(p,IT,A") > [Label]

< s[al&" ({4 : Plier) , s (@ AL) -h>—< Py, s:h> (ig€1) (Branch]

C— (v5)C' = (vRA(C|C") — (VvR)(v§)(C'||C") [ScopC]



244 S. Capecchi et al.

(e, I1,9) iflev (D) € %,
(p,11,0) | & = {8

otherwise.
el X =¢
m-mn)Z=m|lZL %L
0 Z=0 .
. _JHUZU{s:h L} ifh| L F#e,
(HU{s:h}) 42 = {Hi}f otherwise.

Definition 3 (.Z-Equality of Q-sets).
Two Q-sets H and K are £-equal, written H = K, if H | ¥ =K || Z.

When reducing a configuration (v7) < P, H >, we have to make sure that input prefixes
in P “agree” with messages in H. This is assured by our type system given in Section[6]

A relation on processes is a .Z-bisimulation if it preserves Z-equality of Q-sets at
each step, starting from typable configurations:

Definition 4 (.Z-Bisimulation on processes).

A symmetric relation Z C (Prx Pr) is a L-bisimulation if Py Z P, implies, for any
pair of Q-sets Hy and Hy such that H) = Hy and < Py , Hy >, < P, , H, > are typable:

If <P ,>H; — (VF) < P{, > Hj, then either H =4 H, and P| % P,, or there exist
P}, H} such that < P, , Hy >—* (Vi) < Py , Hy >, where H| =4 H}, and P{ % P;.

Processes Py, P, are £ -bisimilar, P ~¢ P, if P| % P, for some £-bisimulation Z.

Note that 7 may be either empty or be a service name or a fresh session name s, and in
the last case s cannot occur in P> and H, by Barendregt convention.

Intuitively, a transition that adds or removes a message with level in . must be
simulated in one or more steps, producing the same effect on the Q-set, whereas a
transition that only affects messages with level not in . may be simulated by inaction.

Definition 5 (.Z-Security). A program P is £-secure if P ~ ¢ P.

5 Examples of Information Flow Security in Sessions

In this section we illustrate the various kinds of flow that can occur in our calculus,
through simple examples. Since we aim at justifying the introduction of security levels
in the syntax (other than on values and participants), we shall initially omit levels in
all other objects. In queues, we will use vt as a shorthand for v/, For the sake of
simplicity, we assume here just two security levels L and T (also called low and high).
In all examples, we suppose H; = {s: (1,2,true’ )} and Hy = {s: (1,2,false")}.

5.1. High input should not be followed by low actions. A simple example of insecure
flow, which is not specific to our calculus but arises in all process calculi with values
and a conditional construct, is the following (assuming session s has four participants):



Session Types for Access and Information Flow Control 245

s[2]2(1,x").if x then s[2]!(3,true").0 else 0
| s[3]2(2,2").s[3]!(4, truet).0 | s[4]?(3,y1).0

This process is insecure because, depending on the high value received for x| on chan-
nel s[2], that is, on whether the Q-set is H; or H, the low value truet will be emitted
or not on channel s[3], leading to H] = {s: (3,4,true™)} #£ 4 Hy={s: e} if £ ={L}.
This shows that a high input should not be followed by a low output. Note that the re-
verse is not true, since output is not blocking: if we swapped the polarities of input and
output in the third participant (and adjusted them accordingly in the other participants),
then the resulting process would be secure.

Let us point out that this process is not typable in a classical session type system,
since the session types of the conditional branches are not the same. However, it would
become typable if the second branch of the conditional were replaced by the deadlocked
process (vb)b[1](B1).s[2]!(3,true").0. The expert reader will notice that by adding to
our type system the interaction typing of [2] (which enforces global progress) we would
rule out also this second process. On the other hand, the interaction typing does not
prevent deadlocks due to inverse session calls, as for instance:

bl2] | b[1)(B1).c[1](1)-5[2]!(3,true).0
c2] | c[2](r2)-b[2](B2)-0

Clearly, this deadlock could be used to implement the insecure flow in our example.

5.2. Need for levels on services. Consider the following process:
s[2]2(1,x").if xT then b[2] else 0

| b[1](B1)-Br!(2,truet).0 | b[2](B2)-B22(1,y").0
This process is insecure because, depending on the high value received for x ', it will
initiate or not a session on service b, which performs a low value exchange. To rule out
this kind of leak we annotate service names with security levels which are a lower bound
for all the actions they execute. Then service b must be of level T, since it appears in
the branch of a T-conditional, and hence it will not allow the output of the value truet.

5.3. Need for levels on selection and branching. Consider the following process:
s[2]2(1,x").if x then s[2] @© (3,1).0 else s[2] @ (3,1').0

| s[3]&(2,{A : s[3]!(4,true’).0, A" : 5[3]!(4, false™).0})

| s[4]2(3,54).0
This process is insecure because a selection in one participant, which depends on a high
value, causes the corresponding branching participant to emit two different low values.
To prevent this kind of leak, the selection and branching operators will be annotated
with a security level which is a lower bound for all actions executed in the branches.

5.4. Need for levels on delegated channels. Consider the following process:
s[2]2(1,xT).if x7 then 8[2] (3, 5'[1]))-s[2]1((4,s"[1])).0 else s[2]((3,s"[1])).s[2]!((4,5'[1])).0

| s[3]2((2,m))-n1(2,true”).0 | s[4]2(2,1")).1'}(2, false").0
| s'212(1, L)0 | $"[2]2(1,y7).0

This process is insecure because, depending on the high value received for x ', the par-
ticipants 3 and 4 of s will be delegated to participate in sessions s’ and s”, or viceversa,



246 S. Capecchi et al.

feeding the queues of 5" and s” with different low values. This shows that delegation
send and receive should also carry a level, which will be a lower bound for all actions
executed in the receiving participant after the delegation.

5.5. Levels in queue messages. So far, we have identified which objects of the calcu-
lus need security levels, namely: values, service names, and the operators of selection,
branching and delegation. We now discuss how levels are recorded into queue messages.

Values are recorded in the queues with both their level and their declassified level.
The reason for recording also the declassified level is access control: the semantics does
not allow a low input process to fetch a high value declassified to low. More formally,
a value v in the queue can only be read by a process s[q]?" (p,x").P. Concerning
service names a’, the level £ guarantees that the session initiator and all the participants
get started in a context of level £/ < £ (see Example 5.2). Once the session is established,
the name a’ disappears and it is its global type (cf next section) that will ensure that all
participants perform actions of levels greater than or equal to £. As for the operators of
branching/selection and delegation, they disappear after the reduction and their level is
recorded respectively into labels and delegated channels within queue messages. This is
essential since in this case the communication is asynchronous and occurs in two steps.

Hence queue messages have the form (p, IT, ), where © is v/*', A or s[p]‘.

6 Type System

In this section we present our type system for secure sessions and state its properties.
Just like process syntax, types will contain security levels.

Safety Global Types, Session Types, and Projections. A safety global type is a pair
(L,G)*, decorated with a security level ¢, describing a service where:

- L:{1,...,n} — .7 is a safery mapping from participants to security levels;
— G is a global type, describing the whole conversation scenario of an n-ary service;
— { is the meet of all levels appearing in G, denoted by M(G).

The grammar of global types is:

Global G :=p—1I1:(U).G Exchange U =S | T | (L,G)*
| p—I:{N:Gi}y Sorts S ::=bool | ...
| pro.G
| ut.G |t |end

The type p — IT : (U).G says that participant p multicasts a message of type U to all
participants in IT and then the interactions described in G take place. Exchange types U
may be sort types S for values (base types decorated with a declassification £ | ¢'),
session types T for channels (defined below), or safety global types for services. If U =
T, then IT is a singleton {q}. We use S as short for S\, called a trivial declassification.
Type p — IT: {A; : G;}i,, where £ =[],.;M(G), says that participant p multicasts
one of the labels A; to the participants in IT. If ),J- is sent, interactions described in G;
take place. Type p I'6.G says that the role of p is delegated to another participant; this
construct does not appear in the original global types of [[11]. It is needed here to “mark”
the delegated part of the type, which is discharged when calculating its join (see below).



Session Types for Access and Information Flow Control 247

Type ut.G is a recursive type, where the type variable t is guarded in the standard
way. In the grammar of exchange types, we suppose that G does not contain free type
variables. Type end represents the termination of a session. While global types represent
the whole session protocol, session types correspond to the communication actions,
representing each participant’s contribution to the session.

As for M(G), we denote by M(T) the meet of all security levels appearing in T.

Session T == I(IT,S'Y);T send | 9(p S(lé’) receive
| Hq, )T delsend | 9l(p T);T delreceive
| @I {A: Titier) selection \ Z(p {Ai : T;}icr) branching
| ut.T recursive | variable
| ro;T delegation | end end

The send type !(IT ,SW');T expresses the sending to all participants in IT of a value
of type S, of level ¢ declassified to £, followed by the communications described in T
The delsend type *(q,T);T’, where £ = M(T), says that a channel of type T is sent
to participant g, and then the protocol specified by T’ takes place. The selection type
@I, {A; : Ti}ier), where £ =[;.; M(T}), represents the transmission to all participants
in IT of alabel A in {4; | i € I'}, followed by the communications described in 7. The
delegation type '6; T, says that the communications described in T will be delegated to
another agent. The receive, delreceive and branching types are dual to the send, delsend,
and selection ones. The type system will assure that £/ < M(T') in type ?(p, SZM); T, that
¢ < M(T") in type ?(p,T); T’ and that £ = [],.; M(T;) in type & (p, {A: : Ti }ier)- In all
cases, the need for the security level £ is motivated by one of the examples in Section[3l

The relation between global types and session types is formalised by the notion of
projection [[L1]]. The projection of G onto q, denoted (G | q), gives participant q’s view
of the protocol described by G. For example the projectionof G=p — p’: (T).G' on q
is the following, assuming ¢ = M(T):

1p,T);(G' Tq) ifq=np,
(p—p (1).G)1q={ " (p.T):(G [q) ifq=p,
G 1q otherwise

Well-formedness of safety global types. To formulate the well-formedness condition
for safety global types, we define the join J(T') of a session type 7. Intuitively, while
M(T) is needed for secure information flow, J(7') will be used for access control. Recall
from Section [2 our access control policy, requiring that participants in a session only
read data of level less than or equal to their own level. This motivates our (slightly non
standard) definition of join: in short, J(T') is the join of all the security levels decorating
the input constructs in T (receive, delreceive, branching). Moreover, unlike M(T'), J(T)
forgets the delegated part of 7'.

This leads to the following condition of well-formedness for safety global types,
where dom(L) denotes the domain of L:

A safety global type (L,G)" is well formed if for all p € dom(L): L(p) > J(G | p).

Henceforth we shall only consider well-formed safety global types.



248 S. Capecchi et al.

Typing expressions. The typing judgments for expressions are of the form:
I'ke:st

where I' is the standard environment which maps variables to sort types with trivial
declassification, services to safety global types, and process variables to pairs of sort
types with trivial declassification and session types. Formally, we define:

r==0|rx:s"|ra: (LG | Ix:sT

assuming that we can write I", x* : st (respectively I',a’ : (L, G)Z/ and I, X : S T) only
if x* (respectively a’ and X) does not belong to the domain of I". An environment I is
well formed if x' : §” € I implies ¢ = ¢ and ' : (L,G)" € T implies that ¢ = ¢ and G
is well formed. Hence, if I is well formed, a’ : (L,G*) € T" implies £ = M(G). In the
following we will only consider well-formed environments.

We type values by decorating their type with their security level, and names accord-
ingtoI:

I+ truel false’ : bool Cou:S'hu:st |NAME |

We type expressions by decorating their type with the join of the security levels of
the variables and values they are built from.

Typing processes. The typing judgments for processes are of the form:
'+, P>A
where A is the process environment which associates session types with channels:
Az=0|Ac:T
We decorate the derivation symbol - with the security level ¢ inferred for the process:
this level is a lower bound for the actions and communications performed in the process.

Let us now present some selected typing rules for processes.
—Rule | SUBS | allows the security level inferred for a process to be decreased.

' PrA 0 <Y
F}_Z/PDA

—Inrule | MINIT]|, the standard environment must associate with the identifier u a safety
global type. The premise matches the number of participants in the domain of L with
the number declared by the initiator. The emptiness of the process environment in the
conclusion specifies that there is no further communication behaviour after the initiator.

dom(L) ={1,...,n}
Tou: (LG Fyifn]>0

—Inrule |[MAcCC], the standard environment must also associate with u a safety global
type. The premise guarantees that the type of the continuation P in the p-th participant
is the p-th projection of the global type G of u.

Fu:{L,G)'FPrA0:Glp
Iu:(L,G) Fyulp](a).PrA

|SuBS |

[MINIT |

[MAcc)



Session Types for Access and Information Flow Control 249

Concerning security levels, in rule [MACC| we check that the continuation process
P conforms to the security level ¢ associated with the service name u. Note that this
condition does not follow from well-formedness of environments, since the process P
may participate in other sessions, but it is necessary to avoid information leaks. For
example, without this condition we could type

a2l | a™[1](oq).0q0!(2,true™).0 | a"[2](en).00?(1,x").if xT then bT[2] else 0
| 6T [1)(B1)-c [ ]( 1)1 (2, truet).0 | bT[ 1(B2)-0
ct2] | cl2](r)12(1,y1).0

— In rule | SEND], the first hypothesis binds expression e with type S, where  is the
join of all variables and values in e. The second hypothesis imposes typability of the
continuation of the output with security level #”. The third hypothesis relates levels £,
¢" and ¢’ (the level to which e will be declassified), preserving the invariant that £” is a
lower bound for all security levels of the actions in the process.

I'te:S" TrwPrAc:T <0 <(
Tl ct(e).P>A,c: (T, ST

2}

|SEND |

Note that the hypothesis £ < ¢’ </ is not really constraining, since P can always be
downgraded to ¢” using rule [ SUBS | and ¢’ < ¢ follows from well-formedness of S‘/*".

—Rule |RCV] is the dual of rule | SEND |, but it is more restrictive in that it requires the
continuation P to be typable with exactly the level £':

rax 'y PoAce:T <y
Iy e?(p,x" ).PDA,C:?(p,SéM);T

Notice for instance that we cannot type the reception of a T value followed by a L
action. On the other hand we can type the reception of a T | L value followed by a
L action. For instance, in our introductory example of Section 2] rule [Rcv] allows the
delegation send in process B to be decorated by _L: this is essential for the typability of
both the process B and the session b between S and B.

— Rule |IF] requires that the two branches of a conditional be typed with the same
process environment, and with the same security level as the tested expression.

I'ke:bool T P>A TH 0OnA

IF
I' -y if e then P else Q1> A
We say that a process P is typable in I" if I" -, P> A holds for some ¢, A.

[Rev |

Typing queues and Q-sets. Message types represent the messages contained in queues.

Message T ::= [(IT, S} message value send
| 1Yq,T)  message delegation
| @(IT,A)  message selection
| T;T message sequence

Message types are very close to the send, delsend, selection session types, hence we
shall not dwell on them. Let us just mention the associativity of the construct T;T’.



250 S. Capecchi et al.

Typing judgments for queues have the shape
I'ks:h>0
where O is a queue environment associating message types with channels.

Example: we can derive - s : (2,{1,3},0k " )>{s[2] : &7 ({1,3},0k)}.
Typing judgments for Q-sets have the shape:

I'xHpv>O
where X is the set of session names which occur free in H.
Typing configurations. Typing judgments for runtime configurations C have the form:
I'sCp<A0O >

They associate with a configuration the environments A and ©® mapping channels to
session and message types respectively. We call < A ©© > a configuration environment.

A configuration type is a session type, or a message type, or a message type followed
by a session type:

Configuration 7 =T session
| T message
| T;T continuation

An example of configuration type is:
o+ ({1,3},0k); 1({3},String");2(3, Number");end

A configuration is initial if the process is closed, it does not use runtime syntax and
the Q-set is empty. It is easy to check that for typable initial configurations the set of
session names and the process and queue environments are all empty.

Since channels with roles occur both in processes and in queues, a configuration
environment associates configuration types with channels, in notation < A ¢ © >(¢).
Configuration types can be projected on a participant p. We write .7 | p to denote the
projection of the type .7 on the participant p. We also define a duality relation 1 be-
tween projections of configuration types, which holds when opposite communications
are offered (input/output, selection/branching). The above definitions are needed to state
coherence of configuration environments. Informally, this holds when the inputs and the
branchings offered by the process agree both with the outputs and the selections offered
by the process and with the messages in the queues. More formally:

Definition 6. A configuration environment < A © > is coherent if s[p] € dom(A)U
dom(0©) and s[q] € dom(A) Udom(O) imply

<A0O > (s[p]) [qpa< 400 > (s[q]) | p.

Typing rules assure that configurations are always typed with coherent environments.
Since process and queue environments represent future communications, by reduc-
ing processes we get different configuration environments. This is formalised by the no-
tion of reduction of configuration environments, denotedby < A0 > = < A’ 0O’ >.
We say that a queue is generated by service a, or a-generated, if it is created by
applying rule [Link] to the parallel composition of a’s participants and initiator.



Session Types for Access and Information Flow Control 251

We are now able to state our main results, namely type preservation under reduction
and the soundness of our type system for both access control and noninterference. In
Theorem[2] we will use the function lev; (1) defined in Section @] (Definition [IJ).

Theorem 1 (Subject Reduction). Suppose I' b3 C> < Ao® > and C —* C'. Then
TF'FsCpb<Ao@ >with<AoO > = <A@ >,

Theorem 2 (Access Control)

Let C be an initial configuration, and suppose I' 9 C > < Qo0 > for some standard
environment T such that a' : (L,G) € T'. If C —* (vs)C, where the queue of name s
in C' is a-generated and contains the message (p,q,¥), then levi(9) < L(q).

Theorem 3 (Noninterference). If P is typable, then P ~ ¢ P for all down-closed £ .

7 Conclusion and Future Work

In this work, we have investigated the integration of security requirements into session
types. Interestingly, there appears to be an influence of session types on security.

For instance, it is well known that one of the causes of insecure information flow in a
concurrent scenario is the possibility of different termination behaviours in the branches
of a high conditional. In our calculus, we may distinguish three termination behaviours:
(proper) termination, deadlock and divergence. Now, the classical session types of [20]]
already exclude some combinations of these behaviours in conditional branches. For
instance, a non-trivial divergence (whose body contains some communication actions)
in one branch cannot coexist with a non-trivial termination in the other branch. More-
over, session types prevent local deadlocks due to a bad matching of the communication
behaviours of participants in the same session. By adding to classical session types the
interaction typing of [2], we would also exclude most of the global deadlocks due to a
bad matching of the protocols of two interleaved sessions. However, this typing does
not prevent deadlocks due to inverse session calls. We plan to study a strengthening of
interaction typing that would rule out also this kind of deadlock. This would allow us
to simplify our type system by removing our constraint in the typing rule for input.

The form of declassification considered in this work is admittedly quite simple. How-
ever, it already illustrates the connection between declassification and access control,
since a declassified value may only be received by a participant whose level is greater
than or equal to the original level of the value. This means that declassification is con-
strained by the access control policy, as in [3]]. We plan to extend declassification also
to data which are not received from another participant, by allowing declassification of
a tested expression, as in this variant of the B process of our example in Section

B = ... if {cct =secret T} TH then By &+ (2,0k).0 else B; & (2,ko).0

Again, this declassification would be controlled by requiring B to have level T.

Acknowledgments. We would like to thank Nobuko Yoshida for her encouragement
to engage in this work, and the anonymous referees for helpful feedback.



252

S. Capecchi et al.

References

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

Almeida Matos, A., Boudol, G.: On Declassification and the Non-Disclosure Policy. Journal
of Computer Security 17, 549-597 (2009)

Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418-433. Springer, Heidelberg
(2008)

Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic Protocol
Synthesis and Verification for Multiparty Sessions. In: Proc. CSF 2009, pp. 124-140. IEEE
Computer Society, Los Alamitos (2009)

Boreale, M., Bruni, R., Nicola, R., Loreti, M.: Sessions and Pipelines for Structured Service
Programming. In: Barthe, G., de Boer, E.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
19-38. Springer, Heidelberg (2008)

Boudol, G., Kolundzija, M.: Access Control and Declassification. In: Proc. Computer Net-
work Security. CCIS, vol. 1, pp. 85-98. Springer, Heidelberg (2007)

Denning, D.E.R.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: An Overview. In: Lan-
eve, C. (ed.) WSFM 2010. LNCS, vol. 6194, pp. 1-28. Springer, Heidelberg (2010)
Focardi, R., Gorrieri, R.: Classification of Security Properties (Part I: Information Flow).
In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331-396. Springer,
Heidelberg (2001)

Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: Proc. IEEE Sympo-
sium on Security and Privacy, pp. 11-20. IEEE Computer Society, Los Alamitos (1982)
Honda, K., Yoshida, N.: A Uniform Type Structure for Secure Information Flow. In: Proc.
POPL 2002, pp. 81-92. ACM Press, New York (2002)

Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: Proc.
POPL 2008, pp. 273-284. ACM Press, New York (2008)

Kobayashi, N.: Type-Based Information Flow Analysis for the Pi-Calculus. Acta Informat-
ica 42(4-5), 291-347 (2005)

KolundZija, M.: Security Types for Sessions and Pipelines. In: Bruni, R., Wolf, K. (eds.)
WSEM 2008. LNCS, vol. 5387, pp. 175-190. Springer, Heidelberg (2009)

Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. CUP, Cambridge (1999)
Planul, J., Corin, R., Fournet, C.: Secure Enforcement for Global Process Specifications. In:
Proc. CONCUR 2009. LNCS, vol. 5710, pp. 511-526. Springer, Heidelberg (2009)
Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Journal on
Selected Areas in Communications 21(1), 5-19 (2003)

Sabelfeld, A., Sands, D.: Probabilistic Noninterference for Multi-threaded Programs. In:
Proc. CSFW 2000, pp. 200-214. IEEE Computer Society, Los Alamitos (2000)

Sabelfeld, A., Sands, D.: Dimensions and Principles of Declassification. In: Proc. CSFW
2005. IEEE Computer Society, Los Alamitos (2005)

Smith, G., Volpano, D.: Secure Information Flow in a Multi-threaded Imperative Language.
In: Proc. POPL 1998, pp. 355-364. ACM Press, New York (1998)

Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing System.
In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398—413. Springer, Heidelberg (1994)

Volpano, D., Irvine, C., Smith, G.: A Sound Type System for Secure Flow Analysis. Journal
of Computer Security 4(2,3), 167-187 (1996)



Simulation Distances*

Pavol Cerny, Thomas A. Henzinger, and Arjun Radhakrishna

IST Austria

Abstract. Boolean notions of correctness are formalized by preorders on
systems. Quantitative measures of correctness can be formalized by real-
valued distance functions between systems, where the distance between
implementation and specification provides a measure of “fit” or “desir-
ability.” We extend the simulation preorder to the quantitative setting,
by making each player of a simulation game pay a certain price for her
choices. We use the resulting games with quantitative objectives to define
three different simulation distances. The correctness distance measures
how much the specification must be changed in order to be satisfied by
the implementation. The coverage distance measures how much the im-
plementation restricts the degrees of freedom offered by the specification.
The robustness distance measures how much a system can deviate from
the implementation description without violating the specification. We
consider these distances for safety as well as liveness specifications. The
distances can be computed in polynomial time for safety specifications,
and for liveness specifications given by weak fairness constraints. We
show that the distance functions satisfy the triangle inequality, that the
distance between two systems does not increase under parallel composi-
tion with a third system, and that the distance between two systems can
be bounded from above and below by distances between abstractions of
the two systems. These properties suggest that our simulation distances
provide an appropriate basis for a quantitative theory of discrete sys-
tems. We also demonstrate how the robustness distance can be used to
measure how many transmission errors are tolerated by error correcting
codes.

1 Introduction

Standard verification systems return a boolean answer that indicates whether a
system satisfies its specification. However, not all correct implementations are
equally good, and not all incorrect implementations are equally bad. There is
thus a natural question whether it is possible to extend the standard specification
frameworks and verification algorithms to capture a finer and more quantitative
view of the relationship between specifications and systems.

We focus on extending the notion of simulation to the quantitative setting.
For reactive systems, the standard correctness requirement is that all executions

* This work was partially supported by the European Union project COMBEST and
the European Network of Excellence ArtistDesign.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 253@ 2010.
© Springer-Verlag Berlin Heidelberg 2010



254 P. Cerny, T.A. Henzinger, and A. Radhakrishna

of an implementation have to be allowed by the specification. Requiring that
the specification simulates the implementation is a stricter condition, but it
is computationally less expensive to check. The simulation relation defines a
preorder on systems. We extend the simulation preorder to a distance function
that given two systems, returns a real-valued distance between them.

Let us consider the definition of simulation of an implementation I by a spec-
ification S as a two-player game, where Player 1 (the implementation) chooses
moves (transitions) and Player 2 (the specification) tries to match each move.
The goal of Player 1 is to prove that simulation does not hold, by driving the
game into a state from which Player 2 cannot match the chosen move; the goal
of Player 2 is to prove that there exists a simulation relation, by playing the
game forever. In order to extend this definition to capture how “good” (or how
“bad”) the simulation is, we make the players pay a certain price for their choices.
The goal of Player 1 is then to maximize the cost of the game, and the goal of
Player 2 is to minimize it. The cost is given by an objective function, such as the
limit average of transition prizes. For example, for incorrect implementations,
i.e., those for which the specification S does not simulate the implementation I,
we might be interested in how often the specification (Player 2) cannot match
an implementation move. We formalize this using a game with a limit-average
objective between modified systems. The specification is allowed to “cheat,” by
following a non-existing transition, while the implementation is left unmodified.
More precisely, the specification is modified by giving the transitions from the
original system a weight of 0, and adding new “cheating” transitions with a non-
zero positive weight. As Player 2 is trying to minimize the value of the game,
she is motivated not to cheat. The value of the game measures how often the
specification can be forced to cheat by the implementation, that is, how often the
implementation violates the specification (i.e., commits an error) in the worst
case. We call this distance function correctness.

Let us consider the examples in Figure [l We take the system S; as the
specification. The specification allows at most two symbols b to be output in
the row. Now let us consider the two incorrect implementations Is and Is. The
implementation I3 outputs an unbounded number of b’s in a row, while the
implementation Iy can output three b’s in a row. The specification S; will thus
not be able to simulate either I3 or I, but I is a “better” implementation in
the sense that it violates the requirement to a smaller degree. We capture this
by allowing S; to cheat in the simulation game by taking an existing edge while
outputting a different symbol. When simulating the system I3, the specification
S1 will have to output a b when taking the edge from state 2 to state 0. This
cheating transition will be taken every third move while simulating I3. The
correctness distance from S; to I3 will therefore be 1/3. When simulating Iy,
the specification S7 needs to cheat only one in four times—this is when I takes
a transition from its state 2 to state 3. The distance from S to I will be 1/4.

Considering the implementation I from Figure [] it is easy to see that it is
correct with respect to the specification S;. The correctness distance would thus
be 0. However, it is also easy to see that I does not include all behaviors allowed



Simulation Distances 255

a b b b b
Sy f RO
O ;

(b) I (c) I3 (d) Is

Fig. 1. Example Systems

by S1. Our second distance function, coverage, is the dual of the correctness dis-
tance. It measures how many of the behaviors allowed by the specification are
actually implemented by the implementation. This distance is obtained as the
value for the implementation in a game in which [ is required to simulate .S, with
the implementation being allowed to cheat. Our third distance function is called
robustness. It measures how robust the implementation [ is with respect to the
specification S in the following sense: we measure how often the implementa-
tion can make an unexpected error (i.e., it performs a transition not present
in its transition relation), with the resulting behavior still being accepted by
the specification. Unexpected errors could be caused, for example, by a hard-
ware problem, by a wrong environment assumption, or by a malicious attack.
Robustness measures how many such unexpected errors are tolerated.

In addition to safety specifications, we consider liveness specifications given
by weak (Biichi) fairness constraints or strong (Streett) fairness constrains. In
order to define distances to liveness specifications, the notion of quantitative
simulation is extended to fair quantitative simulation. We study variations of
the correctness, coverage, and robustness distances using limit-average and dis-
counted objective functions. Limit-average objectives measure the long-run fre-
quency of errors, whereas discounted objectives count the number of errors and
give more weight to earlier errors than later ones.

The correctness, coverage, and robustness distances can be calculated by solv-
ing the value problem in the corresponding games. Without fairness require-
ments, we obtain limit-average games or discounted games with constant weights.
The values of such games can be computed in polynomial time [20]. We obtain
polynomial complexity also for distances between systems with weak-fairness
constraints, whereas for strong-fairness constrains, the best known algorithms
require exponential time.

We present composition and abstraction techniques that are useful for com-
puting and approximating simulation distances between large systems. Finally,
we present an application of the robustness distance. We consider error correc-
tion systems for transmitting data over noisy channels. Three implementations
based on the Hamming code, triple modular redundancy, and no error correction
with different robustness properties are analyzed.

Related work. Weighted automata [4JI0] provide a way to assign values to words,
and to languages defined by finite-state systems. Distances between systems can



256 P. Cerny, T.A. Henzinger, and A. Radhakrishna

be defined using weighted automata, analogically to boolean language inclusion.
However, the complexity of computation of such distance is not known [4]. Our
solution of using a quantitative version of simulation games corresponds in the
boolean case to the choice of using simulation instead of language inclusion.
There have been several attempts to give a mathematical semantics to reactive
processes which is based on quantitative metrics rather than boolean preorders
[18/6]. In particular for probabilistic processes, it is natural to generalize bisim-
ulation relations to bisimulation metrics [9/19], and similar generalizations can
be pursued if quantities enter not through probabilities but through discounting
[7] or continuous variables [2] (this work uses the Skorohod metric on contin-
uous behaviors to measure the distance between hybrid systems). We consider
distances between purely discrete (nonprobabilistic, untimed) systems, and our
distances are directed rather than symmetric (based on simulation rather than
bisimulation). Software metrics measure properties such as lines of code, depth
of inheritance (in an object-oriented language), number of bugs in a module
or the time it took to discover the bugs (see for example [T2J16]). These func-
tions measure syntactic properties of the source code, and are fundamentally
different from our distance functions that capture the difference in the behavior
(semantics) of programs.

2 Quantitative Simulation Games

Transition Systems. A transition system is a tuple (S, X, E, so) where S is a
finite set of states, X is a finite alphabet, £ C S x X x S is a set of labeled
transitions, and sg is the initial state. We require that for every s € S, there exists
a transition from s. The set of all transition systems is denoted by S. A weighted
transition system is a transition system along with a weight function v from
E to Q. A run in a transition system 7' is an infinite path p = pgopp101p202 ... €
(S - X)¥ where pg = so and for all i, (p;, 04, pit1) € E.

Fairness Conditions. A Biichi (weak fairness) condition for a (weighted) tran-
sition system is set of states F' C S. Given a Biichi condition F' and a run p =
P000pP101 - - - of a transition system, the run p is fair ifft Vn > 0: (3i >n: p; € F).
A Streett (strong fairness) condition for a (weighted) transition system is a
set of request-response pairs F' = {(E1, F1), (Eo, F3),...,(Eq, Fq)} where each
E;,F; € 25. Given a Streett condition, a run p = poogpi0oy ... is fair iff
Vi <d: ((|{i| pi € Ex}| = 00) = (|{i | pi € Fi}| = 00)). We denote a transition
system A with a fairness condition F' as AF.

Game Graphs. A game graph G is a tuple (S, 51,52, X, E, s9) where S, ¥, E
and sg are as in transition systems and (S, S2) is a partition of S. The choice
of the next state is made by Player 1 (Player 2) when the current state is in S;
(respectively, Sa). A weighted game graph is a game graph along with a weight
function v from F to Q. A run in the game graph G is called a play. The set of
all plays is denoted by 2.

When the two players represent the choices internal to a system, we call
the game graph an alternating transition system. We only consider alternating



Simulation Distances 257

transition systems where the transitions from Player 1 states go only to Player 2
states and vice-versa. We use A" to denote an alternating transition system A
with fairness condition F'.

Strategies. Given a game graph G, a strategy for Player 1 is a function 7 :
(S X)*S; — S x X such that Vsgopsio1...s; € (S - X)*S1, we have that
if m(spops101...8;) = (s,0), then (s;,0,8) € E. A strategy for Player 2 is
defined similarly. The set of all strategies for Player p is denoted by II,,. A play
P = Po0op101P202 ... conforms to a player p strategy w if Vi > 0: (p; € S, =
: (pit1,0i41) = m(pooop10o1 - .. pi)). The outcome of strategies m and 7o is the
unique play out(mw;,72) that conforms to both 7 and ms.

Two restricted notions of a strategy are sufficient for many classes of games.
A memoryless strategy is one where the value of the strategy function depends
solely on the last state in the history, whereas a finite-memory strategy is one
where the necessary information about the history can be summarized by a finite
amount of information.

Games and Objectives. A game is a game graph and a boolean or quantitative
objective. A boolean objective is a function @ : 2 — {0,1} and the goal of
Player 1 in a game with objective @ is to choose a strategy so that, no matter
what Player 2 does, the outcome maps to 1; and the goal of Player 2 is to
ensure that the outcome maps to 0. A quantitative objective is a value function
f : 2 — R and the goal of Player 1 is to maximize the value f of the play,
whereas the goal of Player 2 is to minimize it. We only consider quantitative
objectives with which map plays to values in [0, 1]. Given a boolean objective @,
a play p is winning for Player 1 (Player 2) if ®(p) = 1 (P(p) = 0). A strategy
7 is a winning strategy for Player p if every play conforming to 7 is winning for
Player p.

For a quantitative objective f, the value of the game for Player 1 is defined as
the supremum of the values of plays attainable against any Player 2 strategy, i.e.,
SUp,., e g7, infr,em, f(out(my,m2)). The value of the game for Player 2 is defined
analogously. A strategy is an optimal strategy for a player if it assures a outcome
equal to her value of the game. Similarly, a strategy is an e-optimal strategy for
a maximizing (resp. minimizing) player if it assures an outcome that is no more
that e smaller (resp. larger) than the value of the game.

We consider w-regular boolean objectives and the following quantitative objec-
tives. Given a game graph with the weight function v and a play p = pop1p2 .. .,
for all ¢ > 0, let v; = v((ps, 04, Pit1))-

— LimAvg(p) = liminf, o ! - S oy

n

— Discy(p) = liminf,, oo (1 = A) - Z?:_Ol A¢ - v; where 0 < A\ < 1.

LimAwg is the long-run average of the weights occurring in a play, whereas Disc
is the discounted sum of the weights. Therefore, LimAwvg gives more importance
to the infinite suffix of a play whereas Discy gives more importance to the finite
prefix of a play.



258 P. Cerny, T.A. Henzinger, and A. Radhakrishna

Note that for LimAwvg and Disc objectives, optimal memoryless strategies
exist for both players [IT20]. Also, for qualitative objectives specified as Biichi
conditions, memoryless winning strategies exist for both players, and for other
w-regular conditions, finite-memory winning strategies exist.

Also, consider the following family of objectives where a boolean w-regular
objective and a quantitative objective f are combined as follows. If a play p
satisfies the boolean objective, then the value of p is the value according to f;
otherwise, the value of the p is the maximum possible value of f (in our case, it is
always 1). When f = LimAvg and the w-regular objective is a parity objective,
e-optimal finite-memory strategies exist [5]. This result can be extended to arbi-
trary w-regular objectives as all w-regular objectives can be expressed as parity
objectives with the latest appearance records memory [13]. Such objectives are
called w-regular LimAwvg objectives.

2.1 Qualitative Simulation Games

The simulation preorder [I7] is a useful and polynomially computable relation to
compare two transition systems. In [I] this relation was extended to alternating
simulation between alternating transition systems. For systems with fairness
conditions, the simulation relation was extended to fair simulation in [15]. These
relations can be computed by solving games with boolean objectives.

Simulation and Alternating Simulation. Consider two transition systems
A={(S, XY, E, so) and A’ = (S, X, E', s,). The system A’ simulates the system
A if there exists a relation H C S xS’ such that (a) (sg, sy) € H; and (b) Vs, t €
S,s' €S :(s,8) e HA(s,0,t) e E= (3t : (s,0,t') € E' N (s, ') € H).

For two alternating transition systems A = (S,51,52, X, F,sg) and A’ =
(S',81,55, X, E', si), alternating simulation of A by A’ holds if there exists a
relation H C S x S’ such that (sg,s5) € H and Vs € S,s" € §' : (s,') € H =
(seS1 e s €8)); and

- Vse S seS:((s,s)e HNs e S) = V(sot) e E:(3s,0,t)eE:
(t,t') € H).

-Vse S, ses:((s,s) e HNs € Sy) = I(s,0,t') € E': (V(s,0,t) € E:
(t,t') € H).

Simulation and Alternating Simulation Games. Given two (alternating)
transition systems, A and A’, we can construct a game such that, (alternating)
simulation of A by A’ holds if and only if Player 2 has a winning strategy in the
game

Given two weighted transition systems A and A’ with the same alphabet, we
define the corresponding quantitative simulation game graph G 4 as as (S x (XU
{#1) % 'U {8, }, SG, SE, £, B9, (s0, #, 5))) where S& = (8§ x {#} x §)U{ 5.0}
and S§ = (S x ¥ x §'). Each transition of the game graph corresponds to a
transition in either A or A’ as follows:

- ((57#75/)707 (t,O’, 3/)) € EG g (5707 t) S
- ((s,0,8"),0,(s,#,1")) € E¢ & (s',0,t") € E



Simulation Distances 259

For each of the above transitions, the weight is the same as the weight of the
corresponding transition in A or A’. If there is no outgoing transition from a
particular state, transitions to s.,, are added with all symbols. The state s.,,
is a sink with transitions to itself on all symbols. Each of these transitions has
weight 1 (the maximum possible value of a quantitative objective).

For classical simulation games, we consider the same game graph without
weights. The objective for Player 2 is to reach s.,. and for Player 1 to avoid it.
Intuitively, in every state, Player 1 chooses a transition of A and Player 2 has to
match it by picking a transition of A’. If Player 2 cannot match at some point,
Player 1 wins that play. It is easy to see that A’ simulates A iff there is a winning
strategy for Player 2 in this game.

We can extend the simulation game to an alternating simulation game. We
informally define the quantitative alternating simulation game graph. The formal
definition can be found in the companion report [3]. Given two quantitative
alternating transition systems A and A’ , we define the quantitative alternating
simulation game graph Hy4 4/ as follows. If A is at state s and s € Sp, Player 1
chooses a transition of A and Player 2 has to match it with a transition of A’; and
if Ais at s and s € Sy, Player 2 has to choose a transition of A’ and Player 1 has
to choose a transition of A to match it. If there cannot be a match, the control
moves to the error state s.... As before, the transitions have the same weight as
in the individual systems.

We consider the game graph without weights to define the alternating simu-
lation game HAA and the objective of the Player 1 is to ensure that the play
reaches s.,.. It can be seen that alternating simulation holds iff there exists a
winning strategy for Player 2 .

Fair Simulation. Given two (alternating) transitions systems with fairness con-
ditions AF and A’ the fair simulation game is played in the same game graph
Ga,ar (Hya ar) as the simulation game. However, in addition to matching the
symbol in each step, Player 2 has to ensure that if the sequence of transitions of
A chosen by Player 1 satisfies the fairness condition F', then the sequence of A’
transitions chosen satisfy the fairness condition F”.

2.2 Quantitative Simulation Games

We define a generalized notion of simulation games called quantitative simulation
games where the simulation objectives are replaced by quantitative objectives.

Quantitative Simulation Games. Given two quantitative (alternating) tran-
sition systems A and A’, and f € {LimAvg, Discy}, the quantitative (alter-
nating) simulation game is played on the quantitative (alternating) simulation
game graph G 4/ (Ha, a/) with the objective of Player 1 being to maximize the

f value of the play. We denote this game as QQ,A/ (Pﬁ,A/).
Quantitative Fair Simulation Games. Analogous to quantitative (alter-

nating) simulation games, the fair versions between two transition systems
with fairness conditions. The quantitative objective for this game is the w-regular



260 P. Cerny, T.A. Henzinger, and A. Radhakrishna

LimAwvg objective which is the combination of LimAwvg objective and the boolean
fair (alternating) simulation game objective.

We do not use f = Discy along with fairness conditions as the two objectives
are independent. The Disc), objectives mainly consider the finite prefix of a play,
whereas fairness conditions consider only the infinite suffix.

2.3 Modification Schemes

We will use quantitative simulation games to measure various properties of sys-
tems. For computing these properties, we need to use small modifications of
the original systems. For example, when trying to compute the distance as the
number of errors an implementation commits, we add to the specification some
error recovery behavior. However, we impose strict rules on these modifications
to ensure that the modified system retains the structure of the original system.

A modification scheme is a function m from transition systems to quantitative
(alternating) transition systems, which can be computed using the following
steps: (a) Edges may be added to the transition system and each state may
be replaced by a local subgraph. All edges of the graph have to be preserved;
(b) Every edge of the system is associated with a weight from Q. We present
two examples of modification schemes.

Output Modification. This scheme is used to add behavior to a system that
allows it to output an arbitrary symbol while moving to a state specified by an
already existing transition. For every transition (s, o, s’), transitions with differ-
ent symbols are added to the system i.e., {(s,®,s’) | @« € X'}. These transitions
are given a weight of 2 to prohibit their free use. All other transitions have the
weight zero. Given a system T, we denote the modified system as OutMod(T).

Error Modification. In a perfectly functioning system, errors may occur due
to unpredictable events. We model this with an alternating transition system
with one player modeling the original system (Player 1) and the other modeling
the controlled error (Player 2). At every state, Player 2 chooses whether or
not a error occurs by choosing one of the two successors. From one of these
states, Player 1 can choose the original successors of the state and from the
other, she can choose either one of the original successors or one of the error
transitions. We penalize Player 2 for the choice of not allowing errors to happen.

Given T = (S, X FE,sy) we define
ErrMod(T) to be the quantitative alternating
transition system obtained by replacing each
state s by the graph in Figure 2l If an error
is allowed (modeled by the ¢ edge), then all
transitions that differ from original transitions Fig. 2. Graph for ErrMod
only in the symbol are added (represented
by X(s) in Figure 2)). Only the transitions labeled —c are given the weight 2.
The rest are given the weight 0. The system ErrMody(T') denotes a system where




Simulation Distances 261

Jolfcsopcponcicans

b
(c) St

d) I

(a) Ih (b) Is L

Fig. 3. Example Systems

no additional transitions where introduced, only the states were replaced by a
subgraph from Figure 2 (with X being the empty set).

In addition to the above schemes, we define the trivial modification scheme
NoMod where no changes are made except to give every edge the weight 0.

3 Simulation Distances

Correctness. Given a specification Ty and an implementation 77, such that T}
is incorrect with respect to 15, the correctness distance measures the degree of
“incorrectness” of T;. Even a single nonconformant behavior can destroy the
boolean simulation relation. Here we present a game which is not as strict and
measures the minimal number of required errors, i.e. the minimal number of
times the specification has to use nonmatching symbols when simulating the
implementation.

Definition 3.1 (Correctness distance). Let f = LimAvg or f = Discy. The
correctness distance df (T1,Ty) from system T, to system Ty is the Player 1
value of the quantitative simulation game C{H,Tz = Q{VoMod(Tl) OutMod(T)"

The game C can be intuitively understood as follows. Given two systems 77 and
Ty, we are trying to simulate the system T by Ts, but the specification 75 is al-
lowed to make errors, to “cheat”, but she has to pay a price for such a choice. As
the simulating player is trying to minimize the value of the game, she is motivated
not to cheat. The value of the game can thus be seen as measuring how often she
can be forced to cheat, that is, how often on average the implementation commits
an error. If the implementation is correct (T5 simulates T1), then the correct-
ness distance is 0. The value of the game is either the LimAuvg or the Disc of
the number of errors. If the objective f is LimAuvg, then the value is the long
run average of the errors, whereas if the objective f is Discy, the errors which
occur earlier are given more importance and the value is the discounted sum of
the position of the errors. Therefore, the Disc and LimAvg games are concerned
with prefixes and infinite suffixes of the behaviors respectively.

We present a few example systems and their distances here to demonstrate
the fact that the above game measures distances that correspond to intuition.
In Figure [ and Figure[Il S; is the specification system against which we want
to measure the systems I; through I5. In this case, the specification says that



262 P. Cerny, T.A. Henzinger, and A. Radhakrishna

Table 1. Distances according to the Correctness, Coverage and Robustness game

v Tp dEmAY(Ty,Ty) dEA(Ty, Ts) dlimave (Th, T2)
S1 Sh 0 0 1
S. L 0 2/3 1/3
Si I 0 1/3 2/3
S I 1/3 1 1
S L 1/4 3/4 1
S1 I 1/5 4/5 1
St Ip 1/2 1 1

there cannot be more than two b’s in a row. Also, we have a specification with
a liveness condition S7, against which we want to measure the implementation
I;,. The distances between these systems according to the LimAwvg correctness
game are summarized in Table [l

Among the systems which do not satisfy the specification Sy, i.e. I3, Iy and
I5, we showed in the introduction that the distance from I3 to S; is 1/3, while
the distance from Iy to Sy is 1/4. However, surprisingly the distance from I5 to
51 is less than the distance from I4. In fact, the distances reflect on the long run
the number of times the specification has to err to simulate the implementation.

In case of the specification S7, and implementation I, with liveness conditions,
the specification can take the left branch to state 0 to get a penalty of ; or take
the right branch to state 2 to get a penalty of 1. However, it needs to take the
right branch infinitely often to satisfy the liveness condition. To achieve
the distance of %, the specification needs infinite memory so that it can take
the right branch lesser and lesser number of times. In fact, if the specification
has a strategy with finite-memory of size m, it can achieve a distance of ; + 2171'

Coverage. We present the dual game of the one presented above. Here, we mea-
sure the behaviors that are present in one system but not in the other system.
Given a specification 75 and an implementation 77, the coverage distance corre-
sponds to the behavior of the specification which is farthest from any behaviour
of the implementation. Hence, we have that the coverage distance from a system
T, to a system T5 is the correctness distance from T, to 7.

Definition 3.2 (Coverage distance). Let f = LimAvg or f = Discy. The
coverage distance df, (Ty,Ty) from system Ty to system Ty is the Player 1 value
of the quantitative simulation game V{H,R = Q{VDMOd(Tg) OutMod(T3)"

VY measures the distance from T; to 75 as the minimal number of errors that have
to be committed by 77 to cover all the behaviors of T5. We present examples of
systems and their distances according to V™49 We use the example systems
in Figures [l and [[l The distances are summarized in Table [l

Robustness. Given a specification system and a correct implementation, the
notion of robustness presented here is a measure of the number of errors by the
implementation that makes it nonconformant to the specification. The more



Simulation Distances 263

such errors tolerated by the specification, the more robust the implementation.
In other words, the distance measures the number of critical points, or points
where an error will lead to an unacceptable behavior. The lower the value of the
robustness distance, the more robust an implementation is. In case of an incorrect
implementation, the simulation of the implementation does not hold irrespective
of implementation errors. Hence, in that case, the robustness distance will be 1.

Definition 3.3 (Robustness distance). Let f = LimAvg or f = Discy.
The robustness distance dii,,(Tl,Tz) from system Ty to system Ty is the
Player 1 wvalue of the quantitative alternating simulation game Rgﬂhn =

s
ErrMod(T1),ErrModgy(T2) "

The game R grrafod(Ty), ErrMody (Ty) 18 Played in the following steps: (a) The spec-
ification T chooses whether the implementation 77 is allowed to make an error;
(b) The implementation chooses a transition on the implementation system. It
is allowed to err based on the specification choice in the previous step; and
(c) Specification chooses a matching move to simulate the implementation.

The specification tries to minimize the number of moves where it prohibits
implementation errors (without destroying the simulation relation), whereas the
implementation tries to maximize it. Intuitively, the positions where the specifi-
cation cannot allow errors are the critical points for the implementation.

In the game played between S; and Sp, every position is critical. At each
position, if an error is allowed, the system can output three b’s in a row by
using the error transition to return to state 0 while outputting a b. The next two
moves can be b’s irrespective whether errors are allowed or not. This breaks the
simulation. Now, consider I;. This system can be allowed to err every two out of
three times without violating the specification. This shows that I; is more robust
than S; for implementing S;. The list of distances is summarized in Table [l

Computation of Simulation Distances. The computational complexity of
computing the three distances defined here is the same as solving the value
problem for the respective games.

For systems without fairness conditions, the d..,, d.., and d,,, games are
simple graph games with LimAwvg or Discy objectives. The decision problem
for these games is in NP N co-NP [20], but no PTIME algorithm is known.
However, for LimAvg objectives the existence of an algorithm polynomial in
unary encoded weights implies that the computation of the distances can be
achieved in polynomial time as we use constant weights. Using the algorithm
of [20], in the case without fairness conditions d.,,, d.., and d,., distances can
be computed in time O((|S||S’|)? - (|E||S’| + |E’||S|)) where S and S’ are state
spaces of the two transition systems; and F and E’ are the sets of transitions of
the two systems. A variation of the algorithm in [20] gives a PTIME algorithm
for the Discy objectives (given a fixed \).

For systems with Biichi (weak fairness) conditions, the corresponding games
are graph games with LimAwvg parity games, for which the decision problem



264 P. Cerny, T.A. Henzinger, and A. Radhakrishna

is in NP N co-NP. However, the use of constant weights and the fact that the
implication of two Biichi conditions can be expressed as a parity condition with
no more than 3 priorities leads to a polynomial algorithm. Using the algorithm
presented in [5], we get a O((|S||S])? - (|E||S’| + |E’||S|)) algorithm.

For systems with Streett (strong fairness) conditions, the corresponding games
are graph games with LimAvg w-regular conditions. For an w-regular LimAuvg
game of n states, we can use the latest appearance records to convert into an
equivalent parity game of 20("1°8(") states and edges; and n priorities. The
algorithm of [5] gives a 20("198(n) algorithm where n = |S| - |S’].

4 Properties of Simulation Distances

We present quantitative analogues of boolean properties of the simulation pre-
orders. Proofs omitted are included in the companion report [3].

Triangle Inequality. Classical simulation relations satisfy the reflexivity and
transitivity property which makes them preorders. In an analogous way, we show
that the correctness and coverage distances satisfy the quantitative reflexivity
and the triangle inequality properties. This makes them directed metrics [§].

Theorem 1. d/ s a directed metric for f € {LimAuvg, Discy}, i.e.:
-VSeS:dl (8,5 =0

V81,8, 85 €S dl (S1,85) < df,

cor

(51, 52) +df

cor

(S2,53)

Proof: We will prove the result for systems with fairness conditions. The case
without fairness conditions is analogous. Consider any ¢ > 0. Let 75 and 73 be
5-optimal finite strategies for Player 2 in Cg, s, and Cgs, s, respectively. Now, we
construct a finite-memory strategy 7* for Player 2 in Cg, g,. If My and M3 are
the memories of 75 and 73 respectively, the memory of 7* will be Ms x Sy x Ms3.
The strategy 7 works as follows. Let the state of the game be (s1,#, s3) and
the memory of 7* be (ma, s2,m3).

— Let Player 1 choose to move according to the S; transition (s1,071, s7) to the
game state (s}, 01, s3). Consider the game position (s}, 01, s2) in Cg, g, and
let the 75 memory be at state mq. Say T updates its memory to m} and
chooses the successor (s}, #, s5) with transition symbol o7. Let the corre-
sponding OutMod(S2) transition be (sq, 01, s5).

— If the transition (s2,01, $5) exists in S, then let o4 = o1. Otherwise, there
will exist (s2, 09, s5) in Sy for some oa. Let 0, = g2. Now, consider the game
position (s5, 0%, s3) in Cs, s, and the memory state ms of 3. Say 73 updates
its memory to mj and chooses the successor (s5, #,s5) and the transition
symbol o4. Let the corresponding OutMod(Ss) transition be (s3,0%, s5).

— The memory of 7* is updated to (mj, sh, m%) and 7* chooses the succes-
sor (81, #,s%) with the transition symbol 1. The corresponding transition
(s3,01,85) exists in OutMod(S3) as there exists a transition with the same
source and destination as (ss, 0%, s5).



Simulation Distances 265

If Player 2 cannot match oy

s o1(v1,0) s o1(v1,1) s with a zero weight transition
1 1.1 1.2... . . . .
-0 or(va0) | or(wan) 1 while playing according to 7*, ei-
82,0 — 52,1 — 52,2... ther 7 or 73 would have also

o3(v2,0) o3(v2.1) P taken a non-zero weight transi-
82,0 82,1 82,2 .. . . .

o1 (v3.0) o1(va1) p2 tion. Using this fact, we can eas-
83,0 83,1 83,2« ily prove the required property.

Fix an arbitrary finite-memory
Player 1 strategy o. Now, let the play proceed according to the strategy 7*.
From the moves of the game and the state of the memory of 7*, we can ex-
tract four transitions for each round of play as above, i.e. an S; transition
(s1,01,87), an OutMod(S2) transition (sa,01,s5), an Sy transition (s2,0h, s5)
and an OutMod(Ss) transition (ss, 01, s). We depict the situation in the above
figure.

The play p in Cg, s, corresponds to the transitions in the first and the last
rows. This play can be decomposed into plays p; and ps in Cg, s, and Cs,, g, by
taking only the transitions in the first two and last two rows respectively. Now,
by the observation in the previous paragraph, each move in p has weight 2 only
if one of the corresponding moves in p; or py have weight 2. Let us denote the
nt™ move in a play n by ™. If both S; and S5 sequence of moves in p are fair
or if S sequence is unfair, we have the following for the LimAug case.

n n
v(p) = liminf | > (s < limint ! > (vl6h) +(6)
= LS () o) = tm LS o)+ tm S w(el)
T B R B
=liminf ;v(pi) +1liminf ;v(p’z)

< e (S1,52) + J  denr(S2,85) + ) = deon(S1, 52) + dews(S2,55) + ¢

All the strategies we are considering are finite-memory, and hence, each sequence
of weights is ultimately repeating. Therefore, we can use lim and liminf inter-
changeably in the above equations. The case for Discy is much simpler and not
shown here.

Hence, we have that the value of the play satisfies the required inequality
for the case that both S; and Ss perform fair computations. In the case that
S1 sequence is fair and S5 sequence is not fair, the value of the play will be 1.
However, by construction the value of either p; or ps will also be 1 and hence
the inequality holds.

Therefore, given an €, we have strategy for Player 2 which assures a value less
than d..,(S1,52) + deo: (S2, S3) + € for both the LimAuvg and Discy case. Hence,
we have the required triangle inequality.

It can be shown by construction of a Player 2 strategy that copies every
Player 1 move that d...(S,S) = 0. Hence, we have the result.



266 P. Cerny, T.A. Henzinger, and A. Radhakrishna

Theorem 2. d/ s a directed metric when f € {LimAuvg, Discy}, i.e. :
-VvSeS:dl (8,5)=0

V81, 85,85 € S dl (S1,S) < dl.

cov

(Sl, SQ) + df

cov

(S2,53)

The robustness distance satisfies the triangle inequality, but not the quantita-
tive reflexivity. The system S; in Figure [l is a witness system that violates
d,o1(S1,51) = 0. In fact, for LimAvg objectives and any rational value v € [0, 1],
it is easy to construct a system S, such that d,.,(S,,Sy) = v.

Theorem 3. d/, conforms to the triangle inequality for f € {LimAvg, Discy},
r.e. V51,890,853 €8 dfoh(Sl, Sg) < dfoh(Sl, SQ) + drfoh(SQ, Sg)

Compositionality In the qualitative case, compositionality theorems help
analyse large systems by decomposing them into smaller components. For ex-
ample, simulation is preserved when components are composed together. We
show that in the quantitative case, the distance between the composed systems
is bounded by the sum of the distances between individual systems.

If A and A’ are two transition systems, we define asynchronous and syn-
chronous composition of the two systems, written as A || A’ and A x A’ respec-
tively as follows: (a) The state space is S x.S’; (b) ((s, '), 0, (t,t')) is a transition
of A || A" iff (s,0,t) is a transition of A and s’ =t or (s',0,¢') is a transition
of A" and s =t, and (c) ((s,s'),0, (t,t')) is a transition of A x A’ iff (s,0,t) is a
transition of A and (s',0,t') is a transition of A’.

The following theorems show that the simulation distances between whole
systems is bounded by the sum of distances between the individual components.

Theorem 4. The correctness, coverage and robustness distances satisfy the fol-
lowing property, when f € {LimAuvg, Discy}:
df(Sl X Sy, T X Tg) < df(S1,T1) + df(SQ,TQ)

Theorem 5. The correctness, coverage and robustness dis-
tances  satisfy  the  following  property  when f = LimAuvg.
df(Sl H SQ,Tl H Tg) < a.df(Sl,Tl) + (1 — Ol).df(SQ,Tg)
where « is the fraction of times Sy is scheduled in Sy || S2 in the long run,

assuming that the fraction has a limit in the long run.

Existential and Universal Abstraction. Classically, properties of systems
are studied by studying the properties of over-approximations and under-
approximations. In an analogous way, we prove that the distances between sys-
tems is bounded from above and below by distances between abstractions of the
systems. Given T' = (S, X, E, s¢), an existential (universal) abstraction of it is
a system whose states are disjoint subsets of S and an edge exists between two
classes iff there exists an edge between one pair (all pairs) of states in the classes.

Theorem 6. Consider a specification S and an implementation I. Let S? and
I3 be existential abstractions, and S and IY be universal abstractions of S and I
respectively. The correctness, coverage and robustness distances satisfy the three
following properties when f € {LimAvg, Discy}:



Simulation Distances 267

(a) df (IV,S83) <df (1,5) <df (I?,57)
(b) df (I7,87) <df (1,5) <df (IV,57)
(c) dl,(17,87) < dl,(1,8) < dl,(I7,SY)

5 Robustness of Forward Error Correction Systems

Forward Error Correction systems (FECS) are a mechanism of error control for
data transmission on noisy channels. A very important characteristic of these
error correction systems is the mazimum tolerable bit-error rate, which is the
maximum number of errors the system can tolerate while still being able to
successfully decode the message. We show that this property can be measured
as the d,,, distance between a system and an ideal system (specification).
We will examine three forward error correction
Table 2. FECS’ robustness ~ Systems: one with no error correction facilities,
the Hamming(7,4) code [14], and triple modu-

Ty T3 d.w(T1,T2)  lar redundancy (TMR) that by design can toler-
None  Ideal 1 ate no errors, one error in seven and three bits
Hamming Ideal ~ 6/7 respectively. We measure the robustness with re-
TMR  Ideal  2/3 spect to an ideal system which can tolerate an un-

bounded number of errors. For the pseudo-code
for the three systems we are examining, the user is referred to the companion
report [3]. The only errors we allow are bit flips during transmission.

These systems were modelled and the values of d., of these systems measured
against the ideal system are summarized in Table[2l The robustness values mirror
the error tolerance values. In fact, each robustness value is equal to 1 — e where
e is the corresponding error tolerance value.

References

1. Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement rela-
tions. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp.
163-178. Springer, Heidelberg (1998)

2. Caspi, P., Benveniste, A.: Toward an approximation theory for computerised con-
trol. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS,
vol. 2491, pp. 294-304. Springer, Heidelberg (2002)

3. Cerny, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Technical Re-
port IST-2010-0003, IST Austria (June 2010)

4. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. In: Kaminski, M.,
Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385-400. Springer, Heidelberg
(2008)

5. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:
LICS, pp. 178-187 (2005)

6. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE
Trans. Software Eng. 35(2), 258-273 (2009)

7. de Alfaro, L., Henzinger, T., Majumdar, R.: Discounting the future in systems
theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 1022-1037. Springer, Heidelberg (2003)



268

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Cerny, T.A. Henzinger, and A. Radhakrishna

de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations
and metrics. Logical Methods in Computer Science 4(3) (2008)

Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318(3), 323-354 (2004)

Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69-86 (2007)

Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory, 163-178 (1979)

Fenton, N.: Software Metrics: A Rigorous and Practical Approach, Revised (Pa-
perback). Course Technology (1998)

Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC, pp. 60-65
(1982)

Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech.
J. 29, 147-160 (1950)

Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. Information and
Computation, 273-287 (1997)

Lincke, R., Lundberg, J., Lowe, W.: Comparing software metrics tools. In: ISSTA,
pp. 131-142 (2008)

Milner, R.: An algebraic definition of simulation between programs. In: IJCAI, pp.
481-489 (1971)

van Breugel, F.: An introduction to metric semantics: operational and denotational
models for programming and specification languages. Theor. Comput. Sci. 258(1-
2), 1-98 (2001)

van Breugel, F., Worrell, J.: Approximating and computing behavioural distances
in probabilistic transition systems. Theo. Comp. Sci. 360(1-3), 373-385 (2006)
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158(1&2), 343-359 (1996)



Mean-Payoff Automaton Expressions*

Krishnendu Chatterjeel, Laurent Doyen2, Herbert Edelsbrunner!,

Thomas A. Henzinger'3, and Philippe Rannou?-34

1 IST Austria (Institute of Science and Technology Austria)
2 LSV, ENS Cachan & CNRS, France
3 EPFL Lausanne, Switzerland
4 ENS Cachan Bretagne, Rennes, France

Abstract. Quantitative languages are an extension of boolean languages that as-
sign to each word a real number. Mean-payoff automata are finite automata with
numerical weights on transitions that assign to each infinite path the long-run av-
erage of the transition weights. When the mode of branching of the automaton is
deterministic, nondeterministic, or alternating, the corresponding class of quan-
titative languages is not robust as it is not closed under the pointwise operations
of max, min, sum, and numerical complement. Nondeterministic and alternating
mean-payoff automata are not decidable either, as the quantitative generalization
of the problems of universality and language inclusion is undecidable.

We introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the
four pointwise operations, and we show that all decision problems are decidable
for this class. Mean-payoff automaton expressions subsume deterministic mean-
payoff automata, and we show that they have expressive power incomparable to
nondeterministic and alternating mean-payoft automata. We also present for the
first time an algorithm to compute distance between two quantitative languages,
and in our case the quantitative languages are given as mean-payoff automaton
expressions.

1 Introduction

Quantitative languages L are a natural generalization of boolean languages that assign
to every word w a real number L(w) € R instead of a boolean value. For instance,
the value of a word (or behavior) can be interpreted as the amount of some resource
(e.g., memory consumption, or power consumption) needed to produce it, or bound the
long-run average available use of the resource. Thus quantitative languages can specify
properties related to resource-constrained programs, and an implementation L 4 satis-
fies (or refines) a specification Lg if L4 (w) < Lg(w) for all words w. This notion of
refinement is a quantitative generalization of language inclusion, and it can be used to
check for example if for each behavior, the long-run average response time of the sys-
tem lies below the specified average response requirement. Hence it is crucial to identify

* This research was supported by EPFL, IST Austria, LSV@ENS Cachan & CNRS, and the fol-
lowing grants: the European Union project COMBEST, the European Network of Excellence
ArtistDesign, the DARPA grant HR0011-05-1-0057, and the NSF grant DBI-0820624.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 269(283.]2010.
(© Springer-Verlag Berlin Heidelberg 2010



270 K. Chatterjee et al.

some relevant class of quantitative languages for which this question is decidable. The
other classical decision questions such as emptiness, universality, and language equiva-
lence have also a natural quantitative extension. For example, the quantitative emptiness
problem asks, given a quantitative language L and a threshold v € QQ, whether there ex-
ists some word w such that L(w) > v, and the quantitative universality problem asks
whether L(w) > v for all words w. Note that universality is a special case of language
inclusion (where L 4 (w) = v is constant).

Weighted mean-payoff automata present a nice framework to express such quantita-
tive properties [4]. A weighted mean-payoff automaton is a finite automaton with nu-
merical weights on transitions. The value of a word w is the maximal value of all runs
over w (if the automaton is nondeterministic, then there may be many runs over w),
and the value of a run r is the long-run average of the weights that appear along r.
A mean-payoff extension to alternating automata has been studied in [5]. Determinis-
tic, nondeterministic and alternating mean-payoff automata are three classes of mean-
payoff automata with increasing expressive power. However, none of these classes is
closed under the four pointwise operations of max, min (which generalize union and
intersection respectively), numerical complemenﬂ and sum (see Table[T)). Determinis-
tic mean-payoff automata are not closed under max, min, and sum [[6]; nondeterministic
mean-payoff automata are not closed under min, sum and complement [6]; and alter-
nating mean-payoff automata are not closed under sum [5]. Hence none of the above
classes is robust with respect to closure properties.

Moreover, while deterministic mean-payoff automata enjoy decidability of all quan-
titative decision problems [4], the quantitative language-inclusion problem is undecid-
able for nondeterministic and alternating mean-payoff automata [[10]], and thus also all
decision problems are undecidable for alternating mean-payoff automata. Hence al-
though mean-payoff automata provide a nice framework to express quantitative proper-
ties, there is no known class which is both robust and decidable (see Table [I)).

In this paper, we introduce a new class of quantitative languages that are defined
by mean-payoff automaton expressions. An expression is either a deterministic mean-
payoff automaton, or it is the max, min, or sum of two mean-payoff automaton ex-
pressions. Since deterministic mean-payoff automata are closed under complement,
mean-payoff automaton expressions form a robust class that is closed under max, min,
sum and complement. We show that (a) all decision problems (quantitative empti-
ness, universality, inclusion, and equivalence) are decidable for mean-payoff automaton
expressions; (b) mean-payoff automaton expressions are incomparable in expressive
power with both the nondeterministic and alternating mean-payoff automata (i.e., there
are quantitative languages expressible by mean-payoff automaton expressions that are
not expressible by alternating mean-payoff automata, and there are quantitative lan-
guages expressible by nondeterministic mean-payoff automata that are not expressible
by mean-payoff automata expressions); and (c) the properties of cut-point languages
(i.e., the sets of words with value above a certain threshold) for deterministic automata
carry over to mean-payoff automaton expressions, mainly the cut-point language is
w-regular when the threshold is isolated (i.e., some neighborhood around the thresh-
old contains no word). Moreover, mean-payoff automaton expressions can express all

! The numerical complement of a quantitative languages L is — L.



Mean-Payoff Automaton Expressions 271

Table 1. Closure properties and decidability of the various classes of mean-payoff automata.
Mean-payoff automaton expressions enjoy fully positive closure and decidability properties.

Closure properties Decision problems
max min sum comp. empt. univ. incl. equiv.
Deterministic X X X 2 v v v v
Nondeterministic v/ X X X v X X X
Alternating v v X vioox X % X
Expressions v v Vv v v v v v

examples in the literature of quantitative properties using mean-payoff measure [[1l6J7].
Along with the quantitative generalization of the classical decision problems, we also
consider the notion of distance between two quantitative languages L 4 and L, defined
assup,,| L a(w)—L g (w)|. When quantitative language inclusion does not hold between
an implementation L 4 and a specification L, the distance is a relevant information to
evaluate how far they are from each other, as we may accept implementations that over-
spend the resource but we would prefer the least expensive ones. We present the first
algorithm to compute the distance between two quantitative languages: we show that
the distance can be computed for mean-payoff automaton expressions.

Our approach to show decidability of mean-payoff automaton expressions relies on
the characterization and algorithmic computation of the value set {Lg(w) | w € X}
of an expression E, i.e. the set of all values of words according to E. The value set can
be viewed as an abstract representation of the quantitative language L, and we show
that all decision problems, cut-point language and distance computation can be solved
efficiently once we have this set.

First, we present a precise characterization of the value set for quantitative languages
defined by mean-payoff automaton expressions. In particular, we show that it is not
sufficient to construct the convex hull conv(Sg) of the set Sg of the values of simple
cycles in the mean-payoff automata occurring in E, but we need essentially to apply
an operator Fyi,(-) which given a set Z C R™ computes the set of points y € R"
that can be obtained by taking pointwise minimum of each coordinate of points of a set
X C Z. We show that while we need to compute the set Vg = Fiin(conv(Sg)) to
obtain the value set, and while this set is always convex, it is not always the case that
Frin(conv(Sg)) = conv(Fuin(Sg)) (Which would immediately give an algorithm to
compute V). This may appear counter-intuitive because the equality holds in R? but
we show that the equality does not hold in R? (Example[2).

Second, we provide algorithmic solutions to compute Fyyin (conv(.S)), for a finite set
S. We first present a constructive procedure that given S constructs a finite set of points
S’ such that conv(S") = Fyyin(conv(S)). The explicit construction presents interesting
properties about the set Fy,;, (conv(S)), however the procedure itself is computationally
expensive. We then present an elegant and geometric construction of Fi,i, (conv(S)) as
a set of linear constraints. The computation of Fi,in(conv(S)) is a new problem in

% Closure under complementation holds because LimInfAvg-automata and LimSupAvg-
automata are dual. It would not hold if only LimInfAvg-automata (or only LimSupAvg-
automata) were allowed.



272 K. Chatterjee et al.

computational geometry and the solutions we present could be of independent interest.
Using the algorithm to compute Fy,i, (conv(S)), we show that all decision problems for
mean-payoff automaton expressions are decidable. Due to lack of space, most proofs
are given in the fuller version [3].

Related works. Quantitative languages have been first studied over finite words in the
context of probabilistic automata [[17] and weighted automata [18]]. Several works have
generalized the theory of weighted automata to infinite words (see [1411216/2]] and [13]]
for a survey), but none of those have considered mean-payoff conditions. Examples
where the mean-payoff measure has been used to specify long-run behaviours of sys-
tems can be found in game theory [[15/20] and in Markov decision processes [8]]. The
mean-payoff automata as a specification language have been investigated in [446.5],
and extended in [1] to construct a new class of (non-quantitative) languages of infi-
nite words (the multi-threshold mean-payoff languages), obtained by applying a query
to a mean-payoff language, and for which emptiness is decidable. It turns out that a
richer language of queries can be expressed using mean-payoff automaton expressions
(together with decidability of the emptiness problem). A detailed comparison with the
results of [1] is given in Section 13} Moreover, we provide algorithmic solutions to the
quantitative language inclusion and equivalence problems and to distance computation
which have no counterpart for non-quantitative languages. Related notions of metrics
have been addressed in stochastic games [9]] and probabilistic processes [[11/19].

2 Mean-Payoff Automaton Expressions

Quantitative languages. A quantitative language L over a finite alphabet . is a func-
tion L : ¥* — R. Given two quantitative languages L; and Ly over X/, we denote by
max(Lq, L) (resp., min(L1, La), sum(Lq, L) and —L;) the quantitative language
that assigns max(Lq(w), La(w)) (resp., min(Lq(w), La(w)), Li(w) + La(w), and
—L1(w)) to each word w € X“. The quantitative language —L is called the comple-
ment of L. The max and min operators for quantitative languages correspond respec-
tively to the least upper bound and greatest lower bound for the pointwise order < such
that Ly = Lo if Lj (w) < La(w) for all w € X*. Thus, they generalize respectively the
union and intersection operators for classical boolean languages.

Weighted automata. A Q-weighted automaton is a tuple A = (Q, q1, X, §, wt), where

— (@ is a finite set of states, gy € @ is the initial state, and X is a finite alphabet;

- § C @Q x XY x @ is afinite set of labelled transitions. We assume that ¢ is fotal, i.e.,
forall ¢ € Q and o € X, there exists ¢’ such that (¢, 0,¢’) € J;

— wt : § — Qisaweight function, where Q is the set of rational numbers. We assume
that rational numbers are encoded as pairs of integers in binary.

We say that A is deterministic if for all ¢ € Q and o € X, there exists (¢, 0, ¢’) € § for
exactly one ¢’ € (). We sometimes call automata nondeterministic to emphasize that
they are not necessarily deterministic.

Words and runs. A word w € X is an infinite sequence of letters from 2. A lasso-
word w in 2 is an ultimately periodic word of the form w; - w4, where wy € X*



Mean-Payoff Automaton Expressions 273

is a finite prefix, and w, € X7 is a finite and nonempty word. A run of A over an
infinite word w = 0102 ... is an infinite sequence r = qpo1q102 ... of states and
letters such that () go = qr, and (i%) (i, 04+1,¢i+1) € O for all ¢ > 0. We denote by
wt(r) = vov1 ... the sequence of weights that occur in r where v; = wt(g;, 0it1, Gi+1)
forall 7 > 0.

Quantitative language of mean-payoff automata. The mean-payoff value (or limit-
average) of a sequence ¥ = vyv; ... of real numbers is either

' o n—1 ' B ' 1 n—1
LimInfAvg(v) = hnnilgf 0 iz:; v;, or  LimSupAvg(v) = llfl_)bolip 0 ; V5.
Note that if we delete or insert finitely many values in an infinite sequence of num-
bers, its limit-averages do not change, and if the sequence is ultimately periodic, then
the LimInfAvg and LimSupAvg values coincide (and correspond to the mean of the
weights on the periodic part of the sequence). However in general the LimInfAvg and
LimSupAvg values do not coincide.

For Val € {LimInfAvg, LimSupAvg}, the quantitative language L 4 of A is defined
by La(w) = sup{Val(wt(r)) | ris arun of A over w} for all w € X*. Accordingly,
the automaton A and its quantitative language L 4 are called LimInfAvg or LimSupAvg.
Note that for deterministic automata, we have L4(w) = Val(wt(r)) where r is the
unique run of A over w.

We omit the weight function wt when it is clear from the context, and we write
LimAvg when the value according to LimInfAvg and LimSupAvg coincide (e.g., for
runs with a lasso shape).

Decision problems and distance. We consider the following classical decision prob-
lems for quantitative languages, assuming an effective presentation of quantitative lan-
guages (such as mean-payoff automata, or automaton expressions defined later). Given
a quantitative language L and a threshold v € Q, the quantitative emptiness problem
asks whether there exists a word w € X“ such that L(w) > v, and the quantitative
universality problem asks whether L(w) > v for all words w € X¥.

Given two quantitative languages L1 and Lo, the quantitative language-inclusion
problem asks whether Lq(w) < Lo(w) for all words w € X, and the quantitative
language-equivalence problem asks whether L(w) = Lo(w) for all words w € X“.
Note that universality is a special case of language inclusion where L is constant.
Finally, the distance between L and Ly is Dgup (L1, L2) = sup,,c 5w | L1 (w) — La(w)].
It measures how close is an implementation L; as compared to a specification Ls.

It is known that quantitative emptiness is decidable for nondeterministic mean-payoff
automata [4]], while decidability was open for alternating mean-payoff automata, and
for the quantitative language-inclusion problem of nondeterministic mean-payoff au-
tomata. From recent undecidability results on games with imperfect information and
mean-payoff objective [10] we derive that these problems are undecidable (Theorem[3).

Robust quantitative languages. A class Q of quantitative languages is robust if the
class is closed under max, min, sum and complementation operations. The closure
properties allow quantitative languages from a robust class to be described compo-
sitionally. While nondeterministic LimInfAvg- and LimSupAvg-automata are closed



274 K. Chatterjee et al.

under the max operation, they are not closed under min and complement [6]. Alter-
nating LimInfAvg- and LimSu pAvg-automatzE are closed under max and min, but are
not closed under complementation and sum [3]]. We define a robust class of quantitative
languages for mean-payoff automata which is closed under max, min, sum, and com-
plement, and which can express all natural examples of quantitative languages defined
using the mean-payoff measure [116/7].

Mean-payoff automaton expressions. A mean-payoff automaton expression E is ob-
tained by the following grammar rule:

E:=A|max(E,FE) | min(E, E) | sum(E, E)

where A is a deterministic LimInfAvg- or LimSupAvg-automaton. The quantitative lan-
guage Lg of a mean-payoff automaton expression E' is Ly = Ly if E = Ais a
deterministic automaton, and Ly = op(Lg,,Lg,) if E = op(E4, E;) for op €
{max, min, sum}. By definition, the class of mean-payoff automaton expression is
closed under max, min and sum. Closure under complement follows from the fact that
the complement of max(E, F5) is min(—E7, — E5), the complement of min(FE1, Es)
is max(—E7, —FE»), the complement of sum(Eq, Fs) is sum(—E7, —F5), and the
complement of a deterministic LimInfAvg-automaton can be defined by the same au-
tomaton with opposite weights and interpreted as a LimSupAvg-automaton, and vice
versa, since — lim sup(vg, v1, ... ) = liminf(—wvg, —v1, ... ). Note that arbitrary linear
combinations of deterministic mean-payoff automaton expressions (expressions such
as c1 By + co Fs where ¢, co € QQ are rational constants) can be obtained for free since
scaling the weights of a mean-payoff automaton by a positive factor |c| results in a
quantitative language scaled by the same factor.

3 The Vector Set of Mean-Payoff Automaton Expressions

Given a mean-payoff automaton expression F, let Aj,..., A, be the determin-
istic weighted automata occurring in E. The vector set of E is the set Vg =
{{La,(w),...,La,(w)) € R" | w € X¥} of tuples of values of words according
to each automaton A;. In this section, we characterize the vector set of mean-payoff
automaton expressions, and in Section [ we give an algorithmic procedure to compute
this set. This will be useful to establish the decidability of all decision problems, and
to compute the distance between mean-payoff automaton expressions. Given a vector
v € R™, we denote by ||v|| = max; |v;| the co-norm of v.

The synchronized product of Ay, ..., A, such that A; = (Q;,q%, X, 0;, wt;) is the
Q"-weighted automaton Ag = Ay x-+-x A, = (Q1 XX Qn, (¢}, ..., q"), X, 5, wt)
such that ¢ = ((q1,-..,qn),0,(q,...,q,)) € 6 if t; := (g, 0,q,) € 4, for all
1 <i<n,and wt(t) = (wty(t1),...,wt,(¢,)). In the sequel, we assume that all A4;’s
are deterministic LimInfAvg-automata (hence, A is deterministic) and that the under-
lying graph of the automaton A g has only one strongly connected component (scc). We
show later how to obtain the vector set without these restrictions.

3 See [3] for the definition of alternating LimInfAvg- and LimSupAvg-automata that generalize
nondeterministic automata.



Mean-Payoff Automaton Expressions 275

a,l a,0 (0,1)

b,0 b, 1

. . H = conv(SEg)
Fmin H

o o 00 N )

Fig. 1. The vector set of E = max (A1, A2) is Fmin(conv(Sg)) 2 conv(SE)

For each (simple) cycle p in Ag, let the vector value of p be the mean of the tuples
labelling the edges of p, denoted Avg(p). To each simple cycle p in Ag corresponds a
(not necessarily simple) cycle in each A;, and the vector value (vy, . . ., v, ) of p contains
the mean value v; of p in each A;. We denote by Sg the (finite) set of vector values of
simple cycles in Ag. Let conv(Sg) be the convex hull of Sg.

Lemma 1. Let E be a mean-payoff automaton expression. The set conv(Sg) is the
closure of the set { Lg(w) | w is a lasso-word}.

The vector set of E contains more values than the convex hull conv(Sg), as shown by
the following example.

Example 1. Consider the expression F = max(A;, A2) where A; and Ay are deter-
ministic LimInfAvg-automata (see Fig.[I)). The product Az = A; x Az has two sim-
ple cycles with respective vector values (1,0) (on letter ‘a’) and (0,1) (on letter ‘b’).
The set H = conv(Sg) is the solid segment on Fig. [ and contains the vector values
of all lasso-words. However, other vector values can be obtained: consider the word
w = a™b"a"3b" ... wheren; = landn;11 = (nq +---+n;)% foralli > 1.Itis
easy to see that the value of w according to A; is 0 because the average number of a’s in
the prefixes a™1b™2 . .. a™ib"™i+! for i odd is smaller than mflintfnﬁ = 1+n1+1~~~+m
which tends to 0 when ¢ — oc. Since A; is a LimInfAvg-automaton, the value of w is 0
in A1, and by a symmetric argument the value of w is also 0 in As. Therefore the vector
(0,0) is in the vector set of E. Note that z = (21, z2) = (0, 0) is the pointwise mini-
mum of x = (z1,22) = (1,0) and y = (y1,y2) = (0,1), i.e. 2 = fmin(z,y) Where
z1 = min(z1,y1) and 2o = min(y1, y=2). In fact, the vector set is the whole triangular
region in Fig.[ i.e. V& = {fmin(z,y) | z,y € conv(Sg)}. |

We generalize fi, to finite sets of points P C R™ in n dimensions as follows:
fmin(P) € R™ is the point p = (p1,p2,...,pn) such that p; is the minimum 7"
coordinate of the points in P, for 1 < i < n. For arbitrary S C R", define
Fnin(S) = {fmin(P) | P is a finite subset of S}. As illustrated in Example[I] the next
lemma shows that the vector set Vi is equal to Fi,in(conv(Sg)).

Lemma 2. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and such that Ag has only one strongly connected component.
Then, the vector set of E is Vi = Finin(conv(Sg)).



276 K. Chatterjee et al.

For a general mean-payoff automaton expression E (with both deterministic
LimInfAvg- and LimSupAvg automata, and with multi-scc underlying graph), we can
use the result of Lemma 2] as follows. We replace each LimSupAvg automaton A;
occurring in F by the LimInfAvg automaton A} obtained from A; by replacing ev-
ery weight wt by —wt. The duality of liminf and limsup yields La; = —Ly,. In
each strongly connected component C of the underlying graph of Az, we compute
Ve = Fuin(conv(Se)) (where Sc is the set of vector values of the simple cycles in C)
and apply the transformation x; — —x; on every coordinate ¢ where the automaton A;
was originally a LimSupAvg automaton. The union of the sets | J, Ve where C ranges
over the strongly connected components of A gives the vector set of E.

Theorem 1. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and let Z be the set of strongly connected components in Ag.
For a strongly connected component C let Sc denote the set of vector values of the
simple cycles in C. The vector set of E is Vg = |Jpc z Finin(conv(Se)).

4 Computation of F,,;,(conv(S)) for a Finite Set .S

It follows from Theorem [T] that the vector set Vg of a mean-payoff automaton expres-
sion E can be obtained as a union of sets Fyi,(conv(S)), where S C R™ is a fi-
nite set. However, the set conv(S) being in general infinite, it is not immediate that
Finin(conv(S)) is computable. In this section we consider the problem of computing
Fnin(conv(S)) for a finite set S. In subsection [d.T] we present an explicit construction
and in subsection {.2] we give a geometric construction of the set as a set of linear
constraints. We first present some properties of the set Fi,i, (conv(S)).

Lemma 3. If X is a convex set, then Fyin(X) is convex.

By Lemma[3] the set Fi,in (conv(.S)) is convex, and since Fy,iy, is a monotone operator
and S C conv(S), we have Finin(S) € Fmin(conv(S)) and thus conv(EFpin(S)) C
Finin(conv(S)). The following proposition states that in two dimensions the above sets
coincide.

Proposition 1. Let S C R? be a finite set. Then, conv(Fyin(S)) = Fin(conv(S)).

We show in the following example that in three dimensions the above proposition does
not hold, i.e., we show that Fy,i, (conv(Sg)) # conv(Fuin(Sg)) in R3.

Example 2. We show that in three dimension there is a finite set S such that
Fiin(conv(S)) € conv(Fnin(S)). Let S = {q,r,s} with ¢ = (0,1,0), r =
(=1,-1,1),and s = (1,1,1). Then fuin(r,s) = 7, fmin(¢;7,8) = fmin(g,7) =
t = (=1,-1,0), and fmin(q,s) = ¢. Therefore Fiin(S) = {q,r,s,t}. Consider
p = (r+s)/2 = (0,0,1). We have p € conv(S) and fmin(p,q) = (0,0,0).
Hence (0,0,0) € Fin(conv(S)). We now show that (0,0,0) does not belong to
conv(Epmin(9)). Consider u = ag- g+ -r+as-s+ay-t such that win conv(Fiin(.9)).
Since the third coordinate is non-negative for g, r, s, and ¢, it follows that if o, > 0 or
as > 0, then the third coordinate of w is positive. If gy = 0 and «,, = 0, then we have
two cases: (a) if oy > 0, then the first coordinate of u is negative; and (b) if a; = 0,
then the second coordinate of u is 1. It follows (0, 0, 0) is not in conv(Fin(S)). O



Mean-Payoff Automaton Expressions 277

4.1 Explicit Construction

Example[2 shows that in general Fi,in(conv(S)) € conv(EFpin(S)). In this section we
present an explicit construction that given a finite set S constructs a finite set S’ such
that (a) S C .S’ C conv(.S) and (b) Fiin(conv(S)) C conv(Fyin(S")). It would follow
that Finin(conv(S)) = conv(Fiin(S")). Since convex hull of a finite set is computable
and F,in (S7) is finite, this would give us an algorithm to compute Fiy,;, (conv(S)). For
simplicity, for the rest of the section we write F' for Fiy;, and f for f,i, (i.e., we drop
the min from subscript). Recall that F'(S) = {f(P) | P finite subset of S} and let
F;(S) = {f(P) | P finite subset of S and | P| < i}. We consider S C R"™.

Lemma 4. Let S C R™ Then, F(S) = F,(S) and F,,(S) C F3~(S).

Iteration of a construction y. We will present a construction y with the following
properties: input to the construction is a finite set Y of points, and the output y(Y)
satisfies the following properties

1. (Condition C1). v(Y) is finite and subset of conv(Y").
2. (Condition C2). F»(conv(Y)) C conv(F(y(Y))).

Before presenting the construction  we first show how to iterate the construction to
obtain the following result: given a finite set of points X we construct a finite set of
points X’ such that F(conv(X)) = conv(F(X")).

Iterating . Consider a finite set of points X, and let Xo = X and X; = v(Xy). Then
conv(X7) C conv(conv(Xy)) (since by Condition C1 we have X; C conv(Xj))
and hence conv(X7) C conv(Xy); and
Fs(conv(Xy)) C conv(F(Xy)) (by Condition C2)
Fori > 2,let X; = «(X;_1), and then by iteration we obtain that for X,,_; we have
(1) conv(X,,—1) C conv(Xp) (2) F3""(conv(Xy)) C conv(F(X,_1))

From (1) and (2) above, along with the aid of Lemma 4] and Lemma 3l we show the
following properties:

(A) F(conv(Xy)) = F,(conv(Xg)) C Fi~*(conv(Xp)) € conv(F(X,_1))

(B) conv(F(X,,—1)) C conv(F(conv(X,,—1))) C F(conv(Xp))

By (A) and (B) above we have F'(conv(Xy)) = conv(F(X,,—1)). Thus given the fi-
nite set X, we have the finite set X,,_; such that (a) X C X,,_; C conv(X) and
(b) F(conv(X)) = conv(F(X,—_1)). We now present the construction y to complete
the result.

The construction . Given a finite set Y of points Y’ = ~(Y") is obtained by adding
points to Y in the following way:



278 K. Chatterjee et al.

— For all 1 < k < n, we consider all k-dimensional coordinate planes I supported
by a pointin Y;

— Intersect each coordinate plane I7 with conv(Y") and the result is a convex polytope
Yo

— We add the corners (or extreme points) of each polytope Y7 to Y.

The proof that the above construction satisfies condition C1 and C2 is given in the fuller
version [3], and thus we have the following result.

Theorem 2. Given a finite set S C R"™ such that |S| = m, the following assertion
holds: a finite set S with |S'| < m?" - 27"+ can be computed in mO™2") . 20(n*)
time such that (a) S C S" C conv(S) and (b) Finin(conv(S)) = conv(Fipin(S)).

4.2 Linear Constraint Construction

In the previous section we presented an explicit construction of a finite set of points
whose convex hull gives us Fi,in(conv(S)). The explicit construction shows interest-
ing properties of the set Fi,in(conv(S)), however, the construction is inefficient com-
putationally. In this subsection we present an efficient geometric construction for the
computation of F,;,(conv(S)) for a finite set S. Instead of constructing a finite set
S’ C conv(S) such that conv(S") = Fiin(conv(S)), we represent Fyi, (conv(S)) as a
finite set of linear constraints.

Consider the positive orthant anchored at the origin in R”, that is, the set of points
with non-negative coordinates: R} = {(z1,22,...,2,) | 2 > 0,Vi}. Similarly, the
negative orthant is the set of points with non-positive coordinates, denoted as R” =
—R%. Using vector addition, we write y + R”} for the positive orthant anchored at y.
Similarly, we write x + R™ = x — R’ for the negative orthant anchored at x. The
positive and negative orthants satisfy the following simple duality relation: v € y+ R’}
iffy € z — RY.

Note that R’} is an n-dimensional convex polyhedron. For each 1 < 7 < n, we
consider the (n — 1)-dimensional face L; spanned by the coordinate axes except the 4
one, thatis, L; = {(21,22,...,2,) € R} | z; = 0}.

We say that y + R} is supported by X if (y +1L;) N X # @ forevery 1 < j < n.
Assuming y + R’} is supported by X, we can construct a set ¥ C X by collecting
one point per (n — 1)-dimensional face of the orthant and get y = f(Y'). It is also
allowed that two faces contribute the same point to Y. Similarly, if y = f(Y) for a
subset Y C X, then the positive orthant anchored at y is supported by X. Hence, we
get the following lemma.

Lemma 5 (Orthant Lemma). y € Fi,in(X) iff y + R} is supported by X.

Construction. We use the Orthant Lemma to construct F,,;, (X). We begin by describ-
ing the set of points y for which the j™ face of the positive orthant anchored at y has
a non-empty intersection with X. Define F; = X — ILL;, the set of points of the form
r —z,wherex € X and z € ;.

Lemma 6 (Face Lemma). (y +L;) N X # @ iffy € F}.



Mean-Payoff Automaton Expressions 279

Proof. Let x € X be a point in the intersection, that is, x € y + LL;. Using the duality
relation for the (n — 1)-dimensional orthant, we get y € x — L;. By definition, x — L,
is a subset of X — IL;, and hence y € F}. 0

It is now easy to describe the set defined in our problem statement.
Lemma 7 (Characterization). F},,;,(X) = ﬂ;;l F;.

Proof. By the Orthant Lemma, y € Fy,in(X) iff y + R’} is supported by X. Equiva-
lently, (y +L;) N X # @ forall 1 < j < n. By the Face Lemma, this is equivalent to
y belonging to the common intersection of the sets F; = X — L;. a

Algorithm for computation of F},,;,(conv(S)). Following the construction, we get an
algorithm that computes Fnin (conv(S)) for a finite set S of points in R™. Let |S| = m.
We first represent X = conv(S) as intersection of half-spaces: we require at most m"
half-spaces (linear constraints). It follows that F; = X — IL; can be expressed as m™
linear constraints, and hence Fp,in(X) = ﬂ?‘zl F}; can be expressed as n - m™ linear
constraints. This gives us the following result.

Theorem 3. Given a finite set S of m points in R"™, we can construct in O(n-m™) time
n - m™ linear constraints that represent Fp,in(conv(S)).

5 Mean-Payoff Automaton Expressions Are Decidable

Several problems on quantitative languages can be solved for the class of mean-payoff
automaton expressions using the vector set. The decision problems of quantitative
emptiness and universality, and quantitative language inclusion and equivalence are all
decidable, as well as questions related to cut-point languages, and computing distance
between mean-payoff languages.

Decision problems and distance. From the vectorset Vg = {(La, (w), ..., La, (w)) €
R™ | w € X}, we can compute the value set Lg(X¥) = {Lg(w) | w € X¥}
of values of words according to the quantitative language of E as follows. The set
Lgp(X¥) is obtained by successive application of min-, max- and sum-projections
P, pie, i RY — R where i < j < k, defined by

p;?i“((xl, coonxk)) = (21, xmn,min(@g, 25), Tiga, o, Tjo1, T, - - The),s

(w1, wk) = (T1, 0 Tt T+ TG T, T 1, Tt - - Th),

mnax max (,,min

and analogously for p;**. For example, pi5™ (p33" (VE)) gives the set L p(X*) of word
values of the mean-payoff automaton expression £ = max (A1, min(Asz, A3)).
Assuming a representation of the polytopes of Vg as a boolean combination ¢ of
linear constraints, the projection p;?m(VE) is represented by the formula
= Fz;:opANx; <)V Tzt pp Ay < @)z — x4

where [z < e] is a substitution that replaces every occurrence of x by the expression
e. Since linear constraints over the reals admit effective elimination of existential quan-
tification, the formula ¢ can be transformed into an equivalent boolean combination



280 K. Chatterjee et al.

of linear constraints without existential quantification. The same applies to max- and
sum-projections.

Successive applications of min-, max- and sum-projections (following the structure
of the mean-payoff automaton expression E) gives the value set Lg(X*) C R as a
boolean combination of linear constraints, hence it is a union of intervals. From this set,
it is easy to decide the quantitative emptiness problem and the quantitative universality
problem: there exists a word w € X* such that Lg(w) > v if and only if Lg(X*) N
[v, +00[# @, and Lg(w) > v for all words w € X if and only if Lg(X¥)N] —
oo, v[= @.

In the same way, we can decide the quantitative language inclusion problem “is
Lg(w) < Lp(w) for all words w € X ?” by a reduction to the universality problem
for the expression F' — F and threshold 0 since mean-payoff automaton expressions are
closed under sum and complement. The quantitative language equivalence problem is
then obviously also decidable.

Finally, the distance between the quantitative languages of £ and F’ can be computed
as the largest number (in absolute value) in the value set of F' — E. As a corollary, this
distance is always a rational number.

Comparison with [[I|]. The work in [1]] considers deterministic mean-payoff automata
with multiple payoffs. The weight function in such an automaton is of the form wt :
§ — Q2. The value of a finite sequence (v;); <i<n (Where v; € Q%) is the mean of the
tuples v;, that is a d-dimensional vector Avg,, = TlL : 2?2_01 v;. The “value” associated
to an infinite run (and thus also to the corresponding word, since the automaton is
deterministic) is the set Acc C R? of accumulation points of the sequence (Avg,, ),>1.

In [1], a query language on the set of accumulation points is used to define
multi-threshold mean-payoff languages. For 1 < ¢ < n, let p; : R® — R be the
usual projection along the i coordinate. A query is a boolean combination of atomic
threshold conditions of the form min(p;(Acc)) ~ v or max(p;(Acc)) ~ v where
~e {<,<,>,>}and v € Q. A word is accepted if the set of accumulation points
of its (unique) run satisfies the query. Emptiness is decidable for such multi-threshold
mean-payoff languages, by an argument based on the computation of the convex hull
of the vector values of the simple cycles in the automaton [[1]] (see also Lemmal[Il). We
have shown that this convex hull conv(Sg) is not sufficient to analyze quantitative lan-
guages of mean-payoff automaton expressions. It turns out that a richer query language
can also be defined using our construction of Fi,in(conv(Sg)).

In our setting, we can view a d-dimensional mean-payoff automaton A as a product
Py of 2d copies A% of A (where 1 < i < dandt € {LimInfAvg, LimSupAvg}), where
Al assigns to each transition the i coordinate of the payoff vector in A, and the au-
tomaton is interpreted as a t-automaton. Intuitively, the set Acc of accumulation points
of a word w satisfies min(p;(Acc)) ~ v (resp. max(p;(Acc) ~ v) if and only if the
value of w according to the automaton A! for t = LimInfAvg (resp. t = LimSupAvg) is
~ v. Therefore, atomic threshold conditions can be encoded as threshold conditions on
single variables of the vector set for P,4. Therefore, the vector set computed in Sectiond]
allows to decide the emptiness problem for multi-threshold mean-payoff languages, by
checking emptiness of the intersection of the vector set with the constraint correspond-
ing to the query.



Mean-Payoff Automaton Expressions 281

Furthermore, we can solve more expressive queries in our framework, namely where
atomic conditions are linear constraints on LimInfAvg- and LimSupAvg-values. For ex-
ample, the constraint LimInfAvg(wt;) + LimSupAvg(wty) ~ v is simply encoded as
T + x; ~ v where k, [ are the indices corresponding to Aiimlanvg and AEimSupAvg re-
spectively. Note that the trick of extending the dimension of the d-payoff vector with,
say Wtgy1 = wty +wto, is not equivalent because Lim{5}Avg(wty ) £Lim{%F}Avg(wta)
is not equal to Lim{%}Avg(wt; + wts) in general (no matter the choice of {#} and ).
Hence, in the context of non-quantitative languages our results also provide a richer
query language for the deterministic mean-payoff automata with multiple payoffs.

Complexity. All problems studied in this section can be solved easily (in polynomial
time) once the value set is constructed, which can be done in quadruple exponential
time. The quadruple exponential blow-up is caused by (a) the synchronized product
construction for E, (b) the computation of the vector values of all simple cycles in Ag,
(c) the construction of the vector set Fiyin(conv(Sg)), and (d) the successive projec-
tions of the vector set to obtain the value set. Therefore, all the above problems can be
solved in 4EXPTIME.

Theorem 4. For the class of mean-payoff automaton expressions, the quantitative
emptiness, universality, language inclusion, and equivalence problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem Ml is in sharp contrast with the nondeterministic and alternating mean-payoff
automata for which language inclusion is undecidable (see also Table[I). The following
theorem presents the undecidability result that is derived from the results of [10].

Theorem 5. The quantitative universality, language inclusion, and language equiva-
lence problems are undecidable for nondeterministic mean-payoff automata; and the
quantitative emptiness, universality, language inclusion, and language equivalence
problems are undecidable for alternating mean-payoff automata.

6 Expressive Power and Cut-Point Languages

We study the expressive power of mean-payoff automaton expressions (%) according to
the class of quantitative languages that they define, and (i) according to their cut-point
languages.

Expressive power comparison. We compare the expressive power of mean-payoff
automaton expressions with nondeterministic and alternating mean-payoff automata.
The results of [6] show that there exist deterministic mean-payoff automata A; and
As such that min(A;, As) cannot be expressed by nondeterministic mean-payoff au-
tomata. The results of [5] shows that there exists deterministic mean-payoff automata
A; and Ay such that sum(A;, As) cannot be expressed by alternating mean-payoff
automata. It follows that there exist languages expressible by mean-payoff automaton
expression that cannot be expressed by nondeterministic and alternating mean-payoff
automata. In Theorem [l we show the converse, that is, we show that there exist lan-
guages expressible by nondeterministic mean-payoff automata that cannot be expressed
by mean-payoff automaton expression. It may be noted that the subclass of mean-payoff



282 K. Chatterjee et al.

automaton expressions that only uses min and max operators (and no sum operator) is
a strict subclass of alternating mean-payoff automata, and when only the max operator
is used we get a strict subclass of the nondeterministic mean-payoff automata.

Theorem 6. Mean-payoff automaton expressions are incomparable in expressive
power with nondeterministic and alternating mean-payoff automata: (a) there exists
a quantitative language that is expressible by mean-payoff automaton expressions, but
cannot be expressed by alternating mean-payoff automata; and (b) there exists a quan-
titative language that is expressible by a nondeterministic mean-payoff automaton, but
cannot be expressed by a mean-payoff automaton expression.

Cut-point languages. Let L be a quantitative language over X'. Given a threshold n €
R, the cut-point language defined by (L,n) is the language (i.e., the set of words)
L2 = {w € X% | L(w) > n}. It is known for deterministic mean-payoff automata
that the cut-point language may not be w-regular, while it is w-regular if the threshold
is isolated, i.e. if there exists € > 0 such that | L(w) — n| > ¢ for all words w € X* [6].

We present the following results about cut-point languages of mean-payoff automa-
ton expressions. First, we note that it is decidable whether a rational threshold 7 is
an isolated cut-point of a mean-payoff automaton expression, using the value set (it
suffices to check that 7 is not in the value set since this set is closed). Second, iso-
lated cut-point languages of mean-payoff automaton expressions are robust as they re-
main unchanged under sufficiently small perturbations of the transition weights. This
result follows from a more general robustness property of weighted automata [6] that
extends to mean-payoff automaton expressions: if the weights in the automata occur-
ring in E' are changed by at most ¢, then the value of every word changes by at most
max(k, 1) - € where k is the number of occurrences of the sum operator in E. Therefore
Dsup(L g, Lpe) — 0 when € — 0 where F is any mean-payoff automaton expression
obtained from E' by changing the weights by at most €. As a consequence, isolated cut-
point languages of mean-payoff automaton expressions are robust. Third, the isolated
cut-point language of mean-payoff automaton expressions is w-regular. To see this, note
that every strongly connected component of the product automaton A g contributes with
a closed convex set to the value set of E. Since the max-, min- and sum-projections
are continuous functions, they preserve connectedness of sets and therefore each scc C
contributes with an interval [m¢, M¢| to the value set of F. An isolated cut-point 7
cannot belong to any of these intervals, and therefore we obtain a Biichi-automaton for
the cut-point language by declaring to be accepting the states of the product automaton
Agp that belong to an scc C such that m¢ > 7. Hence, we get the following result.

Theorem 7. Let L be the quantitative language of a mean-payoff automaton expres-

sion. If n is an isolated cut-point of L, then the cut-point language L=" is w-regular.

7 Conclusion and Future Works

We have presented a new class of quantitative languages, the mean-payoff automaton
expressions which are both robust and decidable (see Table[), and for which the dis-
tance between quantitative languages can be computed. The decidability results come



Mean-Payoff Automaton Expressions 283

with a high worst-case complexity, and it is a natural question for future works to either
improve the algorithmic solution, or present a matching lower bound. Another question
of interest is to find a robust and decidable class of quantitative languages based on the
discounted sum measure [4].

References

1.

13.

14.

15.
16.

17.
. Schiitzenberger, M.P.: On the definition of a family of automata. Information and Con-

19.

20.

Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff
conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333-347. Springer,
Heidelberg (2009)

. Bojanczyk, M.: Beyond omega-regular languages. In: Proc. of STACS. LIPIcs, vol. 3.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)

. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff au-

tomaton expressions. CoRR, abs/1006.1492 (2010)

. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Mar-

tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385-400. Springer, Heidelberg (2008)

. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Gegbala, M.

(ed.) FCT 2009. LNCS, vol. 5699, pp. 3—13. Springer, Heidelberg (2009)

. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quan-

titative languages. In: Proc. of LICS, pp. 199-208. IEEE, Los Alamitos (2009)

. Chatterjee, K., Ghosal, A., Henzinger, T.A., lercan, D., Kirsch, C., Pinello, C., Sangiovanni-

Vincentelli, A.: Logical reliability of interacting real-time tasks. In: Proc. of DATE, pp. 909—
914. ACM, New York (2008)

. de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic sys-

tems. In: Proc. of LICS, pp. 454—465. IEEE, Los Alamitos (1998)

. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: Proc.

of LICS, pp. 99-108. IEEE, Los Alamitos (2007)

. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruriczyk, S.: Energy and mean-payoff

games with imperfect information. In: Proc. of CSL. LNCS, Springer, Heidelberg (to appear,
2010)

. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled markov sys-

tems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258-273.
Springer, Heidelberg (1999)

. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-

2), 69-86 (2007)

Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Heidelberg
(2009)

Droste, M., Kuske, D.: Skew and infinitary formal power series. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 426-438.
Springer, Heidelberg (2003)

Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of
Game Theory 8(2), 109-113 (1979)

Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 199-213. Springer, Heidelberg (2007)

Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230-245 (1963)

trol 4(2-3), 245-270 (1961)

Vidal, E., Thollard, F., de 1a Higuera, C., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-
state machines-part I. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1013—-1025 (2005)
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput.
Sci. 158(1&2), 343-359 (1996)



Obliging Games

Krishnendu Chatterjeel, Florian Horn'+2, and Christof L(Sding3

LIST Austria (Institute of Science and Technology Austria)
2 CNRS, LIAFA, Université Paris 7, France
3 RWTH Aachen, Germany
krish.chat@ist.ac.at, horn@liafa.jussieu. fr,
loeding@informatik.rwth-aachen.de

Abstract. Graph games of infinite length provide a natural model for open re-
active systems: one player (Eve) represents the controller and the other player
(Adam) represents the environment. The evolution of the system depends on the
decisions of both players. The specification for the system is usually given as an
w-regular language L over paths and Eve’s goal is to ensure that the play belongs
to L irrespective of Adam’s behaviour.

The classical notion of winning strategies fails to capture several interesting
scenarios. For example, strong fairness (Streett) conditions are specified by a
number of request-grant pairs and require every pair that is requested infinitely
often to be granted infinitely often: Eve might win just by preventing Adam from
making any new request, but a “better” strategy would allow Adam to make as
many requests as possible and still ensure fairness.

To address such questions, we introduce the notion of obliging games, where
Eve has to ensure a strong condition @, while always allowing Adam to satisfy
a weak condition ¥. We present a linear time reduction of obliging games with
two Muller conditions ¢ and ¥ to classical Muller games. We consider obliging
Streett games and show they are co-NP complete, and show a natural quantita-
tive optimisation problem for obliging Streett games is in FNP. We also show
how obliging games can provide new and interesting semantics for multi-player
games.

1 Introduction

Games played on graphs provide a natural theoretical model to study problems in verifi-
cation, such as synthesis of reactive systems [PR89, RW87], synthesis of systems from
specifications [BL69, |[Chu62], and p-calculus model-checking [Koz83\, [Sti01]].

The vertices of the graph represent the states of the system, the edges represent tran-
sitions, the paths represent behaviours, and the players (Eve and the opponent Adam)
represent the controller for the system and its environment, respectively. The goal of
the controller is to satisfy a specification (desired set of behaviours) irrespective of the
way the environment behaves: the synthesis of such a controller corresponds to the
construction of a winning strategy in the graph game.

The class of w-regular objectives provide a robust specification language to express
properties that arise in verification and synthesis of reactive systems [[Tho97]. Muller

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 284294, 2010.
(© Springer-Verlag Berlin Heidelberg 2010



Obliging Games 285

and parity specifications are two canonical ways to specify w-regular objectives. In the
classical study of graph games with w-regular objectives, the input is a graph game G
and an w-regular objective @, and the question is whether there is a winning strategy
for a player (Eve) that ensures that @ is satisfied irrespective of the strategy of the other
player (Adam).

A specification @ often consists of two parts: an assumption @ 4 and a guarantee P
and the specification requires ® 4 — @. The specification @ 4 typically represents the
environment assumption under which the guarantee ¢ needs to be ensured. A win-
ning strategy for @ may vacuously satisfy @ by violating @ 4, whereas a better strategy
would ensure the “strong” specification ¢ and allow the “weak” specification ¢ 4. For
example, consider a Streett (fairness) condition: the fairness condition consists of a set
of k request-grant pairs, and requires that every request that appears infinitely often,
must be granted infinitely often. A winning strategy may satisfy the fairness conditions
by not allowing requests to happen, whereas a better strategy would be as follows: it
ensures the strong specification that asks for the satisfaction of the strong fairness spec-
ification, and allows for the corresponding weak specification that requires that grants
are allowed to happen infinitely often.

To address the question above we consider a very general framework of games with
two different levels of specifications: a strong one ¢ and a weak one ¥ which are,
in general, independent of each other. A “gracious” strategy for Eve must ensure the
strong specification (in the classical sense), and allow the weak one: Adam has the
choice to satisfy &. We refer to them as obliging games. In the important case of fairness
specifications, the weak specification can be self-derived from the fairness specification,
and the weak specification requires that the requests are allowed to happen infinitely
often. The contribution of our work is as follows:

1. We present a linear time reduction of obliging games (with two Muller conditions)
to classical games (with a single Muller condition) such that Eve has a winning
strategy in the classical game if, and only if, she has a gracious strategy in the
obliging game.

2. We present a detailed analysis of the reduction and memory requirement for oblig-
ing games when both specifications are given as parity conditions.

3. In the case of fairness specifications (Streett-generalized Biichi conditions), we
show that the problem of the existence of a gracious strategy for Eve is co-NP
complete.

We also study a quantitative optimisation version of this problem and show that it
belongs to FNP (functional NP).

4. We also show how our concepts can be extended to multi-player games, leading to
new and interesting semantics in the context of verification.

Related work. Our notion of “gracious strategy” can be likened to “permissive strategies”,
which allow as many behaviours as possible) [BIWO02]. In [BJIWO02] it has been shown
that most general strategies can be constructed only for safety conditions, and for parity
objectives a strategy that captures behaviour of all memoryless winning strategies was
presented. Our work is different as our objectives are more general (Muller), and the
goal is to construct a strategy that allows a given objective. Our work is also related to



286 K. Chatterjee, F. Horn, and C. Loding

multi-player games on graphs and Nash equilibria [CMJ04, [UmmO08]. However in Nash
equilibria there are no two levels of specifications as considered in obliging games.

2 Definitions

Arenas. A two-player game arena A is a triple (V, V5, E) where (V, E) is a finite
directed graph without deadlocks (each vertex has at least one outgoing edge) and V is
a subset of V' called Eve’s vertices. The vertices in v \ V,, are Adam’s vertices and are
usually denoted by V.

Plays and Strategies. A play p on the arena A is a (possibly infinite) sequence p1p3 . . .
of vertices such that for all i < |p|, we have (p;, pi+1) € E. The limit vertices of
p, denoted by Inf(p), are the vertices occurring infinitely often in p: Inf(p) = {q |
34, p; = q}.

A strategy of Eve on the arena A is a function o from V*V, to V such that for all
x € V*and forall v € V,, we have (v, 0(2v)) € E. A play p is consistent with o (or a
o-play) if forall i < |p|, pi € Vo = piy1 =o(p1...pi).

Strategies can also be defined as strategies with memory. In this case, o is a tuple
(M, mgp, o™, o™), where M is the (possibly infinite) set of memory states, myg is the
initial memory content, ¢ : (E x M) — M is the memory update function, and
o : (V x M) — V is the next-move function. The memory-update function can
naturally be extended from edges to finite sequences of vertices: 0% (vovy - - - v5, m) is
m if i = 0 and 0" ((vi—1,v;), 0% (vov1 - - -vi—1,m)) if i > 1. Using this definition, the
next move determined by o for a play zv € V*V, is 0®(v, m), where m = ¢} (zv, mg).
A strategy is finite-memory if M is a finite set, and memoryless if M is a singleton.
Adam’s strategies are defined in a similar way.

Muller conditions. A I'-colouring v of an arena is a partial function of the edges of
A to an arbitrary set of colours I". We use partial functions here because this some-
times eases the specification of the winning conditions. However, for formal reasons,
we sometimes use a colour “—” that corresponds to the undefined value. This colour is
not considered when building the limit set of a colour sequence (hence the limit set can
be empty).

A Muller condition ® on I is a subset of 27, and a play p of A satisfies  if, and
only if, Inf(y(p)) € @. Here, y(p) corresponds to the sequence of colours obtained by
applying ~y to the edges of p. This is a finite or infinite sequence over I, or an infinite
sequence over I" U {—} using the above convention.

We also consider the usual special cases of Muller conditions (recall that we allow
partial colourings):

— the Biichi condition is the condition {{T},{L, T}}on {L, T};

— the co-Biichi condition is the condition {0, {T}}on {1, T};

— the k-generalised Biichi condition is the condition {{1,...,k}}on {1,...,k};

— the k-parity condition is the condition on {0, ...,k — 1} containing all and only
the subsets whose minimum is even;

— ak-Streert conditionon I" is given by aset { (R1,G1), . .., (Ri, Gi)) } of k request-
grant pairs of subsets of I'. It contains all and only the subsets that for each ¢ either
intersect G; or do not intersect R;.



Obliging Games 287

In the course of our proofs, it is often useful to consider boolean operations on Muller
conditions, in which we interpret negation as complementation and conjunction as
Cartesian product: if ¢ and ¥ are conditions on Iy and Iy, then & A V¥ is the con-
dition on I's x Iy which contains all and only the sets whose projection on the first
component belongs to @, and projection on the second component belongs to ¥.

Notice that colourings are partial functions, so their product may return a colour
for only one of the components. We then use the neutral colour “—” for the undefined
component.

Classical and obliging games. A classical Muller game G on I is a triple (4, ,®)
where A is an arena, -y is a I'-colouring of A, and ¢ —the winning condition— is a
Muller condition on I'. An infinite play p of A is winning for Eve if it satisfies . A
strategy o is uniformly winning (resp. winning from a vertex ¢) for Eve if any o-play
(resp. any o-play starting in ¢) is winning for her. A vertex ¢ is winning for Eve if she
has a winning strategy from q. The winning region of Eve is the set of vertices winning
for her. Adam’s winning plays, strategies, vertices, and regions are defined likewise,
except that a play is winning for Adam if it does not satisfy &.

An obliging game G is a tuple (A, vg,P,vw,¥), where A is an arena, v¢ is a
I's-colouring, ¢ —the strong condition— is a Muller condition on I'p, vy is a Iy-
colouring, and ¥ — the weak condition— is a Muller condition on I'y. A uniformly
gracious strategy o for Eve is such that:

— every infinite o-play p satisfies @;

— for any finite o-play z, there is an infinite o-play p satisfying ¥ such that x is a

prefix of p .

So, Eve has to allow Adam to build a play satisfying ¥ at any position, regardless
of what he previously did. However, she does not need to ensure ¥ if Adam is not
willing to cooperate. Notice that there is no dual notion of spoiling strategy for Adam.
In particular, the notion of “determinacy” does not make sense in obliging games, as
Adam cannot demonstrate Eve’s lack of grace with a single strategy.

We refer to obliging games by the names of the two conditions, with the strong
condition first: for example, a parity/Biichi obliging game is an obliging game G =
(A, v¢, P, yw, V), where P is a parity and ¥ is a Biichi condition.

Example 1. Consider the parity/parity obliging game in Figure [Il The pairs define the
colours of the edge, the first component corresponding to the strong condition (®) and
the second component to the weak condition (¥).

In order to satisfy &, a play has to either take the edge (g4, g¢) infinitely often, or
the edge (gs, go) infinitely often and the edge (g7, g2) finitely often. To satisfy ¥, an
infinite play has to take the edge (g7, ¢2) infinitely often. In this game Eve has to behave
differently depending on whether Adam moves to g3 or g4. If the token reaches gg
coming from g4, then Eve can safely move to ¢;. If the game reaches gg coming from
qs3, then she can first complete the cycle gsgs9sqs and then move to g5 and then to gg.
This strategy can be implemented using memory of size 3 and it is a gracious strategy
since each path satisfies ® and Adam can produce a play satisfying ¥ by always moving
to q4.

It is not difficult to observe that there is no gracious strategy for Eve with memory
of size two for this game. O



288 K. Chatterjee, F. Horn, and C. Loding

3,1
qo &b \JCI1L/ q2
(3,3)  (0,3) 1,2)
(06
g (@) G

Fig. 1. A parity/parity obliging game

3 Reducing Obliging Games to Classical Games

In this section we provide a general method to reduce obliging games to classical games
with a single winning condition. The underlying idea is based on the construction of
merciful strategies from [BSLO4]|: we construct an extended game graph in which Adam
decides either to choose his next move himself or to leave this choice to Eve. If he al-
ways leaves the choice to Eve from some point onwards, then Eve has to prove that
Adam indeed has the possibility to satisfy the weak condition. Consequently, the win-
ning condition for Eve in the new game is the strong condition from the obliging game
in conjunction with the weak condition in the case that Adam only finitely often makes
his own choice.

Note that in the case that Eve has to satisfy the weak condition, the game remains in a
subarena that is completely controlled by Eve. We use this fact by allowing to simplify
the weak condition by means of non-deterministic w-automata. The required technical
framework is defined below.

We use w-automata with an acceptance condition specified on the transitions of the
automaton rather than on the states. In our setting, an w-automaton is of the form M =
(Q, %, qin, A, vr,T), where @ is a finite set of states, X' is the input alphabet, ¢;, € Q
is the initial state, A C @ x X' x @ is the transition relation, v : A — Iy is a (partial)
colouring function, and 7" is an acceptance condition over [* similar to the winning
conditions defined for games. We write transitions (g, a, ) with yr((¢,a,7)) = c as
g =5

A run of M on an infinite word o € X is an infinite sequence ( = qpq1q2 - - - of
states such that go = ¢, and (¢;, (i), gi+1) € A foreachi > 0. We define the infinite
colour sequence induced by « and ( as the sequence obtained by applying vy to each
transition:

(e, ¢) = yr((q0, 2(0), q1))yr ((q1, (1), g2))yr (g2, @(2), g3)) - - -

The run ¢ on « is accepting if vy (a, {) satisfies the acceptance condition. The language
L(M) accepted by M is the set of all infinite words on which M has an accepting run.
As usual, we call an automaton deterministic if for each pair of state ¢ € () and each
a € X there is at most one transition (g, a,r) € A.
We are interested in automata accepting languages that correspond to winning condi-
tions. Given a winning condition @ over I'¢, we define the language Ly C (I'pU{—})¥



Obliging Games 289
as the set of all infinite sequences that satisfy @ (recall that “—"" is a neutral colour repre-
senting the undefined value and is not considered for evaluating the winning condition).

Lemma 2. Let G = (A, v, P, vw, V) be an obliging game with arena A = (V, E),
and let M = (Q,I'v,qin, A,vr,T) be an w-automaton accepting Ly. There is a
game G' = (A',va, A) and a mapping v : V. — V' with the following properties:
(1) A = @ A (Y V B) for a Biichi condition B; (2) for each vertexv € V, Eve has a
gracious strategy from v in G if, and only if, she has a winning strategy from the vertex
t(v) in G'; and (3) from a winning strategy for Eve in G’ from 1(v) with memory of
size n one can construct a gracious strategy for Eve in G from v with memory of size

2-1Q) - n.

Proof. To simplify the reduction, we assume without loss of generality that the arena is
alternating, i.e. E C (Vo x Vo) U (Vg x Vo).

We construct G’ in such a way that, at any time in a play, Adam can ask Eve to show
a path that satisfies ¥. This is realised by introducing a second copy of G in which
all vertices belong to Eve. In this copy we additionally keep track of the states of the
automaton M recognising ¥.

If Adam chooses to switch to this copy, Eve makes the choices on behalf of Adam.
Consequently, if from some point onward Adam decides to always leave his choices
to Eve, the resulting play has to satisfy @ and ¥. Otherwise, it is sufficient for Eve to
satisfy @. The Biichi condition is used to distinguish these two cases. Whether ¥ is
satisfied can be decided using the condition 7" on the state sequence of M.

Formally, the game G’ = (A’, 4, A) and the mapping ¢ are constructed as follows:

— The winning conditionis A = @ A (T V B) where B is a Biichi condition.
— The arena A’ = (V/, V!, E’) and the colouring v, of E’ are defined as follows:
o V' = (V, x{play}) U (Vg x {choose} x Q) U (V x {show} x Q);
o V! = (Vo x{play})U (V x {show} x Q);
e Let u and v be vertices in V'; ¢ and r be states in @Q); and a, b, ¢ be colours in

I's, I'y, I’y such that u M vin F and ¢ be, r in A. Then the following

edges belong to F':
uweVy,: (u,play) (o), (v, choose, qn,)
u € Vg : (u, choose, q) ACIADN (v, play)
(u, choose, q) L), (u, show, q)
u €V, : (u, show,q) {aed), (v, choose, 1)
u € Vg : (u, show, q) laal), (v, show,r)

— The mapping ¢ maps each v € V; to (v, play) and each v € Vj to (v, choose, gip,).
A schematic view of the construction is shown in Figure 2l We refer to the nodes
from V,, x {play} as the play part of the game, the nodes from V' x {show} x @ as the
show part, and the nodes from Vg x {choose} x @ as the choice part.
We start by showing that a gracious strategy o for Eve in the obliging game G can be
used to define a winning strategy for Eve in G': Each play p’ in G’ naturally corresponds
to a play p in G that is obtained by removing the vertices of the type (v, show, q) for



290 K. Chatterjee, F. Horn, and C. Loding

Vo x {play} Vo x {choose} x Q V x {show} x Q

O——1
O/7DD<-

play choose show

Fig. 2. Schematic view of the reduction from Lemma 2]

v € Vg and then projecting away the {play, show, choose} and the () components
from the vertices. Let us denote this operation by del, i.e., p = del(p’).

The winning strategy of Eve in G’ is defined as follows. For a finite play «’ that
ends in a node of the form (u, play) with u € V,, Eve looks at the play del(z’) in
G, checks which move (u, v) she would have made according to o, and then moves to
(v, choose, qi,) in G'.

If the play =’ in G’ enters the show part in a node (u, show, ¢;,) for the first time
after having been in the play part, then Eve considers the play x = del(z’) in G. Since
o 1s a gracious strategy, there is a possible continuation p of x such that xp is a o-play
satisfying ¥. In particular, since ¥ is a Muller condition, p satisfies ¥ and there is an
accepting run ¢ of M on p. Eve stores p and ¢ in her memory for the strategy o’ and
now moves from (u, show, ¢;,,) according to p for the first component, and according
to ¢ for the third component.

If the play 2’ in G’ is in a node (u, show, ¢) such that Eve has already stored some
p and ¢ in her memory as described above, then she simply moves according to p and
(: she checks at which position in the play she has stored p and ¢, which part of p and
(¢ she has already reproduced since then, and makes the corresponding next move to
reproduce one more step of p and (.

If Adam at some point decides to enter the play part, i.e., to move to a vertex from
Vo x {play}, then Eve erases p and ¢ from her memory.

If 7/ is an infinite play according to this strategy, then it certainly satisfies ¢ because
del(w') is a o-play and the I's sequence of 7’ corresponds to the one of del(w’) except
for some insertions of the neutral colour —. Furthermore, either Adam infinitely often
moves to a vertex from V,, x {play}, in which case the Biichi condition B is satisfied,
or from some point onward Eve simulates p and ¢ to infinity, yielding a play in G’
that satisfies 7" because ( satisfies 7. This shows that 7 is winning and hence we have
defined a winning strategy for Eve, as desired.

For the other direction it suffices to show the third claim of the lemma since the
existence of a winning strategy for Eve in G’ implies the existence of a finite-memory
winning strategy. Let (M, mg, <™, <) be a winning strategy for Eve in G'. We define
a gracious strategy ({p,s} x Q@ x M, (P, ¢in, mo), 0™, o) for Eve in G. This strategy
distinguishes two cases to decide whether to use ¢™ as defined on the play vertices or on
the show vertices. These two cases depend on the behaviour of Adam. If Adam makes a
move in G from a vertex v that corresponds to the move of ¢<* from the vertex (v, show)
in G', then o* updates the first component of the memory to S, i.e., o™ starts simulating



Obliging Games 291

¢™ as if the play is in the show part of G’. If Adam makes a move that is not of this kind,
then o updates the first component of the memory to p and o™ simulates the behaviour
of ¢™ on the play part of G'.

We first give the definition of the next move function ¢®, which is quite straightfor-
ward:

a®(u, (P, qin, m)) = v with ¢*((u, play), m) = (v, play, girn),
o"(u, (s,q,m)) = vif *((u, show, q),m) = (v, play, q') for some ¢'.

The definition of the memory update function o" is a bit more involved since we
have to distinguish the different behaviours of player 1 as explained above. Below, we
define the update of the memory for a move from « to v in G for different memory
contents. If u € V,,, we assume that v is the vertex that is chosen by the next move
function o™ because otherwise the move from u to v cannot occur in a play according
to the strategy.

(i) If u € V5, then 0®(u, (P, gin, m) ,v) = (P, @in, m') with

m' = *((u, play), m, (v, choose, qin))
and 0% (u, (S, q,m) ,v) = (p,¢’,m’) with
m’ = ¢*((u, show, q),m, (v, choose, q'))

and ¢*((u, show,q),m) = (v, choose,q’) (here we use the assumption that
o®(u, (s,q,m)) = v, i.e., v is the target of the next move function).

) If w € Vg and <¢*((u,show,q),<s"((u, choose, q), m, (u, show,q))) =
(v, show, q'), then o*(u, (X,q, m) ,v) = (S,¢’,m') with

m'’ = ¢} ((u, play, q)(u, show, q)(v, show, '), m)

for all x € {p,s}. This is the case where the move from u to v of Adam in G
corresponds to the move that Eve would have made in his place in G’. To obtain
m’ we look at how the memory would have evolved in G’ in the move sequence
in which Adam gives the choice to Eve.

(i) If v € Vg and <¢*((u,show,q),s*((u, choose, q), m, (u, show, q))) =
(v', show, q') for some v’ # v, then o (u, (X, ¢, m) ,v) = (P, gin, m') with

m’ = ¢"((u, choose, q), m, (v, play))

forall x € {p, s}. This is the case where Adam makes a choice different from the

one that Eve would have made on his behalf in G’.
We now show that this strategy is indeed gracious in G. From the definition of o™ and
c" one can see that for every o"-play p there exists a corresponding ¢®-play p’ that is
obtained from play by inserting appropriate vertices from Vg x {show} x @ at those
positions where ¢® updates the first component of the memory to S, i.e., if (ii) in the
definition of ¢* is applied.

To formalize this let p = vyvivs - -+ be a o®-play and let

<X07q07m0> <X17q17m1> <X2,q2,m2> RS ({pvs} X Q X M)w

be the corresponding sequence of memory contents according to o*.



292 K. Chatterjee, F. Horn, and C. Loding

Similar to the operation del from the first implication of the proof we now define
an operation ins that transforms p into a corresponding play based on the sequence of
memory contents. By abuse of notation we also define the operation ins to work on
tuples of nodes by inserting the necessary information (we assume for simplicity that
the play starts in V5):

ins(p) = (vo, play)ins(vo, v1)ins(vy, ve)ins(ve, v3) - - -
with

(Vit1, play) ifX;y1 =pandv;11 € V,,
ins(vi, vit1) = § (Vip1, choose, git1) ifvi € Vg,
(vi, show, g;)(vit1, show, qiy1) if ;41 = Sandviy1 € V.

Now one can verify that a o-play p in G is transformed by ins into a ¢-play p’ in G’.
Therefore, p satisfies @ because the colour sequences from I'g of p and p’ are the same
except for some insertions of the neutral colour —. Furthermore, at each position of a
play in G, Adam has the possibility to move so that Eve updates her memory content to
an element with s in the first component: for a o-play = in G Adam checks what would
have been the move of Eve according to ¢ in G’ for the play ins(x) extended by Adam’s
move to the show part of the game. If Adam always copies these ¢ moves to G from
some point onwards, then the resulting play p satisfies ¥ because ins(p) is a ¢-play in
G’ that does visit V5, x {play} only finitely often and hence satisfies 7. This means that
the simulated run of M on the play is accepting and therefore the corresponding play
in G satisfies ¥. This shows that ¢ is indeed a gracious strategy. g

Lemma 2] provides a reduction of obliging games to standard games. This notion is
formalised as follows. We say that an obliging game G can be reduced to a standard
game G’ with memory m if:

1. there is a mapping ¢ from the vertices of G to the vertices of G’ such that for each
vertex v of G Eve has a gracious strategy from v in G if, and only if, Eve has a
winning strategy from ¢(v) in G’;

2. given a winning strategy for Eve from ((v) in G’ with memory of size n, one can
compute a gracious strategy for Eve from v in G with memory of size m - n.

We also use this notion in connection with classes of games. A class KC of games can be
reduced to a class K’ of games with memory m if each game G in K can be reduced to
a game G’ in K’ with memory m. The time complexity of such a reduction is the time
needed to compute G’ from G, to compute the mapping ¢, and to compute the strategy
in G from the strategy in G'.

We can now instantiate LemmaP]for several types of obliging games to obtain results
on their complexity. The first instantiation is for general Muller conditions using the
fact that the winning sequences for a condition ¥ can be recognised by a one state
w-automaton which itself uses the condition V.

Theorem 3. There is a linear time reduction with memory 2 from ®/V obliging games
to standard (P N (¥ V B))) games for a Biichi condition B.

The point of using a non-deterministic w-automaton in the formulation of Lemma [2] is
illustrated by the following result.



Obliging Games 293

Theorem 4. There is a polynomial time reduction with memory 2(¢ + 1)k from 2k-
parity/20-parity obliging games to standard (2k + 2)-parity games.

Proof. We apply Lemma 2] with a Biichi automaton accepting Ly for the 2{-parity
condition ¥. Such a Biichi automaton is easily constructed using (¢ 4 1) states. On the
first state the automaton loops and outputs | for each input priority. Using the other ¢
states the automaton can guess at any point that 27 is the minimal priority which appears
infinitely often in the input sequence. It moves to state ¢ and outputs T whenever priority
27 appears on the input. For greater priorities it outputs L, and for priorities smaller than
2 there is no transition. One easily verifies that this automaton accepts Ly.

Lemma 2] yields a reduction with memory 2(¢ + 1) to a (2k-parity A Biichi) game
(using the fact that a disjunction of two Biichi conditions is equivalent to a single Biichi
condition). Analysing the Zielonka tree [Zie98, [DJW97|] of a (2k-parity A Biichi) con-
dition shows that it has k leafs and the technique from [DJW97] gives a reduction to
2k + 2-parity game with memory k. The composition of these two reductions gives the
claimed reduction. One can note that this proof also works if the weak condition is a
Rabin condition with ¢ pairs. O

Since parity games are determined with memoryless strategies (see, e.g., [Tho97]|
or [Zie98])), Theorem [ directly gives an upper bound on the memory required for a
gracious strategy in parity/parity obliging games.

Corollary 5. If Eve has a gracious strategy in a 2k-parity/2{-parity obliging game,
then she has a gracious strategy with memory of size at most 2(¢ + 1)k.

In the case ¢ = 1, we have rather tight lower bound for the required memory. Indeed,
it is possible to construct a 2k-parity/Biichi obliging game where Eve needs £ memory
states. The case k = 6 is depicted in Figure[3] (in order to improve readability, there are
some vertices of Adam from where two edges lead to the same target).

Eve has a gracious strategy with & mem-
ory states that works as follows: if Adam just
played 21, she plays 2¢ + 1; otherwise, she
plays 2(k — 1). This strategy clearly ensures
the parity condition. Furthermore, Adam can
get an infinite number of visits to the T edge,
by always answering 2(¢ — 1) to 2i + 1.

There is no gracious strategy for Eve with
less than k states: as there are k successors of
the central vertex, one of them is never vis-
ited. Thus, Eve can ultimately not propose the
lower ones safely, and either does not guaran-
tee the parity condition or eventually forbids Fig. 3. Atleast 6 memory states
the Biichi condition.

4 Obliging Streett Games

Streett games are a very natural setting for obligingness questions. Indeed, the Streett
condition allows Eve to win by either granting requests or denying Adam the possibil-



294 K. Chatterjee, F. Horn, and C. Loding

ity to make them. It is thus natural to consider k-Streett/k-generalised Biichi objectives,
where the objectives of the weak condition are exactly the requests of the strong one.
We call them simply obliging Streett games. As a generalised Biichi condition can be
recognised by a Streett automaton with only one state, we can use Lemma [2] to re-
duce an obliging k-Streett game with n vertices to a classical 2k-Streett game with 2n
vertices. As classical Streett games can also be reduced to obliging Streett games (by
always allowing Adam to go to a vertex where all the pairs are forever requested and
granted) and classical Streett games problem is co-NP complete [EJ88], it follows that
the obliging Streett games problem is co-NP complete:

Theorem 6. The decision problem of existence of a gracious strategy for Eve in oblig-
ing Streett games is co-NP complete.

In the cases where Eve does not have a gracious strategy, we might be interested in
knowing how many simultaneous requests she can allow. This can be defined as a
threshold problem: “Given ¢ < k, is it possible to allow Adam to visit at least ¢ differ-
ent requests?”; or as an optimisation problem: “What is the highest ¢ such that Eve can
allow Adam to visit at least ¢ different requests?”.

Theorem 7. The threshold problem of obliging Streett games is co-NP complete; and
the optimisation problem of obliging Streett games is in FNP.

Proof. As the optimal number of request that Eve can allow is between —1 and k, the
second statement follows directly from the first one. Furthermore, it is clear that the
threshold problem is co-NP hard since it generalises both classical Streett games (for
¢ = 0) and obliging Streett games (for { = k).

In order to show that the threshold problem belongs to co-NP, we use once more
LemmalZ2l we just need a non-deterministic automaton recognising the words where at
least ¢ different colours are visited infinitely often. We describe such an automaton in

Figure M) with the following conventions: the alphabet is {1, ..., &}, and for each i,
R; = {i}; there is an unmarked loop on each state; unmarked edges are enabled for
each letter and are labelled L. O

5 Multi-player Obliging Games

An interesting feature of obliging games is that they provide new and interesting se-
mantics for multi-player games. In this setting, Eve has more than one opponent and
each must be allowed to satisfy his weak condition, regardless of what the others do.

The definitions are similar to the two-player case, mutatis mutandis: a n-player arena
A is a finite directed graph (V, E) without deadlocks whose vertices are partitioned in
n subsets, Vo, Vi,...,Vo_1; an-player obliging game is a n-player arena and as many
colourings and conditions: Yo, @; v1, ¥1; . . . ; Yn—1, ¥n—1. A gracious strategy o for Eve
in such a game is such that:

— any infinite o-play p satisfies @;

— forany 1 < i < n, for any finite o-play x, there is a strategy 7; for Player ¢
consistent with x such that any infinite play consistent with both o and 7; satisfies
;.



Obliging Games 295

Fig. 4. Biichi automaton recognising repeated ¢-out-of-k

We can solve n-player obliging games by reduction to classical two-player games,
in a way similar to the two-player case. However, we do not use automata to check
whether the play satisfies the weak conditions, for two reasons: first, we cannot use non-
deterministic automata: even if one opponent yields control of his moves, the others can
still interfere so Eve cannot simply “choose” a correct run; second, we would have to
remember the current state of each automaton, leading to an exponential blow-up in the
size of the arena.

Theorem 8. Let G = (A, 74, P, 71,1, - -; Yn-1, Yn—1) be a n-player obliging game
with arena A = (V, E, Vo, Vi, ..., V,,_1). We can compute, in time linear in the size of
G, a game G' = (A',yr,T) of size linear in the size of G and a mapping v : V. — V'
with the following properties:
1. T =dANWVBi)A. .. (W_1VB,_1), where By, . .., B,_1 are Biichi conditions.
2. For each vertex v in A, Eve has a gracious strategy from v in G if, and only if, she
has a winning strategy from the vertex 1(v) in G'.

Proof. The construction of G’ is similar to its counterpart in the proof of Lemma
Each opponent has the possibility to leave Eve choose his move in his stead. If one of
them eventually always does so, the play has to satisfy his weak condition; otherwise,
the corresponding Biichi condition allows Eve to ignore it. The proof is even simpler,
as there is no need to keep track of a run of an automaton. g

6 Conclusion

In this work we introduced the notion of obliging games and presented a linear time re-
duction to classical games for all w-regular objectives specified as Muller objectives. We
also presented a complete analysis for the reduction and memory requirement when the
specifications are given as parity objectives. We studied the important class of fairness
(Streett) conditions, and showed that obligingness Streett games are co-NP complete.
We also studied a natural quantitative optimization problem for obliging Streett games



296 K. Chatterjee, F. Horn, and C. Loding

and proved inclusion in FNP. We showed extension of the notion of obligingness games
to multi-player games and how it leads to new and interesting semantics. In future work
we will explore how the solution of obliging games can be used to synthesize more
desirable controllers.

References

[BJW02]
[BL69]

[BSLO04]

[Chu62]

[CMJ04]

[DIWIT]

[EJ88]

[Koz83]
[PR89]

[RW87]
[Sti01]
[Tho97]

[UmmO8]

[Zie98]

Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to
safety games. Theoretical Informatics and Applications 36(3), 261-275 (2002)
Biichi, J.R., Landweber, L.H.: Solving Sequential Conditions by Finite-State Strate-
gies. Transactions of the AMS 138, 295-311 (1969)

Bontemps, Y., Schobbens, P.-Y., Loding, C.: Synthesis of Open Reactive Sys-
tems from Scenario-Based Specifications. Fundamenta Informaticae 62(2), 139-169
(2004)

Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International
Congress of Mathematicians, pp. 23-35 (1962)

Chatterjee, K., Majumdar, R., Jurdziiski, M.: On Nash Equilibria in Stochastic
Games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26-40. Springer, Heidelberg (2004)

Dziembowski, S., Jurdziniski, M., Walukiewicz, I.: How Much Memory is Needed
to Win Infinite Games? In: Proceedings of LICS, pp. 99-110. IEEE, Los Alamitos
(1997)

Emerson, E.A., Jutla, C.S.: The Complexity of Tree Automata and Logics of Pro-
grams. In: Proceedings of FOCS, pp. 328-337. IEEE, Los Alamitos (1988)

Kozen, D.: Results on the propositional p-calculus. TCS 27(3), 333-354 (1983)
Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proceedings of
POPL, pp. 179-190. ACM, New York (1989)

Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event pro-
cesses. SIAM Journal on Control and Optimization 25(1), 206-230 (1987)

Stirling, C.: Modal and Temporal Properties of Processes. Graduate Texts in Com-
puter Science. Springer, Heidelberg (2001)

Thomas, W.: Languages, Automata, and Logic. In: Handbook of Formal Languages.
Beyond Words, vol. 3, ch. 7, pp. 389-455. Springer, Heidelberg (1997)

Ummels, M.: The Complexity of Nash Equilibria in Infinite Multiplayer Games.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 20-34. Springer,
Heidelberg (2008)

Zielonka, W.: Infinite Games on Finitely Coloured Graphs with Applications to Au-
tomata on Infinite Trees. Theoretical Computer Science 200(1-2), 135-183 (1998)



Multipebble Simulations for Alternating Automata
(Extended Abstract)

Lorenzo Clemente and Richard Mayr

LFCS. School of Informatics. University of Edinburgh. UK

Abstract. We study generalized simulation relations for alternating Biichi au-
tomata (ABA), as well as alternating finite automata. Having multiple pebbles
allows the Duplicator to “hedge her bets” and delay decisions in the simulation
game, thus yielding a coarser simulation relation. We define (k1, k2)-simulations,
with k1/k2 pebbles on the left/right, respectively. This generalizes previous work
on ordinary simulation (i.e., (1, 1)-simulation) for nondeterministic Biichi au-
tomata (NBA) in [4] and ABA in [5]], and (1, k)-simulation for NBA in [3].

We consider direct, delayed and fair simulations. In each case, the (k1, k2)-
simulations induce a complete lattice of simulations where (1,1)- and (n,n)-
simulations are the bottom and top element (if the automaton has n states),
respectively, and the order is strict. For any fixed k1, k2, the (k1, k2)-simulation
implies (w-)language inclusion and can be computed in polynomial time. Further-
more, quotienting an ABA w.r.t. (1, n)-delayed simulation preserves its language.
Finally, multipebble simulations yield new insights into the Miyano-Hayashi con-
struction [10]] on ABA. A technical report with full proofs is available [2].

1 Introduction

We consider simulation relations on (alternating) finite- and infinite word automata:
nondeterministic finite automata (NFA), alternating finite automata (AFA), nondeter-
ministic Biichi automata (NBA) and alternating Biichi automata (ABA). Simulation pre-
order is a notion of semantic comparison of two states, called left state and right state,
in automata, where the larger right state can match all moves of the smaller left one in a
stepwise way. Simulation preorder implies language inclusion on NFA/AFA/NBA/ABA
[415]], but not vice-versa. While checking language inclusion is PSPACE-complete for
all these classes of automata [8l/11]], the simulation relation can be computed in polyno-
mial time [4.5].

Checking simulation preorder between two states can be presented as a game with
two players, Spoiler and Duplicator, where Spoiler tries to prove that the simulation re-
lation does not hold while Duplicator has the opposite objective. In every round of the
simulation game, Spoiler chooses a transition from the current left state and Duplicator
must choose a transition from the current right state which has the same action label.
Duplicator wins iff the game respects the accepting states in the automata, and different
requirements for this yield finer or coarser simulation relations. In direct simulation,
whenever the left state is accepting, the right state must be accepting. In delayed simu-
lation, whenever the left state is accepting, the right state must be eventually accepting.
In fair simulation, if the left state is accepting infinitely often, then the right state must

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 2971-312,|2010.
(© Springer-Verlag Berlin Heidelberg 2010



298 L. Clemente and R. Mayr

be accepting infinitely often. For finite-word automata, only direct simulation is mean-
ingful, but for Biichi automata delayed and fair simulation yield coarser relations; see
[4] for an overview.

These notions have been extended in two directions. Etessami [3]] defined a hierarchy
of (1, k) multipebble simulations on NBA. Intuitively, the k£ pebbles on the right side
allow Duplicator to “hedge her bets” and thus to delay making decisions. This extra
power of Duplicator increases with larger k and yields coarser simulation relations.

A different extension by Wilke and Fritz [5] considered simulations on ABA. In
an ABA, a state is either existential or universal. The idea is that Spoiler moves from
existential left states and universal right states, and dually for Duplicator.

Our contribution. We consider (k1, k2)-simulations on ABA, i.e., with multiple peb-
bles on both sides: k; on the left and ks on the right. Intuitively, Duplicator controls
pebbles on universal states on the left and existential states on the right (and dually for
Spoiler). This generalizes all previous results: the (1, k)-simulations on NBA of [3]] and
the (1, 1)-simulations on ABA of [5]].

For each acceptance condition (direct, delayed, fair) this yields a lattice-structured
hierarchy of (k1, k2)-simulations, where (1, 1)- and (n, n)-simulations are the bottom
and top element if the automaton has n states. Furthermore, the order is strict, i.e.,
more pebbles make the simulation relation strictly coarser in general. For each fixed
k1,ko > 0, (k1, ke)-simulations are computable in polynomial time and they imply
language inclusion (over finite or infinite words, depending on the type of simulation).

Quotienting AFA w.r.t. (k1, k2)-simulation preserves their language. We also provide
a corresponding result for ABA by showing that quotienting ABA w.r.t. (1, n)-delayed
simulation preserves the w-language. This is a non-trivial result, since a naive gener-
alization of the definition of semielective-quotients [5] does not work. We provide the
correct notion of semielective-quotients for (1, n)-simulations on ABA, and show its
correctness. Moreover, unlike for NBA [3]], quotienting ABA w.r.t. (1, k) delayed sim-
ulation for 1 < k < n does not preserve their language in general.

Finally, multipebble simulations have close connections to various determinization-
like constructions like the subset construction for NFA/AFA and the Miyano-Hayashi
construction [10]] on ABA. In particular, multipebble simulations yield new insights into
the Miyano-Hayashi construction and an alternative correctness proof showing an even
stronger property. For full proofs, please see the technical report [2].

2 Preliminaries and Basic Definitions

Automata. An alternating Biichi automaton (ABA) Q is atuple (Q, X, q;, A, E, U, F),
where () is a finite set of states, X' is a finite alphabet, g; is the initial state, { ¥, U} is
a partition of @) into existential and universal states, A C @ x X' x @ is the transition
relation and F' C () is the set of accepting states. We say that a state ¢ is accepting if
q € F. We use n to denote the cardinality of (). A nondeterministic Biichi automaton
(NBA) is an ABA with U = ), i.e., where all choices are existential. We say that Q is
complete iff V(q,a) € Q x X. 3(q,a,q') € A.

An ABA Q recognizes a language of infinite words £¢(Q). The acceptance con-
dition is best described in a game-theoretic way [6]. Given an input word w € X“,



Multipebble Simulations for Alternating Automata 299

the acceptance game G*(Q,w) is played by two players, Pathfinder and Automa-
ton. Existential states are controlled by Automaton, while Pathfinder controls universal
states. Automaton wins the game G*“(Q, w) iff she has a winning strategy s.t., for any
Pathfinder counter-strategy, the resulting computation visits some accepting state in F’
infinitely often. The language £ (Q) recognized by Q is defined as the set of words
w € X¥ s.t. Automaton wins G* (Q, w). See [5]] for a formal definition.

If we view an ABA Q as an acceptor of finite words, then we obtain an alternat-
ing finite automaton (AFA). For w = wyp ... w,, € X7, the finite acceptance game
G1"(Q, w) is defined as above for G¥(Q, w), except that the game stops when the last
symbol w,, of w has been read, and Automaton wins if the last state is in F. [,ﬁ“(Q) is
defined in the obvious way. An alternating transition system (ATS) Q is an AFA where
all states are accepting, and 7r(Q) := L£i"(Q) is its trace language. When we just say
“automaton”, it can be an ABA, AFA or ATS, depending on the context.

If Q is a set, with 2¢ we denote the set of subsets of @, and, for any k& € N, with
2Q:% we denote the subset of 2% consisting of elements of cardinality at most k. When
drawing pictures, we represent existential states by @ and universal states by E .

Multipebble simulations. We define multipebble simulations in a game-theoretic way.
The game is played by two players, Spoiler and Duplicator, who play in rounds. The
objective of Duplicator is to show that simulation holds, while Spoiler has the comple-
mentary objective. We use the metaphor of pebbles for describing the game: We call
a pebble existential if it is on an existential state, and universal otherwise; Left if it is
on the Lh.s. of the simulation relation, and Right otherwise. Intuitively, Spoiler controls
existential Left pebbles and universal Right pebbles, while Duplicator controls universal
Left pebbles and existential Right pebbles. The presence of > 1 pebbles in each side is
due to the further ability of Duplicator to split pebbles to several successors. Moreover,
Duplicator always has the possibility of “taking pebbles away”. Since not all available
pebbles have to be on the automaton, k£ + 1 pebbles are at least as good as k.

Formally, let Q be an alternating automaton, qg € 2@kt g ki -set and sg € 29k
ko-set. We define the basic (k1, k2)-simulation game G, kz)(qo, so) as follows. Let

I'SP and I'PUP be a set of actions (or transitions) for the two players (to be specified
below). In the initial configuration (qg, o), Left pebbles are on qg and Right pebbles
on sg. If the current configuration at round ¢ is (q;, s;), then the next configuration
(dit1,8i+1) is determined as follows:

— Spoiler chooses a transition (q;, s;, a;, q',s’) € I'>P.
— Duplicator chooses a transition (q;, s;, a;,q’,s’, i1 1,8i41) € IPUP,

We now define the two transition relations. Let g¥ := q N E be the set of existential
states in q, and define qV,s”, sV similarly. Let P, := 29%1 x 2@F2 and Py := X x
2@k x 2Q:k2 'SP C Py x Py models Spoiler’s moves: (q,s,a,q’,s’) € I'SP iff
Spoiler chooses a as the next input symbol, and

- ' is obtained from q¥ by choosing a successor for each pebble in q¥. Formally,

q’ = {select(A(q,a)) | ¢ € q¥ }, where select(r) chooses an element in .

— Similarly, s’ is obtained from sV by choosing a successor for each pebble in sV



300 L. Clemente and R. Mayr

Duplicator’s moves are of the form (q, s, a,q’,s’,q",s") € ' C P; x Py x Pi:

- q" is a non-empty k;-subset of ¢’ U A(qY, a), and
— 5" is a non-empty ko-subset of s’ U A(s¥, a).

Notice that Duplicator is always allowed to “take pebbles away”, and to “hedge her
bets” by splitting pebbles into different successors. We say that a pebble on state ¢ is
stuck if ¢ has no a-successor (where a is clear from the context).

We now formally define strategies. A strategy for Spoiler is a function 6 : PP, +—
Py compatible with TSP, i.e., for any (7 - (q,s)) € P} P, 6(n - (q,s)) = (a,q,s)
implies (q,s, a,q’,s’) € I'SP. Similarly, a strategy for Duplicator is a function o :
Py P, — (Py — Py) compatible with T'°"P, i.e., for any 7 € P;P; and (a,q’,s’) €
Py, o(m)(a,q,s") = (q",s") implies (q,s,a,q’,s’,q",s") € ', A play 7 =
(do,so0){qi,s1) -+ € P U Py is a finite or infinite sequence of configurations in P;.
For a word w = apa;--- € X* U XY st jw| = |7| — 1 (with [7] = w = w — 1
if 7 € X)), we say that a play « is o-conform to w iff, for any ¢ < |r|, there exists
some (q;,s;, a;, q},s}) € 'SP s.t. o((qo,so) - - - (qi,8:))(ai, d,8)) = (Qiv1,Sit1)-
Intuitively, o-conform plays are those plays which originate when Duplicator’s strategy
is fixed to o; d-conform plays, for § a Spoiler’s strategy, are defined similarly. Below,
both strategies are fixed, and the resulting, unique play is conform to both.

The game can halt prematurely, for pebbles may get stuck. In this case, the win-
ning condition is as follows: If there exists a Left pebble which cannot be moved, then
Duplicator wins. Dually, if no Right pebble can be moved, then Spoiler wins.

Remark 1. Our winning condition differs from the one in [5] when pebbles get stuck.
There, the losing player is always the one who got stuck. If we let Duplicator win
when Spoiler is stuck on a universal Right pebble, we would obtain a simulation which
does not imply language containment. (Notice that “simulation implies containment”
is proved in [5] under the assumption that pebbles do not get stuck.) Furthermore, the
condition in [3] is unnecessarily strong when Duplicator is stuck on a universal Left
pebble, where letting Spoiler win is too conservative. Our definition generalizes the
correct winning condition to multiple pebbles, for which we prove “simulation implies
containment” without further assumptions.

In all other cases, we have that all Left pebbles can be moved and at least one Right
pebble can be moved, and the two players build an infinite sequence of configurations
7 = (qo, S0){d1,S1) - - - € Py. The winning condition is defined in terms of a predicate
C(m) on 7. Different choices of C(r) lead to different notions of simulation.

1. Ordinary (k1, ko)-simulation. The acceptance condition is ignored, and Duplicator
wins as long as the game doesn’t halt: C(7) : <= true.

2. Existential direct (k1, k2)-simulation. Duplicator wins if, whenever every ¢ € q; is
accepting, then some s € s; is accepting:

C(n) <= (Vi.q; CF = s;,NF #0) .

3. Universal direct (ki, k2)-simulation. Duplicator wins if, whenever some q € q; is
accepting, then every s € s; is accepting:

C(r) <= VMi.qiNF#0) = s, CF) .



Multipebble Simulations for Alternating Automata 301

As we will see, ordinary simulation is used for ATSs, while existential and universal
direct simulation are used for automata over finite and infinite words, respectively.

The winning condition for delayed and fair simulation requires some technical prepa-
ration, which consists in the notion of being existentially/universally good since some
previous round. Given the currentround m, we say that a state ¢ € qy,, has seen a state g
since some previous round ¢ < m, written has seen’, (g, ), iff either 1) q= g,ori < m
and there exists ¢’ € Q-1 8.t. 2.1) ¢ € A(¢, am—1), and 2.2) has seen;, _ l(q’ 4). Du-
ally, we write cant av01dm (¢, q) iff either 1) ¢ = ¢, or i < m and, forall ¢ € g1,
q € A(¢, am—1) implies cant avoid’, (¢, §). We overload the notation on the set of
accepting states, and we write has seenin(q, F’) to mean that g has seen some § € F
and similarly for cant avoid}, (¢, F'). Finally, we say that s; is existentially good since
round i < j, written gooda(sj, i), if at round j every state in s; has seen an accepting
state since round ¢, and j is the least round for which this holds [3]. Similarly, we say
that q; is universally good since round i < j, written goodv(sj, 1), if at round j every
state in q; cannot avoid an accepting state since round ¢, and j is the least round for
which this holds. Formally,

good™(s;,i) <= (Vs € s;. has seen;. (s, F)) A
Vj'. (Vs' € sjr. has seen’, (s, F)) = j' > j
good” (s;,i) <= (Vs € s;. cant avoid;(s,F)) A
Vj'. (Vs' € sjr. cant avoidé,(s’,F)) = j' >
We write gOOdH(Sj), omitting the second argument, when we just say that s; is good
since some previous round. For a path m = sgs; ..., we write gOOdH(ﬂ', 00), with the
second argument instantiated to ¢ = 0o, to mean that gooda(sj) holds for infinitely

many j’s; and similarly for good” (s;) and good” (7, 00).
We are now ready to define delayed and fair simulations.

4. Delayed (ky, ko)-simulation. Duplicator wins if, whenever q; is universally good,
then there exists j > ¢ s.t. s; is existentially good since round i:

C(r) 1= Vi.good"(q;) = 3j > i. good™(sj, i) .

5. Fair (k1, ke)-simulation. Duplicator wins if, whenever there are infinitely many
i’s s.t. q; is universally good, then, for any such i, there exists j > 7 s.t. s; is
existentially good since round ¢:

O(r) : <= good” (mp,00) == (Vi. good"(q;) == 3j > i. good (s}, 1)),
where my = qoq; . .. is the projection of 7 onto its first component.

We will denote the previous acceptance conditions with = € {o, 3di, Vdi, de, f}, and
the corresponding game is denoted as Gy, ; (90, S0)-

Remark 2. Notice that the condition for fair simulation is equivalent to the follow-
ing simpler one: If q; is universally good since some previous round infinitely often,



302 L. Clemente and R. Mayr

then s; is existentially good since some previous round infinitely often: C'(7) : <=
gOOdv(ﬂ'o, x) = gooda(m, 00), where 1 = sgsy ... is the projection of 7 onto
its second component.

We are now ready to define the simulation relation £, ., with = as above. We say
that a ko-set s x-simulates a k1-set q, written q C7 (k1 ko) S 1f Duplicator has a winning
strategy in Gfk 2) (q,s). We overload the simulation relation Efk k) ON singletons:
q B, kz) 5 = {q} E (k1 ko) 1} For two automata A and B, we write A &7,
B for ¢i* C e, ks ) ¥, where the simulation is actually computed on the disjoint union
of Aand B.If E( K oo ) is a simulation, then its transitive closure is defined as <( 1 k2

Note that, in general ( or k) is not itself a transitive relation.

Multipebble simulations hierarchy. In general, having more pebbles (possibly) gives
more power to the Duplicator. This is similar to the (1, k)-simulations for NBA studied
in [3]], but in our context there are two independent directions of “growing power”.

Theorem 1. Ler x € {o,3di, Vdi,de, {} and k} > ky, kb > ko.

1. Inclusion: E(k k2) - E(k/ k)" (In particular, <(k ko )__ k/ k/))

2. Strictness: If k| > k1 or kb, > ko, there exists an automaton Q' s.t. E(k'l kz)#—(k’ k)"
Proof (Sketch). Point 1) follows directly from the definitions, since Duplicator can al-

ways take pebbles away. Point 2) is illustrated in Figure[Il which holds for any kind of
simulation = € {0, 3di, Vdi, de, {}. O

Fig. 1. Example in which ¢ CF, 5 s, but ¢ [£{};, 1,y s forany k1 < 2,k2 < 3, with k1 < 2
or ko < 3. The alphabet is ' = {a} U X, with ¥ = {b1, b2, c1,c2,c3}. Note that both
automata recognize the same language, both over finite and infinite words: £ (¢) = £ (s) =
a(c1 4+ c2 +c3) X" and LY(q) = L¥(s) = alc1 + c2 + ¢c3) X%,

Theorem 2. For any ki, ko € Nsg and any automaton Q,

3di o f o
L B ko) EE (i k) 2. E(kl ka) S (k1 ka) SE (k1 ka) SE (k1 ka)
Moreover, for each containment, there exists Q s.t. the containment is strict.

Proof. The containments follow directly from the definitions. For the strictness, con-
sider again the example in Figure [Tl with the modifications below. If no state on the
right is accepting, then no simulation holds except ordinary simulation. If ¢ is accepting,



Multipebble Simulations for Alternating Automata 303

then universal direct simulation does not hold, but delayed simulation does. Finally, if
the only accepting state is ¢, then delayed simulation does not hold, but fair simulation
does. Is is easy to generalize this example for any k1, ko € N5 . O

3 Finite Words

Lemma 1. For any automaton Q with n states and states q, s € Q:

1. q E(Hgli ky) S implies £ (q) € £7(s), for any ky, ks € Nx.
2. qCf, k,) s implies Tr(q) C Tr(s), for any ki, ko € Nso.
3. L£fin(q) C £(s) implies q E?Sin) s, provided that Q is complete.

4. Tr(q) C Tr(s) implies q Elun) & provided that Q is complete.

In particular, the last two points above show that existential-direct (resp., ordinary)
simulation “reaches” language inclusion (resp., trace inclusion) at (n, n).

Subset constructions. The subset construction is a well-known procedure for deter-
minizing NFAs [8]. It is not difficult to generalize it over alternating automata, where
it can be used for eliminating existential states, i.e., to perform the de-existentialization
of the automaton. The idea is the same as in the subset construction, except that, when
considering a-successors of a macrostate (for a symbol a € X)), existential and uni-
versal states are treated differently. For existential states, we apply the same procedure
as in the classic subset construction, by taking always all a-successors. For universal
states, each a-successor induces a different transition in the subset automaton. This
ensures that macrostates can be interpreted purely disjunctively, and the language of a
macrostate equals the union over the language of the states belonging to it. Accordingly,
a macrostate is accepting if it contains some state which is accepting.

The previous construction can be dualized for de-universalizing finite automata. For
an AFA Q, let S7(Q) and SY(Q) be its de-existentialization and de-universalization,
respectively. (See Definitions 1 and 2 in Appendix B.1 of the technical report [2].)

The following lemma formalizes the intuition that multipebble simulations for AFA
in fact correspond to (1, 1)-simulations over the appropriate subset-constructions.

Lemma 2. Let Q1, Q2 be two AFAs over the same alphabet X, with |Q1| = ny and
|Q2| = na. Then, for any k1 < nq and ko < na,

o) E(H;?fﬂm) Q = E(H;SEJ) S§7(Qy) ey
9 E?Sli,kQ) Q = S'(Q) E?ﬁi@) Q2 (2)
o) E?;fliﬂ,g) Q = S(Q) E?ﬁil) §7(Qs) . 3)

4 Infinite Words

Multipebble existential-direct simulation is not suitable for being used for w-automata,
since it does not even imply w-language inclusion.



304 L. Clemente and R. Mayr

Theorem 3. For any ki,ks € N~ , not both equal to 1, there exist an automaton Q

and states q,s € Q s.t. q E?ﬁf,,@) s holds, but L% (q) € L¥(s).

Proof. Consider the example in Figure[2(a) Clearly, q E?ﬁg) s holds, since Duplicator
can split pebbles on the successors of s, and one such pebble is accepting, as required
by existential-direct simulation. But £ (q) € £¥(s): In fact, (ab)* € L¥(q) = (a(b+
))¥, but (ab)¥ & L¥(s) = ((ab)*ac)®. O

(D) T (3)
vl a ¢
b ‘ ¢ ‘
O O,

(a) An example in which ¢ T s (b) An example in which £¥(qo) C
holds, but £ (q) € L% (s). L% (s0) holds, but go Zﬁn,m 80.

Fig. 2. Two examples

This motivates the definition of universal-direct simulation, which does imply w-
language inclusion, like the coarser delayed and fair simulations.

Theorem 4. For z€{Vdi, de, {}, automaton Q, k1, ks € Nx( and states q,s € Q,
q Ek, ky) s implies  L(q) € LY(s) .

Unlike in the finite word case, w-language inclusion is not “reached” by the simula-
tions {Vdi, de, f}. See Figure[2(b)|and Appendix C in the technical report [2].

Theorem 5. For any x € {Vdi,de, {}, there exist an automaton Q and states qo, so €
Qs.t. LY(qo) C L% (s0), but qo ann) 0.

The Miyano-Hayashi construction The Miyano-Hayashi (MH) construction [10] is a
subset-like construction for ABAs which removes universal non-determinism, i.e., it
performs the de-universalization of w-automata. The idea is similar to the analogous
construction over finite words, with extra bookkeeping needed for recording visits to
accepting states, which may occur not simultaneously for different runs. A set of obli-
gations is maintained, encoding the requirement that, independently of how universal
non-determinism is resolved, an accepting state has to be eventually reached. There
is a tight relationship between these obligations and fair multipebble simulation. For
an ABA Q, let Q4 be the de-universalized automaton obtained by applying the MH-
construction. (See also Definition 3 in Appendix C.1 of the technical report [2]].)

The following lemma says that the MH-construction produces an automaton which
is (n, 1)-fair-simulation equivalent to the original one, and this result is “tight” in the
sense that it does not hold for either direct, or delayed simulation.



Multipebble Simulations for Alternating Automata 305

Lemma 3. For any ABA Q, let Q,, be the NBA obtained according to the Miyano-
Hayashi de-universalization procedure applied to Q. Then,

a) QLG 1) Qua forx € {f,Vdi}, and a’) 3 automaton Ql st QF Z?ﬁ,l) Qu
b) Qu E{l,l) Q, and b’) 3 automaton Q? s.t. Q2, me) Q2 for x € {de, Vdi}.

vdi,de
Ql @?5,1) Ond zg1,1) ) Q2

a a
a a

Fig.3. An example showing automata Q' and Q2 s.t. Q' Z?ﬁ,l) Ond (n = 2 suffices), and
Ona (1,1 Q2 for & € {Vdi, de}. The only difference between Q" and Q2 is the state g31 being
accepting in the former and ¢}, being non-accepting in the latter. Notice that Q) = Q2 = Qua.

The states in Qna are: so = ({q0},{q0}), s1 = ({a11, q12}, {q12}), s2 = ({ge1, 22}, 0),
S3 = ({Q31,Q32},{QS2})-

Since fair simulation implies language inclusion, Q and 9,4 have the same language.
This constitutes an alternative proof of correctness for the MH-construction.
The MH-construction “preserves” fair simulation in the following sense.

Lemma 4. Let Q, S be two ABAs. Then, Q Qﬁnvl) S <— Qu Egl,l) Sy

Remark 3. A weaker version of the “only if” direction of Lemma M above, namely
Q EELI) S — Qu Efl,l) Snd (notice the (1, 1) in the premise), had already appeared
in [5]. The same statement for both direct and delayed simulation is false, unlike as
incorrectly claimed in [3]]. In fact, it can be shown (with an example similar to Figure[3)
that there exist automata Q and S s.t. Q g{m S, but Qg me) Snd, With ¢ €
{di, de}. Finally, the “if” direction of Lemma] can only be established in the context
of multiple pebbles, and it is new.

Transitivity. While most (k1, k2)-s