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Abstract. We give the first constant-factor approximation algorithm
for Sparsest-Cut with general demands in bounded treewidth graphs. In
contrast to previous algorithms, which rely on the flow-cut gap and/or
metric embeddings, our approach exploits the Sherali-Adams hierarchy
of linear programming relaxations.

1 Introduction

The Sparsest-Cut problem is one of the most famous graph optimization prob-
lems. The problem has been studied extensively due to the central role it plays in
several respects. First, it represents a basic graph partitioning task that arises in
several contexts, such as divide-and-conquer graph algorithms (see e.g. [29, 40]
and [42, Chapter 21]). Second, it is intimately related to other graph param-
eters, such as flows, edge-expansion, conductance, spectral gap and bisection-
width. Third, there are several deep technical links between Sparsest-Cut and
two seemingly unrelated concepts, the Unique Games Conjecture and Metric
Embeddings.

Given that Sparsest-Cut is known to be NP-hard [34], the problem has been
studied extensively from the perspective of polynomial-time approximation al-
gorithms. Despite significant efforts and progress in the last two decades, we are
still quite far from determining the approximability of Sparsest-Cut. This is true
not only for general graphs, but also for several important graph families, such
as planar graphs or bounded treewidth graphs. The latter family is the focus of
this paper; we shall return to it after setting up some notation and defining the
problem formally.

Problem definition. For a graph G = (V, E) we let n = |V |. For S ⊂ V , the
cutset (S, S̄) ⊂ V ×V is the set of unordered pairs with exactly one endpoint in
S, i.e. {{u, v} ∈ V ×V : u ∈ S, v /∈ S}. In the Sparsest-Cut problem (with general
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demands), the input is a graph G = (V, E) with edge capacities cap : E → R≥0

and a set of demand pairs, D = ({s1, t1}, . . . , {sk, tk}) with a demand function
dem : D → R≥0. The goal is to find S ⊂ V (a cut of G) that minimizes the ratio

Φ(S) =

∑
(u,v)∈(S,S̄)∩E cap(u, v)

∑
(u,v)∈(S,S̄)∩D dem(u, v)

.

The demand function dem is often set to dem(s, t) = 1 for all (s, t) ∈ D. The
special case where, in addition to this, the demand set D includes all vertex pairs
is referred to as uniform demands.

Treewidth. Let G = (V, E) be a graph. A tree decomposition of G = (V, E) is
a pair (B, T ) where B = {B1, . . . , Bm} is a family of subsets Bi ⊆ V called bags,
and T is a tree whose nodes are the bags Bi, satisfying the following properties:
(i) V =

⋃
i Bi; (ii) For every edge (u, v) ∈ E, there is a bag Bj that contains

both u, v; and (iii) For each v ∈ V , all the bags Bi containing v form a connected
subtree of T . The width of the tree decomposition is maxi |Bi|−1. The treewidth
of G, denoted tw(G), is the smallest width among all tree decompositions of
G. The pathwidth of G is defined similarly, except that T is restricted to be a
path; thus, it is at least tw(G). It is straightforward to see that every graph G
excludes as a minor the complete graph on tw(G) + 2 vertices. Thus, the family
of graphs of tree width r contains the family of graphs with pathwidth r, and is
contained in the family of graphs excluding Kr+2 as a minor (here Kr+2 refers
to the complete graph on r + 2 vertices).

1.1 Results

We present the first algorithm for general demand Sparsest-Cut that achieves a
constant factor approximation for graphs of bounded treewidth r (the restriction
is only on the structure of the graph, not the demands). Such an algorithm
is conjectured to exist by [20] (they actually make a stronger conjecture, see
Section 1.3 for details). However, previously such an algorithm was not known
even for r = 3, although several algorithms are known for r = 2 [20, 7, 14] and
for bounded-pathwidth graphs [28] (which is a subfamily of bounded-treewidth
graphs).

Theorem 1. There is an algorithm for Sparsest-Cut (general demands) on graphs
of treewidth r, that runs in time (2rn)O(1) and achieves approximation factor
C = C(r) (independently of n, the size of the graph).

Table 1 lists the best approximation algorithms known for various special cases
of Sparsest-Cut. We remark that the problem (with general demands) is NP-hard
even for pathwidth 2 (see the full version for details).
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Table 1. Approximation algorithms for Sparsest-Cut

Demands Graphs Approximation Based on Reference

general

arbitrary Õ
(√

log |D|) SDP [2]
treewidth 2 2 LP (flow) [20, 7]
fixed outerplanarity O(1) LP (integer flow) [12, 14]
excluding W4-minor O(1) LP (flow) [7]
fixed pathwidth O(1) LP (flow) [28]
fixed treewidth O(1) LP (lifted) This work

uniform
arbitrary O(

√
log n) SDP [3]

excluding fixed-minor O(1) LP (flow) [24, 18]
fixed treewidth O(1) LP (flow) [35, 13]
fixed treewidth 1 dynamic programming

Techniques. Similarly to almost all previous work, our algorithm is based on
rounding a linear programming (LP) relaxation of the problem. A unique feature
of our algorithm is that it employs an LP relaxation derived from the hierarchy
of (increasingly stronger) LPs, designed by Sherali and Adams [39]. Specifically,
we use level r + O(1) of this hierarchy. In contrast, all prior work on Sparsest-
Cut uses either the standard LP (that arises as the dual of the concurrent-flow
problem, see e.g. [29]), or its straightforward strengthening to a semidefinite
program (SDP). Consequently, the entire setup changes significantly (e.g. the
known connections to embeddings and flow, see Section 1.2), and we face the
distinctive challenges of exploiting the complex structure of these relaxations
(see Section 1.3).

While bounding the integrality gap of the standard LP (the flow-cut gap)
for various graph families remains an important open problem with implications
in metric embeddings (see Section 1.2), our focus is on directly approximating
Sparsest-Cut. Accordingly, our LP is larger and (possibly much) stronger than
the standard flow LP, and hence our rounding does not imply a bound on the
flow-cut gap (akin to rounding of the SDP relaxation in [3, 10, 2]).

Finally, note that the running time stated in Theorem 1 is much better than
the nO(r) running time typically needed to solve the r + O(1) level of Sherali-
Adams (or any other hierarchy). The reason is that only O(3rn|D|) of the
Sherali-Adams variables and constraints are really needed for our analysis to
go through (see Remark 1), thus greatly improving the time needed to solve
the LP. As the rounding algorithm we use is a simple variant of the standard
method of randomized rounding for LP’s (adapted for Sherali-Adams relaxations
on bounded-treewidth graphs), the entire algorithm is both efficient and easily
implementable.

1.2 The GNRS Excluded-Minor Conjecture

Gupta, Newman, Rabinovich and Sinclair (GNRS) conjectured in [20] that met-
rics supported on graphs excluding a fixed minor embed into �1 with distortion
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O(1) (i.e. independent of the graph size). By the results of [30, 4, 20], this con-
jecture is equivalent to saying that in all such graphs (regardless of the capaci-
ties and demands), the ratio between the sparsest-cut and the concurrent-flow,
called the flow-cut gap, is bounded by O(1). Since the concurrent-flow problem
is polynomial-time solvable (e.g. by linear programming), the conjecture would
immediately imply that Sparsest-Cut admits O(1) approximation (in polynomial-
time) on these graphs.

Despite extensive research, the GNRS conjecture is still open, even in the
special cases of planar graphs and of graphs of treewidth 3. The list of special
cases that have been resolved includes graphs of treewidth 2, O(1)-outerplanar
graphs, graphs excluding a 4-wheel minor, and bounded-pathwidth graphs; see
Table 1, where the flow LP is mentioned.

Our approximation algorithm may be interpreted as evidence supporting the
GNRS conjecture (for graphs of bounded treewidth), since by the foregoing
discussion, the conjecture being true would imply the existence of such approx-
imation algorithms, and moreover that our LP’s integrality gap is bounded. In
fact, one consequence of our algorithm and its analysis can be directly phrased
in the language of metric embeddings:

Corollary 1. For every r there is some constant C = C(r) such that every
shortest-path metric on a graph of treewidth ≤ r, for which every set of size
r + 3 is isometrically embeddable into L1 in a locally consistent way (i.e. the
embeddings of two such sets, when viewed as probability distributions over cuts,
are consistent on the intersection of the sets), can be embedded into L1 with
distortion at most C.

If, on the other hand, the GNRS conjecture is false, then our algorithm (and
its stronger LP) gives a substantial improvement over techniques using the flow
LP, and may have surprising implications for the Sherali-Adams hierarchy (see
Section 1.3). Either way, our result opens up several interesting questions, which
we discuss in Section 1.4.

1.3 Related Work

Relaxation hierarchies and approximation algorithms. A research plan
that has attracted a lot of attention in recent years is the use of lift-and-project
methods to design improved approximation algorithms for NP-hard optimiza-
tion problems. These methods, such as Sherali-Adams [39], Lovász-Schrijver [31],
and Lasserre [26] (see [27] for a comparison), systematically generate, for a given
{0, 1} program (which can capture many combinatorial optimization problems,
e.g. Vertex-Cover), a sequence (aka hierarchy) of increasingly stronger relax-
ations. The first relaxation in this sequence is often a commonly-used LP re-
laxation for that combinatorial problem. After n steps (which are often called
rounds or levels), the sequence converges to the convex hull of the integral solu-
tions, and the k-th relaxation in the sequence is a convex program (LP or SDP)
that can be solved in time nO(k). Therefore, the first few, say O(1), relaxations in
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the sequence offer a great promise to approximation algorithms — they could be
much stronger than the commonly-used LP relaxation, yet are polynomial-time
computable. This is particularly promising for problems for which there is a gap
between known approximations and proven hardness of approximation (or when
the hardness relies on weaker assumptions than P �= NP ).

Unfortunately, since the work of Arora, Bollobás, Lovász, and Tourlakis [1]
on Vertex-Cover, there has been a long line of work showing that for various
problems, even after a large (super-constant) number of rounds, various hier-
archies do not yield smaller integrality gaps than a basic LP/SDP relaxation
(see, e.g. [38, 19, 37, 41, 8]). In particular, Raghavendra and Steurer [36] have
recently shown that a superconstant number of rounds of certain SDP hierar-
chies does not improve the integrality gap for any constraint satisfaction problem
(MAX-CSP).

In contrast, only few of the known results are positive, i.e. show that certain
hierarchies give a sequence of improvements in the integrality gap in their first
O(1) levels — this has been shown for Vertex-Cover in planar graphs [32], Max-
Cut in dense graphs [43], Knapsack [21, 6], and Maximum Matching [33]. There
are even fewer results where the improved approximation is the state-of-the-art
for the respective problem — such results include recent work on Chromatic
Number [15], Hypergraph Independent Set [16], and MaxMin Allocation [5].

In the context of bounded-treewidth graphs, a bounded number of rounds in
the Sherali-Adams hierarchy is known to be tight (i.e. give exact solutions) for
many problems that are tractable on this graph family, such as CSPs [44]. This
is only partially true for Sparsest-Cut — due to the exact same reason, we easily
find in the graph a cut whose edge capacity exactly matches the corresponding
expression in the LP. However, the demands are arbitrary (and in particular do
not have a bounded-treewidth structure), and analyzing them requires consid-
erably more work.

Hardness and integrality gaps for sparsest-cut. As mentioned earlier,
Sparsest-Cut is known to be NP-hard [34], and we further show in the full version
that it is even NP-hard on graphs of pathwidth 2. Two results [23, 9] indepen-
dently proved that under Khot’s unique games conjecture [22], the Sparsest-Cut
problem is NP-hard to approximate within any constant factor. However, the
graphs produced by the reductions in these two results have large treewidth.

The standard flow LP relaxation for Sparsest-Cut was shown in [29] to have
integrality gap Ω(log n) in expander graphs, even for uniform demands. Its stan-
dard strengthening to an SDP relaxation (the SDP used by the known approx-
imation algorithms of [3, 2]) was shown in [23, 25, 17] to have integrality gap
Ω(log log n), even for uniform demands. For the case of general demands, a
stronger bound (log n)Ω(1) was recently shown in [11]. Some of these results
were extended in [8, 36] to certain hierarchies and a nontrivial number of rounds,
even for uniform demands. Again, the graphs used in these results have large
treewidth.
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Integrality gaps for graphs of treewidth r (or excluding a fixed minor of size
r) follow from the above in the obvious way of replacing n with r (or so), for
instance, the standard flow LP has integrality gap Ω(log r). However, no stronger
gaps are known for these families; in particular, it is possible that the integrality
gap approaches 1 with sufficiently many rounds (depending on r, but not on n).

1.4 Discussion and Further Questions

We show that for the Sparsest-Cut problem, the Sherali-Adams (SA) LP hi-
erarchy can yield algorithms with better approximation ratio than previously
known. Moreover, our analysis exhibits a strong (but rather involved) connec-
tion between the input graph’s treewidth and the SA hierarchy level. Several
interesting questions arise immediately:

1. Can this approach be generalized to excluded-minor graphs?
2. Can the approximation factor be improved to an absolute constant (inde-

pendent of the treewidth)?

A particularly intriguing and more fundamental question is whether this hierar-
chy (or a related one, or for a different input family) is strictly stronger than the
standard LP (or SDP) relaxation. One possibility is that our relaxation can actu-
ally yield an absolute constant factor approximation (as in Question 2). Such an
approximation factor is shown in [8] to require at least Ω(log r) rounds of Sherali-
Adams, and we would conclude that hierarchies yield strict improvement —
higher (yet constant) levels of the Sherali-Adams hierarchy do give improved
approximation factors, for an increasing sequence of graph families. We note,
however, that this would require a different rounding algorithm (see Remark 2).
Another possibility is that the GNRS conjecture does not hold even for bounded
treewidth graphs, in which case the integrality gap of the standard LP exhibits
a dependence on n, while, as we prove here, the stronger LP does not.

2 Technical Overview

Relaxations arising from the Sherali-Adams (SA) hierarchy, and lift-and-project
techniques in general, are known to give LP (or SDP) solutions which satisfy the
following property: for every subset of variables of bounded size (bounded by the
level in the hierarchy used), the LP/SDP solution restricted to these variables
is a convex combination of valid {0, 1} assignments. Such a convex combination
can naturally be viewed as a distribution on local assignments. In our case, for
example, in an induced subgraph on r + 1 vertices S, an (r + 1)-level relaxation
gives a local distribution on assignments f : S → {0, 1} such that for every edge
(i, j) within S, the probability that f(i) �= f(j) is exactly the contribution of
edge (i, j) to the objective function (which we also call the LP-distance of this
pair). Our algorithm makes explicit use of this property, which is very useful for
treewidth r graphs.
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Given an (r + 3)-level Sherali-Adams relaxation, for every demand pair there
is some distribution which (within every bag) matches the local distributions
suggested by the LP, and also cuts/separates this demand pair (i.e. assigns dif-
ferent values to its endpoints) with the correct probability (the LP distance).
Unfortunately, there might not be any single distribution which is consistent
with all demand pairs, so instead our algorithm assigns {0, 1} values at random
to the vertices of the graph G in a stochastic process which matches the local
distributions suggested by the LP solution (per bag), but is oblivious to the
structure of the demands D.

Intuition. To achieve a good approximation ratio, it suffices to ensure that every
demand pair is cut with probability not much smaller than the its LP distance.
To achieve this, the algorithm fixes an arbitrary bag as the root, and traverses
the tree decomposition one bag at a time, from the root towards the leaves, and
samples the assignment to currently unassigned vertices in the current bag. This
assignment is sampled in a way that ignores all previous assignments to vertices
outside the current bag, but achieves the correct distribution on assignments
to the current bag. Essentially, the algorithm finds locally correct distributions
while maximizing the entropy of the overall distribution. Intuitively, this should
only “distort” the distribution suggested by the LP (for a given demand pair)
only by introducing noise, which (if the noise is truly unstructured) mixes the
correct global distribution with a completely random one in which every two ver-
tices are separated with probability 1

2 . In this case, the probability of separating
any demand pair would decrease by at most a factor 2. Unfortunately, we are
not able to translate this intuition into a formal proof (and on some level, it is
not accurate – see Remark 2). Thus we are forced to adopt a different strategy in
analyzing the performance of the rounding algorithm. Let us see one illustrative
special case.

Example: Simple Paths. Consider, for concreteness, the case of a single sim-
ple path v1, v2, . . . , vn. For every edge in the path (vi−1, vi), the LP suggests
cutting it (assigning different values) with some probability pi. Our algorithm
will perform the following Markov process: pick some assignment f(v1) ∈ {0, 1}
at random according to the LP, and then, at step i (for i = 2, . . . , n) look only
at the assignment f(vi−1) and let f(vi) = 1 − f(vi−1) with probability pi, and
f(vi) = f(vi−1) otherwise. Each edge has now been cut with exactly the prob-
ability corresponding to its LP distance. However, for (v1, vn), which could be
a demand pair, the LP distance between them might be much greater than the
probability qn = Pr[f(v1) �= f(vn)]. Let us see that the LP distance can only be
a constant factor more.

First, if the above probability satisfies qn ≥ 1
3 , then clearly we are done, as

all LP distances will be at most 1. Thus we may assume that qn ≤ 1
3 . Let us

examine what happens at a single step. Suppose the algorithm has separated
v1 from vi−1 with some probability qi−1 ≤ 1

3 (assuming that all qi ≤ 1
3 is a

somewhat stronger assumption than qn ≤ 1
3 , but a more careful analysis shows
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it is also valid). After the current step (flipping sides with probability pi), the
probability that vi is separated from v1 is exactly (1 − qi−1)pi + qi−1(1 − pi).
This is an increase over the previous value qi−1 of at least

[(1 − qi−1)pi + qi−1(1 − pi)] − qi−1 = (1 − 2qi−1)pi ≥ pi/3.

However, the LP distance from v1 can increase by at most pi (by triangle in-
equality). Thus, we can show inductively that we never lose more than a factor 3.

In general, our analysis will consider paths of bags of size r + 1. Even though
we can still express the distribution on assignments chosen by the rounding
algorithm as a Markov process (where the possible states at every step will be
assignments to some set of at most r vertices), it will be less straightforward to
relate the LP values to this process. It turns out that we can get a handle on
the LP distances by modeling the Markov process as a layered digraph H with
edges capacities representing the transitions (this is only in the analysis, or in
the derandomization of our algorithm). In this case the LP distance we wish
to bound becomes the value of a certain (s, t)-flow in H . We then bound the
flow-value from above by finding a small cut in H . Constructing and bounding
the capacity of such a cut in H constitutes the technical core of this work.

3 The Algorithm

3.1 An LP Relaxation Using the Sherali Adams Hierarchy

Let us start with an informal overview of the Sherali-Adams (SA) hierarchy. In
an LP relaxation for a 0–1 program, the linear variables {yi | i ∈ [n]} represent
linear relaxations of integer variables xi ∈ {0, 1}. We can extend such a relaxation
to include variables {yI} for larger subsets I ⊆ [n] (usually, up to some bounded
cardinality). These should be interpreted as representing the products

∏
i∈I xi

in the intended (integer) solution. Now, for any pair of sets I, J ⊆ [n], we will
denote by yI,J the linear relaxation for the polynomial

∏
i∈I(1 − xi)

∏
j∈J xj .

These can be derived from the variables yI by the inclusion-exclusion principle.
That is, we define

yI,J =
∑

I′⊆I(−1)|I
′|yI′∪J .

The constraints defined by the polytope SAt(n), that is, level t of the Sherali-
Adams hierarchy starting from the trivial n-dimensional LP, are simply the
inclusion-exclusion constraints:

∀I, J ⊆ [n] s.t. |I ∪ J | ≤ t : yI,J ≥ 0 (1)

For every solution other than the trivial (all-zero) solution, we can define a
normalized solution {ỹI} as follows:

ỹI = yI/y∅,

and the normalized derived variables ỹI,J can be similarly defined.
As is well-known, in a non-trivial level t Sherali-Adams solution, for every set

of (at most) t vertices, constraints (1) imply a distribution on {0, 1} assignments
to these vertices matching the LP values:
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Lemma 1. Let {yI} be a non-zero vector in the polytope SAt(n). Then for every
set L ⊆ [n] of cardinality |L| ≤ t, there is a distribution μL on assignments
f : L → {0, 1} such that for all I, J ⊆ L,

PrμL [(∀i ∈ I : f(i) = 0) ∧ (∀j ∈ J : f(j) = 1)] = ỹI,J .

In a Sparsest Cut relaxation, we are interested in the event in which a pair of
vertices is cut (i.e. assigned different values). This is captured by the following
linear variable:

yi	=j = y{i},{j} + y{j},{i}.

We can now define our relaxation for Sparsest Cut, SCr(G):

min
∑

(i,j)∈E

cap(i, j)yi	=j (2)

s.t.
∑

i,j∈D

dem(i, j)yi	=j = 1 (3)

{yI} ∈ SAr+3(n) (4)
yI,J = yJ,I ∀I, J s.t. |I ∪ J | ≤ r + 3 (5)

Note that constraint (3) is simply a normalization ensuring that the objective
function is really a relaxation for the ratio of the two sums. Also note that
constraint (5), which ensures that the LP solution is fully symmetric, does not
strengthen the LP, in the following sense: For any solution {y′

I} to the above
LP without constraint (5), a new solution to the symmetric LP (with the same
value in the objective function) can be achieved by taking yI = (y′

I + y′
I,∅)/2

without violating any of the other constraints. In particular, for every vertex
i ∈ V this gives ỹi = 1 − ỹi = 1

2 . While our results hold true without imposing
this constraint, we will retain it as it simplifies our analysis.

Remark 1. The size of this LP (and the time needed to solve it) is nO(r). Specifi-
cally for bounded-treewidth graphs, we could also formulate a much smaller LP,
where constraint (4) would be replaced with the condition {yI | I ⊆ B∪{i, j}} ∈
SAr+3(r + 3) for every bag B and demand pair (i, j) ∈ D. This would reduce
the size of the LP to (and time needed to solve it) to at most poly(2rn), and our
rounding algorithm and analysis would still hold.

3.2 Rounding the LP

Before we present the rounding algorithm, let us introduce some notation which
will be useful in describing the algorithm. This notation will allow us to easily
go back-and-forth between the LP solution and the local distributions on as-
signments described in Lemma 1. For ease of notation, whenever two functions
f1, f2 have disjoint domains, we will denote by f1 ∪ f2 the unique function from
the union of the domains which is an extension of both f1 and f2.

– For every set of vectors {yI} and subset L ⊆ [n] as in Lemma 1, we will
denote by μ

{yI}
L the distribution on random assignments to L guaranteed by
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the lemma. We will omit the superscript {yI}, and simply write μL, when it
is clear from the context.

– Conversely, for any fixed assignment f ′ : L → {0, 1}, we will write ỹf ′ =
ỹL0,L1, where Lb = {i ∈ L | f ′(i) = b} for b = 0, 1. Thus, for a random
assignment f : L → {0, 1} distributed according to μL, we have Pr[f =
f ′] = ỹf ′ .

– For any nonempty subset L′ ⊆ L, and a given assignment f0 : L\L′ → {0, 1}
in the support of μL\L′ , we will denote by μL′,f0 the distribution on random
assignments f ∼ μL conditioned on the partial assignment f0. Formally, a
random assignment f ′ : L′ → {0, 1}, distributed according to μL′,f0 satisfies
Prf ′ [f ′ = f1] = ỹf0∪f1/ỹf0 for every choice of f1 : L′ → {0, 1}.

Let G be an graph with treewidth r for some integer r > 0, and let (B, T ) be
the corresponding tree decomposition. Let {yI} be a vector satisfying SCr(G).
We now present the rounding algorithm:

Algorithm SC-Round(G, (B, T ), {yI}) [Constructs a random assignment f ]

1. Pick an arbitrary B0 ∈ B as the root of T , and sample f |B0 ∼ μB0 .
2. Traverse the rest of the tree T in any order from the root towards the

leaves. For each bag B traversed, do the following:
(a) Let B+ be the set of vertices in B for which f is already defined,

and let B− = B \B+. Let f0 be the existing assignment f0 = f |B+ .
(b) If B− is non-empty, sample f |B− at random according to μB−,f0 .

Let us first see that every edge (i, j) ∈ E is cut with probability exactly ỹi	=j .
Since every edge is contained in at least one bag, it suffices to show that within
every bag B, the assignment f |B is distributed according to μB. This is shown
by the following lemma, whose straightforward proof appears in the full version.

Lemma 2. For every bag B, the assignment f |B produced by running algorithm
SC-Round(G, (B, T ), {yI}) is distributed according to μB .

This lemma shows that the expected value of the cut is
∑

(i,j)∈E cap(i, j)ỹi	=j ,
which is exactly the value of the objective function (2) scaled by 1/y∅. In partic-
ular, for a host of other problems where the objective function and constraints
depend only on the edges (e.g. Minimum Vertex Cover, Chromatic Number),
this type of LP relaxation (normalized by setting y∅ = 1), along with the above
rounding, always produces an optimal solution for bounded-treewidth graphs.
Thus, in some sense, we consider this to be a “natural” rounding algorithm.

Before we analyze the expected value of the cut demands (or specifically, the
probability that each demand is cut), let us show that the order in which the
tree T is traversed has no effect on the distribution of cuts produced (it will
suffice to show a slightly weaker claim – that the joint distribution of cuts in
any two bags is not affected). This is shown in the following lemma, whose proof
appears in the appendix.

Lemma 3. Let B1, B2 ∈ B be two arbitrary bags. Then the distribution on as-
signments f |B1∪B2 is invariant under any connected traversal of T .
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4 Markov Flow Graphs

We show the following lemma, whose proof appears in the full version, which
together with Lemma 2 implies Theorem 1 (see Remark 3).

Lemma 4. For every integer r > 0 there exists a constant cr > 0 such that
for any treewidth-r graph G with tree decomposition (B, T ), and vectors {yI}
satisfying SCr(G), algorithm SC-Round(G, (B, T ), {yI}) outputs a random f :
V → {0, 1} s.t. for every i, j ∈ V ,

Pr[f(i) �= f(j)] ≥ cr ỹi	=j . (6)

Remark 2. The constant cr arising in our analysis is quite small (roughly 2−r2r

).
While we believe this can be improved, we cannot eliminate the dependence on r,
as a lower bound on the performance of our rounding algorithm (which appears
in the full version) shows that cr cannot be more than 2−r/2.

Remark 3. In fact, Lemmas 2 and 4 taken together show the following: Given
any solution to SCr(G) with objective function value α > 0, algorithm SC-Round
produces a random assignment f satisfying

E

⎡

⎣
∑

(i,j)∈E

cap(i, j) |f(i) − f(j)| − α
cr

∑

(i,j)∈D

dem(i, j) |f(i) − f(j)|

⎤

⎦ ≤ 0.

This means the algorithm produces a 1/cr-approximation with positive proba-
bility, but does not immediately imply a lower bound on that probability. Fortu-
nately, following the analysis in this section, the algorithm can be derandomized
by the method of conditional expectations, since, at each step, finding the prob-
ability of separating each demand pair reduces to calculating the probability of
reaching a certain state at a certain phase in some Markov process, which simply
involves multiplying O(n) transition matrices of size at most 2r × 2r (in fact,
these can be consolidated so that every step of the algorithm involves a total of
O(n|T |) small matrix multiplications for all demands combined, where T is the
set of vertices participating in demand pairs).

For vertices i, j ∈ V belonging to (at least) one common bag, Lemma 2 implies
equality in (6) for cr = 1. For i, j ∈ V which do not lie in the same bag, consider
the path of bags B1, . . . , BN in tree T from the (connected) component of bags
containing i to the component of bags containing j. By Lemma 3, we may assume
that the algorithm traverses the path in order from B1 to BN .

To understand the event that vertices i and j are separated, it suffices to
consider the following incomplete (but consistent) description of the stochastic
process involved: Let S0 = {i} and SN = {j}, and let Sl = Bl ∩ Bl+1 for
l = 1, . . . , N − 1. The algorithm assigns f(i) a value in {0, 1} uniformly at
random, and then for l = 1, . . . , N , samples f |Sl

from the distribution μSl,f |Sl−1

(we extend the definition of μS,f ′ in the natural way to include the case where
S may intersect the domain of f ′).
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This is a Markov process, and can be viewed as a Markov flow graph. That
is, a layered graph, where each layer consists of nodes representing the different
states (in this case, assignments to Sl), with exactly one unit of flow going from
the first to the last layer, with all edges having flow at full capacity. Since all
edges in the flow graph represent pairs of assignments within the same bag,
Lemma 2 implies that the capacity of an edge (transition) (f1, f2) is exactly
ỹf1∪f2 , and the amount of flow going through each node f0 is ỹf0 .

We now would like to analyze the contribution of a demand pair to the LP. By
constraint (5), this contribution (up to a factor dem(i, j)) is ỹi	=j = 2ỹ{i},{j} =
2ỹf∗ , where f∗ : {i, j} → {0, 1} is the function assigning 0 to i and 1 to j. Now
consider a layer graph as above where each edge (f1, f2) has flow ỹf∗∪f1∪f2 . To see
that this is indeed a flow, note that two consecutive layers along with i and j only
involve at most r+3 vertices in G, and so by Lemma 1 for any l > 0 and function
f2 : Sl → {0, 1} the incoming flow at f2 must be

∑

f1∈Sl−1

ỹf∗∪f1∪f2 = ỹf∗∪f2 ,

and so is the outgoing flow. The total flow in this graph is exactly ỹf∗ (half
the LP contribution ỹi	=j). Moreover, for each such edge (transition) we also
have ỹf∗∪f1∪f2 ≤ ỹf1∪f2 . Hence, the flow with values {ỹf∗∪f1∪f2} is a legal flow
respecting the capacities {ỹf1∪f2} in the Markov flow graph which represents the
rounding algorithm.

Thus it suffices to show the following theorem (proved in the full version):

Theorem 2. For every integer k > 1, there is a constant C = C(k) > 0 such
that for any symmetric Markov flow graph G = (L0, . . . , LN , E) representing a
Markov process X0, . . . , XN with sources L0 = {s0, s1} and sinks LN = {t0, t1}
and at most k nodes per layer, the total amount of capacity-respecting flow in G
from s0 to t1 can be at most C · Pr[X0 = s0 ∧ XN = t1].

Applying this theorem to the Markov flow graph described above with k = 2r

immediately implies Lemma 4. As usual, to bound the amount of flow in a graph
from above, it suffices to find a suitable cut. See the full version for details.

Acknowledgments. We would like to thank Claire Mathieu for a series of
helpful conversations.
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