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Abstract. We study three complexity parameters that in some sense
measure how chordal-like a graph is. The similarity to chordal graphs
is used to construct simple polynomial-time approximation algorithms
with constant approximation ratio for many NP-hard problems, when
restricted to graphs for which at least one of the three complexity param-
eters is bounded by a constant. As applications we present approximation
algorithms with constant approximation ratio for maximum weighted in-
dependent set, minimum (independent) dominating set, minimum vertex
coloring, maximum weighted clique, and minimum clique partition for
large classes of intersection graphs.

1 Introduction

Complexity parameters can help to solve many NP-hard problems of theoret-
ical or practical importance on a subclass of instances for which the chosen
parameter is very small. Treewidth is one of the classical complexity parameters
studied in graph theory. Graphs of bounded treewidth have a tree-like structure
that allows a generalization of efficient algorithms for hard problems on trees to
graphs of bounded treewidth. In particular, all decision problems that can be
expressed in monadic second-order logic can be solved in polynomial time on
graphs of bounded treewidth [3,8].We study three complexity parameters that
all generalize in some kind another class of graphs, namely chordal graphs. One
of them is new, whereas the others also appear in [34] and [25], but were not
analyzed in detail in these papers. See Section 2 for a detailed definition of the
complexity parameters. Like trees, chordal graphs have a simple structure that
facilitates the solution of a large number of NP-hard problems. For example,
there are linear time algorithms on chordal graphs for maximum clique (MC),
for minimum clique partition (MCP) [15], for maximum weighted independent
set (MWIS) [13], and for minimum vertex coloring (MVC).Thus, it seems natural
to search for a generalization of chordal graphs. In doing so, we obtain new ap-
proximation algorithms for the problems above on big graph classes containing
many intersection graph classes such as t-interval graphs, circular-arc graphs,
(unit) disk graphs, and intersection graphs of regular polygons or of arbitrary
polygons of so-called bounded fatness. In general, intersection graphs are use-
ful subclasses of graphs with several practical applications. See [17] or [18] for
an overview of applications on these graphs. It is not surprising that, for small
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graph classes such as unit disk graphs, one can achieve better results than by
our new algorithms designed for bigger classes of graphs. Nevertheless, also on
small graph classes such as disk graphs we obtain new results for some of the
problems above as well as for minimum dominating set (MDS) and minimum
independent dominating set (MIDS).

Table 1 summarizes the best previously known and new approximation results
for the intersection graphs of disks, regular polygons, fat objects, t-intervals,
and t-fat-objects. MIS denotes the unweighted version of MWIS and MWC the
weighted version of MC. By an r-regular polygon we mean a polygon with r
corners placed on a cycle such that all pairs of consecutive corners of the polygon
have the same distance. We assume that r ∈ O(1). We define a set C of geometric
objects in IRd—i.e., a set of points in IRd—to be a set of fat objects if the following
holds: First of all, let us call the radius of a smallest d-dimensional ball containing
the closure of a geometric object S in IRd the size of S. Moreover, let R be the
size of the largest object in C. C is called fat if there is a constant c such that,
for each d-dimensional ball B of radius r with 0 < r ≤ R, there exist c points
(possibly also outside B) such that every B-intersecting object S ∈ C of size
at least r contains at least one of the c points. We also say that C has fatness
c. C is called a (c-)restricted set of fat objects if in the condition above every
B-intersecting object in C (with arbitrary size) contains at least one of the c
points. By a unit set of objects—in opposite to arbitrary—we mean that each
object must be a copy of each other object, i.e., it has to be of the same size
and shape. However, unit and arbitrary objects may be rotated and moved to
any position. An intersection graph G of t-intervals is an intersection graph,
where each vertex represents a t-interval, i.e., the union of t intervals taken from
a set S of intervals. By the intersection graph G of t-fat-objects we mean an
intersection graph, where each vertex represents a t-fat-object, i.e., the union of
t objects taken from a fat set S of objects. In both cases S is the universe of G.

As usual, disks and regular polygons should be defined in the plane IR2, in-
tervals in IR and fat objects in IRd, where we assume that d = O(1). Concerning
the results in table 1 including the hardness results, we assume that—beside
an intersection graph itself—a representation of the intersection graph is given.
More precisely, for the intersection graph of a set S of (1) disks, (2) r-regular
polygons, (3) t-intervals, (4) fat objects, or (5) t-fat objects, we are given for
each element in S its radius and the coordinates of its center in case 1, the co-
ordinates of the center and at least one corner in case 2, the start and end point
of each interval in case 3. In case 4, we should be given a representation that,
for each pair X, Y of objects, each point p ∈ IRd, and each d-dimensional ball B
represented by the coordinates of its center and its radius r ≤ R, supports the
following computations in polynomial time: Decide whether X and Y intersect,
whether X and B intersect, and whether p is contained in X . Moreover, deter-
mine the size s of X as well as the center of the ball with a radius s containing
the closure of X , and find c points that are contained in every object of size ≥ r
intersecting B. In case 5, each t-fat-object has a representation of its objects as
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described in case 4. The representations described are given explicitly in many
applications.

Table 1. Approximation results. We use PA. and NP-h. as abbreviation for polynomial-
time approximation algorithm and NP-hard, respectively. By n we denote the number
of vertices of the intersection graph. [∗] denotes a new result shown in this paper.

disk r-reg. polygon fat objects t-interval t-fat-objects

MIS arbitrary: arbitrary: fatness c: 2t-PA. [2] fatness c:
PTAS [6,10] PTAS [6,10] PTAS [6,10] 2tc-PA. [∗]

unit: unit: unit: t ≥ 3 :
PTAS [22] PTAS [22] APX -h.
NP-h. [12] NP-h. [12] NP-h. [12] [21,31] NP-h. [12]

MWIS arbitrary: arbitrary: fatness c: 2t-PA. [2] fatness c:
PTAS [10] PTAS [10] PTAS [10] 2tc-PA. [∗]

MDS arbitrary: c-restricted: c-restricted: t2-PA. [4] c-restricted:
PTAS [16] c-PA. [∗] c-PA. [∗] tc-PA. [∗]

unit: unit: unit: t ≥ 2 : t ≥ 2 :
PTAS [22] PTAS [22] APX -h. APX -h.
NP-h. [7] NP-h. [7] NP-h. [7] [21,31] [21,31]

MIDS c-restricted: c-restricted: c-restricted: c-restricted:
c-PA. [∗] c-PA. [∗] c-PA. [∗] tc-PA. [∗]

unit: unit: unit: t ≥ 2 :
PTAS [23] PTAS [23]
NP-h. [7] NP-h. [7] NP-h. [7] NP-h. [7]

MVC arbitrary: arbitrary: fatness c: 2t-PA. [2] fatness c:
5-PA. O(1)-PA. c-PA. [34] 2tc-PA. [∗]
[19,28,29] [27,34]

unit: 3-PA. [29] unit: unit:
4/3-PA. is NP O(1)-PA. [29]
-h. [7,14,24] NP-h. [14,24] NP-h. [14,24]

MC arbitrary: arbitrary: fatness c: t2−t+1
2

-PA. [4] fatness c:
8-PA. [∗] O(1)-PA. [∗] c-PA. [∗] 4t-PA. [∗] 2tc-PA. [∗]

unit: t ≥ 3 : t ≥ 3 :
∈ P [7] NP-h. [4] NP-h. [4]

MWC arbitrary: arbitrary: fatness c: t2−t+1
2

-PA. [4] fatness c:
8-PA. [∗] O(1)-PA. [∗] c-PA. [∗] 4t-PA. [∗] 2tc-PA. [∗]

MCP arbitrary: arbitrary: fatness c: O(log2 n/ c-restricted:
8-PA. [∗] O(1)-PA. [∗] c-PA. [∗] log(1 + 1/t))- tc-PA. [∗]

unit: 3-PA. [5] PA. [∗]
PTAS [9,32]

Very related to the graph classes considered in this paper is the so-called
class of sequentially k-independent graphs introduced by Akcoglu, Aspnes, Das-
Gupta, and Kao [1] and studied more extensively in a recent paper by Ye and
Borodin [34]. We omit an exact definition of this graph class, but want to remark
that even though the results of Ye et al. and our results are achieved completely
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independently, there are similarities between the papers. This indicates that our
generalizations of chordal graphs are quite natural, but surprisingly have not
been studied more extensively before. Other generalized classes of graphs in-
cluding the intersection graphs of unit disks or r-regular polygons of unit size
are graph classes of so-called polynomially bounded growth studied by Nieberg,
Hurink and Kern [23,30]. Nieberg et al. presented a PTAS for MWIS, MDS
and MIDS for these classes of graphs. However, graphs of polynomially bounded
growth do not include the intersection graphs of arbitrary disks, arbitrary r-
regular polygons, t-interval graphs, etc.

Our results include the first polynomial-time approximation algorithms with
constant approximation ratio for maximum clique and minimum clique partition
on disk graphs and on intersection graphs of r-regular polygons. We also present
a polynomial-time approximation algorithm with constant approximation ratio
for minimum dominating set on the intersection graphs of a restricted set of
r-regular polygons. Recently, Erlebach and van Leeuwen [11] presented an ap-
proximation algorithm with constant approximation ratio for the same problem
on an arbitrary set of r-regular polygons, however, they do not allow to rotate
the polygons in contrast to this paper. Our results also imply an approximation
algorithm with constant approximation ratio for minimum dominating set on in-
tersection graphs of an arbitrary set of non-rotated r-regular polygons. With the
introduction of the completely new graph class of k-perfect orientable graphs, we
also can solve an open question posted by Butman et al. [4], namely to improve
their approximation bound of (t2 − t + 1)/2 for maximum clique on t-interval
graphs. Our results lead to a 4t-approximation. In general, our results also ex-
tend to intersection graphs of a restricted set of t-fat objects and further classes
of graphs not discussed in this paper.

2 New Complexity Parameters

In this section, the following definitions introduce three complexity parameters.
For each complexity parameter, we present examples of classes of intersection
graphs for which the complexity parameter is bounded by a constant. For a set
S of vertices in a graph G, let G[S] be the subgraph of G induced by S.

Definition 1 (k-perfectly groupable). A graph is k-perfectly groupable if
the neighbors of each vertex v can be partitioned into k sets S1, . . . , Sk such that
G[Si ∪ {v}] is a clique for each i ∈ {1, . . . , k}.
For each object S of a k-restricted set C of fat objects and a smallest ball B
containing S, there exists a set PS of k points such that every object in C
intersecting B covers a point in PS . For each S-intersecting and hence also B-
intersecting object S′ ∈ C, choose one of the points in S′∩PS as a representative.
Then all S-intersecting objects having the same representative in PS induce a
clique in the intersection graph. Hence, the intersection graph of a k-restricted
set of fat objects is k-perfectly groupable. Note that graphs of maximum degree k
are also k-perfectly groupable. The set of the well studied (k+1)-clawfree graphs
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contains all k-groupable graphs. As we see in this section, unit disk graphs and
unit square graphs are k-perfectly groupable for a suitable constant k.

Definition 2 (k-simplicial, k-simplicial elimination order, successor). A
graph G is k-simplicial if there is an order v1, . . . , vn of the vertices of G such
that, for each vertex vi (1 ≤ i ≤ n), the subset of neighbors of vi contained in
{vj | j > i} can be partitioned into k sets S1, . . . , Sk such that G[Sj ∪ {vi}] is a
clique for each j ∈ {1, . . . , k}. The vertices in {vj | j > i, {vi, vj} ∈ E(G)} are
called the successors of vi and the order above of the vertices in G is called a
k-simplicial elimination order.

The k-simplicial graphs are already defined in [25] and [34], whereas in the latter
paper they are called G̃(VCC k). Let C be a set of fat objects S1, . . . , Sn ordered
by non-decreasing size. Let k be the fatness of C. Then, for each object Si with
i ∈ {1, . . . , n}, we can find k points such that every Si-intersecting object in
{Si+1, . . . , Sn} contains one of the k points. Let vi be the vertex representing Si

in the intersection graph G of C. Then v1, . . . , vn defines a k-simplicial elimina-
tion order. Therefore, G is k-simplicial. Also note that disk graphs and square
graphs are k-simplicial for a suitable constant k. Chordal graphs are exactly
the 1-simplicial graphs. Moreover, every planar graph is 5-simplicial and every
k-simplicial graph is sequentially k-independent (see [34]).

Definition 3 (k-perfectly orientable). A graph G is called k-perfectly ori-
entable if each edge {u1, u2} of G can be assigned to exactly one of its endpoints
u1 and u2 such that, for each vertex v, the vertices connected to v by edges as-
signed to v can be partitioned into k sets S1, . . . , Sk such that G[Si ∪ {v}] is a
clique for each i ∈ {1, . . . , k}. We write a({u1, u2}) = u1 if {u1, u2} is assigned
to u1.

We now show that the intersection graph G = (V, E) of a set of t-fat-objects C
with a universe of fatness c is (t·c)-perfectly orientable. Let V = {v1, . . . , vn} and,
for each i ∈ {1, . . . , n}, let Si be the union of t objects Si,1, . . . , Si,t represented
by vi. Choose, for each edge {vi, vj} in G with i < j, a pair {p, q} of indices
such that Si,p and Sj,q intersect. Assign {vi, vj} to vi if the size of Si,p is smaller
than the size of Sj,q and to vj otherwise. Then, for each vertex vi, one can
find t · c points such that each Si-intersecting t-fat-object Sj with {vi, vj} being
assigned to vi must intersect Si in at least one of the t · c points. Therefore, the
set of vertices being endpoints of edges assigned to vi can be partitioned into
≤ t ·c cliques. This proves that G is (t ·c)-perfectly orientable. Note also that the
intersection graphs of t-intervals are 2t-perfectly orientable. For these graphs,
an edge {vi, vj} with i < j is assigned to vi if the t-interval represented by vj

intersects one of 2t endpoints of the intervals whose union is represented by vi.
Otherwise, {vi, vj} is assigned to vj .

We next present explicit upper bounds for the three complexity parameters
on some special intersection graphs. Before that let us define the inball and the
outball of a geometric object S to be a ball with largest radius contained in
the closure of S and the ball with smallest radius containing the closure of S,
respectively. The center of S is the center of its outball.
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Theorem 4. An intersection graph of t-squares, i.e., of unions of t (not neces-
sarily axis-parallel) squares, is

1. 10-perfectly groupable if t = 1 and if the squares are of unit size,
2. 10-simplicial if t = 1, and
3. 10t-perfectly orientable.

Proof. For proving the first two cases, let G be the intersection graph of a set
S of squares. It remains to show that, for a square Q of minimal side length
�, there are 10 points—called the barriers of Q—such that every Q-intersecting
square Q′ of length ≥ � must cover at least one of them. This fact also proves
case 3 since the universe of a set of t-squares then has fatness 10.

We first describe our choice of the 10 barriers of Q. See also the left side of
Fig. 1 for the following construction. Let b1 and b2 be the two perpendicular
bisectors of the sides of Q. Choose two barriers x and y of Q as points on b1 such
that the part of b1 inside Q is divided into three parts of equal length. We call
these two points the inner barriers of Q. Let C be the curve surrounding Q that
consists of all points having a distance of exactly � to one of the inner barriers
and a distance of at least � to the remaining inner barrier. The remaining 8
barriers, called outer barriers, are almost equidistant points on C. More exactly,
4 outer barriers of Q are placed on the 2+2 intersection points of C with b1 and
b2. Choosing the other 4 outer barriers of Q is more sophisticated. Let x′ and
y′ be the two points on b1 having the same distance to the center of Q as to x
and y, respectively. In addition, let r1, . . . , r4 be the 4 rays starting from x′ and
y′, respectively, and intersecting a corner of Q but neither b1 nor b2. The four
remaining outer barriers are placed on the intersection points of C with the rays
r1, . . . , r4.

By a simple mathematical analysis one can show that the distance between
any two consecutive outer barriers on C is strictly smaller than �. It remains to
show that each square of side length at least � intersecting Q also covers one of
the barriers of Q. Assume for a contradiction that we can find a square Q′ of
side length at least � intersecting Q but none of the barriers of Q. W.l.o.g. we
can assume that Q′ has side length exactly � since otherwise Q′ also contains
a smaller square intersecting Q. Let H be the convex hull of the outer barriers
and let B be the largest circle contained in H such that B has the same center
as Q. B and thus also H contain at least one corner of Q′ since Q′ intersects
Q and B, and since a simple mathematical analysis shows that each chord of B
with length at most l does not intersect Q. We now distinguish two cases.

Case 1: No side of Q′ is completely contained in the convex hull H of the
outer barriers. For each pair of consecutive outer barriers p and q on C, let us
define Cp,q to be the semi-circle inside H with endpoints p, q and hence having a
diameter equal to the distance between p and q. See again the left side of Fig. 1.
Let z be the corner of Q′ inside B with the smallest distance to a point in Q.
Note that the two sides of Q′ ending in z are not completely contained in H.
Consequently, by Thales’ theorem and the fact that Q′ does not contain any
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x yb1

b2
B C

Fig. 1. The left side shows a square with some barriers, and on the right side, we see
a square intersecting 7 disjoint squares

barriers there must be two consecutive outer barriers p and q on C such that z
is contained in the face enclosed by Cp,q and pq. Again a simple mathematical
analysis shows that none of our semi-circles intersects Q. Thus, neither z nor
any other point of Q′ is covered by Q. Contradiction.

Case 2: At least one side of Q′ is completely contained in H. Since each pair of
consecutive outer barriers on C has a distance smaller than �, the center q of Q′

is inside H.
By symmetry, w.l.o.g. we can assume that the distance between q and y is

smaller or equal than the distance between q and x. Let H′ be the convex hull
of x and the outer barriers having a distance of at most � to y. On the one hand,
for each pair of consecutive barriers q1 and q2 on H′, there is at most one corner
in the face bounded by q1q2 and the semi-circle outside H′ with endpoints q1

and q2. On the other hand, at least one corner of Q′ is outside H′ since the inball
of Q′, which does not contain y, must intersect the border of H′. Consequently,
there are two sides s1 and s2 of Q′ that have a common corner p outside H′ and
that intersect H′ between to outer barriers, say q1 and q2.

Let T be the triangle with corners y, q1 and q2. Since Q′ is a square of side
length �, since p is not covered by T , and since T is a triangle with two sides of
length � and with an s1-intersecting side of length at most �, y has to be inside
Q′. Contradiction. �

Observation 5. Some square graphs are not 6-perfectly groupable as shown on
the right side of Fig. 1.

Lemma 6. The intersection graph of a set of rectangles, all having aspect ratio
of α, is 10�α�-simplicial.

Proof. Consider each rectangle as a set of �α� squares. For each rectangle r1

replaced by squares of a size s1, one can find 10�α� points such that every r1-
intersecting square of size s2 ≥ s1 replacing another rectangle r2 must cover one
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of these points. Here we use the fact that each rectangle can be replaced by �α�
unit squares.

Theorem 7. Let c be a fixed constant and G be an intersection graph, where
each vertex represents a union of t polygons taken from a universe of non-rotated
c-regular polygons. Then G is (t · c)-perfectly orientable.

Proof. The intersection of two non-rotated c-regular polygons must contain at
least one of the corners of the two polygons. Note that this does not hold for
general rotated polygons. Let {v1, . . . , vn} be the vertices of G. We assign an
edge {vi, vj} in G with i < j to vi if and only if one of the polygons in the union
of polygons represented by vi has a corner contained in the union of polygons
represented by vj . Otherwise, we assign it to vj . The edges assigned to a vertex
v can be partitioned into t ·c sets such that the endpoints of the edges of each set
induce a clique in G since we have one clique for each corner of the t polygons. �

Theorem 8. Let G be the intersection graph of some geometric objects in IRd.
If the objects are convex and if, additionally, there is a constant k such that,
for each object, the ratio between its size and the radius of its inball is bounded
by k, then G is (3

2

√
dπ(k + 1))d/Γ (d/2 + 1)-simplicial, where Γ should denote

the Gamma function. If the ratio between the largest size of the objects and
the radius of a smallest inball of the objects is bounded by a constant k′, G is
(3
2

√
dπ(k′ + 1))d/Γ (d/2 + 1)-perfectly groupable (even in the case of non-convex

objects).

Proof. For proving the lemma we first show how to find, for a given ball B with
radius ≤ R′ and a real number r > 0, a set of points such that every ball b
with radius at least r intersecting B must cover at least one of these points.
Therefore, let us consider the d-dimensional space, paved with d-dimensional
cubes of edge length s = 2r/

√
d and volume sd = 2drdd−

d
2 . Then, every ball b

of radius at least r must contain at least one of their midpoints, as the cubes’
diagonals have length 2r. Furthermore, the distance between the center of a ball
b of radius ≥ r intersecting B and B’s center is at most R′ + r. Hence it suffices
to pave a ball of radius R′ + 2r. To do this, we do not need more cubes than
completely fit in a ball of radius R′ + 3r. A ball of radius R′ + 3r has volume
(
√

π(R′ + 3r))d/Γ (d
2 + 1) and hence the following number of cubes are enough:

⌊
(
√

π(R′ + 3r))d

Γ (d
2 + 1)

· 1

2drdd−
d
2

⌋
=

⎢⎢⎢⎣(√
dπ

2

(
R′

r
+ 3
))d

/Γ

(
d

2
+ 1
)⎥⎥⎥⎦

Let S be a set of geometric objects such that G is the intersection graph of
S. We first consider the case, where all objects are convex and where there is
a k such that, for each object, the ratio between its size and the radius of its
inball is bounded by k. Let S1 be an object of S with smallest size R and let
S2 be an S1-intersecting object in S with size s2 ≥ R. Choose S′

2 as the image
of a dilation of S2 with an arbitrary point p ∈ S1 ∩ S2 as center and scaling
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factor λ = R/s2 > 0. Then—as S2 is convex—every point covered by S′
2 is also

covered by S2. Furthermore, the inball of S′
2 having radius r ≥ R/k must be

completely contained in the ball of radius R′ := 3R around the center of S1.
Now the considerations above imply that S′

2—and hence S2—must cover the
midpoint of at least one cube of edge length s = 2r/

√
d completely contained

in a ball of radius R′ + 3r. If we number the vertices of G in an order such
that the sizes of objects represented by the vertices do not decrease, we obtain
a (3

2

√
dπ(k + 1))d/Γ (d/2 + 1))-simplicial elimination order proving the claim.

Finally, let us consider the case, where the objects of S are not necessarily
convex, but the ratio between the largest size of the objects and the radius of a
smallest inball of the objects is bounded by a constant k′. Consider intersecting
geometric objects S1 (with size R1) and S2 (with size R2 and inball radius r2) in
S. Then the considerations above imply, that the inball of S2 must completely
lie inside the ball of radius R′ := R1 + 2R2 around the center of S1. With
R′
r2

= R1+2R2
r2

≤ 3k′ the second part of the lemma follows immediately. �

Theorem 9. An intersection graph of t-disks, i.e., of unions of t disks, is

1. 8-perfectly groupable if t = 1 and if the squares are of unit size,
2. 8-simplicial if t = 1, and
3. 8t-perfectly orientable.

The theorem above can be shown with a proof similar to Theorem 4. Due to space
limitations, we only want to remark that one can choose barriers—defined as in
the proof of Theorem 4—of a disk with radius r as follows: One barrier is placed
on the center of the disk and the remaining 7 barriers are placed equidistant on
a circle of radius 3/2r with the same center than the disk.

3 Relations and Recognition

In the following we study the relations between the complexity parameters de-
fined in the last section to each other and the NP-hardness of determining their
minimal possible value.

Observation 10. Each k-perfectly groupable graph is k-simplicial since any or-
dering of the vertices defines a k-simplicial elimination order. Conversely, an
n-vertex star, i.e., an n-vertex tree with n−1 leaves, is not k-perfectly groupable
for all k < n − 1, but it is 1-simplicial.

Lemma 11. A k-simplicial graph is also k-perfectly orientable, but for every
n ∈ IN with n ≥ 12, there exists a 2-perfectly orientable graph with n vertices
that is not �-simplicial for all � < 
√n/3�.
Proof. Let G be a k-simplicial graph having a k-simplicial elimination order
v1, . . . , vn. If all edges incident to a vertex v and one of its successors are assigned
to v, the endpoints u �= v of the edges assigned to v can be partitioned into k
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sets S1, . . . , Sk such that G[Si ∪{v}] is a clique for every i ∈ {1, . . . , k}. In other
words, G is k-perfectly orientable.

Let us choose an arbitrary n ∈ IN with n ≥ 12 and let k = 
√n/3�. We
now construct a 2-perfectly orientable graph G= (V, E) with n vertices that
is not �-simplicial for any � < k. The vertices of this graph are divided into
three disjoint sets S0, S1 and S2 of size k2 and, if n − 3k2 > 0, a further set
R = V \ (S0 ∪ S1 ∪ S1) of isolated vertices. Each set Si (i ∈ {0, 1, 2}) is di-
vided into k subsets Si,1, . . . , Si,k of size k. For each i ∈ {0, 1, 2} and each
j ∈ {1, . . . , k}, we introduce edges between each pair of vertices contained in
the same subset Si,j and assign each of these edges arbitrarily to one of its end-
points. Let us define a numbering on the vertices of Si,j such that we can refer
to the h-th vertex of Si,j . For each i ∈ {0, 1, 2} and each h, j ∈ {1, . . . , k}, we
additionally introduce edges between the h-th vertex u of Si,j and all vertices of
S(i+1) mod 3,h. We assign them to u. The constructed graph G is 2-perfectly ori-
entable since the endpoints of an edge assigned to a vertex u being the h-th vertex
of a subset Si,j belong to one of the two cliques induced by the vertices of Si,j

and S(i+1) mod 3,h. However, u is also adjacent to k vertices in S(i−1) mod 3. Since
there is no edge between a vertex in S(i−1) mod 3,j1 and a vertex in S(i−1) mod 3,j2

for j1 �= j2, G cannot be �-simplicial for any � < k. �
A graph has inductive degree k if it can be obtained from a single vertex by
repeatedly adding a new vertex with k edges. Then we can easily conclude:

Lemma 12. All graphs of inductive degree k are k-simplicial and therefore also
k-perfectly orientable.

Note that an important subclass of the graphs of inductive degree k is the ex-
entsively studied class of graphs of treewidth k (not defined in this paper).

Observation 13. The n-vertex clique is an example for a 1-perfectly groupable
graph G that does not have treewidth n − 2. Conversely, the n-vertex star is a
graph with treewidth 1 that is not (n − 2)-perfectly groupable.

Lemma 14. It is NP-hard to decide, for a tuple (G, k) of graph G and an integer
k, whether G is k-perfectly groupable, k-simplical, or k-perfectly orientable.

Proof. In this version of the paper we only proof the result for k-perfectly ori-
entable graphs. The proofs for the other graph classes are based on similiar
reductions. Given an n-vertex graph G = (V, E) as an instance of the minimum
clique partition problem, we add a set V ′ of nk+1 new vertices to G and connect
each new vertex to each vertex in V . Let G′ be the graph obtained. We next
show that G′ is k-perfectly orientable if G has clique partition of size at most
k. For this purpose, assign all incident edges of a vertex v′ ∈ V ′ to v′ and edges
e ∈ E to an arbitrary endpoint of e. Then a vertex v together with the endpoints
of edges assigned to v ∈ V ∪V ′ induce k cliques, i.e., G′ is k-perfectly orientable.

Conversely, let us assume that G′ is k-perfectly orientable and let a : E →
V ∪ V ′ be a suitable assignment of the edges to their endpoints. For each vertex
v ∈ V at most k of the nk +1 new edges incident to v can be assigned by a to v
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since there are no edges between two vertices of V ′. Thus, there is at least one
v′ ∈ V ′ with all its edges assigned to itself. Thus, G must have a clique partition
of size at most k.

For each constant k, one can use a fixed parameter algorithm for the MCP, e.g.,
see [20], to decide in polynomial time whether a graph G is k-groupable.

4 Algorithms

We present now polynomial time approximation algorithms for several NP-hard
problems on graph classes with one of the three complexity parameters bounded
by a constant. We implicitly assume that we are given an explicit representation
of a graph as a k-perfectly groupable, k-simplicial, or k-perfectly orientable graph
G. By that we mean that we are given, for each vertex v, a partition of its
neighbors, of its successors, and of the vertices connected to v by edges assigned
to v, respectively, into k sets S1, . . . , Sk such that G[Si ∪ {v}] is a clique for all
i ∈ {1, . . . , k}. In addition, we are given a k-simplicial elimination order in the
case of a k-simplicial graph and, for each vertex of G, the edges assigned to it
in the case of a k-perfectly orientable graph. These representations are sufficient
even for intersection graphs. We do not need the explicit representations as
intersection graphs described in Section 1, but we can use them to construct our
new representations in polynomial time (see also the Theorems 4 and 9).

Theorem 15. On k-perfectly groupable graphs, minimum dominating set and
minimum independent dominating set can be k-approximated in polynomial time.

Proof. As a k-approximative solution on a k-perfectly groupable graph G we
output a maximal—not necessarily maximum—independent set S of G. To prove
correctness, let us consider a minimum (independent) dominating set Sopt of G.
For all v ∈ S \ Sopt, there must be a neighbor of v in Sopt. However, each such
neighbor cannot cover more than k vertices of S, since G is k-perfectly groupable.
Consequently, S is an independent dominating set of size at most k|Sopt|. �

Theorem 16. Minimum clique partition, maximum weighted independent set,
and maximum weighted clique, are k-approximable on k-simplicial and on k-
perfectly groupable graphs in polynomial time.

Proof (minimum clique partition). Given a graph G and a k-simplicial elimina-
tion order v1, . . . , vn for G, we first compute the graph G′ obtained by removing
v1 and its neighbors from G. We then solve the problem recursively on G′. Let
S′ be the collection of vertex sets obtained as a solution for G′. Note that the
graph induced by the removed vertices can be partitioned into a set Z of at most
k cliques. We output S = S′∪Z as a solution for G. Note that v1 is not incident
to any vertex of G′. This guarantees that the difference between the size of a
clique partition for G and for G′ is at least 1. Thus, the clique partition obtained
uses at most k times as many cliques as an optimal clique partition for G. �

Proof (maximum weighted independent set). See [1], [27], or [34]. �
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Proof (maximum weighted clique). Given a k-simplicial graph, choose, for each
vertex v, a clique Cv of maximal weight among the cliques obtained from one of
the k cliques induced by v and the successors of v. Return the clique with max-
imal weight among the cliques in {Cv | v ∈ V }. This solution has approximation
ratio k since a maximum weighted clique Copt must also contain a vertex v with
Copt consisting only of v and a subset of its successors. �

Theorem 17. On k-perfectly orientable n-vertex graphs, there are polynomial-
time algorithms with approximation ratio

1. 2k for maximum weighted independent set, minimum vertex coloring and
maximum weighted clique.

2. O(log2 n/ log(1 + 1/k)) for minimum clique partition.

For the following proofs let G = (V, E) be a k-perfectly orientable n-vertex
graph, and for each u ∈ V , let Vu,1, . . . , Vu,k be k pairwise disjoint vertex sets
such that their union are the neighbors of u and such that Cu,i = G[Vu,i ∪ {u}]
is a clique for all 1 ≤ i ≤ k. Moreover, define C = {Cu,i | u ∈ V, 1 ≤ i ≤ k}.

The proof for maximum weighted independent set bases on the ideas including
the local ratio technique of [2] and is omitted here.

Proof (minimum vertex coloring). Construct an order v1, . . . , vn of the vertices
of G such that, for each vertex vi (i ∈ {1, . . . , n}), at least half of the edges in
G[{vi, . . . , vn}] being adjacent to vi are assigned to vi. We now want to color the
vertices vn, . . . , v1 in this order with numbers in {1, . . . , n}. We color each vertex
v ∈ V with the smallest number different from the colors of all already colored
neighbors of v. Concerning the approximation ratio, let us define, for each vertex
v, Dv to be a set of vertices of maximal weight such that Dv consists only of
successors of v with respect to the order above and such that G[Dv] is a clique.
Then, each vertex v of G obtains a color smaller or equal 2k|Dv| + 1, whereas
an optimal coloring must color v and its neighbors with at least |Dv|+ 1 colors.
Therefore, the coloring obtained is a 2k-approximation.

Proof (maximum weighted clique). As a 2k-approximative solution, return the
clique C ∈ C of maximal weight. Let us compare the weight of C with the weight
of a maximal clique COPT of G. The subgraph of G induced by the vertices of
COPT contains at least one vertex u for which the sum of the weights of the
neighbors not being endpoints of edges assigned to u does not exceed the sum of
the weights of the neighbors being endpoints of edges assigned to u. Thus, the
weight of C is at most a factor 2k smaller than the weight of COPT. �

Proof (minimum clique partition). As part of our computation, we want to find
a minimal number of cliques in C in polynomial time such that the union of
their vertex sets is V . Unfortunately, this is an instance of the NP-hard set cover
problem. However, using the Johnson’s algorithm [26] we can find a subset of
the cliques in C that covers V and that is at most a factor O(log |V |) larger
than the minimal number of cliques in C. We return this subset as an approx-
imative solution. We achieve the approximation ratio O(log2 |V |/ log 2k

2k−1 ) =
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O(log2 |V |/ log(1+ 1
k )) since there is a clique partition of V using only cliques in

C that uses O(log |V |/ log 2k
2k−1 ) as many cliques as a minimum clique partition

COPT of q ≤ n arbitrary cliques C1, . . . , Cq of G: Choose a vertex v of C1 such
that in the subgraph of G induced by the vertices of C1 at least half of the edges
adjacent to v are assigned to v. Remove the clique among Cv,1, . . . , Cv,k con-
taining the largest number of not already deleted vertices in C1. This decreases
the number of vertices of C1 by a factor of at least 1 − 1

2k = 2k−1
2k . Repeat this

step recursively until, after O(log |V |/ log 2k
2k−1 ) steps, C1 contains no vertices

any more. More precisely, when choosing a vertex v for which at least half of the
adjacent edges are assigned to v, only count the edges not already being deleted.
If we do the same for the remaining cliques, we obtain a clique partition with
O(q log |V |/ log 2k

2k−1 ) cliques part of C. �
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