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Preface

This volume contains the proceedings of the 21st Conference on Con-
currency Theory (CONCUR 2010), held in Paris, at Université Denis
Diderot, August 31–September 3, 2010. CONCUR 2010 was organized by
CNRS, INRIA, ENS Cachan and the Université Denis Diderot.

The purpose of the CONCUR conference is to bring together
researchers, developers, and students in order to advance the theory of
concurrency and promote its applications. The principal topics include
basic models of concurrency such as abstract machines, domain theoretic
models, game theoretic models, process algebras, and Petri nets; logics
for concurrency such as modal logics, probabilistic and stochastic logics,
temporal logics, and resource logics; models of specialized systems such as
biology-inspired systems, circuits, hybrid systems, mobile and collabora-
tive systems, multi-core processors, probabilistic systems, real-time sys-
tems, service-oriented computing, and synchronous systems; verification
and analysis techniques for concurrent systems such as abstract inter-
pretation, atomicity checking, model checking, race detection, pre-order
and equivalence checking, run-time verification, state–space exploration,
static analysis, synthesis, testing, theorem proving, and type systems; re-
lated programming models such as distributed, component-based, object-
oriented, and Web services.

This edition of the conference attracted 107 submissions. We wish to
thank all their authors for their interest in CONCUR 2010. After careful
discussions, the Program Committee selected 35 papers for presentation
at the conference. Each submission was refereed by three reviewers, who
delivered detailed and insightful comments and suggestions. The confer-
ence Chairs warmly thank all the members of the Program Committee
and all their referees for the excellent support they gave, as well as for
the friendly and constructive discussions. We would also like to thank
the authors for having revised the papers to address the comments and
suggestions by the referees.

The conference program was enriched by the outstanding invited talks
by:

– Frank S. de Boer (CWI, Amsterdam, The Netherlands)
– Maurice Herlihy (Brown University, Providence, USA)
– Holger Hermanns (Saarland University, Saarbrücken, Germany)
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– Anca Muscholl (LaBRI, University Bordeaux 1, France)
– Vladimiro Sassone (ECS, University of Southampton, UK)

The conference this year was co-located with the 17th International
Symposium on Temporal Representation and Reasoning (TIME 2010).
Additionally, CONCUR 21010 included the following satellite workshops:

– Structural Operational Semantics (SOS 2010)
– Expressiveness in Concurrency (EXPRESS 2010)
– Security in Concurrency (SecCo 2010)
– Foundations of Interface Technologies (FIT 2010)
– GASICS Workshop on Games for Design, Verification and Synthesis
– Foundations of Coordination Languages and Software Architectures

(FOCLASA 2010)
– International Workshop on Distributed Open and Timed Systems

(DOTS 2010)
– Young Researchers Workshop on Concurrency Theory (YR-CONCUR)

We would like to thank all the people who contributed to the success
of CONCUR 2010, in particular the Organizing Committee and the ad-
ministrative staff. We gratefully acknowledge the generous support from
Digiteo, Région Île de France, CNRS, INRIA, ENS Cachan, the Ministère
de l’enseignement supérieur et de la recherche, and the Université Denis
Diderot - Paris 7. We are also grateful to Andrei Voronkov for his excellent
EasyChair conference system, which we used for the eletronic submission
of papers, the refereeing process, and the Program Committee work.

June 2010 Paul Gastin
François Laroussinie
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Vojtěch Forejt
Martin Fränzle
Carsten Fritz
Fabio Gadducci
Philippa Gardner
Simon Gay
Blaise Genest
Nargess Ghahremani
Marco Giunti
Stefan Göller
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Chih-Duo Hong
Hans Hüttel
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Tomáš Masopust
Mieke Massink
Richard Mayr
Antoni Mazurkiewicz
Damiano Mazza
Frank McSherry
Alexandru Mereacre
Massimo Merro
Roland Meyer
Marino Miculan
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Session Types as Intuitionistic Linear Propositions . . . . . . . . . . . . . . . . . . . 222
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Dating Concurrent Objects: Real-Time
Modeling and Schedulability Analysis�

Frank S. de Boer1,2, Mohammad Mahdi Jaghoori1,2, and Einar Broch Johnsen3

1 CWI, Amsterdam, The Netherlands
2 LIACS, Leiden, The Netherlands

3 University of Oslo, Norway

Abstract. In this paper we introduce a real-time extension of the con-
current object modeling language Creol which is based on duration state-
ments indicating best and worst case execution times and deadlines. We
show how to analyze schedulability of an abstraction of real-time con-
current objects in terms of timed automata. Further, we introduce tech-
niques for testing the conformance between these behavioral abstractions
and the executable semantics of Real-Time Creol in Real-Time Maude.

As a case study we model and analyze the schedulability of thread
pools in an industrial communication platform.

1 Introduction

In the object-oriented modeling language Creol [9,3], objects are concurrent; i.e.,
conceptually, each object encapsulates its own processor. Therefore, each object
has a single thread of execution. Creol objects communicate by asynchronous
message passing. The message queue is implicit in the objects. Furthermore,
the scheduling policy is underspecified; i.e., messages in the queue are processed
in a nondeterministic order. The running method can voluntarily release the
processor using special primitives, allowing another message to be scheduled. For
example, a method can test whether an asynchronous call has been completed,
and if not, release the processor; thus modeling synchronous calls.

In this paper we extend Creol with real-time information about the deadlines
of messages and the best and worst execution times of the (sequential) control
statements. We formalize the semantics of Real-Time Creol with respect to given
intra-object scheduling policies in the real-time extension of Maude [5]. This
formalization of a Real-Time Creol model provides a refinement of the underlying
untimed model in the sense that it only restricts its behaviors.

Schedulability analysis. In general analyzing schedulability of a real time system
consists of checking whether all tasks are accomplished within their deadlines.
� This research is partly funded by the EU projects IST-33826 CREDO:

Modeling and Analysis of Evolutionary Structures for Distributed Services
(http://credo.cwi.nl) and FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Methods (http://www.hats-project.eu).

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 1–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We employed automata theory in our previous work [7,8] to provide a high-
level framework for modular schedulability analysis of concurrent objects. In
order to analyze the schedulability of an open system of concurrent objects,
we need some assumptions about the real-time arrival patterns of the incoming
messages; in our framework, this is contained in the timed automata [1] modeling
the behavioral interface of the open system. A behavioral interface captures the
overall real-time input/output behavior of an object while abstracting from its
detailed implementation in its methods; a deadline is assigned to each message
specifying the time before which the corresponding method has to be completed.
Further, we use timed automata to describe an abstraction of the system of
objects itself including its message queues and a given scheduling policy (e.g.,
Earliest Deadline First). The analysis of the schedulability of an open system of
concurrent objects can then be reduced to model-checking a timed automaton
describing the interactions between the behavioral abstraction of the system and
its behavioral interface (representing the environment).

Conformance. We test conformance between the Real-Time Creol model of
an open system of concurrent objects and its behavioral abstraction in timed
automata with respect to a given behavioral interface. Our method is based
on generating a timed trace (i.e., a sequence of time-stamped messages) from
the automaton constructed from its behavioral abstraction and interface. Using
model-checking techniques we next generate for each time specified in the trace
additional real-time information about all possible observable messages. This
additional information allows us to find counter-examples to the conformance.
To do so, we use the Real-Time Maude semantics as a language interpreter to
execute the real-rime Creol model driven by the given trace. Then we look for
counter-examples by incrementally searching the execution space for possible
timed observations that are not covered in the extended timed trace.

Case Study. Thread pools are an important design pattern used frequently in
industrial practice to increase the throughput and responsiveness of software
systems, as for instance in the ASK system [2]. The ASK system is an industrial
communication platform providing mechanisms for matching users requiring in-
formation or services with potential suppliers. A thread pool administrates a
collection of computation units referred to as threads and assigns tasks to them.
This administration includes dynamic creation or removal of such units, as well
as scheduling the tasks based on a given strategy like ‘first come first served’ or
priority based scheduling.

The abstraction from the internal message queue of each object and the related
scheduling policies is one of the most important characteristics of Creol which
allows for abstractly modeling a variety of thread pools. In this paper, we give
an example of an abstract model in Creol of a basic pool where the threads
share the task queue. The shared task queue is naturally represented implicitly
inside a Creol object (called a resource-pool) that basically forwards the queued
tasks to its associated threads also represented as Creol objects. We associate
real-time information to the tasks concerning their deadlines and best and worst
case execution times.
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We perform schedulability analysis on a network of timed automata con-
structed from the automata abstraction and behavioral interface of the thread
pool model in order to verify whether tasks are performed within their deadlines.
In the context of the ASK system, schedulability ensures that the response times
for service requests are always bounded by the deadlines. We use Uppaal [12]
for this purpose. Further, we test conformance between the Real-Time Creol
model of a thread pool and its behavioral abstractions as described above.

Related work. We extend Creol with explicit scheduling strategies and a du-
ration statement to specify execution delays. CreolRT [11] is another real-time
extension of Creol with clocks and time-outs. Our work follows a descriptive
approach to specifying real-time information suitable for schedulability analy-
sis, whereas the prescriptive nature of time in CreolRT can affect the functional
behavior of an object.

Schedulability analysis in this paper can be seen as the continuation of our
previous work [7] on modular analysis of a single-threaded concurrent object with
respect to its behavioral interface. In this paper, we extend the schedulability
analysis to an open system of concurrent objects in a way similar to [4].

The work of [6,10] is based on extracting automata from code for schedula-
bility analysis. However, they deal with programming languages and timings are
usually obtained by profiling the real system. Our work is applied on high-level
models. Therefore, our main focus is on studying different scheduling policies
and design decisions.

We test conformance between a Creol implementation and abstract automata
models. Our notion of conformance is similar to tioco introduced by Schmaltz
and Tretmans [16,15], but we do not directly work with timed input/output
transition systems; an innovation of our work is dealing with conformance be-
tween different formalisms, namely Creol semantics in rewrite logic on one hand
and timed automata on the other hand. Furthermore, we focus on generating
counterexamples during testing along the lines of our previous work [8], which
is novel in testing.

Outline. The real-time extension of the concurrent object language Creol is
explained in Section 2. As explained in Section 3, abstract models of concurrent
objects, specified in timed automata, are analyzed to be schedulable. To be
able to argue about the schedulability of Real-Time Creol models, we need to
establish conformance between our Creol and automata models; this is explained
in Section 4. We conclude in section 5.

2 Concurrent Objects in Real-Time Creol

Creol is an abstract behavioral modeling language for distributed active ob-
jects, based on asynchronous method calls and processor release points. In Creol,
objects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;



4 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

Syntactic
categories.
g in Guard
s in Stmt
x in Var
e in Expr
o in ObjExpr
b in BoolExpr
d in Time

Definitions.

IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x; ] M}
Sg ::= I m ([I x])
M ::= Sg { [I x; ] s }
g ::= b | x? | g ∧ g | g ∨ g
s ::= x := e | x := e.get | skip | release | await g | return e

| s; s | [o]!m(e, d) | if b then { s }else { s } | duration(d, d)
e ::= x | o | b | new C (e) | [o]!m(e, d) | this | deadline

Fig. 1. Syntax of the Real-Time Creol kernel. Terms such as e and x denote lists over
the corresponding syntactic categories and square brackets denote optional elements.

these may be seen as triggers of concurrent activity, resulting in new activities
(tasks) in the called object. Objects are dynamically created instances of classes,
declared attributes are initialized to some arbitrary type-correct values. An op-
tional init method may be used to redefine the attributes during object creation.
An object has a set of tasks to be executed, which stem from method activations.
Among these, at most one task is active and the others are suspended on a task
queue. The scheduling of tasks is by default non-deterministic, but controlled
by processor release points in a cooperative way. Creol is strongly typed: for
well-typed programs, invoked methods are supported by the called object (when
not null), such that formal and actual parameters match. In this paper, pro-
grams are assumed to be well-typed. This section introduces Real-Time Creol,
explaining Creol constructs (for further details, see, e.g., [9,3]) and their relation
to real-time scheduling policies.

Figure 1 gives the syntax for a kernel of Real-Time Creol, extending a subset
of Creol (omitting, e.g., inheritance). A program consists of interface and class
definitions and a main method to configure the initial state. Let C, I, and m
be in the syntactic category of Names. IF defines an interface with name I and
method signatures Sg. A class implements a list I of interfaces, specifying types
for its instances. CL defines a class with name C, interfaces I, class parameters
and state variables x (of types I), and methods M . (The attributes of the class
are both its parameters and state variables.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types I.
M defines a method with signature Sg and a list of local variable declarations
x of types I and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters. Statements for assign-
ment x := e, sequential composition s1; s2, skip, if, while, and return e
are standard. The statement release unconditionally releases the processor by
suspending the active task. In contrast, the guard g controls processor release in
the statement await g, and consists of Boolean conditions which may contain
return tests x? (see below). If g evaluates to false, the current task is suspended
and the execution thread becomes idle. When the execution thread is idle, an
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enabled task may be selected from the pool of suspended tasks by means of a
user-provided scheduling policy.

Expressions e include declared variables x, object identifiers o, Boolean expres-
sions b, and object creation new C(e). As usual, the reserved read-only variable
this refers to the identifier of the object. Note that remote access to attributes is
not allowed. (The full language includes a functional expression languagewith stan-
dard operators for data types such as strings integers lists, sets, maps, and tuples.
These are omitted in the core syntax, and explained when used in the examples.)

Time. In Real-Time Creol, the local passage of time is expressed in terms of
duration statements. We consider a dense time model represented by the sort
Time which ranges over non-negative real numbers and is totally ordered by
the less-than operator. Furthermore, we denote by ∞ a term of sort Time such
that for all t1, t2 �= ∞, t1 + t2 < ∞. The statement duration(b, w) expresses
the passage of time, given in terms of an interval between the best case b and
the worst case w (assuming b ≤ w). All other statements are assumed to be
instantaneous, except the get statement which lets time pass while it is blocking
(see below).

Communication in Real-Time Creol is based on asynchronous method calls,
denoted by expressions o!m(e, d), and future variables. (Local calls are written
!m(e, d).) Thus, after making an asynchronous method call x := o!m(e, d), the
caller may proceed with its execution without blocking on the method reply.
Here x is a future variable, o is an object expression, e are (data value or object)
expressions, and d is a deadline for the method invocation. This deadline speci-
fies the relative time before which the corresponding method should be scheduled
and executed. The local variable deadline refers to the remaining permitted
execution time of the current method activation. We assume that message trans-
mission is instantaneous, so the deadline expresses the time until a reply is re-
ceived; i.e., it corresponds to an end-to-end deadline. As usual, if the return value
of a call is of no interest, the call may occur as a statement. The future variable
x refers to a return value which has yet to be computed. There are two opera-
tions on future variables, which control synchronization in Creol. First, the guard
await x? suspends the active task unless a return to the call associated with
x has arrived, allowing other tasks in the object to execute. Second, the return
value is retrieved by the expression x.get, which blocks all execution in the ob-
ject until the return value is available. Standard usages of asynchronous method
calls include the statement sequence x := o!m(e, d); v := x.get which encodes
a blocking call, abbreviated v := o.m(e, d) (often referred to as a synchronous
call), and the statement sequence x := o!m(e, d); await x?; v := x.get which
encodes a non-blocking, preemptible call, abbreviated await v := o.m(e, d).

2.1 Object-Oriented Modeling of Thread-Pools

Figure 2 shows a Creol model of a thread pool. The model defines a Thread
class and the ResourcePool class. The task list is modeled implicitly in terms
of the message queue of an instance of the ResourcePool class. The variable



6 F.S. de Boer, M.M. Jaghoori, and E.B. Johnsen

class Thread(ResourcePool myPool) implements Thread {
Void run() { myPool!finish(this) }
Void start() { skip; duration(5,6); myPool!finish(this) }

}

class ResourcePool(Int size) implements ResourcePool {
Set[Thread] pool;

Void init() { Thread thr; pool := {};
while (size>0) { thr := new Thread(this); size := size-1 }

}
Void invoke() {
Thread thread; await ¬isempty(pool);
thread := choose(pool); pool := remove(pool,thread);
thread!start(deadline)

}
Void finish (Thread thr) { pool := add(pool,thr) }

}

Fig. 2. The thread pool

size represents the number of available threads, i.e., instances of the Thread
class. The variable pool is used to hold a reference to those threads that are
currently not executing a task. Tasks are modeled in terms of the method start
inside the Thread class. For our analysis the functional differences between
tasks is irrelevant, so the method is specified in terms of its duration only and
a subsequent call to the method finish of the ResourcePool object which
adds that thread to its pool of available threads.

Tasks are generated (by the environment) with (asynchronous) calls of the
invoke method of the ResourcePool object. In case there are no available
threads, the execution of the invoke method suspends by the execution of the
await statement which releases control (so that a call of the finish method
can be executed). When multiple tasks are pending and a thread becomes avail-
able, the scheduling strategy of the ResourcePool object determines which
task should be executed next when the current task has been completed.

2.2 Real-Time Execution in Real-Time Maude

Real-Time Maude [14] defines real-time rewrite theories (Σ, E, IR, TR), where:

– (Σ, E) is a theory in membership equational logic [13] with a signature Σ
and a set E of conditional equations. The system’s state space is defined as
an algebraic data type in (Σ, E), which is assumed to contain a specification
of a sort Time capturing the (dense or discrete) time domain.

– IR is a set of labeled conditional instantaneous rewrite rules specifying the
system’s local transitions, written crl [l] : t −→ t′ if cond , where l is a
name for the rule. Such a rule specifies a one-step transition (in zero-time)
from an instance of a pattern t to the corresponding instance of a pattern t′,
provided the condition cond holds. As usual in rewriting logic [13], the rules
are applied modulo the equations in E.
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– TR is a set of timed rewrite rules (or tick rules) capturing the progression
of time, written crl [l] : {t} −→ {t′} in time τ if cond where τ is
a term of sort Time which denotes the duration of the rewrite. Observe that
{_} is the built-in constructor of sort GlobalSystem, so tick rules apply
to the entire state of the system which allows time to advance uniformly.

Initial states must be ground terms of sort GlobalSystem, which reduce to
terms of the form {t} by the equations in E. The form of the tick rules then
ensures that time advances uniformly throughout the system. Real-time rewrite
theories are executable under reasonable assumptions and Real-Time Maude
provides different analysis methods [14]. For example, timed “fair” rewrite sim-
ulates one behavior of the system up to a certain duration and is written

(tfrew t in time ≤ τ .)

for an initial state t and a ground term τ of sort Time. Furthermore, timed
search searches breadth-first for states that are reachable from a given initial
state t within time τ , match a search pattern, and satisfy a search condition.
The command which searches for one state satisfying the search criteria is written

(tsearch [1] t −→∗ pattern such that cond in time ≤ τ .)

Creol’s semantics in Maude. Creol has a semantics defined in Rewriting logic [13]
which can be used directly as a language interpreter in Maude [5]. The semantics
is explained in detail in [9] and can be used for the analysis of Creol programs.
In this section we focus on the extension of Creol’s semantics in order to define
a semantics for Real-Time Creol in Real-Time Maude.

The state space of Creol’s operational semantics is given by terms of the
sort Configuration which is a set of objects, messages, and futures. The
empty configuration is denoted none and whitespace denotes the associative and
commutative union operator on configurations. Objects are defined as tuples

〈 o, a, q 〉

where o is the identifier of the object, a is a map which defines the values of the
attributes of the object, and q is the task queue. Tasks are of sort Task and
consist of a statement s and the task’s local variables l. We denote by {l|s} ◦ q
the result of appending the task {l|s} to the queue q. For a given object, the first
task in the queue is the active task and the first statement of the active task to
be executed is called the active statement.

Let σ and σ′ be maps, x a variable name, and v a value. Then σ(x) denotes
the lookup for the value of x in σ, σ[x �→ v] the update of σ such that x maps
to v, σ ◦ σ′ the composition of σ and σ′, and dom(σ) the domain of σ. Given
a mapping, we denote by [[e]]cσ the evaluation of an expression e in the state
given by σ and the global configuration c (the latter is only used to evaluate the
polling of futures; e.g., await x?).

Rewrite rules execute statements in the active task in the context of a con-
figuration, updating the values of attributes or local variables as needed. For
an active task {l | s}, these rules are defined inductively over the statement s.
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rl [skip] : 〈 o, a, {l | skip;s} ◦ q 〉 −→ 〈 o, a, {l | s} ◦ q 〉 .

rl [assign] : 〈 o, a, {l | x:=e;s} ◦ q 〉
−→ if x ∈ dom(l) then 〈 o, a, {l[x �→ [[e]]none

a◦l ] | s} ◦ q 〉
else 〈 o, a[x �→ [[e]]none

a◦l ], {l | s} ◦ q 〉 fi .

rl [release] : 〈 o, a, {l | release;s} ◦ q 〉 −→ 〈 o, a, schedule({l | s},q) 〉 .

crl [await1] : {〈 o, a, {l | await e;s} ◦ q 〉 c}
−→ {〈 o, a, {l | s} ◦ q 〉 c} if [[e]]ca◦l .

crl [await2] : {〈 o, a,{l | await e;s} ◦ q 〉 c}
−→ {〈 o, a, {l | release;await e;s} ◦ q 〉 c} if ¬[[e]]ca◦l .

Fig. 3. The semantics of Creol in Maude

Some (representative) rules are presented in Figure 3. Rule skip shows the gen-
eral set-up, where a skip statement is consumed by the rewrite rule. Rule assign
updates either the local variable or the attribute x with the value of an expres-
sion e evaluated in the current state. The suspension of tasks is handled by rule
release, which places the active task in the task queue. The auxiliary function
schedule in fact defines the (local) task scheduling policy of the object, for
example first in first out (FIFO) or earliest deadline first (EDF). Rules await1
and await2 handle conditional suspension points.

Real-Time Creol’s semantics in Real-Time Maude. The rewrite rules of the
Real-Time Creol semantics are given in Figure 4. The first rule ensures that
a duration statement may terminate only if its best case execution time has
been reached. In order to facilitate the conformance testing discussed below, we
define a global clock clock(t) in the configurations (where t is of sort Time)
to time-stamp observable events. These observables are the invocation and re-
turn of method calls. Rule async-call emits a message to the callee [[e]]none

(a◦l) with
method m, actual parameters [[e]]none

(a◦l) including the deadline, a fresh future iden-
tifier n, which will be bound to the task’s so-called destiny variable [3], and,
finally, a time stamp t. In the (method) activation rule, the function task trans-
forms such a message into a task which is placed in the task queue of the callee
by means of the scheduling function schedule. The function task creates a
map which assigns the values of the actual parameters to the formal parameters
(which includes the deadline variable) and which assigns the future identity
to the destiny variable. The statement of the created task consist of the body
of the method. Rule return adds the return value from a method call to the
future identified by the task’s destiny variable and time stamps the future at
this time. Rule get describes how the get operation obtains the returned value.

The global advance of time is captured by the rule tick. This rule applies
to global configurations in which all active statements are duration statements
which have not reached their worst execution time or blocking get statements.
These conditions are captured by the predicate canAdvance in Figure 5. When
the tick rule is applicable, time may advance by any value t below the limit
determined by the auxiliary maximum time elapse [14] function mte, which



Dating Concurrent Objects: Real-Time Modeling 9

crl [duration] : 〈 o, a, {l | duration(b, w); s} ◦ q 〉
−→ 〈 o, a, {l | s} ◦ q 〉 if b ≤ 0 .

crl [async-call] : 〈 o, a,{l | x:=e!m(e);s} ◦ q 〉 clock(t)
−→ 〈 o, a,{l[x �→ n] | s} ◦ q 〉 m(t, [[e]]none

a◦l , [[e]]none
a◦l , n) n if fresh(n) .

crl [activation] : 〈 o, a,{l | s} ◦ q 〉 m(t, o, v̄)
−→ 〈 o, a,{l | s} ◦ schedule(task(m(o, v̄)),q) 〉 .

crl [return] : 〈 o, a,{l | return(e);s} ◦ q 〉 n clock(t)
−→ 〈 o, a, {l | s} ◦ q 〉 clock(t) 〈n,[[e]]none

(a◦l)
,t 〉 if n = l(destiny) .

crl [get] : 〈 o, a,{l | x := e.get;s} ◦ q 〉 〈n,v,t 〉
−→ 〈 o, a,{l | x := v;s} ◦ q 〉 〈n,v,t 〉 if [[e]]none

a◦l = n .

crl [tick] : {C} −→ {δ(C)} in time t if t < mte(C) ∧ canAdvance(C) .

Fig. 4. The semantics of Real-Time Creol in Real-Time Maude

op canAdvance : Configuration → Bool .
eq canAdvance(C1 C2) = canAdvance(C1) ∧ canAdvance(C2) .
eq canAdvance(〈 o, a, {l | duration(b, w); s} ◦ q 〉 ) = w > 0 .
eq canAdvance(〈 o, a,{l | x := e.get; s} ◦ q 〉 n) = true if n = [[x]]none

(a◦l)
.

eq canAdvance(C) = false [owise] .

op mte : Configuration → Time .
eq mte(C1 C2) = min(mte(C1), mte(C2)) .
eq mte(〈 o, a,{l | duration(b, w); s} ◦ q 〉 ) = w .
eq mte(C) = ∞ [owise] .

op δ1 : Task Time → Task .
eq δ1({l | s}, t) = {l[deadline �→ l(deadline) − t]|s} .

op δ2 : TaskQueue Time → TaskQueue .
eq δ2({l|s} ◦ q, t) = δ1({l|s}, t) ◦ δ2(q, t) .
eq δ2(ε, t) = ε

op δ3 : Task Time → Task .
eq δ3({l|duration(b, w); s}, t)

= {l[deadline �→ l(deadline) − t] | duration(b − t, w − t); s}.
eq δ3({l|s}, t) = {l[deadline �→ l(deadline) − t]|s} [owise] .

op δ : Configuration Time → Configuration .
eq δ(C1 C2, t) = δ(C1,t) δ(C2,t) .
eq δ(clock(t′),t) = clock(t′ + t) .
eq δ(〈 o, a, {l|s} ◦ q 〉,t) = 〈 o, a, δ3({l|s}) ◦ δ2(q) 〉 .
eq δ(C, t) = C [owise] .

Fig. 5. Definition of Auxiliary Functions
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Fig. 6. Sequence diagram of a scenario from generation until completion of a task

finds the lowest remaining worst case execution time for any active task in any
object in the configuration. Note that the blocking get operation allows time
to pass arbitrarily while waiting for a return.

When time advances, the function δ, besides advancing the global clock, de-
termines the effect of advancing time on the objects in the configuration, using
the auxiliary functions δi, for i = 1, 2, 3, defined in Figure 5, to update the tasks.
The function δ1 decreases the deadline of a task. The function δ2 applies δ1 to
all queued tasks; δ2 has no effect on an empty queue ε. The function δ3 addi-
tionally decreases the current best and worst case execution times of the active
duration statements.

3 Schedulability Analysis

Schedulability analysis consists of checking whether tasks can be accomplished
before their deadlines. For analysis, Real-Time Maude uses tick rules that ad-
vance time in discrete time steps, therefore verification of dense time models in
Real-Time Maude is incomplete. Timed automata verification tools, e.g., Up-

paal, use symbolic time and thus cover the whole dense time space. In this
section, we explain how to use timed automata for abstractly modeling concur-
rent objects and performing schedulability analysis. In this abstract modeling,
infinite Creol programs are mapped to finite state automata.

We present a generalization of the automata-theoretic framework in [7] for
schedulability analysis of concurrent objects. The overall real-time input/output
behavior of an object is to be specified in an automaton called its behavioral
interface. A behavioral interface abstracts from the detailed implementation of
the object, which is in turn given in terms of its output behavior, given in the
automata modeling the methods; and, the input enabled scheduler automaton
that includes a queue to buffer the messages waiting to be executed.

In this paper we extend the schedulability analysis to an open system of con-
current objects. We explain this extension in terms of the thread pool example
introduced in Section 2.1. Such a model can be synthesized from the sequence
diagram in Figure 6 which depicts the life-cycle of a task from its generation
until its completion. To allow communication between different automata, we
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c1 >= 3
invoke[task][self][Env]!

deadline=D2, c1 = 0

c1 >= 2

invoke[task][self][Env]!
deadline=D1, c1 = 0

Fig. 7. Modeling a task generation pattern (right)

define a channel for each action in this diagram: Channel invoke has three
parameters; namely, task name, the receiver and the sender. The parameters to
channel start capture the task to be executed, the thread assigned to it, and the
current object’s identifier. Channel finish is parameterized in the identifiers of
the executing thread and object. Next we discuss the different automata models
corresponding to the three different life-lines in Figure 6.

Behavioral interfaces. The behavioral interface captures the overall real-time in-
put/output behavior of an object while abstracting from its detailed implemen-
tation. Figure 7 shows a possible behavioral interface for our model of thread
pools. This automaton is parameterized in the identifier of the thread pool, writ-
ten self, and an identifier Env that represents any entity that may invoke a
task on the thread pool. Since we only assume one task type in this example, we
define a global constant task that will be used to identify this task.

We use a clock c1 for modeling inter-arrival times and the global variable
deadline is used for associating deadlines to each task generated. The tasks
with different deadlines are interleaved and there is at least 2 and 3 time units of
inter-arrival time between two consecutive task instances. This shows an example
of non-uniform task generation pattern.

Scheduler and queue. The queue and the scheduling strategy are modeled in
separate automata; together they represent the ResourcePool class. To model
the ResourcePool, every thread is assumed to have a dedicated processing unit,
but they share one task queue. We assume a fixed number TRD of threads given
a priori. We separate the task queue in two parts: an execution part, consisting
of the slots 0 to TRD-1, and a buffer part consisting of the rest of the queue.
The execution part includes the tasks that are being executed. This part needs
one slot for each thread and is therefore as big as the number of threads. The
selection of a task from the buffer part to start its execution is based on a given
scheduling strategies, e.g., EDF, FPS, etc.; in our example, we use EDF.

Figure 8(a) shows a queue of size MAX which stores the tasks in the order of
their arrival; the queue is modeled by the array q and tail points to the first
empty element in the queue. This automaton is parameterized in s which holds
the identity of this object. This automaton can accept any task (whose identifier
is between 0 and the constant MSG) by any caller (whose identifier is between 0
and the constant OBJ); this is seen as the Uppaal ‘select’ statement over msg
and caller on the invoke channel. This transition is enabled if the queue is
not yet full (tail < MAX). To check for deadlines, a clock x is assigned to each
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Error

msg : int[0,MSG],
caller : int [0,OBJ]

tail < MAX
invoke[msg][s][caller] ?
insertInvoke(msg, caller) tail == MAX

i : int[0,MAX-1]
counter[i] > 0 
 && x[i]>d[i]

tail <= TRD
finish[t][s]?

contextSwitch(s,t,TRD)

start[q[t]][t][s] !i:int[TRD,MAX-1]
(i < tail && 
forall (m : int[TRD,MAX-1])  
(x[ca[i]]-x[ca[m]]>d[ca[i]]-d[ca[m]])

finish[t][s]?
contextSwitch(s, t, i)

(a) A queue shared between threads (b) An EDF scheduler for each thread

Fig. 8. Allowing parallel threads to share a queue

task in the queue, which is reset when the task is added, i.e., in insertInvoke
function. The queue goes to Error state if a task misses its deadline (x[i] >
d[i]) or the queue is full (tail == MAX).

Figure 8(b) shows how a scheduling strategy can be implemented. This au-
tomaton should be replicated for every thread, thus parameterized in thread
identity t as well as the object identity s. There will be one instance of this
automaton for each slot q[t] in the execution part of the queue. This exam-
ple models an EDF (earliest deadline first) scheduling strategy. The remain-
ing time to the deadline of a task at position i in the queue is obtained by
x[ca[i]]-d[ca[i]]. When the thread t finishes its current task (i.e. a syn-
chronization on finish[t][s]), it selects the next task from the buffer part
of the queue for execution by putting it in q[t]; this task is then immediately
started (start[q[t]][t][s]).

To perform schedulability analysis by model checking, we need to find a rea-
sonable queue length to make the model finite. The execution part of the queue
is as big as the number of threads, and the buffer part is at least of size one.
As in single-threaded situation of objects [7], a system is schedulable only if it
does not put more than �Dmax/Bmin	 messages in its queue, where Dmax is the
biggest deadline in the system, and Bmin is the best-case execution time of the
shortest task. As a result, schedulability is equivalent to the Error state not
being reachable with a queue of length �Dmax/Bmin	.

Tasks. A simple task model is given in Figure 9. In this model, the task has a
computation time of between 5 to 6 time units. This corresponds to the model
of the task given in the Creol code, which is defined in the start method of the
Thread class and contains a skip statement followed by a duration. In general,
a task model may be an arbitrarily complex timed automaton.

For schedulability analysis, one can experiment with different parameters. For
example, one can choose different scheduling policies, like FCFS, EDF, etc. Since
we assume that threads run in parallel, with more threads, we can handle more
task instances (i.e., smaller inter-arrival times). Furthermore, if deadlines are
too tight, schedulability cannot be guaranteed. Schedulability analysis amounts
to checking whether the Error location in the queue automaton is reachable.
Analysis shows that in the chosen settings, i.e., the selected inter-arrival times
for the tasks and an EDF scheduler, this model cannot be schedulable with 2
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completeexecute
x <= 6

finish [r][self]!

start[task][r][self]?
x = 0

x >= 5

Fig. 9. Modeling a task

parallel threads, no matter how big the deadlines are. Intuitively, every 5 time
units, two instances of the task may be inserted in the queue, and each task may
take up to 6 time units to compute. With three parallel threads, these tasks can
be scheduled correctly even with the deadline value of 6 time units for each task
instance.

4 Conformance Testing

Our overall methodology for the schedulability analysis of a Real-Time Creol
model consists of the following: We model the real-time pattern of incoming
messages in terms of a timed automaton (the behavioral interface of the Creol
model). Next we develop on the basis of sequence diagrams, which describe the
observable behavior of the Creol model, automata abstractions of its overall real-
time behavior. We analyze the schedulability of the product of this abstraction
and the given behavioral interface (in for example Uppaal). Further, we define
conformance between the Real-Time Creol model and its timed automaton ab-
straction with respect to the given behavioral interface in terms of inclusion of
the timed traces of observable actions.

More specifically, let C denote a Creol model, i.e., a set of Creol classes, B
a timed automaton specifying its behavioral interface and A a timed automata
abstraction of the overall behavior of C. We denote by O(A ‖ B) the set of timed
traces of observable actions of the product of the timed automata A and B. The
set of timed traces of the timed automaton B we denote by T (B). Further, given
any timed trace θ ∈ T (B), the Creol class Tester(θ) denotes a Creol class which
implements θ (see, for example, the class Tester in Figure 11). This class simply
injects the messages at the times specified by θ. We denote by O(C, Tester(θ))
the set of timed traces of observable actions generated by the Real-Time Maude
semantics of the Creol model C driven by θ. We now can define the conformance
relation C ≤B A by

O(C, Tester(θ)) ⊆ O(A ‖ B),

for every timed trace of observable actions θ ∈ T (B).
In this section we illustrate a method for testing conformance by searching for

counter-examples to the conformance in terms of our running example. Note that
a counter-example to the above conformance consist of a timed trace θ ∈ T (B)
such that O(C, Tester(θ)) \ O(A ‖ B) �= ∅.
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R1 R2 R3

R6 R5 R4

FINAL

r:int[0,TRD-1]
global <= 2

finish[r][0]?
r:int[0,TRD-1]
global <= 5

finish[r][0]?
r:int[0,TRD-1]
global <= 7

finish[r][0]?

r:int[0,TRD-1]

global < 12
finish[r][0]?

r:int[0,TRD-1]

global < 10
finish[r][0]?

r:int[0,TRD-1]

global < 8
finish[r][0]?

finish[2][0]! global == 12
finish[2][0]?

finish[1][0]! global == 10
finish[1][0]?

finish[0][0]! global == 8
finish[0][0]?

global == 7
invoke[task][0][0]!
deadline = D1

global == 5
invoke[task][0][0]!
deadline = D2

global == 2
invoke[task][0][0]!
deadline = D1

Fig. 10. Generating ready sets

4.1 Generating a Test Case

We first generate a timed trace θ = (t1, a1), . . . , (tn, an) by simulating the ab-
stract timed automaton model A together with the behavioral interface B. To
this end, we add a dummy automaton with a fresh clock global and an integer
time which is incremented every time unit. This way we can find the absolute
time interval in which every action in the trace has happened. In order to be
able to search for a counter-example to conformance, we generate ready sets of
observable actions generated by the behavioral abstraction of the Creol model.
For each time interval between ti−1 and ti in this trace and for every observable
action a, we are interested in the following timed reachability property:

“E<> ti−1 <= global && global < ti && a_f”,

where a_f denotes whether the observable action a has occurred in this interval.
Instead of checking this property directly for every action, we encode it into one
automaton as explained below (see Figure 10). This way, we avoid the need to
add flags like a_f for every observable action and to go deep in the model to set
it true when the corresponding action happens.

The algorithm to construct the automaton in Figure 10 for generating ready
sets is as follows. Given a trace θ = (t1, a1), . . . , (tn, an), we first create a linear
timed automaton Tθ with the locations L = {li | 1 ≤ i ≤ n + 1}. By going
from li to li+1, this automaton should ensure that action ai happens at time
x == ti. This is done differently for inputs and outputs. Since the abstract
Uppaal model A (i.e., excluding the behavioral interface) is input-enabled, the
input actions only need to inject the task at the required time; namely with a
transition from li to li+1 with an invoke action. This transition should provide
the required deadline. The output action finish is, however, produced by a
task and consumed by the scheduler. To intercept this action, this automaton
first mimics the scheduler by accepting the action, i.e., finish?, and then it
mimics the task by issuing finish!.

We add to Tθ a location Rij for each time interval between ti−1 and ti and
for each observable output action oj ∈ O(A ‖ B), with one transition from li to
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Rij with a guard global ≤ ti accepting the output action oj ; if ai is the same
as oj , this transition is guarded by global < ti. In our example, there is only
one observable output action namely finish, but since a task can be taken by
different threads, the finish action can be issued by different threads; there-
fore, the transitions for receiving this action should allow any thread identity r
between 0 and TRD-1.

Finally, the reachability of the location Rij implies that oj must be included in
the ready set Ri. We observe that in our example, only R3 and R4 are reachable;
this is due to the possibility of finishing the first task instance in the interval [7, 8].
The consequent task instances can finish in the intervals [10, 11] and [12, 13],
therefore, their completion does not contribute to an action in the ready sets.
The test case including the ready sets and deadlines is:
(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish}) (8, finish, {finish})
(10, finish, {}) (12, finish, {})

4.2 Executing a Test Case in RT-Maude

Executing a test case amounts to injecting the inputs at the right times and
looking for the right outputs at the right times. The system is input-enabled, so
it accepts all the inputs. If the system under test cannot produce the expected
output at the right time, the test fails. If along the test execution, the system
under test can do an observable action that is neither the expected output nor in
the ready-set, it is a counter-example to conformance. If the system can produce
all expected outputs and no counter-example is found, the test passes in the sense
that we are more confident that refinement holds and that the Creol model is
schedulable. Notice that a counterexample to refinement does not necessarily
imply non-schedulability in itself, but it shows an execution path that is likely
to miss a deadline. We demonstrate this with the test-case from the previous
subsection, repeated below:
(2, invoke(D1), {}) (5, invoke(D2), {}) (7, invoke(D1), {finish}) (8, finish, {finish})
(10, finish, {}) (12, finish, {})

We encode the input behavior given in the test-case as a complementary class
that calls the methods of the model under test at the required times. For our
running example, the code for the trace from previous subsection is given in
Figure 11 (assuming D1 = D2 = 6).

By generating one instance of the ResourcePool class (with size 3 which gives
us a schedulable Uppaal model, cf. Section 3) and one instance of the Tester
class, we can check the output behavior of the Creol model against the test-
case with consecutive search commands in Real-Time Maude as shown in Figure
12. In our case, the only observable output action is finish. To find a counter-
example along this trace, we need to check whether a finish action can happen
when it is not expected in the ready set, i.e., before time 2, between 2 and 5,
between 8 and 10, or between 10 and 12. For each search command, we need to
specify as time bound the duration since its start configuration, e.g., to search
from C2 which is at time 5, we only need to search for another 2 time units to
reach time 7.
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class Tester (mut:ResourcePool){
Void run(){

duration(2,2);
mut!invoke(6);
duration(3,3); // 5-2 = 3
mut!invoke(6);
duration(2,2); // 7-5 = 2
mut!invoke(6);

}
}

Fig. 11. Tester Class

tsearch [1] { init} −→∗ {Conf1 finish(T,M,E,N)} in time ≤2
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] { init} −→∗ {Conf1 invoke(2,M,E,N)} in time ≤2
If this search is not successful, then the test fails; otherwise, if Maude answers
C1 → Conf1 then we continue with the following search:

tsearch [1] {C1 invoke(2,M,E,N)} −→∗ {Conf2 finish(T,M,E,N)} in time ≤3
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C1 invoke(2,M,E,N)} −→∗ {Conf2 invoke(5,M,E,N)} in time ≤3
If this search is not successful, then the test fails; otherwise, if Maude answers
C2 → Conf2 then we continue with the following search:

tsearch [1] {C2 invoke(5,M,E,N)} −→∗ {Conf3 invoke(7,M,E,N)} in time ≤2
If this search is not successful, then the test fails; otherwise, if Maude answers
C3 → Conf3 then we continue with the following search:

tsearch [1] {C3 invoke(7,M,E,N)} −→∗ {Conf4 finish(8,M,E,N)} in time ≤1
If this search is not successful, then the test fails; otherwise, if Maude answers
C4 → Conf4 then we continue with the following search:

tsearch [1] {C4 finish (8,M,E,N)} −→∗ {Conf5 finish(T,M,E,N)} in time <2
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C4 finish (8,M,E,N)} −→∗ {Conf5 finish(10,M,E,N)} in time ≤2
If this search is not successful, then the test fails; otherwise, if Maude answers
C5 → Conf5 then we continue with the following search:

tsearch [1] {C5 finish(10,M,E,N)} −→∗ {Conf6 finish(T,M,E,N)} in time <2
If this search is successful, then we have a counter-example; otherwise, we continue
with the following search:
tsearch [1] {C5 finish(10,M,E,N)} −→∗ {Conf6 finish(12,M,E,N)} in time ≤2

Fig. 12. Executing the test-case for the thread-pools
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It is possible to write a meta-level Maude script to automate the consecutive
execution of these search commands, such that each search starts from the re-
sulting configuration of the previous one. The technical details of how this can
be done is beyond the scope of this paper.

5 Conclusion

We bridge the gap between automata theory and object orientation. We exploit
the expressive power of Real-Time Maude to define the semantics of Real-Time
Creol. We complement it with the analytical power of timed automata analysis
tools like Uppaal. Based on this, we explained a methodology for schedulability
analysis of open concurrent systems and applied it to the design and analysis
of thread pools in an industrial communication platform. This methodology
provides a separation of concerns between high-level modeling of architectural
features of concurrent systems (in Creol) and their analysis for schedulability
(using timed automata).

Behavioral interfaces are central to the analyses. Thread pools are analyzed for
schedulability with respect to the task generation pattern given in the behavioral
interfaces modeling the work-load. We also derive test cases from the behavioral
interfaces for checking conformance between the timed automata abstractions
and the Creol models, thus bridging the gap between the two levels of abstrac-
tion. We described a testing technique that is able to find counter-examples to
conformance.

Future work consists, first of all, of an implementation of the method for
testing conformance between a Creol model of a thread-pool and the timed
automata models. Another line of future research consists of real-time extensions
of the Creol language itself to support a full development cycle, so that one can
generate code for application-specific schedulers from Creol models.
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Introduction

This talk describes recent Joint work with Sergio Rajsbaum [3].
For models of concurrent computation in which processes may fail by crash-

ing, each possible computation can be characterized as a simplicial complex,
a geometric structure constructed by “gluing together” simplexes in a regular
manner [6]. Informally, a complex is k-connected if it has no “holes” in dimen-
sion k or lower. It is known that if the complex corresponding to every such
computation is k-connected, then one cannot solve (k +1)-set agreement [4,5,6].

A simplicial complex is shellable if it can be constructed by gluing a sequence
of n-simplexes to one another along (n− 1)-faces only. Shellable complexes have
been studied in the combinatorial topology literature [1,2,7] because they have
many nice combinatorial properties.

We can exploit these properties complexes to derive new and remarkably
succinct tight (or nearly tight) lower bounds both on the connectivity of the
associated complexes, and on solutions to the k-set agreement task in these
models.

We consider a round-by-round model of computation, where we view each
round as a map carrying simplexes to complexes. The principal insight is that
if the single-round complex is shellable, then multi-round compositions preserve
connectivity under certain easily-checkable conditions. These are theorems of
combinatorial topology, independent of any model of computation.

We then show that for many classical models of computation, such as the syn-
chronous, asynchronous, and semi-synchronous message-passing models, along
with the asynchronous read-write memory model, each single-round complex
is indeed shellable, so it becomes a straightforward exercise to derive tight (or
nearly tight) bounds on when and if one can solve k-set agreement.

For asynchronous shared-memory models in which processes have access to
“black-box” objects that solve consensus or k-set agreement, matters are a lit-
tle more complicated. The single-round complex, while not itself shellable, is a
simple union of shellable complexes, with a shellable nerve, and the same con-
sequences follow.

Moreover, our results apply not just to the usual wait-free or t-resilient failure
models, but to general adversary schedulers that can cause certain subsets of
processes to fail, perhaps in a non-uniform way.
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These results illustrate the power and continuing usefulness of topological
methods for analyzing concurrent computation. Using a few well-known concepts
from Combinatorial Topology, such as connectivity, nerves, and shellability, we
can impose a common framework on a collection of heretofore unrelated models
of computation, resulting in remarkably succinct proofs, not only of known re-
sults in each of these models, but also of new, previously-unknown results that
extend classical wait-free and t-resilient bounds to general adversaries.
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Abstract. We discuss conceptional and foundational aspects of Markov au-
tomata [22]. We place this model in the context of continuous- and discrete-time
Markov chains, probabilistic automata and interactive Markov chains, and pro-
vide insight into the parallel execution of such models. We further give a de-
tailled account of the concept of relations on distributions, and discuss how this
can generalise known notions of weak simulation and bisimulation, such as to
fuse sequences of internal transitions.

1 Introduction

Petri nets are a model of concurrency. Among the most successful and widespread vari-
ations we find a class of models tailored to performance and dependability evaluation,
Generalised Stochastic Petri nets (GSPNs) [38,39]. GSPNs support stochastically timed
behaviour and weighted immediate choices. A simple example GSPN is depicted in
Figure 1. What we see are places and transitions, connected by directed arrows. There
are two types of transitions, timed (drawn white) and immediate (drawn black) tran-
sitions. If enabled, the latter fire immediately, while the earlier fire after a delay that
is distributed according to a negative exponential distribution. Immediate transitions
have priority over timed transitions. Evaluation of a GSPN proceeds at the level of the

p5

p1

p2

p4

p3

p6

t5 t3

t1 t2

t4t6

Fig. 1. A confused GSPN

reachability graph. That graph is reduced to a continuous-time Markov chain (CTMC),
for which efficient steady-state and transient solvers are at hand [14,17]. Due to their
formality, visual representation, and the availability of efficient evaluation support,
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GSPNs have found widespread application in many diverse disciplines, including man-
ufacturing, logistics, systems biology and so on [11,50,43,24].

Astonishingly, the above evaluation trajectory is incomplete. It is restricted to the
class of confusion-free GSPNs. The net depicted in Figure 1 is confused. Confusion
arises if a firing sequence admits the simultaneous enabling of multiple non-conflicting
immediate transitions. Priorities and weights can eliminate confusion, but with strange
effects. To shed some light on this phenomenon, assume that all weights of immediate
transitions and also all rates of timed transitions are 1 for the above example. In this
case, the steady state probability of a token being present in place p5 is 4/11. This
probability changes to 2/5 if one replaces the immediate transition t2 and place p2 by a
direct arc from t1 to p3. In other words, adding or removing an immediate ’stutter step’
somewhere in a weighted confused net may change the performance figures obtained
for such nets. The issue of confusion has been discussed in the literature [13,15,37,6],
but even after 25 years of pragmatic use, the final word on the foundational semantics
of GSPNs is yet to be spoken.

Petri nets are visual, but not compositional. Process calculi provide compositional
theories for complex systems, especially those involving communicating, concurrently
executing components [8]. This paper is not about Petri nets with stochastically timed
behaviour and weighted immediate choices. It is not about Petri nets at all. It is about
compositional theories in a setting with stochastically timed behaviour and weighted
immediate choices. The paper revolves around Markov automata [22], a model that
indeed solves the semantic challenges hinted at above. This is achieved by harvest-
ing and intertwining results established independently for two process calculi that each
extend classical concurrency models in simple yet conservative fashions: Probabilistic
automata [44,7,12] (PA), and interactive Markov chains [25] (IMC). Though different
in flavour, both are equipped with compositional theories for strong and weak bisimi-
larities and corresponding equational theories.

In probabilistic automata, there is no global notion of time. Concurrent processes
may perform random experiments inside a transition. This is represented by transitions
of the form s

a
μ, where s is a state, a is an action label, and μ is a probability distribu-

tion over states. Labelled transition systems are instances of this model family, obtained
by restricting to Dirac distributions (assigning full probability to single states). Thus,
foundational concepts and results of standard concurrency theory are retained in their
full beauty, and extend smoothly to the model of probabilistic automata. By restrict-
ing to Dirac distributions (assigning full probability to single states), labelled transition
systems arise, and standard concurrency theoretical concepts and results are retained in
their full beauty, and these extend smoothly to the model of probabilistic automata. In
Markov automata, probabilistic automata are employed to give a genuine semantics to
weighted immediate choices and their sequential or concurrent execution.

Interactive Markov chains in turn arise from classical concurrency models by adding
a second type of transitions s

λ
s′, that can embody random delays governed by a

negative exponential distribution with some parameter λ. This twists the model to one
that is running on a continuous time line, and where executions of actions take no time
and happens immediately – unless an action can be blocked by the environment. This
is linked to the process algebraic notion of maximal progress for internal actions. By
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dropping the second type of transitions, again, standard concurrency theory is regained
in its entirety, and extends smoothly to the full IMC model. In Markov automata, IMC
are used to represent stochastic timed behaviour and principal interaction possibilities.

Markov automata stand on the shoulders of PA and IMC. In a nutshell, the resulting
model encompassed the expressiveness of GSPNs without semantic glitches, and with
an entirely compositional theory. Due to the different time scales present in this model,
this is a demanding endeavour. As in plain IMCs, internal immediate probabilistic transi-
tions cannot be blocked and take no time to execute. Consequently, MA support fusing
sequences of them. This implies that we need to partially ignore the branching structure
of our probabilistic automata induced substructures when defining equalities, especially
weak bisimilarity, on them. This is achieved by defining bisimulation as a relation on
distributions over states, rather than as a relation on states, and by using the concept
of distribution splitting, which is a concept of interest beyond the concrete Markov au-
tomata context. It allows for a surprisingly simple formulation of how transitions are
fused, and allows to present various seemingly distinct preorders and equivalences in a
unifying framework.

In this paper, we discuss conceptional and foundational aspects of Markov automata,
partly rephrasing and complementing [22]. We place it in the context of some well-
known and established models of concurrent computation that involve stochastically
timed behaviour and weighted immediate choice, especially continuous- and discrete-
time Markov chains, probabilistic automata and interactive Markov chains. We espe-
cially give insight into the parallel execution of such models, and discuss simulation
and bisimulation relations on them. We show that the concept of relations on distri-
butions generalises the respective standard relational notions. With this perspective on
the different notions of bisimulation it becomes apparent how weak bisimulation for
Markov automata appears as a natural generalisation of the constituent relations.

2 Preliminaries

(Sub-)distributions. A subdistribution μ over a set S is a function μ : S �→ [0, 1] such
that

∑
s∈S μ(s) ≤ 1. We denote by Supp(μ) = {s ∈ S | μ(s) > 0} the support of μ

and define the probability of S′ ⊆ S with respect to μ as μ(S′) :=
∑

s∈S′ μ(s). Let
|μ| := μ(S) denote the size of the subdistribution μ. We say μ is a full distribution,
or distribution, if |μ| = 1. Let Dist(S) and Subdist(S) be the set of distributions and
subdistributions over S, respectively. For s ∈ S, we let Δs ∈ Dist(S) denote the Dirac
distribution for s, i.e., Δs(s) = 1. Let μ and μ′ be two subdistributions. We define the
subdistribution μ′′ := μ ⊕ μ′ by μ′′(s) = μ(s) + μ′(s), if |μ′′| ≤ 1. Conversely, we
say that μ′′ can be split into μ and μ′. Or that (μ, μ′) is a splitting of μ′′. Moreover, if
x · |μ| ≤ 1, we let xμ denote the subdistribution defined by: (xμ)(s) = x · μ(s).

(Sub-)distributions can also be considered as sets over S × (0, 1], where (s1, r1),
(s2, r2) ∈ S × (0, 1] ∧ s1 = s2 implies r1 = r2, and where the second components of
the elements sum up to a number smaller or equal to 1. The set view on subdistribution
will be widely used throughout the paper. For example, to denote the distribution μ
with μ(s1) = 0.75 and μ(s2) = 0.25, we may write μ = �(s1, 0.75), (s2, 0.25)�.
Let for an element s ∈ S and a subdistribution μ over S the expression μ−s denote
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the subdistribution that is obtained from μ by removing the pair (s, μ(s)) from μ, if it
exists. To make clear when we talk about sets representing subdistributions and when
about general sets, we use � and � for subdistributions, { and } for sets. Since ⊕ is
associative and commutative, we may use the notation

⊕
i∈I for arbitrary sums over a

finite index set I .

Labelled trees. For σ, σ′ ∈ N∗
>0 we write σ ≤ σ′ if there exists a (possibly empty) φ

such that σφ = σ′. A partial function T : N∗
>0 → L, which satisfies

– if for σ, σ′ ∈ N∗
>0: σ ≤ σ′ and σ′ ∈ dom(T ) then σ ∈ dom(T )

– if σi ∈ dom(T ) for i > 1, then also σ(i − 1) ∈ dom(T )
– ε ∈ dom(T )

is called an (infinite) L-labelled tree. Let σ ∈ dom(T ): σ is called a leaf of T if there
is no σ′ ∈ dom(T ) such that σ < σ′. The empty word ε is called the root of T . We
denote the set of all leaves of T by LeafT and the set of all inner nodes by InnerT . If
the tree has only one node, the root node, then this node is contained in both InnerT
and LeafT . In any other case the two sets are disjoint. For a node σ of a tree T let
Children(σ) = {σi | σi ∈ dom(T )}. In this paper, we consider L-labelled trees with
finite branching, i.e., |Children(σ)| < ∞ for all node σ.

3 Markov Automata

We integrate probabilistic automata and interactive Markov chains into one model, de-
fined by means of a twofold transition relation and [22]:

Definition 1. A Markov automaton MA is a quintuple (S,Act , , , so), where
– S is a nonempty finite set of states,
– Act is a set of actions containing the internal action τ ,
– ⊂ S × Act × Dist(S) is a set of immediate transitions, and
– ⊂ S × R≥0 × S is a set of timed transitions, and
– so ∈ S is the initial state.

We let s, u, v, t, E, F, G and their variants with indices range over S. For timed transi-
tions, λ, μ ∈ R≥0 denote rates of exponential distributions. For immediate transitions,
a ranges over Act , and μ ranges over Dist(S). A immediate transition (E, a, μ) ∈
is also denoted by E

a
μ, similarly we define E

λ
F . We say an action a ∈ Act is

enabled in E, if there exists an immediate transition E
a

μ. A state E ∈ S is called
stable if τ is not enabled in E. If E is stable, we use the shorthand notation E↓. We
employ the maximal progress assumption. This means that if a state is not stable, time is
not allowed to progress, making timed transitions out of this state irrelevant [28]. As in
IMC, this assumption is not evident in the model, but is part of the equivalences defined
on it.

We define a (nonnegative) real-valued function rateMA : S × S �→ R≥0, that calcu-
lates the rate to reach a state s′ from a state s by

rateMA(s, s′) =
∑

{λ | s
λ

s′}.
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Moreover, we define rateMA(s) :=
∑

s′ rateMA(s, s′) as the exit rate of s. The index is
omitted if clear from the context. The delay associated with a state s that enables timed
transitions is (negative) exponentially distributed with the exit rate rate(s). In general,
the probability to move from s to the successor state in s′ equals the probability that the
timed transitions that lead from s to ′ wins the race. Therefore, the discrete branching
probability to move to s′ is given by P(s, s′) := rate(s,s′)

rate(s) . For s ∈ S, we use P(s, ·) to
denote this discrete branching distributions.

A Dirac distribution assigns full probability to a single outcome. We say that
is Dirac if the distributions occurring as third components of are all Dirac, is de-
terministic if E

α
μ1 and E

α
μ2 implies that μ1 = μ2. Markov automata subsume

many concurrent systems, which are discussed below.

1. Labelled Transition Systems: If = ∅ and is Dirac, we obtain labelled
transition systems.

2. Discrete-time Markov chains: If = ∅ and |Act | = 1 and is deterministic,
we obtain discrete-time Markov chains (DTMCs). In this case one usually ignores
the single action, and writes it as a triple (S,P, s0) where P is called the probability
matrix, and is given by P(s, s′) := μ(s′) provided s

α
μ.

3. Continuous-time Markov chains: If = ∅ we obtain continuous-time Markov
chains (CTMCs). It is commonly represented as a triple (S,Q, s0) where Q is
called the infinitesimal generator matrix, and is given by Q(s, s′) := rate(s, s′)
provided s �= s′ and Q(s, s) = rate(s, s) − rate(s). The latter reflects that in the
original mathematical formulation of CTMCs it is impossible to make a difference
between staying in state s, and jumping back to s from s.

4. Probabilistic Automata: If = ∅ we obtain probabilistic automata. If addition-
ally is deterministic, we arrive at Markov decision processes (MDPs).

5. Interactive Markov chains: If is Dirac, we get interactive Markov chains
(IMCs).

4 Parallel Composition

This section introduces parallel composition of MAs, and places it in the context of
general operators for parallel composition, also motivating the rationale behind the se-
mantic choices of the parallel operators in PA and IMC.

Assuming we are given two MAs MA1 = (S1,Act1, 1, 1, s1
o) and MA2 =

(S2,Act2, 2, 2, s2
o), we consider a family of parallel operators ||A indexed by

some set A ⊆ (Act1 ∪ Act2) − {τ}. For a clear presentation we use these operators
as syntactical means to denote some state s1 ||A s2, which arises by the parallel com-
position of s1 and s2. As syntactic sugar, we lift them to subdistributions as follows:
for subdistributions μ1 ∈ Subdist(S1) and μ2 ∈ Subdist(S2), μ1 ||A μ2 denotes the
subdistribution in Dist(S1 × S2) by distributing ||A element-wise. As an example, we
have (μ1 ||A μ2)(s1 ||A s2) := μ1(s1) · μ2(s2).

Definition 2. Let MA1, MA2 and A be as discussed above. The parallel operator
can be applied to the two MAs to form the parallel composition MA1 ||A MA2 =
(S,Act1 ∪ Act2, , , so) of processes where
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– S = {s1 ||A s2 | (s1, s2) ∈ S1 × S2},
– (s1 ||A s2, a, μ1 ||A μ2) ∈ iff either

• a ∈ A and (si, a, μi) ∈ i for each i ∈ {1, 2}, or
• a �∈ A and (s1, a, μ1) ∈ 1 ∧ μ2 = Δs2 or (s2, a, μ2) ∈ 2 ∧ μ1 = Δs1

– (s1 ||A s2, λ, s′1 ||A s′2) ∈ iff either
• if for each i ∈ {1, 2}, rateMAi

(si, s
′
i) > 0 ∧ si = s′i then λ =

rateMA1(s1, s
′
1) + rateMA2(s2, s

′
2), otherwise

• λ = rateMA1(s1, s
′
1) and s′2 = s2, or λ = rateMA2(s2, s

′
2) and s′1 = s1,

– so = s1
o ||A s2

o ∈ S1 × S2 is the initial state.

In a process algebraic setting, the style of defining this operator can be made more
elegant [34], but this is not the topic of this paper.

4.1 The Roots of MA Parallel Composition

It is illustrative to relate this operator to the ones it is derived from.

1. Whenever MA1 and MA2 are labelled transitions systems, MA1 ||A MA2 reduces
to LOTOS-style parallel composition [9].

2. Whenever MA1 and MA2 are discrete-time Markov chains over the same singleton
set Act , MA1 ||Act MA2 reduces to the synchronous product of the models, where
both Markov chains proceed in lockstep.

3. Whenever MA1 and MA2 are continuous-time Markov chains, MA1 ||∅ MA2 re-
duces to the independent and concurrent execution of the two Markov chains, jus-
tified by the memoryless property.

4. Whenever MA1 and MA2 are probabilistic automata, MA1 ||A MA2 agrees with
the essence of the parallel composition for PA [45] (neglecting minor differences
in synchronisation set constructions).

5. Whenever MA1 and MA2 are interactive Markov chains, MA1 ||A MA2 reduces to
the parallel composition for IMC [25].

A few further remarks are in order (despite they may seem obvious to many readers):
MA takes the LOTOS-style parallel operator ||A as a basis, but we could have equally
well opted for CCS style [40], CSP style [30], asynchronous or synchronous π-calculus
style [41], I/O style [36], etc. From a pragmatic perspective, the ||A-operator is a con-
venient ’Swiss army knife’. It can, as special cases, express asynchronous interleav-
ing (||∅), synchronous product (||Act with |Act | = 1). It can also be used to encode
shared variable communication, as well as asynchronous message passing communi-
cation. Shared variables can be modelled as separate MA, where states correspond to
variable valuations, and transitions are put in place for reading and updating the state.
Similarly, asynchronous message passing channels can be encoded as MA that keep
memory of the messages in transit (see e.g. [4, Chapter 2] for details).

We mention this to make clear that a properly and well understood semantics for this
one operator is the nucleus for a well understood semantics of essentially any prevailing
communication paradigms found in the real world. Since the models developed with
MA (just like GSPN, IMC, PA) are meant to be designed and evaluated in order to
provide insight into performance and dependability of the system being modelled, a
well understood semantics is essential.
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4.2 A Connection between DTMCs and CTMCs

To shed some more light on the parallel behaviour of these models, we state an inter-
esting observation relating the interleaving semantics for CTMCs to the synchronous
semantic for DTMCs. They are both derived from our single parallel composition for
MAs, but why do they make sense after all? This section establishes a probably aston-
ishing connection between the two.

Geometric and Exponential Distributions. It is well known – and we thus here take it
for granted – that for any state in a CTMC, the sojourn time of that state is exponentially
distributed, and likewise, that for any state in a DTMC, the sojourn time of that state is
geometrically distributed.

Furthermore, the exponential distribution can be considered as the limit of the ge-
ometric distribution, in the following sense: Let continuous random variable X be
exponentially distributed with parameter λ > 0, i.e. its density is fX(t) = λe−λt.
Further, for Δ > 0 with p = λΔ < 1, we consider the geometrically distributed dis-
crete random variable XλΔ with parameter λΔ, i.e., with density function fXλΔ

(k) =
λΔ(1 − λΔ)k−1. Then the definition of Euler’s number implies that the density of X
at time point t > 0 can be approximated by the density function of XλΔ at step � t

Δ	,
formally:

∀t > 0. fX(t) = lim
Δ→0

fXλΔ
(�t/Δ	)/Δ

One may consider Δ as a step size in continuous time (used to perform a single
Bernoulli experiment, from which the geometric distribution is derived). This view is
helpful in the discussion that follows.

Discretised Markov Chain. Let M = (S,Q, s0) be a CTMC, and Δ be a sufficiently
small step size. In the classical terminology [33], this CTMC is a family {C(t)} of
random variables each taking values in S, indexed by (continuous) time t, that obeys the
Markov property. From this, we can derive a Δ-discretised DTMC MΔ = (S,PΔ, s0)
by: PΔ(s, s′) = Prob(C(Δ) = s′ | C(0) = s). It holds that:

– PΔ(s, s′) equals Q(s, s′)Δ + o(Δ), provided s �= s′, and otherwise
– PΔ(s, s) equals 1 + Q(s, s)Δ + o(Δ).

Here, o(Δ) subsumes the probabilities to pass through intermediate states between s
and s′ during the interval Δ, and we have PΔ(s, s) ∈ (0, 1) – for sufficiently small Δ.

Moreover, the rate between s and s′ can be derived from the derivative:

– Q(s, s′) = limΔ→0 PΔ(s, s′)/Δ, provided s �= s′, and otherwise
– Q(s, s) = limΔ→0(−

∑
s′ 
=s PΔ(s, s′)/Δ).

This observation justifies that the behaviour of a CTMC can be approximated arbitrarily
closely by a Δ-discretised DTMC, just by choosing Δ small enough, since in the limit
Q = limΔ→0(PΔ − I)/Δ, where I denotes the identity matrix. The limit is understood
element-wise. All the above facts can, albeit usually stated in a different flavour, be
found in many textbooks on Markov chains, for example in [47].
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What is not found in textbooks is the question whether this approximation is com-
patible with parallel composition: For two CTMCs M and M ′, let MΔ and M ′

Δ denote
the corresponding Δ-discretised DTMCs respectively, which we assume labelled over
the same singleton set Act . We now consider the synchronous product MΔ ||Act M ′

Δ,
where the two Markov chains evolve in lockstep with the step size – on a continuous
time line – being Δ. Now, how does this product relate to M ||∅ M ′, the parallel com-
position of the CTMCs M and M ′ under interleaving semantics? The following lemma
answers this.

Lemma 1. Let M = (S,Q, s0) and M ′ = (S′,Q′, s′0) be two CTMCs, let MΔ, M ′
Δ

denote the probability matrices in the discretised DTMCs, respectively. Moreover, let
M ||∅ M ′ = (S ||∅ S′,Q||, s0) and MΔ ||Act M ′

Δ = (S ||Act S′,P||
Δ, s0). Then,

Q|| = lim
Δ→0

(P||
Δ − I)/Δ

Proof. Let s, t ∈ S and s′, t′ ∈ S′. We consider a few cases:

1. Assume s �= t and s′ �= t′. By the synchronised product in the DTMCs, we have:

P||
Δ(s ||Act s′, t ||Act t′) = PΔ(s, t) · P′

Δ(s′, t′) = Q(s, t)Q′(s′, t′)Δ2 + o(Δ)

It holds now limΔ→0 P||
Δ(s ||Act s′, t ||Act t′)/Δ = 0. By definition of ||∅ we also

have Q||(s ||∅ s′, t ||∅ t′) = 0.
2. Now we consider the case s = t and s′ �= t′. Under this assumption we have that

Q||(s ||∅ s′, t ||∅ t′) = Q′(s′, t′), and moreover, PΔ(s, s) = 1+Q(s, s)Δ+o(Δ).
The rest can be shown similarly as previous case.

3. Finally we consider the case s = t and s′ = t′. In this case we have

P||
Δ(s ||Act s′, s ||Act s′) = (1 + Q(s, s)Δ + o(Δ)) · (1 + Q′(s′, s′)Δ + o(Δ))

= 1 + (Q(s, s) + Q′(s′, s′))Δ + o(Δ)

Thus: limΔ→0(P
||
Δ(s ||Act s′, s ||Act s′) − 1)/Δ = Q(s, s) + Q′(s′, s′), which is

exactly Q||(s ||∅ s′, s ||∅ s′).

The above lemma derives the interleaving semantics for CTMCs through the limiting
behaviour of their discretised DTMCs evolving synchronously.

5 Simulations and Bisimulations

We now discuss equivalences and preorders for MA and submodels thereof. We first
introduce a notation that makes our further discussion more compact, at the price of
mildly reduced readability. It enables a uniform treatment of immediate and timed tran-
sitions. In doing so, we introduce the special action χ(r) to denote the exit r rate of a
state. Moreover, we let Actχ := Act ∪ {χ(r) | r ∈ R≥0}, and α, β, ... range over this
set.

Definition 3. Let MA = (S,Act , , , so) be an MA. Let E ∈ S and α ∈ Actχ.
We write E

α−−→ μ if
– E

α
μ ∧ α ∈ Act or

– E↓ ∧ r = rate(E) ∧ α = χ(r) ∧ μ = P(E, ·).
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5.1 Strong Simulations and Bisimulation

Strong Simulations. Strong simulations for DTMCs were originally introduced [31]
using the concept of weight functions. Weight function have since become a standard
way of formalising specification and refinement relations between probabilistic pro-
cesses. Given distributions μ, μ′ and a relation R, a weight function δ requires assign-
ing weights in [0, 1] for every pair of states in R, such that μ(s) =

∑
s′∈S δ(s, s′) and

symmetrically μ′(s′) =
∑

s∈S δ(s, s′). Owed to the need of assigning these weights,
many proofs need human ingenuity and become certainly nontrivial. This is felt, for
instance, in the proof of transitivity of strong similarity. As a consequence, a few
equivalent reformulations of weight functions have emerged. One of them is based on
computing the maximum flow on a particular network constructed out of μ, μ′ and R
[2]. This has been successfully exploited in decision procedures for various simula-
tion preorders [2,52,21]. Below, we use another, rather recent, reformulation [51,21]:
the existence of a weight function for distributions μ, μ′ with respect to R is equiva-
lent to the statement that, μ(A) ≤ μ(R(A)) for every set A of states. Here, we write
R(A) := {s′ | (s, s′) ∈ R ∧ s ∈ A}. This alternative characterisation of weight func-
tion provides a very intuitive interpretation: for every set A, μ′ assigns a higher proba-
bility to the related set R(A) relative to μ. The inspiration for this definition stems from
[19], in which strong simulation relations are, in addition, required to be preorders.

Definition 4 (Strong Simulations). Let MA = (S,Act , , , so) be an MA. Let
R be a binary relation on S. Then, R is a strong simulation iff ERF implies:

1. for all α ∈ Act : E
α−−→ μ implies F

α−−→ μ′ for some distribution μ′ such that
μ(A) ≤ μ′(R(A)) for all A ⊆ S, and

2. for all r ∈ R≥0 : E
χ(r)−−−→ μ implies F

χ(r′)−−−→ μ′ for some distribution μ′ and
r′ ∈ R≥0 such that r ≤ r′ and μ(A) ≤ μ′(R(A)) for all A ⊆ S.

State F strongly simulates E, written E � F , if (E, F ) is contained in some strong
simulation.

1. On labelled transitions systems � coincides with standard strong similarity [42,1].
2. On discrete-time Markov chains� coincides with strong similarity [31].
3. On continuous-time Markov chains � coincides with strong similarity [5].
4. On probabilistic automata� coincides with strong similarity [46].
5. On interactive Markov chains � coincides with strong similarity [32] if strength-

ening r ≤ r′ to r = r′.

Strong Bisimulations. Strong bisimilarity in its diverse flavours is the most prominent
equivalence relation for probabilistic models. For MA, the obvious combination of
strong bisimilarity for IMC and strong bisimilarity for PA can be phrased as follows:

Definition 5. Let MA = (S,Act , , , so) be an MA. Let R be an equivalence
relation on S. Then, R is a strong bisimulation iff ERF implies for all α ∈ Actχ:
E

α−−→ μ implies F
α−−→ μ′ with μ(C) = μ′(C) for all C ∈ S/R.



30 C. Eisentraut, H. Hermanns, and L. Zhang

Two states E and F are strongly bisimilar, written E ∼F , if (E, F ) is contained in
some strong bisimulation.

1. On labelled transitions systems ∼ is strong bisimilarity [42,40].
2. On discrete-time Markov chains ∼ coincides with strong bisimilarity [35] and cor-

responds to lumpability [33].
3. On continuous-time Markov chains ∼ coincides with lumping equivalence [26].
4. On probabilistic automata ∼ coincides with strong bisimilarity [46].
5. On interactive Markov chains ∼ coincides with strong bisimilarity [25].

For PA, coarser relations than strong bisimilarity and strong similarity – still treat-
ing internal transitions as ordinary transitions – are established based on the concept
of combined transitions. The resulting relations are called strong probabilistic (bi-
)similarities [46,45]. They can also be defined directly in our setting, by replacing
F

a−−→ μ′ by a convex combination of several a-labelled transitions starting in F . De-
tails are left to the interested reader.

5.2 Weak Transitions

Weak transitions for probabilistic systems have been defined in the literature via prob-
abilistic executions in [44], trees [20], or infinite sums [18]. We adopt the tree notation
here. The material presented below concerning weak transitions provides no innovation
over the classical treatment, it is included for the benefit of the reader.

We consider in the following S × R≥0 × Actχ ∪ {ε}-labelled trees. Briefly, a node
in such trees is labelled by the corresponding state, probability of reaching this node,
and the chosen action (including the special action for timed transitions) to proceed.
For a node σ we write Stat(σ) for the first component of t(σ), Probt(σ) for the second
component of t(σ) and Actt(σ) for the third component of t(σ).

Definition 6. Let MA = (S,Act , , , so) be an MA. A (weak) transition tree T
is a S × R≥0 × Actχ ∪ {ε}-labelled tree that satisfies the following condition:

1. 0 < ProbT (ε) ≤ 1
2. ∀σ ∈ Leaf(T ) : ActT (σ) = ε.

3. ∀σ ∈ Inner(T ) \ Leaf(T ) : ∃μ : StaT (σ)
ActT (σ)−−−−−→ μ and

ProbT (σ) · μ =
�
(StaT (σ′), ProbT (σ′)) | σ′ ∈ ChildrenT (σ)

�

4.
∑

σ∈Leaf ProbT (σ) = ProbT (ε).

We call the tree weak, if ProbT (ε) < 1.

Restricting Actχ to Act , a transition tree T corresponds to a probabilistic execution
fragment: it starts from StaT (ε), and resolves the non-deterministic choice by executing
the action ActT (σ) at the inner node σ. The second label of σ is then the probability
of reaching StaT (σ), starting from StaT (ε) and following the selected actions. If in a
node σ the timed transition is chosen, the third label ActT (σ) ∈ R≥0 represents the
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exit rate of StaT (σ). In this case, a child σ′ is reached with ProbT (σ) times the discrete
branching probability P(StaT (σ), StaT (σ′)).

An internal transition tree T is a transition tree where each ActT (σ) is either τ or ε.
Let T be a transition tree. Then the subdistribution associated with T , denoted by μT ,
is defined as

μT
def=
⊕

σ∈LeafT

�(StaT (σ), ProbT (σ))� .

We say subdistribution μT is induced by T . Obviously, μT is a full distribution if
we have ProbT (ε) = 1. With the above definitions we are now able to express weak
transitions:

Definition 7. For E ∈ S and μ a full distribution we write
– E ==⇒ μ if μ is induced by some internal transition tree T with StaT (ε) = E.
– E

α==⇒ μ if μ is induced by some transition tree T with StaT (ε) = E, where on
every maximal path from the root at least one node σ is labelled ActT (σ) = α. In
case that α �= τ , then there must be exactly one such node on every maximal path.
And all other inner nodes must be labelled by τ .

– E
α̂==⇒ μ if α = τ and E ==⇒ μ or E

α==⇒ μ.
For all three transition relations we say that the transition tree that induces μ also
induces the transition to μ.

Note that E ==⇒ ΔE and E
τ̂==⇒ ΔE holds independently of the actual transitions E

can perform, whereas E
τ==⇒ ΔE only holds if E

τ
ΔE . For all α �= τ , E

α̂==⇒ μ is
identical to E

α==⇒ μ. Below we define the notion of combined transitions [44], which
arise as convex combination of a set of transitions with the same label, including the
label representing timed transitions.

Definition 8. We write E
α==⇒C μ, if α ∈ Actχ and there is a finite indexed

set {(ci, μi)}i∈I of pairs of positive real valued weights and distributions such that

E
α==⇒ μi for each i ∈ I and

∑
i∈I ci = 1 and μ =

⊕
i∈I ciμi.

We say that E
α==⇒C μ is justified by the set {(ci, μi)}i∈I . Transitions rela-

tions from states to distributions can be generalised to take (sub)distributions μ to
(sub)distributions, by weighting the result distribution of the transition of each element
E ∈ Supp(μ) by μ(E).

Definition 9. Let � ∈
{

ˆ==⇒, ==⇒, , ,−−→
}

. Then, we write μ � γ if γ =⊕
si∈Supp(μ) μ(si)μi, where si � μi holds for all si ∈ Supp(μ).

We say that μ� γ is justified by the transitions si � μi.

5.3 Weak Simulations and Bisimulations over Subdistributions

Weak simulations and bisimulations are means to abstract from internal transitions and
sequences thereof. In our setting this means that we intend to fuse distributions that arise
from sequences of internal transitions in an MA into single, accumulated distributions.
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Relating distributions. Bisimulations for PA and IMC have in the past been defined as
relations on states, akin to bisimulations for LTS. The latter reside in a single state at
every point in time during their execution, thus bisimulation relations on states are all
that is needed to capture their behaviour adequately. In contrast, a stochastic system
resides – for every point in time – in a certain state with a certain probability. The
system behaviour is thus not correctly determined by the states occupied, but instead by
probability distributions over states in which a system can reside at any point in time.
It thus seems natural to define bisimulation relation as relations on distributions over
states.

Several simulation relations for PA adopt this approach [46,44,48] in an asymmetric
way, simulating a state by a distribution over states. Among these relations, probabilis-
tic forward similarity [44] is the coarsest. We denote it by ≤fwd . In Figure 2, state u
is forward simulated by state v and vice versa. In an asymmetric way, ≤fwd achieves
exactly what we intend to achieve for MA: we aim at fusing distribution along internal
immediate transition sequences. It is however not obvious how to extend the definition
of forward simulation, which relates states to distributions, to a bisimulation setting,
which should then relate distributions to distributions. Even partially state-based ap-
proaches seem to fail, since in order to equate u and v, the two distributions �(v′, 1)�
and

�
(E, 1

3 ), (F, 2
3 )

�
must be considered equivalent. However, from a state-based point

of view, the two distributions must be different, assuming that E and F represent states
of different equivalence classes, since neither E nor F alone can then be equivalent to
state v′ .

u

E F

a

1
3

2
3

v′v≤fwd

≥fwd

�	PA

E F

a

τ

1
3

2
3

Fig. 2. Probabilistic forward simulation versus probabilistic weak bisimulation

We instead advocate a bisimulation-over-distribution approach to define a notion of
weak bisimilarity that satisfies our demands [22]. In the sequel, we reiterate and
rephrase several interesting aspects of this approach, and characterise the semantical
relationship between weak bisimilarity and the standard bisimilarities of PA and IMC.

Naı̈ve Weak Bisimulation over States. In the following, we will show that the standard
bisimulations of PA and IMC can easily by cast as relations over distributions. In favour
of a concise presentation, we will not consider the standard bisimulations for PAs and
IMC separately, but only investigate a relation �, which we define as a direct combina-
tion of IMC and PA weak bisimilarity, such that on the IMC submodel we obtain IMC
weak bisimilarity [25], and on the PA submodel, we obtain (a divergence sensitive vari-
ation) of PA weak bisimilarity, namely stable weak bisimilarity. The variation in the
latter case is owed to the maximal progress assumption, inherited from IMC and nec-
essary for general MAs. This has, however, no influence on the technical development.
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We have first introduced this relation in [22, Def. 10], as a naı̈ve approach of defining a
suitable weak equivalence for MAs. As we have argued there, this relation is, however,
not suitable to achieve the intended effect of fusing internal transitions. We thus call
this relation naı̈ve weak bisimulation.

Definition 10 (Naı̈ve Weak Bisimulation). Let MA = (S,Act , , , so) be a
MA. For two states s, s′ ∈ S, s � s′ holds if (s, s′) ∈ E for some equivalence relation
E on S for which EEF implies for all α ∈ Actχ and for all equivalence classes C of

E , E
α−−→ μ implies F

α̂==⇒C γ for some γ and ∀C ∈ S/E : μ(C) = γ(C).

Weak (Bi-)simulations over Subdistributions. We will now introduce two weak bisim-
ulation – and also two weak simulation – relations that relate distributions (or subdis-
tributions, to be precise). One of them is weak bisimulation for Markov automata as
introduced in [22, Def. 11], the other bisimulation appears new. We will show that this
new bisimulation relation on distributions induces a bisimilarity on states that coincides
with naı̈ve weak bisimulation, which itself is defined directly over states. This strong
connection bridges between the state-based and distribution-based approach and allows
us to make precise their relationship. We call the new relation semi-weak bisimulation,
since it is weak, meaning partially oblivious to internal transitions, but yet finer than
weak bisimulation for Markov automata.

Both relations rely on the idea of equating subdistributions exactly when they can
be split into subdistributions, such that for each component in one splitting there ex-
ists a related component of the other splitting that exhibits identical behaviour, and
vice versa. Remarkably, the definitions only differ in one specific point. For semi-weak
(bi)simulation, splittings need to be immediately related to match their behaviour. For
weak (bi)simulation, we relax the conditions such that it suffices if equated distributions
are able to reach distributions that can then be split suitably by internal transitions. To
make explicit that the relations only differ in the way subdistributions are split, we de-
fine two sets of possible splittings of a subdistribution.

– For weak (bi)simulation, we use a set

split(μ) = {(μ1, μ2) | ∃μ′ : μ ==⇒C μ′ ∧ μ′ = μ1 ⊕ μ2}

where each splitting of an internal successor subdistribution of μ is a valid splitting.
– For semi-weak (bi)simulation, we use a more restricted set

split◦(μ) = {(μ1, μ2) | μ = μ1 ⊕ μ2}

where only direct splittings of μ are valid splittings.

Since weak and semi-weak bisimulation only differ in this one point, we will define
them simultaneously in one definition. In what follows, the expression split(◦) needs to
be replaced by split in order to obtain weak bisimulation. Semi-weak bisimulation is
obtained by replacing it by split◦.

Definition 11 (Weak Bisimulations). A relationR on subdistributions over S is called
a (semi-)weak bisimulation iff whenever μ1Rμ2 then for all α ∈ Actχ: |μ1| = |μ2| and
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1. ∀E ∈ Supp(μ1): ∃μ2
g, μ2

s: (μ2
g, μ2

s) ∈ split(◦)(μ2) and
(i) �(E, μ1(E))� R μ2

g and (μ1−E) R μ2
s

(ii) whenever E
α−−→ μ′

1 for some μ′
1 then μ2

g α̂==⇒C μ′′ and (μ1(E) · μ′
1) R μ′′

2. ∀F ∈ Supp(μ2): ∃μ1
g, μ1

s: (μ1
g, μ1

s) ∈ split(◦)(μ1) and
(i) μ1

g R �(F, μ1(F ))� and μ1
s R (μ2−F )

(ii) whenever F
α−−→ μ′

2 for some μ′
2 then μ1

g α̂==⇒C μ′′ and μ′′ R (μ2(F ) · μ′
2)

Two subdistributions μ and γ are (semi-)weak bisimilar, denoted by μ ≈(◦) γ, if the
pair (μ, γ) is contained in some (semi-)weak bisimulation.

It is worth noting that the weak bisimilarity ≈ in the above definition is identical to [22,
Def. 11]. We immediately obtain simulation relations by removing Condition 2.

Definition 12 (Weak Simulations). A relation R on subdistributions over S is called
a (semi-)weak simulation iff whenever μ1Rμ2 then for all α ∈ Actχ: |μ1| = |μ2| and

∀E ∈ Supp(μ1): ∃μ2
g, μ2

s: (μ2
g, μ2

s) ∈ split(◦)(μ2) and

(i) �(E, μ1(E))� R μ2
g and (μ1−E) R μ2

s

(ii) whenever E
α−−→ μ′

1 for some μ′
1 then μ2

g α̂==⇒C μ′′ and (μ1(E) · μ′
1) R μ′′

Two subdistributions μ and γ are (semi-)weak similar, denoted by μ �(◦) γ, if the pair
(μ, γ) is contained in some (semi-)weak simulation.

It is not obvious that these relations are indeed equivalence relations and preorders, re-
spectively. Reflexivity and symmetry is straightforward. The latter holds, because the
union of two (semi-)weak bisimulations is again a (semi-)weak bisimulation. Since
the pioneering work of Larsen and Skou [35], it has become a standard for bisimi-
larity notions defined in the stochastic setting, to presuppose the bisimulations to be
equivalence relations on states. Because this property is not closed under union, several
otherwise standard properties become difficult to establish. Owed to the distribution
perspective on these relations illustrated above, the equivalence relation presupposition
can be dropped, simplifying an easy exercise. Only transitivity needs a technical and
involved proof. The proof for ≈ can be found in [22,23]. The crucial idea for this proof
is that we can define (bi)simulation relations up-to-splitting. We refer the reader to [22]
for further details. The proof for ≈◦ follows exactly the lines of that proof, but needs to
distinguish fewer cases.

Lemma 2. � and �◦ are preorders, ≈ and ≈◦ are equivalence relations.

It is apparent that ≈ and � are weaker notions than ≈◦ and �◦ respectively:

Theorem 1. ≈◦ ⊆ ≈ and �◦ ⊆ �

The relations defined above relate subdistributions, but they induce relations on states in
the obvious way: We call two states E, F (semi-)weak bisimilar, denoted by E ≈(◦)

Δ F ,
if ΔE ≈(◦) ΔF . Analogously, we call two states E, F (semi-)weak similar, denoted by
E �(◦)

Δ F , if ΔE �(◦)
Δ ΔF .

In the following we establish that � and ≈◦
Δ coincide. Since � is the naı̈ve (state-

based) integration of PA and IMC weak bisimulation, this fact provides insight into the
twist achieved by moving from semi-weak to weak formulation.
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Theorem 2. � = ≈◦
Δ

Proof. We first prove that the lifting of semi-weak bisimilarity to states, ≈◦
Δ, is also a

state-based bisimulation in the sense of Definition 10. The crucial point in this proof is
the claim, that μ ≈◦ γ implies ∀C ∈ S/≈◦

Δ : μ(C) = γ(C), since then the conditions
of Definition 10 follow immediately. To see the claim, note that ≈◦ itself is a semi-weak
bisimulation. Then, by repeated application of the left hand side of clause (i) in the def-
inition of ≈◦, we can split γ into a family of subdistribution {γE}E∈Supp(μ), such that
every E ∈ Supp(μ) is matched by one of these distributions, and μ(E)ΔE ≈◦ γE

holds. In turn, we can split μ(E)ΔE into a family
{
μE

F

}
F∈Supp(γE)

accordingly, such

that each state F ∈ Supp(γE) is matched by the subdistribution μE
F , satisfying

μE
F ≈◦ γE(F )ΔF . Every subdistributions μE

F must be of the form γE(F )ΔE . Hence,
we know that γE(F )ΔE ≈◦ γE(F )ΔF . In total, we have split μ and γ into sets of
subdistributions, such that there is a total matching of subdistribution of one set with
subdistributions of the other set. Matched subdistributions have the same size and the
single elements of their supports are equivalent up to ≈◦

Δ. From here we can immedi-
ately conclude that ∀C ∈ S/≈◦

Δ : μ(C) = γ(C) holds.

For the other direction we show that the relation

R = {(μ, γ) | ∀C ∈ S/� : μ(C) = γ(C)}

is a semi-weak bisimulation. Then, whenever E � F , the pair (ΔE , ΔF ) is contained
in the semi-weak bisimulation R, which implies E ≈◦

Δ F . Let us consider an arbi-
trary pair (μ, γ) ∈ R. By symmetry it suffices to check the necessary conditions for
an arbitrary E ∈ Supp(μ). Let C be the equivalence class of � containing E. Since
μ(C) = γ(C), there exists a splitting γg ⊕ γs of γ with Supp(γg) = {F1, . . . , Fk} and
Fi � E for each Fi, and furthermore,∀C ∈ S/� : γs(C) = (μ−E)(C). Hence Condi-
tion (i) is satisfied. Whenever E

α−−→ μ′, following Condition (ii), then for each Fi we
immediately deduce from E � Fi that Fi

α==⇒C γFi and ∀C ∈ S/� : μ′(C) = γFi(C).
Let us set ρ :=

⊕
i=1...k γFi . It is then straightforward to show that in total γg α==⇒C ρ

and that ∀C ∈ S/� : μ(E) · μ′(C) = ρ(C). By the choice of R this immediately
implies (μ(E)μ′, ρ) ∈ R, which suffices to establish Condition (ii). �

Just like �, most existing weak relations for systems with probabilistic or stochastic
timed transitions can be recast as relations on distributions, which can be formulated as
slight adaptations of ≈◦ and �◦, respectively. So, with ≈◦ and �◦ at hand, the exact
extra power of the distribution-based perspective, combined with distribution splitting,
becomes apparent: ≈◦ and ≈ only differ in their use of split◦(μ) and split(μ), respec-
tively. The latter allows additional internal transition sequences, and is the key to fuse
distributions along sequences thereof. It is thus a natural generalisation comparable to
the classical passage from strong transitions to weak transitions.

Discussion. We will now summarise the relationship between the respective standard
notions of weak (bi-)similarity on the submodels and weak (bi-)similarity for Markov
automata. Since all of these relations are defined over states, we will compare them to
≈Δ and ≈◦

Δ.
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1. On labelled transitions systems, both ≈Δ and ≈◦
Δ coincide with stable weak bisim-

ilarity [49]. They both coincide with standard weak bisimilarity [40] if no infinite
sequences of internal transitions appear in the LTS. This difference is inherited
from IMC, and owed to the maximal progress assumption [28]. The same applies to
�Δ, �◦

Δ, and weak similarity on LTS [40].
2. On discrete-time Markov chains,≈Δ and≈◦

Δ coincide with weak bisimilarity [3,5].
We claim that �Δ and �◦

Δ can be adapted such that they both coincide with weak
similarity for state-labelled DTMC [5].

3. On continuous-time Markov chains, ≈Δ and ≈◦
Δ coincide with lumping equiva-

lence [26], due to the fact that our weak transitions do not affect timed transitions.
For this reason we see no obvious way to adapt �Δ and �◦

Δ such that they match
weak similarity for state-labelled CTMC [5].

4. On probabilistic automata, ≈◦
Δ coincides with weak bisimilarity [44], if restricting

to models without infinite sequences of internal transition. This slight restriction
is again a legacy of the maximal progress assumption. This technical discrepancy
carries over to all other relations defined on PA. If instead we adapt the definition
and remove the stability condition, the adapted version of≈◦

Δ and weak bisimilarity
on PA [44] coincide. The same holds for �◦

Δ and weak similarity for PA [44].
Remarkably, �Δ and probabilistic forward similarity ≤fwd [44] coincide.

5. On interactive Markov chains ≈Δ and ≈◦
Δ coincide with weak bisimulation [25].

A weaker variant is found in [10]. To the best of our knowledge no weak similarity
relations for IMC have been introduced in the literature so far, so the one jointly
induced by � and �◦ is new.

The fact that on PA �Δ and ≤fwd agree is especially interesting, since a bisimulation
variant of this relation was not known to date, but is now at hand with ≈Δ. Furthermore,
≈Δ has a selection of distinguishing properties. We refer the reader to [22] for details.
We mention only briefly, that ≈Δ is a congruence with respect to parallel composi-
tion. The congruence property can be established for other standard process algebraic
operators – with the usual root condition being needed to arrive at a congruence for
non-deterministic choice.

We finally want to correct our claim [22], that a reformulation of PA weak bisim-
ilarity as a relation on distribution would not be compositional with respect to sub-
distribution composition, now turns out to be wrong. It is easy to show that ≈◦ is
indeed compositional with respect to this operator, and since on PA, ≈◦ coincides with
PA weak bisimilarity (except for divergence behaviour), this also holds for PA weak
bisimilarity.

6 Conclusions

This paper has tried to provide insight into the foundational aspects of Markov au-
tomata, a model that integrates probabilistic automata and interactive Markov chains.
We have laid out the principal ingredients of a compositional theory for MA, and have
discussed how a lifting of relations to (sub)distributions, together with the notion of dis-
tribution splitting, enables us to cast a variety of existing simulations and bisimulations
in a uniform setting, making subtle differences and semantic choices apparent.
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Markov automata target a domain of concurrency modelling and evaluation, where
designers find it adequate to work with durations that are memoryless, and need to
represent branching probabilities as well as concurrency in a convenient manner. In
this area, GSPNs have seen broad applicability, but, as we have highlighted, only with
incomplete semantic understanding. The MA model changes the picture, it can serve
as a semantic foundation for GSPN, and, since it is compositional in a strict sense,
we think it is the nucleus for a fully compositional and usable language for this mod-
elling domain. Noteworthy, the MA model is – just like IMC – rich enough to allow for
non-exponential distributions, namely by approximating them as phase-type distribu-
tions [27], albeit at the price of a state space increase.

PA as well as IMC are supported by mature software tools, PRISM [29] and
CADP [16]. We are eagerly exploring possibilities to arrive at tool support for the anal-
ysis of MA.

In this paper, we have restricted our attention to finite and finitely-branching mod-
els. It remains for further work to establish the results of this paper in a setting with
(un)countably many states or transitions.
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Taming Distributed Asynchronous Systems
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Abstract. This extended abstract surveys some analysis techniques for
distributed, asynchronous systems with two kinds of synchronization,
shared variables and fifo channels.

1 Introduction

Modeling distributed, asynchronous systems so that computer-assisted analysis
becomes feasible, is an on-going challenge in both theory and practice. Several
automata-based models for such systems have been proposed and studied over
the past twenty years, capturing various aspects of distributed behavior. De-
pending on the motivation, such models fall into two large categories. In the
first one we find rather simple models, capturing basic synchronization mech-
anisms: Petri nets, communicating automata, . . . . They were studied for algo-
rithmic properties and/or their expressive power. In the second category we see
more sophisticated models, that were conceived for supporting practical system
design, like Harel’s statecharts, or Lynch’s I/O automata. It is clear that being
able to develop automated verification techniques requires a good understanding
of the simpler models, in particular since more complex ones are often built as
a combination of basic models.

In this survey we address the issue of analyzing networks of (mostly finite-
state) processes with two kinds of communication mechanisms, unbounded fifo
channels and shared variables. We also go one step beyond verification, or model-
checking, by addressing the synthesis problem in the shared-variable case. Syn-
thesis, and in particular controller synthesis, is a challenging problem even for
such simple models as the ones considered in this survey, since it essentially
amounts to solve distributed games. This topic is still rather poorly understood
and open for future research, in spite of considerable efforts and partial results
obtained during the past decade.

2 Models of Distributed Computation

The architecture of a distributed asynchronous system consists of a set of pro-
cesses P related by links, and we will consider it as fixed. Such links may cor-
respond for instance to communication channels or to shared variables. We do
not discuss here other synchronization mechanisms that appear in the literature,
like e.g. state observation or signals.
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Zielonka’s asynchronous automata is an asynchronous model based on shared
variables. It has its roots in the theory of Mazurkiewicz traces [28], which came
up in the late seventies in connection with the semantics of 1-safe Petri nets
(the reader may find in [11] a wealth of results about traces). Asynchronous au-
tomata provide one of the first highly non-trivial examples of distributed (closed)
synthesis, as expressed in Theorem 1 below.

Given a finite set P of processes, we consider an alphabet of actions Σ and
a location function dom : Σ → (2P \ ∅), associating with each action a non-
empty set of processes. The location mapping dom defines in a natural way
an independence relation I: two actions a, b ∈ Σ are independent (denoted as
(a, b) ∈ I) if they synchronize disjoint sets of processes, i.e., if dom(a)∩dom(b) =
∅. One can define the relation ∼I on Σ∗ as the equivalence generated by all pairs
(uabv, ubav), for (a, b) ∈ I and u, v ∈ Σ∗. A trace is then a ∼I-equivalence class,
and a trace language is a word language closed under ∼I .

Alternatively, traces can be viewed as labeled pomsets (see an example in
Figure 1), and the set of (labeled) linearizations of such a pomset corresponds
to the ∼I -equivalence class [u] of any of these linearizations u ∈ Σ∗.

A (deterministic) asynchronous automaton is a tuple

A = 〈{Sp}p∈P , s0, {δa}a∈Σ, F 〉 ,

where

– Sp is a finite set of (local) states of process p,
– s0 ∈

∏
p∈P

Sp is a (global) initial state,
– δa :

∏
p∈dom(a) Sp →

∏
p∈dom(a) Sp is a transition relation; so on a letter

a ∈ Σ it is a partial function on tuples of states of processes in dom(a),
– F ⊆

∏
p∈P Sp is a set of final (accepting) states.

An asynchronous automaton can be seen as a sequential automaton with the
state set S =

∏
p∈P Sp and transitions s

a−→ s′ if ((sp)p∈dom(a), (s′p)p∈dom(a)) ∈
δa, and sq = s′q for all q /∈ dom(a). By L(A) we denote the set of words labeling
accepting runs. This definition has an important consequence. If (a, b) ∈ I then
the same state is reached on the words ab and ba. More generally, whenever
u ∼I v and u ∈ L(A) then v ∈ L(A), too. This means that L(A) is a trace
language.

Example 1. Let us consider the asynchronous automaton A defined by Sp =
{0}, Sq = Sr = {0, 1}, and transition function δa(sp, sq) = (sp,¬sq) if sq = 1
(undefined otherwise), δd(sr) = ¬sr if sr = 1 (undefined otherwise), δb(sq, sr) =
(1, 1) if sq ∧ sr = 0 (undefined otherwise) and δc(sp) = sp. Starting with s0 =
(0, 0, 0), an accepting run of A checks that between any two successive b-events,
there is either an a or a d (or both), and there is a b-event before all a and d.

One of the deepest results of trace theory is Zielonka’s construction of a deter-
ministic asynchronous automaton from a finite-state one. One can see it as an
example of distributed closed synthesis, i.e., without any environment.
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Fig. 1. The pomset associated with the trace t = [c b a d c b a d b], with dom(a) = {p, q},
dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}.

Theorem 1. [40] Given a finite automaton A accepting the trace language
L(A), a deterministic asynchronous automaton B can be effectively constructed
with L(A) = L(B).

The above construction has received a lot of interest, and a series of papers
aimed at improving it algorithmically (see e.g. [10,30,19,17]). Currently the best
construction starting with a DFA A is polynomial in the size of A and simply ex-
ponential in the number of processes. Surprisingly, it is rather difficult to come
up with a matching lower bound (see [17] for partial results). As explained in Sec-
tion 3, this construction plays a fundamental role in other settings of distributed
synthesis, as for instance for communicating automata, that we present next.

A communicating automaton (CA for short) is parametrized by a set P of
processes, a set of point-to-point fifo channels Ch ⊆ P2 \ idP , and a set of
message contents Msg. It is a tuple A = 〈(Ap)p∈P , Σ, F 〉 where

– each Ap = (Sp,→p, s
0
p) is a finite labeled transition system with state space

Sp, transition relation →p ⊆ Sp × Σp × Sp, and initial state s0
p ∈ Sp; the

local action alphabet Σp consists of send actions (denoted as p!q(m), with
(p, q) ∈ Ch, m ∈ Msg), receive actions (denoted as p?r(m), with (r, p) ∈ Ch,
m ∈ Msg), and local actions.

– F ⊆
∏

p∈P Sp is a set of global final states.

We denote the product S :=
∏

p∈P Sp as set of global states.
The behavior of a CA is defined as the behavior of an infinite labeled transition

system, by considering the possible (local) transitions on the set of configurations
of the CA. A configuration of the CA A consists of a global state, together with
a word from Msg∗ for each channel (p, q) ∈ Ch. Transitions are defined in the
usual way: the effect of an action a ∈ Σp is to change the Sp state component
according to Ap, and to perform the obvious modification on one channel of p,
according to a being a send of message m from p to q (written as a = p!q(m))
or a receive of m on p from r (written as a = p?r(m)).

Example 2. The CA in the figure below describes the communication between
two (finite-state) processes C and S, connected through one channel in each
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direction. The set of message contents is Msg = {0, 1, $}. From the initial config-
uration 〈(c0, s0), (ε, ε)〉 (say, (C, S) is the first channel) one can reach e.g. the con-
figurations 〈(c1, s0), (010, ε)〉 and 〈(c0, s0), (101, $)〉, but not 〈(c0, s0), (0101, $)〉.
For instance, 〈(c0, s0), (ε, ε)〉

C!S(0)−→ 〈(c1, s0), (0, ε)〉 C!S(1)−→ 〈(c0, s0), (01, ε)〉 C!S(0)−→
〈(c1, s0), (010, ε)〉.

c0start

c1

C!S(0)

C!S(1), C?S($)

s0start

s1

S?C(0)

S?C(1), S!C($)

Like traces being partially ordered representations of runs of asynchronous
automata, runs of CA have a natural interpretation in terms of labeled pomsets,
too. The pomsets associated with such runs are called message sequence charts,
and represent in a diagrammatic way messages exchanged between processes.

3 Analyzing Communicating Automata

In spite of their simplicity, communicating automata are Turing-powerful, as it
can be easily seen (by simulating e.g. Post tag systems). From the verification
viewpoint this immediately implies that one needs to accept approximated or
semi-algorithmic solutions.

Simple approximated solutions, like ignoring the order of messages in the chan-
nels or imposing a limit on their size, are of course too coarse. Acceleration meth-
ods using some finitary representation of possibly infinite sets of configurations
(called symbolic representations), are a more powerful example of under-
approximation. In the case of communicating automata, such symbolic represen-
tations are based on finite automata or some extended automata models with good
algorithmic properties [4, 5,7]. The general idea is to speed-up the naive enumer-
ation of reachable configurations, by computing the result of loop iteration.

A nice example for over-approximating methods are lossy channel systems. Of
course, such a model may be interesting in its own right, since it allows to model
imperfect channels. Lossy channels are a particular instance of well-structured
transition systems [13,2]. In particular, questions like control-state reachability
and termination are decidable [2, 14], albeit of non-primitive recursive complex-
ity [36]. On the other hand, liveness properties or boundedness of lossy channels
are undecidable [1,27].

Whereas the above mentioned approaches emphasize symbolic representations
of sets of (reachable) configurations, there is a complementary, language-oriented
approach based on partial orders. The language-theoretical viewpoint emphasizes
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the (partially-ordered) executions, instead of the channel contents. This kind of
event-based reasoning arises very naturally when communicating automata are
viewed as sequentialautomata synchronizing over communication events.Themain
advantage it offers is that the synthesis problem can be stated in a natural way.

Undecidability of various questions about communicating automata has ac-
tually two sources: the first, obvious one, is the unboundedness of channels. The
second, more subtle, comes up when the specification formalism (e.g. regular
ones like LTL) is incompatible with the partially-ordered model. As a conse-
quence, getting solutions for model-checking or synthesis requires both channel
restrictions and partial order specifications.

A universally channel-bounded automaton is one where there is a uniform
bound on the size of channels, over all reachable configurations. So a universally
bounded automaton is just a finite state system. A much less restrictive notion
is an existential channel-bound. Such a bound roughly means that any execution
can be rescheduled in such a way that it can be executed with bounded chan-
nels. In particular, existential bounds admit channels of arbitrary size. A simple
example illustrating the idea is a pair of processes, a producer and a consumer,
where the producer keeps sending messages to the consumer, who is supposed
to accept every message. Since there is no control on the relative speed of these
two processes, there is no bound on the number of messages in transit. But for
verifying many properties, like e.g. control-state reachability, it suffices to rea-
son about schedulings where messages are consumed without delay, i.e. where
executions can be scheduled with a channel of size one.

The main result obtained in this setting is a solution for closed synthesis,
that can be stated as a Kleene-Büchi theorem about communicating automata
with channel bounds [21,18]. A main ingredient of these constructions is the link
between automata with channel bounds and trace languages and in particular,
Zielonka’s construction of asynchronous (trace) automata. Model-checking ex-
istentially bounded automata w.r.t. partial order specifications like MSO [24],
closed regular specifications [20] or PDL [6], is also decidable.

Several promising, recent research directions can be mentioned. One of them
is motivated by the need of analyzing distributed recursive programs, and aims
at identifying reasonable, tractable subclasses of communicating automata ex-
tended by additional capabilities for the single processes, like for instance push-
down storage [3, 39,22]. A second, quite challenging perspective for future work
is the general synthesis problem for communicating systems. This problem can
be stated in many different ways, depending on the degree of completeness of
the specification (specifications may e.g. talk only about external messages).
However, one probably needs first a solution for the problem described in the
next section, before working out a general solution for synthesizing or controlling
communicating automata.

4 Distributed Control for Asynchronous Automata

In the simplest case, the synthesis problem asks to find a model for a given spec-
ification, so it is just a satisfiability problem, where one is given some formalism
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for the specification (e.g. logics) and one for the model (e.g. finite automata). In
a more refined version one is also given a system (or plant, usually an automa-
ton) and is asked to find a controller such that the controlled system satisfies
the given specification. The control consists in forbidding some actions of the
plant, but not every action can be forbidden, and the control has also to ensure
that the system does not block completely.

Synthesis was first considered in a synchronous (hardware) setting by Church [9].
In his model, the specification is a relation between input variables, which are
controlled by the environment, and output variables, controlled by the (cen-
tralized) system. Church’s problem stimulated a fruitful research direction on
2-person, zero-sum infinitary games, starting with the fundamental results of [8,
34, 35] (see also [37, 38] for recent surveys).

Distributed controller synthesis is a more recent research topic, that was initi-
ated by Pnueli and Rosner [33], who show that only very restricted architectures
admit a decidable synthesis problem. Undecidability of distributed synthesis fol-
lows already from the work of Peterson and Reif on “multiple-person alternating
machines” [32].

Various versions of distributed synthesis appear in the literature. One impor-
tant distinction is to be made between synchronous and asynchronous systems,
respectively. In the synchronous case, processes execute a step at each (global)
clock tick, whereas in the asynchronous case they are decoupled. Another distinc-
tion is how much information is allowed to be exchanged between processes. At
least two different classes of models were studied here. In the model considered
by [33, 23, 12, 16], a distributed system is given by an architecture describing
(synchronous) channels between processes, and the information conveyed via
the channels between processes, is finite. In the model studied in [15, 26, 31],
the distributed system is an asynchronous automaton (and the controller is also
required to be such an automaton). Here, the information exchanged between
processes corresponds to the causal past of events, therefore it is unbounded.

Decidability for synchronous synthesis basically requires a pipeline architec-
ture where information flows in a single direction (see [33, 23, 25, 29, 12, 16] for
various refinements). To state it informally, the reasons for undecidability are
either global specifications or “information forks”, like the case where two inde-
pendent processes can be “observed” by a third one.

Compared with the synchronous case, our understanding of asynchronous
controller synthesis is still unsatisfactory. For instance, it is open whether this
problem is decidable! Two decidability results are known in this setting. The
first one [15] was obtained by restricting the (in)dependencies between letters
of the input alphabet. The second paper [26] shows decidability by restricting
the plant: roughly speaking, the restriction requires that if two processes do not
synchronize during a long amount of time, then they won’t synchronize ever
again. The proof of [26] goes beyond the controller synthesis problem, by coding
it into monadic second-order theory of event structures and showing that this
theory is decidable when the criterion on the asynchronous automaton holds.
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Trust in Anonymity Networks
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Abstract. Anonymity is a security property of paramount importance, as we
move steadily towards a wired, online community. Its import touches upon sub-
jects as different as eGovernance, eBusiness and eLeisure, as well as personal
freedom of speech in authoritarian societies. Trust metrics are used in anonymity
networks to support and enhance reliability in the absence of verifiable identities,
and a variety of security attacks currently focus on degrading a user’s trustworthi-
ness in the eyes of the other users. In this paper, we analyse the privacy guarantees
of the Crowds anonymity protocol, with and without onion forwarding, for stan-
dard and adaptive attacks against the trust level of honest users.

1 Introduction

Protecting online privacy is an essential part of today’s society and its importance is in-
creasingly recognised as crucial in many fields of computer-aided human activity, such
as eVoting, eAuctions, bill payments, online betting and electronic communication. One
of the most common mechanisms for privacy is anonymity, which generally refers to the
condition of being unidentifiable within a given set of subjects, known as the anonymity
set.

Many schemes have been proposed to enforce privacy through anonymity networks
(e.g. [6, 15, 19, 24, 25]). Yet, the open nature of such networks and the unaccountability
which results from the very idea of anonymity, make the existing systems prone to
various attacks (e.g. [10, 18, 22, 23]). An honest user may have to suffer repeated
misbehaviour (e.g., receiving infected files) without being able to identify the malicious
perpetrator. Keeping users anonymous also conceals their trustworthiness, which in turn
makes the information exchanged through system transactions untrustworthy as well.
Consequently, a considerable amount of research has recently been focussing on the
development of trust-and-reputation-based metrics aimed at enhancing the reliability of
anonymity networks [7–9, 11, 31, 33].

Developing an appropriate trust metric for anonymity is very challenging, due to the
fact that trust and anonymity are seemingly conflicting notions. Consider for instance
the trust networks of Figure 1. In (a) peer A trusts B and D, who both trust C. Assume
now that C wants to request a service from A anonymously, by proving her trustworthi-
ness to A (i.e., the existence of a trust link to it). If C can prove that she is trusted by
D without revealing her identity (using e.g. a zero-knowledge proof [3]), then A cannot
distinguish whether the request originated from C or E. Yet, A’s trust in D could be
insufficient to obtain that specific service from A. Therefore, C could strengthen her re-
quest by proving that she is trusted by both D and B. This increases the trust guarantee.
Unfortunately, it also decreases C’s anonymity, as A can compute the intersection of
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Fig. 1. Trust networks [3]

peers trusted by both D and B, and therefore restrict the range of possible identities for
the request’s originator, or even identify C uniquely. Indeed, consider Figure 1(b). Here
the trust level between two principals is weighted, and trust between two non-adjacent
principals is computed by multiplying the values over link sequences in the obvious
way. Assume that the reliability constraint is that principal X can send (resp. receive) a
message to (from) principal Y if and only if her trust in Y is not lower than 60%. Prin-
cipal E can therefore only communicate through principal D. So, assuming that trust
values are publicly known, E cannot possibly keep her identity from D as soon as she
tries to interact at all. These examples document the existence of an inherent trade-off
between anonymity and trust. The fundamental challenge is to achieve an appropriate
balance between practical privacy, and acceptable network performance.

Community-based reputation systems are becoming increasingly popular both in the
research literature and in practical applications. They are systems designed to estimate
the trustworthiness of principals participating in some activity, as well as predict their
future behaviour. Metrics for trustworthiness are primarily based on peer-review, where
peers can rate each other according to the quality they experienced in their past mutual
interactions [12, 13, 20]. A good reputation indicates a peer’s good past behaviour, and
is reflected in a high trust value. Recent research in this domain has raised fundamental
issues in the design of reputation management systems for anonymous networks. In
particular,

1. what metrics are suitable for computing trust for a given application field?
2. how to ensure the integrity of the peers’ trust values, i.e., how to securely store and

access trust values against malicious peers?
3. how to ensure that honest users accurately rate other members?

The latter issue requires a mechanism to distinguish a user’s bad behaviour resulting
from her being under attack, from a deliberately malicious behaviour. This is a chal-
lenging and fundamental problem. Indeed, if we cannot accurately tell these two sit-
uations apart, malicious users will target honest members in order to deteriorate their
performance, and hence reduce other members’ trust in them, while maintaining their
apparent good behaviour. Thus, honest users may in the long term end up enjoying



50 V. Sassone, S. Hamadou, and M. Yang

very low trust levels, while attackers might see their reputation increased, and so they
increase their probability of being trusted by others. Over time this will, of course,
severely affect the system’s anonymity performance. Nevertheless, although a consid-
erable effort has recently been devoted to tackle the first two issues [7, 8, 31], to the best
of our knowledge the latter has been so far relatively ignored.

In this paper we investigate the effect of attacks to the trust level of honest users on
the security of existing anonymity networks, such as the Reiter and Rubin’s Crowds
protocol [28] and onion routing networks [10].

The Crowds protocol allows Internet users to perform anonymous web transactions
by sending their messages through a random chain of users participating in the proto-
col. Each user in the ‘crowd’ must establish a path between her and a set of servers
by selecting randomly some users to act as routers (or forwarders). The formation of
such routing paths is performed so as to guarantee that users do not know whether
their predecessors are message originators or just forwarders. Each user only has ac-
cess to messages routed through her. It is well known that Crowds cannot ensure strong
anonymity in presence of corrupt participants [5, 28], yet when the number of corrupt
users is sufficiently small, it provides a weaker notion of anonymity known as probable
innocence. Informally, a sender is probably innocent if to an attacker she is no more
likely to be the message originator than not to be.

Networks based on Onion Routing are distributed anonymising networks that use
onion routing [32] to provide anonymity to their users. Similarly to Crowds, users
choose randomly a path through the network in which each node knows its predecessor
and successor, but no other node. The main difference with respect to Crowds is that
traffic flows through the path in cells, which are created by the initiator by successively
encrypting the message with the session keys of the nodes in the path, in reverse order.
Each node in the act of receiving the message peels the topmost layer, discovers who
the next node is, and then relays it forward. In particular, only the last node can see the
message in clear and learn its final destination.

In the paper we propose two variants of the congestion attacks in the literature, aimed
at deteriorating the trust level of target users in different extension of the Crowds proto-
col. More specifically, we first extend the protocol so that trust is used to inform the se-
lection of forwarding users. Our analysis of this extension shows that a DoS type attack
targeting a user who initially enjoys satisfactory anonymity protection, may threaten
her privacy, as her trust level quickly decreases over the time. We then extend the proto-
col further with a more advanced message forwarding technique, namely onion routing.
While this extension offers much better protection than the previous one, our analysis
ultimately shows that it suffers from similar DoS attacks as the others.

Related work. Anonymity networks date back thirty years, to when Chaum introduced
the concept of Mix-net [6] for anonymous communications, where different sources
send encrypted messages to a mix which forwards them to their respective destinations.
Various designs [1, 10, 15, 24–26, 28, 29, 32] have since been proposed to improve
Chaum’s mixes, e.g., by combinations of artificial delays, variation in message ordering,
encrypted message formats, message batching, and random chaining of multiple mixes.

A variety of attacks [2, 4, 10, 14, 18, 21–23, 27] have since been discovered against
such anonymity systems. Those most related to the present work are the so-called con-
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gestion or clogging attacks. In an congestion attack, the adversary monitors the flow
through a node, builds paths through other nodes, and tries to use all of their available
capacity [2]. The idea is that if the congested node belongs to the monitored path, the
variation in the messages’ arrival times will reflect at the monitored node. In [23], Mur-
doch and Danezis describe a congestion attack that may allow them to reveal all Tor’s
routers (cf. [10]) involved in a path. However, although their attack works well against
a Tor network of a relatively small size, it fails against networks of typical sizes, count-
ing nodes in the thousands. More recently, Evans et al. [14] improved Murdoch and
Danezis’s attack so as to practically de-anonymise Tor’s users in currently deployed
system. A similar attack against MorphMix [29] was recently described by Mclach-
lan and Hopper [21], proving wrong the previously held view that MorphMix is robust
against such attacks [34]. Finally, a congestion attack is used by Hopper et al. [18] to
estimate the latency between the source of a message and its first relay in Tor. In loc. cit.
the authors first use a congestion attack to identify the path, and then create a parallel
circuit throughout the same path to make their measurements.

Numerous denial of service (DoS) attacks have been reported in the literature. In
particular, the ‘packet spinning’ attack of [27] tries to lure users into selecting mali-
cious relays by targeting honest users by DoS attacks. The attacker creates long circular
paths involving honest users and sends large amount of data through the paths, forcing
the users to employ all their bandwidth and then timing out. These attacks motivate
the demand for mechanisms to enhance the reliability of anonymity networks. In recent
years, a considerable amount of research has been focusing on defining such mecha-
nisms. In particular, trust-and-reputation-based metrics are quite popular in this domain
[3, 7–9, 11, 31, 33]. Enhancing the reliability by trust, not only does improve the sys-
tem’s usability, but may also increase its anonymity guarantee. Indeed, a trust-based
selection of relays improves both the reliability and the anonymity of the network, by
delivering messages through ‘trusted’ routers. Moreover, the more reliable the system,
the more it may attract users and hence improve the anonymity guarantee by grow-
ing the anonymity set. Introducing trust in anonymity networks does however open the
flank to novel security attacks, as we prove in this paper.

In a recent paper of ours [30] we have analysed the anonymity provided by Crowds
extended with some trust information, yet against a completely different threat model.
The two papers differ in several ways. Firstly, [30] considers a global and ‘credential-
based’ trust notion, unlike the individual-and-reputation-based trust considered here.
Secondly, in [30] we considered an attack scenario where all protocol members are
honest but vulnerable to being corrupted by an external attacker. The global and fixed
trust in a user contrasts with the local and dynamic trust of this paper, as is meant
to reflect the user’s degree of resistance against corruption, that is the probability that
the external attacker will fail to corrupt her. The paper derives necessary and sufficient
conditions to define a ‘social’ policy of selecting relays nodes in order to achieve a
given level of anonymity protection to all members against such attackers, as well as a
‘rational’ policy maximise one’s own privacy.

Structure of the paper. The paper is organised as follows: in §2 we fix some basic
notations and recall the fundamental ideas of the Crowds protocol and its properties,
including the notion of probable innocence. In §3 we present our first contribution: the
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Crowds protocol extended with trust information in the form of a forwarding policy
of its participating members, and the privacy properties of the resulting protocol are
studied; §4 repeats the analysis for an extension of the protocol with a more advanced
forwarding technique inspired by onion routing. Finally, §5 introduces a new ‘adap-
tive’ attack scenario, and presents some preliminary results on its analysis, both for the
protocol with and without onion forwarding.

2 Crowds

In this section, we briefly revise the Crowds protocol and the notion of probable inno-
cence.

2.1 The Protocol

Crowds is a protocol proposed by Reiter and Rubin in [28] to allow Internet users
to perform anonymous web transactions by protecting their identities as originators
of messages. The central idea to ensure anonymity is that the originator forwards the
message to another, randomly-selected user, which in turn forwards the message to a
third user, and so on until the message reaches its destination (the end server). This
routing process ensures that, even when a user is detected sending a message, there is a
substantial probability that she is simply forwarding it on behalf of somebody else.

More specifically, a crowd consists of a fixed number of users participating in the
protocol. Some members (users) of the crowd may be corrupt (the attackers), and they
collaborate in order to discover the originator’s identity. The purpose of the protocol is
to protect the identity of the message originator from the attackers. When an originator
–also known as initiator– wants to communicate with a server, she creates a random
path between herself and the server through the crowd by the following process.

– Initial step: the initiator selects randomly a member of the crowd (possibly herself)
and forwards the request to her. We refer to the latter user as the forwarder.

– Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 − p f she delivers the request to the end server. With probability p f

she selects randomly a new forwarder (possibly herself) and forwards the request
to her. The new forwarder repeats the same forwarding process.

The response from the server to the originator follows the same path in the opposite
direction. Users (including corrupt users) are assumed to only have access to messages
routed through them, so that each user only knows the identities of her immediate pre-
decessor and successor in the path, as well as the server.

2.2 Probable Innocence

Reiter and Rubin have proposed in [28] a hierarchy of anonymity notions in the context
of Crowds. These range from ‘absolute privacy,’ where the attacker cannot perceive
the presence of an actual communication, to ‘provably exposed,’ where the attacker can
prove a sender-and-receiver relationship. Clearly, as most protocols used in practice,
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Crowds cannot ensure absolute privacy in presence of attackers or corrupted users, but
can only provide weaker notions of anonymity. In particular, in [28] the authors propose
an anonymity notion called probable innocence and prove that, under some conditions
on the protocol parameters, Crowds ensures the probable innocence property to the
originator. Informally, they define it as follows:

A sender is probably innocent if, from the attacker’s
point of view, she appears no more likely to be the
originator than to not be the originator.

(1)

In other words, the attacker may have reason to suspect the sender of being more likely
than any other potential sender to be the originator, but it still appears at least as likely
that she is not.

We use capital letters A, B to denote discrete random variables and the corresponding
small letters a, b and calligraphic letters A, B for their values and set of values respec-
tively. We denote by P(a), P(b) the probabilities of a and b respectively and by P(a, b)
their joint probability. The conditional probability of a given b is defined as

P(a | b) =
P(a, b)
P(b)

.

Bayes Theorem relates the conditional probabilities P(a | b) and P(a | b) as follows

P(a | b) =
P(b | a) P(a)

P(b)
. (2)

Let n be the number of users participating in the protocol and let c and n − c be the
number of the corrupt and honest members, respectively. Since anonymity makes only
sense for honest users, we define the set of anonymous events as A = {a1, a2, . . . , an−c},
where ai indicates that user i is the initiator of the message.

As it is usually the case in the analysis of Crowds, we assume that attackers will
always deliver a request to forward immediately to the end server, since forwarding it
any further cannot help them learn anything more about the identity of the originator.
Thus in any given path, there is at most one detected user: the first honest member to
forward the message to a corrupt member. Therefore we define the set of observable
events as O = {o1, o2, . . . , on−c}, where o j indicates that user j forwarded a message to
a corrupted user. In this case we also say that user j is detected by the attacker.

Reiter and Rubin [28] formalise their notion of probable innocence via the condi-
tional probability that the initiator is detected given that any user is detected at all. This
property can be written in our setting as the probability that user i is detected given
that she is the initiator, that is the conditional probability P(oi | ai).1 Probable innocence
holds if

∀i. P(oi | ai) ≤ 1
2

(3)

1 We are only interested in the case in which a user is detected, although for the sake of sim-
plicity we shall not note that condition explicitly.
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Reiter and Rubin proved in [28] that, in Crowds, the following holds:

P(o j | ai) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − n − c − 1

n
p f i = j

1
n

p f i � j
(4)

Therefore, probable innocence (3) holds if and only if

n ≥ p f

p f − 1/2
(
c + 1

)
and p f ≥ 1

2

As previously noticed in several papers (e.g., [5]), there is a mismatch between the idea
of probable innocence expressed informally by (1), and the property actually proved
by Reiter and Rubin, viz. (3). The former seems indeed to correspond to the following
interpretation given by Halpern and O’Neill [16]:

∀i, j. P(ai | o j) ≤ 1
2
. (5)

In turn, this has been criticised for relying on the probability of users’ actions, which
the protocol is not really in control of, and for being too strong. However, both (3) and
(5) work satisfactorily for Crowds, thanks to its high symmetry: in fact, they coincide
under its standard assumption that the a priori distribution is uniform, i.e., that each
honest user has equal probability of being the initiator, which we follow in this paper
too.

We remark that the concept of probable innocence was recently generalised in [17].
Instead of just comparing the probability of being innocent with the probability of being
guilty, the paper focusses on the degree of innocence. Formally, given a real number
α ∈ [0, 1], a protocol satisfies α-probable innocence if and only if

∀i, j. P(ai | o j) ≤ α (6)

Clearly α-probable innocence coincides with standard probable innocence for α = 1/2.

3 Trust in Crowds

In the previous section, we have revised the fundamental ideas of the Crowds protocol
and its properties under the assumption that all members are deemed equal. However,
as observed in §1, this is clearly not a realistic assumption for today’s open and dy-
namic systems. Indeed, as shown by the so-called ‘packet spinning’ attack [27], mali-
cious users can attempt to make honest users select bogus routers by causing legitimate
routers time out. The use attributes relating to some level of trust is therefore pivotal to
enhance the reliability of the system. In this section, we firstly reformulate the Crowds
protocol under a novel scenario where the interaction between participating users is
governed by their level of mutual trust; we then evaluate its privacy guarantees using
property (6). We then focus on the analysis of attacks to the trust level of honest users
and their impact on the anonymity of the extended protocol. Finally, we investigate the
effect of a congestion attack [14] to the trust level of honest users.
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3.1 Crowds Extended

We now extend the Crowds protocol to factor in a notion of trust for its participating
members. To this end, we associate a trust level ti j to each pair of users i and j, which
represents user i’s trust in user j. Accordingly, each user i defines her policy of forward-
ing to other members (including herself) based on her trust in each of them. A policy
of forwarding for user i is a discrete probability distribution {qi1, qi2, · · · , qin}, where
qi j denotes the probability that i chooses j as the forwarder, once she has decided to
forward the message.

A natural extension of Crowds would obviously allow the initiator to select her first
forwarder according to her own policy, and then leave it to the forwarder to pick the next
relay, according to the forwarder’s policy. This would however have the counterintuitive
property that users may take part in the path which are not trusted by the initiator, just
because they are trusted by a subsequent forwarder. We rather take the same view as
most current systems, that the initiator is in charge of selecting the entire path which
will carry her transactions. When an initiator wants to communicate with a server, she
selects a random path through the crowd between herself and the server by the following
process.

– First forwarder: with probability qi j the initiator i selects a member j of the crowd
(possibly herself) according to her policy of forwarding {qi1, qi2, · · · , qin}.

– Subsequent forwarders: the initiator flips a biased coin; with probability 1 − p f the
current forwarder will be the last on the path, referred to as the path’s exit user.
Otherwise, with probability p f × qik, she selects k (possibly herself) as the next
forwarder in the path; and so on until a path’s exit user is reached.

The initiator then creates the path iteratively as follows. She establishes a session key
by performing an authenticated key exchange protocol, such as Diffie-Hellman,2 with
the first forwarder F1. At each of subsequent iteration i ≥ 2, the initiator uses the
partially-formed path to send Fi−1 an encrypted key exchange message to be relayed to
Fi. In this way, the path is extended to Fi, and the use of session keys guarantees that
any intermediary router only knows her immediate predecessor and successor. Once the
path is formed, messages from the initiator to the server are sent in the same way as in
the normal Crowds. Thus, all the nodes in the path have access to the contain of the
message and, obviously, to the end server. In particular, this means that the notion of
detection remains the same in the extended protocol as in the original one.

Then we use our probabilistic framework to evaluate Crowds extended protocol. We
start by evaluating the conditional probability P(o j | ai). Let ηi (resp. ζi = 1 − ηi) be the
overall probability that user i chooses a honest (resp. corrupt) member as a forwarder.
Then we have the following result.

Proposition 1

P
(
o j | ai

)
= ζiεi j +

qi jζi p f

1 − ηi p f
,

where ηi =
∑

k≤(n−c) qik, ζi =
∑

k≤c qik and εi j =

{
1 i = j
0 i � j

2 We assume that public keys of participating users are known.
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Proof. Let k denote the position occupied by the first honest user preceding an attacker
on the path, with the initiator occupying position zero. Let P(o j | ai)(k) denote the prob-
ability that user j is detected exactly at position k. Only the initiator can be detected at
position zero, and the probability that this happens is equal to the overall probability
that the initiator chooses a corrupt member as a forwarder. Therefore

P
(
o j | ai

)
(0)
=

{
ζi i = j
0 i � j

Now the probability that j is detected at position k > 0 is given by

– the probability that she decides to forward k times and picks k − 1 honest users,
i.e.,pk−1

f η
k−1
i (recall that at the initial step she does not flip the coin),

– times the probability of choosing j as the kth forwarder, i.e., qi j,
– times the probability that she picks any attacker at stage k + 1, i.e., ζi p f .

Therefore

∀k ≥ 1, P
(
o j | ai

)
(k)
= ηk−1

i pk
f qi jζi

and hence

P
(
o j | ai

)
=

∞∑
k=0

P
(
o j | ai

)
(k)

= ζiεi j +

∞∑
k=1

ηk−1
i pk

f qi jζi

= ζiεi j +

∞∑
k=0

ηk
i pk+1

f qi jζi

= ζiεi j + p f qi jζi

∞∑
k=0

ηk
i pk

f

= ζiεi j +
qi jζi p f

1 − ηi p f
.

An immediate consequence is that when user i initiates a transaction, user j is not
detectable if and only if the initiator’s policy of forwarding never chooses an attacker
or j as forwarder.

Corollary 1. P(o j | ai) = 0 if and only if one of the following holds:

1. ζi = 0 ;
2. qi j = 0 and i � j.

Now, let us compute the probability of detecting a user P(o j). We assume a uniform
distribution for anonymous events.
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Proposition 2. If the honest members are equally likely to initiate a transaction, then

P(o j) =
1

n − c

(
ζ j +

∑
i≤(n−c)

qi jζi p f

1 − ηi p f

)
,

where ζ j and ηi are defined as in Proposition 1.

Proof. Since the anonymous events are uniformly distributed then P(ai) = 1/(n − c) for
all i. Thus

P(o j) =
∑

i≤(n−c)

P
(
o j | ai

)
P(ai)

=
∑

i≤(n−c)

P
(
o j | ai

) 1
n − c

=
1

n − c

∑
i≤(n−c)

P
(
o j | ai

)

=
1

n − c

∑
i≤(n−c)

(
ζiεi j +

qi jζi p f

1 − ηi p f

)

=
1

n − c

(
ζ j +

∑
i≤(n−c)

qi jζi p f

1 − ηi p f

)
.

As one could expect, a user j is not detectable if both herself and any user i that
might include j in her path never choose a corrupted member as a forwarder. Formally:

Corollary 2. P(o j) = 0 if and only if

ζ j = 0 and ∀i. ( qi j = 0 or ζi = 0 ) .

Now from Propositions 1 and 2 and Bayes Theorem (2), we have the following expres-
sion for the degree of anonymity provided by the extended protocol, which holds when
P(o j) � 0.

Proposition 3. If the honest members are equally likely to initiate a transaction, then

P
(
ai | o j

)
=

ζiεi j +
qi jζi p f

1 − ηi p f

ζ j +
∑

k≤(n−c)

qk jζk p f

1 − ηk p f

,

where ζi and η j are defined as above.

It is now easy to see that if all honest users have uniform probability distributions as
forwarding policies, the extended protocol reduces to the original Crowds protocol.
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Corollary 3. If for all i and j, qi j = 1/n, then ηi = (n − c)/n and ζi = c/n. Therefore

P
(
ai | o j

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − n − c − 1

n
p f i = j

1
n

p f i � j

3.2 On the Security of Extended Crowds

Here we show that the absence of a uniform forwarding policy makes it very hard to
achieve probable innocence as defined by Halpern and O’Neill (5). Indeed consider
the following instance of the protocol, where three honest users {1, 2, 3 } face a single
attacker {4}. Assume that the honest users are aware of the malicious behaviour of 4,
and choose their forwarding policies as follows: p f = 2/3, and q1 j = q2 j = 1/3, and
q3 j = 0.33 for all j ≤ 3. In other words, the first two choose uniformly any honest
users as a forwarder and never pick the attacker, whilst the third one may choose the
attacker, though with a small probability q34 = 0.01. Thus, ζ1 = ζ2 = q14 = q24 = 0
and ζ3 = q34 = 0.01. It follows that P(a3 | o j) = 1, for all j, and the instance does not
ensure probable innocence, even though the third user’s policy is after all very similar
to those of the other honest users. This is because if someone is detected, then user 3 is
necessarily the initiator, as she is the only one who might possibly pick the attacker in
her path.

Observe however that this instance of the protocol ensures probable innocence in
Reiter and Rubin’s formulation: indeed, for all honest users i and j, P(o j | ai) < 0.0165.
The key difference at play here is that Halpern and O’Neill’s definition is stronger,
as it focuses on the probability that a specific user is the initiator once somebody has
been detected, regardless of the probability of the detection event. On the other hand,
Reiter and Rubin’s formula measures exactly (the conditional probability of) the latter.
This means that if the probability of detection is small, as in this case, systems may
be classified as statistically secure even when one such detection event may lead to
complete exposure for some initiators, as in this case.

Attackings trust. As already observed by its authors, Crowds is vulnerable to denial of
service (DoS) attacks: it is enough that a single malicious router delays her forwarding
action to severely hinder the viability of an entire path. This kind of attack is in fact
hard for the initiator to respond to. Just because the creation of multiple paths by any
single user substantially increases their security risk, the initiator has a strong incentive
to keep using the degraded path. Indeed, it is advisable in Crowds to modify a path
only when it has collapsed irremediably, e.g. due to a system crash of a router, or their
quitting the crowd. In this case the path is re-routed from the node preceding the failed
router. As a consequence, recent research has been devoted to developing ‘trust metrics’
meant enhance the reliability of anonymity systems [7, 8, 31].

Although the primary goal of incorporating trust in anonymity networks is to ‘en-
hance’ the privacy guarantees by routing messages through trusted relays, preventing
the presence of attackers in forwarding paths is in itself not sufficient. External attackers
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(a) i = j = 7 (b) i � j = 7

Fig. 2. Crowds extended

may in fact target honest users with DoS attacks independent of the protocol, to make
them look unreliable and/or unstable. In this way, the target users will gradually loose
others members’ trust, whilst internal attackers may keep accruing good reputations.
Thus, over the time the trust mechanisms may become counterproductive.

Let us illustrate an attack of this kind. Consider an instance of the protocol where
seven honest users {1, 2, · · · , 7} face a single attacker {8}, assume that 7 is the honest
user targeted by the attack, and that all users are equally likely to initiate a transaction.
Recall that a path in Crowds remains fixed for a certain amount of time –typically one
day– known as a session. In practice, all transactions initiated by a given user follow
the same path, regardless of their destination servers. At the end of the session then,
all existing paths are destroyed, new members can join the crowd, and each member
willing to initiate anonymous transactions creates a new path. Trust level updates play
therefore their role at the beginning of each session. For the purpose of this example, we
assume that the protocol is equipped with mechanisms to detect unstable routers (e.g.,
by monitoring loss of messages, timeouts, variations in response time and so on); upon
realising that her path is unstable, an initiator will notify all members of the identity
of the unstable node (in this case 7).3 When a node is reported as unstable, all other
honest nodes decrease their trust in her at the beginning of the following session. For
simplicity, we assume that all users start with the same trust level τ, and that the target
user remains fixed over time. The following policies of forwarding are therefore in place
for each session, with n = 8, c = 1 and τ = 50.

q(k)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

i = 7

τ − k
n × τ − k

i � 7 and j = 7

τ

n × τ − k
i � 7 and j � 7 .

In words, honest users other that the target decrease their trust in her by one and re-
distributed it uniformly to the remaining users. On the other hand, the target has no

3 This contrasts with the approach of [11], where the initiator would directly decrease her trust
in all users in the path.
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reason to change her trust, as there is no evidence to suspect anybody as the source of
the external attack. Thus, her policy remains the same over the time. Hence, we have

ζ(k)
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c
n

i = 7

τ

n × τ − k
otherwise.

Assuming that the forwarding probability is p f = 0.7, Figure 2 shows the probability
that the target will be identified over time. Clearly, the target’s privacy deteriorates
quickly, as it becomes increasingly unlikely that users other than herself pick her when
building a path. In particular, after seven sessions the protocol can no longer ensure
probable innocence as the probability P(a7 | o7) becomes greater than 0.5.

4 Onion Forwarding in Crowds

In the previous section we analysed the privacy protection afforded by Crowds extended
with a notion of trust. Following a similar pattern, in this section we focus on the privacy
guarantees offered by our protocol when equipped with ‘onion forwarding,’ a superior
forwarding technique used in systems actually deployed, such as Tor [10].

In Crowds, any user participating in a path has access to the cleartext messages
routed through it. In particular, as all relay requests expose the message’s final destina-
tion, a team of attackers will soon build up a host of observations suitable to classify the
behaviour of honest participants. We recently proved in [17] that such extra attackers’
knowledge makes it very difficult to achieve anonymity in Crowds. The most effec-
tive technique available against such a risk is onion forwarding, originally used in the
‘Onion Routing’ protocol [32], and currently implemented widely in real-world sys-
tems. The idea is roughly as follows. When forming a path, the initiator establishes a
set of session encryption keys, one for each user in it, which she then uses to repeat-
edly encrypt each message she routes through, starting with the last node on the path,
and ending with the first. Each intermediate user, in the act of receiving the message
decrypts it with her key. Doing so, she ‘peels’ away the outmost layer of encryption,
discovers who the next forwarder is, and relays the message as required. In particular,
only the last node sees the message in clear and learns its actual destination. Thus, a
transaction is detected only if the last user in the path, also known as the ‘exit node,’ is
an attacker, and the last honest user in the path is then detected.

4.1 Privacy Level of the Onion Forwarding

Next we study the privacy ensured to each member participating in the protocol under
the onion forwarding scheme. As we did earlier, we begin with computing the condi-
tional probability P(o j | ai).

Proposition 4

P
(
o j | ai

)
= (1 − p f ) ζiεi j +

qi j ζi p f

1 − ζi p f
.
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Proof. Let k denote the last position occupied by an honest user preceding an attacker
on the path, i.e., the position of the detected user. We denote by P(o j | ai)(k) the probabil-
ity that user j is detected exactly at position k. Again, only the initiator can be detected
at position zero, and the probability that this happens is equal to the overall probability
that the initiator chooses a corrupt member as a forwarder, multiplied by the probability
that the latter is the last node in the path. Therefore

P
(
o j | ai

)
(0)
=

{
(1 − p f ) ζi i = j
0 i � j

Now the probability that j is detected at position k > 0 is given by

– the probability that she decides to forward k times and picks k − 1 users (does not
matter whether honest or not, as non-exit attackers cannot see the messages), i.e.,
pk−1

f (recall that at the initial step she does not flip the coin),
– times the probability of choosing j as the kth forwarder, i.e. qi j,
– times the probability that she picks any number k′ of attackers at the end of the

path, i.e.
∑∞

k′=1 pk′
f ζ

k′
i (1 − p f ).

Therefore

∀k ≥ 1, P
(
o j | ai

)
(k)
=

∞∑
k=1

(
pk−1

f qi j

∞∑
k′=1

pk′
f ζ

k′
i (1 − p f )

)
,

and hence

P
(
o j | ai

)
=

∞∑
k=0

P
(
o j | ai

)
(k)

= (1 − p f )ζiεi j +

∞∑
k=1

(
pk−1

f qi j

∞∑
k′=1

pk′
f ζ

k′
i (1 − p f )

)

= (1 − p f )
[
ζiεi j + qi j

∞∑
k=1

(
pk−1

f

∞∑
k′=1

pk′
f ζ

k′
i

) ]

= (1 − p f )
[
ζiεi j + qi j

∞∑
k=1

pk−1
f

ζi p f

1 − ζi p f

]

= (1 − p f )
[
ζiεi j +

qi jζi p f

1 − ζi p f

1
1 − pk

]

= (1 − p f )
[
ζiεi j +

qi jζi p f

(1 − p f )(1 − ζi p f )

]
.

Corollary 4. P(o j | ai) = 0 if and only if one of the following holds:

1. ζi = 0 ;
2. qi j = 0 and i � j.
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Now on the probability of detecting a user P(o j). Assuming uniform distribution of
anonymous events we have the following result.

Proposition 5. If the honest member are equally likely to initiate a transaction then.

P(o j) =
1

n − c

(
(1 − p f ) ζ j +

∑
i≤(n−c)

qi j ζi p f

1 − ζi p f

)
.

Proof. Since the anonymous events are uniformly distributed then P(ai) = 1/(n − c) for
all i. Thus

P(o j) =
∑

i≤(n−c)

P
(
o j | ai

)
P(ai)

=
∑

i≤(n−c)

P
(
o j | ai

) 1
n − c

=
1

n − c

∑
i≤(n−c)

P
(
o j | ai

)

=
1

n − c

∑
i≤(n−c)

(
(1 − p f )ζiεi j +

qi jζi p f

1 − ζi p f

)

=
1

n − c

(
(1 − p f )ζ j +

∑
i≤(n−c)

qi jζi p f

1 − ζi p f

)
.

We then have the same conditions of non-detectability as in the previous section; that
is, the following result holds.

Corollary 5. P(o j) = 0 if and only if

ζ j = 0 and ∀i. ( qi j = 0 or ζi = 0 ) .

Now from Proposition 4 and 5 and the Bayes theorem, we have the following result.

Proposition 6. If the honest members are equally likely to initiate a transaction, then

P
(
ai | o j

)
=

ζiεi j +
qi j ζi p f

(1 − p f )(1 − ζi p f )

ζ j +
∑

k≤(n−c)

qk j ζk p f

(1 − p f )(1 − ζk p f )

.

Now from Propositions 3 and 6, we can prove effectively that the privacy level ensured
by the onion version is better than those offered by the versions where messages are
forwarded in cleartext. More formally, let

[
P(ai | o j)

]
CR

and
[
P(ai | o j)

]
OR

denote the
probability that i is the initiator given that j is detected under cleartext routing and
onion routing, respectively. Then the following holds.

Theorem 1.
[

P(ai | o j)
]
OR

≤
[

P(ai | o j)
]
CR

.
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4.2 On the Security of the Onion Forwarding Version

As mentioned before, onion forwarding is the forwarding technique of choice in several
real-world systems. Recent work [14, 18, 21–23] shows that such systems are vulnera-
ble to so-called congestion attacks, which intuitively work as follows. Assume that the
initiator selects a path which contains a corrupt user as the exit node. The attacker can
then observe the pattern of arrival times of the initiator’s requests, and tries to identify
the entire path by selectively congesting the nodes she suspect to belong to it. Precisely,
to determine whether or not a specific node occurs in the path, she asks a collaborat-
ing attacker to build a long path looping on the target node and ending with a corrupt
node. Using this, the attacker perturbs the flow through the target node, so that if the
latter belongs also to the path under observation, the perturbation will reflect at its exit
node.

Fig. 3. Congestion attack

Here we use a variant of the congestion attack which, similarly to the previous sec-
tion, allows internal attackers to deteriorate the reputation of a targeted honest user, and
does not require the attacker to belong to a path. Figure 3 illustrates the attack, where
a long path is built looping as many times as possible over the target, preferably using
different loops involving different users. Thank to such properties, the target user will be
significantly busy handling the same message again and again, whilst no other member
of the path will be congested.

Figure 4 illustrates the effect of this attack using the same example as in the cleartext
forwarding version in §3. The results are completely in tune with those presented by
Figure 2: even though the target node initially enjoys a better anonymity protection,
her anonymity will unequivocally fall, although more smoothly than in §3. In partic-
ular, after twenty sessions, the protocol no longer ensures probable innocence, as the
probability of identifying the target node becomes greater than 0.5.

5 Adaptive Attackers

We have worked so far under the assumption that protocol participants either behave
always honestly or always maliciously. Arguably, this is a rather unrealistic hypothesis
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(a) i = j = 7 (b) i � j = 7

Fig. 4. Onion forwarding

in open and dynamic systems, where honest nodes can become malicious upon being
successfully attacked. In this section we take the more realistic view that nodes may
become corrupt, and study a new kind of attackers, which we dub ‘adaptive,’ and the
relative attacks.

Adaptive attackers differ from those we considered so far in the paper –and indeed
from those considered so far in the literature on Crowds– in that when they intercept
a message, rather than just reporting its sender as the initiator, they attempt to travel
the path back in order to improve their chance to catch the actual originator. They
do so by trying to corrupt the sender of the message, say j1. If the attack succeeds,
then the attacker effectively learns from j1 all she needs to identify j1’s predecessor
on the path, say j2, and repeat the adaptive attack on j2, having moved a step closer to
the initiator. The process is repeated iteratively until the attacker either fails to
corrupt the current node (or timeouts whilst trying to) or reaches the beginning of the
path. When that happens, the attacker reports the current node, say jk, which is obvi-
ously a better candidate than j1 to have originated the transaction.

We regard this as a significant and realistic kind of attack, as there clearly are a multi-
tude of ways in which the adaptive attacker may attempt to corrupt a node. These range
from brute force attacks via virus and worms which gains the attacker complete control
over the node, to milder approaches based on luring the target to give away some bit of
information in exchange for some form of benefit, and in general are entirely indepen-
dent of the Crowds protocol. We therefore do not postulate here about the means which
may be available to the attacker to carry out her task, make no assumptions whatsoever
about her power, and take the simplified view that each node has at all time the same
probability π to become corrupted.

In the rest of the section we re-evaluate the privacy guarantees afforded by Crowds
extended –with and without onion forwarding– under this new adaptive attack scenario.
We shall however carry out the analysis under the unrealistic assumption that it is nec-
essary for attackers to corrupt a node each time they meet her on the path. Recall in fact
that a single node will typically appear several times in a path. Therefore, an adaptive
attacker in her attempt to travel the path backwards towards the initiator will in general
meet the each node several times. The reason why our assumption may be justified is
when the attacks only gain the attacker access to just enough data to get to the node’s
last predecessor on the path, rather than to the entire set of them. On the other hand, the
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reason why this assumption is ultimately unsatisfactory is that it is overly dangerous
to make limiting assumptions as to the degree of success of an attack, and assess spec-
ulatively the extent to which a node’s integrity is compromised, the methodologically
correct attitude being to assume that the attacker has gained total control over the target.
And when she has, by definition she simply has no need to corrupt the node again, and
no new knowledge may be acquired by doing so. In the concluding section, we discuss
a few preliminary ideas on how to remove this restriction in future work.

5.1 Crowds Extended

Our technical development proceeds mutatis mutandis as in §3 and §4. In particular,
as before we first evaluate the conditional probability P(o j | ai), then under the hy-
pothesis that all honest users are equally likely to initiate a transaction, we compute
P(o j), and finally, using Bayes Theorem, we obtain P(ai | o j). In this section we omit all
proofs.

The probabilities P(oi | ai)(0) and P(o j | ai)(1+) that node i is detected at the initiator
position or at any position after that can be expressed respectively as

P
(
oi | ai

)
(0)
= ζi +

p f ηi ζi π

1 − π
( 1
1 − p fηi

− π

1 − πp f ηi

)
,

P
(
o j | ai

)
(1+)
=

qi j ζi p f

1 − p f ηi
−

qi j ζi ηi p2
f π

2

(1 − π)(1 − p f ζi)
,

which gives the following result, where again εi j = 1 if i = j, and 0 otherwise.
The key to these formulae is to consider that when a user is detected at position h,

this is potentially due to a detection at position h+k, for any k ≥ 0, whereby the attacker
has successively travelled back k positions on the path, by either corrupting honest users
with probability π or by meeting other attackers. The situation would be quite different
were we to take into account that the attacker only needs to corrupt a honest user once,
as π would not anymore be a constant.

Proposition 7

P(o j | ai) = εi jP
(
oi | ai

)
(0)
+ P
(
o j | ai

)
(1+)
.

Under the hypothesis of a uniform distribution of anonymous events, it is easy to prove
the following.

Proposition 8. If the honest members are equally likely to initiate a transaction, then

P(o j) =
1

n − c

(
P
(
o j | a j

)
(0)
+
∑

k≤(n−c)

P
(
o j | ak

)
(1+)

)
.

Now from Proposition 7 and 8 and Bayes Theorem, we have the following.
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(a) i = j = 7, π = 0.02 (b) i � j = 7, π = 0.02

(c) i = j = 7, π = 0.5 (d) i � j = 7, π = 0.5

Fig. 5. Example in Crowds extended against adaptive attack

Proposition 9. If the honest members are equally likely to initiate a transaction, then

P
(
ai | o j

)
=

εi jP
(
oi | ai

)
(0)
+ P
(
o j | ai

)
(1+)

P
(
o j | a j

)
(0)
+
∑

k≤(n−c) P
(
o j | ak

)
(1+)

.

Of course, in case the attacker’s attempts to travel back the path never succeed, the
formula reduces to the one we found previously.

Corollary 6. If π = 0, that is the attacker is not adaptive, then

P
(
ai | o j

)
=

ζiεi j +
qi jζi p f

1 − ηi p f

ζ j +
∑

k≤(n−c)

qk jζk p f

1 − ηk p f

,

which is the same as Proposition 3.

Figure 5 illustrates the formulae P(a7 | o7) and P(ai | o7) for i � 7 on our running exam-
ple, where we add π = 0.02 and π = 0.5 to the existing parameters, viz., n = 8 , c = 1,
p f = 0.7, and τ = 50. It is interesting here to observe the effect of the attacker’s corrup-
tion power, insofar as that is represented by π: the larger π, the more lethal the attacker,
the farther away the protocol from the standard, and the more insecure. In particular, for
π = 0.5 the system fails by a large margin to guarantee probable innocence even before
the attack to 7’s trust level starts.
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5.2 Onion Forwarding

Under onion forwarding, the adaptive attackers must appear as the last node on the path,
and from there, starting with her predecessor, try to corrupt nodes back towards the
originator. Following the same proof strategy as before, we define obtain the following
formulae.

P
(
oi | ai

)
(0)
= (1 − p f )ζi +

p f ηi ζi π (1 − p f )

(1 − p f ζi)(1 − π)
( 1
1 − ηi p f

− π

1 − π ηi p f

)
,

P
(
o j | ai

)
(1+)
=

qi j ζi p f

1 − ζi p f
+

p2
f ηi ζi π qi j

(1 − p f ζi)(1 − π)
( 1
1 − ηi p f

− π

1 − π ηi p f

)
,

and therefore:

Proposition 10

P
(
o j | ai

)
= εi jP

(
oi | ai

)
(0)
+ P
(
o j | ai

)
(1+)
.

Now on the probability of detecting a user P(o j).

Proposition 11. If the honest members are equally likely to initiate a transaction, then

P(o j) =
1

n − c

(
P
(
o j | a j

)
(0)
+
∑

k≤(n−c)

P
(
o j | ak

)
(1+)

)
.

As before, the result below follows from Propositions 10 and 11 and Bayes Theorem.

Proposition 12. If the honest members are equally likely to initiate a transaction then.

P
(
ai | o j

)
=

εi jP
(
oi | ai

)
(0)
+ P
(
o j | ai

)
(1+)

P
(
o j | a j

)
(0)
+
∑

k≤(n−c) P
(
o j | ak

)
(1+)

.

Corollary 7. If π = 0, that is the attacker after all not adaptive, then

P(ai | o j) =

ζiεi j +
qi jζi p f

(1 − p f )(1 − ζi p f )

ζ j +
∑

k≤(n−c)

qk jζk p f

(1 − p f )(1 − ζk p f )

,

which coincides with Proposition 6.

Finally, Figure 6 illustrates P(a7 | o7) and P(ai | o7) for i � 7 on our running example,
for π = 0.5. Although the graphs are shaped as in the previous cases, it is possible to
notice the increase security afforded by the onion forwarding.
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(a) i = j = 7 (b) i � j = 7

Fig. 6. Onion forwarding against adaptive attacks

6 Conclusion

In this paper we have presented an enhancement of the Crowds anonymity protocol via
a notion of trust which allows crowd members to route their traffic according to their
perceived degree of trustworthiness of other members. We formalised the idea quite
simply by means of (variable) forwarding policies, with and without onion forwarding
techniques. Our protocol variation has the potential of improving the overall trustwor-
thiness of data exchanges in anonymity networks, which may naturally not be taken
for granted in a context where users are actively trying to conceal their identities. We
then analysed the privacy properties of the protocol quantitatively, both for Crowds and
onion forwarding, under standard and adaptive attacks.

Our analysis in the case of adaptive attacks is incomplete, in that it assumes that
attackers whilst attempting to travel back over a path towards its originator, need to
corrupt each honest node each time they meet her. Arguably, this is not so. Typically a
node j will act according to a routing table, say T j. This will contain for each path’s id
a translation id and a forwarding address (either another user, or the destination server)
and, in the case of onion forwarding, the relevant encryption key. (Observe that since
path’s id are translated at each step, j may not be able to tell whether or not two entries
in T j actually correspond to a same path and, therefore, may not know how many times
she occurs on each path.) It is reasonable to assume that upon corruption an attacker
c will seize T j, so that if she ever reaches j again, c will find all the information to
continue the attack just by inspecting T j.

Observe now that the exact sequence of users in the path is largely irrelevant to
compute P(o j | ai). It only matters how many times each of them appears in between the
attacker at the end of the path and the detected node. Using some combinatorics, it is
therefore relatively easy to write a series for P(o j | ai) based on summing up a weighted
probability for all possible occurrence patterns of n − c honest users and c attackers in
the path. Quite a different story is to simplify that series to distill a usable formula. That
is a significant task which we leave for future work.

Acknowledgements. We thank Ehab ElSalamouny and Catuscia Palamidessi for their
insights and for proofreading.
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Abstract. Links are established between three widely used modeling
frameworks for reactive systems: the ioco theory of Tretmans, the in-
terface automata of De Alfaro and Henzinger, and Mealy machines. It
is shown that, by exploiting these links, any tool for active learning of
Mealy machines can be used for learning I/O automata that are deter-
ministic and output determined. The main idea is to place a transducer
in between the I/O automata teacher and the Mealy machine learner,
which translates concepts from the world of I/O automata to the world
of Mealy machines, and vice versa. The transducer comes equipped with
an interface automaton that allows us to focus the learning process on
those parts of the behavior that can effectively be tested and/or are of
particular interest. The approach has been implemented on top of the
LearnLib tool and has been applied successfully to three case studies.

1 Introduction

Model-based system development is becoming an increasingly important driving
force in the software and hardware industry. In this approach, models become
the primary artifacts throughout the engineering lifecycle of computer-based sys-
tems. Requirements, behavior, functionality, construction and testing strategies
of computer-based systems are all described in terms of models. Models are not
only used to reason about a system, but also used to allow all stakeholders to
participate in the development process and to communicate with each other,
to generate implementations, and to facilitate reuse. The construction of mod-
els typically requires significant manual effort, implying that in practice often
models are not available, or become outdated as the system evolves. Automated
support for constructing behavioral models of implemented components would
therefore be extremely useful.

The problem of inducing, learning or inferring grammars and automata has
been studied for decades, but only in recent years grammatical inference a.k.a.
grammar induction has emerged as an independent field with connections to
many scientific disciplines, including bio-informatics, computational linguistics
and pattern recognition [10]. Also recently, some important developments have
taken place on the borderline of verification, testing and machine learning, see
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e.g. [6,16,23], and researchers have shown that it is possible (at least in princi-
ple) to apply grammatical inference for learning models of software components.
Grammatical inference techniques aim at building a grammar or automaton for
an unknown language, given some data about this language. Within the setting
of active learning, it is assumed that a learner interacts with a teacher. Inspired
by work of Angluin [5] on the L∗ algorithm, Niese [20] developed an adaptation
of the L∗ algorithm for active learning of deterministic Mealy machines. This
algorithm has been further optimized in [23]. In the algorithm it is assumed that
the teacher knows a deterministic Mealy machine M. Initially, the learner only
knows the action signature (the sets of input and output symbols I and O) and
her task is to learn a Mealy machine that is equivalent to M. The teacher will
answer two types of questions — output queries (“what is the output gener-
ated in response to input i ∈ I?”) and equivalence queries (“is an hypothesized
machine H correct, i.e., equivalent to the machine M?”). The learner always
records the current state q of Mealy machine M. In response to query i, the
current state is updated to q′ and answer o is returned to the learner. At any
point the learner can “reset” the teacher, that is, change the current state back
to the initial state of M. The answer to an equivalence query H is either yes
(in case M ≈ H) or no (in case M �≈ H). Furthermore, the teacher will give the
learner a counterexample that proves that the learner’s hypothesis is wrong with
every negative equivalence query response, that is, an input sequence u ∈ I∗ such
that obsM(u) �= obsH(u). This algorithm has been implemented in the LearnLib
tool [23]. In practice, when a real implementation is used instead of an ideal-
ized teacher, the implementation cannot answer equivalence queries. Therefore,
LearnLib “approximates” such queries by generating a long test sequence that is
computed by standard methods such as state cover, transition cover, W-method,
and the UIO method (see [15]). LearnLib has been applied successfully to learn
computer telephony integrated (CTI) systems [11], and more recently to learn
parts of the SIP and TCP protocols [1] and the new biometric passport [2].

Currently, LearnLib is able to automatically learn Mealy machines with up
to 30.000 states. Nevertheless, a lot of further research will be required to make
automata based learning tools suitable for routine use on industrial case stud-
ies. An important issue, clearly, is the development of abstraction techniques
in order to be able to learn much larger state spaces (see [1], also for further
references). Another issue is the extension of automata learning techniques to
nondeterministic systems (see e.g. [29]). In this paper, we address a third issue
that hinders the application of the LearnLib tool. In practice, the restriction
of Mealy machines that each input corresponds to exactly one output is felt as
being overly restrictive. Sometimes several inputs are required before a single
output occurs, sometimes a single input triggers multiple outputs, etc.

The I/O automata of Lynch & Tuttle [18,17] and Jonsson [13] constitute
a popular modelling framework which does not suffer from the restriction that
inputs and outputs have to alternate. Our aim is to to develop efficient algorithms
for active learning of I/O automata. Hence we assume that the teacher knows
an I/O automaton A. We consider a setting in which the task of the learner is to
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partially learn A. More specifically, we assume that the learner initially knows
an interface automaton P in the sense of De Alfaro and Henzinger [8], called
the learning purpose, and that she has to learn the part of A whose behavior
is compatible with P . We think there are several good reasons to extend the
framework of active learning with a notion of a learning purpose. In principle,
the systems that we model using I/O automata will accept any input in any
state. But in practice, a learner may not be able (e.g., not fast enough) to
effectively provide any input in any state. Also, systems are often designed to
be used in a certain manner, and their behavior may become unspecified and/or
nondeterministic when they are used improperly. In such cases a learner may
decide to interact with the system following the specified interaction protocol,
for instance “after providing an input a user should wait for the system to
become quiescent before she may provide a next input”. A final motivation for
using learning purposes is that often the state space of practical systems is very
big and cannot be fully explored. By not providing certain inputs (in certain
states), the learner may focus on interesting parts of the behavior that can be
effectively learned.

Rather than developing and implementing an algorithm from scratch, we will
use LearnLib. Our idea is to place a transducer in between the IOA teacher
and the Mealy machine learner, which translates concepts from the world of
I/O automata to the world of Mealy machines, and vice versa. The transducer
and Mealy machine learner together then implement an IOA learner. Note that
this architecture is very similar to the architecture proposed in [1], where a
transducer is used to relate the large parameter spaces of realistic communication
protocols to small sets of actions that can effectively be handled by state-of-the-
art automata learning tools.

As a spin-off of our research, we establish links between three widely used
modeling frameworks for reactive systems: the ioco theory of Tretmans [26,27],
the interface automata of De Alfaro and Henzinger [8], and Mealy machines.
In particular, we present behavior preserving maps between interface automata
and Mealy machines, and we link the ioco preorder to alternating simulation.

The rest of this paper is structured as follows. Section 2 recalls interface au-
tomata and links alternating simulation to the ioco preorder. Section 3 addresses
a basic question: what is the I/O behavior of an I/O automaton? Section 4 re-
calls Mealy machines and discusses translations between interface automata and
Mealy machines. Section 5 describes our framework for learning I/O automata.
In Section 6, we describe the implementation of our approach and its applica-
tion to three case studies. Finally, Section 7 wraps up with some conclusions and
suggestions for further research.

2 Interface Automata

An interface automaton models a reactive system that can interact with its
environment. It is a simple type of state machine in which the transitions are as-
sociated with named actions. The actions are classified as either input or output.
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The output actions are assumed to be under the control of the system whereas
the input actions are under control of the environment. The interface automata
that we study in this paper are a simplified version of the interface automata of
De Alfaro and Henzinger [8] without internal actions. Within ioco theory [26,27]
interface automata are called labelled transition systems with inputs and out-
puts. Interface automata are similar to the I/O automata of Lynch & Tuttle
[18,17] and Jonsson [13]. The main difference is that in an I/O automaton input
actions are required to be enabled in every state. In an interface automata cer-
tain input actions may be illegal in certain states: they are not enabled and we
assume that the environment will not generate such inputs.

In this paper, an interface automaton (IA) is defined to be a tuple A =
(I, O, Q, q0,→), where I, O and Q are finite, nonempty sets of input actions,
output actions, and states, respectively, with I and O disjoint, q0 ∈ Q the initial
state, and →⊆ Q × (I ∪ O) × Q the transition relation. We write q

a→ q′ if
(q, a, q′) ∈→. An action a is enabled in state q, notation q

a→, if q
a→ q′, for some

state q′. We write outA(q), or just out(q) if A is clear from the context, for the
set {a ∈ O | q

a→} of output actions enabled in state q. For S ⊆ Q a set of
states, we write outA(S) for

⋃
{outA(q) | q ∈ S}. An I/O automaton (IOA) is

an interface automaton in which each input action is enabled in each state, that
is q

i→, for all q ∈ Q and all i ∈ I. A state q is called quiescent if it enables no
output action. An interface automaton A is

– input deterministic if for each state q ∈ Q and for each action a ∈ I there is
at most one outgoing transition of q with label a: q

a→ q1∧q
a→ q2 ⇒ q1 = q2;

– output deterministic if for each state q ∈ Q and for each action a ∈ O there is
at most one outgoing transition of q with label a: q

a→ q1∧q
a→ q2 ⇒ q1 = q2;

– deterministic if it is both input and output deterministic;
– output determined if each state has at most one outgoing output transition:

q
o1→ q1 ∧ q

o2→ q2 ∧ {o1, o2} ⊆ O ⇒ o1 = o2 ∧ q1 = q2.

Figure 1 displays a simple example of a deterministic IOA that is also output
determined. The initial state is marked with an extra circle, there is a single
input action in and there are two output actions out1 and out2.

in

in

out2

in

in

out1

Fig. 1. A deterministic, output determined IOA

Let A1 = (I, O, Q1, q
0
1 ,→1) and A2 = (I, O, Q2, q

0
2 ,→2) be interface automata

with the same signature. Let A = I ∪ O and let X, Y ⊆ A. A binary relation
R ⊆ Q1 × Q2 is an XY -simulation from A1 to A2 if whenever (q, r) ∈ R and
a ∈ A it holds that:
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– if q
a→1 q′ and a ∈ X then there exists a r′ ∈ Q2 s.t. r

a→2 r′ and (q′, r′) ∈ R.
– if r

a→2 r′ and a ∈ Y then there exists a q′ ∈ Q1 s.t. q
a→1 q′ and (q′, r′) ∈ R.

We write A1 ≤XY A2 if there exists an XY -simulation from A1 to A2 that
contains (q0

1 , q0
2). AA-simulations are commonly known as bisimulations and OI-

simulations are known as alternating simulations [4]. De Alfaro and Henzinger
[8] propose alternating simulations as the primary notion of refinement for IAs.
In their approach, one IA refines another if it has weaker input assumptions and
stronger output guarantees. We often write A1 ≤a A2 instead of A1 ≤OI A2 and
A1 ≈b A2 instead of A1 ≤AA A2. There are several obvious inclusions between
the different preorder, e.g. it follows that A1 ≤AY A2 implies A1 ≤XY A2.

Figure 2 shows an example of an alternating simulation between two IAs with
inputs {in1 , in2} and outputs {out1 , out2 , d}.

d

out1

in1

in2

d

in1

out2

d

out1

Fig. 2. Example of alternating simulation (from left to right IA)

Suppose that A1 ≤a A2 and that R is the largest alternating simulation from
A1 to A2. We define AS(A1,A2), the alternating simulation interface automaton
induced by A1 and A2, as the structure (I, O, R, (q0

1 , q0
2),→) where

(q, r) a→ (q′, r′) ⇔ q
a→1 q′ and r

a→2 r′.

Figure 3 shows the alternating simulation IA induced by the IAs of Figure 2.
The following lemma follows easily from the definitions.

out1d

in1

Fig. 3. IA induced by alternating simulation of Figure 2

Lemma 1. Suppose A1 ≤a A2. Then A1 ≤OA AS(A1,A2) ≤AI A2.

Larsen, Nyman and Wasowski [14] criticize interface automata and alternating
simulations for being unable to express liveness properties and since they allow
for trivial implementations: an IA T with a single state that accepts all inputs
but never produces any output is a refinement of any IA over the same sig-
nature. In order to fix this problem, Larsen, Nyman and Wasowski [14] define
model automata, an extension of interface automata with modality. In this pa-
per, we propose a different solution, which is very simple and in the spirit of I/O
automata and ioco theory: we make quiescence observable.
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Let A = (I, O, Q, q0,→) be an IA and let δ be a fresh symbol (not in I ∪ O).
Then the δ-extension of A, notation Aδ, is the IA obtained by adding δ-loops
to all the quiescent states of A. Formally, Aδ = (I, Oδ, Q, q0,→′) where Oδ =
O ∪ {δ} and →′=→ ∪{q δ→ q | q ∈ Q quiescent}. For A1 and A2 IAs with the
same signature, we define A1 ≤aδ A2 ⇔ Aδ

1 ≤a Aδ
2.

Observe that in general A1 ≤aδ A2 implies A1 ≤a A2, but A1 ≤a A2 does not
imply A1 ≤aδ A2: even though T ≤a A, for any IA A with the same signature as
our trivial IA T , we do in general not have T ≤aδ A. If Aδ enables a sequence of
input actions leading to a state r from which an output is possible, then T δ must
enable the same sequence of inputs leading to a related state q. But whereas q
enables a δ-transition, r does not enable a matching δ-transition. In order to
argue that ≤aδ indeed is a reasonable notion of implementation, we will now
show that — under certain determinacy assumptions — ≤aδ coincides with the
well-known ioco preorder of [26,27].

We extend the transition relation to sequences by defining, for σ ∈ (I ∪ O)∗,
σ⇒ to be the least relation that satisfies, for q, q′, q′′ ∈ Q and a ∈ I ∪ O,

q
ε⇒ q

q
σ⇒ q′ ∧ q′

a→ q′′ ⇒ q
σ a⇒ q′′

Here ε denotes the empty sequence. We say that σ ∈ (I ∪ O)∗ is a trace of A
if q0 σ⇒ q, for some state q, and write Traces(A) for the set of traces of A. We
write A after σ for the set {q ∈ Q | q0 σ⇒ q} of states of A that can be reached
with trace σ. Let A1 and A2 be IA with the same signature. Then A1 and A2

are input-output conforming, notation A1 ioco A2, if

∀σ ∈ Traces(Aδ
2) : out(Aδ

1 after σ) ⊆ out(Aδ
2 after σ)

The results below link alternating simulation and the ioco preorder. These results
generalize a similar, recent result of Veanes and Bjørner [28], which is stated in
a setting of fully deterministic systems. We first state a small technical lemma.

Lemma 2. Let A1 and A2 be IAs with the same action signature such that A1

is input deterministic and A2 is output deterministic. Let R be an alternating
simulation from A1 to A2. Let σ ∈ (I ∪ O)∗, q1 ∈ Q1 and q2 ∈ Q2 such that
q0
1

σ⇒ q1 and q0
2

σ⇒ q2. Then (q1, q2) ∈ R.

Theorem 1. Let A1 and A2 be IAs with the same action signature such that A1

is input deterministic and A2 is output deterministic. Then A1 ≤aδ A2 implies
A1 ioco A2.

Theorem 2. Let A1 and A2 be IAs with the same action signature such that A1

is input enabled and A2 is deterministic. Then A1 ioco A2 implies A1 ≤aδ A2.

Corollary 1. Let A1 be an input deterministic IOA and let A2 be a determin-
istic IA with the same action signature. Then A1 ioco A2 iff A1 ≤aδ A2.

Observe that all the determinacy conditions in the above results are essential:
as soon as one assumption is left out the corresponding result no longer holds.
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3 The I/O Behavior of I/O Automata

In order to be able to learn I/O automata, we need to decide which type of
questions the learner may ask to the teacher. One obvious proposal would be to
allow for membership queries of the form “Is sequence u ∈ (I ∪O)∗ a (quiescent)
trace of the IOA?”. However, there is strong evidence that this is an inefficient
approach. In his PhD thesis [20], Niese compared two algorithms for learning
Mealy machines. The first algorithm, an optimized version of Angluin’s [5] L∗

algorithm, allowed for membership queries “Is sequence u ∈ (I × O)∗ a trace
of the MM?”. The second algorithm supported membership queries “What is
the output generated by the MM in response to input sequence u ∈ I∗?”. Niese
showed that the second algorithm has a much better performance and requires
less membership queries. We expect that for IOAs the situation is very similar.

Lynch & Tuttle [18,17] and Jonsson [13] do not define a notion of input/output
behavior for I/O automata, that is, given a stream of input values that is pro-
vided by the environment, the stream of output values that is computed by the
I/O automaton. The main reason for this is that such a notion of behavior is
not compositional. Instead, the behavior of an IOA is defined in terms of traces,
sequences of input and output actions that may be observed during runs of the
automaton. Henzinger [9] links determinism to predictability and calls a reactive
system deterministic if, for every stream of input values that is provided by the
environment, the stream of output values that is computed by the system is
unique. The example IOA of Figure 1 is not deterministic in this sense since the
input stream in in may either lead to the output stream out1 or to the output
stream out2. One obvious way to proceed is to restrict the class of IOA that one
calls deterministic, and and to study a notion of input/output behavior for this
restricted class. This route is explored by Panangaden and Stark [21] in their
study of “monotone” processes. We will explore a different route, in which the
power of testers is slightly increased and the IOA of Figure 1 becomes again
behavior deterministic.

If a system is predictable then one may expect that, for any history of input
and output actions, the time required by the system to produce its next output
(if any) is more or less known. Predictability is at the basis of the assumption
in ioco theory that quiescence is observable: whenever a test is carried out,
it is assumed that if a system does not produce an output within some fixed
time T after the last input, it will never produce an output. By the same line
of reasoning, one could assume that there exists a fixed time t such that the
system never produces an output within time t after an input. Hence, if one
assumes that the tester can compute faster than the IUT, then in principle the
tester always has the choice to either wait for the next output of the IUT or to
generate its next input before time t, that is, before occurrence of the output.
Based on these considerations, we slightly increase the power of the testers: at
any point we let the tester decide who is going to perform the next step, the
IUT or the tester itself.

Formally, we introduce a fresh delay action Δ. By performing Δ, the envi-
ronment gives an IOA the opportunity to perform its next output (if any). Let
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IΔ = I ∪ {Δ}. The behavior of an environment can then be described by an
environment sequence in (IΔ)∗, that is, a sequence of input actions interleaved
with delay actions. Let A = (I, O, Q, q0,→) be an IA and let q, q′ ∈ Q, e ∈ (IΔ)∗

and u ∈ (I ∪Oδ)∗. We write q
e/u⇒ q′ to indicate that as a result of offering envi-

ronment sequence e in state q, Aδ may produce trace u and end up in state q′.

Formally,
e/u⇒ is the least relation that satisfies q

ε/ε⇒ q and:

q
e/u⇒ q′ ∧ q′

i→ q′′ ∧ i ∈ I ⇒ q
e i/u i⇒ q′′

q
e/u⇒ q′ ∧ q′

o→ q′′ ∧ o ∈ Oδ ⇒ q
e Δ/u o⇒ q′′

For each environment sequence e ∈ (IΔ)∗, we define obsA(e) to be the set of
traces that may be observed when offering e to Aδ, that is, obsA(e) = {u ∈
(I ∪ Oδ)∗ | ∃q ∈ Q : q0 e/u⇒ q}. Let A1 and A2 be two IOAs with the same
sets I and O of input and output actions, respectively, We write A1 � A2,
if obsA1(e) ⊆ obsA2(e), for all environment sequences e ∈ (IΔ)∗. If A is a
deterministic and output determined IOA then obsA(e) contains exactly one
element for each input sequence e. Thus, with this notion of observable behavior,
a deterministic and output determined IOA is also behavior deterministic in the
sense of Henzinger [9].

Even though our notion of observation is based on a stronger notion of testing
than ioco theory, the resulting notion of preorder is the same.

Theorem 3. Let A1 and A2 be IOAs with the same inputs and outputs. Then
A1 ioco A2 iff A1 � A2.

4 From Interface Automata to Mealy Machines and Back

A (nondeterministic) Mealy machine (MM) is a tuple M = (I, O, Q, q0,→),
where I, O and Q are finite, nonempty sets of inputs, outputs, and states, re-
spectively, q0 ∈ Q is the initial state, and →⊆ Q × I × O × Q is the transition

relation. We write q
i/o→ q′ if (q, i, o, q′) ∈→, and q

i/o→ if there exists a q′ such that

q
i/o→ q′. Mealy machines are assumed to be input enabled : for each state q and in-

put i, there exists an output o such that q
i/o→. The transition relation is extended

to sequences by defining
u/s⇒ to be the least relation that satisfies, for q, q′, q′′ ∈ Q,

u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O: q
ε/ε⇒ q and q

u/s⇒ q′ ∧ q′
i/o→ q′′ ⇒ q

u i/s o⇒ q′′.

A state q ∈ Q is called reachable if q0 u/s⇒ q, for some u and s. A Mealy machine
is deterministic iff given a state q and an input i there is exactly one output o

and exactly one state q′ such that q
i/o→ q′.

For q ∈ Q and u ∈ I∗, define obsM(q, u) to be the set of output sequences that
may be produced when offering input sequence u to M, that is, obsM(q, u) =

{s ∈ O∗ | ∃q : q
u/s⇒ q}. Two states q, q′ ∈ Q are observation equivalent, notation
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q ≈ q′, if obsM(q, u) = obsM(q′, u), for all input strings u ∈ I∗. Write obsM(u)
as a shorthand for obsM(q0, u). Two Mealy machines M1 and M2 with the same
sets of inputs I are observation equivalent, notation M1 ≈ M2, if obsM1(u) =
obsM2(u), for all input strings u ∈ I∗. If M is deterministic then obsM(u) is a
singleton set for each input sequence u. Thus a deterministic Mealy machine is
also behavior deterministic in the sense of Henzinger [9].

We call an interface automaton active if each state enables an output action.
Observe that for any interface automaton A, the δ-extension Aδ is active. Active
interface automata can be translated to equivalent Mealy machines. We translate

each input transition q
i→ q′ to a transition q

i/+→ q′ in the Mealy machine, where
+ is a fresh output action denoting that the input is accepted. If input i is not

enabled in state q, then we add a self-loop q
i/−→ q to the Mealy machine. Here

− is a fresh output symbol denoting that the input is illegal. The fresh input
action Δ (“delay”) is used to probe for possible outputs: each output transition

q
o→ q′ translates to a transition q

Δ/o→ q′ in the Mealy machine.
Formally, for active IA A = (I, O, Q, q0,→), the Mealy machine T (A) is

defined as the structure (IΔ, O ∪ {+,−}, Q, q0,→′), where

i ∈ I ∧ q
i→ q′ ⇒ q

i/+

→′ q′

i ∈ I ∧ q
i

�→ ⇒ q
i/−
→′ q

o ∈ O ∧ q
o→ q′ ⇒ q

Δ/o

→′ q′

Figure 4 illustrates transformation T . We now define transformation R, the

Δ/

in2/−

Δ/

in2/−

d

in1/− in2/−

in1/+

Δ/δ

out2

in1/−

Fig. 4. Result of applying T to the δ-extension of the IA of Figure 3

inverse of transformation T , which takes a Mealy machine and turns it into
an IA. Let M = (IΔ, O ∪ {+,−}, Q, q0,→) be a Mealy machine. Then R(M) is
the IA (I, O, Q, q0,→′), where

i ∈ I ∧ q
i/+→ q′ ⇒ q

i

→′ q′ and o ∈ O ∧ q
Δ/o→ q′ ⇒ q

o

→′ q′

If one takes any total IA A and applies first T and then R, one gets back A.

Theorem 4. Let A be a total IA. Then A = R(T (A)).

Observe that if A is deterministic and output determined then T (A) is de-
terministic, and if M is deterministic then R(M) is deterministic and output



80 F. Aarts and F. Vaandrager

determined. In order to obtain a dual version of Theorem 4, we need to impose
three additional conditions on M. Let M be a Mealy machine whose inputs
include Δ and whose outputs include + and −. Then M is separated if an input
in I always leads to an output + or −, and input Δ always leads to an output

in O: q
i/o→ q′ ⇒ (i = Δ ⇔ o ∈ O). M is consistent if there exists no state q

and input i for which both outputs + and − are possible: ¬(q
i/+→ ∧q

i/−→ ). M
is stable if an output − does not lead to a change of state: q

i/−→ q′ ⇒ q = q′.
Clearly, for any total IA A, T (A) is separated, consistent and stable. Note that
deterministic Mealy machines are consistent. Using the conditions of separation,
consistency and stability, it is easy to prove M = T (R(M)).

Theorem 5. Let M be a separated, consistent and stable Mealy machine with
inputs IΔ and outputs O ∪ {+,−}. Then M = T (R(M)).

5 Learning I/O Automata

In this section, we present our approach for active learning of I/O automata.
We assume that the teacher knows a deterministic and output determined IOA
A = (I, O, Q, q0,→). We consider a setting in which the task of the learner is to
partially learn A: the learner initially knows a deterministic interface automaton
P = (I, Oδ, P, p0,→′), called the learning purpose, and has to learn the part of
A whose behavior is compatible with P . We require Aδ ≤a P .

The teacher and learner play the following game. The teacher records the
current state of A, which initially is q0, and the learner records the current state
of P , which initially is p0. Suppose that the teacher is in state q and the learner is

in state p. The learner now can do four things: (1) If an input transition p
i

→′ p′

is enabled then it may jump to p′ and present input i to the teacher, which will
then jump to the state q′ such that q

i→ q′. (2) The learner may present a delay
Δ to the teacher. If the teacher enables some output o, then it will jump to the
unique state q′ such that q

o→ q′ and return answer o to the learner. If no output
action is enabled in q then the teacher returns δ. The learner then jumps to the
unique state p′ that can be reached by the answer o or δ that it has just received
(by the assumption that Aδ ≤a P we know this state exists). (3) The learner
may return to its initial state and ask the teacher to do the same (“‘reset”). (4)
The learner may pose a preorder query (“is an hypothesized IA H correct?”).
An hypothesis is a deterministic, output determined IA H such that Hδ ≤AI P .
An hypothesis is correct if A ≤aδ H. If H is correct then the teacher returns the
answer yes. If an hypothesis is not correct then, by Corollary 1, Hδ has a trace
σ such that the unique output o enabled by Aδ after σ differs from the unique
output enabled by Hδ after σ. The teacher then returns the answer no together
with counterexample σ o.

In order to appreciate our learning framework, consider the trivial learning
purpose Ptriv displayed in Figure 5 (left). Here notation i : I means that we
have an instance of the transition for each input i ∈ I. Notation o : O is defined
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i : I o : O

o : O

i : I

δ
δ

Fig. 5. A trivial learning purpose (left) and a learning purpose with a nontrivial δ
transition (right)

similarly. If H is an hypothesis, then by definition Hδ ≤AI Ptriv. This just
means that H is input enabled. If H is correct then A ≤aδ H. Since both A
and H are deterministic, output determined IAs, this means that A and H are
bisimilar! The following lemma provides some key insight in our approach in
case of an arbitrary learning purpose. It implies that if hypothesis H is correct,
Hδ is bisimilar to AS(Aδ,P).

Lemma 3. Suppose A1, A2 and A3 are IAs, A1 is active and input determinis-
tic, A2 is output determined, A3 is output deterministic, and A1 ≤a A3 ≤AI A2.
Then A3 ≈b AS(A1,A2).

It is important that a learning purpose may contain nontrivial δ transitions. As
an example, consider the IA of Figure 5 (right). This learning purpose expressing
that after an input one has to wait until the system gets into a quiescent state
before offering the next input. It is not possible to express this without δ’s. But
since in the end we want to learn IAs without δ’s, we need an operation that
eliminates all δ-transitions from an automaton. Let A = (I, Oδ, Q, q0,→) be an
IA. Let ≡ be the smallest equivalence relation that contains δ→. Then we define
ρ(A) to be the quotient IA (I, O, Q/≡, q0/ ≡,→′) where

q/ ≡ a→ q′/ ≡ ⇔ ∃r, r′ : q ≡ r ∧ r
a→ r′ ∧ r′ ≡ q′

The following lemma implies that under certain conditions operation ρ preserves
bisimulation equivalence.

Lemma 4. Suppose A1 and A2 are deterministic, output determined IAs, A1

has outputs O, A2 has outputs Oδ, and both IAs share the same sets of inputs I.
Suppose furthermore that A2 satisfies the following triangle property, for i ∈ I:
q

δ→ q′ ∧ q
i→ q′′ ⇒ q′

i→ q′′. Then Aδ
1 ≈b A2 implies A1 ≈b ρ(A2).

We always assume that the learning purpose P satisfies the triangle property.
Under this assumption, it follows using the above lemma that, if hypothesis H
is correct, H is bisimilar to ρ(AS(Aδ,P)).

Rather than developing and implementing an algorithm from scratch, we use
the LearnLib tool [23] to implement our learning approach. We place a trans-
ducer in between the IOA teacher and the Mealy machine learner, which records
the current state p of the learning purpose P and translates concepts from the
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world of I/O automata to the world of Mealy machines, and vice versa, using the
translation functions defined in the previous section. Initially, the MM learner
only knows a signature consisting of inputs IΔ and outputs Oδ ∪ {+,−}. The
behavior of the transducer is as follows:

– Whenever the transducer receives an output query i ∈ I from the MM
learner, it checks if i is enabled in the current state of P . If the input is
not enabled (“illegal”) then the transducer returns an output − to the MM
learner. If the output is enabled then the transducer returns an output + to
the MM learner, updates state p to the unique state p′ with an i-transition
from p to p′, and forwards i to the IOA teacher.

– Whenever the transducer receives an output query Δ this is forwarded di-
rectly to the IOA teacher. When it receives a response o ∈ Oδ, the transducer
updates state p accordingly, and forwards o to the MM learner.

– Whenever the transducer receives a “reset” from the MM learner, it resets
its state to p0, and forwards the “reset” to the IOA teacher.

– Whenever the transducer receives an equivalence query H from the MM
learner, then it first checks whether ρ(R(H)) ≤AI P (since both IAs are
deterministic, this can be done in time linear in the size of their synchronous
product). If ρ(R(H)) does not conform to learning purpose P , then an answer
no is returned to the MM learner, together with a distinguishing trace in
which all output symbols are replaced by Δ. If ρ(R(H)) ≤AI P then the
transducer forwards the preorder query ρ(R(H)) to the IOA teacher. The
transducer forwards a subsequent response of the IOA teacher to the MM
learner, but with all output symbols replaced by Δ. If the response is yes
then the transducer has successfully learned an IA ρ(R(H)) that meets all
the requirements.

Observe that when LearnLib is used, equivalence queries are always separated
and stable. We claim that the algorithm always terminates and that the trans-
ducer indeed learns an IOA that is equivalent to ρ(AS(Aδ,P)). In order to see
why this claim is true, a key observation is that the IOA teacher and transducer
together behave like a teacher for Mealy machine T (AS(Aδ,P)).

Lemma 5. The IOA teacher and transducer together behave like a teacher for
Mealy machine T (AS(Aδ,P)).

The main technical result of this article is that the MM learner and the trans-
ducer together will succeed in learning ρ(AS(Aδ,P)), that is, the subautomaton
of A induced by the learning purpose P :

Theorem 6. The composition of MM learner and transducer behaves like a
learner for I/O automata, that is, execution will terminate after a finite num-
ber of queries, and upon termination the transducer has learned an IA that is
bisimilar to ρ(AS(Aδ,P)).
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6 Experiments

We have implemented and applied our approach to infer three types of I/O
automata. In this section, we first describe our experimental setup, thereafter
its application to the three case studies.1

To serve as IOA teacher, we read in an I/O automaton specified in Aldebaran
format [3]. We connect the IOA teacher to a transducer equipped with an inter-
face automaton, which is also described in Aldebaran format. As MM learner in
our framework, we use the LearnLib library [22].

In our first (trivial) case study we learned the IOA shown in Figure 1. Because
the interaction with this automaton is not constrained, we used an interface au-
tomaton that accepts every input and output, see Figure 5. The inferred Mealy
machine model can be transformed to the IOA by transformations R and ρ.

A model of the electronic passport [12,7] has been inferred in a second exper-
iment. We provided the IOA teacher with a model of the protocol taken from
Mostowski et al. [19]. Analyzing the behavior of the automaton revealed that
almost always the passport reacts like a Mealy machine: 13 out of 14 inputs gen-
erate an output symbol before a new input symbol can be transferred. Following
this information, we defined an interface automaton in which inputs alternate
with outputs or quiescence, see Figure 6 (left). Because no output is generated
in response to a Reset input in the IOA, an output δ occurs within the Mealy
machine that is learned. In fact, the inferred Mealy machine has one additional
state, which can only be reached by a Δ/δ transition. After applying trans-
formation R and ρ, we obtained the corresponding subautomaton of the IOA
that was given to the teacher. With respect to learning performance, we observe
that inferring an IOA requires more membership queries than learning the same
behavior as a Mealy machine having i/o instead of i/+ and Δ/o transitions.
Inferring an IOA of the electronic passport required 44294 membership queries,
whereas learning the corresponding Mealy machine with i/o transitions merely
needed 1079 queries. The difference can be explained by the fact that 80,72%
of the membership queries asked to infer the passport IOA comprised unspec-
ified input sequences. Because of the Mealy machine behavior of the IOA, no
outputs are defined for most consecutive inputs. Moreover, membership queries
were asked for the additional state.

In a third case study we applied our approach to learn a model of the Session
Initiation Protocol (SIP) [25,24]. The teacher is supplied with an IOA based
on a Mealy machine generated using inference and abstraction techniques [1].
Analyzing the structure of the automaton showed that each input symbol is
followed by one or more outputs. Furthermore, in the initial state only certain
inputs are allowed. To concentrate the learning on this restricted behavior, we
used the interface automaton shown in Figure 6 (right). Again, by applying
transformation ρ and R, the inferred Mealy machine could be converted to the
corresponding subautomaton of the IOA given to the teacher.
1 All IOAs and interface automata used in the different case studies as well as the

corresponding learned Mealy machines can be found at the URL
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/LearningIOAs/.

http://www.mbsd.cs.ru.nl/publications/papers/fvaan/LearningIOAs/
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o : O

i : I

δ

δ

Fig. 6. IA in which each input is followed by at most one output (left) and IA in which
initially only certain inputs are allowed and two consecutive inputs are not allowed (right)

7 Conclusions and Future Work

We have presented an approach for active learning of deterministic and output
determined I/O automata. By eliminating the restriction from Mealy machines
that inputs and outputs have to alternate, we have extended the class of models
that can be learned. Our approach has been implemented on top of the LearnLib
tool and has been applied successfully to three case studies. A new idea intro-
duced in this paper is to use interface automata to focus the learning process to
interesting/relevant parts of the behavior. Both in the passport and the SIP case
study, the use of interface automata greatly reduced the number of queries. The
efficiency of our learning approach can be improved by integrating this notion
of interface automata within LearnLib: in this way it will be possible to further
reduce the number of membership queries. Obvious topics for future research are
to extend our approach to automata with nondeterminism and silent transitions,
and to integrate our transducers with the ones used in [1] for data abstraction.

Acknowledgement. Many thanks to Bengt Jonsson, Bernhard Steffen, Jan
Tretmans and the anonymous referees for inspiring discussions and/or pointers
to the literature, and to Falk Howar for his generous LearnLib support.
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Abstract. In this paper, we develop a counterexample-guided abstrac-
tion refinement (CEGAR) framework for monotonic abstraction, an
approach that is particularly useful in automatic verification of safety prop-
erties for parameterized systems. The main drawback of verification using
monotonic abstraction is that it sometimes generates spurious counterex-
amples. Our CEGAR algorithm automatically extracts from each spuri-
ous counterexample a set of configurations called a “Safety Zone”and uses
it to refine the abstract transition system of the next iteration. We have
developed a prototype based on this idea; and our experimentation shows
that the approach allows to verify many of the examples that cannot be
handled by the original monotonic abstraction approach.

1 Introduction

We investigate the analysis of safety properties for parameterized systems. A
parameterized system consists of an arbitrary number of identical finite-state
processes running in parallel. The task is to verify correctness regardless of the
number of processes.

One of the most widely used frameworks for infinite-state verification uses
systems that are monotonic w.r.t. a well-quasi ordering � [2,22]. This framework
provides a scheme for proving termination of backward reachability analyses,
which has already been used for the design of verification algorithms of various
infinite-state systems (e.g., Petri nets, lossy channel systems) [8,20,21]. The main
idea is the following. For a class of models, we find a preorder � on the set
of configurations that satisfies the following two conditions (1) the system is
monotonic w.r.t. � and (2) � is a well-quasi ordering (WQO for short). Then,
backward reachability analysis from an upward closed set (w.r.t. �) is guaranteed
to terminate, which implies that the reachability problem of an upward closed
set (w.r.t. �) is decidable.

However, there are several classes of systems that do not fit into this frame-
work, since it is hard to find a preorder that meets the aforementioned two
conditions at the same time. An alternative solution is to first find a WQO � on
the set of configurations and then apply monotonic abstraction [6,4,7] in order to
force monotonicity. Given a preorder � on configurations, monotonic abstraction

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 86–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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defines an abstract transition system for the considered model that is monotonic
w.r.t. �. More precisely, it considers a transition from a configuration c1 to a
configuration c2 to be possible if there exists some smaller configuration c′1 � c1

that has a transition to c2. The resulting abstract transition system is clearly
monotonic w.r.t � and is an over-approximation of the considered model. More-
over, as mentioned, if � is a WQO, the termination of backward reachability
analysis is guaranteed in the abstract transition system.

Monotonic abstraction has shown to be useful in the verification of heap ma-
nipulating programs [1] and parameterized systems such as mutual exclusion and
cache coherence protocols [4,6]. In most of the benchmark examples for these
classes, monotonic abstraction can generate abstract transition systems that are
safe w.r.t to the desired properties (e.g. mutual exclusion). The reason is that, for
these cases, we need only to keep track of simple constraints on individual vari-
ables in order to successfully carry out verification. However, there are several
classes of protocols where we need more complicated invariants in order to avoid
generating spurious counterexamples. Examples include cases where processes
synchronize via shared counters (e.g. readers and writers protocol) or reference
counting schemes used to handle a common set of resources (e.g. virtual memory
management). For these cases, monotonic abstraction often produces spurious
counterexamples, since it is not sufficiently precise to preserve the needed invari-
ants. Therefore, we introduce in this paper a counterexample-guided abstraction
refinement (CEGAR) approach to automatically and iteratively refine the ab-
stract transition system and remove spurious counterexamples.

The idea of the CEGAR algorithm is as follows. It begins with an initial
preorder �0, which is the one used in previous works on monotonic abstrac-
tion [6]. In the i-th iteration, it tries to verify the given model using monotonic
abstraction w.r.t. the preorder �i−1. Once a counterexample is found in the ab-
stract transition system, the algorithm simulates it on the concrete transition
system. In case the counterexample is spurious, the algorithm extracts from it a
set S of configurations called a “Safety Zone”. The computation of the “Safety
Zone”is done using interpolation [28,26]. The set S (“Safety Zone”) is then
used to strengthen the preorder that will be used in the next iteration. Mono-
tonic abstraction produces a more accurate abstract transition system with the
strengthened preorder. More precisely, in the (i + 1)-th iteration, the algorithm
works on an abstract transition system induced by monotonic abstraction and a
preorder �i:= {(c, c′)| c �i−1 c′ and c′ ∈ S ⇒ c ∈ S}. Intuitively, the strength-
ened preorder forbids configurations inside a “Safety Zone”to use a transition
from some smaller configuration (w.r.t �i−1) outside the “Safety Zone”.

The strengthening of the preorder has an important property: It preserves
WQO. That is, if �i−1 is a WQO, then �i is also a WQO, for all i > 0. There-
fore, the framework of monotonic systems w.r.t. a WQO can be applied to each
abstract transition system produced by monotonic abstraction and hence ter-
mination is guaranteed for each iteration. Based on the method, we have im-
plemented a prototype, and successfully used it to automatically verify several
non-trivial examples, such as protocols synchronizing by shared counters and
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reference counting schemes, that cannot be handled by the original monotonic
abstraction approach.

Outline. We define parameterized systems and their semantics in Section 2. In
Section 3, we first introduce monotonic abstraction and then give an overview
of the CEGAR algorithm. In Section 4, we describe the details of the CEGAR
algorithm. We introduce a symbolic representation of infinite sets of configura-
tions called constraint. In Section 4, we show that all the constraint operations
used in our algorithm are computable. In Section 6, we show that the termina-
tion of backward reachability checking is guaranteed in our CEGAR algorithm.
Section 7 describes some extension of our model for parameterized system. In
Section 8 we describe our experimentation. Finally, in Section 9, we conclude
with a discussion of related tools and future works.

2 Preliminaries

In this section, we define a model for parameterized systems. We use B to denote
the set {true, false} of Boolean values, N to denote the set of natural numbers,
and Z to denote the set of integers. Let P be a set and � be a binary relation
on P . The relation � is a preorder on P if it is reflexive and transitive. Let
Q ⊆ P , we define a strengthening of � by Q, written �Q, to be the binary
relation �Q := {(c, c′)| c � c′ and c′ ∈ Q ⇒ c ∈ Q}. Observe that �Q is also a
preorder on P .

Let XN be a set of numerical variables ranging over N. We use N (XN ) to
denote the set of formulae which have the members of {x − y  c, x  c | x, y ∈
XN , c ∈ Z,  ∈ {≥, =,≤}} as atomic formulae, and which are closed under the
Boolean connectives ¬, ∧, ∨. Let XB be a finite set of Boolean variables. We use
B(XB) to denote the set of formulae which have the members of XB as atomic
formulae, and which are closed under the Boolean connectives ¬, ∧, ∨. Let X ′

be the set of primed variables {x′ | x ∈ X}, which refers to the “next state”
values of X .

2.1 Parameterized System

Here we describe our model of parameterized systems. A simple running example
of a parameterized system is given in Fig. 1. More involved examples can be found
in the tech. report [3]. The example in Fig. 1 is a readers and writers protocol
that uses two shared variables; A numerical variable cnt (the read counter) is
used to keep track of the number of processes in the “read” state and a Boolean
variable lock is used as a semaphore. The semaphore is released when the writer
finished writing or all readers finished reading (cnt decreased to 0).

A parameterized system consists of an unbounded but finite number of identi-
cal processes running in parallel and operating on a finite set of shared Boolean
and numerical variables. At each step, one process changes its local state and
checks/updates the values of shared variables. Formally, a parameterized sys-
tem is a triple P = (Q, T, X), where Q is the set of local states, T is the set of
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transition rules, and X is a set of shared variables. The set of shared variables
X can be partitioned to the set of variables XN ranging over N and XB rang-
ing over B.

A transition rule t ∈ T is of the form
[
q → r : stmt

]
, where q, r ∈ Q and

stmt is a statement of the form φN ∧ φB, where φN ∈ N (XN ∪ X ′
N ) and φB ∈

B(XB ∪X ′
B). The formula φN controls variables ranging over N and φB controls

Boolean variables. Taking the rule r1 in Fig. 1 as an example, the statement
says that: if the values of shared variables cnt = 0 and lock = true, then we are
allowed to increase the value of cnt by 1, negate the value of lock, and change
the local state of a process from t to r.

shared lock: Boolean, cnt: nat

r1:
[
t → r : cnt = 0 ∧ cnt′ = cnt + 1 ∧ lock ∧ ¬lock′ ]

r2:
[
t → r : cnt >= 1 ∧ cnt′ = cnt + 1

]
r3:

[
r → t : cnt >= 1 ∧ cnt′ = cnt − 1

]
r4:

[
r → t : cnt = 1 ∧ cnt′ = cnt − 1 ∧ ¬lock ∧ lock′ ]

w1:
[
t → w : lock ∧ ¬lock′ ]

w2:
[
w → t : ¬lock ∧ lock′ ]

Initial: t, lock

Fig. 1. Readers and writers protocol. Here t, r,w are “think”, “read”, and “write”
states, respectively.

2.2 Transition System

A parameterized system P = (Q, T, X) induces an infinite-state transition sys-
tem (C,−→) where C is the set of configurations and −→ is the set of transitions.

A configuration c ∈ C is a function Q ∪ X → N ∪ B such that (1) c(q) ∈ N
gives the number of processes in state q if q ∈ Q, (2) c(x) ∈ N if x ∈ XN and
(3) c(x) ∈ B if x ∈ XB. We use [xv1

1 , xv2
2 , . . . , xvn

n , b1, b2, . . . , bm] to denote a
configuration c such that (1) c(xi) = v1 for 1 ≤ i ≤ n and (2) c(b) = true iff
b ∈ {b1, b2, . . . , bm}.

The set of transitions is defined by −→:=
⋃

t∈T
t−→. Let c, c′ ∈ C be two

configurations and t =
[
q → r : stmt

]
be a transition rule. We have (c, c′) ∈ t−→

(written as c t−→ c′) if (1) c′(q) = c(q)−1, (2) c′(r) = c(r)+1, and (3) substitut-
ing each variable x in stmt with c(x) and its primed version x′ in stmt with c′(x)
produces a formula that is valid. For example, we have

[
r0, w0, t3, cnt0, lock

] r1−→[
r1, w0, t2, cnt1

]
in the protocol model of Fig. 1. We use ∗−→ to denote the tran-

sitive closure of −→ .

3 Monotonic Abstraction and CEGAR

We are interested in reachability problems, i.e., given sets of initial and bad con-
figurations, can we reach any bad configuration from some initial configuration
in the transition system induced by a given parameterized system.
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We first recall themethod ofmonotonic abstraction for theverification of param-
eterized systems and then describe an iterative and automatic CEGAR approach.
The approach allows to produce more and more precise over-approximations of
a given transition system from iteration to iteration. We assume a transition
system (C,−→) induced by some parameterized system.

3.1 Monotonic Abstraction

Given an ordering � defined on C, monotonic abstraction produces an abstract
transition system (C, �) that is an over-approximation of (C,−→) and that is
monotonic w.r.t. �.

Definition 1 (Monotonicity). A transition system (C, �) is monotonic (w.r.t.
�) if for each c1, c2, c3 ∈ C, c1 � c2 ∧ c1

t
� c3 ⇒ ∃c4. c3 � c4 ∧ c2

t
� c4.

The idea of monotonic abstraction is the following. A configuration c is allowed
to use the outgoing transitions of any smaller configuration c′ (w.r.t �). The
resulting system is then trivially monotonic and is an over-approximation of
the original transition system. Formally, the abstract transition system (C, �)
is defined as follows. The set of configurations C is identical to the one of the
concrete transition system. The set of abstract transitions is defined by �:=⋃

t∈T
t

�, where (c1, c3) ∈ t
� (written as c1

t
� c3) iff ∃c2 � c1. c2

t−→ c3. It is
clear that t

�⊇ t−→ for all t ∈ T , i.e., (C, �) over-approximates (C,−→).
In our previous works [4,6], we defined � to be a particular ordering �⊆ C×C

such that c � c′ iff (1) ∀q ∈ Q.c(q) ≤ c′(q), (2) ∀n ∈ XN . c(n) ≤ c′(n), and (3)
∀b ∈ XB. c(b) = c′(b). Such an ordering has shown to be very useful in shape
analysis [1] and in the verification of safety properties of mutual exclusion and
cache coherence protocols [4,6]. In the CEGAR algorithm, we use � as the initial
preorder.

3.2 Refinement of the Abstraction

Figure 2 gives an overview of the counterexample-guided abstraction refinement
(CEGAR) algorithm. The algorithm works fully automatically and iteratively.

Reachability Checker
(Algorithm 1)

Counterexample Analyzer
(Algorithm 2)

“No”, Trace

(
C,−→) ,
0

“Spurious Error”

“Safe”

“Real Error”
Trace

Strengthened
Ordering 
i

Fig. 2. An overview of the CEGAR algorithm (Algorithm 3)
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In the beginning, a transition system (C,−→) and an initial preorder �0 (which
equals the preorder � defined in the previous subsection) are given. The CEGAR
algorithm (Algorithm 3) consists of two main modules, the reachability checker
(Algorithm 1) and the counterexample analyzer (Algorithm 2). In the i-th iter-
ation of the CEGAR algorithm, the reachability checker tests if bad configura-
tions are reachable in the abstract transition system obtained from monotonic
abstraction with the preorder �i−1. In case bad configurations are reachable,
a counterexample is sent to the counterexample analyzer, which reports either
“Real Error” or “Spurious Error”. The latter comes with a strengthened order
�i (i.e., �i⊂�i−1). The strengthened order �i will then be used in the (i + 1)-
th iteration of the CEGAR loop. Below we describe informally how �i−1 is
strengthened to �i. The formal details are given in Section 4.

Strengthening the Preorder. As an example, we demonstrate using the
protocol of Fig. 1 how to obtain �1 from �0. The set of bad configurations
Bad = {c | c(r) ≥ 1 ∧ c(w) ≥ 1} contains all configurations with at least one
process in the “write” state and one process in the “read” state. The set of ini-
tial configurations Init = {c | c(w) = c(r) = c(cnt) = 0 ∧ c(lock)} contains all
configurations where all processes are in the “think” state, the value of the “cnt”
equals 0, and the “lock” is available.

Bad

c(r)≥1
c(w)≥1

w1

c(t)≥1
c(r)≥1
c(lock)

B1

r4

c(r)≥2
c(cnt)≥1
¬c(lock)

B2

r2

c(r)≥1
c(t)≥1

c(cnt)≥1
¬c(lock)

B3

r1

c(t)≥2
c(lock)

B4

Fig. 3. The counterexample produced by backward reachability analysis on the readers
and writers protocol. Notice that in the counterexample, Init ∩ B4 �= ∅.

In iteration 1 of the CEGAR algorithm, the reachability checker produces a
counterexample (described in Fig. 3) and sends it to the counterexample analyzer.
More precisely, the reachability checker starts from the set Bad and finds the
set B1 contains all configurations that have (abstract) transitions w1

� to the set
Bad . That is, each configuration in B1 either has a concrete transition w1−→ to
Bad or has some smaller configuration (w.r.t �0) with a concrete transition w1−→
to Bad . It then continues the search from B1 and finds the set B2 that have
(abstract) transitions in r4

� to B1. The sets B3 and B4 can be found in a similar
way. It stops when B4 is found, since B4 ∩ Init �= ∅.

The counterexample analyzer simulates the received counterexample in the
concrete transition system. We illustrate this scenario in Fig. 4. It starts from the
set of configuration F4 = Init ∩B4

1 and checks if any bad configurations can be
reached following a sequence of transitions r1−→; r2−→; r4−→; w1−→. Starting from F4, it
1 The set of initial configurations that can reach bad configurations follows the se-

quence of transitions r1
�;r2

�;r4
�;w1

� in the abstract transition system
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Bad

B1B2

F2

F ′
2

B3

F3

Init∩B4

F4

r4
r4

r2
r2

r1

r1

S

Fig. 4. Simulating the counterexample on the concrete system. Here F4 = Init ∩B4 =
{c | c(t) ≥ 2 ∧ c(w) = c(r) = c(cnt) = 0 ∧ c(lock)}, F3 = {c | c(t) ≥ 1 ∧ c(w) =
0 ∧ c(r) = c(cnt) = 1 ∧ ¬c(lock)}, F2 = {c | c(cnt) = c(r) = 2 ∧ c(w) = 0 ∧ ¬c(lock)},
and F ′

2 = {c | c(cnt) = 1 ∧ c(r) ≥ 1 ∧ ¬c(lock)}

finds the set F3 which is a subset of B3 and which can be reached from F4 via the
transition r1−→. It continues from F3 and then finds the set F2 in a similar manner
via the transition r2−→. However, there exists no transition r4−→ starting from any
configuration in F2 = {c | c(cnt) = c(r) = 2 ∧ c(w) = 0 ∧ ¬c(lock)}. Hence the
simulation stops here and concludes that the counterexample is spurious.

In the abstract transition system, all configurations in F2 are able to reach B1

via transition r4
� and from which they can reach Bad via transition w1

�. Notice
that there exists no concrete transition r4−→ from F2 to B1, but the abstract
transition r4

� from F2 to B1 does exist. The reason is that all configurations in
F2 have some smaller configuration (w.r.t. �0) with a transition r4−→ to B1. Let
F ′

2 be the set of configurations that indeed have some transition r4−→ to B1. It is
clear that F2 and F ′

2 are disjoint.
Therefore, we can remove the spurious counterexample by preventing config-

urations in F2 from falling to some configuration in F ′
2 (thus also preventing

them from reaching B1). This can be achieved by first defining a set of configu-
rations S called a “Safety Zone”with F2 ⊆ S and F ′

2 ∩ S = ∅ and then use it to
strengthen the preorder �0, i.e., let �1:= {(c, c′)| c �0 c′ and c′ ∈ S ⇒ c ∈ S}.
In Section 4, we will explain how to use interpolation techniques [28,26] in order
to automatically obtain a “Safety Zone”from a counterexample.

4 The Algorithm

In this section, we describe our CEGAR algorithm for monotonic abstraction.
First, we define some concepts that will be used in the algorithm. Then, we ex-
plain the two main modules, reachability checker and counterexample analyzer.
The reachability checker (Algorithm 1) is the backward reachability analysis
algorithm on monotonic systems [2], which is possible to apply since the ab-
straction induces a monotonic transition system. The counterexample analyzer
(Algorithm 2) checks a counterexample and extracts a “Safety Zone”from the
counterexample if it is spurious. The CEGAR algorithm (Algorithm 3) is ob-
tained by composing the above two algorithms. In the rest of the section, we
assume a parameterized system P = (Q, T, X) that induces a transition system
(C,−→).



Constrained Monotonic Abstraction 93

4.1 Definitions

A substitution is a set {x1 ← e1, x2 ← e2, . . . , xn ← en} of pairs, where xi is a
variable and ei is a variable or a value of the same type as xi for all 1 ≤ i ≤ n.
We assume that all variables are distinct, i.e., xi �= xj if i �= j. For a formula
θ and a substitution S, we use θ[S] to denote the formula obtained from θ by
simultaneously replacing all free occurrences of xi by ei for all xi ← ei ∈ S. For
example, if θ = (x1 > x3) ∧ (x2 + x3 ≤ 10), then θ[x1 ← y1, x2 ← 3, x3 ← y2] =
(y1 > y2) ∧ (3 + y2 ≤ 10).

Below we define the concept of a constraint, a symbolic representation of
configurations which we used in our algorithm. In this section, we define a num-
ber of operations on constraints. In Section 5, we show how to compute those
operations.

We use Q# to denote the set {q# | q ∈ Q} of variables ranging over N in which
each variable q# is used to denote the number of processes in the state q. Define
the set of formulae Φ := {φN ∧ φB | φN ∈ N (Q# ∪ XN ), φB ∈ B(XB)} such
that each formula in Φ is a constraint that characterizes a potentially infinite
set of configurations. Let φ be a constraint and c be a configuration. We write
c � φ if φ[{q# ← c(q) | q ∈ Q}][{x ← c(x) | x ∈ XN}][{b ← c(b) | b ∈ XB}]
is a valid formula. We define the set of configurations characterized by φ as
[[φ]] := {c | c ∈ C ∧ c � φ}. We define an entailment relation � on constraints,
where φ1 � φ2 iff [[φ1]] ⊆ [[φ2]]. We assume that the set of initial configurations
Init and bad configurations Bad can be characterized by constraints φInit and
φBad , respectively.

For a constraint φ, the function Pret(φ) returns a constraint characterizing the
set {c | ∃c′ ∈ [[φ]]∧c t−→ c′}, i.e., the set of configurations from which we can reach
a configuration in [[φ]] via transitions in t−→; and Postt(φ) returns a constraint
characterizing the set {c | ∃c′ ∈ [[φ]] ∧ c′ t−→ c}, i.e., the set of configurations
that can be reached from some configuration in [[φ]] via transitions in t−→. For a
constraint φ and a preorder � on the set of configurations, the function Up�(φ)
returns a constraint such that [[Up�(φ)]] = {c′ | ∃c ∈ [[φ]] ∧ c � c′}, i.e., the
upward closure of [[φ]] w.r.t. the ordering �. A trace (from φ1 to φn+1) in the
abstract transition system induced by monotonic abstraction and the preorder
� is a sequence φ1; t1; . . . ; φn; tn; φn+1, where φi = Up�(Preti(φi+1)) and ti ∈ T
for all 1 ≤ i ≤ n. A counterexample (w.r.t. �) is a trace φ1; t1; . . . ; φn; tn; φn+1

with [[φ1]] ∩ [[φInit ]] �= ∅ and φn+1 = φBad .
We use Var(φ) to denote the set of variables that appear in the constraint

φ. Given two constraints φA and φB such that φA ∧ φB is unsatisfiable. An
interpolant φ of (φA, φB) (denoted as ITP(φA, φB)) is a formula that satisfies (1)
φA =⇒ φ, (2) φ∧φB is unsatisfiable, and (3) Var(φ) ⊆ Var(φA)∩Var(φB). Such
an interpolant can be automatically found, e.g., using off-the-shelf interpolant
solvers such as FOCI [28] and CLP-prover [29]. In particular, since φA, φB ∈ Φ, if
we use the “split solver” algorithm equipped with theory of difference bound [26]
to compute an interpolant, the result will always be a formula in Φ (i.e., a
constraint).
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4.2 The Reachability Checker

Algorithm 1. The reachability checker
input : A preorder 
 over configurations, constraints φInit and φBad

output: “Safe” or “No” with a counterexample φ1; t1; . . . ; φn; tn; φBad

Next := {(φBad , φBad)}, Processed := {};1

while Next is not empty do2

Pick and remove a pair (φCur , Trace) from Next and add it to Processed;3

if [[φCur ∧ φInit ]] �= ∅ then return “No”, Trace;4

foreach t ∈ T do5

φPre = Up�(Pret(φCur));6

old = ∃(φ, •) ∈ Next ∪ Processed.φ � φPre ;7

if ¬old then Add (φPre , φPre ; t;Trace) to Next;8

return “Safe”;9

Let � be a preorder on C and (C, �) be the abstract transition system in-
duced by the parameterized system P and the preorder �. Algorithm 1 checks if
the set [[φInit ]] is backward reachable from [[φBad ]] in the abstract transition sys-
tem (C, �). It answers “Safe” if none of the initial configurations are backward
reachable. Otherwise, it answers “No”. In the latter case, it returns a counterex-
ample φ1; t1; . . . ; φn; tn; φBad . The algorithm uses a set Next to store constraints
characterizing the sets of configurations from which it will continue the back-
ward search. Each element in Next is a pair (φ, Trace), where φ is a constraint
characterizing a set of backward reachable configurations (in the abstract transi-
tion system) and Trace is a trace from φ to φBad . Initially, the algorithm puts in
Next the constraint φBad , which describes the bad configurations, together with
a trace contains a singleton element namely φBad itself (Line 1). In each loop
iteration (excepts the last one), it picks a constraint φCur (together with a trace
to φBad ) from Next (Line 3). For each transition rule t ∈ T , the algorithm finds a
constraint φPre characterizing the set of configurations backward reachable from
[[φCur ]] via t

� (Line 6). If there exists no constraint in Next that is larger than
φPre (w.r.t. �), φPre (together with a trace to φBad ) is added to Next (Line 7).

4.3 The Counterexample Analyzer

Given a counterexample φ1; t1; . . . ; φn; tn; φn+1, Algorithm 2 checks whether it
is spurious or not. If spurious, it returns a constraint φS that describes a “Safety
Zone”that will be used to strengthen the preorder.

As we explained in Section 3, we simulate the counterexample forwardly (Line
1-6). The algorithm begins with the constraint φ1 ∧φInit . If the counterexample
is spurious, we will find a constraint φ in the i-th loop iteration for some i :
1 ≤ i ≤ n such that none of the configurations in [[φ]] has transition ti−→ to
[[φi+1]] (Line 3). For this case, it computes the constraint φ′ characterizing the
set of configurations with transitions ti−→ to [[φi+1]] (Line 4) and then computes
a constraint characterizing a “Safety Zone”.
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Algorithm 2. The counterexample analyzer.
input : A counterexample φ1; t1; . . . ; φn; tn; φn+1

output: “Real Error” or “Spurious Error” with a constraint φS

φ = φ1 ∧ φInit ;1

for i = 1 to n do2

if [[Postti(φ)]] = ∅ then3

φ′ = Preti(φi+1);4

return “Spurious Error”, ITP(φ, φ′);5

φ = Postti(φ) ∧ φi+1;6

return “Real Error”;7

As we explained in Section 3, a “Safety Zone”is a set S of configurations
that satisfies (1) [[φ]] ⊆ S and (2) S ∩ [[φ′]] = ∅. Therefore, the constraint φS

characterizing the “Safety Zone”should satisfy (1) φ =⇒ φS and (2) φS ∧
φ′ is not satisfiable. The interpolant of (φ, φ′) is a natural choice of φS that
satisfies the aforesaid two conditions. Hence, in this case the algorithm returns
ITP(φ, φ′) (Line 5). If the above case does not happen, the algorithm computes
a constraint characterizing the next set of forward reachable configurations in
the counterexample (Line 6) and proceeds to the next loop iteration. It returns
“Real Error” (Line 7) if the above case does not happen during the forward
simulation.

4.4 The CEGAR Algorithm of Monotonic Abstraction

Algorithm 3. A CEGAR algorithm for monotonic abstraction
input : An initial preorder 
0 over configurations, constraints φInit and φBad

output: “Safe” or “Real Error” with a counterexample φ1; t1; . . . ; φn; tn; φBad

i = 0;1

while true do2

result = ReachabilityChecker(
i, φInit , φBad);3

if result=“No”, Trace then4

type = CounterexampleAnalyzer(Trace);5

if type=“Spurious Error”, φS then i = i + 1,
i:= Str(
i−1, φS);6

else return “Real Error”, Trace7

else return “Safe”8

In Algorithm 3, we describe the CEGAR approach for monotonic abstraction
with the initial preorder �0. As described in Section 3, the algorithm works
iteratively. In the i-th iteration, in Line 3, we invoke the reachability checker
(Algorithm 1) using a preorder �i−1. When a counterexample is found, the coun-
terexample analyzer (Algorithm 2) is invoked to figure out if the counterexample
is real (Line 8) or spurious. In the latter case, the counterexample analyzer gen-
erates a constraint characterizing a “Safety Zone”and from which Algorithm 3
computes a strengthened preorder �i (Line 6 and 7). The function Str(�i−1, φS)
in Line 8 strengthens the preorder �i−1 by the set of configurations [[φS ]].
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5 Constraint Operations

In this section we explain how to compute all the constraint operations used in
the algorithms in Section 4. Recall that Φ denotes the set of formulae {φN ∧φB |
φN ∈ N (Q# ∪ XN), φB ∈ B(XB)}, where each formula in Φ is a constraint
representing a set of configurations. We define Ψ := {φN ∧ φB | φN ∈ N (Q# ∪
Q#′∪XN ∪X ′

N ), φB ∈ B(XB ∪X ′
B)}, where each formula in Ψ defines a relation

between sets of configurations. Observe that formulae in Φ and in Ψ are closed
under the Boolean connectives and substitution.

Lemma 1. [19] Both Φ and Ψ are closed under projection (existential quantifi-
cation) and the projection functions are computable.

Lemma 2. [19] The satisfiability problem of formulae in Φ and Ψ is decidable.

Below we explain how to preform the constraint operations used in the algo-
rithms in Section 4. For notational simplicity, we define V := Q#∪XN ∪XB and
V′ := Q#′ ∪X ′

N ∪X ′
B. Let φ be a formula in Φ (respectively, Ψ) and X a set of

variables in V (respectively, V ∪ V′), we use ∃X. φ to denote some formula φ′ in
Φ (respectively, Ψ) obtained by the quantifier elimination algorithm (Lemma 1).

Pre and Post. The transition relation t−→ for t =
[
q → r : stmt

]
∈ T can be

described by the formula θt := stmt ∧ q#′ = q# − 1 ∧ r#′ = r# + 1, which is
in Ψ . For a constraint φ, Pret(φ) = ∃V′. (θt ∧ φ[{x ← x′ | x ∈ V}]) ∈ Φ and
Postt(φ) = (∃V. (θt ∧φ))[{x′ ← x | x ∈ V}] ∈ Φ. Both functions are computable.

Entailment. Given two constraints φ1 and φ2, we have φ1 � φ2 iff φ1 ∧ ¬φ2 is
unsatisfiable, which can be automatically checked. In practice, constraints can
be easily translated into disjunctions of difference bound matrices (DBM) and
hence a sufficient condition for entailment can be checked by standard DBM
operations [19].

Intersection with Initial States. Let φInit be a constraint characterizing the
initial configurations and φB be a constraint characterizing a set of configura-
tions. We have [[φInit ]] ∩ [[φB ]] �= ∅ iff φInit ∧ φB is satisfiable.

Strengthening. Here we explain how to strengthen an ordering � w.r.t a con-
straint φS ∈ Φ, providing that � is expressed as a formula φ� ∈ Ψ . The strength-
ened order can be expressed as the formula φ�S := φ�∧(φS ∨¬φS [{x ← x′ | x ∈
V}]). Intuitively, for two configurations c1 and c2, the formula says that c1 �S c2

iff c1 � c2 and either c1 is in the “Safety Zone”or c2 is not in the “Safety Zone”.

Remark 1. The initial preorder �0 of our algorithm can be expressed as the
formula

∧
x∈Q#∪XN , x′∈Q#′∪X′

N
. x ≤ x′ ∧

∧
b∈XB , b′∈X′

B
. (b ∧ b′) ∨ (¬b ∧ ¬b′),

which is in Ψ . The constraint extracted from each spurious counterexample is in
Φ if the algorithm in [26] is used to compute the interpolant. Since the initial
preorder is a formula in Ψ and the constraint used for strengthening is in Φ, the
formula for the strengthened order is always in Ψ and computable.
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Upward Closure. We assume that the ordering � is expressed as a formula
φ� ∈ Ψ and the constraint φ ∈ Φ. The upward closure of φ w.r.t. � can be
captured as Up�(φ) := (∃V. (φ ∧ φ�))[{x′ ← x | x ∈ V}], which is in Φ.

6 Termination

In this section, we show that each loop iteration of our CEGAR algorithm ter-
minates. We can show by Dickson’s lemma [18] that the initial preorder � is a
WQO. An ordering over configurations is a WQO iff for any infinite sequence
c0, c1, c2, . . . of configurations, there are i and j such that i < j and ci � cj .
Moreover, we can show that the strengthening of a preorder also preserves WQO.

Lemma 3. Let S be a set of configurations. If � is a WQO over configurations
then �S is also a WQO over configurations.

If a transition system is monotonic w.r.t. a WQO over configurations, back-
ward reachability analysis, which is essentially a fix-point calculation, termi-
nates within a finite number of iterations [2]. The abstract transition system
is monotonic. In Section 5, we show that all the constraint operations used in
the algorithms are computable. Therefore, in each iteration of the CEGAR algo-
rithm, the termination of the reachability checker (Algorithm 1) is guaranteed.
Since the length of a counterexample is finite, the termination of the counterex-
ample analyzer (Algorithm 2) is also guaranteed. Hence, we have the following
lemma.

Lemma 4. Each loop iteration of the CEGAR algorithm (Algorithm 3) is guar-
anteed to terminate.

7 Extension

The model described in Section 2 can be extended to allow some additional
features. For example, (1) dynamic creation of processes

[
· → q : stmt

]
, (2)

dynamic deletion of processes
[
q → · : stmt

]
, and (3) synchronous movement[

q1, q2, . . . , qn → r1, r2, . . . , rn : stmt
]
. Moreover, the language of the statement

can be extended to any formula in Presburger arithmetic. For all of the new fea-
tures, we can use the same constraint operations as in Section 5; the extended
transition rule still can be described using a formula in Ψ , Presburger arithmetic
is closed under Boolean connectives, substitution, and projection and all the
mentioned operations are computable.

8 Case Studies and Experimental Results

We have implemented a prototype and tested it on several case studies of clas-
sical synchronization schemes and reference counting schemes, which includes
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Table 1. Summary of experiments of case studies. Interpolant denotes the kind of in-
terpolant prover we use, where DBM denotes the difference bound matrix based solver,
and CLP denotes the CLP-prover. Pass indicates whether the refinement procedure
can terminate with a specific interpolant prover. Time is the execution time of the pro-
gram, measured by the bash time command. #ref is the number of refinements needed
to verify the property. #cons is the total number of constraints generated by the reach-
ability checker. For each model, we use #t, #l, #s to denote the number of transitions,
the number of local variables, and the number of shared variables, respectively. All case
studies are described in details in tech. report [3].

model interpolant pass time #ref #cons #t #l #s

readers/writers DBM
√

0.04 sec 1 90
6 5 2

CLP
√

0.08 sec 1 90
refined readers/writers DBM

√
3.9 sec 2 3037

8 5 3
priority to readers CLP X - - -

refined readers/writers DBM
√

3.5 sec 1 2996
12 7 5

priority to writers CLP
√

68 sec 4 39191
sleeping DBM

√
3.9 sec 1 1518

10 15 1
barbers CLP

√
4.1 sec 1 1518

pmap reference DBM
√

0.1 sec 1 249
25 4 7counting CLP

√
0.1 sec 1 249

reference DBM
√

0.02 sec 1 19
7 4 1counting gc CLP

√
0.05 sec 1 19

missionary &
cannibals

DBM X - - -
7 7 1CLP

√
0.1 sec 3 86

swimming
pool v2

DBM
√

0.2 sec 2 59
6 0 10CLP

√
0.2 sec 2 55

readers/writers protocol, sleeping barbers problem, the missionaries/cannibals
problem [11], the swimming pool protocol [11,23], and virtual memory manage-
ment. These case studies make use of shared counters (in some cases protected
by semaphores) to keep track of the number of current references to a given re-
source. Monotonic abstraction returns spurious counterexamples for all the case
studies. In our experiments, we use two interpolating procedures to refine the
abstraction. One is a homemade interpolant solver based on difference bound ma-
trices [26]; the other one is the CLP-prover [29], an interpolant solvers based on
constraint logic programming. The results, obtained on an Intel Xeon 2.66GHz
processor with 8GB memory, are listed in Table 1. It shows that our CEGAR
method efficiently verifies many examples in a completely automatic manner.

We compare our approach with three related tools: the ALV tool [14], the
Interproc Analyzer [24], and FASTer [11] based on several examples (and their
variants) from our case studies. The results are summarized in Table 2. Note
that these tools either perform an exact forward analysis where the invariant
is exactly represented (FASTer), or try to capture all possible invariants of a
certain form (ALV and Interproc Analyzer). In these two approaches, the ver-
ification of the property is deduced from the sometimes expensively generated
invariants. The main difference between our approach and the other ones is that
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Table 2. Summary of tool comparisons. For cma, we selected the best results among
the ones obtained from DBM and CLP. For FASTer, we tested our examples with
library Mona and the backward search strategy. For the other tools, we just used
the default settings. In our experiment, ALV outputted “unable to verify” for the
missionaries/cannibals model and failed to verify the other test cases after one day of
execution. FASTer failed to verify four of the six test cases within a memory limit of
8GB. Interproc Analyzer gave false positives for examples other than the swimming
pool protocol and the missionaries/cannibals model. That is, it proved reachability for
models where the bad states were not reachable.

Model Tool Pass Result Model Tool Pass Result

swimming
pool

protocol v2

cma
√

0.2 sec
pmap

reference
counting

cma
√

0.1 sec
FASTer X oom FASTer

√
85 sec

Interproc
√

2.7 sec Interproc X false positive
ALV X timeout ALV X timeout

Model Tool Pass Result Model Tool Pass Result

missionary
&

cannibals

cma
√

0.1 sec readers
writers

pri. readers

cma
√

3.9 sec
FASTer X oom FASTer

√
3 min 44 sec

Interproc
√

2 sec Interproc X false positive
ALV X cannot verify ALV X timeout

Model Tool Pass Result Model Tool Pass Result

missionary
&

cannibals v2

cma
√

0.2 sec readers
writers

pri. readers
v2

cma
√

0.5 sec
FASTer X oom FASTer X oom

Interproc X false positive Interproc X false positive
ALV X timeout ALV X timeout

we concentrate on minimal constraints to track the violation of the property at
hand. Using upward closed sets as a symbolic representation efficiently exploits
the monotonicity of the abstract system where the analysis is exact yet efficient.

9 Related and Future Work

We have presented a method for refining monotonic abstraction in the context
of verification of safety properties for parameterized systems. We have imple-
mented a prototype based on the method and used it to automatically ver-
ify parameterized versions of synchronization and reference counting schemes.
Our method adopts an iterative counter-example guided abstraction refinement
(CEGAR) scheme. Abstraction refinement algorithms for forward/backward anal-
ysis of well-structured models have been proposed in [25,16]. Our CEGAR scheme
is designed instead for undecidable classes of models. Other tools dealing with the
verification of similar parameterized systems can be divided into two categories:
exact and approximate. In Section 8, we compare our method to a representative
from each category. The results confirm the following. Exact techniques, such as
FASTer [11], restrict their computations to under-approximations of the set of
reachable states. They rely on computing the exact effect of particular categories
of loops, like non-nested loops for instance, and may not terminate in general.
On the contrary, our method is guaranteed to terminate at each iteration.On the
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other hand, approximate techniques like ALV and the Interproc Analyzer [14,24],
rely on widening operators in order to ensure termination. Typically, such opera-
tors correspond to extrapolations that come with a loss of precision. It is unclear
how to refine the obtained over-approximations when false positives appear in
parameterized systems like those we study.

Also, the refinement method proposed in the present paper allows us to au-
tomatically verify new case studies (e.g. reference counting schemes) that can-
not be handled by regular model checking [27,17,9,12,30,13], monotonic abstrac-
tions [6,4,7] (they give false positives), environment abstraction [15], and invisi-
ble invariants [10]. It is important to remark that a distinguished feature of our
method with respect to methods like invisible invariants and environment ab-
straction is that we operate on abstract models that are still infinite-state thus
trying to reduce the loss of precision in the approximation required to verify a
property.

We currently work on extensions of our CEGAR scheme to systems in which
processes are linearly ordered. Concerning this point, in [5] we have applied a
manually supplied strengthening of the subword ordering to automatically verify
a formulation of Szymanski’s algorithm (defined for ordered processes) with non-
atomic updates.
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2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS 1996, pp. 313–321 (1996)

3. Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.:
Constrained monotonic abstraction: a cegar for parameterized verification. Tech.
report 2010-015, Uppsala University, Sweden (2010)

4. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

5. Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated context-sensitive analysis
for parameterized verification. In: FMOODS 2009/FORTE 2009, pp. 41–56 (2009)

6. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007)

7. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling parameterized
systems with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck,
L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

8. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Info. Com-
put. 127(2), 91–101 (1996)

9. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and efficient. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.)
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Abstract. We consider the problem of defining the information leakage in in-
teractive systems where secrets and observables can alternate during the com-
putation. We show that the information-theoretic approach which interprets such
systems as (simple) noisy channels is not valid anymore. However, the principle
can be recovered if we consider more complicated types of channels, that in Infor-
mation Theory are known as channels with memory and feedback. We show that
there is a complete correspondence between interactive systems and such kind of
channels. Furthermore, we show that the capacity of the channels associated to
such systems is a continuous function of the Kantorovich metric.

1 Introduction

Information leakage refers to the problem that the observable parts of the behavior of
a system may reveal information that we would like to keep secret. In recent years,
there has been a growing interest in the quantitative aspects of this problem, partly
because it is convenient to represent the partial knowledge of the secrets as a probability
distribution, and partly because the mechanisms to protect the information may use
randomization to obfuscate the relation between the secrets and the observables.

Among the quantitative approaches, some of the most popular ones are based on
Information Theory [5,12,4,16]. The system is interpreted as an information-theoretic
channel, where the secrets are the input and the observables are the output. The channel
matrix is constituted by the conditional probabilities p(b | a), defined as the measure
of the executions that give observable b within those which contain the secret a. The
leakage is represented by the mutual information, and the worst-case leakage by the
capacity of the channel.

In the above works, the secret value is assumed to be chosen at the beginning of
the computation. In this paper, we are interested in Interactive systems, i.e. systems
in which secrets and observables can alternate during the computation, and influence
each other. Examples of interactive protocols include auction protocols like [21,18,17].
Some of these have become very popular thanks to their integration in Internet-based
electronic commerce platforms [9,10,14]. As for interactive programs, examples in-
clude web servers, GUI applications, and command-line programs [3].

We investigate the applicability of the information-theoretic approach to interactive
systems. In [8] it was proposed to define the matrix elements p(b | a) as the measure of
the traces with (secret, observable)-projection (a, b), divided by the measure of the trace
with secret projection a. This follows the definition of conditional probability in terms
of joint and marginal probability. However, it does not define an information-theoretic
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channel. In fact, by definition a channel should be invariant with respect to the input
distribution, and such construction is not, as shown by the following example.

Example 1. Figure 1 represents a web-based interaction between one seller and two
possible buyers, rich and poor. The seller offers two different products, cheap and ex-
pensive, with given probabilities. Once the product is offered, each buyer may try to
buy the product, with a certain probability. For simplicity we assume that the buyers
offers are exclusive. We assume that the offers are observables, in the sense that they
are made public in the website, while the identity of the buyer that actually buys the
product should be secret to an external observer. The symbols r, s, t, r, s, t represent
the probabilities, with the convention that r = 1 − r.

r r

s s t t

cheap expensive

poor rich poor rich

Fig. 1. Inter. System

Following [8] we can compute the conditional probabili-
ties as p(b|a) = p(a,b)

p(a) , thus obtaining the matrix on Table 1.
However, the matrix is not invariant with respect to the

input distribution. For instance, if we fix r = r = 0.5 and
consider two different input distributions, obtained by vary-
ing the values of (s, t), we get two different matrices of condi-
tional probabilities, which are represented in Table 2. Hence
when the secrets occur after the observables we cannot con-
sider the conditional probabilities as representing a (classical)
channel, and we cannot apply the standard information-theoretic concepts. In particular,
we cannot adopt the (classical) capacity to represent the worst-case leakage, since the
capacity is defined using a fixed channel matrix over all possible input distributions.

Table 1. Cond. probabilities
of Example 1

cheap expensive

poor rs
rs+rt

rt
rs+rt

rich rs
rs+rt

rt
rs+rt

The first contribution of this paper is to consider an
extension of the theory of channels which makes the
information-theoretic approach applicable also the case of
interactive systems. It turns out that a richer notion of chan-
nels, known in Information Theory as channels with mem-
ory and feedback, serves our purposes. The dependence of
inputs on previous outputs corresponds to feedback, and
the dependence of outputs on previous inputs and outputs
corresponds to memory.

Table 2. Two different channel matrices induced by two different input distributions

cheap expensive Input dist.

poor 2
5

3
5

p(poor) = 1
2

rich 3
5

2
5

p(rich) = 1
2

(a) r = 1
2
, s = 2

5
, t = 3

5

cheap expensive Input dist.

poor 1
4

3
4

p(poor) = 1
5

rich 9
16

7
16

p(rich) = 4
5

(b) r = 1
2
, s = 1

10
, t = 3

10

A second contribution of our work is the proof that the channel capacity is a con-
tinuous function of the Kantorovich metric on interactive systems. This was pointed
out also in [8], however their construction does not work in our case due to the fact that
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(as far as we understand) it assumes that the probability of a secret action, in any point
of the computation, is not 0. This assumption is not guaranteed in our case and therefore
we had to proceed differently.

A more complete version of this paper (with proofs) is on line [1].

2 Preliminaries

2.1 Concepts from Information Theory

For more detailed information on this part we refer to [6]. Let A, B denote two random
variables with corresponding probability distributions pA(·), pB(·), respectively. We
shall omit the subscripts when they are clear from the context. Let A = {a1, . . . , an},
B = {b1, . . . , bm} denote, respectively, the sets of possible values for A and for B.

The entropy of A is defined as H(A) = −
∑

A p(ai) log p(ai) and it measures the
uncertainty of A. It takes its minimum value H(A) = 0 when pA(·) is a delta of Dirac.
The maximum value H(A) = log |A| is obtained when pA(·) is the uniform distribu-
tion. Usually the base of the logarithm is set to be 2 and the entropy is measured in
bits. The conditional entropy of A given B is H(A|B) = −

∑
B p(bi)

∑
A p(aj |bi)

log p(aj |bi), and it measures the uncertainty of A when B is known. We can prove that
0 ≤ H(A|B) ≤ H(A). The minimum value, 0, is obtained when A is completely de-
termined by B. The maximum value H(A) is obtained when A and B are independent.
The mutual information between A and B is defined as I(A; B) = H(A) − H(A|B),
and it measures the amount of information about A that we gain by observing B. It can
be shown that I(A; B) = I(B; A) and 0 ≤ I(A; B) ≤ H(A).

The entropy and mutual information respect the chain laws. Namely, given a se-
quence of random variables A1, A2, . . . , Ak and B, we have:

H(A1, A2, . . . , Ak) =
k∑

i=1

H(Ai|A1, . . . , Ai−1) (1)

I(A1, A2, . . . , Ak; B) =
k∑

i=1

I(Ai; B|A1, . . . , Ai−1) (2)

A (discrete memoryless) channel is a tuple (A,B, p(·|·)), where A,B are the sets of
input and output symbols, respectively, and p(bj |ai) is the probability of observing
the output symbol bj when the input symbol is ai. An input distribution p(ai) over A
determines, together with the channel, the joint distribution p(ai, bj) = p(ai|bj) · p(ai)
and consequently I(A; B). The maximum I(A; B) over all possible input distributions
is the channel’s capacity. Shannon’s famous result states that the capacity coincides
with the maximum rate by which information can be transmitted using the channel.

In this paper we consider input and output sequences instead of just symbols.

Convention 1. Let A = {a1, . . . , an} be a finite set of n different symbols (alphabet).
When we have a sequence of symbols (ordered in time), we use a Greek letter αt to
denote the symbol at time t. The notation αt stands for the sequence α1α2 . . . αt. For
instance, in the sequence a3a7a5, we have α2 = a7 and α2 = a3a7.
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Convention 2. Let X be a random variable. Xt denotes the sequence of t consecutive
occurrences X1, . . . , Xt of the random variable X .

When the channel is used repeatedly, the discrete memoryless channel described above
represents the case in which the behavior of the channel at the present time does not
depend upon the past history of inputs and outputs. If this assumption does not hold,
then we have a channel with memory. Furthermore, if the outputs from the channel can
be fed back to the encoder, thus influencing the generation of the next input symbol,
then the channel is said to be with feedback; otherwise it is without feedback.

Equation 3 makes explicit the probabilistic behavior of channels regarding those
classifications. Suppose a general channel from A to B with the associated random vari-
ables A for input and B for output. Using the notation introduced in Convention 1, the
channel behavior after T uses can be fully described by the joint probability p(αT , βT ).

Using probability laws we derive:

p(αT , βT ) =
T∏

t=1

p(αt|αt−1, βt−1)p(βt|αt, βt−1) (by the expansion law) (3)

The first term p(αt|αt−1, βt−1) indicates that the probability of αt depends not only
on αt−1, but also on βt−1 (feedback). The second term p(βt|αt, βt−1) indicates that
the probability of each βt depends on previous history of inputs αt and outputs βt−1

(memory).
If the channel is without feedback, then we have that p(αt|αt−1, βt−1)=p(αt|αt−1),

and if the channel is without memory, then we have also p(βt|αt, βt−1) = p(βt|αt).
From these we derive p(βT |αT ) =

∏T
t=1 p(βt|αt), which is the classic equation for

discrete memoryless channels without feedback.
Let (V ,K) be a Borel space and let (X ,BX ) and (Y,BY) be Polish spaces equipped

with their Borel σ-algebras. Let ρ(dx|v) be a family of measures on X given V . Then
ρ(dx|v) is a stochastic kernel if and only if and only if ρ(·|v) is a random variable from
V into the power set P(X ).

2.2 Probabilistic Automata

A function μ : S → [0, 1] is a discrete probability distribution on a countable set S if∑
s∈S μ(s) = 1 and μ(s) ≥ 0 for all s. The set of all discrete probability distributions

on S is D(S).
A probabilistic automaton [15] is a quadruple M = (S,L, ŝ, ϑ) where S is a count-

able set of states, L a finite set of labels or actions, ŝ the initial state, and ϑ a transition
function ϑ : S → ℘f (D(L × S)). Here ℘f (X) is the set of all finite subsets of X . If
ϑ(s) = ∅ then s is a terminal state. We write s→μ for μ ∈ ϑ(s), s ∈ S. Moreover, we
write s

�→r for s, r ∈ S whenever s→μ and μ(�, r) > 0. A fully probabilistic automa-
ton is a probabilistic automaton satisfying |ϑ(s)| ≤ 1 for all states. When ϑ(s) �= ∅ we
overload the notation and denote ϑ(s) the distribution outgoing from s.

A path in a probabilistic automaton is a sequence σ = s0
�1→ s1

�2→ · · · where
si ∈ S, �i ∈ L and si

�i+1→ si+1. A path can be finite in which case it ends with a state.
A path is complete if it is either infinite or finite ending in a terminal state. Given a
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finite path σ, last(σ) denotes its last state. Let Pathss(M) denote the set of all paths,
Paths�

s(M) the set of all finite paths, and CPathss(M) the set of all complete paths
of an automaton M , starting from the state s. We will omit s if s = ŝ. Paths are ordered
by the prefix relation, which we denote by ≤. The trace of a path is the sequence of
actions in L∗ ∪ L∞ obtained by removing the states, hence for the above σ we have
trace(σ) = l1l2 . . .. If L′ ⊆ L, then traceL′(σ) is the projection of trace(σ) on the
elements of L′.

Let M = (S,L, ŝ, ϑ) be a (fully) probabilistic automaton, s ∈ S a state, and let
σ ∈ Paths�

s(M) be a finite path starting in s. The cone generated by σ is the set of
complete paths 〈σ〉 = {σ′ ∈ CPathss(M) | σ ≤ σ′}. Given a fully probabilistic
automaton M = (S,L, ŝ, ϑ) and a state s, we can calculate the probability value,

denoted by Ps(σ), of any finite path σ starting in s as follows: Ps(s) = 1 and Ps(σ
�→

s′) = Ps(σ) μ(�, s′), where last(σ) → μ.
Let Ωs � CPathss(M) be the sample space, and let Fs be the smallest σ-algebra

generated by the cones. Then P induces a unique probability measure on Fs (which we
will also denote by Ps) such that Ps(〈σ〉) = Ps(σ) for every finite path σ starting in
s. For s = ŝ we write P instead of Pŝ.

Given a probability space (Ω,F , P ) and two events A, B ∈ F with P (B) > 0, the
conditional probability of A given B, P (A | B), is defined as P (A ∩ B)/P (B).

3 Discrete Channels with Memory and Feedback

We adopt the model proposed in [19] for discrete channels with memory and feedback.
Such model, represented in Figure 2, can be decomposed in sequential components
as follows. At time t the internal channel’s behavior is represented by the conditional
probabilities p(βt|αt, βt−1). The internal channel takes the input αt and, according to
the history of inputs and outputs up to the moment αt, βt−1, produces an output symbol
βt. The output is then fed back to the encoder with delay one. On the other side, at time
t the encoder takes the message and the past output symbols βt−1, and produces a
channel input symbol αt. At final time T the decoder takes all the channel outputs βT

and produces the decoded message Ŵ . The order is the following:

Message W, α1, β1, α2, β2, . . . , αT , βT , Decoded Message Ŵ

Let us describe such channel in more detail. Let A andB be two finite sets. Let {At}T
t=1

(channel’s input) and {Bt}T
t=1 (channel’s output) be families of random variables in A

and B respectively. Moreover, let AT and BT represent their T -fold product spaces. A
channel is a family of stochastic kernels {p(βt|αt, βt−1)}T

t=1.
Let Ft be the set of all measurable maps ϕt : Bt−1 → A endowed with a probability

distribution, and let Ft be the corresponding random variable. Let FT , FT denote the
Cartesian product on the domain and the random variable, respectively. A channel code
function is an element ϕT = (ϕ1, . . . , ϕT ) ∈ FT .

Note that, by probability laws, p(ϕT ) =
∏T

t=1 p(ϕt|ϕt−1). Hence the distribution on
FT is uniquely determined by a sequence {p(ϕt|ϕt−1)}T

t=1. We will use the notation
ϕt(βt−1) to represent the A-valued t-tuple (ϕ1, ϕ2(β

1), . . . , ϕt(β
t−1)).
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�� � � � � � � � � � � � � � � � � � � � � � � � � � �

Time
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Fig. 2. Model for discrete channel with memory and feedback

In Information Theory this kind of channels are used to encode and transmit mes-
sages. If W is a message set of cardinality M with typical element w, endowed with
a probability distribution, a channel code is a set of M channel code functions ϕT [w],
interpreted as follows: for message w, if at time t the channel feedback is βt−1, then
the channel encoder outputs ϕt[w](βt−1). A channel decoder is a map from BT to W
which attempts to reconstruct the input message after observing all the output history
βT from the channel.

3.1 Directed Information and Capacity of Channels with Feedback

In classical Information Theory, the channel capacity, which is related to the channel’s
transmission rate by Shannon’s fundamental result, can be obtained as the supremum of
the mutual information over all possible input’s distributions. In presence of feedback,
however, this correspondence does not hold anymore. More specifically, mutual infor-
mation does not represent any longer the information flow from αT to βT . Intuitively,
this is due to the fact that mutual information expresses correlation, and therefore it
is increased by feedback. But the feedback, i.e the way the output influences the next
input, is part of the a priori knowledge, and therefore should not be counted when we
measure the output’s contribution to the reduction of the uncertainty about the input. If
we want to maintain the correspondence with the transmission rate and with information
flow, we need to replace mutual information with directed information [13].

Definition 1. In a channel with feedback, the directed information from input AT to
output BT is defined as I(AT → BT ) =

∑T
t=1 I(αt; βt|βt−1). In the other di-

rection, the directed information from BT to AT is defined as: I(BT → AT ) =∑T
t=1 I(αt; β

t−1|αt−1).

Note that the directed information defined above are not symmetric: the flow from AT

to BT takes into account the correlation between αt and βt, while the flow from BT

to AT is based on the correlation between βt−1 and αt . Intuitively, this is because αt

influences βt, but, in the other direction, it is βt−1 that influences αt.
It can be proved [19] that I(AT ; BT ) = I(AT → BT )+I(BT → AT ). If a channel

does not have feedback, then I(BT → AT ) = 0 and I(AT ; BT ) = I(AT → BT ).
In a channel with feedback the information transmitted is the directed information,

and not the mutual information. The following example should help understanding why.
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Example 2. Consider the discrete memoryless channel with input alphabetA={a1, a2}
and output alphabet B = {b1, b2} whose matrix is represented in Table 3.

Table 3. Channel matrix
for Example 2

b1 b2

a1 0.5 0.5
a2 0.5 0.5

Suppose that the channel is used with feedback, in such a
way that, for all t’s, αt+1 = a1 if βt = b1, and αt+1 = a2 if
βt = b2. It is easy to show that if t ≥ 2 then I(At; Bt) �= 0.
However, there is no leakage from from At to Bt, since the
rows of the matrix are all equal. We have indeed that I(At →
Bt) = 0, and the mutual information I(At; Bt) is only due to
the feedback information flow I(Bt → At).

The concept of capacity is generalized for channels with feedback as follows. Let
DT = {{p(αt|αt−1, βt−1)}T

t=1} be the set of all input distributions. For finite T , the
capacity of a channel {p(βt|αt, βt−1)}T

t=1 is:

CT = sup
DT

1
T

I(AT → BT ) (4)

4 Interactive Systems as Channels with Memory and Feedback

(General) Interactive Information Hiding Systems ([2]), are a variant of probabilistic
automata in which we separate actions in secret and observable; “interactive” means
that secret and observable actions can interleave and influence each other.

Definition 2. A general IIHS is a quadruple I = (M,A,B,Lτ ), where M is a prob-
abilistic automaton (S,L, ŝ, ϑ), L = A ∪ B ∪ Lτ where A, B, and Lτ are pair-
wise disjoint sets of secret, observable, and internal actions respectively, and ϑ(s) ⊆
D(B ∪ Lτ × S) implies |ϑ(s)| ≤ 1, for all s. The condition on ϑ ensures that all
observable transitions are fully probabilistic.

Assumption. In this paper we assume that general IIHSs are normalized, i.e. once un-
folded, all the transitions between two consecutive levels have either secret labels only,
or observable labels only. Moreover, the occurrences of secret and observable labels
alternate between levels. We will call secret states the states from which only secrets-
labeled transitions are possible, and observable states the others. Finally, we assume
that for every s and � there exists a unique r such that s

�→ r. Under this assumption we
have that the traces of a computation determine the final state, as expressed by the next
proposition. In the following traceA and traceB indicate the projection of the traces on
secret and observable actions, respectively. Given a general IIHS, it is always possible
to find an equivalent one that satisfies this assumptions. The interested reader can find
in [1] the formal definition of the transformation.

Proposition 1. Let I = (M,A,B,Lτ ) be a general IIHS. Consider two paths σ and
σ′. Then, traceA(σ) = traceA(σ′) and traceB(σ) = traceB(σ′) implies σ = σ′.

In the following, we will consider two particular cases: the fully probabilistic IIHSs,
where there is no nondeterminism, and the secret -nondeterministic IIHSs, where each
secret choice is fully nondeterministic. The latter will be called simply IIHSs.
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Definition 3. Let I = ((S,L, ŝ, ϑ),A,B,Lτ ) be a general IIHS. Then I is:

– fully probabilistic if ϑ(s) ⊆ D(A× S) implies |ϑ(s)| ≤ 1 for each s ∈ S.
– secret-nondeterministic if ϑ(s) ⊆ D(A×S) implies that for each s ∈ S there exist

si’ such that ϑ(s) = {δ(ai, si)}n
i=1.

We show now how to construct a channel with memory and feedback from IIHSs. We
will see that an IIHS corresponds precisely to a channel as determined by its stochastic
kernel, while a fully probabilistic IIHS determines, additionally, the input distribution.
In the following, we consider an IIHS I = ((S,L, ŝ, ϑ),A,B,Lτ ) is in normalized
form. Given a path σ of length 2t − 1, we denote traceA(σ) by αt, and traceB(σ) by
βt−1.

Definition 4. For each t, the channel’s stochastic kernel corresponding to I is defined
as p(βt|αt, βt−1) = ϑ(q)(βt, q

′), where q is the state reached from the root via the path
σ whose input-trace is αt and output trace βt−1.

Note that q and q′ in previous definitions are well defined: by Proposition 1, q is unique,
and since the choice of βt is fully probabilistic, q′ is also unique.

If I is fully probabilistic, then it determines also the input distribution and the depen-
dency of αt upon βt−1 (feedback) and αt−1.

Definition 5. If I is fully probabilistic, the associated channel has a conditional input
distribution for each t defined as p(αt|αt−1, βt−1) = ϑ(q)(αt, q

′), where q is the state
reached from the root via the path σ whose input-trace is αt−1 and output trace is βt−1.

4.1 Lifting the Channel Inputs to Reaction Functions

Definitions 4 and 5 define the joint probabilities p(αt, βt) for a fully probabilistic IIHS.
We still need to show in what sense these define a information-theoretic channel.

The {p(βt|αt, βt−1)}T
t=1 determined by the IIHS correspond to a channel’s stochas-

tic kernel. The problem resides in the conditional probability of {p(αt|αt−1, βt−1)}T
t=1.

In an information-theoretic channel, the value of αt is determined in the encoder by a
deterministic function ϕt(β

t−1). However, inside the encoder there is no possibility for
a probabilistic description of αt. Furthermore, in our setting the concept of encoder
makes no sense as there is no information to encode. A solution to this problem is to
externalize the probabilistic behavior of αt: the code functions become simple reaction
functions ϕt that depend only on βt−1 (the message w does not play a role any more),
and these reaction functions are endowed with a probability distribution that generates
the probabilistic behavior of the values of αt.

Definition 6. A reactor is a distribution on reaction functions, i.e., a stochastic ker-
nel {p(ϕt|ϕt−1)}T

t=1. A reactor R is consistent with a fully probabilistic IIHS I if it
induces the compatible distribution Q(ϕT , αT , βT ) such that, for every 1 ≤ t ≤ T ,
Q(αt|αt−1, βt−1) = p(αt|αt−1, βt−1), where the latter is the probability distribution
induced by I.

The main result of this section states that for any fully probabilistic IIHS there is a
reactor that generates the probabilistic behavior of the IIHS.
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Theorem 3. Given a fully probabilistic IIHS I , we can construct a channel with mem-
ory and feedback, and probability distribution Q(ϕT , αT , βT ), which corresponds to I

in the sense that, for every t, αt and βt, with 1 ≤ t ≤ T , Q(αt, βt) def=
∑

ϕT Q(ϕT , αt,

βt) = p(αt, βt) holds, where p(αt, βt) is the joint probability of input and output
traces induced by I.

Corollary 1. Let a Ibe a fully probabilistic IIHS. Let{p(βt|αt, βt−1)}T
t=1 be a sequence

of stochastic kernels and {p(αt|αt−1, βt−1)}T
t=1 a sequence of input distributions de-

fined by I according to Definitions 4 and 5. Then the reactor R = {p(ϕt|ϕt−1)}T
t=1

compatible with respect to the I is given by:

p(ϕ1) = p(α1|α0, β0) = p(α1) (5)

p(ϕt|ϕt−1) =
∏
βt−1

p(ϕt(β
t−1)|ϕt−1(βt−2), βt−1), 2 ≤ t ≤ T (6)

Figure 3 depicts the model for IIHS. Note that, in relation to Figure 2, there are some
simplifications: (1) no message w is needed; (2) the decoder is not used. At the begin-
ning, a reaction function sequence ϕT is chosen and then the channel is used T times. At
each usage t, the encoder decides the next input symbol αt based on the reaction func-
tion ϕt and the output fed back βt−1. Then the channel produces an output βt based on
the stochastic kernel p(βt|αt, βt−1). The output is then fed back to the encoder with a
delay one.

Reaction-
Functions

ϕT

ϕt �� “Interactor”
{αt = ϕt(β

t−1)}T
t=1

αt ��
Channel

{p(βt|αt, βt−1)}T
t=1

βt ��

��Delay
βt−1

��

� � � � � � � � � � � � � � � � � � � � � � � � � � ��
�
�
�
�
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�
�
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�

� � � � � � � � � � � � � � � � � � � � � � � � � � �

Fig. 3. Channel with memory and feedback model for IIHS

We conclude this section by remarking an intriguing coincidence: The notion of
reaction function sequence ϕT , on the IIHSs, corresponds to the notion of deterministic
scheduler. In fact, each reaction function ϕt selects the next step, αt, on the basis of the
βt−1 and αt−1 (generated by ϕt−1), and βt−1, αt−1 represent the path until that state.

5 Leakage in Interactive Systems

In this section we propose a notion of information flow based on our model. We fol-
low the idea of defining leakage and maximum leakage using the concepts of mutual
information and capacity (see for instance [4]), making the necessary adaptations.

Since the directed information I(AT → BT ) is a measure of how much information
flows from AT to BT in a channel with feedback (cfr. Section 3.1), it is natural to
consider it as a measure of leakage of information by the protocol.



Information Flow in Interactive Systems 111

Definition 7. The information leakage of an IIHS is defined as: I(AT → BT ) =∑T
t=1 H(At|At−1, Bt−1) − H(AT |BT ).

Note that
∑T

t=1 H(At|At−1, Bt−1) can be seen as the entropy HR of reactor R.
Compare this definition with the classical Information-theoretic approach to infor-

mation leakage: when there is no feedback, the leakage is defined as:

I(AT ; BT ) = H(AT ) − H(AT |BT ) (7)

The principle behind (7) is that the leakage is equal to the difference between the a pri-
ori uncertainty H(AT ) and the a posteriori uncertainty H(AT |BT ) (gain in knowledge
about the secret by observing the output). Our definition maintains the same principle,
with the proviso that the a priori uncertainty is now represented by HR.

5.1 Maximum Leakage as Capacity

In the case of secret-nondeterministic IIHS, we have a stochastic kernel but no distri-
bution on the code functions. In this case it seems natural to consider the worst leakage
over all possible distributions on code functions. This is exactly the concept of capacity.

Definition 8. The maximum leakage of an IIHS is defined as the capacity CT of the
associated channel with memory and feedback.

6 Modeling IIHSs as Channels: An Example

In this section we show the application of our approach to the Cocaine Auction Proto-
col [17]. Let us imagine a situation where several mob individuals are gathered around
a table. An auction is about to be held in which one of them offers his next shipment
of cocaine to the highest bidder. The seller describes the merchandise and proposes a
starting price. The others then bid increasing amounts until there are no bids for 30
consecutive seconds. At that point the seller declares the auction closed and arranges a
secret appointment with the winner to deliver the goods.

The basic protocol is fairly simple and is organized as a succession of rounds of
bidding. Round i starts with the seller announcing the bid price bi for that round. Buyers
have t seconds to make an offer (i.e. to say yes, meaning “I’m willing to buy at the
current bid price bi”). As soon as one buyer anonymously says yes, he becomes the
winner wi of that round and a new round begins. If nobody says anything for t seconds,
round i is concluded by timeout and the auction is won by the winner wi−1 of the
previous round, if one exists. If the timeout occurs during round 0, this means that
nobody made any offers at the initial price b0, so there is no sale.

Although our framework allows the forrmalization of this protocol for an arbitrary
number of bidders and bidding rounds, for illustration purposes, we will consider the
case of two bidders (Candlemaker and Scarface) and two rounds of bids. Furthermore,
we assume that the initial bid is always 1 dollar, so the first bid does not need to be
announced by the seller. In each turn the seller can choose how much he wants to
increase the actual bid. This is done by adding an increment to the last bid. There
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are two options of increments, namely inc1 (1 dollar) and inc2 (2 dollars). In that way,
bi+1 is either bi + inc1 or bi + inc2. We can describe this protocol as a normalized
IIHS I = (M,A,B,Lτ ), where A = {Candlemaker, Scarface, a∗} is the set of secret
actions, B = {inc1, inc2, b∗} is the set of observable actions, Lτ = ∅ is the set of
hidden actions, and the probabilistic automaton M is represented in Figure 4. For clarity
reasons, we omit transitions with probability 0 in the automaton. Note that the special
secret action a∗ represents the situation where neither Candlemaker nor Scarface bid.
The special observable action b∗ is only possible after no one has bidden, and signalizes
the end of the auction and, therefore, no bid is allowed anymore.

Cmp1

Sf p2

a∗ p3

inc1q4
inc2

q5
inc1q6

inc2
q7

b∗
1

Cm
p9 Sf

p10

a∗ p11
Cm

p12 Sf
p13

a∗ p14
Cm

p15 Sf
p16

a∗ p17
Cm

p18 Sf
p19

a∗ p20 a∗
1
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q22

inc2
q23

inc1
q24

inc2
q25

b∗
1
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q27
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q28
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q29
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q30

b∗
1

inc1
q32

inc2
q33

inc1
q34
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q35

b∗
1
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q37
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q33

inc1
q39

inc2
q40

b∗
1

b∗
1

Fig. 4. Cocaine Auction example

Table 4 shows all the stochastic kernels for this example. The formalization of this
protocol in terms of IIHSs using our framework makes it possible to prove the claim
in[17] suggesting that if the seller knows the identity of the bidders then the (strong)
anonymity guaranties are not provided anymore.

Table 4. Stochastic kernels for the Cocaine Auction example

α1 → β1 inc1 inc2 b∗

Candlemaker q4 q5 0
Scarface q6 q7 0
a∗ 0 0 1

(a) t=1, p(β1|α1, β0)

α1, β1, α2 → β2 Cheap Expensive b∗

Candlemaker,inc1 ,Candlemaker q22 q23 0
Candlemaker,inc1,Scarface q24 q25 0
Candlemaker,inc1,a∗ 0 0 1
Candlemaker,inc2,Candlemaker q27 q28 0
Candlemaker,inc2,Scarface q29 q30 0
Candlemaker,inc2,a∗ 0 0 1
Scarface,inc1,Candlemaker q32 q33 0
Scarface,inc1,Scarface q34 q35 0
Scarface,inc1,a∗ 0 0 1
Scarface,inc2,Candlemaker q37 q38 0
Scarface,inc2,Scarface q39 q40 0
Scarface,inc2,a∗ 0 0 1
a∗,b∗,a∗ 0 0 1
All other lines 0 0 1

(b) t = 2, p(β2|α2, β1)
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7 Topological Properties of IIHSs and Their Capacity

In this section we show how to extend to IIHSs the notion of pseudometric defined
in [8] for Concurrent Labelled Markov Chains, and we prove that the capacity of the
corresponding channels is a continuous function on this pseudometric. The metric con-
struction is sound for general IIHSs, but the result on capacity is only valid for secret-
nondeterministic IIHSs.

Given a set of states S, a pseudometric (or distance) is a function d that yields a non-
negative real number for each pair of states and satisfies the following: d(s, s) = 0;
d(s, t) = d(t, s), and d(s, t) ≤ d(s, u) + d(u, t). We say that a pseudometric d is
c-bounded if ∀s, t : d(s, t) ≤ c, where c is a positive real number. We now define a
complete lattice on pseudometrics, and define the distance between IIHSs as the greatest
fixpoint of a distance transformation, in line with the coinductive theory of bisimilarity.

Definition 9. M is the class of 1-bounded pseudometrics on states with the ordering
d � d′ if ∀s, s′ ∈ S : d(s, s′) ≥ d′(s, s′).

It is easy to see that (M,�) is a complete lattice. In order to define pseudometrics on
IIHSs, we now need to lift the pseudometrics on states to pseudometrics on distributions
in D(L×S). Following standard lines [20,8,7], we apply the construction based on the
Kantorovich metric [11].

Definition 10. For d ∈ M, and μ, μ′ ∈ D(L × S), we define d(μ, μ′) (overloading
the notation d) as d(μ, μ′) = max

∑
(�i,si)∈L×S(μ(�i, si) − μ′(�i, si))xi where the

maximization is on all possible values of the xi’s, subject to the constraints 0 ≤ xi ≤ 1
and xi − xj ≤ d̂((�i, si), (�j , sj)), where d̂((�i, si), (�j , sj)) = 1 if �i �= �j , and
d̂((�i, si), (�j , sj)) = d(si, sj) otherwise.

It can be shown that with this definition m is a pseudometric on D(L × S).

Definition 11. d ∈ M is a bisimulation metric if, for all ε ∈ [0, 1), d(s, s′) ≤ ε implies
that if s → μ, then there exists some μ′ such that s′ → μ′ and d(μ, μ′) ≤ ε.

The greatest bisimulation metric is dmax =
⊔
{d ∈ M | d is a bisimulation metric}.

We now characterize dmax as a fixed point of a monotonic function Φ on M. For sim-
plicity, from now on we consider only the distance between states belonging to different
IIHSs with disjoint sets of states.

Definition 12. Given two IIHSs with transition relations θ and θ′ respectively, and a
preudometric d on states, define Φ : M → M as:

Φ(d)(s, s′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxi d(si, s
′
i) if ϑ(s) = {δ(a1,s1), . . . , δ(am,sm)}

and ϑ′(s′) = {δ(a1,s′
1), . . . , δ(am,s′

m)}
d(μ, μ′) if ϑ(s) = {μ} and ϑ′(s′) = {μ′}
0 if ϑ(s) = ϑ′(s′) = ∅
1 otherwise
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It is easy to see that the definition of Φ is a particular case of the function F defined
in [8,7]. Hence it can be proved, by adapting the proofs of the analogous results in
[8,7], that F (d) is a pseudometric, and that d is a bisimulation metric iff d � Φ(d).
This implies that dmax =

⊔
{d ∈ M | d � Φ(d)}, and still as a particular case of

F in [8,7], we have that Φ is monotonic on M. By Tarski’s fixed point theorem, dmax

is the greatest fixed point of Φ. Furthermore, in [1] we show that dmax is indeed a
bisimulation metric, and that it is the greatest bisimulation metric. In addition, the finite
branchingness of IIHSs ensures that the closure ordinal of Φ is ω (cf. Lemma 3.10 in
the full version of [8]). Therefore one can show that dmax = {Φi(�) | i ∈ N}, where
� is the greatest pseudometric (i.e. �(s, s′) = 0 for every s, s′), and Φ0(�) = �.

Given two IIHSs I and I′, with initial states s and s′ respectively, we define the dis-
tance between I and I′ as d(I, I′) = dmax (s, s′). Next theorem states the continuity of
the capacity w.r.t. the metric on IIHSs. It is crucial that they are secret-nondeterministic
(while the definition of the metric holds in general).

Theorem 4. Consider two normalized IIHSs I and I′, and fix a T > 0. For every ε > 0
there exists ν > 0 such that if d(I, I′) < ν then |CT (I) − CT (I′)| < ε.

We conclude this section with an example showing that the continuity result for the
capacity does not hold if the construction of the channel is done starting from a system
in which the secrets are endowed with a probability distribution. This is also the reason
why we could not simply adopt the proof technique of the continuity result in [8] and
we had to come up with a different reasoning.

Example 3. Consider the two following programs, where a1, a2 are secrets, b1, b2 are
observable, ‖ is the parallel operator, and +p is a binary probabilistic choice that assigns
probability p to the left branch, and probability 1 − p to the right one.

s) (send(a1) +p send(a2)) ‖ receive(x).output(b2)
t) (send(a1)+q send(a2)) ‖ receive(x).if x = a1 then output(b1) else output(b2).

Table 5 shows the fully probabilistic IIHSs corresponding to these programs, and their
associated channels, which in this case (since the secret actions are all at the top-level)
are classic channels, i.e. memoryless and without feedback. As usual for classic chan-
nels, they do not depend on p and q. It is easy to see that the capacity of the first channel
is 0 and the capacity of the second one is 1. Hence their difference is 1, independently
from p and q.

s t

p 1−p

0 1 0 1

a1 a2

b1 b2 b1 b2

q 1−q

1 0 0 1

a1 a2

b1 b2 b1 b2

s b1 b2

a1 0 1

a2 0 1

(a)

t b1 b2

a1 1 0

a2 0 1

(b)

Table 5. The IIHSs of Example 3 and their corresponding channels
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Let now p = 0 and q = ε. It is easy to see that the distance between s and t is ε.
Therefore (when the automata have probabilities on the secrets), the capacity is not a
continuous function of the distance.

8 Conclusion and Future Work

In this paper we have investigated the problem of information leakage in interactive sys-
tems, and we have proved that these systems can be modeled as channels with memory
and feedback. The situation is summarized in Table 6(a). The comparison with the clas-
sical situation of non-interactive systems is represented in (b). Furthermore, we have
proved that the channel capacity is a continuous function of the kantorovich metric.

IIHSs as automata IIHSs as channels Notion of leakage

Normalized IIHSs with nondeterministic Sequence of stochastic kernels Leakage as capacity
inputs and probabilistic outputs {p(βt|αt, βt−1)}T

t=1

Normalized IIHSs with a deterministic Sequence of stochastic kernels
scheduler solving the nondeterminism {p(βt|αt, βt−1)}T

t=1 +
reaction function seq. ϕT

Fully probabilistic normalized IIHSs Sequence of stochastic kernels Leakage as directed
{p(βt|αt, βt−1)}T

t=1 + information I(AT → BT )
reactor {p(ϕt|ϕt−1)}T

t=1

(a)

Classical channels Channels with memory and feedback

The protocol is modeled in independent uses of The protocol is modeled in several
the channel, often a unique use. consecutive uses of the channel.

The channel is from AT → BT , i.e., its input The channel is from F → B, i.e. its
is a single string αT = α1 . . . αT of secret input is a reaction function ϕt and its
symbols and its output is a single string βT = output is an observable βt.
β1 . . . βT of observable symbols.
The channel is memoryless and in general The channel has memory. Despite the fact that the
implicitly it is assumed the absence of channel from F → B does not have
feedback. feedback, the internal stochastic kernels

do.
The capacity is calculated using information The capacity is calculated using mutual
I(AT ; BT ). directed information I(AT → BT ).

(b)

Table 6.

For future work we would like to provide algorithms to compute the leakage and
maximum leakage of interactive systems. These problems result very challenging given
the exponential growth of reaction functions (needed to compute the leakage) and the
quantification over infinitely many reactors (given by the definition of maximum leak-
age in terms of capacity). One possible solution is to study the relation between deter-
ministic schedulers and sequence of reaction functions. In particular, we believe that
for each sequence of reaction functions and distribution over it there exists a proba-
bilistic scheduler for the automata representation of the secret-nondeterministic IIHS.
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In this way, the problem of computing the leakage and maximum leakage would reduce
to a standard probabilistic model checking problem (where the challenge is to compute
probabilities ranging over infinitely many schedulers).

In addition, we plan to investigate measures of leakage for interactive systems other
than mutual information and capacity.
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Abstract. We investigate the issue of reducing the verification problem of multi-
stack machines to the one for single-stack machines. For instance, elegant (and
practically efficient) algorithms for bounded-context switch analysis of multi-
pushdown systems have been recently defined based on reductions to the reach-
ability problem of (single-stack) pushdown systems [10,18]. In this paper, we
extend this view to both bounded-phase visibly pushdown automata (BVMPA)
[16] and ordered multi-pushdown automata (OMPA) [1] by showing that each
of their emptiness problem can be reduced to the one for a class of single-stack
machines. For these reductions, we introduce effective generalized pushdown au-
tomata (EGPA) where operations on stacks are (1) pop the top symbol of the
stack, and (2) push a word in some (effectively) given set of words L over the
stack alphabet, assuming that L is in some class of languages for which checking
whether L intersects regular languages is decidable. We show that the automata-
based saturation procedure for computing the set of predecessors in standard
pushdown automata can be extended to prove that for EGPA too the set of all
predecessors of a regular set of configurations is an effectively constructible reg-
ular set. Our reductions from OMPA and BVMPA to EGPA, together with the
reachability analysis procedure for EGPA, allow to provide conceptually simple
algorithms for checking the emptiness problem for each of these models, and to
significantly simplify the proofs for their 2ETIME upper bounds (matching their
lower-bounds).

1 Introduction

In the last few years, a lot of effort has been devoted to the verification problem for
models of concurrent programs (see, e.g., [5,3,16,9,2]). Pushdown automata have been
proposed as an adequate formalism to describe sequential programs with procedure
calls [8,14]. Therefore, it is natural to model recursive concurrent programs as multi-
stack automata. In general, multi-stack automata are Turing powerful and hence come
along with undecidability of basic decision problems [13]. To overcome this barrier,
several subclasses of pushdown automata with multiple stacks have been proposed and
studied in the literature.

Context-bounding has been proposed in [12] as a suitable technique for the analysis
of multi-stack automata. The idea is to consider only runs of the automaton that can be
divided into a given number of contexts, where in each context pop and push operations
are exclusive to one stack. Although the state space which may be explored is still
unbounded in presence of recursive procedure calls, the context-bounded reachability

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 117–131, 2010.
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problem is NP-complete even in this case [11]. In fact, context-bounding provides a
very useful tradeoff between computational complexity and verification coverage.

In [16], La Torre et al. propose a more general definition of the notion of a context.
For that, they define the class of bounded-phase visibly multi-stack pushdown automata
(BVMPA) where only those runs are taken into consideration that can be split into
a given number of phases, where each phase admits pop operations of one particular
stack only. In the above case, the emptiness problem is decidable in double exponential
time by reducing it to the emptiness problem for tree automata.

Another way to regain decidability is to impose some order on stack operations. In
[6], Breveglieri et al. define ordered multi-pushdown automata (OMPA), which impose
a linear ordering on stacks. Stack operations are constrained in such a way that a pop
operation is reserved to the first non-empty stack. In [1], we show that the emptiness
problem for OMPA is 2ETIME-complete1. The proof of this result lies in a complex
encoding of OMPA into some class of grammars for which the emptiness problem is
decidable.

In this paper, we investigate the issue of reducing the verification problem of multi-
stack machines to the one for single-stack machines. We believe that this is a general
paradigm for understanding the expressive power and for establishing decidability re-
sults for various classes of concurrent program models. For instance, elegant (and prac-
tically efficient) algorithms for bounded-context switch analysis of multi-pushdown
systems have been recently defined based on reductions to the reachability problem
of (single-stack) pushdown systems [10,18]. We extend this view to both OMPA and
BVMPA by showing that each of their emptiness problem can be reduced to the one
for a class of single-stack machines. For these reductions, we introduce effective gen-
eralized pushdown automata (EGPA) where operations on stacks are (1) pop the top
symbol of the stack, and (2) push a word in some (effectively) given set of wordsL over
the stack alphabet, assuming that L is in some class of languages for which checking
whether L intersects a given regular language is decidable. Observe that L can be any
finite union of languages defined by a class of automata closed under intersection with
regular languages and for which the emptiness problem is decidable (e.g., pushdown
automata, Petri nets, lossy channel machines, etc). Then, we show that the automata-
based saturation procedure for computing the set of predecessors in standard pushdown
automata [4] can be extended to prove that for EGPA too the set of all predecessors of a
regular set of configurations is a regular set and effectively constructible. As an imme-
diate consequence of this result, we obtain similar decidability results of the decision
problems for EGPA like the ones obtained for pushdown automata.

Then, we show that, given an OMPA M with n stacks, it is possible to construct
an EGPA P , whose pushed languages are defined by OMPA with (n− 1) stacks, such
that the emptiness problem for M is reducible to its corresponding problem for P . The
EGPA P is constructed such that the following invariant is preserved: The state and the
content of the stack of P are the same as the state and the content of the n-th stack of
M when its first (n − 1) stacks are empty. Then, we use the saturation procedure for

1 Recall that 2ETIME is the class of all decision problems solvable by a deterministic Turing

machine in time 22dn

for some constant d.
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EGPA to show, by induction on the number of stacks n, that the emptiness problem of
an OMPA is in 2ETIME with respect to n (matching its lower-bound [1]).

Another application of EGPA is to show that, given a k-phase BVMPA M with n
stacks, it is possible to construct an EGPA P , whose pushed languages are defined by
(k − 1)-phase BVMPA with n stacks, such that the emptiness problem of M can be
reduced to compute the set of predecessors of a regular set of configurations ofP . Then,
we exploit the saturation procedure for EGPA to show, by induction on the number of
phases k, that the emptiness problem for a BVMPA is in 2ETIME with respect to k
(matching its lower-bound [17]).

Related works: To the best of our knowledge, the class of effective generalized push-
down automata that we define in this paper is the first non-trivial extension of pushdown
automata that allows to push a non-regular language (e.g., Petri nets languages) into the
stack which is not the case of prefix-recognizable graphs [7]. Moreover, our reductions
from OMPA and BVMPA to EGPA, together with the reachability analysis procedure
for EGPA, provide conceptually simple algorithms for checking the emptiness problem
for each of these models, and proving their 2ETIME upper bounds.

2 Preliminaries

In this section, we introduce some basic definitions and notations that will be used in
the rest of the paper.

Integers: Let N be the set of natural numbers. For every i, j ∈ N such that i ≤ j, we
use [i, j] (resp. [i, j[) to denote the set {k ∈ N | i ≤ k ≤ j} (resp. {k ∈ N | i ≤ k < j}).

Words and languages: Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the
set of all words (resp. non empty words) overΣ, and by ε the empty word. A language
is a (possibly infinite) set of words. We useΣε and Lang(Σ) to denote respectively the
set Σ ∪ {ε} and the set of all languages overΣ. Let u be a word overΣ. The length of
u is denoted by |u|. For every j ∈ [1, |u|], we use u(j) to denote the jth letter of u. We
denote by uR the mirror of u.

Let Θ be a subset of Σ. Given a word v ∈ Σ∗, we denote by v|Θ the projection
of v over Θ, i.e., the word obtained from v by erasing all the symbols that are not in
Θ. This definition is extended to languages as follows: If L is a language over Σ, then
L|Θ = {v|Θ | v ∈ L}.

Transition systems: A transition system is a triplet T = (C,Σ,→) where: (1) C is a
(possibly infinite) set of configurations, (2) Σ is a finite set of labels (or actions) such
that C ∩ Σ = ∅, and (3) →⊆ C × Σε × C is a transition relation. We write c a−→T c

′

whenever c and c′ are two configurations and a is an action such that (c, a, c′) ∈→.
Given two configurations c, c′ ∈ C, a finite run ρ of T from c to c′ is a finite se-

quence c0a1c1 · · · ancn, for some n ≥ 1, such that: (1) c0 = c and cn = c′, and (2)
ci

ai+1−−−→T ci+1 for all i ∈ [0, n[. In this case, we say that ρ has length n and is labelled
by the word a1a2 · · · an.

Let c, c′ ∈ C and u ∈ Σ∗. We write c
u==⇒
n

T c
′ if one of the following two cases

holds: (1) n = 0, c = c′, and u = ε, and (2) there is a run ρ of length n from c to
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c′ labelled by u. We also write c
u==⇒∗

T c
′ (resp. c

u==⇒+
T c

′) to denote that c
u==⇒
n

T c
′ for

some n ≥ 0 (resp. n > 0).
For every C1, C2 ⊆ C, let TracesT (C1, C2) = {u ∈ Σ∗ | ∃(c1, c2) ∈ C1 ×

C2 , c1
u==⇒∗

T c2} be the set of sequences of actions generated by the runs of T from
a configuration in C1 to a configuration in C2, and let Pre∗T (C1) = {c ∈ C | ∃(c′, u) ∈
C1 ×Σ∗ , c

u==⇒∗
T c

′} be the set of predecessor configurations of C1.

Finite state automata: A finite state automaton (FSA) is a tuple A = (Q,Σ,Δ, I, F )
where: (1) Q is the finite non-empty set of states, (2) Σ is the finite input alphabet, (3)
Δ ⊆ (Q×Σε×Q) is the transition relation, (4) I ⊆ Q is the set of initial states, and (5)
F ⊆ Q is the set of final states. We represent a transition (q, a, q′) in Δ by q a−→A q

′.
Moreover, if I ′ and F ′ are two subsets of Q, then we use A(I ′, F ′) to denote the finite
state automaton defined by the tuple (Q,Σ,Δ, I ′, F ′).

The size of A is defined by |A| = (|Q|+ |Σ|). We use T (A) = (Q,Σ,Δ) to denote
the transition system associated with A. The language accepted (or recognized) by A is
given by L(A) = TracesT (A)(I, F ).

3 Generalized Pushdown Automata

In this section, we introduce the class of generalized pushdown automata where oper-
ations on stacks are (1) pop the top symbol of the stack, and (2) push a word in some
(effectively) given set of words L over the stack alphabet. A transition t is of the form
δ(p, γ, a, p′) = L where L is a (possibly infinite) set of words. Being in a configuration
(q, w) where q is a state and w is a stack content, t can be applied if both p = q and the
content of the stack is of the form γw′ for some w′. Taking the transition and reading
the input letter a (which may be the empty word), the system moves to the successor
configuration (p′, uw′) where u ∈ L (i.e., the new state is p′, and γ is replaced with a
word u belonging to the language L). Formally, we have:

Definition 1 (Generalized pushdown automata). A generalized pushdown automa-
ton (GPA for short) is a tuple P = (P,Σ, Γ, δ, p0, γ0, F ) where: (1) P is the finite
non-empty set of states, (2) Σ is the input alphabet, (3) Γ is the stack alphabet, (4)
δ : P × Γ ×Σε × P → Lang(Γ ) is the transition function, (5) p0 ∈ P is the initial
state, (6) γ0 ∈ Γ is the initial stack symbol, and (7) F ⊆ P is the set of final states.

Definition 2 (Effectiveness Property). A GPA P = (P,Σ, Γ, δ, p0, γ0, F ) is effective
if and only if for every finite state automaton A over the alphabet Γ , it is decidable
whether L(A) ∩ δ(p, γ, a, p′) �= ∅ for all p, p′ ∈ P , γ ∈ Γ , and a ∈ Σε.

A configuration of a GPA P = (P,Σ, Γ, δ, p0, γ0, F ) is a pair (p, w) where p ∈ P
and w ∈ Γ ∗. The set of all configurations of P is denoted by Conf (P). Similarly to
the case of pushdown automata [4], we use the class of P-automata as finite symbolic
representation of a set of configurations of GPA. Formally, a P-automaton is a FSA
A = (QA, Γ,ΔA, IA, FA) such that IA = P . We say that a configuration (p, w) of
P is accepted (or recognized) by A if w ∈ L(A({p}, FA)). The set of all configura-
tions recognized by A is denoted by LP(A). A set of configurations of P is said to be
recognizable if and only if it is accepted by some P-automaton.
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The transition system T (P) associated with the generalized pushdown automaton
P is defined by the tuple (Conf (P), Σ,→) where → is the smallest transition re-
lation such that: For every p, p′ ∈ P , γ ∈ Γ , and a ∈ Σε, if δ(p, γ, a, p′) �= ∅,
then (p, γw) a−→T (P)(p′, uw) for all u ∈ δ(p, γ, a, p′) and w ∈ Γ ∗. Let L(P) =
TracesT (P)({(p0, γ0)}, F × {ε}) denote the language accepted by P .

Observe that pushdown automata can be seen as a particular class of effective GPA
where δ(p, γ, a, p′) is a finite set of words for all (p, γ, a, p′).

On the other hand, we can show that the class of effective GPA is closed under
concatenation, union, Kleene star, projection, homomorphism, and intersection with a
regular language. However, effective GPA are not closed under intersection.

4 Computing the Set of Predecessors for a GPA

In this section, we show that the set of predecessors of a recognizable set of configu-
rations of an effective GPA is recognizable and effectively constructible. This is done
by adapting the construction given in [4]. On the other hand, it is easy to observe that
the set of successors of a recognizable set of configurations of an effective GPA is not
recognizable in general.

Theorem 1. For every effective generalized pushdown automaton P , and every P-
automatonA, it is possible to construct a P-automaton recognizing Pre∗T (P)(LP(A)).

Proof. Let P = (P,Σ, Γ, δ, p0, γ0, F ) be an effective generalized pushdown au-
tomata and A = (QA, Γ,ΔA, IA, FA) be a P-automaton. Without loss of gener-
ality, we assume that A has no transition leading to an initial state. We compute
Pre∗T (P)(LP(A)) as the set of configurations recognized by a P-automaton Apre∗ =
(QA, Γ,Δpre∗ , IA, FA) obtained from A by means of a saturation procedure. Initially,
we have Apre∗ = A. Then, the procedure adds new transitions to Apre∗ , but no new
states. New transitions are added according to the following saturation rule:

For every p, p′ ∈ P , γ ∈ Γ , and a ∈ Σε, if δ(p, γ, a, p′) �= ∅, then for every q ∈ QA
such that δ(p, γ, a, p′)∩L(Apre∗({p′}, {q})) �= ∅, add the transition (p, γ, q) to Apre∗

It is easy to see that the saturation procedure eventually reaches a fixed point be-
cause the number of possible new transitions is finite. Moreover, the saturation pro-
cedure is well defined since the emptiness problem of the language

(
δ(p, γ, a, p′) ∩

L(Apre∗({p′}, {q}))
)

is decidable ( P is an effective GPA). Then, the relation between
the set of configurations recognized by Apre∗ and the set Pre∗T (P)(LP(A)) is estab-
lished by Lemma 1.

Lemma 1. LP(Apre∗) = Pre∗T (P)(LP(A)). 
�

As an immediate consequence of Theorem 1, we obtain the decidability of the empti-
ness problem and the membership for effective generalized pushdown automata.

Theorem 2 (EMPTINESS, MEMBERSHIP). The emptiness and the membership prob-
lems are decidable for effective generalized pushdown automata.
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5 Ordered Multi-Pushdown Automata

In this section, we first recall the definition of multi-pushdown automata. Then ordered
multi-pushdown automata [6,1] appear as a special case of multi-pushdown automata.

5.1 Multi-pushdown Automata

Multi-pushdown automata have one read-only left to right input tape and n ≥ 1
read-write memory tapes (stacks) with a last-in-first-out rewriting policy. A transi-
tion is of the form t = 〈q, γ1, . . . , γn〉 a−→〈q′, α1, . . . , αn〉. Being in a configuration
(p, w1, . . . , wn), which is composed of a state p and a stack contentwi for each stack i,
t can be applied if both q = p and the i-th stack is of the form γiw

′
i for some w′

i. Taking
the transition and reading the a (which might be the empty word), the system moves to
the successor configuration (q′, α1w

′
1, . . . , αnw

′
n).

Definition 3 (Multi-pushdown automata). A multi-pushdown automaton (MPA) is a
tuple M = (n,Q,Σ, Γ,Δ, q0, γ0, F ) where:

– n ≥ 1 is the number of stacks.
– Q is the finite non-empty set of states.
– Σ is the finite set of input symbols.
– Γ is the finite set of stack symbols containing the special stack symbol ⊥.
– Δ ⊆

(
Q× (Γε)n

)
×Σε ×

(
Q× (Γ ∗)n

)
is the transition relation such that, for all

((q, γ1, . . . , γn), a, (q′, α1, . . . , αn)) ∈ Δ and i ∈ [1, n], we have:
• |αi| ≤ 2.
• If γi �= ⊥, then αi ∈ (Γ \ {⊥})∗.
• If γi = ⊥, then αi = α′

i⊥ for some α′
i ∈ Γε.

– q0 ∈ Q is the initial state.
– γ0 ∈ (Γ \ {⊥}) is the initial stack symbol.
– F ⊆ Q is the set of final states.

The size of M, denoted by |M|, is defined by (n + |Q| + |Σ| + |Γ |). In the rest of
this paper, we use 〈q, γ1, . . . , γn〉 a−→M〈q′, α1, . . . , αn〉 to denote that the transition
((q, γ1, . . . , γn), a, (q′, α1, . . . , αn)) is in Δ. Moreover, we denote by M(q, γ, q′) the
multi-pushdown automaton defined by the tuple (n,Q,Σ, Γ,Δ, q, γ, {q′}).

A stack content of M is a sequence from Stack(M) = (Γ \ {⊥})∗{⊥}. A con-
figuration of M is a (n + 1)-tuple (q, w1, . . . , wn) with q ∈ Q, and w1, . . . , wn ∈
Stack(M). A configuration (q, w1, . . . , wn) is final if q ∈ F and w1 = · · · = wn = ⊥.
The set of configurations of M is denoted by Conf (M).

The behavior of the MPA M is described by its corresponding transition system
T (M) defined by the tuple (Conf (M), Σ,→) where → is the smallest transition re-
lation satisfying the following condition: if 〈q, γ1, . . . , γn〉 a−→M〈q′, α1, . . . , αn〉, then
(q, γ1w1, . . . , γnwn) a−→T (M)(q′, α1w1, . . . , αnwn) for allw1, . . . , wn ∈ Γ ∗ such that
γ1w1, . . . , γnwn ∈ Stack(M). Observe that the symbol⊥marks the bottom of a stack.
According to the transition relation, ⊥ can never be popped.

The language accepted (or recognized) by M is defined by the set L(M) = {τ ∈
Σ∗ | (q0, γ0⊥,⊥, . . . ,⊥) τ==⇒∗

T (M) c for some final configuration c}.
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5.2 Ordered Multi-pushdown Automata

An ordered multi-pushdown automaton is a multi-pushdown automaton in which one
can pop only from the first non-empty stack (i.e., all preceding stacks are equal to ⊥).
In the following, we consider only ordered multi-pushdown automata in normal form
with respect to the definitions in [1].

Definition 4 (Ordered multi-pushdown automata). An ordered multi-pushdown au-
tomaton (OMPA for short) is a multi-pushdown automaton (n,Q,Σ, Γ,Δ, q0, γ0, F )
such thatΔ contains only the following types of transitions:

– 〈q, γ, ε, . . . , ε〉 a−→M〈q′, γ′′γ′, ε, . . . , ε〉 for some q, q′ ∈ Q, γ, γ′, γ′′ ∈ (Γ \ {⊥})
and a ∈ Σε.

– 〈q, γ, ε, . . . , ε〉 a−→M〈q′, ε, . . . , ε, γ′, ε, . . . , ε〉 for some q, q′ ∈ Q, γ, γ′ ∈ (Γ\{⊥})
and a ∈ Σε (γ′ is pushed on one of stacks 2 to n).

– 〈q,⊥, . . . ,⊥, γ, ε, . . . , ε〉 a−→M〈q′, γ′⊥,⊥, . . . ,⊥, ε, ε, . . . , ε〉 for some q, q′ ∈ Q,
γ, γ′ ∈ (Γ \ {⊥}) and a ∈ Σε (γ is popped from one of the stacks 2 to n).

– 〈q, γ, ε, . . . , ε〉 a−→〈q′, ε, . . . , ε〉 for some q, q′ ∈ Q, γ ∈ (Γ \ {⊥}) and a ∈ Σε

We introduce the following abbreviations: (1) For n ≥ 1, we call a MPA/OMPA a n-
MPA/n-OMPA, respectively, if its number of stacks is n, and (2) A MPA over Σ is a
MPA with input alphabetΣ.

Next, we recall some properties of the class of languages recognized by n-OMPA.

Lemma 2 ([6]). If M1 and M2 are two n-OMPAs over an alphabetΣ, then it is pos-
sible to construct a n-OMPAM overΣ such that: (1) L(M) = L(M1)∪L(M2) and
|M| = O(|M1|+ |M2|).

Lemma 3 ([6]). Let Σ be an alphabet. Given a n-OMPA M over Σ and a finite
state automaton A over Σ, then it is possible to construct a n-OMPA M′ such that:
L(M′) = L(M) ∩ L(A) and |M′| = O(|M| · |A|).

6 The Emptiness Problem for a n-OMPA Is in 2ETIME

In this section, we show that the emptiness problem for ordered pushdown automata is
in 2ETIME. (We provide here a simpler proof of the 2ETIME upper bound than the one
given in [1].) To this aim, we proceed as follows:

– First, we show that, given a n-OMPA M with n > 1, it is possible to construct
a GPA P with transition languages defined by (n − 1)-OMPAs of size O(|M|2)
such that the emptiness problem of M can be reduced to the emptiness problem
of P . Let us present the main steps of this construction. For that, let us con-
sider an accepting run ρ of M. This run can be seen as a sequence of runs of
the form ς1σ1ς2σ2 · · · ςmσm such that pop operations are exclusive to the first
(n−1)-stacks (resp. the n-th stack) ofM during the sequence of runs ς1, ς2, . . . , ςm
(resp. σ1, σ2, . . . , σm). Observe that, by definition, the first (n − 1)-stacks of M
are empty along the runs σ1, σ2, . . . , σm. Moreover, at the beginning of the runs
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ς1, ς2, . . . , ςm, the OMPA M is in some configuration c where the first stack of M
contains just one symbol and the stacks from 2 to n − 1 are empty (i.e., c of the
form (q, γ⊥,⊥, . . . ,⊥, w)).

Then, we construct P such that the following invariant is preserved during the sim-
ulation of M: The state and the content of the stack of P are the same as the state
and the content of the n-th stack of M when its first (n− 1)-stacks are empty (and
so, L(P) �= ∅ if and only if L(M) �= ∅). To this aim, a pushdown operation of
M that pops a symbol γ from the n-th stack is simply simulated by a pushdown
operation of P that pops the symbol γ. This implies that a run of the form σi, with
1 ≤ i ≤ m, that pops the word ui from the n-th stack ofM is simulated by a run of
P that pops the same word ui. Now, for every j ∈ [1,m], we need to compute the
pushed word vj into the n-th stack ofM during the run ςj in order to be pushed also
by P . For that, let L(q,γ,q′) be the set of all possible pushed words u into the n-th

stack of M by a run (q, γ⊥,⊥, . . . ,⊥, w) τ==⇒∗
T (M) (q′,⊥,⊥, . . . ,⊥, uw) where

pop operations are exclusive to the first (n − 1)-stacks of M. We show that this
language L(q,γ,q′) can be defined by a (n − 1)-OMPA M′(q, γ, q′) over the stack
alphabet of M that: (1) performs the same operations on its state and (n − 1)-
stacks as the one performed by M on its state and its first (n − 1) stacks while
discarding the pop operations of M over the nth stack, and (2) makes visible as
transition labels the pushed symbols over the nth stack of M. Now, to simulate the

run ςj = (qj , γj⊥,⊥, . . . ,⊥, wj)
τj==⇒∗

T (M) (q′j ,⊥,⊥, . . . ,⊥, ujwj) of M, P can
push into its stack the word uj ∈ L(M′(qj , γj , q

′
j)).

– Then, we prove, by induction on n, that the emptiness problem for the n-OMPA
M is in 2ETIME with respect to the number of stacks. For that, we assume that
the emptiness problem for (n− 1)-OMPAs can be solved in 2ETIME. This implies
that the GPA P (that simulates M) is effective (see Definition 2 and Lemma 3).
Now, we can use Theorem 2 to prove the decidability of the emptiness problem
of the effective GPA P (and so, of the n-OMPA M). To show that the emptiness
problem of P and M is in 2ETIME, we estimate the running time of our saturation
procedure, given in section 4, under the assumption that the emptiness problem for
(n− 1)-OMPAs can be solved in 2ETIME.

Let us give in more details of the proof described above.

6.1 Simulation of a n-OMPA by a GPA

In the following, we prove that, given an OMPA M, we can construct a GPA P , with
transition languages defined by (n− 1)-OMPAs of size O(|M|2), such that the empti-
ness problem for M is reducible to the emptiness problem for P .

Theorem 3. Given an OMPAM = (n,Q,Σ, Γ,Δ, q0, γ0, F ) with n > 1, it is possible
to construct a GPAP = (P,Σ′, Γ, δ, p0,⊥, {pf}) such thatP = Q∪{p0, pf},Σ′ = Q,
and we have:

– L(M) �= ∅ if and only if L(P) �= ∅, and
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– For every p1, p2 ∈ P , a ∈ Σ′
ε, and γ ∈ Γ , there is a (n − 1)-OMPA M(p1,γ,a,p2)

over Γ s.t. L(M(p1,γ,a,p2)) =
(
δ(p1, γ, a, p2)

)R
and |M(p1,γ,a,p2)| = O(|M|2).

The proof of Theorem 3 is structured as follows. First, we define a (n− 1)-OMPA M′

over the alphabetΓ that: (1) performs the same operations on its state and (n−1)-stacks
as the one performed by M on its state and its first (n− 1) stacks while discarding the
pop operations of M on the nth stack, and (2) makes visible as transition labels the
pushed symbols over the nth stack of M. Intuitively, depending on the initial and final
configurations of M′, the “language” of M′ summarizes the effect of a sequence of
pop operations of M over the first (n− 1)-stacks on the nth stack of M. So, if we are
interested only by the configurations of M where the first (n − 1) stacks are empty, a
run of M can be seen as a sequence of alternations of a pop operation of M over the
nth stack and a push operation over the nth stack of a word in the “language” of M′.

Then, we construct a generalized pushdown automaton P such that the state and the
stack content of P are the same as the state and the nth-stack content of M when the
first (n− 1) stacks of M are empty. In the definition of P , we use the (n− 1)-OMPA
M′ to characterize the pushed word on the nth stack of M due to a sequence of pop
operations of M on the (n − 1) first stacks of M. This implies that the emptiness
problem for M is reducible to its corresponding problem for P

Constructing the (n − 1)-OMPA M′: Let us introduce the following the n-OMPA
M[1,n[ = (n,Q,Σ, Γ,Δ[1,n[, q0, γ0, F ) such that Δ[1,n[ = Δ ∩

(
Q × (Γε)n−1 ×

{ε})×Σε × (Q × (Γ ∗)n)
)
. Intuitively, M[1,n[ is built up from M by discarding pop

operations of M over the nth stack. Then, let M′ = (n− 1, Q, Γ, Γ,Δ′, q0, γ0, F ) be
the (n− 1)-OMPA, built out from M[1,n[, which (1) performs the same operations on
the first n−1 stacks ofM[1,n[, and (2) makes visible as transition label the pushed stack
symbol over the nth stack of M[1,n[. Formally,Δ′ is defined as the smallest transition
relation satisfying the following conditions:

– If 〈q, γ1, . . . , γn−1, ε〉 a−→M[1,n[〈q′, α1, . . . , αn−1, ε〉 for some q, q′ ∈ Q,
γ1, . . . , γn−1 ∈ Γε, a ∈ Σε, and α1, . . . , αn−1 ∈ Γ ∗, then
〈q, γ1, . . . , γn−1〉 ε−→M′〈q′, α1, . . . , αn−1〉.

– If 〈q, γ, ε, . . . , ε〉 a−→M[1,n[〈q′, ε, . . . , ε, γ′〉 for some q, q′ ∈ Q, a ∈ Σε, and γ, γ′ ∈
(Γ \ {⊥}), then 〈q, γ, ε, . . . , ε〉 γ′

−−→M′ 〈q′, ε, . . . , ε〉.

Let us now give the relation between the effect of a sequence of operations of M[1,n[

on the nth-stack and the language of M′.

Lemma 4. For every q, q′ ∈ Q, and w1, w
′
1, . . . , wn, w

′
n ∈ Stack(M[1,n[),

(q, w1, . . . , wn) τ==⇒∗
T (M[1,n[)

(q′, w′
1, . . . , w

′
n) for some τ ∈ Σ∗ if and only if there is

u ∈ Γ ∗ such that (q, w1, . . . , wn−1)
u==⇒∗

T (M′) (q′, w′
1, . . . , w

′
n−1) and w′

n = uRwn.

Constructing the GPA P: We are ready now to define the generalized pushdown
automaton P = (P,Σ′, Γ, δ, p0,⊥, {pf}), with P = Q ∪ {p0, pf} and Σ′ = Q, that
keeps track of the state and the content of the n-th stack of M when the first (n − 1)
stacks are empty. Formally, P is built from M as follows: For every p, p′ ∈ P , q ∈ Σ′

ε,
and γ ∈ Γ , we have:
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– If p = p0, γ = ⊥, q = q0, and p′ ∈ Q, then δ(p, γ, q, p′) = {uR⊥ | u ∈
L(M′(q0, γ0, p′))}.

– If p ∈ F , γ = ⊥, q = ε, and p′ = pf , then δ(p, γ, q, p′) = {ε}.

– If p, p′ ∈ Q, γ �= ⊥, and q ∈ Q, then δ(p, γ, q, p′) =
⋃

γ′∈Γ ′

(
L(M′(q, γ′, p′))

)R
where Γ ′ = {γ′ ∈ Γ | ∃a ∈ Σε, 〈p,⊥, . . . ,⊥, γ〉 a−→M 〈q, γ′⊥,⊥, . . . ,⊥, ε〉}.

– Otherwise, δ(p, γ, q, p′) = ∅.

Observe that for every p1, p2 ∈ P , q ∈ Qε, and γ ∈ Γ , we can construct an

(n − 1)-OMPA M(p1,γ,q,p2) over Γ such that L(M(p1,γ,q,p2)) =
(
δ(p1, γ, q, p2)

)R
and |M(p1,γ,q,p2)| = O(|M|2). This can be easily proved using Lemma 2.

To complete the proof of Theorem 3, it remains to show that the emptiness problem
for M is reducible to its corresponding problem for P . This is stated by Lemma 5.

Lemma 5. L(M) �= ∅ if and only if L(P) �= ∅.

6.2 Emptiness of a n-OMPA Is in 2ETIME

In the following, we show that the emptiness problem for a n-OMPA is in 2ETIME.

Theorem 4. The emptiness problem for a n-OMPA M can be solved in time

O(|M|2
dn

) for some constant d.

Proof. Let M = (n,Q,Σ, Γ,Δ, q0, γ0, F ) be a n-OMPA. To prove Theorem 4, we
proceed by induction on n.

Basis. n = 1. Then,M is a pushdown automaton. From [4], we know that the emptiness
problem for M can be solved in time polynomial in |M|.

Step. n > 1. Then, we can apply Theorem 3 to construct a generalized pushdown
automaton P = (P,Q, Γ, δ, p0,⊥, {pf}), with P = Q ∪ {p0, pf}, such that:

– L(P) �= ∅ if and only if L(M) �= ∅, and
– For every p1, p2 ∈ P , a ∈ Qε, and γ ∈ Γ , there is a (n− 1)-OMPA M(p1,γ,a,p2)

over Γ s.t. L(M(p1,γ,a,p2)) =
(
δ(p1, γ, a, p2)

)R
and |M(p1,γ,a,p2)| = O(|M|2).

It is easy to observe that P is an effective generalized pushdown automaton. This is
established by the following lemma.

Lemma 6. P is an effective generalized pushdown automaton.

From Theorem 2, Theorem 3, and Lemma 6, we deduce that the emptiness problem
for the n-OMPA M is decidable. Let us now estimate the running time of the decision
procedure. From Theorem 2, we know that the emptiness problem of P is reducible to
compute the set of predecessors of the configuration (pf , ε) since L(P) �= ∅ if and only
if (p0,⊥) ∈ Pre∗

T (P)({pf} × {ε}).
Let A be the P-automaton that recognizes the configuration (pf , ε) of P . It is easy

to see that such P-automatonA, with |A| = O(|M|), is effectively constructible. Now,
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we need to analysis the running time of the saturation procedure (given in section 4)
applied to A. For that, let A0, . . . ,Ai be the sequence of P-automaton obtained from
the saturation procedure such that A0 = A and LP(Ai) = Pre∗

T (P)(LP(A)). Then,
we have i = O(|M|3) since the number of possible new transitions of A is finite.
Moreover, at each step j, with 0 ≤ j ≤ i, we need to check, for every q ∈ QA,
p, p′ ∈ P , γ ∈ Γ , and a ∈ Qε, whether L(Aj)({p′}, {q}) ∩ δ(p, γ, a, p′) �= ∅.

Using Lemma 3, we can construct, in time polynomial in |M|, a (n − 1)-OMPA
M′

(q,p,γ,a,p′) such that L(M′
(q,p,γ,a,p′)) = (L(Aj)({p′}, {q}))R ∩ L(M(p,γ,a,p′)) and

|M′
(q,p,γ,a,p′)| ≤ c(|M|3) for some constant c. Now, we can apply the induction hy-

pothesis toM′, and we obtain that the problem of checking whetherL(M′
(q,p,γ,a,p′)) �=

∅ can be solved in time O
(
(c |M|3)2d(n−1))

. Putting together all these equations, we
obtain that the problem of checking whether (p0,⊥) ∈ Pre∗

T (P)({pf} × {ε}) can be

solved in time O
(
|M|3|M|5(c |M|3)2d(n−1))

. By taking a constant d as big as needed,
we can show that the problem of checking whether L(M) �= ∅ can be solved in time
O(|M|2dn

). 
�

7 Bounded-Phase Visibly Multi-Pushdown Automata

In this section, we recall the definition of visibly multi-pushdown automata [16], an-
other subclass of MPA, where an action is associated with a particular stack oper-
ation. An action can be a push, pop, or internal action. Formally, a visibly multi-
pushdown automaton (VMPA for short) is a tuple V = (M, type) where M =
(n,Q,Σ, Γ,Δ, q0, γ0, F ) is a MPA and type : Σ → ({Push,Pop} × [1, n]) ∪ {Int}
is a function satisfying, for all transitions 〈q, γ1, . . . , γn〉 a−→M〈q′, α1, . . . , αn〉:

– a �= ε,
– if type(a) = (Push, i) for some i ∈ [1, n], then γ1 = . . . = γn = ε, αi ∈

(Γ \ {⊥}), and αj = ε for all j ∈ [1, n] \ {i},
– if type(a) = (Pop, i) for some i ∈ [1, n], then γi ∈ Γ , αi ∈ {⊥} ∪ {ε}, and
γj = αj = ε for all j ∈ [1, n] \ {i}, and

– if type(a) = Int , then γi = αi = ε for all i ∈ [1, n].

If, in a VMPA, we restrict the number of phases, where in one phase pop opera-
tions are exclusive to one stack, then we obtain bounded-phase visibly multi-pushdown
automata. A bounded-phase visibly multi-pushdown automaton (BVMPA for short) is
a triple B = (M, type, τ) where M = (n,Q,Σ, Γ,Δ, q0, γ0, F ) is a MPA, τ is a
word over [1, n], and (M, type) is a VMPA. For every i ∈ [1, n], let Σi = {a ∈
Σ | �j �= i, type(a) = (Pop, j)}. The language accepted by B is defined as follows:
L(B) = L(M) ∩ (Σ∗

τ(1)Σ
∗
τ(2) · · ·Σ∗

τ(|τ |))
In the rest of this paper, we use a τ -phase n-BVMPA overΣ to denote a BVMPA of

the form (M, type, τ) with M is a n-MPA overΣ.
Next, we show that the class of languages accepted bounded-phase visibly multi-

pushdown automata is closed under intersection with a regular languages.
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Lemma 7. Let Σ be an alphabet. Given a τ -phase n-BVMPA B = (M, type, τ)
over Σ and a FSA A over Σ, it is possible to construct a τ -phase n-BVMPA B′ =
(M′, type, τ) such that L(B′) = L(B) ∩ L(A) and |M′| = O(|M||A|).

Proof. Similar to the proof of Lemma 3. 
�

8 The Emptiness Problem for a τ -Phase n-BVMPA Is in 2ETIME

In this section, we show that the emptiness problem for bounded-phase visibly multi-
pushdown automata is in 2ETIME with respect to the length of τ . To this aim, we
proceed as follows: First, we prove that the emptiness for a τ -phase n-BVMPA is re-
ducible to the emptiness problem for a generalized pushdown automaton with transition
languages defined by τ ′-phase n-BVMPAs with τ = τ ′ · τ(|τ |). Then, we use the sat-
uration procedure, given in Section 4 to prove, by induction on |τ |, that the emptiness
problem for a τ -phase n-BVMPA is in 2ETIME.

For the rest of this section, let us fix a BVMPA B = (M, type, τ) where M =
(n,Q,Σ, Γ,Δ, q0, γ0, F ) is a MPA. We assume w.l.o.g that Σ ∩ Γ = ∅. For every
i ∈ [1, n], let Σi = {a ∈ Σ | �j �= i, type(a) = (Pop, j)}. Moreover, let us assume
that k = τ(|τ |) and τ = τ ′k.

8.1 Simulation of a τ -Phase n-BVMPA by a GPA

In the following, we prove that it is possible to construct a GPA P such that the empti-
ness problem for B is reducible to the emptiness problem for P .

Theorem 5. Assume that k > 1. Then, it is possible to construct a GPA P =
(P,Σ, Γ, δ, p0,⊥, {pf}) such that P = Q ∪ {p0, pf} and we have:

– L(B) �= ∅ if and only if L(P) �= ∅, and

– For every p, p′ ∈ P , a ∈ Σε, and γ ∈ Γ , there is a τ ′-phasen-BVMPAB(p,γ,a,p′) =
(M(p,γ,a,p′), type ′, τ ′) over Σ′ such that Γ ⊆ Σ′, |M(p,γ,a,p′)| = O(|M|2), and

δ(p, γ, a, p′) =
(
(L(B(p,γ,a,p′))|Γ )

)R{⊥}.

Proof. By definition, L(B) �= ∅ if and only if there are q ∈ F and σj ∈ Σ∗
τ(j)

for all j ∈ [1, |τ |] such that ρ = (q0, γ0⊥,⊥, . . . ,⊥)
σ1···σ|τ|

=====⇒∗
T (M) (q,⊥, . . . ,⊥).

Thus, the emptiness problem for B can be reduced to the problem of check-
ing whether there are q′ ∈ Q, w1, . . . , wn ∈ Stack(M), q ∈ F , and σj ∈
Σ∗

τ(j) for all j ∈ [1, |τ |] such that: (1) wl = ⊥ for all l ∈ [1, n] and

l �= k, (2) ρ1 = (q0, γ0⊥,⊥, . . . ,⊥)
σ1···σ(|τ|−1)

========⇒∗
T (M) (q′, w1, . . . , wn), and (3)

ρ2 = (q′, w1, . . . , wn)
σ(|τ|)

====⇒∗
T (M) (q,⊥, . . . ,⊥). Observe that at the configuration

(q′, w1, . . . , wn) only the content of the k-stack of M can be different from ⊥. More-
over, during the run ρ2, pop and push operations are exclusive to the k-th stack of M.
So, in order to prove Theorem 5, it is sufficient to show that all possible contents wk of
the k-stack of M reached by the run ρ1 can be characterized by a language accepted
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by a τ ′-phase n-BVMPA Bq′ = (Mq′ , type ′, τ ′) over Σ′ such that Γ ⊆ Σ′ (i.e.,

wk ∈
(
(L(Bq′)|Γ )

)R{⊥}). Once this is done, we can construct a GPA P that simulates
B. The automaton P proceeds as follows: First, it pushes in its stack the content wk of
the k-th stack of M reached by the run ρ1 using the language of Bq′ . Then, P starts to
simulate the run ρ2 by performing the same operations on its state and its stack as the
ones performed by M on its state and its k-th stack. This is possible since along the run
ρ2 pop and push operations of M are exclusive to k-th stack. Finally, P checks if the
current configurations is final and moves its state to the final state pf .

Constructing the τ ′-phase n-BVMPA Bq′ : In the following, we show that it is
possible to construct, for every q′ ∈ Q, a τ ′-phase n-BVMPA Bq′ such that wk ∈(
(L(Bq′)|Γ )

)R{⊥} if and only if there are σj ∈ Σ∗
τ(j) for all j ∈ [1, |τ |[ such

that (q0, γ0⊥,⊥, . . . ,⊥)
σ1···σ(|τ|−1)

========⇒∗
T (M) (q′, w1, . . . , wn) where wl = ⊥ for all

l ∈ [1, n] and l �= k. For that, let us define the n-MPA M′ that contains all the
transitions of M and that have the ability to push the new fresh symbol � instead of
any possible pushed symbol by M into the k-th stack. Moreover, the symbol � can be
popped from the k-th stack at any time by M′ without changing its state. Formally,M′

is defined by the tuple (n,Q,Σ′, Γ ′, Δ′, q0, γ0, F ) where Γ ′ = Γ ∪ {�} is the stack
alphabet, Σ′ = Σ ∪ Γ ∪ {�} is the input alphabet, and Δ′ is the smallest transition
relation satisfying the following conditions:

– Δ ⊆ Δ′.
– If 〈q1, γ1, . . . , γn〉 a−→M 〈q2, α1, . . . , αn〉 and type(a) = (Push, k), then
〈q1, γ1, . . . , γn〉 αk−−→Mq′ 〈q2, α′

1, . . . , α
′
n〉 with α′

l = αl for all l �= k and α′
k = �.

– For every q′ ∈ Q, 〈q′, γ1, . . . , γn〉 	−→Mq′ 〈q′, α′
1, . . . , α

′
n〉 if γl = ε for all l �= k,

γk = �, and α1 = . . . = αn = ε.

Let B′ = (M′, type ′, τ ′) be a τ ′-phase n-BVMPA where the function type ′ : Σ′ →
({Push,Pop}× [1, n])∪{Int} is defined as follows: type ′(a) = type(a) for all a ∈ Σ,
type ′(�) = (Pop, k), and type ′(γ) = (Push, k) for all γ ∈ Γ .

Let Ξk = {a ∈ Σ′ | type ′(a) = (Pop, k)}. Then, from Lemma 7, it is possible
to construct, for every q′, a τ ′-phase n-BVMPA Bq′ = (M′

q′ , type ′, τ ′) from B′ such
that L(Bq′) = L((M′(q0, γ0, q′), type ′, τ ′)) ∩ (Σ ∪ Γ )∗{�}∗(Σ′ \ Ξk)∗. The relation
between Bq′ and M is given by Lemma 8 which can be proved by induction.

Lemma 8. For every q′ ∈ Q, wk ∈ ((L(Bq′)|Γ )R{⊥}) iff there are σj ∈ Σ∗
τ(j) for

all j ∈ [1, |τ |[ such that (q0, γ0⊥,⊥, . . . ,⊥)
σ1···σ(|τ|−1)========⇒∗

T (M) (q′, w1, . . . , wn) where
wl = ⊥ for all l ∈ [1, n] and l �= k.

Constructing the GPA P: Formally, the transition function δ is defined as follows: for
every p, p′ ∈ P , γ ∈ Γ , and a ∈ Σ, we have:

– Initialization: δ(p, γ, a, p′) =
(
L(Bp′)|Γ

)
{⊥} if p = q0, p′ ∈ Q, γ = ⊥, and

a = ε. This transition pushes in the stack of P the content of the k-th stack of M
reached by the run ρ1.
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– Simulation of a push operation on the k-th stack of M: δ(p, γ, a, p′) = {αkγ |
〈p, γ1, . . . , γn〉 a−→M〈p′, α1, . . . , αn〉} if p, p′ ∈ Q, and a ∈ Σk such that
type(a) = (Push, k).

– Simulation of a pop operation on the k-th stack of M: δ(p, γ, a, p′) =
{αk | 〈p, γ1, . . . , γn〉 a−→M〈p′, α1, . . . , αn〉, γ = γk} if p, p′ ∈ Q and a ∈ Σk

such that type(a) = (Pop, k).
– Simulation of an internal operation of M: δ(p, γ, a, p′) = {γ} if p, p′ ∈ Q and
a ∈ Σk such that type(a) = Int .

– Final configuration: δ(p, γ, a, p′) = {ε} if p ∈ F , p′ = pf , γ = ⊥, and a = ε.
– Otherwise: δ(p, γ, a, p′) = ∅.

Then, it is easy to see that L(B) �= ∅ if and only if L(P) �= ∅. 
�

As an immediate consequence of Theorem 5, we obtain that the emptiness problem for
a τ -phase n-BVMPA is in 2ETIME.

Theorem 6. The emptiness problem for a BVMPA B = (M, type, τ) can be solved in

time O(|M|2d|τ|
) for some constant d.

The proof of Theorem 6 is similar to the proof of Theorem 4.

9 Conclusion

In this paper, we have shown that the emptiness problem for both OMPA and BVMPA
can be reduced to the one for the class of effective generalized pushdown automata. We
provide here simple algorithms for checking the emptiness problem for each of these
models and proving their 2ETIME upper bounds.

Recently, A. Seth has showed in [15] that the set of predecessors of a regular set of
configurations of a BVMPA is a regular set and effectively constructible. We believe
that our automata-based saturation procedure for computing the set of predecessors for
an effective GPA can be used to show (by induction on the number of stacks) that the
set of predecessors of a regular set of configurations of an OMPA is a regular set and
effectively constructible (which may answer to a question raised in [15]).

It is quite easy to see that the model-checking problems for omega-regular proper-
ties of effective generalized pushdown automata are decidable. This can be done by
adapting the construction given in [4]. This result can be used to establish some decid-
ability/complexity results concerning the model-checking problems for omega-regular
properties of both OMPA and BVMPA.
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1 Introduction: Parallel Programming Problem

This paper aims at introducing some new static analysis technology for concur-
rent programs. The work presented here gives a new insight into the problem of
decomposition of processes, which was first explored by R. Milner and F. Moller
in [MM93]. The main new results are an algorithm maximally decomposing con-
current programs into independent processes (Section 4) and the proof that this
prime decomposition is unique in the considered class of programs (Theorem 2).
They are derived from a study of algebraic properties of cubical areas.

Given an associative and commutative operator ‖ for parallel composition of
two processes (with the empty process as unit), decomposing a concurrent pro-
gram P into a multiset {P1, ..., Pn} such that P = P1‖...‖Pn and the Pis are inde-
pendent has several interests. For instance the decomposition may be relevant for
the allocation of processors to subprograms. Another important concern is the
static analysis of concurrent programs, whose complexity grows exponentially
with the number of concurrent processes: finding independent subprograms that
can be analyzed separately could dramatically decrease the global complexity
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of the static analysis. Hence this paper aims at finding the finest decomposition
(and proving its uniqueness) for a wide class of concurrent programs.

Let us first take a look at a nontrivial example of independent processes,
in the so-called PV language introduced by E.W. Dijkstra [Dij68] as a simple
framework for the study of concurrency with shared resources. The only instruc-
tions are P (name) and V (name)1, where name is an identifier which refers to
a resource. The idea is to have some common pool of resources which can be
taken (with P ) and released (with V ) by concurrent processes. The resources
are formalized by semaphores which, depending on their arity, can be held si-
multaneously by a certain number of processes (arity n allows at most n − 1
simultaneous processes).

Now suppose c is the name of a ternary semaphore, which means it can be
held by at most two processes, and a, b are the names of binary semaphores, also
called mutex for mutual exclusion.

Example 1.
Σ := π1 = Pa.Pc.V c.V a

‖ π2 = Pb.Pc.V c.V b
‖ π3 = Pa.Pc.V c.V a
‖ π4 = Pb.Pc.V c.V b

A naive syntactic analysis would stamp this program as indecomposable since
all processes share the resource c, but the following finer analysis can be made:
thanks to mutex a (respectively b), the processes π1 and π3 (respectively π2 and
π4) cannot both hold an occurrence of the resource c at the same time. Then
there are never more than two simultaneous requests over c, which means that
the instructions Pc and V c play actually no role in determining the semantics of
the program. And without c,Σ can be split in two independent systems (they use
disjoint resources). Basically, this example is based on the fact that semaphores
are not the real resources, but mere devices used to guard their access. And it
may be that some guards are redundant.

This work is based on a geometric semantics for concurrency. The semantics
for PV programs was implicitly given in [Dij68], then explicited by Carson et
al.[CR87]. Roughly speaking, the instructions of a process are pinned upon a 1-
dimensional “directed” shape, in other words track along which the instructions
of the program to execute are written. IfN sequential processes run together, one
can consider their N instruction pointers as a multidimensional control point.

Although we have made the construction explicit for PV programs only, the
result applies to any synchronisation or communication mechanism whose ge-
ometric interpretation is a so-called cubical area (the notion is formalized in
Section 3.5). See for instance [GH05] for the geometric semantics of synchronisa-
tion barriers, monitors and synchronous or asynchronous communications (with
finite or infinite message queues): their geometrical shape is the complement of
an orthogonal polyhedron [BMP99, Tha09], which is a special case of cubical
area.
1 P and V stand for the dutch words “Pakken” (take) and “Vrijlaten” (release).
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Outline of the paper
The paper is organized as follows. Section 2 provides the mathematics of the
geometric semantics, detailed for PV programs. Section 3 establishes the link
between algebraic properties of the semantics and independence of subprograms,
and then states and proves prime decomposability theorems for algrebraic frame-
works encompassing the geometric semantics (Theorems 1 and 2). Section 4
describes the corresponding algorithm and implementation as well as a detailed
example and some benchmarks.

2 The Geometric Semantics

The geometric semantics of a PV program is a subset of the finite dimensional
real vector space whose dimension is the number N of processes running con-
currently: then each process is associated with a coordinate of RN . Yet given a
mutex a, the instructions P(a) and V(a) that occur in the kth process should
be understood as opening and closing parentheses or more geometrically as the
least upper bound and the greatest lower bound of an interval Ik of R. The for-
bidden area generated by a mutex a is thus the finite union of hyperrectangles2

of the following form (with k < k′)

R+ × · · · × R+ × Ik × R+ × · · · × R+ × Ik′ × R+ × · · · × R+︸ ︷︷ ︸
product of N terms

For example, P(a).V(a) ‖ P(a).V(a) is a pro-
gram written in PV language. Assuming that a
is a mutex (semaphore of arity 2), its geometric
model is (R+)2\[1, 2[2. Intuitively, a point p in
[1, 2[2 would correspond to the situation where
both processes hold the semaphore a, which is
forbidden by the semantics of mutices.

p

P
(a

)

V
(a

)

P (a)

V (a)

In the sequel of this section we formalize the PV language syntax as well as the
construction of the geometric semantics.

Denote the positive half-line [0,+∞[ by R+. For each α ∈ N\{0, 1} let Sα be
an infinite countable set whose elements are the semaphores of arity α of the PV
language. A PV process is a finite sequence on the alphabet

A :=
{
P (s), V (s)

∣∣ s ∈⋃
α≥2

Sα

}
and a PV program is a finite (and possibly empty) multiset of PV processes.
The parallel operator then corresponds to the multiset addition therefore it is
associative and commutative3. Given a semaphore s and a process π, the se-
2 However we will more likely write “cube” instead.
3 The collection of multisets over a set A forms a monoid which is isomorphic to the

free commutative monoid over A. The first terminology is usually used by computer
scientists while mathematicians prefer the second one. Anyway it will be described
and caracterized in the Section 3.
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quences (xk)k∈N and (yk)k∈N are recursively defined as follows: set y−1 = 0
and

– xk = min{n ∈ N | n > yk−1 and π(n) is P (s)}
– yk = min{n ∈ N | n > xk and π(n) is V (s)}

with the convention that min ∅ = ∞, π(n) denotes the nth term of the process
π and its first term is π(1). Then, the busy area of s in π is4

Bs(π) :=
⋃
k∈N

[xk, yk[

Actually this description implies some extra assumptions upon the way instruc-
tions are interpreted. Namely a process cannot hold more than one occurrence of
a given resource. Thus a process already holding an occurrence of a semaphore
s ignores any instruction P (s), and similarly a process holding no occurrence of
s ignores any instruction V (s). Then denote by χπ

s : R → R the characteristic
function of Bs defined by

χπ
s (x) =

{
1 if x ∈ Bs(π)
0 otherwise

Because the sequence π is finite, there exists some k such that xk = ∞ and for
any such k and any k′ ≥ k, one also has xk′ = ∞. In particular, if the instruction
P (s) does not appear in π, then Bs(π) is empty and χπ

s is the null map. The
geometric model of a PV program with N processes running concurrently is a
subpospace of [0,+∞[N defined as follows:
- Call Π = (π1, . . . , πN ) the program to model.
- Given a semaphore s of arity α define the forbidden area of s in Π as

Fs :=
{−→x ∈ [0,+∞[N

∣∣ −→χs · −→x ≥ α
}

where −→x = (x1, . . . , xN ), −→χs = (χπ1
s , . . . , χ

πN
s ) and −→χs · −→x =

N∑
i=1

χπi
s (xi). The

value −→χs · −→x indicates how many occurrences of the semaphore s are held when
the instruction pointer is at position −→x . Note that Fs is a finite union of hyper-
rectangles which may be empty even if s appears in the program Π . In the end,
the forbidden area of the program Π is the following union over S the union
of all the sets Sα.

F :=
⋃
s∈S

Fs

Because there are finitely many resource names s appearing in a PV program,
there are finitely many nonempty sets Fs. Hence the previous union is still a
finite union of hyperrectangles. The state space or geometric model of Π is
4 Including the greatest lower bound and removing the least upper bound is the math-

ematical interpretation of the following convention: the changes induced by an in-
struction are effective exactly when the instruction pointer reaches it.
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then [0,+∞[N\F , and is denoted by �Π�. Remark that the geometric model is
also a finite union of hyperrectangles.

In other words, the state space of Π is the set of positions of the “multi-
dimensional instruction pointer” for which the number of occurrences of each
semaphore s is strictly below its arity α. If Π is made of N concurrent process,
this space is a N -dimensional euclidean space with (cubical) holes. As an exam-
ple, Figure 1 shows the construction of the geometric model of the PV program
P (a)P (b)V (b)V (a) ‖ P (b)P (a)V (a)V (b) (refered to as the swiss flag). Figure 2
gives a simplified version of Example 1 fitting in three dimensions.

Fa
P(a)

V(a)

P
(a

)

V
(a

)

Fb

P(b)

V(b)

P
(b

)

V
(b

)

F

P(b)

P(a)

V(a)

V(b)

P
(a

)

P
(b

)

V
(b

)

V
(a

)

Fig. 1. Construction of a geometric model: the swiss flag

Σ∗ := π1 = Pa.Pc.V c.V a
‖ π∗

2 = Pc.V c
‖ π3 = Pa.Pc.V c.V a

Fig. 2. Example in three dimensions

Intuitively, the graphs pictured here correspond to the essential components of the state
space, see [GH07] for developments on this topic. The little cube on the left picture is
the forbidden area of the semaphore c, which is contained in the forbidden area of the
mutex a (in the full –and 4D– example Σ the forbidden area of c is contained in the
union of the forbidden areas of a and b).

3 The Problem of Unique Decomposition

Now that the geometric semantics of programs is defined, let us refocus on the
main goal: finding the independent parts of a concurrent program. Hence the
question: what does independence mean in this geometrical setting?
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3.1 Parallel Composition vs. Cartesian Product

A general definition has to be given for independence: say a program Π is
independent from another program Π ′ when its behaviour is unaffected by par-
allel composition with Π ′, whatever the way Π ′ is executed. That means, the
presence ofΠ ′, as well as its instruction pointer, has no effect on the semantics of
Π . A geometric translation of this assertion is: in the geometric model of Π‖Π ′,
the cylinder5 over any state of Π ′ (i.e. the subspace of all points with given fix
coordinates for the Π ′ component) is equal to the model of Π .

Hence two programs Π and Π ′ of geometric models �Π� and �Π ′� are inden-
pendent if and only if the geometric model �Π‖Π ′� of their parallel composition
is isomorphic to the cartesian product �Π� × �Π ′�. Thus the decompositions of
a program correspond to the factorizations if its geometric model (with respect
to the cartesian product). The next subsection reminds some algebraic settings
and results needed for a notion like factorization to make sense.

3.2 Free Commutative Monoids

The reader not familiar with this notion can refer for instance to [Lan02]. Let
M be a commutative monoid. Any element of M which has an inverse is called
a unit. A non-unit element x of M is said to be irreducible when for all y and
z in M , if x = yz then y or z is a unit. The set of irreducible elements of M is
denoted by I(M).

For any elements x and y of M , say x divides y when there is an element x′

of M such that xx′ = y. A non-unit element x of M is said to be prime when
for all y and z in M , if x divides yz then x divides y or x divides z. The set of
prime elements of M is denoted by P (M).

Given a setX , the collection of maps φ fromX to N such that {x ∈ X | φ(x) �=
0} is finite, together with the pointwise addition, forms a commutative monoid
whose neutral element is the null map: we denote it by F (X). Yet, given any
subset X of a commutative monoid M , the following map

ΦX
M : F (X) �� M

φ
� ��

∏
x∈X

xφ(x)

is a well-defined morphism of monoids. A well-known result asserts that the
following are equivalent [Lan02]:

1. The mapping ΦI(M)
M is an isomorphism of monoids

2. The set I(M) generates6 M and I(M) = P (M)

3. Any element of M can be written as a product of irreducible elements in a
unique way up to permutation of terms (unique decomposition property).

5 Categorists would write “fibre” instead of “cylinder”.
6 X ⊆ M generates M when all its elements can be written as a product of elements of

X. The product of the empty set being defined as the neutral element. Remark then
that “I(M) generates M” implies that the only unit of M is its neutral element.
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IfM satisfies any of the preceding assertions, then it is said to be a free commu-
tative monoid. Two standard examples of free commutative monoids are given
by the set of nonzero natural numbers N\{0} together with multiplication (the
unit is 1 and the irreducible elements are the prime numbers) and the set of
natural numbers N together with addition (the unit is 0 and the only irreducible
element is 1).

3.3 Cartesian Product and Commutation

The geometric model of a concurrent program is a set of points in an euclidean
space of finite dimension. Each point is represented by the tuple of its coor-
dinates so a geometric model is a set of tuples (whose length corresponds to
the dimension of the space). The cartesian product on such structures is the
following:

X × Y =
{

(x1, ..., xn, y1, ..., yk)
∣∣ (x1, ..., xn) ∈ X, (y1, ..., yk) ∈ Y

}
However, this operator is not commutative whereas the parallel composition of
programs should be so. Thus, in order to model parallel composition, we make
the operator × commutative by allowing the permutation of coordinates. In the
next subsection we prove a freeness theorem for a monoid generalizing this idea:
tuples of (real) coordinates are replaced by words over an arbitrary (potentially
infinite) alphabet. We will define a free commutative monoid of which every
geometric model of a PV program is an element. From the decomposition of
such models we will deduce the processes factorization.

3.4 Homogeneous Sets of Words

Let A be a set called the alphabet. The noncommutative monoid of words A∗

consists on the finite sequences of elements of A together with concatenation.
Given words w and w′ of length n and n′, the word w ∗ w′ of length n + n′ is
defined by

(w ∗ w′)k =
{
wk if 1 � k � n
w′

k−n if n+ 1 � k � n+ n′

The length of a word w is also refered to as �(w). A subword of w is a word of
the form w ◦ φ where φ is a strictly increasing map {1, . . . , n} → {1, . . . , �(w)}.
Hence a subword of w is also entirely characterized by the image of the increasing
map φ i.e. by a subset of {1, . . . , �(w)}. If A is the image of φ then we write w◦A
instead of w ◦ φ.

The nth symmetric group Sn (the group of permutations of the set {1, ..., n})
acts on the set of words of length n by composing on the right, that is for all
σ ∈ Sn and all words w of length n we have

σ · w := w ◦ σ = (wσ(1) · · ·wσ(n))

The concatenation extends to sets of words. Given S, S′ ⊆ A∗, define

S ∗ S′ := {w ∗ w′ | w ∈ S;w′ ∈ S′}
Remark that this concatenation of sets corresponds to the cartesian product.
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The set P(A∗) of subsets of A∗ is thus endowed with a structure of non-
commutative monoid whose neutral element is {ε}: the singleton containing the
empty word. Note that the empty set ∅ is the absorbing element of P(A∗), that
is for all S ⊆ A∗ we have

∅ ∗ S = S ∗ ∅ = ∅

A subset S of A∗ is said to be homogeneous when all the words it contains
share the same length n. By analogy with the geometric construction, n is called
the dimension of S and denoted by d(S). The symmetric group Sn acts on the
set of homogeneous sets of dimension n in a natural way by applying the same
permutation to all words:

σ · S := {σ · w | w ∈ S}

The homogeneous subsets of A∗ form a sub-monoid Ph(A∗) of P(A∗) and
can be equipped with an equivalence relation as follows: write S ∼ S′ when
d(S) = d(S′) = n and there exists σ ∈ Sn such that S′ = σ ·S. Moreover, for two
permutations σ ∈ Sn and σ′ ∈ Sn′ , define the juxtaposition σ ⊗ σ′ ∈ Sn+n′

as:

σ ⊗ σ′(k) :=
{

σ(k) if 1 � k � n(
σ′(k − n)

)
+ n if n+ 1 � k � n+ n′

A Godement-like exchange law is satisfied, which ensures that ∼ is actually a
congruence:

(σ · S) ∗ (σ′ · S′) = (σ ⊗ σ′) · (S ∗ S′)

Hence the quotient Ph(A∗)/∼ from which the absorbing element has been re-
moved is still a monoid called the homogeneous monoid over A and denoted
by H(A). Moreover the homogeneous monoid is commutative and its only unit
is the singleton {ε}. Remark that if the alphabet A is a singleton (resp. the
empty set) then the homogeneous monoid H(A) is isomorphic to (N,+, 0) (resp.
the null monoid). From now on the elements of Ph(A∗) are denoted by capital
letters S, S′, Sk (and so on) while capital letters H , H ′, Hk are used to denote
the elements of H(A). As they are ∼-equivalence classes, the elements of H(A)
are subsets of Ph(A∗). In particular for any H ∈ H(A) and any S, S′ ∈ H we
have d(S) = d(S′) so we can soundly define the dimension of H as d(H) := d(S).

Theorem 1. For any set A the homogeneous monoid over A is free.

Proof. We check the characterizing condition 2 of the Section 3.2. From the
equality d(H ∗ H ′) = d(H) + d(H ′) and a straightforward induction on the
dimension of elements of H(A) we deduce they can all be written as products of
irreducible elements: I(H(A)) generates H(A).

Now suppose H is an irreducible element of H(A) which divides H1 ∗H2 and
pick S, S1 and S2 respectively from the equivalence classesH ,H1 andH2. Define
n = d(S), n1 = d(S1) and n2 = d(S2), and remark that n � n1 + n2. There
exists σ ∈ Sn and some S3 such that σ · (S1 ∗ S2) = S ∗ S3 in Ph(A∗). Suppose
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in addition that H does not divide H1 nor H2, then we have A1 ⊆ {1, ..., n1}
and A2 ⊆ {1, ..., n2} s.t. A1 �= ∅, A2 �= ∅ and σ(A1 ∪ A′

2) = {1, ..., n} where
A′

2 := {a+ n1 | a ∈ A2}. Then we have a nontrivial factoring S = S′
1 ∗ S′

2 where

S′
1 :=

{
w ◦A1

∣∣ w ∈ S1

}
and S′

2 :=
{
w ◦A2

∣∣ w ∈ S2

}
This contradicts irreducibility of H . Hence H divides H1 or H2 and thus H is
prime. So any irreducible element of H(A) is prime: I(H(A)) ⊆ P (H(A)).

Finally, suppose H is a prime element of H(A) such that H = H1 ∗ H2. In
particular H divides H1 ∗ H2, and since H is prime it divides H1 or H2. Both
cases being symmetrical, suppose H divides H1. In particular d(H) ≤ d(H1). On
the other hand d(H) = d(H1) + d(H2), and thus d(H2) ≤ 0. Dimensions being
natural numbers, we deduce that d(H2) = 0 and then that H2 = {ε}. Hence H
is irreducible, and I(H(A)) = P (H(A)).

A useful feature of the construction is that any binary relation � over Ph(A∗)
which is compatible with the product and satifies

∀S, S′ ∈ Ph(A∗)
(
d(S) = d(S′) and S � S′ ⇒ ∀σ ∈ Sd(S) (σ · S) � (σ · S′)

)
can be extended to a relation on H(A) which is still compatible with the prod-
uct. Actually it suffices to set H � H ′ when d(H) = d(H ′) and there exists a
representative S of H and a representative S′ of H ′ such that for all σ ∈ Sd(H)

we have (σ · S) � (σ · S′). In addition, if the relation � satisfies

∀S, S′ ∈ Ph(A∗) S � S′ ⇒ d(S) = d(S′)

then the quotient map is compatible with � and its extension. The relation of
inclusion⊆ over Ph(A∗) obviously satisfies these properties and therefore extends
to H(A).

3.5 Cubical Areas

The monoid Ph(R∗) is ordered by inclusion, according to the preceding section
the relation ⊆ is then extended to H(R) by setting H � H ′ when d(H) = d(H ′)
and there exist S ∈ H and S′ ∈ H ′ such that for all σ ∈ Sd(H) we have
σ · S ⊆ σ · S′.

A cube of dimension n is a word of length n on the alphabet I of nonempty
intervals of R so it can also be seen as a subset of Rn. In particular, given
S ∈ Ph(I∗) we can define the set theoretic union⋃

C∈S

C

as a subset of Rn and thus an element of Ph(R∗) provided we identify any word
of length n over R with a point of Rn.

The elements of H(I) are called the cubical coverings and we will use the
capital letters F , F ′ or Fk (k ∈ N) to denote them. Furthermore the homogeneous
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monoid H(I) is endowed with a preorder arising from the inclusion on I. Indeed,
given two homogeneous sets of cubes of the same dimension S and S′ we write
S � S′ when for all cubes C ∈ S there exists a cube C′ ∈ S′ such that C ⊆ C′.
The relation� provides the monoid Ph(I∗) with a preorder that can be extended
to H(I) by setting F � F ′ when d(F ) = d(F ′) and there exist S ∈ F and S′ ∈ F ′

such that for all σ ∈ Sd(F ) we have σ · S � σ · S′. We now establish a Galois
connection between (H(R),�) and (H(I),�). Given a cubical covering F one
can check that the following is actually an element of H(R).

γ(F ) :=
{ ⋃

C∈S

C
∣∣∣ S ∈ F}

The mapping γ is a morphism of monoids and if F � F ′ then γ(F ) � γ(F ′).
Conversely, given some S ∈ Ph(R∗) the collection of n-dimensional cubes C
such that C ⊆ S, ordered by inclusion, is a semilattice whose maximal elements
are called the maximal cubes of S. The set MS of maximal cubes of S is
homogeneous and for all σ ∈ Sn, σ ·MS = Mσ·S . Then given H ∈ H(R) one
can check that the following is actually an element of H(I).

α(H) :=
{
MS

∣∣∣ S ∈ H}
Furthermore α is a morphism of monoids and if H � H ′ then α(H) � α(H ′).
Then we have a Galois connection:

Proposition 1. γ ◦ α = idH(R) and idH(I) � α ◦ γ.

Given H ∈ H(R) and F ∈ H(I) we say that F is a cubical covering of H when
γ(F ) = H . The cubical areas are the elements H of H(R) which admit a finite
cubical covering. The collection of cubical areas (resp. finite cubical coverings)
forms the submonoid Are of H(R) (resp. Cov of H(I)). The restrictions of the
morphisms γ and α to Cov and Are induce another Galois connection.

Proposition 2. γ ◦ α = idAre and idCov � α ◦ γ.

Moreover, the morphisms γ and α of Proposition 2 induce a pair of isomorphisms
of commutative monoids between Are and the collection of fixpoints of α ◦ γ. A
submonoid of a free commutative monoid may not be free. Yet, under a simple
additional hypothesis this pathological behaviour is no more possible. We say
that a submonoid P of a monoid M is pure when for all x, y ∈M , x ∗ y ∈ P ⇒
x ∈ P and y ∈ P .

Lemma 1. Every pure submonoid of a free commutative monoid is free.

Proof. Let P be a pure submonoid of a free commutative monoidM . Let p be an
element of P written as a product x1 · · ·xn of irreducible elements of M . Each
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xi is obviously an irreducible element of P so any element of P can be written
as a product of irreducible elements of P . Furthermore any irreducible element
of P is also an irreducible element of M because P is pure in M . It follows that
any elements of P can be written as a product of irreducible elements of P in a
unique way i.e. P is free. Then we have:

Theorem 2. The commutative monoid of cubical areas is free.

Proof. Let X and X ′ be two elements of H(R) and suppose X ∗X ′ belongs to
Are. Since both α and γ are morphisms of monoids we have α ◦ γ(X ∗ X ′) =
α ◦ γ(X) ∗ α ◦ γ(X ′) which is finite. It follows that both α ◦ γ(X) and α ◦ γ(X ′)
are finite. Hence X and X ′ actually belongs to Are, which is thus free as a pure
submonoid of H(R).

Moreover one can check that for any n ∈ N and any finite family C1, . . . , Ck of
bounded7 n-dimensional cubes, Rn\(C1 ∪ · · · ∪Ck) is irreducible. Therefore the
commutative monoid of cubical areas has infinitely many irreducible elements.

The Theorem 2 is the theoretical cornerstone of our method: the geometric
model of a PV program is an element ofH(I) so we obtain from its decomposition
the expected processes factorization.

4 Effective Factoring of Cubical Areas

Beyond their theoretical usefulness, the maximal cubes provide the data struc-
ture which allows to handle algorithmically cubical areas, as in the static analyzer
ALCOOL which is devoted to the study of parallel programs.

4.1 Implementation

We need an algorithm which performs decompositions in H(A), its implemen-
tation is directly based on the proof of Theorem 1: H ∈ H(A) is reducible if
and only if there exists some representative S of H which admits a nontrivial
decomposition in Ph(A∗). In order to describe the algorithm we define

S ◦A :=
{
w ◦A | w ∈ S

}
for any S ∈ Ph(A∗) and A ⊆ {1, ..., d(S)}. Moreover for w′ ∈ A∗ with �(w′) = |A|
and Ac the complement of A (in {1, ..., d(S)}), we define the set of words

Ψ(w′, A, S) :=
{
w ◦Ac | w ∈ S and w ◦A = w′}

Then the class [S ◦ A] ∈ H(A) divides H if and only if for all w′ ∈ S ◦ A one
has Ψ(w′, A, S) = [S ◦ Ac]. In particular the choice of S ∈ H does not alter the
result of the test and we have

[S ◦A] ∗ [S ◦Ac] = H

7 An n-dimensional cube C is bounded when C ⊆ [−r, r]n for some r > 0.
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Then we look for some divisor of H by testing all the nonempty subsets A of
{1, . . . , d(S)} (each test requires that we look over all the elements of S ◦ A)
according to the following total ordering

A � A′ when |A| < |A′| or (|A| = |A′| and A �lex A
′)

where �lex is the lexicographic ordering (A �lex A
′ is recursively defined by

min(A) < min(A′) or (min(A) = min(A′) and A\{min(A)} �lex A
′\{min(A′)}).

Doing so, we know that if A is the first value such that [S ◦A] divides H , then
[S◦A] is irreducible. Moreover we have d([S◦A]) = |A| and for allH0, H1 ∈ H(A),
d(H0 ∗H1) = d(H0) + d(H1) hence we can suppose

|A| � d(H)
2

+ 1

The software ALCOOL is entirely written in OCaml. The complexity of the decom-
position algorithm implemented in it is exponential in the dimension n of the
cubical area since it checks all the subsets of {0, . . . , n− 1}. However, it is worth
remarking that our algorithm is efficient when the cubical area to decompose is
actually the product of several irreducible cubical areas of small dimension (see
Subsection 4.2 for benchmarks). This remark should be compared with the fact
that the standard decomposition algorithm of integer into primes is very efficient
on products of small prime numbers.

We treat the case of the program Σ given in Example 1. Denote by H its
geometric model, we are actually provided with some representative S ∈ H .
With the preceding notation we then check that [S◦A] divides H for A := {1, 3}.
Applying the permutation (2, 3) we have

(2, 3) ·
{
{1, 3}, {2, 4}

}
=
{
{1, 2}, {3, 4}

}
then (2, 3) · S can be decomposed in Ph(R∗) as(

[0,1[*[0,-[ ‖ [4,-[*[0,-[ ‖ [0,-[*[0,1[ ‖ [0,-[*[4,-[
)2

and it follows that in the program Σ the sets of processes {π1, π3} and {π2, π4}
run independently from each other.

4.2 Benchmarks

We describe some programs upon which the algorithm has been tested. The
programΣn1,...,nk

is made of k groups of processes: for all i ∈ {1, ..., k} it contains
ni copies of the process

P (ai).P (b).V (b).V (ai)

where ai is a mutex and b is a semaphore of arity k+1. All processes then share
the resource b, but as for Σ in Example 1 the k groups are actually independent.
On the other hand the program Σ′

n1,...,nk
is the same as Σn1,...,nk

but with b
of arity only k, which forbids any decomposition. The n-philosophers programs



144 T. Balabonski and E. Haucourt

implement the standard n dining philosophers algorithm. The benchmark table
of Figure 3 has been obtained using the Unix command time which is not accu-
rate. Hence these results have to be understood as an overapproximation of the
mean execution time.

Example Time (in sec.) Decomp.
6 philosophers 0.2 No
7 philosophers 0.7 No
8 philosophers 3.5 No
9 philosophers 21 No
10 philosophers 152 No

Example Time (in sec.) Decomp. Example Time (in sec.) Decomp.
Σ2,2 0.1 {1, 3}{2, 4} Σ′

2,2 0.1 No
Σ2,2,2 0.1 {1, 4}{2, 5}{3, 6} Σ′

2,2,2 0.3 No
Σ3,3 0.13 {1, 3, 5}{2, 4, 6} Σ′

3,3 0.52 No
Σ2,2,2,2 0.13 {1, 5}{2, 6}{3, 7}{4, 8} Σ′

2,2,2,2 7.1 No
Σ4,4 1 {1, 3, 5, 7}{2, 4, 6, 8} Σ′

4,4 33 No
Σ3,3,3 1.5 {1, 4, 7}{2, 5, 8}{3, 6, 9} Σ′

3,3,3 293 No
Σ4,5 6.1 {1, 3, 5, 7}{2, 4, 6, 8} Σ′

4,5 327 No
Σ5,5 50 {1, 3, 5, 7, 9}{2, 4, 6, 8, 10} Σ′

5,5 2875 No

Fig. 3. Benchmarks

5 Conclusion

Related work
The problem of decomposition of concurrent programs in CCS-style has been
studied in [GM92] and [MM93]. By the possibility of using semaphores of arbi-
trary arity, our work seems to go beyond this previous approach. Also note that
the silent and synchronous communication mechanism of CCS can be given a
straightforward geometric interpretation which falls in the scope of the present
discussion. However, the link between bisimilarity in CCS and isomorphic geo-
metric interpretations is still to be explored to make clear the relations between
these works.

In [LvO05] B. Luttik and V. van Oostrom have characterized the commutative
monoids with unique decomposition property as those which can be provided
with a so-called decomposition order. In the case where the property holds,
the divisibility order always fits. Yet, there might exist a more convenient one.
Unfortunately, in the current setting the authors are not aware of any such
order yielding direct proofs. Nevertheless it is worth noticing that this approach
is actually applied for decomposition of processes in a normed ACP theory for
which a convenient decomposition order exists.

One can also think of using this method to optimize the implementation
of parallel programs. In the same stream of ideas, [CGR97] defines a preorder
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over a simple process algebra with durational actions in order to compare the
implementations of a same algorithm according to their efficiency.

Conclusion
This paper uses a geometric semantics for concurrent programs, and presents a
proof of a unique decomposition property together with an algorithm working
at this semantic level (Theorem 2). The main strength of this work is that it
applies to any concurrent program yielding a cubical area. Example of features
allowed in this setting are: semaphores, synchronisation barriers, synchronous as
well as asynchronous communications (with finite or infinite message queues),
conditional branchings. In fact we can even consider loops provided we replace
the set I of intervals of the real line R by the set A of arcs of the circle.

Future work
Any cubical area naturally enjoys a pospace8 structure. Pospaces are among the
simplest objects studied in Directed Algebraic Topology. In particular, a cubical
area is associated with its category of components [FGHR04, GH05, Hau06] and
[GH07], which is proven to be finite, loop-free9 and in most cases connected.
Then, as the cubical areas do, these categories together with cartesian product
form a free commutative monoid. It is worth noticing this is actually the gener-
alization of a result concerning finite posets which has been established in the
early fifties [Has51]. Therefore a program Π can be decomposed by lifting the
decomposition of the category of components of its geometric model �Π�. In
general, the relation between the decomposition of a cubical area and the one of
its category of components is a theoretical issue the authors wish to investigate.

Another important concern is a clarification of the control constructs com-
patible with cubical areas: replacing in some dimensions the intervals of the real
line by the arcs of the circle as mentioned above corresponds to a global loop,
but some richer structures may be useful.

A final point of interest is the investigation of the exact relation between
our decomposition results and the ones of [GM92, MM93, LvO05]. Indeed they
use CCS-like syntaxes to describe some classes of edge-labelled graphs modulo
bisimilarity, whereas the category of components of our models correspond to
some other graphs modulo directed homotopy. Hence the question: what is in
this setting the relation between bisimilarity and directed homotopy?
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A Logic for True Concurrency�
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Abstract. We propose a logic for true concurrency whose formulae
predicate about events in computations and their causal dependencies.
The induced logical equivalence is hereditary history preserving bisimi-
larity, and fragments of the logic can be identified which correspond to
other true concurrent behavioural equivalences in the literature: step,
pomset and history preserving bisimilarity. Standard Hennessy-Milner
logic, thus (interleaving) bisimilarity, is also recovered as a fragment. We
believe that this contributes to a rational presentation of the true con-
current spectrum and to a deeper understanding of the relations between
the involved behavioural equivalences.

1 Introduction

In the semantics of concurrent and distributed systems, a major dichotomy op-
poses the interleaving approaches, where concurrency of actions is reduced to
the non-deterministic choice among their possible sequentializations, to true-
concurrent approaches, where concurrency is taken as a primitive notion. In both
cases, on top of the operational models a number of behavioural equivalences
have been defined by abstracting from aspects which are considered unobserv-
able [1,2].

For the interleaving world, a systematic and impressive picture is taken in the
linear-time branching-time spectrum [1]. Quite interestingly, the equivalences in
the spectrum can be uniformly characterised in logical terms. Bisimilarity, the
finest equivalence, corresponds to Hennessy-Milner (HM) logic: two processes
are bisimilar if and only if they satisfy the same HM logic formulae [3]. Coarser
equivalences correspond to suitable fragments of HM logic.

In the true-concurrent world, relying on models like event structures or tran-
sition systems with independence [4], several behavioural equivalences have been
defined, ranging from hereditary history preserving (hhp-) bisimilarity, to pom-
set and step bisimilarity. Correspondingly, a number of logics have been studied,
but, to the best of our knowledge, a unifying logical framework encompass-
ing the main true-concurrent equivalences is still missing. The huge amount of
work on the topic makes it impossible to give a complete account of related ap-
proaches. Just to give a few references (see Section 5 for a wider discussion), [5]
proposes a general framework encompassing a number of temporal and modal
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logics that characterize pomset and weak history preserving bisimilarities as
well as interleaving bisimilarity. However, finer equivalences are not considered
and a single unitary logic is missing. History preserving (hp-) bisimilarity has
been characterised in automata-theoretic terms using HD-automata [6] or Petri
nets [7]. More recently, hp-bisimilarity has been obtained as a logical equiva-
lence, using a separation fixpoint modal logic where it is possible to check the
causal dependence/independence of the last executed action [8,9]. Concerning
hhp-bisimilarity, several logics with modalities corresponding to the “retraction”
or “backward” execution of computations have been proposed [10,11,12]. In ab-
sence of autoconcurrency they are shown to capture hhp-bisimilarity, while the
general case complicates the picture and requires some adjustments.

In this paper we propose a behavioural logic for concurrency and we show that
it allows to characterise a relevant part of the truly concurrent spectrum. More
specifically, the full logic is shown to capture hhp-bisimilarity, the finest equiva-
lence in the spectrum [2]. Then suitable fragments of the logic are shown to scale
down to the characterisation of other coarser equivalences, i.e., history preserv-
ing, pomset and step bisimilarity. Standard HM logic, and thus (interleaving)
bisimilarity, is also recovered as a fragment.

Our logic allows to predicate about events in computations together with their
causal and independence relations. It is interpreted over prime event structures,
but it could naturally be interpreted over any formalism with a notion of event,
causality and consistency. A formula is evaluated in a configuration representing
the current state of the computation, and it predicates on a set of possible future
evolutions starting from that state. The logic is event-based in the sense that it
contains a binder that allows to refer later to the events the formula predicates
on. In this respect, it is reminiscent of the modal analogue of independence-
friendly modal logic as considered in [13].

The logic contains two main operators. The formula (x, y < a z)ϕ declares that
an a-labelled future event exists, which causally depends on the event bound to
x, and is independent from the event bound to y. Such an event is bound to
variable z so that it can be later referred to in ϕ. In general, x and y can
be replaced by lists of variables. A second operator allows to “execute” events
previously bound to variables. The formula 〈z〉ϕ says that the event bound to
z is enabled in the current state, and after its execution ϕ holds.

Different behavioural equivalences are induced by fragments of the logics
where we suitably restrict the set of possible futures the formulae are able to
refer to. Namely, hhp-bisimilarity, that is captured by the full logic, corresponds
to the ability of observing the existence of a number of legal but (possibly) in-
compatible futures, without executing such futures. Interestingly, the definition
of hhp-bisimilarity is normally given in terms of backward transitions, whereas
our logical characterization has a “forward flavor”. By restricting to a fragment
where future events can be observed only by executing them (any occurrence
of the binding operator is immediately followed by a corresponding execution),
we get hp-bisimilarity. Pomset bisimilarity is induced by a fragment of the logic
obtained by further restricting that for hp-bisimilarity, with the requirement



A Logic for True Concurrency 149

that propositional connectives are used only on closed (sub)formulae. Roughly
speaking, this fragment predicates about the possibility of executing pomset
transitions and the closedness requirement prevents pomset transitions from
being causally linked to the events in the past. Finally, quite intuitively, step
bisimilarity corresponds to the possibility of observing only currently enabled
concurrent actions.

We believe that this work contributes to the definition of a logical counterpart
of the true concurrent spectrum and shades further light on the relations between
the involved behavioural equivalences.

2 Background

In this section we provide the basics of prime event structures which will be used
as models for our logic. Then we define some common behavioural concurrent
equivalences which will play a basic role in the paper.

2.1 Event Structures

Prime event structures [14] are a widely known model of concurrency. They
describe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper Λ denotes a fixed set of labels ranged
over by a, b, c . . .

Definition 1 (prime event structure). A (Λ-labelled) prime event structure
(pes) is a tuple E = 〈E,≤,#, λ〉, where E is a set of events, λ : E → Λ is
a labelling function and ≤, # are binary relations on E, called causality and
conflict respectively, such that:

1. ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all
e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

In the following, we will assume that the components of an event structure E
are named as in the definition above. Subscripts carry over to the components.

Definition 2 (consistency, concurrency). Let E be a pes. We say that e, e′ ∈
E are consistent, written e	 e′, if ¬(e#e′). Moreover, we say that e and e′ are
concurrent, written e || e′, if ¬(e ≤ e′), ¬(e′ ≤ e) and ¬(e#e′).

Causality and concurrency will be sometimes used on set of events. GivenX ⊆ E
and e ∈ E, by X < e we mean that for all e′ ∈ X , e′ < e. Similarly X || e, resp.
X 	 e, means that for all e′ ∈ X , e′ || e, resp. e′	 e. We write �X� for

⋃
e∈X�e�.

The idea of (concurrent) computation is captured, in event structures, by the
notion of configuration.

Definition 3 (configuration). Let E be a pes. A (finite) configuration in E is
a (finite) subset of events C ⊆ E pairwise consistent and closed w.r.t. causality
(i.e., �C� = C). The set of finite configurations of E is denoted by C(E).
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Hereafter, unless explicitly stated otherwise, all configurations will be assumed
to be finite. A pairwise consistent subset X ⊆ E of events will be always seen as
the pomset (partially ordered multiset) (X,≤X , λX), where ≤X and λX are the
restrictions of ≤ and λ to X . Given X,Y ⊆ E we will write X ∼ Y if X and Y
are isomorphic as pomsets.

Definition 4 (pomset transition and step). Let E be a pes and let C ∈
C(E). Given ∅ �= X ⊆ E, if C ∩ X = ∅ and C′ = C ∪ X ∈ C(E) we write

C
X

−−→ C′ and call it a pomset transition from C to C′. When the events in

X are pairwise concurrent, we say that C
X

−−→ C′ is a step. When X = {e}

we write C
e

−−→ C′ instead of C
{e}
−−→ C′.

A pes E is called image finite if for any C ∈ C(E) and a ∈ Λ, the set of events

{e ∈ E | C
e

−−→ C′ ∧ λ(e) = a} is finite. All the pess considered in this
paper will be assumed to be image finite. As it commonly happens when relating
modal logics and bisimilarities, this assumption is crucial for getting the logical
characterisation of the various bisimulation equivalences in Section 4.

2.2 Concurrent Behavioural Equivalences

Behavioural equivalences which capture to some extent the concurrency features
of a system, can be defined on the transition system where states are configura-
tions and transitions are pomset transitions.

Definition 5 (pomset, step bisimulation). Let E1, E2 be pess. A pomset
bisimulation is a relation R ⊆ C(E1) × C(E2) such that if (C1, C2) ∈ R and

C1

X1−−→ C′
1 then C2

X2−−→ C′
2, with X1 ∼ X2 and (C′

1, C
′
2) ∈ R, and vice

versa. We say that E1, E2 are pomset bisimilar, written E1 ∼p E2, if there exists
a pomset bisimulation R such that (∅, ∅) ∈ R.

Step bisimulation is defined analogously, replacing general pomset transitions
with steps. We write E1 ∼s E2 when E1 and E2 are step bisimilar.

While pomset and step bisimilarity only consider the causal structure of the
current step, (hereditary) history preserving bisimilarities are sensible to the
way in which the executed events depend on events in the past. In order to
define history preserving bisimilarities the following definition is helpful.

Definition 6 (posetal product). Given two pess E1, E2, the posetal product
of their configurations, denoted C(E1)×̄C(E2), is defined as

{(C1, f, C2) : C1 ∈ C(E1), C2 ∈ C(E2), f : C1 → C2 isomorphism}

A subset R ⊆ C(E1)×̄C(E2) is called a posetal relation. We say that R is down-
ward closed when for any (C1, f, C2), (C′

1, f
′, C′

2) ∈ C(E1)×̄C(E2), if (C1, f, C2) ⊆
(C′

1, f
′, C′

2) pointwise and (C′
1, f

′, C′
2) ∈ R, then (C1, f, C2) ∈ R.
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Definition 7 ((hereditary) history preserving bisimulation). A history
preserving (hp-)bisimulation is a posetal relation R ⊆ C(E1)×̄C(E2) such that if

(C1, f, C2) ∈ R and C
e1−−→ C′

1 then C2

e2−−→ C′
2, with (C′

1, f [e1 �→ e2], C′
2) ∈

R, and vice versa. We say that E1, E2 are history preserving (hp-)bisimilar and
write E1 ∼hp E2 if there exists an hp-bisimulation R such that (∅, ∅, ∅) ∈ R.

A hereditary history preserving (hhp-)bisimulation is a downward closed hp-
bisimulation. The fact that E1, E2 are hereditary history preserving (hhp-)bisimilar
is denoted E1 ∼hhp E2.

3 A Logic for True Concurrency

In this section we introduce the syntax and the semantics of our logic, where
formulae predicate about events in computations and their dependencies as prim-
itive concepts. The logic is interpreted over pess, but it could be equivalently
interpreted over any formalism with a notion of event, causality and consistency.

As a first step we define a quite general syntax and the semantics of the two
distinctive operators. Our logic for concurrency will then be obtained by filtering
out formulae which do not satisfy a suitable well-formedness condition.

In order to keep the notation simple, lists of variables like x1, . . . , xn will be
denoted by x and, abusing the notation, lists will be sometimes used as sets.

Definition 8 (syntax). Let Var be a denumerable set of variables ranged over
by x, y, z, . . .. The syntax of the formulae over the set of labels Λ is defined as
follows:

ϕ ::= (x,y < a z)ϕ | 〈z〉ϕ | ϕ ∧ ϕ | ¬ϕ | �
The operator (x,y < a z) acts as a binder for variable z, as clarified by the
following notion of free variables in a formula.

Definition 9 (free variables). The set of free variables of a formula ϕ is
denoted fv (ϕ) and it is inductively defined by:

fv((x,y < a z)ϕ) = (fv (ϕ) \ {z}) ∪ x ∪ y fv (〈z〉ϕ) = fv (ϕ) ∪ {z}
fv(ϕ1 ∧ ϕ2) = fv (ϕ1) ∪ fv (ϕ2) fv (�) = ∅ fv(¬ϕ) = fv (ϕ)

The satisfaction of a formula is defined with respect to a configuration, repre-
senting the state of the computation. Moreover a partial function η : Var → E
is fixed, called an environment, in order to bind free variables in ϕ to events.

Definition 10 (semantics). Let E = 〈E,≤,#, λ〉 be a pes. For C ∈ C(E) a
configuration, ϕ a formula and η : Var → E an environment such that fv (ϕ) ⊆
dom(η), satisfaction E , C |=η ϕ is defined as follows:

E , C |=η (x,y < a z)ϕ if there is e ∈ E \ C, such that
- λ(e) = a and C 	 e, η(x) < e, η(y) || e
- E , C |=η′ ϕ, where η′ = η[z �→ e]

E , C |=η 〈z〉ϕ if C
η(z)
−−−→ C′ and E , C′ |=η ϕ
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The semantics of propositional connectives is defined as usual. We say that a
pes E satisfies a closed formula ϕ, written E |= ϕ, when E , ∅ |=∅ ϕ.

Intuitively, the formula

(x1 . . . xn, y1 . . . ym < a z)ϕ

holds in C if in the future of such a configuration there is an a-labelled event e,
and binding e to the variable z, the formula ϕ holds. Such an event is required
to be caused (at least) by the events already bound to x1 . . . xn, and to be in-
dependent (at least) from those bound to y1 . . . ym. We stress that the event
e might not be currently enabled; it is only required to be consistent with the
current configuration, meaning that it could be enabled in the future of the cur-
rent configuration. The formula 〈z〉ϕ says that the event bound to z is currently
enabled, hence it can be executed producing a new configuration which satisfies
formula ϕ. To simplify the notation we write (a z)ϕ for ( < a z)ϕ and we often
omit trailing � at the end of the formulae.

b d

a ���� c

b ������ d

a

���
���

a b �� d

b b

a �� a

b

a

E1 E2 E3 E4 E5

Fig. 1.

As an example, consider the pes E1 in Fig. 1, corresponding to the CCS
process a.b+ c.d, where curly lines represent immediate conflict and the causal
order proceeds upwards along the straight lines. The empty configuration sat-
isfies the closed formula (bx), i.e., E1 |= (bx), even if the b-labelled event is
not immediately enabled. Also E1 |= (bx) ∧ (d y), since there are two possi-
ble (incompatible) computations that starts from the empty configuration and
contain, respectively, a b-labelled and a d-labelled event. On the other hand, if
ϕ = (a z)〈z〉 ((bx)∧(d y)) then E1 �|= ϕ since after the execution of the a-labelled
event, E1 reaches a configuration that does not admit a future containing an
event labelled by d. As a further example, the formula ϕ above is satisfied by
the pess E2 and E3 in Fig. 1 corresponding respectively to the process a.(b+ d)
and a | (b + d), whereas the formula (a z)〈z〉 (z < bx) is satisfied only by E3.

It is worth noticing that the semantics of the binding operator does not pre-
vent from choosing for z an event e that has been already bound to a different
variable, i.e., the environment function η needs not to be injective. This is essen-
tial to avoid the direct observation of conflicts. Consider for instance the pess
associated to the hhp-equivalent processes a + a and a: in order to be also log-
ically equivalent, they both must satisfy the formula (a z)(a z′). Hence for the
second pes, both z and z′ should be bound to the unique a-labelled event. On
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the other hand, observe that both pess falsify the formula (a z)(a z′)〈z〉 〈z′〉 ,
since either z and z′ will be bound to the same event, which cannot be executed
twice, or they will be bound to conflicting events.

Still, the logic as it is defined up to now is too powerful since it allows to ob-
serve conflicts through a combination of the binder and the execution modality.
For instance, consider the pess E4 and E5 in Fig. 1, corresponding to the processes
a.b+ a.b and a.b and take formula ϕ = (a x)(b y)〈x〉 ¬〈y〉 . Then E5 �|= ϕ, while
E4 |= ϕ, since only in E4 the variables x and y can be bound to conflicting events
(e.g., x could be bound to the a-labelled event on the left and y to the b-labelled
event on the right). In a similar way, the logic allows one to distinguish the pess
corresponding to any process from that corresponding to the non-deterministic
choice between that process and itself, which instead are equated by virtually
any behavioural equivalence.

In order to disallow the observation of conflicts and avoid this phenomenon,
we restrict our logic to well-formed formulae, that “syntactically” ensure that (i)
the free variables in any subformula will always refer to events consistent with
the current configuration and (ii) the variables which are used as causes/non-
causes, i.e., x and y in (x,y < a z)ϕ, will be bound to be pairwise consistent
events.

This is formalised by the definition below. Consistency constraints are rep-
resented by a relation on variables Co ⊆ V ar × V ar, where (x, y) ∈ Co means
that x and y must be bound to consistent events. We write (x,y) for the set
{(x, y) : x ∈ x ∧ y ∈ y, x �= y}.

Definition 11 (L: the logic of well-formed formulae). A formula ϕ is
called well-formed if Co  ϕ, for some Co ⊆ V ar × V ar, where the entailment
relation  is defined by the rules below:

(x ∪ y,x ∪ y) ⊆ Co Co ∪ (z,x ∪ y)  ϕ
Co  (x,y < a z)ϕ

({z}, fv(ϕ)) ∈ Co Co  ϕ
Co  〈z〉ϕ

Co  ϕ
Co  ¬ϕ

Co  ϕ1 Co  ϕ2

Co  ϕ1 ∧ ϕ2 Co  �

We denote by L the logic consisting of the well-formed formulae.

According to the first rule, the formula (x,y < a z)ϕ is well-formed if the con-
straints in Co ensure that x ∪ y is pairwise consistent and ϕ can be proved
well-formed using also the fact that the chosen z will be consistent with x and
y. The second rule, instead, says that 〈z〉ϕ is well-formed when the constraints
in Co ensure that z is consistent with the free-variables used in ϕ and ϕ itself is
well-formed in Co.

As an example, the formula (ax)(b y)〈x〉 〈y〉 is not well-formed (since it “exe-
cutes” x and y which, in principle, can be bound to events in conflict) as opposed
to (ax)(x < b y)〈x〉 〈y〉 , where the two executed events are certainly consistent
(they are causally dependent). Notice that the formula (ax)(x < b y)〈y〉 〈x〉 is
also well formed, even if it is always false since it tries to execute an event before
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executing one of its causes. Finally, according to the rules (ax)〈x〉 (b y)〈y〉 is also
deemed a well-formed formula even though there is no constraint on y. This can
be understood recalling that the semantics of the binding operator requires y to
be bound to an event that is consistent with the current state, hence consistent
with the event bound to x.

When dealing with the semantics of formulae in L we will always consider
environments η that reflect the corresponding consistency constraints.

Definition 12 (legal environment). Let E be a pes. Given a configuration
C ∈ C(E) and a formula ϕ in L, a legal environment for C and ϕ is an envi-
ronment η : Var → E such that fv (ϕ) ⊆ dom(η), η(fv (ϕ)) is consistent with C
and there exists Co such that Co  ϕ and ∀(x, y) ∈ Co, η(x)	 η(y).

The semantics of the logic L is then formally defined as in Definition 10, where
η is assumed to be a legal environment for C and ϕ. It is easy to see that
this assumption properly fits with Definition 10, i.e., whenever we recur on a
subformula, we are surely checking satisfiability in an environment legal for the
configuration and the formula.

Definition 13 (logical equivalence). Let L′ be a fragment of L. We say that
two pes E1, E2 are logically equivalent in L′, written E1 ≡L′ E2 when they satisfy
the same closed formulae.

3.1 Examples and Notation

In this subsection we provide some more examples illustrating the expressiveness
of the logic. We start by introducing some handy notation, which will improve
the readability of the formulae.

Immediate execution. We will write

〈|x,y < a z|〉ϕ

for the formula (x,y < a z)〈z〉ϕ that chooses a consistent event not belonging
to the current configuration, and immediately executes it.

Steps. We introduce a notation also to predicate the existence, resp., the im-
mediate execution, of concurrent events, specifying also their dependencies. We
will write

((x,y < a z)⊗ (x′,y′ < b z′))ϕ and (〈|x,y < a z|〉⊗ 〈|x′,y′ < b z′|〉)ϕ

to declare the existence, resp., the immediate execution, of two concurrent events,
labelled a and b, which are bound to z and z′, and then ϕ holds. These nota-
tions correspond, respectively, to the formulae (x,y < a z)(x′,y′, z < b z′)ϕ and
( (x,y < a z)⊗ (x′,y′ < b z′) )〈z〉 〈z′〉ϕ. In particular, the ability to perform a
step consisting of two concurrent events labelled by a and b is simply expressed
by the formula 〈|ax|〉⊗ 〈|b y|〉. Clearly, this notation can be generalised to the
quantification and the immediate execution of any number of concurrent events.
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Fig. 2.

Example 1 (Interleaving vs. True-concurrency). As a first example, consider the
pess E6 and E7 in Fig. 2. They are equated by interleaving equivalences and kept
distinct by any true-concurrent equivalence. The formula ϕ1 = 〈|a x|〉〈|x < b y|〉 =
(〈|ax|〉⊗ 〈|b y|〉) is true only on E7, while ϕ2 = 〈|a x|〉〈|x < b y|〉 is true only on E6.

Example 2 (Dependent vs Independent Events). The need of considering both
causal dependency and independency in the binding operator of our logic is ex-
emplified below. Consider the pess E6 and E8 in Fig. 2. They are distinguished by
any true-concurrent equivalence, but since they have the same causal structure,
in order to pinpoint how they differ, the logic must be able to express the presence
of two concurrent events: indeed E8 |= 〈|ax|〉⊗ 〈|b y|〉, while E6 �|= 〈|ax|〉⊗ 〈|b y|〉.
On the other hand, expressing causal dependencies between events is essential to
distinguish, for instance, the pess E7 and E9. These are equated by step bisimula-
tion and distinguished by any equivalence which observes causality, e.g., pomset
bisimulation.

Example 3 (Conflicting Futures). Consider the following two pess, which can be
proved to be hp-bisimilar but not hhp-bisimilar:
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Intuitively, they differ since the causes of the c-labelled and d-labelled events are
in conflict in the first pes and independent in the second one. This is captured by
the formula ϕ = ((ax)⊗ (b y))((x < c z1)∧ (y < d z2)), which is satisfied only by
the right-most pes. Notice that the formula ϕ exploits the ability of the logic L
of quantifying over events in conflict with previously bound events: formula ϕ is
satisfied in the rightmost pes by binding x and y to the rightmost a-labelled and
b-labelled events; then both z1 and z2 are bound to events which are in conflict
with either x or y. For this, the possibility of quantifying over an event without
executing it is essential: the formula ϕ′ = (〈|ax|〉⊗ 〈|b y|〉)((x < c z1)∧ (y < d z2))
would be false in both pess since the execution of the first two events leads to a
configuration that is no further extensible.

As a final example, consider the two CCS processes P = a|(b+c)+a|b+b|(a+c)
and Q = a|(b+c) + b|(a+c). They contain no causal dependencies, but they
exhibit a different interplay between concurrency and branching. Accordingly,
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the corresponding pess can be proved to be hp-bisimilar but not hhp-bisimilar.
Intuitively, this difference comes from the fact that only the process P includes
two concurrent events a and b such that, independently from their execution
order, no c-labelled event will be enabled. Such a difference can be expressed in
L by the formula ((ax)⊗ (b y))(¬(x < c z)∧¬(y < c z′)), which is satisfied only
by the pes corresponding to P .

4 A Logical Characterisation of Concurrent Equivalences

In this section we study the logical equivalences induced by fragments of L. We
have already argued that no formula in L distinguishes the pess a and a#a, hence
the logical equivalence induced by L is surely coarser than isomorphism. We next
show that the logical equivalence induced by L is hhp-bisimulation. Moreover,
we identify suitable fragments of L corresponding to coarser equivalences.

Theorem 1 (hhp-bisimilarity). Let E1 and E2 be pess. Then E1 ∼hhp E2 iff
E1 ≡L E2.

4.1 From Hennessy-Milner Logic to HP-Logic

Hhp-bisimilarity is the finest equivalence in the spectrum of true concurrent
equivalences in [2]. Coarser equivalences such as step, pomset and hp-bisimilarity,
can be captured by suitable fragments of L summarised in Fig. 3, which can be
viewed as the logical counterpart of the true concurrent spectrum.

Interestingly, in each of these fragments after predicating the existence of
an event we must execute it. As a consequence, differently from what happens
in the full logic, in the fragments it is impossible to refer to events in con-
flict with already observed events. Intuitively, behavioural equivalences up to
hp-bisimilarity observe events only by executing them. Hence they cannot fully
capture the interplay between concurrency and branching, which is indeed dis-
tinctive of hhp-equivalence.

HM Logic LHM ϕ ::= 〈|a x|〉ϕ | ϕ ∧ ϕ | ¬ϕ | �

Step Logic Ls ϕ ::= (〈|a1 x1|〉 ⊗ · · · ⊗ 〈|an xn|〉) ϕ | ϕ ∧ ϕ | ¬ϕ | �

Pomset Logic Lp ϕ ::= 〈|x, y < a z|〉ϕ | ¬ϕ | ϕ ∧ ϕ | �
where ¬, ∧ are used only on closed formulae.

HP Logic Lhp ϕ ::= 〈|x, y < a z|〉ϕ | ¬ϕ | ϕ ∧ ϕ | �

Fig. 3. Fragments corresponding to behavioral equivalences
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Hennessy-Milner Logic. A first simple observation is that Hennessy-Milner
logic can be recovered as the fragment of L where only the derived modality
〈|ax|〉ϕ (with no references to causally dependent/concurrent events) is allowed.
In words, whenever we state the existence of an enabled event we are forced to
execute it. Moreover, since no dependencies can be expressed, the bound variable
x is irrelevant. The induced logical equivalence is thus bisimilarity [3] (recall that
we consider only image finite pes’s).

Step logic. A fragment Ls corresponding to step bisimilarity naturally arises as
a generalisation of HM logic, where we can refer to sets of concurrently enabled
events. More precisely, as shown in Fig. 3, Ls is the fragment of L where only
the derived modality 〈|a1 x1|〉⊗ · · ·⊗ 〈|an xn|〉 is used, allowing to predicate on
the possibility of performing a parallel step, but without any reference to causal
dependencies. Note that all formulae in Ls are closed, and thus environments
are irrelevant in their semantics (as well as the names of the bound variables).

As an example, consider the two pess E6 and E7 in Fig. 2. They are bisimilar
but not step bisimilar since only E7 can execute the step consisting of a and b;
accordingly, the formula 〈|a|〉⊗ 〈|b|〉 in Ls is true only on E7.

Theorem 2 (step bisimilarity). Let E1 and E2 be pess. Then E1 ∼s E2 iff
E1 ≡Ls E2.

Pomset logic. The logic Lp for pomset bisimilarity consists of a fragment of
L which essentially predicates about the possibility of executing pomset transi-
tions. Even in Lp the events must be immediately executed when quantified, but
it is now possible to refer to dependencies between events. However, propositional
connectives (negation and conjunction) can be used only on closed formulae.

Intuitively, in this logic closed formulae characterize the execution of a pomset.
Then, the requirement that the propositional operators are used only on closed
(sub)formulae prevents pomset transitions from being causally linked to the
events in the past. These ideas are formalised by the results below, starting
with a lemma showing that the execution of a pomset can be characterized as a
formula in Lp.

Definition 14 (pomsets as formulae in Lp). Let px = ({x1, . . . , xn},≤px ,
λpx) be a labelled poset, whose elements {x1, . . . , xn} are variables ordered by
≤px . Given a formula ϕ ∈ Lp, we denote by 〈| px|〉ϕ the formula inductively
defined as follows. If px is empty then 〈| px|〉ϕ = ϕ. If px = p′x ∪ {x}, where x is
maximal with respect to ≤px , then if y = {x′ ∈ p′x | x′ ≤px x}, z = p′x \ y, and
λpx(x) = a, then 〈| px|〉ϕ = 〈| p′x|〉 〈|y, z < ax|〉ϕ.

Lemma 1 (pomsets in Lp). Let E be a pes and let C ∈ C(E) be a configura-
tion. Given a labelled poset px = ({x1, . . . , xn},≤px , λpx), then

E , C |=η 〈| px|〉ϕ iff

C
X

−−→ C′ where X = {e1, . . . , en} is a pomset s.t. X ∼ px

and E , C′ |=η′ ϕ, with η′ = η[x1 �→ e1, . . . , xn �→ en]
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As an example, consider the two pess E7 and E9 in Fig. 2. They are step
bisimilar but not pomset bisimilar since only the second one can execute the
pomset ({a, b}, a < b). Accordingly, the formula ϕ = 〈|a x|〉〈|x < b y|〉 in Lp is
satisfied only by E9.

Theorem 3 (pomset bisimilarity). Let E1 and E2 be pess. Then E1 ∼p E2

iff E1 ≡Lp E2.

History preserving logic. The fragment Lhp corresponding to hp-bisimilarity
is essentially the same as for pomset logic, where we relax the condition about
closedness of the formulae the propositional connectives are applied to. Intu-
itively, in this way a formula ϕ ∈ Lhp, besides expressing the possibility of
executing a pomset px, also predicates about its dependencies with previously
executed events (bound to the free variables of ϕ).

The two pess below can be proved to be pomset equivalent but not hp-
equivalent:

b

a b

��
��

b

a �� a b��

Intuitively, they allow the same pomset transitions, but they have a different
“causal branching”. Indeed, only in the left-most pess after the execution of
an a-labelled event we can choose between an independent and a dependent b-
labelled event. Formally, the formula 〈|ax|〉(〈|x < b y|〉∧(〈|x < b z|〉) in Lhp is true
only on the left-most pes.

Theorem 4 (hp-bisimilarity). Let E1 and E2 be pess. Then E1 ∼hp E2 iff
E1 ≡Lhp

E2.

5 Conclusions: Related and Future Work

We have introduced a logic for true concurrency, which allows to predicate on
events in computation and their mutual dependencies (causality and concur-
rency). The logic subsumes standard HM logic and provides a characterisation of
the most widely known true concurrent behavioural equivalences: hhp-bisimilarity
is the logical equivalence induced by the full logic, and suitable fragments are iden-
tified which induce hp-bisimilarity, pomset and step bisimilarity.

As we mentioned in the introduction, there is a vast literature relating logical
and operational views of true concurrency, however, to the best of our knowledge,
a uniform logical counterpart of the true concurrent spectrum is still missing.
An exhaustive account of the related literature is impossible; we just recall here
the approaches that most closely relate to our work.

In [5,15,16] the causal structure of concurrent systems is pushed into the logic.
The paper [5] considers modalities which describe pomset transitions, thus pro-
viding an immediate characterization of pomset bisimilarity. Moreover, [5,15,16]
show that by tracing the history of states and adding the possibility of reverting
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pomset transitions, one obtains an equivalence coarser than hp-bisimilarity and
incomparable with pomset bisimilarity, called weak hp-bisimilarity. (We remark
that, despite its name, weak hp-bisimilarity is not related to silent actions.) Our
logic intends to be more general by also capturing the interplay between concur-
rency and branching, which is not observable at the level of hp-bisimilarity.

A recent work [8,9] introduces a fixpoint modal logic for true concurrent mod-
els, called Separation Fixpoint Logics (SFL). This includes modalities which
specify the execution of an action causally dependent/independent on the last
executed one. Moreover, a “separation operator” deals with concurrently enabled
actions. The fragment of the logic without the separation operator is shown to
capture hp-bisimilarity, while the full logic induces an equivalence which lies in
between hp- and hhp-bisimilarity, still being decidable for finite state systems.
The approach of [8,9] is inspired by the so-called Independence-Friendly Modal
Logic (IFML) [13], which includes a modality that allows to specify that the
current executed action is independent from a number of previously executed
ones. In this sense IFML is similar in spirit to our logic. Although, most of the
equivalences induced by fragments of IFML are not standard in the true concur-
rent spectrum, a deeper comparison with this approach represents an interesting
open issue.

Several classical papers have considered temporal logics with modalities corre-
sponding to the “retraction” or “backward” execution of computations. In par-
ticular [10,11,12] study a so-called path logic with a future perfect (also called
past tense) modality: @aϕ is true when ϕ holds in a state which can reach
the current one with an a-transition. When interpreted over transition systems
with independence, in absence of autoconcurrency, the logic characterises hhp-
bisimilarity. In [10] it is shown that, taking autoconcurrency into account, the
result can be extended at the price of complicating the logic (roughly, the logic
needs an operator to undo a specific action performed in the past).

Compared to these works, the main novelty of our approach resides in the
fact that the logic L provides a characterisation of the different equivalences in
a simple, unitary logical framework. In order to enforce this view, we intend to
pursue a formal comparison with the logics for concurrency introduced in the
literature. It is easy to see that the execution modalities of [8,9] can be encoded
in L since they only refer to the last executed event, while the formulae in L
can refer to any event executed in the past. On the other hand, the “separation
operator” of [8,9], as well as the backward modalities mentioned above (past
tense, future perfect, reverting pomset transitions) are not immediately encod-
able in L. A deeper investigation would be of great help in shading further light
on the truly concurrent spectrum. Moreover L suggests an alternative, forward-
only, operational definition of hhp-bisimulation, which could be inspiring also
for other reverse bisimulations [17].

As a byproduct of such an investigation, we foresee the identification of in-
teresting extensions of the concurrent spectrum, both at the logical and at the
operational side. For instance, a preliminary investigation suggests that the frag-
ment of L where only events consistent with the current environment can be
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quantified induces an equivalence which admits a natural operational definition
and lies in between hp- and hhp-bisimilarity, still being different from the equiv-
alences in [8,9]. Moreover, the logic in its present form only allows to describe
properties of finite, bounded computations. A more powerful specification logic,
well-suited for describing properties of unbounded, possibly infinite computa-
tions can be obtained by enriching L with some form of recursion. In particular,
from some first experiments, the idea of “embedding” our logic into a first order
modal mu-calculus in the style of [18,19] seems promising. For this purpose, also
the fixpoint extension of the Independence-Friendly Modal Logic in [20] could
be inspiring. The resulting logic would allow to express non-trivial causal prop-
erties, like “any a action can be always followed by a causally related b action
in at most three steps”, or “an a action can be always executed in parallel with
a b action”.

Connected to this, model-checking and decidability issues are challenging di-
rections of future investigation (see [21] for a survey focussed on partial order
temporal logics). It is known that hhp-bisimilarity is undecidable, even for finite
state systems [22], while hp-bisimilarity is decidable. Characterising decidable
fragments of the logic could be helpful in drawing a clearer separation line be-
tween decidability and undecidability of concurrent equivalences. A promising
direction is to impose a bound on the “causal depth” of the future which the logic
can quantify on. In this way one gets a chain of equivalences, coarser than hhp-
bisimilarity, which should be closely related with n-hhp bisimilarities introduced
and shown to be decidable in [23]. As for verification, we aim at investigating the
automata-theoretic counterpart of the logic. In previous papers, hp-bisimilarity
has been characterised in automata-theoretic terms using HD-automata [6] or
Petri nets [7]. It seems that HD-automata [6] could provide a suitable automata
counterpart of the fragment Lhp. Also the game-theoretical approach proposed
in [8,9] for the fixpoint separation logic can be a source of inspiration.
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Abstract. Design by Contract (DbC) promotes reliable software development
through elaboration of type signatures for sequential programs with logical pred-
icates. This paper presents an assertion method, based on the π-calculus with full
recursion, which generalises the notion of DbC to multiparty distributed inter-
actions to enable effective specification and verification of distributed multiparty
protocols. Centring on global assertions and their projections onto endpoint as-
sertions, our method allows clear specifications for typed sessions, constraining
the content of the exchanged messages, the choice of sub-conversations to follow,
and invariants on recursions. The paper presents key theoretical foundations of
this framework, including a sound and relatively complete compositional proof
system for verifying processes against assertions.

1 Introduction

This paper introduces an assertion method for specifying and verifying distributed mul-
tiparty interactions, drawing ideas from a framework known as Design-by-Contract
(DbC), which is widely used in practice for sequential computation [13,18]. DbC [25]
specifies a contract between a user and a sequential program by elaborating the type
signature of the program with pre/post-conditions and invariants. Instead of saying “the
method fooBar should be invoked with a string and an integer: then it will return (if
ever) another string”, DbC allows us to say “the method fooBar should be invoked with
a string representing a date d between 2007 and 2008 and an integer n less than 1000
then it will (if ever) return a string representing the date n days after d”. A type signature
describes a basic shape of how a program can interact with other programs, stipulating
its key interface to other components, which may be developed by other programmers.
By associating signatures with logical predicates, DbC enables a highly effective frame-
work for specifying, validating and managing systems’ behaviour, usable throughout all
phases of software development [21,23,28]. As a modelling and programming practice,
DbC encourages engineers to make contracts among software modules precise [14,25],
and build a system on the basis of these contracts.

The traditional DbC-based approaches are however limited to type signature of se-
quential procedures. A typical distributed application uses interaction scenarios that are

Æ This work is partially supported by EPSRC EP/F003757, EP/F002114, EP/G015635 and
EP/G015481, Leverhulme Trust Award “Tracing Networks”.
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much more complex than, say, request-reply. To build a theory that extends the core idea
of DbC to distributed applications, we consider a generalised notion of type signature
for distributed interactions centring on abstraction units, called sessions. A session con-
sists of a structured series of message exchanges among multiple participants. Each ses-
sion follows a stipulated protocol, given as a type called session type [3,19,20], which
prescribes a conversation scenario among its participants. Two or more sessions can
interleave in a single endpoint. For example, a session for an electronic commerce will
run interleaved with one for a financial transaction for payment. The communications
in a distributed application are articulated as a collection of such sessions.

On this basis, we introduce a theory of assertions for distributed interactions centring
on global assertions. A global assertion specifies a contract for participants in a multi-
party session by elaborating a session type with logical predicates. A session type only
specifies a skeletal protocol: it does not, for example, refer to constraints on message
values except their types. Just as in the traditional DbC, the use of logical predicates
allows us to specify more refined protocols, regarding, among others, content of mes-
sages, how choice of sub-conversations is made based on preceding interactions, and
what invariants may be obeyed in recursive interactions. The key ideas are presented in
Figure 1, which we illustrate below.

(0,1) A specification for a multiparty session is given as a global assertion G , namely a
protocol structure annotated with logical predicates. A minimal semantic criterion,
well-assertedness of G (§ 3.1), characterises consistent specifications with respect
to the temporal flow of events, to avoid unsatisfiable specifications.

(2) G is projected onto endpoints, yielding one endpoint assertion (Ti) for each partic-
ipant, specifying the behavioural responsibility of that endpoint (§ 4). The consis-
tency of endpoint assertions are automatically guaranteed once the original global
assertion is checked to be well-asserted.

(3) Asserted processes, modelled with the π-calculus1 annotated with predicates (§ 5.1),
are verified against endpoint assertions (§ 5.2) through a sound and relatively

1 For the sake of a simpler presentation, the present paper does not treat name passing in full
generality, except for private channel passing in session initiation. The theory however can
incorpoate these elements, as explained in Section 7.
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Fig. 2. Global assertion for the protocol

complete compositional proof system (§ 6). Completeness, proved through gen-
eration of principal formulae, yields a relative decision procedure for satisfiability.

Our contributions include an algorithmic validation of consistency of global assertions
(Prop. 3.2 and 4.3); semantic foundations of global assertions through labelled transi-
tions (Prop. 6.4 and 6.3); a compositional proof system for validating processes against
assertions (Theorem 6.5), leading to predicate error freedom (Theorem 6.6) which en-
sures that the process will meet its obligations assuming that the remaining parties do
so. Theorem 6.7 is completeness. § 7 concludes with further results and related work.

2 DbC for Distributed Multiparty Interactions

The theory we present centres on the notion of global assertion. A global assertion uses
logical formulae to prescribe, for each interaction specified in the underlying session
type, what the sending party must guarantee, and dually what the receiving party can
rely on. Concretely:

1. Each message exchange in a session is associated with a predicate which constrains
the values carried in the message (e.g., “the quantity on the invoice from seller to
buyer equals the quantity on the order”);

2. Each branch in a session is associated with a predicate which constrains the selec-
tion of that branch (e.g., “seller chooses the ‘sell’ option for a product if the ordered
quantity does not exceed the stock”);

3. Each recursion in a session is associated with an invariant representing an obliga-
tion to be maintained by all parties at each repetition of the recursion (e.g., “while
negotiating, seller and buyer maintain the price per unit about a fixed threshold”).

As an illustration, Figure 2 describes a simple multiparty session among the participants
Buyer, Seller, and Bank exchanging messages whose content is represented by the
interaction variables vo, vp (of type Int) and va (of type Bool). Buyer asynchronously
sends an offer vo, then Seller selects either to recursively start negotiating (hag) or
to accept the offer (ok). In the latter case, Buyer instructs Bank to make a payment vp.
Finally, Bank sends Seller an acknowledgement va. The recursion parameter p vo is
initially set to 100 and, upon recursive invocation, it takes the value that vo had in the
previous recursive invocation. This allows us to compare the current content of vo with
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the one of the previous recursion instance (cf. A2 below). In Figure 2, the recursion
invariant A states that p vo is always greater or equal than 100; Buyer guarantees A1
which, dually, Seller relies upon; by A2, Buyer has to increase the price during ne-
gotiations until an agreement is reached; the value of the (last) offer and the payment
must be equal by A3, while A4 does not constrain va.

3 Global Assertions

We use the syntax of logical formulae, often called predicates, as follows.

A,B ::� e1 � e2 � e1 � e2 � φ�e1, . . . ,en� � A�B � �A � �v�A�

where ei ranges over expressions (which do not include channels) and φ over pre-
defined atomic predicates with fixed arities and types [24, §2.8]. We denotes the set
of free variables of A with var�A�, similarly for var�e�. We fix a model of the predi-
cates, called underlying logic, for which we assume the validity of closed formulae to
be decidable.

Global assertions (ranged over by G ,G �, . . .) elaborate global session types in [20]
with logical formulae. The syntax is given below:

G ::� p	 p� : k �ṽ : S̃�
A�.G
� p	 p� : k 

A j�l j : G j� j�J

� µt�ẽ
�ṽ : S̃�
A�.G

� t�ẽ


� G ,G �

� end

– p,p�, .. are participants,
– k,k�, .. are channels,
– u,v, .. are interaction variables,
– S,S�, .. are sorts.

Interaction p	 p� : k �ṽ : S̃�
A�.G describes a communication between a sender p and
a receiver p� via the kth session channel (k is a natural number), followed by G . The
variables in the vector ṽ are called interaction variables and bind their occurrences in
A and G ; interaction variables are sorted by sorts S (Bool, Int, ...) that denote types for
first-order message values. The predicate A constrains the content of ṽ: the sender p
guarantees A and the receiver p� relies on A (like in the rely-guarantee paradigm [22]).

Branching p	 p� : k 

A j�l j : G j� j�J allows the selector p to send to participant p�,
through k, a label li from 
l j� j�J (J is a finite set of indexes) if p guarantees Ai (upon
which p� can rely). Once li is selected, Gi is to be executed by all parties.

Recursive assertion µt�ẽ
�ṽ : S̃�
A�.G (cf. [11], t is an assertion variable) specifies
how a recursive session, which may be repeated arbitrarily many times, should be car-
ried out through interactions among participants. The formal parameters ṽ are a vector
of pairwise distinct variables sorted by a vector of sorts S̃ of the same length (each vi in
ṽ has sort Si of S̃); ṽ binds their free occurrences in A. The initialisation vector ẽ denotes
the initial values for the recursion, each ei instantiating vi in ṽ. The recursion invariant
A specifies the condition that needs be obeyed at each recursion instantiation; recursion
instantiation, of the form t�ẽ
, is to be guarded by prefixes, i.e. the underlying recursive
types should be contractive. A recursive assertion can be unfolded to an infinite tree, as
in the equi-recursive view on recursive types [30].

Composition G ,G � represents the parallel interactions specified by G and G �, while
end represents the termination. Sorts and trailing occurrences of end are often omitted.

We write p � G when p occurs in G . For the sake of simplicity we avoid linearity-
check [3] by assuming that each channel in G is used (maybe repeatedly) only between
two parties: one party for input/branching and by the other for output/selection.
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Example 3.1 (Global Assertions). The protocol described in § 2 is modelled by
Gneg � µt�100��p vo : Int��A�. Buyer� Seller : k1 �vo : Int��A1�.

Seller� Buyer : k2��A2�hag : t�vo�,�true�ok : Gok�
Gok � Buyer� Bank : k3 �vp : Int��A3�. Bank� Seller : k4 �va : Bool��A4�. end

where k1, k2, k3, and k4 are channels and the recursion parameter p vo (initially set to
100) denotes the offer of Buyer in the previous recursion instance.

3.1 Well Asserted Global Assertions

When setting up global assertions as a contract among multiple participants, we should
prevent inconsistent specifications, such as those in which it is logically impossible
for a participant to meet the specified obligations. Below we give two constraints on
predicates of global assertions that guarantee consistency.

Let I �G� be the set of variables occurring in G ; a participant p knows v � I �G� if v
occurs in an interaction of G involving p (this relation can be computed effectively, see
[31]). I �G��p denotes the set of variables of G that p � G knows.

History-sensitivity. A predicate guaranteed by a participant p can only contain those
interaction variables that p knows.

Temporal-satisfiability. For each possible set of values satisfying A and, for each pred-
icate A� appearing after A, it is possible to find values satisfying A�.

Consider the following examples:

pA � pB : k1�v : Int��true�. pB � pC : k2 �v� : Int��true�. pC � pA : k3 �z : Int��z 	 v�. end

pA � pB : k1�v : Int��v 
 10� pB � pA : k2 �z : Int��v	 z� z 	 6�. end.

The first global assertion violates history-sensitivity since pC has to send z such that
z � v without knowing v. The second global assertion violates temporal-satisfiability
because if pA sends v� 6, which satisfies v� 10, then pB will not be able to find a value
that satisfies 6 � z� z� 6.

Assertions satisfying history-sensitivity and temporal-satisfiability are called well-
asserted assertions. For the formal definitions, including inductive rules to check well-
assertedness, see [31].

Proposition 3.2 (Well-assertedness). Checking well-assertedness of a given global
assertion is decidable if the underlying logic is decidable.

4 Endpoint Assertions and Projection

Endpoint assertions, ranged over by T ,T �, .., specify the behavioural contract of a ses-
sion from the perspective of a single participant. The grammar is given as follows.

T ::� k!�ṽ : S̃��A�;T � µt�ẽ��ṽ : S̃��A�.T � k&��Ai�li : Ti�i�I

� k?�ṽ : S̃��A�;T � t�ẽ� � k
��A j�l j : T j� j�I � end

In k!�ṽ : S̃�
A�;T , the sender guarantees that the values sent via k (denoted by S̃-sorted
variables ṽ) satisfy A, then behaves as T ; dually for the receiver k?�ṽ : S̃�
A�;T .
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In k� 

A j�l j : T j� j�I the selector guarantees A j when choosing l j on k; dually
k&

A j�l j : T j�i�I states that A j can be assumed when branching at k on a label l j.
Assertion µt�ẽ
�ṽ : S̃�
A�.T constrains parameters ṽ of type S̃ which initially take val-
ues ẽ; the invariant of the recursion is A.

The projection of predicate A on participant p, written A�p, existentially quantifies
all the variables of A that p does not know, and is defined as �Vext�A� where Vext �
var�A��I �G��p. Also, ẽ�p are the expressions in ẽ including only such that var�ei� �
I �G� �p. The projection function in Definition 4.1 maps global assertions, predicates
and participants to endpoint assertions.

Definition 4.1 (Projection). Given G and A, the projection of G for a participant p wrt
A is denoted by �G� �A

p and, assuming p1 � p2, recursively defined as follows.

�1� �p1 � p2 : k �ṽ : S̃��A�.G �� �AP
p �

���
��

k!�ṽ : S̃��A�.�G �� �A�AP
p if p� p1

k?�ṽ : S̃���A�AP��p�.�G �� �A�AP
p if p� p2

�G �� �A�AP
p otw

�2� �p1 � p2 : k ��Ai�li : Gi�i�I� �
AP
p �

���
��

k
��Ai�li : �Gi� �
Ai�AP
p �i�I if p� p1

k&���Ai�AP��p�li : �Gi� �
Ai�AP
p �i�I if p� p2

�G1� �
AP�

�
j�I A j

p �� �Gi� �
AP�

�
j�I A j

p � otw

�3� �G1,G2� �
AP
p �

�
�Gi� �

AP
p if p � Gi and p � G j, i � j � �1,2�

end if p � G1 and p � G2

�4� �µt�ẽ��ṽ : S̃��A�.G� �AP
p � µt�ẽ�p��ṽ�p : S��A�p�.�G� �AP

p

�5� �t�ẽ�� �AP
p � t�ẽ�p� �6� �end� �AP

p � end

If no side condition applies, �G� �A
p is undefined. The projection of G on p, denoted

G �p, is given as �G� �true
p .

In (1), value passing interactions are projected. For a send, the projection of a predicate
A consists of A itself. Notice that if G is well-asserted then p1 knows all variables in
A (i.e., A�p1 � A). For a receive, it is not sufficient to verify the non-violation of the
current predicate only. Consider the following well-asserted global assertion:

Seller� Buyer : k1 �cost : Int��cost 	 10�.Buyer� Bank : k2 �pay : Int��pay � cost�.end

The predicate pay� cost is meaningless to Bank since Bank does not know cost; rather
the projection on Bank should be k2?�pay : Int�
�cost�cost � 10� pay� cost��, which
incorporates the constraint between Buyer and Seller. Thus (1) projects all the past
predicates while hiding incorporating the constraints on interactions p2 does not partic-
ipate through existential quantification. This makes (1) the strongest precondition i.e. it
is satisfied iff p2 receives a legal message, avoiding the burden of defensive program-
ming (e.g. the programmer of Bank can concentrate on the case pay� 10).

In (2), the “otw” case says the projection should be the same for all branches. In (3),
each participant is in at most a single global assertion to ensure each local assertion
is single threaded. In (4), the projection to p is the recursive assertion itself with its
predicate projected on p by existential quantification, similarly in (5).
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Example 4.2 (Projection). The projection of Gneg (Example 3.1) on Seller is

Tsel � µt�100��p vo : Int��p vo � 100�;k1?�vo : Int��B�;T2
T2 � k2
��vo 	 p vo�hag : t�vo�,�true�ok : Tok�
Tok � Gok �Seller � k4?�va : Bool��B��

where B � p vo � 100� vo � 100 and B� � �p vo.B� vo � vp.

Below well-assertedness can be defined on endpoint assertions as for global assertions,
characterising the same two principles discussed in §3.1.

Proposition 4.3 (Projections). Let G be a well-asserted global assertion. Then for
each p � G , if G �p is defined then G �p is also well-asserted.

5 Compositional Validation of Processes

5.1 The π-Calculus with Assertions

We use the π-calculus with multiparty sessions [20, §2], augmented with predicates for
checking (both outgoing and incoming) communications.

The grammar of asserted processes or simply processes (P,Q, . . .) is given below.

P ::� a[2..n]�s̃�.P request

� a[p]�s̃�.P accept

� �νa�P hide

� s!�ẽ��ṽ��A�;P send

� s?�ṽ��A�;P receive

� if e then P else Q conditional

� s� �A�l;P select

� s� ��Ai�li : Pi�i�I branch

� P �Q parallel

� µX�ẽt̃��ṽs̃�.P rec def

� X�ẽs̃� rec call

� 0 idle

Prt ::� P � �νs̃�Prt

� s : h̃

� errH � errT

e ::� n � e� e�...

n ::� a � true � false

h ::� l � ñ

On the left, we define programs. a[2..n] �s̃�.P multicasts a session initiationrequest to
each a[p]�s̃�.P (with 2 � p � n) by multiparty synchronisation through a shared name
a. Send, receive, and selection, all through a session channel s, are associated with a
predicate. Branch associates a predicate to each label. Others are standard.

Runtime processes Prt , given in the third column in the grammar, extend programs
with runtime constructs. Process s :h1..hn represents messages in transit through a ses-
sion channel s, assuming asynchronous in-order delivery as in TCP, with each hi denot-
ing either a branching label or a vector of sessions/values. The empty queue is written
s :�. Processes errH and errT denote two kinds of run-time assertion violation: errH
(for “error here”) indicates a predicate violation by the process itself; and errT (“error
there”) a violation by the environment.

Example 5.1 (Seller’s Process). We set Buyer,Seller, Bank to be participants 1,2,3
and define a process implementing the global assertion Gneg in Examples 3.1 and 4.2 as
Pneg � a[2,3] �s̃�.P1 � a[2]�s̃�.P2 � a[3] �s̃�.P3. Let us focus on the Seller

P2 � µX�100, s̃��p vo, s̃�.s1?�vo��B�;Q2
Q2 � if e then �s2 �hag;X�vo, s̃�� else �s2 �ok;Pok� where Pok � s4?�va��B��;0

where B and B� are as in Example 4.2, s̃ � s1, ..,s4, and Q2 uses a policy e to select a
branch (e.g., e� 
vo � 200� vo � p vo�).
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a[2..n]�s̃�.P1 � a[2] �s̃�.P2 � ... � a[n]�s̃�.Pn � �νs̃��P1 � P2 � ... � Pn � s1 :� � ... � sn :�� [R-LINK]

s!�ẽ��ṽ��A�;P � s : h̃ � P�ñ�ṽ� � s : h̃ � ñ �ẽ � ñ�A�ñ�ṽ� � true� [R-SEND]

s?�ṽ��A�;P � s : ñ � h̃ � P�ñ�ṽ� � s : h̃ �A�ñ�ṽ� � true� [R-RECV]

s� ��Ai�li : Pi�i�I � s : l j � h̃ � Pj � s : h̃ � j � I and A j � true� [R-BRANCH]

s� �A�l : P � s : h̃ � P � s : h̃ � l �A � true� [R-SELECT ]

if e then P else Q � P �e � true� if e then P else Q �Q �e � false� [R-IF]

s!�ẽ��ṽ��A�;P � errH �ẽ � ñ�A�ñ�ṽ� � false� [R-SENDERR ]

s?�ṽ��A�;P � s : ñ � h̃ � errT � s : h̃ �A�ñ�ṽ� � false� [R-RECVERR ]

s� ��Ai�li : Pi�i�I � s : l j � h̃ � errT � s : h̃ � j � I and A j � false� [R-BRANCHERR ]

s� �A�l : P � errH �A � false� [R-SELECTERR ]

Fig. 3. Reduction: non-error cases (top) - error cases (bottom)

The reduction rules with predicate checking are given in Figure 3, which generate
	 by closing the induced relation under � and ν and taking terms modulo the standard
structural equality2 [20]. The satisfaction of the predicate is checked at each commu-
nication action: send, receive, selection and branching, where we write A � true (resp.
ẽ � ñ) for a closed formula A (resp. expression ẽ) when it evaluates to true (resp. ñ).
When initiating a session, [R-LINK] establishes a session through multiparty synchro-
nisation, generating queues and hiding all session channels. The remaining rules are
standard, modelling communications in a session via queues [3,20].

5.2 Validation Rules

For validation, we use judgements of the form C ;Γ � P� Δ, which reads: “under
C and Γ, process P is validated against Δ”. Here, C is an assertion environment,
which incrementally records the conjunction of predicates; hereafter, Γ � P�Δ ab-
breviates true;Γ � P�Δ. Γ is a global assertion assignment that is a finite function
mapping shared names to well-asserted global assertions and process variables to the
specification of their parameters (we write Γ � a : G when Γ assigns G to a and
Γ � X : �ṽ : S̃�T1 @p1...Tn @pn when Γ maps X to the vector of endpoint assertions
T1 @p1...Tn @pn using the variables ṽ sorted by S̃). Δ is an endpoint assertion as-
signment which maps the channels for each session, say s̃, to a well-asserted endpoint
assertion located at a participant, say T @p.

The validation rules are given in Figure 4. In each rule, we assume all occurring
(global/endpoint) assertions to be well-asserted. The rules validate the process against
assertions, simultaneously annotating processes with the interaction predicates from
endpoint assertions. We illustrate the key rules.

Rule [SND] validates that participant p sends values ẽ on session channel k, pro-
vided that ẽ satisfy the predicate under the current assertion environment; and that the

2 The structural equality includes µX�ẽ��ṽs̃1 . . . s̃n�.P � P�µX�ṽs̃1 . . . s̃n�.P�X��ẽ�ṽ� where
X�ẽ�s̃���µX�ṽs̃1 . . . s̃n�.P�X� is defined as µX�ẽ� s̃���ṽs̃1 . . . s̃n�.P.
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C A ẽ ṽ C ;Γ P ẽ ṽ Δ, s̃ :T ẽ ṽ @p Γ ẽ : S̃
C ;Γ sk! ẽ ṽ : S̃ A ;P Δ, s̃ :k! ṽ A ;T @p

[SND]

C A;Γ, ṽ : S̃ P Δ, s̃ :T @p

C ;Γ sk? ṽ : S̃ A ;P Δ, s̃ :k? ṽ : S̃ A ;T @p
[RCV]

C A j C ;Γ P Δ, s̃ :T j @p j I
C ;Γ sk � A j l j : P Δ, s̃ :k Ai li :Ti i I @p

[SEL]

C Ai;Γ Pi Δ, s̃ :Ti @p i I
C ;Γ sk � Ai li : Pi i I Δ, s̃ :k& Ai li :Ti i I @p

[BRA]

C ;Γ P Δ, s̃ : Γ a p @p p 1
C ;Γ a[p] s̃ .P Δ [MACC]

C ;Γ P Δ, s̃ : Γ a 1 @1
C ;Γ a[2..n] s̃ .P Δ [MCAST]

C e;Γ P Δ C e;Γ Q Δ
C ;Γ if e then P else Q Δ [IF]

C ;Γ P Δ C ;Γ Q Δ
C ;Γ P Q Δ,Δ

[CONC]
Δ end only

C ;Γ 0 Δ [IDLE]

C ; Γ, a :G P Δ a fn C ,Γ,Δ
C ; Γ νa : G P Δ [HIDE] C ;Γ P Δ C C Δ Δ

C ;Γ P Δ [CONSEQ]

T1 ẽ ṽ , . . . ,Tn ẽ ṽ well-asserted and well-typed under Γ, ṽ : S̃
C ; Γ, X : ṽ : S̃ T1 @p1..Tn @pn X ẽs̃1..s̃n s̃1 :T1 ẽ ṽ @p1, .., s̃n :Tn ẽ ṽ @pn

[VAR]

C ; Γ, X : ṽ : S̃ T1 @p1..Tn @pn P s̃1 :T1 @p1..s̃n :Tn @pn

C ; Γ μX ẽs̃1..s̃n ṽs̃1..s̃n .P s̃1 :T1 ẽ ṽ @p1..s̃n :Tn ẽ ṽ @pn
[REC]

Fig. 4. Validation rules for program phrases

continuation is valid, once ṽ gets replaced by ẽ. Dually, rule [RCV] validates a value
input against the continuation of the endpoint assertion under the extended assertion
environment C�A (i.e., the process can rely on A for the received values after the input).
Rules [SEL] and [BRA] are similar. Rules [MACC] and [MCAST] for session acceptance
and request validate the continuation against the projection of the global assertion onto
that participant (n is the number of participants in G and p is one of them).

Rule [IF] validates a conditional against Δ if each branch is validated against the
same Δ, under the extended environment C�e or C��e, as in the corresponding rule
in Hoare logic. As in the underlying typing [20], rule [CONC] takes a disjoint union of
two channel environments, and rule [IDLE] takes Δ which only contains end as endpoint
assertions. Rule [HIDE] is standard, assuming a is not specified in C .

Rule [CONSEQ] uses the refinement relation � on endpoint assertions. If T � T �,
T specifies a more refined behaviour than T �, in that T strengthens the predicates for
send/selection, so it emits/selects less; and weakens those for receive/branching, so it
can receive/accept more. Example 5.2 illustrates this intuition.

Example 5.2 (Refinement). Below, endpoint assertion Ts refines Tw (i.e., Ts � Tw):

Ts � k1!�v : Int��v 	 10�; k2?�z : Int��z	 0�; k3&��true�l1 : T1,�v	 100�l2 : T2�
Tw � k1!�v : Int��v 	 0�; k2?�z : Int��z	 10�; k3&��v 	 100�l1 : T1�

Ts has a stronger obligation on the sent value v, and a weaker reliance on the received
value z; while Ts has a weaker guarantee at l1 and offers one additional branch.

The formal definition is in [31], where we also show that the refinement relation is
decidable if we restrict the use of recursive assertions so that only those in identical
shapes are compared, which would suffice in many practical settings.
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Rule [VAR] validates an instantiation of X with expressions against the result of per-
forming the corresponding substitutions over endpoint assertions associated to X (in
the environment). In [REC], a recursion is validated if the recursion body P is validated
against the given endpoint assertions for its zero or more sessions, under the same end-
point assumptions assigned to the process variable X . The validity of this rule hinges
on the partial correctness nature of the semantics of the judgement.

Example 5.3 (Validating Seller Process). We validate the Seller part of Pneg in Ex-
ample 5.1 using Tsel from Example 3.1. We focus on one branch of Q2 in Pneg and
associate each s1, . . . ,s4 of Pneg to a channel k1, . . . ,k4 of Tneg, respectively. Recall that
B� p vo � 100�vo � 100, A1� vo � p vo, and A2��vp.p vo � 100�vo � 100�vo �
vp. Below Qok � s4?�va�
B��;0.

-
[IDLE]

�B��e�B��,Γ� 0� t : end @2
[RCV]

�B��e�,Γ� s4?�va��B��;0� s̃ : k4?�va : Int��B��;end @2
(substituting)

�B��e� � A1 �B��e�,Γ�Qok � s̃ : Tok @2
[SEL]

B��e,Γ� s2 �ok;Qok� s̃ : k2
��true�ok : Tok,�A1�hag : t�vo��@2 . . .
[IF]

B,Γ� if e then �s2 �hag;X�vo, s̃�� else �s2 �ok;s4?�va��B��;0�� s̃ : T2 @2
[RCV]

true,Γ� s1?�vo��B�;Q2� s̃ : k1?�vo : Int��B�;T2 @2

The . . . on the premise of [IF] indicates the missing validation of the first branch. The
interested reader may refer to [31] for a complete validation example with recursion.

6 Error-Freedom and Completeness

6.1 Semantics of Assertions

The semantics of asserted processes is formalised as a labelled transition relation that
uses the following labels

α ::� a�2..n��s̃� � a�i��s̃� � s!ñ � s?ñ � � s� l � s� l � τ
for session requesting/accepting, value sending/receiving, selection, branching, and the
silent action, respectively. We write P α

	 Q when P has a one-step transition α to Q.
The transition rules are the standard synchronous ones3 except that: (i) predicates are
checked at each communication action and, if the predicate is violated, in the case of
input/branching action the process moves to errT, in the case of an output/selection the
process moves to errH with τ-action, (ii) they include the reduction semantics given in
§ 5.1 (i.e., P	 Q induces P τ

	 Q).
The semantics of endpoint assertions is defined as another labelled transition relation,

of form �Γ,Δ
 α
	 �Γ�,Δ�
, which reads: the specification �Γ,Δ
 allows the action α,

with �Γ�,Δ�
 as the specification for its continuation. In this transition relation, only
legitimate (assertion-satisfying) actions are considered.

We define the semantic counterpart of Γ � P�Δ by using a simulation between
the transitions of processes and those of assertions. The simulation (Definition 6.1),

3 The synchronous transition suites our present purpose since it describes how a process
places/retrieves messages at/from queues, when message content may as well be checked.
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requires an input/branching action to be simulated only for “legal” values/labels, i.e. for
actions in which predicates are not violated. Intuitively, we demand conformance to a
proper behaviour only if the environment behaves properly. Below we use the predicate
erasure to show that the validation can prevent bad behaviour even without runtime
predicate checking, writing erase�P� for the result of erasing all predicates from P.
Similarly erase�Γ� and erase�Δ� erase predicates from the underlying session types,
giving the typing environments. P is closed if it is without free variables.

Definition 6.1 (Conditional Simulation). Let R be a binary relation whose elements
relate a closed process P without errH or errT and a pair of assignments �Γ,Δ
 such that
erase�Γ� � erase�P��erase�Δ� in the typing rules in [20, §4]. Then R is a conditional
simulation if, for each �P,�Γ,Δ
� � R :

1. for each input/branching/session input P
α
	 P�, �Γ,Δ
 has a respective move at

sbj�α� (the subject of α) and, if �Γ,Δ
 α
	 �Γ�,Δ�
 then �P�,�Γ�,Δ�
� � R .

2. for each output/selection/τ/session output move P
α
	 P�, �Γ,Δ
 α

	�Γ�,Δ�
 such that
�P�,�Γ�,Δ�
� � R .

If R is a conditional simulation we write P� �Γ,Δ
 for �P,�Γ,Δ
� � R .

The conditional simulation requires P to be well-typed against erase�Γ� and erase�Δ�.
Without this condition, the inaction 0 would conditionally simulate any Δ. This stringent
condition can be dropped, but our interest is to build an assertion semantics on the basis
of the underlying type discipline.

Definition 6.2 (Satisfaction). Let P be a closed program and Δ an end-point assertion
assignment. If P� �Γ,Δ
 then we say that P satisfies Δ under Γ, and write Γ �� P�Δ.
The satisfaction is extended to open processes, denoted C ;Γ �� P�Δ, by considering
all closing substitutions respecting Γ and C over Δ and P.

The judgement Γ �� P�Δ in Definition 6.2 states that (1) P will send valid messages
or selection labels; and (2) P will continue to behave well (i.e., without going into
error) w.r.t. the continuation specification after each valid action in (1) as well as after
receiving each valid message/label (i.e. which satisfies an associated predicate). The
satisfaction is about partial correctness since if P (is well-typed and) has no visible
actions, the satisfaction trivially holds.

6.2 Soundness, Error Freedom and Completeness

To prove soundness of the validation rules, we first extend the validation rules to pro-
cesses with queues, based on the corresponding typing rules in [3,20].

Proposition 6.3 (Subject Reduction). Let Γ�P�Δ be a closed program and suppose
we have �Γ,Δ
 α1..αn	 �Γ�,Δ�
. Then P

α1..αn	 P� implies Γ� � P��Δ�.

The proof uses an analysis of the effects of τ-actions on endpoint assertions, observing
the reduction at free session channels changes the shape of the session typing [3,20].

Let Δ�Δ� be a point-wise extension of� (defined when dom�Δ�� dom�Δ��); Propo-
sition 6.4 says that a process satisfying a stronger specification also satisfies a weaker
one. Using these results we obtain Theorem 6.5.

Proposition 6.4 (Refinement). If Γ �� P�Δ and Δ� Δ� then Γ �� P�Δ�.
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Theorem 6.5 (Soundness of Validation Rules). Let P be a program. Then C ;Γ �
P�Δ implies C ;Γ �� P�Δ.

A direct consequence of Theorem 6.5 is the error freedom of validated processes. Below
we say �Γ,Δ
 allows a sequence of actions α1..αn �n � 0� if for some �Γ�,Δ�
 we have

�Γ,Δ
 α1..αn�	 �Γ�,Δ�
.

Theorem 6.6 (Predicate Error Freedom). Suppose P is a closed program, Γ� P�Δ
and P

α1..αn�	 P� such that �Γ,Δ
 allows α1..αn. Then P� contains neither errH nor errT.

The proof system is complete relative to the decidability of the underlying logic for
processes without hidden shared names. We avoid name restriction since it allows us
to construct a process which is semantically equivalent to the inaction if and only if
interactions starting from a hidden channel terminate. Since we can simulate arbitrary
Turing machines by processes, this immediately violates completeness. In this case,
non-termination produces a dead code, i.e. part of a process which does not give any
visible action, which causes a failure in completeness.4

For each program without hiding, we can compositionally construct its “principal as-
sertion assignment” from which we can always generate, up to �, any sound assertion
assignment for the process. Since the construction of principal specifications is compo-
sitional, it immediately gives an effective procedure to check �� as far as � is decidable
(which is relative to the underlying logic). We conclude:

Theorem 6.7 (Completeness of Validation Rules for Programs without Hiding).
For each closed program P without hiding, if Γ �� P�Δ then Γ � P�Δ. Further Γ ��
P�Δ is decidable relative to the decidability of �.

7 Extensions and Related Work

Extensions to shared and session channel passing. The theory we have introduced in
the preceding sections directly extends to shared channel passing and session channel
passing, or delegation, carrying over all formal properties. In both cases, we have only
to add predicate annotations to channels in assertions as well as in asserted processes.
The shape of the judgement and the proof rules do not change, similarly the semanics
of the judgement uses a conditional simulation. We obtain the same soundness result as
well as completeness of the proof rules for the class of processes whose newly created
channels are immediately exported. Since the presentation of such extension would
require a detailed presentation of the notion of refinement, for space constraints and
simplicity of presentation we relegate it to [31].

Hennessy-Milner logic for the π-calculus. Hennessy-Milner Logic (HML) is an
expressive modal logic with an exact semantic characterisation [17]. The presented the-
ory addresses some of the key challenges in practical logical specifications for the π-
calculus, unexplored in the context of HML. First, by starting from global assertions, we
gain in significant concision of descriptions while enjoying generality within its scope
(properties of individual protocols). Previous work [2,11] show how specifications in

4 Not all dead codes cause failure in completeness. For example a dead branch in a branching/-
conditional does not cause this issue since the validation rules can handle it.
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HML, while encompassing essentially arbitrary behavioural properties of processes,
tend to be lengthy from the practical viewpoint. In this context, the direct use of HML
is tantamount to reversing the methodology depicted in Figure 1 of § 1: we start from
endpoint specifications and later try to check their mutual consistency, which may not
easily yield understandable global specifications.

As another practical aspect, since� is decidable for practically important classes as-
sertions [31], the present theory also offers algorithmic validation methods for key engi-
neering concerns [32] including consistency of specifications (cf. §3.1) and correctness
of process behaviours with full recursion against non-trivial specifications (cf. Theo-
rem 6.7), whose analogue may not be known for the general HML formulae on the
π-calculus. The use of the underlying type structures plays a crucial role.

From the viewpoint of logical specifications for name passing, the present theory
takes an extensional approach: we are concerned with what behaviours will unfold start-
ing from given channels, than their (in)equality [11]. While our approach does reflect
recommended practices in application-level distributed programming (where the direct
use of network addresses is discouraged), it is an interesting topic to study how we can
treat names as data as studied in [11].

Corresponding assertions and refinement/dependent types. The work [6] combines
session-types with correspondence assertions. The type system can check that an as-
sertion end L, where L is a list of values (not a logical formula), is matched by the
corresponding begin effect.

The use of session types to describe behavioural properties of objects and compo-
nents in CORBA is studied in [33]. In another vein, the refinement types for channels
(e.g. [5]) specify value dependency with logical constraints. For example, one might
write ?�x : int, !
y : int � y � x�� using the notations from [15,34]. It specifies a depen-
dency at a single point (channel), unable to describe a constraint for a series of inter-
actions among multiple channels. Our theory, based on multiparty sessions, can verify
processes against a contract globally agreed by multiple distributed peers.

Contract-based approaches to functions and communications and functions. Veri-
fication using theories of contracts for programming functional languages, with appli-
cations to the validation of financial contracts, is studied in [29,35]. Our theory uses
the π-calculus with session types as the underlying formalism to describe contracts for
distributed interactions. We observe that a contract-based approach for sequential com-
puting is generally embeddable to the present framework (noting that function types are
a special form of binary session types and that the pre/post conditions in sequential con-
tracts are nothing but predicates for interactions resulting from the embedding); it is an
interesting subject of study to integrate these and other sequential notions of contracts
into the present framework, which would enable a uniform reasoning of sequential and
concurrent processes.

In [8,12] use c-semirings to model constraints that specify a Service Level Agree-
ment. It would be interesting to consider global assertions where the logical language
is replaced with c-semirings. This would allow global assertions to express soft con-
straints but it could affect the effectiveness of our approach. However c-semirings do
not feature negation and the decidability of logics based on c-semrings has not been
deeply investigated.
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The global consistency checking is used in advanced security formalisms. In [16]
a rely-guarantee technique is applied to a trust-management logic. The main technical
difference is that users have to directly annotate each participant with assertions because
of the the absence of global assertions. In [4] cryptography is used to ensure integrity
of sessions but logical contracts are not considered.

Theories of contracts for web services based on advanced behavioural types are pro-
posed, including those using CCS [7], π-calculus [10], and conversation calculus [9].
Some of the authors in this line of study focus on compliance of client and services,
often defining compliance in terms of deadlock-freedom, e.g., in [1] a type system guar-
anteeing a progress property of clients is defined.

Our approach differs from the preceding works in its use of global assertions for
elaborating the underlying type structure, combined with the associated compositional
proof system. This permits us to express and enforce fine-grained contracts of chore-
ographic scenarios. Global/endpoint assertions can express constraints over message
values (including channels), branches and invariants, which cannot be represented by
types alone, cf. [20]. The enriched expressiveness of specifications introduces technical
challenges: in particular, consistency of specifications becomes non-trivial. The pre-
sented consistency condition for global assertions is mechanically checkable relatively
to the decidability of the underling logic, and ensures that the end-point assertions are
automatically consistent when projected. On this basis a sound and relatively complete
proof system is built that guarantees semantic consistency.

As a different DbC-based approach to concurrency, an extension of DbC has been
proposed in [27], using contracts for SCOOP [26] in order to reason about liveness prop-
erties of concurrent object-oriented systems. The main difference of our approach from
[27] is that our framework specifies focuses on systems based on distributed message
passing systems while [27] treats shared resources. The notion of pre-/post-conditions
and invariants for global assertions centring on communications and the use of projec-
tions are not found in [27]. The treatment of liveness in our framework is an interesting
topic for further study.
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M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
99–111. Springer, Heidelberg (2008)

3. Bettini, L., et al.: Global Progress in Dynamically Interfered Multiparty Sessions. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008)

4. Bhargavan, K., Corin, R., Deniélou, P.M., Fournet, C., Leifer, J.: Cryptographic protocol
synthesis and verification for multiparty sessions. In: CSF, pp. 124–140 (2009)

5. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol code by
typing. In: POPL, pp. 445–456 (2010)

6. Bonelli, E., Compagnoni, A., Gunter, E.: Correspondence assertions for process synchro-
nization in concurrent communications. JFC 15(2), 219–247 (2005)



176 L. Bocchi et al.

7. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party service com-
position. Fundamenta Informaticae XX, 1–28 (2008)

8. Buscemi, M., Montanari, U.: CC-Pi: A constraint-based language for specifying service level
agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer,
Heidelberg (2007)

9. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

10. Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 211–228. Springer, Heidelberg (2009)

11. Dam, M.: Proof systems for pi-calculus logics. In: Logic for Concurrency and Synchronisa-
tion. Trends in Logic, Studia Logica Library, pp. 145–212. Kluwer, Dordrecht (2003)

12. De Nicola, R., et al.: A Basic Calculus for Modelling Service Level Agreements. In: Coor-
dination. LNCS, vol. 3454, pp. 33–48. Springer, Heidelberg (2005)

13. Floyd, R.W.: Assigning meaning to programs. In: Proc. Symp. in Applied Mathematics,
vol. 19 (1967)

14. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley,
Chichester (2003)

15. Freeman, T., Pfenning, F.: Refinement types for ml. SIGPLAN Not. 26(6), 268–277 (1991)
16. Guttman, J.D., et al.: Trust management in strand spaces: A rely-guarantee method. In:

Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg (2004)
17. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. JACM 32(1)

(1985)
18. Hoare, T.: An axiomatic basis of computer programming. CACM 12 (1969)
19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for

structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL, pp.
273–284. ACM, New York (2008)

21. The Java Modeling Language (JML) Home Page
22. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp. 321–332

(1983)
23. Leino, K.R.M.: Verifying object-oriented software: Lessons and challenges. In: Grumberg,

O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, p. 2. Springer, Heidelberg (2007)
24. Mendelson, E.: Introduction to Mathematical Logic. Wadsworth Inc., Bermont (1987)
25. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992)
26. Meyer, B.: Object-Oriented Software Construction, ch. 31. Prentice Hall, Englewood Cliffs

(1997)
27. Nienaltowski, P., Meyer, B., Ostroff, J.S.: Contracts for concurrency. Form. Asp. Com-

put. 21(4), 305–318 (2009)
28. OMG: Object Constraint Language Version 2.0 (May 2006)
29. Peyton Jones, S., et al.: Composing contracts: an adventure in financial engineering. In: ICFP,

pp. 281–292. ACM, New York (2000)
30. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
31. Full version of this paper, http://www.cs.le.ac.uk/people/lb148/fullpaper.html
32. SAVARA JBoss Project webpage, http://www.jboss.org/savara
33. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of objects and components

using session types. Fundamenta Informaticæ 73(4), 583–598 (2006)
34. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL, pp. 214–227.

ACM, New York (1999)
35. Xu, D., Peyton Jones, S.: Static contract checking for Haskell. In: POPL, pp. 41–52. ACM,

New York (2009)

http://www.cs.le.ac.uk/people/lb148/fullpaper.html
http://www.jboss.org/savara


Bisimilarity of One-Counter Processes Is
PSPACE-Complete

Stanislav Böhm1,
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Abstract. A one-counter automaton is a pushdown automaton over a singleton
stack alphabet. We prove that the bisimilarity of processes generated by nonde-
terministic one-counter automata (with no ε-steps) is in PSPACE. This improves
the previously known decidability result (Jančar 2000), and matches the known
PSPACE lower bound (Srba 2009). We add the PTIME-completeness result for
deciding regularity (i.e. finiteness up to bisimilarity) of one-counter processes.

1 Introduction

Among the various notions of behavioral equivalences of (reactive) systems, (strong)
bisimilarity plays an important rôle (cf, e.g., [16]). For instance, various logics can be
characterized as the bisimulation-invariant fragment of richer logics. A famous theorem
due to van Benthem states that the properties expressible in modal logic coincide with
the bisimulation-invariant properties expressible in first-order logic [28]. Similar such
characterizations have been obtained for the modal μ-calculus [8] and for CTL∗ [17].
Another important notion is weak bisimilarity that generalizes (strong) bisimilarity by
distinguishing ε-moves corresponding to internal behavior. There are numerous further
notions of equivalences. For a more detailed treatment of the different behavioral equiv-
alences in the context of concurrency theory, the reader is referred to [4].

The (weak/strong) bisimilarity problem consists in deciding if two given states of a
given transition system are weakly/strongly bisimilar. On finite transition systems both
weak and strong bisimilarity is well-known to be complete for deterministic polynomial
time [1]. Moreover, on finite transition systems weak bisimilarity can be reduced to
strong bisimilarity in polynomial time by computing the transitive closure.

In the last twenty years a lot of research has been devoted to checking behavioral
equivalence of infinite-state systems, see [23] for an up-to-date record. In the setting
of infinite-state systems, see also [14] for Mayr’s classification of infinite-state systems,
the situation is less clear. There are numerous classes of infinite-state systems for which
decidability of bisimilarity is not known. Three such intricate open problems are (i)
weak bisimilarity on basic parallel processes (BPP, a subclass of Petri nets), (ii) strong
bisimilarity of process algebras (PA), and (iii) weak bisimilarity of basic process alge-
bras (BPA). On the negative side, we mention undecidability of weak bisimilarity of PA
by Srba [22]. On the positive side we mention an important result by Sénizergues who
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shows that bisimilarity on equational graphs of finite out degree [19] (a slight general-
ization of pushdown graphs) is decidable. See also Stirling’s unpublished paper [25] for
a shorter proof of this, using ideas from concurrency theory. For normed PA processes
Hirshfeld and Jerrum prove decidability of strong bisimilarity [7].

When focussing on the computational complexity of bisimilarity checking of infinite-
state systems for which this problem is decidable, the situation becomes even worse.
There are only very few classes of infinite-state systemss for which the precise compu-
tational complexity is known. For instance, when coming back to one of the above-
mentioned positive results by Sénizergues/Stirling concerning (slight extensions of)
pushdown graphs, a primitive recursive upper bound is not yet known. However,
EXPTIME hardness of this problem was proven by Kučera and Mayr [13]. As one of
the few results on infinite systems where the upper and lower complexity bounds match,
we can mention [10] where it is shown that bisimilarity on basic parallel processes is
PSPACE-complete.

In this paper we study the computational complexity of deciding strong bisimilar-
ity over processes generated by one-counter automata. One-counter automata are push-
down automata over a singleton stack alphabet. This model has been extensively studied
in the verification community; we can name, e.g., [2,5,6,3,26] as recent works. Weak
bisimilarity for one-counter processes is shown to be undecidable in [15], via a reduc-
tion from the emptiness problem of Minsky machines.

For strong bisimilarity the third author established decidability in [9], however with-
out providing any precise complexity bounds. In an unpublished article [29] Yen anal-
yses the approach of [9], deriving a triply exponential space upper bound. A PSPACE
lower bound for bisimilarity is proven by Srba [24]. This lower bound already holds
over one-counter automata that cannot test for zero and whose actions can moreover be
restricted to be visible (so called visibly one-counter nets), i.e. that the label of the action
determines if the counter is incremented, decremented, or not modified respectively. For
visibly one-counter automata it is proven in [24] that strong bisimilarity is in PSPACE
via reduction to the model checking problem of the modal μ-calculus over one-counter
processes [20]. For bisimilarity on general one-counter processes, in particular when
dropping the visibility restriction, the situation is surely more involved.

Our main result closes the complexity gap for bisimilarity of one-counter processes
from above, thus establishing PSPACE-completeness. In a nutshell, we provide a non-
deterministic algorithm implementable in polynomial space which generates a bisim-
ulation relation on-the-fly. The algorithm uses a polynomial-time procedure which,
given a pair p(m), q(n) of processes, either gives a definite answer ‘surely bisimilar’ or
‘surely non-bisimilar’, or declares the pair as a candidate. For each fixed m there are
(only) polynomially many candidates (p(m), q(n)), and the algorithm processes each
m = 0, 1, 2, . . . in turn, guessing the bisimilarity status of all respective candidates and
verifying the (local) consistency of the guesses. A crucial point is that it is sufficient to
stop the processing after exponentially many steps, since then a certain periodicity is
guaranteed, which would enable to successfully continue forever.

We also consider the problem of deciding regularity (finiteness w.r.t. bisimilarity)
which asks if, for a given one-counter process, there is a bisimilar state in some finite
system. Decidability of this problem was proven in [9] and according to [24] it follows
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from [1] and [21] that the problem is also hard for P. We give a simpler P-hardness
proof, but we also show that the regularity problem is in P, thus establishing its P-
completeness. It is appropriate to add that Kučera [12] showed a polynomial algorithm
deciding bisimilarity between a one-counter process and a (given) finite system state.

The paper is organized as follows. Section 2 contains the basic notions, definitions,
and recalls some auxiliary results. Section 3 recalls and enhances some useful notions
which were used in [9] and elsewhere. Section 4 contains the crucial technical results,
which have enabled to replace the decision algorithm from [9] with a polynomial space
algorithm. The algorithm is elaborated in Section 5 and its correctness is shown in
Section 6. Section 7 then shows PTIME-completeness of ∼-regularity.

2 Preliminaries

N denotes the set {0, 1, 2, . . .}. For a set X , by |X | we denote its cardinality.

Transition systems. A (labelled) transition system is a structure T = (S,A, { a−→|
a ∈ A}), where S is a set of states, A a set of actions, and

a−→⊆ S × S is a set of
a-labeled transitions, for each action a ∈ A. We define −→=

⋃
a∈A

a−→, and prefer

to use the infix notation s1
a−→ s2 (resp. s1 −→ s2) instead of (s1, s2) ∈ a−→ (resp.

(s1, s2) ∈−→). T is a finite transition system if S and A are finite; we then define the
size of T as |T | = |S|+ |A|+

∑
a∈A |

a−→|.

Bisimulation equivalence. Let T = (S,A, { a−→| a ∈ A}) be a transition system.
A binary relation R ⊆ S × S is a bisimulation if for each (s1, s2) ∈ R the following
bisimulation condition holds:

– for each s′1 ∈ S, a ∈ A, where s1
a−→ s′1, there is some s′2 ∈ S such that s2

a−→ s′2
and (s′1, s

′
2) ∈ R , and

– for each s′2 ∈ S, a ∈ A, where s2
a−→ s′2, there is some s′1 ∈ S such that s1

a−→ s′1
and (s′1, s′2) ∈ R .

We say that states s1 and s2 are bisimilar, abbreviated by s1 ∼ s2, if there is a bisimu-
lation R containing (s1, s2). Bisimilarity ∼ is obviously an equivalence. We also note
that the union of bisimulations is a bisimulation, and that∼ is the maximal bisimulation
on S. Bisimilarity is naturally defined also between states of different transition systems
(by considering their disjoint union).

One-counter automata. A one-counter automaton is a tuple M = (Q,A, δ=0, δ>0),
where Q is a finite nonempty set of control states, A is a finite set of actions, δ=0 ⊆
Q×{0, 1}×A×Q is a finite set of zero transitions, and δ>0 ⊆ Q×{−1, 0, 1}×A×Q
is a finite set of positive transitions. (There are no ε-steps inM .)

The size of M is defined as |M | = |Q| + |A| + |δ=0| + |δ>0|. Each one-counter
automatonM = (Q,A, δ=0, δ>0) defines the transition system TM = (Q×N,A, { a−→|
a ∈ A}), where (q, n) a−→ (q′, n+ i) iff either n = 0 and (q, i, a, q′) ∈ δ=0, or n > 0
and (q, i, a, q′) ∈ δ>0.

A one-counter net is a one-counter automaton, where δ=0 ⊆ δ>0.
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A state (q,m) of TM is also called a configuration of M , or a one-counter pro-
cess; we usually write it as q(m). Elements of δ=0 ∪ δ>0 are called transitions.
The notion of a path p(m) σ−→ q(n), where σ is a sequence of transitions, is de-
fined in the natural way. A transition sequence β in (δ>0)+ is called an elemen-
tary cycle if it induces an elementary cycle in the control state set Q, i.e., if β =
(q1, i1, a1, q2), (q2, i2, a2, q3), . . . (qm, im, am, qm+1) where qi �= qj for 1 ≤ i < j ≤
m and qm+1 = q1. We note that such a cycle has length at most |Q|, and its effect (i.e.,
the caused change) on the counter value is in the set {−|Q|,−|Q|+ 1, . . . , |Q|}.

Decision problems. We are interested in the following two decision problems.

BISIMILARITY ON OCA

INPUT: A one-counter automatonM with two states p0(m0) and q0(n0) of TM ,
where bothm0 and n0 are given in binary.

QUESTION: Is p0(m0) ∼ q0(n0) ?

We say that a one-counter process q(n), i.e. a configuration q(n) of a one-counter au-
tomatonM , is∼-regular (or finite up to bisimilarity) if there is a finite transition system
with some state s such that q(n) ∼ s.
∼REGULARITY ON OCA

INPUT: A one-counter automatonM and a state q(n) of TM (n given in binary).
QUESTION: Is q(n) ∼-regular?

Stratified bisimilarity. Given a transition system T = (S,A, { a−→| a ∈ A}), on S
we define the family of i-equivalences, i ∈ N, ∼0⊇∼1⊇∼2⊇ · · · as follows. We put
∼0= S × S, and we have s1 ∼i+1 s2 if the following two conditions hold:

– for each s′1 ∈ S, a ∈ A, where s1
a−→ s′1, there is some s′2 ∈ S such that s2

a−→ s′2
and s′1 ∼i s

′
2 ;

– for each s′2 ∈ S, a ∈ A, where s2
a−→ s′2, there is some s′1 ∈ S such that s1

a−→ s′1
and s′1 ∼i s

′
2 .

The following proposition is an instance of the result for image finite systems [16].

Proposition 1. On states of TM we have ∼ =
⋂

i≥0 ∼i.

2.1 Some Useful Observations

The next proposition captures the locality of the bisimulation condition for one-counter
automata, implied by the fact that the counter value can change by at most 1 in a move.

Proposition 2. Given a one-counter automaton M = (Q,A, δ=0, δ>0) and a rela-
tion R ⊆ (Q × N) × (Q × N), for checking if a pair (p(m), q(n)) ∈ R sat-
isfies the bisimulation condition it suffices to know the restriction of R to the set
NEIGHBOURS(m,n) = { (p′(m′), q′(n′)) | |m′ −m| ≤ 1, |n′ − n| ≤ 1 }.

Standard partition arguments [11,18] imply the following proposition for finite systems.
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Proposition 3. Given a finite transition system F = (Q,A, { a−→| a ∈ A}), where
k = |Q|, we have ∼k−1 =∼k =∼ on Q. Moreover, (the partition of Q corresponding
to) ∼ can be computed in polynomial time.

3 Underlying Finite Automaton and the Set INC

Most of the notions, claims and ideas in this section appeared in [9] and elsewhere;
nevertheless, we present (and extend) them in a concise self-contained way.

If the context does not indicate otherwise, in what follows we (often implicitly) as-
sume a fixed one-counter automaton M = (Q,A, δ=0, δ>0), using k for |Q|. We start
by observing that if the counter value is large, then M behaves, for a long time, like a
(nondeterministic) finite automaton. By FM we denote the finite transition system un-
derlyingM ; we putFM = (Q,A, { a−→| a ∈ A}), where

a−→= {(q1, q2) ∈ Q×Q | ∃i :
(q, i, a, q′) ∈ δ>0}. (FM thus behaves as if the counter is positive, ignoring the counter
changes.) In what follows, p, q, r ∈ Q are viewed as control states of M or as states
of FM , depending on context. Our observation is formalized by the next proposition
(which is obvious, by induction onm).

Proposition 4. Ifm′ ≥ m then p(m′) ∼m p .
(Here p(m′) is a state of TM , whereas p is a state of FM .)

This implies, e.g., that if p �∼ q (i.e., p �∼k q by Proposition 3) and m,n ≥ k, then
p(m) �∼k q(n) (and thus p(m) �∼ q(n)), since p(m) ∼k p, q(n) ∼k q and ∼k is an
equivalence. If p ∼ q then we can have p(m) �∼ q(n), due to the possibility of reaching
zero. For making this more precise, we define the following set

INC = { r(�) | ∀q ∈ Q : r(�) �∼k q } .

The configurations in INC are incompatible with FM in the sense that they are not
bisimilar up to k moves with any state of FM .

Proposition 5. If r(�) ∈ INC then � < k. Moreover, INC can be constructed in poly-
nomial time.

Proof. If � ≥ k then r(�) ∼k r, and thus r(�) �∈ INC. To construct INC, we can
start with the set containing all k3 pairs (r(�), q), where � < k ; all such pairs belong
to ∼0. We then delete the pairs not belonging to ∼1, then those not belonging to ∼2,
etc., until ∼k. The configurations r(�) for which no pair (r(�), q) survived, are in INC.
(This process can be done simultaneously for the pairs (p, q) in FM ; we also use the
fact r(k) ∼k r.) 
�

The arguments of the previous proof also induce the following useful proposition.

Proposition 6. The question if p(m) ∼k q(n) can be decided in polynomial time.

We note that if p(m) ∈ INC and q(n) �∈ INC then p(m) �∼ q(n) (in fact, p(m) �∼k

q(n)). More generally, if two one-counter processes are bisimilar then they must agree
on the distance to INC; this is formalized by the next lemma. We define

dist(p(m))
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as the length of the shortest transition sequence σ such that p(m) σ−→ INC (i.e.,
p(m) σ−→ r(�) for some r(�) ∈ INC); we put dist(p(m)) = ω if there is no such
sequence, i.e., when INC is unreachable, denoted p(m) �→∗ INC.

Lemma 7. If p(m) ∼ q(n) then dist(p(m)) = dist(q(n)).

Proof. For the sake of contradiction, suppose that p(m) ∼ q(n) and d = dist(p(m)) <
dist(q(n)), for the least d ; necessarily d > 0, since we cannot have p(m) ∈ INC,
q(n) �∈ INC. Thus there is a move p(m) a−→ p′(m′) with dist(p′(m′)) = d−1, which
must be matched by some q(n) a−→ q′(n′) where p′(m′) ∼ q′(n′). Necessarily d−1 =
dist(p′(m′)) < dist(q′(n′)), which contradicts the minimality of d. 
�

The next lemma clarifies the opposite direction in the case of infinite distances.

Lemma 8. If dist(p(m)) = ω then p(m) ∼ r for some r ∈ Q. Thus if dist(p(m)) =
dist(q(n)) = ω then p(m) ∼ q(n) iff there is some r ∈ Q such that p(m) ∼k r ∼k

q(n).

Proof. If dist(p(m)) = ω, i.e. p(m) �→∗ INC, then in particular p(m) �∈ INC, and
there is thus r ∈ Q such that p(m) ∼k r. We can easily check that

R = { (p(m), r) | p(m) ∼k r, p(m) �→∗ INC }

is a bisimulation: if p(m) a−→ p′(m′) and r
a−→ r′ where p′(m′) ∼k−1 r

′, then
p′(m′) �→∗ INC and the fact p′(m′) �∈ INC implies that r′′ ∼k p

′(m′) ∼k−1 r
′ for

some r′′ ∈ Q; hence r′ ∼k−1 r
′′ and thus r′ ∼k r

′′ (by Proposition 3), which means
p′(m′) ∼k r

′. 
�

In the next section we look in more detail at the function dist(p(m)), which provides
a useful constraint on bisimilar pairs. But before that, we partition the set (Q × N) ×
(Q× N) into three categories. We say that a pair (p(m), q(n)) is

– surely-positive if dist(p(m)) = dist(q(n)) = ω and p(m) ∼k q(n)
(and thus surely p(m) ∼ q(n), by Lemma 8),

– surely-negative if p(m) �∼k q(n) or dist(p(m)) �= dist(q(n))
(and thus surely p(m) �∼ q(n)),

– candidate otherwise, i.e., if p(m) ∼k q(n) and dist(p(m)) = dist(q(n)) < ω.

By SUREPOS we denote the set of all surely-positive pairs, and we note the following
obvious proposition.

Proposition 9. SUREPOS is a bisimulation.

It will be also useful to view the set CAND of all candidate pairs as the union

CAND = CAND0 ∪ CAND1 ∪ CAND2 ∪ · · ·

where CANDi contains the candidate pairs at level i, i.e. the pairs (p(m), q(n)) ∈
CAND with m = i.
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4 Distance to INC

In this section we look at the distance function dist(p(m)) in more detail (Lemma 10)
and derive some consequences (Lemma 11) which will be useful for the design and
analysis of our later algorithm.

We start with sketching some intuition which is then formalized in Lemma 10. To
reach INC from p(m) most quickly, for a large m, one uses a suitable prefix arriving

at a ‘most effective’ elementary cycle q(−)
β−→ q(−) (which decreases the counter

by k = |Q| at most), let us call it a d-cycle, then repeats the d-cycle sufficiently many
times, and finishes with a suffix arriving at INC. It is not difficult to anticipate that one
can bound the length (and thus also the counter change) of the prefix and the suffix by
a (small degree) polynomial pol(k). We now state the lemma. For technical reasons,
we do not require explicitly that the d-cycle is elementary; it is sufficient to bound its
length by k.

Lemma 10. There is a polynomial pol : N → N (independent of M ) such that for any
p(m) with dist(p(m)) < ω there is a shortest path p(m) σ−→ INC with the transition
sequence σ of the form σ = αβiγ where length(αγ) ≤ pol(k) and β is a decreasing
cycle of length ≤ k.

Proof. To give a complete formal proof requires some technical work. Since the essence
of the claim is not original and similar technical results appear in the previous works on
one-counter automata, we do not provide a self-contained proof, but we use Lemma 2
from an older paper [27]; in our notation, this lemma is formulated as follows:

Claim. If there is a positive path (using positive transitions) from p(m) to q(n)
and m−n ≥ k2 and n ≥ k2 then there is a shortest path p(m) σ−→ q(n) such
that σ = αβiγ where length(αγ) < k2 and length(β) ≤ k.

(Although [27] studies deterministic one-counter automata, the lemma obviously ap-
plies to our nondeterministic case as well, since we can view the transitions themselves
as the actions.) We note that ifm−n ≥ k2 + k then β is necessarily a decreasing cycle
(i ≥ 2 in this case). It is also clear that the (shortest) path p(m) σ−→ q(n) in the Claim
does not visit any q′(n′) with n′ ≥ m + k2 + k; we say that the path moves in the
“< (m+k2+k) area” (note that the prefix α moves in the “< (m+k2) area” and the
suffix γ moves in the “< (n+k2) area”).

Recalling that � < k for each r(�) ∈ INC, we note that any shortest path
p(m) σ−→ INC either moves in the “< k2-area”, in which case its length is bounded
by k3 (since no configuration is visited twice), or can be presented in the form
p(m) σ1−→ q1(k2) σ2−→ q2(k2) σ3−→ · · · σm−→ qm(k2)

σm+1−→ INC where 1 ≤ m ≤ k
and q1(k2), q2(k2), . . . , qm(k2) are all configurations on the path which have the

counter value k2. By the above considerations, the segment qi(k2)
σi+1−→ moves in the

“< (3k2 + k) area”, and its length is thus bounded by k · (3k2+k). The segment
p(m) σ1−→ q1(k2) either moves in the “< 2k2 area”, in which case its length is bounded

by 2k3, or it can be written p(m)
σ′
1−→ p′(m′)

σ′
2−→ q1(k2) where m′ ≥ 2k2 and σ′1

(which might be empty) is bounded by 2k3. The statement of our Lemma thus follows

from the above Claim applied to the segment p′(m′)
σ′
2−→ q1(k2). 
�
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The next lemma lists some important consequences. A main point is to clarify the distri-
bution of the set CAND. Informally speaking, the candidate pairs are contained inside
polynomially many linear belts, each belt having a rational slope, being a fraction of
polynomially bounded integers, as well as a polynomially bounded (vertical) thickness.

Remark. It is helpful to think in geometrical notions. Every relation R ⊆ (Q × N) ×
(Q × N) can be viewed as a ‘coloring’ χR : Q × Q × N × N → {•, ◦}; for each
p, q ∈ Q it prescribes a black-white coloring of the plane (grid) N × N. This was more
formalized in [9]; here we just informally use Figure 1.

Lemma 11

1. There is a polynomial-time algorithm computing dist(p(m)) for any p,m; here the
size of the input is |M |+ logm (m is written in binary).

2. If dist(p(m)) < ω then

dist(p(m)) =
c1
c2

(m+ d1) + d2 =
c1
c2
m+ ψ

for some integers 0 ≤ c1 ≤ k, 1 ≤ c2 ≤ k, |d1| ≤ pol1(k), 0 ≤ d2 ≤ pol1(k)
where pol1 is a polynomial (independent ofM ); the values c1, c2, d1, d2 generally
depend on p,m.
Moreover, for the rational number ψ = c1

c2
d1 + d2 we have |ψ| ≤ (k+1) · pol1(k).

3. If dist(p(m)) = dist(q(n)) < ω then

n = ρ ·m+ ξ

where (the slope) ρ is either 0 or of the form c1c′2
c2c′1

, for c1, c2, c′1, c
′
2 ∈ {1, 2, . . . , k},

and |ξ| is bounded by a polynomial pol2(k).
(This formalizes the above announced polynomially many belts, with the vertical
thickness 1 + 2 · pol2(k).)

4. There is a polynomial pol4 such that for each m ≥ pol4(k) we have ρ1 · m +
pol2(k) + 1 < ρ2 · (m−1) − pol2(k), where ρ1 < ρ2 are (different) slopes from
Point 3, pol2 also being taken from there.
(I.e., for levelsm ≥ pol4(k) the belts are separated, in the sense that no two pairs
from different belts are neighbours.)

5. There is a polynomial-time algorithm which, given i (in binary), computes the set
CANDi of all candidate pairs at level i (all pairs (p(i), q(n)) such that p(i) ∼k

q(n) and dist(p(i)) = dist(q(n)) < ω). We have |CANDi| ≤ pol3(k) for a
polynomial pol3.

6. If Δ is a multiple of the effects of all decreasing cycles of length ≤ k (the absolute
values of the effects are in the set {1, 2, . . . , k}) then for each m ≥ k + pol(k),
where pol is taken from Lemma 10, we have:

p(m) →∗ INC iff p(m+Δ) →∗ INC.
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7. Ifm,n ≥ k + pol(k) then

(p(m), q(n)) ∈ SUREPOS ⇔ ∀i, j ∈ N : (p(m+ iΔ), q(n+ jΔ)) ∈ SUREPOS

(where pol andΔ are as in Point 6).

Proof Point 1. By Lemma 10 we know that a shortest path p(m) σ−→ INC (if there is
any) is of the form

p(m) α−→ q(m+e1)
β−→ q(m+e1−c2)

β−→ q(m+e1−2c2)
β−→ · · ·

· · · β−→ q(�−e2+c2)
β−→ q(�−e2)

γ−→ r(�) ∈ INC

where e1 is the effect (the counter change) of the prefix α, c2 is the absolute value of
the effect of the d-cycle β, and e2 is the effect of the suffix γ ; we put c1 = length(β),
c3 = length(α), c4 = length(γ). Let us recall that 0 ≤ c2 ≤ c1 ≤ k and that the
absolute values of other integers are bounded by pol(k) from Lemma 10.

(Independently of p,m,) we thus have polynomially many possibilities (in k) for the
tuple q, e1, c1, c2, c3, c4, e2, r, �; these possible tuples can be processed in turn. For each
tuple we can check if (m+e1)−(�−e2) is divisible by c2 and then verify if the tuple
is realizable by some appropriate α, β, γ; this verification is done by using straightfor-
ward graph reachability algorithms. (Regarding the d-cycle, it is sufficient to verify the
realizability of the first segment q(m+e1) −→ q(m+e1−c2) and of the final segment
q(�−e2+c2) −→ q(�−e2).) With each realizable tuple we associate the value c3 + c4
when c2 = 0 and c3 + c4 + c1

c2

(
(m+e1)−(�−e2)

)
when c2 > 0. We associate ω with

each non-realizable tuple. The value dist(p(m)) is obviously the minimal value asso-
ciated with the above tuples.

Point 2. This follows immediately from the analysis in the proof of Point 1. (Since
d2 = c3 + c4, d1 = e1−�+e2, it suffices to take pol1(k) = k + pol(k), for pol from
Lemma 10. The consequence for ψ is obvious.)

Point 3. From dist(p(m)) = c1
c2
m + ψ = c′1

c′2
n + ψ′ = dist(q(n)), we derive n =

c1/c2
c′1/c′2

m+ ψ−ψ′

c′1/c′2
. If c1 = 0 or c′1 = 0 then dist(p(m)) = dist(q(n)) ≤ (k+1) ·pol1(k),

and thus n < k + (k+1) · pol1(k) (and we can put ρ = 0). We can thus take pol2(k) =
2 · (k+1) · pol1(k) · k.

Point 4. Recalling the slopes from Point 3, we note that ρ1<ρ2 implies ρ2 ≥ ρ1+ 1
k4 .

Since ρ1 ≤ k2, it is sufficient to have pol2(k) + 1 < 1
k4m− k2 − 1

k4 − pol2(k).
Point 5. Given i, for each p ∈ Q in turn we compute z = dist(p(i)) and all polyno-

mially many n such that c1
c2

(n+d1)+d2 = z, where c1, c2, d1, d2 satisfy the constraints
from Point 2. For each such n and each q ∈ Q we check if (p(i), q(n)) ∈ CANDi, i.e.,
if dist(q(n)) = z and p(i) ∼k q(n); Point 1 and Proposition 6 show that this can be
done in polynomial time.

Point 6. Since m ≥ k + pol(k), the length of (each) σ such that p(m) σ−→ INC is
greater than pol(k). Increasing or decreasing the number of repeating the d-cycle does
the job.

Point 7. From Point 6 we know that form ≥ k+pol(k) we have dist(p(m)) = ω iff
dist(p(m+iΔ)) = ω for all i ∈ N. Thus form,n ≥ k+pol(k) we have p(m+iΔ) ∼k

q(n + jΔ) and dist(p(m + iΔ)) = dist(q(n + jΔ)) = ω if and only if p ∼k q and
dist(p(m)) = dist(q(n)) = ω. 
�
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5 A Polynomial Space Algorithm

The next lemma follows from Lemma 11, Point 1, and Proposition 6.

Lemma 12. There is a polynomial-time algorithm which, given (M and) a pair
(p(m), q(n)), decides if the pair is in SUREPOS, or in CAND, or is surely-negative.

We might be tempted to try to resolve the question of bisimilarity of the can-
didate pairs by looking for additional polynomially checkable conditions. But the
PSPACE-hardness result for (visibly) one-counter processes [24] discourages us from
doing so; we should be satisfied with solving our problem in polynomial space.
Thus a nondeterministic algorithm working in polynomial space is sufficient (since
PSPACE=NPSPACE by Savitch’s Theorem). We start with noting the following two
obvious propositions; this will give rise to a main algorithmic idea.

Proposition 13. For a candidate pair (p0(m0), q0(n0)) ∈ CAND we have:
p0(m0) ∼ q0(n0) iff there is a subset B ⊆ CAND such that
(p0(m0), q0(n0)) ∈ B and B ∪ SUREPOS is a bisimulation.

The following (infinite) algorithm builds a certain B ⊆ CAND as the union of (non-
deterministically chosen) sets B0 ⊆ CAND0, B1 ⊆ CAND1, B2 ⊆ CAND2, . . . ,
while checking the bisimulation condition for their elements on the fly (recall the local-
ity captured by Proposition 2). If its computation does not fail, then it is infinite and the
respective setB ⊆ CAND (which would result as the limit) satisfies thatB∪SUREPOS

is a bisimulation.

– We start with putting m = 0, compute the set CAND0 and (nondeterministically)
choose a set B0 ⊆ CAND0.

– Then we successively process m = 0, 1, 2 . . . , where processing m means the
following:
• Compute CANDm+1 (recall Point 5 of Lemma 11) and (nondeterministically)

choose Bm+1 ⊆ CANDm+1.
• Verify that (each pair in) Bm is (locally) correct, using Bm−1 (when m > 0)

and Bm+1, and the polynomial procedure deciding membership in SUREPOS

(cf. Lemma 12).
• (If Bm is not correct, the computation fails.)

If we force the algorithm to include the input pair (p0(m0), q0(n0)) into Bm0 then an
infinite run is possible if and only if p0(m0) ∼ q0(n). We also note that it is sufficient
for the algorithm to keep only the current number m, and the sets Bm−1 (if m > 0),
Bm, Bm+1 in memory. (By Point 5 of Lemma 11 this consists of at most 3 · pol3(k)
pairs, while the bit-size of the numbers is polynomial in k and in the bit-size of m, i.e.
in logm.)

A final crucial point is that the algorithm, getting p0(m0), q0(n0) in the input, will
halt (answering p0(m0) ∼ q0(n0)) after it has successfully processed the following
levels.

m = 0, 1, 2, . . . , z where z = m0 + pol4(k) + 2pol5(k) · 23k log k (1)
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Here pol4 is from Point 4 of Lemma 11, and we put pol5(k) = 2 · k2 · (1 + 2 · pol2(k)),
where pol2 is from Point 3 of Lemma 11. With this halting condition, the algorithm
obviously runs in polynomial space (when givenM and a pair (p0(m0), q0(n0))). What
remains to show is the correctness of the halting condition.

6 Correctness of (The Halting Condition of) the Algorithm

Recall Points 3 and 4 of Lemma 11; the candidate pairs are contained inside polynomi-
ally many linear belts with vertical thickness (1 + 2 · pol2(k)), which are separated for
m ≥ pol4(k).

Informally speaking, if the algorithm (successfully) processes sufficiently many (ex-
ponentially many) numbersm after processingm0, then the pigeonhole principle guar-
antees that a certain ‘pumpable’ segment appears inside each belt (this is visualized in
Figure 1). At that time we are guaranteed that the relation

R = {(p(m), q(n)) ∈ Bm ∪ SUREPOS | m ≤ m0}

can be extended with certain pairs (p′(m′), q′(n′)), with m′ > m0, so that the result-
ing relation is a bisimulation. (These pairs (p′(m′), q′(n′)), m′ > m0, may differ from
those which were actually included in Bm′ by the algorithm.) We now make this infor-
mal argument more precise.

Suppose that our algorithm successfully halts for the input pair (p0(m0), q0(n0)),
and consider the following subsequence of the sequence (1).

m′
0,m

′
0 +Δ3,m′

0 + 2Δ3,m′
0 + 3Δ3, . . . ,m′

0 + 2pol5(k)Δ3 (2)

wherem′
0 = max{m0, pol4(k)} andΔ = k! ; henceΔ ≤ kk, and soΔ3 ≤ 23k log k.

Remark. We have chosenΔ so that Points 6 and 7 of Lemma 11 can be applied.

The chosen periodΔ3 has the following useful property. We are guaranteed that ρΔ3 is

a multiple of Δ for each slope ρ = c1c′2
c2c′1

(c1, c2, c′1, c
′
2 ∈ {1, 2, . . . , k}) from Point 3 of

Lemma 11; by Point 7 of Lemma 11 we thus also get for eachm ≥ pol4(k):

(p(m), q(n)) ∈ SUREPOS ⇔ ∀i ∈ N : (p(m+ iΔ3), q(n+ iρΔ3)) ∈ SUREPOS . (3)

(In the proof of Lemma 11, we have actually derived pol4 satisfying pol4(k) ≥
k+pol(k). But any polynomial pol4 satisfying Point 4 could be replaced with a big-
ger one to satisfy also pol4(k) ≥ k+pol(k) anyway.)

For a relation R ⊆ (Q × N) × (Q × N) and a belt, identified with its slope ρ from
Point 3 of Lemma 11, we define the R-cut of the belt ρ at levelm as

CUTρ
m(R) = { (p(m), q(n)) ∈ R | ρm− pol2(k) ≤ n ≤ ρm+ pol2(k) }.

Figure 1 illustrates two cuts CUTρ
m1

(R), CUTρ
m2

(R) (the black points representing el-
ements of R, the white points being non-elements); the depicted cuts are ‘the same’ in
the sense that one arises by shifting the other.

Our choice of the subsequence (2) guarantees a repeat of a ‘2-thick cut’:
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(q1, q1)
(q1, q2)
. . .

(qk, qk)

m

n

m1 m2

Fig. 1. Two isomorphic belt cuts in a coloring

Proposition 14. For every R and ‘belt’ ρ there are m1,m2 in (2), where m1 < m2,
m2 = m1 + cΔ3, such that

– (p(m1), q(n)) ∈ CUTρ
m1

(R) ⇔ (p(m2), q(n+ ρcΔ3)) ∈ CUTρ
m2

(R),
– (p(m1 +1), q(n)) ∈ CUT

ρ
m1+1(R) ⇔ (p(m2 +1), q(n+ρcΔ3)) ∈ CUT

ρ
m2+1(R).

Proof. We first note that our choice of Δ also guarantees that ρcΔ3 is integer. De-
scribing CUTρ

m(R) and CUT
ρ
m+1(R) (for any m) obviously amounts to determine a

(black-point) subset of a set with (at most) 2 ·k2 · (1+2 ·pol2(k)) elements; this is how
we defined pol5(k) in the halting condition of our algorithm (cf. (1)). There are 2pol5(k)

such subsets; thus the claim follows by the pigeonhole principle. 
�

Our aim is to define some relation R′ so that R′ ∪ SUREPOS is a bisimulation and
it coincides with B ∪ SUREPOS for the pairs (p(m), q(n)) with m ≤ m0; the set B
consists of the candidate pairs included by (the successfully halting computation of) our
algorithm into Bm, form = 0, 1, 2, . . . , z as in (1).

Let us now consider a particular belt ρ. Letm1,m2, wherem1 < m2 = m1 + cΔ3,
be the levels guaranteed by Proposition 14 for the relation R = B ∪ SUREPOS. Inside
the belt ρ, the suggested R′ will coincide with R for all levels m ≤ m2+1. For all
levels m = m2+2,m2+3,m2+4, . . . , we define R′ inside the belt ρ by the following
inductive definition: for eachm,n, wherem > m2+1 and |n− ρm| ≤ pol2(k):
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(p(m), q(n)) ∈ R′ iff (p(m−cΔ3), q(n−ρcΔ3)) ∈ R′.

We note that this condition is, in fact, satisfied also for m ∈ {m2,m2+1}, due to our
choice ofm1,m2. We get the whole R′ after having defined it inside all belts.

Proposition 15. R′ ∪ SUREPOS is a bisimulation.

Proof. Suppose there is a pair (p(m), q(n)) ∈ R′∪SUREPOS which does not satisfy the
bisimulation condition (which is determined by the restriction to NEIGHBOURS(m,n);
recall Proposition 2). We take such a pair with the leastm. It is clear that (p(m), q(n)) �∈
SUREPOS (recall Proposition 9); moreover, the restriction of R′ ∪ SUREPOS to
NEIGHBOURS(m,n) cannot be the same as forB∪SUREPOS (where the algorithm ver-
ified the bisimulation condition). Hence (m,n) lies in a belt ρ, andm ≥ m2+1 for the
respectivem2 = m1+cΔ3. Then the pair (p(m−cΔ3), q(n−ρcΔ3)) belongs toR′ and
satisfies the bisimulation condition; moreover, this pair enables the same transitions as
the pair (p(m), q(n)). So there must be some (p′(m′), q′(n′)) ∈ NEIGHBOURS(m,n)
such that (p′(m′), q′(n′)) �∈ R′ ∪ SUREPOS and (p′(m′−cΔ3), q′(n′−ρcΔ3)) ∈
R′ ∪ SUREPOS. But this contradicts the definition of R′ or the equivalence (3). 
�

Our halting condition is thus correct, and we have proved:

Theorem 16. There is a polynomial space algorithm which, given a one-counter au-
tomatonM and a pair p0(m0), q0(n0), decides if p0(m0) ∼ q0(n0).

Remark. As in [9], we could derive that the bisimilarity ∼ (i.e., the maximal bisimu-
lation) is ‘belt-regular’. Our results here show that a natural (finite) description of this
(semilinear) relation can be written in exponential space.

7 ∼-Regularity

We can easily derive the next lemma, which tells us that p(m) is not ∼-regular iff it
allows to reach states with arbitrarily large finite distances to INC.

Lemma 17. Given p(m) for a one counter automatonM , p(m) is not ∼-regular iff for
any d ∈ N there is q(n) such that p(m) →∗ q(n) and d ≤ dist(q(n)) < ω.

The next proposition gives a more convenient characterization.

Proposition 18. p(m) is not ∼-regular iff p(m) →∗ q(m+2k) →∗ INC for some
q ∈ Q. (Recall that k = |Q| for the set Q of control states ofM .)

Proof. ‘Only if’ is obvious.
On any path p(m) σ1−→ q(m+ 2k) σ2−→ INC we have to cross the level (m+ k) when
going up as well as when going down to INC (recall that � < k for any r(�) ∈ INC).
The elementary cycles, which must necessarily appear when going up and down, can
be suitably pumped to show the condition in Lemma 17. 
�

Lemma 19. Deciding ∼-regularity of one-counter processes is in PTIME.
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Proof. We check the condition from Proposition 18. Given p(m), we can compute all
q(m+2k) which have finite distances to INC by a polynomial algorithm (recall Point 1
of Lemma 11). Whenm = 0, the reachability of a suitable q(2k) (q(2k) →∗ INC) can
be checked straightforwardly. So we can compute all p′ such that p′(0) is not∼-regular.
Thus p(m) is not ∼-regular iff it can reach one of the computed q(m+2k) and p′(0) by
positive transitions. The polynomiality follows by the ideas similar to those discussed
in the proof of Lemma 10. 
�

Lemma 20. Deciding ∼-regularity (even) of one-counter nets is PTIME-hard.

Proof. We use a logspace reduction from bisimilarity on finite transition systems which
is PTIME-complete [1]. Given a finite transition system (Q,A, { a−→}a∈A) and f, g ∈
Q, we construct a one counter net which has the following behaviour: in s0(m),m > 0,

it has transitions s0(m) a−→ s0(m + 1), s0(m) a−→ s0(m − 1), s0(m) b−→ f(m),
s0(m) b−→ g(m). In s0(0) we only have s0(0) a−→ s0(1) and s0(0) b−→ f(0). Any
state f(n) just mimicks f (not changing the counter); similarly g(n) mimicks g. It is
easy to verify that s0(n) is regular iff f ∼ g. 
�

Theorem 21. Deciding ∼-regularity of one-counter processes is PTIME-complete.

Acknowledgements. We thank the reviewers for useful comments and suggestions.
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10. Jančar, P.: Strong Bisimilarity on Basic Parallel Processes is PSPACE-complete. In: Proc. of
LICS, pp. 218–227. IEEE Computer Society, Los Alamitos (2003)

11. Kanellakis, P.C., Smolka, S.A.: CCS Expressions, Finite State Processes, and Three Prob-
lems of Equivalence. Information and Computation 86(1), 43–68 (1990)
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Abstract. We propose a procedure for computing Nash equilibria in
multi-player timed games with reachability objectives. Our procedure
is based on the construction of a finite concurrent game, and on a
generic characterization of Nash equilibria in (possibly infinite) concur-
rent games. Along the way, we use our characterization to compute Nash
equilibria in finite concurrent games.

1 Introduction

Timed games. Game theory (especially games played on graphs) has been used
in computer science as a powerful framework for modelling interactions in em-
bedded systems [10, 15]. Over the last fifteen years, games have been extended
with the ability to depend on timing informations. Timed games allows for a
more faithful representation of reactive systems, while preserving decidability
of several important properties, such as the existence of a winning strategy for
one of the agents to achieve her goal, whatever the other agents do [3]. Efficient
algorithms exist and have been implemented, e.g. in the tool Uppaal Tiga [4].
Zero-sum vs. non-zero-sum games. In this purely antagonist view, games can be
seen as two-player games, where one agent plays against another one. Moreover,
the objectives of those two agents are opposite: the aim of the second player is
simply to prevent the first player from winning her own objective. More generally,
a (positive or negative) payoff can be associated with each outcome of the game,
which can be seen as the amount the second player will have to pay to the first
player. Those games are said to be zero-sum.

In many cases, however, games can be non-zero-sum, especially when they
involve more than two agents, whose objectives may not be complementary.
Such games appear e.g. in various problems in telecommunications, where sev-
eral agents try to send data on a network [9]. Focusing only on surely-winning
strategies in this setting may then be too narrow: surely-winning strategies must
be winning against any behaviour of the other agents, and does not consider the
fact that the other agents also try to achieve their own objectives.

Nash equilibria. In the non-zero-sum game setting, it is then more interesting
to look for equilibria. For instance, a Nash equilibrium is a behaviour of the
� This work is partly supported by projects DOTS (ANR-06-SETI-003), QUASI-
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agents in which they play rationally, in the sense that no agent can get a better
payoff if she, alone, modifies her strategy [13]. This corresponds to stable states
of the game. Notice that a Nash equilibrium need not exist in general, and is not
necessarily optimal: several equilibria can coexist, possibly with very different
payoffs.

Our contribution. We extend the study of Nash equilibria for reachability ob-
jectives (where the payoff is 1 when the objective is reached, and 0 otherwise)
in the setting of timed games, as defined in [8] (but extended to n players in
the obvious way). Since timed games are non-deterministic, we introduce the
notion of pseudo-Nash equilibrium, in which non-determinism is solved “opti-
mally” (i.e., only the best outcome is considered). This corresponds to letting
the players “optimally” solve non-determinism, in such a way that they have no
incentive to change their choice.

As is usual in the timed setting, we rely on a region-based abstraction, which
in our context is a finite concurrent game. In order to prove that the abstrac-
tion preserves Nash equilibria, we define a characterization of Nash equilibria
in (possibly infinite-state) concurrent games. This characterization is built on
the new concept of repellor sets : the repellor set for a subset A of agents is,
roughly, the set of states from which players in A will not be winning in any
Nash equilibrium. We explain how to compute those sets, and how they can be
used to characterize Nash equilibria.

We also use repellor sets to effectively compute Nash equilibria in finite games,
which solves open problems in the setting of equilibria in finite games and gives
a complete solution to our original problem.

Related work. Nash equilibria (and other related solution concepts such as
subgame-perfect equilibria, secure equilibria, ...) have recently been studied in
the setting of (untimed) games played on a graph [6, 7, 14, 16–19]. Most of them,
however, focus on turn-based games. In the setting of concurrent games, mixed
strategies (i.e., strategies involving probabilistic choices) are arguably more rel-
evant than pure (i.e., non-randomized) strategies. However, adding probabilities
to timed strategies (over both delays and actions) involves several important
technical issues (even in zero-sum non-probabilistic timed games), and we defer
the study of mixed-strategy Nash equilibria in timed games to future works.

For lack of space, only sketches of proofs are given in the paper. Full proofs
can be found in [5].

2 Preliminaries

We begin with defining concurrent games and Nash equilibria.

2.1 Concurrent Games

A transition system is a 2-tuple S = 〈States,Edg〉 where States is a (possibly
uncountable) set of states and Edg ⊆ States× States is the set of transitions.
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Given a transition system S, a path π in S is a non-empty sequence (si)0≤i<n

(where n ∈ N∪{+∞}) of states of S such that (si, si+1) ∈ Edg for all i < n− 1.
The length of π, denoted by |π|, is n − 1. The set of finite paths (also called
histories in the sequel) of S is denoted by1 HistS , the set of infinite paths (also
called plays) of S is denoted by PlayS , and PathS = HistS ∪ PlayS is the set of
paths of S. Given a path π = (si)0≤i<n and an integer j < n, the j-th prefix
of π, denoted by π≤j , is the finite path (si)0≤i<j+1. If π = (si)0≤i<n is a history,
we write last(π) = s|π|.

We extend the definition of concurrent games given e.g. in [2] with non-
determinism:

Definition 1. A non-deterministic concurrent game is a 7-tuple G = 〈States,
Edg,Agt,Act,Mov,Tab,�〉 in which:

– 〈States,Edg〉 is a transition system;
– Agt is a finite set of players (or agents);
– Act is a (possibly uncountable) set of actions;
– Mov : States×Agt → 2Act �{∅} is a mapping indicating the actions available

to a given player in a given state;
– Tab : States × ActAgt → 2Edg � {∅} associates, in a given state, a set of

moves of the players with the resulting set of transitions. It is required that
if (s′, s′′) ∈ Tab(s, (mA)A∈Agt), then s′ = s.

– � : Agt → 2Statesω×Statesω

defines, for each player, a quasi-ordering on the
runs of G, called preference relation. We simply write �A for � (A).

In the rest of this paper, we restrict to simple qualitative preference relations
given by reachability conditions for each player. Formally, we assume that the
preference relation is given as a tuple (ΩA)A∈Agt of sets of states, and is defined
as follows: if a path π visits ΩA, then we let vA(π) = 1, otherwise vA(π) = 0;
we then say that path π′ is preferred by Player A over path π, which is written
π �A π

′, whenever either π = π′ or vA(π) < vA(π′).
A deterministic concurrent game is a concurrent game where Tab(s, (mA)A∈Agt)

is a singleton for every s ∈ States and (mA)A∈Agt with mA ∈ Mov(s,A). A turn-
based game is a concurrentgame for which there exists amapping Owner : States →
Agt such that, for every state s ∈ States, the set Mov(s,A) is a singleton unless
A = Owner(s).

In a non-deterministic concurrent game, from some state s, each player A
selects one action mA among its set Mov(s,A) of allowed actions (the resulting
tuple (mA)A∈Agt, which we may also write mAgt in the sequel, is called a move).
This corresponds to a set of transitions Tab(s, (mA)A∈Agt), one of which is applied
and gives the next state of the game. In the sequel, we abusively write HistG ,
PlayG and PathG for the corresponding set of paths in the underlying transition
system of G. We also write HistG(s), PlayG(s) and PathG(s) for the respective
subsets of paths starting in state s.

1 For this and the coming definitions, we indicate the underlying transition system as
a subscript. This may be omitted in the sequel if no ambiguity may arise.
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Definition 2. Let G be a concurrent game, and A ∈ Agt. A strategy for A
is a mapping σA : Hist → Act such that for any π ∈ Hist it holds σA(π) ∈
Mov(last(π), A).

Given a coalition (i.e., a subset of agents) P ⊆ Agt, a strategy σP for coali-
tion P is a tuple of strategies, one for each player in P . We write σP = (σA)A∈P

for such a strategy. A strategy profile is a strategy for the coalition Agt. We write
StratAG for the set of strategies of player A in G, and ProfG for the set of strategy
profiles in G.

Notice that we only consider non-randomized (pure) strategies in this paper.
Let G be a concurrent game, P be a coalition, and σP be a strategy for P .

A path π = (sj)0≤j≤|π| is compatible with the strategy σP if, for all k ≤ |π| − 1,
there exists a move mAgt such that:

– mA ∈ Mov(sk, A) for all A ∈ Agt,
– mA = σA(π≤k) for all A ∈ P ,
– (sk, sk+1) ∈ Tab(sk,mAgt).

We write OutG(σP ) for the set of paths (also called outcomes) in G that are
compatible with strategy σP of coalition P . We write OutfG (resp. Out∞G ) for the
finite (resp. infinite) outcomes, and OutG(s, σP ), OutG(s, σP ) and OutG(s, σP )
for the respective sets of outcomes of σP with initial state s.

Notice that, in the case of deterministic concurrent games, any strategy profile
has a single infinite outcome. This might not be the case for non-deterministic
concurrent games.

b

a
a

b b

a

Fig. 1. A 3-player turn-based game

ΩA1

ΩA2

〈a, a〉, 〈b
, b〉

〈a, b〉, 〈b, a〉

Fig. 2. A 2-player concurrent game

Example 1. Figure 1 displays an example of a three-player turn-based game.
The shape of a node indicates its owner, and the goal states are those marked
in grey: for instance, Player controls square states, and her objective is to
reach . She cannot achieve this on her own (she has no winning strategy), but
can achieve it with the help of Player (both should play action b).

Figure 2 is a two-player concurrent game: from the left-most state, both play-
ers choose between actions a and b, and the game goes to the top state (which
is a goal state for player A1) if they play the same action, and to the bottom
state otherwise (which is a goal state for player A2).

Given a move mAgt and an action m′ for some player B, we write mAgt[B �→ m′]
for the move nAgt with nA = mA when A �= B and nB = m′. This notation is
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extended to strategies in the natural way. In the context of non-zero-sum games,
several notions of equilibria have been defined. We present here a refinement of
Nash equilibria towards non-deterministic concurrent games.

Definition 3. Let G be a non-deterministic concurrent game, and s be a state
of G. A pseudo-Nash equilibrium in G from s is a pair (σAgt, π) where σAgt ∈
ProfG and π ∈ Out(s, σAgt) is such that for all B ∈ Agt and all σ′ ∈ StratB, it
holds:

∀π′ ∈ Out(s, σAgt[B �→ σ′]). π′ �B π.

Such an outcome π is called an optimal play for the strategy profile σAgt. The pay-
off of a pseudo-Nash equilibrium (σAgt, π) is the function ν : Agt → {0, 1} where
ν(A) = 1 if π visits ΩA (the objective of Player A), and ν(A) = 0 otherwise.

In the case of deterministic games, π is uniquely determined by σAgt, and pseudo-
Nash equilibria coincide with Nash equilibria as defined in [13]: they are strategy
profiles where no player has an incentive to unilaterally deviate from her strategy.

In the case of non-deterministic games, a strategy profile for an equilibrium
may give rise to several outcomes. The choice of playing the optimal play π
is then made cooperatively by all players: once a strategy profile is fixed, non-
determinism is resolved by all players choosing one of the possible outcomes in
such a way that each player has no incentive to unilaterally changing her choice
(nor her strategy). To our knowledge, this cannot be encoded by adding an extra
player for solving non-determinism. Notice that solution concepts involving an
extra player for solving non-determinism can be handled by our algorithm since
it yields a deterministic game (leading to real Nash equilibria).

Example 1 (cont’d). In the (deterministic) game of Fig. 1, the strategy profile
where all players play a is not a Nash equilibrium from , since player would
better play b and reach her winning state. The profile where they all play b is
a Nash equilibrium. Actually, deterministic turn-based games such as this one
always admit a Nash equilibrium [7].

Now, consider the same game as depicted in Fig. 1, but in which player has
only one action available, say a, which non-deterministically leads to either
or . Then none of the two outcomes and is globally
better than the other one, hence they do not correspond to a pseudo-Nash equi-
librium. The reader can check that, for any strategy profile, there never exists
an optimal play, so that this modified, non-deterministic turn-based game does
not admit any pseudo-Nash equilibrium.

Regarding the concurrent game of Fig. 2, it is easily seen that it also does not
admit a (non-randomized) Nash equilibrium.

2.2 Decision Problems

In this paper we are interested in several decision problems related to the ex-
istence of pseudo-Nash equilibria. Let S be a class of concurrent games. In the
sequel, we consider the following problems: given G = 〈States,Edg,Agt,Act,Mov,
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Tab,�〉 a concurrent game in class S with reachability objectives ΩA ⊆ States
for every player A, and a state s ∈ States:

Problem 1 (Existence). Does there exists a pseudo-Nash-equilibrium in G from s?

Problem 2 (Verification). Given a payoff ν : Agt → {0, 1}, does there exists a
pseudo-Nash-equilibrium in G from s with payoff ν?

Problem 3 (Constrained-Existence). Givena constraint (givenas a subsetP ⊆ Agt
and a function " : P → {0, 1}), does there exists a pseudo-Nash-equilibrium in G
from s with some payoff ν satisfying the constraint (i.e., s.t. ν(A) = "(A) for
all A ∈ P )?

Notice that Problems 1 and 2 are trivially logspace-reducible to Problem 3. To-
gether with these problems, we also consider the corresponding function prob-
lems: for the verification problem (“does the given payoff vector correspond to
some equilibrium?”), the function problem asks to build a strategy profile that is
an equilibrium for this payoff. For the other two problems, the function problem
asks to compute a possible payoff function, and a corresponding strategy profile.

3 Qualitative Nash Equilibria

We now explain a procedure to describe pseudo-Nash equilibria in our setting.
To this aim, we introduce the notion of repellor sets.

3.1 The Repellor Sets

Definition 4. We define the set of suspect players for an edge e = (s, s′) given
a move mAgt, which we denote with SuspG(e,mAgt), as the set:

{B ∈ Agt | ∃m′ ∈ Mov(s,B) s.t. e ∈ Tab(s,mAgt[B �→ m′])}.

We extend this notion to a finite path π = (sp)p≤|π| given strategies σAgt as
follows:

Susp(π, σAgt) =
⋂

p<|π|
Susp((sp, sp+1), (σA(π≤p))A∈Agt).

Intuitively, PlayerB is suspect for an edge e, given a movemAgt, whenever she can
unilaterally change her action (while the other actions are unchanged) and take
edge e. Notice that if e ∈ Tab(s,mAgt), then Susp(e,mAgt) = Agt. Player B is
then suspect for a finite path π, given a tuple of strategies σAgt, whenever she has a
strategy to enforce path π under the strategies (σA)A∈Agt�{B} of the other players.

Lemma 5. Given σAgt ∈ Prof and π ∈ Hist, the following three propositions are
equivalent:

(i) B ∈ Susp(π, σAgt)
(ii) ∃σ′ ∈ StratB. π ∈ Outf (σAgt[B �→ σ′])

(iii) π ∈ Outf ((σA)A∈Agt�{B})

We now define the central notion of this paper, namely the repellor sets.
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Definition 6. Let G be a non-deterministic concurrent game. Given a sub-
set P ⊆ Agt, the repellor set of P , denoted by RepG(P ), is defined inductively
on P as follows: as the base case, RepG(∅) = States; Then, assuming that
RepG(P ′) has been defined for all P ′ � P , we let RepG(P ) be the largest set2

satisfying the following two conditions:

• ∀A ∈ P. RepG(P ) ∩ΩA = ∅ (1)

• ∀s ∈ RepG(P ). ∃mAgt ∈ ActAgt. ∀s′ ∈ States.

s′ ∈ RepG(P ∩ SuspG((s, s′),mAgt)) (2)

Intuitively, from a state in RepG(P ), the players can cooperate in order to stay
in this repellor set (thus never satisfying the objectives of players in P ) in such
a way that breaking the cooperation does not help fulfilling one’s objective.

Lemma 7. If P ⊆ P ′, then Rep(P ′) ⊆ Rep(P ).

Remark 8. Because deterministic turn-based games are determined, they enjoy
the property that Rep({A}) = States � Win({A}), where Win({A}) is the set
of states from which player A has a winning strategy for reaching her objective
against the coalition Agt � {A}. Notice that this does not hold in concurrent
games: in the game depicted on Fig. 2, the initial state is neither in the repellor
set nor in the winning set of any player.

The sets of secure moves for staying in Rep(P ) is defined as:

SecureG(s, P ) = {(mi)Ai∈Agt ∈ ActAgt | ∀s′ ∈ States.

s′ ∈ Rep(P ∩ Susp((s, s′),mAgt))

We define the transition system SG(P ) = (States,Edg′) as follows: (s, s′) ∈ Edg′

iff there exists some mAgt ∈ Secure(s, P ) such that (s, s′) ∈ Tab(s,mAgt). Note
in particular that any s ∈ Rep(P ) has an outgoing transition in SG(P ).

Example 2. In the game of Fig. 1, state is in the repellor set of { , } and
of { , } but not in that of { , }. Intuitively, from that state, Player can
prevent one of the other two players to reach her objective, but not both of them
at the same time. It can be checked that Rep({ , }) = { ; ; ; }.

Looking now at the same game but with non-determinism in state , the
repellor sets are different; in particular, state is no longer in Rep({ }) nor in
Rep({ }).

3.2 Using the Repellor to Characterize (pseudo-)Nash Equilibria

We now draw the link between the repellor sets and (pseudo-)Nash equilibria.

2 This is uniquely defined since if two sets satisfy both conditions, then so does their
union.
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Fig. 3. S({ , }) for the det. game Fig. 4. S({ }) for the non-det. game

Lemma 9. Let P ⊆ Agt, and s ∈ States. Then s ∈ Rep(P ) if and only if there
exists an infinite path π in S(P ) starting from s.

Repellor sets characterize those states from which one can find equilibria that
avoid the reachability objectives of players in P :

Proposition 10. Let P ⊆ Agt, and π ∈ Play(s) be an infinite play with initial
state s. Then π is a path in S(P ) if and only if there exists σAgt ∈ Prof such that
π ∈ Out(s, σAgt) and for all B ∈ P and all σ′ ∈ StratB it holds:

∀π ∈ Out(s, σAgt[B �→ σ′]). π does not visit ΩB.

Theorem 11. Let G = 〈States,Edg,Agt,Act,Mov,Tab,�〉 be a concurrent game,
with reachability objectives ΩA ⊆ States for each player A ∈ Agt, and s ∈ States.
There is a pseudo-Nash equilibrium from s with payoff ν iff, letting P be the set
{A ∈ Agt | ν(A) = 0}, there is an infinite path π in S(P ) which starts in s
and which visits ΩA for every A not in P . Furthermore, π is the optimal play
of some pseudo-Nash equilibrium.

This gives a generic procedure to decide the existence of pseudo-Nash equilibria
in non-deterministic concurrent games. It is not effective yet (remember that we
allow uncountably-infinite games), but will yield algorithms when instantiated
on finite games and timed games in the forthcoming sections.

Proof (of Theorem 11). (⇒) Let (σAgt, π) be a pseudo-Nash equilibrium: σAgt is
a strategy profile, and π ∈ Out(s, σAgt) is such that for any player B and any
strategy σ′ for B, it holds

∀π′ ∈ Out(s, σAgt[B �→ σ′]). π′ visits ΩB ⇒ π visits ΩB.

Moreover, π visits ΩB iff B /∈ P . According to Proposition 10, π must be a path
in the transition system S(P ).

(⇐) Let π be an infinite path in S(P ) such that for every B /∈ P , π visits
some state in ΩB. According to Proposition 10, there is a strategy profile such
that π is one of its outcomes and if any player A ∈ P deviates, no outcome
visits ΩA. Together with π, this forms a pseudo-Nash equilibrium. 
�
Theorem 11 gives a (necessary and sufficient) condition for the existence of
a pseudo-Nash equilibrium in a game. In case an equilibrium exists, repellor
sets (and the corresponding transition systems) also contain all the necessary
information for effectively computing a pseudo-Nash equilibrium:
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Proposition 12. If π is an infinite path in S(P ) from s visiting ΩB for ev-
ery B /∈ P , then there is a pseudo-Nash equilibrium (σAgt, π) where strategies σAgt

consist in playing secure moves in the transition system S(P ∩P ′), for some P ′.

Proof (Sketch). The strategy profile should contain π as one of its outcomes,
which can be done by selecting the relevant moves from S(P ). Now, if the play
ever gets outside of π but still in Rep(P ) (which may occur because of non-
determinism, or because some player, who would have won, has deviated from
her strategy), then the strategy profile should select secure moves to stay in this
set. Finally, if the history exits Rep(P ), this indicates that (at least) one player
in P is trying to deviate from her selected strategy. The strategy profile must
ensure that she cannot win: this is achieved by detecting the set P ′ of players
who may be responsible for the deviation, and play secure moves in S(P ∩ P ′).


�
Example 3. For the game of Fig. 1, consider for instance the transition system
S({ , }), which is depicted on Fig. 3. There are two infinite paths from state ;
they correspond to the outcomes of the two Nash equilibria in the game of Fig. 1,
both of which have payoff ( �→ 0, �→ 1, �→ 0).

In the same game with non-determinism in state , the transition system
S({ , }) can be checked to contain no edges, so that there is no pseudo-Nash
equilibria with payoff ( �→ 0, �→ 1, �→ 0). Now, if we look at S({ }),
which is depicted at Fig. 4, there are four possible infinite paths in this transition
system, but none of them visits both and . It does not give us a pseudo-Nash
equilibrium and in fact there is none in this game.

4 Application to Finite Games

In this section, we apply the previous generic procedure to finite concurrent
games. We consider four classes of finite concurrent games: Cnd is the whole class
of finite concurrent non-deterministic games, Cd is the restriction to deterministic
games, TBnd is the restriction to turn-based games, and TBd is the intersection
of Cd and TBnd.

We also consider subclasses where the number of players is bounded a pri-
ori, and thus is not taken into account in the complexity. Our results can be
summarized as follows (in grey are previously known results [7, Corollary 1]3):

Cnd, Cd, TBnd TBd

bounded general bounded general

Existence P-c. NP-c. True True

Verification P-c. NP-c. P-c. NP-c.

Constr. Ex. P-c. NP-c. P-c. NP-c.

These results all follow from the following Proposition:
3 The results in [17] concern parity objectives, and do not encompass reachability

objectives.



Nash Equilibria for Reachability Objectives in Multi-player Timed Games 201

Proposition 13. 1. The following problems are P-hard with bounded number
of players and NP-hard in the general case:
(a) checking that a payoff ν corresponds to a Nash equilibrium in TBd;
(b) deciding the existence of a pseudo-Nash equilibrium in TBnd;
(c) deciding the existence of a Nash equilibrium in Cd.

2. Solving the constrained-existence problem in Cnd is in P for a bounded num-
ber of players, and in NP in the general case.

Proof (Sketch of proof). P- and NP-hardness results are obtained by straight-
forward encodings of the CIRCUIT-VALUE and 3SAT problems, respectively.

The NP algorithm for the constrained existence problem is obtained by first
guessing the payoff function, and then checking that Theorem 11 holds. This is
achieved by guessing a sequence of states in S(P ), and checking that it is indeed
a path in S(P ) and that it visits the correct sets in ΩAgt. A naive implementation
of this procedure runs in exponential time (because computing S(P ) may require
the computation of intermediate sets Rep(P ∩ P ′) for many subsets P ′ of Agt,
which may result in up to 2|P | computation steps), but using non-determinism,
we can select polynomially many intermediate repellor sets that must be com-
puted. The procedure thus runs in non-deterministic polynomial time.

In the case where the number of agents is bounded, the naive approach above
is already polynomial, and the number of payoff functions is also polynomial.
We can then enumerate all payoff functions, build the transition system S(P )
for each of them, and check the existence of a “witness” path in this transition
system. 
�

Remark 14. In the case of turn-based games, the set of suspects is always either
empty, or a singleton, or the whole set of players. As a consequence, the naive
implementation of the procedure above will not result in computing 2|P | repellor
sets, but only |P |. The global algorithm still runs in NP, because finding a path
in S(P ) with several reachability constraints is NP-complete.

5 Application to Timed Games

5.1 Definitions of Timed Games

A valuation over a finite set of clocks X is an application v : X → R+. If v is a
valuation and t ∈ R+, then v + t is the valuation that assigns to each x ∈ X the
value v(x) + t. If v is a valuation and Y ⊆ X, then [Y ← 0]v is the valuation
that assigns 0 to each y ∈ Y and v(x) to each x ∈ X \ Y . A clock constraint
over X is a formula built on the grammar: C(X) ' g ::= x ∼ c | g ∧ g, where
x ranges over X , ∼ ∈ {<,≤,=,≥, >}, and c is an integer. The semantics of clock
constraints over valuations is natural, and we omit it.

We now define the notion of timed games that we will use in this paper.
Our definition follows that of [8].
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Definition 15. A timed game is a 7-tuple G = 〈Loc, X, Inv,Trans,Agt,Owner,�〉
where:

– Loc is a finite set of locations;
– X is a finite set of clocks;
– Inv : Loc → C(X) assigns an invariant to each location;
– Trans ⊆ Loc× C(clocks)× 2X × Loc is the set of transitions;
– Agt is a finite set of agents (or players);
– Owner : Trans → Agt assigns an agent to each transition;
– � : Agt → 2(States×R+)ω×(States×R+)ω

defines, for each player, a quasi-ordering
on the runs of G, called preference relation.

As in the previous sections, we restrict here to the case where � is given in terms
of reachability objectives (ΩA)A∈Agt, with ΩA ⊆ Loc for each A ∈ Agt.

A timed game is played as follows: a state of the game is a pair (�, v) where � is
a location and v is a clock valuation, provided that v |= Inv(�). From each state
(starting from an initial state s0 = (�,0), where 0 maps each clock to zero and
is assumed to satisfy Inv(�)), each player A chooses a nonnegative real number d
and a transition δ, with the intended meaning that she wants to delay for d time
units and then fire transition δ. There are several (natural) restrictions on these
choices:

– spending d time units in � must be allowed4 i.e., v + d |= Inv(�);
– δ = (�, g, z, �′) belongs to player A, i.e., Owner(δ) = A;
– the transition is firable after d time units (i.e., v+ d |= g), and the invariant

is satisfied when entering �′ (i.e., [z ← 0](v + d) |= Inv(�′)).

If (and only if) there is no such possible choice for some player A (e.g. if no
transition from � belongs to A), then she chooses a special move, denoted by ⊥.

Given the set of choicesmAgt of all the players, withmA ∈ (R+×Trans)∪{⊥},
a player B such that dB = min{dA | A ∈ Agt and mA = (dA, δA)} is selected
(non-deterministically), and the corresponding transition δB is applied, leading
to a new state (�′, [z ← 0](v + d)).

This semantics can naturally be expressed in terms of an infinite-state non-
deterministic concurrent game. Timed games inherit the notions of history, play,
path, strategy, profile, outcome and (pseudo-)Nash equilibrium via this corre-
spondence.

In the sequel, we consider only non-blocking timed games, i.e., timed games
in which, for any reachable state (�, v), at least one player has an allowed action:∏

A∈Agt

Mov((�, v), A) �= {(⊥)A∈Agt}.

4 Formally, this should be written v + d′ |= Inv(�) for all 0 ≤ d′ ≤ d, but this is
equivalent to having only v |= Inv(�) and v + d |= Inv(�) since invariants are convex.
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5.2 Computing Pseudo-nash Equilibria in Timed Games

Let G = 〈Loc, X, Inv,Trans,Agt,Owner,�〉 be a timed game, where � is given
in terms of reachability objectives (ΩA)A∈Agt. In this section, we explain how
pseudo-Nash equilibria can be computed in such reachability timed games, using
Theorem 11. This relies on the classical notion of regions [1], which we assume
the reader is familiar with.

We define the region game R = 〈StatesR,EdgR,Agt,ActR,MovR,TabR,�R〉
as follows:

– StatesR = {(�, r) ∈ Loc×R | r |= Inv(�)}, where R is the set of clock regions;
– EdgR is the set of transitions of the region automaton underlying G;
– ActR = {(r, p, δ) | r ∈ R, p ∈ {1; 2; 3} and δ ∈ Trans} ∪ {⊥};
– MovR : StatesR × Agt → 2ActR \ {∅} is such that

MovR((�, r), A) = {(r′, p, δ) | r′ ∈ Succ(r), r′ |= Inv(�),
p ∈ {1; 2; 3} if r′ is time-elapsing, else p = 1,
δ = (�, g, z, �′) ∈ Trans is such that r′ |= g

and [z ← 0]r′ |= Inv(�′)and Owner(δ) = A}

if it is non-empty, and MovR((�, r), A) = {⊥} otherwise. Roughly, the index p
allows the players to say if they want to play first, second or later if their
region is selected.

– TabR : StatesR×ActR
Agt → 2EdgR\{∅} is such that for every (�, r) ∈ StatesR

and every mAgt ∈
∏

A∈Agt MovR((�, r), A), if we write r′ for5 min{rA | mA =
(rA, pA, δA)} and p′ for min{pA | mA = (r′, pA, δA)},

TabR((�, r),mAgt) = {((�, r), (�B, [zB ← 0]rB)) |
mB = (rB , pB, δB) with rB = r′, pB = p′ and δB = (�, gB, zB, �B)}.

– The preference relation �R is defined in terms of reachability objectives for
each player, where the set of objectives (Ω′

i)Ai∈Agt (Ω′
A)A∈Agt is defined, for

each A ∈ Agt, as Ω′
A = {(�, r) | � ∈ ΩA, r ∈ R}.

Proposition 16. Let G be a timed game, and R its associated region game.
Then there is a pseudo-Nash equilibrium in G from (s,0) iff there is a pseudo-
Nash equilibria in R from (s, [0]), where [0] is the region associated to 0.
Furthermore, this equivalence is constructive.

Proof (Sketch of proof). The proof is in three steps: we first define a kind of
generic simulation relation between games, which gives information on their
respective repellor sets and transition systems:

5 This is well-defined for two reasons: first, not all mi’s may be ⊥, since we consider
non-blocking games; second, the set of regions appearing in a move from (�, r) only
contains successors of r, and is then totally ordered.
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Lemma 17. Consider two games G and G′ involving the same set of agents,
with preference relations defined in terms of reachability conditions (ΩA)A∈Agt

and (Ω′
A)A∈Agt, respectively. Assume that there exists a binary relation # between

states of G and states of G′ such that, if s # s′, then:

1. if s′ ∈ Ω′
A then s ∈ ΩA for any A ∈ Agt;

2. for all move mAgt in G, there exists a move m′
Agt in G′ such that:

• for any t′ in G′, there is t # t′ in G s.t. Susp((s′, t′),m′
Agt) ⊆ Susp((s, t),mAgt);

• for any (s, t) in Tab(s,mAgt), there is a (s′, t′) in Tab(s′,m′
Agt) s.t. t # t′.

Then for any P ⊆ Agt and for any s and s′ such that s # s′, it holds:

1. if s is in RepG(P ), then s′ is in RepG′(P );
2. for any (s, t) ∈ EdgRep, there exists (s′, t′) in Edg′Rep s.t. t # t′, where EdgRep

and Edg′Rep are the set of edges in the transition systems SG(P ) and SG′(P ),
respectively.

It remains to show that a timed game and its associated region game simulate
one another in the sense of Lemma 17, which entail that they have the same sets
of repellors. This is achieved by defining two functions λ, mapping moves in G
to equivalent moves in R, and μ, mapping moves in R to equivalent moves in G,
in such a way that v # r iff r is the region containing v. Theorem 11 concludes
the proof. 
�
Because the region game R has size exponential in the size of G, we get:

Theorem 18. The constrained existence problem (and thus the existence- and
verification problems) in timed game can be solved in EXPTIME.

Remark 19. Given a pseudo-Nash equilibrium (αAgt, π) in the region game, we
can obtain one in the timed game for the same payoff vector. Assume that
(αAgt, π) is a pseudo-Nash equilibrium in R. Given a history h in G and its pro-
jection proj(h) in R, if (αA(proj(h)))A∈Agt = (rA, pA, δA)A∈Agt is a secure move
in R, then so is (μA)A∈Agt = μ(last(h), (αA(proj(h)))A∈Agt), where μ is the func-
tion used in the proof of Proposition 16 to simulate moves fromR in G. Moreover,
there exists a play π′ ∈ Out((�, v), (μA)A∈Agt) such that proj(π′) = π, therefore
the payoff function for these two plays is the same. Hence ((μA)A∈Agt), π′) is a
pseudo-Nash equilibrium in the timed game.

Our algorithm is optimal, as we prove EXPTIME-hardness of our problems:

Proposition 20. The constrained-existence and verification problems for de-
terministic turn-based timed games with at least two clocks and two players is
EXPTIME-hard. The existence problem is EXPTIME-hard for concurrent timed
games (with at least two clocks and two players).

This is proved by encoding countdown games [11]. The second part of the Propo-
sition requires the use of a timed game with no equilibria; an example of such a
game is depicted on Fig. 5.

Remark 21. Since deterministic turn-based timed games yield deterministic turn-
based region games, they always admit a Nash equilibrium.
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ΩA2 ΩA1

0 < x < 1 0 < x < 1

Fig. 5. A timed game with no equilibria (the solid transition belongs to the first player,
the dashed one to the second one)

6 Conclusion

In this paper we have described a procedure to compute qualitative pseudo-
Nash equilibria in multi-player concurrent (possibly non-deterministic) games
with reachability objectives. The development of this procedure has required
technical tools as the repellor sets, which can be seen as an alternative to the
classical attractor sets for computing equilibria in games. We have applied this
procedure to finite concurrent games and to timed games, yielding concrete
algorithms to compute equilibria in those games. We have furthermore proved
that those algorithms have optimal complexities.

Multiple extensions of this work are rather natural:

– First we would like to apply the generic procedure to other classes of systems,
for instance to pushdown games [20]. Note that we are not aware of any result
on the computation of equilibria in pushdown games.

– Then our procedure only applies to reachability objectives for every player.
It would be interesting to adapt it to other ω-regular winning objectives.
This is a priori non-trivial as this will require developing new tools (the
repellor sets are dedicated to reachability objectives).

– We have applied our procedure to concurrent games as defined e.g. in [2],
where the transition table of the game is given in extensive form (for each
tuple of possible actions, there is an entry in a table). In [12], a more compact
way of representing concurrent game is proposed, which assumes a symbolic
representation of the transition table. It would be interesting to study how
this does impact on the complexity of the computation of Nash equilibria. In
particular the argument for having an NP algorithm (Proposition 13) does
not hold anymore.

– Finally other notions of equilibria (subgame-perfect equilibria, secure equi-
libria, etc) could be investigated, and extensions of concurrent games with
probabilities could also be investigated.
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Abstract. We consider two-player stochastic games over real-time probabilistic
processes where the winning objective is specified by a timed automaton. The
goal of player � is to play in such a way that the play (a timed word) is accepted
by the timed automaton with probability one. Player � aims at the opposite. We
prove that whenever player � has a winning strategy, then she also has a strategy
that can be specified by a timed automaton. The strategy automaton reads the
history of a play, and the decisions taken by the strategy depend only on the
region of the resulting configuration. We also give an exponential-time algorithm
which computes a winning timed automaton strategy if it exists.

1 Introduction

In this paper, we study stochastic real-time games (SRTGs) which are obtained as
a natural game-theoretic extension of generalized semi-Markov processes (GSMP)
[13,20,21] or real-time probabilistic processes (RTP) [2]. Intuitively, all of these for-
malisms model systems which react to certain events, such as message receipts, subsys-
tem failures, timeouts, etc. A common characteristic of all events is that they are delayed
(it takes some time before an initiated event actually occurs) and concurrent (there can
be several previously initiated events that are currently awaited). For example, if two
messages e and e′ are sent, it takes some (random) time before they arrive, and one can
specify, or approximate, the densities fe, fe′ of their arrival times. When e arrives (say,
after 20 time units), the system reacts to this event by changing its state, and awaits e′
in a new state. The arrival time of e′ in the new state is measured from zero again, and
its density fe′ |20 is obtained from fe′ by incorporating the condition that e′ is delayed for
at least 20 time units. That is, fe′ |20(x) = fe(x + 20)/

∫ ∞
20

fe(y) dy. Note that if the delays
of all events are exponentially distributed, then fe = fe|b for every b ∈ R≥0, and thus we
obtain continuous-time Markov chains (see, e.g., [17]) and continuous-time stochastic
games [10,18] as restricted forms of RTPs and SRTGs, respectively.

Intuitively, a SRTG is a finite graph (see Fig. 1) with three types of nodes—states
(drawn as large circles), controls, where each control can be either internal or adver-
sarial (drawn as boxes and diamonds, respectively), and actions (drawn as small filled
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Fig. 1. An example of a stochastic real-time game

circles). In each state s, there is a finite subset E(s) of events scheduled in s (the events
scheduled in s are those which are “awaited” in a given state; the other events are dis-
abled. Each state s can react to every event of E(s) by entering a designated control c,
where player � or player � chooses some of the available actions. Each action is as-
sociated with a fixed probability distribution over states. In general, both players can
use randomized strategies, which means that they do not necessarily select just a sin-
gle action but a probability distribution over the available actions, which is multiplied
with the distributions associated to actions. Then, the next state is chosen randomly
according to the constructed probability distribution, and the play goes on. Whenever
a new state s′ is entered from a previous state s along a play, each event scheduled in
s′ is assigned a new delay which is chosen randomly according to the corresponding
(conditional) density. The state s′ then “reacts” to the event with the least delay (under
the assumptions adopted in this paper, the probability of assigning the same delay to
different events is zero).

Our contribution. In this work we consider SRTGs with deterministic timed automata
(DTA) objectives. Intuitively, a timed automaton “observes” a play of a given SRTG and
checks that certain timing constraints are satisfied. A simple example of a property that
can be encoded by a DTA is “whenever a new request is generated, it is either serviced
within the next 10 time units, or the system eventually enters a safe state”. In this case,
we want to setup the internal controls so that the above property holds for almost all
plays, no matter what decisions are taken in adversarial controls. Hence, the aim of
player � is to maximize the probability that a play is accepted by a given timed automa-
ton, while player � aims at the opposite. By applying the result of [14], we obtain that
SRTGs with DTA objectives have a value, i.e., supσ infπ Pσ,π = infπ supσ Pσ,π, where σ
and π range over all strategies of player � and player�, and Pσ,π is the probability of all
plays satisfying a given DTA objective. This immediately raises the question whether
the players have optimal strategies which guarantee the equilibrium value against every
strategy of the opponent. We show that the answer is negative. Then, we concentrate
on the qualitative variant of the problem, which is perhaps most interesting from the
practical point of view. An almost-sure winning strategy for player � is a strategy such
that for every strategy of player �, the probability of all plays satisfying a given DTA
objective is equal to one. The main result of this paper is the following: We show that
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if player � has some almost-sure winning strategy, then she also has a DTA almost-
sure winning strategy, which can be encoded by a deterministic timed automaton A
constructible in exponential time. The automaton A reads the history of a play, and the
decision taken by the corresponding DTA strategy depends only on the region of the
resulting configuration entered by A.

Our constructions and proofs are combinations of standard techniques (used for
timed automata and finite-state games) and some new non-trivial observations that are
specific for the considered model of SRTGs. We also adapt some ideas presented in [2]
(in particular, we use the concept of δ-separation).

Related work. Continuous-time (semi)Markov chains are a classical and deeply studied
model with a mature mathematical theory (see, e.g., [17,19]). Continuous-time Markov
decision processes (CTMDPs) [7,5,16] combine probabilistic and non-deterministic
choice, but all events are required to be exponentially distributed. Two player games
over continuous-time Markov chains were considered only recently [10,18]. Timed au-
tomata [3] were originally introduced as a non-stochastic model with time. Probabilis-
tic semantics of timed automata was proposed in [4,6], and a more general model of
stochastic games over timed automata was considered in [9]. In this paper we build
mainly on the previous work about GSMPs [13,20,21] and RTPs [2,1] and interpret
timed automata as a model-independent specification language which can express im-
portant properties of timed systems. This view is adopted also in [12] where continuous-
time Markov chains are checked against timed-automata specifications.

Let us note that our technical treatment of events is somewhat different from the one
used for GSMPs and RTPs. Intuitively, in GSMPs (and RTPs), each event is assigned its
delay only when it is newly scheduled, and this delay is just updated when moving from
state to state (by subtracting the elapsed time) until the event happens or it is disabled.
For example, if two messages e and e′ are sent, both of them are assigned randomly
chosen delays de and de′ . The smaller of the two delays (say de) triggers a transition
to the next state, where the delay of de′ is updated by subtracting de. Since the current
delays of all events are explicitly recorded in the state-space of GSMPs and RTPs, this
formalism cannot be directly extended to perfect-information games (the players would
“see” the delays assigned to events, i.e., they would know what is going to happen in the
future). In our model of SRTGs, we always assign a new random delay to all events that
are scheduled in a given control state, but we adjust the corresponding densities (from
a “probabilistic” point of view, this approach is equivalent to the one used for GSMPs
and RTPs).

Due to space constraints, most of the proofs are omitted and can be found in a full
version of this paper [11].

2 Definitions

In this paper, the sets of all positive integers, non-negative integers, real numbers, pos-
itive real numbers, and non-negative real numbers are denoted by N, N0, R, R>0, and
R≥0, respectively.

Let A be a finite or countably infinite set. A probability distribution on A is a func-
tion f : A → R≥0 such that

∑
a∈A f (a) = 1. We say that f is rational if f (a) is rational
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for every a ∈ A. The set of all distributions on A is denoted by D(A). A σ-field over a
set Ω is a set F ⊆ 2Ω that includes Ω and is closed under complement and countable
union. A measurable space is a pair (Ω,F ) where Ω is a set called sample space and F
is a σ-field over Ω whose elements are called measurable sets. A probability measure
over a measurable space (Ω,F ) is a function P : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and more-

over P(Ω) = 1. A probability space is a triple (Ω,F ,P), where (Ω,F ) is a measurable
space and P is a probability measure over (Ω,F ). We say that a property A ⊆ Ω holds
for almost all elements of a measurable set Y if P(Y) > 0, A∩Y ∈ F , and P(A | Y) = 1.

Let us note that all of the integrals used in this paper should be understood as
Lebesgue integrals, although we use Riemann-like notation.

2.1 Stochastic Real-Time Games

Let E be a finite set of events, which are independent of each other. To every e ∈ E we
associate its lower bound �e ∈ N0, upper bound ue ∈ N ∪ {∞}, and a density function
fe : R → R which is positive on (�e, ue) such that

∫ ue

�e
fe(x) dx = 1. Further, for every

b ∈ R≥0 we also define the conditional density function fe|b : R→ R as follows:

fe|b(x) =
fe(x + b)[∫ ue

b
fe(y) dy

]
�0

Here [·]�0 : R→ R is a function which for a given x returns either x or 1 depending on
whether x � 0 or not, respectively. The function fe defines the density of delaying the
event e, i.e., for every time t ∈ R≥0, the probability of delaying e for at most t is equal to∫ t

0
fe(x) dx. Note that the integral

∫ t

0
fe|b(x) dx is equal to the conditional probability of

delaying e for at most b + t under the condition that e is delayed for at least b. Since all
events are mutually independent, for every subset E′ ⊆ E we have that the conditional
probability of delaying all events in E′ for at least b + t under the condition that all
events in E′ are delayed for at least b is equal to

∏
e∈E′
∫ ∞

t
fe|b(x) dx.

Definition 1. A stochastic real-time game (SRTG) is a tuple G =

(S , E,C�,C�,Act, F, A, μ0) where S is a finite set of states, E : S → 2E assigns
to each s ∈ S the set of events scheduled to occur in s, C� and C� are finite disjoint
sets of controls of player � and player �, Act ⊆ D(S ) is a finite set of actions, F is a
flow function which to every pair (s, e), where s ∈ S and e ∈ E(s), assigns a control of
C� ∪C�, A : C� ∪C� → 2Act assigns to each control c a non-empty finite set of actions
enabled at c, and μ0 ∈ D(S ) is an initial distribution.

A stamp is an element (s, t, e) of S × R>0 × E where e ∈ E(s). A (computational)
history of G is a finite sequence h = (s0, t0, e0), . . . , (sn, tn, en) of stamps. Intuitively, ti
is the time spent in si while waiting for some of the events scheduled in si, and ei is
the event that triggered a transition to the next state si+1. A strategy of player 
, where

 ∈ {�,�}, is a measurable function which to every history (s0, t0, e0), . . . , (sn, tn, en)
such that F(sn, en) = c ∈ C
 assigns a probability distribution over the set A(c) of
actions that are enabled at c. The set of all strategies of player � and player � are
denoted by Σ and Π , respectively.
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Let (σ, π) ∈ Σ × Π . The corresponding play of G is initiated in some s0 ∈ S (with
probability μ0(s0)). Then, each event e ∈ E(s0) is assigned a randomly chosen delay
d0

e ∈ R>0 according to the density fe (note that fe = fe|0). Let t0 = min{d0
e | e ∈

E(s0)} be the minimal delay of all events scheduled in s0, and let trigger0 be the set
of all e ∈ E(s0) such that d0

e = t0. The event e0 which “triggers” a transition to the
next state is the least element of trigger0 w.r.t. some fixed linear ordering ≤ (note that
the probability of assigning the same delay to different events is zero, and hence the
choice of ≤ is irrelevant; we need this ordering just to make our semantics well defined).
The event e0 determines a control c = F(s0, e0), where the responsible player makes a
decision according to her strategy τ, i.e., selects a distribution τ(h) over A(c) where
h = (s0, t0, e0) is the current history. Hence, the next state s1 is chosen with probability∑
μ∈A(c) τ(h)(μ) · μ(s1). In s1, we assign a randomly chosen delay d1

e to every e ∈ E(s1)
according to the conditional density fe|b, where b is determined as follows: If e was
scheduled in the previous state s0 and e � e0, then b = t0; otherwise b = 0. The event
e1 is the least event (w.r.t. ≤) with the minimal delay t1 = min{d1

e | e ∈ E(s1)}. The next
state s2 is chosen randomly by combining the strategy of the respective player with the
corresponding actions. In general, after entering a state si, every e ∈ E(si) is assigned a
randomly chosen delay di

e according to the conditional density fe|b where b is the total
waiting time for e accumulated in the history of the play.

To formalize the intuition given above, we define a suitable probability space
(Play,F ,Pσ,π

h
) over the set Play of all infinite sequences of stamps, where h is a

history of steps “performed previously” (the technical convenience of h becomes ap-
parent later in Section 3; the definition given below is perhaps easier to understand
in the special case when h is empty). For the rest of this section, we fix a history
h = (s0, t0, e0), . . . , (sn, tn, en) where n ∈ N0 ∪ {−1}. If n = −1, then h is empty. A
template is a finite sequence of the form B = (sn+1, In+1, en+1), . . . , (sn+m, In+m, en+m)
such that m ≥ 1, ei ∈ E(si), and Ii is an interval in R>0 for every n + 1 ≤ i ≤ n + m.
Each such B determines the corresponding cylinder Play(B) ⊆ Play consisting of all
sequences of the form (sn+1, tn+1, en+1), . . . , (sn+m, tn+m, en+m), . . . where ti ∈ Ii for all
n + 1 ≤ i ≤ n + m. The σ-field F is the Borel σ-field generated by all cylinders. For
each cylinder Play(B), the probability Pσ,π

h
(Play(B)) is defined in the way described be-

low. Then, Pσ,πh is extended to F (in the unique way) by applying the extension theorem
(see, e.g., [8]).

It remains to show how to define the probability Pσ,π
h

(Play(B)) of a given cylin-
der Play(B), where B = (sn+1, In+1, en+1), . . . , (sn+m, In+m, en+m). We put Pσ,π

h
(Play(B)) =

Tn+1, where the expression Ti is defined inductively for all n + 1 ≤ i ≤ n + m + 1 as
follows:

Ti =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Ii
Statei · Wini · Ti+1 dti if n + 1 ≤ i ≤ n + m;

1 if i = n + m + 1.

Observe that Tn+1 is an expression with m nested integrals. Further, note that when
constructing Ti+1, we already have t0, . . . , ti at our disposal (each ti is either fixed in h,
or it is a variable used in some of the preceding integrals).

The subterm Statei corresponds to the probability that si is chosen as the next state,
assuming that the current history is (s0, t0, e0), . . . , (si−1, ti−1, ei−1). Hence, we define



212 T. Brázdil et al.

• Staten+1 = μ0(sn+1) if h is empty, otherwise Staten+1 =
∑
μ∈A(c) τ(h)(μ) · μ(sn+1), where

c = F(sn, en), and τ is either σ or π, depending on whether c ∈ C� or c ∈ C�,
respectively.

• Statei =
∑
μ∈A(c) τ(h

′)(μ) · μ(si), where n+1 < i ≤ n+m, c = F(si−1, ei−1), h′ =
(s0, t0, e0), . . . , (si−1, ti−1, ei−1), and τ is either σ or π, depending on whether c ∈ C� or
c ∈ C�, respectively.

The most complicated part is the definition of Wini which intuitively corresponds to the
probability that the event ei “wins” the competition among the events scheduled in si.

In order to define Wini, we have to overcome a technical obstacle that the events
scheduled in si might have been scheduled also in the preceding states. For each e ∈
E(si), let K(e, i) be the minimal index such that 0 ≤ K(e, i) ≤ i and for all K(e, i) ≤ j < i
we have that e ∈ E(s j) and e � e j. We put b(e, i) = tK(e,i) + · · · + ti−1. Intuitively, b(e, i) is
the total waiting time for e accumulated in the history of the play. Note that if K(e, i) = i,
then the defining sum of b(e, i) is empty and hence equal to zero. We put

Wini = fei |b(ei ,i)(ti) ·
∏

e∈E(si )
e�ei

∫ ∞

ti

fe|b(e,i)(x) dx.

2.2 Deterministic Timed Automata

Let X be a finite set of clocks. A valuation is a function ν : X → R≥0. For every
valuation ν and every subset X ⊆ X of clocks, we use ν[X := 0] to denote the unique
valuation such that ν[X := 0](x) = 0 for all x ∈ X, and ν[X := 0](x) = ν(x) for all
x ∈ X � X. Further, for every valuation ν and every δ ∈ R≥0, the symbol ν + δ denotes
the unique valuation such that (ν + δ)(x) = ν(x) + δ for all x ∈ X.

A clock constraint (or guard) is a finite conjunction of basic constraints of the form
x �� c, where x ∈ X, �� ∈ {<,≤, >,≥}, and c ∈ N0. For every valuation ν and every
clock constraint g we have that ν either does or does not satisfy g, written ν |= g or
ν �|= g, respectively (the satisfaction relation is defined in the expected way). Sometimes
we slightly abuse our notation and identify a guard g with the set of all valuations that
satisfy g (for example, we write g∩g′). The set of all guards over X is denoted by B(X).

Definition 2. A deterministic timed automaton (DTA) is a tuple A =

(Q, Σ,X,−→, q0, T ), where Q is a nonempty finite set of locations, Σ is a finite
alphabet, X is a finite set of clocks, q0 ∈ Q is an initial location, T ⊆ Q is a set of
target locations, and −→ ⊆ Q × Σ × B(X) × 2X × Q is an edge relation such that for all
q ∈ Q and a ∈ Σ we have the following:

1. the guards are deterministic, i.e., for all edges of the form (q, a, g1, X1, q1) and
(q, a, g2, X2, q2) such that g1 ∩ g2 � ∅ we have that g1 = g2, X1 = X2, and q1 = q2;

2. the guards are total, i.e., for all q ∈ Q, a ∈ Σ, and every valuation ν there is an
edge (q, a, g, X, q′) such that ν |= g.

A configuration of A is a pair (q, ν), where q ∈ Q and ν is a valuation. An infinite
timed word is an infinite sequence w = c0c1c2 . . . where each ci is either a letter of
Σ or a positive real number denoting a time stamp (note that letters and time stamps
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are not required to alternate in w). The run of A on w is the unique infinite sequence
(q0, ν0) c0 (q1, ν1) c1 . . . such that q0 is the initial location of A, ν0 = 0, and for each
i ∈ N0 we have that

• if ci is a time stamp t ∈ R≥0, then qi+1 = qi and νi+1 = νi + t,
• if ci is an input letter a ∈ Σ, then there is a unique edge (qi, a, g, X, q) such that νi |= g,

and we require that qi+1 = q and νi+1 = νi[X := 0].

We say that w is accepted by A if the run of A on w visits a configuration (q, ν) where
q ∈ T . Without restrictions, we may assume that each q ∈ T is absorbing, i.e., all of the
outgoing edges of q lead back to q.

In this paper, we use DTA for two different purposes. Firstly, DTA are used as a
generic specification language for properties of timed systems. In this case, a given
DTA is constructed so that it accepts the set of all “correct” runs (timed words)
of a given timed system. Formally, for a fixed SRTG G with a set of states S ,
a finite set Ap of atomic propositions and a labeling L : S → 2Ap, every play
� = (s0, t0, e0), (s1, t1, e1), . . . of G determines a unique infinite timed word Ap(�) =
L(s0) t0 L(s1) t1 . . . . A DTA A with alphabet 2Ap then either accepts Ap(�) or not. In-
tuitively, the automaton A encodes some desirable property of plays, and the aim of
player � and player� is to maximize and minimize the probability of all plays accepted
by A, respectively. We denote Play(A) ⊆ Play the set of all plays � such that Ap(�) is
accepted by A. Note that the DTA does not read any information about the events that
occurred. However, one can easily encode the information about the last event into the
subsequent state by considering copies se of each state s for every event e.

Secondly, we use DTA to encode strategies in stochastic real-time games. Here,
the constructed DTA “observes” the history of a play, and the decisions taken by
the corresponding strategy depend only on the resulting configuration (q, ν). Ac-
tually, we require that the decision depends only on the region of (q, ν) (see [3]
or Section 3.1), which makes DTA strategies finitely representable. Formally, ev-
ery history h = (s0, t0, e0) · · · (sn, tn, en) of G can be seen as a (finite) timed word
s0, t0, e0, · · · , sn, tn, en, where the states and events are seen as letters, and the delays
are seen as time stamps. We define DTA strategies as follows.

Definition 3. A DTA strategy is a strategy τ such that there is a DTA A with alpha-
bet S ∪ E satisfying the following: for every history h we have that τ(h) is a rational
distribution which depends only on the region of (q, ν), where (q, ν) is the configuration
entered by A after reading the word h.

3 Results

For the rest of the paper, we fix an SRTG G = (S , E,C�,C�,Act, F, A, μ0), a finite set Ap
of atomic propositions, a labeling L : S → 2Ap, and a DTA A = (Q, 2Ap,X,−→, q0, T ).

As observed in [14], the determinacy result for Blackwell games [15] implies de-
terminacy of a large class of stochastic games. This abstract class includes the games
studied in this paper, and thus we obtain the following:

Proposition 1. Let h be a history of G. Then

sup
σ∈Σ

inf
π∈Π Pσ,π

h
(Play(A)) = inf

π∈Π sup
σ∈Σ

Pσ,π
h

(Play(A))
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s0 s1
e e q0

{p0}, x ≤ 1, x := 0

{p1}, x ≤ 1 {p1}, x ≤ 1

{p1}
Fig. 2. Player � does not have an optimal strategy

The value of G (with respect to h), denoted by valh, is defined by the above equality.

The existence of valh implies the existence of ε-optimal strategies for both players.
However, note that player � does not necessarily have an optimal strategy which would
achieve the outcome valh or better against every strategy of player �, even if valh = 1
and C� = ∅. A simple counterexample is given in Fig. 2. Here fe is the uniform density
on (0, 1) (i.e., fe(x) = 1 for all x ∈ (0, 1)), Ap = {p0, p1}, L(s0) = p0, L(s1) = p1, and the
only target location is gray. All of the “missing” edges in the depicted DTA (which are
needed to satisfy the requirement that the guards are total) lead to a “garbage” location.
The initial distribution μ0 assigns 1 to s0. Now observe that valh = 1 (where h is the
empty history), because for every ε > 0, player � can “wait” in s0 until e is fired so
that its delay is smaller than ε (this eventually happens with probability 1), and then she
moves to s1. The probability that e is assigned a delay at most 1 − ε in s1 is 1 − ε, and
hence the constructed DFA accepts a play with probability 1−ε. However, player � has
no optimal strategy.

In this paper we consider the existence and effective constructability of almost-sure
winning strategies for player �. Formally, a strategy σ ∈ Σ is almost-sure winning for
a history h if for every strategy π ∈ Π we have that Pσ,π

h
(Play(A)) = 1. We show the

following:

Theorem 1. Let h be a history. If player � has (some) almost-sure winning strategy for
h, then she also has a DTA almost-sure winning strategy for h. The existence of a DTA
almost-sure winning strategy for h is decidable in exponential time, and if it exists, it
can be constructed in exponential time.

A proof of Theorem 1 is not immediate and requires several steps. First, in Section 3.1
we construct a product game GA of G and A and show that GA can be examined instead
of G and A. The existence of a DTA almost-sure winning strategy in GA is analyzed
in Section 3.2. Finally, in Section 3.3 we present an algorithm which computes a DTA
almost-sure winning strategy if it exists.

3.1 The Product Game

Intuitively, the product game of G and A, denoted by GA, is constructed by simulat-
ing the execution of A on-the-fly in G. Waiting times for events and clock valuations
are represented explicitly in the states of GA, and hence the state-space of GA is un-
countable. Still, GA is in many aspects similar to G, and therefore we use a suggestive
notation compatible with the one used for G. To distinguish among the notions related
to G and GA, we consistently use the “p-” prefix. Hence, G has stamps, states, histories,
etc., while GA has p-stamps, p-states, p-histories, etc.
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Let n = |E|+ |X|. The clock values of A and the delays of currently scheduled events
are represented by a p-vector ξ ∈ Rn

≥0. The set of p-states is S × Q×Rn
≥0, and the sets of

p-controls of player � and player � are C� × Q × Rn
≥0 and C� × Q × Rn

≥0, respectively.
The dynamics of GA is determined as follows. First, we define a p-flow function

FA, which to a given p-stamp (s, q, ξ, t, e) assigns the p-control (c, q′, ξ′), where c =
F(s, e), and q′, ξ′ are determined as follows. Let (q, L(s), g, X, q′) be the unique edge
of A such that the guard g is satisfied by the clock valuation stored in ξ + t. We put
ξ′ = (ξ +s t)[(e ∪ X) := 0]. The operator “+s t” adds t to all clocks stored in ξ and to all
events scheduled in s, and (e ∪ X) := 0 resets all clocks of X to zero and assigns zero
delay to e. Second, we define the set of p-actions. For every p-control (c, q, ξ) and an
action a ∈ A(c), there is a corresponding p-action which to a given p-state (s′, q, ξ′),
where ξ′ = ξ[(E \ E(s′)) := 0], assigns the probability a(s′).

A p-stamp is an element (s, q, ξ, t, e) of S × Q × Rn
≥0 × R>0 × E. Now we define

p-histories and p-plays as sequences of p-stamps. In the game G we allowed arbitrary
sequences of stamps, whereas in the product game we need the automaton part of the
product to be consistent with the game part. We say that a p-stamp x1 = (s1, q1, ξ1, t1, e1)
is consistent with a p-stamp x0 = (s0, q0, ξ0, t0, e0) if the image of x0 under the p-flow
function is a p-control (c, q1, ξ

′) such that ξ1 = ξ′[A := 0] where A is the set of actions
not enabled in s1.

A p-history is a finite sequence of p-stamps p = x0 . . . xn such that xi is
consistent with xi+1 for all 0 ≤ i < n. A p-play is an infinite sequence of
p-stamps x0x1 . . . where each finite prefix x0 . . . xi is a p-history. Each p-history
p = (s0, q0, ξ0, t0, e0), . . . , (sn, qn, ξn, tn, en) can be mapped to a unique history H(p) =
(s0, t0, e0), . . . , (sn, tn, en). Note that H is in fact a bijection, because each history in-
duces a unique finite execution of the DTA A and the consistency condition reflects
this unique execution. By the last p-control of a p-history p we denote the image of the
last p-stamp of p under the p-flow function.

Region relation. Although the state-space of GA is uncountable, we can define a vari-
ant of region relation over p-histories which has a finite index, and then work with
finitely many regions.

For a given x ∈ R≥0, we use frac(x) to denote the fractional part of x, and int(x) to
denote the integral part of x. For x, y ∈ R≥0, we say that x and y agree on integral part
if int(x) = int(y) and neither or both x, y are integers. A relevant bound of a clock x is
the largest constant c that appears in all guards. A relevant bound of an event e is ue if
ue < ∞, and �e otherwise. We say that an element a ∈ E∪ X is relevant for ξ if ξ(a) ≤ r
where r is the relevant bound of a. Finally, we put ξ1 ≈ ξ2 if

• for all relevant a ∈ E ∪ X we have that ξ1(a) and ξ2(a) agree on integral parts;
• for all relevant a, b ∈ E ∪ X we have that frac(ξ1(a)) ≤ frac(ξ1(b)) if and only if

frac(ξ2(a)) ≤ frac(ξ2(b)).

The equivalence classes of ≈ are called time areas. Now we can define the promised
region relation ∼ on p-histories. Let p1 and p2 be p-histories such that (c1, q1, ξ1) is the
last p-control of p1 and (c2, q2, ξ2) is the last p-control of p2. We put p1 ∼ p2 iff c1 = c2,
q1 = q2 and ξ1 ≈ ξ2. Note that ∼ is an equivalence with a finite index. The equivalence
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classes of ∼ are called regions. A target region is a region that contains such p-histories
whose last p-controls have a target location in the second component. The sets of all
regions and target regions are denoted by R and RT , respectively.

Remark 1. Let us note that the region construction described above can also be applied
to configurations of timed automata, where it coincides with the standard region con-
struction of [3].

Strategies in the product game. Note that every pair of strategies (σ, π) ∈ Σ × Π
defined for the original game G can also be applied in the constructed product game
GA (we just ignore the extra components of p-stamps). By re-using the construction of
Section 2.1, for every p-history p and every pair of strategies (σ, π) ∈ Σ × Π , we define
a probability measure Pσ,πp on the Borel σ-field F over the p-plays in GA (the details
are given in [11]).

For every S ⊆ R, let Reach(S) be the set of all p-plays that visit a region of S
(i.e., some prefix of the p-play belongs to some r ∈ S). We say that a strategy σ ∈ Σ
is almost-sure winning in GA for a p-history p if for every π ∈ Π we have that
Pσ,πp (Reach(RT )) = 1. The relationship between almost-sure winning strategies in G and
GA is formulated in the next proposition.

Proposition 2. Let σ ∈ Σ and p be a p-history. Then σ is almost-sure winning for p in
GA iff σ is almost-sure winning for H(p) in G.

Another observation about strategies in GA which is heavily used in the next sections
concerns strategies that are constant on regions. Formally, a strategy τ ∈ Σ ∪ Π is
constant on regions if for all p-histories p1 and p2 such that p1 ∼ p2 we have that
τ(p1) = τ(p2).

Proposition 3. Every strategy τ ∈ Σ∪Π which is constant on regions is a DTA strategy.

Proof (Sketch). We transform τ into a DTA AGA whose regions are in one-to-one cor-
respondence with the regions of GA. The automaton AGA reads a sequence of stamps
of G and simulates the behavior of GA. It has a special clock for every clock of A and
every event of E, and uses its locations to store also the current state of the game. The
details are given in [11]. ��
Note that due to Proposition 3, every strategy constant on regions can be effectively
transformed into a DTA strategy.

3.2 Almost-Sure Winning Strategies

In this section, we outline a proof of the following theorem:

Theorem 2. Let p be a p-history. If there is a strategy σ ∈ Σ which is almost-sure
winning in GA for p, then there is a DTA strategy σ∗ ∈ Σ which is almost-sure winning
for p.

Note that due to Proposition 3, it suffices to show that there is an almost-sure winning
strategy in GA for p which is constant on regions.
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Observe that if σ ∈ Σ is an almost-sure winning strategy in GA for p, then for every
π ∈ Π the plays of GA may visit only regions from which it is still possible to visit
a target region. Hence, a good candidate for an almost-sure winning DTA strategy in
GA for p is a strategy which never leaves this set of “safe” regions. This motivates
the following definition (in the rest of this section we often write p ∈ S, where p is a
p-history and S a set of regions, to indicate that p ∈ ⋃r∈S r).

Definition 4. A DTA strategy σ ∈ Σ is a candidate on a set of regions S ⊆ R if for
every π ∈ Π and every p-history p ∈ S we have that Pσ,πp (Reach(R \ S)) = 0 and
Pσ,πp (Reach(RT )) > 0.

In the following, we prove Propositions 4 and 5 that together imply Theorem 2.

Proposition 4. Let σ be an almost-sure winning strategy in GA for a p-history p0. Then
there is a set S ⊆ R and a DTA strategy σ∗ such that p0 ∈ S and σ∗ is a candidate on S.

Proof (Sketch). We define S as the set of all regions reached with positive probability
in an arbitrary play where player � uses the strategy σ and player � uses some π ∈ Π .
For every action a, let p-hista be the set of all p-histories where σ assigns a positive
probability to a. For every region r ∈ S, we denote by Ar the set of all a ∈ Act for which
there is π ∈ Π such that Pσ,πp0

(p-hista ∩ r) > 0.

• Firstly, we show that every DTA strategy σ′ that selects only the actions of Ar in
every r ∈ S has to satisfy Pσ′,π

p (Reach(R \ S)) = 0 for all π ∈ Π and p ∈ S. To see
this, realize that when we use only the actions of Ar, we do not visit (with positive
probability) any other regions than we did with σ. Hence, we stay in S almost surely.

• Secondly, we prove that from every p-history in S, we can reach a target region with
positive probability. We proceed in several steps.

− Let us fix a region r ∈ S. Realize that then there is a p-history p ∈ r for which σ
is almost-sure winning (since σ is almost-sure winning and for every r ∈ S there
is π ∈ Π such that r is visited with positive probability, there must be a p-history
p ∈ r for which σ is almost-sure winning). In particular, Pσ,πp (Reach(RT )) > 0
for every π ∈ Π . We show how to transform σ into a DTA strategy σ′ such that
Pσ′ ,π
p (Reach(RT )) > 0.

Let us first consider one-player games, i.e., the situation when C� = ∅. Then
there must be a sequence of regions r0, . . . , rn visited on the way from p to a target,
selecting some actions a0, . . . , an−1. We fix these actions for the respective regions
(if some region is visited several times, we fix the last action taken) and thus obtain
the desired DTA strategy σ′.

In the general case of two-player games, we have to consider a tree of regions
and actions instead of a single sequence, because every possible behaviour of the
opponent in the first n steps has to be taken into account.

− Then we prove that for every p′ ∈ r we have that Pσ′ ,π
p′ (Reach(RT )) > 0 for every

π ∈ Π . For the p-histories p, p′ ∈ r, consider the probability that taking an action
a results in reaching a given region in one step. These probabilities are either both
positive or both zero. This one-step qualitative equivalence is then extended to
arbitrary many steps. Hence, Pσ′ ,π

p′ (Reach(RT )) > 0.
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− Let us now drop the fixed region r. We need to “stitch” the DTA strategies described
above for each region into one DTA strategy σ∗. We construct σ∗ as follows. In
the first step, we take an arbitrary region reachable with positive probability (e.g.,
the initial one containing p0) and fix the decisions in the regions r0, . . . , rn (where
rn ∈ RT ) discussed above. Let us denote this set of regions by F1. In the second
step, we take an arbitrary region v ∈ S \ F1. Again, we take a sequence of regions
r′

0, . . . , r
′
n′ ending in RT ∪ F1. We fix the actions in these regions accordingly and

get a set F2. We repeat this step until Fk = S. In the other regions, σ∗ is defined
arbitrarily requiring only it is constant on each region. ��

Proposition 5. If a DTA strategy σ∗ is a candidate on a set of regions S ⊆ R, then for
every p ∈ S and every π ∈ Π we have that Pσ∗ ,π

p (Reach(RT )) = 1.

Note that we are guaranteed that for every p-history in every region in S, the probability
of reaching a target is positive. However, it can be arbitrarily small. Therefore, even if
we pass through these regions infinitely often and never leave them, it is not clear that
we eventually reach a target almost surely. This would be guaranteed if the probabilities
were bounded from below by a positive constant.

Remark 2. If we considered the restricted case of one-player games with bounded inter-
vals and exponentially distributed unbounded events, we can already easily prove that
σ∗ is winning using [3] as follows. Fixing σ∗ resolves all non-determinism and yields a
system of the type considered by [3]. Since we are guaranteed the positive probability
of reaching the target, we may apply Lemma 3 of [3]. However, in the setting of two-
player games, we cannot use this argument directly and some (non-trivial) changes are
required.

p
r

Intuitively, the reason why the probabilities of reaching a target
are generally not bounded from below is that when the frac-
tional parts of the clocks are too close, the probability of reach-
ing a given region may approach zero. The figure on the left
shows the region graph of a system with two clocks and a sin-
gle state. There is also a single event, which is positive on (0, 1)
and its associated clock is not depicted. Now observe that if p
comes closer and closer to the diagonal, the probability that the
(only) event happens in the region r is smaller and smaller.

Nevertheless, we can bound the probabilities if we restrict ourselves to a smaller set
of positions. We define δ-separated parts of regions, where the differences of p-clocks
are at least δ (and hence we are at least δ-away from the boundary of the region) or zero
due to a synchronization of the clocks of the original automaton. Being away from the
boundary by a fixed δ then guarantees that we reach the next region with a probability
bounded from below.

Definition 5. Let δ > 0. We say that a set D ⊆ R≥0 is δ-separated if for every x, y ∈ D
either frac(x) = frac(y) or |frac(x)−frac(y)| > δ. Further, we say that a p-history with the
last p-control (s, q, ξ) is δ-separated if the set {0} ∪ {ξ(a) | a ∈ E∪X, a is relevant for ξ}
is δ-separated.
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Now we prove that the probabilities of reaching a target region are bounded from below
if we start in a δ-separated p-history.

Proposition 6. Let σ∗ be a DTA strategy candidate on a set of regions S. For every
δ > 0 there is ε > 0 such that for every δ-separated p-history p ∈ S and every strategy
π we have that Pσ∗ ,π

p (Reach(RT )) > ε.

Proof (Sketch). We prove that for every δ > 0 there is ε > 0 such that starting in
a δ-separated p-history, the probability of reaching a target in at most |R| steps is
greater than ε. For this we use the observation that after performing one step from
a δ-separated p-history, we end up (with a probability bounded from below) in a
δ′-separated p-history. This can be generalized to an arbitrary (but fixed) number of
steps. Now it suffices to observe that for every π ∈ Π and a δ-separated p-history p
there is a sequence of regions r1, . . . , rk with k ≤ |R|, such that p ∈ r1, rk ∈ RT , and the
probability of reaching ri+1 from ri in one step using σ∗ and π is positive. ��
Nevertheless, there is a non-zero probability of falling out of safely separated parts of
regions. To finish the proof of Proposition 5, we need to know that we pass through
δ-separated p-histories infinitely often almost surely (since the probability of reaching a
target from δ-separated p-histories is bounded from below by Proposition 6, a target is
eventually visited with probability one). For this, it suffices to prove that we eventually
return to a δ-separated part almost surely. Hence, the following proposition makes our
proof complete.

Proposition 7. There is δ > 0 such that for every DTA strategy σ ∈ Σ and every π ∈ Π ,
a δ-separated p-history is reached almost surely from every p-history p.

Proof (Sketch). We prove that there are n ∈ N, δ > 0, and ε > 0 such that for every
p-history p and every π ∈ Π , the probability of reaching a δ-separated p-history in n
steps is greater than ε. Then, we just iterate the argument. ��

3.3 The Algorithm

In this section, we show that the existence of a DTA almost-sure winning strategy is
decidable in exponential time, and we also show how to compute such a strategy if it
exists. Due to Proposition 2, this problem can be equivalently considered in the setting
of the product game GA. Due to Proposition 3, an almost-sure winning DTA strategy
can be constructed as a strategy that is constant on every region of GA. We show that
this problem can be further reduced to the problem of computing wining strategies in
a finite stochastic game GA with reachability objectives induced by the product game
GA. Note that the game GA can be solved by standard methods (e.g., by computing the
attractor of a target set). First, we define the game GA and show how to compute it. The
complexity discussion follows.

The product GA induces a game GA whose vertices are the regions of GA as follows.
Player 
, where 
 ∈ {�,�}, plays in regions (c, q, [ξ]≈) 1 where c ∈ C
. In a region

1 Note that a region is a set of p-histories such that their last p-controls share the same control c,
location q, and equivalence class [ξ]≈. Hence, we can represent a region by a triple (c, q, [ξ]≈).
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r = (c, q, [ξ]≈), she chooses an arbitrary action a ∈ A(c) and this action a leads to a
stochastic vertex (r, a) = ((c, q, [ξ]≈), a). From this stochastic vertex there are transi-
tions to all regions r′ = (c′, q′, [ξ′]≈), such that r′ is reachable from all p ∈ r in one step
using action a with some positive probability in the product GA. One of these proba-
bilistic transitions is taken at random according to the uniform distribution. From the
next region the play continues in the same manner. Player � tries to reach the set RT of
target regions (which is the same as in the product game) and player � tries to avoid it.
We say that a strategy σ of player � is almost-sure winning for a vertex v if she reaches
RT almost surely when starting from v and playing according to σ.

At first glance, it might seem surprising that we set all probability distributions in
GA as uniform. Note that in different parts of a region r, the probabilities of moving
to r′ are different. However, as noted in the sketch of proof of Proposition 4, they are
all positive or all zero. Since we are interested only in qualitative reachability, this is
sufficient for our purposes.

Moreover, note that since we are interested in non-zero probability behaviour, there
are no transitions to regions which are reachable only with zero probability (such as
when an event occurs at an integral time).

We now prove that the reduction is correct. Observe that a strategy for the product
game GA which is constant on regions induces a unique positional strategy for the
game GA, and vice versa. Slightly abusing the notation, we consider these strategies to
be strategies in both games.

Proposition 8. Let G be a game and A a deterministic timed automaton. For every
p-history p in a region r, we have that

• a positional strategy σ is almost-sure winning for r in GA iff it is almost-sure winning
for p in GA,

• player � has an almost-sure winning strategy for r in GA iff player � has an almost-
sure winning strategy for p in GA.

The algorithm constructs the regions of the product GA and the induced game graph of
the game GA (see [11]). Since there are exponentially many regions (w.r.t. the number
of clocks and events), the size of GA is exponential in the size of G and A. As we
already noted, two-player stochastic games with qualitative reachability objectives are
easily solvable in polynomial time, and thus we obtain the following:

Theorem 3. Let h be a history. The problem whether player � has a (DTA) almost-sure
winning strategy for h is solvable in time exponential in |G| and |A|, and polynomial in
|h|. A DTA almost-sure winning strategy is computable in exponential time if it exists.

4 Conclusions and Future Work

An interesting question is whether the positive results presented in this paper can be
extended to more general classes of objectives that can be encoded, e.g., by determin-
istic timed automata with ω-regular acceptance conditions. Another open problem are
algorithmic properties of ε-optimal strategies in stochastic real-time games.
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Abstract. Several type disciplines for π-calculi have been proposed in which
linearity plays a key role, even if their precise relationship with pure linear logic
is still not well understood. In this paper, we introduce a type system for the π-
calculus that exactly corresponds to the standard sequent calculus proof system
for dual intuitionistic linear logic. Our type system is based on a new interpreta-
tion of linear propositions as session types, and provides the first purely logical
account of all (both shared and linear) features of session types. We show that our
type discipline is useful from a programming perspective, and ensures session
fidelity, absence of deadlocks, and a tight operational correspondence between
π-calculus reductions and cut elimination steps.

1 Introduction

Linear logic has been intensively explored in the analysis of π-calculus models for com-
municating and mobile system, given its essential ability to deal with resources, effects,
and non-interference. The fundamental way it provides for analyzing notions of shar-
ing versus uniqueness, captured by the exponential “!”, seems to have been a source of
inspiration for Milner when introducing replication in the π-calculus [22]. Following
the early works of Abramsky [1], several authors have exploited variants of π-calculi to
express proof reductions (e.g., [5]) or game semantics (e.g., [19]) in systems of linear
logic. In the field of concurrency, many research directions have also drawn inspiration
from linear logic for developing type-theoretic analyses of mobile processes, motivated
by the works of Kobayashi, Pierce, and Turner [21]; a similar influence is already no-
ticeable in the first publications by Honda on session types [16]. Many expressive type
disciplines for π-calculi in which linearity frequently plays a key role have been pro-
posed since then (e.g., [20,18,26,15]). However, linearity has been usually employed
in such systems in indirect ways, exploiting the fine grained type context management
techniques it provides, or the assignment of usage multiplicities to channels [21], rather
than the deeper type-theoretic significance of linear logical operators.

In this paper we present a type system for the π-calculus that exactly corresponds to
the standard sequent calculus proof system for dual intuitionistic linear logic. The key
to our correspondence is a new, perhaps surprising, interpretation of intuitionistic linear
logic formulas as a form of session types [16,18], in which the programming language is
a session-typed π-calculus, and the type structure consists precisely of the connectives
of intuitionistic linear logic, retaining their standard proof-theoretic interpretation.

In session-based concurrency, processes communicate through so-called session
channels, connecting exactly two subsystems, and communication is disciplined by ses-
sion protocols so that actions always occur in dual pairs: when one partner sends, the
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other receives; when one partner offers a selection, the other chooses; when a session
terminates, no further interaction may occur. New sessions may be dynamically created
by invocation of shared servers. Such a model exhibits concurrency in the sense that
several sessions, not necessarily causally related, may be executing simultaneously, al-
though races in unshared resources are forbidden; in fact this is the common situation
in disciplined concurrent programming idioms. Mobility is also present, since both ses-
sion and server names may be passed around (delegated) in communications. Session
types have been introduced to discipline interactions in session-based concurrency, an
important paradigm in communication-centric programming (see [11]).

It turns out that the connectives of intuitionistic linear logic suffice to express all
the essential features of finite session disciplines. While in the linear λ-calculus types
are assigned to terms (denoting functions and values), in our interpretation types are
assigned to names (denoting communication channels) and describe their session pro-
tocol. The essence of our interpretation may already be found in the interpretation of
the linear logic multiplicatives as behavioral prefix operators. Traditionally, an object
of type A
B denotes a linear function that given an object of type A returns an object
of type B [14]. In our interpretation, an object of type A
B denotes a session x that
first inputs a session channel of typeA, and then behaves asB, whereB specifies again
an interactive behavior, rather than a closed value. Linearity of
 is essential, other-
wise the behavior of the input session after communication could not be ensured. An
object of type A⊗B denotes a session that first sends a session channel of type A and
afterwards behaves as B. But notice that objects of type A ⊗ B really consist of two
objects: the sent session of type A and the continuation session, of type B. These two
sessions are separate and non-interfering, as enforced by the canonical semantics of the
linear multiplicative conjunction (⊗). Our interpretation of A ⊗ B appears asymmet-
ric, in the sense that, of course, a channel of type A ⊗ B is in general not typable by
B ⊗ A. In fact, the symmetry captured by the proof of A ⊗ B  B ⊗ A is realized by
an appropriately typed process that coerces any session of type A ⊗ B to a session of
type B ⊗ A. The other linear constructors are also given compatible interpretations, in
particular, the !A type is naturally interpreted as a type of a shared server for sessions of
type A, and additive product and sum, to branch and choice session type operators. We
thus obtain the first purely logical account of both shared and linear features of session
types.

We briefly summarize the contributions of the paper. We describe a system of session
types for the π-calculus (Section 3) that corresponds to the sequent calculus for dual in-
tuitionistic linear logic DILL (Section 4). The correspondence is bidirectional and tight,
in the sense that (a) any π-calculus computation can be simulated by proof reductions
on typing derivations (Theorem 5.3), thus establishing a strong form of subject reduc-
tion (Theorem 5.6), and (b) that any proof reduction or conversion corresponds either
to a computation step or to a process equivalence on the π-calculus side (Theorems 5.4
and 5.5). An intrinsic consequence of the logical typing is a global progress property,
that ensures the absence of deadlock for systems with an arbitrary number of open ses-
sions (Theorem 5.8). Finally, we illustrate the expressiveness of our system (Section 6)
with some examples and discussion.
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2 Process Model

We briefly introduce the syntax and operational semantics of the process model: the
synchronous π-calculus (see [24]) extended with (binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (x, y, z, u, v), the set of
processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| x.inl;P | x.inr;P | x.case(P,Q)

The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restriction)
comprise the static fragment of any π-calculus. We then have x〈y〉.P (send y on x
and proceeds as P ), x(y).P (receive a name z on x and proceed as P with the input
parameter y replaced by z), and !x(y).P which denotes replicated (or persistent) input.
The remaining three operators define a minimal labeled choice mechanism, comparable
to the n-ary branching constructs found in standard session π-calculi (see eg., [18]). For
the sake of minimality and without loss of generality we restrict our model to binary
choice. In restriction (νy)P and input x(y).P the distinguished occurrence of the name
y is binding, with scope the process P . For any process P , we denote the set of free
names of P by fn(P ). A process is closed if it does not contain free occurrences of
names. We identify process up to consistent renaming of bound names, writing ≡α

for this congruence. We write P{x/y} for the process obtained from P by capture
avoiding substitution of x for y in P . Structural congruence expresses basic identities
on the structure of processes, while reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q), is the least congruence relation on
processes such that

P | 0 ≡ P (S0) P ≡α Q⇒ P ≡ Q (Sα)
P | Q ≡ Q | P (S|C) P | (Q | R) ≡ (P | Q) | R (S|A)
(νx)0 ≡ 0 (Sν0) x �∈ fn(P ) ⇒ P | (νx)Q ≡ (νx)(P | Q) (Sν|)
(νx)(νy)P ≡ (νy)(νx)P (Sνν)

Definition 2.3. Reduction (P → Q), is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} (RC)
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P (R!)
x.inl;P | x.case(Q,R) → P | Q (RL)
x.inr;P | x.case(Q,R) → P | R (RR)
Q→ Q′ ⇒ P | Q→ P | Q′ (R|)
P → Q⇒ (νy)P → (νy)Q (Rν)
P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q (R≡)

Notice that reduction is closed (by definition) under structural congruence. Reduction
specifies the computations a process performs on its own. To characterize the interac-
tions a process may perform with its environment, we introduce a labeled transition
system; the standard early transition system for the π-calculus [24] extended with ap-
propriate labels and transition rules for the choice constructs. A transition P

α→ Q
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P
α→ Q

(νy)P α→ (νy)Q
(res)

P
α→ Q

P | R
α→ Q | R

(par)
P

α→ P ′ Q
α→ Q′

P | Q
τ→ P ′ | Q′

(com)

P
(νy)x〈y〉→ P ′ Q

x(y)→ Q′

P | Q
τ→ (νy)(P ′ | Q′)

(close)
P

x〈y〉→ Q

(νy)P
(νy)x〈y〉→ Q

(open) x〈y〉.P x〈y〉→ P (out)

x(y).P
x(z)→ P{z/y} (in) !x(y).P

x(z)→ P{z/y} | !x(y).P (rep) x.inl; P x.inl→ P (lout)

x.inr; P x.inr→ P (rout) x.case(P, Q) x.inl→ P (lin) x.case(P, Q) x.inr→ Q (rin)

Fig. 1. π-calculus Labeled Transition System

denotes that process P may evolve to process Q by performing the action represented
by the label α. Transition labels are given by

α ::= x〈y〉 | x(y) | (νy)x〈y〉 | x.inl | x.inr | x.inl | x.inr

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-
actions, respectively the output x〈y〉 and bound output (νy)x〈y〉 actions, and the left/
right selections x.inl and x.inr. The bound output (νy)x〈y〉 denotes extrusion of a
fresh name y along (channel) x. Internal action is denoted by τ , in general an action
α (α) requires a matching α (α) in the environment to enable progress, as specified by
the transition rules. For a label α, we define the sets fn(α) and bn(α) of free and bound
names, respectively, as usual. We denote by s(α) the subject of α (e.g., x in x〈y〉).

Definition 2.4 (Labeled Transition System). The relation labeled transition (P
α→ Q)

is defined by the rules in Figure 1, subject to the side conditions: in rule (res), we
require y �∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we
require y �∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We recall some basic facts about reduction, structural congruence, and labeled tran-
sition, namely: closure of labeled transitions under structural congruence, and coinci-
dence of τ -labeled transition and reduction [24]: (1) if P ≡ α→ Q, then P

α→≡ Q, and
(2) P → Q if and only if P

τ→≡ Q. We write ρ1ρ2 for relation composition (e.g,
τ→≡).

3 Type System

We first describe our type structure, which coincides with intuitionistic linear logic [14,3],
omitting atomic formulas and the additive constants � and 0.

Definition 3.1 (Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A⊗B | A
B | A⊕B | A � B

Types are assigned to (channel) names, and may be conveniently interpreted as a form
of session types; an assignment x:A enforces that the process will use x according to
the discipline A. A ⊗ B is the type of a session channel that first performs an output
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Γ ; Δ � P :: T

Γ ; Δ, x:1 � P :: T
(T1L)

Γ ; · � 0 :: x:1
(T1R)

Γ ; Δ, y:A, x:B � P :: T

Γ ; Δ, x:A ⊗ B � x(y).P :: T
(T⊗L)

Γ ; Δ � P :: y:A Γ ; Δ′ � Q :: x:B
Γ ; Δ, Δ′ � (νy)x〈y〉.(P | Q) :: x:A ⊗ B

(T⊗R)

Γ ; Δ � P :: y:A Γ ; Δ′, x:B � Q :: T

Γ ; Δ, Δ′, x:A�B � (νy)x〈y〉.(P | Q) :: T
(T�L)

Γ ; Δ, y:A � P :: x:B
Γ ; Δ � x(y).P :: x:A�B

(T�R)

Γ ; Δ � P :: x:A Γ ; Δ′, x:A � Q :: T

Γ ; Δ, Δ′ � (νx)(P | Q) :: T
(Tcut)

Γ ; · � P :: y:A Γ, u:A; Δ � Q :: T

Γ ; Δ � (νu)(!u(y).P | Q) :: T
(Tcut!)

Γ, u:A; Δ, y:A � P :: T

Γ, u:A; Δ � (νy)u〈y〉.P :: T
(Tcopy)

Γ, u:A; Δ � P{u/x} :: T

Γ ; Δ, x:!A � P :: T
(T!L)

Γ ; · � Q :: y:A
Γ ; · � !x(y).Q :: x:!A

(T!R)

Γ ; Δ, x:A � P :: T Γ ; Δ, x:B � Q :: T

Γ ; Δ, x:A ⊕ B � x.case(P, Q) :: T
(T⊕L)

Γ ; Δ, x:B � P :: T

Γ ; Δ, x:A � B � x.inr; P :: T
(T�L2)

Γ ; Δ � P :: x:A Γ ; Δ � Q :: x:B
Γ ; Δ � x.case(P, Q) :: x:A � B

(T�R)
Γ ; Δ, x:A � P :: T

Γ ; Δ, x:A � B � x.inl; P :: T
(T�L1)

Γ ; Δ � P :: x:A
Γ ; Δ � x.inl; P :: x:A ⊕ B

(T⊕R1)
Γ ; Δ � P :: x:B

Γ ; Δ � x.inr; P :: x:A ⊕ B
(T⊕R2)

Fig. 2. The Type System πDILL

(sending a session channel of typeA) to its partner before proceeding as specified byB.
In a similar way, A
B types a session channel that first performs an input (receiving
a session channel of type A) from its partner, before proceeding as specified by B. The
type 1 means that the session terminated, no further interaction will take place on it.
Notice that names of type 1 may still be passed around in sessions, as opaque values.
A ⊕ B types a session that either selects “left” and then proceed as specified by A, or
else selects “right”, and then proceeds as specified by B. Dually, A�B types a session
channel that offers its partner a choice between an A typed behavior (“left” choice) and
a B typed behavior (“right” choice). The type !A types a non-session (non-linearized,
shared) channel (called standard channel in [13]), to be used by a server for spawning
an arbitrary number of new sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments, of the form x : A where
x is a name and A a type, the names being pairwise disjoint. Following the insights
behind dual intuitionistic linear logic, which goes back to Andreoli’s dyadic system
for classical linear logic [2], we distinguish two kinds of type environments subject
to different structural properties: a linear part Δ and an unrestricted part Γ , where
weakening and contraction principles hold for Γ but not for Δ. A judgment of our
system has then the form Γ ;Δ  P :: z:C where name declarations in Γ are always
propagated unchanged to all premises in the typing rules, while name declarations in
Δ are handled multiplicatively or additively, depending on the nature of the type being
defined. The domains of Γ,Δ and z:C are required to be pairwise disjoint.



Session Types as Intuitionistic Linear Propositions 227

Intuitively, such a judgment asserts: P is ensured to safely provide a usage of name z
according to the behavior (session) specified by type C, whenever composed with any
process environment providing usages of names according to the behaviors specified by
names in Γ ;Δ. As shown in Section 5, in our case safety ensures that the behavior is
free of communication errors and deadlock. A pure client Q that just relies on external
services, and does not provide any, will be typed as Γ ;Δ  Q :: −:1. In general, a pro-
cess P such that Γ ;Δ  P :: z:C represents a system providing behavior C at channel
z, building on “services” declared in Γ ;Δ. Of particular interest is a system typed as
Γ ;Δ  R :: z:!A, representing a shared server. Quite interestingly, the asymmetry in-
duced by the intuitionistic interpretation of !A enforces locality of shared names but not
of linear (session names), which exactly corresponds to the intended model of sessions.

We present the rules of our type system πDILL in Fig. 2. We use T, S for right hand
side singleton environments (e.g., z:C). The interpretation of the various rules should
be clear, given the explanation of types given above. Notice that since in ⊗R the sent
name is always fresh, our typed calculus conforms to a session-based internal mobil-
ity discipline [23,7], without loss of expressiveness. The composition rules (cut and
cut!) follow the “composition plus hiding” principle [1], extended to a name passing
setting. More familiar linear typing rules for parallel composition (e.g., as in [21]) are
derivable (see Section 6). Since we are considering π-calculus terms up to structural
congruence, typability is closed under ≡ by definition. πDILL enjoys the usual proper-
ties of equivariance, weakening in Γ and contraction in Γ . The coverage property also
holds: if Γ ;Δ  P :: z:A then fn(P ) ⊆ Γ ∪Δ∪{z}. In the presence of type-annotated
restrictions (νx:A)P , as usual in typed π-calculi [24], type-checking is decidable.

We illustrate the type system with a simple example, frequently used to motivate ses-
sion based interactions (see e.g., [13]). A client may choose between a “buy” operation,
in which it indicates a product name and a credit card number to receive a receipt, and
a “quote” operation, in which it indicates a product name, to obtain the product price.
From the client perspective, the session protocol exposed by the server may be specified
by the type

ServerProto � (N
I
(N ⊗ 1)) � (N
(I ⊗ 1))

We assume that N and I are types representing shareable values (e.g., strings N and
integers I). To simplify, we set N = I = 1. Assuming s to be the name of the session
channel connecting the client and server, consider the code

QClntBodys � s.inr; (νtea)s〈tea〉.s(pr).0

QClntBodys specifies a client that asks for the price of tea (we simply abstract away
from what the client might do with the price after reading it). It first selects the quoting
operation on the server (s.inr), then sends the id of the product to the server (s〈tea〉),
then receives the price s(pr) from the server and finally terminates the session (0). Then

·; s : ServerProto  QClntBodys :: −:1

is derivable (by T1R, T⊗L, T
L and T�L2). Here we wrote − for an anonymous
variable that does not appear in QClntBody. This is possible even in a linear type dis-
cipline since the inactive process 0 is typed by x:1 and does not use x. Concerning the
server code, let SrvBodys � s.case( s(pn).s(cn).(νrc)s〈rc〉.0, s(pn).(νpr)s〈pr〉.0 ) .
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Γ ; Δ � D : C

Γ ; Δ, x : 1 � 1L x D : C
(1L)

Γ ; · � 1R : 1
(1R)

Γ ; Δ, y : A, x : B � D : C

Γ ;Δ, x : A ⊗ B � ⊗L x (y.x. D) : C
(⊗L)

Γ ; Δ � D : A Γ ;Δ′ � E : B

Γ ; Δ, Δ′ � ⊗R D E : A ⊗ B
(⊗R)

Γ ; Δ � D : A Γ ; Δ′, x : B � E : C

Γ ;Δ, Δ′, x : A
B �
L x D (x. E) : C
(
L)

Γ ;Δ, y : A � D : B

Γ ;Δ �
R (y. D) : A
B
(
R)

Γ ; Δ � D : A Γ ; Δ′, x : A � E : C

Γ ; Δ, Δ′ � cut D (x. E) : C
(cut)

Γ ; · � D : A Γ, u : A; Δ � E : C

Γ ;Δ � cut! D (u. E) : C
(cut!)

Γ, u : A; Δ, y : A � D : C

Γ, u : A; Δ � copy u (y. D) : C
(copy)

Γ ; · � D : A

Γ ; · � !R D : !A
(!R)

Γ, u : A; Δ � D : C

Γ ; Δ, x : !A � !L x (u.D) : C
(!L)

Γ ; Δ, x : A � D : C

Γ ; Δ, x : A � B � �L1 x (x. D) : C
(�L1)

Γ ; Δ, x : B � D : C

Γ ;Δ, x : A � B � �L2 x (x. D) : C
(�L2)

Γ ; Δ � D : A Γ ;Δ � E : B

Γ ; Δ � �R D E : A � B
(�R)

Γ ; Δ x : A � D : C Γ ; Δ, x : B � E : C

Γ ;Δ, x : A ⊕ B � ⊕L x (x. D) (x. E) : C
(⊕L)

Γ ; Δ � D : A

Γ ; Δ � ⊕R1 D : A ⊕ B
(⊕R1)

Γ ;Δ � D : B

Γ ; Δ � ⊕R2 D : A ⊕ B
(⊕R2)

Fig. 3. Dual Intuitionistic Linear Logic DILL

Then ·; ·  SrvBodys :: s:ServerProto is derivable, by T�R. By T cut we obtain for
the system QSimple � (νs)(SrvBodys | QClntBodys) the typing ·; ·  QSimple :: −:1.
In this example we have only introduced processes interacting in a single session, but
clearly the system accomodates all the generality of session types, e.g., a simple process
interacting in different sessions is x:A
1, y:A⊗ 1  y(w).(νk)x〈k〉.0 :: −:1.

4 Dual Intuitionistic Linear Logic

As presented, session type constructors correspond directly to intuitionistic linear logic
connectives. Typing judgments directly correspond to sequents in dual intuitionistic
linear logic, by erasing processes [3,10]. In Figure 3 we present the DILL sequent cal-
culus. In our presentation, DILL is conveniently equipped with a faithful proof term
assignment, so sequents have the form Γ ;Δ  D : C where Γ is the unrestricted
context, Δ the linear context, C a formula (= type) and D the proof term that faith-
fully represents the derivation of Γ ;Δ  C. Our use of names in the proof system
will be consistent with the proof discipline, u, v, w for variables in Γ and x, y, z for
variables in Δ. This is consistent with standard usage of names in π-calculi. Given
the parallel structure of the two systems, if Γ ;Δ  D : A is derivable in DILL then
there is a process P and a name z such that Γ ;Δ  P :: z:A is derivable in πDILL,
and the converse result also holds: if Γ ;Δ  P :: z:A is derivable in πDILL there is a
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D � D̂z

1R � 0
1L x D � D̂z

⊗R D E � (νy) z〈y〉. (D̂y | Êz)
⊗L x (y.x.D) � x(y). D̂z


R (y.D) � z(y). D̂z


L x D (x. E) � (νy)x〈y〉. (D̂y | Êz)
�R D E � z. case(D̂z , Êz)
�L1 x (x. D) � x. inl; D̂z

�L2 x (x. E) � x. inr; Êz

D � D̂z

⊕R1 D � z.inl; D̂z

⊕R2 E � z.inr; Êz

⊕L x (x. D) (x. E) � x.case(D̂z, Êz)
cut D (x. E) � (νx)(D̂x | Êz)

!R D � !z(y). D̂y

!L x (u. D) � D̂z{x/u}
copy u (y.D) � (νy)u〈y〉. D̂z

cut! D (u. E) � (νu)((!u(y). D̂y) | Êz)

Fig. 4. Proof D extracts to process D̂z

derivation D that proves Γ ;Δ  D : A. This correspondence is made explicit by a
translation from faithful proof terms to processes, defined in Fig. 4: for Γ ;Δ  D : C
we write D̂z for the translation ofD such that Γ ;Δ  D̂z :: z:C.

Definition 4.1 (Typed Extraction). We write Γ ;Δ  D � P :: z:A, meaning “proof
D extracts to P”, whenever Γ ;Δ  D : A and Γ ;Δ  P :: z:A and P ≡ D̂z .

Typed extraction is unique up to structural congruence, in the sense that if Γ ;Δ  
D � P :: z:A and Γ ;Δ  D � Q :: z:A then P ≡ Q, as a consequence of closure
of typing under structural congruence. The system DILL as presented does not admit
atomic formulas, and hence has no true initial sequents. However, the correspondence
mentioned above yields an explicit identity theorem:

Proposition 4.2. For any type A and distinct names x, y, there is a process idA(x, y)
and a cut-free derivationD such that ·;x:A  D � idA(x, y) :: y:A.

The idA(x, y) process, with exactly the free names x, y, implements a synchronous
mediator that bidirectionally plays the protocol specified by A between channels x and
y. For example, we analyze the interpretation of the sequent A⊗B  B ⊗A. We have

x:A⊗B  F � x(z).(νn)y〈n〉.(P | Q) :: y:B ⊗A
where F = ⊗L x (z.x. ⊗R D E), P = idB(x, n) and Q = idA(z, y). This process is
an interactive proxy that coerces a session of type A⊗B at x to a session of type B⊗A
at y. It first receives a session of type A (bound to z) and after sending on y a session
of type B (played by copying the continuation of x to n), it progresses with a session
of type A on y (copying the continuation of z to y).

As processes are related by structural and computational rules, namely those in-
volved in the definition of ≡ and →, derivations in DILL are related by structural and
computational rules, that express certain sound proof transformations that arise in cut-
elimination. The reductions (Figure 5) generally take place when a right rule meets a
left rule for the same connective, and correspond to reduction steps in the process term
assignment. On the left, we show the usual reductions for cuts; on the right, we show the
corresponding reductions (if any) of the process terms, modulo structural congruence.
Since equivalences depend on variable occurrences, we write Dx if x may occur inD.
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The structural conversions in Figure 6 correspond to structural equivalences in the
π-calculus, since they just change the order of cuts, e.g., (cut/−/cut1) translates to

(νx)(D̂x | (νy)(Êy | F̂ z)) ≡ (νy)((νx)(D̂x | Êy) | F̂ z)

In addition, we have two special conversions. Among those, (cut/1R/1L) is not needed
in order to simulate the π-calculus reduction, while (cut/!R/!L) is. In cut-elimination
procedures, these are always used from left to right. Here, they are listed as equivalences
because the corresponding π-calculus terms are structurally congruent. The root cause
for this is that the rules 1L and !L are silent: the extracted terms in the premise and
conclusion are the same, modulo renaming. For 1L, this is the case because a terminated
process, represented by 0 :: − : 1 silently disappears from a parallel composition by
structural congruence. For !L, this is the case because the actual replication of a server
process is captured in the copy rule which clones u:A to y:A, rule rather than !L. It is
precisely for this reason that the rule commuting a persistent cut (cut!) over a copy rule
(copy) is among the computational conversions.

The structural conversions in Figure 8 propagate cut!. From the proof theoretic per-
spective, because cut! cuts a persistent variable u, cut! may be duplicated or erased.
On the π-calculus side, these no longer correspond to structural congruences, but, quite
remarkably, to behavioral equivalences, derivable from known properties of typed pro-
cesses, the (sharpened) Replication Theorems [24]. These hold in our language, due to
our interpretation of ! types. Our operational correspondence results also depend on six
commuting conversions, four in Figure 7 plus two symmetric versions. The commuting
conversions push a cut up (or inside) the 1L and !L rules. During the usual cut elimina-
tion procedures, these are used from left to right. In the correspondence with the sequent
calculus, the situation is more complex. Because the 1L and !L rules do not affect the
extracted term, cuts have to be permuted with these two rules in order to simulate π-
calculus reduction. From the process calculus perspective, such conversions correspond
to identity. There is a second group of commuting conversions (not shown), not nec-
essary for our current development. Those do not correspond to structural congruence
nor to strong bisimilarities on π-calculus, as they may not preserve process behavior in
the general untyped setting, since they promote an action prefix from a subexpression
to the top level. We conjecture that such equations denote behavioral identities under a
natural definition of typed observational congruence for our calculus.

Definition 4.3 (Relations on derivations induced by conversions). (1) ≡ : the least
congruence on derivations generated by the structural conversions (I) and the com-
muting conversions (II): (2) )s: the least congruence on derivations generated by all
structural conversions (I-III). We extend )s to processes as the congruence generated
by the process equations on the right. (3) �⇒: the reduction on derivations obtained by
orienting all conversions in the direction shown, from left to right or top to bottom.

As discussed above, )s is a typed behavioral equivalence on processes.

5 Computational Correspondence, Preservation, and Progress

We now present the results stating the key properties of our type system and logical
interpretation. Theorem 5.3 states the existence of a simulation between reductions in
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cut (⊗R D1 D2) (x.⊗L x (y.x.Exy)) � (νx)(((νy)x〈y〉. (D̂y
1 | D̂x

2 )) | x(y). Êz)
⇒ →
cut D1 (y. cut D2 (x. Exy)) � (νx)(νy)(D̂y

1 | D̂x
2 | Êz)

cut (
R (y.Dy)) (x.
L x E1 (x. E2x)) � (νx)((x(y). D̂x) | (νy)x〈y〉. (Êy
1 | Êz

2 ))
⇒ →
cut (cut E1 (y.Dy)) (x.E2x) � (νx)(νy)(D̂x | Êy

1 | Êz
2 )

cut (�R D1 D2) (x.�Li x (x. Ex)) � (νx)(x.case(D̂x
1 , D̂x

2 ) | x.inl; Êz)
⇒ →
cut Di (x. Ex) � (νx)(D̂x

i | Êz)

cut (⊕Ri D) (x.⊕L x (x.E1x) (x. E2x)) � (νx)(x.inl; D̂x | x.case(Êz
1 , Êz

2 ))
⇒ →
cut D (x. Eix) � (νx)(D̂x | Êz

i )

cut! D (u. copy u (y. Euy)) � (νu)((!u(y). D̂y) | (νy)u〈y〉. Êz)
⇒ →
cut D (y. cut! D (u. Euy)) � (νy)(D̂y | (νu)((!u(y). D̂y) | Êz))

Fig. 5. Computational Conversions

(cut/−/cut1) cut D (x. cut Ex (y. Fy)) ≡ cut (cut D (x. Ex)) (y. Fy)
(cut/−/cut2) cut D (x. cut E (y. Fxy)) ≡ cut E (y. cut D (x. Fxy))
(cut/cut!/−) cut (cut! D (u. Eu)) (x. Fx) ≡ cut! D (u. cut Eu (x.Fx))
(cut/−/cut!) cut D (x. cut! E (u. Fxu)) ≡ (cut! E (u. cut D (x.Fxu))
(cut/1R/1L) cut 1R (x.1L x D) ≡ D

(cut/!R/!L) cut (!R D) (x. !L x (u. E)) ≡ cut! D (u. E)

Fig. 6. Structural Conversions (I): Cut Conversions

(cut/1L/−) cut (1L y D) (x.Fx) ≡ 1L y (cut D (x.Fx))
(cut/!L/−) cut (!L y (u. Du)) (x. Fx) ≡ !L y (u. cut Du (x.Fx))
(cut!/−/1L) cut! D (u.1L y Eu) ≡ 1L y (cut! D (u. Eu))
(cut!/−/!L) cut! D (u. !L y (v. Euv)) ≡ !L y (v. cut! D (u. Euv))

Fig. 7. Structural Conversions (II): Commuting Conversions

cut! D (u. cut Eu (y. Fuy)) � (νu)(!u(y).D̂y | (νy)(Êy | F̂ z))
� �
cut (cut! D (u. Eu)) (y. cut! D (u. Fuy)) � (νy)((νu)(!u(y).D̂y | Êy) |

(νu)(!u(y).D̂y | F̂ z) )

cut! D (u. cut! Eu (v. Fuv)) � (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂ z))
� �
cut! (cut! D (u. Eu)) (v. cut! D (u. Fuv)) � (νv)((!v(y).(νu)(!u(y).D̂y | Êy)) |

(νu)(!u(y).D̂y | F̂ z) )

cut! (cut! D (u. Eu)) (v. Fv) � (νv)(!v(y).(νu)(!u(y).D̂y | Êy)) | F z)
� �
cut! D (u. cut! Eu (v. Fv)) � (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂ z))

cut! D (u. E) � (νu)(!u(y).D̂y | Êz)
� �
E � Êz (for u �∈ FN(Êz))

Fig. 8. Structural Conversions (III): Cut! Conversions
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the typed π-calculus and proof conversions / reductions, expressing a strong form of
subject reduction for our type system. The proof relies on several auxiliary lemmas,
which we mostly omit, among them a sequence of lemmas relating process reduction
with derivation reduction, from which we select two typical examples.

Lemma 5.1. Assume (a) Γ ;Δ1  D � P :: x:A1 ⊗ A2 with P
(νy)x〈y〉→ P ′; and (b)

Γ ;Δ2, x:A1 ⊗ A2  E � Q :: z:C with Q
x(y)→ Q′. Then (c) cut D (x.E) ≡⇒≡ F

for some F ; (d) Γ ;Δ1, Δ2  F � R :: z : C for R ≡ (νy)(νx)(P ′ | Q′).

Lemma 5.2. Assume (a) Γ ; ·  D � P :: x:A; (b) Γ, u:A;Δ2  E � Q :: z:C with

Q
(νy)u〈y〉→ Q′. Then (c) cut! D (u.E) ≡⇒≡ F for some F ; (d) Γ ;Δ  F � R :: z:C

for some R ≡ (νu)(!u(x).P | (νy)(P{y/x} | Q′)).

Theorem 5.3. Let Γ ;Δ  D � P :: z:A and P → Q. Then there is E such that
D ≡⇒≡ E and Γ ;Δ  E � Q :: z:A
Proof. By induction on the structure of derivation D. The possible cases for D are
D = 1L y D′, D = !L x (u.D′), D = cut D1 (x.D2), and D = cut! D1 (x.D2),
in all other cases P �→. Key cases are the cuts, where we rely on a series of reduction
lemmas, one for each type C of cut formula, which assign certain proof conversions
to process labeled transitions. For example, for C = C1 ⊗ C2, we rely on Lemma
5.1. The case of cut!, similar to the case C = !C′, relies on Lemma 5.2. We show
such case in detail. Let D = cut! D1 (u.D2). We have P ≡ (νu)(!u(w).P1 | P2),
Γ ; D1 � P1 :: x:C, and Γ, u : C;Δ  D2 � P2 :: z:A by inversion. Since
P → Q, there two cases: (1) P2 → Q2 andQ = (νu)(!u(w).P1 | Q2), or (2) P2

α→ Q2

where α = (νy)x〈y〉 and Q = (νu)(!u(w).P1 | (νy)(P1{y/x} | Q2)). Case (1):
We have Γ, u : C;Δ  D2 � Q2 :: z:A for E′ with D2 ≡⇒≡ E′ by i.h. Then
cut! D1 (u.D2) ≡⇒≡ cut! D1 (u.E′) by congruence. Let E = cut! D1 (u.E′). So
Γ ;Δ  E � Q :: z:A by cut!. Case (2): By Lemma 5.2, cut! D1 (u.D2) ≡⇒≡ E
for some E, and Γ ;Δ  E � R :: z:A with R ≡ Q . �

Theorems 5.4 and 5.5 state that any proof reduction or conversion also corresponds to
either a process equivalence or to a reduction step on the π-calculus.

Theorem 5.4. Let Γ ;Δ  D � P :: z:A andD )s E. Then there is Q where P )s Q
and Γ ;Δ  E � Q :: z:A.

Proof. Following the commuting squares relating ≡,� and ) in Figures 6, 7 and 8.�
Theorem 5.5. Let Γ ;Δ  D � P :: z:A and D ⇒ E. Then there is Q such that
P → Q and Γ ;Δ E � Q :: z:A.

Proof. Following the commuting squares relating ⇒,� and → in Figure 5. �

Notice that the simulation of π-calculus reductions by proof term conversions provided
by Theorem 5.3, and from which subject reduction follows, is very tight indeed, as
reduction is simulated up to structural congruence, which is a very fine equivalence
on processes. To that end, structural conversions need to be applied symmetrically
(as equations), unlike in a standard proof of cut-elimination, where they are usually
considered as directed computational steps. Under the assumptions of Theorem 5.3, we
can also prove that there is an E such that D �⇒⇒ E and Γ ;Δ  E � R :: z:A, for
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Q )s R. Thus, even if one considers the proof conversions as directed reduction rules
( �⇒), we still obtain a sound simulation up to typed strong behavioral congruence.

We now state type preservation and progress results for our type system. The subject
reduction property (Theorem 5.6) directly follows from Theorem 5.3.

Theorem 5.6 (Subject Reduction). If Γ ;Δ  P ::z:A andP→Q thenΓ ;Δ  Q ::z:A.

Together with direct consequences of linear typing, Theorem 5.6 ensures session fi-
delity. Our type discipline also enforces a global progress property. For any P , define

live(P ) iff P ≡ (νn)(π.Q | R) for some π.Q,R, n

where π.Q is a non-replicated guarded process. We first establish the following contex-
tual progress property, from which Theorem 5.8 follows as a corollary.

Lemma 5.7. Let Γ ;Δ  D � P :: z:C. If live(P ) then there is Q such that either
1. P → Q, or
2. P

α→ Q for α where s(α) ∈ (z, Γ,Δ). More: if C = !A for someA, then s(α) �= z.

Proof. Induction on derivation D. The key cases are D = cutD1 (y.D2) and D =
cut!D1(u.D2). In the case of cut, we rely on lemmas that characterize the possible
actions of a process on name y:A, depending on typeA. These lemmas show that a syn-
chronization between dual actions must occur. For cut!, an inversion lemma is needed,
stating that free names of a non-live process can only be typed by 1 or !A types. �
Theorem 5.8 (Progress). If ·; ·  D � P :: x:1 and live(P ) then exists Q st. P → Q.
Proof. By Lemma 5.7 and the fact that P cannot perform any action α with subject
s(α) = x since x:1 (by the action shape characterization lemmas). �

6 Discussion and Further Examples

We further compare our linear type system for (finite) session types with more familiar
session type systems [21,18,13]. An immediate observation is that in our case types
are freely generated, while traditionally there is a stratification of types in “session”
and “standard types” (the later corresponding to our !A types, typing session initiation
channels). In our interpretation, a session may either terminate (1), or become a repli-
cated server (!A), which is more general and uniform, and a natural consequence of the
logical interpretation. Concerning parallel composition, usually two rules can be found,
one corresponding to the cancellation of two dual session endpoints (a name restriction
rule), and another corresponding to independent parallel composition, also present in
most linear type systems for mobile processes. In our case, cut combines both princi-
ples, and the following rule is derivable:

Γ ;Δ  P :: −:1 Γ ;Δ′  Q :: T
Γ ;Δ,Δ′  P | Q :: T

(comp)

A consequence of the logical composition rules cut and cut! is that typing intrinsically
enforces global progress, unlike with traditional session type systems [18,13], which do
not ensure progress in the presence of multiple open sessions, as we do here. Techniques
to ensure progress in sessions, but building on extraneous devices such as well-founded
orderings on events, have been proposed [20,12]. It would be interesting to further com-
pare the various approaches, as far as process typability is concerned.
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Channel “polarities” are captured in our system by the left-right distinction of se-
quents, rather than by annotations on channels (cf. x+, x−). Session and linear type
systems [21,18,13] also include a typing rule for output of the form

Γ ;Δ  P :: x:C
Γ ;Δ, y:A  x〈y〉.P :: x:A⊗ C

In our case, an analogous rule may be derived by ⊗R and the copycat construction,
where a “proxy” for the free name y, bidirectionally copying behaviorA, is linked to z.

Γ ;Δ  P :: x:C
Γ ;Δ, y:A  (νz)x〈z〉.(idA(y, z) | P ) :: x:A⊗ C

The copycat idA(y, z) plays the role of the “link” processes of [23,7]. Notice that in our
case the definition of the “link” is obtained for free by the interpretation of identity ax-
ioms (Proposition 4.2). The two processes can be shown to be behaviorally equivalent,
under an adequate notion of observational equivalence, as in [7].

We now elaborate on the example of Section 3, in order to illustrate sharing and
session initiation. Consider now a different client, that picks the “buy” rather than the
“quote” operation, and the corresponding composed system.

BClntBodys � s.inl; (νcof)s〈cof〉.(νpin)s〈pin〉.s(rc)0
BSimple � (νs)(SrvBodys | BClntBodys)

We have the typings ·; s:ServerProto  BClntBodys :: −:1 and ·; ·  BSimple :: −:1.
In these examples, there is a single installed pair client-server, where the session is

already initiated, and only known to the two partners. To illustrate sharing, we now
consider a replicated server. Such a replicated server is able to spawn a fresh session
instance for each initial invocation, each one conforming to the general behavior spec-
ified by ServerProto, and can be typed by !ServerProto. Correspondingly, clients must
initially invoke the replicated server to instantiate a new session (cf. the Tcopy rule).

QClient � (νs)c〈s〉.QClntBodys BClient � (νs)c〈s〉.BClntBodys

Server � !c(s).SrvBodys SharSys � (νc)(Server | BClient | QClient)

For the shared server, by T!R, we type ·; ·  Server :: c:!ServerProto. We also
have, for the clients, by Tcopy the typings c:ServerProto ; ·  BClient :: −:1 and
c:ServerProto ; ·  QClient :: −:1. By (comp), T!L, and Tcut we obtain the intended
typing for the whole system: ·; ·  SharSys :: − : 1. Notice how the session instantia-
tion protocol is naturally explained by the logical interpretation of the ! operator.

7 Related Work and Conclusions

We have established a tight correspondence between a session-based type discipline for
theπ-calculus and intuitionistic linear logic: typing rules correspond to dual intuitionistic
linear sequent calculus proof rules, moreover process reduction may be simulated in a
type preserving way by proof conversions and reductions, and vice versa. As a result,
we obtain the subject reduction property, from which session fidelity follows. Our basic
typing discipline intrinsically ensures global progress, beyond the restricted “progress
on a single session” property obtained in pure session type systems.
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Other works have investigated π-calculus models of linear logic proofs. Bellin and
Scott [5] establish a mapping from linear logic proofs to a variant of the π-calculus
and some connections between proof reduction and π-calculus reduction. However,
this mapping results in complex encodings, so that their system could hardly be con-
sidered a type assignment system for processes, which has been achieved in this work.
Moreover, no relation between behavioral descriptions and logical propositions was
identified, as put by the authors: “[our encodings] have less to do with logic than one
might think, they are essentially only about the abstract pluggings in proof structures”.
A realizability interpretation for a linear logic augmented with temporal modalities (cf.
Hennessy-Milner) was proposed in [4], also based on a π-calculus variant. A recent
related development is [17], where a correspondence between (independently formu-
lated) proof nets and an IO-typed π-calculus is established. In our case, the type system
and the logic proof system are exactly the same, and we reveal a direct connection be-
tween pure linear logic propositions and behavioral types on π-calculus, that covers all
(both shared and linear) features of finite session types. A development of session types
as linear process types (in the sense of [21]) is presented in [15], where linearity and
sharing are expressed by special annotations, unrelated to a linear logic interpretation.

We have also analyzed the relation between our type discipline and (finite, deadlock-
free) session types. It is important to notice that our interpretation does not require
locality for session (linear) channels (under which only the output capability of names
could be transmitted), which seems required in other works on linearity for π-calculi
(e.g., [26]). On the other hand, our intuitionistic discipline enforces locality of shared
channels, which, quite interestingly, seems to be the sensible choice for distributed im-
plementations of sessions. Interesting related topics would be the accommodation of
recursive types, logical relations [8], and the characterization of observational equiva-
lences under our typing discipline. In particular, we expect that all conversions (includ-
ing commuting conversions) between DILL derivations correspond to observational
equivalences on our typed π-calculus.

One important motivation for choosing a purely logical approach to typing is that
it often suggests uniform and expressive generalizations. In ongoing work, we have
also established an explicit relationship between session-based concurrency and func-
tional computation where in both cases determinacy (no races) and progress (deadlock-
freedom) are expected features. In particular, we have been investigating new encodings
of λ-calculi into the π-calculus that arise from translations from DILL natural deduc-
tion into sequent calculus. We also believe that dependent generalizations of our system
of simple linear types, perhaps along the lines of LLF [9] or CLF [25], may be able
to capture many additional properties of communication behavior in a purely logical
manner. Already, some systems of session types have dependent character, such as [6]
that, among other properties, integrates correspondence assertions into session types.
Acknowledgments. To FCT/MCTES (INTERFACES NGN44), and the ICTI at Carnegie-
Mellon. Thanks also to Bernardo Toninho, Nobuko Yoshida, and Andre Platzer.
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Abstract. We consider a calculus for multiparty sessions with delegation, en-
riched with security levels for session participants and data. We propose a type
system that guarantees both session safety and a form of access control. More-
over, this type system ensures secure information flow, including controlled forms
of declassification. In particular, the type system prevents leaks that could result
from an unrestricted use of the control constructs of the calculus, such as session
opening, selection, branching and delegation. We illustrate the use of our type
system with a number of examples, which reveal an interesting interplay between
the constraints used in security type systems and those used in session types to
ensure properties like communication safety and session fidelity.

Keywords: concurrency, communication-centred computing, session types, ac-
cess control, secure information flow.

1 Introduction

With the advent of web technologies and the proliferation of programmable and inter-
connectable devices, we are faced today with a powerful and heterogeneous computing
environment. This environment is inherently parallel and distributed and, unlike pre-
vious computing environments, it heavily relies on communication. It therefore calls
for a new programming paradigm which is sometimes called communication-centred.
Moreover, since computations take place concurrently in all kinds of different devices,
controlled by parties which possibly do not trust each other, security properties such
as the confidentiality and integrity of data become of crucial importance. The issue is
then to develop models, as well as programming abstractions and methodologies, to
be able to exploit the rich potential of this new computing environment, while mak-
ing sure that we can harness its complexity and get around its security vulnerabilities.
To this end, calculi and languages for communication-centred programming have to be
security-minded from their very conception, and make use of specifications not only for
data structures, but also for communication interfaces and for security properties.

The aim of this paper is to investigate type systems for safe and secure sessions.
A session is an abstraction for various forms of “structured communication” that may
occur in a parallel and distributed computing environment. Examples of sessions are
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a client-service negotiation, a financial transaction, or a multiparty interaction among
different services within a web application.

Language-based support for sessions has now become the subject of active research.
Primitives for enabling programmers to code sessions in a flexible way, as well as type
systems ensuring the compliance of programs to session specifications (session types),
have been studied in a variety of calculi and languages in the last decade. Session types
were originally introduced in a variant of the pi-calculus [20]. We refer to [7] for a
survey on the session type literature. The key properties ensured by session types are
communication safety, namely the consistency of the communication patterns exhibited
by the partners (implying the absence of communication errors), and session fidelity,
ensuring that channels which carry messages of different types do it in a specific or-
der.

Enforcement of security properties via session types has been studied in [3,15].
These papers propose a compiler which, given a multiparty session description, imple-
ments cryptographic protocols that guarantee session execution integrity. The question
of ensuring access control in binary sessions has been recently addressed in [13] for the
Calculus of Services with Pipelines and Sessions of [4], where delegation is absent. On
the other hand, the property of secure information flow has not been investigated within
session calculi so far. This property, first studied in the early eighties [9], has regained
interest in the last decade, due to the evolution of the computing environment. It has
now been thoroughly studied for both programming languages (cf [16] for a review)
and process calculi [8,10,12].

In this paper, we address the question of incorporating mandatory access control and
secure information flow within session types. We consider a calculus for multiparty
sessions with delegation, enriched with security levels for both session participants and
data, and providing a form of declassification for data [18], as required by most practical
applications. We propose a type system that ensures access control, namely that each
participant receives data of security level less than or equal to its own. For instance, in
a well-typed session involving a Customer, a Seller and a Bank, the secret credit card
number of the Customer will be communicated to the Bank, but not to the Seller. More-
over, our type system prevents insecure flows that could occur via the specific constructs
of the language, such as session opening, selection, branching and delegation. Finally,
we show that it allows controlled forms of declassification, namely those permitted by
the access control policy. Our work reveals an interesting interplay between the con-
straints of security type systems and those used in session types to ensure properties
like communication safety and session fidelity.

The rest of the paper is organised as follows. In Section 2 we motivate our access
control and declassification policies with an example. Section 3 introduces the syn-
tax and semantics of our calculus. In Section 4 we define the secure information flow
property. In Section 5 we illustrate this property by means of examples. Section 6
presents our type system for safe and secure sessions and theorems establishing its
soundness. Section 7 concludes with a discussion on future work. The reader is re-
ferred to the full paper (available at http://hal.inria.fr/INRIA) for complete definitions
and proofs.
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2 A First Example on Access Control and Declassification

In this section we illustrate by an example the basic features of our typed calculus, as
well as our access control policy and its use for declassification. The question of secure
information flow will only be marginal here. It will be discussed in Sections 4 and 5.

A client C sends the title of a book to a bookseller S. Then S delegates to a bank B
both the reception of the credit card number of C and the control of its validity. This
delegation is crucial for assuring the secrecy of the credit card number, which should
be read by B but not by S. Then B notifies S about the result of the control: for this a
declassification is needed. Finally, if the credit card is valid, C receives a delivery date
from S, otherwise the deal falls through. More precisely, the protocol is as follows:

1. C opens a connection with S and sends a title to S;
2. S opens a connection with B and delegates to B part of his conversation with C;
3. C sends his secret credit card number apparently to the untrusted party S but really

- thanks to delegation - to the trusted party B;
4. B delegates back to S the conversation with C;
5. B selects the answer ok or ko for S depending on the validity of the credit card, thus

performing a declassification;
6. S sends to C either ok and a date, or just ko, depending on the label ok or ko chosen

by B.

In our calculus, which is an enrichment with security levels of the calculus in [2], this
scenario may be described as the parallel composition of the following processes, where
security levels appear as superscripts on both data and operators (here we omit unnec-
essary levels on operators and use ⊥ to mean “public” and � to mean “secret”):
I = ā[2] | b̄[2]

C = a[1](α1).α1!〈2,Title⊥〉.α1!⊥〈2,CreditCard�〉.α1&(2,{ok : α1?(2,date⊥).0,ko : 0})

S = a[2](α2).α2?(1,x⊥).b[2](β2).β2!〈〈1,α2〉〉.β2?((1,ζ )).
β2&(1,{ok : ζ ⊕〈1,ok〉.ζ !〈1,Date⊥〉.0,ko : ζ ⊕〈1,ko〉.0})

B = b[1](β1).β1?((2,ζ )).ζ?�(2,cc⊥).β1!〈〈ζ ,2〉〉.
if valid(cc⊥) then β1⊕〈2,ok〉.0 else β1⊕〈2,ko〉.0

A session is a particular activation of a service, involving a number of parties with pre-
defined roles. Here processes C and S communicate by opening a session on service a,
while processes S and B communicate by opening a session on service b. The initiators
ā[2] and b̄[2] specify the number of participants of each service. We associate integers
with participants in services: here C=1, S=2 in service a and B=1, S=2 in service b.

In process C, the prefix a[1](α1) means that C wants to act as participant 1 in service
a using channel α1, matching channel α2 of participant 2, who is S. When the session
is established, C sends to S a title of level ⊥ and a credit card number of level �,
indicating (by the superscript ⊥ on the output operator) that the credit card number
may be declassified to ⊥. Then he waits for either ok, followed by a date, or ko.

indent Process S receives a value in service a and then enters service b as participant
2. Here the output β2!〈〈1,α2〉〉 sends channel α2 to the participant 1 of b, who is B,
thus delegating to B the use of α2. Then S waits for a channel ζ from B. Henceforth,



240 S. Capecchi et al.

Table 1. Global types of the B, C, S example

1. C→ S :
〈
String⊥

〉
2. S �δ S→ B : 〈T 〉
3. C→ S :

〈
Number�↓⊥

〉
4. S �δ B→ S : 〈T ′〉
5. B→ S : {ok : end,ko : end}
6. S→ C : {ok : S→ C :

〈
String⊥

〉
;end,ko : end}

S communicates using both channels β2 and ζ : on channel β2 he waits for one of the
labels ok or ko, which he then forwards to C on ζ , sending also a date if the label is ok.

Forgetting session opening and abstracting from values to types, we may represent
the whole communication protocol by the global types of Table 1 (where we use B, C, S
instead of 1, 2), where the left-hand side and right-hand side describe services a and b,
respectively. Line 1 says that C sends a String of level ⊥ to S. In line 2, S�δ means that
the channel from S to C is delegated: this delegation is realised by the transmission of
the channel (with type T ) from S to B, as shown on the right-hand side. Line 3 says that
C sends a Number of level � to S, allowing him to declassify it to ⊥. Notice that due
to the previous delegation the Number is received by B and not by S. Line 4 describes
a delegation which is the inverse of that in Line 2: here the (behavioural) type of the
channel has changed, since the channel has already been used to receive the Number.
Line 5 says that B sends to S one of the labels ok or ko. Finally, line 6 says that S sends
to C either the label ok followed by a String of level ⊥, or the label ko. Since B’s choice
of the label ok or ko depends on a test on the Number, it is crucial that Number be
previously declassified to ⊥, otherwise the reception of a String of level ⊥ by C would
depend on a value of level � (this is where secure information flow comes into play).

Type T represents the conversation between C and S after the first communication,
seen from the viewpoint of S. Convening that ?(−), !〈−〉 represent input and output in
types, that “;” stands for sequencing and that⊕〈−{−}〉 represents the choice of sending
one among different labels, it is easy to see that the session type T is:

?
(
C,Number�↓⊥

)
;⊕
〈
C,{ok :!

〈
C,String⊥

〉
;end,ko : end}

〉
where the communication partner of S (namely C) is explicitly mentioned. The session
type T ′ is the rest of type T after the first communication has been done:

⊕
〈
C,{ok :!

〈
C,String⊥

〉
;end,ko : end}

〉
To formalise access control, we will give security levels to service participants, and
require that a participant of a given level does not receive data of higher or incomparable
level. Since the only secret data in our example is CreditCard, it is natural to associate⊥
with S in both services a and b, and�with B in service b. Notice that C may indifferently
have level � or ⊥, since it only sends, but does not receive, the high data CreditCard.

3 Syntax and Semantics

Our calculus for multiparty asynchronous sessions is essentially the same as that con-
sidered in [2], with the addition of runtime configurations and security levels.
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Table 2. Syntax of expressions, processes, queues, and configurations

P ::= ū[n] n-ary session initiator
| u[p](α).P p-th session participant
| c!�〈Π ,e〉.P Value sending
| c?�(p,x�

′
).P Value receiving

| c!�〈〈q,c′〉〉.P Delegation sending
| c?�((p,α)).P Delegation reception
| c⊕� 〈Π ,λ 〉.P Selection
| c&�(p,{λi : Pi}i∈I) Branching
| e P Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa�)P Name hiding
| D P Recursion
| X〈e,c〉 Process call

u ::= x� | a� Identifier
v ::= a | | | . . . Value

c ::= α | s[p] Channel
e ::= v� | x�

| e e′ | e . . . Expression

D ::= X(x�,α) = P Declaration

Π ::= {p} | Π ∪{p} Set of participants

ϑ ::= v�↓�
′ | s[p]� | λ � Message content

m ::= (p,Π ,ϑ) Message in transit

h ::= m ·h | ε Queue

H ::= H ∪{s : h} | /0 Q-set

r ::= a� | s Service/Session Name

Syntax. Let (S ,�) be a finite lattice of security levels, ranged over by �,�′. We denote
by � and 
 the join and meet operations on the lattice, and by ⊥ and � its minimal and
maximal elements.

We assume the following sets: service names, ranged over by a,b, . . . each of which
has an arity n ≥ 2 (its number of participants) and a security level �, value variables,
ranged over by x,y, . . . , all decorated with security levels, identifiers, i.e., service names
and value variables, ranged over by u,w, . . . , all decorated with security levels, channel
variables, ranged over by α,β , . . . , labels, ranged over by λ ,λ ′, . . . (acting like labels
in labelled records). Values v are either service names or basic values (boolean values,
integers, etc.). When treated as an expression, a value is decorated with a security level
�; when used in a message, it is decorated with a declassified level of the form � ↓ �′,
where �′ ≤ � (in case �′ = �, we will write simply � instead of � ↓ �).

Sessions, the central abstraction of our calculus, are denoted with s,s′ . . .. A session
represents a particular instance or activation of a service. Hence sessions only appear at
runtime. We use p, q,. . . to denote the participants of a session. In an n-ary session (a
session corresponding to an n-ary service) p, q are assumed to range over the natural
numbers 1, . . . ,n. We denote by Π a non empty set of participants. Each session s has
an associated set of channels with role s[p], one for each participant. Channel s[p] is the
private channel through which participant p communicates with the other participants
in the session s. A new session s on an n-ary service a� is opened when the initiator
ā�[n] of the service synchronises with n processes of the form a�[p](α).P. We use c
to range over channel variables and channels with roles. Finally, we assume a set of
process variables X ,Y, . . . , in order to define recursive behaviours.

The set of expressions, ranged over by e,e′, . . . , and the set of processes, ranged over
by P,Q . . . , are given by the grammar in Table 2, where syntax occurring only at runtime
appears shaded . The primitives are decorated with security levels. When there is no
risk of confusion we will omit the set delimiters {,}.
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As in [11], in order to model TCP-like asynchronous communications (with non-
blocking send but message order preservation between a given pair of participants),
we use queues of messages, denoted by h; an element of h may be a value message
(p,Π ,v�↓�′), indicating that the value v� is sent by participant p to all participants in Π ,
with the right of declassifying it from � to �′; a channel message (p,q,s[p′]�), indicating
that p delegates to q the role of p′ with level � in the session s; and a label message
(p,Π ,λ �), indicating that p selects the process with label λ among the processes offered
by the set of participants Π . The empty queue is denoted by ε , and the concatenation
of a new message m to a queue h by h ·m. Conversely, m ·h means that m is the head of
the queue. Since there may be nested and parallel sessions, we distinguish their queues
by naming them. We denote by s : h the named queue h associated with session s. We
use H,K to range over sets of named queues, also called Q-sets.

Operational Semantics. The operational semantics is defined on configurations. A
configuration is a pair C =< P , H > of a process P and a Q-set H, possibly restricted
with respect to service and session names, or a parallel composition of configurations,
denoted by C‖C . In a configuration (νs)< P , H >, all occurrences of s[p] in P and H
and of s in H are bound. By abuse of notation we will often write P instead of< P , /0>.

We use a structural equivalence ≡ [14] for processes, queues and configurations.
Modulo ≡, each configuration has the form (ν r̃) < P , H >, where (ν r̃)C stands for
(νr1) · · · (νrk)C, if r̃ = r1 · · · rk. In (νa�)C, we assume that α-conversion on the name
a� preserves the level �. Among the rules for queues, we have one for commuting inde-
pendent messages and another one for splitting a message for multiple recipients.

The transitions for configurations have the form C −→ C′. They are derived using
the reduction rules in Table 3. Rule [Link] describes the initiation of a new session
among n processes, corresponding to an activation of the service a� of arity n. After
the connection, the participants share a private session name s and the corresponding
queue, initialised to s : ε . The variable αp in each participant Pp is replaced by the
corresponding channel with role s[p]. The output rules [Send], [DelSend] and [Label]
push values, channels and labels, respectively, into the queue s : h. In rule [Send], e ↓ v�

denotes the evaluation of the expression e to the value v�, where � is the join of the
security levels of the variables and values occurring in e. The superscript �′ on the output
sign indicates that v� can be declassified to level �′, when received by an input process
s[q]?�(p,x�

′
).P. This is why the value is recorded with both levels in the queue. The rules

[Rec], [DelRec] and [Branch] perform the corresponding complementary operations.
As usual, we will use −→∗ for the reflexive and transitive closure of −→.

4 Information Flow Security in Sessions

We turn now to the question of ensuring secure information flow [6] within sessions. We
shall be interested in the property of noninterference (NI) [9], combined with a limited
form of declassification [1], which may only take place during a value communication.
The property of NI requires that there is no flow of information from objects of a given
level to objects of lower or incomparable level [21,19,16]. To set the stage for our
information flow analysis, the first questions to ask are:



Session Types for Access and Information Flow Control 243

1. Which objects of the calculus should carry security levels?
2. Which information leaks can occur and how can they be detected?

As concerns objects, we shall see that besides values, also labels, delegated channels
and services will need security levels. Since this question requires some discussion,
which is best understood through examples, we defer it to the next section, just assum-
ing here as a fact that queue messages have the form (p,Π ,ϑ), where ϑ may be v�↓�

′
,

λ � or s[p]�. In the rest of this section, we will focus on the observation model, which
will be based on bisimulation, as is now standard for concurrent processes [19,17].

We assume that the observer can see the content of messages in session queues.
To fix ideas, one may view the observer as a kind of buffer through which messages
may transit while reaching or leaving a session queue. We do not want to go as far
as allowing an observer to take part in a session, since that could affect the behaviour
of other processes. In other words, we assume a passive observer rather than an active
one.

What matters for security is observation relative to a given set of levels. Given a
downward-closed subset L of S , a L -observer will only be able to see messages
whose level belongs to L . A notion of L -equality =L on Q-sets is then introduced,
representing indistinguishability of Q-sets by a L -observer. Based on =L , a notion of
L -bisimulation )L will formalise indistinguishability of processes by a L -observer.

Formally, a queue s : h is L -observable if it contains some message with a level
in L . Then two Q-sets are L -equal if their L -observable queues have the same
names and contain the same messages with a level in L . This equality is based on
a L -projection operation on Q-sets, which discards all messages whose level is not
in L .

Definition 1. Let the functions lev↑ and lev↓ be defined by:

lev↑(v�↓�
′
) = �, lev↓(v�↓�

′
) = �′, and lev↑(s[p]�) = lev↑(λ �) = �= lev↓(s[p]�) = lev↓(λ �).

Definition 2. The projection operation ⇓L is defined inductively on messages, queues
and Q-sets as follows:

Table 3. Reduction rules (excerpt)

a�[1](α1).P1 | ... | a�[n](αn).Pn | ā�[n] −→ (νs)< P1{s[1]/α1} | ... | Pn{s[n]/αn} , s : ε > [Link]

< s[p]!�
′ 〈Π ,e〉.P , s : h >−→< P , s : h · (p,Π ,v�↓�

′
)> (e↓v�) [Send]

< s[q]?�(p,x�
′
).P , s : (p,q,v�↓�

′
) ·h > −→< P{v�

′
/x�

′ } , s : h > [Rec]

< s[p]!�〈〈q,s′[p′]〉〉.P , s : h >−→< P , s : h · (p,q,s′[p′]�)> [DelSend]

< s[q]?�((p,α)).P , s : (p,q,s′[p′]�) ·h >−→< P{s′[p′]/α} , s : h > [DelRec]

< s[p]⊕� 〈Π ,λ 〉.P , s : h >−→< P , s : h · (p,Π ,λ �)> [Label]

< s[q]&�(p,{λi : Pi}i∈I) , s : (p,q,λ �
i0) ·h >−→< Pi0 , s : h > (i0 ∈ I) [Branch]

C −→ (ν s̃)C′ ⇒ (ν r̃)(C‖C′′) −→ (ν r̃)(ν s̃)(C′ ‖C′′) [ScopC]
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(p,Π ,ϑ) ⇓L =

{
(p,Π ,ϑ) if lev↓(ϑ) ∈L ,

ε otherwise.

ε ⇓L = ε
(m ·h) ⇓L = m ⇓L ·h ⇓L

/0 ⇓L = /0

(H ∪{s : h}) ⇓L =

{
H ⇓L ∪{s : h ⇓L } if h ⇓L �= ε,
H ⇓L otherwise.

Definition 3 (L -Equality of Q-sets).

Two Q-sets H and K are L -equal, written H =L K, if H ⇓L = K ⇓L .

When reducing a configuration (ν r̃)< P , H >, we have to make sure that input prefixes
in P “agree” with messages in H. This is assured by our type system given in Section 6.

A relation on processes is a L -bisimulation if it preserves L -equality of Q-sets at
each step, starting from typable configurations:

Definition 4 (L -Bisimulation on processes).

A symmetric relation R ⊆ (Pr×Pr) is a L -bisimulation if P1 R P2 implies, for any
pair of Q-sets H1 and H2 such that H1 =L H2 and<P1 , H1>,<P2 , H2> are typable:

If < P1 , > H1 −→ (ν r̃)< P′1 , > H ′
1, then either H ′

1 =L H2 and P′1 R P2, or there exist

P′2,H
′
2 such that < P2 , H2 >−→∗ (ν r̃)< P′2 , H ′

2 > , where H ′
1 =L H ′

2 and P′1 R P′2.

Processes P1,P2 are L -bisimilar, P1 )L P2, if P1 R P2 for some L -bisimulation R.

Note that r̃ may be either empty or be a service name or a fresh session name s, and in
the last case s cannot occur in P2 and H2 by Barendregt convention.

Intuitively, a transition that adds or removes a message with level in L must be
simulated in one or more steps, producing the same effect on the Q-set, whereas a
transition that only affects messages with level not in L may be simulated by inaction.

Definition 5 (L -Security). A program P is L -secure if P )L P.

5 Examples of Information Flow Security in Sessions

In this section we illustrate the various kinds of flow that can occur in our calculus,
through simple examples. Since we aim at justifying the introduction of security levels
in the syntax (other than on values and participants), we shall initially omit levels in
all other objects. In queues, we will use v� as a shorthand for v�↓�. For the sake of
simplicity, we assume here just two security levels ⊥ and � (also called low and high).
In all examples, we suppose H1 = {s : (1,2,true�)} and H2 = {s : (1,2, false�)}.

5.1. High input should not be followed by low actions. A simple example of insecure
flow, which is not specific to our calculus but arises in all process calculi with values
and a conditional construct, is the following (assuming session s has four participants):
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s[2]?(1,x�).if x� then s[2]!〈3,true�〉.0 else 0
| s[3]?(2,z�).s[3]!〈4,true⊥〉.0 | s[4]?(3,y⊥).0

This process is insecure because, depending on the high value received for x� on chan-
nel s[2], that is, on whether the Q-set is H1 or H2, the low value true⊥ will be emitted
or not on channel s[3], leading to H ′

1 = {s : (3,4,true⊥)} �=L H ′
2 = {s : ε} if L = {⊥}.

This shows that a high input should not be followed by a low output. Note that the re-
verse is not true, since output is not blocking: if we swapped the polarities of input and
output in the third participant (and adjusted them accordingly in the other participants),
then the resulting process would be secure.

Let us point out that this process is not typable in a classical session type system,
since the session types of the conditional branches are not the same. However, it would
become typable if the second branch of the conditional were replaced by the deadlocked
process (νb)b[1](β1).s[2]!〈3,true�〉.0. The expert reader will notice that by adding to
our type system the interaction typing of [2] (which enforces global progress) we would
rule out also this second process. On the other hand, the interaction typing does not
prevent deadlocks due to inverse session calls, as for instance:

b̄[2] | b[1](β1).c[1](γ1).s[2]!〈3,true�〉.0
c̄[2] | c[2](γ2).b[2](β2).0

Clearly, this deadlock could be used to implement the insecure flow in our example.

5.2. Need for levels on services. Consider the following process:

s[2]?(1,x�).if x� then b̄[2] else 0
| b[1](β1).β1!〈2,true⊥〉.0 | b[2](β2).β2?(1,y⊥).0

This process is insecure because, depending on the high value received for x�, it will
initiate or not a session on service b, which performs a low value exchange. To rule out
this kind of leak we annotate service names with security levels which are a lower bound
for all the actions they execute. Then service b must be of level �, since it appears in
the branch of a �-conditional, and hence it will not allow the output of the value true⊥.

5.3. Need for levels on selection and branching. Consider the following process:

s[2]?(1,x�).if x� then s[2]⊕〈3,λ 〉.0 else s[2]⊕〈3,λ ′〉.0
| s[3]&(2,{λ : s[3]!〈4,true⊥〉.0,λ ′ : s[3]!〈4, false⊥〉.0})
| s[4]?(3,y⊥).0

This process is insecure because a selection in one participant, which depends on a high
value, causes the corresponding branching participant to emit two different low values.
To prevent this kind of leak, the selection and branching operators will be annotated
with a security level which is a lower bound for all actions executed in the branches.

5.4. Need for levels on delegated channels. Consider the following process:

s[2]?(1,x�). x� s[2]!〈〈3,s′[1]〉〉.s[2]!〈〈4,s′′[1]〉〉.0 s[2]!〈〈3,s′′[1]〉〉.s[2]!〈〈4,s′[1]〉〉.0
| s[3]?((2,η)).η!〈2, ⊥〉.0 | s[4]?((2,η ′)).η ′!〈2, ⊥〉.0
| s′[2]?(1,x⊥).0 | s′′[2]?(1,y⊥).0

This process is insecure because, depending on the high value received for x�, the par-
ticipants 3 and 4 of s will be delegated to participate in sessions s′ and s′′, or viceversa,
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feeding the queues of s′ and s′′ with different low values. This shows that delegation
send and receive should also carry a level, which will be a lower bound for all actions
executed in the receiving participant after the delegation.

5.5. Levels in queue messages. So far, we have identified which objects of the calcu-
lus need security levels, namely: values, service names, and the operators of selection,
branching and delegation. We now discuss how levels are recorded into queue messages.

Values are recorded in the queues with both their level and their declassified level.
The reason for recording also the declassified level is access control: the semantics does
not allow a low input process to fetch a high value declassified to low. More formally,
a value v�↓⊥ in the queue can only be read by a process s[q]?�(p,x⊥).P. Concerning
service names a�, the level � guarantees that the session initiator and all the participants
get started in a context of level �′ ≤ � (see Example 5.2). Once the session is established,
the name a� disappears and it is its global type (cf next section) that will ensure that all
participants perform actions of levels greater than or equal to �. As for the operators of
branching/selection and delegation, they disappear after the reduction and their level is
recorded respectively into labels and delegated channels within queue messages. This is
essential since in this case the communication is asynchronous and occurs in two steps.
Hence queue messages have the form (p,Π ,ϑ), where ϑ is v�↓�

′
, λ � or s[p]�.

6 Type System

In this section we present our type system for secure sessions and state its properties.
Just like process syntax, types will contain security levels.

Safety Global Types, Session Types, and Projections. A safety global type is a pair
〈L,G〉�, decorated with a security level �, describing a service where:

– L : {1, . . . ,n}→S is a safety mapping from participants to security levels;
– G is a global type, describing the whole conversation scenario of an n-ary service;
– � is the meet of all levels appearing in G, denoted by M(G).

The grammar of global types is:

Global G ::= p→ Π : 〈U〉.G Exchange U ::= S�↓�
′ | T | 〈L,G〉�

| p→ Π : {λi : Gi}�i∈I Sorts S ::= bool | . . .
| p �δ .G
| μt.G | t | end

The type p→ Π : 〈U〉.G says that participant p multicasts a message of type U to all
participants in Π and then the interactions described in G take place. Exchange types U
may be sort types S�↓�

′
for values (base types decorated with a declassification � ↓ �′),

session types T for channels (defined below), or safety global types for services. If U =
T , then Π is a singleton {q}. We use S� as short for S�↓�, called a trivial declassification.
Type p→ Π : {λi : Gi}�i∈I , where � =

�
i∈I M(Gi), says that participant p multicasts

one of the labels λi to the participants in Π . If λ j is sent, interactions described in G j

take place. Type p �δ .G says that the role of p is delegated to another participant; this
construct does not appear in the original global types of [11]. It is needed here to “mark”
the delegated part of the type, which is discharged when calculating its join (see below).
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Type μt.G is a recursive type, where the type variable t is guarded in the standard
way. In the grammar of exchange types, we suppose that G does not contain free type
variables. Type end represents the termination of a session. While global types represent
the whole session protocol, session types correspond to the communication actions,
representing each participant’s contribution to the session.
As for M(G), we denote by M(T ) the meet of all security levels appearing in T .

Session T ::= !〈Π ,S�↓�′〉;T send
| !�〈q,T 〉;T ′ delsend
| ⊕�〈Π ,{λi : Ti}i∈I〉 selection
| μt.T recursive
| �δ ;T delegation

| ?(p,S�↓�
′
);T receive

| ?�(p,T );T ′ delreceive
| &�(p,{λi : Ti}i∈I) branching
| t variable
| end end

The send type !〈Π ,S�↓�′ 〉;T expresses the sending to all participants in Π of a value
of type S, of level � declassified to �′, followed by the communications described in T .
The delsend type !�〈q,T 〉;T ′, where � = M(T ), says that a channel of type T is sent
to participant q, and then the protocol specified by T ′ takes place. The selection type
⊕�〈Π ,{λi : Ti}i∈I〉, where �=

�
i∈I M(Ti), represents the transmission to all participants

in Π of a label λ j in {λi | i ∈ I}, followed by the communications described in Tj. The
delegation type �δ ;T , says that the communications described in T will be delegated to
another agent. The receive, delreceive and branching types are dual to the send, delsend,
and selection ones. The type system will assure that �′ ≤M(T ) in type ?(p,S�↓�

′
);T , that

�≤M(T ′) in type ?�(p,T );T ′ and that �=
�

i∈I M(Ti) in type &�(p,{λi : Ti}i∈I). In all
cases, the need for the security level � is motivated by one of the examples in Section 5.

The relation between global types and session types is formalised by the notion of
projection [11]. The projection of G onto q, denoted (G � q), gives participant q’s view
of the protocol described by G. For example the projection of G = p→ p′ : 〈T 〉.G′ on q
is the following, assuming �= M(T ):

(p→ p′ : 〈T 〉.G′) � q =

⎧⎪⎨⎪⎩
!�〈p′,T 〉;(G′ � q) if q = p,

?�(p,T );(G′ � q) if q = p′,

G′ � q otherwise

Well-formedness of safety global types. To formulate the well-formedness condition
for safety global types, we define the join J(T ) of a session type T . Intuitively, while
M(T ) is needed for secure information flow, J(T ) will be used for access control. Recall
from Section 2 our access control policy, requiring that participants in a session only
read data of level less than or equal to their own level. This motivates our (slightly non
standard) definition of join: in short, J(T ) is the join of all the security levels decorating
the input constructs in T (receive, delreceive, branching). Moreover, unlike M(T ), J(T )
forgets the delegated part of T .

This leads to the following condition of well-formedness for safety global types,
where dom(L) denotes the domain of L:

A safety global type 〈L,G〉� is well formed if for all p ∈ dom(L): L(p)≥ J(G � p).
Henceforth we shall only consider well-formed safety global types.
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Typing expressions. The typing judgments for expressions are of the form:

Γ  e : S�

where Γ is the standard environment which maps variables to sort types with trivial
declassification, services to safety global types, and process variables to pairs of sort
types with trivial declassification and session types. Formally, we define:

Γ ::= /0 | Γ ,x� : S�
′ | Γ ,a� : 〈L,G〉�′ | Γ ,X : S� T

assuming that we can write Γ ,x� : S�
′
(respectively Γ ,a� : 〈L,G〉�′ and Γ ,X : S� T ) only

if x� (respectively a� and X) does not belong to the domain of Γ . An environment Γ is
well formed if x� : S�

′ ∈ Γ implies �′ = � and a� : 〈L,G〉�′ ∈ Γ implies that �′ = � and G
is well formed. Hence, if Γ is well formed, a� : 〈L,G�〉 ∈ Γ implies � = M(G). In the
following we will only consider well-formed environments.

We type values by decorating their type with their security level, and names accord-
ing to Γ :

Γ  true�, false� : bool� Γ ,u : S�  u : S� .NAME/

We type expressions by decorating their type with the join of the security levels of
the variables and values they are built from.

Typing processes. The typing judgments for processes are of the form:

Γ  � P%Δ

where Δ is the process environment which associates session types with channels:

Δ ::= /0 | Δ ,c : T

We decorate the derivation symbol  with the security level � inferred for the process:
this level is a lower bound for the actions and communications performed in the process.

Let us now present some selected typing rules for processes.
– Rule .SUBS/ allows the security level inferred for a process to be decreased.

Γ  � P%Δ �′ ≤ �
.SUBS/

Γ  �′ P%Δ
– In rule .MINIT/, the standard environment must associate with the identifier u a safety
global type. The premise matches the number of participants in the domain of L with
the number declared by the initiator. The emptiness of the process environment in the
conclusion specifies that there is no further communication behaviour after the initiator.

dom(L) = {1, . . . ,n}
.MINIT/

Γ ,u : 〈L,G〉�  � ū[n]% /0

– In rule .MACC/, the standard environment must also associate with u a safety global
type. The premise guarantees that the type of the continuation P in the p-th participant
is the p-th projection of the global type G of u.

Γ ,u : 〈L,G〉�  � P%Δ ,α : G � p
.MACC/

Γ ,u : 〈L,G〉�  � u[p](α).P%Δ
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Concerning security levels, in rule .MACC/ we check that the continuation process
P conforms to the security level � associated with the service name u. Note that this
condition does not follow from well-formedness of environments, since the process P
may participate in other sessions, but it is necessary to avoid information leaks. For
example, without this condition we could type

ā�[2] | a�[1](α1).α1!〈2,true�〉.0 | a�[2](α2).α2?(1,x�).if x� then b̄�[2] else 0
| b�[1](β1).c⊥[1](γ1).γ1!〈2,true⊥〉.0 | b�[2](β2).0

c̄⊥[2] | c[2](γ2).γ2?(1,y⊥).0

– In rule .SEND/, the first hypothesis binds expression e with type S�, where � is the
join of all variables and values in e. The second hypothesis imposes typability of the
continuation of the output with security level �′′. The third hypothesis relates levels �,
�′′ and �′ (the level to which e will be declassified), preserving the invariant that �′′ is a
lower bound for all security levels of the actions in the process.

Γ  e : S� Γ  �′′ P%Δ ,c : T �′′ ≤ �′ ≤ �
.SEND/

Γ  �′′ c!�
′ 〈Π ,e〉.P%Δ ,c : !〈Π ,S�↓�′〉;T

Note that the hypothesis �′′ ≤ �′ ≤ � is not really constraining, since P can always be
downgraded to �′′ using rule .SUBS/ and �′ ≤ � follows from well-formedness of S�↓�

′
.

– Rule .RCV/ is the dual of rule .SEND/, but it is more restrictive in that it requires the
continuation P to be typable with exactly the level �′:

Γ ,x�
′
: S�

′  �′ P%Δ ,c : T �′ ≤ �
.RCV/

Γ  �′ c?�(p,x�
′
).P%Δ ,c :?(p,S�↓�

′
);T

Notice for instance that we cannot type the reception of a � value followed by a ⊥
action. On the other hand we can type the reception of a � ↓ ⊥ value followed by a
⊥ action. For instance, in our introductory example of Section 2, rule [Rcv] allows the
delegation send in process B to be decorated by ⊥: this is essential for the typability of
both the process B and the session b between S and B.
– Rule .IF/ requires that the two branches of a conditional be typed with the same
process environment, and with the same security level as the tested expression.

Γ  e : bool� Γ  � P%Δ Γ  � Q%Δ
.IF/

Γ  � if e then P else Q%Δ
We say that a process P is typable in Γ if Γ  � P%Δ holds for some �, Δ .

Typing queues and Q-sets. Message types represent the messages contained in queues.

Message T ::= !〈Π ,S�↓�′〉 message value send
| !�〈q,T 〉 message delegation
| ⊕�〈Π ,λ 〉 message selection
| T;T′ message sequence

Message types are very close to the send, delsend, selection session types, hence we
shall not dwell on them. Let us just mention the associativity of the construct T;T′.
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Typing judgments for queues have the shape

Γ  s : h %Θ

where Θ is a queue environment associating message types with channels.

Example: we can derive  s : (2,{1,3},ok�)% {s[2] : ⊕�〈{1,3},ok〉}.
Typing judgments for Q-sets have the shape:

Γ  Σ H %Θ

where Σ is the set of session names which occur free in H.

Typing configurations. Typing judgments for runtime configurations C have the form:

Γ  Σ C % < Δ �Θ >

They associate with a configuration the environments Δ and Θ mapping channels to
session and message types respectively. We call< Δ �Θ > a configuration environment.

A configuration type is a session type, or a message type, or a message type followed
by a session type:

Configuration T ::= T session
| T message
| T;T continuation

An example of configuration type is:

⊕⊥〈{1,3},ok〉; !〈{3},String�〉;?(3,Number⊥);end

A configuration is initial if the process is closed, it does not use runtime syntax and
the Q-set is empty. It is easy to check that for typable initial configurations the set of
session names and the process and queue environments are all empty.

Since channels with roles occur both in processes and in queues, a configuration
environment associates configuration types with channels, in notation < Δ �Θ >(c).
Configuration types can be projected on a participant p. We write T � p to denote the
projection of the type T on the participant p. We also define a duality relation %# be-
tween projections of configuration types, which holds when opposite communications
are offered (input/output, selection/branching). The above definitions are needed to state
coherence of configuration environments. Informally, this holds when the inputs and the
branchings offered by the process agree both with the outputs and the selections offered
by the process and with the messages in the queues. More formally:

Definition 6. A configuration environment < Δ �Θ > is coherent if s[p] ∈ dom(Δ)∪
dom(Θ) and s[q] ∈ dom(Δ)∪dom(Θ) imply

< Δ �Θ > (s[p]) � q %# < Δ �Θ > (s[q]) � p.
Typing rules assure that configurations are always typed with coherent environments.

Since process and queue environments represent future communications, by reduc-
ing processes we get different configuration environments. This is formalised by the no-
tion of reduction of configuration environments, denoted by< Δ �Θ > ⇒ < Δ ′ �Θ ′ >.

We say that a queue is generated by service a, or a-generated, if it is created by
applying rule [Link] to the parallel composition of a’s participants and initiator.
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We are now able to state our main results, namely type preservation under reduction
and the soundness of our type system for both access control and noninterference. In
Theorem 2, we will use the function lev↑(ϑ) defined in Section 4 (Definition 1).

Theorem 1 (Subject Reduction). Suppose Γ  Σ C % < Δ �Θ > and C −→∗ C′. Then
Γ  Σ C′ % < Δ ′ �Θ ′ > with < Δ �Θ > ⇒ < Δ ′ �Θ ′ >.

Theorem 2 (Access Control)
Let C be an initial configuration, and suppose Γ  /0 C % < /0 � /0 > for some standard
environment Γ such that a� : 〈L,G〉� ∈ Γ . If C −→∗ (νs)C′, where the queue of name s
in C′ is a-generated and contains the message (p,q,ϑ), then lev↑(ϑ)≤ L(q).

Theorem 3 (Noninterference). If P is typable, then P )L P for all down-closed L .

7 Conclusion and Future Work

In this work, we have investigated the integration of security requirements into session
types. Interestingly, there appears to be an influence of session types on security.

For instance, it is well known that one of the causes of insecure information flow in a
concurrent scenario is the possibility of different termination behaviours in the branches
of a high conditional. In our calculus, we may distinguish three termination behaviours:
(proper) termination, deadlock and divergence. Now, the classical session types of [20]
already exclude some combinations of these behaviours in conditional branches. For
instance, a non-trivial divergence (whose body contains some communication actions)
in one branch cannot coexist with a non-trivial termination in the other branch. More-
over, session types prevent local deadlocks due to a bad matching of the communication
behaviours of participants in the same session. By adding to classical session types the
interaction typing of [2], we would also exclude most of the global deadlocks due to a
bad matching of the protocols of two interleaved sessions. However, this typing does
not prevent deadlocks due to inverse session calls. We plan to study a strengthening of
interaction typing that would rule out also this kind of deadlock. This would allow us
to simplify our type system by removing our constraint in the typing rule for input.

The form of declassification considered in this work is admittedly quite simple. How-
ever, it already illustrates the connection between declassification and access control,
since a declassified value may only be received by a participant whose level is greater
than or equal to the original level of the value. This means that declassification is con-
strained by the access control policy, as in [5]. We plan to extend declassification also
to data which are not received from another participant, by allowing declassification of
a tested expression, as in this variant of the B process of our example in Section 2:

B′ = . . . if {cc⊥ = secret�}�↓⊥ then β1⊕⊥ 〈2,ok〉.0 else β1⊕⊥ 〈2,ko〉.0
Again, this declassification would be controlled by requiring B′ to have level �.
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Simulation Distances�
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Abstract. Boolean notions of correctness are formalized by preorders on
systems. Quantitative measures of correctness can be formalized by real-
valued distance functions between systems, where the distance between
implementation and specification provides a measure of “fit” or “desir-
ability.” We extend the simulation preorder to the quantitative setting,
by making each player of a simulation game pay a certain price for her
choices. We use the resulting games with quantitative objectives to define
three different simulation distances. The correctness distance measures
how much the specification must be changed in order to be satisfied by
the implementation. The coverage distance measures how much the im-
plementation restricts the degrees of freedom offered by the specification.
The robustness distance measures how much a system can deviate from
the implementation description without violating the specification. We
consider these distances for safety as well as liveness specifications. The
distances can be computed in polynomial time for safety specifications,
and for liveness specifications given by weak fairness constraints. We
show that the distance functions satisfy the triangle inequality, that the
distance between two systems does not increase under parallel composi-
tion with a third system, and that the distance between two systems can
be bounded from above and below by distances between abstractions of
the two systems. These properties suggest that our simulation distances
provide an appropriate basis for a quantitative theory of discrete sys-
tems. We also demonstrate how the robustness distance can be used to
measure how many transmission errors are tolerated by error correcting
codes.

1 Introduction

Standard verification systems return a boolean answer that indicates whether a
system satisfies its specification. However, not all correct implementations are
equally good, and not all incorrect implementations are equally bad. There is
thus a natural question whether it is possible to extend the standard specification
frameworks and verification algorithms to capture a finer and more quantitative
view of the relationship between specifications and systems.

We focus on extending the notion of simulation to the quantitative setting.
For reactive systems, the standard correctness requirement is that all executions
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of an implementation have to be allowed by the specification. Requiring that
the specification simulates the implementation is a stricter condition, but it
is computationally less expensive to check. The simulation relation defines a
preorder on systems. We extend the simulation preorder to a distance function
that given two systems, returns a real-valued distance between them.

Let us consider the definition of simulation of an implementation I by a spec-
ification S as a two-player game, where Player 1 (the implementation) chooses
moves (transitions) and Player 2 (the specification) tries to match each move.
The goal of Player 1 is to prove that simulation does not hold, by driving the
game into a state from which Player 2 cannot match the chosen move; the goal
of Player 2 is to prove that there exists a simulation relation, by playing the
game forever. In order to extend this definition to capture how “good” (or how
“bad”) the simulation is, we make the players pay a certain price for their choices.
The goal of Player 1 is then to maximize the cost of the game, and the goal of
Player 2 is to minimize it. The cost is given by an objective function, such as the
limit average of transition prizes. For example, for incorrect implementations,
i.e., those for which the specification S does not simulate the implementation I,
we might be interested in how often the specification (Player 2) cannot match
an implementation move. We formalize this using a game with a limit-average
objective between modified systems. The specification is allowed to “cheat,” by
following a non-existing transition, while the implementation is left unmodified.
More precisely, the specification is modified by giving the transitions from the
original system a weight of 0, and adding new “cheating” transitions with a non-
zero positive weight. As Player 2 is trying to minimize the value of the game,
she is motivated not to cheat. The value of the game measures how often the
specification can be forced to cheat by the implementation, that is, how often the
implementation violates the specification (i.e., commits an error) in the worst
case. We call this distance function correctness.

Let us consider the examples in Figure 1. We take the system S1 as the
specification. The specification allows at most two symbols b to be output in
the row. Now let us consider the two incorrect implementations I3 and I4. The
implementation I3 outputs an unbounded number of b’s in a row, while the
implementation I4 can output three b’s in a row. The specification S1 will thus
not be able to simulate either I3 or I4, but I4 is a “better” implementation in
the sense that it violates the requirement to a smaller degree. We capture this
by allowing S1 to cheat in the simulation game by taking an existing edge while
outputting a different symbol. When simulating the system I3, the specification
S1 will have to output a b when taking the edge from state 2 to state 0. This
cheating transition will be taken every third move while simulating I3. The
correctness distance from S1 to I3 will therefore be 1/3. When simulating I4,
the specification S1 needs to cheat only one in four times—this is when I4 takes
a transition from its state 2 to state 3. The distance from S1 to I4 will be 1/4.

Considering the implementation I2 from Figure 1, it is easy to see that it is
correct with respect to the specification S1. The correctness distance would thus
be 0. However, it is also easy to see that I2 does not include all behaviors allowed
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Fig. 1. Example Systems

by S1. Our second distance function, coverage, is the dual of the correctness dis-
tance. It measures how many of the behaviors allowed by the specification are
actually implemented by the implementation. This distance is obtained as the
value for the implementation in a game in which I is required to simulate S, with
the implementation being allowed to cheat. Our third distance function is called
robustness. It measures how robust the implementation I is with respect to the
specification S in the following sense: we measure how often the implementa-
tion can make an unexpected error (i.e., it performs a transition not present
in its transition relation), with the resulting behavior still being accepted by
the specification. Unexpected errors could be caused, for example, by a hard-
ware problem, by a wrong environment assumption, or by a malicious attack.
Robustness measures how many such unexpected errors are tolerated.

In addition to safety specifications, we consider liveness specifications given
by weak (Büchi) fairness constraints or strong (Streett) fairness constrains. In
order to define distances to liveness specifications, the notion of quantitative
simulation is extended to fair quantitative simulation. We study variations of
the correctness, coverage, and robustness distances using limit-average and dis-
counted objective functions. Limit-average objectives measure the long-run fre-
quency of errors, whereas discounted objectives count the number of errors and
give more weight to earlier errors than later ones.

The correctness, coverage, and robustness distances can be calculated by solv-
ing the value problem in the corresponding games. Without fairness require-
ments, we obtain limit-average games or discounted games with constant weights.
The values of such games can be computed in polynomial time [20]. We obtain
polynomial complexity also for distances between systems with weak-fairness
constraints, whereas for strong-fairness constrains, the best known algorithms
require exponential time.

We present composition and abstraction techniques that are useful for com-
puting and approximating simulation distances between large systems. Finally,
we present an application of the robustness distance. We consider error correc-
tion systems for transmitting data over noisy channels. Three implementations
based on the Hamming code, triple modular redundancy, and no error correction
with different robustness properties are analyzed.

Related work. Weighted automata [4,10] provide a way to assign values to words,
and to languages defined by finite-state systems. Distances between systems can
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be defined using weighted automata, analogically to boolean language inclusion.
However, the complexity of computation of such distance is not known [4]. Our
solution of using a quantitative version of simulation games corresponds in the
boolean case to the choice of using simulation instead of language inclusion.
There have been several attempts to give a mathematical semantics to reactive
processes which is based on quantitative metrics rather than boolean preorders
[18,6]. In particular for probabilistic processes, it is natural to generalize bisim-
ulation relations to bisimulation metrics [9,19], and similar generalizations can
be pursued if quantities enter not through probabilities but through discounting
[7] or continuous variables [2] (this work uses the Skorohod metric on contin-
uous behaviors to measure the distance between hybrid systems). We consider
distances between purely discrete (nonprobabilistic, untimed) systems, and our
distances are directed rather than symmetric (based on simulation rather than
bisimulation). Software metrics measure properties such as lines of code, depth
of inheritance (in an object-oriented language), number of bugs in a module
or the time it took to discover the bugs (see for example [12,16]). These func-
tions measure syntactic properties of the source code, and are fundamentally
different from our distance functions that capture the difference in the behavior
(semantics) of programs.

2 Quantitative Simulation Games

Transition Systems. A transition system is a tuple 〈S,Σ,E, s0〉 where S is a
finite set of states, Σ is a finite alphabet, E ⊆ S × Σ × S is a set of labeled
transitions, and s0 is the initial state. We require that for every s ∈ S, there exists
a transition from s. The set of all transition systems is denoted by S. A weighted
transition system is a transition system along with a weight function v from
E to Q. A run in a transition system T is an infinite path ρ = ρ0σ0ρ1σ1ρ2σ2 . . . ∈
(S ·Σ)ω where ρ0 = s0 and for all i, (ρi, σi, ρi+1) ∈ E.

Fairness Conditions. A Büchi (weak fairness) condition for a (weighted) tran-
sition system is set of states F ⊆ S. Given a Büchi condition F and a run ρ =
ρ0σ0ρ1σ1 . . . of a transition system, the run ρ is fair iff ∀n ≥ 0 : (∃i > n : ρi ∈ F ).
A Streett (strong fairness) condition for a (weighted) transition system is a
set of request-response pairs F = {〈E1, F1〉, 〈E2, F2〉, . . . , 〈Ed, Fd〉} where each
Ei, Fi ∈ 2S . Given a Streett condition, a run ρ = ρ0σ0ρ1σ1 . . . is fair iff
∀k ≤ d :

(
(|{i | ρi ∈ Ek}| = ∞) ⇒ (|{i | ρi ∈ Fk}| = ∞)

)
. We denote a transition

system A with a fairness condition F as AF .

Game Graphs. A game graph G is a tuple 〈S, S1, S2, Σ,E, s0〉 where S, Σ, E
and s0 are as in transition systems and (S1, S2) is a partition of S. The choice
of the next state is made by Player 1 (Player 2) when the current state is in S1

(respectively, S2). A weighted game graph is a game graph along with a weight
function v from E to Q. A run in the game graph G is called a play. The set of
all plays is denoted by Ω.

When the two players represent the choices internal to a system, we call
the game graph an alternating transition system. We only consider alternating
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transition systems where the transitions from Player 1 states go only to Player 2
states and vice-versa. We use AF to denote an alternating transition system A
with fairness condition F .

Strategies. Given a game graph G, a strategy for Player 1 is a function π :
(S · Σ)∗S1 → S × Σ such that ∀s0σ0s1σ1 . . . si ∈ (S · Σ)∗S1, we have that
if π(s0σ0s1σ1 . . . si) = (s, σ), then (si, σ, s) ∈ E. A strategy for Player 2 is
defined similarly. The set of all strategies for Player p is denoted by Πp. A play
ρ = ρ0σ0ρ1σ1ρ2σ2 . . . conforms to a player p strategy π if ∀i ≥ 0 : (ρi ∈ Sp =⇒
: (ρi+1, σi+1) = π(ρ0σ0ρ1σ1 . . . ρi)). The outcome of strategies π1 and π2 is the
unique play out(π1 , π2 ) that conforms to both π1 and π2.

Two restricted notions of a strategy are sufficient for many classes of games.
A memoryless strategy is one where the value of the strategy function depends
solely on the last state in the history, whereas a finite-memory strategy is one
where the necessary information about the history can be summarized by a finite
amount of information.

Games and Objectives. A game is a game graph and a boolean or quantitative
objective. A boolean objective is a function Φ : Ω → {0, 1} and the goal of
Player 1 in a game with objective Φ is to choose a strategy so that, no matter
what Player 2 does, the outcome maps to 1; and the goal of Player 2 is to
ensure that the outcome maps to 0. A quantitative objective is a value function
f : Ω → R and the goal of Player 1 is to maximize the value f of the play,
whereas the goal of Player 2 is to minimize it. We only consider quantitative
objectives with which map plays to values in [0, 1]. Given a boolean objective Φ,
a play ρ is winning for Player 1 (Player 2) if Φ(ρ) = 1 (Φ(ρ) = 0). A strategy
π is a winning strategy for Player p if every play conforming to π is winning for
Player p.

For a quantitative objective f , the value of the game for Player 1 is defined as
the supremum of the values of plays attainable against any Player 2 strategy, i.e.,
supπ1∈Π1

infπ2∈Π2 f(out(π1 , π2 )). The value of the game for Player 2 is defined
analogously. A strategy is an optimal strategy for a player if it assures a outcome
equal to her value of the game. Similarly, a strategy is an ε-optimal strategy for
a maximizing (resp. minimizing) player if it assures an outcome that is no more
that ε smaller (resp. larger) than the value of the game.

We consider ω-regular boolean objectives and the following quantitative objec-
tives. Given a game graph with the weight function v and a play ρ = ρ0ρ1ρ2 . . .,
for all i ≥ 0, let vi = v((ρi, σi, ρi+1)).

– LimAvg(ρ) = lim infn→∞
1
n ·
∑n−1

i=0 vi

– Discλ(ρ) = lim infn→∞(1 − λ) ·
∑n−1

i=0 λi · vi where 0 < λ < 1.

LimAvg is the long-run average of the weights occurring in a play, whereas Discλ

is the discounted sum of the weights. Therefore, LimAvg gives more importance
to the infinite suffix of a play whereas Discλ gives more importance to the finite
prefix of a play.
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Note that for LimAvg and Disc objectives, optimal memoryless strategies
exist for both players [11,20]. Also, for qualitative objectives specified as Büchi
conditions, memoryless winning strategies exist for both players, and for other
ω-regular conditions, finite-memory winning strategies exist.

Also, consider the following family of objectives where a boolean ω-regular
objective and a quantitative objective f are combined as follows. If a play ρ
satisfies the boolean objective, then the value of ρ is the value according to f ;
otherwise, the value of the ρ is the maximum possible value of f (in our case, it is
always 1). When f = LimAvg and the ω-regular objective is a parity objective,
ε-optimal finite-memory strategies exist [5]. This result can be extended to arbi-
trary ω-regular objectives as all ω-regular objectives can be expressed as parity
objectives with the latest appearance records memory [13]. Such objectives are
called ω-regular LimAvg objectives.

2.1 Qualitative Simulation Games

The simulation preorder [17] is a useful and polynomially computable relation to
compare two transition systems. In [1] this relation was extended to alternating
simulation between alternating transition systems. For systems with fairness
conditions, the simulation relation was extended to fair simulation in [15]. These
relations can be computed by solving games with boolean objectives.

Simulation and Alternating Simulation. Consider two transition systems
A = 〈S,Σ,E, s0〉 and A′ = 〈S′, Σ,E′, s′0〉. The system A′ simulates the system
A if there exists a relation H ⊆ S×S′ such that (a) (s0, s′0) ∈ H ; and (b) ∀s, t ∈
S, s′ ∈ S′ : (s, s′) ∈ H ∧ (s, σ, t) ∈ E ⇒ (∃t′ : (s′, σ, t′) ∈ E′ ∧ (s′, t′) ∈ H).

For two alternating transition systems A = 〈S, S1, S2, Σ,E, s0〉 and A′ =
〈S′, S′

1, S
′
2, Σ,E

′, s′0〉, alternating simulation of A by A′ holds if there exists a
relation H ⊆ S × S′ such that (s0, s′0) ∈ H and ∀s ∈ S, s′ ∈ S′ : (s, s′) ∈ H ⇒
(s ∈ S1 ⇔ s′ ∈ S′

1); and
– ∀s ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S1) ⇒ ∀(s, σ, t) ∈ E : (∃(s′, σ, t′) ∈ E′ :

(t, t′) ∈ H).
– ∀s ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S2) ⇒ ∃(s′, σ, t′) ∈ E′ : (∀(s, σ, t) ∈ E :

(t, t′) ∈ H).

Simulation and Alternating Simulation Games. Given two (alternating)
transition systems, A and A′, we can construct a game such that, (alternating)
simulation of A by A′ holds if and only if Player 2 has a winning strategy in the
game

Given two weighted transition systems A and A′ with the same alphabet, we
define the corresponding quantitative simulation game graph GA,A′ as 〈S× (Σ∪
{#})×S′∪{serr}, SG

1 , S
G
2 , Σ,E

G, (s0,#, s′0)〉 where SG
1 = (S×{#}×S′)∪{serr}

and SG
2 = (S × Σ × S′). Each transition of the game graph corresponds to a

transition in either A or A′ as follows:

– ((s,#, s′), σ, (t, σ, s′)) ∈ EG ⇔ (s, σ, t) ∈ E
– ((s, σ, s′), σ, (s,#, t′)) ∈ EG ⇔ (s′, σ, t′) ∈ E′
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For each of the above transitions, the weight is the same as the weight of the
corresponding transition in A or A′. If there is no outgoing transition from a
particular state, transitions to serr are added with all symbols. The state serr

is a sink with transitions to itself on all symbols. Each of these transitions has
weight 1 (the maximum possible value of a quantitative objective).

For classical simulation games, we consider the same game graph without
weights. The objective for Player 2 is to reach serr and for Player 1 to avoid it.
Intuitively, in every state, Player 1 chooses a transition of A and Player 2 has to
match it by picking a transition of A′. If Player 2 cannot match at some point,
Player 1 wins that play. It is easy to see that A′ simulates A iff there is a winning
strategy for Player 2 in this game.

We can extend the simulation game to an alternating simulation game. We
informally define the quantitative alternating simulation game graph. The formal
definition can be found in the companion report [3]. Given two quantitative
alternating transition systems A and A′ , we define the quantitative alternating
simulation game graph HA,A′ as follows. If A is at state s and s ∈ S1, Player 1
chooses a transition of A and Player 2 has to match it with a transition of A′; and
if A is at s and s ∈ S2, Player 2 has to choose a transition of A′ and Player 1 has
to choose a transition of A to match it. If there cannot be a match, the control
moves to the error state serr. As before, the transitions have the same weight as
in the individual systems.

We consider the game graph without weights to define the alternating simu-
lation game HA,A′

and the objective of the Player 1 is to ensure that the play
reaches serr. It can be seen that alternating simulation holds iff there exists a
winning strategy for Player 2 .

Fair Simulation. Given two (alternating) transitions systems with fairness con-
ditions AF and A′F ′

, the fair simulation game is played in the same game graph
GA,A′ (HA,A′) as the simulation game. However, in addition to matching the
symbol in each step, Player 2 has to ensure that if the sequence of transitions of
A chosen by Player 1 satisfies the fairness condition F , then the sequence of A′

transitions chosen satisfy the fairness condition F ′.

2.2 Quantitative Simulation Games

We define a generalized notion of simulation games called quantitative simulation
games where the simulation objectives are replaced by quantitative objectives.

Quantitative Simulation Games. Given two quantitative (alternating) tran-
sition systems A and A′, and f ∈ {LimAvg,Discλ}, the quantitative (alter-
nating) simulation game is played on the quantitative (alternating) simulation
game graph GA,A′ (HA,A′) with the objective of Player 1 being to maximize the
f value of the play. We denote this game as Qf

A,A′ (Pf
A,A′).

Quantitative Fair Simulation Games. Analogous to quantitative (alter-
nating) simulation games, the fair versions between two transition systems
with fairness conditions. The quantitative objective for this game is the ω-regular
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LimAvg objective which is the combination of LimAvg objective and the boolean
fair (alternating) simulation game objective.

We do not use f = Discλ along with fairness conditions as the two objectives
are independent. The Discλ objectives mainly consider the finite prefix of a play,
whereas fairness conditions consider only the infinite suffix.

2.3 Modification Schemes

We will use quantitative simulation games to measure various properties of sys-
tems. For computing these properties, we need to use small modifications of
the original systems. For example, when trying to compute the distance as the
number of errors an implementation commits, we add to the specification some
error recovery behavior. However, we impose strict rules on these modifications
to ensure that the modified system retains the structure of the original system.

A modification scheme is a function m from transition systems to quantitative
(alternating) transition systems, which can be computed using the following
steps: (a) Edges may be added to the transition system and each state may
be replaced by a local subgraph. All edges of the graph have to be preserved;
(b) Every edge of the system is associated with a weight from Q. We present
two examples of modification schemes.

Output Modification. This scheme is used to add behavior to a system that
allows it to output an arbitrary symbol while moving to a state specified by an
already existing transition. For every transition (s, σ, s′), transitions with differ-
ent symbols are added to the system i.e., {(s, α, s′) | α ∈ Σ}. These transitions
are given a weight of 2 to prohibit their free use. All other transitions have the
weight zero. Given a system T , we denote the modified system as OutMod(T ).

Error Modification. In a perfectly functioning system, errors may occur due
to unpredictable events. We model this with an alternating transition system
with one player modeling the original system (Player 1) and the other modeling
the controlled error (Player 2). At every state, Player 2 chooses whether or
not a error occurs by choosing one of the two successors. From one of these
states, Player 1 can choose the original successors of the state and from the
other, she can choose either one of the original successors or one of the error
transitions. We penalize Player 2 for the choice of not allowing errors to happen.

s

s′

s′′

c

¬c
E(s)

E(s) ∪X(s)

Fig. 2. Graph for ErrMod

Given T = 〈S,Σ,E, s0〉 we define
ErrMod(T ) to be the quantitative alternating
transition system obtained by replacing each
state s by the graph in Figure 2. If an error
is allowed (modeled by the c edge), then all
transitions that differ from original transitions
only in the symbol are added (represented
by X(s) in Figure 2). Only the transitions labeled ¬c are given the weight 2.
The rest are given the weight 0. The system ErrMod∅(T ) denotes a system where
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0 1
a

b

(d) IL

Fig. 3. Example Systems

no additional transitions where introduced, only the states were replaced by a
subgraph from Figure 2 (with X being the empty set).

In addition to the above schemes, we define the trivial modification scheme
NoMod where no changes are made except to give every edge the weight 0.

3 Simulation Distances

Correctness. Given a specification T2 and an implementation T1, such that T1

is incorrect with respect to T2, the correctness distance measures the degree of
“incorrectness” of T1. Even a single nonconformant behavior can destroy the
boolean simulation relation. Here we present a game which is not as strict and
measures the minimal number of required errors, i.e. the minimal number of
times the specification has to use nonmatching symbols when simulating the
implementation.

Definition 3.1 (Correctness distance). Let f = LimAvg or f = Discλ. The
correctness distance df

cor(T1, T2) from system T1 to system T2 is the Player 1
value of the quantitative simulation game Cf

T1,T2
= Qf

NoMod(T1),OutMod(T2)
.

The game C can be intuitively understood as follows. Given two systems T1 and
T2, we are trying to simulate the system T1 by T2, but the specification T2 is al-
lowed to make errors, to “cheat”, but she has to pay a price for such a choice. As
the simulating player is trying to minimize the value of the game, she is motivated
not to cheat. The value of the game can thus be seen as measuring how often she
can be forced to cheat, that is, how often on average the implementation commits
an error. If the implementation is correct (T2 simulates T1), then the correct-
ness distance is 0. The value of the game is either the LimAvg or the Disc of
the number of errors. If the objective f is LimAvg, then the value is the long
run average of the errors, whereas if the objective f is Discλ, the errors which
occur earlier are given more importance and the value is the discounted sum of
the position of the errors. Therefore, the Disc and LimAvg games are concerned
with prefixes and infinite suffixes of the behaviors respectively.

We present a few example systems and their distances here to demonstrate
the fact that the above game measures distances that correspond to intuition.
In Figure 3 and Figure 1, S1 is the specification system against which we want
to measure the systems I1 through I5. In this case, the specification says that
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Table 1. Distances according to the Correctness, Coverage and Robustness game

T1 T2 dLimAvg
cor (T1, T2) dLimAvg

cov (T1, T2) dLimAvg
rob (T1, T2)

S1 S1 0 0 1
S1 I1 0 2/3 1/3
S1 I2 0 1/3 2/3
S1 I3 1/3 1 1
S1 I4 1/4 3/4 1
S1 I5 1/5 4/5 1
SL IL 1/2 1 1

there cannot be more than two b’s in a row. Also, we have a specification with
a liveness condition SL against which we want to measure the implementation
IL. The distances between these systems according to the LimAvg correctness
game are summarized in Table 1.

Among the systems which do not satisfy the specification S1, i.e. I3, I4 and
I5, we showed in the introduction that the distance from I3 to S1 is 1/3, while
the distance from I4 to S1 is 1/4. However, surprisingly the distance from I5 to
S1 is less than the distance from I4. In fact, the distances reflect on the long run
the number of times the specification has to err to simulate the implementation.

In case of the specification SL and implementation IL with liveness conditions,
the specification can take the left branch to state 0 to get a penalty of 1

2 or take
the right branch to state 2 to get a penalty of 1. However, it needs to take the
right branch infinitely often to satisfy the liveness condition. To achieve
the distance of 1

2 , the specification needs infinite memory so that it can take
the right branch lesser and lesser number of times. In fact, if the specification
has a strategy with finite-memory of size m, it can achieve a distance of 1

2 + 1
2m .

Coverage. We present the dual game of the one presented above. Here, we mea-
sure the behaviors that are present in one system but not in the other system.
Given a specification T2 and an implementation T1, the coverage distance corre-
sponds to the behavior of the specification which is farthest from any behaviour
of the implementation. Hence, we have that the coverage distance from a system
T1 to a system T2 is the correctness distance from T2 to T1.

Definition 3.2 (Coverage distance). Let f = LimAvg or f = Discλ. The
coverage distance df

cov
(T1, T2) from system T1 to system T2 is the Player 1 value

of the quantitative simulation game Vf
T1,T2

= Qf
NoMod(T2),OutMod(T1)

.

V measures the distance from T1 to T2 as the minimal number of errors that have
to be committed by T1 to cover all the behaviors of T2. We present examples of
systems and their distances according to VLimAvg . We use the example systems
in Figures 3 and 1. The distances are summarized in Table 1.

Robustness. Given a specification system and a correct implementation, the
notion of robustness presented here is a measure of the number of errors by the
implementation that makes it nonconformant to the specification. The more
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such errors tolerated by the specification, the more robust the implementation.
In other words, the distance measures the number of critical points, or points
where an error will lead to an unacceptable behavior. The lower the value of the
robustness distance, the more robust an implementation is. In case of an incorrect
implementation, the simulation of the implementation does not hold irrespective
of implementation errors. Hence, in that case, the robustness distance will be 1.

Definition 3.3 (Robustness distance). Let f = LimAvg or f = Discλ.
The robustness distance df

rob(T1, T2) from system T1 to system T2 is the
Player 1 value of the quantitative alternating simulation game Rf

T1,T2
=

Pf
ErrMod(T1),ErrMod∅(T2).

The game RErrMod(T1),ErrMod∅(T2) is played in the following steps: (a) The spec-
ification T2 chooses whether the implementation T1 is allowed to make an error;
(b) The implementation chooses a transition on the implementation system. It
is allowed to err based on the specification choice in the previous step; and
(c) Specification chooses a matching move to simulate the implementation.

The specification tries to minimize the number of moves where it prohibits
implementation errors (without destroying the simulation relation), whereas the
implementation tries to maximize it. Intuitively, the positions where the specifi-
cation cannot allow errors are the critical points for the implementation.

In the game played between S1 and S1, every position is critical. At each
position, if an error is allowed, the system can output three b’s in a row by
using the error transition to return to state 0 while outputting a b. The next two
moves can be b’s irrespective whether errors are allowed or not. This breaks the
simulation. Now, consider I1. This system can be allowed to err every two out of
three times without violating the specification. This shows that I1 is more robust
than S1 for implementing S1. The list of distances is summarized in Table 1.

Computation of Simulation Distances. The computational complexity of
computing the three distances defined here is the same as solving the value
problem for the respective games.

For systems without fairness conditions, the dcor, dcov and drob games are
simple graph games with LimAvg or Discλ objectives. The decision problem
for these games is in NP ∩ co-NP [20], but no PTIME algorithm is known.
However, for LimAvg objectives the existence of an algorithm polynomial in
unary encoded weights implies that the computation of the distances can be
achieved in polynomial time as we use constant weights. Using the algorithm
of [20], in the case without fairness conditions dcor, dcov and drob distances can
be computed in time O((|S||S′|)3 · (|E||S′|+ |E′||S|)) where S and S′ are state
spaces of the two transition systems; and E and E′ are the sets of transitions of
the two systems. A variation of the algorithm in [20] gives a PTIME algorithm
for the Discλ objectives (given a fixed λ).

For systems with Büchi (weak fairness) conditions, the corresponding games
are graph games with LimAvg parity games, for which the decision problem
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is in NP ∩ co-NP. However, the use of constant weights and the fact that the
implication of two Büchi conditions can be expressed as a parity condition with
no more than 3 priorities leads to a polynomial algorithm. Using the algorithm
presented in [5], we get a O((|S||S′|)3 · (|E||S′|+ |E′||S|)) algorithm.

For systems with Streett (strong fairness) conditions, the corresponding games
are graph games with LimAvg ω-regular conditions. For an ω-regular LimAvg
game of n states, we can use the latest appearance records to convert into an
equivalent parity game of 2O(n log(n)) states and edges; and n priorities. The
algorithm of [5] gives a 2O(n log(n)) algorithm where n = |S| · |S′|.

4 Properties of Simulation Distances

We present quantitative analogues of boolean properties of the simulation pre-
orders. Proofs omitted are included in the companion report [3].

Triangle Inequality. Classical simulation relations satisfy the reflexivity and
transitivity property which makes them preorders. In an analogous way, we show
that the correctness and coverage distances satisfy the quantitative reflexivity
and the triangle inequality properties. This makes them directed metrics [8].

Theorem 1. df
cor is a directed metric for f ∈ {LimAvg ,Discλ}, i.e.:

– ∀S ∈ S : df
cor

(S, S) = 0
– ∀S1, S2, S3 ∈ S : df

cor(S1, S3) ≤ df
cor(S1, S2) + df

cor(S2, S3)

Proof: We will prove the result for systems with fairness conditions. The case
without fairness conditions is analogous. Consider any ε > 0. Let τ2 and τ3 be
ε
2 -optimal finite strategies for Player 2 in CS1,S2 and CS2,S3 respectively. Now, we
construct a finite-memory strategy τ∗ for Player 2 in CS1,S3 . If M2 and M3 are
the memories of τ2 and τ3 respectively, the memory of τ∗ will be M2×S2×M3.
The strategy τ∗ works as follows. Let the state of the game be (s1,#, s3) and
the memory of τ∗ be (m2, s2,m3).
– Let Player 1 choose to move according to the S1 transition (s1, σ1, s

′
1) to the

game state (s′1, σ1, s3). Consider the game position (s′1, σ1, s2) in CS1,S2 and
let the τ2 memory be at state m2. Say τ2 updates its memory to m′

2 and
chooses the successor (s′1,#, s′2) with transition symbol σ1. Let the corre-
sponding OutMod(S2) transition be (s2, σ1, s

′
2).

– If the transition (s2, σ1, s
′
2) exists in S2, then let σ′

2 = σ1. Otherwise, there
will exist (s2, σ2, s

′
2) in S2 for some σ2. Let σ′

2 = σ2. Now, consider the game
position (s′2, σ

′
2, s3) in CS2,S3 and the memory state m3 of τ3. Say τ3 updates

its memory to m′
3 and chooses the successor (s′2,#, s′3) and the transition

symbol σ′
2. Let the corresponding OutMod(S3) transition be (s3, σ′

2, s
′
3).

– The memory of τ∗ is updated to (m′
2, s

′
2,m

′
3) and τ∗ chooses the succes-

sor (s′1,#, s′3) with the transition symbol σ1. The corresponding transition
(s3, σ1, s

′
3) exists in OutMod(S3) as there exists a transition with the same

source and destination as (s3, σ′
2, s

′
3).
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s1,0
σ1(v1,0)−−−−−→ s1,1

σ1(v1,1)−−−−−→ s1,2 . . .

s2,0
σ1(v2,0)−−−−−→ s2,1

σ1(v2,1)−−−−−→ s2,2 . . .

}
ρ1

s2,0
σ′
2(v2,0)−−−−−→ s2,1

σ′
2(v2,1)−−−−−→ s2,2 . . .

s3,0
σ1(v3,0)−−−−−→ s3,1

σ1(v3,1)−−−−−→ s3,2 . . .

⎫⎬⎭ ρ2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ρ

If Player 2 cannot match σ1

with a zero weight transition
while playing according to τ∗, ei-
ther τ2 or τ3 would have also
taken a non-zero weight transi-
tion. Using this fact, we can eas-
ily prove the required property.
Fix an arbitrary finite-memory

Player 1 strategy σ. Now, let the play proceed according to the strategy τ∗.
From the moves of the game and the state of the memory of τ∗, we can ex-
tract four transitions for each round of play as above, i.e. an S1 transition
(s1, σ1, s

′
1), an OutMod(S2) transition (s2, σ1, s

′
2), an S2 transition (s2, σ′

2, s
′
2)

and an OutMod(S3) transition (s3, σ1, s
′
3). We depict the situation in the above

figure.
The play ρ in CS1,S3 corresponds to the transitions in the first and the last

rows. This play can be decomposed into plays ρ1 and ρ2 in CS1,S2 and CS2,S3 by
taking only the transitions in the first two and last two rows respectively. Now,
by the observation in the previous paragraph, each move in ρ has weight 2 only
if one of the corresponding moves in ρ1 or ρ2 have weight 2. Let us denote the
nth move in a play η by ηn. If both S1 and S3 sequence of moves in ρ are fair
or if S1 sequence is unfair, we have the following for the LimAvg case.

ν(ρ) = lim inf
n→∞

1
n

n∑
i=0

v(ρi) ≤ lim inf
n→∞

1
n

n∑
i=0

(
v(ρi

1) + v(ρi
2)
)

= lim
n→∞

1
n

n∑
i=0

(
v(ρi

1) + v(ρi
2)
)

= lim
n→∞

1
n

n∑
i=0

v(ρi
1) + lim

n→∞

1
n

n∑
i=0

v(ρi
2)

= lim inf
n→∞

1
n

n∑
i=0

v(ρi
1) + lim inf

n→∞

1
n

n∑
i=0

v(ρi
2)

≤ dcor(S1, S2) +
ε

2
+ dcor(S2, S3) +

ε

2
= dcor(S1, S2) + dcor(S2, S3) + ε

All the strategies we are considering are finite-memory, and hence, each sequence
of weights is ultimately repeating. Therefore, we can use lim and lim inf inter-
changeably in the above equations. The case for Discλ is much simpler and not
shown here.

Hence, we have that the value of the play satisfies the required inequality
for the case that both S1 and S3 perform fair computations. In the case that
S1 sequence is fair and S3 sequence is not fair, the value of the play will be 1.
However, by construction the value of either ρ1 or ρ2 will also be 1 and hence
the inequality holds.

Therefore, given an ε, we have strategy for Player 2 which assures a value less
than dcor(S1, S2) + dcor(S2, S3) + ε for both the LimAvg and Discλ case. Hence,
we have the required triangle inequality.

It can be shown by construction of a Player 2 strategy that copies every
Player 1 move that dcor(S, S) = 0. Hence, we have the result.
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Theorem 2. df
cov

is a directed metric when f ∈ {LimAvg,Discλ}, i.e. :
– ∀S ∈ S : df

cov
(S, S) = 0

– ∀S1, S2, S3 ∈ S : df
cov(S1, S3) ≤ df

cov(S1, S2) + df
cov(S2, S3)

The robustness distance satisfies the triangle inequality, but not the quantita-
tive reflexivity. The system S1 in Figure 1 is a witness system that violates
drob(S1, S1) = 0. In fact, for LimAvg objectives and any rational value v ∈ [0, 1],
it is easy to construct a system Sv such that drob(Sv, Sv) = v.

Theorem 3. df
rob conforms to the triangle inequality for f ∈ {LimAvg,Discλ},

i.e. : ∀S1, S2, S3 ∈ S : df
rob(S1, S3) ≤ df

rob(S1, S2) + df
rob(S2, S3)

Compositionality In the qualitative case, compositionality theorems help
analyse large systems by decomposing them into smaller components. For ex-
ample, simulation is preserved when components are composed together. We
show that in the quantitative case, the distance between the composed systems
is bounded by the sum of the distances between individual systems.

If A and A′ are two transition systems, we define asynchronous and syn-
chronous composition of the two systems, written as A ‖ A′ and A×A′ respec-
tively as follows: (a) The state space is S×S′; (b) ((s, s′), σ, (t, t′)) is a transition
of A ‖ A′ iff (s, σ, t) is a transition of A and s′ = t′ or (s′, σ, t′) is a transition
of A′ and s = t, and (c) ((s, s′), σ, (t, t′)) is a transition of A×A′ iff (s, σ, t) is a
transition of A and (s′, σ, t′) is a transition of A′.

The following theorems show that the simulation distances between whole
systems is bounded by the sum of distances between the individual components.

Theorem 4. The correctness, coverage and robustness distances satisfy the fol-
lowing property, when f ∈ {LimAvg,Discλ}:

df (S1 × S2, T1 × T2) ≤ df (S1, T1) + df (S2, T2)

Theorem 5. The correctness, coverage and robustness dis-
tances satisfy the following property when f = LimAvg.

df (S1 ‖ S2, T1 ‖ T2) ≤ α.df (S1, T1) + (1 − α).df (S2, T2)
where α is the fraction of times S1 is scheduled in S1 ‖ S2 in the long run,
assuming that the fraction has a limit in the long run.

Existential and Universal Abstraction. Classically, properties of systems
are studied by studying the properties of over-approximations and under-
approximations. In an analogous way, we prove that the distances between sys-
tems is bounded from above and below by distances between abstractions of the
systems. Given T = 〈S,Σ,E, s0〉, an existential (universal) abstraction of it is
a system whose states are disjoint subsets of S and an edge exists between two
classes iff there exists an edge between one pair (all pairs) of states in the classes.

Theorem 6. Consider a specification S and an implementation I. Let S∃ and
I∃ be existential abstractions, and S∀ and I∀ be universal abstractions of S and I
respectively. The correctness, coverage and robustness distances satisfy the three
following properties when f ∈ {LimAvg,Discλ}:
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(a) df
cor

(I∀, S∃) ≤ df
cor

(I, S) ≤ df
cor

(I∃, S∀)
(b) df

cov
(I∃, S∀) ≤ df

cov
(I, S) ≤ df

cov
(I∀, S∃)

(c) df
rob(I∀, S∃) ≤ df

rob(I, S) ≤ df
rob(I∃, S∀)

5 Robustness of Forward Error Correction Systems

Forward Error Correction systems (FECS) are a mechanism of error control for
data transmission on noisy channels. A very important characteristic of these
error correction systems is the maximum tolerable bit-error rate, which is the
maximum number of errors the system can tolerate while still being able to
successfully decode the message. We show that this property can be measured
as the drob distance between a system and an ideal system (specification).

Table 2. FECS’ robustness

T1 T2 drob(T1, T2)
None Ideal 1

Hamming Ideal 6/7
TMR Ideal 2/3

We will examine three forward error correction
systems: one with no error correction facilities,
the Hamming(7,4) code [14], and triple modu-
lar redundancy (TMR) that by design can toler-
ate no errors, one error in seven and three bits
respectively. We measure the robustness with re-
spect to an ideal system which can tolerate an un-
bounded number of errors. For the pseudo-code

for the three systems we are examining, the user is referred to the companion
report [3]. The only errors we allow are bit flips during transmission.

These systems were modelled and the values of drob of these systems measured
against the ideal system are summarized in Table 2. The robustness values mirror
the error tolerance values. In fact, each robustness value is equal to 1− e where
e is the corresponding error tolerance value.
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Abstract. Quantitative languages are an extension of boolean languages that as-
sign to each word a real number. Mean-payoff automata are finite automata with
numerical weights on transitions that assign to each infinite path the long-run av-
erage of the transition weights. When the mode of branching of the automaton is
deterministic, nondeterministic, or alternating, the corresponding class of quan-
titative languages is not robust as it is not closed under the pointwise operations
of max, min, sum, and numerical complement. Nondeterministic and alternating
mean-payoff automata are not decidable either, as the quantitative generalization
of the problems of universality and language inclusion is undecidable.

We introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the
four pointwise operations, and we show that all decision problems are decidable
for this class. Mean-payoff automaton expressions subsume deterministic mean-
payoff automata, and we show that they have expressive power incomparable to
nondeterministic and alternating mean-payoff automata. We also present for the
first time an algorithm to compute distance between two quantitative languages,
and in our case the quantitative languages are given as mean-payoff automaton
expressions.

1 Introduction

Quantitative languages L are a natural generalization of boolean languages that assign
to every word w a real number L(w) ∈ R instead of a boolean value. For instance,
the value of a word (or behavior) can be interpreted as the amount of some resource
(e.g., memory consumption, or power consumption) needed to produce it, or bound the
long-run average available use of the resource. Thus quantitative languages can specify
properties related to resource-constrained programs, and an implementation LA satis-
fies (or refines) a specification LB if LA(w) ≤ LB(w) for all words w. This notion of
refinement is a quantitative generalization of language inclusion, and it can be used to
check for example if for each behavior, the long-run average response time of the sys-
tem lies below the specified average response requirement. Hence it is crucial to identify
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some relevant class of quantitative languages for which this question is decidable. The
other classical decision questions such as emptiness, universality, and language equiva-
lence have also a natural quantitative extension. For example, the quantitative emptiness
problem asks, given a quantitative languageL and a threshold ν ∈ Q, whether there ex-
ists some word w such that L(w) ≥ ν, and the quantitative universality problem asks
whether L(w) ≥ ν for all words w. Note that universality is a special case of language
inclusion (where LA(w) = ν is constant).

Weighted mean-payoff automata present a nice framework to express such quantita-
tive properties [4]. A weighted mean-payoff automaton is a finite automaton with nu-
merical weights on transitions. The value of a word w is the maximal value of all runs
over w (if the automaton is nondeterministic, then there may be many runs over w),
and the value of a run r is the long-run average of the weights that appear along r.
A mean-payoff extension to alternating automata has been studied in [5]. Determinis-
tic, nondeterministic and alternating mean-payoff automata are three classes of mean-
payoff automata with increasing expressive power. However, none of these classes is
closed under the four pointwise operations of max, min (which generalize union and
intersection respectively), numerical complement1, and sum (see Table 1). Determinis-
tic mean-payoff automata are not closed under max, min, and sum [6]; nondeterministic
mean-payoff automata are not closed under min, sum and complement [6]; and alter-
nating mean-payoff automata are not closed under sum [5]. Hence none of the above
classes is robust with respect to closure properties.

Moreover, while deterministic mean-payoff automata enjoy decidability of all quan-
titative decision problems [4], the quantitative language-inclusion problem is undecid-
able for nondeterministic and alternating mean-payoff automata [10], and thus also all
decision problems are undecidable for alternating mean-payoff automata. Hence al-
though mean-payoff automata provide a nice framework to express quantitative proper-
ties, there is no known class which is both robust and decidable (see Table 1).

In this paper, we introduce a new class of quantitative languages that are defined
by mean-payoff automaton expressions. An expression is either a deterministic mean-
payoff automaton, or it is the max, min, or sum of two mean-payoff automaton ex-
pressions. Since deterministic mean-payoff automata are closed under complement,
mean-payoff automaton expressions form a robust class that is closed under max, min,
sum and complement. We show that (a) all decision problems (quantitative empti-
ness, universality, inclusion, and equivalence) are decidable for mean-payoff automaton
expressions; (b) mean-payoff automaton expressions are incomparable in expressive
power with both the nondeterministic and alternating mean-payoff automata (i.e., there
are quantitative languages expressible by mean-payoff automaton expressions that are
not expressible by alternating mean-payoff automata, and there are quantitative lan-
guages expressible by nondeterministic mean-payoff automata that are not expressible
by mean-payoff automata expressions); and (c) the properties of cut-point languages
(i.e., the sets of words with value above a certain threshold) for deterministic automata
carry over to mean-payoff automaton expressions, mainly the cut-point language is
ω-regular when the threshold is isolated (i.e., some neighborhood around the thresh-
old contains no word). Moreover, mean-payoff automaton expressions can express all

1 The numerical complement of a quantitative languages L is −L.
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Table 1. Closure properties and decidability of the various classes of mean-payoff automata.
Mean-payoff automaton expressions enjoy fully positive closure and decidability properties.

Closure properties Decision problems
max min sum comp. empt. univ. incl. equiv.

Deterministic × × × �2 � � � �
Nondeterministic � × × × � × × ×
Alternating � � × �2 × × × ×
Expressions � � � � � � � �

examples in the literature of quantitative properties using mean-payoff measure [1,6,7].
Along with the quantitative generalization of the classical decision problems, we also
consider the notion of distance between two quantitative languagesLA andLB , defined
as supw|LA(w)−LB(w)|. When quantitative language inclusion does not hold between
an implementation LA and a specification LB , the distance is a relevant information to
evaluate how far they are from each other, as we may accept implementations that over-
spend the resource but we would prefer the least expensive ones. We present the first
algorithm to compute the distance between two quantitative languages: we show that
the distance can be computed for mean-payoff automaton expressions.

Our approach to show decidability of mean-payoff automaton expressions relies on
the characterization and algorithmic computation of the value set {LE(w) | w ∈ Σω}
of an expression E, i.e. the set of all values of words according to E. The value set can
be viewed as an abstract representation of the quantitative language LE , and we show
that all decision problems, cut-point language and distance computation can be solved
efficiently once we have this set.

First, we present a precise characterization of the value set for quantitative languages
defined by mean-payoff automaton expressions. In particular, we show that it is not
sufficient to construct the convex hull conv(SE) of the set SE of the values of simple
cycles in the mean-payoff automata occurring in E, but we need essentially to apply
an operator Fmin(·) which given a set Z ⊆ Rn computes the set of points y ∈ Rn

that can be obtained by taking pointwise minimum of each coordinate of points of a set
X ⊆ Z . We show that while we need to compute the set VE = Fmin(conv(SE)) to
obtain the value set, and while this set is always convex, it is not always the case that
Fmin(conv(SE)) = conv(Fmin(SE)) (which would immediately give an algorithm to
compute VE). This may appear counter-intuitive because the equality holds in R2 but
we show that the equality does not hold in R3 (Example 2).

Second, we provide algorithmic solutions to compute Fmin(conv(S)), for a finite set
S. We first present a constructive procedure that given S constructs a finite set of points
S′ such that conv(S′) = Fmin(conv(S)). The explicit construction presents interesting
properties about the set Fmin(conv(S)), however the procedure itself is computationally
expensive. We then present an elegant and geometric construction of Fmin(conv(S)) as
a set of linear constraints. The computation of Fmin(conv(S)) is a new problem in

2 Closure under complementation holds because LimInfAvg-automata and LimSupAvg-
automata are dual. It would not hold if only LimInfAvg-automata (or only LimSupAvg-
automata) were allowed.
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computational geometry and the solutions we present could be of independent interest.
Using the algorithm to compute Fmin(conv(S)), we show that all decision problems for
mean-payoff automaton expressions are decidable. Due to lack of space, most proofs
are given in the fuller version [3].

Related works. Quantitative languages have been first studied over finite words in the
context of probabilistic automata [17] and weighted automata [18]. Several works have
generalized the theory of weighted automata to infinite words (see [14,12,16,2] and [13]
for a survey), but none of those have considered mean-payoff conditions. Examples
where the mean-payoff measure has been used to specify long-run behaviours of sys-
tems can be found in game theory [15,20] and in Markov decision processes [8]. The
mean-payoff automata as a specification language have been investigated in [4,6,5],
and extended in [1] to construct a new class of (non-quantitative) languages of infi-
nite words (the multi-threshold mean-payoff languages), obtained by applying a query
to a mean-payoff language, and for which emptiness is decidable. It turns out that a
richer language of queries can be expressed using mean-payoff automaton expressions
(together with decidability of the emptiness problem). A detailed comparison with the
results of [1] is given in Section 5. Moreover, we provide algorithmic solutions to the
quantitative language inclusion and equivalence problems and to distance computation
which have no counterpart for non-quantitative languages. Related notions of metrics
have been addressed in stochastic games [9] and probabilistic processes [11,19].

2 Mean-Payoff Automaton Expressions

Quantitative languages. A quantitative language L over a finite alphabet Σ is a func-
tion L : Σω → R. Given two quantitative languages L1 and L2 over Σ, we denote by
max(L1, L2) (resp., min(L1, L2), sum(L1, L2) and −L1) the quantitative language
that assigns max(L1(w), L2(w)) (resp., min(L1(w), L2(w)), L1(w) + L2(w), and
−L1(w)) to each word w ∈ Σω. The quantitative language −L is called the comple-
ment of L. The max and min operators for quantitative languages correspond respec-
tively to the least upper bound and greatest lower bound for the pointwise order 0 such
that L1 0 L2 if L1(w) ≤ L2(w) for all w ∈ Σω. Thus, they generalize respectively the
union and intersection operators for classical boolean languages.

Weighted automata. A Q-weighted automaton is a tuple A = 〈Q, qI , Σ, δ,wt〉, where

– Q is a finite set of states, qI ∈ Q is the initial state, and Σ is a finite alphabet;
– δ ⊆ Q×Σ ×Q is a finite set of labelled transitions. We assume that δ is total, i.e.,

for all q ∈ Q and σ ∈ Σ, there exists q′ such that (q, σ, q′) ∈ δ;
– wt : δ → Q is a weight function, where Q is the set of rational numbers. We assume

that rational numbers are encoded as pairs of integers in binary.

We say that A is deterministic if for all q ∈ Q and σ ∈ Σ, there exists (q, σ, q′) ∈ δ for
exactly one q′ ∈ Q. We sometimes call automata nondeterministic to emphasize that
they are not necessarily deterministic.

Words and runs. A word w ∈ Σω is an infinite sequence of letters from Σ. A lasso-
word w in Σω is an ultimately periodic word of the form w1 · wω

2 , where w1 ∈ Σ∗
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is a finite prefix, and w2 ∈ Σ+ is a finite and nonempty word. A run of A over an
infinite word w = σ1σ2 . . . is an infinite sequence r = q0σ1q1σ2 . . . of states and
letters such that (i) q0 = qI , and (ii) (qi, σi+1, qi+1) ∈ δ for all i ≥ 0. We denote by
wt(r) = v0v1 . . . the sequence of weights that occur in r where vi = wt(qi, σi+1, qi+1)
for all i ≥ 0.

Quantitative language of mean-payoff automata. The mean-payoff value (or limit-
average) of a sequence v̄ = v0v1 . . . of real numbers is either

LimInfAvg(v̄) = lim inf
n→∞

1
n
·

n−1∑
i=0

vi, or LimSupAvg(v̄) = lim sup
n→∞

1
n
·

n−1∑
i=0

vi.

Note that if we delete or insert finitely many values in an infinite sequence of num-
bers, its limit-averages do not change, and if the sequence is ultimately periodic, then
the LimInfAvg and LimSupAvg values coincide (and correspond to the mean of the
weights on the periodic part of the sequence). However in general the LimInfAvg and
LimSupAvg values do not coincide.

For Val ∈ {LimInfAvg, LimSupAvg}, the quantitative language LA of A is defined
by LA(w) = sup{Val(wt(r)) | r is a run of A over w} for all w ∈ Σω. Accordingly,
the automatonA and its quantitative languageLA are called LimInfAvg or LimSupAvg.
Note that for deterministic automata, we have LA(w) = Val(wt(r)) where r is the
unique run of A over w.

We omit the weight function wt when it is clear from the context, and we write
LimAvg when the value according to LimInfAvg and LimSupAvg coincide (e.g., for
runs with a lasso shape).

Decision problems and distance. We consider the following classical decision prob-
lems for quantitative languages, assuming an effective presentation of quantitative lan-
guages (such as mean-payoff automata, or automaton expressions defined later). Given
a quantitative language L and a threshold ν ∈ Q, the quantitative emptiness problem
asks whether there exists a word w ∈ Σω such that L(w) ≥ ν, and the quantitative
universality problem asks whether L(w) ≥ ν for all words w ∈ Σω.

Given two quantitative languages L1 and L2, the quantitative language-inclusion
problem asks whether L1(w) ≤ L2(w) for all words w ∈ Σω, and the quantitative
language-equivalence problem asks whether L1(w) = L2(w) for all words w ∈ Σω.
Note that universality is a special case of language inclusion where L1 is constant.
Finally, the distance betweenL1 and L2 isDsup(L1, L2) = supw∈Σω |L1(w)−L2(w)|.
It measures how close is an implementation L1 as compared to a specification L2.

It is known that quantitative emptiness is decidable for nondeterministic mean-payoff
automata [4], while decidability was open for alternating mean-payoff automata, and
for the quantitative language-inclusion problem of nondeterministic mean-payoff au-
tomata. From recent undecidability results on games with imperfect information and
mean-payoff objective [10] we derive that these problems are undecidable (Theorem 5).

Robust quantitative languages. A class Q of quantitative languages is robust if the
class is closed under max,min, sum and complementation operations. The closure
properties allow quantitative languages from a robust class to be described compo-
sitionally. While nondeterministic LimInfAvg- and LimSupAvg-automata are closed
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under the max operation, they are not closed under min and complement [6]. Alter-
nating LimInfAvg- and LimSupAvg-automata3 are closed under max and min, but are
not closed under complementation and sum [5]. We define a robust class of quantitative
languages for mean-payoff automata which is closed under max, min, sum, and com-
plement, and which can express all natural examples of quantitative languages defined
using the mean-payoff measure [1,6,7].

Mean-payoff automaton expressions. A mean-payoff automaton expression E is ob-
tained by the following grammar rule:

E ::= A | max(E,E) | min(E,E) | sum(E,E)

where A is a deterministic LimInfAvg- or LimSupAvg-automaton. The quantitative lan-
guage LE of a mean-payoff automaton expression E is LE = LA if E = A is a
deterministic automaton, and LE = op(LE1 , LE2) if E = op(E1, E2) for op ∈
{max,min, sum}. By definition, the class of mean-payoff automaton expression is
closed under max, min and sum. Closure under complement follows from the fact that
the complement of max(E1, E2) is min(−E1,−E2), the complement of min(E1, E2)
is max(−E1,−E2), the complement of sum(E1, E2) is sum(−E1,−E2), and the
complement of a deterministic LimInfAvg-automaton can be defined by the same au-
tomaton with opposite weights and interpreted as a LimSupAvg-automaton, and vice
versa, since − lim sup(v0, v1, . . . ) = lim inf(−v0,−v1, . . . ). Note that arbitrary linear
combinations of deterministic mean-payoff automaton expressions (expressions such
as c1E1 + c2E2 where c1, c2 ∈ Q are rational constants) can be obtained for free since
scaling the weights of a mean-payoff automaton by a positive factor |c| results in a
quantitative language scaled by the same factor.

3 The Vector Set of Mean-Payoff Automaton Expressions

Given a mean-payoff automaton expression E, let A1, . . . , An be the determin-
istic weighted automata occurring in E. The vector set of E is the set VE =
{〈LA1(w), . . . , LAn(w)〉 ∈ Rn | w ∈ Σω} of tuples of values of words according
to each automaton Ai. In this section, we characterize the vector set of mean-payoff
automaton expressions, and in Section 4 we give an algorithmic procedure to compute
this set. This will be useful to establish the decidability of all decision problems, and
to compute the distance between mean-payoff automaton expressions. Given a vector
v ∈ Rn, we denote by ‖v‖ = maxi |vi| the ∞-norm of v.

The synchronized product of A1, . . . , An such that Ai = 〈Qi, q
i
I , Σ, δi,wti〉 is the

Qn-weighted automatonAE = A1×· · ·×An = 〈Q1×· · ·×Qn, (q1
I , . . . , q

n
I ), Σ, δ,wt〉

such that t = ((q1, . . . , qn), σ, (q′1, . . . , q′n)) ∈ δ if ti := (qi, σ, q
′
i) ∈ δi for all

1 ≤ i ≤ n, and wt(t) = (wt1(t1), . . . ,wtn(tn)). In the sequel, we assume that all Ai’s
are deterministic LimInfAvg-automata (hence, AE is deterministic) and that the under-
lying graph of the automatonAE has only one strongly connected component (scc). We
show later how to obtain the vector set without these restrictions.

3 See [5] for the definition of alternating LimInfAvg- and LimSupAvg-automata that generalize
nondeterministic automata.



Mean-Payoff Automaton Expressions 275

q1

A1

q2

A2

a, 1
b, 0

a, 0
b, 1

(0, 0)

(0, 1)

(1, 0)

H = conv(SE)

Fmin(H)

Fig. 1. The vector set of E = max(A1, A2) is Fmin(conv(SE)) � conv(SE)

For each (simple) cycle ρ in AE , let the vector value of ρ be the mean of the tuples
labelling the edges of ρ, denoted Avg(ρ). To each simple cycle ρ in AE corresponds a
(not necessarily simple) cycle in eachAi, and the vector value (v1, . . . , vn) of ρ contains
the mean value vi of ρ in each Ai. We denote by SE the (finite) set of vector values of
simple cycles in AE . Let conv(SE) be the convex hull of SE .

Lemma 1. Let E be a mean-payoff automaton expression. The set conv(SE) is the
closure of the set {LE(w) | w is a lasso-word}.

The vector set of E contains more values than the convex hull conv(SE), as shown by
the following example.

Example 1. Consider the expression E = max(A1, A2) where A1 and A2 are deter-
ministic LimInfAvg-automata (see Fig. 1). The product AE = A1 × A2 has two sim-
ple cycles with respective vector values (1, 0) (on letter ‘a’) and (0, 1) (on letter ‘b’).
The set H = conv(SE) is the solid segment on Fig. 1 and contains the vector values
of all lasso-words. However, other vector values can be obtained: consider the word
w = an1bn2an3bn4 . . . where n1 = 1 and ni+1 = (n1 + · · ·+ ni)2 for all i ≥ 1. It is
easy to see that the value of w according to A1 is 0 because the average number of a’s in
the prefixes an1bn2 . . . anibni+1 for i odd is smaller than n1+···+ni

n1+···+ni+ni+1
= 1

1+n1+···+ni

which tends to 0 when i→∞. Since A1 is a LimInfAvg-automaton, the value of w is 0
in A1, and by a symmetric argument the value of w is also 0 in A2. Therefore the vector
(0, 0) is in the vector set of E. Note that z = (z1, z2) = (0, 0) is the pointwise mini-
mum of x = (x1, x2) = (1, 0) and y = (y1, y2) = (0, 1), i.e. z = fmin(x, y) where
z1 = min(x1, y1) and z2 = min(y1, y2). In fact, the vector set is the whole triangular
region in Fig. 1, i.e. VE = {fmin(x, y) | x, y ∈ conv(SE)}. 
�

We generalize fmin to finite sets of points P ⊆ Rn in n dimensions as follows:
fmin(P ) ∈ Rn is the point p = (p1, p2, . . . , pn) such that pi is the minimum ith

coordinate of the points in P , for 1 ≤ i ≤ n. For arbitrary S ⊆ Rn, define
Fmin(S) = {fmin(P ) | P is a finite subset of S}. As illustrated in Example 1, the next
lemma shows that the vector set VE is equal to Fmin(conv(SE)).

Lemma 2. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and such that AE has only one strongly connected component.
Then, the vector set of E is VE = Fmin(conv(SE)).
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For a general mean-payoff automaton expression E (with both deterministic
LimInfAvg- and LimSupAvg automata, and with multi-scc underlying graph), we can
use the result of Lemma 2 as follows. We replace each LimSupAvg automaton Ai

occurring in E by the LimInfAvg automaton A′
i obtained from Ai by replacing ev-

ery weight wt by −wt. The duality of lim inf and lim sup yields LA′
i

= −LAi . In
each strongly connected component C of the underlying graph of AE , we compute
VC = Fmin(conv(SC)) (where SC is the set of vector values of the simple cycles in C)
and apply the transformation xi → −xi on every coordinate i where the automaton Ai

was originally a LimSupAvg automaton. The union of the sets
⋃

C VC where C ranges
over the strongly connected components of AE gives the vector set of E.

Theorem 1. Let E be a mean-payoff automaton expression built from deterministic
LimInfAvg-automata, and let Z be the set of strongly connected components in AE .
For a strongly connected component C let SC denote the set of vector values of the
simple cycles in C. The vector set of E is VE =

⋃
C∈Z Fmin(conv(SC)).

4 Computation of Fmin(conv(S)) for a Finite Set S

It follows from Theorem 1 that the vector set VE of a mean-payoff automaton expres-
sion E can be obtained as a union of sets Fmin(conv(S)), where S ⊆ Rn is a fi-
nite set. However, the set conv(S) being in general infinite, it is not immediate that
Fmin(conv(S)) is computable. In this section we consider the problem of computing
Fmin(conv(S)) for a finite set S. In subsection 4.1 we present an explicit construction
and in subsection 4.2 we give a geometric construction of the set as a set of linear
constraints. We first present some properties of the set Fmin(conv(S)).

Lemma 3. If X is a convex set, then Fmin(X) is convex.

By Lemma 3, the set Fmin(conv(S)) is convex, and since Fmin is a monotone operator
and S ⊆ conv(S), we have Fmin(S) ⊆ Fmin(conv(S)) and thus conv(Fmin(S)) ⊆
Fmin(conv(S)). The following proposition states that in two dimensions the above sets
coincide.

Proposition 1. Let S ⊆ R2 be a finite set. Then, conv(Fmin(S)) = Fmin(conv(S)).

We show in the following example that in three dimensions the above proposition does
not hold, i.e., we show that Fmin(conv(SE)) �= conv(Fmin(SE)) in R3.

Example 2. We show that in three dimension there is a finite set S such that
Fmin(conv(S)) �⊆ conv(Fmin(S)). Let S = {q, r, s} with q = (0, 1, 0), r =
(−1,−1, 1), and s = (1, 1, 1). Then fmin(r, s) = r, fmin(q, r, s) = fmin(q, r) =
t = (−1,−1, 0), and fmin(q, s) = q. Therefore Fmin(S) = {q, r, s, t}. Consider
p = (r + s)/2 = (0, 0, 1). We have p ∈ conv(S) and fmin(p, q) = (0, 0, 0).
Hence (0, 0, 0) ∈ Fmin(conv(S)). We now show that (0, 0, 0) does not belong to
conv(Fmin(S)). Consider u = αq ·q+αr ·r+αs ·s+αt·t such that u in conv(Fmin(S)).
Since the third coordinate is non-negative for q, r, s, and t, it follows that if αr > 0 or
αs > 0, then the third coordinate of u is positive. If αs = 0 and αr = 0, then we have
two cases: (a) if αt > 0, then the first coordinate of u is negative; and (b) if αt = 0,
then the second coordinate of u is 1. It follows (0, 0, 0) is not in conv(Fmin(S)). 
�
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4.1 Explicit Construction

Example 2 shows that in general Fmin(conv(S)) �⊆ conv(Fmin(S)). In this section we
present an explicit construction that given a finite set S constructs a finite set S′ such
that (a) S ⊆ S′ ⊆ conv(S) and (b) Fmin(conv(S)) ⊆ conv(Fmin(S′)). It would follow
that Fmin(conv(S)) = conv(Fmin(S′)). Since convex hull of a finite set is computable
and Fmin(S′) is finite, this would give us an algorithm to compute Fmin(conv(S)). For
simplicity, for the rest of the section we write F for Fmin and f for fmin (i.e., we drop
the min from subscript). Recall that F (S) = {f(P ) | P finite subset of S} and let
Fi(S) = {f(P ) | P finite subset of S and |P | ≤ i}. We consider S ⊆ Rn.

Lemma 4. Let S ⊆ Rn. Then, F (S) = Fn(S) and Fn(S) ⊆ Fn−1
2 (S).

Iteration of a construction γ. We will present a construction γ with the following
properties: input to the construction is a finite set Y of points, and the output γ(Y )
satisfies the following properties

1. (Condition C1). γ(Y ) is finite and subset of conv(Y ).
2. (Condition C2). F2(conv(Y )) ⊆ conv(F (γ(Y ))).

Before presenting the construction γ we first show how to iterate the construction to
obtain the following result: given a finite set of points X we construct a finite set of
points X ′ such that F (conv(X)) = conv(F (X ′)).
Iterating γ. Consider a finite set of points X , and let X0 = X and X1 = γ(X0). Then

conv(X1) ⊆ conv(conv(X0)) (since by Condition C1 we have X1 ⊆ conv(X0))

and hence conv(X1) ⊆ conv(X0); and

F2(conv(X0)) ⊆ conv(F (X1)) (by Condition C2)

For i ≥ 2, let Xi = γ(Xi−1), and then by iteration we obtain that for Xn−1 we have

(1) conv(Xn−1) ⊆ conv(X0) (2) Fn−1
2 (conv(X0)) ⊆ conv(F (Xn−1))

From (1) and (2) above, along with the aid of Lemma 4 and Lemma 3, we show the
following properties:

(A) F (conv(X0)) = Fn(conv(X0)) ⊆ Fn−1
2 (conv(X0)) ⊆ conv(F (Xn−1))

(B) conv(F (Xn−1)) ⊆ conv(F (conv(Xn−1))) ⊆ F (conv(X0))

By (A) and (B) above we have F (conv(X0)) = conv(F (Xn−1)). Thus given the fi-
nite set X , we have the finite set Xn−1 such that (a) X ⊆ Xn−1 ⊆ conv(X) and
(b) F (conv(X)) = conv(F (Xn−1)). We now present the construction γ to complete
the result.

The construction γ. Given a finite set Y of points Y ′ = γ(Y ) is obtained by adding
points to Y in the following way:
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– For all 1 ≤ k ≤ n, we consider all k-dimensional coordinate planes Π supported
by a point in Y ;

– Intersect each coordinate planeΠ with conv(Y ) and the result is a convex polytope
YΠ ;

– We add the corners (or extreme points) of each polytope YΠ to Y .

The proof that the above construction satisfies condition C1 and C2 is given in the fuller
version [3], and thus we have the following result.

Theorem 2. Given a finite set S ⊆ Rn such that |S| = m, the following assertion
holds: a finite set S′ with |S′| ≤ m2n · 2n2+n can be computed in mO(n·2n) · 2O(n3)

time such that (a) S ⊆ S′ ⊆ conv(S) and (b) Fmin(conv(S)) = conv(Fmin(S′)).

4.2 Linear Constraint Construction

In the previous section we presented an explicit construction of a finite set of points
whose convex hull gives us Fmin(conv(S)). The explicit construction shows interest-
ing properties of the set Fmin(conv(S)), however, the construction is inefficient com-
putationally. In this subsection we present an efficient geometric construction for the
computation of Fmin(conv(S)) for a finite set S. Instead of constructing a finite set
S′ ⊆ conv(S) such that conv(S′) = Fmin(conv(S)), we represent Fmin(conv(S)) as a
finite set of linear constraints.

Consider the positive orthant anchored at the origin in Rn, that is, the set of points
with non-negative coordinates: Rn

+ = {(z1, z2, . . . , zn) | zi ≥ 0, ∀i}. Similarly, the
negative orthant is the set of points with non-positive coordinates, denoted as Rn

− =
−Rn

+. Using vector addition, we write y + Rn
+ for the positive orthant anchored at y.

Similarly, we write x + Rn
− = x − Rn

+ for the negative orthant anchored at x. The
positive and negative orthants satisfy the following simple duality relation: x ∈ y+Rn

+

iff y ∈ x− Rn
+.

Note that Rn
+ is an n-dimensional convex polyhedron. For each 1 ≤ j ≤ n, we

consider the (n− 1)-dimensional face Lj spanned by the coordinate axes except the jth

one, that is, Lj = {(z1, z2, . . . , zn) ∈ Rn
+ | zj = 0}.

We say that y + Rn
+ is supported by X if (y + Lj) ∩ X �= ∅ for every 1 ≤ j ≤ n.

Assuming y + Rn
+ is supported by X , we can construct a set Y ⊆ X by collecting

one point per (n − 1)-dimensional face of the orthant and get y = f(Y ). It is also
allowed that two faces contribute the same point to Y . Similarly, if y = f(Y ) for a
subset Y ⊆ X , then the positive orthant anchored at y is supported by X . Hence, we
get the following lemma.

Lemma 5 (Orthant Lemma). y ∈ Fmin(X) iff y + Rn
+ is supported by X .

Construction. We use the Orthant Lemma to construct Fmin(X). We begin by describ-
ing the set of points y for which the jth face of the positive orthant anchored at y has
a non-empty intersection with X . Define Fj = X − Lj , the set of points of the form
x− z, where x ∈ X and z ∈ Lj .

Lemma 6 (Face Lemma). (y + Lj) ∩ X �= ∅ iff y ∈ Fj .
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Proof. Let x ∈ X be a point in the intersection, that is, x ∈ y + Lj . Using the duality
relation for the (n− 1)-dimensional orthant, we get y ∈ x− Lj . By definition, x− Lj

is a subset of X − Lj , and hence y ∈ Fj . 
�

It is now easy to describe the set defined in our problem statement.

Lemma 7 (Characterization). Fmin(X) =
⋂n

j=1 Fj .

Proof. By the Orthant Lemma, y ∈ Fmin(X) iff y + Rn
+ is supported by X . Equiva-

lently, (y + Lj) ∩ X �= ∅ for all 1 ≤ j ≤ n. By the Face Lemma, this is equivalent to
y belonging to the common intersection of the sets Fj = X − Lj . 
�

Algorithm for computation of Fmin(conv(S)). Following the construction, we get an
algorithm that computes Fmin(conv(S)) for a finite set S of points in Rn. Let |S| = m.
We first represent X = conv(S) as intersection of half-spaces: we require at most mn

half-spaces (linear constraints). It follows that Fj = X − Lj can be expressed as mn

linear constraints, and hence Fmin(X) =
⋂n

j=1 Fj can be expressed as n · mn linear
constraints. This gives us the following result.

Theorem 3. Given a finite set S of m points in Rn, we can construct in O(n ·mn) time
n ·mn linear constraints that represent Fmin(conv(S)).

5 Mean-Payoff Automaton Expressions Are Decidable

Several problems on quantitative languages can be solved for the class of mean-payoff
automaton expressions using the vector set. The decision problems of quantitative
emptiness and universality, and quantitative language inclusion and equivalence are all
decidable, as well as questions related to cut-point languages, and computing distance
between mean-payoff languages.

Decision problems and distance. From the vector set VE = {〈LA1(w), . . . , LAn(w)〉 ∈
Rn | w ∈ Σω}, we can compute the value set LE(Σω) = {LE(w) | w ∈ Σω}
of values of words according to the quantitative language of E as follows. The set
LE(Σω) is obtained by successive application of min-, max- and sum-projections
pmin

ij , pmax
ij , psum

ij : Rk → Rk−1 where i < j ≤ k, defined by

pmin
ij ((x1, . . . , xk)) = (x1, . . . , xi−1,min(xi, xj), xi+1, . . . , xj−1, xj+1, . . . xk),
psum

ij ((x1, . . . , xk)) = (x1, . . . , xi−1, xi + xj , xi+1, . . . , xj−1, xj+1, . . . xk),

and analogously for pmax
ij . For example, pmax

12 (pmin
23 (VE)) gives the set LE(Σω) of word

values of the mean-payoff automaton expression E = max(A1,min(A2, A3)).
Assuming a representation of the polytopes of VE as a boolean combination ϕE of

linear constraints, the projection pmin
ij (VE) is represented by the formula

ψ = (∃xj : ϕE ∧ xi ≤ xj) ∨ (∃xi : ϕE ∧ xj ≤ xi)[xj ← xi]

where [x ← e] is a substitution that replaces every occurrence of x by the expression
e. Since linear constraints over the reals admit effective elimination of existential quan-
tification, the formula ψ can be transformed into an equivalent boolean combination
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of linear constraints without existential quantification. The same applies to max- and
sum-projections.

Successive applications of min-, max- and sum-projections (following the structure
of the mean-payoff automaton expression E) gives the value set LE(Σω) ⊆ R as a
boolean combination of linear constraints, hence it is a union of intervals. From this set,
it is easy to decide the quantitative emptiness problem and the quantitative universality
problem: there exists a word w ∈ Σω such that LE(w) ≥ ν if and only if LE(Σω) ∩
[ν,+∞[ �= ∅, and LE(w) ≥ ν for all words w ∈ Σω if and only if LE(Σω)∩ ] −
∞, ν[ = ∅.

In the same way, we can decide the quantitative language inclusion problem “is
LE(w) ≤ LF (w) for all words w ∈ Σω ?” by a reduction to the universality problem
for the expression F −E and threshold 0 since mean-payoff automaton expressions are
closed under sum and complement. The quantitative language equivalence problem is
then obviously also decidable.

Finally, the distance between the quantitative languages ofE and F can be computed
as the largest number (in absolute value) in the value set of F − E. As a corollary, this
distance is always a rational number.

Comparison with [1]. The work in [1] considers deterministic mean-payoff automata
with multiple payoffs. The weight function in such an automaton is of the form wt :
δ → Qd. The value of a finite sequence (vi)1≤i≤n (where vi ∈ Qd) is the mean of the
tuples vi, that is a d-dimensional vector Avgn = 1

n ·
∑n−1

i=0 vi. The “value” associated
to an infinite run (and thus also to the corresponding word, since the automaton is
deterministic) is the set Acc ⊆ Rd of accumulation points of the sequence (Avgn)n≥1.

In [1], a query language on the set of accumulation points is used to define
multi-threshold mean-payoff languages. For 1 ≤ i ≤ n, let pi : Rn → R be the
usual projection along the ith coordinate. A query is a boolean combination of atomic
threshold conditions of the form min(pi(Acc)) ∼ ν or max(pi(Acc)) ∼ ν where
∼∈ {<,≤,≥, >} and ν ∈ Q. A word is accepted if the set of accumulation points
of its (unique) run satisfies the query. Emptiness is decidable for such multi-threshold
mean-payoff languages, by an argument based on the computation of the convex hull
of the vector values of the simple cycles in the automaton [1] (see also Lemma 1). We
have shown that this convex hull conv(SE) is not sufficient to analyze quantitative lan-
guages of mean-payoff automaton expressions. It turns out that a richer query language
can also be defined using our construction of Fmin(conv(SE)).

In our setting, we can view a d-dimensional mean-payoff automaton A as a product
PA of 2d copies Ai

t of A (where 1 ≤ i ≤ d and t ∈ {LimInfAvg, LimSupAvg}), where
Ai

t assigns to each transition the ith coordinate of the payoff vector in A, and the au-
tomaton is interpreted as a t-automaton. Intuitively, the set Acc of accumulation points
of a word w satisfies min(pi(Acc)) ∼ ν (resp. max(pi(Acc) ∼ ν) if and only if the
value of w according to the automaton Ai

t for t = LimInfAvg (resp. t = LimSupAvg) is
∼ ν. Therefore, atomic threshold conditions can be encoded as threshold conditions on
single variables of the vector set for PA. Therefore, the vector set computed in Section 4
allows to decide the emptiness problem for multi-threshold mean-payoff languages, by
checking emptiness of the intersection of the vector set with the constraint correspond-
ing to the query.
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Furthermore, we can solve more expressive queries in our framework, namely where
atomic conditions are linear constraints on LimInfAvg- and LimSupAvg-values. For ex-
ample, the constraint LimInfAvg(wt1) + LimSupAvg(wt2) ∼ ν is simply encoded as
xk + xl ∼ ν where k, l are the indices corresponding to A1

LimInfAvg and A2
LimSupAvg re-

spectively. Note that the trick of extending the dimension of the d-payoff vector with,
say wtd+1 = wt1+wt2, is not equivalent because Lim

{
Sup
Inf

}
Avg(wt1)±Lim

{
Sup
Inf

}
Avg(wt2)

is not equal to Lim
{

Sup
Inf

}
Avg(wt1 ± wt2) in general (no matter the choice of

{
Sup
Inf

}
and ±).

Hence, in the context of non-quantitative languages our results also provide a richer
query language for the deterministic mean-payoff automata with multiple payoffs.

Complexity. All problems studied in this section can be solved easily (in polynomial
time) once the value set is constructed, which can be done in quadruple exponential
time. The quadruple exponential blow-up is caused by (a) the synchronized product
construction for E, (b) the computation of the vector values of all simple cycles in AE ,
(c) the construction of the vector set Fmin(conv(SE)), and (d) the successive projec-
tions of the vector set to obtain the value set. Therefore, all the above problems can be
solved in 4EXPTIME.

Theorem 4. For the class of mean-payoff automaton expressions, the quantitative
emptiness, universality, language inclusion, and equivalence problems, as well as dis-
tance computation can be solved in 4EXPTIME.

Theorem 4 is in sharp contrast with the nondeterministic and alternating mean-payoff
automata for which language inclusion is undecidable (see also Table 1). The following
theorem presents the undecidability result that is derived from the results of [10].

Theorem 5. The quantitative universality, language inclusion, and language equiva-
lence problems are undecidable for nondeterministic mean-payoff automata; and the
quantitative emptiness, universality, language inclusion, and language equivalence
problems are undecidable for alternating mean-payoff automata.

6 Expressive Power and Cut-Point Languages

We study the expressive power of mean-payoff automaton expressions (i) according to
the class of quantitative languages that they define, and (ii) according to their cut-point
languages.

Expressive power comparison. We compare the expressive power of mean-payoff
automaton expressions with nondeterministic and alternating mean-payoff automata.
The results of [6] show that there exist deterministic mean-payoff automata A1 and
A2 such that min(A1, A2) cannot be expressed by nondeterministic mean-payoff au-
tomata. The results of [5] shows that there exists deterministic mean-payoff automata
A1 and A2 such that sum(A1, A2) cannot be expressed by alternating mean-payoff
automata. It follows that there exist languages expressible by mean-payoff automaton
expression that cannot be expressed by nondeterministic and alternating mean-payoff
automata. In Theorem 6 we show the converse, that is, we show that there exist lan-
guages expressible by nondeterministic mean-payoff automata that cannot be expressed
by mean-payoff automaton expression. It may be noted that the subclass of mean-payoff
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automaton expressions that only uses min and max operators (and no sum operator) is
a strict subclass of alternating mean-payoff automata, and when only the max operator
is used we get a strict subclass of the nondeterministic mean-payoff automata.

Theorem 6. Mean-payoff automaton expressions are incomparable in expressive
power with nondeterministic and alternating mean-payoff automata: (a) there exists
a quantitative language that is expressible by mean-payoff automaton expressions, but
cannot be expressed by alternating mean-payoff automata; and (b) there exists a quan-
titative language that is expressible by a nondeterministic mean-payoff automaton, but
cannot be expressed by a mean-payoff automaton expression.

Cut-point languages. Let L be a quantitative language over Σ. Given a threshold η ∈
R, the cut-point language defined by (L, η) is the language (i.e., the set of words)
L≥η = {w ∈ Σω | L(w) ≥ η}. It is known for deterministic mean-payoff automata
that the cut-point language may not be ω-regular, while it is ω-regular if the threshold η
is isolated, i.e. if there exists ε > 0 such that |L(w)− η| > ε for all words w ∈ Σω [6].

We present the following results about cut-point languages of mean-payoff automa-
ton expressions. First, we note that it is decidable whether a rational threshold η is
an isolated cut-point of a mean-payoff automaton expression, using the value set (it
suffices to check that η is not in the value set since this set is closed). Second, iso-
lated cut-point languages of mean-payoff automaton expressions are robust as they re-
main unchanged under sufficiently small perturbations of the transition weights. This
result follows from a more general robustness property of weighted automata [6] that
extends to mean-payoff automaton expressions: if the weights in the automata occur-
ring in E are changed by at most ε, then the value of every word changes by at most
max(k, 1) · ε where k is the number of occurrences of the sum operator in E. Therefore
Dsup(LE , LF ε) → 0 when ε→ 0 where F ε is any mean-payoff automaton expression
obtained from E by changing the weights by at most ε. As a consequence, isolated cut-
point languages of mean-payoff automaton expressions are robust. Third, the isolated
cut-point language of mean-payoff automaton expressions is ω-regular. To see this, note
that every strongly connected component of the product automatonAE contributes with
a closed convex set to the value set of E. Since the max-, min- and sum-projections
are continuous functions, they preserve connectedness of sets and therefore each scc C
contributes with an interval [mC ,MC ] to the value set of E. An isolated cut-point η
cannot belong to any of these intervals, and therefore we obtain a Büchi-automaton for
the cut-point language by declaring to be accepting the states of the product automaton
AE that belong to an scc C such that mC > η. Hence, we get the following result.

Theorem 7. Let L be the quantitative language of a mean-payoff automaton expres-
sion. If η is an isolated cut-point of L, then the cut-point language L≥η is ω-regular.

7 Conclusion and Future Works

We have presented a new class of quantitative languages, the mean-payoff automaton
expressions which are both robust and decidable (see Table 1), and for which the dis-
tance between quantitative languages can be computed. The decidability results come
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with a high worst-case complexity, and it is a natural question for future works to either
improve the algorithmic solution, or present a matching lower bound. Another question
of interest is to find a robust and decidable class of quantitative languages based on the
discounted sum measure [4].
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Abstract. Graph games of infinite length provide a natural model for open re-
active systems: one player (Eve) represents the controller and the other player
(Adam) represents the environment. The evolution of the system depends on the
decisions of both players. The specification for the system is usually given as an
ω-regular language L over paths and Eve’s goal is to ensure that the play belongs
to L irrespective of Adam’s behaviour.

The classical notion of winning strategies fails to capture several interesting
scenarios. For example, strong fairness (Streett) conditions are specified by a
number of request-grant pairs and require every pair that is requested infinitely
often to be granted infinitely often: Eve might win just by preventing Adam from
making any new request, but a “better” strategy would allow Adam to make as
many requests as possible and still ensure fairness.

To address such questions, we introduce the notion of obliging games, where
Eve has to ensure a strong condition Φ, while always allowing Adam to satisfy
a weak condition Ψ . We present a linear time reduction of obliging games with
two Muller conditions Φ and Ψ to classical Muller games. We consider obliging
Streett games and show they are co-NP complete, and show a natural quantita-
tive optimisation problem for obliging Streett games is in FNP. We also show
how obliging games can provide new and interesting semantics for multi-player
games.

1 Introduction

Games played on graphs provide a natural theoretical model to study problems in verifi-
cation, such as synthesis of reactive systems [PR89, RW87], synthesis of systems from
specifications [BL69, Chu62], and μ-calculus model-checking [Koz83, Sti01].

The vertices of the graph represent the states of the system, the edges represent tran-
sitions, the paths represent behaviours, and the players (Eve and the opponent Adam)
represent the controller for the system and its environment, respectively. The goal of
the controller is to satisfy a specification (desired set of behaviours) irrespective of the
way the environment behaves: the synthesis of such a controller corresponds to the
construction of a winning strategy in the graph game.

The class of ω-regular objectives provide a robust specification language to express
properties that arise in verification and synthesis of reactive systems [Tho97]. Muller

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 284–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and parity specifications are two canonical ways to specify ω-regular objectives. In the
classical study of graph games with ω-regular objectives, the input is a graph game G
and an ω-regular objective Φ, and the question is whether there is a winning strategy
for a player (Eve) that ensures that Φ is satisfied irrespective of the strategy of the other
player (Adam).

A specification Φ often consists of two parts: an assumption ΦA and a guarantee ΦG

and the specification requires ΦA → ΦG. The specification ΦA typically represents the
environment assumption under which the guarantee ΦG needs to be ensured. A win-
ning strategy for Φ may vacuously satisfy Φ by violating ΦA, whereas a better strategy
would ensure the “strong” specification Φ and allow the “weak” specification ΦA. For
example, consider a Streett (fairness) condition: the fairness condition consists of a set
of k request-grant pairs, and requires that every request that appears infinitely often,
must be granted infinitely often. A winning strategy may satisfy the fairness conditions
by not allowing requests to happen, whereas a better strategy would be as follows: it
ensures the strong specification that asks for the satisfaction of the strong fairness spec-
ification, and allows for the corresponding weak specification that requires that grants
are allowed to happen infinitely often.

To address the question above we consider a very general framework of games with
two different levels of specifications: a strong one Φ and a weak one Ψ which are,
in general, independent of each other. A “gracious” strategy for Eve must ensure the
strong specification (in the classical sense), and allow the weak one: Adam has the
choice to satisfy Ψ . We refer to them as obliging games. In the important case of fairness
specifications, the weak specification can be self-derived from the fairness specification,
and the weak specification requires that the requests are allowed to happen infinitely
often. The contribution of our work is as follows:

1. We present a linear time reduction of obliging games (with two Muller conditions)
to classical games (with a single Muller condition) such that Eve has a winning
strategy in the classical game if, and only if, she has a gracious strategy in the
obliging game.

2. We present a detailed analysis of the reduction and memory requirement for oblig-
ing games when both specifications are given as parity conditions.

3. In the case of fairness specifications (Streett-generalized Büchi conditions), we
show that the problem of the existence of a gracious strategy for Eve is co-NP
complete.
We also study a quantitative optimisation version of this problem and show that it
belongs to FNP (functional NP).

4. We also show how our concepts can be extended to multi-player games, leading to
new and interesting semantics in the context of verification.

Related work. Our notion of “gracious strategy” can be likened to “permissive strategies”,
which allow as many behaviours as possible) [BJW02]. In [BJW02] it has been shown
that most general strategies can be constructed only for safety conditions, and for parity
objectives a strategy that captures behaviour of all memoryless winning strategies was
presented. Our work is different as our objectives are more general (Muller), and the
goal is to construct a strategy that allows a given objective. Our work is also related to
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multi-player games on graphs and Nash equilibria [CMJ04, Umm08]. However in Nash
equilibria there are no two levels of specifications as considered in obliging games.

2 Definitions

Arenas. A two-player game arena A is a triple (V, V◦, E) where (V,E) is a finite
directed graph without deadlocks (each vertex has at least one outgoing edge) and V◦ is
a subset of V called Eve’s vertices. The vertices in v \ V◦ are Adam’s vertices and are
usually denoted by V�.

Plays and Strategies. A play ρ on the arena A is a (possibly infinite) sequence ρ1ρ2 . . .
of vertices such that for all i < |ρ|, we have (ρi, ρi+1) ∈ E. The limit vertices of
ρ, denoted by Inf(ρ), are the vertices occurring infinitely often in ρ: Inf(ρ) = {q |
∃∞i, ρi = q}.

A strategy of Eve on the arena A is a function σ from V ∗V◦ to V such that for all
x ∈ V ∗ and for all v ∈ V◦, we have (v, σ(xv)) ∈ E. A play ρ is consistent with σ (or a
σ-play) if for all i < |ρ|, ρi ∈ V◦ ⇒ ρi+1 = σ(ρ1 . . . ρi).

Strategies can also be defined as strategies with memory. In this case, σ is a tuple
(M,m0, σ

u, σn), where M is the (possibly infinite) set of memory states, m0 is the
initial memory content, σu : (E × M) → M is the memory update function, and
σn : (V × M) → V is the next-move function. The memory-update function can
naturally be extended from edges to finite sequences of vertices: σu+(v0v1 · · · vi,m) is
m if i = 0 and σu((vi−1, vi), σu+(v0v1 · · · vi−1,m)) if i ≥ 1. Using this definition, the
next move determined by σ for a play xv ∈ V ∗V◦ is σn(v,m), wherem = σu+(xv,m0).
A strategy is finite-memory if M is a finite set, and memoryless if M is a singleton.
Adam’s strategies are defined in a similar way.

Muller conditions. A Γ -colouring γ of an arena is a partial function of the edges of
A to an arbitrary set of colours Γ . We use partial functions here because this some-
times eases the specification of the winning conditions. However, for formal reasons,
we sometimes use a colour “−” that corresponds to the undefined value. This colour is
not considered when building the limit set of a colour sequence (hence the limit set can
be empty).

A Muller condition Φ on Γ is a subset of 2Γ , and a play ρ of A satisfies Φ if, and
only if, Inf(γ(ρ)) ∈ Φ. Here, γ(ρ) corresponds to the sequence of colours obtained by
applying γ to the edges of ρ. This is a finite or infinite sequence over Γ , or an infinite
sequence over Γ ∪ {−} using the above convention.

We also consider the usual special cases of Muller conditions (recall that we allow
partial colourings):

– the Büchi condition is the condition {{�}, {⊥,�}} on {⊥,�};
– the co-Büchi condition is the condition {∅, {�}} on {⊥,�};
– the k-generalised Büchi condition is the condition {{1, . . . , k}} on {1, . . . , k};
– the k-parity condition is the condition on {0, . . . , k − 1} containing all and only

the subsets whose minimum is even;
– a k-Streett condition on Γ is given by a set {(R1, G1), . . . , (Rk, Gk))} of k request-

grant pairs of subsets of Γ . It contains all and only the subsets that for each i either
intersect Gi or do not intersect Ri.
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In the course of our proofs, it is often useful to consider boolean operations on Muller
conditions, in which we interpret negation as complementation and conjunction as
Cartesian product: if Φ and Ψ are conditions on ΓΦ and ΓΨ , then Φ ∧ Ψ is the con-
dition on ΓΦ × ΓΨ which contains all and only the sets whose projection on the first
component belongs to Φ, and projection on the second component belongs to Ψ .

Notice that colourings are partial functions, so their product may return a colour
for only one of the components. We then use the neutral colour “−” for the undefined
component.

Classical and obliging games. A classical Muller game G on Γ is a triple (A, γ, Φ)
where A is an arena, γ is a Γ -colouring of A, and Φ —the winning condition— is a
Muller condition on Γ . An infinite play ρ of A is winning for Eve if it satisfies Φ. A
strategy σ is uniformly winning (resp. winning from a vertex q) for Eve if any σ-play
(resp. any σ-play starting in q) is winning for her. A vertex q is winning for Eve if she
has a winning strategy from q. The winning region of Eve is the set of vertices winning
for her. Adam’s winning plays, strategies, vertices, and regions are defined likewise,
except that a play is winning for Adam if it does not satisfy Φ.

An obliging game G is a tuple (A, γΦ, Φ, γΨ , Ψ), where A is an arena, γΦ is a
ΓΦ-colouring, Φ —the strong condition— is a Muller condition on ΓΦ, γΨ is a ΓΨ -
colouring, and Ψ — the weak condition— is a Muller condition on ΓΨ . A uniformly
gracious strategy σ for Eve is such that:

– every infinite σ-play ρ satisfies Φ;
– for any finite σ-play x, there is an infinite σ-play ρ satisfying Ψ such that x is a

prefix of ρ .
So, Eve has to allow Adam to build a play satisfying Ψ at any position, regardless
of what he previously did. However, she does not need to ensure Ψ if Adam is not
willing to cooperate. Notice that there is no dual notion of spoiling strategy for Adam.
In particular, the notion of “determinacy” does not make sense in obliging games, as
Adam cannot demonstrate Eve’s lack of grace with a single strategy.

We refer to obliging games by the names of the two conditions, with the strong
condition first: for example, a parity/Büchi obliging game is an obliging game G =
(A, γΦ, Φ, γΨ , Ψ), where Φ is a parity and Ψ is a Büchi condition.

Example 1. Consider the parity/parity obliging game in Figure 1. The pairs define the
colours of the edge, the first component corresponding to the strong condition (Φ) and
the second component to the weak condition (Ψ ).

In order to satisfy Φ, a play has to either take the edge (q4, q6) infinitely often, or
the edge (q8, q6) infinitely often and the edge (q7, q2) finitely often. To satisfy Ψ , an
infinite play has to take the edge (q7, q2) infinitely often. In this game Eve has to behave
differently depending on whether Adam moves to q3 or q4. If the token reaches q6
coming from q4, then Eve can safely move to q7. If the game reaches q6 coming from
q3, then she can first complete the cycle q6q5q8q6 and then move to q5 and then to q0.
This strategy can be implemented using memory of size 3 and it is a gracious strategy
since each path satisfies Φ and Adam can produce a play satisfying Ψ by always moving
to q4.

It is not difficult to observe that there is no gracious strategy for Eve with memory
of size two for this game. 
�
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q0
(3,1)

q1 q2

q3
(3,3)

q4
(0,3)

q5 q6 q7

(1,2)

q8
(2,1)

Fig. 1. A parity/parity obliging game

3 Reducing Obliging Games to Classical Games

In this section we provide a general method to reduce obliging games to classical games
with a single winning condition. The underlying idea is based on the construction of
merciful strategies from [BSL04]: we construct an extended game graph in which Adam
decides either to choose his next move himself or to leave this choice to Eve. If he al-
ways leaves the choice to Eve from some point onwards, then Eve has to prove that
Adam indeed has the possibility to satisfy the weak condition. Consequently, the win-
ning condition for Eve in the new game is the strong condition from the obliging game
in conjunction with the weak condition in the case that Adam only finitely often makes
his own choice.

Note that in the case that Eve has to satisfy the weak condition, the game remains in a
subarena that is completely controlled by Eve. We use this fact by allowing to simplify
the weak condition by means of non-deterministic ω-automata. The required technical
framework is defined below.

We use ω-automata with an acceptance condition specified on the transitions of the
automaton rather than on the states. In our setting, an ω-automaton is of the form M =
(Q,Σ, qin , Δ, γΥ , Υ ), where Q is a finite set of states, Σ is the input alphabet, qin ∈ Q
is the initial state, Δ ⊆ Q×Σ×Q is the transition relation, γΥ : Δ→ ΓΥ is a (partial)
colouring function, and Υ is an acceptance condition over ΓΥ similar to the winning
conditions defined for games. We write transitions (q, a, r) with γΥ ((q, a, r)) = c as
q

a:c−−→ r.
A run of M on an infinite word α ∈ Σω is an infinite sequence ζ = q0q1q2 · · · of

states such that q0 = qin , and (qi, α(i), qi+1) ∈ Δ for each i ≥ 0. We define the infinite
colour sequence induced by α and ζ as the sequence obtained by applying γΥ to each
transition:

γΥ (α, ζ) = γΥ ((q0, α(0), q1))γΥ ((q1, α(1), q2))γΥ ((q2, α(2), q3)) · · ·

The run ζ on α is accepting if γΥ (α, ζ) satisfies the acceptance condition. The language
L(M) accepted by M is the set of all infinite words on which M has an accepting run.

As usual, we call an automaton deterministic if for each pair of state q ∈ Q and each
a ∈ Σ there is at most one transition (q, a, r) ∈ Δ.

We are interested in automata accepting languages that correspond to winning condi-
tions. Given a winning conditionΦ over ΓΦ, we define the languageLΦ ⊆ (ΓΦ∪{−})ω
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as the set of all infinite sequences that satisfy Φ (recall that “−” is a neutral colour repre-
senting the undefined value and is not considered for evaluating the winning condition).

Lemma 2. Let G = (A, γΦ, Φ, γΨ , Ψ) be an obliging game with arena A = (V,E),
and let M = (Q,ΓΨ , qin , Δ, γΥ , Υ ) be an ω-automaton accepting LΨ . There is a
game G′ = (A′, γΛ, Λ) and a mapping ι : V → V ′ with the following properties:
(1) Λ = Φ ∧ (Υ ∨ B) for a Büchi condition B; (2) for each vertex v ∈ V , Eve has a
gracious strategy from v in G if, and only if, she has a winning strategy from the vertex
ι(v) in G′; and (3) from a winning strategy for Eve in G′ from ι(v) with memory of
size n one can construct a gracious strategy for Eve in G from v with memory of size
2 · |Q| · n.

Proof. To simplify the reduction, we assume without loss of generality that the arena is
alternating, i.e. E ⊆ (V◦ × V�) ∪ (V� × V◦).

We construct G′ in such a way that, at any time in a play, Adam can ask Eve to show
a path that satisfies Ψ . This is realised by introducing a second copy of G in which
all vertices belong to Eve. In this copy we additionally keep track of the states of the
automaton M recognising Ψ .

If Adam chooses to switch to this copy, Eve makes the choices on behalf of Adam.
Consequently, if from some point onward Adam decides to always leave his choices
to Eve, the resulting play has to satisfy Φ and Ψ . Otherwise, it is sufficient for Eve to
satisfy Φ. The Büchi condition is used to distinguish these two cases. Whether Ψ is
satisfied can be decided using the condition Υ on the state sequence of M.

Formally, the game G′ = (A′, γΛ, Λ) and the mapping ι are constructed as follows:
– The winning condition is Λ = Φ ∧ (Υ ∨B) where B is a Büchi condition.
– The arena A′ = (V ′, V ′

◦ , E
′) and the colouring γΛ of E′ are defined as follows:

• V ′ = (V◦ × {play}) ∪ (V� × {choose} ×Q) ∪ (V × {show} ×Q);
• V ′

◦ = (V◦ × {play}) ∪ (V × {show} ×Q);
• Let u and v be vertices in V ; q and r be states in Q; and a, b, c be colours in

ΓΦ, ΓΨ , ΓΥ such that u
(a,b)−−−→ v in E and q

b:c−−→ r in Δ. Then the following
edges belong to E′:

u ∈ V◦ : (u, play)
(a,−,⊥)−−−−−→ (v, choose , qin)

u ∈ V� : (u, choose, q)
(a,−,�)−−−−−→ (v, play)

(u, choose, q)
(−,−,⊥)−−−−−→ (u, show , q)

u ∈ V◦ : (u, show , q)
(a,c,⊥)−−−−→ (v, choose , r)

u ∈ V� : (u, show , q)
(a,c,⊥)−−−−→ (v, show , r)

– The mapping ι maps each v ∈ V◦ to (v, play) and each v ∈ V� to (v, choose , qin).
A schematic view of the construction is shown in Figure 2. We refer to the nodes

from V◦×{play} as the play part of the game, the nodes from V ×{show}×Q as the
show part, and the nodes from V� × {choose} ×Q as the choice part.

We start by showing that a gracious strategy σ for Eve in the obliging game G can be
used to define a winning strategy for Eve inG′: Each play ρ′ in G′ naturally corresponds
to a play ρ in G that is obtained by removing the vertices of the type (v, show , q) for
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V◦ × {play} V� × {choose} × Q V × {show} × Q

play choose show

Fig. 2. Schematic view of the reduction from Lemma 2

v ∈ V� and then projecting away the {play , show , choose} and the Q components
from the vertices. Let us denote this operation by del , i.e., ρ = del (ρ′).

The winning strategy of Eve in G′ is defined as follows. For a finite play x′ that
ends in a node of the form (u, play) with u ∈ V◦, Eve looks at the play del(x′) in
G, checks which move (u, v) she would have made according to σ, and then moves to
(v, choose , qin) in G′.

If the play x′ in G′ enters the show part in a node (u, show , qin) for the first time
after having been in the play part, then Eve considers the play x = del(x′) in G. Since
σ is a gracious strategy, there is a possible continuation ρ of x such that xρ is a σ-play
satisfying Ψ . In particular, since Ψ is a Muller condition, ρ satisfies Ψ and there is an
accepting run ζ of M on ρ. Eve stores ρ and ζ in her memory for the strategy σ′ and
now moves from (u, show , qin) according to ρ for the first component, and according
to ζ for the third component.

If the play x′ in G′ is in a node (u, show , q) such that Eve has already stored some
ρ and ζ in her memory as described above, then she simply moves according to ρ and
ζ: she checks at which position in the play she has stored ρ and ζ, which part of ρ and
ζ she has already reproduced since then, and makes the corresponding next move to
reproduce one more step of ρ and ζ.

If Adam at some point decides to enter the play part, i.e., to move to a vertex from
V◦ × {play}, then Eve erases ρ and ζ from her memory.

If π′ is an infinite play according to this strategy, then it certainly satisfies Φ because
del(π′) is a σ-play and the ΓΦ sequence of π′ corresponds to the one of del(π′) except
for some insertions of the neutral colour −. Furthermore, either Adam infinitely often
moves to a vertex from V◦ × {play}, in which case the Büchi condition B is satisfied,
or from some point onward Eve simulates ρ and ζ to infinity, yielding a play in G′

that satisfies Υ because ζ satisfies Υ . This shows that π′ is winning and hence we have
defined a winning strategy for Eve, as desired.

For the other direction it suffices to show the third claim of the lemma since the
existence of a winning strategy for Eve in G′ implies the existence of a finite-memory
winning strategy. Let (M,m0, ς

n, ςu) be a winning strategy for Eve in G′. We define
a gracious strategy ({p, s} × Q×M, (p, qin ,m0), σn, σu) for Eve in G. This strategy
distinguishes two cases to decide whether to use ςn as defined on the play vertices or on
the show vertices. These two cases depend on the behaviour of Adam. If Adam makes a
move in G from a vertex v that corresponds to the move of ςn from the vertex (v, show )
in G′, then σu updates the first component of the memory to s, i.e., σn starts simulating
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ςn as if the play is in the show part of G′. If Adam makes a move that is not of this kind,
then σu updates the first component of the memory to p and σn simulates the behaviour
of ςn on the play part of G′.

We first give the definition of the next move function σn, which is quite straightfor-
ward:

σn(u, 〈p, qin ,m〉) = v with ςn((u, play),m) = (v, play , qin),
σn(u, 〈s, q,m〉) = v if ςn((u, show , q),m) = (v, play , q′) for some q′.

The definition of the memory update function σu is a bit more involved since we
have to distinguish the different behaviours of player 1 as explained above. Below, we
define the update of the memory for a move from u to v in G for different memory
contents. If u ∈ V◦, we assume that v is the vertex that is chosen by the next move
function σn because otherwise the move from u to v cannot occur in a play according
to the strategy.

(i) If u ∈ V◦, then σu(u, 〈p, qin ,m〉 , v) = 〈p, qin ,m′〉 with

m′ = ςu((u, play),m, (v, choose , qin))

and σu(u, 〈s, q,m〉 , v) = 〈p, q′,m′〉 with

m′ = ςu((u, show , q),m, (v, choose , q′))

and ςn((u, show , q),m) = (v, choose , q′) (here we use the assumption that
σn(u, 〈s, q,m〉) = v, i.e., v is the target of the next move function).

(ii) If u ∈ V� and ςn((u, show , q), ςu((u, choose, q),m, (u, show , q))) =
(v, show , q′), then σu(u, 〈x, q,m〉 , v) = 〈s, q′,m′〉 with

m′ = ςu+((u, play , q)(u, show , q)(v, show , q′),m)

for all x ∈ {p, s}. This is the case where the move from u to v of Adam in G
corresponds to the move that Eve would have made in his place in G′. To obtain
m′ we look at how the memory would have evolved in G′ in the move sequence
in which Adam gives the choice to Eve.

(iii) If u ∈ V� and ςn((u, show , q), ςu((u, choose, q),m, (u, show , q))) =
(v′, show , q′) for some v′ �= v, then σu(u, 〈x, q,m〉 , v) = 〈p, qin ,m′〉 with

m′ = ςu((u, choose, q),m, (v, play))

for all x ∈ {p, s}. This is the case where Adam makes a choice different from the
one that Eve would have made on his behalf in G′.

We now show that this strategy is indeed gracious in G. From the definition of σn and
σu one can see that for every σn-play ρ there exists a corresponding ςn-play ρ′ that is
obtained from play by inserting appropriate vertices from V� × {show} × Q at those
positions where σu updates the first component of the memory to s, i.e., if (ii) in the
definition of σu is applied.

To formalize this let ρ = v0v1v2 · · · be a σn-play and let

〈x0, q0,m0〉 〈x1, q1,m1〉 〈x2, q2,m2〉 · · · ∈ ({p, s} ×Q×M)ω

be the corresponding sequence of memory contents according to σu.
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Similar to the operation del from the first implication of the proof we now define
an operation ins that transforms ρ into a corresponding play based on the sequence of
memory contents. By abuse of notation we also define the operation ins to work on
tuples of nodes by inserting the necessary information (we assume for simplicity that
the play starts in V◦):

ins(ρ) = (v0, play)ins(v0, v1)ins(v1, v2)ins(v2, v3) · · ·

with

ins(vi, vi+1) =

⎧⎨⎩
(vi+1, play) if xi+1 = p and vi+1 ∈ V◦,
(vi+1, choose , qi+1) if vi+1 ∈ V�,
(vi, show , qi)(vi+1, show , qi+1) if xi+1 = s and vi+1 ∈ V◦.

Now one can verify that a σ-play ρ in G is transformed by ins into a ς-play ρ′ in G′.
Therefore, ρ satisfies Φ because the colour sequences from ΓΦ of ρ and ρ′ are the same
except for some insertions of the neutral colour −. Furthermore, at each position of a
play in G, Adam has the possibility to move so that Eve updates her memory content to
an element with s in the first component: for a σ-play x in G Adam checks what would
have been the move of Eve according to ς in G′ for the play ins(x) extended by Adam’s
move to the show part of the game. If Adam always copies these ς moves to G from
some point onwards, then the resulting play ρ satisfies Ψ because ins(ρ) is a ς-play in
G′ that does visit V◦×{play} only finitely often and hence satisfies Υ . This means that
the simulated run of M on the play is accepting and therefore the corresponding play
in G satisfies Ψ . This shows that σ is indeed a gracious strategy. 
�

Lemma 2 provides a reduction of obliging games to standard games. This notion is
formalised as follows. We say that an obliging game G can be reduced to a standard
game G′ with memory m if:
1. there is a mapping ι from the vertices of G to the vertices of G′ such that for each

vertex v of G Eve has a gracious strategy from v in G if, and only if, Eve has a
winning strategy from ι(v) in G′;

2. given a winning strategy for Eve from ι(v) in G′ with memory of size n, one can
compute a gracious strategy for Eve from v in G with memory of size m · n.

We also use this notion in connection with classes of games. A class K of games can be
reduced to a class K′ of games with memory m if each game G in K can be reduced to
a game G′ in K′ with memory m. The time complexity of such a reduction is the time
needed to compute G′ from G, to compute the mapping ι, and to compute the strategy
in G from the strategy in G′.

We can now instantiate Lemma 2 for several types of obliging games to obtain results
on their complexity. The first instantiation is for general Muller conditions using the
fact that the winning sequences for a condition Ψ can be recognised by a one state
ω-automaton which itself uses the condition Ψ .

Theorem 3. There is a linear time reduction with memory 2 from Φ/Ψ obliging games
to standard (Φ ∧ (Ψ ∨B))) games for a Büchi condition B.

The point of using a non-deterministic ω-automaton in the formulation of Lemma 2 is
illustrated by the following result.
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Theorem 4. There is a polynomial time reduction with memory 2(� + 1)k from 2k-
parity/2�-parity obliging games to standard (2k + 2)-parity games.

Proof. We apply Lemma 2 with a Büchi automaton accepting LΨ for the 2�-parity
condition Ψ . Such a Büchi automaton is easily constructed using (� + 1) states. On the
first state the automaton loops and outputs ⊥ for each input priority. Using the other �
states the automaton can guess at any point that 2i is the minimal priority which appears
infinitely often in the input sequence. It moves to state i and outputs�whenever priority
2i appears on the input. For greater priorities it outputs⊥, and for priorities smaller than
2i there is no transition. One easily verifies that this automaton accepts LΨ .

Lemma 2 yields a reduction with memory 2(� + 1) to a (2k-parity ∧ Büchi) game
(using the fact that a disjunction of two Büchi conditions is equivalent to a single Büchi
condition). Analysing the Zielonka tree [Zie98, DJW97] of a (2k-parity ∧ Büchi) con-
dition shows that it has k leafs and the technique from [DJW97] gives a reduction to
2k+ 2-parity game with memory k. The composition of these two reductions gives the
claimed reduction. One can note that this proof also works if the weak condition is a
Rabin condition with � pairs. 
�

Since parity games are determined with memoryless strategies (see, e.g., [Tho97]
or [Zie98]), Theorem 4 directly gives an upper bound on the memory required for a
gracious strategy in parity/parity obliging games.

Corollary 5. If Eve has a gracious strategy in a 2k-parity/2�-parity obliging game,
then she has a gracious strategy with memory of size at most 2(�+ 1)k.

In the case � = 1, we have rather tight lower bound for the required memory. Indeed,
it is possible to construct a 2k-parity/Büchi obliging game where Eve needs k memory
states. The case k = 6 is depicted in Figure 3 (in order to improve readability, there are
some vertices of Adam from where two edges lead to the same target).

10
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6

7
45

2

3

0

1

�

Fig. 3. At least 6 memory states

Eve has a gracious strategy with k mem-
ory states that works as follows: if Adam just
played 2i, she plays 2i + 1; otherwise, she
plays 2(k − 1). This strategy clearly ensures
the parity condition. Furthermore, Adam can
get an infinite number of visits to the � edge,
by always answering 2(i− 1) to 2i+ 1.

There is no gracious strategy for Eve with
less than k states: as there are k successors of
the central vertex, one of them is never vis-
ited. Thus, Eve can ultimately not propose the
lower ones safely, and either does not guaran-
tee the parity condition or eventually forbids
the Büchi condition.

4 Obliging Streett Games

Streett games are a very natural setting for obligingness questions. Indeed, the Streett
condition allows Eve to win by either granting requests or denying Adam the possibil-
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ity to make them. It is thus natural to consider k-Streett/k-generalised Büchi objectives,
where the objectives of the weak condition are exactly the requests of the strong one.
We call them simply obliging Streett games. As a generalised Büchi condition can be
recognised by a Streett automaton with only one state, we can use Lemma 2 to re-
duce an obliging k-Streett game with n vertices to a classical 2k-Streett game with 2n
vertices. As classical Streett games can also be reduced to obliging Streett games (by
always allowing Adam to go to a vertex where all the pairs are forever requested and
granted) and classical Streett games problem is co-NP complete [EJ88], it follows that
the obliging Streett games problem is co-NP complete:

Theorem 6. The decision problem of existence of a gracious strategy for Eve in oblig-
ing Streett games is co-NP complete.

In the cases where Eve does not have a gracious strategy, we might be interested in
knowing how many simultaneous requests she can allow. This can be defined as a
threshold problem: “Given � ≤ k, is it possible to allow Adam to visit at least � differ-
ent requests?”; or as an optimisation problem: “What is the highest � such that Eve can
allow Adam to visit at least � different requests?”.

Theorem 7. The threshold problem of obliging Streett games is co-NP complete; and
the optimisation problem of obliging Streett games is in FNP.

Proof. As the optimal number of request that Eve can allow is between −1 and k, the
second statement follows directly from the first one. Furthermore, it is clear that the
threshold problem is co-NP hard since it generalises both classical Streett games (for
� = 0) and obliging Streett games (for � = k).

In order to show that the threshold problem belongs to co-NP, we use once more
Lemma 2: we just need a non-deterministic automaton recognising the words where at
least � different colours are visited infinitely often. We describe such an automaton in
Figure 4, with the following conventions: the alphabet is {1, . . . , k}, and for each i,
Ri = {i}; there is an unmarked loop on each state; unmarked edges are enabled for
each letter and are labelled ⊥. 
�

5 Multi-player Obliging Games

An interesting feature of obliging games is that they provide new and interesting se-
mantics for multi-player games. In this setting, Eve has more than one opponent and
each must be allowed to satisfy his weak condition, regardless of what the others do.

The definitions are similar to the two-player case, mutatis mutandis: a n-player arena
A is a finite directed graph (V,E) without deadlocks whose vertices are partitioned in
n subsets, V◦, V1, . . . , Vn−1; a n-player obliging game is a n-player arena and as many
colourings and conditions: γ◦, Φ; γ1, Ψ1; . . . ; γn−1, Ψn−1. A gracious strategy σ for Eve
in such a game is such that:

– any infinite σ-play ρ satisfies Φ;
– for any 1 ≤ i < n, for any finite σ-play x, there is a strategy τi for Player i

consistent with x such that any infinite play consistent with both σ and τi satisfies
Ψi.
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Fig. 4. Büchi automaton recognising repeated �-out-of-k

We can solve n-player obliging games by reduction to classical two-player games,
in a way similar to the two-player case. However, we do not use automata to check
whether the play satisfies the weak conditions, for two reasons: first, we cannot use non-
deterministic automata: even if one opponent yields control of his moves, the others can
still interfere so Eve cannot simply “choose” a correct run; second, we would have to
remember the current state of each automaton, leading to an exponential blow-up in the
size of the arena.

Theorem 8. Let G = (A, γΦ, Φ, γ1, Ψ1, . . . ; γn−1, Ψn−1) be a n-player obliging game
with arena A = (V,E, V◦, V1, . . . , Vn−1). We can compute, in time linear in the size of
G, a game G′ = (A′, γΥ , Υ ) of size linear in the size of G and a mapping ι : V → V ′

with the following properties:
1. Υ = Φ∧(Ψ1∨B1)∧. . . (Ψn−1∨Bn−1), where B1, . . . , Bn−1 are Büchi conditions.
2. For each vertex v in A, Eve has a gracious strategy from v in G if, and only if, she

has a winning strategy from the vertex ι(v) in G′.

Proof. The construction of G′ is similar to its counterpart in the proof of Lemma 2.
Each opponent has the possibility to leave Eve choose his move in his stead. If one of
them eventually always does so, the play has to satisfy his weak condition; otherwise,
the corresponding Büchi condition allows Eve to ignore it. The proof is even simpler,
as there is no need to keep track of a run of an automaton. 
�

6 Conclusion

In this work we introduced the notion of obliging games and presented a linear time re-
duction to classical games for all ω-regular objectives specified as Muller objectives. We
also presented a complete analysis for the reduction and memory requirement when the
specifications are given as parity objectives. We studied the important class of fairness
(Streett) conditions, and showed that obligingness Streett games are co-NP complete.
We also studied a natural quantitative optimization problem for obliging Streett games
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and proved inclusion in FNP. We showed extension of the notion of obligingness games
to multi-player games and how it leads to new and interesting semantics. In future work
we will explore how the solution of obliging games can be used to synthesize more
desirable controllers.
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Multipebble Simulations for Alternating Automata
(Extended Abstract)

Lorenzo Clemente and Richard Mayr
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Abstract. We study generalized simulation relations for alternating Büchi au-
tomata (ABA), as well as alternating finite automata. Having multiple pebbles
allows the Duplicator to “hedge her bets” and delay decisions in the simulation
game, thus yielding a coarser simulation relation. We define (k1, k2)-simulations,
with k1/k2 pebbles on the left/right, respectively. This generalizes previous work
on ordinary simulation (i.e., (1, 1)-simulation) for nondeterministic Büchi au-
tomata (NBA) in [4] and ABA in [5], and (1, k)-simulation for NBA in [3].

We consider direct, delayed and fair simulations. In each case, the (k1, k2)-
simulations induce a complete lattice of simulations where (1, 1)- and (n, n)-
simulations are the bottom and top element (if the automaton has n states),
respectively, and the order is strict. For any fixed k1, k2, the (k1, k2)-simulation
implies (ω-)language inclusion and can be computed in polynomial time. Further-
more, quotienting an ABA w.r.t. (1, n)-delayed simulation preserves its language.
Finally, multipebble simulations yield new insights into the Miyano-Hayashi con-
struction [10] on ABA. A technical report with full proofs is available [2].

1 Introduction

We consider simulation relations on (alternating) finite- and infinite word automata:
nondeterministic finite automata (NFA), alternating finite automata (AFA), nondeter-
ministic Büchi automata (NBA) and alternating Büchi automata (ABA). Simulation pre-
order is a notion of semantic comparison of two states, called left state and right state,
in automata, where the larger right state can match all moves of the smaller left one in a
stepwise way. Simulation preorder implies language inclusion on NFA/AFA/NBA/ABA
[4,5], but not vice-versa. While checking language inclusion is PSPACE-complete for
all these classes of automata [8,11], the simulation relation can be computed in polyno-
mial time [4,5].

Checking simulation preorder between two states can be presented as a game with
two players, Spoiler and Duplicator, where Spoiler tries to prove that the simulation re-
lation does not hold while Duplicator has the opposite objective. In every round of the
simulation game, Spoiler chooses a transition from the current left state and Duplicator
must choose a transition from the current right state which has the same action label.
Duplicator wins iff the game respects the accepting states in the automata, and different
requirements for this yield finer or coarser simulation relations. In direct simulation,
whenever the left state is accepting, the right state must be accepting. In delayed simu-
lation, whenever the left state is accepting, the right state must be eventually accepting.
In fair simulation, if the left state is accepting infinitely often, then the right state must
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be accepting infinitely often. For finite-word automata, only direct simulation is mean-
ingful, but for Büchi automata delayed and fair simulation yield coarser relations; see
[4] for an overview.

These notions have been extended in two directions. Etessami [3] defined a hierarchy
of (1, k) multipebble simulations on NBA. Intuitively, the k pebbles on the right side
allow Duplicator to “hedge her bets” and thus to delay making decisions. This extra
power of Duplicator increases with larger k and yields coarser simulation relations.

A different extension by Wilke and Fritz [5] considered simulations on ABA. In
an ABA, a state is either existential or universal. The idea is that Spoiler moves from
existential left states and universal right states, and dually for Duplicator.

Our contribution. We consider (k1, k2)-simulations on ABA, i.e., with multiple peb-
bles on both sides: k1 on the left and k2 on the right. Intuitively, Duplicator controls
pebbles on universal states on the left and existential states on the right (and dually for
Spoiler). This generalizes all previous results: the (1, k)-simulations on NBA of [3] and
the (1, 1)-simulations on ABA of [5].

For each acceptance condition (direct, delayed, fair) this yields a lattice-structured
hierarchy of (k1, k2)-simulations, where (1, 1)- and (n, n)-simulations are the bottom
and top element if the automaton has n states. Furthermore, the order is strict, i.e.,
more pebbles make the simulation relation strictly coarser in general. For each fixed
k1, k2 ≥ 0, (k1, k2)-simulations are computable in polynomial time and they imply
language inclusion (over finite or infinite words, depending on the type of simulation).

Quotienting AFA w.r.t. (k1, k2)-simulation preserves their language. We also provide
a corresponding result for ABA by showing that quotienting ABA w.r.t. (1, n)-delayed
simulation preserves the ω-language. This is a non-trivial result, since a naı̈ve gener-
alization of the definition of semielective-quotients [5] does not work. We provide the
correct notion of semielective-quotients for (1, n)-simulations on ABA, and show its
correctness. Moreover, unlike for NBA [3], quotienting ABA w.r.t. (1, k) delayed sim-
ulation for 1 < k < n does not preserve their language in general.

Finally, multipebble simulations have close connections to various determinization-
like constructions like the subset construction for NFA/AFA and the Miyano-Hayashi
construction [10] on ABA. In particular, multipebble simulations yield new insights into
the Miyano-Hayashi construction and an alternative correctness proof showing an even
stronger property. For full proofs, please see the technical report [2].

2 Preliminaries and Basic Definitions

Automata. An alternating Büchi automaton (ABA) Q is a tuple (Q,Σ, qI , Δ,E, U, F ),
where Q is a finite set of states, Σ is a finite alphabet, qI is the initial state, {E,U} is
a partition of Q into existential and universal states, Δ ⊆ Q×Σ ×Q is the transition
relation and F ⊆ Q is the set of accepting states. We say that a state q is accepting if
q ∈ F . We use n to denote the cardinality of Q. A nondeterministic Büchi automaton
(NBA) is an ABA with U = ∅, i.e., where all choices are existential. We say that Q is
complete iff ∀(q, a) ∈ Q×Σ. ∃(q, a, q′) ∈ Δ.

An ABA Q recognizes a language of infinite words Lω(Q). The acceptance con-
dition is best described in a game-theoretic way [6]. Given an input word w ∈ Σω,
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the acceptance game Gω(Q, w) is played by two players, Pathfinder and Automa-
ton. Existential states are controlled by Automaton, while Pathfinder controls universal
states. Automaton wins the game Gω(Q, w) iff she has a winning strategy s.t., for any
Pathfinder counter-strategy, the resulting computation visits some accepting state in F
infinitely often. The language Lω(Q) recognized by Q is defined as the set of words
w ∈ Σω s.t. Automaton wins Gω(Q, w). See [5] for a formal definition.

If we view an ABA Q as an acceptor of finite words, then we obtain an alternat-
ing finite automaton (AFA). For w = w0 . . . wm ∈ Σ∗, the finite acceptance game
Gfin(Q, w) is defined as above for Gω(Q, w), except that the game stops when the last
symbol wm of w has been read, and Automaton wins if the last state is in F . Lfin(Q) is
defined in the obvious way. An alternating transition system (ATS) Q is an AFA where
all states are accepting, and Tr(Q) := Lfin(Q) is its trace language. When we just say
“automaton”, it can be an ABA, AFA or ATS, depending on the context.

If Q is a set, with 2Q we denote the set of subsets of Q, and, for any k ∈ N, with
2Q,k we denote the subset of 2Q consisting of elements of cardinality at most k. When
drawing pictures, we represent existential states by q and universal states by q .

Multipebble simulations. We define multipebble simulations in a game-theoretic way.
The game is played by two players, Spoiler and Duplicator, who play in rounds. The
objective of Duplicator is to show that simulation holds, while Spoiler has the comple-
mentary objective. We use the metaphor of pebbles for describing the game: We call
a pebble existential if it is on an existential state, and universal otherwise; Left if it is
on the l.h.s. of the simulation relation, and Right otherwise. Intuitively, Spoiler controls
existential Left pebbles and universal Right pebbles, while Duplicator controls universal
Left pebbles and existential Right pebbles. The presence of >1 pebbles in each side is
due to the further ability of Duplicator to split pebbles to several successors. Moreover,
Duplicator always has the possibility of “taking pebbles away”. Since not all available
pebbles have to be on the automaton, k + 1 pebbles are at least as good as k.

Formally, let Q be an alternating automaton, q0 ∈ 2Q,k1 a k1-set and s0 ∈ 2Q,k2 a
k2-set. We define the basic (k1, k2)-simulation game G(k1,k2)

(q0, s0) as follows. Let

Γ Sp and ΓDup be a set of actions (or transitions) for the two players (to be specified
below). In the initial configuration 〈q0, s0〉, Left pebbles are on q0 and Right pebbles
on s0. If the current configuration at round i is 〈qi, si〉, then the next configuration
〈qi+1, si+1〉 is determined as follows:

– Spoiler chooses a transition (qi, si, ai,q′, s′) ∈ Γ Sp.
– Duplicator chooses a transition (qi, si, ai,q′, s′,qi+1, si+1) ∈ ΓDup.

We now define the two transition relations. Let qE := q∩E be the set of existential
states in q, and define qU , sE , sU similarly. Let P1 := 2Q,k1 × 2Q,k2 and P0 := Σ ×
2Q,k1 × 2Q,k2 . Γ Sp ⊆ P1 × P0 models Spoiler’s moves: (q, s, a,q′, s′) ∈ Γ Sp iff
Spoiler chooses a as the next input symbol, and

– q′ is obtained from qE by choosing a successor for each pebble in qE . Formally,
q′ = { select(Δ(q, a)) | q ∈ qE }, where select(r) chooses an element in r.

– Similarly, s′ is obtained from sU by choosing a successor for each pebble in sU .
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Duplicator’s moves are of the form (q, s, a,q′, s′,q′′, s′′) ∈ ΓDup ⊆ P1 ×P0 ×P1:

– q′′ is a non-empty k1-subset of q′ ∪Δ(qU , a), and
– s′′ is a non-empty k2-subset of s′ ∪Δ(sE , a).

Notice that Duplicator is always allowed to “take pebbles away”, and to “hedge her
bets” by splitting pebbles into different successors. We say that a pebble on state q is
stuck if q has no a-successor (where a is clear from the context).

We now formally define strategies. A strategy for Spoiler is a function δ : P ∗
1 P1 �→

P0 compatible with Γ Sp, i.e., for any (π · 〈q, s〉) ∈ P ∗
1 P1, δ(π · 〈q, s〉) = (a,q′, s′)

implies (q, s, a,q′, s′) ∈ Γ Sp. Similarly, a strategy for Duplicator is a function σ :
P ∗

1 P1 �→ (P0 �→ P1) compatible with ΓDup, i.e., for any π ∈ P ∗
1 P1 and (a,q′, s′) ∈

P0, σ(π)(a,q′, s′) = 〈q′′, s′′〉 implies (q, s, a,q′, s′,q′′, s′′) ∈ ΓDup. A play π =
〈q0, s0〉〈q1, s1〉 · · · ∈ P ∗

1 ∪ Pω
1 is a finite or infinite sequence of configurations in P1.

For a word w = a0a1 · · · ∈ Σ∗ ∪ Σω s.t. |w| = |π| − 1 (with |π| = ω = ω − 1
if π ∈ Σω), we say that a play π is σ-conform to w iff, for any i < |π|, there exists
some (qi, si, ai,q′

i, s
′
i) ∈ Γ Sp s.t. σ(〈q0, s0〉 . . . 〈qi, si〉)(ai,q′

i, s
′
i) = 〈qi+1, si+1〉.

Intuitively, σ-conform plays are those plays which originate when Duplicator’s strategy
is fixed to σ; δ-conform plays, for δ a Spoiler’s strategy, are defined similarly. Below,
both strategies are fixed, and the resulting, unique play is conform to both.

The game can halt prematurely, for pebbles may get stuck. In this case, the win-
ning condition is as follows: If there exists a Left pebble which cannot be moved, then
Duplicator wins. Dually, if no Right pebble can be moved, then Spoiler wins.

Remark 1. Our winning condition differs from the one in [5] when pebbles get stuck.
There, the losing player is always the one who got stuck. If we let Duplicator win
when Spoiler is stuck on a universal Right pebble, we would obtain a simulation which
does not imply language containment. (Notice that “simulation implies containment”
is proved in [5] under the assumption that pebbles do not get stuck.) Furthermore, the
condition in [5] is unnecessarily strong when Duplicator is stuck on a universal Left
pebble, where letting Spoiler win is too conservative. Our definition generalizes the
correct winning condition to multiple pebbles, for which we prove “simulation implies
containment” without further assumptions.

In all other cases, we have that all Left pebbles can be moved and at least one Right
pebble can be moved, and the two players build an infinite sequence of configurations
π = 〈q0, s0〉〈q1, s1〉 · · · ∈ Pω

1 . The winning condition is defined in terms of a predicate
C(π) on π. Different choices of C(π) lead to different notions of simulation.

1. Ordinary (k1, k2)-simulation. The acceptance condition is ignored, and Duplicator
wins as long as the game doesn’t halt: C(π) :⇐⇒ true.

2. Existential direct (k1, k2)-simulation. Duplicator wins if, whenever every q ∈ qi is
accepting, then some s ∈ si is accepting:

C(π) :⇐⇒ (∀i. qi ⊆ F =⇒ si ∩ F �= ∅) .

3. Universal direct (k1, k2)-simulation. Duplicator wins if, whenever some q ∈ qi is
accepting, then every s ∈ si is accepting:

C(π) :⇐⇒ (∀i. qi ∩ F �= ∅ =⇒ si ⊆ F ) .
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As we will see, ordinary simulation is used for ATSs, while existential and universal
direct simulation are used for automata over finite and infinite words, respectively.

The winning condition for delayed and fair simulation requires some technical prepa-
ration, which consists in the notion of being existentially/universally good since some
previous round. Given the current roundm, we say that a state q ∈ qm has seen a state q̂
since some previous round i ≤ m, written has seeni

m(q, q̂), iff either 1) q = q̂, or i < m
and there exists q′ ∈ qm−1 s.t. 2.1) q ∈ Δ(q′, am−1), and 2.2) has seeni

m−1(q
′, q̂). Du-

ally, we write cant avoidi
m(q, q̂) iff either 1) q = q̂, or i < m and, for all q′ ∈ qm−1,

q ∈ Δ(q′, am−1) implies cant avoidi
m−1(q

′, q̂). We overload the notation on the set of
accepting states, and we write has seeni

m(q, F ) to mean that q has seen some q̂ ∈ F ;
and similarly for cant avoidi

m(q, F ). Finally, we say that sj is existentially good since
round i ≤ j, written good∃(sj , i), if at round j every state in sj has seen an accepting
state since round i, and j is the least round for which this holds [3]. Similarly, we say
that qj is universally good since round i ≤ j, written good∀(sj , i), if at round j every
state in qj cannot avoid an accepting state since round i, and j is the least round for
which this holds. Formally,

good∃(sj , i) ⇐⇒ (∀s ∈ sj. has seeni
j(s, F )) ∧

∀j′. (∀s′ ∈ sj′ . has seeni
j′(s

′, F )) =⇒ j′ ≥ j

good∀(sj , i) ⇐⇒ (∀s ∈ sj. cant avoidi
j(s, F )) ∧

∀j′. (∀s′ ∈ sj′ . cant avoidi
j′(s

′, F )) =⇒ j′ ≥ j

We write good∃(sj), omitting the second argument, when we just say that sj is good
since some previous round. For a path π = s0s1 . . . , we write good∃(π,∞), with the
second argument instantiated to i = ∞, to mean that good∃(sj) holds for infinitely
many j’s; and similarly for good∀(sj) and good∀(π,∞).

We are now ready to define delayed and fair simulations.

4. Delayed (k1, k2)-simulation. Duplicator wins if, whenever qi is universally good,
then there exists j ≥ i s.t. sj is existentially good since round i:

C(π) :⇐⇒ ∀i. good∀(qi) =⇒ ∃j ≥ i. good∃(sj , i) .

5. Fair (k1, k2)-simulation. Duplicator wins if, whenever there are infinitely many
i’s s.t. qi is universally good, then, for any such i, there exists j ≥ i s.t. sj is
existentially good since round i:

C(π) :⇐⇒ good∀(π0,∞) =⇒ (∀i. good∀(qi) =⇒ ∃j ≥ i. good∃(sj , i)) ,

where π0 = q0q1 . . . is the projection of π onto its first component.

We will denote the previous acceptance conditions with x ∈ {o, ∃di, ∀di, de, f}, and
the corresponding game is denoted as Gx

(k1,k2)
(q0, s0).

Remark 2. Notice that the condition for fair simulation is equivalent to the follow-
ing simpler one: If qi is universally good since some previous round infinitely often,
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then si is existentially good since some previous round infinitely often: C′(π) : ⇐⇒
good∀(π0,∞) =⇒ good∃(π1,∞), where π1 = s0s1 . . . is the projection of π onto
its second component.

We are now ready to define the simulation relation �x
(k1,k2)

, with x as above. We say
that a k2-set s x-simulates a k1-set q, written q �x

(k1,k2) s, if Duplicator has a winning
strategy in Gx

(k1,k2)
(q, s). We overload the simulation relation �x

(k1,k2)
on singletons:

q �x
(k1,k2)

s ⇐⇒ {q} �x
(k1,k2) {s}. For two automata A and B, we write A �x

(k1,k2)

B for qAI �x
(k1,k2) q

B
I , where the simulation is actually computed on the disjoint union

of A and B. If �x
(k1,k2) is a simulation, then its transitive closure is defined as 0x

(k1,k2).
Note that, in general, �x

(k1,k2) is not itself a transitive relation.

Multipebble simulations hierarchy. In general, having more pebbles (possibly) gives
more power to the Duplicator. This is similar to the (1, k)-simulations for NBA studied
in [3], but in our context there are two independent directions of “growing power”.

Theorem 1. Let x ∈ {o, ∃di, ∀di, de, f} and k′1 ≥ k1, k′2 ≥ k2.

1. Inclusion: �x
(k1,k2)

⊆ �x
(k′

1,k′
2)

. (In particular, 0x
(k1,k2)

⊆0x
(k′

1,k′
2)

.)
2. Strictness: If k′1>k1 or k′2>k2, there exists an automatonQ′ s.t.�x

(k1,k2) �=�x
(k′

1,k′
2)

.

Proof (Sketch). Point 1) follows directly from the definitions, since Duplicator can al-
ways take pebbles away. Point 2) is illustrated in Figure 1, which holds for any kind of
simulation x ∈ {o, ∃di, ∀di, de, f}. 
�

q

q1 q2

q3

s

s1 s2 s3

s4

a a

Σ \ {b1} Σ \ {b2}

Σ

a a a

c1
c2 c3

Σ

�x
(2,3)

Fig. 1. Example in which q �x
(2,3) s, but q 	�x

(k1,k2) s for any k1 ≤ 2, k2 ≤ 3, with k1 < 2
or k2 < 3. The alphabet is Σ′ = {a} ∪ Σ, with Σ = {b1, b2, c1, c2, c3}. Note that both
automata recognize the same language, both over finite and infinite words: Lfin(q) = Lfin(s) =
a(c1 + c2 + c3)Σ∗ and Lω(q) = Lω(s) = a(c1 + c2 + c3)Σω.

Theorem 2. For any k1, k2 ∈ N>0 and any automaton Q,

1. �∃di
(k1,k2)⊆�o

(k1,k2) 2. �∀di
(k1,k2)

⊆�de
(k1,k2)

⊆�f
(k1,k2)⊆�o

(k1,k2)
.

Moreover, for each containment, there exists Q s.t. the containment is strict.

Proof. The containments follow directly from the definitions. For the strictness, con-
sider again the example in Figure 1, with the modifications below. If no state on the
right is accepting, then no simulation holds except ordinary simulation. If q is accepting,
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then universal direct simulation does not hold, but delayed simulation does. Finally, if
the only accepting state is q, then delayed simulation does not hold, but fair simulation
does. Is is easy to generalize this example for any k1, k2 ∈ N>0. 
�

3 Finite Words

Lemma 1. For any automaton Q with n states and states q, s ∈ Q:

1. q �∃di
(k1,k2) s implies Lfin(q) ⊆ Lfin(s), for any k1, k2 ∈ N>0.

2. q �o
(k1,k2) s implies Tr(q) ⊆ Tr(s), for any k1, k2 ∈ N>0.

3. Lfin(q) ⊆ Lfin(s) implies q �∃di
(n,n) s, provided that Q is complete.

4. Tr(q) ⊆ Tr(s) implies q �o
(n,n) s, provided that Q is complete.

In particular, the last two points above show that existential-direct (resp., ordinary)
simulation “reaches” language inclusion (resp., trace inclusion) at (n, n).

Subset constructions. The subset construction is a well-known procedure for deter-
minizing NFAs [8]. It is not difficult to generalize it over alternating automata, where
it can be used for eliminating existential states, i.e., to perform the de-existentialization
of the automaton. The idea is the same as in the subset construction, except that, when
considering a-successors of a macrostate (for a symbol a ∈ Σ), existential and uni-
versal states are treated differently. For existential states, we apply the same procedure
as in the classic subset construction, by taking always all a-successors. For universal
states, each a-successor induces a different transition in the subset automaton. This
ensures that macrostates can be interpreted purely disjunctively, and the language of a
macrostate equals the union over the language of the states belonging to it. Accordingly,
a macrostate is accepting if it contains some state which is accepting.

The previous construction can be dualized for de-universalizing finite automata. For
an AFA Q, let S∃(Q) and S∀(Q) be its de-existentialization and de-universalization,
respectively. (See Definitions 1 and 2 in Appendix B.1 of the technical report [2].)

The following lemma formalizes the intuition that multipebble simulations for AFA
in fact correspond to (1, 1)-simulations over the appropriate subset-constructions.

Lemma 2. Let Q1,Q2 be two AFAs over the same alphabet Σ, with |Q1| = n1 and
|Q2| = n2. Then, for any k1 ≤ n1 and k2 ≤ n2,

Q1 �∃di
(k1,n2)

Q2 ⇐⇒ Q1 �∃di
(k1,1) S∃(Q2) (1)

Q1 �∃di
(n1,k2)

Q2 ⇐⇒ S∀(Q1) �∃di
(1,k2)

Q2 (2)

Q1 �∃di
(n1,n2)

Q2 ⇐⇒ S∀(Q1) �∃di
(1,1) S∃(Q2) . (3)

4 Infinite Words

Multipebble existential-direct simulation is not suitable for being used for ω-automata,
since it does not even imply ω-language inclusion.



304 L. Clemente and R. Mayr

Theorem 3. For any k1, k2 ∈ N>0, not both equal to 1, there exist an automaton Q
and states q, s ∈ Q s.t. q �∃di

(k1,k2)
s holds, but Lω(q) �⊆ Lω(s).

Proof. Consider the example in Figure 2(a). Clearly, q �∃di
(1,2) s holds, since Duplicator

can split pebbles on the successors of s, and one such pebble is accepting, as required
by existential-direct simulation. But Lω(q) �⊆ Lω(s): In fact, (ab)ω ∈ Lω(q) = (a(b+
c))ω, but (ab)ω �∈ Lω(s) = ((ab)∗ac)ω. 
�

q s

a a a
b c

b c
�∃di

(1,2)

(a) An example in which q �∃di
(1,2) s

holds, but Lω(q) 	⊆ Lω(s).

q0

q1

s0

s1 s2

a

b

b

a

a b

a b

	�f
(n,n)

(b) An example in which Lω(q0) ⊆
Lω(s0) holds, but q0 	�f

(n,n) s0.

Fig. 2. Two examples

This motivates the definition of universal-direct simulation, which does imply ω-
language inclusion, like the coarser delayed and fair simulations.

Theorem 4. For x∈{∀di, de, f}, automaton Q, k1, k2 ∈ N>0 and states q, s ∈ Q,

q �x
(k1,k2) s implies Lω(q) ⊆ Lω(s) .

Unlike in the finite word case, ω-language inclusion is not “reached” by the simula-
tions {∀di, de, f}. See Figure 2(b) and Appendix C in the technical report [2].

Theorem 5. For any x ∈ {∀di, de, f}, there exist an automaton Q and states q0, s0 ∈
Q s.t. Lω(q0) ⊆ Lω(s0), but q0 ��x

(n,n) s0.

The Miyano-Hayashi construction The Miyano-Hayashi (MH) construction [10] is a
subset-like construction for ABAs which removes universal non-determinism, i.e., it
performs the de-universalization of ω-automata. The idea is similar to the analogous
construction over finite words, with extra bookkeeping needed for recording visits to
accepting states, which may occur not simultaneously for different runs. A set of obli-
gations is maintained, encoding the requirement that, independently of how universal
non-determinism is resolved, an accepting state has to be eventually reached. There
is a tight relationship between these obligations and fair multipebble simulation. For
an ABA Q, let Qnd be the de-universalized automaton obtained by applying the MH-
construction. (See also Definition 3 in Appendix C.1 of the technical report [2].)

The following lemma says that the MH-construction produces an automaton which
is (n, 1)-fair-simulation equivalent to the original one, and this result is “tight” in the
sense that it does not hold for either direct, or delayed simulation.
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Lemma 3. For any ABA Q, let Qnd be the NBA obtained according to the Miyano-
Hayashi de-universalization procedure applied to Q. Then,

a) Q �x
(n,1) Qnd, for x ∈ {f, ∀di}, and a’) ∃ automaton Q1 s.t. Q1 ��de

(n,1) Q1
nd,

b) Qnd �f
(1,1) Q, and b’) ∃ automaton Q2 s.t. Q2

nd ��x
(1,1) Q2, for x ∈ {de, ∀di}.

q0

q11 q12

a a

q21

a

q22

a

q31
a

a

q32
a

a

s0

s1

a

s2

a

s3
a

a

q0

q11 q12

a a

q21

a

q22

a

q′31
a

a

q32
a

a

Q1 	�de
(n,1) Qnd 	�{∀di,de}

(1,1) Q2

Fig. 3. An example showing automata Q1 and Q2 s.t. Q1 	�de
(n,1) Qnd (n = 2 suffices), and

Qnd 	�x
(1,1) Q2 for x ∈ {∀di, de}. The only difference between Q1 and Q2 is the state q31 being

accepting in the former and q′31 being non-accepting in the latter. Notice that Q1
nd = Q2

nd = Qnd.
The states in Qnd are: s0 = ({q0}, {q0}), s1 = ({q11, q12}, {q12}), s2 = ({q21, q22}, ∅),
s3 = ({q31, q32}, {q32}).

Since fair simulation implies language inclusion,Q andQnd have the same language.
This constitutes an alternative proof of correctness for the MH-construction.

The MH-construction “preserves” fair simulation in the following sense.

Lemma 4. Let Q,S be two ABAs. Then, Q �f
(n,1) S ⇐⇒ Qnd �f

(1,1) Snd.

Remark 3. A weaker version of the “only if” direction of Lemma 4 above, namely
Q �f

(1,1) S =⇒ Qnd �f
(1,1) Snd (notice the (1, 1) in the premise), had already appeared

in [5]. The same statement for both direct and delayed simulation is false, unlike as
incorrectly claimed in [5]. In fact, it can be shown (with an example similar to Figure 3)
that there exist automata Q and S s.t. Q �x

(1,1) S, but Qnd ��x
(1,1) Snd, with x ∈

{di, de}. Finally, the “if” direction of Lemma 4 can only be established in the context
of multiple pebbles, and it is new.

Transitivity. While most (k1, k2)-simulations are not transitive, some limit cases are.
By defining a notion of join for (1, n)- and (n, 1)-strategies (see Appendix C.2 in the
technical report [2]), we establish that (1, n) and (n, 1) simulations are transitive.
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Theorem 6. Let Q be an ABA with n states, and let x ∈ {∀di, de, f}. Then, �x
(1,n) and

�x
(n,1) are transitive.

Remark 4 (Difficulties for (n, n) transitivity.). We did consider transitivity for (n, n)-
simulations on ABA, but found two major issues there. The first issue concerns directly
the definition of the join of two (n, n)-strategies, and this holds for any x ∈ {∀di, de, f}:
The so-called “puppeteering technique”, currently used for defining the join for (1, n)-
and (n, 1)-strategies, requires to maintain several games, and to pipe the output from
one game to the input of one or more other games. This creates a notion of dependency
between different games. For (1, n) and (n, 1), there are no cyclic dependencies, and we
were able to define the joint strategy. However, for (n, n)-simulations, there are cyclic
dependencies, and it is not clear how the joint strategy should be defined.

The second issue arises from the fact that we further require that the join of two
winning strategies is itself a winning strategy. Therefore, the joint strategy needs to
carry an invariant which implies the x-winning condition, for x ∈ {∀di, de, f}. While
such an invariant for x = ∀di is straightforward, it is not clear what the correct invariant
should be for either delayed or fair simulation.

5 Quotienting

In the following we discuss how multipebble simulation preorders can be used for state-
space reduction of alternating automata, i.e., we discuss under which notions of quotient
the quotient automaton recognizes the same language as the original one.

Let Q = (Q,Σ, qI , Δ,E, U, F ) be an alternating automaton, over finite or infinite
words. Let 0 be any binary relation on Q, and let ≈ be the induced equivalence, defined
as ≈=0∗ ∩(0∗)−1. [·] : Q �→ [Q] is the function that maps each element q ∈ Q to the
equivalence class [q] ∈ [Q] it belongs to, i.e., [q] := {q′ | q ≈ q′}. We overload [P ] on
sets P ⊆ Q by taking the set of equivalence classes.

In all the notions of quotients that will be defined, only the transition relation varies.
Thus, we gather the common part under a quotient skeleton. We define the quotient
skeleton Q≈ = ([Q], Σ, [qI ], Δ≈, E

′, U ′, F ′) as follows: E′ := [E], U ′ := [Q] \ E′ =
{ [q] | [q] ⊆ U } and F ′ = [F ]. We leave Δ≈ unspecified at this time, as it will have
different concrete instantiations later. Notice that mixed classes, i.e., classes containing
both existential and universal states, are declared existential.

The following definitions are borrowed from [5]. We say that q′ ∈ Δ(q, a) is a k-x-
minimal a-successor of q iff there there is no strictly �x

(1,k)-smaller a-successor of q,
i.e., for any q′′ ∈ Δ(q, a), q′′ �x

(1,k) q
′ implies q′ �x

(1,k) q
′′. Similarly, q′ ∈ Δ(q, a) is

a k-x-maximal a-successor of q iff for any q′′ ∈ Δ(q, a), q′ �x
(1,k) q

′′ implies q′′ �x
(1,k)

q′. Let mink ,x
a (q)/maxk ,x

a (q) be the set of minimal/maximal successors.

5.1 Finite Words

Let 0 be any preorder which implies language inclusion over finite words, i.e., q 0
s =⇒ Lfin(q) ⊆ Lfin(s). In particular, one can take 0= (�∃di

(k1,k2)
)∗, or even 0 equal

to language inclusion itself. As before, let ≈ be the equivalence induced by 0. It is
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well known that automata over finite words can be quotiented w.r.t. any preorder which
implies language equivalence. Here, we show that not all transitions are needed, and that
is is sufficient to consider 0-maximal successors of existential states and 0-minimal
successors of universal states. We define the minimax [5] quotient automaton Qm

≈ by
instantiating the quotient skeleton (see Section 5) with transition relation Δ≈ := Δm

≈,
where ([q], a, [q′]) ∈ Δm

≈ iff either

– [q] ∈ E′ and ∃ q̂ ∈ [q] ∩ E, q̂′ ∈ [q′] s.t. (q̂, a, q̂′) ∈ Δ ∧ q̂′ ∈ max�
a (q̂), or

– [q] ∈ U ′ and ∃ q̂ ∈ [q], q̂′ ∈ [q′] s.t. (q̂, a, q̂′) ∈ Δ and q̂′ ∈ min�
a (q̂).

Notice that transitions from universal states in mixed classes are ignored altogether.

Lemma 5. Let Q be any alternating finite automaton, and let 0 be any preorder which
implies finite-language inclusion. Then, for any q ∈ Q, Lfin(q) = Lfin([q]m).

5.2 Infinite Words

Unlike for finite words, it is well known that quotienting ω-automata w.r.t. ω-language-
equivalence does not preserve the ω-language. It has even been shown that quotienting
w.r.t. (1, 1)-fair (bi)simulation does not preserve the ω-language either [7,4]. Therefore,
one has to look for finer simulations, like delayed or direct simulation. Notice that
multipebble existential-direct simulation cannot be used for quotienting, since it does
not even imply ω-language inclusion—see Theorem 3.

Theorem 7. For any k1, k2 ∈ N>0 and x ∈ {∃di, f} there exists an ABA Q s.t.
Lω(Q) �= Lω(Q≈), with ≈:=≈x

(k1,k2). For x = ∃di, k1 and k2 must not be both equal

to 1. (Note that ≈∃di
(1,1)-quotienting does preserve the ω-language.)

Thus, in the following we concentrate on universal-direct and delayed simulation.

Minimax quotients for universal-direct simulation. In [5] it has been shown that mini-
max quotients preserve the ω-language (for direct simulation), and that one can consider
just maximal/minimal successors of existential/universal states, respectively. Here, we
improve this notion, by showing that, when considering multiple-pebbles, it is not
needed to consider every maximal successor of existential states, but it is safe to dis-
card those maximal successors which are (1, k)-simulated by a k-set of other maximal
successors. This suggests the following definition: For q̂ ∈ E, a ∈ Σ and k > 0, we
say that q̂′ is a set of k-maximal representatives for a-successors of q̂ iff

q̂′ ⊆ maxk ,∀di
a (q̂) ∧

(
∀q′′ ∈

(
maxk ,∀di

a (q̂) \ q̂′) . ∃q̂′′ ∈ 2q̂′,k. q′′ �∀di
(1,k) q̂′′

)
(4)

Notice that the above definition is non-deterministic, in the sense that there might be
different sets of maximal representatives: In this case, one can just take any ⊆-minimal
set satisfying Equation 4. In the following, we assume that a set of maximal represen-
tatives q̂′ has been selected for any q̂ ∈ E and a ∈ Σ.

We define the minimax+ quotient automatonQm+
≈ by instantiating the quotient skele-

ton (see Section 5) with transition relation Δ≈ := Δm+
≈ , which differs from Δm

≈ just for
existential and mixed classes: ([q], a, [q′]) ∈ Δm+

≈ with [q] ∈ E′ iff
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– there exist q̂ ∈ [q] ∩ E and q̂′ ∈ [q′] s.t. (q̂, a, q̂′) ∈ Δ and q̂′ ∈ q̂′, where q̂′ is a
fixed set of k-maximal representatives for a-successors of q̂, as defined above.

Our definition of minimax+ quotient differs from the one in [5] also w.r.t. the treat-
ment of mixed classes, as discussed in the following remarks.

Remark 5. While in [5] universal states in mixed classes do induce transitions (to min-
imal elements), in our definition we ignore these transitions altogether. In the setting of
(1, 1)-simulations these two definitions coincide, as they are shown in [5] to yield ex-
actly the same transitions, but this needs not be the case in our setting: In the context of
multiple-pebbles, one minimal transition from a universal state qU might be subsumed
by no single transition from some existential state qE in the same class, but it is always
the case that qE has a set of transitions which together subsume the one from qU (cf.
Lemma 15 in Appendix D.3 [2]). In this case, we show that one can in fact always
discard the transitions from qU . Thus, in the context of multiple-pebbles, minimax+
quotients result in less transitions than just minimax quotients from [5].

Remark 6. While minimax mixed classes are deterministic when considering (1, 1)-
simulations [5], this is not necessarily true when multiple pebbles are used.

Theorem 8. q ≈∀di
(1,n) [q]m+, where the quotient is taken w.r.t. the transitive closure of

�∀di
(1,k), for any k such that 1 ≤ k ≤ n. In particular, Lω(q) = Lω([q]m+).

Semielective quotients for delayed simulation. It has been shown in [5] that minimax
quotients w.r.t (1, 1)-delayed simulation on ABA do not preserve the ω-language. The
reason is that taking just maximal successors of existential states is incorrect for delayed
simulation, since a visit to an accepting state might only occur by performing a non-
maximal transition. (This is not the case with direct simulation, where if a simulation-
smaller state is accepting, then every bigger state is accepting too.) This motivates the
definition of semielective quotients [5], which are like minimax quotients, with the only
difference that every transition induced by existential states is considered, not just maxi-
mal ones. Except for that, all previous remarks still apply. In particular, in mixed classes
in semielective quotients it is necessary to ignore non-minimal transitions from univer-
sal states—the quotient automaton would recognize a bigger language otherwise.

While for the (1, 1)-simulations on ABA in [5] it is actually possible to ignore transi-
tions from universal states in mixed classes altogether (see Remark 5), in the context of
multiple-pebbles this is actually incorrect (see Figure 5 in Appendix D.3 of the technical
report [2]). The reason is similar as why non-maximal transitions from existential states
cannot be discarded: This might prevent accepting states from being visited. We define
the semielelective+ quotient automaton Qse+

≈ by instantiating the quotient skeleton (see
Section 5) with Δ≈ := Δse+

≈ , where

([q], a, [q′])∈Δse+
≈ ⇐⇒ (q, a, q′)∈Δ and either q∈E, or q∈U and q′∈minn,de

a (q)

Theorem 9. q ≈de
(1,n) [q]se+, where the quotient is taken w.r.t. �de

(1,n). In particular,
Lω(q) = Lω([q]se+).
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qI

qu qe

q0 q1 q2 q3

a a

a a a a

a a a a
e

a a

b, c, d
b c d b, c

c, d

a

qu ≈de
(1,2) qe

q0 �de
(1,3) q1

q0 	�de
(1,2) q1

q1 	�de
(1,3) q0

Fig. 4. (1, k)-semielective+ quotients on ABA do not preserve the ω-language for 1 < k < n in
general. Let k = 2. The only two (1, k)/(1, n)-equivalent states are qu and qe, and in the quotient
they form a mixed class. q1 is not a (1, n)-minimal a-successor of qu, but it is a (1, k)-minimal
successor for k = 2. Thus, the only difference between the (1, n)- and (1, k)-semielective+
quotients is that the dashed transition is (correctly) not included in the former, but (incorrectly)
included in the latter. Thus the (1, k)-semielective+ quotient automaton would incorrectly accept
the word w = aaeaω 	∈ Lω(qI) = aaa{b + c + d}aω .

Remark 7. It is surprising that, unlike for NBA [3], quotienting ABA w.r.t. (1, k)-de
simulations, for 1 < k < n, does not preserve the language of the automaton in general.
The problem is again in the mixed classes, where minimal transitions from universal
states can be selected only by looking at the full (1, n)-simulation. See the counterex-
ample in Figure 4, where the dashed transition is present in the (1, k)-quotient, despite
being non-(1, n)-minimal.

Remark 8. Semielective multipebble quotients can achieve arbitrarily high compres-
sion ratios relative to semielective 1-pebble quotients, (multipebble-)direct minimax
quotients and mediated preorder quotients [1] (see Figure 6 in Appendix D.3 [2]).

6 Solving Multipebble Simulation Games

In this section we show how to solve the multipebble simulation games previously de-
fined. We encode each simulation game into a 2-player game-graph with an ω-regular
winning condition. In the game-graph, Eve will take the rôle of Duplicator, and Adam
the one of Spoiler. A game-graph is a tuple G = 〈VE, VA,→〉, where nodes in VE be-
long to Eve (mimicking Duplicator), and nodes in VA belong to Adam (mimicking
Spoiler). Transitions are represented by elements in →⊆ (VE × VA ∪ VA × VE), where
we write p → q for (p, q) ∈→. Notice that the two players strictly alternate while
playing, i.e., the game graph is bipartite. We write V for VE ∪ VA. We introduce the
following monotone operator on 2VA : For any x ⊆ VA, cpre(x) := {v0 ∈ VA | ∀v1 ∈
VE. (v0 → v1 =⇒ ∃v2 ∈ x. v1 → v2)}, i.e., cpre(x) is the set of nodes where Eve
can force the game into x.
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We define various game-graphs for solving simulations. We express the winning re-
gion of Eve as a μ-calculus fixpoint expression over VA [9], which can then be evaluated
using standard fixpoint algorithms. We derive the desired complexity upper bounds us-
ing the following fact:

Lemma 6. Let e be a fixpoint expression over a graph V , with |V | ∈ nO(k). Then, for
any fixed k ∈ N, evaluating e can be done in time polynomial in n.

For solving direct and fair simulation, we refer the reader to Appendix E [2]. Here, we
consider just delayed simulation, which is the most difficult (and interesting).

The natural starting point for defining Gde is the definition in [3] of the game-graph
for computing (1, k)-simulations for NBAs. Unfortunately, the game-graph in [3] is
actually incorrect: According to the definition of delayed simulation (cf. Section 2),
every new obligation encountered when the left side is accepting at some round should
be independently satisfied by the right side, which has to be good since that round. Now,
the algorithm in [3] just tries to satisfy the most recent obligation, which overrides
all the previous ones. This is an issue: If the left side is continuously accepting, for
example, then the right side might simply have not enough time to satisfy any obligation
at all. Therefore, [3] actually computes an under-approximation to delayed simulation.

We overcome this difficulty by explictly bookkeeping all pending constraints. This
leads to the following definitions. The game-graph for delayed simulation is Gde =
〈V de

E , V de
A ,→de〉, where nodes in V de

A are of the form v(q,Bad,s,Good), and nodes in V de
E

of the form v(q,Bad,s,Good,a,q′,s′), with q,q′, s, s′ ⊆ Q. Bad = 〈b1 ⊃ · · · ⊃ bm1〉 and
Good = 〈g1 ⊂ · · · ⊂ gm2〉 are two sequences of sets of states from Q, strictly ordered
by set-inclusion, which are used to keep track of multiple obligations.

Intuitively, Bad is used to detect when new constraints should be created, i.e., to
detect when every Left pebble is universally good since some previous round. At each
round, a new set of bad pebbles b = q \ F is added to Bad. When accepting states
are visited by Left pebbles, they are discarded from every set b ∈ Bad. When some
b becomes eventually empty, this means that, at the current round, all Left pebbles are
universally good since some previous round: At this point, b is removed from Bad, and
we say that the red light flashes.

The sequence Good represents a set of constraints to be eventually satisfied. Each
g ∈ Good is a set of good pebbles, which we require to “grow” until it becomes equal
to s. When Good = ∅, there is no pending constraint. Constraints are added to Good
when the red light flashes (see above): In this case, we update Good by adding the
new empty constraint g = ∅. When accepting states are visited by Right pebbles, we
upgrade every constraint g ∈ Good by adding accepting states. Completed constraints
g = s are then removed from Good, and we say that the green light flashes.

Lemma 7.
∣∣V de

∣∣ ≤ 2·(n+1)2(k1+k2) ·
(
1 + (k1 + 1)k1+1

)
·
(
1 + 2(k2 + 1)k2+1

)
·|Σ|.

Transitions in Gde are defined as follows. For any (q, s, a,q′′, s′′) ∈ Γ Sp, we have
v(q,Bad,s,Good) →de v(q,Bad,s,Good,a,q′′,s′′), and for (q, s, a,q′′, s′′,q′, s′) ∈ ΓDup, we
have v(q,Bad,s,Good,a,q′′,s′′) →de v(q′,Bad′,s′,Good′), where Bad′,Good′ are computed
according to Algorithm 1 in Appendix E.3 of the technical report [2].

We have that Eve wins iff every red flash is matched by at least one green flash,
and different red flashes are matched by different green ones. This can be checked by
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verifying that infinitely often either Good = ∅ or s ∈ Good, i.e., it is not the case
that Good contains a constraint that it is not eventually “completed” and discarded. Let
T = {v(q,Bad,s,Good) | Good = ∅ ∨ s ∈ Good}, and define the initial configuration as

vI =
{
v(q,{q\F},s,∅) if q \ F �= ∅
v(q,∅,s,{s∩F}) otherwise

q �de
k1,k2

s iff T is visited infinitely often iff vI ∈W de =νxμy (cpre(y)∪T∩cpre(x)).

Theorem 10. For any fixed k1, k2 ∈ N, x ∈ {∀di, ∃di, de, f} and sets q, s ⊆ Q,
deciding whether q �x

(k1,k2) s can be done in polynomial time.

7 Conclusions and Future Work

Transitivity for (n, n)-simulations. As discussed at the end of Section 4, composing
(n, n) (winning) strategies is apparently much more difficult than in the (1, n) and
(n, 1) case. We conjecture that all types of (n, n)-simulations discussed in this paper
are transitive, and showing this would conceivably solve the join problem as well.

Quotienting with (n, 1)- and (n, n)-simulations. While we have dealt with (1, n)-
quotients, we have not considered (n, 1)- or (n, n)-quotients. For the latter, one should
first solve the associated transitivity problem, and, for both, an appropriate notion of
semielective-quotient has to be provided. We have shown that this is already a non-
trivial task for (1, n)-simulations on ABA.

Future directions. Our work on delayed simulation has shown that several general-
izations are possible. In particular, two issues need to be addressed. The first is the
complexity of the structure of the game-graph needed for computing delayed simula-
tion. A possible generalization of delayed simulation involving looser “synchronization
requirements” between obligations and their satisfaction might result in simpler game-
graphs. The second issue concerns Lemmas 3 and 4: We would like to find a weaker
delayed-like simulation for which the counterexample shown there does not hold. This
would give a better understanding of the MH-construction.

As in [4], it is still open to find a hierarchy of (k1, k2)-multipebble simulations con-
verging to ω-language inclusion when k1 = k2 = n.

Acknowledgment. We thank K. Etessami and C. Fritz for helpful discussions, and an
anonymous referee for suggesting the comparison to mediated preorder [1].
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space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–1175 (2005)

5. Fritz, C., Wilke, T.: Simulation relations for alternating Büchi automata. Theor. Comput.
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Abstract. We study decision problems for parameterized verification
of a formal model of Ad Hoc Networks with selective broadcast and
spontaneous movement. The communication topology of a network is
represented as a graph. Nodes represent states of individual processes.
Adjacent nodes represent single-hop neighbors. Processes are finite state
automata that communicate via selective broadcast messages. Reception
of a broadcast is restricted to single-hop neighbors. For this model we
consider verification problems that can be expressed as reachability of
configurations with one node (resp. all nodes) in a certain state from
an initial configuration with an arbitrary number of nodes and unknown
topology. We draw a complete picture of the decidability boundaries
of these problems according to different assumptions on communication
graphs, namely static, mobile, and bounded path topology.

1 Introduction

In recent years there has been an increasing interest in the formal specification of
protocols used in Ad Hoc Networks. Building on previous models like [7,19,21], in
[22] Singh, Ramakrishnan and Smolka define the ω-calculus as a formal model
of Ad Hoc Networks with selective broadcast and spontaneous movement. In
the ω-calculus a configuration consists of a finite set of processes. Each process
has a local state and an interface containing a finite set of group names. A
group name represents a possible communication link with other processes in the
network. From an abstract point of view, the structure underlying a configuration
of the ω-calculus is a finite graph that defines the communication topology of
a network. A node in the graph represents the current state of an individual
process. There exists and edge between two nodes if the corresponding interfaces
share a common group name. Adjacent nodes are called single-hop neighbors.
Processes communicate through selective broadcast. Specifically, a broadcast
message can be received only by the set of single-hop neighbors of the emitter.

When the number of nodes is fixed a priori, formal models of Ad Hoc Net-
works like those provided by the ω-calculus can be verified by using finite-state
model checking [11] or constraint-based model checking [22]. Lifting the study
of verification problems to the parameterized case in which networks have arbi-
trary size and possibly unknown topology is a challenging problem for this class
of distributed systems.

In the present paper we study parameterized verification problems for an
automata-based model of Ad Hoc Networks, we named AHN, inspired by the

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 313–327, 2010.
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ω-calculus of [22]. Each node of a network is modeled as a finite-state automa-
ton in which local transitions model either an internal action, a broadcast or a
reception of a message taken from a finite alphabet. A protocol is defined then
as the composition of a finite but arbitrary number of copies of the automaton
running in parallel. As in the ω-calculus a configuration can naturally be viewed
as a graph that defines the communication topology. We use group names and
interfaces to select the set of neighbors of an emitter that are capable to receive
a broadcast message. In our model we define verification problems parametric on
the size (number of nodes) and shape (topology of the communication graph) of
the initial configurations. Our investigations take into account different assump-
tions on the communication topology. Specifically, we consider configurations
either with static or mobile topology and with static and bounded path topol-
ogy. In the latter case we assume that there is an upper bound on the length of
simple paths in the communication graphs underlying the initial configurations.
For each of the above mentioned assumptions, we present a systematic analy-
sis of the following decision problems: (cover) reachability of a configuration
with one node in a given state, (target) reachability of a configuration with all
nodes in a given state, (repeat-cover) existence of a computation traversing
infinitely often configurations with at least one node in a given state.

Our main negative result is that all three parameterized problems are unde-
cidable for arbitrary static topology. The proofs are based on a simulation of a
Turing complete formalism which is correct only for topologies of a given size
and shape. As the topology is arbitrary, the simulation is preceded by a protocol
able to explore the current topology and to start the simulation only if it is of
the expected form.

Perhaps surprisingly, all three problems become decidable in the mobile case.
This result is similar to what happens in channel systems where introducing
lossiness simplifies the verification task [3]. For static bounded path topologies,
target and repeat-cover turn out to be undecidable while cover is still
decidable. The latter result is similar to those presented in [23,15] for bounded
depth processes with point-to-point communication. However, due to broadcast
communication we need to resort to a different proof technique. Namely, even
if we use the theory of well structured transition systems (WSTS) [1,2,12] as
in [15,23], we need to consider a stronger ordering on configurations based on
the induced subgraph ordering [5] instead of the subgraph embedding. To the
best of our knowledge, this is the first case of application of the induced sub-
graph ordering in the context of WSTS.

Related Work. Formal models of networks in which all processes receive a
broadcast message at once are presented and analyzed in [6,8,19]. In our setting
this kind of broadcast is modeled by configurations whose underlying graph is
a clique. Selective broadcast has been studied in several process calculi for ad
hoc networks and wireless communication like those presented in [7,13,14,16,21],
some of which turn out to be extensions of the pi-calculus [17]. A distinguished
feature of the ω-calculus [21,22] is that mobility of processes is abstracted from
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their communication actions, i.e., mobility is spontaneous and it does not involve
any communication. In [22] the authors define a constraint-based analysis for
configurations with a fixed number of nodes. The shape of topologies leading to
bad configurations is constructed in a lazy manner during a symbolic exploration
of the state space. The symbolic approach in [22] seems to improve verification
results obtained with more standard model checking tools like Uppaal [11]. In
the same paper the authors mention that, without name restriction, reachability
of a configuration from an initial one is decidable. In the present paper we lift our
reachability problems to the parameterized case in which the initial configuration
has unknown size and shape. For networks of arbitrary size, in [20] Saksena
et al. define a symbolic procedure based on graph-transformations to analyze
routing protocol for Ad Hoc Networks. The symbolic representation is based on
upward closed sets of graphs ordered by subgraph inclusion. The procedure is
not guaranteed to terminate. In our paper we use a different ordering on graphs,
namely induced subgraph, for ensuring termination of backward reachability on
graphs with paths of bounded length.

Due to lack of space, omitted proofs can be found in [4].

2 A Formal Model for Ad Hoc Network Protocols

Following [22], a configuration of an Ad Hoc Network is modeled as a tuple of
nodes 〈n1, . . . , nk〉 with k ≥ 1. A node ni maintains information about the cur-
rent state of an individual process and its current set of communication links.
The behavior of a single node is described by a finite-state automaton, called
process, in which transitions represent internal, broadcast, or reception actions.
Concerning the representation of communication links, a convenient way to de-
scribe the network topology is based on the use of group names. Specifically,
to each node we associate an interface that defines the set of group names to
which the node belongs. Two nodes are connected if their interfaces share at
least one common group name. The semantics of the transitions specifies how
different nodes interact in a global configuration. We assume that nodes cannot
dynamically be created or deleted.

Definition 1. An Ad Hoc Network Protocol (shortly AHN) is a pair 〈P,G〉
where P is a process definition and G is a denumerable set of group names.
A process P = 〈Q,Σ,E,Q0〉 defines the behavior of a single node of the net-
work. Here Q is a finite set of control states, Σ is a finite alphabet, E ⊆
Q × ({τ} ∪ {b(a), r(a) | a ∈ Σ}) × Q is the transition relation, and Q0 ⊆ Q
is a set of initial control states.

The label τ represents an internal action of a process, the label b(a) represents
the capability of broadcasting message a, and r(a) the capability of receiving
message a.

Definition 2. Assume P = 〈Q,Σ,E,Q0〉. A node n is a pair 〈q, I〉, where
q ∈ Q is called the state and I ⊆ G is the called the interface of the node. A
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Fig. 1. Graph associated to a configuration

configuration γ is a tuple 〈n1, . . . , nk〉 of nodes with size k ≥ 1.
We use C to denote the set of configurations of any size.

A configuration γ defines a given network topology specified by the graph G(γ).
The vertices in G(γ) are in bijection with the nodes of γ. The label of a vertex
is the state of the corresponding node in γ. Furthermore, there exists an edge
between two vertices in G(γ) if and only if the intersection of the interfaces of
the corresponding nodes in γ is not empty.

For instance, consider a configuration γ with nodes n1 = 〈q4, {g1, g2}〉, n2 =
〈q3, {g1, g3}〉, n3 = 〈q3, {g2, g3}〉, n4 = 〈q1, {g3, g4}〉, n5 = 〈q2, {g4}〉, and n6 =
〈q3, {g4}〉, the communication topology induced by γ is depicted in Figure 1.

We define functions σ and ι to extract the state and the interface of a node,
i.e., σ(〈q, I〉) = q and ι(〈q, I〉) = I. We extend σ and ι to configurations in
the natural way. For a configuration γ, we sometimes consider σ(γ) as a set
rather than a vector and use q ∈ σ(γ) to denote that there exists a node ni in
γ such that σ(ni) = q. The set of indexes of nodes adjacent to a node ni in a
configuration γ = 〈n1, . . . , nk〉 (single-hop neighbors of ni in G(γ)) is defined as
Shn(γ, i) = {j ∈ [1..k] | ι(ni) ∩ ι(nj) �= ∅ and j �= i}. For a broadcast message
a ∈ Σ, we define the set of indexes Rec(γ, a) = {j ∈ [1..k] | (σ(nj), r(a), q) ∈
E for some q ∈ Q}. The set of nodes in γ enabled by a broadcast a sent by node
ni is then defined as Enabled(γ, i, a) = Shn(γ, i) ∩Rec(γ, a).

Operational Semantics. The semantics of an AHN 〈P = 〈Q,Σ,E,Q0〉,G〉
is given by its associated transition system TS(P,G) = 〈C,⇒, C0〉 (we recall
that C is the set of configurations of all possible size), C0 is the set of initial
configurations defined as C0 = {γ ∈ C | σ(γ) ⊆ Q0} and ⇒ is the transition
relation in C × C defined as follows.

Definition 3. For γ = 〈n1, . . . , nk〉 and γ′ = 〈n′
1, . . . , n

′
k〉, γ ⇒ γ′ iff one of the

following conditions holds:

Internal. There exists i ∈ [1..k] such that (σ(ni), τ, σ(n′
i)) ∈ E, ι(ni) = ι(n′

i),
and n′

j = nj for all j ∈ [1..k] \ {i}.
Broadcast. There exists a ∈ Σ and i ∈ [1..k] such that (σ(ni),b(a), σ(n′

i)) ∈ E,
ι(ni) = ι(n′

i), and the following conditions hold:
– For all j ∈ Enabled(γ, i, a), (σ(nj), r(a), σ(n′

j)) ∈ E and ι(n′
j) = ι(nj);

– For all p /∈ (Enabled(γ, i, a) ∪ {i}), n′
p = np.

We denote by ⇒∗ the reflexive and transitive closure of ⇒. An execution is a
sequence γ0γ1 . . . such that σ(γ0) ⊆ Q0 and γi ⇒ γi+1 for i ≥ 0.
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As an example, consider a process definition in which Q = {q1, q2, q3, q4},
Σ = {a}, and E contains the rules

(q1, τ, q2), (q2,b(a), q4), (q1, r(a), q2), and (q3, r(a), q2)}

Starting from a connected component in which nodes have label q1 or q3, once an
alarm is detected by a q1 node (τ action), it is flooded (broadcast of message a)
to all single-hop neighbors which, in turn, forward the alarm to their neighbors,
and so on. After some steps, the alarm reaches all multi-hop neighbors yielding
a configuration in which all nodes (in the connected component) have label
q4.

3 Decision Problems

In this section we consider decision problems related to verification of safety and
liveness properties like those studied for Petri nets [9,10]. We remark that in our
formulation the size and the shape of of the initial configurations is not fixed
a priori. In the following definitions we assume an AHN 〈P,G〉 with transition
system TS(P,G) = 〈C,⇒, C0〉.

The first problem is control state reachability (cover) defined as follows: given
a control state q of P , do there exist γ ∈ C0 and γ′ ∈ C such that γ ⇒∗ γ′ and
q ∈ σ(γ′)?
We recall that a configuration γ is initial if σ(γ) ⊆ Q0. Notice that being initial
does not enforce any particular constraint on the topology. Thus, assume that
the state q represents an error state for a node of the network. If we can solve
cover, then we can decide if there exists a topology of the network and a
sufficient number of processes from which we can generate a configuration in
which the error is exposed.

The second problem is target reachability (target) which we define as follows:
given a subset of control states F of P , do there exist γ ∈ C0 and γ′ ∈ C such
that γ ⇒∗ γ′ and σ(γ′) ⊆ F?
Assume that the subset F represents blocking states for nodes of the network. If
we can solve target, then we can decide if there exists a topology of the network
and a sufficient number of processes from which we can reach a configuration in
which processes can no longer move.

Finally we will also study the repeated control state reachability problem
(repeat-cover): given a control state q of P , does there exist an infinite exe-
cution γ0 ⇒ γ1 ⇒ . . . such that the set {i ∈ N | q ∈ σ(γi)} is infinite?
This problem is a classical extension of the cover problem that can be used, for
instance, to verify whether a protocol is able to react to the occurrence of errors
by reaching a state from which errors do not occur any longer. Assume that q
represents the error state. If we can solve repeat-cover, then we can decide if
there exists a topology of the network and a sufficient number of processes that
can generate a computation including infinitely many error states.
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Fig. 2. The RAO (Req/Ack/Ok) protocol

4 Static Topology

In this section, we will prove that cover, target and repeat-cover are
all undecidable problems. We first recall that in our decision problems there are
no assumptions on the number of nodes and on the communication topology
of the initial configurations. Furthermore, the model does not admit dynamic
reconfigurations of the topology. Broadcast communication can be used however
to ensure that a specific protocol succeeds only if the network topology has a
certain form. To be more precise, consider the protocol specified by the process
Req/Ack/Ok (RAO) of Figure 2 where A0 and B0 are the initial states. The
following property then holds.

Proposition 1. Let G be a denumerable set of group names and γ an initial
configuration of the AHN 〈RAO,G〉. If γ′ is a configuration such that γ ⇒∗ γ′

and such that B3 ∈ σ(γ′), then the graph G(γ′) has the following properties:

– each node n labeled with B3 is adjacent to a unique node labeled with A3 (we
denote this node by f(n))1;

– for each node n labeled with B3, all the nodes adjacent to n or f(n) are
labeled with Err (except of course n and f(n)).

Proof. Assume n is a node of γ′ in state B3. Since n has received a message
ok to reach B3, it is necessarily adjacent to a node in state A3. No other node
adjacent to n can be in state A3. Indeed, if n receives two req messages before
sending an ack, then n moves to state Err. Furthermore, if n sends an ack,
then all adjacent nodes that are in states A0 (ready to send a req) move to
state Err. Rule (A0, r(req), Err) ensures that, in G(γ′), no node labeled Ai

is adjacent to a node labeled A3. Rules (B0, r(ack), Err) and (B1, r(ack), Err)
ensure that, when n has label B3, its single-hop neighbors cannot have label Bi.
Rule (B1, r(ok), Err) ensures that a node different from n but adjacent to f(n)
must have state different from Bi. Indeed, if such a node is in state B1, then
the broadcast ok sent by f(n) sends it to Err, and if such a node moves to B2

sending ack then it sends node f(n) to Err before it can reach A3. 
�
1 Two nodes are adjacent iff there is an edge between them.
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Using an extension of the RAO protocol, we can define an AHN which simulates
the execution of a deterministic two-counter Minsky machine and reduce the
halting problem to cover. A deterministic Minsky machine manipulates two
integer variables c1 and c2, which are called counters, and it is composed of a
finite set of instructions. Each of the instruction is either of the form (1) L : ci :=
ci + 1; goto L′ or (2) L : if ci = 0 then goto L′ else ci := ci − 1; goto L′′

where i ∈ {1, 2} and L,L′, L′′ are labels preceding each instruction. Furthermore
there is a special label LF from which nothing can be done. The halting problem
consists then in deciding whether or not the execution that starts from L0 with
counters equal to 0 reaches LF .

The intuition behind the reduction is as follows. In the first phase we use a
variant of the RAO protocol to select a control node and two list of nodes, with
state representing value 0 or 1, used to simulate the content of the counters.
The length of each list must be sufficient to represent the maximum value stored
in each counter during the simulation. All other nodes in the vicinity of the
control state and of the two lists are sent to an error state during the execution
of the first phase. In the second phase the control node starts the simulation of
the instructions. It operates by querying and changing the state of the nodes in
the two lists according to the type of instructions to be executed. In this phase
all nodes in the same list behave in the same way. Requests are propagated back
and forth a list by using broadcast sent by a node to its (unique) single-hop
successor/predecessor node. The protocols that define the two phases are fairly
complicated; the corresponding automata are described in detail in [4]. From the
undecidability of the halting problem for two-counter Minsky machines [18], we
obtain the following result.

Theorem 1. cover is an undecidable problem.

Furthermore, we have the following corollary.

Corollary 1. target and repeat-cover are undecidable problems.

Proof. Assume P = 〈Q,Σ,E,Q0〉 and let G be a denumerable set of group
names and q ∈ Q. To reduce cover to repeat-cover we simply add a loop
of the form (q, τ, q) to E. To reduce cover to target, we build the process
P ′ = 〈Q′, Σ′, E′, Q′

0〉 defined as follows:

– Q′ = Q 5 {r0, r1, rF } (with Q ∩ {r0, r1, rF } = ∅);
– Σ′ = Σ 5 {F1, F2} (with Σ ∩ {F1, F2} = ∅);
– E′ = E 5 {(q,b(F1), rF ), (r0, r(F1), r1), (r1,b(F2), rF )} ∪ {(q′, r(F2), rF ) |
q′ ∈ Q};

– Q′
0 = Q0 5 {r0}.

Let TS(P,G) = 〈C,⇒, C0〉 and TS(P ′,G) = 〈C′,⇒′, C′0〉. It is then easy to see
that there exist γ2 ∈ C′0 and γ′2 ∈ C′ such that γ2 ⇒′∗ γ′2 and σ(γ′2) ⊆ {rF } if
and only if there exists γ1 ∈ C0 and γ′1 ∈ C such that γ1 ⇒∗ γ′1 and q ∈ σ(γ′1). In
fact, in TS(P ′,G) after being in the state q a node can broadcast the message
F1 which launches a protocol whose goal is to send all the other nodes in the
state rF . 
�
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5 Mobile Topology

In this section we consider a variant on the semantics of AHN obtained by adding
spontaneous movement of nodes as in [22]. Node mobility is modeled by non-
deterministic updates of their interfaces. Formally, let 〈P,G〉 be a AHN with
TS(P,G) = 〈C,⇒, C0〉. The semantics of 〈P,G〉 with mobility is given by the
transition system TSM (P,G) = 〈C,⇒M , C0〉 where the transition ⇒M is defined
as follows.

Definition 4 (Transition Relation with Mobility). For γ, γ′ ∈ C with
γ = 〈n1, . . . , nk〉 and γ′ = 〈n′

1, . . . , n
′
k〉, we have γ ⇒M γ′ iff one the follow-

ing conditions holds:

– γ ⇒ γ′ (no movement);
– there exists i ∈ [1..k] such that, σ(n′

i) = σ(ni) (state does not change),
ι(n′

i) ⊆ G (interface changes in an arbitrary way), and for all j ∈ [1..k]\{i},
n′

j = nj (all other nodes remain unchanged) (movement).

We prove next that cover, repeat-cover and target are decidable for AHN
with mobility. Intuitively, this follows from the observation that the topology of
the network changes in an unpredictable and uncontrollable manner. Hence, ev-
ery broadcast message sent by a node is received by a non-deterministically cho-
sen set of nodes, namely those in the transmission range of the emitter at the time
the message is sent. Formally, we reduce cover, target and repeat-cover re-
spectively to the marking coverability, marking reachability and repeated marking
coverability problems for Petri nets, which are known to be decidable [9,10].

A Petri net (see e.g. [9]) is a tuple N = (S, T,m0), where S and T are finite sets
of places and transitions, respectively. A finite multiset over the set S of places is
called a marking, and m0 is the initial marking. Given a marking m and a place p,
we say that the place p contains m(p) tokens in the marking m if there are m(p)
occurrences of p in the multisetm. A transition is a pair of markings written in the
form m′ �→ m′′. The marking m of a Petri net can be modified by means of transi-
tions firing: a transition m′ �→ m′′ can fire if m(p) ≥ m′(p) for every place p ∈ S;
upon transition firing the new marking of the net becomes n = (m\m′)5m′′ where
\ and 5 are the difference and union operators for multisets, respectively. This is
written as m → n. We use →∗ [resp. →+ ] to denote the reflexive and transitive
closure [resp. the transitive closure] of →. We say that m′ is reachable from m if
m →∗ m′. The coverability problem for marking m consists of checking whether
m0 →∗ m′ with m′(p) ≥ m(p) for every place p ∈ S. The reachability problem
for markingm consists of checking whether m0 →∗ m. Finally, the repeated cover-
ability problem for marking m consists of checking wether there exists an infinite
executionm0 →+ m1 →+ m2 →+ . . . such that for all i ∈ N,mi(p) ≥ m(p) for ev-
ery place p ∈ S. The coverability, reachability and repeated coverability problems
are decidable for Petri nets [9,10].

We now show how to build a Petri net which simulates the behavior of an
AHN with mobility. Figure 3 gives an example of a Petri net associated to a
process. In the Petri net, each control state q has a corresponding place q, and
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Fig. 3. A Petri net which simulates an AHN with mobility

each node 〈q, I〉 of the network is represented by a token in the place q. The
interfaces of nodes (thus also the network topology) are abstracted away in
the Petri net. In the first phase, the net non-deterministically puts tokens in the
places corresponding to the initial control states of the process. Then it produces
a token in the place ok and the simulation begins. The broadcast communication
is modeled by a broadcast protocol whose effect is to deliver the emitted message
to a non-deterministically chosen set of potential receivers. More precisely, the
broadcast protocol can be started by a token in a place q such that (q,b(m), q′);
then the token is moved to a transient place q′b and a token is produced in the
place m ↑. During the execution of the protocol, every token in a place r such
that (r, r(m), r′) can receive the message moving in a transient place r′r . The
protocol ends when the token in the transient place q′b moves to the place q′.
The tokens in the transient places r′r can move to the corresponding places r′ only
when no broadcast protocol is running (when a broadcast protocol is running,
there is no token in the place ok). This broadcast protocol does not faithfully
reproduce the broadcast as formalized in the AHN model: in fact, in the Petri
net there is no guarantee that the tokens in the transient places r′r move to the
corresponding places r′ at the end of the execution of the protocol. A token that
remains in those transient places (thus losing the possibility to interact with
the other tokens in the Petri net) corresponds to a node in the AHN model that
disconnects, due to mobility, from the other nodes in the system. Testing whether
there is an execution in the AHN with mobility which ends in a configuration
where one of the nodes is in the control state q can be done by testing whether
the marking {q, ok} can be covered in the associated Petri net. Hence:

Theorem 2. There exists a reduction from the cover problem for AHN with
mobility to the marking coverability problem for Petri nets.

Using the same construction, we also obtain:
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Theorem 3. There exists a reduction from the repeat-cover problem for
AHN with mobility to the marking repeated coverability problem for Petri nets.

In order to reduce target to marking reachability we need to extend the Petri
net associated to an AHN, adding a final stage in the computation, dedicated
to the elimination of tokens from the places corresponding to the final states in
F . Intuitively we add a transition of the form {ok} �→ {end} and for each q ∈ F
we add a transition {end, q} �→ {end} and we then test if the marking where all
the places are empty except the place end is reachable.

Theorem 4. There exists a reduction from the target problem for AHN with
mobility to the marking reachability problem for Petri nets.

From these three last theorems and from the fact that the marking coverability,
marking repeated coverability and marking reachability problems are decidable
for Petri nets, we finally deduce:

Corollary 2. cover, repeat-cover and target are decidable for AHN with
mobility.

6 Static Bounded Path Topology

Let us go back to the AHN model with static topology. The possibility for
a message to pass through an unbounded number of new nodes is a key fea-
ture in the proof of Theorem 1 (undecidability of cover for static topology).
For this reason, it seems natural to study cover, target and repeat-cover
for a restricted class of configurations in which, for a fixed K, a message can
pass through at most K-different nodes. Formally, given an AHN 〈P,G〉 with
TS(P,G) = 〈C,⇒, C0〉 our class of restricted configurations is defined as follows:

Definition 5. Given an integer K ≥ 1, a configuration γ is a K-bounded path
configuration if the longest simple path in the associated graph G(γ) has length
at most K.

We denote by CK the set of K-bounded path configurations. The semantics
of the AHN 〈P,G〉 resticted to K-bounded path configurations is given by the
transition system TSK(P,G) = 〈CK ,⇒K , CK

0 〉 where the transition relation ⇒K

is the restriction of ⇒ to CK × CK and CK
0 = C0 ∩ CK . For fixed K, the class of

K-bounded path configurations contains an infinite set of graphs. To give some
examples, stars with a center node and any number of satellite nodes have always
3-bounded paths, whereas cliques of arbitrary size may have paths of unbounded
length.

6.1 Decidability of cover

In order to study cover restricted to bounded path configurations, we first
introduce some definitions and prove auxiliary properties. First of all, we give
the definition of the induced subgraph relation.
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Fig. 4. Examples of the induce subgraph relation

Definition 6. For configurations γ1 and γ2, we define γ1 �is γ2 if there exists
a label preserving injection h from nodes of G1 = G(γ1) to nodes of G2 = G(γ2)
such that (n, n′) is an edge in G1 if and only if (h(n), h(n′)) is an edge in G2,
i.e., G1 is isomorphic to an induced subgraph of G2.

Notice that the induced subgraph relation is stronger than the subgraph relation.
The subgraph ordering requires only a homomorphic embedding of G1 into G2.
To illustrate, in Fig. 4 (a) G1 is isomorphic to an induced subgraph of G2, hence
G1 �is G2. In (b) G3 is obtained from G1 by removing the edge from node a
to node c. The induced graph of G2 with nodes a, b, c is no more isomorphic to
G3, hence G3 ��is G2. Notice, however, that G3 is still a subgraph of G2. The
following lemma then holds.

Lemma 1. Given K ≥ 1, (CK ,�is) is a well-quasi ordering (shortly wqo), i.e.,
for every infinite sequence of K-bounded path configurations γ1γ2 . . . there exist
i < j s.t. γi �is γj.

Proof. It immediately follows from Ding’s Theorem (Theorem 2.2 in [5]).

Given a subset S ⊆ CK we define S ↑= {γ′ ∈ CK | γ ∈ S and γ �is γ′}, i.e.,
S ↑ is the set of configurations generated by those in S via �is. A set S ⊆ CK is
an upward closed set w.r.t. to (CK ,�is) if S ↑= S. Since (CK ,�is) is a wqo, we
obtain that every set of configurations that is upward closed w.r.t. (CK ,�is) has
a finite basis, i.e., it can be finitely represented by a finite number of K-bounded
path configurations. We can exploit this property to define a decision procedure
for cover. For this purpose, we apply the methodology proposed in [1]. The
first property we need to prove is that the transition relation induced by our
model is compatible with �is.

Lemma 2 (Monotonicity). For every γ1, γ2, γ
′
1 ∈ CK such that γ1 ⇒K γ2 and

γ1 �is γ
′
1, there exists γ′2 ∈ CK such that γ′1 ⇒K γ′2 and γ2 �is γ

′
2.

Proof. For lack of space, we focus here on the application of a broadcast rule
with label b(a). Assume that the rule is applied to a node n adjacent in G(γ1)
to nodes N = {n1, . . . , nk}. Assume that the subset N ′ of N contains nodes that
are enabled by message a. By applying the operational semantics, the state of
n and the states of nodes in N ′ are updated simultaneously Assume now that
G(γ1) is isomorphic to an induced subgraph of G(γ′1) via the injection h. Then,
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h(n) is adjacent to the set of nodes h(N) (there cannot be more connections
since h(G(γ1)) is an induced subgraph of G(γ′1)). Thus, the same rule is enabled
in h(n) and in h(N ′) and yields the same effect on the labels. Thus, we obtain
γ′2 such that G(γ2) �is G(γ′2). 
�
Monotonicity ensures that if S is an upward closed set of configurations (w.r.t.
(CK ,�is)), then the set of predecessors of S accroding to⇒K , defined as preK(S)
= {γ | γ ⇒K γ′ and γ′ ∈ S}, is still upward closed. We now show that we can
effectively compute a finite representation of S ∪ preK(S).

Lemma 3. Given a finite basis B of an upward closed set S ⊆ CK , there exists
an algorithm to compute a finite basis B′ of S∪preK(S) s.t. S∪preK(S) = B′ ↑.
Proof. We focus on the the backward application of a broadcast rule (q,b(a), q′)
to a configuration in the upward closure of B. The computation of the set B ↑
∪ preK(B ↑), where preK(B ↑) = {γ | γ ⇒K γ′ and γ′ ∈ B ↑} is done according
to the following steps.
Initially, we set B′ := B.
Then, for each γ ∈ B:

1. For each vertex n labeled with q′ in the graph G(γ), let N be the set of
nodes adjacent to q′, we apply then the following rule:
– If there exists a node in N with state r such that (r, r(a), r′) is a rule in

the model, then we add no predecessor to B′ (because every node n′ ∈ S
in state r must react to the broadcast);

– otherwise, for any subset N ′ = {n1, . . . , nk} of nodes in N such that ni

has state r′i and (ri, r(a), r′i) is a rule in the model, we build a predecessor
configuration γ′ in which the label of n is updated to q and the label of
ni is updated to ri for i ∈ {1, . . . , k} and if there is no γ′′ in B′ such that
γ′′ �is γ

′, we add γ′ to B′ (Note that we have to select all possible subset
N ′ of N because we must consider the cases in which nodes connected
to n are already in the target state of some reception rule).

2. Let Γ ′ be the set of configurations γ′ in CK obtained by adding a node n
in state q′ to γ such that in G(γ′), n is adjacent to at least one node (i.e.
in Γ ′ we have all the configurations obtained by added a connected node to
γ and which are still K-bounded path configurations). We then apply the
precedent rule 1. to each configuration in Γ ′ considering the added node n
labeled with q′. 
�

We can now state the main theorem of this section.

Theorem 5. For K ≥ 1, cover is decidable for AHN restricted to K-bounded
path configurations.

Proof. From Lemmas 1, 2, and 3 it follows that the transition system induced
by any AHN is well structured with respect to (CK ,�is). The theorem then
follows from the general properties of well structured transition systems [1,2,12].
The decision algorithm is based on a symbolic backward exploration of the state
space that, starting from a graph with a single node denoting the target state,
saturates the set of symbolic predecessors computed using the operator described
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Fig. 5. Configuration 〈q0, c1 = 3, c2 = 2〉 for c1 ∈ [0, 4] and c2 ∈ [0, 2]

in Lemma 3. Termination is ensured by the wqo property of the induced subgraph
relation over K-bounded path configurations. 
�

6.2 Undecidability of target and repeat-cover

In order to show that target is undecidable for K-bounded path configura-
tions, we show how to model a Minsky machine in such a way that the machine
terminates if and only if the corresponding AHN has a computation (restricted
to K-bounded path configurations) that reaches a configuration in which all
nodes are in some specific final state. For this purpose, we design a protocol that
succeeds only on star topologies in which the center node represents the current
control state and the satellite nodes the units of the two counters. Such units are
initially in the zeroi state (with i ∈ {1, 2}). The number of satellite nodes needed
to guess the maximal values reached by the counters during the computation is
non-deterministically chosen in a preliminary part of the simulation. Only runs
that initially guess a sufficient number of satellite nodes can successfully ter-
minate the simulation. A satellite node moves from the zeroi to the onei state
when the i-th counter is incremented, and a single node moves from the onei

back to the zeroi state when the counter is decremented. For instance, the star
in Figure 5 represents a configuration with control state q0 and counters c1 = 3
(with maximal value equals to 4), and c2 = 2 (with maximal value equals to 2).

The simulation of instructions with zero-test is a more difficult task. The
problem is that it is not possible to check the absence of neighbors with state
onei. Nevertheless, it is possible to ensure that no node is in the state onei after a
test for zero is executed. It is sufficient to use broadcast communication to move
all the satellite nodes in the onei state to a special sink state. If the simulation
terminates exposing the final control state and no node is in the sink state (i.e.
a configuration is reached in which all the nodes are in the final control state, in
the zeroi, or the onei state), we can conclude that the simulated computation
is correct, thus also the corresponding Minsky machine terminates.

Note that the number of satellite nodes is not fixed a priori. However the
graph have bounded path (the construction works for paths of length 3), so we
can conclude what follows:

Theorem 6. target is undecidable for AHN restricted to K-bounded path con-
figurations (with K ≥ 3).
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As a corollary we now prove the undecidability of repeat-cover. We need to
slightly modify the way we model Minsky machines. The idea is to repeatedly
simulate the computation of the Minsky machine, in such a way that the final
control state can be exposed infinitely often if and only if the simulated Minsky
machine terminates.

Every simulation phase simulates only a finite number of steps of the Minsky
machine, and if the final control state is reached then a new simulation phase is
started. This is achieved by including in the initial star topology also satellite
nodes in the free state, and ensuring that every simulated action moves one of
those nodes to the done state. In this way, a simulation cannot perform more
steps than the number of free nodes in the initial star topology. If the final
control state is reached, a new simulation is started by moving all the nodes from
the done to the free state, all the nodes from the onei to the zeroi state, and
by restarting from the initial control state. Notice that nodes reaching the sink
state (due to a wrong execution of a test for zero action) are no longer used in
the computation. For this reason, as every time a wrong test for zero is executed
some node moves in the sink state, we are sure that only finitely many wrong
actions can occur. Hence, if the final control state is exposed infinitely often, we
have that only finitely many simulation phases could be wrong, while infinitely
many are correct. As all simulation phases reach the final control state (necessary
to start the subsequent phase), we have that the corresponding Minsky machine
terminates. Hence, we have the following Corollary of Theorem 6:
Corollary 3. repeat-cover is undecidable for AHN restricted to K-bounded
path configurations (with K ≥ 3).

7 Conclusions

In this paper we have studied different types of verification problems for a formal
model of Ad Hoc Networks in which communication is achieved via a selective
type of broadcast. Perhaps surprisingly, a model with static topology turns out
to be more difficult to analyze with respect to a model with spontaneous node
movement. A similar dichotomy appears in verification of perfect and lossy chan-
nel systems. Studying the expressiveness of other variations on the semantics to
model for instance conflicts, noise and lossiness, is an interesting research direc-
tion for future works.
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Abstract. An impure language is one that combines functional and im-
perative constructs. We propose a method for ensuring termination of
impure concurrent languages that makes it possible to combine term
rewriting measure-based techniques with traditional approaches for ter-
mination in functional languages such as logical relations. The method
can be made parametric on the termination technique employed on the
functional part; it can also be iterated.

We illustrate the method in the case of a π-calculus with both func-
tional and imperative names, and show that, with respect to previous
approaches to termination, it allows us to extend considerably the set of
processes that can be handled.

The method can also be applied to sequential languages, e.g., λ-calculi
with references.

1 Introduction

In this paper, an impure language is one that combines functional and impera-
tive constructs; for instance, a λ-calculus with references, or a π-calculus with
functional names.

The π-calculus is naturally imperative. A π-calculus name may however be
considered functional if it offers a service immutable over time and always avail-
able. Special laws, such as copying and parallelisation laws, are only valid for
functional names. As a consequence, the distinction between functional and im-
perative names is often made in applications. Examples are intermediate target
languages of compilers of programming languages based on π-calculus, such as
Pict [PT00], in which the peculiarities of functional names are exploited in code
optimisations. In the π-calculus language in this paper, the distinction between
functional and imperative names is made directly in the syntax. The functional
names are introduced with a dedicated construct akin to the ‘letrec’ of functional
languages. The other names — the ’ordinary’ π-calculus names — are called im-
perative. Correspondingly, a process is functional or imperative if it uses only
functional or only imperative names.

The subject of this paper is termination in impure concurrent languages.
There are powerful techniques that ensure termination in purely functional lan-
guages, notably realisability and logical relations, that exploit an assignment of
types to terms. Attempts at transporting logical relations onto concurrent lan-
guages have had limited success. In the π-calculus, the sets of processes which

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 328–342, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Termination in Impure Concurrent Languages 329

have been proved to be terminating with logical relations [YBH04, San06] are
mainly “functional”: they include the standard encodings of the λ-calculus into
the π-calculus, but fail to capture common patterns of usage of imperative names.

The other kind of techniques for termination proposed for concurrent
languages such as π-calculus uses ideas from term-rewriting systems, with a
well-founded measure that decreases as the computation proceeds [DS06]. Such
measure-techniques are suitable to handling imperative languages and corre-
spondingly, in the π-calculus, imperative processes. In contrast, the techniques
can handle only a limited class of functions, or functional processes. In languages
richer than (the analogue of) simply-typed λ-calculi, for instance, measure-based
proofs may be impossible (e.g., no measure argument representable in 2nd-order
arithmetic could prove termination of the polymorphic λ-calculus, as this would
amount to proving consistency of the arithmetic; termination can however be
proved with logical relations). In this paper we propose a method for the ter-
mination of concurrent languages that combines the measure-based techniques
of imperative languages and the logical relation techniques of functional lan-
guages. The method can be made parametric on the functional sublanguage and
its termination proof.

We illustrate the combination of the two kinds of techniques from their sim-
plest instance, in which the types used in logical relations are those of a simply-
typed calculus, and the measure needed in the term-rewriting technique strictly
decreases at every imperative computation step.

We explain the basic idea of the method. We first extend the imperative mea-
sure to the functional constructs, but without the ambition of ensuring termi-
nation: the control on the measure performed on functional constructs is looser
than the one performed on the imperative ones. Therefore, while the overall
measure of a term decreases along imperative reductions (i.e., steps stemming
from imperative constructs), the measure may increase along the functional ones.
Indeed the measure assignment also captures divergent terms. However, termina-
tion holds if the purely functional sublanguage is terminating. The termination
of this sublanguage can be established separately. The soundness proof of the
method proceeds by contradiction. The crux is to prune a divergence of an im-
pure term into a divergence of a purely functional term.

The termination condition for the functional subcalculus (the simply-typed
system) can be combined with the measure assignment. The result is a type
system that refines the simply-typed one by attaching a measure to each type.
The final termination result can therefore be stated as a well-typedness condition
in this type system.

The method subsumes both component techniques, in the sense that the re-
sulting terminating terms include those that can be proved terminating with
logical relations or measures alone. For instance, a simply-typed purely func-
tional term is accepted because no measure-based constraint is generated.

In the soundness proof of the method we never have to manipulate logical
relations (that are used to establish termination for the functional sublanguage).
We indeed take the functional sublanguage and its termination proof as a black
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box that we insert into our soundness proof. We can therefore generalise the
method and make it parametric with respect to the functional core and the
termination technique employed on it. The method could also be iterated, that
is, applied more than once (in this case all iterations but the last one are applied
on a purely functional language, a subset of which is treated using measures,
another subset with other means).

Further, we show that the method can be enhanced by building it on top of
more sophisticated measure-based techniques.

The method can also be applied to impure sequential languages, e.g., λ-calculi
with references. While the schema of the method is the same, the technical
details, in particular the key step of pruning and the definition of stratification,
are quite different, and will be presented elsewhere (the interested reader is
referred to [DHS10b]).

We mostly give only proof sketches of important results, for lack of space.
Details and additional material can be found in [DHS10a].

2 An Impure π-Calculus

The π-calculus, in its standard presentation, is imperative: the service offered
by a name (its input end) may change over time; it may even disappear. There
may be however names whose input end occurs only once, is replicated, and is
immediately available. This guarantees that all messages sent along the name will
be consumed, and that the continuation applied to each such message is always
the same. In the literature these names are called functional, and identified either
by the syntax, or by a type system. The remaining names are called imperative.

In the π-calculus we use, functional names are introduced using a def con-
struct, akin to a “letrec” (as said above, we could as well have distinguished
them using types). We use a, b for imperative names, f, g for functional names,
x, y, c to range over both categories, and v, w for values; a value can be a name
or � (unit). In examples, later, the grammar for values may be richer – integers,
tuples, etc.; such additions are straightforward but would make the notations
heavier.

(Processes) P ::= P1|P2

∣∣ 0 ∣∣ c〈v〉.P ∣∣ def f = (x).P1 in P2∣∣ (νa)P
∣∣ c(x).P

∣∣ !c(x).P

(Values) v ::= a
∣∣ f ∣∣ �

We sometimes use the CCS notation (a.P , c.P , def f = P1 in P2, . . . ) for inputs
and outputs that carry the unit value �; we omit trailing occurrences of 0 under
a prefix. We write fn(P ) for the set of free names of P (the binding constructs
are restriction, input and def, the latter binding both the functional channel –
f in the grammar above – and the received name – x).

An input-unguarded output in P is an output prefix that does occur (i) nei-
ther under an input in P (ii), nor, for any subterm of P of the form def f =
(x).P1 in P2, in the P1 subterm.
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(call)
capt(E2) ∩ fn((x).P ) = ∅

E1[def f = (x).P in E2[f〈v〉.Q]]
−→ E1[def f = (x).P in E2[P{v/x} | Q]]

(trig)
E[a〈v〉.Q | !a(x).P ] −→ E[Q | P{v/x} | !a(x).P ]

(comm)
E[a〈v〉.Q | a(x).P ] −→ E[Q | P{v/x}]

(cong)
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

Fig. 1. Reduction for πST

We call πST the simply-typed version of this calculus (the discipline of simple
types in π is standard – it is intrinsically contained in the type system we present
in Section 3). Typing in particular ensures that the subject c of inputs c(x).P
and !c(x).P is always an imperative name.

Evaluation contexts are given by the following grammar:

E = [ ]
∣∣ E|P ∣∣ (νa)E

∣∣ def f = (x).P in E

We write E[P ] for the process obtained by replacing the hole [ ] in E with P ,
and capt(E) stands for the captured names of E, that is, the names which are
bound at the occurrence of the hole in E.

Structural congruence between processes, written ≡, is defined as the least
congruence that is an equivalence relation, includes α-equivalence, satisfies the
laws of an abelian monoid for | (with 0 as neutral element), and satisfies the
following two extrusion laws:

P | (νa)Q ≡ (νa) (P |Q) if a /∈ fn(P )

P | def f = (x).Q1 in Q2 ≡ def f = (x).Q1 in P |Q2 if f /∈ fn(P ).

(Rules for replication or for swapping consecutive restrictions or definitions are
not needed in ≡.) We extend ≡ to evaluation contexts.

Figure 1 presents the rules defining the reduction relation on πST processes,
written −→. P{v/x} stands for the result of the application of the (capture
avoiding) substitution of x with v in P . In rule (call), we impose that the
intrusion of P{v/x} in the context E2 avoids name capture. A reduction is
imperative (resp. functional) when it is derived using a communication along an
imperative (resp. functional) name.

A process P0 diverges (or is divergent) if there is an infinite sequence of
processes {Pi}i≥0, such that, for all i ≥ 0, Pi −→ Pi+1. Then P terminates (or
is terminating) if P is not divergent; similarly, a set of processes is terminating
if all its elements are.
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Subcalculi. πdef is the subcalculus with only functional names (i.e., without the
productions in the second line of the grammar for processes: restriction, linear
and replicated inputs), and πimp is the purely imperative one (i.e., without the
def construct).

Termination constraints and logical relation proofs for λ-calculi can be adapted
to πdef. In the simply-typed case, the only additional constraint is that definitions
def f = P in Q cannot be recursive (f is not used in the body P ). We call π1

def

the language obtained in this way. It is rather easy to show that π1
def is included

in the languages studied in [YBH04, San06], which gives:

Theorem 1. π1
def is terminating.

Various terminating sublanguages of πimp have been defined in the literature.
One of the simplest ones, in [DS06], ensures termination by a straightforward
measure-decreasing argument. Roughly, an integer number, called level, is at-
tached to each name; then one requires that in any input a(x).P , the level of
each input-unguarded output in P is smaller than the level of a; in other words,
the output at a consumed to activate P must be heavier than any output which
is released. Thus the overall measure of a process (computed on the multiset
of all its input-unguarded outputs) decreases at every reduction. The measure
assignment is formalised as a type system to ensure invariance under reduction.
We call π1

imp this terminating language, derived by adapting to πimp the sim-
plest type system from [DS06] (this type system is hardwired into the system
we present in Section 3).

3 Types for Termination in πST

In this section we define a type system for termination that combines the con-
straints of the imperative π1

imp with those of the functional π1
def. First note that

a straightforward merge of the two languages can break termination. This is
illustrated in

def f = a in (!a.f | a) ,

where a recursion on the name a is fed via a recursion through the functional
definition of f . The process is divergent, yet the constraints in π1

def and π1
imp are

respected (the process is simply-typed, has no recursive definition, the imperative
input !a.f is well-typed as the level of a can be greater than the level of f).

Termination is guaranteed if the measure constraint imposed on imperative
names is extended to the functional ones, viewing a def as an input. This exten-
sion would however be too naive: it would indeed affect the class of functional
processes accepted, which would be rather limited (not containing for instance
the calculus π1

def and the process images of the simply-typed λ-calculus).
In the solution we propose, we do impose measures onto the functional names,

but the constraints on them are more relaxed. This way, π1
def is captured. The

drawback is that the measure alone does not anymore guarantee termination.
However, it does if the purely functional sublanguage (in our case π1

def) is
terminating.
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(Res)
�Γ P : l

�Γ (νa)P : l
(Par)

�Γ P1 : l1 �Γ P2 : l2

�Γ P1 | P2 : max(l1, l2)

(Nil)�Γ 0 : 0
(Out)

�Γ P : l �Γ c : 	
k
• T �Γ w : T

�Γ c〈w〉.P : max(k, l)

(In)

�Γ P : l �Γ a : 	
k
I T

�Γ x : T k > l

�Γ a(x).P : 0
(Rep)

�Γ P : l �Γ a : 	
k
I T

�Γ x : T k > l

�Γ !a(x).P : 0

(Def)

�Γ P1 : l �Γ P2 : l′ �Γ f : 	
k
F T

k ≥ l f /∈ fn(P1)
�Γ def f = (x).P1 in P2 : l′

Fig. 2. Typing Rules for π1
ST

The whole constraints are formalised as a refinement of the simply-typed
system in which a level is attached to types. To ease the proofs, the system is
presented à la Church: every name has a predefined type. Thus a typing Γ is a
total function from names to types, with the proviso that every type is inhabited
by an infinite number of names. We write Γ (x) = T to mean that x has type T
in Γ . Types are given by:

T ::= 	
k
F T

∣∣ 	
k
I T

∣∣ unit .

Type 	
k
F T is assigned to functional names that carry values of type T ; similarly

for 	
k
I T and imperative names. In both cases, k is a natural number called the

level. We write 	
k
• T when the functional/imperative tag is not important.

The typing judgement for processes is of the form  Γ P : l, where l is the
level (or weight) of P . It is defined by the rules of Figure 2; on values,  Γ v : T
holds if either Γ (v) = T , or v = � and T = unit.

We comment on the definition of the type system. Informally, the level of
a process P indicates the maximum level of an input-unguarded output in P .
Condition k > l in rules (In) and (Rep) implements the measure constraint
for π1

imp discussed in Section 2. In rule (Def) the constraint is looser: the out-
puts released can be as heavy as the one being consumed (condition k ≥ l). In
other words, we just check that functional reductions do not cause violations of
the stratification imposed on the imperative inputs (which would happen if a
functional output underneath an imperative input a could cause the release of
imperative outputs heavier than a, as in the example at the beginning of this
section). In the same rule (Def), the constraint f /∈ fn(P1) is inherited from
π1
def, and forbids recursive calls in functional definitions.
We call π1

ST the set of well-typed processes. Our type system subsumes the
existing ones, and satisfies the subject reduction property:

Lemma 2. We have π1
def ⊆ π1

ST and π1
imp⊆π1

ST.
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Proposition 3. If  Γ P : l and P −→ P ′ then  Γ P ′ : l′ for some l′.

The termination proof for π1
imp uses the property that at every reduction the

multiset measure of a process (the multiset of the levels of input-unguarded out-
puts in the process) decreases. In π1

ST, this only holds for imperative reductions:
along functional reductions the overall weight may actually increase. It would
probably be hard to establish termination of π1

ST by relying only on measure
arguments.

Inferring termination. In view of the results in [DHKS07], we believe that a type
inference procedure running in polynomial time can be defined for the type sys-
tem of Figure 2. This is possible as long as typability (and hence termination) can
be inferred in polynomial time for the core calculus (here, π1

def). The situation is
less clear if we work in an impure π-calculus without syntactical distinction (via
the def construct) between imperative and functional names, replicated inputs
being used both for functional definitions and imperative inputs.

4 Termination Proof

In the proof, we take a well-typed π1
ST process, assume that it is divergent,

and then derive a contradiction. Using a pruning function (Definition 4) and a
related simulation result (Lemma 7), we transform the given divergence into one
for a functional process in π1

def. This yields contradiction, as π1
def is terminating

(Theorem 1).
Thus the definition of pruning is central in our proof. Intuitively, pruning

computes the functional backbone of a process P , by getting rid of impera-
tive outputs and replacing imperative inputs (replicated or not) in P with
the simplest possible functional term, namely 0. However, to establish simu-
lation, we would need reduction to commute with pruning (possibly replacing
reduction with a form of “semantic equality” after commutation). This however
does not hold, at least using a simple definition of pruning: take for instance
P0

def= !a.f | a −→ P1
def= !a.f | f ; the pruning of P0 would be 0 whereas that

of P1 would be f , and the latter processes cannot be related in a natural way.
We therefore have to be more precise, and make pruning parametric on a level

p that occurs infinitely often in the reductions of the given divergent computa-
tion (cf. Lemma 8 – the level of a reduction is the level of the name along which
the reduction occurs). Further, we define p as the maximal level that occurs
infinitely often in the divergent computation (Lemma 8). Thus, at the cost of
possibly removing an initial segment of the computation, we can assume the ab-
sence of reductions at levels greater than p. Indeed the actual pruning computes
the functional backbone at level p of a process: we remove all imperative con-
structs, and the functional constructs (def and outputs) acting on functional
names whose level is smaller than p. Typing ensures us that, in doing so, no
functional constructs at level p that participate in the infinite computation are
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prpΓ (a(x).P ) = prpΓ (!a(x).P ) = prpΓ (0) def= 0

prpΓ (P1 | P2)
def= prpΓ (P1) | prpΓ (P2)

prpΓ ((νa) P ) def= (νa) prpΓ (P ) prpΓ (a〈v〉.P ) def= prpΓ (P )

prpΓ (def fn = (x).P1 in P2)
def={

def f = (x).prpΓ (P1) in prpΓ (P2) if n = p
prpΓ (P2) otherwise

prpΓ (f
n〈v〉.P ) def=

{
f〈v〉.prpΓ (P ) if n = p
prpΓ (P ) otherwise

Fig. 3. Pruning in π1
ST

removed. Therefore, the functional reductions at level p in the original divergent
computation are preserved by the pruning, while the other kinds of reductions
have no semantic consequence on pruning (in the sense that processes before and
after the reduction are pruned onto semantically equal terms). We thus derive
an infinite computation in π1

def, which is impossible as π1
def is terminating.

We can remark in passing that in the example given above, P0 is pruned to
0, and so is P1: indeed, the level of a is less or equal than p (otherwise we would
not examine a reduction of P0), so that f ’s level is strictly smaller than p, which
entails, by Definition 4 below, that the output on f disappears when pruning
P1: in this case, the prunings of the terms involved in the reduction are equal.

Pruning and its properties. The definition and properties of the pruning function
are parametric upon a level p (which will be fixed in Lemma 8 below) and a
typing Γ .

Definition 4 (Pruning). The pruning of P w.r.t. p and Γ , written prpΓ (P ), is
defined by induction on P as in Figure 3, where a (resp. fn) is a name whose
type in Γ is imperative (resp. functional with level n).

We write PR(Γ ) for the typing context of the simply-typed π-calculus obtained
from Γ by removing all level information from the types, and  π

Γ Q for the typing
judgements in the simply-typed π-calculus. We rely on these notations to state
the following lemma:

Lemma 5. Suppose  Γ P : l. Then, for any p,  π
PR(Γ ) prpΓ (P ).

We write ) for strong barbed congruence, defined in the usual way [SW01]. )
is needed in the statement of the two next lemmas — we essentially use that )
preserves divergences and is closed by static contexts.

The following technical lemma establishes that in certain cases, the pruning
of the continuation of an input is inactive, up to ), and can thus be removed.
This property is useful to derive the key simulation result involving pruning
(Lemma 7).
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Lemma 6 (Pruning – inactivity).

– If  Γ def f = (x).P1 in P2 : n, with Γ (f) = 	
n
F T and n < p, then for any v

s.t. Γ (v) = T , prpΓ (P1){v/x} ) 0.
– If  Γ !a(x).P1 : n, with Γ (a) = 	

n
F T and n ≤ p, then for any v s.t. Γ (v) = T ,

prpΓ (P1){v/x} ) 0.
– If  Γ a(x).P1 : n, with Γ (a) = 	

n
F T and n ≤ p, then for any v s.t. Γ (v) = T ,

prpΓ (P1){v/x} ) 0.

Note that these properties are not immediate: for instance, in a(x).P , the con-
tinuation P may contain top-level definitions at level p, that are not removed by
pruning. We write P −→n

I P ′ (resp. P −→n
F P ′) if P has a reduction to P ′ in

which the interacting name is imperative (resp. functional) and its level is n.

Lemma 7 (Simulation)
Suppose  Γ P : l.

1. If P −→p
F P ′, then prpΓ (P ) −→ prpΓ (P ′);

2. If P −→n
F P ′ with n < p, then prpΓ (P ) ) prpΓ (P ′);

3. If P −→n
I P ′ with n ≤ p, then prpΓ (P ) ) prpΓ (P ′).

A delicate aspect of the proof of Lemma 7 is that if, for instance, !a(x).P is
involved in a reduction, an instantiated copy of P is unleashed at top-level; we
rely on Lemma 6 to get rid of it (modulo )).

The impossibility of an infinite computation. We can now present the termina-
tion proof, which exploits pruning to derive a contradiction from the existence
of an infinite computation starting from a typable process.

Lemma 8. If  Γ P0 : l, and if there is an infinite computation starting from
P0, given by {Pi}i≥0, then there exists a maximum level p such that there are in-
finitely many reductions at level p in the sequence. Moreover, there are infinitely
many functional reductions at level p.

Proof (sketch). The first part holds because a process is typed using a finite
number of levels.

For the second part, we exploit the fact that the multiset of input-unguarded
outputs at level p in a process decreases strictly along imperative reductions at
level p, and decreases or remains equal along (imperative or functional) reduc-
tions at levels strictly smaller than p.

Theorem 9 (Soundness). All processes in π1
ST are terminating.

Proof (sketch). By absurd, let {Pi}i≥0 be an infinite computation starting
from a π1

ST process P0 such that  Γ P0 : l for some Γ and l. By Proposition 3,
all the Pi’s are well-typed. By Lemma 8 there is a maximal p s.t. for infinitely
many i, Pi −→p

F Pi+1. Moreover, still by Lemma 8, we can suppose w.l.o.g. that
no reduction occurs at a level greater than p.
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Whenever Pi −→p
F Pi+1, we obtain by Lemma 7 prpΓ (Pi) −→ prpΓ (Pi+1).

Lemma 7 also tells us that when Pi reduces to Pi+1 via a reduction that is not
a functional reduction at level p, we have prpΓ (Pi) ) prpΓ (Pi+1). This allows us
to construct an infinite computation in π1

def (by Lemma 5), which is impossible
(Theorem 1).

5 Parametrisation on the Core Calculus

In this and the following sections we discuss how the exposed method can be
enhanced and enriched.

In Section 4, we assume a termination proof for (a subset of) the core func-
tional πdef from which the impure terms are built, but we never look into the
details of such proof. As a consequence, the method can be made parametric.
Let F be the chosen terminating functional core, and L the impure π-calculus
language that we want to prove terminating. There are three requirements on
L:

1. processes in L are well-typed in the type system of Figure 2, but without the
constraint f /∈ fn(P1) of rule (Def) (that represented a specific constraint
coming from π1

def);
2. L is reduction closed (i.e., P ∈ L and P −→ P ′ imply P ′ ∈ L);
3. the pruning of a process in L (as given by Definition 4) returns a process in

F .

Theorem 10. If F and L satisfy (1-3) above, then L is terminating.

It may be possible to formulate constraints for condition (3) as typing constraints
to be added to the type system used in condition (1), as we actually did in
Section 3, where F is π1

def and L is π1
ST.

An example of a functional core that could be chosen in place of π1
def is

πpr
def, the π-calculus image of the primitive-recursive functions. Its termination

is enforced by a control of recursion; the constraint on a construct def f =
(x).P in Q is that for any input-unguarded output c〈v〉 in P : (i) either the level
of f is higher than that of c, or (ii) the two names have the same level and carry
a first-order argument (e.g., a natural number) that decreases its value (v < x).

Even when the termination of the functional core can be proved using mea-
sures, as is actually the case for πpr

def, the parametrisation on this core offered by
the method could be useful, because the measures employed in the proofs for the
functional core and for the whole language can be different; see example Sys2′

discussed at the end of Section 6.

Iterating the method. Our method could also be applied to a purely functional
calculus in which names are partitioned into two sets, and the measure technique
guarantees termination only for the reductions along names that belong to one
of the sets. An example is π1+pr

def , the calculus combining π1
def and πpr

def; thus, in
any construct def f = (x).P1 in P2, either f is not used in P1, or all outputs in
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P1 at the same level as f emit values provably smaller than x. (We think that
a natural encoding of System T [GLT88] in the π-calculus would not be typable
in π1+pr

def .)
The method can be iteratively applied. For instance, having used it to estab-

lish termination for the functional calculus π1+pr
def , as suggested above, we can

then take π1+pr
def as the functional core of a new application of the method. This

iteration could for instance add imperative names. In [DHS10a], we use an iter-
ation of the method to prove the termination of an example that combines the
two examples presented in Section 6.

6 Examples

This section shows examples of the kind of systems whose termination can be
proved with the method exposed in the earlier sections. These systems make
use of both imperative and functional names. The systems cannot be handled
by previous measure-based techniques, which are too weak on functional names,
or by logical relation techniques, which are too weak on imperative names. Our
method offers the capability of combining techniques for both kinds of names,
which is essential.

The examples use polyadicity, and first-order values such as integers and re-
lated constructs (including arithmetic constructs, and if-then-else statements).
These extensions are straightforward to accommodate in the theory presented
earlier. A longer example is given in [DHS10a].

An encryption server. In this example, several clients ci are organised into a
chain. Clients are willing to communicate, however direct communications be-
tween them are considered unsafe. Instead, each client must use a secured channel
s to contact a server that is in charge of encrypting and sending the information
to the desired client. Hence the messages travel through the ci’s in order to be
finally emitted on d. A client ci, receiving a message, has to perform some local
imperative atomic computations. For readability, we condense this part into the
acquire and release actions of a local lock named locki.

Several messages can travel along the chain concurrently, and may overtake
each other; the example is stated with n initial messages (they are all sent to c1
but could have been directed to other clients).

Sys1
def=(νlock1, .., lockk)(

lock1 | .. | lockk |
def s = (c, x).c〈enc[c, x]〉 in
def c1 = C1 in . . . def ck−1 = Ck−1 in def ck = Ck in

(s〈c1,msg1〉 | . . . | s〈c1,msgn〉)
)

where Ci (1 ≤ i < k) and Ck are:

Ci
def= (yi).locki.(locki | s〈ci+1,deci[yi]〉)

Ck
def= (yk).lockk.(lockk | d〈deck[yk]〉)
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and enc, dec are operators for encryption and decryption, with equalities
deci[enc[ci,m]] = m for all i.

The way the ci’s are organised (here a chain, but any well-founded structure
could have been used) ensures that the interactions taking place among the
server and the clients do not lead to divergent behaviours: this is guaranteed by
showing that the system is terminating.

In the typing all the ci’s must have the same type, because they all appear as
the first component of messages on s. We can type-check Sys1 using the system
of Section 3 (where the core functional language is π1

def); if b is the type for the
encrypted/decrypted data, then we assign 	

1
F b for the ci’s, 	

1
F (	

1
F b× b) for s, and

	
1
I unit for the locki’s.

The loose assignment of levels to functional names (the possibility k = l in
rule (Def) of Section 3) is essential for the typing: an output on ci can follow
an input on s on the server’s side, and conversely on the clients’ side: ci and s
must therefore have the same level.

A movie-on-demand server. In this second example, the server s is a movie
database, and handles requests to watch a given movie (in streaming) a given
number of times. By sending the triple 〈15, r′, tintin〉 on s, the client pays for the
possibility to watch the movie tintin 15 times; r′ (r in the server’s definition) is
the return channel, carrying the URL (h) where the movie will be made available
once.

Two loops are running along the execution of the protocol. On the server’s
side, a recursive call is generated with n − 1, after consumption of one access
right. On the client’s side, process !c.r′(z).(c | z) keeps interrogating the server:
the client tries to watch the movie as many times as possible.

Sys2
def= def s = (n, r, f).(

if f = tintin then (νh) (r〈h〉.h)
| if f = asterix then . . .
· · ·
| if n > 0 then s〈n− 1, r, f〉

)
in (νr′)

(
s〈15, r′, tintin〉 | (νc) (c | !c.r′(z).(c | z))

)
Here again, we rely on typing to guarantee that this system, where a server is
able to call itself recursively, does not exhibit divergences.

Sys2 uses both functional names (e.g., s) and imperative names (e.g., r). Its
termination is proved by appealing to the primitive recursive language πpr

def as
core functional calculus. In the typing, channel c is given level 1, and s, r level 2
(this allows us to type-check the recursive output on c).

To understand the typing of functional names, it may also be useful to consider
the variant Sys2′ in which the following definition of a server s′ is inserted
between the definition of s and the body (νr′) . . . :

def s′ = (n, r, f).s〈n, r, f〉 in ..
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Here, s′ models an old address where the server, now at s, used to run. Some of
the clients might still use s′ instead of s, and s′ hosts a forwarder that redirects
their requests to s.

We can type Sys2′ thanks to the looser level constraints on functional names
which allow s and s′ to have the same type; the functional core is still πpr

def.
Note that a termination proof of the core calculus πpr

def by a simple measure
argument is not in contradiction with the observation that similar measures are
too weak to type Sys2′ : the levels used in the typing of Sys2′ need not be the
same as those used in the termination proof of its functional core (the pruning
of Sys2′). Indeed in this functional core s′ can be given a level higher than that
of s (which is possible because the imperative clients have been pruned, hence,
after the pruning, s and s′ need not have the same type).

7 Refinements

Non-replicated imperative inputs. In the type system of Figure 2, non-replicated
inputs introduce the same constraint k > l as replicated inputs (rules (In) and
(Rep)). This can be annoying, as the inputs that are dangerous for termina-
tion are the replicated ones. Simply removing the constraint k > l from rule
(In) would however lead to an unsafe system. For instance, we could type the
divergent process

def f = (x).(a〈x〉 | x) in def g = a(y).f〈y〉 in f〈g〉 .

This example shows some of the subtle interferences between functional and
imperative constructs that may cause divergences.

We can improve rule (In) so to impose the constraint k > l only when the
value communicated in the input is functional. Rule (In) is replaced by the
following rule, where “T functional” holds if T is of the form 	

k′

F T ′, for some
k′, T ′:

(In′)

 Γ P : l  Γ a : 	
k
I T  Γ x : T

if T functional then k > l and l′ = 0, otherwise l′ = l

 Γ a(x).P : l′

Corresponding modifications have to be made in the definition of pruning and
related results. The rule could be refined even further, by being more selective on
the occurrences of x in P when x is functional. An example of this is discussed
in [DHS10a], to be able to treat name c in the process Sys2, from Section 6, as
functional. (It is also possible to avoid communications of functional names along
imperative names, by simple program transformations whereby communication
of a functional name is replaced by communication of an imperative name that
acts as a forwarder towards the functional name.)

A benefit of these refinements is to be able to accept processes a(x).P where a
is imperative and appears in input-unguarded outputs of P . This typically arises
in the modelling of mutable variables in the asynchronous π-calculus (references
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can also be modelled as services that accept read and write requests; in this case
the above refinements of the input rule are not needed).

Another refinement of the measure-based analysis, in which we handle se-
quences of input prefixes, along the lines of [DS06], is presented in [DHS10a].

Polymorphism. The method can be extended to handle polymorphism [Tur96]. A
level on each type should however be maintained, and type abstraction therefore
cannot hide levels. A type variable X is hence annotated with a level k, and
it should only be instantiated with types whose level is less than or equal to k
(assuming that first-order types like integers have level 0).

8 Conclusions

We have described an analysis to guarantee termination of impure languages.
Our technique exploits pruning in order to lift a termination proof based on
logical relations (for a functional language) to a termination proof for a richer
language.

Despite recent progresses in impure simply-typed λ-calculi, adapting the re-
alisability/logical relation technique to non-trivial impure concurrent languages
such as π-calculus remains hard. All our attempts failed, intuitively because, on
the one hand, typing naturally arises in π-calculus on names and less naturally on
terms; on the other hand, even adopting forms of behavioural types for π-calculus
terms, the main operator for composing processes is parallel composition, and
this operator does not isolate computation (in contrast with λ-calculus applica-
tion, which forces two terms to interact with each other). Using restricted forms
of parallel composition in π-calculus often forbids useful imperative patterns.

The extensions of realisability recently studied by Boudol [Bou07] and Ama-
dio [Ama09] for impure λ-calculi can also handle extra features such as threads.
However the threads in these works do not interfere with termination. Most
importantly, the underlying language must be the λ-calculus (the technique re-
lies on the standard realisability, and the crucial type construct in proofs is the
functional type). It does not seem possible to transport these proofs outside the
λ-calculus, e.g., in the π-calculus.

In another extension of the realisability technique, Blanqui [Bla04] is able
to lift a termination proof based on realisability for simply-typed λ-calculus
into a termination proof for a λ-calculus with higher-order pattern-matching
operators, provided a well-founded order exists on the constructors used for
pattern-matching. Again, as refinement of the realisability approach for a λ-
calculus, the method proposed, and the details of the proof, are entirely different
from ours.

In the paper, we have proposed a method to treat the problem in which a
standard measure-based technique for imperative languages is made parametric
with respect to a terminating functional core language; the termination of the
core language is established separately. The method can be further enhanced
by refining the initial measure technique. The core language parameter of the
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method is functional. We do not know how to relax the property, needed in the
definition of pruning.
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Buffered Communication Analysis in
Distributed Multiparty Sessions�

Pierre-Malo Deniélou and Nobuko Yoshida
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Abstract. Many communication-centred systems today rely on asynchronous
messaging among distributed peers to make efficient use of parallel execution and
resource access. With such asynchrony, the communication buffers can happen to
grow inconsiderately over time. This paper proposes a static verification method-
ology based on multiparty session types which can efficiently compute the upper
bounds on buffer sizes. Our analysis relies on a uniform causality audit of the en-
tire collaboration pattern — an examination that is not always possible from each
end-point type. We extend this method to design algorithms that allocate commu-
nication channels in order to optimise the memory requirements of session exe-
cutions. From these analyses, we propose two refinements methods which respect
buffer bounds: a global protocol refinement that automatically inserts confirma-
tion messages to guarantee stipulated buffer sizes and a local protocol refinement
to optimise asynchronous messaging without buffer overflow. Finally our work is
applied to overcome a buffer overflow problem of the multi-buffering algorithm.

1 Introduction

Session types for buffer bound analysis. The expensive cost of synchronous commu-
nications has led programmers to rely on asynchronous messaging for efficient network
interactions. The downside is that non-blocking IO requires buffers that can grow in-
considerately over time, bringing systems to stop. The analysis and debugging of this
phenomenon is mainly done by a tedious monitoring of the communicated messages of
the whole distributed system. This paper shows that, when a global interaction pattern is
explicitly specified as a multiparty session [11,1,15,22], types can provide an effective
way to statically verify buffer usage and communication optimisations, automatically
guaranteeing safe and deadlock-free runs.

Session types, first introduced in [20,10], can specify communication protocols by
describing the sequences and types of read, write and choices on a given channel. For
example, type T0 =!〈nat〉; !〈string〉;?〈real〉;end, in the original binary session type syn-
tax, expresses that a nat-value and string-value will be sent in that order, then that a
real-value is expected as an input, and finally that the protocol ends.

We can use session types to calculate the upper bounds of the buffer sizes of asyn-
chronous channels (message passing is non-blocking and order-preserving using FIFO
buffers). For example, from type T0, we can compute that the maximum number of
messages that might be stored in a communication buffer is two, while a different type
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T1 =!〈nat〉;?〈real〉; !〈string〉;end guarantees a maximum size of one, since the dual
process engaged with T1 is forced to consume a nat-value before sending the next real-
message. This use of session types is informally observed in [7] and formally studied in
[8] for binary session types. However, the binary case does not yield a direct extension
to multiparty interactions as explained below.
Buffer bounds analysis in multiparty sessions. We start by illustrating the difficul-
ties of such an analysis on a simple three party interaction (Example (a) below), where
s!〈V 〉 is an output of V to s, s?(x);P an input at s, and μX .P a recursive agent:

Example (a)
(A) Alice=μX .s1!〈1〉;s3?(x);X

(B) Bob =μX .s1?(x);s2!〈Orange〉;X

(C) Carol=μX .s2?(x);s3!〈2.4〉;X
Example (b)
(B1) Bob1 =μX .s1?(x);X

(C1) Carol1=μX .s3!〈2.4〉;X Example (a) Example (b)

We assume the three buffers of s1, s2 and s3 are initially empty and that values are
pushed and read one by one. Assuming session types ensure that accesses to buffers do
not create any race condition at any moment of the infinite protocol execution, none of
the channels s1,s2,s3 need to buffer more that one value at any given time.

However, if we change Bob and Carol to Bob1 and Carol1 as Example (b) above,
while they still interact correctly, the buffers of s1 and s3 need an unbounded size be-
cause of the lack of synchronisation between Bob1 and Carol1. The main difficulty of
the communication buffer analysis is that, unlike in binary session types, each end-
point type itself does not provide enough information: for example, Alice’s local type
Ta = μx.s1!〈nat〉;s3?〈real〉;x (repeatedly sends a nat-value to s1 and receives a real-
value from s3) is the same in both Examples (a) and (b), while the needed buffer size
for s1 and s3 are different (1 in (a) and ∞ in (b)) due to the change in the other par-
ties’ behaviours. Our first question is: can we statically and efficiently determine the
upper size of buffers in multiparty interactions? In our case, we take advantage of the
existence of a global session type [11,1,15,22] for the analysis:

G = μx.Alice→ Bob: s1 〈nat〉;Bob → Carol : s2 〈string〉;Carol → Alice: s3 〈real〉;x

The above type represents the global interaction between Alice-Bob-Carol in (a) where
Alice→Bob: s1 〈nat〉; means that Alice sends a nat-value to Bob through buffer s1. To
analyse buffer usage, we consider sessions as graphs and track causal chains for each
channel: alternated message production and consumption mark the execution points at
which buffers are emptied. This can be observed in Example (a). On the other hand,
the global type of Alice-Bob1-Carol1 in (b) lacks the second Bob→ Carol: no message
forces Carol to wait for Bob’s reception before sending the next message. In that case,
each buffer may accumulate an unbounded number of messages.
Channel allocation. Our next problem is about resource allocation. Given a global
scenario, can we assign the minimum number of resources (channels) without conflict
so that, for instance, we can efficiently open a minimal number of sockets for a given
network interaction? Assume Alice and Carol in (a) wish to communicate one more
message after completing three communications, where the new communication hap-
pens on a fresh channel s4 (Example (c) below). Can we reuse either s1,s2 or s3 for this
new communication? Reusing s1 creates a writing conflict (the order between Alice’s
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first and third messages would be unspecified) and reusing s3 would create a reading
conflict (Carol could read her own message).

Example (c)
(A2) Alice2=μX .s1!〈1〉;s3?(x);s4!〈x+1〉;X
(B) Bob =μX .s1?(x);s2!〈Orange〉;X
(C2) Carol2=μX .s2?(x);s3!〈2.4〉;s4?(y);X

Example (d)
(A3) Alice3=μX .s1!〈1〉;s3?(x);s2!〈x+1〉;X
(C3) Carol3=μX .s2?(x);s3!〈2.4〉;s2?(y);X Example (c) Example (d)

The only safe way to reuse a channel in Example (c) is to merge s2 and s4 as in Example
(d), in which case communications on other channels prevent any conflict.

Global refinement for multiparty sessions. The third issue is how to fix a buffer
overflow problem by “global refinement”, i.e. alteration of the original global protocol
to satisfy given buffer sizes. Here, our simple approach is the insertion of a minimal
number of confirmation messages to enforce synchronisation. In network or business
protocols, they can be implemented as a system level signal. Consider the interaction
(b) among Alice-Bob1-Carol1 where each buffer requires an unbounded size. If we
wish to enforce a buffer size of at most 2, we can build a new global type where one
confirmation message from Bob to Carol is inserted in any second iteration as:

G′ = μx. Alice→ Bob: s1 〈nat〉;Carol → Alice: s3 〈real〉;
Alice→ Bob: s1 〈nat〉;Bob → Carol : s2 〈string〉;Carol → Alice: s3 〈real〉;x

The revised processes following G′ are given as:

Bob4 = μX .s1?(x);s1?(x);s2!〈Signal〉;X Carol4 = μX .s3!〈2.4〉;s2?(x).s3!〈2.4〉;X

Local refinement for multiparty messaging optimisations. The last issue is about
flexible local refinement (optimisations) based on [15,14]. Assume that, in Example (a),
Bob wishes to always start the asynchronous transmission of the string Orange to the
buffer s3 without waiting for the delivery of the first nat-value from Alice on s1.

Bob5 = μX .s2!〈Orange〉;s1?(x);X (1.1)

Due to Bob’s unilateral implementation change, all three minimal buffer sizes go up
from 1 to 2. Moreover, suppose Bob repeatedly applies the same optimisation on his
next n messages, as in s2!〈Orange〉;s2!〈Orange〉; ..;s2!〈Orange〉;Bob. While the result
is communication-safe (no mismatch of the communication with Carol), all three min-
imal buffer sizes go up from 1 to n. How can we perform local optimisation without
altering buffer sizes in a multiparty session?

Contributions are summarised in the figure below. To the best of our knowledge, our
work is the first which guarantees safe buffered multiparty communications for the
π-calculus with communication-safety, progress and flexible refinements. The key con-
tribution is a general causal analysis over graphs constructed from multiparty session
types (§ 3). Due to the space limitation, we omit the global refinement. A full version
which includes the global refinement, omitted definitions, examples and proofs, and a
prototype for computing the upper bound on the buffer size are available [5].
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1. The overall analysis starts from global
types that have no channel annotation.
We attribute channels based on memory
requirements (§ 4).

2. From global types, our bound analy-
sis computes the buffer bounds of finite
channels and finds the infinite ones (§ 3)

3. The global refinement method then in-
troduces additional messages to prevent
any unboundedness (long version [5]).

4. Once the global type has been projected
to local types, local refinement can op-
timise the distributed execution of the
participants’ processes (§ 5).

5. The running optimised processes can
then be typed and enjoy communica-
tion, buffer and type safety and progress
properties (§ 3).

6. We apply our work to the multibuffering
algorithm (§ 5.1).

2 Asynchronous Multiparty Sessions

Syntax. We start from the π-calculus for multiparty sessions from [11] with unbounded
and bounded buffers. Base sets and the grammars are given below.

P ::= a[2..n](s̃ m̃).P | a[p] (s̃).P request, accept
| s!〈ẽ〉;P | s?(x̃);P send, receive
| s!〈〈s̃〉〉;P | s?((s̃));P session send, receive
| s� l;P | s�{li : Pi}i∈I selection, branch
| if e then P else Q conditional
| 0 | (ν a)P | (ν s̃)P inact, hiding
| P | Q | μX .P | X par, recursion
| sn : h̃ message buffer

a,b,x,y, .. shared names
s,t, .. session channels
l, l′, .. labels

X ,Y, .. process variables
m,n, .. buffer size (integers or ∞)

e ::= v | e and e′ · · · expressions
v ::= a | true | false · · · values
h ::= l | ṽ | t̃ message values

a[2..n](s̃ m̃).P initiates, through a shared name a, a new session si with buffer size mi

(1≤ n ≤∞) with other participants, each of the form a[p](s̃).Q with 1≤ p≤ n−1. The
si in vector s̃ is a session channel (bounded by buffer size mi) used in the session. We call
p, q,... (natural numbers) the participants of a session. Session communications (which
take place inside an established session) are performed by the sending and receiving of
a value; the session sending and reception (where the former delegates to the latter the
capability to participate in a session by passing a channel associated with the session
which is called delegation); and by selection and branching (the former chooses one of
the branches offered by the latter). sn :h̃ is a message buffer of size n representing ordered
messages in transit h̃ with destination s. This may be considered as a network pipe in a
TCP-like transport with fixed bandwidth. The rest of the syntax is standard from [11].
We often omit n from sn : h̃, 0, and unimportant arguments e.g. s!〈〉 and s?();P. An
initial process does not contain any runtime syntax (buffers and session hiding).
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Reductions. A selection of reduction rules is given below.

a[2..n](s̃ ñ).P1 | a[2](s̃).P2 | · · · | a[n] (s̃).Pn → (ν s̃)(P1 | P2 | ... | Pn | sn1
1 : /0 | ... | snm

m : /0)

s!〈ẽ〉;P | sn : h̃ → P | sn : h̃ · ṽ (n � |h̃|, ei ↓ vi)

s!〈〈t̃〉〉;P | sn : h̃ → P | sn : h̃ · t̃ (n � |h̃|)
s� l;P | sn : h̃ → P | sn : h̃ · l (n � |h̃|)

s?(x̃);P | sn : ṽ · h̃ → P[ṽ/x̃] | sn : h̃

s?((t̃));P | sn : t̃ · h̃ → P | sn : h̃

s�{li : Pi}i∈I | sn : l j · h̃ → Pj | sn : h̃ ( j ∈ I)

The first rule describes the initiation of a new session among n participants that syn-
chronise over the shared name a. After the initiation, they will share m fresh private
session channels si and the associated m empty buffers of size nm ( /0 denotes an empty
queue). The output rules for values, sessions and selection respectively enqueue val-
ues, sessions and labels if the buffer is not full. ei ↓ vi denotes the evaluation of ei to
vi. We define | /0| = 0 and |h̃ · h| = |h̃|+ 1. The size n = ∞ corresponds to the original
asynchronous unbounded buffered semantics [11]. The input rules perform the comple-
mentary operations. Processes are considered modulo a structural equivalence≡, whose
definition is standard (e.g. μX .P ≡ P[μX .P/X ]) [11].

3 Bound Analysis in Multiparty Sessions

This section presents an analysis of causal chains and buffer sizes and introduces the
typing system for the buffer safety property (Corollary 3.9).

3.1 Global Types and Dependencies

Global types. A global type, written by G,G′, .., describes the whole conversation
scenario of a multiparty session as a type signature. Our starting syntax is from [11].

G,G′ ::= p→ p′ : k 〈U〉;G′ values
| p→ p′ : k {l j : G j} j∈J branching
| μx.G | x | end recursion, end

U,U ′ ::= S̃ | T @p sorts, session
S,S′ ::= bool | nat | G base, shared

Type p→ p′ : k 〈U〉;G′ says that participant p sends a message of type U on the chan-
nel k (represented as a natural number) so that participant p′ can receive it. The session
continues with the interactions described in G′. The value types U,U ′ are either a vector
of sorts or a located type T @p, representing a local type T assigned to participant p.
Located types are used for delegation and defined in § 3.3. Sorts S,S′ are either base
types or global types for shared names. Type p→ p′ : k{l j : G j} j∈J says that participant
p can invoke one of the li labels on channel k (for participant p′ to read) and that inter-
actions described in G j follow. We require p �= p′ to prevent self-sent messages. Type
μx.G is for recursive protocols, assuming the type variables (x,x′, . . . ) are guarded in
the standard way, i.e. they only occur under values or branchings. We assume G in value
types is closed, i.e. without free type variables. Type end represents session termination
(often omitted). k ∈ G means k appears in G. The functions chans(G) and prins(G) re-
spectively give the number of channels and participants of G.

Sessions as graphs. Global types can be seen (isomorphically) as session graphs, that
we define in the following way. First, we annotate in G each syntax occurrence of
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subterms of the form p→ p′ : k 〈U〉;G′ or p → p′ : k {l j : G j} j∈J with a node name
(n1,n2, . . .). Then, we inductively define a function nodeG that gives a node nk (or the
special node end) for each of the syntactic subterm of G as follows:

nodeG(end) = end nodeG(ni : p→ p′ : k 〈U〉;G′) = ni

nodeG(μx.G′) = nodeG(G′) nodeG(n j : p→ p′ : k {l j : G j} j∈J) = n j

nodeG(x) = nodeG(μx.G′) (if the binder of x is μx.G′ ∈G)

We define G as a session graph in the following way: for each subterm of G of the form
n : p→ p′ : k 〈U〉;G′, we have an edge from n to nodeG(G′), and for each subterm of G
of the form n′ : p→ p′ : k{l j : G j} j∈J, we have edges from n′ to each of the nodeG(G j)
for j ∈ J. We also define the functions pfx(ni) and ch(ni) that respectively give the
prefix (p→ p′ : k) and channel (k) that correspond to ni. For a global type G, nodeG(G)
distinguishes the initial node. size(G) denotes the number of edges of G.

Example 3.1 (Session graph). Our running example extends Example (a) from § 1
with branching. Below, we give the global type followed by its graph representation,
with the edges as the dotted arrows (labels are for information). n1 is the initial node.

μx.Alice → Bob: s1 〈nat〉;Bob → Carol : s2{
l1 : Carol → Alice : s3{l3 : Alice→ Carol : s2 〈string〉;x}
l2 : Carol → Alice : s3{l4 : end}

}
n1 : Alice → Bob : s1 �� n2 : Bob → Carol : s2

l1
��

l2
�� n5 : Carol → Alice : s3

l4
��

n4 : Alice → Carol : s2

��

n3 : Carol → Alice : s3
l3�� end

The recursion call yields a cycle in the graph, while branching gives the edges l1 and l2.

The edges of a given session graph G define a successor relation between nodes,
written n≺ n′ (omitting G). Paths in this session graph are referred to by the sequence
of nodes they pass through: a path n0 ≺ . . .≺ nn can be written more concisely n0 . . .nn

or ñ when there is no ambiguity. We say that a path n0 . . .nn has suffix ni . . .nn for
0 < i < n. The empty path is ε . The transitive closure of ≺ is ≺≺.

IO-chains. We detect causality chains in a given G by the relation ≺IO, defined below:
n1≺IO n2 if n1≺≺n2 and pfx(n1)=p1→p :k1 and pfx(n2)=p→p2 :k2 with k1 �=k2

The relation ≺IO asserts the order between a reception by a principal and the next mes-
sage it sends. An input-output dependency (IO-dependency) from n1 to nn is a chain
n1≺IO · · ·≺IOnn (n ≥ 1).

3.2 Algorithms for Buffer Size Analysis

Unbounded buffers. In some sessions, messages (sent asynchronously) can accumu-
late without moderation in a buffer. A simple test can predict which channels require an
unbounded buffer. We use the fact that IO-dependencies characterise the necessity for
a channel buffer to be emptied before proceeding. Infinite channels are the ones where
such a dependency is missing.
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Definition 3.2 (infinite and finite). A channel k is said to be finite if, for every node
n ∈G and for every cycle ñ for ≺ such that ch(n) = k and n ∈ ñ, there exists a cycle for
≺IO that starts from n and only involves nodes from ñ. The other channels are infinite.

Correspondingly, buffers are said to be bounded or unbounded. Given G, checking for
the infinity of k in G can be computed in a time bounded by O(size(G)3). The proof re-
lies on the fact that establishing all IO-dependencies of a given session has O(size(G)3)
time-complexity (assuming the number of participants as a constant).

Example 3.3 (Session graph and infinite channels). We illustrate on our running ex-
ample the previous notions. We add to the picture the IO-dependencies (with ⇒).

Since each node of the main cycle n1n2n3n4 is part of the IO-cycles n1n2n3 or n3n4,
there are no infinite channels in this session.

Counting finite buffer size. To compute the bounds on buffer sizes, we first need to
define a property on paths that characterises when a buffer has to be emptied.

Definition 3.4 (reset). If ñ= n0 . . .nnn is a path in G, the property Reset(ñ) holds if
there exist 0≤ i0 < .. . < i j ≤ n ( j ≥ 1) such that ni0 ≺IO . . .≺IO ni j ≺IO n and ch(ni0)=
ch(n). One practical instance of the nodes {ni0 , . . . ,ni j ,n} is called the reset nodes of ñ.

The paths that satisfy the reset property are the ones for which there exists a reception
guard to the last node.

Now that we know which buffers are infinite and have characterised the resetting
paths that control buffer growth, we can describe our algorithm to count the buffer size
required by finite channels. For each channel k of a global session type G, we define a
function Bk〈G〉 that will compute the bound on the buffer size of channel k. The key
step is to reset the counter when we recognise the appropriate IO-dependencies.

Definition 3.5 (bound computation). Given a session graph G, for each channel k, we
compute the bound as Bk〈G〉= Bk〈0, /0,ε,n0〉 for n0 the initial node of G.

Bk〈m,P, ñ,n〉=

⎧⎪⎪⎨⎪⎪⎩
0 if n = end or ñ ∈P
maxn≺n′ Bk〈m,{ñ}∪P, ñn,n′〉 if ch(n) =k′,k �= k′

maxn≺n′ Bk〈1,{ñ}∪P,n,n′〉 if ch(n) = k,Reset(ñn)
max(m+1,maxn≺n′ Bk〈m+1,{ñ}∪P, ñn,n′〉) if ch(n) = k,¬Reset(ñn)

The algorithm explores all the paths of the session graph until they grow to satisfy the
reset property. Since we examine only finite channels, the length of such paths is limited
and the algorithm terminates. The bound on the buffer size of a channel is the maximum
buffer size required over these paths. For each path, the algorithm acts recursively on
the edges and maintains a counter (m in Bk〈m,P, ñ,n〉) that records the current size
of the buffer. If the current prefix does not involve the channel k, the size of the buffer
is unchanged and the computation continues to the next nodes. If the current prefix

n1 : Alice → Bob : s1
��

IO
�� n2 : Bob → Carol : s2

��

IO

		

��

IO
�� n5 : Carol → Alice : s3

��
n4 : Alice → Carol : s2

��

IO
�� n3 : Carol → Alice : s3

��

IO



 ����������������

����������������IO��
end
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uses the channel k, there are two cases: (a) the reset property holds for the current
path, in which case the buffer has been emptied prior to the current message; or (b) the
reset property does not hold and the buffer needs to be able to keep one more value.
When there are no further node, or when the path currently examined has already been
considered (i.e. is in P), the algorithm stops.

Given a global type G, the upper bound of channel k in G can be computed in poly-
nomial time. Note that the computation can be done for all channels at once.

Example 3.6 (buffer bound analysis). We illustrate the algorithm on our running ses-
sion example, where we compute the bound for channel s2 (we omitP for readability):

Bs2〈0,ε,n1〉 max explanation
= Bs2〈0,n1,n2〉 0 s1 �= s2
= max(Bs2〈1,n1n2,n3〉,Bs2〈1,n1n2,n5〉) 1 ¬Reset(n1n2),¬Reset(n1n3)
= max(Bs2〈1,n1n2n3,n4〉,Bs2〈1,n1n2n5,end〉) 1 s3 �= s2
= max(Bs2〈1,n4,n1〉,0) 1 Reset(n1n2n3n4)
= Bs2〈1,n4n1,n2〉 1 s1 �= s2
= max(Bs2〈2,n4n1n2,n3〉,Bs2〈2,n4n1n2,n5〉) 2 ¬Reset(n4n1n2),¬Reset(n4n1n3)
= max(Bs2〈2,n4n1n2n3,n4〉,Bs2〈2,n4n1n2n5,end〉) 2 s3 �= s2
= max(Bs2〈1,n4,n1〉,0) 2 Reset(n4n1n2n3n4)

The algorithm starts with n1, the root of G. Since n1 uses buffer s1 (different from s2),
we continue with the successor n2. It uses s2 and, since the accumulated path n1n2 does
not satisfy the reset property, the buffer requirement of s2 needs to be increased to 1. The
next nodes, n3 and n5, do not use the channel s2. Since n4 uses s2 and Reset(n1n2n3n4)
holds (there is n2≺IO n3≺IO n4), the buffer has to be emptied before n4: we thus reini-
tialise the buffer requirement to 1 and the path to just n4. On the other branch, we reach
end and stop the computation. The next prefix of n4, n1, does not use s2, but it succes-
sor n2 does. We thus check the reset property on the path n4n1n2, but it does not hold.
The buffer requirement is thus increased to 2. As previously, n3 and n5 do not use the
channel s2 and the accumulated path (in the main branch) becomes n4n1n2n3. The next
prefix, n4, uses s2 and Reset(n4n1n2n3n4) holds: thus we initialise the buffer require-
ment back to 1 and the path to just n4. However, we just explored such a situation earlier
in the computation and thus stop. The maximum buffer size encountered for s2 is then
2. Such a computation for s1 and s3 gives a buffer size of 1.

3.3 Subject Reduction and Buffer Safety

Once global type G is agreed upon by all parties, a local type Ti from each party’s
viewpoint is generated as a projection of G, and implemented as a process Pi. If all the
resulting local processes P1, ..,Pn can be type-checked against T1, ..,Tn, they are auto-
matically guaranteed to interact properly, without communication mismatch (commu-
nication safety) nor getting stuck inside a session (progress) [11]. Here we additionally
ensure the absence of buffer-overflow based on the buffer bound analysis of G.
Local types. Local session types type-abstract sessions from each end-point’s view.

T ::= k!〈U〉;T | k?〈U〉;T | k⊕{li : Ti}i∈I | k&{li : Ti}i∈I | μx.T | x | end
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Type k!〈U〉 expresses the sending to k of a value of type U . Type k?〈U〉 is its dual. Type
k⊕{li : Ti}i∈I represents the transmission to k of a label li chosen in the set {li | i ∈
I}, followed by the communications described by Ti. Type k&{li : Ti}i∈I is its dual.
The remaining type constructors are standard. We say a type is guarded if it is neither
a recursive type nor a type variable. The relation between global and local types is
formalised by projection, written G � p (called projection of G onto p) and defined in
[11,22]. For example, (p→ p′ : k 〈U〉;G′) � p = k!〈U〉;(G′ � p), (p→ p′ : k 〈U〉;G′) �
p′ = k?〈U〉;(G′ �p′) and (p→ p′ : k 〈U〉;G′) �q = (G′ �q). We take an equi-recursive
view, not distinguishing between μx.T and its unfolding T [μx.T/x].
Linearity. To avoid race conditions and conflicts between typed processes, we build
on the definition of linearity from [11]. The relations ≺II and ≺OO are defined by:

n1≺II n2 if n1≺≺n2 and pfx(n1)=p1→p :k1 and pfx(n2)=p2→p :k2 s.t. p1 �=p2 ⇔ k1 �=k2

n1≺OO n2 if n1≺≺n2 and pfx(n1)=p→p1 :k1 and pfx(n2)=p→p2 :k2 s.t. p1 �=p2 ⇒ k1 �=k2

The three relations ≺IO, ≺II and ≺OO are used to characterise the authorised sequences
of actions. An input dependency (I-dependency) from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn

n2 (n ≥ 1) such that φi = IO for 1 ≤ i ≤ n− 1 and φn = II. An output dependency (O-
dependency) from n1 to n2 is a chain n1 ≺φ1 · · · ≺φn n2 (n≥ 1) such that φi ∈ {OO, IO}.
These dependency relations are respectively written ≺≺II and ≺≺OO. G is linear (writ-
ten Lin(G)) if, whenever two nodes n1≺≺n2 use the same channel k, the dependencies
n1 ≺≺II n2 and n1 ≺≺OO n2 hold. If G carries other global types, we inductively demand
the same. Examples can be found in [11,5]. We call linear global types whose projec-
tions are defined coherent. Hereafter we only consider coherent types.

Typing initial processes. The type judgements for initial processes are of the form
Γ  P�Δ which means: “under the environment Γ , process P has typing Δ”. Environ-
ments are defined by: Γ ::= /0 | Γ ,u : S | Γ ,X : Δ and Δ ::= /0 | Δ , s̃m̃ : {T@p}p∈I . A
sorting (Γ ,Γ ′, ..) is a finite map from names to sorts and from process variables to se-
quences of sorts and types. Typing (Δ ,Δ ′, ..) records linear usage of session channels. In
multiparty sessions, it assigns a family of located types to a vector of session channels.
In addition, we annotate each session channel sk with its buffer bound mk.

Among the typing rules, the rule for session initiation uses the buffer size Bsi〈G〉
calculated from G.

Γ  a : G Γ  P�Δ , s̃m̃ : (G�1)@1 |s̃|= chans(G) Bk〈G〉= mk

Γ  a[2..n](s̃ m̃).P�Δ

The type for s̃ is the first projection of the declared global type for a in Γ . The end-
point type (G�p)@p means that the participant p has G�p, which is the projection of G
onto p, as its end-point type. The condition |s̃|= chans(G) means the number of session
channels meets those in G. The condition Bk〈G〉= mk ensures that the size of the buffer
mi for each sk does not exceed the size calculated from G. Similarly for accept. Other
rules for initial processes are identical with [11]. Note that since Bk〈G〉 is decidable,
type-checking for processes with type annotations is decidable [11,22].

The rest of the typing system for programs and one for runtime are similar with those
in [11] ([5]). Judgements for runtime are there extended to Γ  Σ P�Δ with Σ a set of
session channels associated to the current queue.
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For the subject reduction, we need to keep track of the correspondence between the
session environment and the buffer sizes. We use the reduction over session typing,

Δ k→ Δ ′, that is generated by rules between types such as k!〈U〉;T @p,k?〈U〉;T ′@q
k→

T @p,T ′@q. The key lemma about the correspondence between buffer size and reduc-
tion follows. We set [[G]] to be the family {(G�p)@p | p ∈ G}. Regarding each type in
[[G]] as the corresponding regular tree, we can define ≺, ≺II,≺IO and ≺OO among its
prefixes precisely as we have done for G.

Lemma 3.7. If Δ(s̃) = [[G]] and Δ sk→ Δ ′, then [[G]]( k→)∗[[G′]] with Δ ′(s̃) = [[G′]] and
Bk〈G〉 ≥Bk〈G′〉.

When Γ  Σ P�Δ , we say that (Γ ,Σ ,P,Δ) is fully coherent for session s̃ if there exist
P1, . . . ,Pk,Σ ′,Δ ′ such that Γ  Σ5Σ ′ P | P1 | . . . | Pk �Δ ,Δ ′ and Δ ,Δ ′ = Δ ′′, s̃ñ : {Tp@p}p∈I

with [[G]] = {Tp@p}p∈I , G coherent and Bi〈G〉 ≤ ni (1 ≤ i ≤ k).

Theorem 3.8 (Subject Reduction). Γ  Σ P �Δ and P −→ Q with (Γ ,Σ ,P,Δ) fully

coherent imply Γ  Σ Q�Δ ′ for some Δ ′, sk such that Δ = Δ ′ or Δ(
sk→)∗Δ ′ and Bk〈G〉 ≥

Bk〈G′〉 with Δ(s̃) = [[G]], Δ ′(s̃) = [[G′]] and (Γ ,Σ ,Q,Δ ′) fully coherent.

The proof relies on Lemma 3.7 and the fact that session reduction does not affect the
causal dependencies within global types, so that buffer sizes can only decrease.

To state our buffer safety result, we define the buffer overflow error as follows:

n ≤ |h̃| ⇒ s!〈ẽ〉;P | sn : h̃ → Err, s!〈〈t̃〉〉;P | sn : h̃ → Err, s� l;P | sn : h̃ → Err

P → Err ⇒ P | Q → Err, (ν a)P→ Err, (ν s̃)P → Err, P ≡ Q → Err

Corollary 3.9 (Buffer Safety) If Γ  Σ P�Δ , then for all P′ s.t. P −→∗ P′, P′ �→ Err.

4 Channel Attribution

This section describes algorithms that attribute channels to the communications of a
given global type without channels, called stripped global types (G,G′, ...) defined as:

G ::= . . . | p→ p′〈U〉;G′ | p→ p′{l j : G j} j∈J values, branching

Our algorithms transform G into regular type G by adding channel annotations. We
define the channel allocation of a global type G to be the value of the function ch.

Singleton allocation. The simplest channel allocation attributes a different channel to
each communication occurring in the global type syntax tree. Formally, the singleton
allocation is such that: ∀n,n′ ∈ G, ch(n) = ch(n′) ⇐⇒ n = n′. Singleton allocations
enjoy the following good properties.

Lemma 4.1. For any global type G with singleton allocation, (1) G satisfies the linear-
ity property; (2) for the finite channels k of G, Bk〈G〉= 1; (3) for the finite channels k
of G, ∑k Bk〈G〉 ≤ size(G).
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Channel equalities. As well as values of the ch function, allocations can be seen as
partitions of the set of nodes {n}n∈G. We then define partition refinement through the
notion of channel equality, i.e. the union of two partitions to produce a new allocation.

Definition 4.2 (channel equality). A channel equality is the substitution of two chan-
nels k and k′ in a global type G by a single fresh channel k′′ while keeping G linear.

As we take the singleton allocation as a base, we can describe channel allocations by
sets E of channel equalities, the empty set corresponding to the singleton allocation. We
write GE the global type G with channel equalities E .

In the rest of this section, we always start from the singleton allocation and proceed
by channel equality. We notably rely on the fact that the result of the equality of two
finite channels is finite. Formally, if Bk〈G〉= ∞ then ∀E,Bk〈GE〉= ∞.

Note that the total number of possible channel allocations is finite and corresponds
to the number of partitions of a given finite set. The exact count (if we do not take into
account the linearity property) is given by a Bell number [19] which is exponential in
the size of the global type. Given the finite number of possible allocations, we know that
there exists an algorithm to find allocations satisfying any decidable property. Notably,
one can reach any given memory requirement (number of channels, buffer sizes).

Principal allocation. The most widely used allocation method attributes two commu-
nication channels (one in each direction) for each pair of participants. The session types
in [8,1] follow this allocation. Formally, the principal allocation is such that: ∀n,n′ ∈
G s.t. pfx(n) = p→ q : k and pfx(n′) = p′ → q′ : k′,(k = k′ ⇐⇒ p = p′ ∧q = q′).

Lemma 4.3. For any global type G with principal allocation, (1) G satisfies the linear-
ity property; (2) chans(G)≤ n× (n−1) where n = prins(G).

Greedy allocations. We now define a family of efficient algorithms, that give good
allocation results in practice.

Definition 4.4 (Greedy allocation algorithm). Given a global type with singleton al-
location G, of initial node n0, and a successor function succ over the nodes, the func-
tion I /0

/0 (n0) is defined by:

I K
E (n) = I K′

E ′ (n′) where

⎧⎨⎩
succ(n) = n′

ch(n) = k
K′ = K∪{k}

∧E ′ =
{

E ∪{k = k′} if ∃k′ ∈K,Lin(GE∪{k=k′})
E otherwise

I K
E (end) = E

This algorithm is parameterised by the successor function over nodes (that can be given
e.g. by a depth-first graph search) and by the choice between the possible channels
k′ ∈ K for equality. The greedy algorithm has the advantage of not backtracking and
thus enjoys a polynomial complexity (if the choice procedures are polynomial) in the
size of the graph. In particular, we define two efficient heuristics based on the generic
greedy algorithm. In the greedy algorithm, we implement K by either:

1. (Early) a queue, so that we choose for channel equality the oldest channel k′ ∈K .
2. (Late) a list, so that we choose for channel equality the latest channel k′ ∈K.

The early and late allocations are not optimal in terms of total memory requirements
(computed by ∑k Bk〈G〉 when all channels are finite) but give good results in practice
while being polynomial.
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Example 4.5 (comparison of the allocations).
We apply the allocation algorithms on
a three-party stripped global type. The
results are given in the adjacent table
in term of number of allocated chan-
nels and total memory requirement.
The greedy algorithms give the best re-
sults on this example, with the early
greedy algorithm allocating less chan-
nels than the late greedy algorithm.

Singleton Principal Early G. Late G.
n0 : A→ B; k0 k0 k0 k0
n1 : B→ A; k1 k1 k1 k1
n2 : A→ B; k2 k0 k0 k0
n3 : A→ B; k3 k0 k0 k1
n4 : A→ C; k4 k2 k2 k2
n5 : C→ B; k5 k3 k1 k3
n6 : B→ C; k6 k4 k2 k1
n7 : B→ C k7 k4 k2 k2

Nb channels 8 5 3 4
Memory Req. 8 7 5 5

5 Local Refinement: Messaging Optimisations

One of the significant practical concerns in systems with messaging is to optimise inter-
actions through more asynchronous data processing to increase parallelism. Our recent
work [15,14] developed a new form of subtyping, the asynchronous subtyping, that
characterises the compatibility between classes of type-safe permutations of actions,
in order to send messages before receiving. This subtyping allows, however, not only
Bob5 in (1.1) in § 1 but also μX .s2!〈Orange〉;X as a refinement of Bob, which changes
all buffer sizes from 1 to ∞, leading to buffer overflows. Our aim is to overcome this
problem by controlling permutations locally with the help of the IO-dependency anal-
ysis. The key idea is to prohibit the permutation of an output action at k0 with an input
or branching action which prevents (by IO-causality) the accumulation of values in k0.

Recall Definition 3.4. We define the minimal resetting paths to be the paths that
satisfy the reset property while none of their suffix does. Then, we define the dependent
nodes of channel k, noted dep(k) to be the union of the reset nodes of the minimal
resetting paths that end with k. This set of nodes characterises a buffer usage.

First, for a given G, we choose a partition {N0, . . . ,Nn} of the set of nodes of G. This
partition should satisfy the two properties: ∀n ∈ Ni,n

′ ∈ Nj,ch(n) = ch(n′)⇒ Ni = Nj

and ∀n ∈ Ni,dep(ch(n)) ⊂ Ni. The choice of a partitioning depends in particular on a
choice of reset and dependent nodes. Note that the trivial partitioning (with only one
partition) is always possible. Since that, for each channel k, all nodes using k are part of
the same partition (written N(k)), we can annotate all uses of k in G by N(k).

In the example below, the partitioning is made of N1 = {n1,n2} and N2 = {n3,n4}:
we give the annotated session graph (with the IO-dependencies highlighted) on the left
and the projected types (where the annotations are kept) on the right.

Next, we apply the size-preserving asynchronous communication subtyping, following
the annotations on the projected types. The relation T 7 T ′ means T is more asyn-
chronous than (or more optimised than) T ′. The main rule is:

(OI) kN !〈U〉;kN0
0 ?〈U ′〉;T 7 kN0

0 ?〈U ′〉;kN!〈U〉;T (N∩N0 = /0)

n1 : Alice → Bob : sN1
1

��
IO
�� n2 : Bob → Alice : sN1

2

��

IO��

n4 : Bob → Alice : sN2
4

��

IO
�� n3 : Alice → Bob : sN2

3
��

IO��

TAlice = μx.sN1
1 !;sN1

2 ?;sN2
3 !;sN2

4 ?;x

TBob = μx.sN1
1 ?;sN1

2 !;sN2
3 ?;sN2

4 !;x

T opt
Alice = μx.sN1

1 !;sN2
3 !;sN1

2 ?;sN2
4 ?;x
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where the two prefixes are permutable if the IO-chains of the two prefixes are dis-
joint. We can always permute two inputs and two outputs with distinct channels since
they do not contribute to the input and output alternations that constitute the IO-chains.
The branching/selection rules are similarly defined, and others are context rules. Then
we define a coinductive subtyping relation T1 �c T2 as a form of type simulation,
following [15,14]. The important fact is that �c does not alter buffer sizes: suppose
[[G]] = {T@p}p with T @p = (G�p)@p and p ∈G. Assume T @p�c T ′@p with [[G′]] =
{T ′@p}p Then Bk〈G〉 = Bk〈G′〉. Since there is no change in the buffer bounds, Type
and Buffer Safety are just proved from Theorem 3.8 and Corollary 3.9.

In the example above, in Alice’s type, we can permute sN1
2 ? and sN2

3 ! (T opt
Alice �c TAlice)

since N1∩N2 = /0, keeping the size of each buffer one. Hence process typable by T opt
Alice

can safely send message at s3 before input at s2. In Alice-Bob5-Carol from § 1, the
original global type G annotated by IO-chains has only one partition N = {n1,n2,n3}:

μx. Alice → Bob: sN
1 〈nat〉;Bob → Carol : sN

2 〈string〉;Carol → Alice : sN
3 〈real〉;x

Bob’s local type is μx.sN
1 ?〈nat〉;sN

2 !〈string〉;x, which prevents any optimisation 7 by
(OI). Hence, Bob5 is not typable. Some typable examples are given in the next section.

5.1 Application: Multi-buffering Algorithm

The double buffering algorithm [6] is widely used in high-performance and multicore
computing. We generalise this algorithm to multi-buffering [16], and solve an open issue
in our previous work [15, § 5]. The aim is to transport a large amount of data as a series
of units (say each unit is 16kB) from a source (Source) to a transformer (called Kernel).
Each unit gets processed at Kernel and delivered to a sink (Sink). Kernel uses n 16kB
buffers, named Bi, to maximise the message transfer asynchrony. Processes which rep-
resent Source, Sink, Kernel and Optimised Kernel are given below using parameterised
processes [22] (i.e. where foreach(i < n){P[i]} means we iterate P[i] for 0≤ i<n):

Source: μX .foreach(i < n){ri?(); si!〈yi〉};X Sink: μX .foreach(i < n){ti!〈〉;ui?(zi)};X

Kernel: μX .foreach(i < n){ri!〈〉;si?(xi);ti?();ui!〈xi〉};X

Optimised Kernel: r0!〈〉; ...;rn−1!〈〉; μX .foreach(i < n){si?(xi);ti?();ui!〈xi〉;ri!〈〉};X

In the loop, Kernel notifies Source with signals at ri that it is ready to receive data
in each channel si of buffer Bi. Source complies, sending one unit via si. Then Kernel
waits for Sink to inform (via ti) that Sink is ready to receive data via ui: upon receiving
the signals, Kernel sends the unit of processed data to Sink via ui. If Kernel sends the
n notifications to r0,...,rn−1 ahead like Optimised Kernel, Source can start its work for
the next unit (sending y j at s j) without waiting for other buffers.

The following proposition means that the n-buffers of size one in Kernel simulate
one buffer of size n, maximising the asynchrony. The proof is done by annotating the
global type with partitions {ri,si} and {ui, ti}, and checking that the permutation of the
projected Kernel type satisfies the (OI) rule.

Proposition 5.1 (n-buffering correctness). Source-Optimal Kernel-Sink satisfies both
progress and communication-safety. Also each buffer at si and ui holds at most one unit.

If Optimised Kernel is optimised as r0!〈〉; ...;foreach(i < n){ri!〈〉;si?(xi); ti? ;ui!〈xi〉}
(which is not typable in our system), then all buffers are forced to hold 2 units. This
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unsafe optimisation is typable in [15] but prevented here by Proposition 5.1. In [5],
we also deal with a use case of MPSoC buffer allocation from [4], with branching and
iterations [22], and verify it by applying all of the previously described methods.

6 Related Work

Checking buffer bounds based on global specifications has been studied through Petri
nets and Synchronous data flow. Recent advances [9] in the study of Kahn Process
Networks (KPN) have improved Parks’s algorithm [18] to ensure safe executions of
stream-based applications with bounded buffers, using an appropriate scheduling pol-
icy. Their theory is applied to KPN applications on MPSoC [4], demonstrating the ef-
fectiveness of non-uniform, fine-grained buffer allocations. By contrast, our approach
is type-based and relies on the existence of a global specification that brings additional
guarantees (such as deadlock-freedom) and allows global choreography manipulation
and refinements. It is moreover directly applicable to programming languages [12,22]
by extending existing type syntax and checking.

The idea of using a type-abstraction to investigate channel communications goes
back to Nielson & Nielson’s work on CML [17]. Gay & Vasconcelos [8] propose a
linear type system for binary sessions to enforce buffer bounds computed by a fixed
point method. Their work is thus limited to a particular channel allocation (i.e. principal,
cf. § 4) and does not extend to multiparty interactions (their method would find that the
buffers in Example (a) are infinite). Terauchi & Megacz [21] describe a polynomial
method to infer buffer bounds of a concurrent language through program analysis using
linear programming techniques, improving on previous work in [13], see [21, § 7]. Our
bound computation method differs in that it starts from a direct type-based abstraction
of global interaction structures, namely session graphs, not from direct investigation
of local types nor processes (normally in distributed systems, a peer does not know
other peer’s type or implementation [12]). It also leads to the general simplicity of the
analysis, and the uniform treatment of subtle issues such as asynchronous optimisations.
Thanks to session types, the channel passing problem in [21, § 6] does not arise in our
analysis: different (possibly newly generated) sessions and names can be stored in the
same buffer, still giving the exact bound of stored channels. None of [8,21] have studied
either channel allocation, global refinement or messaging optimisation.

Among process calculi for service-oriented computing (SOC), contracts [3] and the
conversation calculus [2] provide static type checking for a series of interactions and
ensure progress. We demonstrate the advantage of global types by the simplicity of
our analysis and the uniform treatments and articulation of our various algorithms. Our
approach is, however, extensible to these calculi because (1) the IO-causality analysis
does not rely on the form of session branches so that other form of sums can be analysed
by the same technique; and (2) combining with a polynomial inference which builds
a graph from a collection of local types [[G]] [15], Subject Reduction Theorem can be
proved using our invariance method noting that we use [[G]] for the proofs. An extension
to other formalisms for SOC including [3,2] is an interesting future work.

Further topics include the enrichment of global types with more quantitative infor-
mation (such as distance, probabilities and weights), which would enable finer-grained
analyses and optimisations.
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Abstract. We investigate Leifer and Milner RPO approach for deriv-
ing efficient (finitely branching) LTS’s and bisimilarities for π-calculus.
To this aim, we work in a category of second-order term contexts and
we apply a general pruning technique, which allows to simplify the set
of transitions in the LTS obtained from the original RPO approach.
The resulting LTS and bisimilarity provide an alternative presentation
of symbolic LTS and Sangiorgi’s open bisimilarity.

Introduction

Recently, much attention has been devoted to deriving labelled transition systems
and bisimilarity congruences from reactive systems, in the context of process lan-
guages and graph rewriting. Through the notion of contextual equivalence, re-
active systems naturally induce behavioural equivalences which are congruences
w.r.t. contexts, while LTS’s naturally induce bisimilarity equivalences with coin-
ductive characterizations. However, such equivalences are not congruences in
general, and it can be a difficult task to derive LTS’s inducing bisimilarities
which are congruences.

Leifer and Milner [1] presented a general categorical method, based on the
notion of Relative Pushout (RPO), for deriving a transition system from a re-
active system, in such a way that the induced bisimilarity is a congruence. The
labels in Leifer-Milner’s transition system are those contexts which are minimal
for a given reaction to fire. In the literature, some case studies have been carried
out in the setting of process calculi, for testing the expressivity of Leifer-Milner’s
approach [2,3,4,5,6,7,8]. Moreover, to deal with structural rules, an elaboration
of the RPO theory in the G-category setting (GRPO) has been introduced by
Sassone and Sobocinski in [2].

In general, in applying the RPO construction one needs to deal with the fol-
lowing problems:
– To encode all the characteristics of the language, mainly: structural rules, name
abstraction, name hiding.
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– To obtain a label transition system which is usable, where proofs of bisimi-
larities require to consider only a finite set of transitions at each step. Almost
always, the RPO approach generates LTS’s that are quite large and often redun-
dant, in the sense that most of the transitions can be eliminated from the LTS
without affecting the induced bisimilarity.
– When the RPO construction is performed, by embedding the category of terms
in a larger category, the resulting LTS can contain states that do not correspond
to any term of the language, and whose intuitive meaning is difficult to grasp.

In order to solve the above problems, the RPO construction needs to be
tuned-up, that is we have to find a convenient category in which to perform the
construction, and general methods for pruning the LTS.

In a previous work [7], we solve the above problems for the prototypical ex-
ample of CCS. In [7], we use a category of term contexts, i.e. a Lawvere category.
We encode names, and name binding using de Bruijn indexes ; this allows a rela-
tively simple and formally correct treatment of names, which, when represented
natively, can be quite subtle to treat. Moreover, in [7] we introduce a general
technique, which allows to prune an LTS obtained from a RPO-construction,
without modifying the induced bisimilarity. This is achieved by eliminating de-
finable sets of transitions, i.e transitions whose effect can be obtained by other
transitions. In [7], by using the above ideas in applying the (G)RPO construction
to CCS, we obtain the standard LTS from the standard reaction semantics. This
is an indication that the (G)RPO technique in combination with our general
pruning technique can generate useful LTS’s.

In the present work, we treat in detail the π-calculus. The techniques devel-
oped for CCS turn out to be useful also for the π-calculus, but for the latter,
in order to get an efficient LTS, a further ingredient is necessary, i.e. second-
order contexts. Categories of second-order term contexts have been introduced
in [9] as generalizations of the Lawvere category of terms, where parametric rules
can be readily represented. Intuitively, if we apply Leifer-Milner technique to π-
calculus by working in a standard Lawvere category of term contexts, in the
resulting LTS, for any process P exposing an output prefix, we need to consider

transitions P
[ ]|a(x).Q−→ P ′, for all Q. All these label contexts are “minimal” for

the reduction to fire; we cannot avoid Q, since, in the resulting process P ′, a
substitution is applied to Q. This makes the LTS inefficient. To overcome this
problem, we use second-order contexts. In this way, all the above transitions can

be parametrically captured by a single transition P
[ ]|a(x).X−→ P ′′, where X is a

variable representing a generic term, which will be possibly instantiated in the
future.

The final result of our construction produces a bisimilarity which is a mild
variation of Sangiorgi’s open bisimilarity. In order to get the final efficient char-
acterization of our bisimilarity, we need a further ad-hoc pruning. However, even
if the GRPO construction does not directly give the final result, once applied, it
produces an LTS which is a superset of the final usable one. Identifying redun-
dant transitions is then not so difficult; the only difficult part is to prove that
these are redundant.
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Interestingly enough, our analysis provides new insights on the theory of π-
calculus, namely we obtain an alternative presentation of symbolic LTS and open
bisimilarity, where distinctions do not appear.

Remarkably, the Leifer-Milner technique has lead us to a bisimilarity congru-
ence substantially in a direct way, just using general tools, without the need
of new concepts. Whereas, in the standard treatment, in moving from CCS to
π-calculus, various new notions are required, such as bound output transitions,
distinctions, etc. In conclusion, the results for CCS of [7] and the above results
for π-calculus are rather satisfactory, and they are an indication that the general
techniques used in this paper could also give new insights on more recent calculi,
whose theory is still evolving.

Related Work. The RPO construction has been applied to π-calculus in [3,10].
In [3], History Dependent Automata are used to present a reactive system for the
fragment of π-calculus without the ν-operator. The reactive system is obtained
by starting from an LTS and then incorporating the labels in the initial state of
the transition. The reactive system considered in [10] is based on the theory of
bigraphs and models the asynchronous π-calculus.

The present work is also related to [11]. Both works use categories that are
suitable generalizations of the Lawvere category of contexts. However, in our
work we strictly apply the RPO construction to derive an LTS for the π-calculus,
while [11] uses the RPO construction as a sort of inspiration for defining directly
an LTS for the π-calculus. The two works use a quite different notion of gener-
alized context, and thus also the obtained LTS’s are quite different.

Summary. In Section 1, a presentation of π-calculus syntax with de Bruijn
indexes and parametric reaction semantics is given. In Section 2, the GRPO
technique is applied to π-calculus, and efficient characterizations of the GIPO
bisimilarity are investigated. In Section 3, GIPO bisimilarity is compared with
open bisimilarity. Final remarks appear in Section 4. In the extended version of
the present paper [12], the theory of RPO’s in the G-category setting and the
general pruning technique of [7] are recalled, and some proofs are presented.

1 Second-Order π-Calculus Processes

In this section, we present a version of π-calculus with de Bruijn indexes to-
gether with reaction semantics. Such presentation allows us to deal smoothly
with binding operators, and it is needed for extending to contexts the structural
congruence on processes. In our presentation, π-calculus names a0, a1, . . . are
replaced by de Bruijn indexes r0, r1, . . ., which are name references.

Intuitively, a name reference can be viewed as a link (or a pointer). So a bound
name is replaced by a link to the corresponding binding operator, while a free
name is replaced by a link to its occurrence in a list of names. Concretely, links
are represented by natural numbers, and:
- binding operators ν and input prefix do not contain any name;
- the index ri refers to the free name aj if j = i− n ≥ 0 and ri appears under
the scope of n binding operators;
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- otherwise, if i < n, then ri is bound by the i+1-th binding operator on its left.
E.g. in νr1().r2r0.0, r0 is bound by the input prefix r1(), while r1 and r2 both
refer to the free name a0. In standard syntax, the above process will be written
as (νa)a0(a′).a0a

′.0.

Definition 1 (π-calculus Processes). Let r0, r1, . . . ∈ R be name references;
we will use r, s as metavariables for name references. We define

(Act ') α ::= τ | r() | rs actions
(G ') M ::= 0 | M1 +M2 | α.P | Y guarded processes

(P ') P ::= M | X | νP | P1|P2 | rec X.P | σP processes

where
- X,X0, X1, . . . ∈ X are process variables, and Y, Y0, Y1, . . . ∈ Y are guarded
process variables; we will use Z to range over X ∪ Y;
- the process variable X appears guarded in rec X.P ;
- σ is a name substitution obtained as a finite composition of the transformations
{δi}i≥0 ∪{si}i≥0 ∪ {tij}i,j≥0, where δi, si represent the i-th shifting and the i-th
swapping, respectively, and ti,j are the singleton substitutions, defined by:

δi(rj) =

{
rj+1 if j ≥ i

rj if j < i
si(rj) =

⎧⎪⎨⎪⎩
rj if j �= i, i+ 1
ri+1 if j = i

ri if j = i+ 1

ti,j(rk) =

{
rk if k �= i

rj if k = i

A closed process is a process in which each occurrence of a variable is in the
scope of a rec operator.

In the following definition, we introduce the notion of second-order context, con-
sisting of a variable substitution θ and a first-order context :

Definition 2 (Second-order Contexts). We define the second-order 1-hole
process contexts (contexts) by:

C ::= [ ]θ | νC | P + C | C + P | P |C | C|P | rec X.C | σC

where θ = θX + θY : X + Y → P + G is a substitution of processes for process
variables, mapping (guarded) process variables into (guarded) processes.

Notation. We will often denote substitutions by the list of variables which are
actually substituted, i.e. as {P1/X1, . . . , Pm/Xm,M1/Y1, . . . ,Mn/Yn}, omitting
the variables which are left unchanged. Moreover, for denoting second-order con-
texts, we will also use the notation C[ ]θ, when we need to make explicit the
variable substitution θ.

Notice that in the above definition of contexts we do not distinguish between
guarded and general contexts, thus also “ill-formed” contexts, such as ([ ]θ|P )+P ′

are included at this stage. In Section 2, where we will apply the GIPO technique,
we will give a precise definition of guarded and general contexts.



362 P. Di Gianantonio, S. Jakšić, and M. Lenisa

In what follows, we will refer to π-calculus processes with de Bruijn indexes
and second-order contexts as terms, denoted by T . Intuitively, when a second-
order context C[ ]θ is applied to a term T , the variable substitution θ is applied
to T and the resulting term is put in the hole. In order to formalize this no-
tion of context application, we first need to introduce the notion of applying a
substitution to a term:

Definition 3 (Context Application)
(i) Let T be a term, and let θ be a variable substitution. We define the extension
θ̂ to terms, by induction on T as:
θ̂(Z) = θ(Z) θ̂([ ]θ′) = [ ]θ̂◦θ′

θ̂(T1 + T2) = θ̂(T1) + θ̂(T2) θ̂(T1 | T2) = θ̂(T1) | θ̂(T2)

θ̂(σT ) = σθ̂(T ) θ̂(νT ) = ν(θ̂(T ))

θ̂(rec X.T ) = rec X.θ̂′(T ) , where θ′(Z) =

{
θ(Z) if Z �= X

X if Z = X

In what follows, by abuse of notation, we will often denote θ̂(T ) simply by θ(T ).
(ii) Let C be a context and let T be a term, the application of C to T , denoted
by C · T , is defined by induction on C by:
[ ]θ · T = θ̂(T ) νC · T = ν(C · T )
(P + C) · T = P + (C · T ) (C + P ) · T = (C · T ) + P
(P | C) · T = P | (C · T ) (C | P ) · T = (C · T ) | P
(rec X.C · T ) = rec X.(C · T ) (σC) · T = σ(C · T )

In order to apply the GRPO technique to π-calculus, it is convenient to extend
the structural congruence, which is usually defined only on processes, to all
contexts. Here is where the syntax presentation à la de Bruijn plays an important
rôle. Namely the π-calculus rule

(νaP ) | Q ≡ νa(P | Q) , if a not free in Q

is problematic to extend to contexts with the usual syntax, since, if Q is a
context, we have to avoid captures by the ν-operator of the free variables of the
processes that will appear in the holes of Q. Using de Bruijn indexes (and index
transformations), the above rule can be naturally extended to contexts as:

(νP ) | C ≡ ν(P | δ0C)

where the shifting operator δ0 avoids the capture of free name references. In the
standard syntax there is no way of defining a general name substitution playing
the role of δ0.

The complete definition of the structural congruence is as follows:

Definition 4 (Structural Congruence). Let T be a term. Structural congru-
ence is the equivalence relation ≡, closed under process constructors, inductively
generated by the usual axioms on |, +, and by:
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(nu) ν0 ≡ 0 T |(νT ′) ≡ ν((δ0T )|T ′) ννT ≡ ννs0T
τ.νP ≡ ντ.P rs.νP ≡ νδ0(rs).P r().νP ≡ νδ0(r()).s0P

(sigma) σ0 ≡ 0 σ(rs.T ) ≡ σ(r)σ(s).σ(T )
σ(τ.T ) ≡ τ.σ(T ) σ(r().T ) ≡ σ(r)().σ+1T
σ(T |T ′) ≡ σ(T )|σ(T ′) σ(rec X.T ) ≡ rec X.(σT )
σ(T + T ′) ≡ σ(T ) + σ(T ′) σ(νT ) ≡ ν(σ+1T )
σ1 . . . σmT ≡ σ′

1 . . . σ
′
nT , if σ1 ◦ . . . ◦ σm = σ′

1 ◦ . . . ◦ σ′
n

(subs) [ ]θ ≡ [ ]θ1 if ∀X θ(X) ≡ θ1(X) (rec) rec X.P ≡ P [rec X.P/X ]

where σ+1(ri) =

{
r0 if i = 0
(σ(ri−1))+1 otherwise

σ(α) =

⎧⎪⎨⎪⎩
σ(r) if α = r

σ(r) if α = r

τ if α = τ

The last three (nu)-rules are not standard in π-calculus presentations, since they
are not strictly necessary for proving the basic syntactic properties of the cal-
culus. However, they are safe because they allow to move, inside/outside the ν
operator, prefixes which are not captured by ν, see e.g. [13]. The assumption
of such extra rules is not essential in our presentation, however it simplifies the
GIPO construction. As far as the (sigma)-rule, notice that there is an effective
procedure to determine whether σ1 ◦ . . . ◦ σm = σ′

1 ◦ . . . ◦ σ′
n. Namely, the two

compositions are equal if and only if they contain the same number of transfor-
mations in the forms δi and their behaviour coincides on an initial segment of
indexes (whose length can be calculated from the δi’s and the si’s involved). Fi-
nally, the unfolding rule (rec) is given only for processes P . It cannot be directly
extended to contexts, since their unfolding can produce multiple-hole contexts.
However, the above (rec)-rule is sufficient for our purposes, since we will only
need it in reducing processes.

As in the standard presentation, one can easily show that each π-calculus
process P is structurally congruent to a process in normal form, i.e. a process of
the shape νk(Σm1

j=1S1,j | . . . | Σmn

j=1Sn,j), where all unguarded restrictions are at
the top level, and name substitutions do not appear at the top level. We use S
to range over processes of the shape α.P or σY . If mi = 1 for some i ∈ {1, . . . n}
then S can also be of the form σX .

Definition 5 (Reaction Semantics). The reaction relation → is the least re-
lation closed under the following reaction rules and reaction contexts:

Reaction rules. (r().X1 + Y1) | (rrj .X2 + Y2) → (ν(t0,j+1X1)) | X2

τ.X + Y → X

Reaction contexts. D ::= [ ]θ | νD | P |D | D|P | σD

where σ is a permutation of name references (a one to one reference substitu-
tion).

Notice that the permutation σ in the definition of reaction contexts is not strictly
necessary for defining the reaction semantics. It could be omitted, without chang-
ing the reaction semantics, since, using the congruence rules, name substitutions
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distribute over the actions. However, in view of the GIPO construction of Sec-
tion 2 it is useful to include it.

A mapping T from standard π-calculus syntax into our de Bruijn presenta-
tion can be defined by structural induction, using an extra set of names with
negative indexes (a−1, a−2, . . .). The most meaningful cases are: T (P ) = T0(P ),
Tn(ai(aj).P ) = ri+n().Tn+1(P{a−n−1/aj}), Tn(aiaj .P ) = ri+nrj+n.Tn(P ).

For any pair of π-calculus processes P,Q on the standard syntax, it turns out
that P → Q in the ordinary reaction system iff T (P ) → T (Q) in our reaction
system. We omit the details.

2 Applying the GIPO Technique to Second-Order
π-Calculus

For lack of space, we do not present in detail the (G)RPO construction, we refer
to [1] for a general introduction to the RPO technique, to [2] for the presentation
of the GRPO technique and to [7] or to [12], for a compact presentation of all
the theory on which the results presented here are based.

However, in order to grasp most of the material presented in the paper, the
following informal and intuitive explanations of the GRPO construction may
suffice. The main idea in the RPO construction is to define an LTS, starting
from a reaction system. The states of the derived LTS are terms, while the
labels are the minimal contexts necessary for a given reaction to fire. In more

detail, the LTS contains the transition t
C−→Iv, if the reaction system contains

the reaction C ◦ t → v, and for no subcontext C′ of C and no subterm v′ of v,
there is a reaction C′ ◦ t → v′. This idea is formalized using a category where
arrows represent terms or contexts. The notion of minimal context is defined in
terms of a (relative) pushout construction. The main theoretical result is that
the LTS, obtained by the RPO construction, induces a bisimilarity that is a
congruence. The GRPO technique is a further elaboration of the RPO technique
necessary to deal with the structural rules of the syntax; here the main idea is
to perform the RPO construction in a 2-category. A 2-category is a category
having an extra notion of morphism between arrows. When such morphisms are
isomorphisms, as in the GRPO construction, the 2-category is called G-category.
In our setting, morphisms between two arrows represent a structural congruence
between two terms (the two arrows), together with an induced mapping between
occurrences of name references in the two terms. G-categories always allow to
distinguish between two different name references denoting the same name, also
when structural rules are used. In some cases, the RPO construction in the
standard categories having as arrows equivalence classes of terms fails to produce
the correct transitions, an example being r0().0 | r0r1.0, see [2] for more details.

We define here the G-category formed by the finite (i.e. without the rec
operator) second-order π-calculus terms equipped with structural congruence.
We restrict the G-category to contain only finite processes, because we need the
2-cell morphisms to be isomorphisms. When π-calculus processes contain the rec
operator, two congruent processes can contain different numbers of actions, so,
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in general, there does not exist a one-to-one map between occurrences of name
references. It is possible to recover an LTS for the whole set of π-processes by
extending the rules obtained for the finite calculus, namely allowing parametric
rules to be applied also to terms containing the rec operator (and by considering
the unfolding rule for rec). Quite general arguments, based on the notion of
finite approximation, show that, in the extended LTS, the bisimilarity is still
a congruence. Moreover, once restricted to finite processes, in the definition of
π-calculus term category, it is sufficient to consider linear terms, that is terms
where each variable appears at most once. This restriction is justified by the
fact that, in the GIPO transition system, closed terms generate only linear open
terms; moreover, it simplifies the GIPO construction below.

Since the π-calculus grammar needs to distinguish between guarded and
generic terms, the category needs to contain two corresponding distinct objects.
Formally:

Definition 6 (Category of Second-order π-calculus Terms). Let Cπ be
the category defined by:
- Objects are ε, G, P.
- Arrows from ε to G (P) are linear (un)guarded processes, i.e. processes where
each variable appears at most once. Arrows A → B are the contexts CB

A generated
by the grammar:

CG
G ::= [ ]θ | α.CP

G | CG
G +M | M + CG

G
CG

P ::= α.CP
P | CG

P +M | M + CG
P

CP
G ::= CG

G | νCP
G | CP

G |P | P |CP
G | σCP

G
CP

P ::= [ ]θ | CG
P | νCP

P | CP
P |P | P |CP

P | σCP
P

where any context CB
A = C[ ]θ is linear, i.e. any variable appears at most once

in C[ ] and in the codomain of θ.
The identity arrow on G and P is [ ]id. The only arrow with codomain ε is the
identity. The composition between morphisms T : A → A′, T ′ : A′ → A′′ is the
context application T ′ · T .

In what follows, when not necessary, we will omit tags from contexts. One can
easily prove that the above definition is well-posed. In particular, associativity of
composition follows from associativity of composition of variable substitutions.

By induction on a proof of structural congruence, it is possible to show that
two structurally congruent finite terms have the same number of occurrences for
each action, and each proof of congruence induces a one to one map between
instances of name references in an obvious way. Thus we can define:

Definition 7 (2-cell isomorphisms). 2-cell isomorphisms between T and T ′

in Cπ are the one-to-one maps between occurrences of name references in T and
T ′, induced by the proof of structural congruence.

The above maps induce a structure of G-category on Cπ. Horizontal composition
corresponds to the union of the one-to-one maps , while vertical composition
amounts to standard function composition. One can easily check that horizon-
tal and vertical compositions are well-behaved, in particular the “middle-four
interchange law” holds. Thus we have:
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Proposition 1. The structural congruence on terms induces a structure of G-
category on Cπ.

Now we can define the G-reaction system of finite (second order) π-calculus
processes:

Definition 8 (G-reaction system). The G-reaction system Cπ consists of
- the G-category of π-calculus terms Cπ;
- the distinguished object ε;
- the subset of linear reaction contexts of Definition 5;
- the reaction rules of Definition 5.

One can easily check that the set of reaction contexts as defined above are
composition-reflecting and closed under 2-cells. In particular, in proving that
contexts are composition-reflecting, it turns out to be essential to have included
also reaction contexts of the shape σD, for σ a permutation.

Proposition 2. The G-reaction system Cπ has redex GRPOs.

Table 1 summarizes the GIPO contexts (i.e. the labels in the derived LTS) for
every possible term (up-to structural congruence). For simplicity, we denote a
term equivalence class simply by a special representative. For each process P , on
the basis of its form (specified in the first column of the table), the correspond-
ing GIPO contexts are listed, i.e. the “minimal” contexts which make possible
a certain reaction. Redex squares can be classified according to the following
“parameters”:

- type of the reaction rule (τ -reaction or communication);
- how elements of the redex are obtained: (1) already present in P , (2) by in-
stantiating variables in P , (3) appearing in the context;
- in case of variable instantiation by an output action, the name sent can be
either private or public. A detailed description of the GIPO contexts of Table 1
and a proof of the above proposition appear in [12].

The GIPO LTS described in Table 1 is quite redundant. Namely, there are many
GIPO contexts which are intuitively redundant; e.g. all contexts in rows 3 and
13, which are “not engaged”. Moreover, in various other cases the effect of some
GIPO contexts can be simulated by a restricted set of simpler contexts. Many
redundant contexts can be eliminated by applying the general pruning technique
presented in [7]. The result is the LTS of reduced GIPO contexts,R, formed by the
contexts marked by ∗ in the column R of Table 1, in which the name substitution
β is restricted to be the identity. Namely, the GIPO LTS of Table 1 is definable
from the set R of reduced GIPO contexts. A proof of this can be found in [12].
As a consequence, our general pruning technique ensures that the bisimilarity
∼R induced by the LTS defined in column R coincides with the original GIPO
bisimilarity ∼G, and hence it is a congruence.

A further simplified LTS can be obtained by an ad-hoc analysis. We define
an LTS, F , composed by the GIPO contexts marked by � in Table 1. The proof
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that the bisimilarity induced by the LTS F coincides with the GIPO bisimilarity
is based on the technique of the “bisimulation up-to”, and it appears in [12].

Proposition 3. The bisimilarity ∼F induced by the LTS F coincides with the
original GIPO bisimilarity ∼G, and hence it is a congruence.

Apparently, the LTS F obtained is still infinitely branching. This is due to the
fact that we consider transitions where the context contains an output action
rs.X , and s can be any reference. But, when comparing two processes P,Q in
the bisimilarity relation, it is sufficient to consider s to be a reference to a name
in P or Q, or a reference to just a new name not appearing in P or Q. In this
way, we get a finitely branching LTS.

Now, if our aim is to define a bisimilarity relation on π-calculus processes
which do not contain process variables, then it is possible to consider a much
simpler LTS, namely the LTS of Table 2. This LTS is intended for processes in
the form νk(P ′ | σX), with P ′ a closed process. The above set of processes is
closed by all transitions, but 5, which is then meant to be applied just once.
Intuitively, X plays the rôle of the environment, that can send to or receive
names from P ′; the name substitution σ records the names received from P ′.

Here we present a detailed description of transitions in Table 2. Row 1 cor-
responds to a τ -reaction. Row 2 corresponds to the case where the process P
exposes two complementary actions. In this rule ι is the identity, if the channel
references r and r′ in the complementary actions already matches, or a singleton
substitution fusing the two channel references, otherwise. Here we use a func-
tion [[ , ]] to express the fact that the two occurrences of name references in the
complementary actions refer to the same name. This function, given a process
and an occurrence of a name reference ri in it, provides the “absolute” index of
the name referred by the the occurrence ri, if ri is free in P , that is [[P, ri]] = j
means that ri refers to the free name aj ; otherwise, if ri is bound, [[P, ri]] provides
the negative index corresponding to the nesting level of the occurrence ri inside
the binding operators (ν or input prefix) in P (we omit the formal definition).
Rows 3 and 4 take into account the case where the process P exposes either an
input or an output action and the GIPO context provides the complementary
action for the communication. In these rules the variable substitution δ sends all
variables into variables with even index (see the note at the bottom of Table 1),
and it is used to preserve linearity in the term C ·P . Namely, δ ensures that the
variables with odd indexes will not appear in the process, and hence they can
be used in the context. In row 5 the GIPO context instantiates the variable X
by the whole communication redex.

In order to compare two closed processes P,Q, we proceed by comparing the
processes P |X and Q|X , using the LTS of Table 2. Namely, if ∼C denotes the
induced bisimilarity, we have:

Proposition 4. For any pair of closed processes P,Q, we have that P ∼F Q iff
P | X ∼C Q | X.
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Table 1. π-calculus GIPO contexts

Process GIPO context R F

P ≡ νk(Σm1
j=1

S1,j | . . . | Σmn
j=1

Sn,j) C

1 ∃i, j. Si,j = τ.Pi,j β[ ]δ ∗ �

2 ∃i, j. Si,j = σZ β[ ]{(τ.X1+Y1)/δZ}◦δ ∗
3 C′[ ]θ + τ.X1

C′[ ]θ | (τ.X1 + Y1)
τ.C′[ ]θ + Y1

4 ∃i, j, i′, j′. i �= i′ ∧ βι[ ]δ ∗ �

Si,j = r().Pi,j ∧ Si′,j′ = r′s.Pi′,j′

5 ∃i, j. Si,j = r().Pi,j (r′s.X1 + Y1) | (σ[ ]δ + Y3) ∗ �

6 ∃i, j. Si,j = rs.Pi,j (r′().X1 + Y1) | (σ[ ]δ + Y3) ∗ �

7 ∃i, j, i′, j′. i �= i′ ∧ βι[ ]{(r().X1+Y1)/δZ,(r′s.X3+Y3)/δZ′}◦δ ∗ �

Si,j = σ1Z ∧ Si′,j′ = σ2Z
′

7’ ∃i, j, i′, j′. i �= i′ ∧ βι[ ]{(r().X1+Y1)/δZ,ν(r′r0.X3+Y3)/δZ′}◦δ ∗
Si,j = σ1Z ∧ Si′,j′ = σ2Z

′

8 ∃i, j. Si,j = σ′Z (r′s.X1 + Y1) | σ[ ]{(r().X3+Y3)/δZ}◦δ ∗ �

9 ∃i, j. Si,j = σ′Z (r′().X1 + Y1) | σ[ ]{(rs.X3+Y3)/δZ}◦δ ∗ �

9’ ∃i, j. Si,j = σ′Z (r′().X1 + Y1) | σ[ ]{ν(rr0.X3+Y3)/δZ}◦δ ∗
10 ∃i mi = 1 ∧ Si,1 = σX β[ ]{((r().X1+Y1) | (r′s.X3+Y3))/δX}◦δ ∗ �

r �= r′ r �= r′

10’ ∃i mi = 1 ∧ Si,1 = σX β[ ]{((r().X1+Y1) | ν(r′r0.X3+Y3))/δX}◦δ

11 ∃i, j, i′, j′. i �= i′ ∧ βι[ ]{(r′s.X1+Y1)/δZ}◦δ ∗ �

Si,j = σZ ∧ Si′,j′ = r().Pi′,j′

11’ ∃i, j, i′, j′. i �= i′ ∧ βι[ ]{ν(r′r0.X1+Y1)/δZ}◦δ ∗
Si,j = σZ ∧ Si′,j′ = r().Pi′,j′

12 ∃i, j, i′, j′. i �= i′ ∧ βι[ ]{(r′().X1+Y1)/δZ}◦δ ∗ �

Si,j = σZ ∧ Si′,j′ = rs.Pi′,j′

13 C′[ ]θ | (r().X1 + Y1) | (rs.X3 + Y3)
(rs.X1 + Y1) | (C′[ ]θ + r().X3)
(rs.X1 + Y1) | (r().C′[ ]θ + Y3)

where:
- the substitution δ = [X2h/Xh, Y2h/Yh]h≥0 sends all variables into variables with even index;
- C′[ ]θ in rows 3 and 13 is any second-order context s.t. the variables in the GIPO context
are not in the codomain of θ;

- r, r′ are such that [[C · P, r]] = [[C · P, r′]];
- if C is of the form βιC′, then ι is the identity if [[C′ · P, r]] = [[C′ · P, r′]], and a singleton
substitution otherwise.

∗ where β, if it appears, is the identity.
� where β and σ, if they appear, are the identity.
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Table 2. π-calculus final GIPO contexts for closed processes

Process GIPO Context

P ≡ νk(Σm1
j=1

S1,j | . . . | Σmn
j=1

Sn,j | σX) C

1 ∃i, j. Si,j = τ.Pi,j [ ]id

2 ∃i, j, i′, j′. i �= i′ ∧ Si,j = r().Pi,j ∧ Si′,j′ = r′s.Pi′,j′ ι[ ]id

3 ∃i, j. Si,j = r().Pi,j [ ]{r′s.X1+Y1/δX}◦δ

4 ∃i, j. Si,j = rs.Pi,j [ ]{r′().X1+Y1/δX}◦δ

5 [ ]{(r().X1+Y1 | r′s.X3+Y3)/δX}◦δ
r �= r′

where:
- r, r′ are such that [[C · P, r]] = [[C · P, r′]];
- if C is of the form ι[ ]id, then ι is the identity if [[P, r]] = [[P, r′]], and
a singleton substitution otherwise.

3 GIPO Bisimilarity on Standard Syntax vs. Open
Bisimilarity

In this section, first we provide a presentation of GIPO LTS and bisimilarity for
closed processes in the standard π-calculus syntax. Then, we compare this bisim-
ilarity with Sangiorgi’s open bisimilarity, [14]. GIPO bisimilarity turns out to be
finer than open bisimilarity; however a small variant of it gives exactly the open
bisimilarity. Thus, interestingly enough, we obtain an efficient characterization
of open bisimilarity, alternative to Sangiorgi’s characterization on the symbolic
LTS, [14]. An advantage of our presentation lies in the fact that our bisimilarity
has a direct definition from the LTS, without requiring the extra machinery of
distinctions.

3.1 A Presentation of GIPO Bisimilarity on Standard Syntax

In order to compare our GIPO LTS and bisimilarity with standard LTS’s and
bisimilarities of π-calculus, it is useful to provide a presentation of GIPO LTS
and bisimilarity for closed processes in the standard π-calculus syntax.

The intuitive idea is the following. The LTS in Table 2 uses terms having
form νk(P | σX). In the standard syntax, there is an immediate correspondent
for the part νk(P ), that is the corresponding nameful π-calculus term. Less
obvious is how to define a correspondent for the σX part. The permutation σ
essentially depends on output actions that have been performed in the previous
transitions (history), and there are three important aspects: (i) the permutation
σ is determined by the list of names that have been communicated by the process
P to X (the observer); (ii) σ determines which private names in νk(P ) can be
used for future communications; (iii) through transitions of kind 5 in Table 2,
we can check which public name has been communicated to X , and whether
the same private name has been used in two different communications. Given
the above observations, we represent the information captured by σX via the
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list L of private names communicated to X by the process. We omit public
names, since they can be represented directly on the labels of the LTS, and their
presence in the list is not strictly necessary. Thus in the LTS we consider pairs
〈νaQ,L〉 such that the elements of L are names in a. Possible applications of
the α-rule to the process apply also to the list of names L.

Traditional LTS’s use as labels part of the term, dually (G)RPO LTS’s use as
labels contexts that can interact with the term, and in particular with the part
of the term that is “put in evidence” by the traditional LTS; in this presentation
we use a traditional approach.

Labels α in the LTS range over α ::= τ | {a′/a} | xy | xy, where we assume
the set of names ordered, and we denote by {a′/a} a singleton substitution, with
a < a′ in such ordering.

Transitions 〈P,L〉 α−→ 〈P ′, L′〉 are described in Table 3.

Table 3. Transitions in the standard LTS

Process List Label Process List
P ≡ νa(Σm1

j=1
S1,j | . . . | Σmn

j=1
Sn,j) L α P ′ L′

1 ∃i, j. Si,j = τ.Pi,j τ P ′ ≡ νa(. . . | Pij | . . .)
L′ ≡ L

2 ∃i, j, i′, j′. (i �= i′ ∧ Si,j = a(b).Pi,j ∧ τ P ′ ≡ νa(. . . | Pij{c/b} | . . .
Si′,j′ = ac.Pi′,j′) . . . | Pi′j′ | . . .)

L′ ≡ L

3 ∃i, j, i′, j′. (i �= i′ ∧ Si,j = a(b).Pi,j ∧ {a′/a} P ′ ≡ (νa(. . . | Pij{c/b} | . . .
Si′,j′ = a′c.Pi′,j′) . . . | Pi′j′ | . . .)){a′/a}

a, a′ ∈ free(P ), a < a′ L′ ≡ L

4 ∃i, j. Si,j = a(b).Pi,j ∧ a ∈ free(P ) ∪ L xy P ′ ≡ νa(. . . | Pij{c/b} | . . .)
(c �∈ bn(P ) ∨ c ∈ L) ∧ L ≡ L′

5 ∃i, j. Si,j = ac.Pi,j ∧ a ∈ free(P ) ∪ L xy P ′ ≡ νa(. . . | Pij | . . .)
L′ ≡

{
L if c ∈ free(P )
L : c otherwise

where substitution is capture-avoiding, i.e. α-conversion is possibly applied before

applying substitution; x ≡
{
a if a ∈ free(P )
νa otherwise

and y ≡
{
c if c �∈ bn(P )
νc otherwise

The resulting LTS is quite similar to symbolic LTS, the main difference being
that, for input transitions, in the symbolic LTS just one name is considered,
while in the present LTS also previously communicated private names (recorded
in the list) are considered.

In order to define the bisimilarity induced by the above LTS, we first need to
define a relation on possibly bound names w.r.t. lists of names:

Definition 9. Let L,M be name lists. We define
x =LM y iff x = a = y or x = νa ∧ y = νa′ ∧ ∀i. (a = L(i) ⇐⇒ a′ = M(i)) .

The above relation on names can be naturally extended to labels. Then, the
GIPO bisimilarity can be recovered on standard π-calculus as the canonical
bisimilarity induced by the LTS above, up-to the use of the relation =LM on
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labels instead of equality. That is, for P,Q processes on the standard syntax, ∅
the empty list, and T (P ), T (Q) the translations of P ,Q in the syntax with de
Brujin indexes, we have:

Theorem 1. (P, ∅) ∼ (Q, ∅) iff T (P ) ∼C T (Q) .

3.2 GIPO Bisimilarity vs. Syntactical and Open Bisimilarity

On the π-fragment without the ν-operator, the list L disappears in our LTS,
hence the GIPO bisimilarity coincides with the syntactical bisimilarity, which is
defined as the bisimilarity induced by the symbolic LTS on the π-fragment with-
out ν [3]. Syntactical bisimilarity is a variant of the open bisimilarity. The latter
is defined on the symbolic LTS, by relaxing the condition on fusion transitions:

a fusion transition P
{a′/a}−→ P ′{a′/a} can be simulated either by a transition

with the same fusion label or by a τ -transition Q
τ−→ Q′ such that P ′{a′/a}

and Q′{a′/a} are bisimilar. The standard definition of open bisimilarity on the
full calculus uses the extra machinery of distinctions. An interesting result that
we obtain is that a small variation of our bisimilarity ∼ coincides with the open
bisimilarity ∼O on the full calculus. Namely, let ≈ denote the bisimilarity ob-
tained from ∼ by allowing a fusion transition to be simulated either by the same
fusion or by a τ -transition (where in the resulting process we apply the fusion).
Then we have:

Theorem 2. ≈=∼O.

The above theorem (whose proof is sketched in [12]) gives us a new efficient
characterization of the open bisimilarity. The most evident difference between
our presentation and the standard presentation is that in the latter distinctions
are needed, while we use lists in the LTS but no distinctions. An explanation for
this is that, when comparing two terms that can perform an input transition,
the open bisimilarity considers just one transition on a free name, while we
consider also all the transitions, where a previously communicated bound name
(contained in the list L) is received.

Finally, notice that the asymmetric definition of ≈ for fusion labels follows
the pattern of the semi-saturated bisimilarity introduced in [6].

4 Conclusions and Future Work

We have applied the GRPO construction to the full π-calculus, using two ex-
tra ingredients. Firstly, we have worked in a category of second-order contexts,
based on a presentation of π-calculus with de Bruijn indexes. Secondly, a general
pruning technique has been applied, in order to simplify the LTS obtained by
the standard (G)RPO construction. Finally, the application of a more ad-hoc
simplification technique has allowed us to get an efficient LTS and bisimilarity,
and a new characterization of Sangiorgi’s open bisimilarity. As it often happens,
also in the present case Leifer-Milner technique by itself does not directly give an
efficient LTS and bisimilarity. However, this technique, applied in the setting of
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second-order contexts and in combination with our general pruning technique,
gives us substantially less redundant LTS’s and bisimilarities, and leads us to the
final efficient presentation. Moreover, new insights on the calculus are obtained
by applying this machinery. The construction presented in this paper is solid un-
der variations of π-calculus syntax, e.g. including replication or match/mismatch
operators. In conclusion, the results obtained for π-calculus in this paper and for
CCS in [7] are quite promising; in particular, they show that the Leifer-Milner
technique is valuable in suggesting interesting notions of LTS’s and bisimilari-
ties. Therefore, it would be worth to experiment the above machinery on more
recent calculi, for which the notions of LTS and bisimilarity are still evolving.
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Abstract. A well-known decision procedure for Presburger arithmetic uses de-
terministic finite-state automata. While the complexity of the decision procedure
for Presburger arithmetic based on quantifier elimination is known (roughly, there
is a double-exponential non-deterministic time lower bound and a triple exponen-
tial deterministic time upper bound), the exact complexity of the automata-based
procedure was unknown. We show in this paper that it is triple-exponential as
well by analysing the structure of the non-deterministic automata obtained dur-
ing the construction. Furthermore, we analyse the sizes of deterministic and non-
deterministic automata built for several subclasses of Presburger arithmetic such
as disjunctions and conjunctions of atomic formulas. To retain a canonical rep-
resentation which is one of the strengths of the use of automata we use residual
finite-state automata, a subclass of non-deterministic automata.

1 Introduction

Presburger arithmetic (PA) is the first-order theory over integers with addition. It has
many applications for example in system verification, constraint data bases, etc. PA was
shown decidable [13] using the method of quantifier elimination. The complexity of the
decision problem has been well studied. In [9] a double exponential non-deterministic
time lower bound was given and Oppen [8] showed that Cooper’s [5] quantifier elim-
ination algorithm has triple exponential worst-case complexity in deterministic time.
The bound was improved [14] considering the number of quantifier eliminations.

Another decision procedure for PA is based on the use of deterministic finite-state
word automata (DFA). The idea comes from Büchi [4]. Integer vectors are represented
as words over a suitable alphabet and an automaton for a given formula accepts ex-
actly the words which correspond to vectors making the formula true. An automaton
representing exactly the solutions of a formula can be constructed recursively from a
formula by using automata constructions corresponding to the logical connectives and
quantifiers. Eliminating an existential quantifier is done by projecting away the track
corresponding to the given variable and then determinising and minimising the resulting
automaton. An advantage of the approach is that a canonical representation — the min-
imal automaton — is obtained for a formula. This allows simple equivalence checking
of two formulas which is often needed in verification applications. The automata based
approach has been studied for example by [3,16] who gave direct constructions of au-
tomata for atomic linear constraints. It is implemented for example in the tools LASH
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[17] and FAST [1,18]. A rigorous analysis of the size of the minimal DFA for a Pres-
burger formula is given in [10]. The tight upper bound obtained is triple-exponential
in the size of the formula. The result is shown not by analysing the automata based
decision procedure outlined above but by eliminating the quantifiers, thus obtaining a
quantifier-free formula and analysing the size of the automaton constructed from it. The
exact size of the intermediate automata in the automata based decision procedure was
left open. More precisely, there might have been an exponential blow-up coming from
the determinisation, leading to automata with a quadruple exponential size.

In this paper we investigate the use of non-deterministic automata (NFA) for PA
which has not yet been extensively studied. To retain the property of canonicity we
study a subclass of NFA called residual finite-state automata (RFSA) [6] which admit
a canonical minimal automaton. States of RFSA accept residuals of the language ac-
cepted by the automaton. Our two main contributions are: (1) Though Klaedtke [10]
has shown using results of [9] that the lower bound for the size of the NFA for a Pres-
burger formula is the same as the triple-exponential lower bound for the size of the
DFA, it is interesting to investigate the potential gain of the use of NFA. We show first
that for atomic formulas no gain at all can be achieved. Then, we show that for sev-
eral subclasses of Presburger formulas (for example for disjunctions of inequations) a
substantial gain in the size of the automata is obtained. For this we characterise exactly
the number of states of the minimal DFA and compare them with the minimal RFSA.
The results obtained are also of interest for constructing tools for Presburger arithmetic,
since we show for some subclasses that the automata obtained by the usual product
construction are minimal. (2) We show that the size of the automata obtained during
the automata based decision procedure is triple-exponential solving an open problem
from [10]. This is done by carefully inspecting the structure of the NFA obtained af-
ter projection. We show that the determinisation of this automaton does not lead to an
exponential blow-up. From that follows a triple-exponential time upper bound for the
automata based decision procedure.

2 Preliminaries

Presburger Arithmetic is the first-order theory on atomic formulas of the form
∑n

i=1 aixi ∼
c, where ai and c are integer constants, xi integer variables, and ∼ is an operator among
{=,�, <, >≤,≥,≡m} (with ≡m the congruence modulo m, for any m ≥ 2).

We will restrict ourselves here to the case where ∼∈ {=, >,≡m} and gcd(a1, . . . , an) =
1, and also consider the two trivial formulas � and ⊥ (respectively the tautology and the
unsatisfiable proposition) as atomic formulas. As boolean operators we use ¬, ∧ and ∨.

A Presburger formula is defined as an object of this theory. The length of a Pres-
burger formula is defined in the usual way (see [10]). We use the vectorial notation for
the atomic formulas, i.e. a.x ∼ c. Let ϕ be a Presburger formula with k free variables.
�ϕ� is defined as the set of solutions of ϕ, that is the set of assignments (seen as a subset
of Zk) of the free variables of ϕ validating ϕ (with the usual semantics of arithmetic).
The set of solutions (a set of integer vectors) of any Presburger formula is called a
Presburger set. Two Presburger formulas ϕ and ϕ′ are called semantically equivalent iff
�ϕ� = �ϕ′�. Two n-tuples of Presburger formulas (ϕ1, . . . , ϕn) and (ϕ′1, . . . , ϕ

′
n) are called
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semantically equivalent iff �ϕi� = �ϕ′i� for all i ∈ {1, . . . , n}. For 1 ≤ k ≤ n, we let en
k be

the n-dimensional vector which has a 1 as its k-th component and 0 elsewhere.

Finite Word Automata. Let Σ be a finite alphabet and Σ∗ the set of finite words over Σ.
The empty word is denoted by ε and the length of a word u by |u|. A non-deterministic
finite automaton (NFA) A is a 5-tuple 〈Σ, Q, Q0, F, δ〉, with Σ a finite alphabet, Q a finite
set of states, Q0 ⊆ Q (resp. F ⊆ Q) the initial (resp. final) states and δ the transition
function mapping Q × Σ to 2Q. An NFA A = 〈Σ,Q,Q0, F, δ〉 is said to be deterministic
(DFA) if Q0 is a singleton {q0} and if ∀q ∈ Q, ∀x ∈ Σ, Card(δ(q, x)) ≤ 1. Therefore
the transition function δ of a DFA can be seen as a partial application of Q × Σ to Q.

A path labelled by u = u1 · · · un in an NFA A = 〈Σ,Q,Q0, F, δ〉 from q0 ∈ Q, is
a sequence of states q0, q1, . . . , qn such that ∀i, 1 ≤ i ≤ n, qi ∈ δ(qi−1, ui). We define
inductively δ̂ : 2Q × Σ∗ → 2Q as δ̂(Q′, ε) = Q′ and δ̂(Q′, au) = δ̂(

⋃
q′∈Q′ δ(q′, a), u),

that is the set of states that can be reached by a path labelled by u from a state of Q′.
A path q0, . . . , qn in A is accepting if qn ∈ F. A word u is accepted by A if there is a
path q0, . . . , qn labelled by u in A such that q0 ∈ Q0 and qn ∈ F. The language LA is the
set of words accepted by A. The reverse of u, noted ũ is inductively defined as ε̃ = ε
and x̃ · v = ṽ · x, for x ∈ Σ and v ∈ Σ∗. The reverse language L̃ of L ⊆ Σ∗ is defined as
L̃ = {̃u ∈ Σ∗ | u ∈ L}. The reverse automaton of an NFA A = 〈Σ,Q,Q0, F, δ〉 is defined
as Ã = 〈Σ,Q, F,Q0, δ̃〉 with q ∈ δ̃(q′, x) if and only if q′ ∈ δ(q, x). Clearly, L̃A = LÃ.

We define the notion of residual languages (or simply residuals) both for automata
and languages. Let L be a language over an alphabet Σ and w a word of Σ∗. The residual
language or left quotient of L by w, is w−1L = {u | w · u ∈ L}. Given an automaton A, a
residual (left-residual) of a state q, called LA, q or postA,q, is defined as LA, q = {u | F ∩
δ̂({q}, u) � ∅}. A right-residual of a state q, is defined as preA,q = {u | q ∈ δ̂(Q0, u)}.

Obviously, residuals of states of a deterministic automaton are always residuals of
the language that the automaton accepts (provided that all states are reachable).

The size of an automaton is defined the usual way, i.e. the number of states plus the
number of transitions. An automaton is said to be minimal in a class of automata if any
other automaton in it accepting the same language has at least as many states. It is well
known that minimal DFA are canonical (unique up to isomorphism) whereas NFA do
not have a minimal canonical form. Thus, we use RFSA [6], a subclass of NFA having
a minimal canonical form. The number of states of the minimal RFSA lies between the
number of states of the minimal NFA and the number of states of the minimal DFA.

Let A be an NFA, A = 〈Σ,Q,Q0, F, δ〉. A is a residual finite state automaton
(RFSA) if for all state q ∈ Q, LA, q is a residual language of LA. Formally, ∀q ∈ Q, ∃u ∈
Σ∗, such that LA, q = u−1LA. Therefore any DFA where all states are reachable, is an
RFSA, but the converse is not true, and for some languages (like (a + b)∗a(a + b)n, see
[6]), the smallest RFSA is exponentially smaller than the minimal DFA.

Let L be a regular language over Σ, and u a word of Σ∗. The residual language
u−1L is said to be prime, if it is not equal to the union of the residual languages of
L it strictly contains. Let Ru = {v ∈ Σ∗|v−1L � u−1L}, u−1L is a prime residual of L if⋃

v∈Ru
v−1L � u−1L. Intuitively, a residual language of L is prime if it cannot be obtained

as a union of other residual languages of L. Each regular language L is accepted by a
minimal canonical RFSA [6] defined below. Each of its states is a prime residual of L.
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Definition 1. Let L be a regular language over Σ. Its canonical RFSA (Σ,Q,Q0, F, δ)
is defined as follows. Q is the set of prime residuals of L, i.e. Q = {u−1L | u−1L is
prime}. Initial states are prime residual languages contained in L, i.e. Q0 = {u−1L ∈
Q | u−1L ⊆ L} and final states are prime residual languages containing the empty word,
i.e. F = {u−1L ∈ Q | ε ∈ u−1L}. The transition function is defined by δ(u−1L, a) =
{v−1L ∈ Q | v−1L ⊆ (ua)−1L}, for u−1L ∈ Q and a ∈ Σ.

Encoding of Presburger sets as languages. We represent integer vectors as finite
words, so we can map Presburger sets to languages. We use a vectorial least sig-
nificant bit first coding. For k > 0 we define Σk = {0, 1}k. Moreover we use the
separate sign alphabet S k = {+,−}k (indicating if the corresponding integer is pos-
itive or negative). Words of Σ∗

k S k represent k-dimensional integer vectors. A word
w0 . . .wn s ∈ Σ∗

k S k represents the integer vector we denote 〈w0 . . .wn s〉, each compo-
nent of which is computed as follows (where πi(x) representing the value of the i-th
component of x). If si = +, then πi(〈w0 . . .wns〉) = ∑n

j=0 2 j.πi(wj) and if si = −, then
πi(〈w0 . . .wns〉) = −2n+1 +

∑n
j=0 2 j.πi(wj). In particular, 〈+〉 = 0 and 〈−〉 = −1. We also

define the notation 〈.〉+ over Σ∗
k as 〈w〉+ = 〈w+k〉.

Remark 1. Let w′,w ∈ Σ∗
k , s ∈ S k. We have 〈w′ws〉 = 〈w′〉+ + 2|w′|〈ws〉.

This representation is clearly surjective and provides an infinite number of representa-
tions for each vector. Indeed for any word w0 . . .wns ∈ Σ∗

k S k, any w0 . . .wn(s′)∗s (with
s′i = 0 if si = + or s′i = 1 if si = −) represents the same vector.

Given a Presburger formula ϕ(x) (with x the vector of free variables of ϕ, and k
its dimension), we say it defines the language Lϕ = {w ∈ Σ∗

k S k | 〈w〉 ∈ �ϕ�}. Such
languages are called Presburger-definable and meet the following saturation property:
if a representation of a vector is in the language then any other representation of that
vector is also in the language. Our coding meets the following important property [12].

Property 1. Any residual of a saturated Presburger-definable language is either a satu-
rated Presburger-definable language, or the empty word language.

Thus we not only have a residual closure property on Presburger-definable sets, but we
also have an effective way to characterise them. In an automaton accepting all solutions
of a Presburger formula ϕ(x) with k free variables, a word w ∈ Σ∗

k leads from the initial
state to a state accepting exactly all solutions of ϕ(2|w|x + 〈w〉+).

Automata representing atomic Presburger formula. We study here automata that
accept Presburger-definable languages. Notice that all final states of such automata are
equivalent (there is only one residual that contains the empty word). All other states
have a residual that is Presburger definable, i.e. definable by a Presburger formula. Thus,
in the following, automata have as states a unique final state F and elements of F , the
set of Presburger formulas. Each state ϕ ∈ F characterises its residual, for example a
state with empty residual will be represented by ⊥.

We recall here the construction of the DFA for atomic Presburger constraints. The
construction for equations and inequations with a least significant bit first coding was
given by Boudet and Comon [3]; as they worked with natural numbers, they had not
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to handle the sign letters. Wolper and Boigelot [16] worked with integers but used a
most significant bit first coding. They gave a backwards construction of the automaton
yielding an NFA for inequations which they then had to determinise. Since we work
with a least significant bit first coding we are spared this determinisation procedure. We
also give the construction of the automaton for modular constraints directly, rather than
using Klaedtke’s [10] which is also based on a most significant bit first coding.

– The automaton Aa.x=c for the formula a.x = c is given by the following forward
construction starting from the initial state a.x = c :

• if b ∈ Σk, δ(a.x = γ, b) =

{
a.x = γ′ with γ′ = γ−a.b

2 when 2 | γ − a.b
⊥ otherwise

• if s ∈ S k, δ(a.x = γ, s) = F when a.〈s〉 = γ and δ(a.x = γ, s) = ⊥ otherwise
• for α ∈ S k ∪ Σk, δ(⊥, α) = δ(F, α) = ⊥

– The automaton Aa.x>c for the formula a.x > c is given by the following forward
construction starting from the initial state a.x > c:
• if b ∈ Σk, δ(a.x > γ, b) = a.x > γ′ with γ′ =

⌊
γ−a.b

2

⌋
.

• if s ∈ S k, δ(a.x > γ, s) = F when a.〈s〉 > γ and δ(a.x > γ, s) = ⊥ otherwise
• for α ∈ S k ∪ Σk, δ(⊥, α) = δ(F, α) = ⊥

– The automaton Aa.x≡2m(2n+1)c for the formula a.x ≡2m(2n+1) c (with some m, n ≥ 0) is
given by the following forward construction starting from a.x ≡2m(2n+1) c:
• if b ∈ Σk and p ≥ 1,

δ(a.x ≡2p(2n+1) γ, b) =

{
a.x ≡2p−1(2n+1) γ

′ with γ′ = γ−a.b
2 when 2 | γ − a.b

⊥ otherwise
• if b ∈ Σk and p = 0,

δ(a.x ≡2n+1 γ, b) = a.x ≡2n+1 γ
′ with γ′ =

{ γ−a.b
2 when 2 | γ − a.b
γ+2n+1−a.b

2 when 2 � γ − a.b

• if s ∈ S k, δ(a.x ≡2p(2n+1) γ, s) =

{
F when a.〈s〉 ≡2p(2n+1) γ
⊥ otherwise

• for α ∈ S k ∪ Σk, δ(⊥, α) = δ(F, α) = ⊥
The correctness of this construction derives from Property 1. For all states ϕ and all
b ∈ Σk we have δ(ϕ(x)) = ϕ(2x + b) showing that the transitions labelled by Σk are
correct. The transitions labelled by S k are correct by definition, as the last letter is
always from S k. The definitions are clearly exhaustive. Furthermore, as gcd(a) = 1,
all states are non-equivalent, indeed �a.x ∼ γ� � �a.x ∼ γ′� when γ � γ′. Thus our
construction provides us with the minimal DFA. In the following we detail the number
of states of the automata constructed. Those results were given by Klaedtke [10] on
automata for most significant bit first coding. They are easily adapted for equations and
inequations. For a vector a we define ‖a‖+ = ∑{i | ai≥0} ai and ‖a‖− = ∑{i | ai≤0} | ai|.
Theorem 1. Let gcd(a) = 1. For the case of an equation a.x = c, the states {a.x =
γ | −‖a‖+ < γ < ‖a‖−} are reachable and form a maximal strongly connected component
(SCC) and all other reachable states are in {a.x = γ | γ = c ∨ min(c,−‖a‖+) < γ <
max(c, ‖a‖−)}. In the case of an inequation a.x > c, the states {a.x > γ | − ‖a‖+ ≤
γ < ‖a‖−} are reachable and form a maximal SCC and all other reachable states are
in {a.x > γ | γ = c ∨ min(c,−‖a‖+) ≤ γ < max(c, ‖a‖−)}. For modulo constraints



378 A. Durand-Gasselin and P. Habermehl

a.x ≡2n(2p+1) c the states in {a.x ≡2p+1 γ | γ ∈ [0, 2p]} are reachable and form a maximal
SCC and all other reachable states are in {a.x ≡2m(2p+1) γ | (m = n ∧ γ = c) ∨ (m <
n ∧ γ ∈ [0, 2m(2p + 1) − 1])}.
The SCCs only depend on a and not on the constant c. Before proving the theorem we
give in Figure 1 the automaton for a simple inequation. The reachable maximal SCC is
formed by the states {−1, 0, 1, 2}. The transitory state 3 exists only because 3 > ‖a‖−.

F

−1 0 1 2 3
(1, 1)
(1, 0)

(0, 1), (1, 1)
(0, 0), (1, 0)

(0, 1)
(0, 0)

(1, 1)

(1, 0)(0, 1)

(0, 0), (1, 0)

(0, 1)(0, 1), (1, 1)(1, 1)(0, 0)(0, 0), (1, 0)

(−,−), (+,−), (+,+)

(−,−), (+,−)

(−,−), (+,−)

(−,−)

Fig. 1. An automaton for x − 3y > 3

Proof. Klaedtke [10] studied the number of reachable states for equations and inequa-
tions. Automata for equations are by construction backwards deterministic, thus we
built the reverse automaton of Klaedtke’s and all states in {a.x = γ | − ‖a‖+ < γ < ‖a‖−}
are reachable and form a maximal SCC. We get the same reachable states forming a
maximal SCC for an automaton for an inequation a.x > γ, as it just contains more
transitions than the automaton for a.x = γ. For modulo constraints, for our coding, if
the modulus is even, it is halved by the next transition, so all states are reached only
for odd modulus. Thus, the automaton is possibly smaller compared to the automaton
constructed for the most significant bit first coding which is as big as the modulus. ��

3 Gain of Non-determinism

We study here the potential gain of using NFA, in particular RFSA, for subclasses of
Presburger arithmetic. We start with the following negative result for atomic constraints.

Theorem 2. For equations, inequations or modulo constraints with an odd modulus,
no NFA is smaller than the minimal DFA.

The proof of this theorem consists essentially in considering a class of languages for
which the minimal DFA is already a minimal NFA. We use the following result [11] for
biRFSA languages (i.e. languages accepted by biRFSAs). An automaton A is a biRFSA
if A and Ã are both RFSA.

Proposition 1. The canonical RFSA of a biRFSA language is a minimal NFA.

We will show that the languages we consider are biRFSA and that their canonical RFSA
is not smaller than the minimal DFA. Therefore it is the minimal NFA as well.
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Lemma 1. Given a language L with residuals L0 = L, L1, . . . , Ln, such that: (1) Given
a residual, residuals languages included in it form a strictly increasing chain w.r.t.
inclusion, i.e. ∀Li, L j, Lk.L j ⊆ Li ∧ Lk ⊆ Li =⇒ L j ⊆ Lk ∨ Lk ⊆ L j, (2) Two residuals
are either disjoint or one is included in the other, i.e. ∀Li, L j.Li ∩ L j � ∅ =⇒ Li ⊆
L j ∨L j ⊆ Li. Then any NFA accepting this language is at least as big (in term of number
of states) as the minimal DFA.

Proof. Let L be a regular language satisfying the lemma’s hypotheses. The minimal
DFA has as many states as the canonical RFSA as all the residuals are prime. This is
because for L0, . . . , Lm residuals of L, if L0 =

⋃
i≥1 Li then ∀i.Li ∈ L0 thus the Li form

an increasing chain, thus ∃i ≥ 1.L0 = Li.
Let A = 〈Σ, (qi)i≤m,Q0, F, δ〉 be the canonical RFSA of L. We show that L is biRFSA

by observing that the reversed automaton of the canonical RFSA is a RFSA. With the
two hypotheses we have on the residuals, it is easy to find for each residual Li (suppose
of the state qi) a word wi that is only in Li and the residuals containing Li.

Let us show that postÃ,qi
= w̃i

−1L̃. By definition w̃i
−1L̃ = {v | w̃i.v ∈ L̃}, then v ∈

postÃ,qi
⇒ ṽ ∈ preA,qi

⇒ ṽ.wi ∈ L ⇒ w̃i.v ∈ L̃. We have the first inclusion, postÃ,qi
⊆

w̃i
−1L̃ and now show the other inclusion, w̃i.v ∈ L̃ ⇒ v ∈ postÃ,qi

. If w̃i.v ∈ L̃, then

by definition, there is an accepting path labelled by w̃i.v in Ã. We can extract from
this path a path labelled by w̃i, which will reach a state, namely q. By definition of wi,
postA,q ⊇ postA,qi

, from which we deduce that preA,q ⊆ preA,qi
, from which we deduce

that postÃ,q ⊆ postÃ,qi
. We have shown that the postÃ,qi

are residuals of L̃. Thus Ã is a
RFSA, so A is a biRFSA, and L a biRFSA language. There is no smaller NFA than the
canonical RFSA which has as many states as the minimal DFA. ��
Now, Theorem 2 follows by observing that the residuals of the corresponding languages
verify the conditions of Lemma 1.

Boolean combinations of atomic constraints. We first consider general boolean com-
binations of atomic constraints. A boolean combination of formulas ϕ1, . . . , ϕn is a
formula generated by �,⊥, ϕ1, . . . , ϕn,¬,∨ or ∧. We denote by C(ϕ1, . . . , ϕn) such a
boolean combination. We define the notion of simple boolean combination as follows.
The underlying propositional formula corresponding to C(ϕ1, . . . , ϕn) is C(b1, . . . , bn)
where b1, . . . , bn are propositional variables. We say that C(b1, . . . , bn) is simple, if the
truth value of the formula depends on all propositional variables. Then, a boolean com-
bination C(ϕ1, . . . , ϕn) is simple, if its underlying propositional formula C(b1, . . . , bn)
is simple. From any boolean combination C(ϕ1, . . . , ϕn) we can always obtain a simple
one by removing some atomic formulas if needed.

To build an automaton for a boolean combination of atomic formulas, we build a
product automaton whose states are Presburger formulas (not tuples of formulas).

Definition 2. Given a boolean combination of atomic formulas C(ϕ1(x), . . . , ϕn(x)), the
product automaton AC(ϕ1(x),...,ϕn(x)) is given by: Q is the set of Presburger formulas and
the designated final state F, q0 = C(ϕ1(x), . . . , ϕn(x)) and for all b ∈ Σk, δ(C(ψ1(x), . . . ,
ψn(x)), b) = C(ψ′

1(x), . . . , ψ′
n(x)) each ψi(x) being a state, possibly ⊥, of Aϕi (the au-

tomaton of ϕi), and ψ′
i (x) = δϕi(ψi(x), b). If s ∈ S k, then δ(C(ψ1(x), . . . , ψn(x)), s) = F,

when 〈s〉 ∈ �C(ψ1(x), . . . , ψn(x))� and δ(C(ψ1(x), . . . , ψn(x)), s) = ⊥ otherwise.



380 A. Durand-Gasselin and P. Habermehl

It is clear that this construction provides us with a deterministic finite automaton. To
exhibit the gain of the canonical RFSA over the minimal DFA for the fragment of
boolean combinations of inequations, we need to characterise precisely the number of
states of the minimal DFA and the canonical RFSA.

Proposition 2. If we consider a simple boolean combination of inequations C(a1.x >
c1, . . . , an.x > cn), such that (ai)1≤i≤n form a linearly independent family of vectors, then
the product automaton is the minimal DFA.

Proof. To prove this proposition we need first a simple lemma from linear algebra.

Lemma 2. If (ai)1≤i≤n is a linearly independent family of vectors, then there is a family
of integer vectors (u1, . . . , un) such that ai.u j = 0 for all j with i � j and ai.ui � 0.

We show that any two states of the automaton for the formula C(a1.x > c1, . . . , an.x >
cn) are non-equivalent by exhibiting a word that is in one’s residual and not in the
other’s, i.e. a representation of a solution of the formula characteristic of one state that
is not a solution of the formula characteristic of the other. We consider two states
C(a1.x > c1, . . . , an.x > cn) and C(a1.x > c′

1, . . . , an.x > c′
n). They are distinct if

there is an i with ci � c′
i (we assume w.l.o.g that ci < c′

i). We can find an integer
vector v with ai.v = c′

i . As the boolean combination is simple we can find b1, . . . , bn

booleans such that (seeing C as a boolean function) C(b1, . . . , bi−1, true, bi+1, . . . , bn) �
C(b1, . . . , bi−1, f alse, bi+1, . . . , bn). For each j � i, we can find an integer λ j with a j.(v+
λu j) > max(c j, c′

j) if b j is true or a j.(v + λ ju j) < min(c j, c′
j) if b j is false (the u j’s

are taken from the family defined in Lemma 2). By definition a j.(v +
∑

k�i λkuk) =
a j.(v + λ ju j), thus (v +

∑
k�i λkuk) is a solution of only one of the two states: they are

not equivalent. As no two states are equivalent, the automaton is minimal. ��
We now analyse the number of states of the automaton for disjunctions of atomic in-
equations a.x > c. We have shown for one inequation that the set of states can be
partitioned into two subsets: a set (depending on a) which is a max. SCC and a possi-
bly empty set of other states that reach this SCC. The product automaton has the same
structure. Notice that we can canonically map the max. SCC of the automaton for an
atomic inequation to an interval. As we use a forward construction of the automaton, not
every state in the cartesian product of the basic automata is reached. We now determine
precisely the shape of the maximal SCC in the product automaton.

Given a boolean combination of inequations C(a1.x > c1, . . . , an.x > cn), we will
characterise the set of states (aside from ⊥ and F) of the product automaton we reach
by the forward construction. It should be clear that the set of states will be a subset of
{C(a1.x > γ1, . . . , an.x > γn) | γi ∈ Z}. We will therefore map states to elements of Zn.
We define the polyhedronΠ = {v ∈ Qn | ∃λ ∈]0, 1[n, v = (−a1.λ, . . . ,−an.λ)}.
Theorem 3. Given a boolean combination of inequations, the set of integer points in
P = Π+] − 1, 0[n form a maximal SCC in the corresponding product automaton.

Proof. We show in two steps that every integer point in P is reachable from any state.
First we compute a candidate word, then we show that this candidate allows us to reach
that state. Suppose we want to reach a state γ ∈ Π+] − 1, 0[n from the state c.
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What makes this reachability problem difficult is that we work with integers. Let us
first define a similar reachability problem in Qn. Let w = b1 . . . bp be a word of Σk. We

define inductively the sequence (r j)0≤ j≤p as r0 = c and r j+1 =
r j−(a1.bj+1,··· ,an.bj+1)

2 . We can
deduce that rp =

c
2p − (a1.〈w〉+,··· ,an.〈w〉+)

2p .
As γ ∈ Π+]−1, 0[n, we can write γ = u+e with u ∈ Π and e ∈]−1, 0[n. By definition

of Π , there exists λ ∈ ]0, 1[n such that u = −(a1.λ, . . . , an.λ). It should be clear that we
can choose w such that 〈w〉+

2|w| is arbitrarily close to any vector of [0, 1]n, thus arbitrarily

close to λ, and therefore we can choose w such that (a1.〈w〉+,...,an.〈w〉+)
2p is arbitrarily close

to u. If we prefix w by (0, . . . , 0)∗ we do not change the value of 〈w〉+
2|w| but we increase

its length, and thus c
2|w| gets arbitrarily small. Therefore we can choose w such that rp is

arbitrarily close to u.
We now have a candidate w to reach the state γ: we want to show that the path

labelled by w in the product automaton reaches γ. We define the sequence (q j)0≤ j≤p that

represents the path of w in the product automaton: q0 = c and q j+1 =
⌊ q j−(a1 .bj+1,...,an.bj+1)

2

⌋
(where  ·! means applying the floor function componentwise), qp is the state reached
by w from c. We can show inductively that 0 ≤ r j − q j < 1, indeed r j+1 − q j+1 =
r j−q j

2 +
( q j−(a1.bj+1,...,an.bj+1)

2 −
⌊ q j−(a1 .bj+1,...,an.bj+1)

2

⌋)
, so we can deduce that qp =  rp!.

By definition of  .!, there is f ∈ [0, 1[n such that  rp! = rp + f, thus qp = γ + f − (e +
(u − rp)). As rp is arbitrarily close to u, e + (u − rp) ∈] − 1, 0[n. Since qp and γ have
integer components and f ∈ [0, 1[n, we have qp = γ.

Thus, any integer point in P is a state of the product automaton, P forms an SCC
which is maximal, as from any state γ ∈ P one can only reach states inside P. ��
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Fig. 2. Z2-states for x−3y > c1 ∨2x+ y > c2, the doubly circled
states are the states of the canonical RFSA

Figure 2 gives an example
of the states of the prod-
uct automaton reached for
a disjunction of two simple
inequations together with
its polyhedra Π and P.

We precisely charac-
terised the set of states
forming the maximal
SCC constructed by our
forward construction of the
automaton for disjunctions of inequations. This automaton is always minimal when the
inequations are linearly independent.

We study now what the gain of using non-determinism is. We analyse the number of
states of RFSA for conjunctions and disjunctions of inequations. The case of disjunction
of inequations appears to be the most simple for building non-deterministic automata.
For example we can take the simple union of the automata for each inequation of the
disjunction. However they are not necessarily RFSA.

Proposition 3. Given a disjunction of inequations, let Q be the set of states of the min-
imal DFA seen as a subset of Zn, by canonically mapping

∨n
i=1 ai.x > γi to (γ1, . . . , γn).

Then, the states of the canonical RFSA are in S = {γ ∈ Q | {γ} + {−1, 0}n � Q}.
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Proof. By definition, the residual of a state γ is not prime if and only if there exists a
family of states (γ(k)) (γ � (γ(k))), such that the residual of

∨n
i=1 ai.x > γi is equivalent

to the union over k of the residuals of
∨n

i=1 ai.x > γ
(k)
i . If γ � S, the (γ(k) = γ − en

k) are
all states in Q, it is straightforward to notice that

∨
i ai.x > γi =

⋃
i
∨

j a j.x > γ
(i)
j , thus

any state not in S is not prime. ��
We can then heuristically characterise the gain in the number of states of the RFSA in
comparison with the minimal DFA. Instead of the whole polyhedron representing the
max. SCC, the RFSA only has at most the states of its lower surface S.

The RFSA is in general bigger than the non-deterministic automaton built as union
of automata. Disjunctions of inequations having not many variables in common have
small minimal RFSA compared to minimal DFA, for example the minimal DFA of a
formula of the form

∨n/2
i=1 x2i + x2i+1 > 0 has an exponential number of states in n,

whereas the minimal RFSA has a linear number of states.
Actually even for a fixed number of variables we can have an exponential gain. For

the language ∪l≤nΣ
l
1.1.Σ

n
1 .1.0

∗.+ (which only represents a finite, thus Presburger, set of
integers) the minimal RFSA is exponentially smaller than the minimal DFA. It also
shows that there are Presburger sets for which the most significant bit first coding is
accepted by an exponentially smaller automaton compared to the least significant bit
first coding.

We now provide a characterisation of the canonical RFSA for a conjunction of in-
equations, which surprisingly can be as small as the canonical RFSA for disjunctions.

Proposition 4. Given a conjunction of inequations
∧

i ai.x > ci, let Q be the set of
states of its minimal DFA, seen as a subset of Zn. Let S′ = {γ ∈ Q | ∃k, γ + en

k � Q} and
G = {γ | ∧n

i=1 ai.x = γi + 1 has no integer solution}. The set of states (seen as elements
of Zn) of the canonical RFSA for this conjunction is a subset of S′ ∪ G. If c, the initial
state, is in P and the ai are linearly independent, this is exactly the set of states of the
canonical RFSA.

Proof. Here again, the overapproximation is proved by looking at the definition of an
RFSA. We remark that

∨
k
∧

i ai.x > γi + δk(i) (δk(i) = 1 when k = i and 0 otherwise) is
equivalent to

∧
i ai.x > γi ∧ ¬∨i γi + 1 ≥ ai.x > γi. If

∧n
i=1 ai.x = γi + 1 has no integer

solution, this is equivalent to
∧

i ai.x > γi, thus if a state is not in S′ ∪G, it is not prime.
We now prove that we have characterised the states with prime residuals when the ai

are linearly independent and the initial state is in P. The second hypothesis allows us
to use the convexity of P. We assume that the union of the residuals of the states of the
family (γ(k)) (γ � (γ(k))) is equal to the residual of γ. Then, we show that γ ∈ S′ ∪G. As
the ai are linearly independent, for any j and κ,

∧
i� j ai.x = γi+1∧a j.x > κ characterises

an affine half-space of dimension at least 1. Thus such a system has infinitely many
solutions. So, for any k, only the residuals of the states

∧
i� j ai.x > γ′i+1∧a j.x > γ′j with

γ′i ≤ γi (for all i � j) contain these solutions. Only those states with γ′i ≥ γi are included
in the residual of γ. Thus (γ(k)) necessarily contains, for all j a (γ1, . . . , γ j−1, κ j, γ j+1, . . .)
with some κ j > γ j. With the convexity of P, we have γ � S′. ��
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4 Complexity of the Automata Based Decision Procedure

The well-known decision procedure for Presburger arithmetic using automata is based
on recursively constructing an automaton accepting solutions of a Presburger formula
by using automata constructions for handling logical connectives and quantifiers. Au-
tomata for basic formulas can be easily constructed (see section 2). Each logical con-
nective (∧,∨, ¬) corresponds then naturally to an operation on automata. Furthermore
to get an automaton for ∃y.ϕ(y, x) given an automaton for ϕ(y, x) one projects away 1

the component for y and obtains a non-deterministic automaton. Then, this automaton
is determinised to be able to continue the recursive construction and minimised. Given
a formula of size n, Klaedtke has shown [10] — by eliminating the quantifiers on the
logical level and translating the obtained quantifier-free formula to an automaton —
that the minimal DFA obtained at the end of this procedure and the minimal DFA for
subformulas obtained during the procedure have triple-exponential size. However, the
DFA obtained after determinising the NFA which is a result of a projection might be of
quadruple exponential size, as an automaton of triple exponential size is determinised.
In this section we show that all automata obtained during the construction are in fact of
at most triple exponential size solving an open problem from [10]. We do this by care-
fully inspecting the structure of the NFA which is determinised. Notice that our upper
bound is obtained using the least significant bit first coding of integer vectors which
allows to reason conveniently about states of the automata corresponding to formulas.

The following theorem on quantifier elimination is from Klaedtke [10]. We use here
a simplified version, where the only parameter is the length of the formula. In [10], other
parameters (e.g. alternation depth) are used. Given a quantifier free Presburger formula
ψ, let dψ be the number of different atomic modulo constraints of the form a.x ≡m β and
maxdiv(ψ) the biggest value of m appearing in them. Let tψ be the number of different
vectors a appearing in atomic formulas of the form a.x ∼ γ with ∼∈ {=,�, <, >,≤,≥, }
in ψ, maxcoe f (ψ) the biggest absolute value of their coefficients and maxconst(ψ) the
biggest absolute value of the constants γ appearing in them. We use the abbreviations
exp2(x) = 22x

and exp3(x) = 222x

.

Theorem 4 ([10], Theorem 4.5). For every Presburger formula ϕ of length n, there
is a semantically equivalent quantifier free formula ψ such that: tψ ≤ exp2(cn log n),
dψ ≤ exp2(cn log n), maxcoe f (ψ) < exp2(cn), maxdiv(ψ) < exp2(cn) and maxconst(ψ) <
exp3(cn log n), where c is a constant independent of n.

We can suppose w.l.o.g. that ψ is a boolean combination of modulo constraints of the
form a.x ≡m β and of atomic formulas of the form a.x > γ only. The following theorem
gives a bound on the size of the minimal DFA accepting solutions of a Presburger for-
mula. Klaedtke gives a corresponding theorem for the most significant bit first coding.
His proof is simpler due to the fact that only one automaton has to be constructed for
all inequations with the same coefficients.

Theorem 5. The size of the minimal DFA accepting solutions of a Presburger formula
ϕ of length n is at most exp3(cn log n) for some constant c.

1 Since the automaton should accept all encodings of the solutions, one has to sometimes add
additional transitions with a sign letter going to the final state.
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Proof. Let k be the number of free variables of ϕ. Let ψ be the quantifier free formula
obtained from ϕ using Theorem 4. We have tψ ≤ exp2(c1n log n), dψ ≤ exp2(c1n log n),
maxcoe f (ψ) < exp2(c1n), maxdiv(ψ) < exp2(c1n) and maxconst(ψ) < exp3(c1n log n) for
some constant c1. If we build the product automaton for the quantifier free formula ψ
equivalent to ϕ according to Definition 2, a naive analysis of its size gives a quadru-
ply exponential automaton, since there are possibly t2maxconst(ψ)

ψ distinct inequations in
ψ. However a closer inspection reveals a triple exponential bound, due to the special
structure of automata for inequations. Here, we give a slightly different construction of
the automaton Aψ accepting solutions of ψ which we will use in the rest of the section.

Let a1, . . . , atψ be the different vectors appearing in the atomic inequations of ψ and
ψ1, . . . , ψlψ an enumeration of all atomic formulas of the form ai.x > γ j for all 1 ≤ i ≤ tψ
and γ j with |γ j| ∈ [−‖ai‖+ − 1, ‖ai‖−]. Clearly, lψ ≤ exp2(c2n log n) for some constant
c2. Let φ1, . . . , φdψ be an enumeration of all the modulo constraints appearing in ψ and
BC be the set of boolean combinations of the form C(ψ1, . . . , ψlψ , φ1, . . . , φdψ ). For each
member of BC an automaton can be built with the product construction of Definition 2.

We describe now informally the automaton Aψ we construct from ψ. It has first the
form of a complete tree starting at the initial state. Its branching factor is the size of the
alphabet Σk and its depth is exp2(c1n log n). Each of the states in the tree recognises
the solutions of the formula ψ(2|w|x + 〈w〉+) where w ∈ Σ∗

k with |w| ≤ exp2(c1n log n) is
the word leading to the state from the initial state. Then, at level exp2(c1n log n) there
are separate automata accepting solutions of the corresponding formulas reached after
reading the word leading to them. All these automata correspond to boolean combi-
nations of BC. Indeed, for any atomic formula ζ(x) = a.x > γ of ψ and any word
w ∈ Σ∗

k with |w| = exp2(c1n log n) we have ζ(2|w|x + 〈w〉+) ⇔ a.x > γ′ for some
γ′ ∈ [−‖a‖+ − 1, ‖a‖−]. Therefore, for any atomic subformula ζ(x) of ψ, ζ(2|w|x + 〈w〉+)
is equivalent to a ψi, so ψ(2|w|x + 〈w〉+) is equivalent to a formula of BC. Notice that
in any member of BC all atomic formulas of a given form appear. That is not a re-
striction, since we can just expand each boolean combination to be of this form. Let
W = {w ∈ Σ∗

k | |w| = exp2(c1n log n)}. For any w ∈ W, let Cw ∈ BC be the boolean
combination equivalent to ψ(2|w|x + 〈w〉+). For each Cw we can construct an automaton
ACw = (Qw ∪ {F}, qw,0, {F}, δw) according to Definition 2. Notice that the automata ACw

only differ in the transitions going to the final state, since the atomic formulas compos-
ing them are all the same. The final state F is the same in each automaton.

We can now give the definition of the automaton for the formula ψ formally, i.e.
Aψ = (Q, qε, {F}, δ) where Q = Q1 ∪ Q2 ∪ {F} with Q1 = {qw | w ∈ Σ∗

k ∧ |w| <
exp2(c1n log n)} and Q2 =

⋃
w∈W Qw. Furthermore, δ(qw, b) = {qwb} for all b ∈ Σk and

|w| < exp2(c1n log n) − 1, δ(qw, b) = {qwb,0} for all b ∈ Σk and |w| = exp2(c1n log n) − 1
and δ(q, b) = δw(q, b) for all b ∈ Σk and q ∈ Q2. Clearly, the number of states (and also
the size) of the automaton Aψ is smaller than exp3(cn log n) for some constant c. ��
We can now prove the main theorem of the section which shows that elimination of a
variable does not lead to an exponential blow-up in the size of the automaton.

Theorem 6. Let ∃y.ϕ(y, x) be a Presburger formula of size n, A the minimal DFA ac-
cepting the solutions of ϕ(y, x) and A′ the automaton obtained by projecting A on x.
Then, the automaton A′′ obtained by determinising A′ with the standard on-the-fly sub-
set construction is of size at most exp3(cn log n) for some constant c.
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Proof. Theorem 4 yields a quantifier free formula ψ semantically equivalent to ϕ(y, x)
with tψ ≤ exp2(c1n log n), dψ ≤ exp2(c1n log n), maxcoe f (ψ) < exp2(c1n), maxdiv(ψ) <
exp2(c1n) and maxconst(ψ) < exp3(c1n log n) for some constant c1. For ψ, according to
Theorem 5, there is an automaton Aψ = (Q, q0, {F}, δ) of triple-exponential size (not
necessarily minimal) accepting the solutions of ψ. We use the same notation as in the
proof of Theorem 5 for the parts of the automaton. A is the minimal automaton cor-
responding to Aψ. Obviously, Aψ might be bigger than A. We show that the size of the
automaton A′′

ψ obtained by determinising (using the standard on-the-fly subset construc-
tion) A′

ψ which is the automaton obtained from Aψ by projecting away y is bounded by
exp3(cn log n). Then the bound on A′′ (whose states are sets of states of A′) follows, as
two different states in A′′ correspond to two different states in A′′

ψ .
Since we use for the determinisation of A′

ψ the standard subset construction, states of
A′′
ψ are sets of states of A′

ψ which are exactly the states of Aψ.
We first introduce some notations. Let k be the number of free variables of ϕ(y, x)

and ψ. For any word w ∈ Σ∗
k we denote by w↓1∈ Σ∗

k−1 the word obtained from w by
projecting away the first component and by w↓2∈ {0, 1}∗ the word obtained from w by
projecting on the first component. For any w ∈ Σ∗

k−1 we define w↑= {w′ ∈ Σ∗
k | w′↓1= w}.

For any w ∈ Σ∗
k−1 and z ∈ [0, 2|w| − 1] we define w↑z= w′, if 〈w′↓2〉+ = z and w′↓1= w.

Let S = {̂δ(w↑, {q0}) | w ∈ Σ∗
k−1}. Our goal is to show that the size of S is bounded by

a triple-exponential. This implies that the number of states of A′′
ψ has the same bound.

We split S into two sets S < and S ≥ where S < = {̂δ(w ↑, {q0}) | w ∈ Σ∗
k−1 ∧ |w| <

exp2(c1n log n)} and S ≥ = {̂δ(w↑, {q0}) | w ∈ Σ∗
k−1 ∧ |w| ≥ exp2(c1n log n)}. It is obvious

that |S <| ≤ exp3(c2n log n) for some constant c2. We now show a bound on |S ≥|. We
first enumerate all words w ∈ Σ∗

k−1 of size exactly exp2(c1n log n) as w1, . . . ,wm where

m ≤ exp3(c3n log n) for some constant c3. We have S ≥ =
⋃m

i=1 S i where S i = {{̂δ(wiw↑
, {q0}) | w ∈ Σ∗

k−1}. We will show that |S i| ≤ exp3(c4n log n) for some constant c4 which

implies that S ≥ is bounded by a triple-exponential as well. We have S i = {̂δ(w↑, δ̂(wi↑
, {q0})) | w ∈ Σ∗

k−1} =
⋃

z∈[0,(exp3(c1n log n)−1)] {̂δ(w↑, δ̂(wi↑z, {q0})) | w ∈ Σ∗
k−1}. Let S 0

i =

{̂δ(w↑, δ̂(wi↑0, {q0})) | w ∈ Σ∗
k−1}. We have |S i| = |S 0

i |, as δ̂(wi↑0, {q0})) = Cwi↑0 and for all

0 < z ≤ exp3(c1n log n)−1 we have δ̂(wi↑z, {q0}) = Cwi↑z and all automata corresponding
to Cwi↑z for 0 ≤ z ≤ exp3(c1n log n) − 1 are the same except for the transitions leading
to the final state. That means that there is a one-to-one correspondence between each
state in sets of states of S 0

i and each state in sets of states of the other S z
i .

Now, we derive a bound of |S 0
i |. The word wi↑0 leads to the state Cwi↑0 in Aψ which

is the initial state of an automaton, call it A0, recognising all solutions of Cwi↑0 . A0 is
obtained as a product of automata for atomic inequations and modulo constraints. Let
ψ1, . . . , ψlψ be the atomic formulas which are inequations and φ1, . . . , φdψ the atomic
formulas which are modulo constraints of the boolean combination Cwi↑0 . In the follow-
ing it is convenient to consider states of A0 to be (lψ + dψ)-tuples of states instead of
considering them as formulas. That is, a state C(ψ′

1, . . . , ψ
′
lψ
, φ′1, . . . , φ

′
dψ

) is considered

to be the tuple (ψ′
1, . . . , ψ

′
lψ
, φ′1, . . . , φ

′
dψ

). For 1 ≤ i ≤ lψ let ψi(y, x) = ai
1y + ai.x > γi and

for 1 ≤ i ≤ dψ let φi(y, x) = bi
1y + bi.x ≡mi βi.

Let us fix a w ∈ Σ∗
k−1 and let w′ ∈ w↑. Let y′ = 〈w′ ↓2〉+ and l = |w| = |w′|. It is

clear that 0 ≤ y′ < 2l. For each 1 ≤ i ≤ tψ, the state reached in Aai
1y+ai.x>γi

by w′ is the
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state semantically equivalent to ai
1(2ly + y′) + ai.(2lx + 〈w〉+) > γi which is equivalent

to ai
1y + ai.x > (γi − ai

1y′ − a.〈w〉+)/2l.
Therefore, the first tψ components of the states reached in A0 by words w′ ∈ w↑

are semantically equivalent to (a1
1y + a1.x > (γ1 − a1

1y′ − a.〈w〉+)/2l, . . . , a
tψ
1 y + atψ .x >

(γi − a
tψ
1 y′ − atψ .〈w〉+)/2l). There are 2l different values for y′. However there are at

most
∑tψ

i=1(|ai
1| + 1) semantically different corresponding tψ-tuples of formulas, since

0 ≤ y′ < 2l and therefore the semantics of the i-th atomic formula changes at most
ai

1 times in a monotone fashion for increasing y′. Therefore if we consider the first
tψ components of states reached by words of w ↑ in A0, we get only

∑tψ
i=1(|ai

1| + 1)
semantically different ones, since the automata for basic formulas are minimal.

Now we consider the set of words V = {w′ ∈ Σ∗
k | w′↓1= w} which lead to the same

first tψ components of states in A0 and consider the other components (corresponding
to the modulo constraints) they can reach. The words in V differ only in the component
corresponding to y. Clearly, the set {y′ | y′ = 〈w′↓2〉+ and w′ ∈ V} is an interval of the
form [p, q] where 0 ≤ p ≤ q < 2l.

A state (formula) reached in Abi
1y+bi.x≡miβi

after reading a word w′ of V with y′ =
〈w′↓2〉+ is semantically equivalent to 2l(bi

1y + bi.x) ≡mi βi − bi
1y′ − bi.〈w′〉+. It is clear

that there are at most mi semantically different formulas of this kind. Furthermore, we
can order them starting from y′ = 0 until y′ = mi − 1. Then it is clear that the set of
states (formulas) reached by words of V (whose corresponding y′ form intervals) must
be an interval of states respecting this order. There are at most m2

i such intervals.
Finally, we can give an upper bound on the number of subsets of states of S 0

i =

{̂δ(w ↑, {qwi,0} | w ∈ Σ∗
k−1} which are subsets of states of A0. Given any word w ∈

Σ∗
k−1 we know from the above that words of w↑ lead to at most s :=

∑tψ
i=1(|ai

1| + 1) ≤
exp2(c5n log n) (for some constant c5) different tuples of the first tψ components of
A0. Furthermore, we know that the number of subsets of states of Aφi which can be
reached simultaneously by words of subsets V of w ↑ such that all w′ ∈ V lead to
the same tuples of the first tψ components is at most m2

i . Therefore overall, S 0
i has at

most |A0|sΠdψ
i=1m2

i ≤ exp3(cn log n) states for some constant c and |A0| being the number
of states of A0. From this follows in turn a triple-exponential bound on |S i|, |S ≥|, the
number of states and size of A′′

ψ and A′′. ��
The number of transitions of an automaton is bounded by |Q||Σ| for a DFA and possibly
|Q|2|Σ| for an NFA. As Σ is at most simply exponential w.r.t. the size of the formula, the
sizes of the automata build have all a triple-exponential upper bound as well. Therefore
the following is an easy consequence of Theorem 6.

Corollary 1. The automata based decision procedure for Presburger arithmetic takes
triple-exponential time in the size of the formula.

5 Conclusion

We have investigated the use of non-deterministic automata for Presburger arithmetic
(PA). We show that for some subclasses NFA might lead to a substantial gain in the size
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of the automata. We plan to continue our investigations into other subclasses like con-
junctions and disjunctions of modulo constraints together with inequations and equa-
tions as well as general formulas in conjunctive or disjunctive normal form. The use
of alternating automata might improve the sizes as well. But we then lose the canonic-
ity property of RFSA. We also plan to investigate how the use of RFSA improves the
performance of tools for PA. RFSA have also been used recently in learning [7,2]. It
remains to be seen if these learning algorithms lead to improved performances for learn-
ing based verification of counter systems as studied for example in [15] using DFA.
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Abstract. Optimistic concurrency algorithms provide good performance
for parallel programs but they are extremely hard to reason about. Pro-
gram logics such as concurrent separation logic and rely-guarantee rea-
soning can be used to verify these algorithms, but they make heavy uses
of history variables which may obscure the high-level intuition under-
lying the design of these algorithms. In this paper, we propose a novel
program logic that uses invariants on history traces to reason about op-
timistic concurrency algorithms. We use past tense temporal operators
in our assertions to specify execution histories. Our logic supports mod-
ular program specifications with history information by providing sepa-
ration over both space (program states) and time. We verify Michael’s
non-blocking stack algorithm and show that the intuition behind such
algorithm can be naturally captured using trace invariants.

1 Introduction

Optimistic concurrency algorithms [6, 7] allow concurrent access to shared data
and ensure data consistency by performing dynamic conflict detection. These al-
gorithms can be more efficient than coarse-grained lock-based synchronization if
there is sufficient data independence. However, the design of the algorithms has
to consider many more thread-interleaving scenarios than coarse-grained syn-
chronization. The algorithms are usually complex and error-prone. Their cor-
rectness is usually far from obvious and is hard to verify too.

As an example, Fig. 1 shows a non-blocking stack algorithm, where a stack is
implemented as a linked list pointed by the Top pointer. It allows simultaneous
read (line 4 and 13) and write (7, 15) of Top, and the conflict detection is done
by the CAS (compare-and-swap) command. This algorithm has two subtle bugs.
One is that t might be a dangling pointer when the dereference occurs in line
6. The other is the notorious ABA problem: suppose the top three nodes on the
stack are A, B and C; Thread 1 calls pop and reaches the end of line 6; so t points
to A and next points to B; then Thread 2 comes, pops A and B, and pushes
A onto the stack; Thread 1 continues to execute line 7, where the comparison
succeeds and Top is set to point to B, which is no longer on the stack.

Here, we have to refer to the historical events to explain the problems above.
It is not surprising that temporal reasoning is needed to argue for the correctness
of such highly concurrent algorithms.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 388–402, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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pop(){

01 local done, next, t;

02 done := false;

03 while (!done){

04 t := Top;

05 if (t == null) return null;

06 next := t.Next;

07 done := CAS(&Top, t, next);

08 }

09 return t;

}

push(x){

10 local done, t;

11 done := false;

12 while (!done){

13 t := Top;

14 x.Next := t;

15 done := CAS(&Top, t, x);

16 }

17 return true;

}

Fig. 1. A Buggy Implementation of Non-Blocking Stacks

Concurrent separation logic (CSL [13]) and rely-guarantee (R-G) based rea-
soning [8] are two well-studied approaches to concurrency verification. Previous
work [14, 18] has shown that they can be used to verify fine-grained and op-
timistic algorithms. However, since assertions in these logics only specify pro-
gram states (or state transitions in R-G reasoning), it is difficult to use them
to express directly the temporal properties about the subtle interaction between
threads. Instead, we have to introduce history variables to record the occurrence
of certain events. This indirect approach to specifying historical events makes
specifications and proofs complex, and in many cases fails to demonstrate the
high-level intuition behind the design of the algorithms.

In this paper, we propose a new program logic that uses invariants on his-
torical execution traces to reason about optimistic concurrency algorithms. The
logic extends previous work on R-G reasoning by introducing past tense tempo-
ral operators in the assertion language. It allows us to specify historical events
directly without using history variables, which makes the verification process
more modular and intuitive.

Although it has also been observed before that past tense operators in tempo-
ral logic can be used to eliminate the need of history variables [10], developing a
modular logic with temporal reasoning that is able to verify modern concurrent
algorithms has so far been an open problem. Our logic inherits previous work
on combining R-G reasoning with separation logic [3, 19, 2] to support modu-
lar verification. Separating conjunction in separation logic is now defined over
assertions on execution histories instead of state assertions. The frame rule and
the hide rule in the Local Rely-Guarantee (LRG) logic [2]—the keys for modular
verification—are supported naturally in this new setting.

We apply our new logic to reason about Michael’s non-blocking stack algo-
rithm [11] which uses hazard pointers to fix the buggy algorithm in Fig. 1. We
use trace invariants to capture the main intuition underlying the algorithm.
The program specifications and proofs used in our logic are more intuitive than
those from previous work [14]. They do not require history variables. Our logic
also supports a new frame rule that further simplifies the proofs (e.g., for the
retireNode function in Fig. 9) and makes the verification more modular.
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(Expr) E ::= x | n | E+E | E-E | . . .

(Bexp) B ::= true | false | E=E | E �=E | . . .

(Stmts) C ::= x :=E | x :=[E] | [E] :=E′ | skip | x :=cons(E, . . . , E)

| dispose(E) | if B then C else C | while B do C | 〈C〉 | C;C

(Prog) W ::= t1.C1 ‖ . . .‖ tn.Cn (ThrdID) t ∈ Nat

Fig. 2. A Concurrent Programming Language

(Store) s ∈ PVar ⇀fin Int (Heap) h ∈ Nat ⇀fin Int

(State) σ ∈ Store×Heap

(Trace) T ::= (σ0, t0) :: (σ1, t1) :: · · · :: (σn, tn) (Trans) R,G ∈ P(Trace)

Fig. 3. Program States and Execution Traces

T .last = (σ, ) (C, σ) −→ (C′, σ′)

(t.C, T ) ↪−→ (t.C′, T :: (σ′, t))

T .last = (σ, ) (C, σ) −→ abort

(ti.Ci, T ) ↪−→ abort

(ti.Ci, T ) ↪−→ (ti.Ci
′, T ′)

(t1.C1 ‖ . . . ti.Ci . . .‖ tn.Cn, T ) R�−−→ (t1.C1 ‖ . . . ti.Ci
′ . . .‖ tn.Cn, T ′)

(ti.Ci, T ) ↪−→ abort

(t1.C1 ‖ . . . ti.Ci . . .‖ tn.Cn, T ) R�−−→ abort

(T :: (σ, t)) ∈ R
(W,T ) R�−−→ (W,T :: (σ, t))

Fig. 4. Selected Rules of Operational Semantics

2 A Concurrent Programming Language

Figure 2 shows a simple concurrent language. The statements x := [E] and
[E] := E are memory-load and store operations respectively; cons allocates
fresh memory cells, and dispose frees a cell. The atomic block 〈C〉 executes C
atomically. Other statements have standard meanings. A program W contains
n parallel threads, each marked with a unique thread ID (e.g., ti for Ci).

Figure 3 defines program states and execution traces. The store s is a finite
partial mapping from program variables to integers; the heap h maps memory
locations (natural numbers) to integers. A program state σ is a pair (s, h). An
execution trace T is a (nonempty) finite sequence (σ0, t0) :: (σ1, t1) :: · · · ::
(σn, tn). A pair (σi, ti) in a trace T means that a thread with ID ti reached the
state σi after executing one step from the state σi−1. Thread ID t0 can be any
value. We use T .last to denote the last element in T . A trace (T :: (σ, t)) in the
trace sets R and G is also used to model a single-step transition by the thread t
that starts from T and reaches a new state σ.
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(StateAssert) P, Q ::= B | emph | emps | own(x) | E �→ E | P ∗ Q | . . .

(TraceAssert) p, q, R,G, I ::= P | Id | [p]t | p � q | � p | p ∗ q | ∃X.p | ¬p | p ∨ q | . . .

Fig. 5. The Assertion Language

(s, h) |=sl emps iff s = ∅ (s, h) |=sl emph iff h = ∅
(s, h) |=sl own(x) iff dom(s) = {x}
(s, h) |=sl E1 �→ E2 iff there exist � and n such that

�E1�s = �, �E2�s = n, dom(h) = {�} and h(�) = n

σ |=sl P ∗ Q iff there exist σ1 and σ2

such that σ1 � σ2 = σ, σ1 |=SL P and σ2 |=SL Q

emp
def= emps ∧ emph

Fig. 6. Semantics of Selected Separation Logic Assertions

Figure 4 gives selected rules modeling the operational semantics (see the tech-
nical report [4] for the complete rules). The binary relation −→ models a
transition over states made by a primitive statement. The definition is standard
and is omitted here. The relation ↪−→ lifts state transitions to transitions over
traces. The thread ID of the executing thread t is recorded on the trace at the
end of the transition. Finally, the relation R�−−→ models the transitions over
traces made by programs in an environment characterized by R. Here R contains
all the possible transitions of the environment.

3 The Assertion Language

Our assertion language is defined in Fig. 5. We use separation logic assertions (P
and Q) to specify program states. Following Parkinson et al. [15], we also treat
program variables as resources. Semantics of some separation logic assertions are
shown in Fig. 6. We use σ1 5σ2 to represent the union of the two disjoint states.

Trace assertions. Trace assertions p, q, R, G and I specify historical execution
traces. Semantics of trace assertions are defined in Fig. 7. Here we use |T | to
represent the length of T , and use Tk− to represent the subsequence resulting
from truncating the last k elements from T (0 ≤ k < |T |).

A state assertion P is viewed as a trace assertion that specifies only the last
state. Assertion Id says that the last two states on the trace are the same (i.e.
the last state transition is an identity transition). Assertion [p]t means that the
trace satisfies p and the last state transition is made by the thread t. Assertion
p � q holds over T if and only if p holds over the trace Ti− for some i and q
holds ever since. It is also represented as q S p (q since p) in the literature of
temporal logic [10]. Assertion 8p holds if and only if the trace prior to the last
transition satisfies p. �p� is the set of traces that satisfy p.
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Tk−
def= (σ0, t0) :: · · · :: (σn−k, tn−k) if T =(σ0, t0) :: · · · :: (σn, tn) and 0 ≤ k≤n

T |=P iff there exists σ such that T .last = (σ, ) and σ |=sl P

T |= Id iff there exist T ′ and σ such that T = T ′ :: (σ, ) :: (σ, )

T |=[p]t iff T .last = ( , t) and T |=p

T |=p � q iff there exists 0 < i < |T | such that Ti− |=p and ∀j < i. Tj− |=q

T |=�p iff 1 < |T | and T1− |=p �p� def= {T | T |=p}
((σ0, t0) :: . . . :: (σn, tn)) ⊕ ((σ′

0, t
′
0) :: . . . :: (σ′

m, t′m))

def=

{
((σ0 � σ′

0, t0) :: . . . :: (σn � σ′
m, tn)) if n = m ∧ ∀0 ≤ i ≤ n.ti = t′i

undefined otherwise

T |=p ∗ q iff there exist T1 and T2 such that T = T1 ⊕ T2, T1 |=p and T2 |=q

p 	 q
def= (p � q) ∨ p ♦− p

def= p 	 true 
 p
def= ¬♦− (¬p)

p � q
def= ♦− (♦− p ∧ q) p�t q

def= �p ∧ [q]t p� q
def= ∃t. p�t q

We assume unary operators (♦− and �) have higher precedence than other operators.

Fig. 7. Semantics of Trace Assertions

Assertion p ∗ q lifts separating conjunction to traces; it specifies a program
trace consisting of two disjoint parts: one satisfies p and another q. Traces T1 and
T2 are disjoint if they have the same length, and for each i such that 0 ≤ i < |T |
the states in T1[i] and T2[i] are disjoint (see the definition of T1 ⊕ T2 in Fig. 7).

Other useful connectors can be defined using these primitive operators. As-
sertion p 	 q is a weaker version of p � q. Assertion ♦− p says that p was once
true in the history. Assertion 
p holds if and only if p holds at every step in the
history. Assertion p � q says that p first came true in the history, and then q
came true later. Assertion p�t q means that the last transition is made by thread
t, and assertion p holds prior to the transition, and q holds after it. This allows
us to define the built-in � operator in LRG [2].

Example 3.1. In the TL2 transactional memory protocol [1], before updating
a shared memory cell, we must first acquire the corresponding lock and then
increase the global version clock. This requirement (among many others in the
protocol) can be defined as the following guarantee:

Gtid(x)
def= ∃D, D′, T, T ′.

(
((x �→ 0, D ∗ gt �→ T ) � (x �→ tid, D ∗ gt �→ ))

∧(x �→ tid, D ∗ gt �→ T ′) ∧ (T ′ > T )

)
�tid(x �→ tid, D′ ∗ gt �→ T ′)

Here x points to two fields, its lock and its value. The first line above says that,
before the transition, the lock was acquired (it was changed from 0 to tid)
when the global version clock gt was T . Then the lock and the value have been
preserved ever since, but gt might have been changed. The second line says gt
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is greater than T right before the transition. The third line says the value of x
is updated by the transition. This definition also implies that the increment of
gt is done after the lock is acquired.

The guarantee above refers to two events before the specified transition. In
traditional R-G reasoning, the guarantee condition can only specify two states,
so we have to introduce history variables to describe such historical events.

As in separation logic, a class of trace assertions that are of special interest
to us are those that are precise about the last state on the trace.

Definition 3.2 (Last-State-Precise Trace Assertions). p is last state pre-
cise, i.e. LPrec(p) holds, if and only if for all T , t, s, h, s1, s2, h1, h2, if s1 ⊆ s,
s2 ⊆ s, h1 ⊆ h, h2 ⊆ h, T :: ((s1, h1), t) |=p and T :: ((s2, h2), t) |=p, then s1 = s2
and h1 = h2.

The example below shows a last-state-precise assertion p can specify a precise
state domain that is determined dynamically by historical events. It is more
powerful than a precise state assertion P in separation logic [17]. This can also
be seen in our hazard-pointer-based stack example.

Example 3.3. Let I = ∃X.♦−(� �→ X ∗ true)∧(� �→ ∗ (X=0 ∧ r ∨X �=0 ∧ emp))
where r = x �→ ∗y �→ , then I is a last-state-precise trace assertion. It specifies
traces where the domain of the last state depends on the historical value X of �.

4 A Program Logic for History

Now we present our program logic for history, named HLRG, which extends the
LRG logic [2] with trace assertions for reasoning about historical traces.

As in LRG, we use the judgments R;G {p}W{q} and R;G; I  t {p}C{q} for
well-formed programs and well-formed thread t respectively. The rely condition
R and the guarantee G specify the interference between the environment and
the thread. The judgments say informally that starting from a trace satisfying
both 
(R ∨G) ∗ true and p, if the environment’s transitions satisfy R, then W
(or C) would not abort, its transitions satisfy G, and q holds at the end if W
(or C) terminates. The invariant I specifies the well-formedness of the shared
resource. Unlike in the LRG logic, R, G, I, p and q are all trace assertions now.

Figure 8 gives the main inference rules. The prog rule allows us to verify
the whole program by verifying the n parallel threads t1.C1,t2.C2,. . ., tn.Cn sep-
arately. Each thread ti has exclusive access to its own private resource specified
by pi and qi. All threads can access the shared resource specified by r, r1 . . . rn.
To verify each thread, we need to find an invariant I specifying the basic well-
formedness of the shared resource.

The atom rule says that we can treat C in the atomic block as sequential code
since its execution cannot be interrupted. Here the judgment {P}C{Q} can be
derived following the standard sequential separation logic rules [17], which we
do not show here. This rule allows us to strengthen P into a trace assertion p so
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R∨G1∨. . .∨Gi−1∨Gi+1∨. . .∨Gn; Gi; I �ti {pi ∗ r}Ci{qi ∗ ri} ∀i ∈ {1, . . . , n}
r ∨ r1 ∨. . .∨ rn ⇒ I

R;G1∨. . .∨Gn�{p1∗. . .∗ pn∗r}t1.C1 ‖ . . .‖ tn.Cn{q1∗. . .∗ qn∗(r1∧. . .∧rn)} (prog)

p ⇒ P {P}C{Q} p�t Q ⇒ G ∗ true

IdI ; G; I �t {p} 〈C〉 {Q} (atom)

where IdI is defined as Id∧(I�I).

p ⇒ p′ IdI ; G; I �t {p′}〈C〉{Q′} � p ∧ Q′ ⇒ q Sta({p, q}, R∗Id)
R; G; I �t {p} 〈C〉 {q} (atom-r)

R; G; I �t {p}C{q}
Sta(r, R′∗Id) r ⇒ I ′ ∗ true

R∗R′; G∗G′; I∗I ′�t {p∗r}C{q∗r} (frame)

R;G; I �t {p}C{q}
R; G; I �t {p ∧♦−r}C{q ∧♦−r} (frameT)

R; G; I �t {p ∧ (I ′∗true)}C{q} 
 (R ∨ G)⇒ (I ′ ∧ I ′′)

R; G; I �t {p}C{q ∧ (I ′′∗true)} (inv)

Fig. 8. Selected Inference Rules of the HLRG Program Logic

that we can carry the historical information. The transition from p to Q needs
to satisfy the guarantee G, which may have some constraints over the history
traces (examples about G can be found in Fig. 10 in Sec. 5).

The atom rule uses a strong rely condition about the environment, which is
an identity transition preserving the invariant I of the shared resource. To relax
it, we can apply the next atom-r rule borrowed from RGSep [18]. It allows us
to adjust the pre- and post-conditions so that they are both stable with respect
to the rely condition R.

Definition 4.1 (Stability). We say a trace assertion p is stable with respect
to a trace assertion q, i.e. Sta(p, q) holds, if and only if 8p ∧ q ⇒ p.

That is, if p holds before the most recent transition, and the transition satisfies
q, then p holds after it. This is the standard requirement in R-G reasoning.
With temporal operators, it can now be encoded as a temporal assertion. We
use Sta({p, q}, R) as a shorthand for Sta(p,R) ∧ Sta(q,R).

The interesting (and new) part of this atom-r rule is the post condition q,
which is weakened from the trace assertion 8p ∧ Q′. This allows us to carry
information about historical events happened before this atomic transition.

The frame rule comes from LRG. It supports local reasoning and allows
us to write “small” specifications about resources that are indeed accessed in
C. Invariants about other resources are preserved and can be added into the
specifications later. We also introduce a new frameT rule to show the frame
property over “time”. Since historical traces would not affect the execution of
programs, knowledge about history can be added when necessary.
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The new inv rule is also very useful. It is like the reverse of the standard
consequence rule in Hoare logic, since it allows us to strengthen the pre-condition,
and prove a post-condition weaker than we wanted. This rule is sound because
the invariants I ′ and I ′′ can be derived from the fact that each step of the
transition satisfies R ∨ G, so that they can be used anywhere in the proof for
free. We will demonstrate the use of frame, frameT and inv in our example
in Sec. 5.

The rest of the rules are the same as those in LRG, and are not shown here.
Note that in each rule we implicitly require the following properties hold.

– fence(I, R) and fence(I,G);
– p ∨ q ⇒ I ∗ true;

where fence(I, p) is defined below:

fence(I, p) def= (Id ∧ (I�I) ⇒ p) ∧ (p⇒ I�I) ∧ LPrec(I) .

Informally, it requires that the most recent transition is confined in a precise
domain enforced by the last-state-precise assertion I. This constraint is inher-
ited from LRG. Interested readers can refer to our previous work [2] to see the
technical discussions about this requirement.

Semantics and soundness. The semantics of our logic and its soundness proof
are similar to those of LRG. We first define the non-interference property below.

Definition 4.2 (Non-Interference). Let W = t1.C1 ‖ . . .‖ tn.Cn.
(W, T ,R)=⇒0G always holds. (W, T ,R)=⇒m+1G holds iff ¬(W, T ) R�−−→ abort
and the following are true:

1. for all t and σ, if (T :: (σ, t))∈R, then for all k≤m, (W, T :: (σ, t),R)=⇒k G;
2. for all σ and i ∈ {1,. . ., n}, if (ti.Ci, T ) ↪−→ (ti.Ci

′, T :: (σ, ti)), then (T ::
(σ, ti)) ∈ G and (t1.C1 ‖ . . . ti.Ci

′ . . . ‖ tn.Cn, T :: (σ, ti),R) =⇒k G holds
for all k≤m.

Then the semantics of R;G {p}W{q} is defined below. Theorem 4.4 shows
the soundness theorem of the logic.

Definition 4.3. R;G |= {p}W{q} iff, for all T such that T |=
p ∧ (
(R ∨G) ∗ true), the following are true (where R=�R∗Id� and G=�G∗true�):

1. if (W, T ) R�−−→∗ (skip, T ′), then T ′ |=q;
2. for all m, (W, T ,R)=⇒mG.

Theorem 4.4 (Soundness). If R;G {p}W{q} then R;G |={p}W{q}.

We show the proof in the extended technical report [4].
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pop(){

01 local done, next, t, t1;

02 done := false;

03 while (!done){

04 t := Top;

05 if (t == null) return null;

06 HP[tid] := t;

07 t1 := Top;

08 if (t == t1){

09 next := t.Next;

10 done := CAS(&Top, t, next);

11 }

12 }

13 retireNode(t);

14 HP[tid] := null;

15 return t;

}

retireNode(t){

16 local i, t’;

17 i := 1;

18 while(i<=th_num){

19 if (i != tid){

20 t’ := HP[i];

21 if (t’!= t){

22 i:= i+1;

23 }

24 }else i:= i+1;

25 }

}

Fig. 9. Optimistic Lock-Free Stacks with Hazard Pointers

5 Verification of Lock-Free Stacks with Hazard Pointers

We now apply HLRG to verify Michael’s lock-free stacks, which use hazard
pointers [11] to address the problems with the algorithm in Fig. 1. In Fig. 9
we show the new pop function. The push function is the same as in Fig. 1 and
is omitted here. We use stack(Top, A) below to specify the shared stack, which
is implemented as a linked list pointed by Top. The set A records the memory
locations of the nodes on the list. It is kept to simplify our proofs. Below we use
E �→ E1, E2 as a shorthand for E �→ E1 ∗E+1 �→ E2, and E �→ for ∃n.E �→ n.

List(�, ∅, nil) def= emp ∧ � = null

List(�, A, n ::L) def= � ∈ A ∧ ∃�′. (� �→ n, �′) ∗ List(�′, A−{�}, L)

stack(Top, A) def= ∃�, L. (Top �→ �) ∗ List(�,A, L) (1)

The algorithm fixes the ABA problem by using a global array HP, which contains
a “hazard” pointer for each thread. The array is specified by Ihp(HP). Here
HP+tid is the location of HP[tid], and th num is the number of threads.

Ihp(HP)
def= �tid∈[1..th num]. HP+tid �→ (2)

where �x∈s.p(x) def= s = ∅ ∧ emp ∨ ∃z. (s = {z}�s′) ∧ (�x∈s′ .p(x)) ∗ p(z)
and � is the union of disjoint sets.

Before a racy access to the top node on the stack, a thread stores the node’s
memory location into its HP entry (lines 06-08). This announces to other threads
that the node is being accessed and should not be reclaimed. When a node is suc-
cessfully removed from the stack (line 10), the remover thread calls retireNode
(line 13) and waits till after this node is no longer being accessed by any other
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threads (i.e., not pointed by their HP entries). Finally, it clears its own HP entry
(line 14) before it obtains the full ownership of the node (line 15).

We use remove(�, Top, HP, tid) in (3) to specify that the thread tid is in the
remove phase: it has popped the node at � from the stack, but has not reached
line 14 yet. The part in front of 	 says that there was a primitive operation in
history, which popped the node from the stack. The 	 operator and the assertion
following it require that the removed node be pointed by the remover’s own HP
entry ever since. Here E1 � E2 is a shorthand for (E1 �→ E2)∗true. The predicate
not rem(Top, HP, tid) in (4) says that tid is currently not in the remove phase.

remove(�, Top, HP, tid) def= (3)(
((HP+tid �→ � ∗ Top � �) �tid (HP+tid �→ � ∗ ∃�′.Top � �′ ∧ � �= �′))

	 HP+tid � �
) ∧ � �= null

not rem(Top, HP, tid) def= ¬∃�. remove(�,Top, HP, tid) (4)

In addition to the stack and the HP array, the popped nodes that are accessible
from the hazard pointers should be viewed as shared resources as well. We use
opset(Top, HP, S,O) in (5) to iterate these shared nodes, where O is the set of
pointers pointing to these nodes and S is the set of threads.

opset(Top, HP, ∅, ∅) def= true (5)

opset(Top, HP, {tid} � S, O) def=
(∃�. remove(�, Top, HP, tid) ∧ � ∈ O ∧ opset(Top, HP, S, O − {�}))

∨ (not rem(Top, HP, tid) ∧ opset(Top, HP, S, O))

The invariant I below specifies all three parts of the shared resources. I is a
last-state-precise assertion. The domain of the shared resource depends on the
historical information whether nodes are popped before or not.

I
def= ∃O. opset(Top, HP, [1..th num], O)

∧ (Ihp(HP) ∗ ∃A.stack(Top, A) ∗ (��∈O. � �→ , )) (6)

Below we characterize the meaning of hazard pointers. ishazard(�, Top, HP, tid)
says HP[tid] contains a “confirmed” hazard pointer �, i.e. � was once the top of
the stack in history and the thread tid has not updated the Top pointer ever
since (though Top might have been updated by other threads). When the remover
thread invokes retireNode on the top node t, it scans the hazard pointers of
all other threads and make sure that ishazard(t, Top, HP, tid) does not hold for
each non-remover thread tid. This is specified by hazfree(t, Top, HP, tid), which
says that the node t has been popped by the thread tid and other threads no
longer treat it as a hazard node.

upd top(tid) def= ∃�, �′. (Top � � �tid Top � �′) ∧ � �= �′

ishazard(�,Top, HP, tid) def= (7)
(HP+tid �→ � ∗ Top � �) �

(
(HP+tid � �) ∧ ¬upd top(tid)

)
hazfree(�, Top, HP, tid) def= (8)

remove(�, Top, HP, tid) ∧ ∀tid′∈ [1..th num]. tid′ =tid ∨ ¬ishazard(�, Top, HP, tid′)
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Poptid

def= ∃�, �′. � ((Top � �) ∗ (HP+tid �→ �) ∗ (� �→ , �′) ∗ List(�′, , ))
∧((Top �→ � �tid Top �→ �′) ∗ Id) (line 10)

Retiretid
def= ∃�. � hazfree(�, Top, HP, tid)

∧ (((HP+tid �→ � ∗ � �→ , ) �tid HP+tid �→ null) ∗ Id) (line 14)
Reset HPtid

def= �not rem(Top, HP, tid)
∧ ((HP+tid �→ �tid HP+tid �→ ) ∗ Id) (line 06)

Pushtid
def= (Top �→ � �tid (Top �→ �′ ∗ �′ �→ , �)) ∗ Id (line 15 in Fig. 1)

Gtid
def= (Retiretid ∨ Poptid ∨ Pushtid ∨ Reset HPtid ∨ Id) ∧ (I � I)

Rtid
def=
∨

tid’∈[1..th num]∧tid�=tid’ Gtid’

Fig. 10. Transitions over Shared Resources, and R-G Specifications

The call to retireNode is crucial. As we will show below, it ensures that
a confirmed hazard pointer cannot be a dangling pointer, and a popped node
pointed by any confirmed hazard pointers cannot show up on the stack again
(thus the ABA problem is avoided).

Verification of the Algorithm. We first define in Fig. 10 all the operations
over the shared data structure, and show which line of the code makes the
corresponding transition (read-only operations are simply Id transitions and are
omitted). Poptid pops the top node from the stack. It requires that the hazard
pointer point to the top of the stack. Retiretid sets the value of HP[tid] into
null, knowing that the popped node is no longer a hazard node. Then the node
� is converted logically from shared resource to private. Reset HPtid resets the
hazard pointer when the thread tid fails to pop a node. Pushtid pushes a private
node onto the stack.

We also define the rely (Rtid) and guarantee (Gtid) of the thread tid. Here I
(defined in (6)) is used to fence the domain of all possible actions. It is easy to
see fence(I, Rtid) and fence(I,Gtid) are satisfied. Next we show some key trace
invariants derivable from 
(Rtid ∨Gtid). They are used when the inv rule is
applied. Also they show the key intuition of the algorithm.

Invariant 1. This invariant ensures that a node pointed by a hazard pointer is
either on the stack or in the set O, so it is safe to dereference a hazard pointer.

∀�, tid, A, O. ishazard(�, Top, HP, tid) ∧ opset(Top, HP, [1..th num], O)
∧(stack(Top, A) ∗ true) ∧ � �= null ⇒ �∈A ∨ �∈O

Invariant 2. If a thread tid once held a hazard pointer pointing to the top of
the stack, and the top node on the stack was popped by other threads, then the
node will not be on the stack again as long as tid’s HP entry is not changed.
This invariant ensures that there are no ABA problems.

∀�, A,A′, tid.(
(ishazard(�,Top, HP, tid) ∧ (stack(Top, A) ∗ true)) � HP+tid � �

)
∧(stack(Top, A′) ∗ true) ∧ � �= null ∧ � �∈ A ⇒ � �∈ A′
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POPtid(�, n, �′) def= �((Top � �) ∗ (� �→ n, �′) ∗ List(�′, , ))
∧ ((Top �→ � �tid Top �→ �′) ∗ Id)

pop(){

{ HP+tid �→ null
I
}

01 local done, next, t, t1;

02 done := false;

{ HP+tid �→ null
I
} ∧ ¬done}

{ not rem(Top, HP, tid)
I
∧ ¬done}

loop invariant:
{ not rem(Top, HP, tid)

I
∧ ¬done

∨ ∃n, �′.♦− POPtid(t, n, �′) ∧ (remove(t, Top, HP, tid) ∗ (t �→ n, �′))
I
∧ done}

03 while (!done){

{ not rem(Top, HP, tid)
I
}

04 <t := [Top]>;

05 if (t == null) return null;

06 <HP[tid] := t>;

{∃�. not rem(Top, HP, tid) ∧ HP+tid �→ �
I
∧ t = � ∧ � �= null}

07 <t1 := [Top]>; Apply atom-r and atom

{∃�, �′. not rem(Top, HP, tid) ∧ (HP+tid �→ � ∗ Top �→ �′)
I
∧ t=� ∧ � �=null ∧ t1=�′}

{∃�, �′. � = �′ ⇒ ishazard(�, Top, HP, tid)
I
∧ t = � ∧ � �= null ∧ t1 = �′}

08 if (t == t1){

{∃�. ishazard(�, Top, HP, tid)
I
∧ t = � ∧ � �= null}

Apply inv with Invariant 1

{∃�, n, �′. ishazard(�,Top, HP, tid) ∗ � �→ n, �′
I
∧ t = �}

09 <next := t.Next>;

{∃�, n, �′. ishazard(�,Top, HP, tid) ∗ � �→ n, �′
I
∧ t = � ∧ next = �′}

10 <done := CAS(&Top, t, next)>; Apply inv with Invariant 2
11 }

12 }

{ ∃n, �′.♦− POPtid(t, n, �′) ∧ (remove(t, Top, HP, tid) ∗ (t �→ n, �′))
I
}

13 retireNode(t); Apply frame and frameT

{ ∃n, �′.♦− POPtid(t, n, �′) ∧ (hazfree(t, Top, HP, tid) ∗ (t �→ n, �′))
I
}

14 <HP[tid] := null>; Apply atom-r and atom

{∃n, �′. ♦− POPtid(t, n, �′)
I
∗ (t �→ n, �′)}

15 return t;

{ ♦− List(null, nil)
I
∧ t = null ∨ ∃n, �′. ♦− POPtid(t, n, �′)

I
∗ (t �→ n, �′)}

}

Fig. 11. Verification of pop
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Ithp
def= (Top �→ ) ∗ Ihp(HP) IrN

def= remove(t, Top, HP, tid) ∧ Ithp

selfornothazard(i) def= ∀tid′ ∈ [1..i−1]. tid′ =tid ∨ ¬ishazard(t, Top, HP, tid′)
IrN

retireNode(t){

{IrN}
16 local i, t’;

17 i := 1;

loop invariant: {i ≤ th num+1 ∧ selfornothazard(i-1)}
18 while(i<=th_num){

19 if (i != tid){

20 <t’ := HP[i]>;

21 if (t ’!= t) {

{♦− (∃�.HP+i �→ � ∧ (i �= tid ∧ � �= t)) ∧ selfornothazard(i-1) ∧ i ≤ th num}
Apply inv with Invariant 3

{selfornothazard(i) ∧ i ≤ th num}
22 i := i+1;

23 }

24 }else i:= i+1;

25 }

{selfornothazard(th num+1)}
{ hazfree(t, Top, HP, tid)

Ithp
}

}

Fig. 12. Verification of retireNode

Invariant 3. This invariant justifies the retireNode procedure. If the thread tid
popped a node � and its HP entry points to the node, then for all other thread
tid’ its hazard pointer cannot point to the node and becomes a confirmed
hazard pointer again if it was set to point to a different node (�′) in history.

∀�, �′, tid, tid′.(
remove(�, Top, HP, tid) ∧ (HP+tid′ � �′) ∧ �′ �= �

� HP+tid � �

)
⇒ ¬ishazard(�,Top, HP, tid′)

We show the proof sketch for pop in Fig. 11. Here p
I

is used as a shorthand
for (p ∗ true) ∧ I. The precondition of pop requires that the invariant I hold
over the shared resources, and that the calling thread’s HP entry be initialized
to null. The post-condition says I holds at the end; the stack was either empty
or the node t was popped out of the stack and is now part of the local resource
of the calling thread. The proof sketch for retireNode is given in Fig. 12.

Most part of the proof simply follows the rules of the logic. The interesting
part is that the specification of retireNode does not mention the linked list and
the nodes in opset. Neither does it need to know that the pop operation has been
done (∃n, �′.♦− POPtid(t, n, �′)). The knowledge can be added back by applying
the frame and frameT rules respectively before we compose retireNode with
pop (see Fig. 11). The push procedure has nothing to do with hazard pointers,
thus the proof is trivial and can be seen in the extended TR [4].
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6 Related Work and Conclusions

Assume-Guarantee (A-G) reasoning [12, 16] often views a concurrent program
as an “invariant maintainer” instead of a “predicate transformer” [9], especially
for safety verification. With this view, sequential composition of programs seems
always trivial and is rarely discussed in previous work on A-G reasoning.

R-G reasoning [8], on the other hand, decomposes specifications into program
invariants (R and G) and Hoare-style pre- and post-conditions, which gives us
a “predicate transformer” view of programs. With this view, sequential compo-
sition of programs (C1;C2) is no longer trivial. For instance, to use the post
condition q of C1 as the pre-condition of C2 as in Hoare Logic, we need to
ensure the stability of q. Our logic is an extension of R-G reasoning. We take
this “predicate transformer” view of programs, and try to spell out the details
of the verification step associated with each program construct. Also, our logic
successfully combines separation logic and temporal reasoning, which gives us
better modularity. The two different frame rules in our logic reflect the frame
properties over space (program states) and time respectively.

Gotsman et al. [5] introduced temporal operators in RGSep [19] to reason
about liveness properties of non-blocking algorithms. They do not use any past
tense operators. Their temporal operators were only used in their rely and guar-
antee conditions, but not in the pre- and post-conditions. Since the frame rule
over R and G was not used there, the interoperability between temporal opera-
tors and separation logic operators was not discussed.

Parkinson et al. [14] used CSL to verify safety of the same stack algorithm
we verified here. The specifications makes heavy uses of history variables. We
believe that our specifications reflect the intuition of the algorithm more directly.
Vafeiadis [18] applied RGSep to verify several non-blocking stack algorithms,
which all rely on garbage collectors to avoid the ABA problem. It is unclear how
the specification of Michael’s stacks would look like in RGSep.
Conclusion. In this paper we have proposed a new program logic HLRG, which
combines R-G reasoning with past tense temporal assertions to reason about
optimistic concurrency algorithms. Our new logic supports modular verification,
including the frame rules over both the separation logic and temporal operators.
We have verified Michael’s lock-free stack with hazard pointers and show that our
history logic can directly capture the high-level intuition about the algorithm.
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Abstract. Theories defined in a process model are formalized and stud-
ied. A theory in a process calculus is a set of perpetually available pro-
cesses with finite interactability, each can be regarded as a service, an
agent behind the scene or an axiom. The operational and observational
semantics of the theories are investigated. The power of the approach is
demonstrated by interpreting the asynchronous π-calculus as a theory,
the asynchronous theory, in the π-calculus. A complete axiomatic system
is constructed for the asynchronous theory, which gives rise to a proof
system for the weak asynchronous bisimilarity of the asynchronous π.

1 Introduction

In a network computing environment, how do we evaluate the capacities of two
service providers S1 and S2? Suppose we place a request to both the providers.
One, say S1, finds the appropriate service in its repertoire and immediately
delivers the service. The other provider S2 does not specialize in the kind of
service we are interested in. But since it has a strong search ability, it simply
redirects our request to a third party who can offer the service we want for free.
Moreover S2 does it in such a manner that we are not aware of the existence of
the third party at all. If S1 and S2 can always supply the services with similar
qualities, we are led to believe that they are equally powerful. The point is
that in a distributed computing environment, we are not testing S1 and S2 in
isolation. That is clearly impossible. No one can stop S1 and S2 from exploring
the resources freely available on the network. Although we can pretend that
we are testing S1, what we are really doing is to test S1 plus all the resources
accessible by S1. Worse still S1 is often blurred with the environment so that
we are not always able to tell precisely which is which. The service providers S1

and S2 could have quite different capacities when isolated. They can be however
equivalent in a resource rich network environment.

We would like to formalize the above scenario in interaction models. Our basic
idea is to regard the services available on the network as a set S = {S1, S2, . . .} of
processes. We shall always assume that each member of the set is well-founded.
It’s no good to have a service that never delivers anything. A one-shot service
is not of much use as a piece of resource. So the actual services distributed over
different locations are perceived as the processes !S1, !S2, . . .. The finite behavior
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of a process P sitting among !S1, !S2, . . . can always be inspected by considering
the finite action sequences of the shape

P |Si1 | . . . |Sik

λ1−→ . . .
λn−→ P ′

since in a finite number of steps, the process P may only consult a finite number
of service providers. If we consider a single step action of P , we only have to focus
on the actions of the form P |S′ λ−→ P ′ for S′ ∈ S. Now the crucial point is that
the services really stay invisibly in the background. So an action P |S′ λ−→ P ′

would appear to us as the action P
λ−→ P ′. This is the starting point for the

semantics of a theory.
From a model theoretical point of view, sometimes we need to work with

an open system within a closed world. The idea is best explained by the no-
tion of asynchrony. The asynchronous π-calculus [Bou92, HT91a, HT91b, HY95,
ACS98] is obtained from the synchronous π-calculus by detaching the output
prefixes from any continuations. At first look it appears a bit simplistic since
asynchrony can not be a syntactical issue. In reality asynchrony is implemented
by extra mechanism which we choose to ignore. In a closed model like π-calculus,
the detachment between the prefix and the continuation is the only sensible thing
to do to achieve asynchrony without introducing any additional gadgets.

There ought to be an alternative treatment to the asynchrony in π-calculus
that does not resort to any syntactical manipulation. An output process ac.P
may communicate to a background environment. The latter picks up the name
c and sends it to an input process in a later time. The background environ-
ment consists of a bunch of processes of the form !a(x).ax. These processes are
supposed to be hidden from the users. They form a theory in the above sense.

One may also study (constructive) logics in process models. Abramsky’s work
[Abr93] and a number of related works have shown how to model a logic in a
process calculus. But how about a logic theory, say the Peano theory, defined in
a logic? From our perspective, a particular logical theory can be formulated as a
theory defined in a process model. An element of the theory codes up an axiom
of the logic theory. In the process approach to logic, a proposition is interpreted
as a process of the form !A. To make use of the axiom, an environment has
to interact with a copy of A. When the verification (proof) is complete, the
environment has gathered enough evidence for the validity of the proposition.

In a similar fashion to the interpretations of logics, programs in different styles
have been translated into the π-model [Wal95, HO95, Mil92, CF10]. What is
lacking in this research field is any idea about implementations of program-
ming languages. Again the notion of theory is in sight. The implementation of a
programming language amounts to defining a theory that codes up the system
functions or routines that come with the definition of the language.

The motivation for this paper is that the notion of theory defined by processes
arises naturally in many applications of process models. It is worthwhile to give
an application independent study of the problems pertaining to such theories.
Formal studies in this area are likely to shed new light on some familiar topics.
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2 Pi Calculus

The π-calculus of Milner, Parrow and Walker [MPW92] has been widely studied
in both theory and in practice. Our presentation of the model is slightly different
from the standard one. The main difference is that we draw a firm line between
the names and the name variables. The reader is advised to consult [FZ10]
for the discussion why the distinction between the two categories is important.
Throughout the paper the following notational convention will be observed:

– The set N of the names is ranged over by a, b, c, d, e, f, g, h.
– The set Nv of the name variables is ranged over by u, v, w, x, y, z.
– The set N ∪Nv is ranged over by l,m, n, o, p, q.

An assignment ρ is a partial function from Nv to N whose domain of definition
is cofinite. A condition is a finite conjunction of atomic propositions. An atomic
proposition is either a match [m=n] or a mismatch [m �=n]. We always omit the
conjunction operator. The set of the conditions is ranged over by φ, ϕ, ψ. We
write ϕ ⇔ � (ϕ ⇔ ⊥) if ϕ is evaluated to the true value � (the false value ⊥)
no matter how the name variables appearing in the condition are instantiated.
Similarly we can define ϕ⇒ ψ and ϕ⇔ ψ.

Our definition of the π-calculus is influenced by the results obtained in [Fu10].
It is equivalent to the standard presentation in terms of expressiveness and it
has better algebraic property. The set of terms is inductively constructed from
the following grammar:

T :=
∑
i∈I

ϕiλi.Ti | T |T ′ | (c)T | !π.T,

where λi ∈ {n(x), nm, n(c)} ∪ {τ} and π ∈ {n(x), nm, n(c)}; they are prefixes.
Here τ indicates an interaction, ab, ab, a(c) denote respectively an input action,
an output action and a bound output action. In the guarded choice

∑
i∈I ϕiλi.Ti

the indexing set I must be finite. We shall often write ϕ1λ1.T1 + . . .+ ϕnλn.Tn

for
∑

i∈{1,..,n} ϕiλi.Ti. We write 0 for the guarded choice whose indexing set is
the empty set. Due to the set theoretical nature the guarded choice ϕ1λ1.T1 +
. . . + ϕiλi.Ti + ϕi+1λi+1.Ti+1 + . . . + ϕnλn.Tn is the same as ϕ1λ1.T1 + . . . +
ϕi+1λi+1.Ti+1 + ϕiλi.Ti + . . .+ ϕnλn.Tn. Sometimes we will abuse notation by
writing for instance ϕ0λ0.T0 +

∑
i∈{1,2} ϕiλi.Ti for ϕ0λ0.T0 +ϕ1λ1.T1 +ϕ2λ2.T2.

We will also abbreviate [�]λ.T +
∑

i∈I ϕiλi.Ti to λ.T +
∑

i∈I ϕiλi.Ti. A name
c appearing underneath the localization operator (c) or a bound output prefix
a(c) is local. A name is global if it is not local. A name variable x is bound if it is
underneath an input prefix, say n(x). A name variable is free if it is not bound.
Both local names and bound name variables are subject to α-conversion. We will
use the functions gn( ), ln( ), n( ), fv( ), bv( ), v( ) with the obvious meanings. A
process is a term in which all the name variables are bound. Let T denote the set
of the terms, ranged over by R,S, T , and P the set of the processes, ranged over
by A,B,C, . . . , O, P,Q. The term !π.T is in replication form. A term without
any occurrence of the replication operator is called finite.
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The operational semantics of this π-calculus is defined by the labeled transi-
tion system generated inductively from the following rules.

Action

∑
i∈I ϕiλi.Ti

ac−→ Ti{c/x}
ϕi ⇔ �,
λi = a(x). ∑

i∈I ϕiλi.Ti
λi−→ Ti

ϕi ⇔ �,
λi is not
an input.

Composition

T
λ−→ T ′

S |T λ−→ S |T ′
S

ab−→ S′ T
ab−→ T ′

S |T τ−→ S′ |T ′
S

ac−→ S′ T
a(c)−→ T ′

S |T τ−→ (c)(S′ |T ′)

Localization

T
ac−→ T ′

(c)T
a(c)−→ T ′

T
λ−→ T ′

(c)T λ−→ (c)T ′
c �∈ n(λ)

Replication

!a(x).T ab−→ T {b/x} | !a(x).T !π.T π−→ T | !π.T
if π is not an input.

We have omitted all the symmetric rules. There is a side condition ln(λ) ∩
gn(T ) = ∅ on the first composition rule. These remarks also apply to the labeled
transition systems defined later. Let =⇒ be the reflexive and transitive closure

of τ−→. Let λ̂=⇒ be =⇒ if λ = τ and =⇒ λ−→=⇒ otherwise. These notations allow
us to define Milner and Park’s bisimulation equality [Mil89].

Definition 1. A symmetric relation R on P is a weak bisimulation if Q λ̂=⇒
Q′RP ′ whenever QRP λ−→ P ′. The weak bisimilarity ) is the largest weak
bisimulation.

We write S ) T if Sρ ) Tρ for every assignment ρ whose domain of defini-
tion is disjoint from bv(S |T ). An example of bisimulation equality is !π.T )
π.(T | !π.T ). For the particular π-calculus of this paper, ) is closed under all the
operators.

Theorem 1. The relation ) is both an equivalence and a congruence on T .

Theorem 1 relies on the fact that in the guarded choice
∑

i∈I ϕiλi.Ti the operator
is
∑

i∈I ϕiλi. . From τ ) [x=y]τ we may derive aa + τ.τ ) aa + τ.[x=y]τ ; but
we may not derive aa+ τ ) aa+ [x=y]τ .

A process P is well-founded if there is no infinite action sequence P λ1−→ . . .
λi−→

. . . starting from P . It is a process with finite interactability if it is well-founded
and there is a number k �= 0 such that no action sequence P

λ1−→ P1 . . .
λi−→ Pi

of P contains more than k non-τ actions. A process P is functional if every

maximal action sequence of P is of the form P
λ−→=⇒ λ′

−→ P ′, where λ is an
input action and λ′ an output action.
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3 Theory

Upon request, a service provider should deliver the service in a short time. In
a similar token, a proposition should have a finite description so that its valid-
ity can be verified in a finite number of steps. These observations lead to the
following definition.

Definition 2. A theory A is a nonempty set of processes of the form π.T with
finite interactability. These processes are called axioms.

The intuition behind a theory is that it provides a set of eternal truths within
a closed world. The finite interactability condition ensures that a service must
be delivered within an expected number of interactions. Operationally an axiom
A can be identified to the process !A. Every proof in the closed world can make
inquiry into these laws. Propositions valid in the model are all relative to the set
of the eternal truths. By definition every axiom A is nontrivial in the sense that
A �) 0. A theory A is finite if it is a finite set. It is finitely presentable if it can
be generated from a finite theory. By A being generated from B, we mean that

A = {Bα | B ∈ B, and α is an injective function from N to N}.

A theory is functional if all its axioms are functional. A theory is recursive if it
is a recursive set of finite processes.

Let’s see some examples.

Example 1. The asynchronous theory Asy is defined by the finitely presentable
theory {a(x).ax | a ∈ N}. In the presence of Asy communications are asyn-
chronous. An output process ac.P does not have to interact with the target
process. It could interact with the axiom a(x).ax and let the latter pass the
information to the target. Using the same idea, one may define the finite theory
AB = {a(x).bx, b(x).ax} that essentially identifies the names a and b.

Example 2. The natural numbers can be coded up in the following fashion:

�0�p
def= p⊥,

�i+1�p
def= (q)(pq | �i�q).

Here p is the access name for a number. The notation ⊥ is a name that denotes
false; similarly the name � denotes true. The natural numbers are underlined to
avoid any confusion. For simplification the following derived prefix is introduced:

a(i).T def= a(p).(T | �i�p). (1)

It is routine to define processes SUCCa, ADDa, MULa, EQa and La that
implement the successor function, the addition, the multiplication, the equality
predicate and the linear order predicate on the natural numbers. The process
La for example inputs a local name at a; and then uses that local name to get
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three more local names, say b, c, d. It continues to input a number i at b and a
number j at c. Finally it returns � at d if i < j; otherwise it returns ⊥ at d. Let
Pa be the following theory

{p0(0), . . . , pi(i), . . .} ∪ {SUCCa, ADDa,MULa, EQa, La | a ∈ N}.
It is an implementation of the Peano arithmetic in π-calculus. For details of the
encodings the reader could consult [FZ10].

Example 3. The theory Crp is given by the union of Pa with the following set

{e(v).v(y).Enc, d(v).v(z).Dec}.
The action sequences of the encryption function e(v).v(y).Enc are all of the form

e(v).v(y).Enc ec−→ cf−→ τ=⇒ c(g)−→) �i�g

for some number i. After receiving a local name c, it inputs at c a name that
points to a number, the plain text, and then outputs at c a name that points
to the number i, the encrypted text, after completing a sequence of internal
computations. The decryption function d(v).v(z).Dec has the dual semantics.
The theory Crp provides an encryption/decryption facility every process can
make use of. A complete specification of Crp depends on the choice of the
encryption and decryption functions.

Example 4. Suppose that we would like to define a random number generator
that provides perpetual service on network. It appears at first sight that the
theory Ran can be defined by extending Pa with the process

a(v).(c)(c(0) | !c(x).(c(d).dx+ vx)). (2)

Upon receiving a private channel provided by a user, the process (2) randomly
generates a number and sends it to the user through the private channel. However
process (2) may diverge. So it is not an axiom according to our definition. The
theory Ran can be defined by the finite set {g(0), g(x).g(p).px)}. It can also be
defined by the infinite set {g(0), g(1), . . . , g(i), . . .}. It is worth remarking that
the randomness is achieved by the nondeterminism. There is no other way.

Example 5. The π-calculus has been used both as a specification language and
a machine language. The rational behind these practices is that π is expressive
enough to qualify for a machine model. Now if we think of π-calculus as a
machine model, we can talk about programming in π-calculus. This is precisely
what is done in [Wal95]. Formally what is then an interpreter of a higher order
programming language on π? Whatever the interpreter is, it must give an account
of the standard routines and packages supplied by the programming language.
In our opinion these routines and packages are best interpreted as a theory Prg.
Two programs defined according to the grammar of the language are equivalent
if they are so in the presence of Prg. Let O be a program that invokes a system
routine and P be a user defined program that achieves the same functionality.
Conceptually O and P are equivalent. But they are not bisimilar since the former
may interact at a name which P does not know. The notion of theory is a starting
point to address issues of this kind.
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3.1 Semantics

To investigate the algebraic properties of the theories, we need to define the
operational semantics of the theories first. The power of a theory A is duly
exhibited by the ‘process’ ∏

A∈A

!A,

which is not always admissible at the syntactical level since it makes use of a
possibly infinite composition. A process P under theory A can be imagined as
a fixpoint in the following sense:

Operationally P is the same as P |
∏

A∈A!A.

But notice that P |A, for each A ∈ A, is also a fixpoint of the same nature. By
exploring the fact that

∏
A∈A!A is equivalent to A |

∏
A∈A!A, one sees that P |A

is operationally the same as P . The semantics of the theory A, or the semantics
of the πA-calculus, extends the operational semantics of the π-calculus with the
following rule:

P |A λ−→ P ′

P
λ−→ P ′

A ∈ A. (3)

Definition 1 can be immediately applied to the πA-calculus.

Definition 3. A symmetric relation R on P is a weak A-bisimulation if Q λ̂=⇒
Q′RP ′ in πA whenever QRP λ−→ P ′ in πA. The weak A-bisimilarity )A is the
largest weak A-bisimulation.

The proof of Theorem 1 can be repeated to show that )A is both an equivalence
and a congruence on T .

Since every axiom in a theory is nontrivial, the fact stated in the next propo-
sition is apparent.

Proposition 1. The strict inclusion )⊂)A holds for every theory A.

Proof. Using the fact that ) is closed under composition, it is easy to show that
) is an A-bisimulation. The inclusion is strict since A is nonempty. 
�

The next lemma is a generalization of Proposition 1.

Lemma 1. If A ⊆ B then )A⊆)B.

By abusing the notation again, one could describe the relationship between 0
and the theory A by the following statement:

Operationally 0 is the same as
∏

A∈A!A.

The equivalence has been exploited to define the semantics of the asynchronous
π-calculus. Honda and Tokoro introduce the following rule in [HT91a, HT91b].

0 ac−→ ac
(4)

It is evident that (4) is essentially (3) applied to Asy.
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3.2 Kernel

A theory A is consistent if )A is not P×P ; it is inconsistent otherwise. The
next proposition is useful.

Proposition 2. The following statements are equivalent:
(i) A is consistent;
(ii) ∃P∈P .P �)A 0;
(iii) ∃P∈P .∀A∈A.P �)A A.

Proof. If (ii) did not hold, then every process would be equated by theory A,
contradicting (i). Hence (i) implies (ii). If ∀P∈P .∃A∈A.P )A A, then every
process is equated to 0. So (ii) implies (iii). Finally (iii) trivially implies (i). 
�

The above proposition indicates that there is a distinguishing line between the
processes equal to 0 in the equational theory of A and those that are not. This
motivates the following definition: The kernel Aker of the theory A is the set of
the processes equal to 0 under the theory A, i.e.

Aker = {A | A )A 0}.

By Proposition 2, a theory is consistent if and only if its kernel is not P .

Proposition 3. The A-bisimilarity equals the B-bisimilarity iff Aker = Bker.

Proof. It is clear that Aker ⊆ Bker if and only if )A⊆)B. 
�

A corollary of Proposition 3 is that the power of a theory is essentially determined
by its kernel. One could define for instance that A is a subtheory of B if A ⊆
Bker , and that A is essentially in A if A ∈ Aker .

Although it is easy to see that Asy is consistent, it is generally a tricky job to
establish the consistency of a theory. Let F be the recursive theory consisting of
all the finite processes. For each process P , let P¬(!) denote the process obtained
from P by removing all the occurrences of the replication operator and the
localization operator. It is not difficult to see that P )F P¬(!) )F 0. So Fker =
P . Therefore F is inconsistent. For a positive result, we remark that all functional
theories are consistent. In a functional theory the process aa is never equal to 0.

4 Asynchronous Theory and Asynchronous π

We prove in this section that Asy provides a faithful account of the asyn-
chronous π-calculus. We adopt the following grammar for the asynchronous
π-calculus, which summarizes the essential feathers of the calculi defined in lit-
erature [Bou92, HT91a, HT91b, HY95, ACS98].

T := 0 | nm |
∑
i∈I

ni(x).Ti | T |T | (c)T | !n(x).T.
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Notice that the above grammar maintains a distinction between the names and
the name variables. There are basically two ways to formulate the semantics of
the asynchronous π-calculus. Honda and Tokoro’s semantics makes use of the
rule (4). The notion of theory is lurking in their framework. Amadio, Castellani
and Sangiorgi’s approach takes a more traditional view on the asynchronous π.
Their operational semantics is defined by the following rules.

Action

ab
ab−→ 0

∑
i∈I ai(x).Ti

aic−→ Ti{c/x}
Composition

T
λ−→ T ′

S |T λ−→ S |T ′
S

ab−→ S′ T
ab−→ T ′

S |T τ−→ S′ |T ′
S

ac−→ S′ T
a(c)−→ T ′

S |T τ−→ (c)(S′ |T ′)

Localization

T
ac−→ T ′

(c)T
a(c)−→ T ′

T
λ−→ T ′

(c)T λ−→ (c)T ′
c �∈ n(λ)

Replication

!a(x).T ac−→ T {c/x} | !a(x).T

In Honda and Tokoro’s treatment the asynchronous π differs from the syn-
chronous π at the operational level, whereas in Amadio, Castellani and San-
giorgi’s approach it is at the observational level. The definition of the asyn-
chronous bisimilarity [ACS98] appears odd from the point of view of interaction.

Definition 4. A symmetric relation R on the asynchronous π-processes is an
asynchronous bisimulation if the following statements are valid whenever PRQ:

1. If Q τ−→ Q′ then P =⇒ P ′RQ′ for some P ′.
2. If Q ab−→ Q′ then P

ab=⇒ P ′RQ′ for some P ′.
3. If Q

a(b)−→ Q′ then P
a(b)
=⇒ P ′RQ′ for some P ′.

4. If Q ab−→ Q′ then either P ab=⇒ P ′RQ′ for some P ′ or P =⇒ P ′ for some P ′

such that P ′ | ab R Q′.

The asynchronous bisimilarity )a is the largest asynchronous bisimulation.

The asynchronous π is a syntactic subcalculus of π. It is also an operational vari-
ant of π according to Honda and Tokoro’s formulation. Amadio, Castellani and
Sangiorgi have proved that )a coincides with Honda and Tokoro’s bisimulation
equivalence, called HT-bisimilarity in [ACS98]. Their proof can be extended to
produce a proof of the following theorem.

Theorem 2. Let S, T be asynchronous π-terms. Then S )a T iff S )Asy T .

Theorem 2 can be interpreted as saying that the asynchronous π is a syntactical
simplification of πAsy. It perceives πAsy as a submodel of the π-calculus. It can
also be seen as a justification of the asynchronous π as defined by Honda and
Tokoro, as well as the variant defined by Amadio, Castellani and Sangiorgi.
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L1 (c)0 = 0
L2 (c)(d)T = (d)(c)T
L3 (c)([x=c]ϕλ.T +

∑
) = (c)

∑
L4 (c)([x �=c]ϕλ.T +

∑
) = (c)(ϕλ.T +

∑
)

L5 (c)(ϕλ.T +
∑

) = (c)
∑

if ∃d ∈ N .λ = cd ∨ λ = c(d)
L6 (c)(ϕnc.T +

∑
) = (c)(ϕn(c).T +

∑
) if c /∈ gn(ϕ) ∧ c �= n

L7 (c)
∑

i∈I ϕiλi.Ti =
∑

i∈I ϕiλi.(c)Ti if ∀i ∈ I.c /∈ gn(ϕi, λi)
M1 [⊥]λ.T +

∑
=
∑

M2 ϕλ.T +
∑

= ψλ.T +
∑

if ϕ ⇔ ψ
M3 [x=p]ϕλ.T +

∑
= [x=p](ϕλ.T ){p/x} +

∑
M4 [x �=p]ϕλ.

∑′ +
∑

= [x �=p]ϕλ.[x �=p]
∑′ +

∑
S1 ϕλ.T +

∑
= ϕλ.T + ϕλ.T +

∑
S2 ϕλ.T +

∑
= [x=p]ϕλ.T + [x �=p]ϕλ.T +

∑
S3 ϕn(x).S+ϕn(x).T +

∑
= ϕn(x).S+ϕn(x).T +ϕn(x).([x=p]τ.S + [x �=p]τ.T )+

∑
T1 ϕτ.

∑
= ϕ

∑
T2

∑
+ϕτ.

∑
=
∑

T3 φλ.(ϕτ.T +
∑

) +
∑′ = φλ.(ϕτ.T +

∑
) + φϕλ.T +

∑′

Fig. 1. Axioms for the Weak Bisimilarity

5 Proof System

A complete equational system for the strong asynchronous bisimilarity is given
in [ACS98]. Such a system for the weak asynchronous bisimilarity has not been
available. The problem in generalizing a result from the strong case to the weak
case could be an indication that something is not quite right. The difficulty in
designing an equational system for the weak asynchronous bisimilarity is due
to the lack of the output prefix operator. This is unfortunate since the role of
the output prefix operation is to impose orders on interactions. Its relationship
to asynchrony, or synchrony for that matter, was not intended. Our approach
disowns this problem.

The expansion law plays a crucial role in proof systems. It is about how
to convert two concurrent choice terms to one choice term. Suppose S, T are
respectively the guarded choices

∑
i∈I ϕiλi.Si and

∑
j∈J ψjλj .Tj . Then

S |T =
∑
i∈I

ϕiλi.(Si |T ) +
λi=m(x),λj=np∑

i∈I,j∈J

ϕiψj [m=n]τ.(Si{p/x} |Tj)

+
∑
j∈J

ψjλj .(S |Tj) +
λj=m(x),λi=np∑

i∈I,j∈J

ϕiψj [m=n]τ.(Si |Tj{p/x}).

Let AS be the equational system defined in Figure 1 plus the expansion law.
In Figure 1 the notation

∑
stands for

∑
i∈I ϕiλi.Ti and

∑′ for
∑

j∈J ψjλj .Tj .
Accordingly ϕ

∑
should be understood as

∑
i∈I ϕϕiλi.Ti. Our axiomatic system

differs from the standard one in that it is defined in terms of the guarded choice
operator rather than the unguarded choice operator.
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In AS we may rewrite terms to normal forms, whose definition is given next.

Definition 5. Let F be gn(T )∪ fv(T ). A finite π-term T is a normal form on
F if T ≡

∑
i∈I ϕiλi.Ti such that for each i ∈ I one of the followings holds.

1. If λi = τ then Ti is a normal form on F .
2. If λi = nm then Ti is a normal form on F .
3. If λi = n(c) then Ti ≡ [c/∈F ]T c

i for some normal form T c
i on F ∪ {c}.

4. If λi = n(x) then Ti is of the form

[x/∈F ]T �=
i +

∑
m∈F

[x=m]Tm
i

such that T �=
i is a normal form on F∪{x} and, for each m ∈ F , x /∈ fv(Tm

i )
and Tm

i is a normal form on F .

For the motivation of the above definition and the proof of the next lemma, the
reader is referred to [FZ10].

Lemma 2. If T is finite, then a normal form T ′ exists such that AS  T = T ′.

AS is sound and complete for the weak bisimilarity on the finite π-terms.

Theorem 3. Suppose S, T are finite. Then S ) T iff AS  S = T .

Complete systems have been discussed in literature [MPW92, PS95, Lin95,
FY03]. A recent account that fits more into the present context can be found
in [FZ10]. Notice that our formulation of T2 is crucial for the completeness proof.

We now turn to )Asy. Let ASAsy be AS together with the following law

a(x).ax = 0. (5)

Apparently ASAsy is sound for )Asy. The first indication that (5) is complete
is the validity of the saturation property.

Lemma 3 (saturation). Suppose that T is a normal form. The following state-
ments are valid in the πAsy-calculus for every assignment ρ whose domain of
definition is disjoint from bv(T ).

1. If Tρ λ=⇒ T ′ and λ is not an input action, then ASAsy  T = T + ϕλ′.T ′

for some ϕ, λ′ such that ϕρ⇔ � and λ′ρ = λ.
2. If Tρ ae=⇒ T ′, e /∈ n(Tρ) and z /∈ v(t), then ASAsy  T = T +ϕn(z).T ′{z/e}

for some ϕ, n such that ϕρ⇔ � and ρ(n) = a.

Proof. If T λ=⇒ T ′ makes use of the rule (3) k times, then it is easy to see
that T | a1(x).a1x | . . . | ak(x).akx

λ=⇒ T ′. By Lemma 2 there is some normal
form T1 such that AS  T1 = T | a1(x).a1x | . . . | ak(x).akx. By the standard
approach it is easy to establish that ASAsy  T1 = T1 + λ.T ′. Thus ASAsy  
T = T | a1(x).a1x | . . . | ak(x).akx = T1 = T1 + λ.T ′ = T + λ.T ′. Notice that
according to (5) the equality T = T | a(x).ax follows from T = T |0, which in
turn follows from the expansion law.

This simple argument should be enough for an informed reader. 
�
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The proof of the completeness theorem is an induction on the complexity of the
normal forms. The depth dep(T ) of a normal form T is defined as follows:

dep(0) def= 0,

dep(ϕn(x).T ) def= dep(T ) + 2,

dep(ϕλ.T ) def= dep(T ) + 1, if λ is not an input,

dep(
∑
i∈I

ϕiλi.Ti)
def= max{dep(ϕiλi.Ti)}i∈I .

For a finite term T , dep(T ) is defined by dep(T ′), where T ′ is a normal form of
T . It is worth remarking that the depth for input prefix is greater than that for
output, bounded output and tau prefixes. This is important to the next proof.

Theorem 4 (completeness). For finite S, T , S )Asy T iff ASAsy  S = T .

Proof. Suppose P ≡
∑

i∈I ϕiλi.Si and Q ≡
∑

j∈J ψjλj .Tj are normal forms such
that P )Asy Q. If a(x).Si is a summand of P , then P

ac−→ Si{c/x}. The process
Q has to simulate this action in the following manner Q =⇒ Q1

ac−→ Q2 =⇒ Q′.
It is easy to see that dep(Q1) ≤ dep(Q) and dep(Q′) ≤ dep(Q2). If Q1

ac−→ Q2

is not derived from the rule (3), then clearly dep(Q2) < dep(Q1). If it is derived
from the rule (3), then AS  Q2 = Q′

2 for some normal form Q′
2, using the

expansion law. It is obvious that dep(Q2) = dep(Q′
2) ≤ dep(Q1) + 1 by the

definition of the depth function. But dep(Si{c/x}) ≤ dep(P ) − 2 by definition.
Hence dep(Q′) + dep(Si{c/x}) < dep(Q) + dep(P ). So ASAsy  Q′ = Si{c/x}
by induction hypothesis.

The above oversimplified account is meant to bring out the fact that the
depth function dep( ) does allow the standard inductive proof to go through.
Consult [FZ10] for the general idea of the completeness proof. 
�

6 Conclusion

The notion of theory probably should have been introduced long time ago. A
theory is essentially an implementation. In practice it is one of the most impor-
tant concepts to start with. Theories can be defined for process calculi other
than the π-calculus. The most interesting theories are defined in complete pro-
cess calculi [FY03]. In a complete model the Peano arithmetic can be defined in
a robust manner. Example 2 through Example 5 of Section 3 would not make
a lot of sense for incomplete models like CCS (the incompleteness of CCS is
established in [FY03]).

There are several directions one can pursue to further the study of theories.
Let’s mention a couple of them. Firstly it is worthwhile to carry out a compara-
tive research into theories. Honda and Yoshida [HY95] have introduced a different
notion of theory. They extended the notion of λ-theory [Bar84] to the framework
of process models. A theory in their sense is a set of equalities closed under the
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process operations of the frame calculus. Their starting point is more algebraic
than logical, whereas our motivation is less algebraic than logical. It is apparent
that a theory in the present setting is a theory of Honda and Yoshida. Unlike in
their treatment, the algebraic property of our theories comes for free. It would
be interesting to investigate the relationship between these two approaches.

Secondly it is interesting to look for complete proof systems for general the-
ories. Suppose A is a theory. Let ASA be obtained by combining AS with the
following laws for A.

A = 0, for every A ∈ A. (6)

For which recursive theories for instance is ASA complete? It is easy to come up
with theories for which ASA does not appear to be complete. Take for instance
the theory Aa = {a(c).a(c)}. It is unlikely that ASAa  a(c) = 0. In fact it
follows from Sewell’s nonaxiomatisability result [Sew97] that it must be incom-
plete if the frame calculus is CCS. It remains to check if this negative result
is also valid when the frame calculus is π. A more difficult task is to answer
the question if there exists a recursive theory A such that )A, when restricted
to the finite terms, has no complete recursive equational systems whatsoever.
These are issues to be investigated in future.
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On the Compositionality of Round Abstraction

Dan R. Ghica
 and Mohamed N. Menaa
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Abstract. We revisit a technique called round abstraction as a solution
to the problem of building low-latency synchronous systems from asyn-
chronous specifications. We use a trace-semantic setting akin to Abram-
sky’s Interaction Categories, which is also a generalisation of pointer-free
game semantic models. We define partial and total correctness for round
abstraction relative to composition and note that in its most general case,
round abstraction can lead to incorrect behaviour. We then identify suf-
ficient properties to guarantee partially correct composition. Finally, we
propose a framework for round abstraction that is totally correct when
applied to asynchronous behaviours. We apply this procedure to the Ge-
ometry of Synthesis, a technique for compiling higher-order imperative
programming languages into digital circuits using game semantics.

1 Introduction

Concurrency models can be qualified as either synchronous or asynchronous.
Synchrony is typically characterised by such notions as simultaneous occurrence
and instantaneous communication – concepts that cannot be found in asyn-
chronous models. Application areas for the two models have typically been dif-
ferent: asynchronous concurrency is used when bounds on the time necessary
for interaction cannot be guaranteed (e.g. distributed systems), or when time
is intentionally abstracted (e.g. concurrent high-level programming languages),
whereas synchronous concurrency is commonly used when time is an essential
facet of the system (e.g. safety-critical systems or digital circuits).

Studying the correlation of synchrony and asynchrony has been an object of
research for a long time. Milner was the first to establish that asynchronous com-
putation can be modelled using a synchronous calculus (SCCS) [1], also showing
how the asynchronous Calculus of Communicating Systems (CCS) [2] can be
derived from SCCS. Later work showed similar results in varied contexts [3,4].
However, the naive representation of an asynchronous process as a synchronous
one is inefficient and deriving a low-latency synchronous system from an asyn-
chronous one is arguably more difficult. Even recovering synchronicity after it is
removed from a specification is a non-trivial procedure [4].

In a seminal paper, Alur and Henzinger describe a more general approach
based on a specification language called Reactive Modules [5]. This technique,
called round abstraction, allows arbitrarily many computational steps to be
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viewed as a single macro-step. Intuitively, this is achieved by using a designated
set of events as a clock, and considering any events that occur between two ticks
as being simultaneous. This forms the basis for an elegant solution to the prob-
lem of building synchronous systems from asynchronous specifications. Round
abstraction is essentially an approximation technique which removes some of
the timing information between events in a process. The original formulation of
round abstraction is monolithic and applies to whole systems, not addressing the
question of whether round-abstracted systems still interact correctly with each
other.

Contributions. This paper is a study of the compositional properties of round
abstraction. We present trace-based models of synchronous and asynchronous
concurrency, verifying that they have a reasonable mathematical structure, and
describe a generalised notion of round abstraction in this setting. We formally
define two notions of correctness, partial and total, and examine their behaviour
relative to composition. For total correctness we propose a characterisation of
round abstractions that compose correctly.

Round abstraction is an important technique and the study of its mathemat-
ical properties is interesting in general. However, we are interested in particular
in applying this technique within the framework of Geometry of Synthesis, the
automatic synthesis of digital circuits from programming languages via their
game-semantic models [6,7,8]. Game-semantic models of concurrent languages
are typically asynchronous [9,10] whereas the typical implementation of digital
circuits is clocked synchronous. Round abstraction, in this context, offers a way
to generate provably correct synchronous circuits from asynchronous pointer-free
game models. The current work raises further questions about generalising the
properties, models and criteria we rely on, but we use compatibility with the
game semantic setting and applicability to hardware synthesis as a pragmatic
assessment to conclude that our results are reasonable and useful. To further
this point, we illustrate this application with the non-trivial example of synthe-
sising a circuit for iteration with very low latency, which can also handle instant
feedback on all its inputs.

2 A Trace Model of Processes

We first introduce a trace model of concurrency which is a slight generalisation
of the game models for concurrency [11,10]. The metaphor is one of black boxes
that interact using simple connectors (“wires”). A box has a port structure
(“signature”) and its behaviour is a set of traces of input and output events.

Definition 1 (Signature). A signature A is a finite set together with a labelling
function and a causality relation. Formally, it is a triple 〈LA, πA, A〉 where

– LA is a set of port labels,
– πA : LA → {i, o} maps each label to an input/output polarity,
–  A is the transitive reduction of a partial order on LA called causality, such

that if a  b then πA(a) �= πA(b).
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Signatures are akin to game-semantic arenas. The causality relation, akin to
game-semantic enabling, will turn out to be technically important. Intuitively,
it models the fact that a b-event cannot happen unless some a-event causes it.
Note that causality is both descriptive, when an input causes an output, but
also prescriptive, when an output can require the environment to only produce
certain inputs. We denote by π∗ a labelling function which is like π but has the
input/output polarities reversed; similarly for A∗. We denote by IA the minimal
elements of  A.

Definition 2 (Locally synchronous trace). A trace over a signature A is a
triple 〈E,0, λ〉 where E is a finite set of events, 0 is a total preorder on E and
λ : E → A is a function mapping events to labels in A.

The total preorder signifies temporal precedence; for an element e ∈ E, if λ(e) =
a ∈ LA we say that e is an occurrence of a. Traces are equivalent if there is a
bijection between their carrier sets acting homomorphically on event labelling
and temporal ordering; in practice, we work with traces as equivalence classes,
as the choice of the carrier set E is irrelevant. It is convenient to define

Definition 3 (Simultaneity). Given t = 〈E,0, λ〉 over A, we say that two
events are simultaneous, written e1 ≈ e2 if and only if e1 0 e2 and e2 0 e1.

Our conception of synchrony is a minimalistic one; time is discretised and events
can be simultaneous, which is the essential feature of a synchronous process [12].
However, our notion of trace does not rely on a global clock. Instead, we rather
assume that each system has its own internal and abstract clock, relative to
which simultaneity is defined, and that these clocks can compose. The notion of
synchrony we have is a local one [13].

Example 1. For illustration, we will often informally use a simplified notation
for these traces whereby a trace such as 〈{e1, e2, e3, e4}, {(e1, e2), (e1, e3), (e1, e4),
(e2, e3), (e2, e4), (e3, e4), (e4, e3)}, λ〉 with λ = {e1 �→ a, e2 �→ b, e3 �→ a, e4 �→ c}
is simply denoted by a.b.〈ac〉. The trace consists of an a-event, followed by a
b-event, followed by an a-event and a c-event at the same time.

We focus on a particular kind of traces, which satisfy the following principle:

Definition 4 (Singularity). The events of a trace 〈E,0, λ〉 over signature
A are singular if and only if for any two events e1, e2 ∈ E, if e1 ≈ e2 and
λ(e1) = λ(e2) then e1 = e2.

A trace has singular events if it does not have any distinct simultaneous occur-
rences of the same event. This restriction is not inherent to synchronous concur-
rency but is essential for modelling low level circuit behaviour where events are
not implicitly buffered or tagged. By definition, we rule out phenomena akin to
schizophrenia in Esterel [12]. We denote by Θ(A,B, . . .) the set of such traces
over A+B + . . .

On the other hand, an asynchronous trace is a trace where the simultaneity
relations between two events is equal to the identity:
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Definition 5 (Asynchronous trace). A trace 〈E,0, λ〉 over signature A is
asynchronous if and only if 0 is a total order.

The definition above reflects the failure of synchrony in asynchronous systems,
as no two distinct events can be ascertained to occur precisely at the same time.

Another, more technical condition, which is inspired by game semantics and
also reflects the low-level nature of the systems we model is serial causation.

Definition 6 (Serial causation). In a trace 〈E,0, λ〉 over signature A, we
say that an event e1 ∈ E is the actual cause of e0 ∈ E, written e1 � e0, if and
only if λ(e1)  λ(e0) and for any e2 such that e1 0 e2 0 e0, λ(e2) � λ(e0).

If two ports are causally related in a signature, then serial causation assigns
the most recent event which can cause another event as its actual cause. Actual
causation, which is an event-level relation, must be determined in order to define
asynchronous behaviour properly. This is because the order of the occurrence
of events must be closed under certain permutations that are not allowed to
swap an event and its cause. In higher-level systems, such as games or data
flow [14], causality can be encoded directly, as justification pointers or token
tags, respectively. In a lower-level system, it is necessary to be able to recover
this information implicitly from the structure of the trace. Note that, in certain
game models, justification pointers can also be recovered from the structure of
the play [15].

We define the concatenation of two traces at the level of rounds, i.e., all events
of the second trace come after the events of the first trace.

Definition 7 (Trace concatenation). The concatenation of two traces s =
〈E,0s, λs〉, t = 〈F,0t, λt〉, denoted by s · t, is the trace defined by the triple
〈E + F,0s +0t + (E × F ), λs + λt〉.

Definition 8 (Process). A process σ over signature A, σ : A, is a prefix-closed
set of traces, i.e. ∀s, t ∈ Θ(A) if s · t ∈ σ then s ∈ σ.

For an arbitrary set of traces τ , let pc(τ) be the smallest process including τ .
Traces of an asynchronous process must be closed under certain permutations

of events, corresponding to inputs occurring earlier and outputs occurring later.
To maintain consistency, we require that the serial causation relation between
events is not changed by the permutations. This is a reformulation of a saturation
principle which is common in game models for asynchronous languages [16,10].
Let 
 on Θ(A) be defined as the least reflexive transitive relation such that
s′ 
 s if and only if

1. (a) If e is an input then s′ = s0 · e · s1 · s2 and s = s0 · s1 · e · s2, or
(b) If e is an output then s′ = s0 · s1 · e · s2 and s = s0 · e · s1 · s2

2. There exists a bijection φ : Es ) Es′ so that for any events such that
e1 �s e2 we have φ(e1) �s′ φ(e2) and λs(ei) = (λs′ ◦ φ)(ei) for i ∈ {1, 2}.

Definition 9 (Asynchronous process). An asynchronous process over sig-
nature A, written σ : A, is a prefix and 
-closed set of asynchronous traces, i.e.
if s ∈ σ and s′ 
 s then s′ ∈ σ.
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Let s � A be the trace obtained from s by deleting all events with labels not
belonging to LA. Composition of processes is defined similarly to game semantic
composition, by synchronisation followed by hiding.

We define a composite arena in a way that is similar to the game-semantic
exponential: A→ B is 〈LA + LB, π

∗
A + πB , A +  B + IB × IA〉.

Definition 10 (Composition). For σ : A → B and τ : B → C interaction
is defined as σ	τ = {t ∈ Θ(A,B,C) | t � A + B ∈ σ ∧ t � B + C ∈ τ}, and
composition as σ; τ : A→ C =

{
t � A + C | t ∈ σ	τ}.

The results below indicate the formalism so far makes sense, situating us in a
framework similar to Abramsky’s Interaction Categories [17].

Theorem 1. 1. Processes form a Compact Closed Symmetric Monoidal Cate-
gory, which we call ST .

2. Asynchronous processes form a Compact Closed Symmetric Monoidal Cate-
gory, which we call AT .

Note that although asynchronous processes are a subset of the more general
notion of (synchronous) processes, they do not form a sub-category. The identity
for processes in general is synchronous, instantly replicating any input at one
end as an output on the other. Physically, it corresponds to a set of wires directly
connecting input and output. Conceptually, it is an instantaneous version of the
game semantic copycat strategy. Therefore, in general, identity cannot be an
asynchronous process. However, asynchronous processes have their own notion
of identity, similar to the copycat strategy in asynchronous games.

2.1 From Local to Global Synchrony

This section is somewhat of an aside to the main thrust of the paper. In it,
we show that the local synchrony assumption is expressive enough to construct
globally synchronous systems in a canonical way, using a clock monad. Therefore,
the results in this paper can be extended in a straightforward way to systems
using external and explicit clocks, which are the predominant digital design
paradigm.

Let functor T : ST → ST be defined as T (A) = A ⊗ Ck, T (f) = f ⊗ idCk,
where Ck is a reserved one-port object. Let natural transformation (at object
A) ηA : A→ T (A) = A→ A⊗ Ck be defined as

ηA = {s ∈ Θ(A,A′, Ck) | s � (A,A′) ∈ idA}

Let natural transformation (at object A) μA : T 2(A) → T (A) = A⊗Ck⊗Ck →
A⊗ Ck be defined as

μA = {s ∈ Θ(A,Ck,Ck′, A′, Ck′′) |
s � (A,A′) ∈ idA and s � (Ck,Ck′) ∈ idCk and s � (Ck,Ck′′) ∈ idCk}

These behaviours correspond to the circuit constructions in Fig. 1. Signature A
has an arbitrary number of ports, but Ck is single-port; we show its input/output
polarity with arrows for extra clarity.
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f
A* B

CkCk *

T(f)

A* A

Ck

A

A* A

Ck

A

Ck*

Ck*

Fig. 1. Clock monad

=

=

T (μA);μA : T 3(A) → T (A) μT (A);μA : T 3(A) → T (A)

ηT (A); μA : T (A) → T (A) T (ηA);μA : T (A) → T (A)

=

idT (A)

Fig. 2. Circuit representation of the clock monad axioms

Proposition 1. 〈T, η, μ〉 is a monad.

Proof. The coherence axioms for the monad correspond to showing that the
circuits in Fig. 2 are behaviourally equal. Because we are in a symmetric compact
closed category, in general graph-isomorphic circuits will be behaviourally equal.

Proposition 2. The clock monad is a commutative strong monad.

Proof. The strength of the monad exists, trivially, as TA⊗B ) T (A⊗B). Both
sides of the commutativity equation tTA,B;T (t′A,B);μA⊗B = t′A,TB;T (tA,B);μA⊗B

correspond to constructing the circuit below

Ck

A
B
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The existence of the strong monad corresponds to driving two circuits from
the same clock source in a unique way. The strong monad shows how clocked
processes can be composed in parallel. Using the clock monad we can use the
associated Kleisli category to compose clocked circuits sequentially. Using the
standard definitions, the Kleisli composition of clocked circuits f : A → TB,
g : B → TC corresponds to the diagram below

f
gA*

B*B
C

Ck
Ck

f ;T g = f ;Tg;μC

Note that the construction is flexible and general enough to allow the definition of
different clock domains using different clocks and clock monads. Using the clock
monad, we can identify a sub-category of ST which consists of deterministic
processes. The details of this are outside the scope of this paper.

3 Round Abstraction

Round abstraction was introduced by Alur and Henzinger as part of their speci-
fication language Reactive Modules [5]. It is a technique that introduces a multi-
form notion of computational step, allowing arbitrarily many events to be viewed
as a discrete round. In a reactive module, rounds are delineated using a set of
observable events as a clock, in such a way that any computational steps oc-
curring between two clock actions are observed as a single one. Its importance
lies in that it defines a simple technique for constructing synchronous systems
from asynchronous ones. Indeed, it does this by introducing a clock, such that
the notion of a round is based solely on the input/output behaviour of a system.
We will avoid the choice of a clock, which is arbitrary, and thus provide a more
general notion of round abstraction.

At this point, it may be observed that locally-synchronous traces have an
inherent order of synchronicity. For example, for each possible succession of
unique events, the least synchronous trace is the one where they occur one after
the other, where the most synchronous trace is the one where they all occur
simultaneously.

Definition 11 (Round abstraction on traces). Let s = 〈Es,0s, λs〉, t =
〈Et,0t, λt〉 be traces. We say that t is a round abstraction of s, written s �− t, if
and only if 〈Es, λs〉 and 〈Et, λt〉 are φ-isomorphic and φ is monotonic relative
to temporal ordering, i.e. for any e, e′ ∈ Es, if e 0s e

′ then φ(e) 0t φ(e′).

Note that this immediately implies simultaneity is preserved, i.e. if e ≈s e
′ then

φ(e) ≈t φ(e′). The converse is obviously false since round abstraction can make
non-simultaneous events in s simultaneous in t.
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In order to appreciate the challenges we need to address, let us first informally
introduce two desirable correctness criteria on behaviours, which we shall call
“partial” and “total” round abstraction. Partial round abstraction σ �− τ requires
that τ , the “abstracted” behaviour, has no “junk” traces which do not originate
from σ. A stronger property, total round abstraction σ �∼ τ , additionally has that
all behaviour of σ can be found, in an abstracted form, in τ . Either notion of
round abstraction of processes is, as is usually the case with abstraction, trivially
compositional in the sense that if σ �− τ, τ �− γ then σ �− γ and if σ �∼ τ, τ �∼ γ

then σ �∼ γ. But it is not the case that σ �− σ′, τ �− τ ′ implies σ; τ �− σ′; τ ′, or
σ �∼ σ′, τ �∼ τ ′ implies σ; τ �∼ σ′; τ ′. This is similar to the non-compositionality
of abstract interpretation [18]. As immediate counter-examples, consider the
following.

Example 2. Let σ, σ′ : A→ B and τ, τ ′ : B → C, with LA = {a}, LB = {b1, b2},
LC = {c}, be the following processes:

σ = pc({a.b1.b2}) �− σ′ = pc({a.〈b1b2〉})
τ = pc({b2.b1.c}) �− τ ′ = pc({〈b2b1〉.c})

We then have σ; τ = pc({a}) but σ′; τ ′ = pc({a.c}) ��− σ; τ.

Example 3. Let σ, σ′ : A→ B and τ, τ ′ : B → C, with LA = {a}, LB = {b1, b2},
LC = {c}, be the following processes:

σ = pc({a.b1.b2}) �∼ σ′ = pc({〈ab1b2〉})
τ = pc({b1.c.b2.c}) �∼ τ ′ = pc({〈b1c〉.〈b2c〉})

Then we have σ; τ = pc({a.c.c}) but σ′; τ ′ = {ε} ��∼ σ; τ .

In these examples, and typically, the way deadlock is handled will play the key
role, because round abstraction can both resolve and introduce deadlocks.

In Ex. 2, the two behaviours do not compose well because the order in which
b1, b2 are issued by σ does not coincide with the order in which they can be
received by τ ; round abstraction makes the two events simultaneous and thus
solves the deadlock. In Ex. 3 round abstraction requires the two B events to be
simultaneous in σ′ and consecutive in τ ′ therefore introducing deadlock.

4 Partial Correctness

Given a trace v, let Π(v) be the set of its non-identity permutations, i.e. the set
of traces with the same events but a different temporal order. In order to prevent
round abstraction resolving deadlocks, as in Ex. 2, we introduce the following
condition.

Definition 12 (Compatibility). Two processes σ1 : A1 → B, σ2 : B → A2,
are said to be compatible, written σ1 : σ2, if and only if for all v ∈ Θ(A1, B,A2)
if v � Ai, B ∈ σi and there is a permutation p ∈ Π(v) such that p � B,Aj ∈ σj

then v � B,Aj ∈ σj , for i, j ∈ {1, 2}, i �= j.
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This requirement ends up ensuring partial correctness almost by definition. Its
merit is rather as a characterisation of the main cause of failure of composition for
partial round abstraction. Going back to Ex. 2, the problem trace is v = a.b1.b2.c
and the problem permutation is p = a.b2.b1.c.

Definition 13 (Partial round abstraction). Let σ, τ be processes over A.
We say that τ is a partial round abstraction of σ, written σ �− τ , if and only if
for any t ∈ τ there is s ∈ σ such that s �− t.

In a partial round abstraction, the abstracted process does not contain any
“junk” traces which do not correspond to traces in the original process. However,
it is possible for some traces in the original process to have no corresponding
trace in its abstraction.

One of our main results is the soundness of composition relative to partial
round abstraction, formulated as follows:

Theorem 2 (Soundness). For any two compatible asynchronous processes
σ : A→ B and τ : B → C, with round abstractions σ′, τ ′ respectively, if σ �− σ′

and τ �− τ ′ then σ; τ �− σ′; τ ′.

Note that the asynchrony requirement is not necessary and soundness can be
immediately generalised to processes in general. The key property we use in this
theorem is compatibility, which is in fact sufficient to guarantee soundness.

5 Total Correctness

For ensuring total correctness, another notion of “good” composition of processes
is required. Consider the following example.

Example 4. Let σ, σ′ : A → B and τ, τ ′ : B → C, with LA = {a}, LB =
{b1, b2, b3}, LC = {c}, be σ = pc({a.b1.b2}) �∼ σ′ = pc({〈ab1b2〉}) and τ =
pc({b1.b3.c}) �∼ τ ′ = pc({〈b1b3c〉}). Then we have σ; τ = pc({a}) but σ′; τ ′ =
{ε} ��∼ σ; τ .

In this example, the original processes σ and τ compose well up to b1 then
deadlock as they attempt to synchronise on mismatched events. Because the
abstracted processes σ′, τ ′ are single-round processes the failure of composition
prevents the creation of any complete rounds, therefore it produces only the
empty-trace process as a result. To avoid this situation we only consider processes
that compose safely, i.e. can handle each other’s events.

Definition 14. Given a trace u ∈ σ : A we define its next-action set nextσ(u) =
{a ∈ LA | u · e ∈ σ, λ(e) = a}.

We define nexti
σ(u), nextA

σ (u) or nextA,i
σ (u) as the obvious restrictions of the

next-action set to inputs (or outputs) or a sub-set of ports or both. A safe
interaction is one in which the outputs of one of the circuits can be handled by
the other as input and vice versa.
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Definition 15 (Safety). Two asynchronous processes σ1 : A1 → B, σ2 : B →
A2, are said to compose safely, written σ1 $ σ2, if and only if for any interaction
trace u ∈ σ1	σ2, nexto,B

σi
(u � Ai, B) ⊆ nexti,B

σj
(u � B,Aj) for i, j ∈ {1, 2}, i �= j.

Our definition states that the composition of two processes is “unsafe” if one of
them produces output that cannot be handled by the other. This is a generalisa-
tion of the notion of Opponent-completeness in game semantics, the requirement
that a strategy must handle any (legal) move of the Opponent, and it is also an
example of Vardi’s “principle of comprehensive modelling” [19]. Finally, this for-
mulation of safety is also justifiable in a low-level view of circuits, where events
cannot be buffered but must be processed as they occur.

Total round abstraction requires not only that the abstracted process is junk-
free, but also that no behaviour is lost.

Definition 16 (Total round abstraction). Let σ : A → B be an asyn-
chronous process and σ′ : A → B be a process. We say that σ′ is a total round
abstraction of σ, written σ �∼ σ′ if and only if σ �− σ′ and for any s ∈ σ there
exist s0 ∈ σ, w ∈ Θ(A,B) and s′ ∈ σ′ such that s0 
 s and s0 · w �− s′.

Total round abstraction has a more complicated technical definition because
prefix-closure is defined at the level of rounds rather than at the level of events. It
says that for any original trace, another trace can be found within its saturation
closure and then “padded” with some events so that it matches an abstracted
trace. The reason is that, for an asynchronous trace, prefix-closure will generate
more prefixes than in its synchronous, round-abstracted trace; however, we want
round abstraction to automatically extend to prefixes. For example, at the level
of traces, a.b.c �− 〈abc〉 but pc(a.b.c) = {ε, a, a.b, a.b.c} whereas pc(〈abc〉) =
{ε, 〈abc〉}; using the definition above pc(a.b.c) �∼ pc(〈abc〉).

In general, total round abstraction is not preserved even in the case of compat-
ible safely-compositional asynchronous processes because events may be assigned
to rounds in a way that prevents proper composition. This is the typical situation
presented in Ex. 3. We introduce additional criteria for total round abstraction
to guarantee correctness under composition.

Let us first define the ancillary concept of trace fusion, which is like concate-
nation but the final round of the first trace and the initial round of the second
trace are taken to be simultaneous. Let the last round of a trace s = 〈E,0s, λs〉
be defined in the obvious way, last(s) = {e ∈ E | ∀e′ ∈ E.e′ 0 e}. The first
round is defined in an analogous way.

Definition 17 (Trace fusion). The fusion of two traces s = 〈E,0s, λs〉, t =
〈F,0t, λt〉, denoted by s∗ t, is the trace defined by the triple 〈E+F,0′, λs +λt〉,
where 0′ = 0s +0t + E × F + first(t)× last(s).

The concept below is one of the key contributions of this paper, establishing a
framework in which total round abstraction composes well:
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Definition 18 (Receptive round abstraction). Let σ : A be an asyn-
chronous process. Process σ′ is a receptive round abstraction of σ, written
σ �≈ σ′, if and only if σ �∼ σ′ and for any distinct inputs i, i1, i2 and output o

1. if s0 ·i1 ·i2 ∈ σ then there exists traces of shape s′0•i1 ·i2•s1 and s′0•i1∗i2•s1
in σ′,

2. if s0 · o · i ∈ σ then there exists traces of shape s′0 • o · i • s1 and s′0 • o ∗ i • s1
in σ′.

Moreover,

1. if t0 · r0 ∗ i1 · i2 ∗ r1 · t1 ∈ σ′ and t′ = t0 · r0 ∗ i1 ∗ i2 ∗ r1 · t1 is well formed
then t′ ∈ σ′,

2. if t0 · r0 ∗ o · i ∗ r1 · t1 ∈ σ′ and t′ = t0 · r0 ∗ o ∗ i ∗ r1 · t1 is well formed then
t′ ∈ σ′,

where each instance of • stands for concatenation · or fusion ∗ and s0 �− s′0.

Note that well-formedness implies that singularity and serial causation are re-
spected. The conditions above are the formalisation of the following require-
ments:

Input receptivity: successive inputs can be received in succession as well as
simultaneously,

Instant feedback receptivity: an input following an output may also be re-
ceived simultaneously.

In essence, these rules stipulate that the environment can produce input either
instantly or later, and the system must handle both situations. Now we can intro-
duce our main result, stating that receptive round abstraction is compositional:
it preserves both total correctness and receptivity.

Theorem 3 (Adequacy). For any two compatible safely-compositional asyn-
chronous processes σ : A→ B and τ : B → C, composition preserves receptive
round abstraction: if σ �≈ σ′ and τ �≈ τ ′ and σ : τ and σ $ τ then σ; τ �≈
σ′; τ ′.

We illustrate the theorem with a simple example showing the essential use of
allowable permutations for asynchronous traces, both in Def. 16 and in the proof
of this theorem. Let σ : A → B, τ : B → C be asynchronous processes and
σ′ : A → B, τ ′ : B → C be processes, with LA = {a}, LB = {b1, b2}, LC = {c}
and σ = pc({bi

1.a.a.b
i
2}) �∼ σ′ = pc({〈bi

1a〉.〈a.bi
2〉}), τ = pc({bo

1.b
o
2.c}) �∼ τ ′ =

pc({〈bo
1b

o
2c〉}). The traces 〈bi

1a〉〈abi
2〉 and 〈bo

1b
o
2c〉 do not compose because events

b1, b2 must be placed in different rounds in the first trace (due to the singularity of
a) and are in the same round in the second. However, since σ is an asynchronous
process, we know that it must also contain the trace bi

1.b
i
2.a.a generated by

saturation (by the definition of A → B, A-events cannot cause B-events). This
trace is round abstracted to (for example) 〈bi

1b
i
2〉.a.a which composes well with

〈bo
1b

o
2c〉.
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Fig. 3. Asynchronous model of game-semantic iteration

6 Application to the Geometry of Synthesis

GoS [6] is a semantics-directed approach to solving the long-standing problem
of synthesising hardware from higher-level behavioural descriptions written in
programming languages, i.e. “hardware compilation.” The basic idea of GoS
is to consider the game-semantic model of a programming language as an in-
put/output behavioural specification for a digital circuit. If the circuit imple-
mentation of this specification is also asynchronous then the game model can be
mapped almost directly, and efficiently, into asynchronous designs [20].

The question of mapping game semantics into synchronous designs is, for rea-
sons elaborated in this paper, more complex since game models are asynchronous.
A straightforward mapping of the asynchronous model into synchronous circuits
is possible but naive; it is expensive in terms of circuit footprint and it has unac-
ceptable high latency.

The game model for constants such as skip (the empty command), 0 and
1 consists of asynchronous processes �skip� = pc({q.a}), �0� = pc({q.t}), �1� =
pc({q.f}). A full definition of the game semantic model is out of the scope of this
paper, but we can give some basic intuitions. A constant is an initial “request”
input followed by an acknowledging output indicating the value. For skip this is
just a token indicating that the command completed successfully.

6.1 Implementation

The naive mapping of these processes into circuits requires two-state automata
to read the input q then on the next cycle to produce the output and reset to the
initial state. This means that any use of a constant will require two flip-flops,
some combinatorial logic and will introduce a unit delay. On the other hand, the
most efficient receptive round abstraction will give the following synchronous
representations: �skip� �≈ pc({〈qa〉}), �0� �≈ pc({〈qt〉}), �1� �≈ pc({〈qf〉}).

These representations are now stateless, instantly propagating the input q to
the output. As circuits, they can be implemented simply as connectors. This is in
itself a very useful optimisation, but it requires the round abstraction of all the
circuits synthesised by the compiler. For example, the circuit for iteration is a set
of asynchronous traces, which means that it processes one event per transition.
Therefore, it cannot compose with the round-abstracted constants and it needs
itself to be round-abstracted.
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Fig. 4. Receptive round abstraction of iteration

An automaton for the original asynchronous representation of iteration is
given in Fig. 3 (input events are marked with ? and outputs with !). The events
in the iterator have the following interpretations: ?r: run the iterator; !q: request
the evaluation of the guard; ?t, ?f: read the value of the guard; !r1: request
the evaluation of the body; ?d1: receive the acknowledgement that the body
completed execution; !d: report the completion of the iteration.

A receptive round abstraction is shown in Fig. 4. Because round abstraction
gathers several transitions on a single new transition, it always reduce the num-
ber of states in the representation, which reduces the number of state bits in
the implementation (flip-flops) and improves the latency. Consider for example
what happens when the guard is false. In the asynchronous system, it takes four
transitions to execute (r.q.f.d) whereas in the synchronous implementation there
is a single transition for 〈rqfd〉, i.e. the latency in this case is zero.

6.2 Correctness

Failure of process compatibility can give rise to subtle bugs in synchronous im-
plementations of GoS. Suppose that an implementer wants to reduce as much
as possible the latency of (binary) memory locations, which following the game-
semantic model are driven using the ports r (read), t (produce 1), f (produce 0),
wt (write 1), wf (write 0), ok (acknowledge write). Singularity prevents multiple
reads and multiple writes per round, but one read and one write per round
could be implemented. A proper (asynchronous) memory cell trace such as
wf.ok.r.f.wt.ok.r.t could be presumably abstracted as 〈wf , ok, r, f〉〈wt, ok, r, t〉.
This is reasonable, and in fact, assignable variables in synchronous languages
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can be implemented like this (e.g. Esterel). However, such an implementation
is incompatible with round abstraction because it breaks process compatibility
and therefore partial round abstraction!

The reason is that an asynchronous program might generate local variable
traces that are not consistent with stateful behaviour, but which are permuta-
tions of such traces; round abstraction may erroneously identify the two. An
illegal trace such as r.f.wf.ok.r.t.wt.ok can be also abstracted to 〈wf , ok, r, f〉
〈wt, ok, r, t〉, which is the same as the abstraction of the legal trace above. At
the level of the programming language, it means that programs x:=0; x:=1; if
x=1 diverge and x:=0; if x=1 diverge; x:=1 could end up with the same imple-
mentation, which is obviously erroneous!

7 Conclusions

Representing asynchronous specifications as synchronous systems is generally
useful, since synchronous systems are easier to implement as digital designs and
asynchronous systems are more abstract and somewhat easier to specify. Naive
implementations are unreasonably slow and expensive, but round abstraction is
a general method for creating more efficient, lower latency circuits. In particular,
we are mostly concerned with applicability to GoS.

In this paper, we give sufficient criteria to ensure the compositionality of both
partial and total round abstractions. We restrict ourselves to round abstractions
of well behaved asynchronous processes and, in the case of total round abstrac-
tions, we restrict ourselves to a certain class of round abstractions which we call
“receptive”. The classes of processes we are interested in are generalisations of
game semantic models, therefore, they are motivated by pragmatic considera-
tions. It remains to be seen whether these conditions can be further generalised
or whether necessary conditions can be formulated.

Connections with Abramsky’s Interaction Categories [17] should be examined,
perhaps re-formulating round abstraction in that richer setting. Our simpler
setting has the merit of introducing the basic concepts in a way that is directly
applicable to pointer-free game models. However, the full power of Interaction
Categories may offer a stronger platform to examine round abstraction in a
principled way.

GoS will benefit directly from applying these results in the construction of
correct compilers to synchronous circuits. However, the burden of proof for the
compiler designer is still quite high. Verifying that the conditions of compatibility
and safety are met is not trivial but essential, as Subsec. 6.2 shows. Our next step
is to examine the compositional properties of compatibility and safety, aiming
to ultimately identify a sub-category of asynchronous processes which can be
correctly and compositionally round-abstracted. This sub-category will be the
ideal framework to develop a correct compiler in a way that is guaranteed correct
by construction.

Finally, our model uses a particular definition of safety (Def. 15) and the re-
strictions of singularity (Def. 4) and seriality (Def. 6) because, as explained, they
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are specific to our main intended application, modelling digital circuits. In this
setting events are atomic and connectors are unable to buffer events. Eliminating
these restrictions would lead to semantic models more suitable for higher-level
languages and, quite possibly, a synchronous version of game semantics. This
work is ongoing.
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Abstract. We present a reconstruction of session types in a conven-
tional pi calculus where types are qualified as linear or unrestricted. Lin-
early typed communication channels are guaranteed to occur in exactly
one thread, possibly multiple times. We equip types with a constructor
that denotes the two ends of a same communication channel. In order to
assess the flexibility of the new type system, we provide three distinct
encodings (from the linear lambda calculus, from the linear pi calculus,
and from the pi calculus with polarized variables) into our system. For
each language we present operational and typing correspondences, show-
ing that our system effectively subsumes the linear pi calculus as well as
foregoing works on session types.

1 Introduction

Session types allow a concise description of protocols by detailing the sequence
of messages involved in each particular run of the protocol. Introduced for a
dialect of the pi calculus [6,13], the concept has been transferred to different
realms, including functional and object-oriented programming and operating
systems; refer to [3] for a recent overview.

By way of motivation, consider a service allowing to create online petitions.
Petition creators receive from the petition service a channel on which they pro-
vide the title of the petition, the petition text and the due date. After the initial
setup, the exact same channel is ready to be distributed among the client’s
acquaintances to collect thousands of signatures, but not without the creator
signing the petition first. The code for the creator can be written as follows,

petitionOnline(p).p title.p description.p dueDate.p signature.(a1 p | . . . | an p)

where x(y) denotes reading value y on channel x, x v denotes sending value v
on channel x, and the vertical bar denotes parallel composition. Each of the
acquaintances (not shown in the example), after reading p on channel ai, can
sign the petition and further distribute the channel at will.

The protocol for channel p can be concisely described by a type T of the form
below, composed of an initial linear part that becomes shared (or unrestricted)
in the later part.

lin !String.lin !String.lin !Date.S where S = un !String.S

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 432–446, 2010.
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The final part is unrestricted because it is desiderable, but not absolutely neces-
sary, that acquaintances (including the petition creator) sign the petition; con-
versely, the initial part is linear because petitions cannot be signed without first
setting up the title, the description and the due date.

In the process above, each channel ai forwards p at type S. Such a channel
may be given the type lin!S.un end, if we require that acquaintances eventually
receive the petition channel; the continuation is un end (the type of a channel
on which no further interaction is possible) allowing channel ai to be discarded
thereafter. Concentrating on the type of petitionOnline, we see that petition
creators need it a type S1 = un?T.S1 so that they may create as many petitions
(of type T ) as required. It should be easy to see that the service itself sees the
same channel at the dual type S2 = un!T.S2. The whole system, composed by
the service running in parallel with petition creators can be typed by reconciling
the two end point types S1 and S2 in a single, unordered, channel type of the
form (S1, S2).

The language of the pi calculus, when considered in conjunction with a type
system with session types, is known to require a means to distinguish the two
ends of a session channel (S1 and S2 above) in order to preserve type sound-
ness [4,5,17]. Alternative solutions not requiring such a distinction rely on the
restriction of channel passing to bound output. Such systems include the original
formulation of delegation in session types [6] as well as more recent works [2,11].

Two approaches for distinguishing the ends of a channel are available in the
literature: polarized channel variables [5], and form of channel double binder [14].
In the pi calculus with polarities the two ends of a channel x are distinguished
by labelling each of its ends with a different label: x+ and x− denote the two
ends of channel x. Given that from a given channel name one may find its two
ends, one can restrict (the two ends of) a channel x with the usual pi calculus
restriction operator (νx)P . Typing contexts, however accept two different entries
for the same channel, one labelled with +, the other with −, as in the typing
sequent below.

Γ, x+ : S1, x
− : S2 � x+ v.P1 | x−(w).P2

A variant of the above work, [14], uses distinct variables to describe the two ends
of a same channel. In this case one cannot obtain the second end of a channel
from the other end. It is restriction that puts together the two channel ends, by
binding them together, as in (νyz)P . The assumptions in typing contexts are
for simple variables, as in the example below where y and z denote the two ends
of a same channel.

Γ, y : S1, z : S2 � y v.P1 | z(w).P2

The first work can be criticized for using non-conventional typing contexts, where
typing information of a same channel x is split among two different entries, x+

and x−. The second work uses standard contexts but relies on a new scope
restriction operator that binds two variables together. The goal of this work is
to equip types with a constructor able to denote the two ends of a same channel.
We then have the best of both worlds where we use the standard pi calculus
(Milner et al. [10]) with standard typing sequents.
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Syntax

b ::= Booleans: P ::= Processes:

true true x v.P output

false false x(x).P input

v ::= Values: P | P composition

b boolean value if v thenP else P conditional

x variable (νx)P restriction

∗ P replication

0 inaction
Rules for structural congruence

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P ∗ P ≡ P | ∗P
(νx)P | Q ≡ (νx)(P | Q) (νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P

Rules for reduction

x v.P | x(y).Q → P | Q[v/y] [R-Com]

if true thenP else Q → P if false thenP else Q → Q [R-IfT] [R-IfF]

P → Q

(νx)P → (νx)Q
P → Q

P | R → Q | R

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
[R-Res] [R-Par] [R-Struct]

Fig. 1. Pi calculus: Syntax and operational semantics

We test the flexibility of our type system by embedding the pi calculus with
polarities and session types [5] (hence the conventional pi calculus [10]). We do
the same for the linear pi calculus [7], and for the linear (call by value) lambda
calculus as in [16]. For each of these languages we prove an operational and a
typing correspondence result. From the two first embeddings we learn that our
type system is an extension of advanced type systems for pi calculi. The em-
bedding of the linear lambda calculus crucially takes linearity into consideration
generating code accordingly (replicated or non replicated) for shared and linear
resources.

The outline of the paper is as follows. The next section recalls the pi calculus
and introduces our type system. Then, the subsequent three sections present the
embeddings of the three languages mentioned above: pi calculus with polarities,
linear pi calculus and linear lambda calculus. The last section presents some
related as well as future work.

2 Pi Calculus

This section introduces the pi-calculus, its syntax and semantics, as well as our
type system. The syntax is in Figure 1. We rely on a set of variables, ranged over
by x, y, z. Values include variables and the booleans true and false. For processes
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q ::= Qualifiers: a type variable

lin linear μa.S recursive type

un unrestricted T ::= Types:

p ::= Pre Types: bool boolean

?T.S receive S end point

!T.S send (S, S) channel

end termination Γ ::= Contexts:

S ::= End Point Types: ∅ empty context

q p qualified channel Γ, x : T variable binding

Fig. 2. Pi calculus: Types and typing contexts

we have (synchronous, unary) output and input, in the forms x v.P and x(y).P ,
as well as a parallel composition, conditional, scope restriction, replication and
the terminated process.

The binders for the language appear in parenthesis: x is bound in both y(x).P
and (νx)P . Free and bound variables in processes are defined accordingly, and
so is alpha conversion, substitution of a variable x by a value v in a process P ,
denoted P [v/x]. We follow Barendregt’s variable convention, requiring bound
variables to be distinct from free variables in any mathematical context.

Structural congruence is the smallest relation on processes including the rules
in the same figure. The first three rules say that parallel composition is commu-
tative, associative and has 0 for neutral element. The last rule on the first line
captures the essence of replication as an unbounded number of identical pro-
cesses. The rules in the second line deal with scope restriction. The first, scope
extrusion, allows the scope of x to encompass Q; due to variable convention, x
bound in (νx)P , cannot be free in Q. The other two rules state that restrict-
ing over a terminated process has no effect, and allow exchanging the order of
restrictions.

The reduction reduction is the smallest relation on processes including the
rules in Figure 1. The [R-Com] rule communicates value v from an output
prefixed one x v.P to an input prefixed process x(y).Q; the result is the parallel
composition of the continuation processes, where the bound variable y is replaced
by value v in the input process. The rules for the conditional are straightforward.
The rules in the last line allow reduction to happen underneath scope restriction
and parallel composition, and incorporate structural congruence into reduction.

The syntax of types is described in Figure 2. Types include the boolean type,
end point types and channel types. The novelty with respect linear and session-
based systems for the pi calculus is the introduction of a new type constructor to
describe the two ends of a same channel, (S1, S2), where S1 details the behaviour
of one end, whereas S2 details that of the other end. An end point type S can
be a pre type qualified with lin or un, a recursive type or a type variable. Each
qualifier in a type controls the number of times the channel can be used at that
point: exactly once for lin; zero or more times for un. A pre type of the form
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!T.S describes a channel end able to send a value of type T and to proceed as
prescribed by S. Similarly, pre type ?T.S describes a channel end able to receive
a value of type T and continue as S. Pre type end describes a channel end on
which no further interaction is possible. For recursive (end point) types we rely
on a set of type variables, ranged over by a. Recursive types are required to be
contractive, that is, containing no subexpression of the form μa1 . . . μan.a1.

Type equality is not syntatic. Instead, we define it as the equality of regular in-
finite trees obtained by the infinite unfolding of recursive types, modulo pair com-
mutation. The formal definition, which we omit, is co-inductive. In this way we
use types (μa.lin!bool.lin?bool.a, un end) and (un end, lin!bool.μb.lin?bool.lin!bool.b)
interchangeably, in any mathematical context. This allows us never to consider a
type μa.S explicitly (or a for that matter). Instead, we pick another type in the
same equivalence class, namely S[μa.S/a]. If the result of the process turns out
to start with a μ, we repeat the procedure. Unfolding is bound to terminate due
to contractiveness. In other words, we take an equi-recursive view of types [12].

Type duality plays a central role in the theory of session types, ensuring that
communication between the two ends of a channel proceeds smoothly. Intuitively,
the dual of output is input and the dual of input is output. In particular if S2

is dual of S1, then q?T.S1 is dual of q!T.S2. Session type end is dual of itself.
Rather than providing a co-inductive definition of duality, we start by defining
a function from end-point channels into end-point channels as follows.

q ?T.S = q !T.S q !T.S = q ?T.S q end = q end μa.S = μa.S a = a

Then, to check that a given end point type S1 is dual of another type S2, we first
build the dual of S1 and then check that the thus obtained type is equivalent
to S2. For example, to show that type μa.lin?bool.lin!bool.a is a dual of type
lin!bool.μb.lin?bool.lin!bool.b, we build μa.lin?bool.lin!bool.a = μa.lin!bool.lin?bool.a,
and then show that μa.lin!bool.lin?bool.a = lin!bool.μb.lin?bool.!bool.b. Qualifiers
are important: S and S must be equally qualified so that a linear output process
may find a linear input process to embark in reduction.

Contexts, or type environments, are inductively defined in Figure 2. In a
context Γ, x : T we assume that x does not occur in Γ ; we also assume the various
variable bindings in Γ to be unordered. We define predicate un to be true of a)
the empty context, as well as of b) context Γ, x : bool, context Γ, x : un p, and
context Γ, x : (un p1, un p2), whenever un(Γ ).

Typing relies on the context splitting operation described in Figure 3. It should
be easy to understand: unrestricted types are copied into both contexts, linear
types are placed in one of the two resulting contexts. The first four rules are
standard [16], the last three rules are new to this work; the philosophy however
remains the same. We omit three rules, duals to the last three, obtained by
interchanging the end point types in the channel type (e.g., (un p2, lin p1) in the
last rule), for the effect can obtained by a suitable choice of the type in its
equivalence class (recall that pair types are unordered).

Equipped with the notions of type duality, unrestricted contexts, and context
splitting we are ready to introduce the typing rules in Figure 3. The first two
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Context splitting rules

∅ = ∅ · ∅ Γ = Γ1 · Γ2 T = un p or (un p1, un p2)
Γ, x : T = (Γ1, x : T ) · (Γ2, x : T )

Γ = Γ1 · Γ2 T = lin p or (lin p1, lin p2)
Γ, x : T = (Γ1, x : T ) · Γ2

Γ = Γ1 · Γ2 T = lin p or (lin p1, lin p2)
Γ, x : T = Γ1 · (Γ2, x : T )

Γ = Γ1 · Γ2

Γ, x : (lin p1, lin p2) = (Γ1, x : lin p1) · (Γ2, x : lin p2)
Γ = Γ1 · Γ2

Γ, x : (lin p1, un p2) = (Γ1, x : (lin p1, un p2)) · (Γ2, x : un p2)
Γ = Γ1 · Γ2

Γ, x : (lin p1, un p2) = (Γ1, x : un p2) · (Γ2, x : (lin p1, un p2))

Typing rules for values

un(Γ )
Γ � b : bool

un(Γ )
Γ, x : T � x : T

Γ � v : (S, un p)
Γ � v : S

[T-Bool] [T-Var] [T-Strength]

Typing rules for processes

un(Γ )
Γ � 0

Γ1 � P1 Γ2 � P2

Γ1 · Γ2 � P1 | P2

Γ � P un(Γ )
Γ � ∗P [T-Inact] [T-Par] [T-Repl]

Γ1 � v : bool Γ2 � P1 Γ2 � P2

Γ1 · Γ2 � if v thenP1 else P2

Γ,x : (S, S) � P

Γ � (νx)P
[T-If] [T-Res]

Γ, x : S, y : T � P (∗)
Γ, x : q?T.S � x(y).P

Γ1 � v : T Γ2, x : S � P (∗∗)
Γ1 · (Γ2, x : q !T.S) � x v.P

[T-In],[T-Out]

Γ, x : (S, S′), y : T � P (∗)
Γ, x : (q?T.S, S′) � x(y).P

Γ1 � v : T Γ2, x : (S, S′) � P (∗∗)
Γ1 · (Γ2, x : (q !T.S, S′)) � x v.P

[T-InC],[T-OutC]

(∗) q = un ⇒ q?T.S = S (∗∗) q = un ⇒ q!T.S = S

Fig. 3. Pi calculus: Typing

typing rules for values are standard. Rule [T-Strength] is central to our system
with channels described as pairs of types; we discuss it after introducing the
remaining typing rules.

For processes, rule [T-Inact] says that the terminated process can only be
typed in an unrestricted context, ensuring that linear channels are given a chance
to be consumed. Rule [T-Par] uses context splitting to partition linearly typed
variables between the two processes: the incoming context is split into Γ1 and
Γ2, and we use the former to type check process P1 and the latter to type check
process P2. Rule [T-Repl] for replication requires the typing context not to
contain linear values, for P may be used an unrestricted number of types. Rule
[T-If] for the conditional process splits the incoming context in two parts: one
used to check the condition, the other to check both branches. The same context
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for the two branches is justified by the fact that only one of P1 or P2 will be
executed. Rule [T-Res] allows restricting channels whose end points are dual,
making sure that communication on the channel happens according to the plan.
Allowing to restrict a end point type S type would not break type preservation,
Theorem 1, but we believe that such an alternative rule does not fit well in
a linear system, where we expect linear channels to be given an opportunity
to be consumed. Even though unrestricted end point types cannot be directly
restricted, we can show that, for each derivation of Γ, x : S � P , there is a
derivation of Γ, x : (S, un p) � P , thus allowing to apply scope restriction to an
otherwise unrestricted channel end.

We have two rules for input, [T-In] and [T-InC], depending on the type
for channel x in the context. Rule [T-In] deals with end point types. If x is
typed with q ?T.S, we know that the bound variable y is of type T , and we
type check P under the extra assumption y : T . Equally important is the fact
that the continuation uses channel x at continuation type S, that is, process
x(y).P uses channel x at type q ?T.S whereas P may use the same channel this
time at type S. Finally, unrestricted channels, given that they may be shared,
must retain their behavior throughout computation, hence the side condition. A
solution to the equation in the side condition is μa?T.a for a not in T , which
we abbreviate to ∗?T (and similarly for output). Rule [T-InC] follows the same
pattern, consuming one end point and keeping the other unchanged. Similarly
to input, we have two rules for output. Rule [T-Out], splits the context in two
parts, one to check v and the other to check continuation P . Notice that the
context in the conclusion, Γ1 · (Γ2, x : q !T.S) allows to type process x x with a
context x : S with type S such that S = un!S.S.

Rule [T-Strength] allows for a fine grained control of the channel ends
of a given channel. A process holding the two ends of a given channel x, say
(∗!bool, ∗?bool), may pass the output capability only by using [T-Var] followed
by [T-Strength] to obtain Γ, x : (∗!bool, ∗?bool) � x : ∗!bool and then compose
with rule [T-Out] or [T-OutC] in a process of the form y x.P . The rule is also
fundamental in establishing the main result of this section.

To lighten the syntax in examples, we omit all unrestricted qualifiers and
only annotate linear types. We also omit the trailing un end in types, as well
as the trailing 0 in processes. As an example, consider the type ?(lin!bool).S of
an unrestricted channel that receives a linear channel capable of outputting a
boolean value. The following sequent is easy to establish,

x : ?(lin!bool).S � x(z).z true | x(w).w false

but only for an appropriate type S. Reading rule [T-In], we realize that S must
be equivalent to ?(lin!bool).S, that is S must be (equivalent to) μa.?(lin!bool).a,
abbreviated to ∗?(lin!bool). Continuing with the example, if P is the above pro-
cess, then P | (νy)x y is not typable, for the linear input capability of chan-
nel y is never exercised. But P | (νy)(x y | y(u)) is typable under context
x : (∗?(lin!bool), ∗!(lin?bool)).

Given that a type (un p1, lin p2) cannot possibly be restricted in a process (cf.
rule [T-Res]), the reader may wonder why we consider them at all. It turns
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out that free channel output may lead to situations where a thread holds the
two ends of a same channel [17]. For instance, process z x | z(w).w(y).x true,
typable under context z : (∗?S, ∗!S), x : (S, S) with S = lin?bool, reduces to
process P = x(y).x true, which we want to type under the same context. By
applying rule [T-InC] to P we obtain a judgment with a un-lin type, namely
z : (∗?S, ∗!S), x : (end, lin!bool) � x true. A further application of rule [T-OutC]
gets rid of the un-lin type, yielding z : (∗?S, ∗!S), x : (end, end) � 0 typable under
rule [T-Inact].

We conclude the section with the main result of our system. Reduction pre-
serves typability only for a certain kind of contexts. To understand why reduction
does not preserve typability in the presence of arbitrary contexts, take for P the
process x(z).if z then0 else 0 | (νy)x y. We can easily see that P is typable under
the (non balanced) context x : (lin!end.end, lin?bool.end). But P reduces to process
(νy)if y then0 else0 which is not typable. The whole purpose of balancing is to
make sure that the type of y in the output is that of z in the input.

We define predicate balanced to be true of a) the empty context, and b)
context Γ, x : bool and context Γ, x : (S, S) whenever Γ is balanced.

Theorem 1 (Type Preservation). If Γ1 � P1 with Γ1 balanced and P1 → P2,
then Γ2 � P2 with Γ2 balanced.

Proof (Sketch). Albeit standard, the proof is quite long due to the combinatorics
introduced by (the various rules in) context splitting, the lin-un qualifiers and the
four rules for input and for output. We rely on several standard auxiliary results,
including unrestricted context weakening, context strengthening, a substitution
lemma (stating that if Γ1 � v : T and Γ2, x : T � P and Γ1 · Γ2 is defined then
Γ1 · Γ2 � P [v/x]), and balanced context preservation for structural congruence.
In order to proceed by induction on the derivation of the reduction step when
[T-Par] is the last rule, we need a stronger statement that details the relation
between Γ1 and Γ2, namely Γ2 = Γ1 or Γ1 = Γ, x : (q?T.S, q!T.S) and Γ2 =
Γ, x : (S, S).

3 Embedding the Pi Calculus with Polarities

This section shows that our type system embeds the polarity system introduced
by Gay and Hole [5]. Since Gay and Hole show that the pi calculus with polarities
embeds the simply typed pi calculus; by transitivity our language embeds the
simply typed pi calculus as well.

In Figure 4 we present the branch-select free fragment of the pi calculus
with polarities. Variables may be polarized, occurring in processes as well as in
typing contexts as x+ or x− or simply as x. We write xp for a general polarized
name, where p represents an optional polarity. Duality on polarities, written p
exchanges + and −. The new constructors of the language, input and output,
are in Figure 4; the remaining are taken from Figure 1; the syntactic category
for values in Figure 1 does not contribute to the language.
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New syntactic forms

P ::= . . . Processes: μa.S recursive type

xp xp.P output S ::= Session types:

xp(x).P input end termination

T ::= Types: ?T.S receive

ˆT standard channel !T.S send

S session channel a type variable

a type variable μa.S recursive type

New reduction rules

xp zq.P | xp(y).Q →p P | Q[zq/y] [R-Com]

Context updating

Γ + xp : S = Γ, xp : S if xp, x �∈ dom(Γ ) and S =?T.S, !T.S, end

Γ + x : T = Γ, x : T if x, x+, x− �∈ dom(Γ )

Γ, x : T + x : T = Γ, x : T if T =ˆT, bool

Typing rules

Γ completed
Γ �p 0

Γ �p P Γ unlimited
Γ �p ∗P

Γ, x : ˆT �p P

Γ �p (νx)P
Γ, x+ : S, x− : S �p P

Γ �p (νx)P
[T-Inact] [T-Repl] [T-New] [T-NewS]

Γ1 �p P Γ2 �p Q

Γ1 + Γ2 �p P | Q

Γ, x : ˆT, y : T �p P

Γ, x : ˆT �p x(y).P
Γ, xp : S, y : T �p P

Γ, xp : ?T.S �p xp(y).P
[T-Par] [T-In] [T-InS]

Γ, x : ˆT �p P

(Γ, x : ˆT ) + yq : T �p x yq.P

Γ, xp : S �p P

(Γ, xp : !T.S) + yq : T �p xp yq.P
[T-Out] [T-OutS]

Fig. 4. Pi calculus with polarities

The reduction relation, denoted by →p, is defined inductively by the rules
in Figure 1 with rule [R-Com] replaced by that in Figure 4. From the above
description it should be obvious that the two languages differ in the (optional)
polarity annotation on (non-bound occurrences of) variables. We define an erase
function that removes from a polarized processes all occurrences of + and −,
to yield a process generated by the grammar in Figure 1. There is an obvious
operational correspondence between the two languages, stated in Theorem 2.
The converse is clearly not true. Take for P the polarized process x+ | x+().
Then erase(P ) = x | x() reduces while P does not.

The language of types includes a distinct category S for (linear) session types.
Since we restrict our language to the branch-select free fragment of [5], we ig-
nore subtyping. Duality is defined as in Section 2, with the appropriate changes
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which amount erasing the qualifiers. Typing contexts now gather assumptions on
polarized variables, in addition to simple variables as before. There is however
one restriction on the variables occurring in a context: x and x+ (or x−) cannot
occur simultaneously in a given context Γ , even though x+ and x− may. New
assumptions are added to contexts by means of an update operation +, defined
in Figure 4. Context updating is different from splitting (in Figure 3) on what
concerns unrestricted types: ∅+(x : ˆT ) is defined, whereas ∅·(x : un p) is not. We
say that a context is unlimited if it contains no session types, and is completed
if every session in it is end.

The typing relation is inductively defined by the rules in Figure 4. Rule
[T-NewS] requires the types for the two channel end points to be of dual types;
contrast with rule [T-Res] in Figure 3: our system merges the two end points
in a single variable and requires the two components of the channel type to be
of dual types. Rules [T-In] and [T-InS] in Figure 4 have their counterpart in
rules [T-In] and [T-InC] in Figure 3. The choice here is not based on whether
the type for the input channel is an end point or a channel type but rather on
whether the qualifier is linear or unrestricted. The same can be said of rules
[T-Out] and [T-OutS].

From the above description it should be obvious that the two systems are
quite close to each other. In order to define the typing correspondence we need
to translate types and contexts for the polarized language (as in Figure 4) to
those in our language (Figure 1). The definition is as follows; recall from Section 2
that we use ∗?T as an abbreviation for μa.?T.a, for some a not in T . To translate
typing contexts we assume that if both x+ and x− are in Γ then they occur in
contiguous positions (and in this order). The translation of typing contexts is
as follows, where the rules must be tried in the given order; the first rule for
mapping non-empty contexts is for polarized pairs while the second rule is for
single entries.

[[̂ T ]] = (∗?[[T ]], ∗![[T ]]) [[end]] = un end [[∅]] = ∅
[[?T.S]] = lin?[[T ]].[[S]] [[a]] = a [[Γ, x+ : S, x− : S′]] = [[Γ ]], x : ([[S]], [[S′]])
[[!T.S]] = lin![[T ]].[[S]] [[μa.S]] = μa.[[S]] [[Γ, xp : T ]] = [[Γ ]], x : [[T ]]

[[μa.T ]] = μa.[[T ]]

We are now in a position to state the main result of this section.

Theorem 2 (Polarity-Pi To Pi Correspondence).

1. If Γ �p P then [[Γ ]] � erase(P ).
2. If P →p Q, then erase(P ) → erase(Q).

4 Embedding the Linear Pi Calculus

In this section we analyse (a synchronous variant of) the linear pi calculus [7]
and provide a typing-preserving encoding into our system.
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New syntactic forms

c ::= Capabilities: T ::= Types:

i input q c T channel

o output bool boolean

io input and output

Combination of types

bool + bool = bool un c1 T + un c2 T = un (c1 ∪ c2) T lin i T + lin o T = lin io T

Combination of contexts

(Γ1 + Γ2)(x) =

⎧⎪⎨⎪⎩
Γ1(x) + Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)

Γ1(x) if x ∈ dom(Γ1) and x �∈ dom(Γ2)

Γ2(x) if x ∈ dom(Γ2) and x �∈ dom(Γ1)

Typing rules for processes

Γ �l P1 Γ �l P2

Γ + v : bool �l if v thenP1 else P2

Γ, x : q io T �l P

Γ �l (νx)P
[T-If] [T-Res]

Γ, y : T �l P

Γ + x : q iT �l x(y).P
Γ �l P

Γ + x : q oT + v : T �l x v.P
[T-In] [T-Out]

Fig. 5. Linear pi calculus

The syntax of linear pi processes and the reduction relation are described in
Figure 1. Figure 5 defines the syntax of types and the typing rules for processes.
Types have now the form q c T where c is a capability formally defined as one of
the following sets.

i = {i} o = {o} io = {i, o}

The linear discipline is imposed by way of a + combination operation over types,
defined in Figure 5. The operator is extended point-wise to typing contexts.
Notice that context combination is different from the context splitting operation
defined in Figure 3 when in the presence of unrestricted types: context splitting
does not allow composing (Γ1, x : un c T ) with Γ2 whenever x �∈ dom(Γ2) or when
Γ2(x) �= un c T .

The typing system for the linear pi-calculus is defined by the rules in Figure 3
together with rules [T-Inact], [T-Repl] and [T-Par] in Figure 4. Rule [T-Out]
is an adaptation of that in [7] to the synchronous setting: we let the continuation
be typed with context Γ while in the original paper the premise to the rule is
un(Γ ) since the (absent) continuation behaves as 0. We also adapt rule [T-Res]
to require that the restricted channel uses both capabilities; the original system
allows processes of the form (νx)x true to be typed by assigning to channel x
type lin o bool; cf. discussion around rule [T-Res] in Section 2.
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The compositional encoding of linear types is defined below and is useful to
understand the reconstruction of session types introduced in Section 2. A linear
input (output) type is embedded as a linear input (output) type whose contin-
uation is un end, meaning that the continuation process cannot further use the
channel. Unrestricted input (output) types are mapped into unrestricted recur-
sive input (output) types. For instance, the type lin i(lin io (un io bool)) is mapped
into the type lin ?(lin !T.un end, lin ?T.un end).un end where T = (∗!bool, ∗?bool).

[[lin iT ]] = lin?[[T ]].un end [[lin oT ]] = lin![[T ]].un end

[[un iT ]] = ∗?[[T ]] [[un oT ]] = ∗![[T ]]
[[q io T ]] = ([[q iT ]], [[q oT ]]) [[bool]] = bool

The main result of this section establishes the correspondence between the two
systems.

Theorem 3 (Linear-Pi To Pi Correspondence). If Γ �l P then [[Γ ]] � P .

5 Embedding the Linear Lambda Calculus

This section shows that the call-by-value linear lambda calculus can be faithfully
encoded in our language. We follow the presentation of Walker [16], except that
we use an implicitly typed language.

The syntax of the language is in Figure 6; we rely on the set of variables
introduced in Section 2 for the pi calculus; the missing non-terminal symbols,
q, b and so on, are in Figure 1. Values are qualified, linear or unrestricted,
and include boolean values and abstractions. Terms are variables, values, and
applications and are evaluated in an abstract machine with an explicit store.
The store is a sequence of variable-value pairs, treated as a map from variables
into values. To simplify the presentation of the evaluation relation, we use an
auxiliary function, S q∼ x that deallocates the value associated with variable x in
S when the qualifier q is lin, and leaves S unchanged otherwise. The evaluation
reduction copies values into the store, associating them with a fresh variable
(rule [E-val]). For function application the value associated with the function
is looked upon in the store; if linear it is then deallocated (rule [E-app]). The
remaining two rules implement the call-by-value strategy. We denote by →λ the
reduction relation in Figure 6.

For typing, rule [T-Var] is that of the pi-calculus (Figure 3). Rule [T-Bool]
contrasts with its homonymous in Figure 3 in that values in the linear lambda
calculus are qualified, the type of a value inheriting the qualifier of the value.
The remaining two rules, for abstraction and application, are standard in the
linear lambda calculus; notice the q(Γ ) in rule [T-abs] requiring an unrestricted
function to contain only unrestricted free variables (un(Γ ) is defined in Section 2;
lin(Γ ) is true).

For the translation we rely on a polyadic variant of the pi language, allow-
ing channels to carry an arbitrary (but fixed) number of values. The extension is
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Syntax

v ::= Values: p ::= Pretypes:

q b boolean bool boolean

q λx.M abstraction T → T function

M ::= Terms: T ::= Types:

x variable q p qualified pretype

v value S ::= Stores:

MM application ∅ empty store

S, x �→ v store binding

Store deallocation

(S1, x �→ v, S2)
lin∼ x = S1, S2 S

un∼ x = S

Evaluation

(S; v) →λ (S, x �→ v; x)
S(x1) = qλy.M

(S; x1x2) →λ (S
q∼ x1; M [x2/y])

[E-val] [E-app]

(S; M1) →λ (S′; M ′
1)

(S; M1M2) →λ (S′; M ′
1M2)

(S; M) →λ (S′; M ′)
(S; xM) →λ (S′; xM ′)

[E-fun] [E-arg]

Typing

un(Γ )
Γ, x : T �λ x : T

un(Γ )
Γ �λ q b : q bool

[T-Var] [T-Bool]

Γ, x : T1 �λ M : T2 q(Γ )
Γ �λ qλx.M : q T1 → T2

Γ1 �λ M1 : q T1 → T2 Γ2 �λ M2 : T1

Γ1 · Γ2 �λ M1M2 : T2

[T-abs] [T-app]

Fig. 6. Linear lambda calculus

straightforward to incorporate: for processes we need polyadic output and input,
x(�x).P and x�v.P ; for types (pre types, rather) we need ?〈�T 〉.S and !〈�T 〉.S. The
extension can be incorporated in the base theory or added as an encoding [14].

On what concerns the translation of types below, the interesting cases are the
two forms of arrow types. An unrestricted T1 → T2 type is translated as a pair
of types: the ∗?X part caters for the resource (the function proper) and the ∗!X
for its clients. Channels describing functions carry a pair X of values: the first
element in the pair is the argument to the function ([[T1]] in X); the second is
a channel that will convey the result and that will be used exactly once (a lin-
ear channel of type lin![[T2]].un end). The type for linear resources is similar, only
that they are linear, rather than unrestricted. The translation of terms follows
that of Milner [9] with two exceptions. On the one hand, the value qualifiers are
taken into consideration in the translation: a linear value is translated into a
simple output (in the case of a boolean value) or a simple input (in the case of
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an abstraction); only for unrestricted values replication is used. On the other
hand, applications of the form xM are partially evaluated, allowing for a simple
operational correspondence (cf. [15]).

[[q bool]] = q bool [[x]]p = px

[[un T1 → T2]] = (∗?X, ∗!X) [[v]]p = (νx)([[x �→ v]] | p x)
[[lin T1 → T2]] = (lin?X.un end, lin!X.un end) [[xM ]]p = (νr)([[M ]]r | r(y).x yp)

where X = 〈[[T1]], lin![[T2]].un end〉 [[MN ]]p = (νs)([[M ]]s | s(x).(νr)(
[[∅]] = 0 [[N ]]r | r(y).x yp))

[[S, x �→ v]] = [[S]] | [[x �→ v]] [[S;M ]] = (ν dom(S))([[S]] | [[M ]])
[[x �→ q b]] = [[q]]x b [[un]] = ∗

[[x �→ qλyM ]] = [[q]]x(yp).[[M ]]p [[lin]] = the empty string

We are now in a position to state the main result of this section. Let →∗ be the
reflexive and transitive closure of the reduction relation → defined in Figure 1.

Theorem 4 (Linear-Lambda to Pi Correspondence)

1. If Γ �λ M : T , then [[Γ ]], p : lin![[T ]].un end � [[M ]]p.
2. If (S;M)→λ (S′;M ′), then [[S;M ]] →∗ [[S′;M ′]].

6 Conclusion

As mentioned in the introduction, the pi calculus equipped with a polarity-based
typing system [5] and the (double binder) pi calculus equipped with a conven-
tional typing system [14] are the works closest to ours. Here we try to obtain the
same results, relying on the traditional pi calculus equipped with a conventional
type system. Towards this end we introduce an unordered pair constructor de-
noting, at type level, the two ends of a same channel. In order to distinguish
linear from unrestricted variables we use type qualifiers applied to pre types,
inspired by Walker’s presentation of substructural type systems [16]. Caires and
Pfenning take a different approach, closely adhering to linear logic, treating all
variables as linear and using exponential “!” to describe shared resources [1].

Algorithmic type checking is left for further work; the language with double
binders [14] is equipped with such a system. Gay and Hole address the problem of
polarity inference for closed processes under certain restrictions [5]. Particularly
promising is the Fo (“F-pop”) system by Maruzak et al. [8], where a kinding
system, instead of type qualifiers, simplifies the use of linearity in functional
programming languages, including a novel form of subtyping between linear and
unrestricted kinds, which we would like to explore.
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Generic Forward and Backward Simulations II:
Probabilistic Simulation
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Abstract. Jonsson and Larsen’s notion of probabilistic simulation is studied
from a coalgebraic perspective. The notion is compared with two generic coalge-
braic definitions of simulation: Hughes and Jacobs’ one, and the one introduced
previously by the author. We show that the first almost coincides with the second,
and that the second is a special case of the last. We investigate implications of this
characterization; notably the Jonsson-Larsen simulation is shown to be sound, i.e.
its existence implies trace inclusion.

1 Introduction

Use of probabilistic algorithms in distributed and concurrent applications is common
practice. Consequently, modeling and verification techniques for probabilistic systems
have been extensively developed. One fundamental branch therein is about probabilistic
(bi)simulation: it gives an answer when a probabilistic system is “equivalent” to another,
or when one “refines” another.

In this paper we focus on simulation notions for purely probabilistic systems.1 For
such systems it is standard to define a notion of simulation using weight functions. The
idea is first devised by Jonsson and Larsen [12]; it has inspired a large body of work
including [1]. Our aim in this paper is to shed fresh, mathematical light on the idea,
from the viewpoint of coalgebra.

Coalgebra is a mathematical/categorical presentation of state-based systems. Its ini-
tial success was brought about by a generic, coalgebraic characterization of bisimulation
that applies to a variety of systems, including probabilistic ones (see e.g. [11, 17, 19]).
The theory has since been extended to include various aspects of concurrency theory—
such as SOS and modal logic (see e.g. [13]). Simulation, as “one-sided bisimulation,”
is one of such aspects.

Two approaches have been presented towards a coalgebraic theory of simulation:
Hughes and Jacobs’ [10] and the current author’s [5]. Both approaches are generic,
applicable to non-deterministic systems like LTS as well as probabilistic ones. In this
paper we restrict them to a purely probabilistic setting and conduct a comparative study.
The comparison is among the Jonsson-Larsen simulation, the Hughes-Jacobs simula-
tion, and the one in the author’s previous work [5] which we call the Kleisli simulation.

Among the three, the notion of Kleisli simulation is the most distinguishable: it is
given not as a relation but as a function X → DY , where X and Y are the state spaces

1 Unlike e.g. Segala’s probabilistic automata [18], they do not feature non-determinism.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 447–461, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of the involved systems. Therefore it is not suitable as a candidate of a refinement rela-
tion, the original motivation for the Jonsson-Larsen one. The Kleisli simulation rather
follows the spirit of Lynch and Vaandrager [16]: it is a powerful tool for showing trace
inclusion. While a direct proof of trace inclusion involves transitions within arbitrary
many steps, finding a simulation is a stepwise matter. Indeed the notion of Kleisli sim-
ulation is precisely a coalgebraic generalization of the one in [16]; the former comes
with the forward and backward variations just like the latter. The theory in [5] has been
successfully applied to verification of probabilistic anonymity in [9].

Our findings are as follows. The standard Jonsson-Larsen simulation, defined in §3
concretely for a specific kind of probabilistic systems (we describe them in §2), is
identified with a slightly restricted variant of the Hughes-Jacobs simulation (§4). This
allows us to remove the unnecessary restriction that was hidden in the original con-
crete definition (§4.4), as well as provides a guideline in transferring the definition to
other kinds of probabilistic systems (§4.5). On another link in the triangle, we identify
the Hughes-Jacobs simulation as a special case of the Kleisli simulation (§5). From
the generic soundness theorem [5]—existence of a Kleisli simulation implies (finite)
trace inclusion—we thus conclude soundness of the Hughes-Jacobs notion, hence of
the Jonsson-Larsen one.

Our expedition will be in a leisurely pace. In particular, no categorical or coalgebraic
prerequisites are assumed; they are introduced on our way, on a call-by-need basis.

Due to space limitation, most proofs are deferred to an extended version [7]. It has
also a series of example systems for further comparison of different simulation notions,

Notations. A square in a diagram which is not filled means that it commutes, that is,
the equality symbol = is implicit in it.

A probability (sub)distribution γ over a set X is often denoted like a table: [x �→
γ(x) ]x∈X . When an entry x ∈ X is missing in the table, the probability 0 is assigned.
Hence for example, when x0 ∈ X is a fixed element, [x0 �→ 1 ] means the distribution
γ such that γ(x0) = 1 and γ(x) = 0 for x �= x0.

2 Probabilistic System

We will be mainly interested in two kinds of purely probabilistic systems—GPAs and
DTMCs—which we now define formally.

Definition 2.1 (Generative probabilistic automaton, GPA). Let Ac be a fixed
nonempty alphabet; we refer to its element as an action. A generative probabilistic
automaton (GPA) over Ac is a triple X = (X,x0, c) where

– X is a nonempty set of states;
– x0 ∈ X is a chosen state which is called the initial one; and
– c : X → D({�} + Ac × X) is a transition function. Here {�} is a singleton; +

denotes the disjoint union; andD is the subdistribution operation such that for a set
Y

DY = {γ : Y → [0, 1] |
∑
y∈Y

γ(y) ≤ 1} . (1)

Such d ∈ DY is called a sub-distribution since its values add up to not more than
1, instead of precisely 1.
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The subdistribution c(x) tells the probabilistic behavior of a statex. The value c(x)(a, x′)
with a ∈ Ac and x′ ∈ X is the probability with which x makes the action a and moves
to x′; that is, c(x)(a, x′) = Pr[x a→ x′]. We interpret the symbol� as successful termi-
nation; thus with the probability c(x)(�) = Pr[x→ �] the state x is led to successful
termination. The remaining probability 1− c(x)(�)−

∑
a,x′ c(x)(a, x′)—which may

be more than 0 since c(x) is a subdistribution—is understood as the probability with
which x gets into deadlock.

GPAs are said to be generative, in contrast to reactive systems whose transition func-
tion is given as, say, c : Ac ×X → D({�} + X). They differ in whether an action is
chosen by the system or by the environment; see [4].

GPAs can be thought of as a probabilistic variant of labeled transition systems (LTSs).
DTMCs, which we introduce shortly, are then probabilistic Kripke frames. The notion
is standard, see e.g. [14,1]. The definitions in the literature vary in details; the following
one is adapted to fit the current context.

Definition 2.2 (Discrete-Time Markov Chain, DTMC). Let AP be a fixed set of
atomic propositions. A discrete-time Markov chain (DTMC) over AP is a quadruple
X = (X,x0, l, p) where

– X is a nonempty set of states, among which x0 ∈ X is an initial state;
– l : X → P(AP) is a labeling function where P denotes the powerset. This assigns

to a state x ∈ X the set l(x) of atomic propositions that hold at x;
– p : X → DX is a transition function, whereD is the operation in (1).

A DTMC has labels on its states, while a GPA has labels on its transitions.

3 Jonsson-Larsen Simulation

For DTMC and its variants, a standard definition of simulation [12] uses weight func-
tions. Here we present the definition for DTMC taken from [1]. This family of simula-
tion notions—based on weight functions—will be called Jonsson-Larsen simulation.

Definition 3.1 (JL-simulation for DTMC). Let X = (X,x0, l, p) and Y = (Y, y0,
m, q) be DTMCs. A Jonsson-Larsen simulation (JL-simulation) from X to Y is a rela-
tion R ⊆ X × Y which satisfies the following.

1. The initial states are related, that is, x0Ry0.
2. Related states satisfy the same atomic propositions: xRy implies l(x) = m(y).
3. For each x ∈ X and y ∈ Y such that xRy, there exists a weight function

Δx,y :
(
{⊥}+ X

)
×
(
{⊥}+ Y

)
−→ [0, 1] such that

(a) Δx,y(u, v) > 0 implies either
– u = ⊥, or
– u = x′ ∈ X , v = y′ ∈ Y and x′Ry′;

(b) Δx,y(⊥,⊥) +
∑

y′∈Y Δx,y(⊥, y′) = 1−
∑

x′∈X p(x)(x′) ;
(c) for each x′ ∈ X : Δx,y(x′,⊥) +

∑
y′∈Y Δx,y(x′, y′) = p(x)(x′) ;

(d) Δx,y(⊥,⊥) +
∑

x′∈X Δx,y(x′,⊥) = 1−
∑

y′∈Y q(y)(y′) ;
(e) for each y′ ∈ Y : Δx,y(⊥, y′) +

∑
x′∈X Δx,y(x′, y′) = q(y)(y′) .
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Although illustration of the previous definition is found e.g. in [1, Ex. 14], the definition
hardly seems as “canonical” or “intuitive” as other notions such as (bi)simulation for
ordinary LTS. For example, the only asymmetry between X and Y is found in Cond.
3.(a) where u, not v, is allowed to be ⊥. One might wonder if it is possible to weaken
this condition. Weakening = into ⊆ in Cond. 2 looks like another possibility. It is not
clear either how to adapt this definition to GPA. Even less clear is whether the adapted
notion satisfies soundness—existence of a simulation implies trace inclusion—which is
a natural property to expect.

What we do in the rest of the paper is to put the above definition in a coalgebraic
context. First it will be identified with a restriction of Hughes and Jacobs’ simulation
(HJ-simulation) [10]. From this we immediately obtain natural generalizations of the
original definition, which are hinted above. The generic theory in [10] can be used to
conduct some “sanity checks” for the generalized definitions. Adaptation to GPA comes
for free, too. After that we will identify HJ-simulation with a certain subclass of Kleisli
simulation from [5]. Soundness of JL-simulation for GPA is its corollary.

4 Hughes-Jacobs Simulation

4.1 Coalgebraic Modeling

BX

X
c

In the Hughes-Jacobs theory of coalgebraic simulation, a system is modeled as
a B-coalgebra, which is a function c of the type on the right. The set X (which
is arbitrary) is the system’s state space; the operation B specifies the kind of
transitional behavior exhibited by the system; and the function c determines the
system’s dynamic behavior. We now elaborate on the operation B, which takes a set X
and returns another set BX .

Roughly speaking, it is the operation B which determines what kind of systems we
are talking about. One choice of B makes a B-coalgebra an LTS; another choice of B
is for a deterministic automaton (DA); and so on. Specifically,

B P(Ac× ) 2× ( )Ac (Acout × )Acin D
(
{�}+ Ac×

)
P(AP)×D( )

B-coalg. LTS DA Mealy mach. GPA DTMC

When B is D
(
{�} + Ac ×

)
, a B-coalgebra is a function c : X → D

(
{�} +

Ac × X
)
; this is precisely a GPA (Def. 2.1) without an explicit initial state. For B =

P(AP)×D( ), a B-coalgebra is a function c : X → P(AP)×DX , which is identified
with a DTMC (without an initial state) via the following bijective projection-tupling
correspondence.

X −→ P(AP)×DX

X −→ P(AP) X −→ DX

c
∼=

(π1 ◦ c, π2 ◦ c)

〈l, p〉 := λx. ( l(x), p(x) )

(l, p)
∼=

Here πi denotes the i-th projection; 〈l, p〉 denotes the tupling of l and p.



Generic Forward and Backward Simulations II: Probabilistic Simulation 451

To develop a “theory of systems” on top of this modeling, an operation B needs to
be a functor. Leaving its detailed treatment to literature like [11], what it means is that
the operation B not only applies to sets (i.e. X �→ BX) but also to functions. That is,

B : (X
f−→ Y ) �−→ (BX

Bf−→ BY ) .

Note the domain and the codomain of the resulting function Bf .
The previous examples of B have natural action on functions. For example, given a

function f : X → Y ,

P(Ac×X)
P(Ac×f)−→ P(Ac× Y ) , u �−→

{
(a, f(x))

∣∣ (a, x) ∈ u
}

;

D
(
{�}+ Ac×X

) D({�}+Ac×f)−→ D
(
{�}+ Ac× Y

)
,

γ �−→
[
� �→ γ(�) , (a, y) �→

∑
x∈f−1({y}) γ(a, x)

]
;

P(AP)×DX
P(AP)×Df−→ P(AP)×DY , (u, γ) �−→

(
u,
[
y �→

∑
x∈f−1({y}) γ(x)

] )
.

To be precise, such B is a functor of the type Sets→ Sets, from the category Sets of
sets and functions to itself. We make a formal definition for the record.

Definition 4.1 (Functor, coalgebra). A functor B : Sets → Sets consists of its

action on sets X �−→ BX and on functions (X
f→ Y ) �−→ (BX

Bf→ BY ), for each X
and f . This is subject to the following conditions:

B(X idX→ X) = (BX
idBX→ BX) ; B(X

f→ Y
g→ U) = (BX

Bf→ BY
Bg→ BU) .

A B-coalgebra is a pair (X, c : X → BX) of a set and a function; we shall simply
denote it by X

c→ BX .

The functoriality of B is crucial in the following definition of coalgebraic bisimulation
(notice use of Bπi). The definition subsumes many known notions of bisimulation.

Definition 4.2. Let B : Sets → Sets be a functor and c :
X → BX and d : Y → BY be B-coalgebras. A coalgebraic
bisimulation is a relation R ⊆ X × Y such that: there exists
a function r : R → BR that makes the diagram on the right
commute. Here π1 and π2 are obvious projections.

BX BR
Bπ1 Bπ2

BY

X
c

R
r

π1 π2
Y

d

(2)

When B represents purely probabilistic systems such as DTMCs, the above coalge-
braic bisimulation instantiates to the one that uses a weight function. It coincides with
the more common formulation via equivalence classes [15]. The coincidence proof is
implicit in [12, Thm. 4.6] and is much more systematically conducted in [19].

4.2 Hughes-Jacobs Simulation

Roughly speaking, simulation is “one-sided” bisimulation. When R is a simulation and
xRy, we require y to exhibit “at least as much” behavior as x does, that is,

(x’s behavior) � (y’s behavior)
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in terms of a suitable preorder� of “behavior inclusion.” Hughes and Jacobs [10] used
this intuition and defined generic simulation as a variant of Def. 4.2. In order to do so,
a functor B : Sets→ Sets needs to come with a “behavior-inclusion” preorder�.

Definition 4.3 (Functor with preorder). A functor with preorder consists of a functor
B : Sets → Sets and a class of preorders {�BX}X for each set X , where �BX is
on the set BX . Further, given a function f : X → Y , its action Bf : BX → BY is
required to be a monotone function. We often suppress the subscript in �BX .

Example 4.4. Let B = P(Ac × ), for which B-coalgebras are LTSs. It is a functor
with preorder, with a natural choice of �BX being the inclusion order.

Let B = D
(
{�}+ Ac×

)
; a B-coalgebra is a GPA. For γ, δ ∈ BX we define

γ �BX δ
def.⇐⇒ γ(�) ≤ δ(�) and γ(a, x) ≤ δ(a, x) for each a and x.

Note that �BX need not be reduced to the equality, since γ and δ are subdistributions.
Let B = P(AP) × D( ); a B-coalgebra is then a DTMC. There are a few natural

candidates for the preorder�BX . One is:

(u, γ) �=
BX (v, δ) def.⇐⇒ u = v and γ(x) ≤ δ(x) for each x.

We denote this order by �=. Noting that u and v are subsets of AP, we could replace
the condition u = v by u ⊆ v, for example. The resulting order will be denoted by�⊆.

Definition 4.5 (HJ-simulation). Let (B,�) be a functor

with preorder, and X
c→ BX, Y

d→ BY be B-coalgebras.
A Hughes-Jacobs simulation (HJ-simulation) from c to d is
a relation R ⊆ X × Y such that: there exists a function
r : R→ BR which makes the inequalities on the right hold.

BX BR
Bπ1 Bπ2

BY

X
c

R
r

π1 π2

� �
Y

d

(3)

That is to be precise: for each (x, y) ∈ R

(c ◦ π1)(x, y) �BX (Bπ1 ◦ r)(x, y) and (Bπ2 ◦ r)(x, y) �BY (d ◦ π2)(x, y) .

The formulation is different from the original one [10] where a lax relation lifting is
used. The equivalence is proved in [7, Appendix A.1].

4.3 Jonsson-Larsen Simulation as Hughes-Jacobs Simulation

Here is the first main observation in this paper: JL is HJ. The order�= is from Ex. 4.4.

Theorem 4.6. Let X = (X,x0, l, p) and Y = (Y, y0,m, q) be DTMCs, and let R be
a JL-simulation from X to Y . Then R is a HJ-simulation from the coalgebra 〈l, p〉 to
〈m, q〉: there exists r that makes the following (in)equalities hold.

P(AP)×DX P(AP)×DR
P(AP)×Dπ1 P(AP)×Dπ2 P(AP)×DY

X
〈l,p〉

R
r

π1 π2
= �=

Y
〈m,q〉

��

We include initial states (Cond. 1, Def. 3.1) and obtain the following characterization.
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Theorem 4.7 (JL is HJ). Let X and Y be DTMCs in Thm. 4.6. A relation R ⊆ X ×Y
is a JL-simulation if and only if there exist functions r and r0 that make the following
(in)equalities hold. The set {∗} is a singleton.

P(AP)×DX P(AP)×DR
P(AP)×Dπ1 P(AP)×Dπ2 P(AP)×DY

X
〈l,p〉

R
r

π1 π2

= �=

Y
〈m,q〉

{∗}x0
r0 y0

= =

(4)

Note that a function x0 : {∗} → X can be identified with an element x0 ∈ X . ��

4.4 Generalized Jonsson-Larsen Simulation

Thm. 4.7 shows that JL-simulation does not reach the full generality of HJ-simulation:
the top-left square is an equality in (4), which is not necessary. Translating HJ-simulation
into the Jonsson-Larsen style concrete terms, we are led to the following definition.

Definition 4.8 (JL’-simulation for DTMC). A JL’-simulation is the same thing as a
JL-simulation (Def. 3.1) except for the following.

– A weight function is of the type Δx,y :
(
{⊥}+ X

)
×
(
{⊥}+ Y

)
−→ [−1, 1].

– Cond. 3.(a) is weakened: the value of Δx,y(u, v) must lie in the following range,
according to u and v:
• when u = x′ ∈ X and v = y′ ∈ Y , if x′Ry′

then Δx,y(x′, y′) ≥ 0; if (x′, y′) �∈ R then
Δx,y(x′, y′) = 0;

• Δx,y(⊥, y′) ≥ 0 for each y′ ∈ Y ;
• Δx,y(x′,⊥) ≤ 0 for each x′ ∈ X ;
• Δx,y(⊥,⊥) can be positive, zero or negative.

u\v ⊥ · · · y′ · · ·
⊥ � 0 ≥ 0
.
.
.

x′
.
.
.

≤ 0
{≥ 0 (x′Ry′)

0 (o.w.)

– Cond. 3.(b) and 3.(d) are dropped.

Now a weight function can take negative values. Cond. 3.(b) and 3.(d) played no role
in Thm. 4.6, hence are dropped. Similarly to JL-simulation, finding a weight function
is filling in the matrix above on the right, in such a way that its rows and columns add
up to the right values like p(x)(x′) or q(y)(y′). The task is easier with JL’-simulation
because each entry can be picked from a broadened domain.

One can further generalize the previous definition by replacing�= by�⊆ (Ex. 4.4):
in this case the system X to be simulated satisfies no more atomic propositions than Y
does. This generalization is useful e.g. when we are interested in safety properties, and
atomic propositions represent systems’ actions.

Definition 4.9 (JL”-simulation for DTMC). A JL”-simulation is the same as a JL’-
simulation (Def. 4.8), except that Cond. 2 is replaced by

2. xRy implies l(x) ⊆ m(y).

Proposition 4.10. Let X and Y be DTMCs as in Thm. 4.6, and R ⊆ X × Y .
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1. The relation R is a JL’-simulation if and only if there exist r and r0 that validate
the (in)equalities in (4), with the top-left equality replaced by �=.

2. The relation R is a JL”-simulation if and only if there exist r and r0 that validate
the diagram (4), with the top two squares filled with �⊆. ��

Let us do some sanity checks. The following holds for JL” instead of JL’ too; also for
the conventional notion of JL simulation (see [1]).

Proposition 4.11. Let X = (X,x0, l, p) and Y = (Y, y0,m, q) be DTMCs.

1. If R ⊆ X × Y is a bisimulation, then R and Rop are both JL’-simulations.
2. The family of JL’-simulations from X to Y is closed under arbitrary unions. There-

fore there is the largest JL’-simulation
JL′ , called JL’-similarity.
3. JL’-simulations are closed under composition. Hence 
JL′ is transitive.

Proof. We apply Lem. 4.2 and Prop. 5.4 of [10]. This involves checking a technical
condition of stability of orders. See [7]. ��

4.5 Jonsson-Larsen Simulation for GPA

Another implication of Thm. 4.7 is adaptation of JL-simulation for other kinds of prob-
abilistic systems, via HJ-simulation which is general by definition.

Definition 4.12 (JL-simulation for GPA). Let X = (X,x0, c) and Y = (Y, y0, d) be
GPAs. A JL-simulation from X to Y is a relation R ⊆ X × Y such that:

1. The initial states are related, that is, x0Ry0.
2. For each pair (x, y) ∈ R, there exists a weight function

Δx,y :
(
{⊥}+{�}+Ac×X

)
×
(
{⊥}+{�}+Ac×Y

)
−→ [−1, 1] such that

(a) Δx,y(u, v) lies in
the range on the
right. In particular,
Δx,y((a, x′), (a′, y′)) >
0 only if a = a′ and
x′Ry′;

u\v ⊥ � · · · (a1, y′
1) · · · · · · (a2, y′

2) · · ·
⊥ � 0 ≥ 0 ≥ 0 ≥ 0

� ≤ 0 ≥ 0 0 0

.

.

.
(a1, x′

1).
.
.

≤ 0 0

{
≥ 0 (x′

1Ry′
1)

0 (o.w.)
0

.

.

.
(a2, x′

2).
.
.

≤ 0 0 0

{
≥ 0 (x′

2Ry′
2)

0 (o.w.)

(b) c(x)(�) = Δx,y(�,⊥) + Δx,y(�,�) ;
(c) c(x)(a, x′) = Δx,y((a, x′),⊥) +

∑
y′ Δx,y((a, x′), (a, y′)) for each a and x′;

(d) d(x)(�) = Δx,y(⊥,�) + Δx,y(�,�) ;
(e) d(y)(a, y′) = Δx,y(⊥, (a, y′)) +

∑
x′ Δx,y((a, x′), (a, y′)) for each a and y′.

This definition seems to appear for the first time. It coincides with HJ-simulation for
B = D({�}+Ac×( )), with B equipped with the order in Ex. 4.4 (the proof is easy).
Properties like in Prop. 4.11 hold as well. Remaining is the issue of soundness; it is not
obvious at all from the above complicated definition. One of our main contributions is
the soundness proof later in §5.7, which uses the generic theory in [5].
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5 Kleisli Forward and Backward Simulation

We now describe the third kind of simulation from [5]. We shall refer to this family as
Kleisli simulation, for the reason that is explained shortly. Kleisli simulation consists of
four subclasses: forward, backward, and two hybrid ones, like in [16]. The most notable
difference from JL- and HJ-notions is that a Kleisli simulation is itself not a relation.

5.1 Kleisli Arrow

First we fix our domain of discourse—Kleisli arrows. They are arrows in a Kleisli cat-
egory, a standard categorical construct. Our description is however in concrete terms.

Definition 5.1 (Kleisli arrow). Let X and Y be arbitrary sets. A Kleisli arrow from X
to Y , denoted by f : X −�→ Y , is a function f : X → DY . A few typical Kleisli arrows:

– The Kleisli arrow ηX : X −�→ X , for each X , is the function ηX : X → DX that
carries x ∈ X to [x �→ 1].

– Given consecutive Kleisli arrows X
f
−�→ Y and Y

g
−�→ U , we have g � f : X −�→ U by

g � f : X −→ DU , x �−→ λu.
∑

y∈Y g(y)(u) · f(x)(y) .

– For each (ordinary) function f : X → Y , we have Jf : X −�→ Y defined by X
f→

Y
ηY→ DY . That is, (Jf)(x) = [f(x) �→ 1]. This generalizes ηX by: ηX = J(idX).

The following are straightforward; they say that Kleisli arrows form a category.

Proposition 5.2. 1. Composition of Kleisli arrows is associative: for three consecu-

tive Kleisli arrows X
f
−�→ Y

g
−�→ U

h
−�→ V , we have h� (g � f) = (h� g)� f .

2. η is the unit of composition: for X
f
−�→ Y we have ηY � f = f = f � ηX . ��

One can think of a Kleisli arrow f : X −�→ Y as a “function from X to Y , with implicit
probabilistic branching”; or as a “probabilistic computation of input type X and output
type Y .” The operator � realizes natural composition of such probabilistic computa-
tions. The embedding Jf of an ordinary function endows f with trivial branching.

There is a natural order between parallel Kleisli arrows.

Definition 5.3. Between a parallel pair of Kleisli arrows f, g : X −�→ Y , we define an
order f � g if: f(x)(y) ≤ g(x)(y) for each x ∈ X and y ∈ Y .

5.2 Probabilistic Systems as Kleisli Coalgebras

A GPA X = (X,x0, c) (Def. 2.1) can be presented by two Kleisli arrows:

{∗}
Jx0−�−→ X

c
−�−→ {�}+ Ac×X . (5)

This is a prototype of the kind of systems on which we define Kleisli simulation. First
we parametrize the ‘{�}+ Ac× ( )’ part in the above.
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Definition 5.4 (Polynomial functor). A polynomial functor is a functor F : Sets →
Sets which is constructed

– from the identity functor ( ) and the constant functor C for each set C,
– using finite products and arbitrary disjoint union (i.e. coproduct).

In the BNF notation: F ::= ( ) | C | F1 × F2 |
∐

i∈I Fi.

The functor {�}+ Ac× ( ) is polynomial; so is e.g. (Ac + )∗ =
∐

n<ω(Ac + )n.

Lemma 5.5. A polynomial functor F has canonical action on Kleisli arrows, carrying

X
f
−�→ Y to FX

Ff
−�→ FY .

Proof. A general categorical proof is found in [8, §2.2]; one can also define such action
concretely by induction on the construction of F . ��

In most cases F ’s action on Kleisli arrows is obvious. For F = {�}+Ac× ( ) and f :
X−�→ Y , the Kleisli arrow Ff : FX−�→ FY is given by the function {�}+ Ac×X −→
D({�}+ Ac× Y ), defined by

� �−→ [� �→ 1 ] , (a, x) �−→ [ (a, y) �→ f(x)(y) ]y∈Y .

Definition 5.6 (Probabilistic F -system). Let F be a polynomial functor. A probabilis-
tic F -system (or simply F -system) is a triple X = (X, s, c), where X is an arbitrary set

and {∗}
s
−�−→ X

c
−�−→ FX are two Kleisli arrows. Recall that probabilistic branching

is implicit in Kleisli arrows.

Example 5.7. A GPA induces an F -system, with F = {�} + Ac × ( ); see (5). F -
system is more general than GPA since the former allows a subdistribution on initial
states (i.e. s ∈ DX) rather than a single initial state. This additional generality is how-
ever not important.

A DTMC cannot be seen as an F -system as it is: its dynamics is given by a function

X
〈l,p〉→ P(AP) × DX which cannot be understood as a Kleisli arrow. We can fix it by

moving “state labels” into “transition labels.” Let us define a function cl,p by

cl,p : X −→ D
(
P(AP)×X

)
, x �−→

[
(l(x), x′) �→ p(x)(x′)

]
x′∈X

;

then the F -system {∗}
Jx0−�→ X

cl,p

−�→ P(AP)×X represents a DTMC (X,x0, l, p).

The notion of (probabilistic) F -system is essentially a Kleisli F -coalgebra X
c
−�→ FX

equipped with an explicit initial state {∗}
s
−�→ X . In coalgebraic studies it is usually

unnecessary to speak about explicit initial states; we however need that in this paper for
formulating the soundness result (Thm. 5.20). See [6, §3.2.4].

Let us compare the current Kleisli coalgebraic modeling of GPAs (Ex. 5.7) with
the modeling in §4.1. They are the same in that the dynamics of a GPA is represented
by a function X → D({�} + Ac × X). In the Kleisli modeling, the functor B =
D({�} + Ac × ( )) is divided into D (branching part) and F = {�} + Ac × ( )
(transition/action part); the former is then “thrown under the rug” using Kleisli arrows.
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5.3 Kleisli Simulation

Definition 5.8 (Kleisli simulation). Let F be a polynomial functor and X = (X, s, c)
and Y = (Y, t, d) be F -systems. A forward Kleisli simulation from X to Y is a Kleisli
arrow f : Y −�→ X such that c� f � (Ff)� d and s � f � t (see below left). Note the
direction of f . It is also called simply a forward simulation.

FX
F f

fwd. FY

X
c f�

Y
d

{∗}s t
�

FX
F b

bwd. FY

X
c

b
�

Y
d

{∗}s t
�

A backward (Kleisli) simulation is a Kleisli arrow b : X−�→ Y such that (Fb)�c � d�b
and b� s � t (see above right). Here the order� refers to the one in Def. 5.3.

In fact, the last definition is an instance of generic forward and backward simulation
in [5,6]. The general definition has an extra parameter T that specifies a branching type.
It is fixed to T = D in this paper, representing probabilistic branching. Another main
example is T = P , the powerset operation, for non-deterministic branching.

This extra parameter T is used in the definition of Kleisli arrow. Namely, f : X−�→ Y
is defined to be a function f : X → TY . When T = P , a Kleisli arrow f : X −�→ Y
can be identified with a binary relation Rf ⊆ X ×Y : xRfy if and only if y ∈ f(x). In
this case, if moreover F = Ac × ( ) for which F -systems are ordinary LTSs, Kleisli
simulation (Def. 5.8) coincides with the standard notions of forward and backward sim-
ulation for LTS (see e.g. [16]). To summarize: probabilistic Kleisli simulation (Def. 5.8)
is a natural generalization of non-deterministic simulation in [16].

5.4 Kleisli Simulation for GPA

We further instantiate the definition to GPA, i.e. F = {�}+ Ac× ( ). It demonstrates
Kleisli simulation’s affinity to the conventional simulation notions for LTS.

Notation 5.9. A forward simulation is a function f : Y → DX ; we write Pr[y ��� x]
for the value f(y)(x). We let Pr[x→ �] and Pr[x a→ x′] have their obvious meanings.
We also compose events; for example

Pr[y ��� x
a→ x′] := Pr[y ��� x] · Pr[x a→ x′] = f(y)(x) · c(x)(a, x′) .

For a backward simulation, we write Pr[x ��� y] for b(x)(y).

Definition 5.10 (Forward simulation for GPA). Let X = (X,x0, c) and Y = (Y,
y0, d) be GPAs. A forward (Kleisli) simulation from X to Y is a function f : Y → DX
which satisfies the following (in)equalities.

Pr[y0 ��� x0] = 1 (INIT)∑
x∈X Pr[y ��� x→ �] ≤ Pr[y → �] for each y ∈ Y (TERM)∑
x∈X Pr[y ��� x

a→ x′] ≤
∑

y′∈Y Pr[y a→ y′ ��� x′]

for each y ∈ Y , a ∈ Ac and x′ ∈ X (ACT)
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The condition (ACT) is illuminating. It can be depicted as the below left, which bears a
clear affinity to the standard non-deterministic condition shown on the right.

Pr
[ y

• a
x′

]
≤ Pr

[
y a •

x′

] ( y

• a
x′

)
implies

(
y a ∃•

x′

)
Definition 5.11 (Backward simulation for GPA). A backward (Kleisli) simulation
from X to Y is a function b : X → DY which satisfies the following inequalities.

Pr[x0 ��� y0] ≤ 1 (INIT)

Pr[x→ �] ≤
∑

y∈X Pr[x ��� y → �] for each x ∈ X (TERM)∑
x′∈X Pr[x a→ x′ ��� y′] ≤

∑
y∈Y Pr[x ��� y

a→ y′]

for each x ∈ X , a ∈ Ac and y′ ∈ Y (ACT)

5.5 Hughes-Jacobs Simulation as Hybrid Kleisli Simulation

Definition 5.12 (Hybrid simulation). Let X = (X, s, c) and Y = (Y, t, d) be F -
systems. A forward-backward (Kleisli) simulation is a triple (U , f, b) where

– U = (U, u, e) is an F -system called the intermediate system;
– f is a forward simulation from X to U , and
– b is a backward simulation from U to Y . See below on the left.

FXfwd.-bwd. FU
Ff Fb

FY

X
c

U
ef b

� �

��
Y

d

{∗}
u

s t

FXbwd.-fwd. FU
Fb Ff

FY

X
c

U
e

b f� �

��
Y

d

{∗}
u

s t

Similarly, a backward-forward (Kleisli) simulation is a triple (U , b, f) of an intermedi-
ate system U , a backward simulation b from X to U , and a forward simulation f from
U to Y . See above on the right.

Proposition 5.13. Let X ,Y be F -systems. If there is a non-hybrid simulation from X
to Y , then there are both fwd.-bwd. and bwd.-fwd. ones from X to Y .

Proof. A forward simulation f from X to Y induces a backward-forward simulation
(X , J(id), f); it has X itself as an intermediate system. The other cases are similar. ��

Lemma 5.14. Let F be a polynomial functor. Then the functor DF has the following
natural order. This makes (DF,�DF ) a functor with preorder (Def. 4.3).

γ �DFX δ
def.⇐⇒ γ(u) ≤ δ(u) for all u ∈ FX . ��

When F = {�} + Ac × ( ) and B = DF , both B-coalgebras and probabilistic F -
systems represent GPAs. In this case, the order on B in the previous definition coincides
with the one in Ex. 4.4.

Here comes our second main observation.
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Theorem 5.15 (HJ is Kleisli). Let X
c→ DFX and Y

d→ DFY be DF -coalgebras,
x0 ∈ X and y0 ∈ Y be chosen (initial) states, and R ⊆ X × Y be a relation. Assume
that there exists a function r that validates the inequalities in the diagram on the left,
that is, that R is a HJ-simulation from c to d such that x0Ry0.

DFX DFR
DF π1 DF π2 DFY

X
c

R
r

π1 π2

�DF �DF

Y
d

{∗}
〈x0,y0〉

x0 y0

=⇒
FX FR

F (Jπ1) F (Jπ2)

FY

X
c

R
r

Jπ1 Jπ2

� �
Y

d

{∗}
J〈x0,y0〉

Jx0 Jy0

(6)

Then we have a fwd.-bwd. simulation from the F -system (X, Jx0, c) to (Y, Jy0, d),
shown above on the right. Note the order � therein refers to the one in Def. 5.3. ��

In short: a HJ-simulation between DF -coalgebras induces a fwd.-bwd. simulation be-
tween the corresponding F -systems. The proof is found in [7].

Fwd.-bwd. simulation instantiates to GPA, like in §5.4. Thm. 4.7 yields:

Corollary 5.16 (JL is Kleisli). Let X and Y be GPAs. A JL-simulation R from X to Y
induces a fwd.-bwd. (Kleisli) simulation from X to Y . ��

5.6 Generic Trace Semantics

Like in [16], the principal aim of Kleisli simulation is to show trace inclusion—a re-
finement relation with respect to (linear time) trace semantics which is the coarsest in
the spectrum of [3]. Our use of the generic notion of Kleisli coalgebra calls for a generic
definition of trace semantics too. We employ the theory in [8]; here is its quick recap.

A polynomial functor F always has an initial algebra α : FA
∼=→ A. The intuition

is: F represents a set of datatype constructors; and A is the induced inductive datatype.
The algebraic structure α always becomes an invertible function.

Example 5.17. The functor F = {�}+Ac×( ) is thought of as: a nullary constructor
� and a family of unary constructors a( ), for each a ∈ Ac. The induced inductive
datatype is the set Ac∗ = {a1a2 · · · an� | n < ω, ai ∈ Ac} of (finite) lists over
Ac. This set indeed carries an initial algebra: there is a canonical algebraic structure

α : {�}+ Ac× Ac∗
∼=−→ Ac∗, namely

� �−→ � (the empty sequence), (a, a1 · · · an�) �−→ aa1 · · · an� .

The following is the main result in [8], adapted to the current context.

Theorem 5.18 (Generic (finite) trace semantics). Let
α : FA→ A be an initial algebra. Given any F -system
X = (X, s, c), there is a unique Kleisli arrow tr(c) that
makes the diagram on the right commute. In particular,
the Kleisli coalgebra J(α−1) is a final coalgebra.

FX
F (tr(c))

FA

X
c tr(c)

A
J(α−1)

{∗}s
tr(c)�s

(7)

We set tr(X ) := tr(c) � s. It is tr(X ) : {∗} → DA as a function, hence is a sub-
distribution over A. This tr(X ) is referred to as the (finite) trace semantics of X . To
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summarize: the action type F determines the set A of linear-time behavior; X ’s trace
semantics tr(X ) tells us which linear-time behavior is exhibited with how much likeli-
hood.

Example 5.19 (Trace semantics for GPA). Let F = {�}+Ac×( ). The diagram (7)
translates into the following conditions, where σ ranges over Ac∗.

tr(c)(x)(�) = Pr[x→ �] ,

tr(c)(x)(aσ) =
∑

x′∈X Pr[x a→ x′] · tr(c)(x′)(σ) ; and
tr(X )(σ) = tr(c)(x0)(σ) when s(∗) = [x0 �→ 1].

This is a reasonable definition of a “trace semantics” for GPA; resulting is a subdistri-
bution tr(X ) over lists on Ac. For example, let X be the GPA below on the left; then its
trace semantics is as on the right.

x0
a[ 13 ]

a[ 13 ]
1
3

x1
1
2

a[ 12 ]

x2a[1] �
tr(X )=

[
� �→ 1

3 , a� �→ 1
3 ·

1
2 , a2� �→ 1

3 ·
1
2 ·

1
2 , · · ·

an� �→ 1
3 ·
(

1
2

)n
, · · ·

]

Note that our trace semantics only captures finite behavior; infinite sequences like aω

are not in its domain Ac∗. With infinite behavior included we no longer have a clean
characterization like in Thm. 5.18.

Like the definition of Kleisli simulation, the generic trace semantics (Thm. 5.18) also
applies to other kinds of branching such as non-determinism. See [8].

5.7 Soundness Theorems

We recall the soundness result [5] for Kleisli simulation, via which soundness of JL- and
HJ-simulation immediately follows. Its short proof in [5] makes use of order-theoretic
properties of the diagram (7).

Theorem 5.20 (Soundness of Kleisli). Let X ,Y be F -systems. Existence of a Kleisli
simulation from X to Y implies trace inclusion: tr(X ) � tr(Y). Here a Kleisli simula-
tion can be any of forward, backward, or hybrid. ��
Using Thm. 5.15 and Cor. 5.16, we immediately obtain soundness of JL-simulation
(Def. 4.12). This is new to the best of the author’s knowledge. Therefore the notion of
JL-simulation can also be used for proving trace inclusion between GPAs, a use that has
not been investigated much in the literature. The same applies to JL- and JL’-simulation
for DTMCs; we postpone detailed treatment to another venue.

6 Conclusions and Future Work

We have showed that JL-simulation is a special case of HJ-simulation, which is further
a special case of Kleisli simulation. This allows to transfer general results for a latter
notion to a former one, most notably soundness.

Finding a Kleisli simulation is reduced to solving a family of linear inequalities. Its
algorithmic aspect is to be investigated. We also aim to exploit acquired genericity and
apply our results to other kinds of systems. We are interested in stochastic context-free
grammars which have their application in modeling the secondary structure of RNA [2].
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Abstract. We are concerned with the availability of systems, defined as
the ratio between time of correct functioning and uptime. We propose to
model guaranteed availability in terms of regular availability expressions
(rae) and availability automata. We prove that the intersection problem
of rae is undecidable. We establish a Kleene theorem that shows the
equivalence of the formalisms and states precise correspondence of flat
rae and simple availability automata. For these automata, we provide
an extension of the powerset construction for finite automata due to
Rabin and Scott. As a consequence, we can state a complementation
algorithm. This enables us to solve the synthesis problem and to reduce
model checking of availability properties to reachability.

1 Introduction

Traditional approaches to system verification rely on idealistic assumptions, e.g.,
that each component will work perfectly all the time. However, in many appli-
cations such assumptions are unrealistic. Think of a sensor network where some
of the sensors fail and recover. Is then the whole information accumulated by
the network invalid?

Our paper is motivated by the desire to establish correctness properties of
unreliable reactive systems where components may fail for some time, or phrased
positively, are available only for a certain amount of time during an observation
interval. This property is known as (interval) availability. It is often studied
in the context of stochastic systems where one calculates the probability that a
component or system has a certain interval availability but it may also be studied
in the context of timed systems [dSeSG89, RS93, Tri01]. For continuous time
models, availability can be formalised using integrals. Letting sys(t) represent
proper system functionality ({0, 1}-valued) at time t, the expression

1
n
·
∫ n

0

sys(t) dt ≥ k
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states that the ratio of accumulated time the system is functioning as desired to
total uptime n is at least k ∈ [0, 1]. Thus, during the observation interval [0, n]
the system is available for fraction k of the time.

We discovered that availability can be studied already in the simpler setting
of discrete time, in terms of formal languages and automata-theoretic models.
This is what this paper is about. We express availability as the ratio of letters
from a set A in a word w = a1 · · ·an to the length n of the word. Formula

1
n
·

n∑
t=1

χA(at) ≥ k

states that in word w the letters of the set A are available for at least fraction
k of the time. When modelling, the set A may contain desired system states or
receipt actions of messages. Our contributions are as follows:

1. We introduce (in Section 2) the class of regular availability expressions (rae
for short). We prove that the problem whether the intersection of finitely
many raes denotes the empty language is undecidable. The proof is by re-
duction of the termination problem of Minsky machines.

2. We introduce (in Section 3) availability automata and establish a Kleene
theorem. It states that the class of languages denoted by flat raes coincides
with the class accepted by simple availability automata. We derive a corre-
spondence between intersections of raes and availability automata.

3. We extend (in Section 4) the powerset construction for finite automata
[RS59]. For a nondeterministic simple availability automaton it computes
an equivalent deterministic version. As a consequence, we derive a comple-
mentation algorithm for simple automata that solves the synthesis problem
and reduces model checking of availability properties to reachability.

2 Regular Availability Expression

We define availability for finite words w ∈ Σ∗ over an alphabet Σ. We denote by
|w| the length of the word. For A ⊆ Σ we denote by πA(w) the projection of w
to the alphabet A, i. e., the word that is derived from w by removing all letters
that are not in A. This notation allows for a concise definition of availability
that avoids division by zero in case w = ε:

1
n
·

n∑
i=1

χA(ai) ≥ k iff |πA(w)| ≥ k|w| with w = a1 . . . an.

Definition 1 (Syntax of raes). The set of regular availability expressions
(rae) over an alphabet Σ is inductively defined as follows:

rae ::= a � rae + rae � rae.rae � rae∗ � � � raeA�k

with a ∈ Σ, A ⊆ Σ, � ∈ {≥, >}, and k ∈ [0, 1].
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The symbol � marks the positions at which the required availability is checked.
At these positions, the expression raeA≥k ensures that the letters in A are avail-
able for at least fraction k. A highly available network may be specified by the
expression ((up + down)∗.�){up}>0.99. We abbreviate rae(Σ\A)≥1−k by raeA≤k.

An rae is flat if the operator raeA�k does not appear nested. Flat raes are
the intuitive model one expects. The system behaviour is captured by a regular
expression. For analysis purposes, availability constraints are added to restrict
the traces to the average behaviour. As the system typically does not react to the
occurrence number of events, nesting of availability operators is hardly needed.

Raes are given a semantics in terms of languages L (rae) ⊆ (Σ ∪ {�})∗:

L (a) := {a} L (rae1 + rae2) := L (rae1) ∪ L (rae2)
L (rae∗) := L (rae)∗ L (rae1.rae2) := L (rae1) .L (rae2)

L (�) := {�} L
(
raeA�k

)
:= L (rae)A�k .

Operator LA�k collects all words in language L, where each prefix ending in �
satisfies the availability A � k as discussed above (not counting �-symbols).
The operator also removes these symbols. Formally,

LA�k := {πΣ(w) � w ∈ L and |πA(w1)| � k|πΣ(w1)| for all w1.�.w2 = w}.

Raes and classical regular expressions differ in their properties. Raes have an
undecidable language intersection problem

L (rae1) ∩ L (rae2) = ∅. (Intersect)

Theorem 1. Intersect is undecidable.

Proof. The proof of Theorem 1 is by reduction of the termination problem for
Minsky machines to the intersection problem for raes. Since Minsky machines
are Turing complete [Min67, Theorem 14.1-1], termination is undecidable.

A Minsky machine M = (c1, c2, inst) has two counters c1 and c2 that store
arbitrarily large natural numbers and a finite set inst of labelled instructions
l : op. There are two kinds of operations op. The first, denoted by inc(c, l ′),
increments counter c ∈ {c1, c2} by one and then jumps to the instruction labelled
by l ′. The second command, denoted by dect(c, l ′, l ′′), is called a decrement and
test. It checks counter c for being zero and, in this case, jumps to instruction l ′.
If the value of c is positive, the counter is decremented and the machine jumps
to l ′′. We use Locs(inst) := {l � l : op ∈ inst} to refer to the set of control
locations in M . It contains an initial instruction lI ∈ Locs(inst) that starts the
computation of the Minsky machine. A final label lF /∈ Locs(inst) may appear
only as the destination of an instruction and terminates the computation.

Given a Minsky machine M = (c1, c2, inst) we define two raes so that the
intersection of their languages is non-empty iff the computation of M terminates.
Construction. We start by splitting each instruction in inst into two parts, one
part for each counter. This yields two new sets of instructions inst1 and inst2.
The parts added to inst1 only affect counter c1 and jump to the second part of
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the instruction in inst2. The parts added to inst2 affect counter c2 and jump to
the first part of the next instruction. Since every instruction in inst only changes
one counter, we need a new operation goto(l) to jump when no change is made:

li : inc(c1, lj) ∈ inst � li : inc(l ′i) ∈ inst1 ∧ l ′i : goto(lj) ∈ inst2

li : dect(c1, lj , lk) ∈ inst � li : dect(l ′i , l
′′
i ) ∈ inst1 ∧ l ′i : goto(lj) ∈ inst2

∧ l ′′i : goto(lk) ∈ inst2.

The translation for the second counter is similar. By this transformation, two
adjacent instructions l : op, l ′ : op always change first the counter c1 and then
c2. We encode the computation steps of the machines as l .cv.a.rv′

. l ′.cu.b.ru′
.

The sequence of v ∈ N letters c encodes the valuation of the counter c1 before
the first instruction. The following symbol a is either i , d , or ε depending on
whether operation l : op increments the first counter, decrements it, or does
not act on it. An ε is also used if op tests the first counter for being zero. The
result of the operation is stored as a sequence of result letters rv′

. We ensure
that v′ = v + 1 if a is an increment (similarly for decrement and goto) by an
availability expression av1, indicated by a brace in Formula 1 below. Then the
operation on c2 starts, indicated by its label l ′. In the encoding of the second
counter, b represents the operation to be performed.

The crucial issue is to transfer the result rv′
of an operation to the next

instruction that is executed. Again, we use an availability expression av2, which
now connects the encodings of two subsequent computation steps. To sum up, a
terminating computation of the machine is encoded by the word

av1︷ ︸︸ ︷[
lI .(cv0 .a0.rv1).l ′I .(c

u0 .b0.ru1)
]
.
[
l1.(cv1 .a1.rv2).l ′1.(c

u1 .b1.ru2)
]
. . . lF .︸ ︷︷ ︸

av2

(1)

To encode the effect of a goto, we demand equality between the number of c and
r symbols by stating that the availability of c is precisely 1/2. This is achieved
by the regular availability expression

GOTO :=
(
(c∗.r∗.�){c}≥1/2 .�

)
{c}≤1/2

.

To avoid clutter we abbreviate this by (c∗.r∗.�){c}=1/2 . Note that this trick is
only valid if there is exactly one �-symbol at the end of the expression. The fol-
lowing availability expressions implement increment and decrement operations:

INC := (c∗.i .r∗.�){c,i}=1/2 DEC := (c∗.d .r∗.�){c,i}=1/2 .

In the increment expression, the symbol i is counted like c and has to match
an additional r symbol, which ensures that the number of r symbols is by one
larger than the number of c symbols. Likewise in the decrement expression, the
symbol d has to match an additional c symbol, so the result value encoded by
the number of r symbols is by one smaller than the number of c symbols. Thus
all expressions encoding operations have the shape

(c∗.CMD .r∗.�){c,i}=1/2 with CMD := i + d + ε.
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With these definition, we define an availability expression rae(l : op) for every
instruction l : op. It ensures correct computation and control flow. Note that
tests for zero need to be implemented by ε instead of GOTO :

rae(l : inc(l ′)) := l .INC .l ′ rae(l : dect(l ′, l ′′)) := l .l ′ + l .DEC .l ′′

rae(l : goto(l ′)) := l .GOTO .l ′.

Combining all commands on a counter, we define

OP i := Σl:op∈inst irae(l : op) for i = 1, 2.

We rely on two availability expressions that define a word corresponding to
a terminating execution of the Minsky machine. The first expression imitates
instructions on the first counter and copies contents of the second. It also ensures
that the execution ends at the final label and that the second counter is initialised
to zero. The second expression executes instructions on the second counter and
copies the contents of the first. It also starts the execution at the initial label
and initialises the first counter with zero:

raecmp1(M ) := OP1.ε.CMD .
[
(r∗.OP1.c∗.�){c,i}∪Locs(inst1)=1/2 .CMD

]∗
.r∗.lF

raecmp2(M ) := lI .ε.CMD .
[
(r∗.OP2.c∗.�){c,i}∪Locs(inst1)=1/2 .CMD

]∗
.r∗.OP2.

To copy the result value r∗ from one computation step to the counter value c∗

in the next, we again employ availability expressions, i.e., we implement av2 in
Formula 1. One difficulty is that this copy operation is interrupted by an OP .
However, the definitions of INC , DEC , and GOTO guarantee an availability of
1/2 for the letters c, i between the labels. There are two labels in OP ; since those
from Locs(inst1) are in the availability set, the full OP-command guarantees an
availability of exactly 1/2. As a result, we obtain equality between r∗ and c∗.

One can show that M terminates if and only if the intersection

L (raecmp1(M )) ∩ L (raecmp2(M )) �= ∅.

is non-empty. The details can be found in the appendix. ��
Remark 1. The intersection problem remains undecidable for eight flat raes.
Each of the raes in the previous construction can be expressed by four flat
versions (note that an equality requires two constraints).

Theorem 1 shows that raes correspond to an automaton model that is strictly
more expressive than finite automata. We investigate it in the following section.

3 Availability Automata

We define availability automata as transition labelled finite automata enriched by
(availability) counters that determine the presence of certain letters within a run.
Each counter represents a check operation of an availability A � k with A ⊆ Σ
and k ∈ [0, 1], and transitions in the availability automaton are guarded by these
constraints. Additionally, each transition carries a reset operation Y := 0 that
denotes the counters that are reset so as to restart the measurement afterwards.
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Definition 2 (Availability automata). Let Σ be an alphabet. An availability
automaton over Σ is a tuple A = (Q ,QI ,QF ,X ,→, c) with states Q, initial
states QI ⊆ Q, and final states QF ⊆ Q. The availability counters are given by
X . The counter labelling function c : X → (P(Σ)×{≥, >}×[0, 1]) assigns to each
counter x ∈ X a constraint A � k. Transitions→ ⊆ Q×Σ×P(X )×P(X )×Q are
labelled by Σ, check the constraints of their counters, and reset some counters.

q1

q2 q3

a, b

a
x{a} := 0

a

b

b
x{a} ≥ 1/2

b

Consider the availability automaton to the
right. We employ the following notation. States
are drawn as nodes. Initial states have an in-
coming arc, final states carry a double circle.
The first part A ⊆ Σ of the counter labelling
c(x) = (A � k) is given as index xA of the
counter. If two counters are indexed by the same
set A, we use different variables xA and yA. A
transition (q1, a,C ,Y , q2) ∈ → is drawn as di-
rected arc from q1 to q2 labelled by a. A check
operation C = {xA} is written as xA � k, re-
vealing the remaining part of the counter la-
belling. A reset set Y = {xA} is denoted by
xA := 0.

To give an operational semantics, we exploit the following equivalence that
highlights the contribution of a single action to an availability expression:

|πA(w)| � k|w| iff |πA(w)| − k|w| � 0.

To check the availability A � k, we compare the value of |πA(w)| − k|w| against
zero. More importantly, this value can be computed incrementally by adding 1
for each occurrence of a symbol of A and subtracting k for every symbol. The
observation suggests the use of counter valuations γ : X → R. They assign to
each counter the value |πA(w)| − k|w| of the word w, which has been read since
the last reset. For a ∈ Σ, we denote by χ(a) : X → R the counter valuation
that assigns χA(a)− k to counter x checking c(x) = A � k. As usual, χA is the
characteristic function. This enables us to describe the update when processing
the character a by γ′ = γ + χ(a). The reset γ′ = γ[Y := 0] yields γ′(x) = 0 if
x ∈ Y and γ′(x) = γ(x) otherwise.

The semantics of an availability automaton A = (Q ,QI ,QF ,X ,→, l) is given
in terms of runs in the set R(A). A run r is a sequence

r = q0.γ0.a1.q1.γ1.a2.q2.γ2 . . . an.qn.γn ∈ R(A)

subject to the following constraints. Initially, all counters are zero, γ0(x) = 0
for all x ∈ X , and the run starts in an initial state, q0 ∈ QI . For every step
qi−1.γi−1.ai.qi.γi there is a transition (qi−1, ai,C ,Y , qi) ∈ → such that γi =
(γi−1 + χ(ai))[Y := 0] and for each constraint x ∈ C , γi−1(x) + χ(ai)(x) � 0.
By the above transformation, this guarantees the desired availability.

Runs contain internal information about states and counter valuations. We
abstract them away to obtain the usual notion of the language of an automaton.
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Definition 3 (Language). The language of A = (Q ,QI ,QF , X,→, l) is the
projection of all runs that end in a final location to their labels

L (A) := {a1 . . . an � q0.γ0.a1.q1.γ1 . . . an.qn.γn ∈ R(A) with qn ∈ QF}.

Like for finite automata, ε-transitions do not contribute to the expressiveness of
availability automata but are convenient when encoding raes.

Lemma 1. For every Σ ∪ {ε}-labelled availability automaton A, there is a Σ-
labelled availability automaton A′ with L (A) = L (A′).

As we will show later, the language emptiness problem is undecidable for general
availability automata. However, for automata with only one active counter in
each state emptiness becomes decidable. We call them simple.

Definition 4 (Simple availability automata). An availability automaton
A = (Q ,QI ,QF ,X ,→, c) is called simple, if there is at most one active counter
in each state. Formally, there is a mapping μ : Q → X such that each transition
(q, a,C ,Y , q′) ∈ → is only constrained by the counter of q, C ⊆ {μ(q)}, and re-
sets the counter of q′ if it differs from the counter of q, {μA(q′)} ⊆ {μA(q)}∪Y .

Simple automata capture precisely the languages of flat raes and are thus of
particular interest. The following two sections are devoted to the proof of this
statement. In general, availability automata are equivalent to intersections of
raes — modulo renaming.

3.1 From Expressions to Automata

To encode raes into availability automata, we define operators on the automata
that mimic the operations on raes. Choice A1 + A2, sequential composition
A1.A2, and iteration A∗ correspond to the constructions for finite automata.
Choice is defined by union, sequential composition introduces ε-transitions from
the final states of the first to the initial states of the second automaton, and
iteration introduces ε-transitions back to a fresh initial and final state. Different
from the classical definitions, counters are reset when a new automaton is entered
in A1.A2 and A∗. All these operations produce simple availability automata if
the input automata are simple.

An availability constraint AA�k is reflected by a relabelling of the automaton.
The idea is to let every former �-labelled transition check the constraint A � k.
To this end, a new counter xA is added to the automaton and every �-transition
is relabelled to ε and augmented by the counter’s constraint xA � k. For flat raes,
the operation results in a simple automaton, since the input is a finite automaton
without counters.

To reflect the intersection of languages — an essential ingredient in automata-
theoretic verification procedures — we define a synchronous product A1 ‖ A2. It
multiplies the states Q1×Q2, takes the pairs of initial states as initial Q1

I ×Q2
I ,

and likewise as final states Q1
F × Q2

F . Transitions synchronise on the label and
combine the guards. Note that simple availability automata are not closed under
synchronous product. The operators reflect their semantics counterparts.
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Proposition 1 (Semantic correspondence)

L (A1.A2) = L (A1) .L (A2) L (A∗) = L (A)∗

L (A1 +A2) = L (A1) ∪ L (A2) L
(
AA�m

)
= L (A)A�m

L (A1 ‖ A2) = L (A1) ∩ L (A2) .

Proposition 1 paves the way for a compositional definition of the automaton
representation A[[rae]] of an rae. A single action a is translated to the automaton
that has an a-transition from an initial to a final state. The remaining operators
are replaced homomorphically by their automata-theoretic counterparts.

Proposition 2 (Kleene’s first half). L (rae) = L (A[[rae]]). Moreover, if rae
is flat, then A[[rae]] is simple.

3.2 From Automata to Expressions

We start with a simple availability automaton A = (Q ,QI ,QF ,X ,→, c) and
its counter mapping μ : Q → X . Without changing the accepted language,
we can strip resets of counters that are not active in the successor state. We
compute a corresponding flat rae in two steps. First, we compute raeq,q′ that
describes all words from q to q′ that obey the counter’s availability constraint.
More precisely, the rae models all words that are accepted by A when starting
in q with a zero counter and reaching q′ with a reset only on the last edge.
Therefore, the concatenation raeq,q′ .raeq′,q′′ again corresponds to some partial
run of A. Likewise, we determine availability expressions raeq for the language
from q (with a zero counter and without passing reset edges) to a final state.

In a second step, we construct a finite state automaton which has these raes
as transition labels. When using Kleene’s classical result to compute the regular
expression corresponding to the automaton, we obtain a flat rae. It has precisely
the language of A. Since we recorded the measurements as raes, there is no need
to add further availability constraints.

Phase 1. For every pair of states q, q′ ∈ A, we construct a finite automaton1

Aq,q′ . We take the graph of A, make q the initial state, and add a fresh final
state. Resetting transitions that previously ended in q′ are redirected to the final
state. Thus, the measurement between q and q′ ends with a reset. The remaining
resetting transitions are removed. Since A is simple, this makes all states with
a different active counter unreachable, so they can be removed together with
their outgoing edges. The resulting automaton has the single counter x := μ(q).
To reflect measurements of c(x) on an a-labelled transition, we split the edge.
The first new transition is labelled by a, the second by �. Let →x denote the
outgoing transitions from a state where x is active, transitions →res ⊆ →x reset
the counter, and→c(x) ⊆ →x have c(x) as guard. By→std we refer to unguarded

1 A finite automaton is a tuple A = (Q ,QI ,QF ,→) with the typical interpretation as
states, initial states, final states, and transition relation → ⊆ Q × Σ ∪ {ε,�} × Q .
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and reset-free transitions in →x \ (→res ∪ →c(x)). They can be understood as
transitions of a finite automaton:

Aq,q′ := (μ−1(x) ∪ {qe � e ∈ →c(x)} ∪ {qν}, {q}, {qν},→std ∪ →split ∪ →redir ),

with →split := {(p, a, qe), (qe,�, p′) � e = (p, a, {x}, ∅, p′) ∈ →c(x)} and →redir

:= {(p, a, qν) � (p, a, ∅, {μ(q′)}, q′) ∈ →res}. If the resetting transition to q′ is
guarded, also the redirected edge is split up.

The finite automaton Aq is constructed similarly. It has q as initial state,
uses the final states of the original automaton, and removes all resetting edges.
Guarded transitions are again split up and decorated by �:

Aq := (μ−1(x) ∪ {qe � e ∈ →c(x)}, {q},QF ,→std ∪ →split )

We compute an ordinary regular expression req,q′ that accepts the language
of Aq,q′ . Adding the constraint c(x) yields raeq,q′ := [req,q′ ]c(x) that reflects the
measurement between q and q′. We also construct req and define raeq := [req]c(x).

Phase 2. From A we construct a finite automaton A that describes its language.
Again, we preserve the states, keep the initial states, and add a fresh final state.
The main idea is to summarise all paths between two states q and q′ by a single
transition that is labelled by raeq,q′ . The expression takes care of the required
availability constraint. Similarly, from every state q we have a transition to the
new final state that is labelled by raeq:

A := (Q ∪ {qν},QI , {qν}, {(q, raeq,q′ , q′) � q, q′ ∈ Q} ∪ {(q, raeq, qν) � q ∈ Q}).

Let rae[[A]] denote the regular expression for A. Due to the flat raes as labels, the
expression itself is again flat. It correctly represents the automaton’s language.

Example 1. Applying the algorithm to the automaton from the beginning of Sec-
tion 3 yields ((a + b)∗a){a}≥1/2((a

∗b(b�)∗b(a + b)∗a){a}≥1/2)
∗(a∗b(b�)∗){a}≥1/2 .

Proposition 3 (Kleene’s second half). L (A) = L (rae[[A]]).

Proposition 2 and Proposition 3 establish our second main result. Flat regular
availability expressions and simple availability automata are equally expressive.

Theorem 2 (Kleene theorem for availability). A language is recognised by
a flat rae if and only if it is accepted by a simple availability automaton.

An availability automaton that is not simple can be decomposed into simple
automata. Take a free version Af of the automaton A where transitions e have
unique labels, say ae. The original language can be obtained by removing the
indices with the homomorphism h(ae) = a. Thus, h(L (Af )) = L (A) holds. The
free automaton Af is decomposed into several simple availability automata Ax

f

with x as single counter. This decomposition projects away the constraints on
the other counters and leaves states and transitions unchanged.
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Lemma 2. Consider Af with counters X . Then L (Af ) =
⋂

x∈X L
(
Ax

f

)
.

With the previous result we derive the following correspondence.

Corollary 1. Up to a homomorphism, a language is recognised by an intersec-
tion of raes if and only if it is accepted by an availability automaton.

4 A Powerset Construction

The well-known powerset construction of Rabin and Scott that constructs deter-
ministic finite automata from non-deterministic ones can be extended to simple
availability automata. Like for finite automata, the key idea is to record in the
state of the deterministic automaton the possible states the non-deterministic
automaton can be in, e.g. {p, q} would be a state of the deterministic automa-
ton. For availability automata, also the possible values of the active counter in
different runs need to be represented. Therefore, the following observation is
crucial to our construction. For simple automata, it is sufficient to record the
highest availability for this counter. Thus, we record one value for each state of
the original automaton, which can be achieved by |Q | counters. For the state
{p, q}, this yields counters xp and xq.

When the non-deterministic automaton changes its state without resetting
the active counter, say from p to p′, we need to set the counter xp′ of the new
state to the counter of the old state. As the syntax of availability automata does
not allow for counter assignments, we use a mapping μ as part of the state of the
deterministic automaton. It yields for each state in the current set of states the
availability counter that stores the highest possible availability. In the running
example, p′ is assigned counter xp. We shall also need to compare two counters.
If p′ is also reached from q, we need to know whether xp is higher than xq.
Therefore, we keep an order � on the counters as part of the deterministic state.

Given a simple availability automaton A = (Q ,QI ,QF , X,→, c) with its ac-
tive counter mapping μA : Q → X , we construct an equivalent deterministic
automaton det(A). As argued, we need a counter for each state, Xd = Q . Ad-
ditionally, we keep a copy of the counters Xd. While x measures A � k, counter
x̄ observes A 
 k. This allows for explicit checks of violations of an availability
constraint. States Qd of the deterministic automaton are triples (q, μ,�) where

– q ⊆ Q is the set of possible states of the non-deterministic automaton like
in the construction of Rabin and Scott.

– μ : q → Xd assigns to each possible state the counter that stores the cor-
responding availability. If a state q ∈ q is mapped to a counter μ(q) = xq′

corresponding to a state q′ ∈ Q , we additionally require that q and q′ have
the same active counter μA(q) = μA(q′).

– � ⊆ μ(q) × μ(q) is a order on the counters. First, the order is compatible
with the counter valuations γ in a run, i.e., y � x guarantees γ(y) ≥ γ(x).
Additionally, � is a linear order on those counters that correspond to the
same counter in the original automaton A. More precisely, for q, q′ ∈ q
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with μ(q) �= μ(q′), the corresponding counters are ordered (μ(q) � μ(q′) or
μ(q′) � μ(q)) if and only if the states q and q′ have the same active counter
μA(q) = μA(q′).

We define the powerset automaton as

det(A) = (Qd, Qd
0, Q

d
F , Xd ∪Xd,→d, cd).

The initial state is Qd
0 = {(QI , μ0,�0)} with the initial mapping μ0 that assigns

to each initial state q ∈ QI the corresponding counter xq ∈ Xd and �0 arbitrary.
The final states are the states that contain a final state of the original automaton,
Qd

F = {(q, μ,�) � q ∩ QF �= ∅}. The constraints cd on the counters in Xd

are taken from A, cd(xq) = c(μA(q)) for xq ∈ Xd. The counter x measures
the inverse constraint. Since A < k is equivalent to Σ \ A > 1 − k, we set
cd(x) = (Σ \A > 1− k) if cd(x) = (A ≥ k), and similar for A > k.

In the deterministic automaton, the edges are labelled by checks C d that
contain for each x ∈ Xd either x or x. Furthermore, we require consistency of
C d with the order �1 of the source location:

y �1 x and x ∈ C d implies y ∈ C d.

Since the counters x, x measure opposite constraints and are reset at the same
time, we have γ(x) � 0 iff γ(x) 
 0 for every reachable counter valuation γ.
This means at most one set of constraints C d is satisfied by γ. Moreover, as was
discussed, reachable γ are compatible with the order in the state. So, for y �1 x
we obtain γ(y) ≥ γ(x) and thus γ(x) � 0 implies γ(y) � 0. Therefore, for each
γ there is exactly one enabled C d.

To define the transition relation→d of the deterministic automaton we define
the unique successor state (q2, μ2,�2) for each state (q1, μ1,�1), each sym-
bol a ∈ Σ, and each constraint set C d. The enabled transitions of the non-
deterministic automaton are the outgoing a-labelled transitions from states in
q1 for which the guard is true,

enabled := {(q1, a, ∅, Y, q2) ∈ → � q1 ∈ q1}
∪ {(q1, a, {μA(q1)}, Y, q2) ∈ → � q1 ∈ q1, μ1(q1) ∈ C d}.

The first part of the successor state q2 is computed as for Rabin and Scott. A
state q2 is in the set q2 if there is an enabled transition leading to it,

q2 := {q2 ∈ Q � ∃q1,C , Y : (q1, a,C , Y, q2) ∈ enabled} .

The difficult part is computing the new counter valuations for each state q2 ∈ q2.
If an enabled transition to q2 resets the counter μA(q2) we may need a fresh
counter in det(A) that is reset on the transition. The counter of q2 can also
be inherited from a source location if there is an edge in the non-deterministic
automaton that does not reset the counter. Let xq2 denote a fresh counter for
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q2, then the new counter used as μ2(q2) is the counter with the highest value
from the set of candidates

cand(q2) := {xq2 � ∃q1,C ,Y : (q1, a,C ,Y , q2) ∈ enabled , μA(q2) ∈ Y }
∪ {μ1(q1) � ∃C ,Y : (q1, a,C ,Y , q2) ∈ enabled , μA(q2) /∈ Y }.

The set cand(q2) is non-empty for all q2 ∈ q2 and contains only counters xq

with μA(q) = μA(q2). The latter holds by definition of simple automata. A non-
resetting transition from q1 to q2 requires the states to have the same active
counter, μA(q1) = μA(q2). The fresh counters xq2 are inserted into the order �1

based on the guard C d. This yields a new order �′
2. For every state q1 ∈ q1 with

the same active counter in A, we check whether μ1(q1) is positive, which means
μ1(q1) ∈ C d. In this case, we add μ1(q1) �′

2 xq2 , otherwise xq2 �′
2 μ1(q1).

The new counter for q2 is the one from cand(q2) with the largest value,

μ2(q2) := max�′
2

cand(q2) for q2 ∈ q2 .

This counter is well-defined since cand(q2) is a non-empty finite set on which �′
2

is a linear order. We obtain �2 from �′
2 by removing all unused counters,

�2 := �′
2 ∩ (μ2(q2)× μ2(q2)).

For the fresh counter xq2 , we can use any counter xq that is not used in μ2(q2)
for other purposes. Moreover, this counter should belong to a state q with the
same active counter as q2. If multiple states q2, q

′
2 with the same active counter

μA(q2) = μA(q′2) need a fresh counter, we choose the same fresh counter xq2 =
xq′

2
in Xd. Since each state only uses a single counter, and since we have as many

counters as states, there must always be a free counter available if μ2(q2) needs a
fresh one. Finally the edge ((q1, μ1,�1), a,C d,Y d, (q2, μ2,�2)) is added to the
transition relation →d, where Y d = {xq2 , xq2 � q2 ∈ q2, μ2(q2) = xq2} is the set
of fresh counters that are used in the new state.

Example 2. We apply the powerset construction to the automaton from Sec-
tion 3. The resulting deterministic automaton is depicted on the next page. It
has twelve reachable states Qd = {Qi, Q

′
i � 1 ≤ i ≤ 6} of which seven are given

in the figure. The states are Q1 = ({q1}, {q1 �→ x1}, ∅), Q2 = ({q1, q2}, {q1 �→
x1, q2 �→ x2}, x1 � x2), Q3 = ({q1, q2}, {q1 �→ x1, q2 �→ x2}, x2 � x1), Q4 =
({q1, q3}, {q1 �→ x1, q3 �→ x2}, x1 � x2), Q5 = ({q1, q3}, {q1 �→ x1, q3 �→ x2}, x2 �
x1), Q6 = ({q1, q3}, {q1 �→ x2, q3 �→ x2}, ∅). The states Q′

i are the states Qi

where the counters x1 and x2 are swapped. For space reasons we depict a check
on a counter by labelling the edge with the counter. The counters x1, x2 observe
the constraint {a} ≥ 1/2, while x1, x2 check the inverse constraint {b} > 1/2.

The initial state Q1 corresponds to the initial state q1 in the original au-
tomaton. Under the input symbol b only the loop edge (q1, b, ∅, ∅, q1) is enabled.
Therefore for every counter constraint C d the successor state is Q1 again. We
combined the edges (Q1, b, {x1}, ∅, Q1) and (Q1, b, {x1}, ∅, Q1) to a single edge
without counter constraints (Q1, b, ∅, ∅, Q1). For the symbol a there are two en-
abled edges in the original automaton leading to q1 and q2. The edge to q2 resets
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the counter. Therefore, we introduce a fresh counter x2 for q2. For computing
the order between x2 and x1, we check the sign of x1. The successor is state Q2

with x1 � x2 if x1 is positive and Q3 with x2 � x1, otherwise.
Now we consider the outgoing edges from state Q5. The a-labelled edges are

the same as from Q1, since there is no a-labelled edge starting from q3. For
symbol b the successor state depends on C d. If x2 ∈ C d, there are two enabled
edges in the original automaton, namely (q1, b, ∅, ∅, q1) and (q3, b, ∅, ∅, q1). Both
enter q1 and do not reset the counter. The candidates for the new counter of q1

are x1 or x2. By the linear order, x2 is larger in Q5, hence this is the counter
used in the successor state Q′

1. If x2 ∈ C d, then the edge (q3, b, {x{a}}, ∅, q3) of
the original automaton is enabled. The successor state Q6 contains q1 and q3.

Q1

Q2 Q3

Q4 Q5

Q6

Q′
1

b

a, x1
x2, x2 := 0

a, x1
x2, x2 := 0

b, x2

a, x1
x2, x2 := 0

a, x1
x2, x2 := 0

b, x2

b, x2

a, x1
x2, x2 := 0

a, x1
x2, x2 := 0

b, x2

b, x2b, x2

a, x1, x2

a, x1, x2
x2, x2 := 0

a, x1, x2
x2, x2 := 0

b

a, x2

a, x2, x1
x2, x2 := 0

b

Proposition 4. L (det(A)) = L (A).

The proof is given in the appendix. A deterministic automaton is complemented
by inverting the set of final states, det(A) = (Qd, Qd

0,Q
d\Qd

F , Xd∪Xd,→d, cd).

Proposition 5. L
(
det(A)

)
= L (det(A)).

The construction shows that the set of languages accepted by simple availability
automata is a subset of the languages accepted by deterministic availability
automata, which in turn is a subset of the languages of all availability automata.
As simple automata can be simulated by one-counter machines, their emptiness
problem is decidable. The intersection problem is not, since it is not decidable
for flat raes. Hence, simple automata are not closed under intersection, and thus
not closed under complementation. General availability automata are also not
closed under complementation. Like for timed automata [AD94] one can argue
that the complement of (a + b + c)∗.c.((a + b + c)∗)a=1/2.c.(a + b + c)∗ is not
accepted by any availability automaton. Since deterministic automata are closed
under complementation this shows that their expressiveness is strictly between
simple and general automata.
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4.1 Application to Verification

Equipped with the previous complementation algorithm, we are able to tackle the
following verification problems for discrete systems under availability constraints.

(Syn) ? |= Brae (MC) A |= Brae.

The synthesis problem Syn asks for the most general availability automaton
that satisfies a Boolean combination of availability expressions Brae. As usual,
satisfaction is defined in terms of language inclusion. The model checking prob-
lem MC takes an availability automaton A modelling the system of interest
and an availability expression Brae that formalises the correctness condition. It
reduces the problem whether A is a model of Brae to a reachability query.

Our complementation algorithm is restricted to simple availability automata.
Relying on the negation normal form for Brae , the following theorem is an im-
mediate consequence of our previous efforts.

Theorem 3. Consider a Boolean combination of flat raes. There is an algorithm
that solves Syn. MC is reducible to reachability in availability automata.

By Theorem 1, reachability in availability automata is of course undecidable.
The definition of runs however suggests to view availability automata as partic-
ular counter automata. Therefore, Theorem 3 allows us to use state-of-the-art
tools like SLAM [BR02] or BLAST [BHJM07] to solve MC. They support
abstraction-aided reachability analysis and often successfully tackle this unde-
cidable problem in practically relevant cases.

5 Conclusion

We defined an extension of regular expressions to specify the availability of sys-
tems. We developed a corresponding automaton model and established a full
Kleene theorem. It shows that the two denote the same formal languages. An
undecidability proof places the models between finite automata and counter au-
tomata. Finally, we give a complementation algorithm for the restricted simple
availability automata. It yields a fully automated synthesis procedure for a prac-
tically significant class of regular availability expressions. Moreover, it allows for
a reduction of availability model checking to reachability analysis.

Related work. Various extensions of regular expressions have been proposed.
For example, in [ACM02] timed regular expressions are introduced and proven
equivalent to timed automata of [AD94] by a timed analogue of Kleene’s theorem.
The availability formula in the introduction can be stated directly in real-time
logics like the Duration Calculus [CH04] or investigated operationally in suitable
subclasses of hybrid automata like stopwatch automata [CL00] or priced timed
automata [LR08]. The advantage of the discrete setting we chose is that the
essentials of availability can be studied in isolation without being overwhelmed
with the technicalities of continuous timed and hybrid systems.
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Availability automata are also closely related to the work on weighted au-
tomata [DKV09]. There, the alphabet is equipped with a weight function that
assigns each letter a weight in some semiring. Examples include the interesting
semiring ([0, 1],max , ·, 0, 1). It can be used to determine the reliability of a word
by assigning a probability k ∈ [0, 1] to each letter. Crucially different from our
model, weighted automata do not have guards and thus the measurement does
not influence the system behaviour. We employ checks and resets on the avail-
ability to mimic loop invariants as they are standard in programming languages.

In Presburger regular expressions [SSM03], a regular language is constrained
by additional Presburger formulae. Our initial example of a network with 99 %
availability can be specified in this formalism as (up + down)∗ ∧ xup ≥ 99xdown .
Again, as opposed to our approach, conditional executions based on intermedi-
ary valuations are not supported. Moreover, our resets allow for an unbounded
number of measurements whereas Presburger regular expressions only have a
finite number of arithmetic constraints.

Future work. Our results are only a first step in the study of quantitative sys-
tem properties. We plan to extend the work to ω-regular and to timed languages.
Also logical characterisations of availability languages seem interesting.

Practically, we envision the following application of the presented technique.
By stochastic techniques, we establish availability constraints raeA�k that model
the components of a distributed system [dSeSG89, RS93]. When reasoning about
their interaction, we abstract away the stochastic information and rely on our
new availability models. Proximity to integer programs allows us to reuse efficient
software model checkers for their analysis [BR02, BHJM07].

Our undecidability proof of the intersection problem (Theorem 1) requires
two rae. We leave open decidability of the emptiness problem for a single rae.
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Abstract. The notion of reversible computation is attracting increasing
interest because of its applications in diverse fields, in particular the
study of programming abstractions for reliable systems. In this paper,
we continue the study undertaken by Danos and Krivine on reversible
CCS by defining a reversible higher-order π-calculus (HOπ). We prove
that reversibility in our calculus is causally consistent and that one can
encode faithfully reversible HOπ into a variant of HOπ.

1 Introduction

Motivation and contributions. The notion of reversible computation already has
a long history [2]. Nowadays, it is attracting increasing interest because of its
applications in diverse fields, including hardware design, biological modelling,
program debugging and testing, and quantum computing. Of particular interest
is its application to the study of programming abstractions for reliable systems.
The work of Danos and Krivine on reversible CCS (RCCS) [5,6] provides a
good example: they show how notions of reversible and irreversible actions in
a process calculus can model a primitive form of transaction, an abstraction
that has been found useful, in different guises, in building reliable distributed
systems, including database and workflow management systems.

In this paper, we continue the study undertaken by Danos and Krivine by
tackling two questions which were already anticipated in the conclusion of [5]:
(i) how can we introduce reversible actions in a higher-order concurrent calculus,
specifically, the asynchronous higher-order π-calculus (HOπ)? (ii) does the in-
troduction of reversible actions augment the expressive power of HOπ? The first
question finds its motivation in the pursuit of a suitable programming model for
the construction of reliable and adaptive systems, and hence in the need to study
the combination of reliable programming abstractions with modular dynamicity
constructs enabling dynamic software update and on-line reconfiguration. The
second question is motivated by language design issues: understanding which
primitives bring expressive power and which do not, allows a language designer
to decide which primitives to keep in a core language definition, and which to
provide as derived abstractions or as part of a language library.

In response to the first question, we define a reversible variant of the higher-
order π-calculus (HOπ) [11]. A general method for reversing process calculi has
been proposed by Phillips and Ulidowski in [10]. Unfortunately, it is only given
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for calculi whose operational semantics can be defined using SOS rules conform-
ing to the path format, which is not the case for HOπ [9]. We therefore adopt an
approach inspired by that of Danos and Krivine, but with significant differences.
In particular, in their RCCS approach, the usual congruence laws associated
with the parallel operator do not hold. Our first contribution is thus a simple
syntax and reduction semantics for a reversible HOπ calculus called ρπ, with
a novel way to define reversible actions while preserving the usual structural
congruence laws of HOπ, notably the associativity and commutativity of the
parallel operator.

Concerning the second question, we settle it in the case of ρπ by showing that,
surprisingly enough, reversibility can be obtained essentially as syntactic sugar
on top of HOπ. More precisely, our second contribution is a faithful compositional
encoding of the ρπ calculus into a variant of HOπ.

Outline. The paper is organized as follows. Section 2 defines the ρπ calculus.
We explain the main constructions of the calculus and we contrast our way of
handling reversibility with that of Danos and Krivine. Section 3 is devoted to
the proof of our first main result, namely that reverse or backward computa-
tions in ρπ are causally consistent, i.e. that they proceed through configurations
that are causally equivalent with configurations arising from normal or forward
computations. Section 4 presents a compositional encoding of the ρπ calculus
into a variant of HOπ. We prove that the translation is faithful, i.e. that a ρπ
process and its encoding are weakly barbed bisimilar. Section 5 concludes the
paper with a discussion of related work.

2 The ρπ Calculus

2.1 Informal Presentation

Building a reversible variant of a process calculus involves devising appropriate
syntactic representations for computation histories. In general, since a process
calculus is not confluent and processes are non-deterministic, reversing a (for-
ward) computation history means undoing the history not in a deterministic
way but in a causally consistent fashion, where states that are reached during a
backward computation are states that could have been reached during the com-
putation history by just performing independent actions in a different order. In
RCCS, Danos and Krivine achieve this with CCS without recursion by attaching
a memory m to each process P , in the monitored process construct m : P . A
memory in RCCS is a stack of information needed for processes to backtrack.
Thus, if two processes P1 and P2 can synchronize on a channel a to evolve into
P ′

1 and P ′
2, respectively, then the parallel composition of monitored processes

m1 : (P1 + Q1) and m2 : (P2 + Q2) can evolve as follows:

m1 : (P1 + Q1) | m2 : (P2 + Q2) → 〈m2, a, Q1〉 · m1 : P ′
1 | 〈m1, a, Q2〉 · m2 : P ′

2

Additionally, Danos and Krivine rely on the following rule:

m : (P | Q) ≡ 〈1〉 · m : P | 〈2〉 · m : Q
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so as to ensure that each primitive thread, i.e. some process of the form R1 +R2,
gets its own unique identity. Unfortunately, this rule is not compatible with the
usual structural congruence rules for the parallel operator, namely associativity,
commutativity, and 0 as neutral element. Danos and Krivine suggest that it
could be possible to work up to tree isomorphisms on memories, but this would
indeed lead to a more complex syntax, as well as additional difficulties (see
Remark 5 below).

We adopt for ρπ a different approach: instead of associating each thread with a
stack that records, essentially, past actions and positions in parallel branches, we
rely on simple thread tags, which act as unique identifiers but have little struc-
ture, and on new process terms, which we call memories, which are dedicated
to undoing a single (forward) computation step.

More precisely, a forward computation step in ρπ (noted with arrow�) con-
sists in the receipt of a message (ρπ is an asynchronous calculus). The receipt of
a message a〈P 〉 on channel a by a receiver process (or trigger) a(X) � Q takes
in ρπ the following form:

(κ1 : a〈P 〉) | (κ2 : a(X) � Q) � νk. k : Q{P /X} | [M ; k]

Each thread (message and trigger) participating in the above computation step
is uniquely identified by a tag: κ1 identifies the message a〈P 〉, and κ2 identifies
the trigger a(X) � Q. The result of the message receipt consists in a classical
part and two side effects. The classical part is the launch of an instance Q{P /X}
of the body of the trigger Q, with the formal parameter X instantiated by the
received value, i.e. the process P (ρπ is a higher-order calculus). The two side
effects are: (i) the tagging of the newly created process Q{P/X} by a fresh name
k (operator ν is the standard restriction operator of the π-calculus), and (ii) the
creation of a memory process [M ; k]. M is simply the configuration on the left
hand side of the reduction, namely M = (κ1 : a〈P 〉) | (κ2 : a(X) � Q).

In this setting, a backward computation step takes the form of an interaction
between a memory and a process tagged with the appropriate name: when a
memory [M ; k] is put in presence of a process tagged with k, a backward reduction
(noted with the arrow �) can take place which kills the process tagged with k
and reinstates the configuration M :

(k : P ) | [M ; k] � M

We thus have:
M � νk. k : Q{P /X} | [M ; k] � νk.M

Since k is fresh, νk.M is actually structurally equivalent to M . We thus have a
perfect reversal of a forward computation: M ��M .

Remark 1. Following Danos and Krivine [6], one could consider also taking into
account irreversible actions. We do not do so in this paper for the sake of sim-
plicity. Adding irreversible actions to ρπ would be conceptually straightforward.

Remark 2. Using memories as presented here to enable reversibility simplifies the
formal development but leads to a space explosion of computations in ρπ. We do
not consider implementation and related space efficiency issues in this paper.
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P, Q ::= 0 | X | νa.P | (P | Q) | a〈P 〉 | a(X) � P

M, N ::= 0 | νu. M | (M | N) | κ : P | [μ; k]

κ ::= k | 〈h, h̃〉 · k
μ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) � Q))

u ∈ I a ∈ N X ∈ V h, k ∈ K κ ∈ T

Fig. 1. Syntax of ρπ

2.2 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually disjoint sets: the set N of names, the set K of keys, and
the set V of process variables. The set I = N ∪K is called the set of identifiers.
We note N the set of natural integers. We let (together with their decorated
variants): a, b, c range over N ; h, k, l range over K; u, v, w range over I; X,Y, Z
range over V . We note ũ a finite set of identifiers {u1, . . . , un}.

Syntax. The syntax of the ρπ calculus is given in Figure 1 (in writing ρπ terms,
we freely add balanced parenthesis around terms to disambiguate them). Pro-
cesses of the ρπ calculus, given by the P,Q productions in Figure 1, are the
standard processes of the asynchronous higher-order π-calculus. A receiver pro-
cess (or trigger) in ρπ takes the form a(X) � P , which allows the receipt of a
message of the form a〈Q〉 on channel a.

Processes in ρπ cannot directly execute, only configurations can. Configura-
tions in ρπ are given by the M,N productions in Figure 1. A configuration is
built up from threads and memories.

A thread κ : P is just a tagged process P , where the tag κ is either a single
key k or a pair of the form 〈h, h̃〉 · k, where h̃ is a set of keys, with h ∈ h̃. A tag
serves as an identifier for a process. As we will see below, together with memories
tags help capture the flow of causality in a computation.

A memory is a process of the form [μ; k], which keeps track of the fact that
a configuration M was reached during execution, that triggered the launch of a
thread tagged with the fresh tag k. In a memory [μ; k], we call μ the configuration
part of the memory, and k the thread tag of the memory. Memories are generated
by computation steps and are used to reverse them. The configuration part
μ = (κ1 : a〈P 〉) | (κ2 : a(X) � Q) of the memory records the message a〈P 〉
and the trigger involved in the message receipt a(X) � Q, together with their
respective thread tags κ1, κ2.

We note P the set of ρπ processes, and C the set of ρπ configurations. We call
agent an element of the set A = P ∪ C. We let (together with their decorated
variants) P,Q,R range over P ; L,M,N range over C; and A,B,C range over
agents. We call primitive thread process, a process that is either a message a〈P 〉
or a trigger a(X) � P . We let τ and its decorated variants range over primitive
thread processes.
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Remark 3. We have no construct for replicated processes, output prefixing, or
guarded choice in ρπ: these can be easily encoded in ρπ (in fact in asynchronous
HOπ).

Free names and free variables. Notions of free identifiers and free (process)
variables in ρπ are classical. It suffices to note that constructs with binders
are of the forms: νa. P which binds the name a with scope P ; νu.M , which
binds the identifier u with scope M ; and a(X) � P , which binds the variable
X with scope P . We note fn(P ), fn(M) and fn(κ) the set of free names, free
identifiers, and free keys, respectively, of process P , of configuration M , and of
tag κ. Note in particular that fn(κ : P ) = fn(κ) ∪ fn(P ), fn(k) = {k} and
fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a configuration M is closed
if it has no free (process) variable. We note P• the set of closed processes, C•
the set of closed configurations, and A• the set of closed agents.

Remark 4. In the remainder of the paper, we adopt Barendregt’s Variable Con-
vention: If terms t1, . . . , tn occur in a certain context (e.g. definition, proof),
then in these terms all bound identifiers and variables are chosen to be different
from the free ones.

Consistent configurations. Not all configurations allowed by the syntax in Fig-
ure 1 are meaningful. In a memory [M ; k], tags occurring in the configuration
part M must be different from the thread tag k. This is because the key k is
freshly generated when a computation step (a message receipt) takes place, and
is used to identify the newly created thread. Tags appearing in the configuration
part identify threads (message and trigger) which have participated in the com-
putation step. In a configuration M , we require all the threads to be uniquely
identified by their tag, and we require consistency between threads and memo-
ries: if M contains a memory [N ; k] (i.e. [N ; k] occurs as a subterm of M), we
require M to also contain a thread tagged with k: components of this thread, i.e.
threads whose tags have k as a suffix, can occur either directly in parallel with
[N ; k] or in the configuration part of another memory contained in M (because
they may have interacted with other threads). We call consistent a configuration
that obeys these static semantic constraints. We defer the formal definition of
consistent configurations to Section 2.3.

2.3 Operational Semantics

The operational semantics of the ρπ calculus is defined via a reduction relation
→, which is a binary relation over closed configurations → ⊂ C• × C•, and a
structural congruence relation ≡, which is a binary relation over processes and
configurations ≡ ⊂ P2 × C2. We define evaluation contexts as “configurations
with a hole ·” given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole. A congruence
on processes and configurations is an equivalence relation R that is closed for
general contexts: P RQ =⇒ C[P ]RC[Q] and M RN =⇒ C[M ]RC[N ].
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(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.NilM) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv. A ≡ νv. νu. A

(E.NewP) (νu. A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa.P ≡ νa. κ : P

(E.TagP) k :
n�

i=1

τi ≡ νh̃.

n�

i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn}

Fig. 2. Structural congruence for ρπ

The relation ≡ is defined as the smallest congruence on processes and con-
figurations that satisfies the rules in Figure 2. We note t =α t′ when terms
t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A stands for
νu1. . . . νun. A. We note

�n
i=1 Ai for A1 | . . . | An (there is no need to indicate

how the latter expression is parenthesized because the parallel operator is as-
sociative by rule E.ParA). In rule E.TagP, processes τi are primitive thread
processes. Recall the use of the variable convention in these rules: for instance,
in the rule (νu.A) | B ≡ νu. (A | B) the variable convention makes implicit
the condition u �∈ fn(B). The structural congruence rules are the usual rules for
the π-calculus (E.ParC to E.α) without the rule dealing with replication, and
with the addition of two new rules dealing with tags: E.TagN and E.TagP.
Rule E.TagN is a scope extrusion rule to push restrictions to the top level. Rule
E.TagP allows to generate unique tags for each primitive thread process in a
configuration. An easy induction on the structure of terms provides us with a
kind of normal form for configurations (by convention

�
i∈I Ai = 0 if I = ∅):

Lemma 1 (Thread normal form). For any configuration M , we have

M ≡ νũ.
�

i∈I

(κi : ρi) |
�

j∈J

[Mj : kj ]

with ρi = 0, ρi = ai〈Pi〉, or ρi = ai(Xi) � Pi.

Remark 5. One could have thought of mimicking the structural congruence rule
dealing with parallel composition in [5], using a monoid structure for tags:

(E.TagP
•
) κ : (P | Q) ≡ νh1, h2. (h1 · κ : P ) | (h2 · κ : Q)

Unfortunately using E.TagP
• instead of E.tagP would introduce some unde-

sired non-determinism, which would later complicate our definitions (in relation
to causality) and proofs. For instance, let M = k : a〈Q〉 | (h : a(X) � X). We
have: M →M ′ = νl. (l : Q) | [M ; l] Now, assuming E.tagP

•, we would have

M ≡ (k : (a〈Q〉 | 0)) | (h : a(X)�X)≡νh1, h2. ((h1·k : a〈Q〉) | (h2·k : 0)) | (h : a(X)�X)
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(R.Fw) (κ1 : a〈P 〉) | (κ2 : a(X) � Q) � νk. (k : Q{P /X}) | [(κ1 : a〈P 〉) | (κ2 : a(X) � Q); k]

(R.Bw) (k : P ) | [M ; k] � M

Fig. 3. Reduction rules for ρπ

Let M1 = (h1 · k : a〈Q〉) | (h : a(X) �X). We would then have: M →M ′′, where
M ′′ = νh1, h2, l. (l : Q) | [M1; l] | (h2 ·k : 0). Clearly M ′ �≡M ′′, which means that
a seemingly deterministic configuration, M , would have in fact two (actually,
an infinity of) derivations towards non structurally equivalent configurations.
By insisting on tagging only primitive thread processes, E.TagP avoids this
unfortunate situation.

We can characterize this by proving a kind of determinacy lemma for ρπ,
which fails if we replace rule E.TagP with rule E.TagP

•. Extend the grammar
of ρπ with marked primitive thread processes of the form τ•. This extended
calculus has exactly the same structural congruence and reduction rules than
ρπ, but with possibly marked primitive thread processes. Now call primed a
closed configuration M with exactly two marked processes of the form a〈P 〉•
and (a(X) � Q)•. Anticipating on the definition of the reduction relation →
below (with ≡ and → trivially extended to marked processes), we have:

Lemma 2 (Determinacy). Let M be a primed configuration such that M ≡
M1 = E1[κ1 : a〈P 〉• | κ2 : (a(X) � Q)•] and M ≡ M2 = E2[κ′

1 : a〈P 〉• |
κ′

2 : (a(X) � Q)•]. Assume M1 → M ′
1 and M2 → M ′

2 are derived by applying
R.Fw with configurations κ1 : a〈P 〉• | κ2 : (a(X) � Q)•, and κ′

1 : a〈P 〉• | κ′
2 :

(a(X) � Q)•, respectively, followed by R.Ctx. Then M ′
1 ≡M ′

2.

Proof. By induction on the form of E1, and case analysis on the form of κ1

and κ2. �

We say that a binary relation R on closed configurations is evaluation-closed if
it satisfies the inference rules:

(R.Ctx)

M R N

E[M ] R E[N ]
(R.Eqv)

M ≡M ′ M ′ R N ′ N ′ ≡ N

M R N

The reduction relation → is defined as the union of two relations, the forward
reduction relation � and the backward reduction relation �: → = � ∪ �.
Relations � and � are defined to be the smallest evaluation-closed binary re-
lations on closed configurations satisfying the rules in Figure 3 (note again the
use of the variable convention: in rule R.Fw the key k is fresh).

The rule for forward reduction (R.Fw) is the standard communication rule
of the higher-order π-calculus with two side effects: (i) the creation of a new
memory to record the configuration that gave rise to it, namely the parallel
composition of a message and a trigger, properly tagged (tags κ1 and κ2 in the
rule); (ii) the tagging of the continuation of the message receipt (with the fresh
key k). The rule for backward reduction (R.Bw) is straightforward: in presence
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of the thread tagged with key k, memory [M ; k] reinstates the configuration M
that gave rise to the tagged thread.

We can now formally define the notion of consistent configuration.

Definition 1 (Consistent configuration). A configuration M≡νũ.
�

i∈I(κi :
ρi) |
�

j∈J [Mj ; kj ], with ρi = 0 or ρi a primitive thread process, Mj = δj : Rj |
γj : Tj, Rj = aj〈Pj〉, Tj = aj(Xj) � Qj, is said to be consistent if the following
conditions are met:

1. For all j ∈ J , kj �= δj, kj �= γj and δj �= γj

2. For all i1, i2 ∈ I, i1 �= i2 =⇒ κi1 �= κi2

3. For all i ∈ I, j ∈ J , κi �= δj and κi �= γj

4. For all j ∈ J , there exist E ⊆ I, D ⊆ J , G ⊆ J , such that:

νũ. kj : Qj{Pj/Xj} ≡ νũ.
�

e∈E

κe : ρe |
�

d∈D

δd : Rd |
�

g∈G

γg : Tg

Consistent configurations are preserved by reduction:

Lemma 3. Let M be a consistent configuration. If M → N then N is a consis-
tent configuration.

Proof. By case analysis on the derivation of Mt → N , where M ≡Mt and Mt is
in thread normal form. �

Barbed bisimulation. The operational semantics of the ρπ calculus is completed
classically by the definition of a contextual equivalence between configurations,
which takes the form of a barbed congruence. We first define observables in
configurations. We say that name a is observable in configuration M , noted
M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a �∈ ũ. Note that keys are not observable:
this is because they are just an internal device used to support reversibility. We
note ⇒ the reflexive and transitive closure of →. The following definitions are
classical:

Definition 2 (Barbed bisimulation and congruence). A relation R ⊆
C• × C• on closed configurations is a strong (resp. weak) barbed simulation
if whenever M RN

– M ↓a implies N ↓a (resp. N ⇒↓a)
– M →M ′ implies N → N ′, with M ′RN ′ (resp. N ⇒ N ′ with M ′RN ′)

A relation R ⊆ C• × C• is a strong (resp. weak) barbed bisimulation if R and
R−1 are strong (resp. weak) barbed simulations. We call strong (resp. weak)
barbed bisimilarity and note ·∼ (resp.

·≈) the largest strong (resp. weak) barbed
bisimulation. The largest congruence included in ·∼ (resp.

·≈) is called strong
(resp. weak) barbed congruence and is noted ∼ (resp. ≈).
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2.4 Basic Properties of Reduction in ρπ

Define inductively the erasing function γ : C → P , which maps a configuration
on its underlying HOπ process, by the following clauses:

γ(0) = 0 γ(νa.M) = νa. γ(M) γ(M | N) = γ(M) | γ(N)
γ(κ : P ) = P γ([M ; k]) = 0 γ(νk.M) = M

The following lemma shows that ρπ forward computations are indeed decorations
on HOπ reductions.
Lemma 4. For all closed configurations M,N , if M � N then γ(M)→π γ(N)
Proof. Straightforward, by first proving by induction on the derivation of M ≡ N
that M ≡ N =⇒ γ(M) ≡ γ(N), and then by reasoning by induction on the
derivation of M � N . �
Remark 6. One can lift a closed HOπ process P to a closed consistent configu-
ration in ρπ by defining δ(P ) = νk. k : P .

The next lemma shows that forward and backward reductions in ρπ are really
inverse of one another.
Lemma 5 (Loop lemma). For all closed consistent configurations M,N , M �
N ⇐⇒ N �M .
Proof. By induction on the derivation of M � N for the if direction, and on
the derivation of N �M for the converse. �

A direct consequence of the Loop Lemma is that a closed consistent configu-
ration M is weakly barbed congruent to any of its descendants, a fact that one
can understand as a kind of observational property of reversibility:

Lemma 6 (Observational equivalence). If M ⇒ N , then M ≈ N .

Proof. By induction on the form of configuration contexts, the base case M
·≈ N

being obtained by applying the Loop Lemma. �

3 Causality in ρπ

We now proceed to the analysis of causality in ρπ, showing that reversibility in
ρπ is causally consistent. We mostly adapt for the exposition the terminology
and arguments of [5].

We call transition a triplet of the form M
m−→M ′, or M

m•−−→M ′, where M,M ′

are closed consistent configurations, M → M ′, and m is the memory involved
in the reduction M → M ′. We say that a memory m is involved in a reduction
M � M ′ if M ≡ E[κ1 : a〈P 〉 | κ2 : a(X) � Q], M ′ ≡ E[νk. (k : Q{P /X}) | m],
and m = [κ1 : a〈P 〉 | κ2 : a(X) � Q; k]. In this case, the transition involving
m is noted M

m−→ M ′. Likewise, we say that a memory m = [N ; k] is involved
in a reduction M � M ′ if M ≡ E[(k : Q) | m], M ′ ≡ E[N ]. In this case, the
transition involving m is noted M

m•−−→M ′.
We say a transition t : M

m−→ M ′ is name-preserving if M and M ′ are in
thread normal form and if either (i) M = νũ.

�
i∈I(κi : ρi) |

�
j∈J [Mj : kj ],
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M ′ = νũ.
�

i∈I′(κi : ρi) |
�

j∈J′ [Mj : kj ], with I ′ ⊆ I, J ⊆ J ′, and m =
[Nj ; kj ] for some j ∈ J ′; or (ii) M = νũ.

�
i∈I(κi : ρi) |

�
j∈J [Mj : kj ],

M ′ = νũ.
�

i∈I′(κi : ρi) |
�

j∈J′ [Mj : kj ], with I ⊆ I ′, J ′ ⊆ J , and m = [Mj ; kj ]
for some j ∈ J . Intuitively, a name-preserving transition keeps track of the set
of restricted names of its configurations, all the names used in the transition
(and especially the tag of memory m). In the rest of this section we only con-
sider name-preserving transitions and “transition” used in a definition, lemma or
theorem, stands for “name-preserving transition”. Note that working with name-
preserving transitions only is licit because of the determinacy lemma (Lemma 5).

In a transition M
μ−→ N , we say that M is the source or the transition, N is its

target, and μ is its label (of the form m or m•, where m is some memory – we let μ
and its decorated variants range over transition labels). If μ = m•, we set μ• = m.
Two transitions are said to be coinitial if they have the same source, cofinal if they
have the same target, composable if the target of one is the source of the other.
A sequence of pairwise composable transitions is called a trace. We let t and its
decorated variants range over transitions, σ and its decorated variants range over
traces. Notions of target, source and composability extend naturally to traces. We
note εM the empty trace with source M , σ1;σ2 the composition of two composable
traces σ1 and σ2. The stamp λ(m) of a memory m = [κ1 : a〈P 〉 | κ2 : a(X) �Q; k]
is defined to be the set {κ1, κ2, k}; we set λ(m•) = λ(m).

Definition 3 (Concurrent transitions). Two coinitial transitions t1 =M
μ1−→

M1 and t2 = M
μ2−→M2 are said to be concurrent if λ(μ1) ∩ λ(μ2) = ∅.

Remark 7. Note that the stamp of a memory [M ; k] include its tag k. This is
necessary to take into account possible conflicts between a forward action and a
backward action.

The Loop Lemma ensures that each transition t = M
μ−→ N has a reverse one

t• = N
μ•−→M . The above definition of concurrent transitions makes sense:

Lemma 7 (Square lemma). If t1 = M
μ1−→ M1 and t2 = M

μ2−→ M2 are two
coinitial concurrent transitions, then there exist two cofinal transitions t2/t1 =
M1

μ2−→ N and t1/t2 = M2
μ1−→ N .

Proof. By case analysis on the form of transitions t1 and t2. �

We are now in a position to show that reversibility in ρπ is causally consistent.
We define first the notion of causal equivalence between traces, noted !, as the
least equivalence relation between traces closed under composition that obeys
the following rules:

t1; t2/t1 ! t2; t1/t2 t; t• ! εsource(t) t•; t ! εtarget(t)

The proof of causal consistency proceeds along the exact same lines as in [5],
with simpler arguments because of the simpler form of our memory stamps.

Lemma 8 (Rearranging Lemma). Let σ be a trace. There exists forward
traces σ′ and σ′′ such that σ ! σ′

•;σ
′′.
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P, Q ::= 0 | X | νu. P | (P | Q) | u〈F, v〉 | J � P | (F V )

F ::= (u)P | (X)P

V ::= u | F

J ::= u(X, v) | u(X, \v) | J | J

u, v ∈ I

Fig. 4. Syntax of HOπ+

Lemma 9 (Shortening Lemma). Let σ1, σ2 be coinitial and cofinal traces,
with σ2 forward. Then, there exists a forward trace σ′

1 of length at most that of
σ1 such that σ′

1 ! σ1.

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces, then
σ1 ! σ2 if and only if σ1 and σ2 are cofinal.

4 Encoding ρπ in HOπ+

We show in this section that ρπ can be encoded in a variant of HOπ, with
bi-adic channels, join patterns, sub-addressing, abstractions and applications,
which we call HOπ+. This particular variant was chosen for convenience, be-
cause it simplifies our encoding. All HOπ+ constructs are well understood in
terms of expressive power with respect to HOπ and π [12,8,4]. The syntax of
HOπ+ is given in Figure 4. Channels in HOπ+ carry both a name and an ab-
straction (bi-adicity); a trigger can receive a message on a given channel, or on
a given channel provided the received message carries some given name (sub-
addressing). HOπ+ has abstractions over names (u)P and over process variables
(X)P , and applications (P V ), where a value V can be a name or an abstrac-
tion. We take the set of names of HOπ+ to be the set I ∪ {�} of ρπ. The set of
(process) variables of HOπ+ is taken to coincide with the set V of variables of
ρπ.

The structural congruence for HOπ+, also noted ≡, obeys the same rules
than those of ρπ, minus the rules E.TagN and E.TagP, which are specific to
ρπ. Evaluation contexts in HOπ+ are are given by the following grammar:

E ::= · | (P | E) | νu.E

The reduction relation for HOπ+, also noted→, is defined as the least evaluation
closed relation (same definition as for ρπ, with HOπ+ processes instead of con-
figurations) that satisfies the rules in Figure 5. The function match in Figure 5
is the partial function which is defined in the cases given by the clauses below,
and undefined otherwise:

match(u, v) = {u/v} match(u, \u) = {u/u} match(F,X) = {F /X}



Reversing Higher-Order Pi 489

(Red)

n�

i=1

ui〈Fi, vi〉 | (

n�

i=1

ui(Xi, ψi) � P ) → P{F1...Fn/X1...Xn}θ1 . . . θn match(vi, ψi)=θi

(App) ((ψ)F V ) → Fθ match(V, ψ) = θ

Fig. 5. Reduction rules for HOπ+

�0� = Nil �X� = (l)(X l)

�a〈P 〉� = (l)(Msg a �P � l) �νa.P � = (l)νa. �P � l

�P | Q� = (l)(Par �P � �Q� l) �a(X) � P � = (l)(Trig�P � a l)

Nil = (l)l〈Nil〉
Msg = (a X l)a〈X, l〉 | (KillM a X l)

KillM = (a X l)(a(X, \l) � l〈(h)Msg a X h〉 | Rew l)

Par = (X Y l)νh, k. X h | Y k | (KillP h k l)

KillP = (h k l)(h(W ) | k(Z) � l〈(l)ParW Z l〉 | Rew l)

Trig�P � = (a l)νt. t | (a(X,h) | t � νk. �P � k | (Mem�P � a X h k l)) | (KillT�P � t l a)

KillT�P � = (t l a)(t � l〈(h)Trig�P � a h〉 | Rew l)

Mem�P � = (a X h k l)k(Z) � (Msg a X h) | (Trig�P � a l)

Rew = (l)(l(Z) � Z l)

Fig. 6. Encoding ρπ processes

Conventions. In writing HOπ+ terms, u〈v〉 abbreviates u〈(X)0, v〉 and u〈F 〉
abbreviates u〈F, �〉. Likewise, a(u)�P abbreviates a(X,u)�P , where X �∈ fv(P ),
and u(X)�P abbreviates a(X, �)�P . We adopt the usual conventions for writing
applications and abstractions: (F V1 . . . Vn) stands for (((F V1) . . .) Vn), and
(X1 . . . Xn)F stands for (X1) . . . (Xn)F . When there is no potential ambiguity,
we often write F V for (F V ). When defining HOπ+ processes, we freely use
recursive definitions for these can be encoded using e.g. the Turing fixed point
combinator Θ defined as Θ = (A A), where A = (X F )(F (X X F )) (cf. [1] p.132).

The encoding 
·� : Pρπ → PHOπ+ of processes of ρπ in HOπ+ is defined induc-
tively in Figure 6. It extends to an encoding 
·� : Cρπ → PHOπ+ of configurations
of ρπ in HOπ+ as given in Figure 7 (note that the encoding for 0 in Figure 7 is
the encoding for the null configuration). The main idea behind the encoding is
simple: a tagged process l : P is interpreted as a process equipped with a special
channel l on which to report that it has successfully rolled back. This intuition
leads to the encoding of a ρπ process as an abstraction which takes this reporting
channel l as a parameter. Rolling back a message is simply consuming it and
sending it (actually the message encoding itself) on the report channel. Rolling
back a trigger is just consuming the special token t that locks it and sending the
trigger encoding on the report channel. Rolling back a parallel composition is
just rolling back its branches and reporting when all have rolled back. The last
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�0� = 0

�M | N� = �M� | �N�
�νu. M� = νu. �M�
�k : P � = (�P � k)

�〈hi, h̃〉 · k : P � = (�P � hi) | Kill〈hi,h̃〉·k

�[κ1 : a〈P 〉 | κ2 : a(X) � Q; k]� = (Mem�Q� a �P � �κ1� k �κ2�) | Killκ1 | Killκ2

�k� = k

�〈hi, h̃〉 · k� = hi

Kill〈h1,h̃〉·k = νl̃. (KillP h1 h2 l1) | . . . | (KillP hn−1 ln−3 ln−2) | (KillP hn ln−2 k)

Killκ = 0 otherwise

Fig. 7. Encoding ρπ configurations

part of this section is devoted to prove that the encoding is faithful, i.e. that it
preserves the semantics of the original process. More precisely, we will prove the
following theorem:

Theorem 2 (Operational correspondance). For any closed ρπ process P ,
νk. k : P

·≈ 
νk. k : P �.
One cannot simply prove that given a (consistent) configuration M , if M →M ′

then 
M� ⇒ 
M ′�. In fact this does not hold, since the translated processes
produce some garbage, and since structural congruent processes do not always
have structural congruent translations. Thus we need some auxiliary machinery.

Definition 4. Let ≡Ex be the smallest congruence satisfying the rules for struc-
tural congruence ≡ plus the rules below.

(Ex.Nil) νl1, l2. l1〈Nil〉 | (
R�l2) | (KillP l1 l2 l) ≡Ex (
R�l)

(Ex.A) νl′. (KillP l1 l2 l′) | (KillP l′ l3 l) ≡Ex νl′. (KillP l1 l′ l) |(KillP l2 l3 l′)

(Ex.Unfold) 
P �l ≡Ex l〈
P �〉 | (Rew l)

Furthermore let ≡C be the smallest congruence satisfying rules for structural
congruence ≡ plus the first two rules above.

Definition 5. Let P be a HOπ+ process. Then addG(P ) is any process obtained
from P by applying one or more times the following rules:

C[P ′] �→ C[P ′ | (Rew l)] C[P ′] �→ C[P ′ | (KillM a X l)]
C[P ′] �→ C[P ′ | (KillP h k l)] C[P ′] �→ C[P ′ | νt. (a(X, k) | t � Q)]
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We characterize now the effect of the encoding on structural congruent
configurations.

Lemma 10. Let M , N be configurations. Then M ≡ N implies 
M� ≡C 
N�.
It is easy to see that names in K are always bound.

Lemma 11. If 
νk. k : P � ⇒ P ′ then fn(P ′) ∩ K = ∅.

The next lemma shows that the encoding of a process can mimic its reductions.

Lemma 12. For each consistent configuration M , if M → M ′ then 
M� ⇒ P
with P ≡Ex addG(
M ′�).
Proof. By induction on the derivation of M → M ′. The two base cases corre-
spond to � and �. The garbage produced by the translation is managed by
function addG. For closure under context, the proof is easy by induction on the
structure of the context. Closure under structural congruence is managed by
relation ≡C . �

We can now prove our main result.

Proof (of Theorem 2). We have to prove that the following relation is a barbed
bisimulation:

R = {(M,N) | νk. k : P ⇒M ∧N ≡Ex addG(
M�)}
For names in K, the condition on barbs follows from Lemma 11. For names in
N , it is proved by observing that ≡Ex and addG(•) do not change those barbs.
For terms of the form 
M� the condition is proved by structural induction on
M .

Then we have to show that each reduction of M is matched by a reduction
of N and viceversa. The first direction follows from Lemma 12. It is easy to see
that all the processes related to M can simulate its transitions.

For the other direction we have a case analysis according to the channels
involved in the reduction N → N ′. Notably, since all reductions are reversible,
reductions can not change the set of weak barbs. The case analysis follows:

– reductions involving a message on a name a ∈ names: these correspond to
a transition M �M ′, and it is easy to see that M ′RN ′;

– reductions involving a memory: these correspond to a transition M � M ′,
and it is easy to see that M ′RN ′;

– reductions involving a Kill process: these do not correspond to any transi-
tion of M , and it is easy to see that MRN ′.

Note that garbage does not add further reductions. This is trivial for triggers with
a bound premise. This will hold for other triggers too, since for each k there is at
most one message on k at the time, and when such a message is produced the
trigger consuming it is produced too. Thus additional triggers are redundant. �
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5 Conclusion and Related Work

We have presented a reversible asynchronous higher-order π-calculus, which we
have shown to be causally consistent. The paper gets its inspiration from Danos
and Krivine work [5] and makes two original contributions. The first one is a
novel way to introduce reversibility in a process calculus which preserves the
classical structural congruence laws of the π-calculus, and which relies on sim-
ple name tags for identifying threads and explicit memory processes, compared
to the two previous approaches of RCCS [5], that relied on memory stacks as
thread tags, and of Phillips and Ulidowski[10], that relied on making the struc-
ture of terms in SOS rules static and on keeping track of causality by tagging
actions in SOS rules. A further paper by Danos et al. [7] provides an abstract
categorical analysis of the RCCS constructions, but it leaves intact the question
of devising an appropriate “syntactic representation of the reversible history
category” for the target formalism (in our case, asynchronous HOπ), which is
not entirely trivial. The second contribution of the paper is a faithful encod-
ing on our reversible HOπ calculus into a variant of HOπ, showing that adding
reversibility does not change substantially the expressive power of HOπ. This
result is consistent with, though not reducible to, Boreale and Sangiorgi’s en-
coding of the π-calculus with causality in the π-calculus itself [3]. Our encoding
trades simplicity and weak barbed bisimilarity for divergence in several places.
It would be interesting to see whether divergence added by the encoding can
be eliminated while still preserving weak bisimilarity, and furthermore whether
we can extend our result to obtain full abstraction (proving that weak barbed
congruence on ρπ configurations corresponds to weak barbed congruence of their
encodings).

Acknowledgments. Many thanks to Cosimo Laneve and Alan Schmitt for inter-
esting suggestions, and to anonymous referees for suggested clarifications.
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Abstract. Higher dimensional automata (HDAs) are a model of concur-
rency that can express most of the traditional partial order models like
Mazurkiewicz traces, pomsets, event structures, or Petri nets. Modal log-
ics, interpreted over Kripke structures, are the logics for reasoning about
sequential behavior and interleaved concurrency. Modal logic is a well
behaved subset of first-order logic; many variants of modal logic are de-
cidable. However, there are no modal-like logics for the more expressive
HDA models. In this paper we introduce and investigate a modal logic
over HDAs which incorporates two modalities for reasoning about “dur-
ing” and “after”. We prove that this general higher dimensional modal
logic (HDML) is decidable and we define a complete axiomatic system
for it. We also show how, when the HDA model is restricted to Kripke
structures, a syntactic restriction of HDML becomes the standard modal
logic. Then we isolate the class of HDAs that encode Mazurkiewicz traces
and show how HDML can be restricted to LTrL (the linear time temporal
logic over Mazurkiewicz traces).

1 Introduction

Higher dimensional automata (HDAs) are a general formalism for modeling con-
current systems [14,21]. In this formalism concurrent systems can be modeled at
different levels of abstraction, not only as all possible interleavings of their con-
current actions. HDAs can model concurrent systems at any granularity level and
make no assumptions about the durations of the actions. Moreover, HDAs are
not constrained to only before-after modeling and expose explicitly the choices
in the system. It is a known issue in concurrency models that the combination
of causality, concurrency, and choice is difficult; in this respect, HDAs and Chu
spaces [15] do a fairly good job [17].

Higher dimensional automata are more expressive than most of the mod-
els based on partial orders or on interleavings (e.g., Petri nets and the related
Mazurkiewicz traces, or the more general partial order models like pomsets or
event structures). Therefore, one only needs to find the right class of HDAs in
order to get the desired models of concurrency.

� Partially supported by the Nordunet3 project “COSoDIS – Contract-Oriented Soft-
ware Development for Internet Services”. (http://www.ifi.uio.no/cosodis/)

1 See technical report [18] for proofs and more explanations.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 494–508, 2010.
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Work has been done on defining temporal logics over Mazurkiewicz traces [9]
and strong results like decidability and expressive completeness are known [5,20].
For general partial orders, temporal logics usually become undecidable [2]. For
the more expressive event structures there are fewer works; a modal logic is
investigated in [6].

There is hardly any work on logics for higher dimensional automata [17] and,
as far as we know, there is no work on modal logics for HDAs. In practice, one
is more comfortable with modal logics, like temporal logics or dynamic logics,
because these are generally decidable (as opposed to full first-order logic, which
is undecidable).

That is why in this paper we introduce and develop a logic in the style of
standard modal logic. This logic has HDAs as models, hence, the name higher
dimensional modal logic (HDML). This is our basic language to talk about gen-
eral models of concurrent systems. For this basic logic we prove decidability
using a filtration argument. Also, we provide an axiomatic system and prove it
is sound and complete for the higher dimensional automata. HDML in its basic
variant is shown to become standard modal logic when the language and the
higher dimensional models are restricted in a certain way.

HDML contrasts with standard temporal/modal logics in the fact that HDML
can reason about what holds “during” the execution of some concurrent events.
The close related logic for distributed transition systems of [7] is in the same
style of reasoning only about what holds “after” some concurrent events have
finished executing. As we show in Section 3, the “after” logics can be encoded
in HDML, hence also the logic of [7].

Another purpose of this work is to provide a general framework for reasoning
about concurrent systems at any level of abstraction and granularity, accounting
also for choices and independence of actions. Thus, the purpose of Section 3 is to
show that studying HDML, and particular variants of it, is fruitful for analyzing
concurrent systems and their logics. In this respect we study variants of higher
dimensional modal logic inspired by temporal logic and dynamic logic. Already
in Section 3.2 we add to the basic language an Until operator, in the style of
temporal logics. We show how this variant of HDML, when interpreted over
the class of HDAs corresponding to Kripke structures, can be particularized to
LTL [11]. A second variant, in Section 3.3, decorates the HDML modalities with
labels. This multi-modal variant of HDML together with the Until operator,
when interpreted over the class of HDAs that encodes Mazurkiewicz traces,
becomes LTrL [20] (the linear time temporal logic over Mazurkiewicz traces).

2 Modal Logic over Higher Dimensional Automata

We define higher dimensional automata (HDAs) following the definition and
terminology of [21, 17]. Afterwards, we propose higher dimensional modal logic
(HDML) for reasoning about concurrent systems modeled as HDAs. The seman-
tic interpretation of the language is defined in terms of HDAs (i.e., the HDAs,
with a valuation function attached, are the models we propose for HDML).
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q1
0 q4
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q3
0

q2
0
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b
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b
q2

Fig. 1. Example of a HDA with two concurrent events

For an intuitive understanding of the HDA model consider the standard exam-
ple [17,21] pictured in Figure 1. It represents a HDA that models two concurrent
events which are labeled by a and b (one might have the same label a for both
events). The HDA has four states, q1

0 to q4
0 , and four transitions between them.

This would be the standard picture for interleaving, but in the case of HDA there
is also a square q2. Traversing through the interior of the square means that both
events are executing. When traversing on the lower transition means that event
a is executing but event b has not started yet, whereas, when traversing through
the upper transition it means that event a is executing and event b has finished
already. In the states there is no event executing, in particular, in state q3

0 both
events have finished, whereas in state q1

0 no event has started yet.
Similarly, HDAs allow one to represent three concurrent events through a

cube, or more events through hypercubes. Causality of events is modeled by
sticking such hypercubes one after the other. For our example, if we omit the
interior of the square (i.e., the grey q2 is removed) we are left with a description
of a system where there is the choice between two sequences of two events, i.e.,
a; b + b; a.

Definition 2.1 (higher dimensional automata). A cubical set H = (Q, s, t)
is formed of a family of sets Q =

⋃∞
n=0 Qn with all sets Qn disjoint, and for

each n, a family of maps si, ti : Qn → Qn−1 with 1 ≤ i ≤ n which respect the
following cubical laws:

αi ◦ βj = βj−1 ◦ αi, 1≤ i<j≤n and α, β ∈{s, t}. (1)

In H, the s and t denote the collection of all the maps from all the families
(i.e., for all n). A higher dimensional structure (Q, s, t, l) over an alphabet Σ
is a cubical set together with a labeling function l : Q1 → Σ which respects
l(si(q)) = l(ti(q)) for all q ∈ Q2 and i ∈ {1, 2}.2 A higher dimensional automa-
ton (Q, s, t, l, I, F ) is a higher dimensional structure with two designated sets of
initial and final cells I ⊆ Q0 and F ⊆ Q0.

We call the elements of Q0, Q1, Q2, Q3 respectively states, transitions, squares,
and cubes, whereas the general elements of Qn are called n-dimensional cubes (or

2 Later, in Definition 3.7, the labeling is extended naturally to all cells.
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hypercubes). We call generically an element of Q a cell (also known as n-cell).
For a transition q ∈ Q1 the s1(q) and t1(q) represent respectively its source and
its target cells (which are states from Q0 in this case). Similarly for a general
cell q ∈ Qn there are n source cells and n target cells all of dimension n − 1.
Intuitively, an n-dimensional cell q represents a configuration of a concurrent
system in which n events are performed at the same time, i.e., concurrently. A
source cell si(q) represents the configuration of the system before the starting
of the ith event, whereas the target cell ti(q) represents the configuration of the
system immediately after the termination of the ith event. A transition of Q1

represents a configuration of the system in which a single event is performed.
The cubical laws account for the geometry (concurrency) of the HDAs; there

are four kinds of cubical laws depending on the instantiation of α and β. For the
example of Figure 1 consider the cubical law where α is instantiated to t and
β to s, and i = 1 and j = 2: t1(s2(q2)) = s1(t1(q2)). In the left hand side, the
second source cell of q2 is, in this case, the transition s2(q2) = q1

1 = (q1
0 , q

2
0) and

the first target cell of q1
1 is q2

0 (the only target cell because s2(q2) ∈ Q1); this
must be the same cell when taking the right hand side of the cubical law, i.e.,
the first target cell is t1(q2) = q2

1 = (q2
0 , q

3
0) and the first source of q2

1 is q2
0 .

We propose the language of higher dimensional modal logic for talking about
concurrent systems. HDML follows the style of standard modal languages [3].

Definition 2.2 (higher dimensional modal logic). A formula ϕ in higher
dimensional modal logic is constructed using the grammar below, from a set ΦB

of atomic propositions, with φ ∈ ΦB , which are combined using the propositional
symbols ⊥ and → (from which all other standard propositional operations are
generated), and using the modalities {} and 〈〉.

ϕ := φ | ⊥ | ϕ → ϕ | {}ϕ | 〈〉ϕ

We call {} the during modality and 〈〉 the terminate modality. The intuitive
reading of {}ϕ is: “pick some event from the ones currently not running (must
exist at least one not running) and start it; in the new configuration of the
system (during which, one more event is concurrently executing) the formula
ϕ must hold”. The intuitive reading of 〈〉ϕ is: “pick some event from the ones
currently running concurrently (must exist one running) and terminate it; in
the new configuration of the system the formula ϕ must hold”. This intuition is
formalized in the semantics of HDML.

The choice of our notation is biased by the intuitive usage of these modalities
where the terminate modality talks about what happens after some event is
terminated; in this respect being similar to the standard diamond modality of
dynamic logic. Later, in Section 3.3, these modalities are decorated with labels.
The during modality talks about what happens during the execution of some
event and hence we adopt the notation of Pratt [12].

The models of HDML are higher dimensional structures together with a val-
uation function V : Q → 2ΦB which associates a set of atomic propositions to
each cell (of any dimension). This means that V assigns some propositions to
each state of dimension 0, to each transition of dimension 1, to each square of
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Table 1. Semantics for HDML

H, q |= φ iff φ ∈ V(q). H, q �|=⊥
H, q |= ϕ1 → ϕ2 iff when H, q |= ϕ1 then H, q |= ϕ2.
H, q |= {}ϕ iff assuming q ∈ Qn for some n,

∃q′ ∈ Qn+1 s.t. si(q′) = q for some 1 ≤ i ≤ n, and H, q′ |= ϕ.
H, q |= 〈〉ϕ iff assuming q ∈ Qn for some n,

∃q′ ∈ Qn−1 s.t. ti(q) = q′ for some 1 ≤ i ≤ n, and H, q′ |= ϕ.

dimension 2, to each cube of dimension 3, etc. Denote a model of HDML by
H = (Q, s, t, l,V). A HDML formula is evaluated in a cell of such a model H.

One may see the HDML models as divided into levels, each level increasing
the concurrency complexity of the system; i.e., level Qn increases the complexity
compared to level Qn−1 by adding one more event (to have n events executing
concurrently instead of n− 1). The levels are linked together through the si and
ti maps. With this view in mind the during and terminate modalities should be
understood as jumping from one level to the other; the {} modality jumps one
level up, whereas the 〈〉 modality jumps one level down.

Definition 2.3 (satisfiability). Table 1 defines recursively the satisfaction re-
lation |= of a formula ϕ w.r.t. a model H in a particular n-cell q (for some
arbitrary n); denote this as H, q |= ϕ. The notions of satisfiability and validity
are defined as usual.

Both modalities have an existential flavor. In particular note that H, q0 �|= 〈〉ϕ,
for q0 ∈ Q0 a state, because there is no event executing in a state, and thus no
event can be terminated. Similarly, for the during modality, H, qn �|= {}ϕ for any
n-cell qn ∈ Qn when all sets Qk, with n < k, are empty (i.e., the family of sets
Q is bounded by n). This says that there can be at most n events running at
the same time, and when reaching this limit one cannot start another event and
therefore {}ϕ cannot be satisfied.

The universal correspondents of {} and 〈〉 are defined in the standard style
of modal logic. We denote these modalities by respectively [{}]ϕ and [ ]ϕ. The
intuitive reading of [ ]ϕ is: “pick any of the events currently running concurrently
and after terminating it, ϕ must hold in the new configuration of the system”.
Note that this modality holds trivially for any state q0 ∈ Q0, i.e., H, q0 |= [ ]ϕ.

2.1 Decidability and Completeness

In the rest of this section we prove that satisfiability for HDML is decidable using
the filtration technique [3]. Then we give an axiomatic system for HDML and
prove its soundness and completeness. Completeness is based on constructing
canonical models.

The filtration for the states is the same as in the standard modal logic, but
for cells of dimension at least 1 we need to take care that the maps t and s in
the filtration model remain maps and that they respect the cubical laws so that
the filtration is still a HDML model. This can be done, but the filtration model
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is bigger than what is obtained in the case of standard modal logic. On top, the
proof of the small model property (Theorem 2.10) is more involved due to the
complexities of the definition of filtration given in Definition 2.5.

Definition 2.4 (subformula closure). The subformula closure of a formula
ϕ is the set of formulas C(ϕ) defined recursively as:
C(φ) �= {φ}, for φ ∈ ΦB

C(ϕ1 → ϕ2)
�= {ϕ1 → ϕ2} ∪ C(ϕ1) ∪ C(ϕ2)

C({}ϕ) �= {{}ϕ} ∪ C(ϕ)
C(〈〉ϕ) �= {〈〉ϕ} ∪ C(ϕ)

The size of a formula (denoted |ϕ|) is calculated by summing the number of
Boolean and modal symbols with the number of atomic propositions and ⊥
symbols that appear in the formula. (All instances of a symbol are counted.) The
size of the subformula closure is linear in the size of the formula, |C(ϕ)| ≤ |ϕ|.

Definition 2.5 (filtration). Given a formula ϕ, we define below a relation ≡
(which is easily proven to be an equivalence relation) over the cells of a higher
dimensional structure H, where q, q′ ∈ Qi, for some i ∈ N:

q ≡ q′ iff for any ψ ∈ C(ϕ) then (H, q |= ψ iff H, q′ |= ψ).

A filtration Hf =(Qf , sf , tf , lf ,Vf ) of H through the closure set C(ϕ) is as below:
Qf

n
�= {[qn] | qn ∈ Qn}, where [qn] is

[q0]
�= {q′ | q0 ≡ q′} when q0 ∈ Q0, otherwise,

[qn] �= {q′ | qn ≡ q′ ∧ ti(q′) ∈ [pi] ∧ si(q′) ∈ [p′i]
for all 1 ≤ i ≤ n and for some fixed [pi], [p′i] ∈ Qf

n−1}.
sf

i ([qn]) �= [qn−1] iff for all p ∈ [qn], si(p) ∈ [qn−1].
tfi ([qn]) �= [qn−1] iff for all p ∈ [qn], ti(p) ∈ [qn−1].
Vf ([q]) �= V(q).

Proposition 2.6 (filtration is a model). The filtration Hf of a model H
through a closure set C(ϕ) is a higher dimensional structure (i.e., is still a HDML
model).

Proof (sketch). Essentially, the proof amounts to showing that the definitions of
sf

i and tfi are that of maps (as required in a higher dimensional structure) and
that they respect the cubical laws (see full proof in [18]).

Lemma 2.7 (sizes of filtration sets). Each set Qf
n of the filtration Hf ob-

tained in Definition 2.5 has finite size which depends on the size of the formula
ϕ used in the filtration; more precisely each Qf

n is bounded from above by 2|ϕ|·N

where N = n! ·
∑n

k=0
2k

(n−k)! .

Lemma 2.8 (filtration lemma). Let Hf be the filtration of H through the
closure set C(ϕ), as in Definition 2.5. For any formula ψ ∈ C(ϕ) and any cell
q ∈ H, we have H, q |= ψ iff Hf , [q] |= ψ.
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We define two degrees of concurrency of a formula ϕ: the upwards concurrency
(denoted |ϕ|uc) and downwards concurrency (denoted |ϕ|dc). The degree of up-
wards concurrency counts the maximum number of nestings of the during modal-
ity {} that are not compensated by a 〈〉 modality. (E.g., the formula {}{}φ∨{}φ′

has the degree of upwards concurrency equal to 2, the same as {}〈〉{}{}φ.) The
formal definition of | |uc is:
|⊥|uc

�= |φ|uc
�= 0, for φ ∈ ΦB

|ϕ1 → ϕ2|uc
�= max(|ϕ1|uc, |ϕ2|uc)

|{}ϕ|uc
�= 1 + |ϕ|uc

|〈〉ϕ|uc
�= max(0, |ϕ|uc − 1)

The definition of the degree of downwards concurrency | |dc is symmetric to
the one above in the two modalities; i.e., interchange the modalities in the last
two lines. Note that |ϕ|uc + |ϕ|dc ≤ |ϕ|. The next result offers a safe reduction
of a model where we remove all cells which have dimension greater than some
constant depending on the formula of interest.

Lemma 2.9 (concurrency boundedness). If a HDML formula ϕ is satisfi-
able, H, q |= ϕ with q ∈ Qk, then it exists a model with all the sets Qm, with
m > |ϕ|uc + k, empty, which satisfies the formula.

Notation: The formula 〈〉φ ∧ 〈〉¬φ expresses that there can be terminated
at least two different events (in other words, the cell in which the formula is
evaluated to true has dimension at least two). Similarly the formula 〈〉(φ∧¬φ′)∧
〈〉(¬φ ∧ ¬φ′) ∧ 〈〉(¬φ ∧ φ′) says that there are at least three events that can be
terminated. For each i ∈ N∗ one can write such a formula to say that there are at
least i events that can be terminated. Denote such a formula by 〈〉i. Also define
〈〉iϕ as i applications of the 〈〉 modality to ϕ (i.e., 〈〉 . . . 〈〉ϕ where 〈〉 appears i
times). Similar, for the during modality denote {}i the formula that can start i
different events, and by {}iϕ the i applications of {} to ϕ.

Theorem 2.10 (small model property). If a HDML formula ϕ is satisfiable
then it is satisfiable on a finite model with no more than

∑|ϕ|
n=0 2|ϕ|·N cells where

N = n! ·
∑n

k=0
2k

(n−k)! .

Proof. Note first that it is easy to prove that any formula 〈〉i → 〈〉i# is valid, for
any i ∈ N∗. Because of this, the downwards concurrency measure for a formula
may be misleading as |〈〉i|dc = 1 whereas |〈〉i#|dc = i. On the other hand the
dimension |〈〉i| grows faster than linear with i. It is easy to see that |〈〉i| >
|〈〉i#|dc. If our formula ϕ has subformulas of the kind 〈〉i then the measure |ϕ|dc

must be adjusted accordingly. In any case, it is clear that even after adjustment
|ϕ|dc ≤ |ϕ| − |ϕ|uc.

Assume that there exists a model H and a cell q ∈ Ql in this model for
which H, q |= ϕ. We can prove, analogous to the proof of Lemma 2.9, that for a
formula ϕ one needs to look at cells of dimension at least |ϕ|dc. A more coarse
approximation is to say that one needs all the sets Qn with n ≤ |ϕ| − |ϕ|uc.
Thus, we can safely assume l ≤ |ϕ| − |ϕ|uc.
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Table 2. Axiomatic system for HDML

Axiom schemes:
(A1) All instances of propositional tautologies.
(A2) {}⊥ ↔⊥ (A2’) 〈〉⊥ ↔⊥
(A3) {}(ϕ ∨ ϕ′) ↔ {}ϕ ∨ {}ϕ′ (A3’) 〈〉(ϕ ∨ ϕ′) ↔ 〈〉ϕ ∨ 〈〉ϕ′

(A4) [{}]ϕ ↔ ¬{}¬ϕ (A4’) [ ]ϕ ↔ ¬〈〉¬ϕ

(A5) 〈〉i → 〈〉i� ∀i ∈ N∗ (A5’) {}i� → {}i ∀i ∈ N∗

(A6) 〈〉[ ]ϕ → [ ]〈〉ϕ (A6’) {}[{}]ϕ → [{}]{}ϕ
(A7) {}[ ]ϕ → [ ]{}ϕ (A7’) 〈〉[{}]ϕ → [{}]〈〉ϕ
(A8) {}〈〉i�→ [{}]〈〉i� ∀i ∈ N (A8’) 〈〉〈〉i�→ [ ]〈〉i� ∀i ∈ N
(A9) 〈〉i�→ [{}]〈〉〈〉i� ∀i ∈ N (A9’) {}〈〉〈〉i�→ 〈〉i� ∀i ∈ N

Inference rules:

(R1)
ϕ ϕ → ϕ′

(MP)

ϕ′
(R2)

ϕ → ϕ′

(D)

{}ϕ → {}ϕ′
(R2’)

ϕ → ϕ′

〈〉ϕ → 〈〉ϕ′

(R3) Uniform variable substitution.

From Lemma 2.9 we know that we need to consider only the sets Qm for
m ≤ l + |ϕ|uc ≤ |ϕ|, and all other sets Q are empty. From Lemma 2.8 we know
that we can build a filtration model Hf s.t. the formula ϕ is still satisfiable and,
by Lemma 2.7, we know that all the sets Qf

m have a finite number of cells. Thus
we can sum up all the cells in all the Qf

m, with m ≤ |ϕ|.
Corollary 2.11 (decidability). Deciding the satisfiability of a HDML formula
ϕ is done in space at most

∑|ϕ|
n=0 2|ϕ|·N where N is defined in Theorem 2.10.

In the following we go on giving an axiomatic system for HDML and prove it
sound and complete. In Table 2 we give a set of axioms and rules of inference for
HDML. If a formula is derivable in this axiomatic system we write � ϕ. We say
that a formula ϕ is derivable from a set of formulas S iff � ψ1∧· · ·∧ψn → ϕ for
some ψ1, . . . , ψn ∈ S (we write equivalently S � ϕ). A set of formulas S is said
to be consistent if S � �⊥, otherwise it is said to be inconsistent. A consistent set
S is called maximal iff all sets S′, with S ⊂ S′, are inconsistent.

Theorem 2.12 (soundness). The axiomatic system of Table 2 is sound. For-
mally ∀ϕ : � ϕ ⇒ |= ϕ.

Proof (sketch). The proof tests that all axioms are valid and that all inference
rules preserve validity. We check only the non-standard axioms (A5) to (A9’).

We fix some terminology and notation. Denote by ¬C(ϕ) = C(ϕ) ∪ {¬ϕ′ | ϕ′ ∈
C(ϕ)} the set of subformulas, as in Definition 2.4, together with their negated
forms. A set of formulas A is called an atom for ϕ if A is a maximal consistent
subset of ¬C(ϕ). Denote by At(ϕ) the set of all atoms for ϕ.

Definition 2.13 (canonical saturated HDA). A HDA is called canonical for
the formula ϕ if a canonical labeling λ : Q→ At(ϕ) can be attached to the HDA.
A labeling is canonical if the following conditions hold:
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1. for any qn ∈ Qn, qn−1 ∈ Qn−1, for some n > 0, and ∀0 ≤ i ≤ n, if si(qn) =
qn−1 then ∀ψ ∈ ¬C(ϕ) if ψ ∈ λ(qn) then {}ψ ∈ λ(qn−1),

2. for any qn ∈ Qn, qn−1 ∈ Qn−1, for some n > 0, and ∀0 ≤ i ≤ n, if ti(qn) =
qn−1 then ∀ψ ∈ ¬C(ϕ) if ψ ∈ λ(qn−1) then 〈〉ψ ∈ λ(qn).

A canonical HDA is called saturated if:

1. whenever {}ψ ∈ λ(qn−1) then ∃qn ∈ Qn and ∃0 ≤ i ≤ n s.t. si(qn) = qn−1

and ψ ∈ λ(qn),
2. whenever 〈〉ψ ∈ λ(qn) then ∃qn−1 ∈ Qn−1 and ∃0 ≤ i ≤ n s.t. ti(qn) = qn−1

and ψ ∈ λ(qn−1).

Lemma 2.14 (truth lemma). In a canonical saturated HDA H with the val-
uation defined as V(qn) = {φ ∈ ΦB | φ ∈ λ(qn)}, it holds that H, qn |= ψ iff
ψ ∈ λ(qn).

To prove completeness of the axiomatic system all that remains is to show that
for any consistent formula ϕ we can build such a canonical saturated HDA.
While building the canonical saturated HDA we constantly struggle to saturate
the HDA (that we work with) while respecting the canonicity. Such not saturated
HDAs are called defective, as they may have defects, which we formally define
below. But important is that any of these defects can be repaired. This is what
the repair lemma does, using the two enriching and lifting constructions. The
completeness theorem then shows that while starting with a minimal canonical
HDA we can incrementally build a defect free canonical HDA.

Definition 2.15 (defects). There are two types of defects for H (each corre-
sponding to a violation of a saturation condition):

– a D1 defect of H is a cell qn ∈ Qn with {}ψ ∈ λ(qn) for which there is no
qn+1 ∈ Qn+1 and no 1 ≤ i ≤ n + 1, with si(qn+1) = qn and ψ ∈ λ(qn+1);

– a D2 defect of H is a cell qn ∈ Qn with 〈〉ψ ∈ λ(qn) for which there is no
qn−1 ∈ Qn−1 and no 1 ≤ i ≤ n− 1, with ti(qn) = qn−1 and ψ ∈ λ(qn−1).

For two HDAs, H1 and H2 we say that H2 extends H1 (written H2 � H1) iff
H2 has all the cells (with the same labels) and maps of H1 and possibly some
new cells and maps (i.e., some extra structure).

Lemma 2.16 (enriching construction). For a canonical model H, there ex-
ists a construction (see [18]),called enriching of the H w.r.t. q and a formula
{}ϕ ∈ λ(q), which builds a model H′ � H that is canonical and extends H.
The enriching construction adds one new cell that has q as one of its sources
and is labeled with an atom containing ϕ. Moreover, all the other maps of this
new cell need to be added, together with all the necessary new cells, taking care
to respect the cubical laws.

The lifting construction lifts all the cells of each level one level up by adding
one new s and t map to each. The cubical laws make sure that these new maps
reach only new cells; none of the old cells (that are lifted) are involved in these
new instances of the cubical laws. We need to be careful how we label all these
new cells s.t. the canonicity is respected for the extended H′.
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Lemma 2.17 (lifting construction). For a canonical model H, there exists a
construction (see [18]), called lifting of the H w.r.t. q and a formula 〈〉ϕ ∈ λ(q),
which builds a model H′ � H that is canonical and extends H.

Lemma 2.18 (repair lemma). For any canonical HDA H that has a defect
we can build a corresponding H′ which is canonical and does not have this defect.

Proof (sketch). We repair a D1 (respectively D2) defect using the enriching
(respectively lifting) construction.

Theorem 2.19 (completeness). The axiomatic system of Table 2 is complete.
Formally ∀ϕ : |= ϕ ⇒ � ϕ.

Proof. Using the truth lemma 2.14, the proof amounts to showing that for any
consistent formula ϕ we can build a canonical saturatedHϕ that has a cell labeled
with an atom that contains ϕ. We construct Hϕ in steps starting with H0

ϕ which
contains only one cell q0

0 of dimension 0 labeled with an atom containing ϕ, i.e.,
λ(q0

0) = Aϕ. Trivially, H0
ϕ is canonical. The cells used to construct our model

are picked (in the right order) from the following sets Si = {qj
i | j ∈ ω} where

i ∈ ω corresponds to the dimension i. Any of these cells may have defects and
thus, we list all the defects, i.e., all the cells, and try to repair them in increasing
order (i.e., we treat first defects on level 0 and continue upwards).

At some step n ≥ 0 in the construction we consider Hn
ϕ = (Qn, sn, tn, ln)

canonical. If Hn
ϕ is not saturated then pick the smallest defect cell of Hn

ϕ. For
a D1 defect, i.e., a cell qk ∈ Qk and formula {}ψ ∈ λ(qk), apply enrich(k,qk,ψ)
and obtain a model Hn+1

ϕ which is canonical, cf. Lemma 2.16, and does not have
the D1 defect, cf. Lemma 2.18. For a D2 defect apply the lifting construction
to remove the defect. Moreover, any repaired defect will never appear in any
extension model, independent of how many times we apply the enriching or
lifting constructions. Both enriching and lifting pick their new cells from S in
increasing order. We obtain Hϕ as a limit construction from all the Hn

ϕ; i.e.,
Hϕ = (Q, s, t, l) as Q =

⋃
n∈ω Qn, s =

⋃
n∈ω sn, t =

⋃
n∈ω tn, l =

⋃
n∈ω ln.

3 Encodings into Higher Dimensional Modal Logic

This section serves to exemplify two main ways of using HDML. One usage is
as a highly expressive logic in which many other logics for different concurrency
models can be encoded; in this respect we study the relation of HDML with
standard modal logic, LTL, and linear time temporal logic over Mazurkiewicz
traces LTrL. The other usage is as a general theoretical framework for study-
ing different logics for different concurrency models (that can be expressed
as some class of HDA) and their interrelation. This is done by finding the
apropriate restrictions of HDA and HDML and investigating their relations in
HDML.
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3.1 Encoding Standard Modal Logic into HDML

Lemma 3.1 (Kripke structures). The class of Kripke structures is captured
by the class of higher dimensional structures where all sets Qn, for n > 1, are
empty.

Proof. Essentially this result is found in [21]. A HDA K = (Q0, Q1, s1, t1, l)
is a special case of HDAs where all Qn = ∅ for n > 1. This is the class of
HDAs that encode Kripke frames. Because Q2 (and all other cells of higher
dimension) is empty there are no cubical laws applicable. Therefore, there is no
geometric structure on K. Moreover, the restriction on the labeling function l is
not applicable (as Q2 is empty). Add to such a HDA a valuation function V to
obtain a Kripke model (Q0, Q1, s1, t1, l,V).

Proposition 3.2 (axiomatization of Kripke HDAs). The class of higher
dimensional structures corresponding to Kripke structures (from Lemma 3.1) is
axiomatized by:

|= ¬〈〉# → [{}][{}]⊥

Proof (sketch). For any HDA H and any q ∈ Q a cell of any dimension, we prove
the double implication: H, q |= ¬〈〉# → [{}][{}]⊥ iff H is as in Lemma 3.1.

Theorem 3.3 (standard modal logic). Let the syntactic construct ♦ϕ �=
{}〈〉ϕ. The language of standard modal logic uses only ♦ and is interpreted
only over higher dimensional structures as defined in Lemma 3.1 and only in
cells of Q0.

Proof (sketch). First we check that we capture exactly the semantics of standard
modal logic. Second we check that we recover the axiomatic system of standard
modal logic for ♦ from the axiomatic system of HDML.

3.2 Adding an Until Operator and Encoding LTL

The basic temporal logic is the logic with only the eventually operator (and the
dual always). This language is expressible in the standard modal logic [3] and
thus is expressible in HDML too. It is known that the Until operator U adds
expressivity to LTL (eventually and always operators can be encoded with U
but not the other way around).

The Until operator cannot be encoded in HDML because of the local behav-
ior of the during and terminate modalities; similar arguments as in modal logic
about expressing Until apply to HDML too. The Until modality talks about the
whole model (about all the configurations of the system) in an existential man-
ner. More precisely, the Until says that there must exist some configuration in
the model, reachable from the configuration where Until is evaluated, satisfying
some property ϕ and in all the configurations on all the paths reaching the ϕ
configuration some other property ψ must hold. Hence we need a notion of path
in a HDA.
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Definition 3.4 (paths in HDAs). A simple step in a HDA is either qn−1
si−→

qn with si(qn) = qn−1 or qn
ti−→ qn−1 with ti(qn) = qn−1, where qn ∈ Qn and

qn−1 ∈ Qn−1 and 1 ≤ i ≤ n. A path π
�= q0 α0

−→ q1 α1

−→ q2 α2

−→ . . . is a sequence

of single steps qj αj

−→ qj+1, with αj ∈ {si, ti}. We say that q ∈ π iff q = qj

appears in one of the steps in π. The first cell in a path is denoted st(π) and the
ending cell in a finite path is en(π).

In the same spirit as done for temporal logic we boost the expressivity of HDML
by defining an U operator over higher dimensional structures. Using this oper-
ator we can encode the standard Until operator of LTL.

Definition 3.5 (Until operator). Define an Until operator ϕU ϕ′ which is
interpreted over a HDA in a cell as below:
H, q |= ϕU ϕ′ iff ∃π ∈ H s.t. st(π) = q ∧ en(π) = q′,

H, q′ |= ϕ′, and ∀q′′ ∈ π, q′′ �= q′ then H, q′′ |= ϕ.

Proposition 3.6 (modeling LTL). The LTL Until modality is encoded syn-
tactically by ϕU ϕ′ �= (ϕ ∨ 〈〉#)U (ϕ′ ∧ ¬〈〉#) when U is interpreted only in
states of Kripke HDAs as in Lemma 3.1.

3.3 Partial Order Models and Their Logics in HDML

This section is mainly concerned with Mazurkiewicz traces [8] as a model of
concurrency based on partial orders, because of the wealth of logics that have
been developed for it [9, 20]. Higher dimensional automata are more expressive
than most of the partial orders models (like Mazurkiewicz traces, pomsets [13],
or event structures [10]) as studied in [16, 21]. The works of [16, 17, 21] show
(similar in nature) how event structures can be encoded in higher dimensional
automata. We consider the presentation of Mazurkiewicz traces as a particular
class of event structures, precisely defined in [19]. Because of space constraints we
cannot give standard definitions and results on partial orders, event structures,
or Mazurkiewicz traces; one can check these in [18].

Results from [17] show that a finitary event structure is uniquely determined
by its family of configurations, denoted (E, CE). One can view a configuration
of an event structure as a restricted valuation of events E → {0, 1}, and thus we
can view an event structure as a valuation fE : 2E → {0, 1}, which selects only
those configurations that make the event structure.

The terminology that we adopt here steams from the Chu spaces representa-
tion of HDAs [16, 17]. We fix a set E, which for our purposes denotes events.
Consider the class of HDAs which have a single hypercube of dimension |E|,
hence each event represents one dimension in the HDA. This hypercube is de-
noted 3E, in relation to 2E , because in the HDA case each event may be in three
phases: not started, executing, and terminated (as opposed to only terminated or
not started). The valuation from before becomes E → {0, 1

2 , 1}, where 1
2 means

executing. The set of three values is linearly ordered 0 < 1
2 < 1 to obtain an

acyclic HDA [17], and all cells of 3E (i.e., the configurations) are ordered by the
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natural lifting of this order pointwise. The dimension of a cell is equal to the
number of 1

2 in its corresponding valuation.

Notation: In the context of a single hypercube 3E we denote the cells by lists
of |E| elements e1e2 . . . e|E| where each ei takes values in {0, 1

2 , 1} and represents
the status of the ith event of the HDA.

With the above conventions, the cells of dimension 0 (i.e., the states of the
HDA) are denoted by the corresponding valuation restricted to only the two
values {0, 1}; and correspond to the configurations of an event structure. The
set of states of such a HDA is partially ordered by the order < we defined before.
In this way, from the hypercube 3E we can obtain any family of configurations
CE by removing all 0-dimensional cells that represent a configuration C �∈ CE.3

By results in [17] we can reconstruct the event structure.
In Definition 2.3 the interpretation of the during and terminate modalities of

HDML did not take into consideration the labeling of the HDA. The labeling
was used only for defining the geometry of concurrency of the HDA. Now we
make use of this labeling function in the semantics of the labeled modalities of
Definition 3.8. But first we extend the labeling to cells of any dimension.

Definition 3.7 (general labeling). Because of the condition l(si(q)) = l(ti(q))
for all q ∈ Q2, all the edges e1 . . . ei−1

1
2 ei+1 . . . e|E|, with ej ∈ {0, 1} for j �= i,

have the same label. Denote this as the label li. The label of a general cell q ∈ Qn

is the multiset of n labels lj1 . . . ljn where the j’s are exactly those indexes in the
representation of q for which ej has value 1

2 .

As is the case with multi-modal logics or propositional dynamic logics, we extend
HDML to have a multitude of modalities indexed by some alphabet Σ (the
alphabet of the HDA in our case). This will be the same alphabet as that of the
Mazurkiewicz trace represented by the HDA.

Definition 3.8 (labeled modalities). Consider two labeled modalities during
{a}ϕ and terminate 〈a〉ϕ where a ∈ Σ is a label from a fixed alphabet. The
interpretation of the labeled modalities is given below:
H, q |= {a}ϕ iff assuming q ∈ Qn for some n, ∃q′ ∈ Qn+1 s.t.

si(q′) = q for some 1 ≤ i ≤ n, l(q′) = l(q)a and H, q′ |= ϕ.
H, q |= 〈a〉ϕ iff assuming q ∈ Qn for some n, ∃q′ ∈ Qn−1 s.t.

ti(q) = q′ for some 1 ≤ i ≤ n, l(q) = l(q′)a and H, q′ |= ϕ.

Having the labeled modalities one can get the unlabeled variants as a disjunction
over all labels {}ϕ �=

∨
a∈Σ{a}ϕ.

In the remainder of this section we show how the LTrL logic of [20] is cap-
tured in the higher dimensional framework. This logic, as well as those presented
in [9,4], are interpreted in some particular configuration of a Mazurkiewicz trace
(or of a partial order). We take the view of Mazurkiewicz traces as restricted

3 We remove also all those cells of higher dimension that are connected with the 0-
dimensional cells that we have removed.
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event structures from, e.g. [9] but we use their representation using their corre-
sponding family of configurations cf. [19,17] (see [18] for details). Therefore, we
now interpret HDML over restricted HDAs as we discussed above.

Proposition 3.9 (encoding LTrL). The language of LTrL consists of the
propositional part of HDML together with the syntactic definitions of the Until
operator U from Definition 3.6 and 〈a〉ϕ �= {a}〈a〉ϕ for a ∈ Σ. When interpreted
only in the states of a HDA representing a Mazurkiewicz trace this language has
the same behavior as the one presented in [20]
Proof. The states of the HDA are the configurations of the Mazurkiewicz trace.
Thus, our definition of the LTrL language is interpreted in one trace at one
particular configuration; as is done in [20]. The original semantics of LTrL uses
transitions from one configuration to another labeled by an element from the
alphabet Σ of the trace. It is easy to see that our syntactic definition of 〈a〉ϕ
has the same interpretation as the one in [20]. The proof is similar to the proof
of Theorem 3.3. The Until operator of [20] has the same definition as the one in
standard LTL and thus we use the one defined in Proposition 3.6; the proof is
easily adapted to the Mazurkiewicz traces setting.

4 Conclusion

We have introduced a modal logic called HDML which is interpreted over higher
dimensional automata. According to our knowledge, this has not been done
before. The language of HDML is simple, capturing both the notions of “during”
and “after”. The associated semantics is intuitive, accounting for the special
geometry of the HDAs. An adaptation of the filtration method was needed to
prove decidability. We have associated to HDML an axiomatic system which
incorporates the standard modal axioms and has extra only few natural axioms
related to the cubical laws and to the dimensions of HDAs. This system was
proven to be complete for HDAs.

We isolated axiomatically the class of HDAs that encode Kripke structures
and shown how standard modal logic is encoded into HDML when interpreted
only over these restricted HDAs. We then extended the expressiveness of HDML
by defining an Until operator over HDAs. Using this Until operator, the LTL
was encoded into HDML when interpreted over the Kripke HDAs.

As future work we are investigating a tableaux system for HDML. We are also
trying to understand better the relation of HDML with other logics for weaker
models of concurrency like with the modal logic of [6] for event structures or
other logics for Mazurkiewicz traces. Particularly interesting is how our results
relate to the undecidability results of [2] or to the logic of [1].

Regarding the expressiveness of HDML, our current work focuses on finding
the kind of bisimulation that is characterized by HDML (and its extensions from
Section 3). Standard bisimulations for concurrent systems like ST-bisimulation or
split-bisimulation are not characterized by HDML because of the during modality
and the “during” behaviour of HDML.

Acknowledgements. I thank Martin Steffen and Olaf Owe for comments.
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Abstract. The standard way of modelling imperfect information in
games is in terms of information partitions for players. In this view,
each player is associated with an equivalence relation over the set of
game positions. For multiplayer games of imperfect information defined
in this manner it turns out that most of the algorithmic questions like
determining the winning strategy and synthesis of an equilibrium profile
are undecidable. In this light, we propose a model where the players’
information partitions are generated explicitly by means of communica-
tion. We define a notion of locally consistent equilibrium and suggest
that this captures the intuition of stable behaviour of players better. We
show that when communication is by means of public announcements,
the question of whether locally consistent equilibrium profile exists is
decidable.

1 Motivation

Game models have proved to be an attractive way of studying models of reactive
systems. Two player turn-based zero-sum games of perfect information provide
a natural framework for verification of system properties as well as synthesis
of controllers to achieve desired system behaviour. Turn-based games make the
strong assumption that players can observe the state of the game and the previ-
ous moves before they get their turn to make a move. When these systems are
component based, such an assumption is often untenable: typically they exhibit
concurrent behaviour and in the natural game model of such a system the moves
of one player may well be invisible to others. It can be easily shown that ran-
domized strategies are more powerful than deterministic ones in such situations,
and in the setting of concurrent games with win/lose objectives, algorithmic
questions on imperfect information have been extensively studied [5,8,4].

In the case of autonomous component based systems, a natural extension
of the model involves non-zero-sum games where players have preferences over
outcomes. Indeed, the classic works of distributed computing such as those on
the Byzantine Generals problem [11] envisaged a commonality of concerns be-
tween game theory and distributed systems: the presence of uncertainty and
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agents having possibly different goals who nonetheless need to act together and
perhaps coordinate. While these systems may act against global “adversaries”,
local preferences still matter [9].

This leads us to the setting of games of partial information which are no-
toriously difficult [13]. Win/lose games are not determined, and in games with
preference orderings, many questions are undecidable in the case of reactive sys-
tems that involve unbounded play.

A close analysis of the negative results offers us a way out. Two important
features of games of partial information are: use of private communications and
given information partitions. (By this, we mean that in games of imperfect in-
formation, players’ uncertainty is defined simply by information sets, not in any
way determined by other structure in the game.) In this context, concurrency
theory, with its rich repertoire of techniques by which uncertainty of agents is
structurally determined, is relevant. In models of distributed systems, two global
states may look the same to an agent who has the same local state in both, and
hence that agent would not be able to observe transitions between such states.
Moreover, distributed system theory considers various models of communication.

Such an observation suggests the consideration of games of partial informa-
tion in which information sets are structurally generated, or means of commu-
nication between players rule out private channels. In this paper, we consider
a model with both features: where players operate on their own game arenas
asynchronously, and hence have only a partial view of global game positions,
thus generating information sets. Moreover, all information exchange is via pub-
lic announcements. We consider only reachability objectives but players have
preferences over outcomes. What to communicate to others is a strategic choice
exercised by players.

In such a setting, the solution concepts are worth a re-examination as well.
Strategies are required to be consistent with information sets and hence are
view-based; thus strategies can only depend on players’ observations of game
evolution. It is then natural to consider notions of equilibria where a player’s
best reponse is not to other players’ strategies, but to observations of other
players’ strategies. We say that a profile is in a locally consistent equilibrium
if each player’s strategy is symmetrically the best reponse to the observations
entailed by other players’ strategies.

The main result of the paper states that existence of locally consistent equi-
libria is decidable in this model of distributed games, where information sets are
structurally determined and communication is by way of public announcements.
We consider the proposed model and notion of locally consistent equilibrium to
be the main contribution of the paper. The results presented here are prelimi-
nary and part of ongoing work on characterizing equilibria, on variations in the
communication model, and on algorithmic questions on subclasses.

This model should be seen as inspired by, but in contrast with, distributed
win/lose games played by asynchronous automata over specific architectures
studied by [12,6,1]. A detailed classification of recent work can be found in [7].
Our point of departure is in considering multiplayer non-zero sum games which
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are structurally generated in terms of the behaviour of players. These games
are not necessarily motivated by the distributed synthesis setting and therefore
we do not assume the presence of an “environment” player. Other interesting
connections relate to logical analyses such as that of independence-friendly logics
[10], but these are not explored here.

2 Preliminaries

Let N = {1, . . . , n} denote the set of players, we use i to range over this set.
Let Σ be a finite set of action symbols representing moves of players, we let
a, b range over Σ. For a set X and a finite sequence � = x1x2 . . . xm ∈ X+, let
last(�) = xm denote the last element in this sequence.

2.1 Game Trees

Let T = (S,⇒, s0) be a tree rooted at s0 on the set of vertices S and ⇒ :
(S ×Σ) → S be a partial function specifying the edges of the tree. The tree T

is said to be finite if S is a finite set. For a node s ∈ S, let
→
s= {s′ ∈ S | s a⇒s′

for some a ∈ Σ} and d(s) denote the depth of s in T. Let moves(s) = {a ∈ Σ |
∃s′ ∈ S with s

a⇒s′}. A node s is called a leaf node if
→
s= ∅.

An extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) is a
tree. The set S denotes the set of game positions with s0 being the initial game
position. The edge function ⇒ specifies the moves enabled at a game position
and the turn function λ̂ : S → N associates each game position with a player.
T = (T, λ̂) is said to be finite if T is finite. For i ∈ N , let Si = {s | λ̂(s) = i}
and let frontier (T) denote the set of all leaf nodes of T .

A play in T is simply a path ρ : s0a1s1 · · · in T such that for all j > 0, sj−1
aj⇒sj .

A strategy for player i is a function μi : Si → Σ which specifies a move at every
game position of the player. Let Ωi(T ) denote the set of all strategies of player i
in T . We use μ = (μ1, . . . , μn) to denote a profile of strategies. For a player i ∈ N
we also use the notation μ−i to denote the profile (μ1, . . . , μi−1, μi+1, . . . , μn).
A play ρ : s0a1s1a2 . . . aksk is said to be consistent with a strategy μi if for all
j : 1 ≤ j ≤ k, aj = μi(sj). It is easy to see that a strategy profile μ defines a
unique path in T , we denote this by ρμ.

Objectives. We consider simple reachability conditions for players. Each player
is associated with a preference ordering %i⊆ frontier(T ) × frontier (T ) which
is assumed to be a total pre-order over the leaf nodes of the tree. A game G is
specified by the pair G = (T , {%i}i∈N ).

Nash equilibrium. Given a strategy profile μ−i, we say μi is a best response
for μ−i if for all νi ∈ Ωi(T ), frontier (ρ(νi,μ−i)) %i frontier (ρ(μi,μ−i)). A strategy
profile μ constitutes a Nash equilibrium if for all i ∈ N , μi is a best response
for μ−i. A special case is when the preference ordering of players specify binary
objectives, we refer to this as win-loss conditions for players. Two player zero
sum games are ones in which |N | = 2 and the win-loss condition for each player
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is antagonistic. A strategy μi is said to be winning for player i if all plays con-
sistent with μi satisfy the winning condition.

Extensive form games with imperfect information. Unlike perfect infor-
mation games (as defined above), in a game with imperfect information, play-
ers might have uncertainty regarding the current game position. The standard
way of modelling imperfect information is by associating an uncertainty relation
∼i⊆ S × S with each player i ∈ N . We assume that the uncertainty relation ∼i

forms an equivalence relation and that it satisfies the condition of perfect recall
which is defined as follows: for all s, s′ ∈ S, and a, a′ ∈ Σ such that a ∈ moves(s)

and a′ ∈ moves(s′), if t ∼i t′ then s ∼i s′ where s
a⇒t and s′

a′
⇒t′.

Since the uncertainty relation specifies game positions which players cannot
distinguish between, we also require that the tree structure satisfies the condi-
tion: for all i ∈ N , for all s, s′ ∈ Si if s ∼i s′ then moves(s) = moves(s′). A
strategy for player i is a function μi : Si → Σ which satisfies the condition that
for all s, s′ ∈ Si, if s ∼i s′ then μi(s) = μi(s′).

Non-determined games. Imperfect information games behave quite differ-
ently from their perfect information counterparts even at the level of two player
zero sum games. It is well known that determinacy does not hold for the class
of finite extensive form games with imperfect information as exhibited by the
game of matching pennies. It is also easy to construct a non-zero sum variant of
the game in which Nash equilibrium does not exist.

Question. In view of the above remark, it is quite natural to ask: given an
imperfect information game G with win-loss objectives if it is decidable to check
whether a winning strategy exists in G and for non-zero sum games whether a
Nash equilibrium exists in G. For finite extensive form games it can be seen that
both the questions are decidable essentially due to the fact that the strategy
space is finite for all the players.

2.2 Unbounded Duration Games

In finite extensive form games, the duration of play is pre-determined in advance
and it is commonly known to all players. More realistic game situations are ones
in which the exact duration is not fixed but determined during the course of
play. These are games of unbounded duration and can be modelled in terms of
an infinite extensive form game. For algorithmic purposes, an interesting case is
when the infinite tree is obtained as unfoldings of finite graphs (or game arenas).

In the case of game arenas, the strategy space of players is unbounded. Thus
one cannot show decidability of the algorithmic questions posed earlier by sim-
ply enumerating all strategies. In fact it turns out that computing the winning
strategy for the class of multiplayer games defined in terms of unfoldings of game
arenas may be undecidable even for simple reachability objectives. Various ver-
sions of this result can be found in [14,3,2], borrowing elements from the seminal
work of Peterson and Reif [13]. It is also easy to come up with a non-zero sum
version where it can be shown that deciding the existence of Nash equilibrium is
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undecidable. The core idea in the undecidability results is to exploit the ability
of the model to iteratively generate information forks [15]. Intuitively an informa-
tion fork is a situation where two players have different information regarding
the moves of a third player in a manner such that the uncertainty cannot be
resolved locally.

This seems to suggest that models of imperfect information games which
avoid information forks are better behaved in terms of algorithmic issues. We
study a model arising from concurrency theory where uncertainty of players is
structurally generated.

3 The Local Games Model

In the model we present below, each player is assumed to be making her moves
locally, with the locations spatially distributed, and all information exchange
being via communication. With each player i ∈ N , we associate a finite set
Γ i, the set of symbols which player i employs for communication. Let Γ̃ =
Γ 1 × · · · × Γn.

3.1 Game Arena

Local arena. For a player i ∈ N , the local game arena for i is a tuple Gi =
(W i,→i, w

i
0, χ

i) where W i is a finite set of local game positions, wi
0 is the initial

game position, χi : W i → Γ i associates with each local game position an element
of Γ i and the move function→i : W i×Γ̃ → 2W i

satisfies the following condition:
for all wi, vi ∈ W i, if wi γ→iv

i then γ(i) = χi(wi).
The local game arena dictates the rules of the game for each player i. For each

local game position wi, the function χi specifies what player i communicates with
the other players. The transition function takes into account the current game
position and the communication received from other players to specify the set of
possible moves enabled for player i. Communication in this model is by means
of public announcements: for any state wi, the value of χi(wi) is communicated
to all players, as we will see from the construction of the global arena below.
A game structure G is defined in terms of a set of local game arenas for each
player, G = {Gi}i∈N .

Global arena. Given a game structure G = {Gi}i∈N , the resulting global
game arena G = (W,→,w0, χ) is constructed as follows: the set of global game
positions W = W 1 × · · · ×Wn and w0 = (w1

0 , . . . , w
n
0 ). We define the function

χ : W → Γ̃ as χ(w) = (χ1(w1), . . . , χn(wn)) which associates with each global
state, the announcements of players. The move relation → ⊆ W ×W satisfies
the property: for all w,v ∈W we have w→v iff

– ∀i ∈ enabled(w), wi γ→iv
i where γ = χ(w).

– ∀i ∈ N \ enabled(w), vi = wi.

where enabled(w) = {i ∈ N | ∃vi ∈W i with wi γ→iv
i where γ = χ(w)}.
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Plays. Since the global game arena is derived from the local arenas it is pos-
sible that there exist global game positions where moves of none of the players
are enabled. In other words, these are game positions where the play is stuck
and no progress can be made any further. For convenience, we think of such
terminal game positions as sink nodes with a self loop. Thus a play in G is
an infinite path ρ = w0w1 . . . such that for all j > 0, we have wj−1→wj .
Let states (ρ) = {w ∈ W | ∃j with w = wj}, i.e. it consists of all the global
states occurring in ρ. For i ∈ N , let states i(ρ) = {wi | w ∈ states (ρ)}. We
denote the set of all plays in G by Plays(G). We also use the notation Paths(G)
to denote the set of all finite partial plays in G. For a partial play �, we let
enabled(�) = enabled(last(�)).

Views of players. For i ∈ N and w ∈ W , player i’s view of w is defined as
view i(w) = (wi, χ(w)). For a sequence ρ : w0w1 . . ., we define player i’s view
of ρ as view i(ρ) = view i(w0)view i(w1) . . .. Let Plays i(G) = {view i(ρ) | ρ ∈
Plays(G)}.
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Fig. 1. Local game arenas

Example 3.1. Let the players be N = {1, 2} and the communication alphabets
be Γ 1 = {γ1

0 , . . . , γ
1
5} and Γ 2 = {γ2

0 , . . . , γ
2
6}. Consider the local game arena

G1 of player 1 given in Figure 1(a). The nodes of the graph corresponds to the
local game positions, the announcements made by player 1 at each local state
is marked along with the local states. For instance, χ1(w1

0) = γ1
0 , χ1(w1

1) =
χ1(w1

2) = γ1
1 and so on. The self loop on states without any announcement an-

notation means that irrespective of the announcement made by the other player,
the local state remains the same. The local arena G2 for player 2 is given in Fig-
ure 1(b). The derived global game graph is shown in Figure 2. In the global game
graph, players 1 and 2 alternate moves till the game reaches one of the global
sink nodes {(w1

3, w
2
3), (w

1
4 , w

2
4), (w

1
5 , w

2
5), (w

1
6 , w

2
6)}. Player 2 cannot distinguish

between the global states (w1
1 , w

2
0) and (w1

2 , w
2
0) since view2((w1

0 , w
2
0)(w1

1 , w
2
0)) =

view2((w1
0 , w

2
0)(w

1
2 , w

2
0)).

The model does allow players to resolve imperfect information as the play
progresses. For instance at the global state (w1

3 , w
2
3) player 2 knows that the



A Communication Based Model for Games of Imperfect Information 515

(w1
0 ,w2

0)

��












�������������

(w1
1 ,w2

0)

�����
���

�����
���

Player 2 ′s

information partition
(w1

2 ,w2
0)

�����
���

�����
���

(w1
1 ,w2

1)

��

(w1
1 ,w2

2)

��

(w1
2 ,w2

1)

��

(w1
2 ,w2

2)

��
(w1

3 ,w2
1)

��

(w1
4 ,w2

2)

��

(w1
5 ,w2

1)

��

(w1
6 ,w2

2)

��
(w1

3 ,w2
3)�� (w1

4 ,w2
4)�� (w1

5 ,w2
5)�� (w1

6 ,w2
6)��

Fig. 2. Global game arena

play passed through the position (w1
1 , w

2
0) and not through (w1

2 , w
2
0). Thus the

example demonstrates that “learning” is possible in the game model: basically,
information sets of players can shrink during the course of play.

Note that the model is more general than turn based games where only one player
can make a move at any given position. In the absence of communications there
is no way of scheduling one player’s move before another, and several players
can move at the same position simultaneously. Communications can force turn
based games also, as illustrated by Example 3.1.

In general, the communication alphabet of player i provides a projection of
i’s local states. The special case, when for all i, Γ i = W i and χi is the identity
map, gives us perfect information games, which is why we say that uncertainty
in our model is generated structurally.

Extensive form tree. For an arena G = (W,→,w0, χ), the (infinite) extensive
form game tree TG associated with G is obtained by the tree unfolding of G.
In addition to keeping track of the sequence of game positions, we also keep
track of the sequence of announcements made by players. Formally we have
TG = (S,⇒, s0) where S ⊆ (W × Γ̃ )+ and ⇒ ⊆ S × S are the least sets
satisfying the condition: (w0, χ(w0)) ∈ S and

– If s = (w0, γ0) . . . (wk, γk) ∈ S and wk→w′ then s′ = s · (w′, χ(w′)) ∈ S
and s⇒s′.

Since each node s ∈ S corresponds to a path in G, for each player i ∈ N , the
notion of view i(s) is well defined. The uncertainty relation ∼i⊆ S×S is defined
as follows: s ∼i s′ iff view i(s) = view i(s′). It is easy to verify that ∼i thus defined
forms an equivalence relation and that it satisfies perfect recall.

3.2 Strategies and Announcement Plans

Strategies. A strategy for player i, is a function μi : W ∗ → W i which satisfies
the conditions: μi(ε) = wi

0,
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– for all finite partial plays � ∈ Paths(G), if μi(�) = wi then there exists v
such that last(�)→v and vi = wi. This says that the strategy must choose
only moves which are enabled.

– For all �, �′ ∈ Paths(G), if view i(�) = view i(�′) then μi(�) = μi(�′). This
says that the strategy needs to respect the information partition.

We say that a play ρ : w0w1 . . . is consistent with strategy μi if ∀j > 0,
wi

j = μi(view i(w0 . . .wj−1)). It is easy to see that a profile of strategies μ =
(μ1, . . . , μn) generates a unique path in the arena, we denote this by ρμ.

Announcement plans. An announcement plan for a player is similar to a strat-
egy, except that instead of choosing a local state it chooses an observation. That
is, an announcement plan is a map ξi : W ∗ → Γ i which respects the information
partition. This can also be thought of as a partially specified strategy, which
instead of specifying an exact choice, restricts the available moves of the player.
A strategy μi is said to conform to ξi if it satisfies the condition: for all partial
plays �, if μi(�) = wi then χi(wi) = ξi(�).

For an announcement plan ξi, let [[ξi]] denote the set of all strategies which
conform to ξi. Given a strategy μi let p(μi) denote the announcement plan
corresponding to μi. This is obtained by the simple transformation: for all
� ∈ Paths(G), p(μi)(�) = χi(μi(�)).

Advice automata. We are particularly interested in strategies which are rep-
resented by finite state machines. An advice automaton for player i over a game
arena G is a structure Ai = (Q, δ, o, q0) consisting of a finite set of states Q, a
transition function δ : Q×W i×Γ̃ → Q, an advice function o : Q×W i×Γ̃ →W i

along with an initial state q0 ∈ Q.
A plan automaton P i = (Q, δ, o, q0) for player i is similar to an advice au-

tomaton except for the advice function o : Q×W i × Γ̃ → Γ i which outputs an
announcement instead of a local position.

3.3 Objectives

In this paper we restrict our attention to simple non-zero sum reachability objec-
tives for players. For each player i, let Ri ⊆W i. We assume that Ri constitutes
sink nodes in the local arena, i.e. once the player reaches one of the states in Ri

he stays in the state for ever. We also assume that for all wi ∈ Ri, χi(wi) = wi.
Let %i⊆ Ri × Ri be a (local) preference ordering for each player. We assume
that %i forms a total pre-order over Ri. A game is then specified by a pair
G = ({Gi}i∈N , {%i}i∈N ).

We extend the preference relation over plays as follows: for ρ, ρ′ ∈ Plays(G),
ρ %i ρ′ if states i(ρ) ∩Ri %i states i(ρ′) ∩Ri. Note that for all i ∈ N we assume
the states in Ri are sink nodes. Thus in any play ρ, if the local state of player i
hits a state in Ri then there will be a unique such state and therefore the above
ordering over plays is well defined. We assume that plays which do not reach
any of the reachability states are the least preferred ones. We find it useful to
lift the preference ordering over paths to one over strategies for each player. For
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μi, νi ∈ Ω(G), we define νi �i μi if for all plays ρ1 consistent with νi and for all
plays ρ2 consistent with μi, ρ1 %i ρ2.

We call a strategy μi dominant for player i in game G if for all νi ∈ Ωi(G),
νi �i μi. The following proposition states that in the special case when G is a
perfect information game, it is decidable to check if i has a dominant strategy.

Proposition 3.1. Given a perfect information game G and a player i, it is
decidable to check whether there exists a dominant strategy for player i and it is
possible to synthesize a dominant strategy (when it exists).

3.4 Locally Consistent Equilibrium

Local best response. Given a strategy profile μ−i, a strategy μi of player i
is a best response for μ−i if for all νi ∈ Ωi(G), ρ(νi,μ−i) %i ρ(μi,μ−i). For an
announcement profile ξ−i, we say that μi is a local best response for ξ−i if for all
νi ∈ Ωi(G) and for all μ−i ∈ [[ξ−i]], ρ(νi,μ−i) %i ρ(μi,μ−i). In other words, μi is a
local best response if for all μ−i ∈ [[ξ−i]], μi is the best response for μ−i.
Equilibrium. A profile of strategies μ constitutes a locally consistent equilibrium
profile if for all i ∈ N , μi is a best response for p(μ−i).

How do locally consistent equilibria relate to the more standard notion of Nash
equilibria? All solution concepts are justified by underlying notions of rationality.
In our model, every player strategizes based on observations of announcements
and the announcements she makes are strategic as well. No player has access
to the epistemic structure of the other players, and hence offers a response not
to any particular strategy of others, but to every potential strategy based on
observations. In the case of perfect information games, when the communication
alphabet is the same as the set of local states and announcement maps are
identity functions, this notion is the same as Nash equilibrium.

Consider the game given in Example 3.1 (Figure 2). Suppose the preference
ordering of player 1 is given by w1

4 %1 w1
5 <1 w1

3 =1 w1
6 and that of player 2 is

w2
3 %2 w2

6 <2 w2
4 =2 w2

5 . It is easy to check that the game does not have a Nash
equilibrium, nor any locally consistent equilibrium.

Suppose that the preference orderings are as follows: w1
4 =1 w1

5 <1 w1
6 <1 w1

3

and w2
4 =2 w2

5 <2 w2
3 <2 w2

6 . The game has two Nash equilibria. One in which
player 1 chooses w1

1 at the initial position and player 2 chooses w2
1 subsequently.

The second Nash equilibrium is the profile where player 1 chooses w1
2 and player

2 chooses w2
2. However note that choice of player 2 needs to be coordinated with

that of player 1 to achieve equilibrium. Thus both the strategy profiles fail to be
locally consistent equilibria. In fact it can be seen that this game does not have
a locally consistent equilibrium.

On the other hand suppose the preference ordering is as follows: w1
6 <1 w1

4 <1

w1
5 =1 w1

3 and w2
4 <2 w2

6 <2 w2
5 =2 w2

3 . Then there are two locally consistent
equilibrium profiles in the game. One where player 1 chooses w1

1 at the initial
position and player 2 chooses w2

1 subsequently and also the strategy profile where
player 1 chooses w1

2 followed by player 2 choosing w2
1 subsequently.
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Questions. For a game G the algorithmic questions of interest include:

– given an announcement profile ξ−i in terms of bounded memory plan au-
tomata, is it possible to compute a local best response of player i for ξ−i

(when it exists)?
– is it decidable to check whether a locally consistent equilibrium profile exists

in the game?
– is it possible to synthesize a locally consistent equilibrium profile (when it

exists)?

4 Local Best Response Computation

Here we show that the local best response computation problem is decidable. For-
mally given a game G = ({Gi}i∈N , {%i}i∈N), a bounded memory announcement
profile ξ−i in terms of plan automata, we show that it is possible to compute
a local best response of player i (when it exists) for ξ−i. The proof proceeds in
two stages. For simplicity, for the rest of the section we assume that i = 1.

Restriction of the arena. Let G = (W,→, w0, χ) and for all j ∈ {2, . . . , n}
let Pj = (Qj , δj , oj , qj

0) be the plan automaton corresponding to the bounded
memory announcement plan ξj . We define the restriction of G with respect to
the tuple P = (P2, . . . ,Pn) as follows: GP = (WP ,→P ,wP

0 , χP ) where WP =
W ×Q2 × . . .×Qn, wP

0 = (w0,q0) and χP ((w,q)) = χ(w). The edge relation
satisfies the condition: (w1,q1)→P (w2,q2) iff w1→w2, for all j ∈ {2, . . . , n} we
have oj(qj

1) = χj(w2) and δj(qj
1, w

j
1, χ(w1)) = qj

2.
It can be verified that for all j ∈ {2, . . . , n}, Ωj(GP ) contains precisely those

strategies in Ωj(G) which conform to the announcement plan ξj .

Subset construction. Let GP be the restricted arena, we define the knowledge
arena as follows: GK = (WK,→K, wK

0 , χK) where WK ⊆ 2WP which satisfies the
consistency condition that if X ∈ WK then for all (w,q) and (v,q′) ∈ X , w1 =
v1. For a node X ∈ WK and a state uj ∈ W j we define postu

j

(X) = {(w,q) |
∃(v,q′) with (w,q)→P (v,q′) and vj = uj}. The move relation is defined as
follows: X→KY iff ∃u1 such that Y = postu

1
(X). The initial position wK

0 =
{wP

0 } and for X ∈ WK, χK(X) = χK((w,q)) for some (w,q) ∈ X . Due to
the consistency requirement on WK and the fact that the subset construction is
performed on the restricted arena, the function χK is well defined. For X ∈ WK,
we define view i(X) = (view i(w),q) for some (w,q) ∈ X .

Note that GK can be viewed as a two player perfect information game where
players 2 to n can be thought of together as a second player playing against
player 1. Thus in particular, due to Proposition 3.1 it is decidable to check
whether player 1 has a dominant strategy in GK.

Proposition 4.1. Player 1 has a local best response for ξ−1 in G iff he has a
dominant strategy in GK.
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Proof. The crucial idea is to show the existence of a bijection b between strategies
in GK and those in GP which preserves outcome states in terms of the reachability
condition. It can then be shown that if a dominant strategy μ1

K exists in GK

then the bounded memory strategy in G corresponding to b(μ1
K) is a local best

response for ξ−1. If a dominant strategy does not exist in GK then by making
use of the bijection b, it can be argued that there exist strategy profiles μ−1

P and
ν−1
P for which player 1 does not have a common best response strategy. It then

follows that player 1 does not have a local best response for ξ−1 in G.

Corollary 4.1. Given a game G = ({Gi}i∈N , {%i}i∈N ) and an announcement
profile ξ−1, it is decidable to check if player 1 has a local best response for ξ−1.
It is possible to synthesize a best response strategy when it exists.

5 Equilibrium Computation

In this section we show that given a game G, it is decidable to check whether
G has a locally consistent equilibrium profile. The main technique used is to
construct a finite tree T (G) from the arena G which preserves local outcomes
of players. The tree T (G) is constructed in such a manner that all strategies
in T (G) can be translated into equivalent bounded memory strategies in G.
We then employ a variant of the backward induction algorithm to synthesize
a locally consistent equilibrium profile in T (G) (if it exists) and show that the
corresponding strategies in G form a locally consistent equilibrium profile in G.

Let G = ({Gi}i∈N , {%i}i∈N ) and G be the corresponding global arena. For
any partial play � = w0 . . .wk ∈ Paths(G) in which no state repeats and a state
w ∈ W , we define squeeze(� ·w) as follows: if ∃j : 1 ≤ j ≤ k such that wj = w
then squeeze(� ·w) = w0 . . .wj , otherwise squeeze(� ·w) = � ·w. Essentially the
squeeze operator removes cycles from the path. This operation can be carried
out (iteratively) for any play ρ. We sometimes abuse notation and simply refer
to it as squeeze(ρ). For a set K ⊆ Paths(G), and observations γ1, γ2 ∈ Γ̃ , let
update(K, γ1, γ2) = {squeeze(�·v)|� ∈ K, ∀i ∈ N, last(�)i γ1→iv

i and χi(vi) = γi
2}.

The extensive form tree. For an arena G, let L(G) denote the set of paths in
G in which no game position repeats. Since G is finite, L(G) can be easily seen
to be finite.

We define the extensive form tree as T (G) = (S,⇒, s0, l) where S ⊆ W+

and l : S → 2L(G). Initially S = {w0}, s0 = w0 and l(s0) = {w0}. For any
node s ∈ S, let �s denote the unique path from s0 to s. We extend the tree by
applying the following rule: pick any node s ∈ S which satisfies the condition
that there does not exist another node t in �s with l(s) = l(t). Let last(s) = w
and

→
w= {w1, . . . ,wk}. For each j : 1 ≤ j ≤ k we add nodes s · wj to the

set S. We extend the transition relation to include the edges s⇒s · wj and
set l(s · wj) = update(l(s), χ(w), χ(wj)). The elements of 2L(G) represents the
information the players need to keep track of during the course of play. We often
refer to it as the knowledge set of players. At any node s, K = l(s) provides the
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set of all (partial) plays that players consider possible given their sequence of
observations. As noted earlier, the model allows the possibility of information sets
of players to shrink as the play progresses. Thus on encountering a transition,
the knowledge set is updated based on the new observable. This is done by
eliminating all partial plays in K which are inconsistent with the new observation
and extending the remaining plays with all states consistent with the observation.

Intuitively, the tree T (G) is generated by the unfolding of G while also keeping
track of the knowledge set associated with each node of the tree. The crucial
idea is that since communication is by means of public announcement it suffices
to keep track of a single set rather than a tuple of sets, one for each player.
Observe that every play in G is carried over to T (G) except that the play is
terminated when the knowledge set repeats. Since the knowledge set has at
most exponentially many elements in the number of permutations of positions
in G and since every node in S has finite branching it follows that T (G) is finite.

Uncertainty relation. We define the uncertainty relation for players over the
nodes in T (G) as follows: for all non-leaf nodes s, s′ we have s ≈i s′ iff last(s)i =
last(s′)i and l(s) = l(s′). We assume that every leaf node is distinguishable by
players and thus s ≈i s is the only relation that holds for a leaf state s.

Proposition 5.1. For all non-leaf nodes s, s′ ∈ S and i ∈ N if s ≈i s′ then
|s| = |s′|.

This follows since for all non-leaf nodes s ∈ S, if |s| = m then there exists a path
ρ ∈ l(s) such that |ρ| = m. An immediate consequence of Proposition 5.1 is that
the uncertainty relation ≈i satisfies perfect recall.

Memoryless to bounded memory strategies. Given any strategy σ for
player i in T (G), we can construct a bounded memory strategy μ in G (denoted
f(σ)) in terms of an advice automaton Ai. The memory states of Ai are the
subsets of L(G) (or the knowledge sets). The transition relation is the update
operator defined on the knowledge sets. Note that the update operator is defined
in terms of observables and not on the global states. Therefore this can be
implemented by the transition relation of the advice automaton. The output
function is simply the choice made by the strategy σ.

The only problem is with the leaf nodes of T (G). Let s be a leaf node and
s1 be the node in �s such that l(s) = l(s1). Let last(s) = w and last(s1) = w1.
It is possible that wi �= wi

1. However, for the strategy μi to be well defined,
we need to show that μi specifies a consistent choice at (wi, l(s)). Note that
by construction, if l(s) = l(s1) then there exists a non-leaf node s2 such that
|s1| = |s2| with last(s2)i = wi and l(s2) = l(s1). Now since s2 is a non-leaf node,
by construction, a choice is specified for μi at (wi, l(s)).

The backward induction procedure. As noted earlier, locally consistent
equilibrium need not always exist. Starting at the leaf nodes, the backward
induction procedure looks at every stage for the local best response of players.
In case it does not exist, then the node is marked with ↓. For a tuple x =
(x1, . . . , xk) we say x is ↓-free if ↓ does not occur in x. For each i ∈ N , we define
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a labelling function ui on the frontier nodes of T (G). For each frontier node s,
let ui(s) = (last(s))i. We denote by u(s) the tuple (u1(s), . . . , un(s)).

The backward induction procedure (given below) takes as input T (G), the
depth d of the tree T (G) and involves d stages: starting at the leaf nodes and
extending the labelling function to the interior nodes of T (G).

Procedure BI(T (G), d)

– Initially, all the interior nodes of T (G) are unlabelled.

– Repeat the following steps for c = d− 1 to 1.

– For each i ∈ N and information partition Ii of i at depth c do the following:
• Let Ii = {s1, . . . , sm} and for each k : 1 ≤ k ≤ m let Yk = {v | sk · v ∈

S}. Let Y i
k = {vi | v ∈ Yk}, in other words Y i

k consists of the moves
of player i enabled at state sk. Note that for all states in Ii, the same
set of moves are enabled for player i, let this set be {vi

1, . . . , v
i
r}. Let

Xvi
j

= {v | ∃sk ∈ Ii and last(sk)→v with vi = vi
j}, this set is not

empty since vi
j ∈ Y i

k . Let Li(Xvi
j
) = {ui(v) | v ∈ Xvi

j
}.

Check if there exists a Xvi
max

such that Li(Xvi
max

) is ↓-free and Li(Xvi
j
) %i

Li(Xvi
max

) for all j. If so then set σi(sk) = vi
max for all sk ∈ Ii otherwise

σi(sk) is not defined.
• For a node s of depth c, for all i ∈ enabled(s) if σi(s) is defined then set

ui(s) = ui(σ(s)) else ui(s) =↓.

Let ≈∗ denote the transitive closure of {(s, s′) ∈ S × S | s ≈i s′ for some i ∈
N}. Let Zs = {s′ | s ≈∗ s′}. Let T (Zs) denote the forest consisting of all the
subtrees rooted at nodes in Zs and let T (G, s,≈∗) denote the tree where we add
a unique root r0 along with edges to all the nodes in Zs. The moves of players at
r0 is defined in the obvious manner. The following lemma asserts the correctness
of the backward induction procedure.

Lemma 5.1. For a tree T (G), for all s ∈ S there exists a locally consistent
equilibrium in T (G, s,≈∗) with outcome (w1, . . . , wn) iff u(s) = (w1, . . . , wn)
and ↓-free.

Proof. The proof is by induction on |s|. The base case is when |s| = d which
corresponds to the leaf nodes. In this case the only uncertainty for players is s ≈i

s and therefore the lemma follows easily. Suppose the claim holds for all s with
|s| < c and let s ∈ S with |s| = c. Suppose u(s) is ↓-free and u(s) = (w1, . . . , wn).
According to step 2 of the backward induction procedure, for all i ∈ enabled(s),
σi(s) is defined and ui(σi(s)) = wi. If σi(s) is defined then it means that for
all i ∈ enabled(s), there exists a vi

max such that Li(Xvi
j
) %i Li(Xvi

max
) for all

j and σi(s) = vi
max = wi. By induction hypothesis, for all s′ ∈ Xvi

j
, there

exists a locally consistent equilibrium in T (G, s′,≈∗) with outcome ui(s′) = wi.
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Since Li(Xvi
j
) %i Li(Xvi

max
) for all j we have σi(s) = vi

max constitutes a locally
consistent equilibrium in T (G, s,≈∗).

Suppose there exists a locally consistent equilibrium in T (G, s,≈∗) with the
outcome (w1, . . . , wn). Then for all i ∈ enabled(s), for all Ii ⊆ Zs, there exists
a vi

max such that s′ = s · vmax and there exists a locally consistent equilibrium
in T (G, s′,≈∗) with outcome (w1, . . . , wn). By induction hypothesis, u(s′) =
(w1, . . . , wn). By the backward induction procedure, we get u(s) = (w1, . . . , wn)
and σi(s) = vi

max.

Lemma 5.2. For a game G = ({Gi}i∈N , {%i}i∈N ), a locally consistent equilib-
rium profile exists in G iff a locally consistent equilibrium profile exists in T (G).

Proof. It can be shown that if a locally consistent equilibrium profile σ exists
in T (G) then μ = f(σ) constitutes an equilibrium profile in G. Conversely, if
there does not exist a locally consistent equilibrium in T (G) then at each level
of the tree we get witness information sets which violate the local consistency
requirement of equilibrium based on the observations of players. This essentially
means the existence of a player for which a common best response strategy for
any play conceived possible by his observations does not exist. These witness
sets can be lifted to paths in G as specified by the knowledge set.

Theorem 5.1. Given a game G = ({Gi}i∈N , {%i}i∈N), it is decidable to check
whether a locally consistent equilibrium profile exists in G. It is possible to syn-
thesize such an equilibrium profile (when it exists).

Proof. From Lemma 5.2 it follows that to decide if a locally consistent equilib-
rium profile exists in G we can run the backward induction algorithm on T (G)
and check if the labelling at the root is ↓-free. By Lemma 5.1, the strategy profile
σ constructed is a locally consistent equilibrium in T (G) and from Lemma 5.2
we have that f(σ) is a locally consistent equilibrium profile in G.

6 Discussion

In the model discussed here communication is by means of public announce-
ment, but the model is capable of dealing with other forms of communication.
For instance, private communication can be captured by associating with each
pair of players a set of announcement alphabets which is then communicated to
the specific player by means of a private channel. It can be shown that in this
setting the question of whether Nash equilibrium exists is undecidable. Public
and private communication form two extremes and ongoing work includes look-
ing at the notion of locally consistent equilibrium for other types of restricted
communication models.
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Flat Coalgebraic Fixed Point Logics
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Abstract. Fixed point logics are widely used in computer science, in particular
in artificial intelligence and concurrency. The most expressive logics of this type
are the μ-calculus and its relatives. However, popular fixed point logics tend to
trade expressivity for simplicity and readability, and in fact often live within the
single variable fragment of the μ-calculus. The family of such flat fixed point
logics includes, e.g., CTL, the ∗-nesting-free fragment of PDL, and the logic of
common knowledge. Here, we extend this notion to the generic semantic frame-
work of coalgebraic logic, thus covering a wide range of logics beyond the stan-
dard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the
alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone
fixed point logics. Our main results are completeness of the Kozen-Park axiom-
atization and a timed-out tableaux method that matches EXPTIME upper bounds
inherited from the coalgebraic μ-calculus but avoids using automata.

1 Introduction

Many of the most well-known logics in program verification, concurrency, and other
areas of computer science and artificial intelligence can be cast as fixed point logics, that
is, embedded into some variant of the μ-calculus. Typical examples are PDL [25] where,
say, the formula 〈a∗〉p (‘p can be reached by finite iteration of a’) can be expressed as
the least fixed point μX. p∨〈a〉X ; CTL [7], whose formula AFp (‘p eventually holds on
all paths’) is just the fixed point μX. p∨�X ; and the common knowledge operator C of
epistemic logic [19], where Cp (‘it is common knowledge that p’) can be expressed as
the fixed point νX.

∧n
i=1 Ki(p∧X) with n the number of agents and Ki read as ‘agent

i knows that’. A common feature of these examples is that they trade off expressivity
for simplicity of expression in comparison to the full μ-calculus.

One of the reasons why the full μ-calculus is both hard to read and algorithmically
problematic in practice is that one has to keep track of bound variables. Indeed we note
that the simpler logics listed above (in the case of PDL, the ∗-nesting-free fragment) live
in the single-variable fragment of the μ-calculus (a subfragment of the alternation-free
fragment [10]), which is precisely what enables one to abandon variables altogether in
favour of variable-free fixed point operators such as AF or C. We refer to logics that
embed into a single-variable μ-calculus as flat fixed point logics [27].

Here, we study flat fixed point logics in the more general setting of coalgebraic
logic. Coalgebra has recently emerged as the right framework for a unified treatment of
a wide range of modal logics with seemingly disparate semantics beyond the realm of

� Work performed as part of the project FormalSafe funded by the German Federal Ministry of
Education and Research (FKZ 01IW07002).

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 524–538, 2010.
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pure relational structures. Examples include monotone modal logic, probabilistic modal
logics [17], graded modal logic [11,5], and coalition logic [23]. This level of general-
ity is achieved by parametrizing the semantics over a type functor on the category of
sets, whose coalgebras play the role of frames. Besides standard Kripke frames, the no-
tion of coalgebra encompasses, e.g., Markov chains, weighted automata, multigraphs,
neighbourhood frames, selection function frames, and concurrent game structures. The
theory of coalgebraic modal logic has evolved quite rapidly, and presently includes, e.g.,
generic upper bounds PSPACE for satisfiability in next-step logics [29], and EXPTIME

for satisfiability under global assumptions in hybrid next-step logics [31].
In our flat coalgebraic fixed point logics one can express operators such as ‘the coali-

tion C of agents can maintain p forever’, ‘the present state is the root of a binary tree
all whose leaves satisfy p’, or ‘p is commonly believed with reasonable certainty’. In
particular, we cover the single-variable fragments of the graded μ-calculus [16] and
the alternating-time μ-calculus (AMC) [1], including alternating-time temporal logic
(ATL). Flat coalgebraic fixed point logics are fragments of coalgebraic μ-calculi, and as
such known to be decidable in EXPTIME under reasonable assumptions [4]. However,
the decision procedure for the coalgebraic μ-calculus is, like the one for the standard
μ-calculus [9], based on automata and as such has exponential average-case run time,
while tableaux methods as suggested, e.g., by Emerson and Halpern for CTL [8] and
by Kozen for the aconjunctive fragment of the μ-calculus [14] are expected to offer the
possibility of feasible average-case behaviour.

Our main results on flat coalgebraic fixed point logics, parametric both w.r.t. the
coalgebraic branching type and the choice of flat fragment, are

– completeness of the natural axiomatization that makes the fixed point definitions
explicit, generalizing the well-known Kozen-Park axiomatization; and

– a construction of timed-out tableaux similar in spirit to Kozen’s tableaux for the
aconjunctive μ-calculus,

both under mild restrictions on the form of fixed point operators. The completeness
result generalizes results of [27] to the level of coalgebraic logic, and relies on the
notion of O-adjointness [26] to prove that fixed points in the Lindenbaum algebra are
constructive, i.e. approximable in ω steps. The crucial ingredient here are the one-step
cutfree complete rule sets of [29,22]. These enable significant generalizations of both
the key rigidity lemma and the O-adjointness theorem of [27], the latter to the effect
that all uniform-depth modal operators are O-adjoint. The novel tableaux construction
is instrumental in the completeness proof, and at the same time confirms the known
EXPTIME upper bound, avoiding however the use of automata and thus raising hopes
for efficient implementation.

Our completeness result follows a long tradition of non-trivial completeness proofs,
e.g. for PDL [15,32], CTL [8], the aconjunctive μ-calculus [14], and the full μ-
calculus [33]. Note that all these results are independent, as completeness is not in
general inherited by sublogics, and in fact employ quite different methods. Instantiat-
ing our generic results to concrete logics yields new results in nearly all cases that go
beyond the classical relational μ-calculus, noting that neither [16] nor [4] cover axiom-
atizations. In particular, we obtain for the first time a completeness result and a tableau
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procedure for graded fixed point logics, i.e. fragments of the graded μ-calculus, and we
generalize the completeness of ATL [12] to arbitrary flat fragments of AMC.

2 Flat Coalgebraic Fixed Point Logics

We briefly recall the generic framework of coalgebraic modal logic [21,28], and define
its extension with flat fixed point operators, a fragment of the coalgebraic μ-calculus [4].

The first parameter of the syntax is a (modal) similarity type Λ, i.e. a set of modal
operators with associated finite arities. We work with formulas in negation normal form
throughout, and therefore assume that every modal operator ♥ ∈ Λ comes with a dual

operator♥ ∈ Λ of the same arity, where ♥ = ♥. This determines the set F(Λ), or just
F , of modal formulas γ, δ by the grammar

γ, δ ::= ⊥ | # | v | ¬v | γ ∧ δ | γ ∨ δ | ♥(γ1, . . . , γn)

where♥ ∈ Λ is n-ary and v ∈ V for a fixed countably infinite set V of variables. Nega-
tion ¬, admitted in the above grammar only for variables v, then becomes a derived op-
eration on all formulas in the standard way; e.g., ¬♥(γ1, . . . , γn) = ♥(¬γ, . . . ,¬γn),
and ¬¬v = v. Further derived operations→,↔ are defined as usual. Moreover, we de-
fine the dual γ of γ as γ ≡ ¬γσ where the substitution σ is given by σ(v) = ¬v for all
v ∈ V . We intend variables as place holders for arguments and parameters of formulas
defining fixed point operators; as such, they serve only technical purposes and will not
form part of the actual fixed point language defined below. Instead, propositional atoms
are incorporated into the modal similarity type Λ as nullary operators when needed.

The second syntactic parameter of a flat coalgebraic fixed point logic is a set Γ of
modal formulas γ, where we distinguish a single fixed argument variable x and regard
all other variables p1, . . . , pn in γ as parameters; we require that γ is monotone in all
variables, i.e. does not contain ¬x (an essential condition for the existence of fixed
points) or ¬pi (a mere technical convenience, and not an actual restriction as one can
always negate the actual parameter instead of the parameter variable). We require more-
over that all γ ∈ Γ are guarded, i.e. that all occurrences of the argument variable x are
under the scope of at least one modal operator; as shown in [33], this is not an essential
restriction as every μ-calculus formula is provably equivalent to a guarded formula. We
denote substituted formulas γ[ϕ1/p1; . . . ;ϕn/pn;ψ/x] as γ(ϕ1, . . . , ϕn, ψ). The set
F�(Λ, Γ ) or just F� of (fixed point) formulas ϕ, ψ is then defined by the grammar

ϕ, ψ ::= ⊥ | # | ϕ ∧ ψ | ϕ ∨ ψ | ♥(ϕ1, . . . , ϕn) |  γ(ϕ1, . . . , ϕn) | !γ(ϕ1, . . . , ϕn)

where♥ ∈ Λ is n-ary and γ ∈ Γ . The operator  γ represents the least fixed point

 γ(ϕ1, . . . , ϕn) = μx.γ(ϕ1, . . . , ϕn, x),

while !γ(ϕ1, . . . , ϕn) represents the greatest fixed point νx.γ(ϕ1, . . . , ϕn, x). The
name flat for the fixed point operators  γ , !γ relates to the fact that we require the
formula γ to belong to the basic (fixed point free) modal language. Note that nesting
of fixed point operators is unrestricted, e.g. ϕ can be an arbitrary fixed point formula
in  γϕ. Syntactically,  γ is an atomic operator, and occurrences of variables in γ do
not count as occurrences in formulas  γφ. For the sake of readability, we restrict the
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further technical development (but not the examples) to unary modalities ♥ and unary
fixed point operators, i.e. we assume that every γ ∈ Γ has only one parameter vari-
able, denoted by p throughout; the extension to higher arities is a mere notational issue.
Negation extends to fixed points by ¬ γϕ = !γ(¬ϕ) and ¬!γϕ =  γ(¬ϕ). Note that
unlike in the case of modal formulas, we have not included variables in the definition
of fixed point formulas. A (fixed point) formula with variables is an expression of the
form γσ, where γ is a modal formula and σ is a substitution of some of the variables
in γ with fixed point formulas (i.e. variables never appear under fixed point operators).
In the following, the term formula will refer to fixed point formulas without variables
unless variables are explicitly mentioned. For γ ∈ Γ , we denote the function taking a
formula ψ to γ(ϕ, ψ) by γ(ϕ), and by γ(ϕ)k its k-fold iteration. We assume a reason-
able size measure on Λ and hence on formulas and sets of formulas [30], in particular
that numbers (e.g. in graded or probabilistic operators) are coded in binary.

The logic is further parametrized semantically over the underlying class of systems
and the interpretation of the modal operators. The former is determined by the choice
of a type functor T : Set → Set, i.e. an operation T that maps sets X to sets TX
and functions f : X → Y to functions Tf : TX → TY , preserving identities and
composition, and the latter by the choice of a predicate lifting [[♥]] for each ♥ ∈ Λ.
Here, a predicate lifting (for T ) is a family of maps λX : PX → PTX, where X
ranges over all sets, satisfying the naturality condition λX(f−1[A]) = (Tf)−1[λY (A)]
for all f : X → Y , A ∈ PY . As we work with fixed points, we insist that all modal
operators are monotone, i.e. [[♥]] : P(X) → P(TX) is monotone w.r.t. set inclusion
for each ♥ ∈ Λ. Moreover, the assignment of predicate liftings must respect duality of
operators: for ♥ ∈ Λ, [[♥]]X(A) = TX − [[♥]]X(X − A). Given these data, the role
of models is played by T -coalgebras, i.e. pairs (X, ξ) where X is a set of states and
ξ : X → TX is the transition function; thinking of TX informally as a parametrised
datatype over X , we regard ξ as associating with each state x a structured collection
ξ(x) of successor states and observations. E.g. for TX = PX×P(U), given a set U of
propositional atoms, we obtain that T -coalgebras are Kripke models, as they associate
with each state a set of successor states and a set of valid propositional atoms. Our main
interest here is in examples beyond Kripke semantics, see Example 1.

As indicated above, the choice of predicate liftings determine the interpretation of
modal operators. The semantics of a formula ϕ with argument variable x (no other vari-
ables will ever be evaluated in unsubstituted form) is a subset [[ϕ]](X,ξ)(B) ⊆ X , given
a T -coalgebra (X, ξ) and a set B ⊆ X . The semantics of formulas ϕ without variables
(in particular of  - or !-formulas) does not depend on B and hence will be denoted just
by [[ϕ]](X,ξ). One has obvious clauses for Boolean operators, [[x]](X,ξ)(B) = B, and

[[♥ϕ]](X,ξ)(B) = ξ−1[[♥]]X([[ϕ]](X,ξ)(B))

[[ γϕ]](X,ξ) =
⋂
{B ⊆ X | [[γ(ϕ)]](X,ξ)(B) ⊆ B}

[[!γϕ]](X,ξ) =
⋃
{B ⊆ X | B ⊆ [[γ(ϕ)]](X,ξ)(B)}.

The clause for  γϕ just says that [[ γϕ]](X,ξ) is the least fixed point of the monotone map
[[γ(ϕ)]](X,ξ) : P(X) → P(X), and similarly [[!γϕ]](X,ξ) is the greatest fixed point of
[[γ(ϕ)]](X,ξ). We fix the data T , Λ, Γ etc. throughout.
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Example 1. 1. Kripke semantics: Fixed point extensions of the modal logic K have
a single modal operator �, interpreted over the powerset functor P (which takes a set
X to its powerset P(X)) by the predicate lifting ���X(A) = {B ∈ P(X) | B ⊆ A}.
P-coalgebras (X, ξ : X → P(X)) are in 1-1 correspondence with Kripke frames,
and [[�]] captures the usual semantics of the box operator. Multi-agent extensions are
interpreted over TX = P(A × X) where A is the set of agents. CTL, ∗-nesting-free
PDL, and the logic of common knowledge are flat fixed point logics in this setting; e.g,
AU and EU are the  -operators for p2∨ (p1∧�x) and for p2∨ (p1∧♦x), respectively.

2. Graded fixed point logics are sublogics of the graded μ-calculus [16]. They have
modal operators♦k ‘in more than k successors’, with duals�k ‘in all but k successors’,
interpreted over the functor B that takes a set X to the set B(X) = X → ω + 1 of
multisets over X by [[♦k]]X(A) = {B ∈ B(X) |

∑
x∈A B(x) > k}. This captures

the semantics of graded modalities over multigraphs [5], which is equivalent to the
more customary Kripke semantics [11] w.r.t. satisfiability of fixed point formulas. In
description logic, graded operators are called qualified number restrictions [2]. The
example mentioned in [16], a graded fixed point formula expressing that the current
state is the root of a finite binary tree all whose leaves satisfy p, can be expressed by
the  -operator for p ∨ ♦1x. Similarly, the  -operator for p ∨�kx expresses that p holds
somewhere on every infinite k + 1-ary tree starting at the current state.

3. Probabilistic fixed point logics, i.e. fixed point extensions of probabilistic modal
logic [17], have modal operators Lp ‘in the next step, it holds with probability at least
p that’, for p ∈ [0, 1] ∩ Q. They are interpreted over the functor D that maps a set
X to the set of discrete probability distributions on X by putting [[Lp]]X(A) = {P ∈
D(X) | PA ≥ p}. Coalgebras for D are Markov chains. We can use the !-operator
AGp for p∧Lpx to express formulas like AGp ¬fail, stating that the system will, at any
point during its run time, fail with probability at most 1− p; a sensible specification for
systems that may sometimes fail but should not fail excessively often. In an epistemic
reading of probabilities, flat probabilistic fixed point logics support, e.g., a common
belief operator ‘it is commonly believed with confidence p that’.

4. The alternating-time μ-calculus (AMC) [1] has modal operators 〈〈A〉〉© read
‘coalition A has a joint strategy to enforce . . . in one step’, where a coalition is a
subset of a fixed set N of agents (in coalition logic [23], these operators are de-
noted [A]). Their semantics is defined over concurrent game structures (or game
frames), and can be captured coalgebraically [29]. One of the flat fragments of AMC is
Alternating-Time Temporal Logic (ATL) [1]. E.g., the ATL-operator 〈〈A〉〉p1Up2, read
‘coalition A can eventually force p2 and meanwhile maintain p1’, is the  -operator for
p2 ∨ (p1 ∧ 〈〈A〉〉 © x). Flat fixed points in AMC go considerably beyond ATL; e.g. the
!-operator for p∧ 〈〈〉〉© 〈〈〉〉©x (‘p holds in all even states along any path’) is not even
in ATL∗ [1,6]. A similar flat operator, the !-operator for 〈〈A〉〉 © (p∧ 〈〈B〉〉 © (q ∧ x)),
expresses that coalitions A and B can forever play ping-pong between p and q.

5. Monotone fixed point logics have a modal operator �, interpreted over the
monotone neighbourhood functor defined by M(X) = {A ∈ P(P(X)) |
A upwards closed} by means of the predicate lifting [[�]]X(A) = {A ∈ M(X) | A ∈
A}. In multi-modal versions of this, boxes and their semantics are indexed, e.g. over
agents, programs, or games. This is the semantic setting of logics such as concurrent
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PDL [24] and Parikh’s game logic [20], the flat fragments of which are the ∗-nesting-
free fragments. E.g., using 〈γ〉 to denote the game logic operator ‘Angel has a strategy
to enforce . . . in game γ’, the operator 〈γ×〉 for a ∗-free game γ, where × denotes de-
monic iteration (Demon chooses the number of rounds), is the !-operator for p ∧ 〈γ〉x.

3 The Generic Axiomatization

The generic semantic and syntactic framework of the previous section comes with a
generic, parametrized deduction system, whose completeness will be one of our main
results. We begin with the fixed part of the deduction system. We include full propo-
sitional reasoning, i.e. introduction of substituted propositional tautologies and modus
ponens. Fixed points are governed by the obvious generalization of the Kozen-Park
axiomatization: we have the unfolding axiom

 γϕ↔ γ(ϕ,  γϕ)

and the fixed-point induction rule

γ(ϕ, χ)→ χ /  γϕ→ χ,

for all formulas ϕ, χ. (Here α / β denotes the rule ‘from α infer β’).
The variable part is now the axiomatization of the modal operators, which turns out

to be completely orthogonal to the fixed point axiomatization. In fact, we can just re-use
complete rule sets for the purely modal logic as developed in [29]. First some notation.

Definition 2. We denote the set of of positive propositional formulas (formed using
only ∧ and ∨) over a set Z by Pos(Z), and the set {♥a | ♥ ∈ Λ, a ∈ Z} by Λ(Z). We
say that a conjunction (disjunction) is contracted if no conjunct (disjunct, respectively)
occurs twice in it. For ϕ, ψ ∈ Pos(Z), we say that ϕ propositionally entails ψ and write
ϕ �PL ψ if ϕ→ ψ is a propositional tautology. Similarly, Φ ⊆ Pos(Z) propositionally
entails ψ (Φ �PL ψ) if there exist ϕ1, . . . , ϕn ∈ Φ such that ϕ1 ∧ · · · ∧ ϕn �PL ψ.
For ϕ ∈ Pos(Z), we denote the evaluation of ϕ in the Boolean algebra P(X) under
a valuation τ : Z → P(X) by [[ϕ]]X,τ , and write X, τ |= ϕ if [[ϕ]]X,τ = X . For
ψ ∈ Pos(Λ(Z)), the interpretation �ψ�TX,τ of ψ in the Boolean algebra P(TX) under
τ is the inductive extension of the assignment �♥(z)�TX,τ = �♥�Xτ(z). We write
TX, τ |= ψ if �ψ�TX,τ = TX .

We can now give the formal definition of the modal rule format, where due to mono-
tonicity of the modal operators we can restrict to monotone rules following [4]. To
understand the following, note that every rule of the form ϕ/χ, which says that if ϕ
is provable then χ is provable, comes with a dual tableau rule χ/ϕ saying that if χ is
consistent then ϕ is consistent.

Definition 3. A (monotone one-step) rule R = ϕ/χ consists of a premise ϕ ∈ Pos(V )
and a conclusionχ which is a disjunction over Λ(V ) (recall that V is the set of variables),
where every variable appears at most once in ϕ and every variable in ϕ appears also in
χ. The rule R is one-step sound if whenever X, τ |= ϕ for a valuation τ : V → P(X),
then TX, τ |= χ. Given a set R of one-step rules, we say that a conjunction ψ over
Λ(V ) is one-step cut-free τ -consistent for a set X and τ : V → P(X) if whenever
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ϕ/χ ∈ R and σ : V → V is a renaming such that χσ is contracted and ψ �PL χσ (note
that propositional entailment between conjunctions is just reverse containment), then
[[ϕσ]]X,τ �= ∅. We say thatR is one-step cutfree complete if [[ψ]]TX,τ �= ∅whenever ψ is
one-step cut-free τ -consistent. A set Ψ ⊆ Λ(V ) is one-step cut-free τ -consistent if for
all ψ1, . . . , ψn ∈ Ψ , ψ1 ∧ · · · ∧ ψn is one-step cut-free τ -consistent.

(In the terminology of [29], one-step cutfree complete rule sets correspond to one-
step complete rule sets which are closed under contraction and resolution.) As the last
parameter of the framework, we fix from now on a one-step cutfree complete set R
of one-step sound monotone one-step rules, and denote the arising logic by L�. Rules
ϕ/ψ ∈ R are applied in substituted form, i.e for every substitution σ, we may conclude
ψσ from ϕσ. It is easy to see that the arising parametrized deduction system is sound.
As usual, we write � ϕ if ϕ is provable, and ϕ � ψ if � ϕ → ψ. We say that ϕ is
consistent if ¬ϕ is not provable. It has been shown that one-step cutfree complete rule
sets engender complete cut-free sequent systems for the purely modal logic, and suitable
rule systems have been exhibited for all logics of Example 1 and many more [29,22].
E.g., a one-step cutfree complete set of monotone one-step rules for K is∨n

i=1 ai ∨ b∨n
i=1 ♦ai ∨�b

(n ≥ 0).

As a more complex example, we recall the one-step cutfree complete rule schema for
graded operators [29], reformulated to fit the monotone rule format:∑n

i=1−ri(¬ai) +
∑m

j=1 sjbj ≥ 0∨n
i=1�kiai ∨

∨m
j=1 ♦ljbj

,

where n + m ≥ 1 and r1, . . . , rn, s1, . . . , sm > 0, subject to the side condition∑n
i=1 ri(ki + 1) ≥ 1 +

∑m
j=1 sjlj . Here, the premise represents a linear inequality

between the characteristic functions of the ai and the bj , i.e. count sj when bj holds
and−ri when ai does not hold; this is easily seen to be expressible by a positive propo-
sitional formula (cf. [29]).

4 Constructive Fixed Points

Our next aim is to prove that the Lindenbaum algebra of L� is constructive, i.e. its fixed
points can be iteratively approximated in ω steps. In terms of consistency of formulas,
this means that whenever a formula of the form  γϕ ∧ ψ is consistent, then already
γi(ϕ)(⊥) ∧ ψ is consistent for some i < ω; this fact plays a pivotal role in our tableau
model construction. We begin by introducing the requisite algebraic tools.

We define a Λ-modal algebra A as a Boolean algebra extended with a monotone
operation ♥A : A → A for each ♥ ∈ Λ. In such an algebra, every modal formula
ϕ(v1, . . . , vn) is naturally interpreted as an operation ϕA : An → A. Now we say that
A validates a rule R = ϕ/ψ if ψA(a1, . . . , an) = # whenever ϕA(a1, . . . , an) = #. A
 -algebra is a Λ-algebra A that is endowed with operations  Aγ and !Aγ for each γ ∈ Γ

such that for each a ∈ A,  Aγ (a) is the least fixed point of the map γA(a,−) : A → A
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and !Aγ (a) is the greatest fixed point of γA(a,−) (in particular, these fixed points exist
in a  -algebra). An L�-algebra is a  -algebra A that validates every rule R of our fixed
set R of one-step rules. In the tradition of algebraic logic, the class of these algebras
provides an algebraic encoding of the proof system.

More specifically, we will be interested in the Lindenbaum algebra A(L�) of our
logic. As usual, this algebra is defined as the quotient of the formula/term algebra (or
absolutely free algebra) under the congruence relation ≡ of provable equivalence (ϕ ≡
ψ iff ϕ↔ ψ is derivable). Observe that in a natural way, every sentence ϕ is interpreted
as the element ϕA(L�) = [ϕ] of this algebra; we will mostly write ϕ rather than [ϕ]. The
Kozen-Park axiomatization ensures that A(L�) actually is an L�-algebra, and then of
course, the initial L�-algebra. In these terms, our target property is phrased as follows.

Definition 4. We say that γ ∈ Γ is constructive if

 γϕ =
∨
i<ω

γ(ϕ)i(⊥)

in the Lindenbaum algebra A(L�), i.e. if  γϕ � ψ whenever γ(ϕ)i(⊥) � ψ for all
i < ω. If all γ ∈ Γ are constructive, then A(L�) is constructive.

We explicitly state the dual formulation of this property:

Lemma 5. Let γ be constructive. If  γϕ ∧ ψ is consistent, then γ(ϕ)i(⊥) ∧ ψ is con-
sistent for some i < ω.

The central tool for proving constructivity, introduced in [26] and featuring prominently
in [27], is the notion of a finitaryO-adjoint:

Definition 6. We say that γ is an O-adjoint if for all ϕ, ψ ∈ F�, there exists a finite set
Gγ(ϕ)(ψ) of formulas such that for all ρ ∈ F�,

γ(ϕ, ρ) � ψ iff ρ � χ for some χ ∈ Gγ(ϕ)(ψ),

i.e. γ(ϕ, ρ) ≤ ψ in A(L�) iff ρ ≤ χ for some χ ∈ Gγ(ϕ)(ψ). Moreover, γ is a finitary
O-adjoint if Gγ(ϕ) can be chosen such that for every ψ, the closure of ψ under Gγ(ϕ),
i.e. the smallest set A with ψ ∈ A and χ ∈ A⇒ Gγ(ϕ)(χ) ⊆ A, is finite.

Lemma 7. [26] Every finitary O-adjoint is constructive.

The first step in the proof ofO-adjointness for a large class of operators is a generaliza-
tion of the rigidity lemma of [26]:

Lemma 8 (Rigidity). Let ψ be a disjunction over Λ(A(L�)). Then ψ is provable iff
there exists a one-step rule ϕ/χ and a substitution σ such that ϕσ is provable, χσ is
contracted, and χσ �PL ψ.

The proof relies on the one-point extension of an algebra (so called because it mim-
ics the addition of a new root point in a coalgebraic model on the algebraic side), in
generalization of a similar construction in [27]:

Let A be a countable L�-algebra, let S(A) be the set of ultrafilters of A, fix a sur-
jective map σ : V → A, and let a conjunction ρ over Λ(V ) be one-step θ-consistent
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for θ : V → P(S(A)) given by θ(v) = {u ∈ S(A) | σ(v) ∈ u}. We construct the
one-point extension Aρ, an L�-algebra emulating the addition of a new point whose
successor structure is described by ρ, as follows. To begin, we can find a maximally
one-step θ-consistent set Φ ⊆ Λ(V ) such that Φ �PL ρ. As we emulate adding a single
point, the carrier of Aρ is A× 2. We make Aρ into a Λ-modal algebra by putting

♥Aρ

(a, d) = (♥A(a),♥ρ(a)),

where ♥ρ : A → 2 is defined by ♥ρ(a) = # iff ♥a ∈ Φσ. (Thus, ♥Aρ

(a, d) is inde-
pendent of d, in agreement with the intuition that the interpretation of modal operators
depends only on the successor structure of the current state, not on the state itself.) In
particular, this implies that ρσ > ⊥ in Aρ.

Lemma 9. The algebra Aρ is an L�-algebra.

In consequence of the fact that A(L�) is the initial L�-algebra, we thus have

Lemma 10. Let σ : V → A(L�) be surjective. If a conjunction ρ over Λ(F�) is one-
step θ-consistent for θ(v) = {u ∈ S(A(L�)) | σ(v) ∈ u}, then ρ is consistent, i.e.
ρ > ⊥ in A(L�).

From Lemma 10, one easily proves Lemma 8 using the fact that every consistent for-
mula is contained in some ultrafilter of A(L�).

In a nutshell, rigidity enables us to prove O-adjointness of all (monotone) modal
operators, and even more generally all modal formulas where the argument variable x
occurs at uniform depth (such as �♦x ∧ ♦�x). Formally:

Definition 11. A formula ϕ with variables is uniform of depth k if every occurrence
of the fixed argument variable x in ϕ is in the scope of exactly k modal operators
(including the case that x does not occur in ϕ; recall moreover that variables never
occur under fixed point operators). Moreover, ϕ is uniform if ϕ is uniform of depth k
for some k; the minimal such k is the depth of uniformity of ϕ.

Finitaryness ofO-adjoints will use the standard Fischer-Ladner closure:

Definition 12. A set Σ of formulas is Fischer-Ladner closed if Σ is closed under sub-
formulas and negation, and whenever �γϕ ∈ Σ, then γ(ϕ, �γϕ) ∈ Σ for � ∈ { , !}.
We denote the Fischer-Ladner closure of a formula ϕ by FL(ϕ).

Lemma 13. [14] The set FL(ϕ) is finite and of polynomial size in ϕ.

The further development revolves largely around admissible rules, i.e. rules ϕ/ψ where
ϕ and ψ are formulas with variables v1, . . . , vn such that A(L�) validates ϕ/ψ, i.e.
whenever � ϕ(ρ1, . . . , ρn) for formulas ρ1, . . . , ρn then � ψ(ρ1, . . . , ρn).

Lemma 14. Let ψ be uniform, and put

G = {ϕ ∈ Pos(FL(ψ)) | ϕ/ψ admissible, ϕ uniform of depth 0}.

Then we have that for all ρ, ψ(ρ) is provable iff ϕ(ρ) is provable for some ϕ ∈ G.
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Proof (sketch). Induction over the depth of uniformity, with trivial base case, using
rigidity (Lemma 8) in the inductive step. ��

Theorem 15 (Finitary O-adjointness). If the formula ψ with argument variable x is
monotone and uniform in x, then the operation ψA(L�) : A(L�) → A(L�) induced by
ψ is a finitary O-adjoint.

Proof (sketch). For ϕ ∈ F�, we have to construct a set Gψ(ϕ) of formulas such that for
all ρ ∈ F�, ψ(ρ) � ϕ iff ρ � χ for some χ ∈ Gψ(ϕ). Now ψ′ :≡ ψ → ϕ is uniform.
Let G ⊆ Pos(FL(ψ′)) be as in Lemma 14, applied to ψ′, and let G0 be a finite set of
representatives of G modulo propositional equivalence. Then we can put

Gψ(ϕ) = {χ(#) | χ ∈ G0,� χ(#) ∨ χ(⊥)}. ��

Using uniform formulas as a base, we can now exploit some known closure properties
of finitaryO-adjoints [26].

Definition 16. The set of admissible modal formulas is the closure of the set of mono-
tone uniform modal formulas in x under disjunction, conjunction with modal formulas
not containing x, and substitution for the argument variable, the latter in the sense that
if γ and δ are admissible, then γ(δ) is admissible.

Corollary 17. If γ ∈ Γ is admissible, then γ is a finitary O-adjoint, and hence con-
structive.

From now on, we require that every γ ∈ Γ is admissible, and hence A(L�) is construc-
tive. All fixpoint operators mentioned in Example 1 are based on admissible formulas
(in fact, on uniform ones).

5 The Tableau Construction

We proceed to describe a construction of timed-out tableaux for consistent formulas,
which we shall then use as carrier sets for coalgebraic models. (Note that in coalgebraic
logics, tableaux, being only relational structures, cannot directly serve as models.) Our
time-outs are related to Kozen’s μ-counters [14] but are integrated into the formulas
appearing in the tableau (rather than maintained independently in the construction of
the tableau), and in particular govern the way modal successor nodes are generated. The
use of time-outs is justified by constructivity of fixed point operators as proved in the
previous section. In the following, we fix a finite Fischer-Ladner closed set Σ.

Definition 18. The set of timed-out formulas ϕ, ψ is generated by the grammar

ϕ, ψ ::= ⊥ | # | ϕ ∧ ψ | ϕ ∨ ψ | ♥ϕ |  γ(ρ)κ | !γ(ρ) (κ ∈ ω + 1, ρ ∈ L�)

where γ ∈ Γ,♥ ∈ Λ, subject to the restriction that ϕ is a timed-out formula only in
case ϕ has at most one subformula of the form  γ(χ)κ with κ < ω (which however
may occur any number of times), and for this  γ(χ)κ, (i)  γ(χ)ω is not a subformula
of ϕ; and (ii) whenever  δ(ρ)ω is a subformula of ϕ, then  δ(ρ) is a subformula of χ.
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In this case, we define the time-out τ(ϕ) of ϕ to be κ, and τ(ϕ) = ω otherwise (i.e.
if ϕ does not contain any subformula of the form  γ(χ)κ with κ < ω). The time-out
gives the number of steps left until satisfaction of the eventuality  γ(χ), with time-out
ω signifying an unspecified number of steps (note that time-outs are never associated
with !-formulas).

We define two translations s and t of timed-out formulas into L�, given by commu-
tation with Boolean and modal operators, (!γ(ρ))s = (!γ(ρ))t = !γ(ρ), and

( γ(ρ)ω)s =  γ(ρ) ( γ(ρ)i)s = γ(ρ)i(⊥) (i < ω) ( γ(ρ)κ)t =  γ(ρ).

Thus, s unfolds fixed points as prescribed by their time-outs, and t just removes time-
outs. Both translations extend to sets of formulas. For timed-out formulas ϕ, ψ, we put
ϕ % ψ iff ϕt = ψt and τ(ϕ) ≤ τ(ψ). That is, ϕ % ψ iff ϕ is the same as ψ up to
possible decrease of the time-out. Given a set Σ of formulas, a timed-out formula ϕ is
a timed-out Σ-formula if ϕt ∈ Σ.

The point of the definition of timed-out formulas is that every standard formula ϕ has
at most one candidate subformula at which one can insert a time-out, namely the great-
est element under the subformula ordering among the subformulas of ϕ which are  -
formulas, if such a greatest element exists and is not under the scope of a !-operator.
This enables the simple definition of %, which trivially has the following property.

Lemma 19. For every formula ϕ, the preimage of ϕ under the translation t is linearly
ordered by %.

At the same time, timed-out formulas are stable under unfolding:

Lemma 20. If  γϕκ is a timed-out formula, then so is γ(ϕ,  γϕ
κ).

States of the tableau will be labelled by sets of formulas satisfying a timed-out version
of the usual expandedness requirement.

Definition 21. A timed-out Σ-atom is a maximal set A of timed-out Σ-formulas such
that (i) the translation t is injective on A, and (ii) As is consistent. Here, maximality is
w.r.t.� where A � B iff for all ϕ ∈ A, there exists a (necessarily unique) ϕ′ ∈ B such
that ϕ′ % ϕ; intuitively: B contains A up to possible decrease of time-outs. We write Ā
for the closure of A under% (i.e. if ϕ ∈ Ā and ϕ % ϕ′ then ϕ′ ∈ Ā).

The following lemma uses the fact that finite product orderings (ω+1)k are well-quasi-
orders, and in particular have only finite anti-chains [18].

Lemma 22. The set of timed-out Σ-atoms is finite.

Lemma 23 (Timed-out Lindenbaum lemma). For every set A0 of timed-out Σ-
formulas such that As

0 is consistent and t is injective on A0, there exists a timed-out
Σ-atom A such that A0 � A.

The proof of the truth lemma crucially depends on a set of Hintikka-like properties:

Lemma 24. If A is a timed-out Σ-atom, then
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1. if ϕ ∧ ψ ∈ A then ϕ ∈ Ā and ψ ∈ Ā;
2. if ϕ ∨ ψ ∈ A then ϕ ∈ Ā or ψ ∈ Ā;
3. ⊥ /∈ Ā;
4. if  γϕκ ∈ A, then κ < ω;
5.  γϕ

κ ∈ A iff γ(ϕ,  γϕ
κ−1) ∈ A;

6. !γϕ ∈ A iff γ(ϕ, !γϕ) ∈ A.

We proceed to define the actual tableaux, which relate timed-out atoms in a way that
reflects application of dual rules χ/ϕ of modal rules ϕ/χ ∈ R, while fixed points are
in a sense taken care of by the timed-out atoms themselves.

Definition 25. A demand of a Σ-atom A is a formula ρ ≡ ϕ̄σ, where ϕ/χ ∈ R is a rule
with dual rule χ/ϕ and σ is a substitution such that χσ is contracted and A �PL χσ.
A timed-out Σ-tableau (T , R, l) consists of a finite graph (T , R) and a labelling l of
the nodes n ∈ T with timed-out Σ-atoms l(n) such that for every demand ρ of l(n),
there exists nRm such that l(m) �PL ρ. The tableau (T , R, l) is a timed-out Σ-tableau
for ϕ ∈ Σ if (ϕ′)t = ϕ for some ϕ′ ∈ l(n), n ∈ T . A coalgebra structure ξ on T is
coherent if for every n and every♥ϕ ∈ Σ,

ξ(n) ∈ [[♥]]n(ϕ) iff ♥ϕ ∈ l(n),

where n(ϕ) = {m ∈ T | nRm,ϕ ∈ l(m)}.
The link between timed-out tableaux and coalgebraic models is provided by the follow-
ing lemma, whose proof relies on one-step cutfree completeness of the rule set.

Lemma 26 (Model existence lemma). For every timed-out Σ-tableau (T , R, l), there
exists a coherent coalgebra structure on T .

Lemma 27 (Truth lemma). If (T , R, l) is a timed-out Σ-tableau and ξ is a coherent
coalgebra structure on T , then n ∈ [[ϕ]](T ,ξ) whenever ϕ ∈ l(n).

Proof (sketch). Induction over timed-out Σ-formulas ϕ using the lexicographic product
of the subterm ordering on ϕt and % as the induction measure, and with the inductive
hypothesis strengthened to apply also to ϕ ∈ l(n). Boolean cases are by Lemma 24; the
step for modal operators is by coherence. The case for !-operators is by coinduction. For
ϕ =  γ(ψ)κ, we have κ < ω and γ(ψ,  γ(ψ)κ−1) ∈ l(n) by Lemma 24. Then prove by
a further induction over subformulas δ of γ that n |=(T ,ξ) (δ(ψ,  γ(ψ)κ−1))s whenever

δ(ψ,  γ(ψ)κ−1) ∈ l(n). Here, the case for the parameter variable x is discharged by the
inductive hypothesis applied to  γ(ψ)κ−1. ��
The previous two lemmas imply that every formula that has a timed-out tableau is sat-
isfiable. The following lemma provides the link to consistency.

Lemma 28. For any consistent ϕ ∈ Σ there is a finite timed-out Σ-tableau.

In summary, we have proved completeness of the Kozen-Park axiomatization:

Theorem 29 (Completeness). If Γ is admissible and R is one-step cutfree complete,
then the L� is complete over finite models.

This result applies to all flat fixed point logics of Example 1, including all admissible
flat fragments of AMC and the graded μ-calculus.



536 L. Schröder and Y. Venema

6 Complexity

Next we analyse the algorithmic aspects of satisfiability checking. This analysis is inde-
pendent of the completeness result from Section 5 (except that completeness tells us that
satisfiability checking is equivalent to consistency checking) but uses the same model
construction. The complexity of the satisfiability problem as such is known: under ad-
ditional conditions that we shall use below as well, it has been shown that satisfiability
in the coalgebraic μ-calculus is in EXPTIME [4] (and therefore typically EXPTIME-
complete, with hardness inherited from the standard μ-calculus). However, like known
decision procedures for the standard μ-calculus, the algorithm in [4] uses automata-
based methods and as such will exhibit exponential average-case behaviour, while a
simple tableau method such as the one developed in Section 5 offers the possibility of
feasible average-case behaviour using bottom-up construction of tableaux.

What is missing technically from the tableau construction of Section 5 with a view to
complexity bounds is a bound on the time-outs. While we are confident that this can be
proved directly using the O-adjointness method (e.g. it is easy to show in this way that
in Lemma 5, i can be exponentially bounded in ( γϕ) ∧ ψ), this is not actually neces-
sary given that it has already been proved in [4] that the coalgebraic μ-calculus has the
exponential model property. This implies immediately that time-outs can be exponen-
tially bounded, so that tableaux are at most exponentially large. The key contribution
of our tableaux construction here is to make this straightforward idea (which is similar
in spirit to, e.g., Kozen’s tableaux for the aconjunctive fragment of the μ-calculus [14])
work in a way that handles time-outs economically and consistently.

The size bound on tableaux alone does not yet imply an EXPTIME bound; how-
ever, we can obtain such a bound by using the coalgebraic generalization of the global
caching method in exactly the same way as done in [13] for coalgebraic modal logic
with global assumptions. To this end, we need to assume, as in [13,31], that our set R
of one-step rules is EXPTIME-tractable, i.e. that there exists a coding of the rules such
that, up to propositional equivalence, all demands of a conjunction over Λ(F�) can be
generated by rules with codes of polynomially bounded size, and such that validity of
codes, matching of rule codes for ϕ/χ ∈ R to conjunctions ψ over Λ(F�) (in the sense
of finding σ such that χσ is contracted and ψ �PL χσ), and membership of disjunctions
in a CNF of a rule premise are all decidable in EXPTIME. Summing up,

if R is EXPTIME-tractable, then global caching decides existence of tableaux
for L� in EXPTIME.

Global caching will typically avoid full expansion of tableaux, and provides a handle to
achieve feasible average-case performance using suitable heuristics.

7 Conclusions

We have raised the theory of flat modal fixed point logics [27] to the level of generality
of coalgebraic logic. Specifically, we have given a Kozen-Park style axiomatization for
fixed point operators, and we have shown this axiomatization to be sound and complete
under the conditions that (i) the defining formulas of the fixed point operators satisfy a
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mild syntactic criterion, and (ii) the coalgebraic base logic is axiomatized by a one-step
cutfree complete rule set. This result is a wide generalization with respect to the case
of relational semantics, and covers, e.g., natural fixed point extensions of probabilistic
modal logic and monotone modal logic. Most notably, we prove completeness of flat
fragments of the graded μ-calculus [16], to our knowledge the first completeness result
for any graded fixed point logic, and we generalize completeness of alternating-time
temporal logic [12] to flat fragments of the alternating-time μ-calculus [1].

A core technical point in the proof was to show that essentially all monotone modal
operators (including nested ones like ��, as long as the nesting depth is uniform) are
finitaryO-adjoints in the sense of [26], and hence induce constructive fixed point oper-
ators that can be approximated in ω steps. This has enabled a model construction using
tableaux with explicit time-outs for least fixed point formulas in the spirit of [14], which
relies on a judicious definition of timed-out formula. As a byproduct of this construc-
tion, we obtain an optimal (i.e. EXPTIME) tableau calculus which paves the way for
efficient implementations of coalgebraic flat fixed point logics, e.g. in the framework of
the Coalgebraic Logic Satisfiability Solver CoLoSS [3].

Remaining open problems include the extension of the completeness result to larger
fragments of the coalgebraic μ-calculus beyond the single variable fragment covered
here, first and foremost the alternation-free fragment, and eventually the full coalgebraic
μ-calculus. Similarly, there is the perspective to extend our tableau construction to at
least the alternation-free fragment. A further direction for future research includes the
development of generic coalgebraic model checking techniques.
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Abstract. Polynomially accurate simulations [19] are relations for Prob-
abilistic Automata that require transitions to be matched up to negligible
sets provided that computation lengths are polynomially bounded. They
are proposed for verification of cryptographic protocols. In this paper
we introduce a general construction on probabilistic automata, called
Conditional Automata, that allows us to remove safely events that occur
with negligible probability. The construction is justified in terms of poly-
nomially accurate simulations. This, combined with the hierarchical and
compositional verification style that underlies simulation relations, per-
mits one to abstract one cryptographic component at a time in a complex
system. We illustrate our construction through a simple example based
on nonce generation, where we remove the event of repeated nonces.

1 Introduction

Hierarchical and compositional verification is one of the most successful byprod-
ucts of concurrency theory: compositional verification allows one to decompose
complex systems into several sub-components that can be analyzed separately,
while hierarchical verification permits one to analyze the interaction between
several components on appropriate abstractions that do not include any irrele-
vant detail, thus reducing the overall complexity of a verification task.

Recently there has been increasing interest in hierarchical and/or compo-
sitional verification methods for security protocols [4, 5, 14, 16, 1, 7]. Indeed, a
generic security protocol runs in an arbitrarily large network of agents and
involves the interaction of several instances of functionalities like encryption
schemes, signature schemes, nonce generators, etc. The resulting systems are
rather complex to analyze, and therefore the ability to analyze components sep-
arately turns out to be a significant relief in the verification task and may allow
us to reuse old proofs in other contexts. This approach, although of independent
interest, turns out to be useful in automatic verification as well since it allows
us to limit the well known state explosion problem.

In [19] we have used Probabilistic Automata [17] and proposed polynomially
accurate simulations (PASs) as a tool for verifying hierarchically cryptographic
protocols. The main idea is to adapt the simulation method of [11], already used
in the context of distributed systems, to the area of security. Specifically, rather
than requiring transitions of a concrete implementation to be matched exactly
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by the abstract system, we allow for errors of negligible probability. This allows
us to combine abstraction steps that rely on cryptographic assumptions, justified
in terms of PASs, with abstraction steps that do not rely on any cryptographic
assumption and that can be justified in terms of classical concurrency theory.

Polynomially accurate simulations are used successfully in [21] for the analysis
of protocols, including a complete formal proof of the Dolev-Yao soundness result
of [9]. In the case studies of [21] we start with a concrete description of the
protocol under analysis, we abstract away the undesirable behaviors that occur
with negligible probability, and then we proceed with other abstraction steps to
prove that the resulting system always satisfies the protocol specification.

In this paper we focus on a general technique, used in [21], that allows us to
remove negligible events from a concrete system while preserving all properties
that hold with overwhelming probability in any context. For instance, if we have
a complex system that obtains nonces from a nonce generator that draws ran-
dom numbers, then we know that the probability of obtaining repeated nonces
is negligible. It is then reasonable to analyze the complex system assuming that
repeated nonces never occur. What is needed, however, is a theorem that sup-
ports our reasonable proposal. Let A be a probabilistic automaton describing
the nonce generator that draws random numbers. Then repeated nonces may
occur with negligible probability. Let G be the set of good states of A where
no nonce is repeated. We introduce the concept of conditional automaton A|G,
obtained from A by replacing the target measure μ of each transition by the
measure μ|G, that is, the measure μ conditional on reaching a state from G. Our
main theorem states that the identity relation is a PAS from A to A|G as well
as from A|G to A. The theorem holds for any set of states G whose comple-
ment is negligible. As a consequence, we can analyze systems hierarchically and
remove safely any negligible event from any component by replacing it with its
conditional counterpart.

Of course, although the final statement of he theorem turns out to be simple,
we need to define precisely what we mean by negligible event in a probabilistic
automaton, how we identify the set G of good states, and how PASs allow us
to relate computations of a concrete system to computations of its abstraction.
This is indeed the most complex part of the whole treatment. Informally, the
notion of negligible event is defined by parameterizing probabilistic automata by
a security parameter k and requiring bad states to have a negligible probability
whenever computations are of polynomial length, G is identified by recording
the past history in the states of an automaton, while correspondence between
computations is stated by an execution correspondence theorem that turns out
to be a generalization of the mapping lemma of [13].

One problem of the PASs of [19] is that, although they admit hierarchical
verification, they are not compositional, that is, their existence is not preserved
by parallel composition of probabilistic automata. On the other hand, a typical
security protocol does not rely only on nonce generators, but rather it relies
on encryption and/or signature schemes as well. Since also for encryption and
signature schemes there are negligible events that we would like to remove (e.g.,
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generation of repeated keys or generation of repeated ciphertexts in an IND-
CCA schema), and since it is reasonable to apply conditional automata on each
single primitive individually, compositionality of PASs becomes essential. For this
reason, in the first part of the paper we introduce a new notion of PAS (state
PAS or sPAS) that is stronger than the one of [19] and that is compositional as
well. Roughly speaking, the PASs of [19] require matching of hyper-transitions
up to negligible errors, while our new simulations require that the set of pairs of
concrete and abstract states where the abstract states can match the transitions
of the concrete state up to a negligible error has an overwhelming probability.

Related Work. The simulation method is used already in the security liter-
ature. For example in [4] bisimulation relations are used to prove correctness
of implementations according to the notion of reactive simulatability [16]. Al-
though the definition of bisimulation is not worked out in full details, the idea is
clear: transitions should be matched up to some “error sets”, where an error set
is a set of parts of transitions (e.g., messages, states) that have no corresponding
piece in the abstract system; then, a separate argument shows that the global
probability of the error sets is negligible. In our approach we impose conditions
on the probabilities of the error sets directly in the step condition with the aim
of bounding the global probability of the error sets to be negligible. Simula-
tion relations are used also in [7] in the context of the Universally Composable
framework [5]. In this case simulation relations are exact and the computational
arguments are carried out with respect to a notion of approximated probabilis-
tic language inclusion [6] based on the trace distribution semantics of [17]. Also
in [14] there is a use of exact probabilistic bisimulations in the context of a
probabilistic polynomial time process calculus. In this case the computational
aspects are captured directly in the definition of the calculus. Another proposal
of approximated probabilistic simulation relations appears in [15]. In this case
a distance between probability of measures is defined based on the ability to
produce similar trace distributions. Then an ε simulation matches steps from ε-
distant measures by preserving ε-distance. Our definition is based on a different
distance that may grow by a negligible amount at each step.

Though we are not aware of any formal treatment of the idea of conditional
automaton in the literature, informal arguments along the lines of our results are
common in the security community. In this context our result provides additional
foundations and rigor to an idea that is common belief within the area of security.
In [20] there is an idea of representing a correctness proof as a sequence of related
games, where games are representations of attacks against protocols that are
described at different levels of abstraction, and where two games are related if the
difference of the probabilities of successful attacks is negligible. A general result
of [20] is the Difference Lemma that implicitly gives us a way to transform a game
G to a polynomially-equivalent one where some negligible failure event does not
occur any more. Game transformations can be seen as an alternative hierarchical
way of analyzing protocols. They are missing compositionality, though.

Of course almost all proofs of Dolev-Yao soundness (see, e.g., [13, 3] and re-
lated literature) rely on some form of abstraction from negligible events. The
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aim of this paper is to provide a tool based on probabilistic automata and sim-
ulation relations that allows us to safely remove negligible events from generic
automata in order to obtain basic building blocks that can be used to recast
Dolev-Yao soundness proofs following a modular approach (see, e.g., our case
study in [21]). For instance, conditional automata can be used to abstract away
events like signature forgery and key guessing. The main advantage of condi-
tional automata proposed in this paper is that our construction is general and
the removal of negligible events is justified in terms of approximate simulations
that support hierarchical and compositional verification. This allows us to split
events depending on properties of cryptographic primitives from events arising
from the interaction of adversary and participants of the protocol, to study an
event at a time independently from the others, and to exploit proof techniques
and results of concurrency theory in other fields like verification of cryptographic
protocols.

The rest of the paper is structured as follows: Section 2 recalls Probabilistic
Automata and gives some basic notions on nonce generation; Section 3 introduces
state polynomially accurate simulations as well as the execution correspondence
theorem; Section 4 defines conditional automata and states the conditional au-
tomaton theorem; Section 5 gives some concluding remarks.

The proof of the results proposed in this paper can be found in [21].

2 Preliminaries

2.1 Probabilistic Automata

Given a set X , denote by Disc(X) the set of discrete probability measures over
X , and by SubDisc(X) the set of discrete sub-probability measures over X . We
call a discrete probability measure a Dirac measure if it assigns measure 1 to
the singleton set {x} (denote this measure by δx). We also call Dirac a sub-
probability measure that assigns measure 0 to all objects. In the sequel discrete
sub-probability measures are used to describe progress. If the measure of X
is not 1, then it means that with some non-zero probability the system does
not progress. Given ρ ∈ SubDisc(X), we denote by Supp(ρ) the support set
{x ∈ X | ρ(x) > 0} of ρ.

Given a set X , a set G ⊆ X , and a measure ρ ∈ Disc(X) such that ρ(G) > 0,
we call the G-conditional measure of ρ, denoted by ρ|G, the probability measure
ρ′ ∈ Disc(X) such that for each x ∈ X ,

ρ′(x) =

{
ρ(x)/ρ(G) if x ∈ G,
0 otherwise.

A Probabilistic Automaton (PA) is a tuple (S, s̄, A,D) where S is a set of
states, s̄ ∈ S is the start state, A is a set of actions, and D ⊆ S×A×Disc(S) is
a transition relation. The set of actions A is further partitioned into three sets
I, O, H of input, output and internal (hidden) actions, respectively. We call the
set E = I ∪O the set of external actions.
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Throughout the paper we let A, B range over probabilistic automata, q, r, s
range over states, a, b, c range over actions, and μ range over discrete measures
over states. We also denote the generic elements of a probabilistic automaton A
by S, s̄, A, D, and we propagate primes and indices when necessary. Thus, for
example, the probabilistic automaton A′

i has transition relation D′
i.

An element of a transition relation D is called a transition or a step. A tran-
sition tr = (s, a, μ), also denoted by s

a−−→ μ, is said to leave from state s, to
be labeled by a, and to lead to μ, denoted by μtr . We also say that state s
enables action a, that action a is enabled from s, and that (s, a, μ) is enabled
from s. We denote by D(s) the set of all transitions enabled by s, by D(a)
the set of all transitions labeled by a, and by D(sa) their intersection (that is,
D(sa) = D(s) ∩D(a)).

An execution fragment of a PA A is a sequence of alternating states and
actions, α = s0a1s1 . . . , starting with a state and, if the sequence is finite,
ending with a state, such that, for each non final index i, there exists a transition
(si, ai+1, μi+1) in D with μi+1(si+1) > 0. We say that an execution fragment is
finite if it is a finite sequence, and we denote the last state of a finite execution
fragment α by lstate(α). We define the length |α| of an execution fragment α
to be the number of occurrences of actions in α. An execution of a PA A is an
execution fragment of A whose first state is s̄. We denote by Frags∗(A) the set of
finite execution fragments of A, by Frags(A) the set of finite or infinite execution
fragments, and by Execs∗(A), Execs(A) the corresponding sets of executions.

A scheduler for a PA A is a function σ : Frags∗(A) → SubDisc(D) such that,
for each finite execution fragment α and each transition tr = (s, a, μ) with
σ(α)(tr ) > 0, s = lstate(α). A scheduler σ and a state s induce a probability
measure νσ,s over execution fragments as follows. The basic measurable events
are the cones of finite execution fragments, where the cone of a finite execution
fragment α, denoted by Cα, is the set {α′ ∈ Frags(A) | α � α′}, where � is
the standard prefix preorder on sequences. The probability νσ,s of a cone Cα is
defined recursively as follows:

νσ,s(Cα) =

⎧⎪⎨⎪⎩
0 if α = q for some state q �= s,
1 if α = s,
νσ,s(Cα′ )

∑
tr∈D(a) σ(α′)(tr)μtr (q) if α = α′aq.

Standard measure theoretical arguments ensure that νσ,s extends uniquely to
the σ-field generated by cones. If s = s̄, we call the measure νσ,s̄ a probabilistic
execution νσ of A and we say that it is generated by σ from s̄.

Remark 1. A typical cryptographic protocol described in the literature does not
have nondeterminism, and hence there is a unique maximal probabilistic execu-
tion, where by maximal we mean that we stop only when no more transitions
are enabled. However, as soon as we abstract from some probabilistic choices
nondeterminism may appear. Imagine, for example, to abstract at the Dolev-
Yao level just some of the functionalities of a protocol: in this case, we have that
choices of abstracted functionalities are performed nondeterministically while
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the choices of other functionalities are still probabilistic. Besides, there is al-
ready evidence in the recent literature [8] that sometimes it is not convenient to
hide nondeterminism under the carpet.

We now turn to the notion of simulation for probabilistic automata [17], defining
first what it means to lift a relation on states to a relation on measures. Let R be
a relation from a set X to a set Y . The lifting ofR, denoted by L(R), is a relation
from Disc(X) to Disc(Y ) such that ρX L(R) ρY if and only if there exists a
weighting function w : X×Y → [0, 1] such that (1) w(x, y) > 0 implies x R y, (2)∑

x∈X w(x, y) = ρY (y), and (3)
∑

y∈Y w(x, y) = ρX(x). An alternative definition
of lifting given in a more probabilistic style states that ρX L(R) ρY if and only
if there exists a joint measure w with marginal measures ρX and ρY such that
the support of w (i.e., pairs (x, y) such that w(x, y) > 0) is included in R. If we
view R as a pseudo-metric with values in {0,∞}, then L(R) is the Kantorovich
metric on probability measures [10].

A simulation from a PA A1 to a PA A2 is a relation R from S1 to S2 such
that s̄1 R s̄2 and for each pair (s1, s2) ∈R, if (s1, a, μ1) ∈ D1, then there exists a
transition s2

a−−→ μ2 such that μ1 L(R) μ2. We say that A1 is simulated by A2,
denoted by A1 % A2, if there exists a simulation from A1 to A2. Relation % is
transitive and preserved by the parallel composition A||B of PAs A and B. This
is the key feature that enables hierarchical and modular verification. We do not
define formally composition here and we refer the interested reader to [18].

2.2 Nonces and Negligibility

A nonce of length k is an element of {0, 1}k that is used at most once. An ideal
way to satisfy uniqueness of nonces is to use a repository that keeps track of the
nonces distributed in the past and that responds to all requests by returning
a new value each time. The practical way to satisfy the uniqueness of nonces
is to choose them randomly from {0, 1}k. In this way, if we choose randomly
two nonces of length k, the probability that they are the same is at most 2−k.
This property can be extended to any polynomial number of chosen nonces, as
follows: denoted by Poly the set of positive polynomials on N,

Property 1. For each c ∈ N and p ∈ Poly , there exists k̄ ∈ N such that for each
k > k̄, given n1, . . . , np(k) ∈ {0, 1}k, if n is chosen randomly and uniformly from
{0, 1}k, then Pr(n ∈ {n1, . . . , np(k)}) < k−c.

The phrase “for each c ∈ N and p ∈ Poly , there exists k̄ ∈ N such that for each
k > k̄” is commonly used in the literature on complexity theory when bounding
the probability of an attack in the computational model. Essentially, this phrase
means that no matter how we bound polynomially the number of actions the
attacker can perform (∀p ∈ Poly) and how we limit the polynomial probability
of the attack (∀c ∈ N), we are able to find a minimum value of the security
parameter (k̄ ∈ N) such that for each larger value k the probability of the attack
is less than the imposed limit k−c, that is, the probability of the attack is less
than each polynomial in k.
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3 State Polynomially Accurate Simulation

3.1 State Polynomially Accurate Simulation

We start by enriching the notion of lifting of a relation to account for errors.

Definition 1. Let R be a relation from X to Y and let ε ∈ R�0. The ε-lifting
of R, denoted by L(R, ε), is a relation from Disc(X) to Disc(Y ) defined as
follows: for each pair ρX , ρY of measures in Disc(X) and Disc(Y ), respectively,
ρX L(R, ε) ρY if and only if either ε � 1 or there exists an ε-weighting function
wε : X × Y → [0, 1] such that

1. wε(x, y) > 0 =⇒ x R y,
2.
∑

y∈Y wε(x, y) � ρX(x),
3.
∑

x∈X wε(x, y) � ρY (y),
4.
∑

x∈X,y∈Y wε(x, y) � 1− ε.

Alternatively we can say that there exists a joint sub-probability measure w with
marginal measures dominated by ρX and ρY , total mass at least 1− ε, and such
that the support of w is included in R. Also, if we view R as a pseudo-metric
with values in {0, 1}, then the supremum 1 − ε such that ρX L(R, ε) ρY holds
is the Kantorovich distance between ρX and ρY . Thus, testing ρ1 L(R, ε) ρ2 is
equivalent to solving a maximum flow problem with the additional requirement
that the flow is at least 1−ε. The original and equivalent definition given in [19]
is also interesting: ρX L(R, ε) ρY iff either ε � 1 or there exist ρ′X , ρ′′X , ρ′Y , ρ′′Y
such that ρX = (1− ε)ρ′X + ερ′′X , ρY = (1− ε)ρ′Y + ερ′′Y , and ρ′X L(R) ρ′Y .

The second ingredient for sPASs is the ε-step condition. Informally, two states
s1, s2 satisfy the ε-step condition if each transition from s1 can be matched by
a transition from s2 up to an ε-bounded error.

Definition 2. Let A1, A2 be two automata and R be a relation from S1 to S2.
Given s1 R s2, we say that s1 and s2 satisfies the ε-step condition, denoted by
s1 St(R, ε) s2, if for each (s1, a, μ1) ∈ D1, there exists a transition s2

a−−→ μ2

such that μ1 L(R, ε) μ2.

For the third ingredient, consider a relation R and two measures ρ1, ρ2 that are
L(R, γ)-related. We know that there is at least one γ-weighting function that
supports ρ1 L(R, γ) ρ2. Indeed, there may be several such weighting functions.
Among them we would like to select one that reduces as much as possible the
mass of those pairs that are not St(R, ε)-related. We first define formally the
condition above by requiring the mass of the “bad” pairs to be bounded by η.

Definition 3. Let A1, A2 be two PAs and let R be a relation from S1 to S2.
We say that R is an ε-η-approximate simulation if

– s̄1 R s̄2;
– for each γ, μ1, μ2 such that μ1 L(R, γ) μ2 there exists a γ-weighting function

wγ for μ1 L(R, γ) μ2 such that
∑
{wγ(s1, s2) | s1¬ St(R, ε) s2} < η.
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Remark 2. The step condition of the ε-η-approximate simulation is not imme-
diate. Indeed, the reader may wonder

– why not replacing L(R) with L(R, ε) in the step condition of an ordinary
simulation? Our objective, illustrate in Figure 1, is to take a probabilistic
execution ν of a simulated automaton and produce a probabilistic execution
of the simulating one that corresponds up to some error that grows with the
length n of ν, but not too much. If we use a L(R, ε) relation, then the error
is bounded above by 1− (1− ε)n, that is, the error gets exponentially close
to 1, which is too much;

– what is the purpose of γ? In order to avoid the error being exponentially close
to 1, we propose a way to say that the error grows at most by fixed amount
at each step. In our definition γ represents the error before simulating the
current step, while η represents a bound on the extra error introduced by
the step;

– why ε-η? A step may be simulated up to some small error either because
there are sufficiently many pairs of states that simulate each other perfectly,
or because all pairs of states simulate each other up to some small error, or
because of a combination of the two. The parameter ε measures the second
kind of error, while η measures the first kind of error. The combination of
the two measures the third kind of error. Thus, for instance, if we set ε to be
0 we consider only the first kind of error, and if we set η to be 0 we consider
only the second kind of error.

Observe that in the sum above the fact that wγ(s1, s2) > 0 implies implicitly
that s1 R s2 as well as s1 ∈ Supp(μ1) and s2 ∈ Supp(μ2).

The final step to define sPASs is to enrich ε-η-approximate simulations with
computational elements. Thus, we use families of PAs and of relations parame-
terized by a security parameter k, we consider only pairs of measures that are
reached within polynomial time, and we require ε and η to be smaller than any
polynomial. We use the notion of probability measure on states reachable within
n steps. The formal definition, which requires some basic measure theory, states
that μ is reachable within n steps if there exists a probabilistic execution, sup-
ported on executions of length at most n, whose image measure of the lstate
function is μ.

Definition 4. A measure μ on states is said to be reachable within n steps if
there exists a probabilistic execution ν, supported on finite executions of length
at most n, such that μ = lstate(ν).

Definition 5. Let {A1
k}k∈N

and {A2
k}k∈N

be two families of probabilistic au-
tomata; let R= {Rk}k∈N

be a family of relations such that each Rk is a relation
from S1

k to S2
k; let Poly be the set of positive polynomials over N. We say that

R is a state polynomially accurate simulation from {A1
k}k∈N

to {A2
k}k∈N

if
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1. for each k ∈ N, it holds that s̄1
k Rk s̄2

k;
2. for each c ∈ N and p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄,

for all probability measures μ1 and μ2 and for each γ � 0,
– if μ1 is reached within p(k) steps in A1

k and μ1 L(Rk, γ) μ2,
– then there exists a γ-weighting function wγ for μ1 L(Rk, γ) μ2 such that∑

{wγ(s1, s2) | s1¬ St(Rk, k
−c) s2} < k−c.

We write {A1
k}k∈N


s {A2
k}k∈N

if there exists a state polynomially accurate
simulation R from {A1

k}k∈N
to {A2

k}k∈N
.

Remark 3. In the definition of the step condition, we use the same bound k−c for
two different quantities: the first one is the error ε of the ε-step condition, while
the second one is the overall weight η of pair of states that do not satisfy the ε-
step condition. The choice of using the same value is not restrictive: if we use two
different bounds, say k−c′ and k−c′′ , then we can take c = min(c′, c′′) and the step
condition still holds. In fact, it is easy to observe that s1¬ St(Rk, k

−c) s2 implies
s1¬ St(Rk, k

−c′) s2 and thus
∑
{wγ(s1, s2) | s1¬ St(Rk, k

−c′) s2} < k−c′′

implies
∑
{wγ(s1, s2) | s1¬ St(Rk, k

−c) s2} < k−c.

Notational convention. To simplify the notation, when it is clear from the
context we denote the family of automata {Ak}k∈N

by A. We still use Ak to de-
note the automaton of the family {Ak}k∈N

instantiated with the specific security
parameter k. Similarly, we denote the family of relations {Rk}k∈N

by R.

Remark 4. We do not compare explicitly sPAS with the polynomially accurate
simulations of [19] here due to lack of space. For the reader familiar with [19] we
observe that assuming Definition 3 it is possible to prove that for any measures
μ1 L(R, γ) μ2, any hyper-transition μ1 −−→ ρ1 can be matched by a hyper-
transition μ2 −−→ ρ2 such that ρ1 L(R, γ + ε + η) ρ2. This is the basic step to
show that sPASs are stronger than the PASs of [19].

Remark 5. It is immediate to observe that an ordinary simulation relationR is a
special case of a sPAS since s1 R s2 implies s1 St(R, k−c) s2. Thus, in a complex
system it is safe to use ordinary simulations and basic concurrency theory on all
those components that do not rely on any computational assumption.

Remark 6. Here we are working with relations that in concurrency theory liter-
ature are known as strong. However, the reader familiar with weak relations may
note that extending our result is not difficult: just modify the condition of the
step condition imposing that

∑
{wγ(s1, s2) | s1¬ Stw(Rk, k

−c) s2} < k−c where
s1 Stw(Rk, k

−c) s2 if for each transition (s1, a, μ1), there exists a weak transition
(s2, a, μ2) such that μ1 L(Rk, k

−c) μ2. In order to preserve polynomial bounds,
we require that also the length of the weak transition is bounded. There are
several ways to define such bounds and they are proposed in [21].

We conclude this section with the statement of the main compositionality
result for sPASs, which is the goal of the definition presented in this paper.

Theorem 1. Let A1 and A2 be two families of automata. For each context C
compatible with both A1 and A2, if A1 
s A2 then A1||C 
s A2||C.
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Fig. 1. Graphical representation of the Execution Correspondence Theorem

3.2 Execution Correspondence

The existence of a sPAS from A1 to A2 implies a strong correspondence between
their probabilistic executions. The formal result is known in concurrency theory
as the execution correspondence theorem [17], is known within cryptography in a
restrictive form as the mapping lemma [13], and is the basis for reasoning about
properties that relate concrete and abstract systems. Informally, the execution
correspondence theorem for sPASs states that for every probabilistic execution
of polynomial length of the concrete system there exists a corresponding proba-
bilistic execution of the abstract system up to a negligible error.

Definition 6. Given two families of automata A1 and A2 and a family R of
relations from states of A1 to states of A2, we say that A1 is execution-related
by R to A2, denoted by A1 Ex (R) A2, if for each c ∈ N, p ∈ Poly, there exists
k̄ ∈ N such that for each k > k̄ and each scheduler σ1 for A1

k, if μ1 is the
probability measure induced by σ1 after n steps, n � p(k), then there exists a
scheduler σ2 for A2

k that reaches, after n steps, a probability measure μ2 such
that μ1 L(Rk, nk−c) μ2.

We say alternatively that R is an execution relation from A1 to A2.

Figure 1 represents graphically the execution correspondence theorem. Given a
probabilistic execution of automaton A1

k, let μ1, μ
′
1, . . . be the measures reached

respectively after 1, 2, . . . steps. Then we can find a probabilistic execution of A2
k,

with measures after 1, 2, . . . being μ2, μ
′
2, . . ., respectively, such that the matching

error grows linearly in the number of steps in the value k−c, which can be made
arbitrarily small by increasing the value of the security parameter k.

Theorem 2 (The Execution Correspondence). If R is a state polynomially
accurate simulation from A1 to A2, then A1 Ex (R) A2.

Proof (outline). The proof is a classical inductive argument on the number of
steps: the base case follows directly from the condition on start states, while the
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Fig. 2. Naive composition of sPAS does not lead to sPAS

inductive step is based on the following result: if
∑
{wγ(s1, s2) | s1¬ St(R, ε)

s2} < ε, and performing a step from μ1 we reach measure ϕ1, then there exists
ϕ2 such that ϕ1 L(R, ε + γ) ϕ2 and ϕ2 is reached performing a step from μ2,
that is, the following step adds an extra error that is bounded by ε (recall the
discussion about the ε-η-approximate simulation). ��

The execution-relationship is transitive.

Proposition 1. Let A1,A2,A3 be three families of probabilistic automata and
R1,R2 be two relations such that A1 Ex (R1) A2 and A2 Ex (R2) A3.

Then, A1 Ex (R1 ◦ R2) A3.

Proof (outline). The proof follows directly from the definition of execution rela-
tion: fix c ∈ N and p ∈ Poly . A1 Ex(R1) A2 implies that for each c′ ∈ N and each
probability measure μ1 reached within n � p(k) steps in A1

k there exists a prob-
ability measure μ2 reached within n steps in A2

k such that μ1 L(R1
k, nk−c′) μ2.

Similarly, A2 Ex (R2) A3 implies that there exists a probability measure μ3

reached within n steps in A3
k such that μ2 L(R2

k, nk−c′) μ3. Fix c′ to be 2c + 1.
Then we use the following property of ε-lifting: ρ1 L(R1, ε1) ρ2 L(R2, ε2) ρ3

implies ρ1 L(R1 ◦ R2, ε1 + ε2) ρ3 to conclude μ1 L(R1
k ◦ R2

k, 2nk−c′) μ3 which
implies μ1 L(R1

k ◦ R2
k, nk−c) μ3 since 2k−2c−1 � k−c for each k > 1. ��

The proposition above is the key ingredient for hierarchical analysis since given
a chain of sPAS-related automata each probabilistic execution of the first au-
tomaton corresponds to a probabilistic execution of the last automaton up to a
negligible error. It would be even nicer to show that sPAS composes; however,
this is not the case. Consider the three automata of Figure 2: A1 
s A2 and
A2 
s A3 but the naive composition of sPAS relations (depicted by dotted arcs)
leads to a relation that does not satisfy conditions of sPAS. In fact, q1 is related
to s2 (through r3) but the transition (q1, b, δq4) can not be matched from s2,
thus the step condition can not be satisfied for δq1 and δs2 .
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NGh
k(A)

Signature:
Input:

get nonce(A), A ∈ A
Output:

ret nonce(A,n), n ∈ {0, 1}k, A ∈ A

State:

valueA ∈ {0, 1}k ∪ {⊥}, initially ⊥, A ∈ A
is freshA ∈ {T, F,⊥}, initially ⊥, A ∈ A
frnonces ⊆ {0, 1}k, initially {0, 1}k

Transitions:
Input get nonce(A)

Effect:
valueA := v where v ∈R {0, 1}k

is freshA :=

{
T if v ∈ frnonces

F otherwise
frnonces := frnonces \ {v}

Output ret nonce(A,n)
Precondition:

n = valueA

Effect:
valueA := ⊥
is freshA := ⊥

Fig. 3. The Nonce Generator NGh
k(A)

4 Conditional Automata
Consider a public key encryption box that satisfies the indistinguishability un-
der chosen ciphertext attack (IND-CCA) property. The box generates random
keys and encrypts/decrypts messages. One property of IND-CCA cryptosys-
tems is that repeated keys or repeated ciphertexts are generated with negligible
probability. Consider now a more complex system that interacts with the cryp-
tographic box. Can we assume, while analyzing the complex system, that the
cryptographic box never generates any repeated key/ciphertext? Conditional
automata, together with the compositionality properties of state polynomially
accurate simulations, provide us with a positive answer.

We illustrate conditional automata with yet a simpler example. Consider a
system that uses nonces generated by a nonce generator that simply draws ran-
dom numbers of k bits, where k is the security parameter. Can we assume safely
that all nonces are different? Again, the answer is positive.

To model this nonce generator, we define an automaton NGk(A), where A is
a set of agents, with actions to get and return nonces, respectively. In particular,
each time an agent A requires a nonce, the automaton generates a number of
k bits that is returned to A. Then we extend this automaton to an automaton
NGh

k(A) by adding some bookkeeping variables that simply keep track of the
past and permits it to determine whether any nonce is repeated. We follow the
approach based on history variables [2], for which it is known already [12] that
A % Ah whenever Ah is obtained from A by adding history variables.

Figure 3 depicts NGh
k(A). Variables frnonces and is freshA are history vari-

ables. The former keeps all values that are not yet chosen as nonces; the latter,
one for each agent A, takes value F if the chosen nonce is repeated.

Our next step is to remove from NGh
k(A) all those behaviors that lead to

repeated nonces. We call the resulting automaton the ideal nonce generator. For
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the purpose, let G be the set of states of NGh
k(A) where no nonce is repeated.

We modify the transition relation of NGh
k(A) by imposing that states outside

G can not be reached by any transition. More precisely, we replace the target
measure of each transition by the same measure conditional on G.

Definition 7 (Conditional Automaton). For a PA A = (S, s̄, A,D) and
G ⊆ S, define the G-conditional of A, denoted by A|G, to be the PA A′ =
(S, s̄, A,D′) where D′ = {(s, a, μ|G) | (s, a, μ) ∈ D,μ(G) > 0}.
At this point we may believe that in A|G no state outside G is reachable. This
is indeed the case provided that the start state of A is in G.

Proposition 2. Given a PA A and G ⊆ S. If s̄ ∈ G, then all reachable states
of A|G are in G.

Returning to the nonce generator example, it is immediate to verify that the
automaton NGh

k(A)|G, where G is the set of states where no variable is freshA

has value F , is the automaton where the assignment to variable valueA in action
get nonce(A) is replaced by valueA := v where v ∈R frnonces . The last piece
that is still missing from the picture is a result that allows us to conclude quickly
that the ideal nonce generator is a safe abstraction of the nonce generator that
can be used for further analysis.

Indeed, we turn now to our main result, namely, that the conditional au-
tomaton construction is sound for sPASs whenever we rule out states that are
reachable with negligible probability on computations of polynomial length. We
need some preliminary definitions.

For a set F of finite execution fragments, let Cones(F ) denote the set ∪α∈FCα.
For a set of states B let ♦(B) be the set of finite executions whose last state is
in B, and let ♦l(B) be the set of executions of ♦(B) of length at most l. Thus
Cones(♦(B)) denotes the event of reaching a state from B, while Cones(♦l(B))
denotes the event of reaching a state from B within l steps.

Definition 8. Given a probabilistic automaton A and a set of states B, we say
that B is reachable with probability less than p inA if supσ{νσ(Cones(♦(B)))} <
p and that B is reachable with probability less than p within l steps in A if
supσ{νσ(Cones(♦l(B)))} < p.

Definition 9. For a family A of probabilistic automata and a family B of states,
we say that B is polynomially reachable with negligible probability in A (or
alternatively that B is negligible in A) if and only if for each c ∈ N, each
p ∈ Poly, there exists k̄ ∈ N such that for each k > k̄ the probability to reach
states of Bk within p(k) steps in Ak is less than k−c.

Remark 7. The phrase “for each c ∈ N, each p ∈ Poly , there exists k̄ ∈ N such
that for each k > k̄ the probability to reach states of Bk within p(k) steps in Ak

is less than k−c” may appear to be complex; however it is a standard way to say
that something is negligible (see discussion about nonces in Section 2.2).

Theorem 3 (Conditional Automaton Theorem). Let A be a family of
probabilistic automata and G be a family of states such that, for each k ∈ N,
s̄k ∈ Gk. For each k ∈ N let Bk be the set Sk \Gk.
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Then the family B is negligible in A if and only if the family of identity
relations is a state polynomially accurate simulation from A to A|G.

Proof (outline). Negligibility of B imposes a bound on the error between each
probability measure μ and μ|G; the execution correspondence theorem bounds
the probability to reach states in B (not reachable in A|G) to be negligible. ��
An immediate consequence of the conditional automaton theorem is indeed that
the ideal nonce generator is a safe abstraction of the nonce generator.
Proposition 3. Let Bk be the set of states of NGh

k(A) where some variable
is freshA is F . Let Gk be the set Sk \Bk. Then NGh(A) 
s NGh(A)|G.

Proof (outline). Within p(k) steps at most p(k) nonces can be removed from
frnonces , thus Property 1 implies that the set of states B is negligible inNGh(A),
hence NGh(A) 
s NGh(A)|G. ��
The exercise above can be repeated for other cryptographic primitives like en-
cryption and digital signatures, where events like repeated keys or repeated ci-
phertexts are ruled out. Then, by compositionality, any complex protocol can be
analyzed with the ideal versions of the underlying primitives. We do this in [21]
where we reprove in a modular way the Dolev-Yao soundness result of [9].

5 Conclusion
In this paper we have introduced Conditional Automata as a tool to abstract
security protocols by removing negligible events. We have provided two main
theorems: the Conditional Automaton Theorem that relates the negligibility of
some states to the existence of a state polynomially accurate simulation between
an automaton and its G-conditional counterpart, and the Execution Correspon-
dence Theorem that relates executions of a real protocol with executions of an
idealized protocol. We have illustrated our construction via a simple example
based on nonce generators; more elaborated examples are available in [21].

The conditional automaton construction turns out to be very simple, as well
as the statement of the conditional automaton theorem. All the difficulties lie in
setting up an appropriate underlying framework that supports the theorem and
inherits the important features of concurrency theory.

We believe that one of the main advantages of our result is the ability to
combine in a unique framework proofs based on cryptographic assumptions with
proof techniques that have been used extensively and successfully in contexts
where there are several concurrent agents. Furthermore, the current framework
allows us to work in “hybrid” models where some primitives are described at a
concrete level, while other primitives are abstracted a la Dolev-Yao. We are
planning to apply these techniques to other more elaborate case studies, as
well as investigating the relationship of polynomially accurate simulations with
approximated language inclusion and metrics for probabilistic systems.

References
1. Abadi, M., Gordon, A.G.: A calculus for cryptographic protocols: the spi calculus.

Information and Computation 148(1), 1–70 (1999)



Conditional Automata: A Tool for Safe Removal of Negligible Events 553

2. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

3. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). In: IFIP TCS. LNCS, vol. 2000, pp. 3–22.
Springer, Heidelberg (2001)

4. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic
library. Cryptology ePrint Archive, Report 2003/015 (2003)

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145 (2001)

6. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N.A., Pereira, O., Segala,
R.: Using Probabilistic I/O Automata to analyze an oblivious transfer protocol.
Tech. Rep. 2005/452, Cryptology ePrint Archive (2005)

7. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N.A., Pereira, O., Segala,
R.: Time-bounded task-pIOAs: A framework for analyzing security protocols. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 238–253. Springer, Heidelberg
(2006)

8. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
42–58. Springer, Heidelberg (2007)

9. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

10. Kantorovich, L.V.: On the translocation of masses. Doklady Akademii Nauk
SSSR 37(7-8), 227–229 (1942)

11. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC 1987, pp. 137–151 (1987)

12. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations for timing-
based systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P.
(eds.) REX 1991. LNCS, vol. 600, pp. 397–446. Springer, Heidelberg (1992)

13. Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway logic
of encrypted expressions. Journal of Computer Security 12(1), 99–129 (2004)

14. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. The-
oretical Computer Science 353(1), 118–164 (2006)

15. Mitra, S., Lynch, N.A.: Approximate simulations for task-structured Probabilistic
I/O Automata. In: PAuL 2006 (2006)

16. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: SP 2001, pp. 184–200 (2001)

17. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, MIT (1995)

18. Segala, R.: Probability and nondeterminism in operational models of concurrency.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78.
Springer, Heidelberg (2006)

19. Segala, R., Turrini, A.: Approximated computationally bounded simulation rela-
tions for probabilistic automata. In: 20th CSF, pp. 140–154 (2007)

20. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

21. Turrini, A.: Hierarchical and Compositional Verification of Cryptographic Pro-
tocols. Ph.D. thesis, University of Verona (2009), http://www.univr.it/main?

ent=catalogoaol&id=337415&page=dettaglioPubblicazione

http://www.univr.it/main?ent=catalogoaol&id=337415&page=dettaglioPubblicazione
http://www.univr.it/main?ent=catalogoaol&id=337415&page=dettaglioPubblicazione


Representations of Petri Net Interactions
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Abstract. We introduce a novel compositional algebra of Petri nets,
as well as a stateful extension of the calculus of connectors. These two
formalisms are shown to have the same expressive power.

1 Introduction

In part owing to their intuitive graphical representation, Petri nets [28] are of-
ten used both in theoretical and applied research to specify systems and visu-
alise their behaviour. On the other hand, process algebras are built around the
principle of compositionality: their semantics is given structurally so that the
behaviour of the whole system is a function of the behaviour of its subsystems.
Indeed, Petri nets and process calculi differ in how their underlying semantics is
defined: Petri nets via some kind of globally defined transition system of “firing”
transitions, and process calculi via an inductively generated (SOS [27]) labelled
transition system. As a consequence, the two are associated with different mod-
elling methodologies and reasoning techniques.

There has been much research concentrating on relating the two domains.
This paper continues this tradition by showing that a certain class of Petri nets
has, in a precise way, the same expressive power as a process calculus.

Technically, we introduce a compositional extension of Condition/Event nets
with consume/produce loops. A net is associated with left and right interfaces to
which its transitions may connect. Composition of two such nets along a common
boundary occurs via a kind of synchronisation of transitions. This notion of
compositionality is related to the concept of open nets [4–6].

On the other hand, the process calculus can be considered an extension of (an
SOS presentation of) stateless connectors [9] with a very simple notion of state:
essentially a one-place buffer. A related extension was considered in [3].

The operations of well-known process algebras have influenced research on
Petri nets and various translations have been considered. In the 1990s there was
a considerable amount of research that, roughly speaking, related and adapted
the operations of the CCS [23] and related calculi to Petri nets. An example of
this is the Petri Box calculus [7, 20] and, to a lesser extent, the combinators
of Nielsen, Priese and Sassone [26]. More recently, Cerone [11] defined several
translations from C/E nets to the Circal process algebra, that like CCS is based
on a binary composition and hiding operators. Other recent related work has
included endowing Petri nets with labelled transition systems, using techniques
and intuitions originating from process calculi, see [21, 24, 29].
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Conversely, there has also been considerable work on translating process cal-
culi to Petri nets: representative examples include [10, 12, 14, 31]. Recently [15]
suggests a set of operations for open nets to which an SOS semantics is assigned.

The operations of the calculus presented in this paper are fundamentally dif-
ferent to those utilised in the aforementioned literature. Indeed, they are closer
in nature to those of tile logic [13] and Span(Graph) [18] than to the oper-
ations of CCS. More recently, similar operations have been used by Reo [2],
glue for component-based systems [8] and the wire calculus [30]. Indeed, in [17]
Span(Graph) is used to capture the state space of P/T nets; this work is close
in spirit to the translation from nets to terms given in this paper.

Different representations of the same concept can sometimes serve as an in-
dication of its canonicity. Kleene’s theorem [19, 22] is a well-known example:
on the one hand graphical structures with a globally defined semantics (finite
automata) are shown to have the same expressive power as a language with an
inductively-defined semantics (regular expressions).

Structure of the paper. Nets with boundaries are introduced in §2 and the rele-
vant process calculus, for the purposes of this paper dubbed the “Petri calculus”,
is introduced in §3. The translation from nets to process calculus terms is given
in §4. A reverse translation is given in §5. Future work is discussed in §6.

2 Nets

Definition 1. For the purposes of this paper a Petri net is a 4-tuple N =
(P, T, ◦−, −◦) where1:

∗ P is a set of places ;
∗ T is a set of transitions ;
∗ ◦−,−◦ : T → 2P are functions.

N is finite when both P and T are finite sets.

The obvious notion of net homomorphisms f : N → M is a pair of functions
fT : TN → TM , fP : PN → PM such that ◦−N ; 2fP = fT ; ◦−M and −◦

N ;
2fP = fT ; −◦

M , where 2fP (X) =
⋃

x∈X{fP (x)}. For a transition t ∈ T , ◦t and
t◦ are called, respectively, its pre- and post-sets. Notice that Definition 1 allows
transitions with empty pre- and post-sets; this option, while counterintuitive for
ordinary nets, will be necessary for nets with boundaries, introduced in §2.1.

Transitions t, u are independent when ◦t ∩ ◦u = ∅ and t◦ ∩ u◦ = ∅. Note
that this notion of independence is quite liberal and allows so-called contact
situations. Moreover, a place p can be both in ◦t and t◦ for some transition t;
some authors refer to this as a consume/produce loop; the notion of contextual
net [25] is related. A set U of transitions is mutually independent when, for all
t, u ∈ U , if t �= u then t and u are independent. Given a set of transitions U let
◦U =

⋃
u∈U

◦u and U◦ =
⋃

u∈U u◦.

1 In the context of C/E nets some authors call places conditions and transitions events.
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Fig. 1. Traditional and alternative graphical representations of a net

Definition 2 (Semantics). Let N = (P, T, ◦−, −◦) be a net, X, Y ⊆ P and
t ∈ T . Write:

(N, X) →{t} (N, Y ) def= ◦t ⊆ X, t◦ ⊆ Y & X\◦t = Y \t◦.

For U ⊆ T a set of mutually independent transitions, write:

(N, X) →U (N, Y ) def= ◦U ⊆ X, U◦ ⊆ Y & X\◦U = Y \U◦.

Note that, for any X ⊆ P , (N, X) ∅−→ (N, X). States of this transition system
will be referred to as markings of N .

The left diagram in Fig. 1 demonstrates the traditional graphical representation
of a (marked) net. Places are circles; a marking is represented by the presence
or absence of tokens. Each transition t ∈ T is a rectangle; there are directed
edges from each place in ◦t to t and from t to each place in t◦. This graphical
language is a particular way of drawing hypergraphs; the right diagram in Fig. 1
exemplifies another graphical representation, more suitable for representing the
notion of nets introduced in this paper. Places are again circles, but each has
exactly two ports : one on the left and one on the right. Transitions are undirected
links—each link can connect to any number of ports. Connecting t to the right
port p signifies that p ∈ ◦t, connecting t to the left port means that p ∈ t◦.
Variants of link graphs have been used to characterise various free monoidal
categories: see for instance [1, 16].

2.1 Nets with Boundaries

Let k, l, m, n range over finite ordinals: n
def= {0, 1, . . . , n − 1}.

Definition 3. Let m, n ∈ N. A (finite) net with boundaries N : m → n, is a
sextuple (P, T, ◦−, −◦, •−, −•) where:

∗ (P, T, ◦−, −◦) is a finite net;
∗ •− : T → 2m, −• : T → 2n are functions.
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Fig. 2. Representation of a net with boundaries 2 → 3. Here T = {α, β, γ, δ, ε, ζ}
and P = {a, b, c, d}. The non-empty values of ◦− and −◦ are: α◦ = {a}, ◦β = {a},
β◦ = {b, c, d}, ◦γ = {b}, ◦δ = {c}. The non-empty values of •− and −• are: •α = {0},
γ• = {1}, δ• = {1}, ζ• = {2}.

α1

α2

α3

β1

α4 β2

{α2, α3}, β1

{α1, α3}, β1

α4, β2

Fig. 3. Illustration of composition of two nets with boundaries

We refer to m and n as, respectively, the left and right boundaries of N . An
example is pictured in Fig. 2.

Henceforward we shall usually refer to nets with boundaries as simply nets.
The obvious notion of homomorphism between two nets with equal boundaries

extends that of ordinary nets: given nets N, M : m → n, f : N → M is a pair of
functions fT : TN → TM , fP : PN → PM such that ◦−N ; 2fP = fT ; ◦−M , −◦

N ;
2fP = fT ; −◦

M , •−N = fT ; •−M and −•
N = fT ; −•

M . A homomorphism
is an isomorphism iff its two components are bijections; we write N ∼= M when
there is an isomorphism from N to M .

The notion of independence of transitions extends to nets with boundaries in
the obvious way: t, u ∈ T are said to be independent when

◦t ∩ ◦u = ∅, t◦ ∩ u◦ = ∅, •t ∩ •u = ∅ and t• ∩ u• = ∅.

Let M : l → m and N : m → n be nets. In order to define the composition along
their shared boundary, we must first introduce the concept of synchronisation: a
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pair (U, V ), with U ⊆ TM and V ⊆ TN mutually independent sets of transitions
such that:

∗ U ∪ V �= ∅;
∗ U• = •V .

The set of synchronisations inherits an ordering from the subset relation, ie
(U ′, V ′) ⊆ (U, V ) when U ′ ⊆ U and V ′ ⊆ V . A synchronisation is said to be
minimal when it is minimal with respect to this order. Let

TM ;N
def= {(U, V ) | U ⊆ TM , V ⊆ TN , (U, V ) a minimal synchronisation}

Notice that any transition in M or N not connected to the shared boundary m is
a minimal synchronisation in the above sense. Define2 ◦−,−◦ : TM ;N → 2PM+PN

by letting ◦(U, V ) = ◦U ∪ ◦V , (U, V )◦ = U◦ ∪ V ◦. Define •− : TM ;N → 2l by
•(U, V ) = •U and −• : TM ;N → 2n by (U, V )• = V •. The composition of M
and N , written M ; N : l → n, has:

∗ TM ;N as its set of transitions;
∗ PM + PN as its set of places;
∗ ◦−,−◦ : TM ;N → 2PM+PN , •− : TM ;N → 2l, −• : TM ;N → 2n as above.

An example of a composition of two nets is illustrated in Fig. 3.

Proposition 4

(i) Let M, M ′ : k → n and N, N ′ : n → m be nets with M ∼= M ′ and N ∼= N ′.
Then M ; N ∼= M ′ ; N ′

(ii) Let L : k → l, M : l → m, N : m → n be nets. Then (L ; M) ; N ∼= L ;
(M ; N) 
�

We need to define one other binary operation on nets. Given nets M : k → l and
N : m → n, their tensor product is, intuitively the net that results from putting
the two nets side-by-side. Concretely, M ⊗ N : k + m → l + n has:

∗ set of transitions TM + TN ;
∗ set of places PM + PN ;
∗ ◦−,−◦, •−,−• defined in the obvious way.

2.2 Semantics

Throughout this paper we use two-labelled transition systems. Labels are words
in {0, 1}∗ and are ranged over by α, β. Write #α for the length of a word α. The
intuitive idea is that a transition p

α−→
β q signifies that a system in state p can,

in a single step, synchronise with α on its left boundary, β on it right boundary
and change its internal state to q.

Definition 5 (Transitions). For k, l ∈ N, a (k, l)-transition is a two-labelled
transition of the form

α−→
β where α, β ∈ {0, 1}∗, #α = k and #β = l. A (k, l)

labelled transition system ((k, l)−LTS) is a transition system that consists of
(k, l)-transitions.

2 We use + to denote disjoint union.
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Definition 6 (Bisimilarity). A simulation on a (k, l)−LTS is a relation S on
its set of states that satisfies the following: if (v, w) ∈ S and v

α−→
β v′ then ∃w′

s.t. w
α−→
β w′ and (v′, w′) ∈ S. A bisimulation is a relation S where both S and

S−1 are simulations. Bisimilarity is the largest bisimulation relation.

For any k ∈ N, there is a bijection �−� : 2k → {0, 1}k with

�U�i def=

{
1 if i ∈ U

0 otherwise
.

Definition 7 (Semantics). Let N : m → n be a net and X, Y ⊆ PN . Write:

(N, X)
α−→
β (N, Y ) def= ∃ mutually independent U ⊆ TN s.t.

(N, X) →U (N, Y ), α = �•U� & β = �U•� (1)

Notice that (N, X)
0m−−→
0n (N, X).

We conclude this section with a brief remark on the relationship between nets
with boundaries and open nets [4, 6]. While open nets are based on P/T nets, a
similar construction can be carried out for the variant of net given by Definition 1.
Composition in open nets is based on a pushout construction in a category of
open-net morphisms. It is not difficult to show that this open net composition
can be captured by a composition of nets with boundaries. We omit the details
here.

3 Petri Calculus

Here we give the syntax and the structural operational semantics of a simple
process calculus, which, for the purposes of this paper, we shall refer to as the
Petri calculus. It results, roughly, from adding a one-place buffer to the calculus
of stateless connectors [9]. The syntax does not feature any binding nor primitives
for recursion.

P ::= © | ©• | I | X | Δ | Δ| ⊥⊥⊥ | ��� | Λ | V | ↓↓↓ | ↑↑↑ | P ⊗ P | P ; P

There is an associated sorting. Sorts are of the form (k, l), where k, l ∈ N. The
inference rules are given in Fig. 4. Due to their simplicity, a simple induction
confirms uniqueness of sorting: if � P : (k, l) and � P : (k′, l′) then k = k′

and l = l′. We shall only consider sortable terms.
Structural inference rules for operational semantics are given in Fig. 5. The

rule (Refl) guarantees that any term is always capable of “doing nothing”; note
that this is the only rule that applies to ↓↓↓ and ↑↑↑. Each of the rules (Λa) and (Va)

actually represent two rules, one for a = 0 and one for a = 1.
Bisimilarity on the transition system obtained via the inference rules in Fig. 5

is a congruence. This is important, because it allows us to replace subterms with
bisimilar subterms without affecting the behaviour of the overall term. This fact
will be relied upon in several proofs.
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� © : (1, 1) � ©• : (1, 1) � I : (1, 1) � X : (2, 2)

� Δ : (1, 2) � Δ

: (2, 1) � ⊥⊥⊥ : (1, 0) � ��� : (0, 1)

� Λ : (1, 2) � V : (2, 1) � ↓↓↓ : (1, 0) � ↑↑↑ : (0, 1)

� P : (k, l) � R : (m, n)

� P⊗R : (k+m, l+n)

� P : (k, n) � R : (n, l)

� P ;R : (k, l)

Fig. 4. Sort inference rules

(TkI)

©
1−→0 ©•

(TkO1)

©•
0−→1 ©

(TkO2)

©•
1−→1 ©•

(Id)

I
1−→1 I

a,b∈{0,1}
(Tw)

X
ab−−→
ba X

(Δ)

Δ
1−→11 Δ

(

Δ

)

Δ11−−→1 Δ

(⊥⊥⊥)

⊥⊥⊥
1−→ ⊥⊥⊥

(���)

��� −→1 ���

(a∈{0,1})
(Λa)

Λ
1−−→

(1−a)a Λ

(a∈{0,1})
(Va)

V
(1−a)a−−−−→1 V

P
a−→
c Q R

c−→
b S

(Cut)

P ;R
a−→
b Q;S

P
a−→
b Q R

c−→
d S

(Ten)

P⊗R
ac−−→
bd Q⊗S

P :(k, l)

(Refl)

P
0k−−→
0l P

Fig. 5. Structural rules for operational semantics

Proposition 8. If P ∼ P ′ then, for any R:

(i) (P ; R) ∼ (P ′ ; R);
(ii) (R ; P ) ∼ (R ; P );
(iii) (P ⊗ R) ∼ (P ′ ⊗ R);
(iv) (R ⊗ P ) ∼ (R ⊗ P ′). 
�
A process is a bisimulation equivalence class of a term. We write [t] : (m, n) for
the process that contains t : (m, n).

3.1 Circuit Diagrams

In subsequent sections it will often be convenient to use a graphical language
for terms in the Petri calculus. Diagrams in the language will be referred to
as circuit diagrams. We shall be careful, when drawing diagrams, to make sure
that each diagram can be converted to a syntactic expression by “scanning” the
diagram from left to right. The following result justifies the usage.

Lemma 9

(i) Let P : (k, l), Q : (l, m), R : (m, n). Then

(P ; Q) ; R ∼ P ; (Q ; R);

(ii) Let P : (k, l), Q : (m, n), R : (t, u). Then

(P ⊗ Q) ⊗ R ∼ P ⊗ (Q ⊗ R);
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© ©•

I X

Δ

Δ

⊥⊥⊥ ���

Λ V

↓↓↓ ↑↑↑

Fig. 6. Circuit diagram components

(iii) Let P : (k, l), Q : (l, m), R : (n, t), S : (t, u). Then

(P ; Q) ⊗ (R ; S) ∼ (P ⊗ R) ; (Q ⊗ S).

Proof. Straightforward, using the inductive presentation of the operational se-
mantics. 
�
Each of the language constants is represented by a circuit component listed in
Fig. 6. For the translation of §4 we need to construct four additional kinds of
compound terms, for each n > 0:

In : (n, n) dn : (0, 2n) en : (2n, 0) Δn : (n, 2n) ∇n : (2n, n)

with operational semantics characterised by:
α∈{0,1}n

In
α−→
α In

α∈{0,1}n

dn −→
αα dn

α∈{0,1}n

en

αα−−→ en

α∈{0,1}n

Δn

α−→
αα Δn

α∈{0,1}n

∇n

αα−−→
α ∇n

(2)

First, In =
⊗

n I. Now because dn and en, as well as Δn and ∇n are symmetric,
here we only construct dn and Δn. Each is defined recursively:

d1 = ��� ; Δ dn+1 = dn ; (In ⊗ d1 ⊗ In); (In+1 ⊗ Xn)

Δ1 = Δ Δn+1 = (Δ ⊗ Δn) ; (I ⊗ Xn ⊗ In)

where also Xn : (n + 1, n + 1) is defined recursively:

X1 = X Xn+1 = (Xn ⊗ I) ; (In ⊗ X).

An easy induction on the derivation of a transition confirms that these construc-
tion produce terms whose semantics is characterised by (2).

3.2 Relational Forms

For θ ∈ {X, Δ,

Δ

,⊥⊥⊥,���, Λ, V,↓↓↓,↑↑↑} let Tθ denote the set of terms generated by the
following grammar:

Tθ ::= θ | I | Tθ ⊗ Tθ | Tθ ; Tθ.



562 P. Sobociński

Fig. 7. Right relational form of f : 4 → 24 defined f(0), f(1) = {0}, f(2) = ∅ and
f(3) = {1, 2}

We shall use tθ to range over terms of Tθ. We now identify two classes of terms
of the Petri calculus: the relational forms.

Definition 10. A term t : (k, l) is in right relational form when

t = t⊥⊥⊥ ; tΔ ; tX ; tV ; t↑↑↑.

Dually, t is said to be in left relational form when

t = t↓↓↓ ; tΛ ; tX ; t Δ; t���.

The following result spells out the significance of the relational forms.

Lemma 11. For each function f : k → 2l there exists a term ρf : (k, l) in right
relational form, the dynamics of which are characterised by the following:

ρf

�U�−−−→�V � ρf
⇔ U ⊆ k s. t. ∀u, v ∈ U. u �= v ⇒ f(u) ∩ f(v) = ∅ & V = f(U)

The symmetric result holds for functions f : k → 2l and terms t : (l, k) in
left relational form. Write λf : (l, k) for any term in left relational form that
corresponds to f in the above sense.

Proof. Any function f : k → 2l induces a triple (m, lf : m → k, rf : m → l)
where lf and rf are jointly injective, ie the function (lf , rf ) : m → k × l is
injective, and f(i) =

⋃
j∈l−1

f
(i) rf (j) where l−1

f (i) = {j | lf(j) = i}. Any two
such triples are isomorphic as spans of functions. It is not difficult to verify that
any function lf : m → k gives rise to a term tlf of the form t⊥⊥⊥ ; tΔ ; tX, the
semantics of which are characterised by tlf

�U�−−−→
�l

−1
f

(U)�
tlf for any U ∈ k where for

all u, v ∈ U , l−1
f (u) ∩ l−1

f (v) = ∅. Also, any function rf : m → l gives rise to a

term trf
of the form tX ; tV ; t↓↓↓, the semantics of which are trf

�V �−−−→�W� trf
where

∀w ∈ W there exists unique v ∈ V such that rf (v) = w. It thus suffices to let
ρf = tlf ; trf

. 
�

A simple example is given in Fig. 7. Note that not all terms t : (k, l) in right
relational form are bisimilar to ρf for some f : k → 2l; a simple counterexample
is Δ ; V : (1, 1).
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IT

wP,Xρ−◦ λ◦−

dT eT

ΔT∇T

λ•− ρ−•

Fig. 8. Diagrammatic representation of the translation from a marked net to a term.

4 Translating Nets to Petri Calculus Terms

Here we present a translation from nets with boundaries, defined in §2, to the
process calculus defined in §3. Let N : m → n = (P, T, ◦−, −◦, •−, −•) be
a finite net with boundary and X ⊆ P a marking. Assume, without loss of
generality, that P = p and T = t for some p, t ∈ N. Let

wP, X : (p, p) def=
⊗
i<p

mi where mi
def=

{
©• if i ∈ X

© otherwise

The following technical result will be useful for showing that the encoding of
this section is correct.

Lemma 12. wP,X
�Z�−−−→�W� Q iff Q = wP,Y , W ⊆ X, Z ⊆ Y and X\W = Y \Z.

Proof. Examination of rules (TkI), (TkO1) and (TKO2), together with the rule (Ten).

�

The translation of N can now be expressed as:

TN,X
def= (dT ⊗ λ•−) ; (IT ⊗ (

Δ

T ; ρ−◦ ; wP,X ; λ◦− ; ΔT )); (eT ⊗ ρ−•).

A circuit diagram representation of the above term is illustrated in Fig. 8.
The encoding preserves and reflects semantics in a very tight manner, as

shown by the following.

Theorem 13. Let N be a finite net. The following hold:

(i) if (N, X)
α−→
β (N, Y ) then TN,X

α−→
β TN,Y ;

(ii) conversely, if TN,X
α−→
β Q then there exists Y such that Q = TN,Y and

(N, X)
α−→
β (N, Y ).

Proof. (i) If (N, X)
α−→
β (N, Y ) then there exists a set U ⊆ t of mutually inde-

pendent transitions such that (N, X) →U (N, Y ), with α = �•U� and β = �U•�.
Using the conclusion of Lemma 12, we have

wP,X
�U◦�−−−−→�◦U� wP,Y .
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Now, using the conclusion of Lemma 11 and (Cut) we obtain transition

ρ−◦ ; wP,X ; λ◦−
�U�−−−→�U� ρ−◦ ; wP,Y ; λ◦−

and subsequently

∇T ; ρ−◦ ; wP,X ; λ◦− ; ΔT
�U��U�−−−−−−→�U��U� ∇T ; ρ−◦ ; wP,Y ; λ◦− ; ΔT

Certainly IT
�U�−−−→�U� IT , thus using the semantics of dT and eT we obtain:

TN,X
�•U�−−−−→�U•� TN,Y

as required.
(ii) If TN,X

α−→
β Q then Q = (dT ⊗ λ•−) ; Q1 ; (eT ⊗ ρ−•) and

IT ⊗ (∇T ; ρ−◦ ; wP,X ; λ◦− ; ΔT ) �U��U��V �−−−−−−−−→�U′��U′��V ′� Q1

For some U, V, U ′, V ′ ⊆ t with α = �•V � and β = �V ′•�. The structure of (Ten)

and the semantics of IT imply that U = U ′ and Q1 = IT ⊗ Q2 with

∇T ; ρ−◦ ; wP,X ; λ◦− ; ΔT
�U��V �−−−−−−→�U��V ′� Q2

Now the semantics of ΔT implies that U = V and conversely, the semantics of
∇T that U = V ′, moreover Q2 = ∇T ; Q3 ; δT with

ρ−◦ ; wP,X ; λ◦−
�U�−−−→�U� Q3

Finally, using the conclusion of Lemma 11, we obtain Q3 = ρ−◦ ; Q4 ; λ◦− and

wP,X
�U◦�−−−−→�◦U� Q4

In particular, we obtain that Q4 = wP,Y and (N, X) α−→
β (N, Y ). 
�

5 Translating Petri Calculus Terms to Nets

Each of the constants of the Petri calculus has a corresponding net with the same
semantics: this translation is given in Fig. 9. The naive way of extending this
translation to all terms would then be to let �t1 ; t2� = �t1� ; �t2� and �t1 ⊗ t2� =
�t1� ⊗ �t2�. The naive translation does not reflect behaviour, essentially because
of three problematic compositions that involve Λ and/or V. First, consider the
net that would result from translating the term V ; ⊥⊥⊥ : (2, 0):

=

According to the inductive system in Fig. 5, the non-trivial transitions of the
operational semantics of V ; ⊥⊥⊥ are: V ; ⊥⊥⊥ 10−−→ V ; ⊥⊥⊥ and V ; ⊥⊥⊥ 01−−→ V ; ⊥⊥⊥. Now
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�©� def= �©• � def=

�I� def= �X� def=

�Δ� def= � Δ� def=

����� def= �⊥⊥⊥� def=

�Λ� def= �V� def=

�↑↑↑� def= �↓↓↓� def=

Fig. 9. Translation from calculus constants to nets with marking

�V ; ⊥⊥⊥� has the above transitions, but also an extra transition: �V ; ⊥⊥⊥� 11−−→�V ; ⊥⊥⊥�.
The second problematic composition is ��� ; Λ, which is symmetric to the above
situation.

The third and final problematic composition amongst constants arises when
translating the term V ; Λ : (2, 2). Here the net composition of the translated
components is:

=

Now the non-trivial derivable transitions are

(V ; Λ)
01−−→01 (V ; Λ), (V ; Λ)

10−−→10 (V ; Λ), (V ; Λ)
01−−→10 (V ; Λ), (V ; Λ)

10−−→01 (V ; Λ).

Again, the encoding introduces an additional transition

�V ; Λ� 11−−→11 �V ; Λ�.
The solution, then, is to first transform each term t into a bisimilar term t′ in a
form which allows compositional translation into a bisimilar net Nt′ .

The initial transformation is best understood via the circuit diagram repre-
sentation of a term, the soundness of which is ensured by Lemma 9. We say that
a term is in composable form when, in its circuit diagram:

(i) any occurrence of V is connected on the right to either the right boundary,
another occurrence of V, © or ©• ;

(ii) any occurrence of Λ is connected on the left to either the left boundary,
another occurrence of Λ, © or ©• ;

If a term t can can be transformed into the above form then it follows that it can
be written as t1 = tΛ ; t2 ; tV, where in t2 any occurrence of Λ and V is within
a subterm of the form tV ; © ; tΛ (*), or tV ; ©• ; tΛ (**). Terms of the form
(*) and (**) translate into correct nets, by a case straightforward analysis, the
translation can be continued compositionally to obtain a net Nt1 with marking
Xt1 such that (Nt1 , Xt1) ∼ t1.
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� (3)

� (4)

� (5)

� (6)

� (7)

� (8)

� (9)

Fig. 10. Rewriting system for V

Theorem 14. For each term t there exists a net Nt such that t ∼ Nt.

Proof. By the above reasoning, it suffices to show that a term can be trans-
formed into composable form. For this we apply transformations to individual
occurrences of V and Λ until the requirements of composable form are met. The
rules for V are given in Fig. 10. Rules (8) and (9) deal with V’s problematic
compositions. The other rules “push V to the right”. The complete rewriting
system is obtained by including the symmetric versions of (3), (4), (5), (6), (7)
and (8) for Λ. 
�

6 Conclusion and Future Work

We showed that the class of nets with boundaries has the same expressiveness as
a simple process calculus with operations that are fundamentally different from
those of CCS, but closely related to operations of coordination languages. As
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future work it will be interesting to capture the expressive power of other classes
of nets, for instance P/T nets with boundaries, with extensions of the process
calculus presented here.

Acknowledgment. The author thanks Jennifer Lantair and the anonymous ref-
erees for helpful suggestions.
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Abstract. We propose a novel language construct called communicat-
ing transactions, obtained by dropping the isolation requirement from
classical transactions, which can be used to model automatic error re-
covery in distributed systems. We extend CCS with this construct and
give a simple semantics for the extended calculus, called TransCCS. We
develop a behavioural theory which is sound and complete with respect
to the may-testing preorder, and use it to prove interesting laws and
reason compositionally about example systems. Finally, we prove that
communicating transactions do not increase the observational power of
processes; thus CCS equivalences are preserved in the extended language.

1 Introduction

Distributed systems such as web services [7] consist of a number of autonomous
nodes in a network that communicate through message passing. As web ser-
vices are increasingly designed by combining other web services through so-
called mashup technologies [2], the complexity of these systems grows and error
recovery becomes ever more difficult.

The usefulness of the transaction concept for the treatment of errors in such
a setting has been recognized by both academia [19,5] and industry [10,12].
Error recovery in such transactions is based on compensation: services must
programmatically bring the system back to a consistent state when an error has
happened. In a distributed system of many independent components this may
be difficult and error prone.

In many situations, however, automatic error recovery is possible through the
use of classical techniques such as rollback recovery [16]. Processes store enough
local state to be able to roll back after an error, and a rollback in one node
may cause other nodes to rollback so that all nodes have a consistent view of
the system state. The extent of the rollbacks can be limited through coordinated
checkpointing [13], where processes coordinate to create a point beyond which
they do not need to be rolled back.

In this paper we define a novel language construct of communicating trans-
actions, which can be used to model the combination of rollback recovery and
coordinated checkpointing. We give a high-level semantics of communicating
� This research was supported by SFI project SFI 06 IN.1 1898.

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 569–583, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



570 E. de Vries, V. Koutavas, and M. Hennessy

transactions in a calculus called TransCCS, an extension of CCS, and develop a
compositional theory for this calculus based on may-testing equivalence.

Unlike traditional transactions, communicating transactions are not isolated:
they may communicate with other processes or transactions in their environ-
ment. When a transaction communicates with its environment and subsequently
fails, both the transaction and its environment will be rolled back to a consis-
tent state. Transactions can commit to request a checkpoint; when transactions
communicate, all must commit before the checkpoint is actually created (cf. the
standard two-phase commit algorithm used for distributed transactions [27]).

In TransCCS we use �P �k Q� to denote a transaction named k which cur-
rently runs P ; a transaction is replaced by its default P after a commit, and by
its alternative Q after an abort. Restarting transactions are modelled by recur-
sive transactions μX. �P �k X�. A transaction can be aborted by the system at
any point, and can commit using the language primitive co k.

To give an intuition of communicating transactions we consider an informal
semantics for communicating transactions. An example idealized execution of a
system consisting of a merchant M (left) and a bank B (right) is given by:

req .
�
τ.tr .(co k | ack) �k err

� | μX. �tr .τ.co l �l X�
(Place order)

req→ �
τ.tr .(co k | ack) �k err

� | μX. �tr .τ.co l �l X�
(Process order)

τ→ �
tr .(co k | ack) �k err

� | μX. �tr .τ.co l �l X�
(Request transfer)

τ→ �
(co k | ack) �k err

� | � τ.co l �l B�
(System aborts l)

τ→ | μX. �tr .τ.co l �l X� (1)
(Cascading rollback)

�
tr .(co k | ack) �k err

� |
(Second attempt)

τ→ τ→ �
(co k | ack) �k err

� | � co l �l B� (2)
(Commit)

τ→ τ→ ack | � (3)

(Acknowledge Order)
ack→ � | �

In this trace M accepts an order on channel req and enters transaction k. Inside
the transaction, M processes the order and issues a transfer request on tr to
the bank B, which enters a (restarting) transaction l. The communication on tr
should be considered tentative as it involves transactions k and l which are still
subject to system failure. When the system decides to abort the l transaction
in (1), it must also roll back the k transaction to a point before the transfer
request in order to maintain global consistency; the k transaction, however, does
not need to re-process the order. The second attempt to communicate between
the transactions in (2) is also tentative, and only becomes a definitive action in
(3) when both transactions have issued their commits. The acknowledgement of
the order is then sent on ack . If at any point the system decides to abort the
merchant transaction k (perhaps due to multiple failures to perform the transfer
by the bank), an error signal is sent on err .

A direct formalization of this informal semantics would be quite complicated;
for example dependencies between the various transactions would have to be
maintained dynamically, and some notion of coordinated checkpointing or roll-
back would need to be implemented. In this paper we show that we can abstract
away from such details through a simple concept called embedding. Specifically,
we make the following contributions.
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1. We give a simple reductions semantics for TransCCS by augmenting the stan-
dard semantics of CCS with a rule for embedding a process into a transaction,
and two simple rules for committing and aborting transactions (Sect. 2).

2. We give a compositional behavioural theory for TransCCS (Sect(s). 3 to 5),
based on non prefix-closed sets of traces derived by a Labelled Transition
System (LTS), which is sound and complete with respect to may-testing [15].
The theory distinguishes between standard processes such as a.b.� in which
all actions are definitive, and transactions �a.b.co k �k �� where the actions
are tentative until transaction k commits.

3. We use the theory to prove a number of interesting laws about communi-
cating transactions, including a theorem that transactions do not increase
the observational power of processes and therefore CCS equivalences are
preserved in TransCCS (Sect. 5). We also use the theory to reason composi-
tionally about simple distributed systems (Sect. 6).

4. We study an extension to our calculus, TransCCSμab, in which aborts are pro-
grammable (Sect. 7). We show that, provided all transactions are restarting,
the characterization of may-testing in TransCCS is also valid in TransCCSμab;
we prove this through a simple fully abstract translation into TransCCS.

2 TransCCS

The syntax of TransCCS is that of CCS extended with a construct �P �k Q�,
denoting a transaction which is currently running its default P but which will be
replaced by its alternative Q when it is aborted, and a construct co k to commit
transactions, replacing it by its default.1 The syntax and the reduction semantics
are shown in Fig. 1; as usual a ranges over a set of actions Act on which is defined
a bijective function ( · ) : Act → Act , used to formalize communication, and μ
ranges over Actτ , the set Act augmented with a new action τ , used to represent
internal activity. We use the standard abbreviations for CCS terms.

Although communication does not cross transaction boundaries, transactions
can communicate through (non-deterministic) embedding:2

Example 1. Consider the reductions from a system consisting of the transaction
�a.(co | c) �k b� running in parallel with the simple process a. Before communi-
cation can take place, the process must be embedded into the transaction; by
embedding it into both the default and the alternative part of the transaction,
we can restore the process to a consistent state after an abort. The possible
traces are summarized in the graph below; note that a rollback (through R-Ab)
remains possible until the commit has been executed. �

�a.(co k | c) �k b� | a
R-Emb ��

R-Ab

�	

�a.(co k | c) | a �k b | a� R-Comm ��

R-Ab

��

�co k | c �k b | a� R-Co ��

R-Ab

��

c

b | a

1 After the commit, any remaining (possibly prefixed) co k statements behave like �.
2 Communication-driven embedding results in an equivalent but more complicated

semantics.
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Syntax

P, Q ::=
∑

μi.Pi guarded choice | �P �k Q� transaction (k bound in P )
| (P | Q) parallel | co k commit
| νa.P hiding | μX.P recursion

Reduction Rules (→) is the least relation that satisfies

R-Comm

ai = aj∑
i∈I

ai.Pi |
∑
j∈J

aj .Qj → Pi | Qj

R-Emb

k /∈ R

�P �k Q� | R → �P | R �k Q | R�

R-Tau

μi = τ∑
i∈I

μi.Pi → Pi

R-Co

�P | co k �k Q� → P

R-Ab

�P �k Q� → Q

R-Rec

μX.P → P [X := μX.P ]

R-Str

P ≡ P ′ → Q′ ≡ Q

P → Q

and is closed under the contexts C ::= [] | (C | Q) | �C �k Q� | νa.C.
Structural equivalence (≡) contains the usual rules for parallel and hiding.

Fig. 1. Language Definition

Two or more transactions can communicate by taking mutual embedding steps,
which is possible because transactions can be nested arbitrarily in TransCCS.3

Example 2. Consider again the Merchant M and Bank B transactions, together
with a client C = req.P . An example trace of (C | M | B) is given by:

req.P | req.
�
τ.tr .(co k | ack ) �k err

�
| μX. �tr .τ.co l �l X�

R-Comm−−−−→ R-Tau−−−→ P |
�
tr .(co k | ack ) �k err

�
| μX. �tr .τ.co l �l X�

R-Emb−−−→ R-Rec−−−→ P |
�
tr .(co k | ack ) | �tr .τ.co l �l B� �k err | B

�
R-Emb−−−→ P |

��
tr .(co k | ack ) | tr .τ.co l �l tr .(co k | ack ) | B

�
�k . . .

�
R-Comm−−−−→ P |

��
(co k | ack) | τ.co l �l tr .(co k | ack ) | B

�
�k err | B

�
(∗)

R-Co−−→ P |
�
(co k | ack ) �k err | B

�
R-Co−−→ P | ack

An alternative trace starting from (∗) begins with an abort of the bank:

P |
��

(co k | ack ) | τ.co l �l tr .(co k | ack ) | B
�

�k err | B
�

R-Ab−−→ P |
�
tr .(co k | ack ) | B �k err | B

�

3 We can embed B into M or vice-versa, but the two embeddings are equivalent.



Communicating Transactions 573

The application of R-Ab also rolls back the merchant to before the output tr ;
this is in conformance with the informal semantics in the introduction, as is the
fact that the internal computation of the merchant is not rolled back. �

3 May Testing

We now apply the standard definition of may-testing to TransCCS. We will
model a successful outcome of a test by a top-level output on a fresh channel ω.

Definition 1 (Barb). P⇓a iff there exist P1 and P2 such that P →∗ P1 | a.P2.

Definition 2 (May-Testing Preorder). We write P �∼may
Q iff for all pro-

cesses T containing a fresh name ω, (P | T )⇓ω implies (Q | T )⇓ω. We write
P �may Q if P �∼may

Q and Q �∼may
P .

Example 3. Consider the systems P1 = �a.b.co k �k ��, P2 = a.b and the test
T = a.ω. When applied to P2 the test succeeds since we reach the state b | ω, but
when applied to P1 it fails since this leads to the failed state �b.co k | ω �k � | a.ω�
(which does not have an ω-barb). Consequently a.b ��∼may

�a.b.co k �k ��. �

Our definition of barbs as top-level actions ensures that whenever P⇓ω then the
action ω in P is definitive rather than tentative; the structure of processes in
TransCCS ensures that top-level actions do not depend on the commitment of
any transaction.4 This is crucial to our notion of testing; for example the failed
state above has the possibility of performing the action ω but this is tentative,
as it depends on the transaction k committing. If k is aborted then this apparent
success of the test would have to be rolled back.

In Sect. 5 we give a characterization of may-testing equivalence, with which
we can give easy proofs for the following laws.

Proposition 1 (Uncommitted actions). Actions within a transaction are
not observable unless the transaction commits. For all P, Q, and R such that
k /∈ R (in particular, co k /∈ R), we have

�R �k Q� �may Q μX. �R �k X� �may � (1)
�P + R �k Q� �may �P �k Q� μX. �P + R �k X� �may μX. �P �k X� (2)

Proposition 2 (Restarting transactions) μX. �P �k X� �may �P �k ��
Proposition 3 (Transactions versus processes).

�a.co k �k �� �may a μX. �a.co k �k X� �may a (3)
�P | co k �k �� �may P μX. �P | co k �k X� �may P (4)

�P �k Q� �∼may
τ.P + τ.Q μX. �P �k X� �∼may

P (5)

4 The theory of biorthogonality [24] yields the same barbs for our reduction semantics.
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L-Act∑
μi.Pi

μi−→ Pi

L-Par

P k̃(μ)−−−→ P ′

P | Q k̃(μ)−−−→ P ′ | Q

L-Trans

P l̃(μ)−−→ P ′

�P �k Q� k(l̃(μ))−−−−→ �P ′ �k Q�

L-Rec

μX.P τ−→ P [X := μX.P̂]

L-Hide

P μ−→ P ′ a /∈ μ

νa.P μ−→ νa.P ′

L-Comm

P k̃(a)−−−→ P ′ Q k̃(a)−−−→ Q′

P | Q k̃(τ)−−−→ P ′ | Q′

(eliding L-Trans for secondary transactions)

Fig. 2. LTS: Standard Actions

4 Compositional LTS

4.1 Distributed Transactions

The use of the embedding rule R-Emb in the reduction semantics gives an easy
to understand description of the execution of communicating transactions, but
prevents compositional reasoning: parallel processes are no longer separate after
embedding. For example, when trying to understand why the application of a
test T to a system P is successful, embedding makes it difficult to disentangle the
contributions made by T and P . After a number of reduction steps components
of the test are distributed throughout the system, and vice-versa.

The LTS implements embedding differently. It is defined over an extended
language, TransCCS◦, where transactions are distributed as a primary transac-
tion, denoted by �P �k Q�, and zero or more secondary transactions, denoted
by �P �k Q�◦. The system from Ex. 1 has the following trace in the LTS:

�a.(co k | c) �k b� | a
emb k−−−→ �a.(co k | c) �k b� | �a �k a�◦

k(τ)−−−→ �co k | c �k b� | �� �k a�◦ co k−−→ c

The application of R-Emb is mimicked by the action emb k in the LTS, and the
right process becomes a secondary k-transaction. The parallel composition of the
primary transaction and secondary k-transaction should be thought of as mod-
elling the transaction �a.(co k | c) | a �k b | a�. The two processes remain sepa-
rate, however, allowing for compositional reasoning. A step P emb k−−−→ �P �k P�◦
into a secondary k-transaction with no corresponding primary transaction mod-
els the embedding of P into a k transaction which is part of the environment.

The LTS is shown in Fig(s). 2 and 3. Judgements take the form:

– Communication actions P l̃(μ)−−→ P ′, which represent the tentative execution
of μ inside the transactions l̃.

– Broadcast actions P β−→ P ′ where β can take the forms (co k) for committing,
(ab k) for aborting, and (emb k) for embedding.
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B-CoPri

P ≡ P ′ | co k

�P �k Q� co k−−→ P ′

B-CoSec

�P �k Q�◦ co k−−→ P

B-Ab

�P �k Q� ab k−−→ Q

B-Emb

P emb k−−−→ �P �k P̂�◦

B-Trans

P β−→ P ′ β �= co k, ab k

�P �k Q� β−→ �P ′ �k Q�

B-Par

P β−→ P ′ Q β−→ Q′

P | Q β−→ P ′ | Q′

B-Rec

μX.P
β−→ μX.P

B-Act∑
μi.Pi

β−→
∑

μi.Pi

B-Co

co k
β−→ co k

B-Hide

P β−→ P ′

νa.P β−→ νa.P ′

(eliding B-Ab and B-Trans for secondary transactions)

Fig. 3. LTS: Broadcast actions

We will refer to k̃(τ) and broadcast actions as silent actions, and likewise to
traces containing only silent actions as silent traces.

Communication actions are marked with their enclosing transactions (rule
L-Trans). A k(a) action can be matched by a parallel k(a) action (L-Comm),
modelling internal communication within the k-transaction.

When a primary k-transaction is ready to commit (B-CoPri), all secondary
k-transactions must follow (B-CoSec). This is achieved by viewing the action
co k as a broadcast action, which is propagated throughout the system (B-Par);
non-transactions are unaffected by this action. Aborts are handled in a simi-
lar manner, although even primary transactions are subject to random system
aborts (B-Ab). Embedding (B-Emb) is also a broadcast action to allow the dis-
tributed components of a process to be embedded simultaneously. Note that
B-Hide does not require a /∈ β since we cannot restrict transaction names.

The rules in the LTS are subject to an implicit wellformedness condition,
formally defined in [26], which guarantees that the distribution of transactions
in a term indeed models a single transaction. For example, it prohibits terms
such as

��P1 �k Q1� �l . . .�◦ | �R �k R�◦ (illformed)

The k-transaction cannot both be and not be embedded inside the l-transaction,
and we therefore reject this term as illformed. Wellformedness also includes some
technical but natural conditions that deal with freshness.

To support distribution, transactions are not binders in TransCCS◦ but are
renamed when necessary (B-Emb, L-Rec) using an operation P̂. The implemen-
tation of P̂ is unimportant, but it must have the obvious properties (distribution
over the constructors of the language, replacing names by sufficiently fresh ones,
etc.), and defined so that two components of the same transaction (for instance,
a primary and a secondary k-transaction) must be given the same new name.
We use tn (P) to denote the set of names of the transactions in P .
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4.2 Relation to Reduction Semantics

To be able to formalize the relation between the reduction semantics and the
LTS, we need to specify the mapping between terms in TransCCS◦ and TransCCS.
We define an operation (�) which combines two k-transactions in a TransCCS◦

term into a single k-transaction.

Definition 3 (Merging). (�) is the least pre-congruence closed under struc-
tural equivalence that satisfies

�P1 �k Q1� | �P2 �k Q2�◦ � �P1 | P2 �k Q1 | Q2�
�P1 �k Q1�◦ | �P2 �k Q2�◦ � �P1 | P2 �k Q1 | Q2�◦

We use the symbol (�) for the symmetric closure of (�).

If we apply � repeatedly, we eventually end up with a process with a single
term for each transaction. If moreover the original process contained a primary
k-transaction for every k (and not just secondary transactions), then we can
regard the result as a TransCCS term. We overload P � P to describe this
translation from a TransCCS◦ term to a TransCCS term.

We can now state that the LTS and the reduction semantics coincide:

Theorem 1 (Reduction semantics vs LTS). Let P � P .

1. If P → Q then there exist a process Q and silent action μ such that P μ−→ Q
and Q� Q. Moreover, if μ = emb k then k ∈ tn (P).

2. If P t−→ Q, where t is a silent trace, and whenever emb k ∈ t then k ∈ tn (P),
then there exist Q such that P →∗ Q and Q� Q.

5 Characterization of May Testing

TransCCS encodes the complex interactions between communicating transac-
tions. In this section we prove that the behaviour of transactional processes
with respect to may-testing is characterized by a class of simple traces, which
we call clean traces. We also prove that a weaker preorder which only uses
non-transactional, sequential tests coincides with the may-testing preorder, and
therefore CCS equivalences are preserved in TransCCS.

5.1 Clean Traces

Clean traces correspond to traces in the LTS where actions are never rolled back
and are committed at the end of the trace: intuitively, every action in a clean
trace eventually becomes definitive. Unlike LTS traces, however, clean traces do
not include transaction names or broadcast actions. To enforce that all actions
become definitive, the formal definition of clean traces (Fig. 4) is parametrized
by a finite set of names Δ. Actions within a k-transaction can only occur in a
clean trace if k ∈ Δ (C-Act, C-Emb), in which case k must commit at the end
of the trace (C-Co) and cannot be aborted (C-Ab). We use co {k1, . . . , kn} for
the process (co k1 | · · · | co kn).
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P k̃(μ)−−−→ P ′′ t−→Δ P ′ k̃ ⊆ Δ

P μ,t−−→Δ P ′
C-Act

P ab k−−→ P ′′ t−→Δ P ′ k /∈ Δ

P t−→Δ P ′
C-Ab

P emb k−−−→ P ′′ t−→Δ P ′ k ∈ Δ

P t−→Δ P ′
C-Emb

P co Δ−−−→ P ′

P ε−→Δ P ′ C-Co

Fig. 4. Clean Traces

Example 4. Let P = a.b + c. As C-Act does not constrain top-level actions, the
set of clean traces of P is {ε, a, ab, c} irrespective of the choice of Δ. �

Example 5. Let P = �a.b.co k �k c�. If we choose Δ = {k}, we can only derive
the clean trace ab:

�a.b.co k �k c� k(a)−−−→
�b.co k �k c� k(b)−−→

�co k �k c� co k−−→ �

�co k �k c� ε−→{k} �

C-Co

k ∈ {k}
�b.co k �k c� b−→{k} �

C-Act

k ∈ {k}
�a.b.co k �k c� a,b−−→{k} �

C-Act

With this choice of Δ we cannot derive the empty trace because the k trans-
action is unable to commit immediately (nor can it be aborted). However, if we
pick Δ = ∅, we can derive the clean traces ε (using C-Co) and c (using C-Ab).

The singleton trace a is not derivable as a clean trace with any choice of Δ. As
in the derivation above, we need k ∈ Δ to do a k(a) action but the transaction
is unable to commit until the b action. Clean traces are thus not prefix closed:
P cannot do a definite a without also doing a definitive b.

Similarly, the trace abc is not derivable as a clean trace with any choice of Δ,
because we need k ∈ Δ to do the k(a) and k(b) actions, and k /∈ Δ to abort
the k transaction and do the c action. P can either do a definitive a and b, or a
definitive c, but not both. �

Normally the choice of Δ is not important:

Definition 4. We write P t−→CL iff t is a clean trace of P, that is ∃Δ,P ′ such
that P t−→Δ P ′. We write P t=⇒CL to denote that t is a weak clean trace of P.5

Example 6. The set of clean traces of �a.b.co k �k c� (Ex. 5) is {ε, ab, c}. �

Example 7. Let P = νa.
(
�a.b.co k �k �� |

�
a.(τ.co l + b) �l �

�)
. The set of

clean traces of P is {ε, τb}. The trace ττ (internal communication on both a
and b) is not derivable for any Δ because the l transaction cannot commit after
doing a b. The trace τb is not derivable for similar reasons. �

5 Since clean traces are CCS traces, we can use the standard definition of a weak trace.
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5.2 Soundness and Completeness

Our theory of may-testing is based on weak clean trace inclusion.

Definition 5 (Clean Trace Preorder). We write P �∼tr
Q iff P t=⇒CL implies

Q t=⇒CL.

The clean trace preorder is sound and complete with respect to the may-testing
preorder (Def. 2).

Theorem 2 (Soundness). If P �∼tr
Q then P �∼may

Q.

Theorem 3 (Completeness). If P �∼may
Q then P �∼tr

Q.

We now define a weaker testing preorder that uses only non-transactional, se-
quential tests, which coincides with the may-testing and clean trace preorders.

Definition 6 (Non-Transactional Testing Preorder). We write P �̂∼may
Q

iff for all tests T of the form a1.a2. . . . an.ω, (P | T )⇓ω implies (Q | T )⇓ω.

Theorem 4 (Conservativity). P �̂∼may
Q iff P �∼may

Q.

The final theorem entails that equivalent CCS processes are also equivalent
TransCCS processes; i.e. communicating transactions do not increase the dis-
tinguishing power of the language.

5.3 Proof Outline

The proof that may-testing is characterized by weak clean traces (Thm(s). 2
and 3) is a non-trivial result, and we can give but a sketch of the proof here. A
more detailed proof can be found in a companion technical report [26].

For may-testing we are interested in (silent) traces that result in a top-level
barb (ω). The first result states that whenever a process can ring with an arbi-
trary trace, it can ring with a clean trace:

Proposition 4. Let s be a silent trace such that P s−→ R | ω. Then there exists
Δ, silent clean t, and R′ such that P t−→Δ R′ | ω.

Proof (outline). First we inspect s and pick a Δ containing exactly the trans-
actions that commit in s. Then we construct t by induction on s. Actions in s
which happen inside transactions that do not commit (and are not in Δ) cannot
contribute to the ring and are simply skipped. Similarly, if a transaction aborts
we make sure to abort it before any other action inside the transaction. Finally,
we delay all commits to the end of the trace. The final process R′ may differ
from the final process after the original trace R, but it will ring. As a simple
example, the trace

�τ.� �k �� | �τ.� �l �τ.ω | co m �m ��� k(τ),l(τ),ab l,co m,τ−−−−−−−−−−−−−→ �� �k �� | ω

will be converted to the trace ab l, m(τ), co m, used to derive the clean trace

�τ.� �k �� | �τ.� �l �τ.ω | co m �m ��� τ−→{m} �τ.� �k �� | ω �
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We assume the standard definition of “zipping” of two CCS-like traces (t # t′)
that allows interleaving and communication between the actions of the traces
[26]. The next result is crucial; it states that zipping is a meaningful operation
on clean traces; i.e., that the parallel composition of two processes can do any
clean trace in the zip of the clean traces of the individual processes.

Proposition 5 (Zipping). Let P t1−→Δ P ′, Q t2−→Δ Q′ and tn (P)∩tn (Q) ⊆ Δ.
Then for all t ∈ t1 # t2 there exists R such that P | Q t−→Δ R� (P ′ | Q′).

Prop. 5 is an important but non-trivial result, which requires a proof that trans-
action structure does not limit communication. For example, let

�a.co k �k �� a−→{k,l} � and �a.co k �l �� a−→{k,l} �

Then the parallel composition has the trace

�a.co k �k �� | �a.co k �l ��
emb k−−−→ �a.co k �k �� | ��a.co k �l �� �k �a.co k �l ���◦
emb l−−−→

��a.co k �l a.co k�◦ �k �
�

| ��a.co k �l �� �k �a.co k �l ���◦
k(l(τ)),co l,co k−−−−−−−−−−→ � | �

Hence we can derive the clean trace �a.co k �k �� | �a.co k �l �� τ−→{k,l} �.

Proposition 6 (Completeness w.r.t. (�̂∼may
)). If P �̂∼may

Q then P �∼tr
Q.

Proof. Standard, using Prop. 5 and an easy unzipping lemma.

Given Prop(s). 4 and 5 and Thm. 1, soundness (Thm. 2) can be proven in a
standard way. Completeness (Thm. 3) and conservativity (Thm. 4) follow from
Prop. 6 and soundness.

6 Examples

The soundness theorem means that we can prove may-testing equivalences based
on weak clean trace inclusion. In this section we give a few examples.

Proposition 3(5). �P �k Q� �∼may
τ.P + τ.Q.

Proof (outline). Let �P �k Q� t=⇒CL, where t = μ1, . . . , μn. That is, ∃R, Δ such
that �P �k Q� t−→Δ R. Either k ∈ Δ or k /∈ Δ. If k ∈ Δ then t corresponds to
a trace k(l̃1(μ1)), . . ., k(l̃2(μ2)), . . ., co k of actions inside k interspersed with
broadcast actions and ending on a commit of k. This means that P will have a
trace l̃1(μ1), . . ., l̃2(μ2), . . . which corresponds to the same clean trace t. On the
other hand, if k /∈ Δ then t is the empty trace, or it must correspond to a trace
that starts with an abort of k, followed by a trace s of Q. Since the abort is not
part of the clean trace, s corresponds to the same clean trace t. Hence τ.P + τ.Q
includes the weak clean traces of �P �k Q�. �
Example 8. �a.b.co k �k c� �∼may

a.b + c but not vice versa.
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Proof. The inclusion follows from 3(5). We can also prove it directly, because as
we saw in Sect. 5.1, the set of clean traces of the former process is {ε, a, ab, c}
while the set of clean traces of the latter is {ε, ab, c}. �
Theorem 5 (Compositional reasoning). If P �∼tr

Q then P | R �∼tr
Q | R.

Proof. Since may-testing supports compositional reasoning, this theorem follows
directly from soundness and completeness. �
Example 9. Consider the following alternative implementation of the bank and
merchant example from the introduction, in which the merchant M ′ tries to
complete the order twice before reporting an error back to the client.

req.
�
τ.tr .(co k | ack ) �k

�
tr .(co k | ack ) �k err

��
| μX. �tr .τ.co l �l X�

By compositional reasoning, we only need to prove the two implementations of
the merchant equivalent (M �may M ′) to prove the two systems equivalent.

Intuitively, an observer cannot distinguish between M and M ′ because when
either merchant aborts, the observer is also rolled back: aborts are not detectable.
Moreover, the observable behaviour of M ′, before or after the first abort, equals
the behaviour of M .

Formally, the set of weak clean traces of both implementations equals the set
{ε, req, req tr, req tr ack , req err}. �

7 Programmable Aborts

In TransCCS aborts are entirely non-deterministic. We now turn our attention
to programmable aborts; i.e. aborts that are triggered by the process through a
new language primitive ab k. The semantics of this new construct is given by
rule R-Prog-Ab, below, replacing rule R-Ab:

R-Prog-Ab

�ab k | P �k Q� → Q

This new language, called TransCCSab, does not however preserve consistency af-
ter an abort. Programmable aborts introduce an undesirable causal dependency
between the alternative behaviour of a transaction which follows the abort, and
the actions that led to that abort. For example, after the reduction

a | �a.ab k �k b.ω� R-Emb−−−→ R-Comm−−−−→ R-Prog-Ab−−−−−→ a | ω

a communication on channel b is available because a communication on channel
a led to an abort; but this communication on a is undone. Hence, from the point
of view of the left process a the communication has not yet happened, but from
the point of view of the transaction it has and led to an abort.

This is more than just a philosophical objection: using transactions such as
the above as tests we can show that the basic equivalences in Prop. 1 are not
preserved in TransCCSab. For example, take the two transactions

P = �b.co l �l �� Q = �b.co l + a �l ��
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and the same test T = �a.ab k �k b.ω�. Then P fails the test T but Q does not,
and hence P ��may Q, even though the a action is never committed:

�b.co l + a �l �� | �a.ab k �k b.ω�
R-Emb−−−→ �(b.co l + a) | �a.ab k �k b.ω� �l T �
R-Emb−−−→ ��(b.co l + a) | a.ab k �k (b.co l + a) | b.ω� �l T �

R-Comm−−−−→ ��ab k �k (b.co l + a) | b.ω� �l T �
R-Prog-Ab−−−−−→ �(b.co l + a) | b.ω �l T � R-Comm−−−−→ �co l | ω �l T � R-Co−−→ ω

We can recover the preservation of consistency, however, by restricting all transac-
tions to be restarting, i.e. of the form μX. �P �k X�; we call this language
TransCCSμab. Unfortunately, it is difficult to reason directly about TransCCSμab

processes, since the language is not closed under reduction: after a restarting trans-
action unfolds and its default process reduces, we are left with a TransCCSab trans-
action whose default and alternative processes are different. However, we can give
a theory for TransCCSμab through a fully-abstract translation to TransCCS, and
reason about the behaviour of TransCCSμab processes via the translation.

We consider the translation {| · |} : TransCCSμab → TransCCS, which maps
ab k to � and is the identity on all other constructs. We use the annotation
“μab” to refer to the semantics of TransCCSμab. The important property of the
translation is that it preserves barbs. From that and the results of Sect. 5 we
derive the theorems of soundness and full abstraction.

Proposition 7. P⇓μab
ω iff {|P |}⇓ω.

Theorem 6 (Full Abstraction of {| · |}). P �∼
μab

may
Q iff {|P |} �∼may

{|Q|}.

8 Related Work

To the extent of our knowledge there is little related work on modelling auto-
matic error recovery of communicating systems. Most work has either focused
on models for isolated transactions [4,17], including software transactional mem-
ory [18,1], or compensation-based transactions [5,9,8,20,11] where error recovery
must be programmed explicitly.

TransCCS is motivated by the long literature on implementing distributed
systems with automatic error recovery (e.g. [16,13,22,23]) and their verification in
process calculi (such as [3,6,21]). This work, however, is only indirectly related to
ours as we are not proposing a mechanism for implementing automatic rollback
recovery but rather a way to give high-level specifications of, and reason about,
distributed systems that rely on automatic error recovery.

The only other language that we are aware of in which non-isolated trans-
actions can be modelled is Reversible CCS [14]. RCCS extends CCS with the
notion of reversible actions (written a, a, . . .) and irreversible actions (written
a, a, . . .) past which processes cannot be rolled back. This can be used to model



582 E. de Vries, V. Koutavas, and M. Hennessy

simple (non-nested) transactions; for example, a transaction superficially simi-
lar to μX. �a + b.co k �k X� can be written as (a + b) in RCCS. The dynamic
behaviour of these two terms is significantly different however: the RCCS trans-
action is not in charge of when it commits. An irreversible action a by an observer
can interact with the reversible action a of the transaction, forcing the transac-
tion to commit. Thus the test a.ω succeeds when paired with the above trans-
action in RCCS, but must fail in TransCCS. The same observer can distinguish
� from the transaction �a �k �� (in our syntax), which are indistinguishable in
TransCCS. Hence a testing theory of RCCS would have to take into account the
non-committing traces of transactions, in contrast to our theory for TransCCS in
which the behaviour of a transaction only depends on its committing behaviour.

9 Conclusions

We presented a novel language construct called communicating transactions,
which makes it possible to describe the behaviour of distributed systems with
automatic error recovery at a high level of abstraction. We believe that support
for communicating transactions may be beneficial in the design and implemen-
tation of complex distributed systems such as web services.

We introduced TransCCS, an extension of CCS with this construct. To the
extent of our knowledge TransCCS is the first calculus which encapsulates both
rollback recovery and coordinated checkpointing. We gave simple semantics to
TransCCS and developed a basic behavioural theory, based on non prefix-closed
sets of traces, that characterizes may-testing. We used the theory to prove a
number of interesting laws and reason compositionally about example systems.
We also studied TransCCSμab, a variant of the language with programmable
aborts, and gave a fully-abstract translation to TransCCS.

We plan to study the must-testing or fair-testing [25] theory of TransCCS
in order to be able to specify liveness properties in the presence of aborts; we
expect that the translation from TransCCSμab into TransCCS from Sect. 7 will
not be fully abstract with respect to these testing preorders. We also plan to
extend our work to the π-calculus and other behavioural equivalences such as
bisimulation. Finally, we intent to investigate the usefulness of the construct of
communicating transactions in a more realistic programming language.
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Abstract. We introduce the concept of consistent correlations for pa-
rameterised Boolean equation systems (PBESs), motivated largely by the
laborious proofs of correctness required for most manipulations in this
setting. Consistent correlations focus on relating the equations that occur
in PBESs, rather than their solutions. For a fragment of PBESs, consis-
tent correlations are shown to coincide with a recently introduced form
of bisimulation. Finally, we show that bisimilarity on processes induces
consistent correlations on PBESs encoding model checking problems. We
apply our theory to two example manipulations from the literature.

1 Introduction

First introduced in [12] as a first-order extension of Boolean equation systems [11],
parameterised Boolean equation systems (henceforth referred to as equation sys-
tems), provide a uniform view on a variety of verification problems for reactive
systems. Problems as diverse as equivalence checking problems for a variety of
process equivalences [1], model checking problems for symbolic transition sys-
tems [8] and real-time systems [17], and static analysis of code [3] have been
encoded in this framework. In all cases, the solution to the encoded problem is re-
flected in the solution to the equation system. Advanced toolsets, e.g., CADP [4]
and mCRL2 [7], have been built around equation system technology.

Various techniques for solving equation systems have been developed, such as
the combination of Gauß elimination and symbolic approximation [8], instantia-
tion [2,13], and solving by means of pattern matching [9]. The undecidability of
solving equation systems in general, however, implies that there is no universally
applicable method to solve all encoded verification problems.

The undecidability of the problem has prompted research to shift to finding
manipulations that simplify the task of solving equation systems. In fact, one
of the merits of the framework of equation systems is that it facilitates the de-
velopment of such techniques. Noteworthy manipulations are the static analysis
techniques discussed in [14], which add to the efficacy of instantiation; the use
of global invariants [15] to ensure the termination of symbolic approximation;
and the use of minimisation techniques [10], accelerating the solving of Boolean

P. Gastin and F. Laroussinie (Eds.): CONCUR 2010, LNCS 6269, pp. 584–598, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Consistent Correlations for PBESs 585

equation systems. Unfortunately, devising new manipulations has proven to be
a laborious process, undermining steady progress in this area.

The bottleneck in developing a new manipulation is more often than not its
correctness proof. As already noted in [9], such proofs tend to require a good deal
of ingenuity, meticulous bookkeeping, inductions on the length of equation sys-
tems and transfinite approximations of the involved fixed point expressions. We
propose a new equivalence on equation systems, called a consistent correlation,
which enables one to lift the reasoning in correctness proofs for manipulations to
a more natural level. Apart from facilitating such correctness proofs –providing
a likely boost to the development of novel manipulations– consistent correlations
contribute to our understanding of the notion of solution to equation systems.

Our contributions are as follows. We first define the notion of a consistent
correlation and explain its rationale. Next, we present our main result, show-
ing that each consistent correlation refines the solution to an equation system,
relating only predicate variable instances that receive the same truth value in
the solution. We continue by proving that consistent correlations coincide with
idempotence-identifying bisimulations [10], a variation on strong bisimulation on
dependency graphs underlying closed Boolean equation systems in standard re-
cursive form. Note that this fragment of equation systems is interesting in its
own right, as it corresponds one-to-one with Parity Games [5], a game-based
formalisms often used for studying verification problems. The relation between
idempotence-identifying bisimilarity and consistent correlations also serves as
the basis for our decidability results for consistent correlations on open Boolean
equation systems in standard form. Finally, we show that strong bisimilarity on
processes induces consistent correlations in equation systems that encode model
checking problems, following the encoding of [8]. This is a good indication that
the concept of a consistent correspondence is not overly discriminating. We apply
our theory to two manipulations from the literature, illustrating that a natural
meta-argument can be used to replace the original extensive correctness proofs.

Outline. Section 2 gives a brief introduction into parameterised Boolean equa-
tion systems. Consistent correlations are introduced in Section 3. Section 4
relates consistent correlations to idempotence-identifying bisimulations, and in
Section 5, we establish the link between bisimilarity on processes and consistent
correlations in equation systems. In Section 6, we illustrate the theory through
two manipulations from the literature. We finish with an outlook on future work.

2 Preliminaries

We give a brief overview of the relevant notations and concepts for understanding
the results described in this paper; for a detailed exposition, we refer to [9].

2.1 Data

We work in the setting of abstract data types, i.e., we assume that there are
nonempty data sorts and operations on these sorts. We typically use letters
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D1, D2, . . . to denote data sorts. Furthermore, we assume to have a set D of
sorted data variables, with typical elements d, d1, . . ., etc. With every sort D we
associate a semantic set D such that every term of sort D and all the operations
on the sort D can be mapped to the elements and operations of D they represent.

We assume the existence of an interpretation function [[ ]] that maps every
closed data term t of sort D to the data element [[t]] of D it represents. For open
terms we use an environment ε that maps each variable from D to a data element
of the associated type. The interpretation [[t]] ε of an open term t is given by ε(t),
where ε is extended to terms in the standard way.

For convenience, we assume the existence of a sort B = {�,⊥} representing
the Booleans B, and a sort N = {0, 1, 2, . . .} representing the natural numbers
N. For these sorts, we assume the usual operators are available. We do not write
constants and operators in the syntactic domain any different from their semantic
counterparts. For example, we have B = {�,⊥} and the syntactic operator
∧ :B ×B → B corresponds to the usual, semantic conjunction ∧ :B×B → B.

2.2 Parameterised Boolean Equation Systems

Equation systems are finite sequences of fixed point equations ranging over pred-
icate formulae. The latter are formalised below.

Definition 1. The set of predicate formulae is defined by the grammar below:

φ, ψ ::= b | X(e) | φ ∧ ψ | φ ∨ ψ | ∀d:D. φ | ∃d:D. φ

here, b is a data term of sort B, X is a predicate variable of sort DX → B taken
from some sufficiently large set P of predicate variables, d is a data variable of
sort D and e is some data term of sort DX .

Predicate variables of sort B are referred to as proposition variables. Proposi-
tion formulae are predicate formulae containing only conjunctions, disjunctions,
Boolean constants and proposition variables.

The signature of a predicate variable X of sort DX → B, denoted sig(X), is
the product {X}× DX . We lift the notion of a signature of a predicate variable
to sets of variables P ⊆ P in the natural way:

sig(P ) =̂
⋃

X∈P

sig(X)

By convention, we write vX ∈ sig(X) instead of (X, v) ∈ sig(X), emphasising
the importance of data values over predicate variable names; for proposition
variables X , we write X ∈ sig(X).

Definition 2. The interpretation of φ in the context of environments θ for pred-
icate variables and ε for data variables is denoted [[φ]] θε, where:

[[b]] θε =̂ ε(b)
[[φ ∧ ψ]] θε =̂ [[φ]] θε ∧ [[ψ]] θε
[[∀d:D. φ]] θε =̂ ∀v ∈ D. [[φ]] θε[v/d]

[[X(e)]] θε =̂ θ(X)(ε(e))
[[φ ∨ ψ]] θε =̂ [[φ]] θε ∨ [[ψ]] θε
[[∃d:D. φ]] θε =̂ ∃v ∈ D. [[φ]] θε[v/d]
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Note that we write ε[v/d] to represent the environment ε′ which is defined as
ε′(d′) =̂ ε(d′) for d′ �= d and ε′(d) =̂ v.

Observe that our formulae are given directly in positive form, i.e., negation only
occurs at the level of Boolean expressions. This is to ensure that the interpreta-
tions are monotone in the valuation of the predicate variables.

Definition 3. Equation systems are defined by the following grammar:

E ::= ε |
(
νX(dX :DX) = φX

)
E |
(
μX(dX :DX) = φX

)
E

The constant ε denotes the empty equation system; μ and ν are the least fixed
point and greatest fixed point signs, respectively; X is a sorted predicate variable
of sort DX → B, dX is a formal parameter, and φX is a predicate formula.

Henceforth, we write φX for the predicate formula occurring at the right-hand
side in the equation for X , dX for the formal data parameters occurring at the
left-hand side of X ’s equation and DX for the sort of these parameters. An
equation system E is said to be a Boolean equation system if all right-hand sides
of the equations in E are proposition formulae. Boolean equation systems form an
interesting, decidable fragment that have been studied extensively, see e.g. [11];
they are closely related to Parity Games [5].

Let occ(φ) denote the set of predicate variables that occur in a predicate
formula φ. Extended to equation systems, occ(E) is the union of all variables
occurring at the right-hand side of equations in E . The set of binding predicate
variables of E , denoted bnd(E), is the set of predicate variables occurring at the
left-hand side of E ’s equations. An equation system E is said to be well-formed
iff every binding predicate variable occurs at the left-hand side of precisely one
equation of E . We only consider well-formed equation systems.

A block is a non-empty equation system B consisting entirely of like-signed
fixed point equations. Given an equation system E , a block B occurring in E
is maximal if its neighbouring equations in E are of a different sign than the
equations in block B. We denote the i-th maximal block of E by E�i.
Definition 4. Let E be an equation system. We define a total ordering �E⊆
bnd(E) × bnd(E) by setting X �E X ′ iff i ≤ j for X ∈ bnd(E�i), X ′ ∈ bnd(E�j).
Intuitively, X �E X ′ orders the predicate variables according to the maximal
block in which they occur, abstracting from the internal ordering in blocks.

Let λdX .φX abbreviate the syntactic functional λdX :DX .φX , i.e., we drop the
sort information. The interpretation of λdX .φX , denoted [[λdX .φX ]] θε, is given
by the following functional:

(λv∈DX . [[φX ]] θε[v/dX ])

Let BDX denote the set of functions f :DX → B. We define an ordering � on func-
tions f, g ∈ BDX as follows: f � g iff for all v ∈ DX , f(v) implies g(v). Clearly,
the set (BDX ,�) is a complete lattice. The predicate transformer associated to
the functional [[λdX .φX ]] θε is the monotone operator given by:

(λf∈BDX . [[λdX .φX ]] θ[f/X ]ε)
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Let σ denote an arbitrary fixed point sign. The extremal fixed point of the above
predicate transformer is denoted σf∈BDX . [[λdX .φX ]] θ[f/X ]ε.

Definition 5. The solution to an equation system, given a context of predicate
and data environments θ, ε, is defined as follows:

[[ε]] θε =̂ θ

[[(σX(dX :DX) = φX) E ]] θε =̂ [[E ]]
(
θ
[
σf∈BDX . [[λdX .φX ]] ( [[E ]] θ[f/X ]ε)ε/X

])
ε

Informally, the solution to an equation system can be characterised as follows:

– The solution to an equation system is an assignment to the binding predicate
variables that indeed verifies each equation semantically, i.e.:

[[E ]] θε(X) = [[λdX .φX ]] ( [[E ]] θε)ε

In particular, [[E ]] θε ∈ Θful, where Θful is the set of all fulfilments :

Θful =̂ {θ | ∃ε : ∀X ∈ bnd(E) : θ(X) = [[λdX .φX ]] θε}

– The fixed point signs of equations that are left-most take priority over
the fixed point signs of the equations that follow; this ensures unicity (see
e.g. [11]). For instance, (μX = Y )(νY = X) has solution X = ⊥, Y = ⊥.

Equation systems E that satisfy occ(E) ⊆ bnd(E) and in which none of the func-
tionals λdX .φX contain free data variables, are said to be closed. For closed E , we
have for all X ∈ bnd(E) and all θ, θ′, ε, [[E ]] θε(X) = [[E ]] θ′ε′(X); by convention,
we therefore write [[E ]] rather than [[E ]] θε for such equation systems. Note that
most practical verification problems result in closed equation systems.

3 Consistent Correlations

One of the merits of using equation systems for verification is the potential to
manipulate the equations symbolically. The correctness of a manipulation often
requires showing that the solution to an equation system after some manipula-
tion m relates to the solution prior to the manipulation, i.e.:

[[E ]] θε(X)(v) = [[m(E)]] θε(m(X))(m(v))

Most correctness proofs, see e.g. [9,2,15,14], resort to the inductive definition
of the solution to an equation system at some point (indeed, the very proof
required for the main theorem in this section is a point in case). This is not only
very laborious, it also obfuscates the structure of the proof. In this section, we
introduce consistent correlations, allowing one to raise the level of abstraction
in such proofs.

Avoiding the inevitable notational overhead, we first introduce consistent cor-
relations on single equation systems. We subsequently proceed to show how they
can be used to relate different equation systems.
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Definition 6. Let R ⊆ sig(P)×sig(P) be an arbitrary relation. An environment
θ is an R-correlation iff vXRv′X′ implies θ(X)(v) = θ(X ′)(v′).

Let ΘR, for given relation R, denote the set of R-correlating environments. Prov-
ing that two (possibly different) equations in a single system E reflect one an-
other’s solution now can be phrased as the problem of proving whether for a
desired relation R, the solution [[E ]] θε is an R-correlation: for X, X ′ ∈ bnd(E),
[[E ]] θε(X)(v) = [[E ]] θε(X ′)(v′) follows from the existence of some relation R such
that vXRv′X′ and [[E ]] θε ∈ ΘR. We next postulate restrictions on the relation R
that guarantee that the latter holds.

Definition 7. Let E be an equation system. A relation R ⊆ sig(P) × sig(P) is
a consistent correlation on E, if for X, X ′ ∈ bnd(E), vXRv′X′ implies:

1. for all i, X ∈ bnd(E�i) iff X ′ ∈ bnd(E�i);
2. for all θ ∈ ΘR, ε, we have [[φX ]] θε[v/dX ] = [[φX′ ]] θε[v′/dX′ ]

For X, X ′ ∈ bnd(E), we say vX and v′X′ consistently correlate, notation vX � v′X′

iff vXRv′X′ for some consistent correlation R ⊆ sig(bnd(E)) × sig(bnd(E)).

Intuitively, an R-correlating environment θ asserts that R-related pairs have
the same potential to be true or false. A consistent correlation R, additionally
asserts that this allows one to prove that in a given equation systems, also the
right-hand sides of related pairs have the same potential to be true or false; i.e.,
also the right-hand sides of correlating pairs correlate.

Observe that the second requirement in the characterisation of a consistent
correlation does not imply that a consistent correlation R on E induces only
R-correlating environments θ that are fulfilments of the equations in E : we do
not have ΘR ⊆ Θful. Still, as we shall prove in this section, the solution to an
equation system is in the intersection of a consistent correlation and the set of
all fulfilments, as visualised by Figure 1.

ΘRΘful

Fig. 1. The set of R-correlating environments in relation to the environments verifying
each equation, with the solution of an equation system in the intersection of all

The relation � is an equivalence relation on the signature of the binding
predicate variables in an equation system. It is easy to check that arbitrary
unions of consistent correlations on E are again consistent correlations on E . The
relation � can be phrased as the greatest fixed point of the following functional:

F(R) =̂
{
(vX , v′X′) ∈ sig(bnd(E)) × sig(bnd(E)) |

∃i : X, X ′ ∈ bnd(E�i)
and ∀θ ∈ ΘR, ε : [[φX ]] θε[v/dX ] = [[φX′ ]] θε[v′/dX′ ]

}
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We next show that, indeed, any consistent correlation R on E guarantees that the
solution to E is also an R-correlating environment. This confirms that R-related
pairs in an equation system have the same solution.

Theorem 1. Let E be an equation system. Let R ⊆ sig(P)× sig(P) be a consis-
tent correlation on E. Then for all θ ∈ ΘR and all ε, we have [[E ]] θε ∈ ΘR.

Proof. The proof proceeds by an induction on the number of maximal blocks in
E . The inductive step requires a transfinite approximation of the solution to the
first maximal block in E . 
�

The restriction of environments θ to those in ΘR, in Theorem 1, is not a limi-
tation in practice: for most equation systems, we are interested in relating only
their binding variables, i.e., we are interested in establishing whether vX � v′X′ .
We therefore have the following corollary.

Corollary 1. Let E be an equation system. Then for all θ, ε, [[E ]] θε ∈ Θ	 .

As a result of this corollary, we have [[E ]] ∈ Θ	 for closed equation systems E .
The notion of a consistent correlation, and the preceding theorem can easily

be lifted to a relation between equation systems that are in some sense compati-
ble: free predicate variables in one system should not occur bound in the other
system, and the set of binding variables of both systems should be disjoint.

Definition 8. Let E , E ′ be equation systems. Then E and E ′ are compatible iff:

bnd(E) ∩ bnd(E ′) = bnd(E) ∩ occ(E ′) = bnd(E ′) ∩ occ(E) = ∅

The compatibility requirement is rather benign, as in most practical cases, it
can be achieved via a suitable renaming.

Definition 9. Let E , E ′ be compatible equation systems. A relation R ⊆ sig(P)×
sig(P) is a consistent correlation between E and E ′ if R is a consistent correlation
on some equation system F consisting of the equations of E and E ′ satisfying:

Z ∈ F�i implies Z ∈ E�i or Z ∈ E ′�i

For X, X ′ ∈ bnd(EE ′), vX and v′X′ consistently correlate, denoted vX � v′X′

iff vXRv′X′ for some consistent correlation R ⊆ sig(bnd(EE ′)) × sig(bnd(EE ′))
between E and E ′.

The restriction on F effectively requires that E and E ′ have the same fixed-point
blocks. One can weaken this requirement to �E ∪ �E′⊆�F , which ensures that
the block-ordering of E and E ′ is reflected in that of F . Theorem 1 still allows
one to conclude that pairs that can be related through a consistent correlation
between E and E ′ have the same solution. Unfortunately, the relation � , as
defined above, would no longer be an equivalence between equation systems:

Example 1. Consider the equation systems E ≡ (νX = X)(μY = Y )(νZ = Z)
and E ′ ≡ (νW = W ). Following Def. 9, we find X �W , as witnessed by, e.g.,
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F ≡ (νX = X)(νW = W )(μY = Y )(νZ = Z). Requiring �E ∪ �E′⊆�F would
enable us to derive Z �W , as witnessed by F ≡ (νX = X)(μY = Y )(νZ =
Z)(νW = W ). But, clearly, we can never derive X �Z. Note that, using Theo-
rem 1, one can still prove that the solution to X , Z and W are the same. 
�

The following theorem lifts Theorem 1 to consistent correlations between equa-
tion systems.

Theorem 2. Let E , E ′ be compatible equation systems. Then for all X ∈ bnd(E),
X ′ ∈ bnd(E ′) and all θ ∈ Θ	 , we have

vX � v′X′ implies [[E ]] θε(X)(v) = [[E ′]] θε(X ′)(v′)

Example 2. Consider the closed equations νX1(n:N) = even(n)∧X1(n+2) and
νX2(b:B) = b ∧ X2(b). We find that vX1 � even(v)X2

for all v ∈ N. Following
Theorem 2, this implies that for all v ∈ N:

[[νX1(n:N) = even(n) ∧ X1(n + 2)]] (X1)(v)
= [[νX2(b:B) = b ∧ X2(b)]] (X2)(even(v))

It should be noted that the solution to X2 can easily be computed via a trans-
formation to a Boolean equation system (see also Section 6). This immediately
leads to the solution X2(c) = c, for c ∈ B. Using the above relation, we thereby
instantly provide a solution to X1 as well. 
�

4 Consistent Correlations on Boolean Equation Systems

We next establish a correspondence between consistent correlations and a vari-
ation of bisimulation for dependency graphs that underly Boolean equation sys-
tems, see [10]. Such dependency graphs are basically Parity Games [5] stripped
from their concept of winning. We first fix some additional terminology.

Definition 10. Let E be a Boolean equation system.

– E is in standard form if none of its proposition formulae combine ∧ and ∨;
– E is in recursive form if none of its equations contain � and ⊥.

If a Boolean equation system is both in standard form and in recursive form, we
say it is in standard recursive form. Each Boolean equation system can be con-
verted to a Boolean equation system in standard recursive form, reflecting the
solution to the original Boolean equation system; the transformation is straight-
forward, and can be found in e.g. [11].

Definition 11. Let E be a closed Boolean equation system in standard recursive
form. Set δ = 0 if E�1 is a greatest fixed point block, and δ = 1 otherwise. The
dependency graph of E is a tuple 〈V,→, r, l〉, where:

– V = {vX | X ∈ bnd(E)} is a set of vertices;
– →⊆ V × V is the set of edges, defined as {(vX , vX′) | X ′ ∈ occ(φX)};
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– r:V → N is a ranking, defined as r(vX) = i+δ for i satisfying X ∈ bnd(E�i);
– l:V → B is defined as l(vX) = � iff φX is conjunctive;

Quotienting a dependency graph using some suitable equivalence relation, and
subsequently converting the resulting dependency graph to a Boolean equation
system can result in a significant speed-up for solving an equation system. A
recently introduced equivalence relation, tailored to this purpose is idempotence-
identifying bisimulation, see [10].

Definition 12. Let G = 〈V,→, r, l〉 be a dependency graph. A symmetric rela-
tion R ⊆ V × V is an idempotence-identifying bisimulation if vRw implies:

1. r(v) = r(w);
2. l(v) = l(w) or ∀v′, w′∈V : v → v′ ∧ w → w′ =⇒ v′Rw′;
3. ∀v′∈V : v → v′ =⇒ ∃w′∈V : w → w′ ∧ v′Rw′.

Two vertices v, w are said to be idempotence-identifying bisimilar, denoted v
ii↔

w, iff there is an idempotence-identifying bisimulation R, such that vRw.

The theorem below confirms that a consistent correlation reduces to idempotence-
identifying bisimilarity for closed Boolean equation systems in standard recursive
form, and vice versa. This yields a graph based view on consistent correlations.

Theorem 3. Let E be a closed Boolean equation system in standard recursive
form. Let G = 〈V,→, r, l〉 be E’s dependency graph. For all X, X ′ ∈ bnd(E), we
have X �X ′ iff vX

ii↔ vX′ .

Proof. Follows from a straightforward application of the definitions. 
�
As a consequence of the above theorem, we find the below decidability result for
consistent correlations. This follows from the decidability of ii↔ , see [10].

Proposition 1. Deciding X �X ′ requires O(|E| log |bnd(E)|) for Boolean equa-
tion systems in standard form.

Observe that the complexity of the extension to open Boolean equation systems,
not in recursive form, does not come with a penalty. The complexity of deciding
� on Boolean equation systems that are not in standard form is still open, but
the problem is likely to be NP-complete.

5 Model Checking

We next show that bisimilarity on processes induces consistent correlations on
the equation systems that encode model checking problems. This implies that
the concept of a consistent correlation does not discriminate beyond bisimilarity
on processes, which would otherwise impair its applicability.

We use linear process equations (LPEs), see e.g. [6], to symbolically repre-
sent (possibly infinite) labelled transition systems. An LPE typically models the
state of a system by means of a finite vector of sorted formal parameters; the
behaviour is described by a finite set of condition-action-effect rules. Interleaving
parallelism, (infinite) non-determinism and other means of composing systems
can be mapped losslessly onto LPEs, often fully automatically.
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Definition 13. A linear process equation is an equation of the form

L(dL:DL) =
∑

{
∑
ea:Ea

ca(dL, ea) → a(fa(dL, ea)) · L(ga(dL, ea)) | a ∈ Act}

here, we have fa:DL×Ea → Da, ga:DL×Ea → DL and ca:DL×Ea → B for each
action label a:Da taken from a finite set Act of action labels. The interpretation
of L, given a data environment ρ, is a labelled transition system 〈DL, A,→〉:

– A = {a(va) | a ∈ Act, va ∈ Da} is the set of actions;

– →⊆ DL×A×DL is the set of transitions, where v
a(va)−−−→ w iff for some u ∈ Ea:

• [[fa(dL, ea)]] ρ[v/dL, u/ea] = va and [[ga(dL, ea)]] ρ[v/dL, u/ea] = w,
• [[ca(dL, ea)]] ρ[v/dL, u/ea] evaluates to true.

Throughout this section, whenever we refer to an LPE L we implicitly mean the
LPE as given by Def. 13, with dL of being the state parameter of sort DL of
process L. An LPE L compactly expresses that in a state, represented by pa-
rameter dL, whenever condition ca(dL, ea) holds (for some non-deterministically
chosen value for variable ea), then action a carrying data parameter fa(dL, ea)
can be executed, effectively changing the global state to ga(dL, ea).

Definition 14. Let 〈DL, A,→〉 be the transition system underlying LPE L. A
symmetric relation R ⊆ DL × DL is a bisimulation relation, if vRw implies:

∀v′ ∈ DL, a(va) ∈ A : v
a(va)−−−→ v′ =⇒ ∃w′ ∈ DL : w

a(va)−−−→ w′ ∧ v′Rw′

We say states v, w are bisimilar, denoted v ↔ w iff there is some bisimulation
relation R such that vRw.

Model checking is concerned with checking whether a modal property holds for
a given system or not. The first-order modal μ-calculus (μ-calculus for short)
of [6] is a language for expressing such properties. It permits the use of data to
capture the essential data-influences in a system’s behaviour.

Definition 15. The grammar of the μ-calculus is given by the following rules:

φ, ψ ::= b | X̄(e) | φ ∧ ψ | φ ∨ ψ | ∀d:D. φ | ∃d:D. φ | 〈α〉φ | [α]φ |
(νX̄(dX̄ :DX̄ := e). φ) | (μX̄(dX̄ :DX̄ := e). φ)

α, β ::= b | a(e′) | ¬α | α ∧ β | ∀d:D. α

here, b is a Boolean expression, X̄ is a recursion variable of sort DX̄ → 2DL

taken from some sufficiently large set P̄ of recursion variables, dX̄ and e are a
data variable and data expression of sort DX̄, and e′ is of sort Da.

μ-Calculus formulae are interpreted in the context of a labelled transition system
induced by LPE L. In particular, the action formulae α describe a (possibly
infinite) set of actions. For details, we refer to [6]. The global model checking
problem L |= Φ and the local model checking problem L(e) |= Φ, where e is
an initial value for L and Φ is a μ-calculus formula, can be translated to the
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Table 1. Translation scheme for encoding the problem L |= σX̄(dX̄ :DX̄ := e). ψ, for
LPE L and normalised formula σX̄(dX̄ :DX̄ := e). ψ, into an equation system. Recall
that parameter dL of sort DL originates from L.

EL(b) =̂ ε
EL(X̄(e)) =̂ ε
EL(φ ⊕ ψ) =̂ EL(φ) EL(ψ) for ⊕ ∈ {∧,∨}
EL(Q d:D.φ) =̂ EL(φ) for Q ∈ {∀,∃}
EL([α]φ) =̂ EL(φ)
EL(〈α〉φ) =̂ EL(φ)
EL(σX̄(dX̄ :DX̄ := e). ψ) =̂ (σX(dL:DL, dX̄ :DX̄) = RHSL(ψ)) EL(ψ)

RHSL(b) =̂ b
RHSL(X̄(e)) =̂ X(dL, e)
RHSL(φ ⊕ ψ) =̂ RHSL(φ) ⊕ RHSL(ψ) for ⊕ ∈ {∧,∨}
RHSL(Q d:D.φ) =̂ Q d:D. RHSL(φ) for Q ∈ {∀,∃}
RHSL([α]φ) =̂

∧
a∈Act ∀ea:Da. (ca(dL, ea) ∧ match(a(fa(dL, ea)), α))

=⇒ (RHSL(φ)[ga(dL, ea)/dL])
RHSL(〈α〉φ) =̂

∨
a∈Act ∃ea:Da. (ca(dL, ea) ∧ match(a(fa(dL, ea)), α)

∧ (RHSL(φ)[ga(dL, ea)/dL]))
RHSL(σX̄(dX̄ :DX̄ := e). φ) =̂ X(dL, e)

match(a(v), b) =̂ b
match(a(v), a′(e′)) =̂ (v = e′) ∧ (a = a′)
match(a(v),¬α) =̂ ¬match(a(v), α)
match(a(v), α ∧ β) =̂ match(a(v), α) ∧ match(a(v), β)
match(a(v),∀d:D. α) =̂ ∀d:D. match(a(v), α)

problem of solving the equation system EL(Φ), see e.g. [8]. Table 1 contains the
translation; it assumes that the input formula σX̄(dX̄ :DX̄ := e). ψ is normalised,
i.e., none of its subformulae of the form σ′Ȳ (dȲ :DȲ := e′). ψ′ contain unbound
data variables. Rules for normalising can be found in [12].

Lemma 1. Let φ be a normalised μ-calculus formula, ranging over a set of
recursion variables P̄ ⊆ P̄. Assume that R ⊆ DL × DL is a bisimulation re-
lation on the transition system induced by L. Define S ⊆ sig(P ) × sig(P ) as
(v, w)XS(v′, w)X for all (v, w), (v′, w) ∈ DL × DX̄ , for X̄ ∈ P̄ and vRv′.

∀v, v′ ∈ DL, θ ∈ ΘS , ε : vRv′ =⇒ [[RHSL(φ)]] θε[v/dL] = [[RHSL(φ)]] θε[v′/dL]

Proof. The proof proceeds by induction on the structure of φ. 
�

Theorem 4. Let φ be a closed normalised μ-calculus formula ranging over a set
of recursion variables P̄ ⊆ P̄. Let L be an LPE. We have (v, w)X � (v′, w)X for
all (v, w), (v′, w) ∈ DL × DX̄ , X̄ ∈ P̄ , satisfying v ↔ v′.

Proof. The proof follows instantly from Lemma 1 and the definition of E. 
�
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Example 3. Let L(n:N) = a · L(n + 1) + even(n) → b · L(n + 1) be an LPE,
encoding the infinite-state process that can always perform an a-action, and at
each even moment, it can perform a b-action, see the figure below.

0 1 2 3 · · ·
a

b
a

a

b
a

Clearly, for v, w ∈ N, we have v ↔ w iff v ≡2 w. Verifying that action b can be
executed infinitely often, i.e., encoding the formula φ ≡ νX̄.μȲ .(〈b〉X̄ ∨ 〈a〉Ȳ )
results in the following equation system EL(φ):(

νX(n:N) = Y (n)
) (

μY (n:N) = (even(n) ∧ X(n + 1)) ∨ Y (n + 1)
)

It follows immediately that bisimilarity induces a consistent correlation on EL(φ),
i.e., we have vX �wX and vY �wY for v ≡2 w, again for v, w ∈ N. Using Theo-
rem 2, we have vX � even(v)X′ and vY � even(v)Y ′ , for all v ∈ N, where X ′, Y ′

are given through the following equation system:(
νX ′(b:B) = Y ′(b)

) (
μY ′(b:B) = (b ∧ X ′(¬b)) ∨ Y ′(¬b)

)
Solving the latter via a transformation to a Boolean equation system results in
X ′(even(v)) = Y ′(even(v)) = X(v) = Y (v) = � for all v ∈ N. 
�

Observe that the reverse of Theorem 4 does not hold: for instance, EL(νX̄.〈a〉X̄)
would have vX � v′X for all v, v′ ∈ N, but, clearly, not v ↔ v′ in L.

6 Applications

We finish with two manipulations from the literature whose correctness follows
immediately from the existence of consistent correlations. In a similar vein, the
correctness of the static analysis techniques of [14] follow.

6.1 Enumeration

Enumeration of finite data sorts is used to reduce the complexity of the right-
hand sides of an equation system. It achieves so by instantiating a data parameter
of a finite sort with the basic elements of that sort, introducing one new equation
per basic element. For the purpose of readability, we assume that each equation
in an equation system consists of two (complex) data sorts: sorts D representing
finite data sorts we wish to enumerate, and sorts E representing the possibly infi-
nite data sorts. The scheme is rather straightforward, see Table 2; its correctness
proof on the other hand, is rather arduous, spanning several pages, see [2].
The below proposition paraphrases Theorem 1 of [2].

Proposition 2. For all closed equation systems E and all P ⊆ bnd(E), we have
for all X ∈ P , ( [[v]] , w)X �wX̃v

, and for all X /∈ P , ( [[v]] , w)X � ( [[v]] , w)X̃ .
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Table 2. The enumeration scheme for finite data sorts D, and P ⊆ P

InstP (ε) =̂ ε
InstP ((σX(dX :DX , eX :EX) = φX) E) =̂{ {(σX̃v(eX :EX) = SubP (φX [v/dX ])) | v∈DX} InstP (E) if X∈P

(σX̃(dX :DX , eX :EX) = SubP (φ)) InstP (E) otherwise

where

SubP (b) =̂ b

SubP (X(d, e)) =̂

{∨
u∈DX

(u = d ∧ X̃u(e)) if X∈P

X̃(d, e) otherwise
SubP (φ ⊕ ψ) =̂ SubP (φ) ⊕ SubP (ψ) for ⊕ ∈ {∧,∨}
SubP (Qd:D. φ) =̂ Qd:D. SubP (φ) for Q ∈ {∀,∃}

Proof. The correctness follows from the observation that the relation R, defined
as ( [[v]] , w)XRwX̃v

, for all X ∈ P , and ( [[v]] , w)XR( [[v]] , w)X̃ for all X /∈ P , is a
consistent correlation. The fact that R is a consistent correlation follows from
an induction on the structure of the predicate formulae, showing that for all φ
and all θ ∈ ΘR, ε, [[φ]] θε[ [[v]] /d, w/e] = [[SubP (φ[v/dX ])]] θε[w/e]. 
�

6.2 Global Invariants

The second manipulation that we consider is the use of global invariants, see [15],
for strengthening equation systems. Let Pred denote the predicate variable-free
fragment of the predicate formulae, called simple formulae.

Definition 16. The function f :V → Pred is said to be a global invariant for an
equation system E iff bnd(E) ⊆ V and for each X ∈ bnd(E), we have for all θ, ε:

[[f(X) ∧ φX ]] θε = [[(f(X) ∧ φX)
[
Y ∈V

λdY .(f(Y ) ∧ Y (dY ))/Y
]

]] θε

Note that ψ
[
Y ∈V

λdY .ζ/Y
]

stands for a simultaneous syntactic substitution of
the functional λdY .ζ for every Y ∈ V in ψ. For details, we refer to [15]. The
invariance condition basically states that the right-hand sides of all equations
should be insensitive to strengthening all predicate variable occurrences with
their corresponding simple formula.

Definition 17. Let E be an equation system and let f :V → Pred be a global
invariant for E. The equation system Apply (f, E) is defined as follows:

Apply (f, ε) =̂ ε

Apply (f, (σX(dX :DX) = φX) E0) =̂ (σX̃(dX :DX) = f(X) ∧ φX̃) Apply (f, E0)

where φX̃ is the formula φX in which all Y ∈ occ(φX) are replaced by Ỹ .

The following proposition paraphrases Theorem 35 of [15].
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Proposition 3. Let E be a closed equation system and let f be a global invariant
for E. Then vX � vX̃ for all X ∈ bnd(E) and X̃ ∈ bnd(Apply (f, E)) and all v
satisfying [[λdX .f(X)]] (v) = �.

Proof. The relation R, defined as vXRvX̃ for all v such that [[f(X)]] ε[v/dX ] holds,
is a consistent correlation. This follows from the observation that, by definition
of a global invariant, each pair of formulae φX , φX̃ depends, semantically, only
on instances that satisfy the global invariant, and, thereby are related via R. 
�

7 Concluding Remarks

We introduced the concept of a consistent correlation in the setting of equation
systems, and showed that it provides a natural and direct method for proving the
correctness of manipulations in this setting; in addition, we studied its relation
to bisimulations on processes and dependency graphs for equation systems.

Several issues are still open for investigation. First, the exact complexity for
computing a consistent correlation for arbitrary (Boolean) equation systems is
still unknown. Second, our theory of consistent correlations is phrased entirely
in terms of semantics. It is certainly interesting to devise a syntax based theory
that is rooted in the same concepts. We conjecture that it suffices to add the
following deduction rule to the standard axioms for negation-free propositional
logic, to obtain a sound and complete set of rules for Boolean equation systems:

Γ, X �Y � φX �φY X, Y ∈ bnd(E�i)

Γ � X �Y

Here, � is lifted to propositional formulae and Γ serves as a context (i.e.,
assumptions). Third, it is likely that the problem of computing a consistent
correlation of an equation system can itself be encoded in terms of an equation
system, in the spirit of [1], although it is unclear whether such an encoding
will be worthwhile from a practical viewpoint. Finally, it is interesting to see
whether consistent correlations can play a role in proving that the static analysis
techniques outlined in [16] carry over to the setting of equation systems.

Acknowledgements. The author would like to thank Jeroen Keiren and Michel
Reniers for discussions and comments on earlier drafts of this paper.
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Krčál, Jan 207
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