


Lecture Notes in Computer Science 6302
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Maria Serna Ronen Shaltiel
Klaus Jansen José Rolim (Eds.)

Approximation,
Randomization,
and Combinatorial
Optimization

Algorithms and Techniques

13th International Workshop, APPROX 2010
and 14th International Workshop, RANDOM 2010
Barcelona, Spain, September 1-3, 2010
Proceedings

13



Volume Editors

Maria Serna
Universitat Politècnica de Catalunya
Dept. de Llenguatges i Sistemes Informàtics
Jordi Girona Salgado, 1-3, 08034 Barcelona, Spain
E-mail: mjserna@lsi.upc.edu

Ronen Shaltiel
University of Haifa, Department of Computer Science
Mount Carmel, Haifa 31905, Israel
E-mail: ronen@cs.haifa.ac.il

Klaus Jansen
University of Kiel, Department of Computer Science
Olshausenstrasse 40, 24098 Kiel, Germany
E-mail: kj@informatik.uni-kiel.de

José Rolim
University of Geneva, Centre Universitaire d’Informatique
Battelle Bat. A, 7 rte de Drize, 1227 Carouge, Switzerland
E-mail: jose.rolim@unige.ch

Library of Congress Control Number: 2010932674

CR Subject Classification (1998): F.2, E.1, G.2, I.3.5, F.1, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15368-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15368-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

This volume contains the papers presented at the 13th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2010) and the 14th International Workshop on Randomization and
Computation (RANDOM 2010), which took place concurrently in Universitat
Politècnica de Catalunya (UPC) Barcelona, Spain, during September 1–3, 2010.
APPROX focuses on algorithmic and complexity issues surrounding the devel-
opment of efficient approximate solutions to computationally difficult problems,
and was the 13th in the series after Aalborg (1998), Berkeley (1999), Saar-
brücken (2000), Berkeley (2001), Rome (2002), Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008) and
Berkeley (2009). RANDOM is concerned with applications of randomness to
computational and combinatorial problems, and was the 14th workshop in the se-
ries following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000),
Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berkeley
(2005), Barcelona (2006), Princeton (2007), Boston (2008), and Berkeley (2009).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space algorithms,
sub-linear time algorithms, streaming algorithms, embeddings and metric space
methods, mathematical programming methods, combinatorial problems in graphs
and networks, game theory, markets and economic applications, geometric prob-
lems, packing, covering, scheduling, approximate learning, design and analy-
sis of randomized algorithms, randomized complexity theory, pseudorandomness
and derandomization, random combinatorial structures, random walks/Markov
chains, expander graphs and randomness extractors, probabilistic proof systems,
random projections and embeddings, error-correcting codes, average-case anal-
ysis, property testing, computational learning theory, and other applications of
approximation and randomness.

The volume contains 28 contributed papers, selected by the APPROX Pro-
gram Committee out of 66 submissions, and 29 contributed papers, selected by
the RANDOM Program Committee out of 61 submissions.

We would like to thank all of the authors who submitted papers and the
members of the Program Committees, and the external Reviewers.

We gratefully acknowledge the support from the Software Department the
Universitat Politecnica de Catalunya in Barcelona, the Department of Computer
Science at the University of Haifa in Israel, the Institute of Computer Science
of the Christian-Albrechts-Universität zu Kiel and the Department of Computer
Science of the University of Geneva.



VI Preface

We also thank the support of the Technical University of Catalonia and the
Spanish Ministry of Science and Innovation.

Finally, many thanks to Parvaneh Karimi-Massouleh for editing the
proceedings.

September 2010 Maria Serna
Ronen Shaltiel
Klaus Jansen

José D.P. Rolim
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Approximation Algorithms for the Bottleneck
Asymmetric Traveling Salesman Problem

Hyung-Chan An1,�, Robert D. Kleinberg1,��, and David B. Shmoys2,���

1 Dept. of Computer Science
Cornell University, Ithaca, NY 14853

{anhc,rdk}@cs.cornell.edu
2 School of ORIE and Dept. of Computer Science

Cornell University, Ithaca, NY 14853
shmoys@cs.cornell.edu

Abstract. We present the first nontrivial approximation algorithm for
the bottleneck asymmetric traveling salesman problem. Given an asym-
metric metric cost between n vertices, the problem is to find a Hamilto-
nian cycle that minimizes its bottleneck (or maximum-length edge) cost.
We achieve an O(log n/ log log n) approximation performance guaran-
tee by giving a novel algorithmic technique to shortcut Eulerian circuits
while bounding the lengths of the shortcuts needed. This allows us to
build on the recent result of Asadpour, Goemans, M ↪adry, Oveis Gha-
ran, and Saberi to obtain this guarantee. Furthermore, we show how our
technique yields stronger approximation bounds in some cases, such as
the bounded orientable genus case studied by Oveis Gharan and Saberi.

Keywords: Approximation algorithms, traveling salesman problem,
bottleneck optimization.

1 Introduction

In this paper, we study the bottleneck asymmetric traveling salesman problem;
that is, in contrast to the variant of traveling salesman problem most commonly
studied, the objective is to minimize the maximum edge cost in the tour, rather
than the sum of the edge costs. Furthermore, while the edge costs satisfy the tri-
angle inequality, we do not require that they be symmetric, in that the distance
from point a to point b might differ from the distance from b to a. The triangle
inequality is naturally satisfied by many cost functions; for example, minimizing
the longest interval between job completions in the no-wait flow-shop reduces

� Research supported in part by NSF under grants no. CCR-0635121, DMS-0732196,
CCF-0832782, CCF-0729102 and the Korea Foundation for Advanced Studies.

�� Supported by NSF grants no. CCF-0643934 and CCF-0729102, a grant from the
Air Force Office of Scientific Research, a Microsoft Research New Faculty Fellow-
ship, and an Alfred P. Sloan Foundation Fellowship.

��� Research supported in part by NSF under grants no. CCR-0635121, DMS-0732196,
CCF-0832782.

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 1–11, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 H.-C. An, R.D. Kleinberg, and D.B. Shmoys

to the bottleneck asymmetric traveling salesman problem under a metric cost.
The bottleneck asymmetric traveling salesman problem cannot be approximated
within a reasonable factor without assuming the triangle inequality. Surprisingly,
no approximation algorithm was previously known to deliver solutions within an
o(n) factor of optimal, where n denotes the number of nodes in the input. We
present the first nontrivial approximation algorithm for the bottleneck asymmet-
ric traveling salesman problem, by giving an O(log n/ log log n)-approximation
algorithm. At the heart of our result is a new algorithmic technique for con-
verting Eulerian circuits into tours while introducing “shortcuts” that are of
bounded length.

For any optimization problem defined in terms of pairwise distances between
nodes, it is natural to consider both the symmetric case and the asymmetric
one, as well as the min-sum variant and the bottleneck one. The standard (min-
sum symmetric) traveling salesman problem (TSP) has been studied extensively
[18], and for approximation algorithms, Christofides’ 3/2-approximation algo-
rithm [5] remains the best known guarantee, and yet the strongest NP-hardness
result, due to Papadimitriou and Vempala [22], states that the existence of a ρ-
approximation algorithm with ρ < 220/219, implies that P=NP. In contrast, for
the bottleneck symmetric TSP, Lau [17], and Parker & Rardin [23], building on
structural results of Fleischner [7], give a 2-approximation algorithm, and based
on the metric in which all costs are either 1 or 2, it is easy to show that, for any
ρ < 2, the existence of a ρ-approximation algorithm implies that P=NP. For the
asymmetric min-sum problem, Frieze, Galbiati, and Maffioli [8] gave the first
O(log n)-approximation algorithm, which is a guarantee that was subsequently
matched by work of Kleinberg and Williamson [16], and only recently improved
upon by work of Asadpour, Goemans, M ↪adry, Oveis Gharan, and Saberi [3].

This cross-section of results is mirrored in other optimization settings. For
example, for the min-sum symmetric k-median problem in which k points are
chosen as “medians” and each point is assigned to its nearest median, Arya,
Garg, Khandekar, Meyerson, Munagala, and Pandit [2] give a ρ-approximation
algorithm for each ρ > 3, whereas Jain, Mahdian, Markakis, Saberi and Vazi-
rani prove hardness results for ρ < 1 + 2/e [14]. In contrast, for the bottleneck
symmetric version, the k-center problem, Hochbaum and Shmoys [12] gave a
2-approximation algorithm, whereas Hsu and Nemhauser [13] showed the NP-
hardness of a performance guarantee of ρ < 2. For the asymmetric k-center, a
matching upper and lower bound of Θ(log∗ n) for the best performance guarantee
was shown by Panigrahy & Vishwanathan [21] and Chuzhoy, Guha, Halperin,
Khanna, Kortsarz, Krauthgamer & Naor [6], respectively. In contrast, for the
asymmetric k-median problem, a bicriterion result which allowed a constant fac-
tor increase in cost with a logarithmic increase in the number of medians was
shown by Lin and Vitter [19], and a hardness tradeoff matching this (up to
constant factors) was proved by Archer [1].

In considering these comparative results, there is a mixed message as to
whether a bottleneck problem is easier or harder to approximate than its
min-sum counterpart. On the one hand, for any bottleneck problem, one can
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immediately reduce the optimization problem with cost data to a more combi-
natorially defined question, since there is the trivial relationship that the optimal
bottleneck solution is of objective function value at most T if and only if there
exists a feasible solution that uses only those edges of cost at most T . Fur-
thermore, there are only a polynomial number of potential thresholds T , and
so a polynomial-time algorithm that answers this purely combinatorial decision
question leads to a polynomial-time optimization algorithm.

For a ρ-approximation algorithm, it is sufficient for the algorithm to solve
a “relaxed” decision question: either provide some certificate that no feasible
solution exists, or produce a solution in which each edge used is of cost at most
ρT . If G denotes the graph of all edges of cost at most T , then the triangle
inequality implies that it is sufficient to find feasible solutions within Gρ, the
ρth power of G, in which we include an edge (u, v) whenever G contains a path
from u to v with at most ρ edges. In the context of the TSP, this means that we
either want to prove that G is not Hamiltonian, or else to produce a Hamiltonian
cycle within, for example, the square of G (to yield a 2-approximation algorithm
as in [17,23]).

Unfortunately, the techniques invented in the context of the min-sum problem
do not seem to be amenable to bottleneck objective function. For example, the
analysis of the O(log n)-approximation algorithm for the min-sum asymmetric
TSP due to Kleinberg and Williamson [16] depends crucially on the monotonic-
ity of the optimal value over the vertex-induced subgraphs, and the fact that
shortcutting a circuit does not increase the objective. That fact clearly is not true
in the bottleneck setting: shortcutting arbitrary subpaths of a circuit may result
in a tour that is valid only in a higher-order power graph. The aforementioned
monotonicity is also lost as it relies on this fact as well.

In order to resolve this difficulty, we devise a condition on Eulerian circuits
under which we can limit the lengths of the paths that are shortcut to obtain a
Hamiltonian cycle. We will present a polynomial-time constructive proof of this
condition using Hall’s Transversal Theorem [10]; this proof is directly used in
the algorithm. One of the special cases of the condition particularly worth men-
tioning is a degree-bounded spanning circuit (equivalently, an Eulerian spanning
subgraph of bounded degree). If there exists a bound k on the number of oc-
currences of any vertex in a spanning circuit, our theorem provides a bound of
2k − 1 on the length of the shortcut paths.

We will then show how thin trees defined in Asadpour et al. [3] can be used
to compute these degree-bounded spanning circuits. An α-thin tree with respect
to a weighted graph G is a unit-weighted spanning tree of G whose cut weights
are no more than α times the corresponding cut weights of G. The min-sum
algorithm due to Asadpour et al. [3] augments an O(log n/ log log n)-thin tree
with respect to a (scaled) Held-Karp solution (Held and Karp [11]) into a span-
ning Eulerian graph by solving a circulation problem. The Held-Karp relaxation
is a linear program consisting of the equality constraints on the in- and out-
degree of each vertex and the inequality constraints on the directed cut weights:
the equality constraints set the degrees to one, and the inequality constraints
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ensure that the total weight of edges leaving S is at least 1 for each subset S.
We introduce vertex capacities to the circulation problem to impose the desired
degree bound without breaking the feasibility of the circulation problem. This
leads to an algorithm that computes degree-bounded spanning circuits with an
O(log n/ log log n) bound.

Recently, Oveis Gharan and Saberi [20] gave an O(1)-approximation algo-
rithm for the min-sum asymmetric TSP when the support of the Held-Karp
solution can be embedded on an orientable surface with a bounded genus. They
achieved this by showing how to extract an O(1)-thin tree in this special case.
Our result can be combined with this to yield an O(1)-approximation algorithm
for the bottleneck asymmetric TSP when the support of the Held-Karp solution
has a bounded orientable genus. Chekuri, Vondrák, and Zenklusen [4] showed
that an alternative sampling procedure can be used to find the thin tree in
Asadpour et al. [3].

Section 2 of this paper reviews some notation and previous results, and
Section 3 describes the O(log n/ log log n)-approximation algorithm to the bot-
tleneck asymmetric traveling salesman problem. Section 4 examines the special
case when the support of the Held-Karp solution can be embedded on an ori-
entable surface with a bounded genus. Some open questions are discussed in
Section 5.

2 Preliminaries

We introduce some notation and review previous results in this section. Some
notation was adopted from Asadpour et al. [3]

Let G = (V, A) be a digraph and E be the underlying undirected edge set:
{u, v} ∈ E if and only if 〈u, v〉 ∈ A or 〈v, u〉 ∈ A. For S ⊂ V , let

δ+(S) := {〈u, v〉 ∈ A | u ∈ S, v /∈ S},
δ−(S) := δ+(V \ S),

δ(S) := {{u, v} ∈ E | |E ∩ S| = 1};

for v ∈ V ,

δ+(v) := δ+({v}),
δ−(v) := δ−({v}),

δ(v) := δ({v});

for B ⊂ A and x ∈ RA,
x(B) :=

∑
b∈B

xb;

similarly, for F ⊂ E and z ∈ RE ,

z(F ) :=
∑
f∈F

zf .



Approximation Algorithms for the Bottleneck Asymmetric TSP 5

We need a notion of the non-Hamiltonicity certificate to solve the “relaxed” de-
cision problem. We establish this certificate by solving the Held-Karp relaxation
([11]) in our algorithm. The Held-Karp relaxation to the asymmetric traveling
salesman problem is the following linear program (we do not define an objective
here): ⎧⎪⎨⎪⎩

x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V

x(δ+(S)) ≥ 1 ∀S � V, S 	= ∅
x ≥ 0.

(1)

A graph is non-Hamiltonian if (1) is infeasible. This linear program can be solved
in polynomial time [9].

A thin tree is defined as follows in Asadpour et al. [3].

Definition 1. A spanning tree T is α-thin with respect to z∗ ∈ RE if |T∩δ(U)| ≤
αz∗(δ(U)) for all U ⊂ V .

Asadpour et al. [3] then prove Theorem 1: they show the thinness for z∗uv :=
n−1

n (x∗
uv + x∗

vu) where n = |V |, and Theorem 1 is only weaker.

Theorem 1. There exists a probabilistic algorithm that, given an extreme point
solution x∗ ∈ RA to the Held-Karp relaxation, produces an α-thin tree T with
respect to z∗uv := x∗

uv + x∗
vu with high probability, for α = 4 ln n

ln ln n .

Let T→ be a directed version of T , obtained by choosing the arcs in the support
of x∗. If arcs exist in both directions, an arbitrary choice can be made. Consider
a circulation problem on G: recall that the circulation problem requires, given
a lower and upper bound on each arc, a set of flow values on arcs such that
the sum of the incoming flows at every vertex matches the sum of outgoing,
while honoring both bounds imposed on each arc. When all of the bounds are
integers, an integral solution can be found in polynomial time unless the problem
is infeasible [24]. Here we consider an instance where the lower bounds l and
upper bounds u on the arcs are given as follows:

l(a) =

{
1 if a ∈ T→
0 otherwise

u(a) =

{
1 + 2αx∗

a if a ∈ T→
2αx∗

a otherwise.

(2)

Asadpour et al. [3] show that this problem is feasible; the existence of an integral
circulation under the rounded-up bounds follows from that.

Lemma 1. The circulation problem defined by (2) is feasible.

3 Algorithm

This section gives the O( log n
log log n )-approximation algorithm to the bottleneck

asymmetric traveling salesman problem and its analysis. We present the lemmas
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to bound the lengths of the paths that are shortcut in the process of transforming
a spanning circuit into a Hamiltonian cycle; we also show how a degree-bounded
spanning circuit can be constructed.

Lemma 2. Let v1, . . . , vm, v1 be a (non-simple) circuit that visits every vertex at
least once. Partition v1, . . . , vm into contiguous subsequences of length k, except
for the final subsequence whose length may be less than k. Denote the pieces of
this partition by P1, . . . , P�. If, for all t, the union of any t sets in {P1, . . . , P�}
contains at least t distinct vertices, G2k−1 is Hamiltonian.

Proof. From Hall’s Transversal Theorem [10], if the given condition holds,
{P1, . . . , P�} has a transversal: i.e., we can choose one vertex from each piece
Pi such that no vertex is chosen more than once. If we take any subsequence of
v1, . . . , vm that contains every vertex exactly once and includes all of the vertices
in the transversal, this subsequence is a Hamiltonian cycle in G2k−1. This is be-
cause any two contiguous vertices chosen in the transversal are at most 2k − 1
arcs away. Since a transversal can be found in polynomial time (see Kleinberg
and Tardos [15]), a Hamiltonian cycle can be constructed in polynomial time as
well. �

Lemma 3 shows that a degree-bounded spanning circuit forms a special case of
Lemma 2.

Lemma 3. Given a circuit on G that visits every vertex at least once and at
most k times, a Hamiltonian cycle on G2k−1 can be found in polynomial time.

Proof. Consider {P1, . . . , P�} as defined in Lemma 2. For any t sets in {P1, . . . , P�},
the sum of their cardinalities is strictly greater than (t − 1)k. If their union con-
tained only t − 1 distinct vertices, then by the pigeonhole principle there would
be some vertex that occurs at least k + 1 times, violating the upper bound on the
number of occurrences of any vertex in the circuit.

Thus, by Lemma 2, there exists a Hamiltonian cycle in G2k−1, and this can
be found in polynomial time. �

Now we show how to construct a degree-bounded spanning circuit.

Lemma 4. Let x∗ be a feasible solution to the Held-Karp relaxation. Given an
α-thin tree T with respect to z∗uv := x∗

uv + x∗
vu, a circuit on G with every vertex

visited at least once and at most �4α� times can be found in polynomial time.

Proof. We modify the circulation problem defined in (2) by introducing vertex
capacities to the vertices: every vertex v is split into two vertices vi and vo,
where all the incoming edges are connected to vi and the outgoing edges are
from vo. We set the vertex capacity u(〈vi, vo〉) as

∑
a:tail(a)=v u(a). (See Fig. 1.)

It is easy to see that this modification does not change the feasibility; thus, from
Lemma 1, this new circulation problem instance is also feasible.

Rounding up all u values of this instance preserves the feasibility and guaran-
tees the existence of an integral solution. By contracting split vertices back in the
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Fig. 1. Introducing vertex capacities

integral solution, we obtain a spanning Eulerian subgraph of G = (V, A) (with
arcs duplicated) whose maximum indegree is at most maxv∈V �

∑
a:tail(a)=v u(a)�.

Observe that, for any v ∈ V ,∑
a:tail(a)=v

u(a) = |{a ∈ T→ | tail(a) = v}|+
∑

a:tail(a)=v

2αx∗
a

≤ αz∗(δ(v)) + 2αx∗(δ+(v))
= 4α.

Thus, we can find a spanning Eulerian subgraph of G = (V, A) whose maximum
degree is at most �4α�, given the α-thin tree T . Any Eulerian circuit of this
graph will satisfy the desired property. �

Theorem 1 and Lemmas 3 and 4 yield the algorithm.

Theorem 2. There exists a probabilistic O( log n
log log n )-approximation algorithm

for the bottleneck asymmetric traveling salesman problem under a metric cost.

Proof. Let A≤τ := {〈u, v〉 | c(u, v) ≤ τ} and G≤τ := (V, A≤τ ). The algorithm
first determines the minimum τ such that the Held-Karp relaxation for G≤τ is
feasible. Let τ∗ be this minimum. If τ1 ≤ τ2 and the Held-Karp relaxation for
G≤τ2 is infeasible, the relaxation for G≤τ1 is also infeasible; therefore, τ∗ can
be discovered by binary search. Note that τ∗ can serve as a lower bound on the
optimal solution value.

Once τ∗ is determined, we compute an extreme point solution x∗ to the Held-
Karp relaxation for G≤τ∗ . Then we sample an α-thin tree T with respect to
z∗uv := x∗

uv + x∗
vu for α = 4 ln n

ln ln n . By Theorem 1, this can be performed in
polynomial time with high probability.
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Then the algorithm constructs the circulation problem instance described in
the proof of Lemma 4 and finds an integral solution. Lemma 4 shows that any
Eulerian circuit of this integral solution is a spanning circuit where no vertex
appears more than �4α� times.

Let {P1, . . . , P�} be the partition of this spanning circuit as defined in Lemma 2
for k = �4α�. The algorithm computes a transversal of {P1, . . . , P�} and aug-
ments it into a Hamiltonian cycle C in G2�4α�−1. By the triangle inequality, the
cost of C is at most (2�4α�−1)·τ∗; thus, C is a (2�4α�−1)-approximate solution
to the given input. Note that 2�4α� − 1 = 2� 16 ln n

ln lnn � − 1 = O( log n
log log n ).

The foregoing is a probabilistic O( log n
log log n )-approximation algorithm for the

bottleneck asymmetric traveling salesman problem under a metric cost. �

4 Special Case

In this section, we illustrate how our framework can be used together with other
results to yield a stronger approximation guarantee in certain special cases.
Lemmas 3 and 4 imply the following theorem.

Theorem 3. If an f(n)-thin tree can be found in polynomial time for a certain
class of metric, an O(f(n))-approximation algorithm exists for the bottleneck
asymmetric traveling salesman problem under the same class of metric.

In particular, Oveis Gharan and Saberi [20] investigate the case when the Held-
Karp solution can be embedded on an orientable surface with a bounded genus;
Oveis Gharan and Saberi [20], in addition to an O(1)-approximation algorithm
for the min-sum problem, show the following:

Theorem 4. Given a feasible solution x∗ ∈ RA to the Held-Karp relaxation,
let z∗uv := x∗

uv + x∗
vu. If the support of z∗ can be embedded on an orientable

surface with a bounded genus, an α-thin tree with respect to z∗ can be found in
polynomial time, where α is a constant that depends on the bound on the genus.

Theorems 3 and 4 together imply the following.

Corollary 1. There exists an O(1)-approximation algorithm for the bottleneck
asymmetric traveling salesman problem when the support of the Held-Karp so-
lution can be embedded on an orientable surface with a bounded genus.

5 Open Questions

Given that the bottleneck symmetric TSP is 2-approximable [7,17,23], a naturally
following question is if the asymmetric version also admits a 2-approximation al-
gorithm. The algorithms for the symmetric case are based on the fact that the
square of a 2-connected graph is Hamiltonian. One could regard the analogue of
2-connectedness of an undirected graph in a digraph as the following property:
for any two vertices, there exists a simple directed cycle that includes both ver-
tices. However, unfortunately, there exists such a graph that is non-Hamiltonian.
In fact, for any constant k and p, the following can be shown:
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Theorem 5. For any constant k, p ∈ N, there exists a digraph G = (V, A) such
that:

(i) for all u, v ∈ V , there exist k paths P1, . . . , Pk from u to v and k
paths Q1, . . . , Qk from v to u such that P1, . . . , Pk, Q1, . . . , Qk are
internally vertex-disjoint;

(ii) Gp is non-Hamiltonian.

As this approach appears unpromising, one could instead ask if some constant-
order power of a graph whose Held-Karp relaxation is feasible is Hamiltonian.

Question 1. Does there exist a constant p such that the pth power of any digraph
with a feasible Held-Karp relaxation is Hamiltonian?

One plausible way to affirmatively answer Question 1 is by proving that a graph
whose Held-Karp relaxation is feasible contains a spanning circuit that satisfies
the property of Lemma 2; Lemma 3 might be helpful in this. In particular, if
there exists an efficient procedure that computes an O(1)-thin tree with respect
to the Held-Karp solution, that would affirm Question 1.

Considering the undirected case, we can show that the set of graphs whose
Held-Karp relaxation is feasible is a proper subset of the set of 2-connected
graphs (see Theorem 6 for one direction); therefore, it is conceivable that one
could attain a simpler proof that the square of a graph whose Held-Karp relax-
ation is feasible is Hamiltonian. Such a proof may provide inspiration for the
asymmetric case.

Theorem 6. For an undirected graph G = (V, E), if the linear system⎧⎪⎨⎪⎩
z(δ(v)) = 2 ∀v ∈ V

z(δ(S)) ≥ 2 ∀S � V, S 	= ∅
z ≥ 0.

(3)

has a feasible solution z∗ ∈ RE, G is 2-connected.

Proof. This proof borrows some idea from the proof of Lemma 4.
Let G′ = (V, A) be the digraph obtained from G by replacing each edge

with two arcs in both directions. Consider a flow network on G′, where the arc
capacity is given as the z∗ value of the underlying edge.

For any u, v ∈ V , a flow of 2 can be routed from u to v on this network. Let
f ∈ RA be this flow. Without loss of generality, we can assume that

∀{x, y} ∈ E f(x, y) = 0 or f(y, x) = 0. (4)

We drop the arcs on which the flow is zero from the network.
Let x be an arbitrary vertex other than u or v. Note that, from (4), the sum

of the capacities of the arcs incident to/from x is at most 2. From the flow
conservation, the incoming flow into x is at most 1; thus, introducing the vertex
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capacity of 1 to every vertex other than u and v does not break the feasibility
of f .

Now we round up all of the capacities, and there exists an integral flow of
value 2 from u to v on this flow network. This proves the existence of two
vertex-disjoint paths from u to v. �
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Abstract. We show that it is Unique Games-hard to approximate the
maximum of a submodular function to within a factor 0.695, and that
it is Unique Games-hard to approximate the maximum of a symmet-
ric submodular function to within a factor 0.739. These results slightly
improve previous results by Feige, Mirrokni and Vondrák (FOCS 2007)
who showed that these problems are NP-hard to approximate to within
3/4 + ε ≈ 0.750 and 5/6 + ε ≈ 0.833, respectively.

1 Introduction

Given a ground set U , consider the problem of finding a set S ⊆ U which
maximizes some function f : 2U → R+ which is submodular, i.e., satisfies

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ).

for every S, T ⊆ U . The submodularity property is also known as the property
of diminishing returns, since it is equivalent with requiring that, for every S ⊂
T ⊆ U and i ∈ U \ T , it holds that

f(T ∪ {i})− f(T ) ≤ f(S ∪ {i})− f(S).

There has been a lot of attention on various submodular optimization problems
throughout the years (e.g., [8,7,3], see also the first chapter of [10] for a more
thorough introduction). Many natural problems can be cast in this general form
– examples include natural graph problems such as maximum cut, and many
types of combinatorial auctions and allocation problems.

A further restriction which is also very natural to study is symmetric submod-
ular functions. These are functions which satisfy f(S) = f(S) for every S ⊆ U ,
i.e., a set and its complement always have the same value. A well-studied exam-
ple of a symmetric submodular maximization problem is the problem to find a
maximum cut in a graph.

Since it includes familiar NP-hard problems such as maximum cut as a spe-
cial case, submodular maximization is in general NP-hard, even in the symmetric
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case. As a side note, a fundamental and somewhat surprising result is that sub-
modular minimization has a polynomial time algorithm [5].

To cope with this hardness, there has been much focus on efficiently finding
good approximate solutions. We say that an algorithm is an α-approximation
algorithm if it is guaranteed to output a set S for which f(S) ≥ α · f(SOPT)
where SOPT is an optimal set. We also allow randomized algorithms in which
case we only require that the expectation of f(S) (over the random choices of
the algorithm) is at least α · f(SOPT).

In many special cases such as the maximum cut problem, it is very easy to
design a constant factor approximation (in the case of maximum cut it is easy
to see that a random cut is a 1/2-approximation). For the general case of an
arbitrary submodular functions, Feige et al. [3] gave a (2/5−o(1))-approximation
algorithm based on local search, and proved that a uniformly random set is a 1/2-
approximation for the symmetric case. The (2/5−o(1))-approximation has been
slightly improved by Vondrák [9] who achieved a 0.41-approximation algorithm,
which is currently the best algorithm we are aware of.

Furthermore, [3] proved that in the (value) oracle model (where the submod-
ular function to be maximized is given as a black box), no algorithm can achieve
a ratio better than 1/2 + ε, even in the symmetric case. However, this result
says nothing about the case when one is given an explicit representation of the
submodular function – say, a graph in which one wants to find a maximum
cut. Indeed, in the case of maximum cut there is in fact a 0.878-approximation
algorithm, as given by a famous result of Goemans and Williamson [4]. In the
explicit representation model, the best current hardness results, also given by [3],
are that it is NP-hard to approximate the maximum of a submodular function
to within 3/4 + ε in the general case and 5/6 + ε in the symmetric case.

1.1 Our Results

In this paper we slightly improve the inapproximability results of [3]. However, as
opposed to [3] we do not obtain NP-hardness but only hardness assuming Khot’s
Unique Games Conjecture (UGC) [6]. The conjecture asserts that a problem
known as Unique Games, or Unique Label Cover, is very hard to approximate.
See e.g. [6] for more details. While the status of the UGC is quite open, our results
still imply that obtaining efficient algorithms that beat our bounds would require
a fundamental breakthrough.

For general submodular functions we prove the following theorem.

Theorem 1. It is UG-hard to approximate the maximum of a submodular func-
tion to within a factor 0.695.

In the case of symmetric functions we obtain the following bound.

Theorem 2. For every ε > 0 it is UG-hard to approximate the maximum of a
symmetric submodular function to within a factor 709/960 + ε < 0.739.



14 P. Austrin

These improved inapproximability results still fall short of coming close to the
1/2-barrier in the oracle model. Unfortunately, while marginal improvments of
our results may be possible, we do not believe that our approach can come
close to a factor 1/2. It remains a challenging and interesting open question
to determine the exact approximability of explicitly represented submodular
functions.

1.2 Our Approach

As in [3], the starting point of our approach is hardness of approximation for
constraint satisfaction problems (CSPs), an area which, due to much progress
during the last 15 years, is today quite well understood. Here it is useful to take a
slightly different viewpoint. Instead of thinking of the family of subsets 2U of U ,
we consider the set of binary strings {0, 1}n of length n = |U |, indentified with
2U in the obvious way. These views are of course equivalent and throughout the
paper we shift between them depending on which view is the most convenient.

For a string x ∈ {0, 1}n and a k-tuple C ∈ [n]k of indices, let xC ∈ {0, 1}k

denote the string of length k which, in position j ∈ [k] has the bit xCj . Now,
given a function f : {0, 1}k → R+, we define the problem Max CSP

+(f) as
follows. An instance of Max CSP

+(f) consists of a list of k-tuples of variables
C1, . . . , Cm ∈ [n]k. These specify a function F : {0, 1}n → R+ by

F (x) =
1
m

m∑
i=1

f(xCi)

and the problem is to find an x ∈ {0, 1}n to maximize x.
Note that if f is submodular then every instance F of Max CSP

+(f) is sub-
modular and Max CSP

+(f) is a special case of the submodular maximization
problem.

Next, we use a variation of a result by the author and Mossel [2]. The result
of [2] is for CSPs where one allows negated literals1, which can not be allowed
in the context of submodular maximization. However, in Theorem 3 we give a
simple analogue of the result of [2] for the Max CSP

+(f) setting.
Roughly speaking the hardness result says the following. Suppose that there

is a pairwise independent distribution μ such that the expectation of f under μ
is at least c, but that the expectation of f under the uniform distribution is at
most s. Then Max CSP

+(f) is UG-hard to approximate to within a factor of
s/c.

The hardness result suggests the following natural approach: take a pairwise
independent distribution μ with small support, and let 1μ : {0, 1}k → {0, 1}
be the indicator function of the support of μ. Then take f to be a “minimum
submodular upper bound” to 1μ, by which we mean a submodular function
satisfying f(x) ≥ 1μ(x) for every x while having small expectation under the
uniform distribution.
1 Where each “constraint” f(xCi) of F is of the more general form f(xCi + li) for

some li ∈ {0, 1}k, where + is interpreted as addition over GF (2)k.
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To make this plan work, there are a few small technical complications (hidden
in the “roughly speaking” part of the description of the hardness result above)
that we need to overcome, making the final construction slightly more compli-
cated. Unfortunately, understanding the “minimum submodular upper bound”
of the families of indicator functions that we use appears difficult, and to obtain
our results, we resort to explicitly computing the resulting submodular functions
for small k.

Let us compare our approach with that of [3]. As mentioned above, their start-
ing point is also hardness of approximation for constraint satisfaction. However,
here their approach diverges from ours: they construct a gadget reduction from
the k-Lin problem (linear equations mod 2 where each equation involves only k
variables). This gadget introduces two variables x0

i and x1
i for every variable xi

in the k-Lin instance, where xj
i is intended to be an indicator of the event that

xi = j. Each equation xi1⊕. . .⊕xik
= b is replaced by some submodular function

f on the 2k new variables corresponding to the xij ’s. The analysis then has to
make sure that there is always an optimal assignment where for each i exactly
one of x0

i and x1
i equals 1, which for the inapproximability of 3/4 becomes quite

delicate. In our approach, which we feel is more natural and direct, we don’t run
into any such issues.

1.3 Organization

In Section 2 we set up some more notation that we use throughout the paper
and give some additional background. In Section 3 we describe the hardness
result that is our starting point. In Section 4 we describe in more detail the
construction outlined above, and finally, in Section 5, we describe how to obtain
the concrete bounds given in Theorems 1 and 2.

2 Notation and Background

Throughout the paper, we identify binary strings in {0, 1}n and subsets of [n] in
the obvious way. Analogously to the notation |S| and S for the cardinality and
complement of a subset S ⊆ [n] we use |x| and x for the Hamming weight and
coordinatewise complement of a string x ∈ {0, 1}n.

2.1 Submodularity

Apart from the two definitions in the introduction, a third characterization of
submodularity is that a function f : 2X → R+ is submodular if and only if

f(S)− f(S ∪ {i})− f(S ∪ {j}) + f(S ∪ {i} ∪ {j}) ≤ 0 (1)

for every S ⊆ X , and i, j ∈ X \ S, i 	= j. It is straightforward to check that
this condition is equivalent to the diminishing returns property mentioned in the
introduction.
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2.2 Probability

For p ∈ [0, 1], we use {0, 1}k
(p) to denote the k-dimensional boolean hypercube

with the p-biased product distribution, i.e., if x is a sample from {0, 1}k
(p) then

the probability that the i’th coordinate xi = 1 is p, independently for each
i ∈ [k].

We abuse notation somewhat by making no distinction between probability
distribution functions μ : {0, 1}k → [0, 1] and the probability space ({0, 1}k, μ)
for such μ. Hence we write, e.g., μ(x) for the probability of x ∈ {0, 1}k under μ
and Ex∼μ[f(x)] for the expectation of a function f : {0, 1}k → R under μ.

A distribution μ over {0, 1}k is balanced pairwise independent if every two-
dimensional marginal distribution of μ is the uniform distribution, or formally,
if for every 1 ≤ i < j ≤ n and b1, b2 ∈ {0, 1}, it holds that

Pr
x∼μ

[xi = b1 ∧ xj = b2] = 1/4.

Recall that the support Supp(μ) of a distribution μ over {0, 1}k is the set of strings
with non-zero probability under μ, i.e., Supp(μ) = { x ∈ {0, 1}k : μ(x) > 0 }.

We conclude this section with a lemma that will be useful to us.

Lemma 1. Let f : {0, 1}k → R+ be a symmetric set function. For t ∈ {0, . . . , k}
let a(t) denote the average of f on strings of weight t, a(t) = 1

(k
t)
∑

|x|=t f(x). If

a is monotonely nondecreasing in {0, . . . , k/2}, then the maximum average of f
under any p-biased distribution is achieved by the uniform distribution. I.e.,

max
p∈[0,1]

E
x∼{0,1}k

(p)

[f(x)] = 2−x
∑

x∈{0,1}
f(x)

This intuitively obvious lemma is probably well known but as we do not know
a reference we give a proof in the full version of this paper [1].

3 Hardness from Pairwise Independence

In this section we state formally the variation of the hardness result of [2] that
we use. We first define the parameters which control the inapproximability ratio
that we obtain.

Definition 1. Let f : {0, 1}k → R+ be a submodular function.
We define the completeness cμ(f) of f with respect to a distribution μ over

{0, 1}k by the expected value of f under μ, i.e.,

cμ(f) := E
x∼μ

[f(x)]

We define the soundness sp(f) of f with respect to bias p by the expected value
of f under the p-biased distribution, i.e.,

sp(f) := E
x∼{0,1}k

(p)

[f(x)].
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Finally, we define the soundness s(f) of f by its maximum soundness with respect
to any bias, i.e.,

s(f) := max
p∈[0,1]

sp(f)

We can now state the hardness result.

Theorem 3. Let μ be a balanced pairwise independent distribution over {0, 1}k.
Then for every function f : {0, 1}k → R+ and ε > 0, given a Max CSP

+(f)
instance F : {0, 1}n → R+ it is UG-hard to distinguish between the cases:

Yes: There is an S ⊆ X such that F (S) ≥ cμ(f)− ε.
No: For every S ⊆ X it holds that F (S) ≤ s(f) + ε.

The proof of Theorem 3 follows the proof of [2] almost exactly. A proof can be
found in the full version of this paper [1].

Consequently, for any submodular function f and pairwise independent distri-
bution μ with all marginals equal, it is UG-hard to approximate Max CSP

+(f)
to within a factor s(f)/cμ(f)+ε for every ε > 0. Note also that the No case is the
best possible: there is a trivial algorithm which finds a set such that F (S) ≥ s(f)
for every F , by simply letting each input be 1 with probability p for the p that
maximizes sp(f).

As a somewhat technical remark, we mention that Theorem 3 still holds if μ
is not required to be balanced – it suffices that all the one-dimensional marginal
probabilities Prx∼μ[xi = 1] are identical, not necessarily equal to 1/2 as in the
balanced case. We state the somewhat simpler form since that is sufficient to
obtain our results for submodular functions and since that makes it more similar
to the result of [2], which requires the distribution μ to be balanced.

Let us then briefly discuss the difference between Theorem 3 and the main
result of [2]. First, the result of [2] only applies in the more general setting when
one allows negated literals, which is why it can not be used to obtain inap-
proximability for submodular functions. On the other hand, this more general
setting allows for a stronger conclusion: in the No case, [2] achieves a soundness
of s1/2(f) + ε which in general can be much smaller than s(f). As an example,
consider the case when f : {0, 1}3 → {0, 1} is the logical OR function on 3 bits.
In this case the Max CSP

+(f) problem is of course trivial – the all-ones assign-
ment satisfies all constraints – and s(f) = 1, whereas s1/2(f) = 7/8. Letting μ
be the uniform distribution on strings of odd parity (it is readily verified that
this is a balanced pairwise independent distribution) one gets cμ(f) = 1, showing
that the Max 3-Sat problem is hard to approximate to within 7/8 + ε.

4 The Construction

In this section we make formal the construction outlined in Section 1.2.
Theorem 3 suggests the following natural approach: pick a pairwise indepen-

dent distribution μ over {0, 1}k and let 1μ : {0, 1}k → {0, 1} be the indicator
function of the support of μ. Then take f to be a “minimum submodular upper
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bound” to 1μ, by which we mean a submodular function satisfying f(x) ≥ 1μ(x)
for every x while having s(f) as small as possible (whereas cμ(f) is clearly at
least 1). Note that the smaller the support of μ, the less constrained f is, meaning
that there should be more room to make s(f) small.

To this end, let us make the following definition.

Definition 2. For a subset C ⊆ {0, 1}k, we denote by SM(C) the optimum func-
tion f : {0, 1}k → R+ of the following program2:

Minimize s(f)
Subject to f(x) ≥ 1 for every x ∈ C

f is submodular

In addition, we write SMp(C) for the optimal f when the objective to be mini-
mized is changed to sp(f) instead of s(f). Analogously, we define SMsym(C) and
SMsym

p (C) as the optimal f with the additional restriction that f is symmetric.

While the objective function s(f) is not linear (or even convex), it turns out that
for the C’s that we are interested in, SM(C) is actually quite well approximated
by SM1/2(C), i.e., we simply minimize

∑
x f(x) (in fact, we even believe that

for our C’s SM1/2(C) gives the exact optimum for SM(C), though we have not
attempted to prove it). The advantage of considering SM1/2(C) is of course that
it is given by a linear program, which gives us a reasonably efficient way of
finding it. Armed with this definition, let us now describe the constructions we
use.

4.1 The Asymmetric Case

The family of pairwise independent distributions μ that we consider is a standard
construction based on the Hadamard code. Fix a parameter l > 0 and let k =
2l − 1. We identify the set of coordinates [k] with the set of non-empty subsets
of [l], in some arbitrary way. A string x from the distribution μ is sampled
as follows: pick a uniformly random string y ∈ {0, 1}l and defining, for each
∅ 	= T ⊆ [l], the coordinate xT =

⊕
i∈T yi.

This construction already has an issue: since the all-zeros string 0 is in the sup-
port of the distribution, any submodular upper bound to 1μ must have f(0) ≥ 1,
implying that s0(f) = 1. To fix this, we simply ignore 0 when constructing f .
Formally, let Cl = Supp(μ) \ {0} ⊆ {0, 1}k be the 2l− 1 strings in the support of
μ except 0. Now we would like to take our submodular function f to be SM(C),
but we instead take it to be SM1/2(C), as this function is much more easily
computed.

Definition 3. For a parameter l > 0, let k = 2l − 1 and take Cl ⊆ {0, 1}k as
above. We define fl = SM1/2(Cl).

2 In the case when the optimum is not unique, we choose an arbitrary optimal f as
SM(C).
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Note that using only Cl instead of the entire support costs us a little in that
the completeness is now reduced from 1 to cμ(fl) ≥ 1 − 2−l, but one can hope
(and it indeed turns out that this is the case) that this loss is compensated by
a greater improvement in soundness.

Also, we stress that s(fl) is typically not given by the average s1/2(fl) (which is
the quantity actually minimized by fl). Indeed, the points in Cl all have Hamming
weight (k + 1)/2 and this is also where fl is typically the largest. This causes
s(f) to be achieved by the p-biased distribution for some p slightly larger than
1/2.

An obvious question to ask is whether using SM(Cl) would give a better result
than using SM1/2(Cl). For the values of l that we have been able to handle, it
appears that the answer to this question is negative: computing SMp(Cl) for a
p that approximately maximizes sp(fl) gives fl, indicating that we in fact have
fl = SM(Cl).

4.2 Symmetric Functions

One way of constructing symmetric functions would be to use the exact same
construction as above but taking SMsym(Cl) rather than SM(Cl). However, that
is somewhat wasteful, and we achieve better results by also taking symmetry
into account when constructing the family of strings C.

Thus, we alter the above construction as follows: rather than identifying the
coordinates with all non-empty subsets of [l], we identify them with all subsets
of [l] of odd cardinality. In other words, we take k = 2l−1 and associate [k] with
all T ⊆ [l] such that |T | is odd. The resulting distribution μ is symmetric in the
sense that if x is in the support then so is x.

In this case, both the all-zeros string 0 and the all-ones string 1 are in the
support which is not acceptable for the same reason as above. Hence, we con-
struct a submodular function by taking Csym

l = Supp(μ) \ {0,1} (note that
|Csym

l | = 2l − 2).

Definition 4. For a parameter l > 0, let k = 2l−1 and take Csym
l ⊆ {0, 1}k as

above. We define f sym
l = SMsym

1/2(C
sym
l ).

In this case, since we removed 2 out of the 2l points of the support of μ to
construct Csym

l , we have that cμ(f sym
l ) ≥ 1− 21−l.

An salient feature of f sym
l is that all strings of Csym

l have Hamming weight
exactly k/2. By Lemma 1, this causes sp(f

sym
l ) to be maximized by p = 1/2

(the monotonicity of the function a in Lemma 1 is not immediately clear). This
means that in the symmetric case, using SMsym

1/2(C
sym
l ) rather than SMsym(Csym

l )
is provably without loss of generality.

5 Concrete Bounds

Unfortunately, understanding the behaviour of the two families of functions fl

and f sym
l (or even just their soundnesses) for large l appears difficult. There seems
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to be two conflicting forces at work: on the one hand, Cl only has 2l − 1 = k
points so even though fl is forced to be large on these there may still be plenty
of room to make it small elsewhere. But on the other hand, since Cl is a good
code the elements of Cl are very pread out (their pairwise Hamming distances
are roughly k/2), which together with the submodularity condition appears to
force fl to be large.

In this section we study fl for small l, obtaining our hardness results. As
discussed towards the end of the section, there are indications that the inap-
proximability given by fl actually becomes worse for large l and that our results
are the best possible for this family of functions, but we do not yet know whether
these indications are correct.

5.1 Symmetric Functions

We start with the symmetric functions, as these are somewhat nicer than the
asymmetric ones in that their symmetry turn out to cause s(f sym

l ) to be achieved
by p = 1/2, i.e., s(f sym

l ) simply equals the average of f sym
l . Table 1 gives a

summary of the completeness, soundness, and inapproximability obtained by
f sym

l for l ∈ {3, 4, 5}. We now describe these functions in a more detail.

Table 1. Behaviour of f sym
l for small l

l c s(f sym
l ) Inapproximability s/c

3 3/4 5/8 5/6 < 0.8334

4 7/8 43/64 43/56 < 0.7679

5 15/16 709/1024 709/960 < 0.7386

As a warmup, let us first describe the quite simple function f sym
4 : 2[8] → [0, 1]

(we leave the even easier function f sym
3 to the interested reader). Its definition is

as follows:

f sym
4 (S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(S) if |S| > 4

|S|/4 if |S| < 4

1 if |S| = 4 and S is in Csym
4

3/4 otherwise

.

That f sym
4 (S) is submodular is easily verified. It is also easy to check that

Lemma 1 applies and therefore we have that s(f sym
4 ) = s1/2(f

sym
4 ), which is

straightforward to compute (note that |Csym
4 | = 14):

s1/2(f
sym
4 ) =

2−8
(

2
(

8
1

)
· 1
4

+ 2
(

8
2

)
· 2
4

+ 2
(

8
3

)
· 3
4

+ 14 · 1 +
((

8
4

)
− 14

)
· 3
4

)
=

43
64
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Let us then move on to the next function f sym
5 : 2[16] → [0, 1], giving an inap-

proximability of 0.7386. It turns out that one can take f sym
5 (S) to be a function

of two simple properties of S, namely its cardinality |S|, and the distance from
S to Csym

5 . Specifically, for |S| ≤ 8 let us define the number of errors e(S) as the
minimum number of elements that must be removed from S to get a subset of
some set in Csym

5 . Formally

e(S) = min
C∈Csym

5

|S \ C|,

or equivalently, d(S, Csym
5 ) = 8 − |S| + 2e(S), where d(S, Csym

5 ) is the Hamming
distance from the binary string corresponding to S to the nearest element in
Csym
5 . Table 2 gives the values of f sym

5 for all |S| ≤ 8, and for |S| > 8 the value
of f sym

5 (S) is given by f sym
5 (S). Note that, for sets with e(S) = 0, i.e., no errors,

f sym
5 (S) is simply |S|/8, which is what one would expect. However, for sets with

errors, f sym
5 (S) has a more complicated behaviour and it is far from clear how

this generalizes to larger l.

Table 2. Description of f sym
5 (S) as a function of |S| and e(S) for |S| ≤ 8

|S|
e(S) 0 1 2 3 4 5 6 7 8

0 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

1 – – – – – 19/32 22/32 24/32 26/32

2 – – – – – – 20/32 23/32 24/32

Veryfing that f sym
5 is indeed submodular is not as straightforward as with

f sym
4 . We have not attempted to construct a shorter proof of this than simply

checking condition (1) for every S, i and j, a task which is of course best suited
for a computer program (which is straightforward to write and runs in a few
seconds).

A computer program is also the best way to compute the soundness s(f sym
5 ). It

is almost obvious from inspection of Table 2 that f sym
5 satisfies the monotonicity

condition of Lemma 1 (the only possible source of failure is that the table only
implies that the average of f sym

5 on sets of size 6 is between 20/32 and 24/32,
and that the average on sets of size 7 is between 23/32 and 28/32). It turns out
that the conditions of Lemma 1 are indeed satisfied and that the average of f sym

5
is s1/2(f

sym
5 ) = 709/1024.

Concluding this discussion on f sym
l , it is tempting to speculate on its behaviour

for larger l. We have made a computation of f sym
6 : 2[32] → [0, 1], under the as-

sumption that f sym
6 (S) only depends on |S| and the multiset of distances to every

point of the support of Csym
6 . Under this assumption, our computations indicate

that s(f sym
6 ) ≈ 0.7031 giving an inapproximatibility of s(f sym

6 )/(31/32) ≈ 0.7258,
improving upon f sym

5 . However, as these computations took a few days they are
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quite cumbersome to verify (and we have not even made a careful verification
of them ourselves) and therefore we do not claim this stronger hardness as a
theorem.

5.2 Asymmetric Functions

We now return our focus to the asymmetric case. Table 3 describes the hardness
ratios obtained from fl for the cases l = 3 and l = 4.

Table 3. Behaviour of fl for small l

l c s(fl) Inapproximability s/c

3 7/8 < 0.6275 < 0.7172

4 15/16 < 0.6508 < 0.6942

We begin with the description of the function f3 : 2[7] → [0, 1]. Similarly to
the definition e(S) used in the description of f sym

5 , let us say that S ⊆ [7] has no
errors if it is a subset or a superset of some C ∈ C3. In other words, if |S| < 4 it
has no errors if it can be transformed to a set in C3 by adding some elements, and
if |S| > 4 it is has no errors if it can be transformed to a codeword by removing
some elements. The function f3 is as follows:

f3(S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|S|/4 if |S| ≤ 4 and has no errors

(7− |S|)/3 if |S| > 4 and has no errors

11/24 if |S| = 3 and has errors

17/24 if |S| = 4 and has errors

As with f sym
5 , it is not completely obvious that f3 satisfies the submodularity

condition and there are a few cases to verify, best left to a computer program.
The average of f3 is 637/1024 ≈ 0.622. However, since f3 takes on its largest

values at sets of size (k + 1)/2 = 4, the p-biased average is larger than this for
some p > 1/2. It turns out that s(f4) is obtained by the p-biased distribution
for p ≈ 0.542404, giving s(f4) ≈ 0.627434 < 0.6275.

We are left with the description of f4 : 2[15] → [0, 1], which is also the most
complicated function yet. One might hope that f4 shares the simple structure
of the previous functions – that it depends only on |S| and the distance of S to
the nearest C ∈ C4. However, the best function under this assumption turns out
to give a worse result than f3. Instead, f4 depends on |S| and the multiset of
distances to all elements of C4.

To describe f4, define for S ⊆ [15] the multiset D(S) as the multiset of dis-
tances to all the 15 strings in C4. For instance, for S = ∅, D(S) consists of the
number 8 repeated 15 times, reflecting the fact that all strings of C4 have weight
8, and for S ∈ C4 we have that D(S) consists of the number 8 repeated 14 times,
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Table 4. Description of f4

|S| D(S) #S 448 · f4(S)

0 815 1 0

1 7897 15 56

2 6488103 105 112

3 527696111 420 168

3 712113 35 138

4 42812121 105 224

4 416486104 840 224

4 6686102121 420 194

5 31517696111 840 280

5 55910 168 280

5 537694112 1680 250

5 527894131 315 220

6 216388103 420 336

6 426386104 1680 306

6 416586102121 2520 276

6 69106 280 276

6 6688141 105 216

7 117797 120 392

7 31527596111 2520 332

7 31711113 420 302

7 547594112 2520 302

7 537794131 840 272

7 714151 15 197

|S| D(S) #S 448 · f4(S)

8 01814 15 448

8 216487103 840 358

8 43811121 420 328

8 426485104 2520 328

8 416685102121 2520 298

8 6787141 120 253

9 117896 105 384

9 31527695111 2520 324

9 5699 280 324

9 547693112 1680 294

9 537893131 420 279

10 216488102 315 320

10 426486103 1680 290

10 416686101121 840 275

10 610105 168 260

11 31527696 420 256

11 31712112 105 256

11 547694111 840 241

12 43812 35 192

12 416686102 420 192

13 537894 105 128

14 6788 15 64

15 715 1 0

together with a single 0, because the distance between any pair of strings in C4
is 8.

Table 4 describes the behaviour of f4(S) as a function of |S| and D(S).3 In the
table D(S) is described by a string of the form dm1

1 dm2
2 . . ., with d1 < d2 < . . .

and
∑

mi = 15, indicating that m1 strings of C4 are at distance d1 from S, that
m2 strings are at distance d2, and so on. Thus, for S = ∅ the description of D(S)
is “815”, and for S ∈ C4 the description of D(S) is “01814”.

The #S column of Table 4 gives the total number of S ⊆ [15] having this
particular value of (|S|,D(S)), and the last column gives the actual value of f4,
multiplied by 448 to make all values integers.

3 It is not necessary to include |S| as it is uniquely determined by D(S), but we find
that explicitly including |S| makes the table somewhat less obscure.
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Again, checking that f4 is submodular is a tedious task best suited for a
computer. The average of f4 is 9519345/(448 · 215) ≈ 0.6485, but, as with f3,
s(f4) is somewhat larger than this. It turns out that the p maximizing sp(f4) is
roughly p ≈ 0.526613, and that s(f4) ≈ 0.650754 < 0.6508.

Finally, we mention that as in the symmetric case, we have made a computa-
tion of the next function, f5, again under the assumption that it depends only on
the multiset of distances to the codewords. Under this assumption it turns out
that s1/2(f5) ≈ 0.6743, meaning that the inapproximability obtained can not be
better than s1/2(f5)/(31/32) ≈ 0.6961 which is worse than the inapproximability
obtained from f4.
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Abstract. We consider two natural generalizations of the Asymmetric Traveling
Salesman problem: the k-Stroll and the k-Tour problems. The input to the k-Stroll
problem is a directed n-vertex graph with nonnegative edge lengths, an integer
k, and two special vertices s and t. The goal is to find a minimum-length s-t
walk, containing at least k distinct vertices. The k-Tour problem can be viewed
as a special case of k-Stroll, where s = t. That is, the walk is required to be
a tour, containing some pre-specified vertex s. When k = n, the k-Stroll prob-
lem becomes equivalent to Asymmetric Traveling Salesman Path, and k-Tour to
Asymmetric Traveling Salesman.

Our main result is a polylogarithmic approximation algorithm for the k-
Stroll problem. Prior to our work, only bicriteria (O(log2 k), 3)-approximation
algorithms have been known, producing walks whose length is bounded
by 3OPT, while the number of vertices visited is Ω(k/ log2 k). We also
show a simple O(log2 n/ log log n)-approximation algorithm for the k-Tour
problem. The best previously known approximation algorithms achieved
min(O(log3 k), O(log2 n·log k/ log log n))-approximation in polynomial time,
and O(log2 k)-approximation in quasipolynomial time.

1 Introduction

In the Asymmetric Traveling Salesman Problem (ATSP), the input is a directed n-
vertex graph G = (V, E) with nonnegative edge lengths, and the goal is to find a
minimum-length tour, visiting each vertex at least once. ATSP, along with its undirected
counterpart, the Traveling Salesman problem, is a classical combinatorial optimization
problem, that has been studied extensively. In a recent breakthrough, Asadpour et al. [1]
have shown an O(log n/ log log n)-approximation algorithm for ATSP, breaking the
long-standing barrier of O(log n) on its approximation ratio [11,3,5,10,12]. With only
APX-hardness known on the negative side, this remains one of the central open prob-
lems in the area of approximation. A closely related problem is Asymmetric Traveling
Salesman Path (ATSPP), defined exactly like ATSP, except that the input also contains
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two vertices s and t, and instead of a tour, we are required to find a minimum length
s-t walk, visiting every vertex at least once. While ATSPP appears to be very similar
to ATSP, an O(log n)-approximation algorithm has only been discovered recently by
Chekuri and Pál [9], and required new nontrivial ideas.

In this paper we focus on two natural and well-studied generalizations of ATSP:
the k-Stroll and the k-Tour problems1. In the k-Stroll problem, in addition to the edge-
weighted graph G, we are also given a parameter k, and two special vertices s and t.
The goal is to find a minimum-length walk from s to t, containing at least k distinct
vertices. The k-Tour problem is defined similarly, except that instead of the vertices s
and t, the input contains one root vertex r, and we are required to find a minimum-
length tour containing r, that visits at least k distinct vertices. Therefore, k-Tour can be
viewed as a special case of k-Stroll, where s = t. When the input graph is undirected,
we get the undirected k-Tour and undirected k-Stroll problems, respectively2. For the
special case where k = n, k-Tour becomes equivalent to ATSP, and k-Stroll becomes
equivalent to ATSPP.

A bicriteria (α, β)-approximation algorithm for the k-Stroll problem is an algorithm
that returns a walk of length at most β · OPT, containing at least k/α distinct ver-
tices. Chekuri, Korula and Pál [7] and Nagarajan and Ravi [15] have independently
shown, using different methods, (O(log2 k), 3) bicriteria approximation algorithms for
the k-Stroll problem. To the best of our knowledge, these are the only known approx-
imation algorithms for the problem. The main result of our paper is a polylogarithmic
approximation algorithm for the k-Stroll problem. We note that undirected k-Stroll has
a (2 + ε)-approximation algorithm, due to Chaudhuri et al. [6].

The first nontrivial approximation algorithm for the k-Tour problem, due to Chekuri
and Pál [8], achieved an O(log2 k)-approximation in quasi-polynomial time. Chekuri,
Korula and Pál [7] and Nagarajan and Ravi [15] have later independently shown polyno-
mial time algorithms achieving O(log3 k) and O(log2 n · log k) approximation, respec-
tively. Using the recent result of [1] for ATSP, the latter approximation factor improves
to O(log2 n · log k/ log log n). We show a simple O(log2 n/ log log n)-approximation
algorithm for the problem.

Related Work. There is a large body of research on ATSP and its variants. We only
mention here results most closely related to the problems we study. The Orienteering
problem is defined as follows: given an edge-weighted graph, two vertices s and t and a
budget B, find an s-t walk of length at most B, maximizing the number of distinct ver-
tices visited. The problem is closely related to the k-Stroll problem, and this relationship
has been made formal by Blum et al. [4], who showed that an α-approximation algo-
rithm for k-Stroll gives an O(α)-approximation for Orienteering, in both the directed
and the undirected settings. This result was later generalized by Chekuri, Korula and
Pál [7] and Nagarajan and Ravi [15], who proved that an (α, β)-bicriteria approxima-
tion for k-Stroll implies an O(αβ)-approximation for Orienteering, in both directed and

1 k-Tour is sometimes referred to as k-ATSP in the literature. Similarly, k-Stroll is sometimes
called k-ATSPP.

2 Since we will be focusing on directed graphs, the names k-Tour and k-Stroll will refer to the
directed versions of the problems throughout the paper, unless stated otherwise.
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undirected graphs. Chekuri and Pál [8] showed that for any fixed integer h, the directed
Orienteering problem has an O(log OPT/ logh)-approximation algorithm, whose run-
ning time is (n log B)O(h log n). In particular, they obtain O(log OPT)-approximation
in quasipolynomial time, and sublogarithmic approximation in subexponential time.
Chekuri, Korula and Pál [7] and Nagarajan and Ravi [15] have later independently
obtained a polynomial-time O(log2 OPT) approximation algorithm for directed Orien-
teering. The results of [8] also hold for generalizations of the directed Orienteering
problem: directed Submodular Orienteering, where instead of maximizing the number
of distinct vertices contained in the tour, the goal is to maximize the value of some
given submodular function over the set of vertices the tour visits, and directed Sub-
modular Orienteering with time windows, where each vertex is associated with a time
window, and a vertex is covered by the tour only if it is visited during its time window.
The undirected version of the Orienteering problem has also been studied extensively.
The first constant factor approximation algorithm, due to Blum et al. [4], achieved a
factor 4 approximation, and was later improved by Bansal et al. [2] to factor 3. The best
currently known approximation algorithm, due to Chekuri, Korula and Pál [7], gives a
factor (2 + ε) approximation. On the negative side, the basic Orienteering problem is
known to be APX-hard for both directed and undirected graphs [4]. Chekuri and Pál [8]
have shown that an α-approximation for undirected Submodular Orienteering implies
an O(α log k)-approximation for the Group Steiner tree problem, and therefore undi-
rected Submodular Orienteering is hard to approximate to within factor Ω(log1−ε n)
unless NP ⊆ ZTIME

(
npoly log(n)

)
[13].

Problem definitions, our results and techniques. The input to the k-Stroll problem is a
complete directed n-vertex graph G = (V, E) with lengths ce ≥ 0 on edges, satisfying
the triangle inequalities. Additionally, we are given two special vertices s and t and an
integer k. The goal is to find an s-t walk of minimum length that visits at least k distinct
vertices.

The input to the k-Tour problem is a complete directed n-vertex graph G = (V, E)
with edge lengths ce ≥ 0, satisfying the triangle inequality, an integer k and a root ver-
tex r. The objective is to find a minimum-length tour T , containing at least k distinct
vertices, including r. Let β denote the best approximation factor efficiently achiev-
able for the k-Tour problem. Our result for the k-Stroll problem is summarized in the
following theorem:

Theorem 1. There is an efficient O(log k) ·β-approximation algorithm for the k-Stroll
problem.

The algorithm is somewhat similar to the quasipolynomial time algorithm of Chekuri
and Pál [8] for the Orienteering problem, in the following sense: the algorithm also
guesses the middle point v of the walk, partitioning the problem into two subproblems,
and then solves the two subproblems separately. This is done by means of dynamic
programming, and the main challenge is to keep the size of the dynamic program-
ming table polynomial in n. To demonstrate this difficulty, consider the top-most
level of the recursion, and let v be the guessed vertex that appears in the middle of
the tour. Our algorithm partitions all the vertices into three subsets Lv, Rv , and Cv , with
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the following properties: All vertices of Lv that are covered by the optimal walk, must
appear before v on it, and similarly all vertices of Rv belonging to the optimal walk
appear after v on it. The vertices of Cv may appear either before or after v, and we can
solve the problem induced by these vertices using the algorithm for the k-Tour problem.
The main challenge is that when we continue to recursively solve the problem induced
by, say, Lv, we need to ensure that the vertices of Rv are not used in its solution, so
we do not over-count the vertices we cover. Therefore, for each subproblem that we
solve, we need to find a way to concisely represent the vertices that have been removed
in previous recursive levels. Equivalently, we need to keep the number of entries in the
dynamic programming table polynomial in the input size, while ensuring that we do not
over-count vertices that the solution visits.

We now turn to the k-Tour problem. Let βHK be the best approximation fac-
tor achievable for the ATSP problem, via LP rounding of the Held-Karp LP relax-
ation [14] (see Section 3.1 for formal definitions). From the work of Asadpour et al. [1],
βHK ≤ O(log n/ log log n). We obtain the following result for the k-Tour problem.

Theorem 2. There is an efficient O(log n) · βHK approximation algorithm for
the k-Tour problem. In particular, the problem is approximable to within factor
O(log2 n/ log log n).

From the work of Chekuri, Korula and Pál [7], and from Theorem 2, the
approximation factor β for the k-Tour problem is therefore bounded by
min(O(log2 n/ log log n), O(log3 k)). Therefore, we establish the following result for
the k-Stroll problem:

Corollary 1. The k-Stroll problem has an efficient min(O(log2 n ·
log k/ log log n), O(log4 k)) approximation algorithm.

Our algorithm for the k-Tour problem is simple, and it is very similar to the O(log2 n)-
approximation algorithm of Nagarajan and Ravi [15] for the minimum ratio ATSP
problem. Nagarajan and Ravi then use this algorithm as a subroutine to obtain
an O(log2 n · log k)-approximation for k-Tour. We bypass this step by solving the
k-Tour problem directly, and this allows us to save the O(log k) factor in the approx-
imation ratio. We note that following the work of Asadpour et al. [1], the approxima-
tion factors in [15] improve to O(log2 n/ log log n) for minimum ratio ATSP, and to
O(log2 n · log k/ log log n) for the k-Tour problem.

Our algorithm starts by solving a linear programming relaxation of the k-Tour prob-
lem, which can be seen as an extension of the Held-Karp LP relaxation for ATSP. Each
vertex v is associated with an indicator variable zv, for covering v by the solution. We
then partition all vertices geometrically into O(log n) buckets, according to their val-
ues zv, with bucket Bi containing vertices v with 2−i < zv ≤ 2−i+1. Next, using
the LP-rounding algorithm for ATSP, we find, for each bucket Bi, a tour Ti of length
O(βHK ·2i ·OPT), containing all vertices of Bi. This tour is then partitioned into Θ(2i)
segments, containing �|Bi|/2i� vertices each, and the cheapest such segment, T ∗

i , is se-
lected. We then connect together the selected segments T ∗

i , for all buckets Bi to obtain
the final tour T .
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Organization. Section 2 is devoted to the polylogarithmic approximation algorithm for
the k-Stroll problem, and the algorithm for the k-Tour problem appears in Section 3. All
proofs omitted from this version can be found in the full version of the paper available
on authors’ web pages.

2 Approximation Algorithm for the k-Stroll Problem

2.1 Preliminaries

We assume that we are given a complete directed n-vertex graph G = (V, E) with
nonnegative lengths ce on edges, satisfying the triangle inequality. Additionally, we are
given two special vertices s and t, called the source and the sink, and an integer k. The
goal is to find an s-t walk of minimum length, visiting at least k distinct vertices. For
any instance I of the problem, we denote by OPT(I) the cost of the optimal solution
for this instance, and when the instance is clear from context, we use the short-hand
OPT. For each pair u, v of vertices, we denote by d(u, v) the length of the shortest path
connecting u to v in G.

Let α denote the desired approximation factor. We assume throughout the algorithm
that we know the value L∗ of the optimal solution. This can be assumed w.l.o.g. using
standard techniques: we can perform a binary search on the value L∗, and run our
approximation algorithm for each such guessed value L. If the algorithm produces a
solution whose cost is bounded by αL, then L∗ ≤ L, and otherwise L∗ > L, so we
can adjust our guessed value L accordingly. Therefore, from now on we assume that
we have a value L∗ ≥ OPT, and our goal is to produce a solution of cost at most αL∗.
Our first step is to make the edge lengths polynomially bounded. The proof of the next
claim uses standard techniques and is omitted.

Claim 1. We can assume, at the cost of losing a constant factor in the approximation
ratio, that all edge lengths ce are integers in {0, . . . , N}, where N = poly(n).

We use the following notation in describing the algorithm. For a vertex v ∈ V and
a parameter D, let B(v, D) = {u ∈ V | d(v, u) ≤ D, d(u, v) ≤ D} . For a pair x, y
of vertices and a parameter D, let S(x, y, D) = {u ∈ V | d(x, u) + d(u, y) ≤ D}.
Therefore, S(x, y, D) is the set of all vertices that may appear on a path of length D
connecting x to y.

For technical reasons that will be apparent later, we need to ensure that B(s, L∗) =
{s} and B(t, L∗) = {t}. We can do so, w.l.o.g., by adding a new source vertex s′ and a
new sink vertex t′, and setting the lengths of edges (s′, s) and (t, t′) to 0, and the lengths
of all other edges incident to s′ and t′ to n2 ·L∗. (Recall that the graph is required to be
complete). This does not affect the solution cost or the approximation factor. So from
now on we assume that in the input instance I, B(s, L∗) = {s} and B(t, L∗) = {t}.

Throughout the algorithm, we will be solving instances of the k-Tour problem on
subgraphs of G. Let Algk-tour be a β-approximation algorithm for the k-Tour problem.
An instance I(V ′, r, k′) of the k-Tour problem, where V ′ ⊆ V , r ∈ V , k′ ∈ Z+, is an
instance defined on the subgraph of G induced by V ′ ∪ {r}, with the root vertex r, and
the parameter k′ denoting the number of vertices that need to be covered. We denote by
Algk-tour(V

′, r, k′) the output of Algk-tour on instance I(V ′, r, k′).
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2.2 Algorithm Overview

Let θ = 3/2 and α(k′) = 9 logθ k′ + 3, for k′ > 1. Our final approximation factor is
O(β · α(k)) = O(β · log k), as required.

We solve the problem using dynamic programming. Each entry of the dynamic pro-
gramming table is parametrized by T (x, y, k′, D, Δ1, Δ2), where x, y ∈ V , k′ is an
integer, 1 ≤ k′ ≤ k, and D, Δ1, Δ2 are integers between 0 and L∗. Let

V (x, y, D, Δ1, Δ2) = S(x, y, D) \ (B(x, Δ1) ∪B(y, Δ2)) .

Entry T (x, y, k′, D, Δ1, Δ2) is associated with an instance of the k-Stroll problem de-
noted by π(x, y, k′, D, Δ1, Δ2). The instance is defined on the subgraph of G induced
by V (x, y, D, Δ1, Δ2) ∪ {x, y}. The number of vertices to be covered by the stroll is
k′, and the endpoints of the stroll are x and y.

We say that entry T (x, y, k′, D, Δ1, Δ2) is feasible iff Δ1, Δ2 ≥ D, d(x, y) ≤ D,
and the value of the optimal solution of instance π(x, y, k′, D, Δ1, Δ2) is at most
D. A feasible entry T (x, y, k′, D, Δ1, Δ2) must contain a feasible solution for prob-
lem π(x, y, k′, D, Δ1, Δ2), whose length is at most 3β(Δ1 + Δ2) + β · α(k′) · D.
Notice that since we have ensured that B(s, L∗) = {s} and B(t, L∗) = {t}, en-
try T (s, t, k, L∗, L∗, L∗) is feasible, with V (s, t, L∗, L∗, L∗) = V . So if the entries
of the dynamic programming table are computed correctly, it must contain a solu-
tion to I of cost O(βα(k))L∗ = O(log k)βL∗, as desired. The entries of the dy-
namic programming table are filled in from smaller to larger values k′. After entry
T = T (x, y, k′, D, Δ1, Δ2) is processed, it either contains a feasible solution to prob-
lem π(x, y, k′, D, Δ1, Δ2) of cost at most 3β(Δ1 + Δ2) + β ·α(k′) ·D, in which case
we say that T is good, or the value of T is undefined, and we say that it is bad. The
latter will only happen if T is infeasible.

2.3 Computing the Entries of the Dynamic Programming Table

Let T = T (x, y, k′, D, Δ1, Δ2) be a feasible entry of the dynamic programming table
that needs to be processed. Recall that Δ1, Δ2 ≥ D, and we can assume that the cost
of the optimal solution for instance π = π(x, y, k′, D, Δ1, Δ2) is bounded by D. For
simplicity, we denote V ′ = V (x, y, D, Δ1, Δ2). We say that the problem instance π is
easy iff one of the following happens—in fact, these are the base cases of the dynamic
programming.

1. k′ ≤ 4, or
2. d(y, x) ≤ 3(Δ1 + Δ2) + D, or
3. none of the above holds, and there are two integers k1, k2, with k1 + k2 ≥

k′, such that the tours T1 = Algk-tour(B(x, 3Δ1) ∩ V ′, x, k1) and T2 =
Algk-tour(B(y, 3Δ2)∩V ′, y, k2) have total length at most 3β(Δ1+Δ2)+2βD. In
other words, we can find two tours: T1 rooted at x inside the subgraph induced by
B(x, 3Δ1)∩V ′, and T2 rooted at y inside the subgraph induced by B(y, 3Δ2)∩V ′,
that together cover k′ vertices (we show below that the two tours are disjoint), and
their total length is at most 3β(Δ1 + Δ2) + 2βD.
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Notice that we can check if π is easy in polynomial time.

Claim 2. If T = T (x, y, k′, D, Δ1, Δ2) is feasible, and π = π(x, y, k′, D, Δ1, Δ2) is
easy, then we can find a solution for π of cost at most 3β(D + Δ1 + Δ2) ≤ 3β(Δ1 +
Δ2) + β · α(k′) ·D.

Proof. If k′ ≤ 4, an optimal solution of cost at most D can be found by exhaustive
search. Otherwise, if d(y, x) ≤ 3(Δ1 + Δ2) + D, then there is a solution to instance
I(V ′, x, k′) of the k-Tour problem of cost at most 2D + 3Δ1 + 3Δ2. We obtain a
solution to π by concatenating Algk-tour(V

′, x, k′) with edge (x, y). The cost of the
solution is bounded by D + β(2D + 3Δ1 + 3Δ2) ≤ 3β(D + Δ1 + Δ2).

Finally, if none of the above happens, the sets B(x, 3Δ1) and B(y, 3Δ2) are com-
pletely disjoint. So if the third condition holds, the two tours T1,T2 are completely
disjoint, covering together k′ distinct vertices. We can connect them to each other by
adding the edge (x, y), obtaining a solution of cost at most 3β(Δ1 +Δ2 +D) to π. �

From now on we assume that the instance π is not easy. We also assume that for all
k′′ < k′, all entries T (x′, y′, k′′, D′, Δ′

1, Δ
′
2) have been computed correctly. That is, if

T (x′, y′, k′′, D′, Δ′
1, Δ

′
2) is a feasible entry, then it is good.

Our high-level idea is to subdivide π into two subinstances, and then look the cor-
responding values up in the dynamic programming table. Let P denote the optimal
solution for π. Roughly speaking, we would like to find a pivot vertex v that lies “in
the middle” of P , with roughly half the vertices appearing before and after v on P ,
and then obtain two subproblems: one that appears “to the left” and one that appears
“to the right” of v on P . Let v be the guessed “middle” vertex, and let DL, DR be the
guessed values of the lengths of the segments of P before and after it visits v (since
we have a complete graph, v is visited at most once). We require that DL + DR = D,
d(x, v) ≤ DL, and d(v, y) ≤ DR. We now define the following three sets of vertices:

– Cv = B(v, D) ∩ V ′.
– Lv = {u ∈ V ′ \ Cv | d(x, u) + d(u, v) ≤ DL}. Equivalently, Lv =

(S(x, v, DL) \B(v, D))∩V ′. Notice that if u ∈ Lv, then d(v, u)+ d(u, y) > DR

(otherwise u must belong to Cv). Therefore, if u ∈ P , then it has to appear before
v on P .

– Rv = {u ∈ V ′ \ Cv | d(v, u) + d(u, y) ≤ DR}. Equivalently, Rv =
(S(v, y, DR) \B(v, D))∩V ′. Notice that if u ∈ Rv, then d(x, u)+d(u, v) > DL

(otherwise u ∈ Cv). Therefore, if u ∈ P , then u has to appear after v on P .

Clearly, the three sets Cv, Lv and Rv are completely disjoint. It is easy to see that we
can transform P into another x-y walk P ′, that visits the same vertices as P , and it
consists of three segments: the first segment connects x to v and only contains vertices
of Lv ∪ {x, v}; the second segment is a tour containing only vertices of Cv , including
v; and the third segment connects v to y and only contains vertices of Rv ∪ {v, y}.
The lengths of these segments are bounded by DL, DL + 2D + DR ≤ 3D and DR,
respectively. Let kL, kC , kR be the numbers of distinct vertices contained in each of the
segments, respectively, kL + kC + kR = k′ + 2. (Notice that vertex v appears on all
three segments).
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Observe that if value kC has been guessed correctly, then Algk-tour(Cv, v, kC) re-
turns a tour PC , containing kC vertices from Cv , including v, of length at most 3βD.
We would like now to look the remaining two segments up in the dynamic program-
ming table. The first segment should appear in T (x, v, kL, DL, Δ1, D), and the sec-
ond segment in T (v, y, kR, DR, D, Δ2). Indeed, this approach works if we can ensure
that V (x, v, DL, Δ1, D) = Lv and V (v, y, DR, D, Δ2) = Rv. Unfortunately this is
not necessarily true. To overcome this issue, we proceed as follows. First, we define
a set of admissible pivots. We then show that if v is an admissible pivot, then indeed
V (x, v, DL, Δ1, D) = Lv and V (v, y, DR, D, Δ2) = Rv. Finally, we show how to
take care of the case where no pivot is admissible.

Definition 1. We say that v is an admissible pivot iff v 	∈ B(x, 2Δ1) and v 	∈
B(y, 2Δ2).

Claim 3. If v is admissible, then V (x, v, DL, Δ1, D) = Lv and V (v, y, DR, D, Δ2) =
Rv.

Proof. Let V ∗ = V (x, v, DL, Δ1, D). We show that V ∗ = Lv; the other case is
symmetric. Assume first that u ∈ Lv. We show that u ∈ V ∗ as well. By the
definition of Lv, u ∈ (S(x, v, DL) \B(v, D)) ∩ V ′. On the other hand, V ′ =
S(x, y, D) \ (B(x, Δ1) ∪B(y, Δ2)). In particular, u 	∈ B(x, Δ1). Therefore, u ∈
S(x, v, DL) \ (B(v, D) ∪B(x, Δ1)) and so u ∈ V ∗.

Assume now that u ∈ V ∗. From the definition of V ∗, this means that u ∈
S(x, v, DL), u 	∈ B(x, Δ1) and u 	∈ B(v, D). Assume for contradiction that u 	∈ Lv.
Since Lv contains all vertices in S(x, v, DL) \B(v, D) that participate in V ′, it means
that u 	∈ V ′. But since u ∈ S(x, v, DL), we have that d(x, u) + d(u, v) ≤ DL, which
together with d(v, y) ≤ DR implies that d(x, u)+d(u, y) ≤ DL+DR ≤ D, and hence
u ∈ S(x, y, D). Therefore, the only possibility for u 	∈ V ′ is that u ∈ B(y, Δ2). Then
we have that d(y, u) ≤ Δ2; d(u, v) ≤ DL and d(v, y) ≤ DR. Since DL + DR = D ≤
Δ2, we get that v ∈ B(y, 2Δ2), a contradiction for v being an admissible pivot. �

We now proceed as follows. First, we define the notion of good admissible pivots. In-
tuitively, an admissible pivot is good iff it lies “in the middle” of the optimal solution.
More precisely, we use the following definition.

Definition 2. An admissible pivot v is good iff there are integers kL, kR, kC , DL, DR,
with kL + kR + kC = k′ + 2, DL + DR = D, kL, kR ≤ 2k′/3, such that both
T (x, v, kL, DL, Δ1, D) and T (v, y, kR, DR, D, Δ2) are good entries, and the length of
the tour Algk-tour(Cv, v, kC) is at most 3βD.

Observe that we can check whether a pivot v is good and admissible in polynomial
time. The next claim shows that if a good admissible pivot exists, then we can find the
required solution to the instance π. After that we show how to handle the case where
no admissible pivot exists. In this case, we show that we can decompose the problem
into two subproblems, one of which is easy, while the other is “small,” in the sense that
the number of vertices that we need to cover in the second subproblem is significantly
smaller than k′.
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Claim 4. If there is a good admissible pivot, then we can find a solution to π of cost at
most 3β(Δ1 + Δ2) + β · α(k′) ·D.

Proof. Since pivot v is admissible, from Claim 3, V (x, v, DL, Δ1, D) = Lv and
V (v, y, DR, D, Δ2) = Rv . Consider the three paths PL = T (x, v, kL, DL, Δ1, D),
PR = T (v, y, kR, DR, D, Δ2), and PC = Algk-tour(Cv, v, kC). Since the sets Lv, Cv

and Rv are completely disjoint, the three paths are also completely disjoint, except
for the vertex v, that appears on each one of them. (Notice that since v is admissible,
x, y 	∈ Cv). So altogether these paths cover kL + kR + kC − 2 = k′ distinct ver-
tices of V ′ ∪ {x, y}. Let P be the path obtained by concatenating PL,PC and PR. It
now only remains to bound the length of P . The lengths of PL and PR are bounded by
3β(Δ1+D)+β(9 logθ kL+3)DL and 3β(D+Δ2)+β(9 logθ kR+3)DR, respectively.
Since kL, kR ≤ 2k′/3 and θ = 3/2, logθ kL ≤ logθ k′ − 1 and logθ kR ≤ logθ k′ − 1.
Therefore, the total solution cost is bounded by

3βD + [3β(Δ1 + D) + β(9 logθ kL + 3)DL]
+ [3β(D + Δ2) + β(9 logθ kR + 3)DR]

≤ 3βD + 3β(Δ1 + D) + β(9(logθ k′ − 1) + 3)DL

+ 3β(D + Δ2) + β(9(logθ k′ − 1) + 3)DR

= 3βD + 3β(Δ1 + Δ2 + 2D) + β(9(logθ k′ − 1) + 3)(DL + DR)
≤ 3β(Δ1 + Δ2) + β(9 logθ k′ + 3)D
= 3β(Δ1 + Δ2) + β · α(k′) ·D. �

It now only remains to take care of the case where no good admissible pivots exist. This
is done in the following claim.

Claim 5. If T is a feasible entry, π is not easy, and no good admissible pivot exists, then
there is an admissible (non-good) pivot v, integers kL, kR, kC , DL, DR, with kL+kR+
kC = k′ + 2, DL + DR = D, such that the length of the tour Algk-tour(Cv, v, kC) is
at most 3βD, and the entries T (x, v, kL, DL, Δ1, D) and T (v, y, kR, DR, D, Δ2) are
good. Moreover, either kR ≤ 2k′/3, and problem π(x, v, kL, DL, Δ1, D) is easy, or
kL ≤ 2k′/3, and problem π(v, y, kR, DR, D, Δ2) is easy. In either case, we can find a
solution to π of cost at most 3β(Δ1 + Δ2) + β · α(k′) ·D.

Proof. For simplicity, we call vertices of V ′ that belong to B(x, 2Δ1) “red”, and ver-
tices of V ′ that belong to B(y, 2Δ2) “blue”. Consider the optimal solution P to the
problem π. First, it is easy to see that all red vertices appear before all blue vertices
on P : otherwise, if some blue vertex b appears before some red vertex r on P , then
d(y, x) ≤ d(y, b) + d(b, r) + d(r, x) ≤ D + 2Δ1 + 2Δ2, so π is an easy problem (case
2). Similarly, no vertex can be blue and red simultaneously.

Let r be the last red vertex and b the first blue vertex on path P . Observe that all
vertices lying before r on P belong to B(x, 3Δ1), and all vertices appearing after b
on P belong to B(y, 3Δ2), since Δ1, Δ2 ≥ D. Thus, if no vertex lies between r and
b on P , there are two integers k1 and k2, k1 + k2 = k′, such that the two instances
I(B(x, 3Δ1) ∩ V ′, x, k1) and I(B(y, 3Δ2) ∩ V ′, y, k2) of the k-Tour problem have
solutions of total cost at most 3(Δ1 + Δ2) + 2D, so problem π is easy (case 3).
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Let Q be the set of all vertices lying between r and b on P . Then all vertices in Q
are admissible pivots. Let P1 be the portion of P lying between x and r, and let P2
be the portion of P lying between b and y. If both P1 and P2 contain less than 2k′/3
distinct vertices, then one of the pivots in Q must be good. Since we have assumed
that there are no good admissible pivots, either P1 or P2 contains more than 2k′/3
vertices. For simplicity, assume the former; the other case is symmetric. Let v be the
vertex appearing on P right after r. We choose v as the pivot. Observe that v is an
admissible pivot. Consider the corresponding sets Lv, Cv and Rv. As before, we can
replace P by a path P ′ that consists of three segments. The first segment connects x to
v and only visits vertices of Lv ∪ {x, v}; the second segment is a tour containing v and
only visiting vertices of Cv , and the third segment connects v to y and only contains
vertices of Rv∪{v, y}. The lengths of these segments are bounded by DL, 3D and DR,
respectively, where DL + DR = D. Let kL, kC and kR denote the number of distinct
vertices appearing on each one of the three segments, respectively, kL + kR + kC =
k′+2. Observe that only vertices that appear after v on P belong to Rv , so kR ≤ 2k′/3.
Finally, we need to show that problem π′ = π(x, v, kL, DL, Δ1, D) is easy. First, if
d(v, x) ≤ 3(Δ1 + D) + DL, problem π′ is easy (case 2). So assume this is not the
case. Recall that since v is an admissible pivot, V (x, v, DL, Δ1, D) = Lv, and since
all vertices of Lv appear before v on P , Lv ⊆ B(x, 3Δ1) ∩ V ′. Therefore, there is a
solution to the k-tour problem instance I(B(x, 3Δ1) ∩ V ′, x, kL − 1) of cost at most
DL +3Δ1, and solution to I(B(v, 3D)∩V ′, v, 1)) of cost 0, and so π′ is easy (case 3).
Since the two entries T (x, v, kL, DL, Δ1, D) and T (v, y, kR, DR, D, Δ2) are feasible,
they must also be good.

It now only remains to bound the solution cost. We assume again w.l.o.g. that the
first case happens, that is, kR ≤ 2k′/3, and problem π(x, v, kL, DL, Δ1, D) is easy.
Using Claim 2, we can find a solution TL to instance π(x, v, kL, DL, Δ1, D) of cost at
most 3β(DL +Δ1 +D). We let TC = Algk-tour(Cv, v, kC) be the tour of cost at most
3βD, and recall that the entry T (v, y, kR, DR, D, Δ2) is good, so it contains a path,
denoted by TR, of length at most 3β(D + Δ2) + β(9 logθ kR + 3)DR.

Then the total cost is bounded by

3βD + 3β(DL + Δ1 + D) + [3β(D + Δ2) + β(9 logθ kR + 3)DR]
≤ 3βD + 3β(DL + Δ1 + D) + 3β(D + Δ2) + β(9(logθ k′ − 1) + 3)DR

≤ 3βD + 3β(Δ1 + 2D + Δ2) + β(9(logθ k′ − 1) + 3)(DL + DR)
≤ 3β(Δ1 + Δ2) + β(9(logθ k′ + 3)D
≤ 3β(Δ1 + Δ2) + β · α(k′) ·D. �

We now summarize our algorithm for computing entry T (x, y, k′, D, Δ1, Δ2):

– If instance π(x, y, k′, D, Δ1, Δ2) is easy, return the solution of cost at most 3β(D+
Δ1 + Δ2) ≤ 3β(Δ1 + Δ2) + β · α(k′) ·D, guaranteed by Claim 2.

– Otherwise, if there is a good admissible pivot v, return the solution of cost at most
3β(Δ1 + Δ2) + β · α(k′) ·D, guaranteed by Claim 4.

– Otherwise, if there is an admissible pivot v, and integers kL, kR, kC , DL, DR,
with kL + kR + kC = k′ + 2, DL + DR = D, such that the length of the
tour Algk-tour(Cv, v, kC) is at most 3βD, the entries T (x, v, kL, DL, Δ1, D)
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and T (v, y, kR, DR, D, Δ2) are good, and either (1) kR ≤ 2k′/3, and
π(x, v, kL, DL, Δ1, D) is easy, or (2) kL ≤ 2k′/3 and π(v, y, kR, DR, D, Δ2) is
easy: return a solution of cost at most 3β(Δ1 + Δ2) + β ·α(k′) ·D, guaranteed by
Claim 5.

– Otherwise, the entry T (x, y, k′, D, Δ1, Δ2) is undefined.

From the above discussion, if T (x, y, k′, D, Δ1, Δ2) is feasible, and all entries
T (x′, y′, k′′, D′, Δ′

1, Δ
′
2) for k′′ < k′ have been computed correctly, the algorithm

finds a solution to the k-Stroll instance π(x, y, k′, D, Δ1, Δ2) of cost at most 3β(Δ1 +
Δ2) + βα(k′)D. In particular, the entry T (s, t, k, L∗, L∗, L∗) will contain an s-t walk
covering k vertices, of length at most O(β · α(k) · L∗) = O(log k) · β · L∗.

3 Approximation Algorithm for the k-Tour Problem

3.1 Preliminaries and Notation

We assume that we are given a directed graph G = (V, E) with nonnegative lengths
ce for all edges e ∈ E. For each vertex v ∈ V , we denote by δ−(v) and δ+(v) the
sets of the incoming and the outgoing edges of v, respectively. Similarly, for a sub-
set U ⊆ V of vertices, δ−(U) = {(v, u) ∈ E | v ∈ V \ U, u ∈ U} and δ+(U) =
{(u, v) ∈ E | u ∈ U, v ∈ V \ U}. Given a pair u, v of vertices, the distance d(u, v) is
the length of the shortest path from u to v in G, where the length of each edge e is ce.

Held-Karp LP: We will use the famous Held-Karp LP relaxation for the ATSP prob-
lem [14], defined as follows:

(LP-HK) minimize
∑

e∈E cexe

s.t. ∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe ∀v ∈ V (1)∑

e∈δ+(U) xe ≥ 1 ∀U ⊂ V (2)

xe ≥ 0 ∀e ∈ E

For each edge e ∈ E, the LP relaxation contains an indicator variable xe for including
e in the solution. The objective is to minimize the total length of edges in the solution.
An integral solution to LP-HK induces a subgraph of G, and the set (1) of constraints
ensures that the in-degree of every vertex equals its out-degree, while the set (2) of
constraints requires each subset U ⊂ V of vertices to have at least one edge leaving
the set in this subgraph. Although (LP-HK) has an exponential number of constraints,
it can be solved in polynomial time, either by the Ellipsoid algorithm with a separation
oracle, or by writing an equivalent LP relaxation with a polynomial number of variables
and constraints.

Let βHK denote the best approximation factor achievable by any LP-rounding
algorithm based on (LP-HK). More precisely, βHK is the smallest approximation
factor, for which there is an efficient algorithm A, that for any instance I of the
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ATSP problem, produces a solution whose cost is at most βHK · OPTHK(I), where
OPTHK(I) is the value of the optimal solution of (LP-HK) for I. From the recent
result of Asadpour et al. [1], βHK ≤ O(log n/ log log n). The goal of this section
is to show an O(log n)βHK -approximation algorithm for the k-Tour problem. Let
α = O(log n)βHK denote the desired approximation factor.

LP relaxation for k-Tour. Throughout the algorithm, we assume that we know the
value L∗ of the optimal solution to the k-Tour problem. This is done using standard
techniques.We now perform the following simple transformation to our input graph G:
first, we discard all vertices v, for which d(r, v) > L∗ or d(v, r) > L∗. Next, we discard
all edges e with ce > L∗. Since the discarded edges and vertices do not participate in
the optimal tour, the value of the optimal tour in the new graph does not change. For
simplicity, we will use G to denote the new graph. Clearly, a tour of length αL∗ in the
new graph translates to a tour of the same length in the old graph. We are now ready to
define the linear programming relaxation, extending (LP-HK) to the k-Tour problem.
In addition to variables xe for all e ∈ E, the LP relaxation contains, for each vertex
v ∈ V , a variable zv, indicating whether v belongs to the tour.

(LP-k-Tour) minimize
∑

e∈E cexe

s.t. ∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe ∀v ∈ V (3)∑

e∈δ+(U) xe ≥ zv ∀U ⊆ V \ {r}, ∀v ∈ U (4)

zv ≤ 1 ∀v ∈ V (5)

zr = 1 (6)∑
v∈V zv ≥ k (7)

zv, xe ≥ 0 ∀v ∈ V, ∀e ∈ E

The set (3) of constraints is identical to constraints (1) of (LP-HK). The second set of
constraints, (4), corresponds to constraints (2) of (LP-HK), and it requires that whenever
a vertex v belongs to the solution, every cut U containing v but not r, has an edge
e ∈ δ+(U) in the solution. The next three constraints (5)–(7) ensure that each vertex is
covered at most once, the root vertex r belongs to the solution, and the total number of
vertices covered is k, respectively.

The LP relaxation has exponentially many constraints, but similarly to (LP-HK), it
can be solved efficiently. Let OPTLP denote the optimal solution value of (LP-k-Tour).
Notice that we can assume that OPTLP ≤ L∗, the guessed value of the optimal solution
cost.

3.2 LP Rounding

We start with initial rounding of the LP solution.

Lemma 1. We can efficiently find a feasible solution (x′, z′) to (LP-k-Tour) of
cost at most 4 · OPTLP , such that all nonzero values z′v belong to the set{
1/2i | 0 ≤ i ≤ �3 logn�

}
.
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Proof. Let (x, z) be the optimal feasible solution to (LP-k-Tour), whose cost is OPTLP .
We transform it to solution (x′, z′) as follows: for each edge e ∈ E, set x′

e = 4xe. For
each v ∈ V , if 1/2i < zv ≤ 1/2i−1, then if i > �3 logn�, set z′v = 0; otherwise,
z′v = min(1, 1/2i−2).

It is immediately seen that the cost of the new solution (x′, z′) is bounded by
4OPTLP . We now only need to verify that it is a feasible solution. First, since all values
xe were multiplied by the same factor, constraints (3) continue to hold. It is also easy
to see that for each vertex v, z′v ≤ 1, and z′r = 1, and therefore constraints (5) and (6)
still hold. Consider now constraint (4) for some v ∈ V , U ⊆ V \ {r} with v ∈ U . The
value of zv has increased by at most a factor 4, while the values xe for all e ∈ δ+(U)
have increased by a factor 4. Therefore, the constraint continues to hold.

Finally, it remains to show that
∑

v∈V z′v ≥ k. Let Z0 contain the set of vertices v,
for which zv ≤ 1/2�3 log n� ≤ 1

n3 . These are the only vertices whose LP values have de-
creased. The total value

∑
v∈Z0

zv ≤ 1/n2. Let Z1 denote the set of vertices v for which
z′v = 1. If |Z1| ≥ k, then clearly constraint (7) holds. Otherwise,

∑
v �∈Z1

zv ≥ 1 must
hold in the original solution, and therefore

∑
v �∈Z1∪Z0

zv ≥ 1 − 1/n2 ≥
∑

v∈Z0
zv.

For each vertex v 	∈ Z1 ∪ Z0, we have that z′v ≥ 2zv. So overall
∑

v �∈Z1
z′v ≥

2
∑

v �∈Z1∪Z0
zv ≥

∑
v �∈Z1

zv. Since
∑

v∈Z1
z′v ≥

∑
v∈Z1

zv, constraint (7) contin-
ues to hold. �

For each i : 0 ≤ i ≤ �3 logn�, we denote by Bi the set of vertices v with z′v = 1/2i,
and set ki = |Bi|. Recall that

∑�3 log n�
i=0 ki/2i ≥ k.

Theorem 3. For each i : 0 ≤ i ≤ �3 logn�, we can efficiently find a tour Ti of cost at
most βHK · 2i+5 · L∗, visiting all vertices in Bi.

The proof of the theorem is omitted due to lack of space. We now show that Theorem 2
follows from it. We first show that for each i : 0 ≤ i ≤ �3 logn�, there is a path
T ∗

i , containing at least �k/2i� vertices of Bi, of length at most O(βHK ) · L∗. Since
we have discarded all vertices v with d(v, r) > L∗ or d(r, v) > L∗, we can turn T ∗

i

into a tour containing the vertex r, at the additional cost of 2L∗. Therefore, for each
i : 0 ≤ i ≤ �3 logn�, we obtain a tour containing the vertex r, and additional �k/2i�
vertices of Bi, of length at most O(βHK ) ·L∗. Connecting all these tours together gives
a tour of length at most O(βHK · log n) · L∗, containing at least

∑�3 log n�
i=0 ki/2i ≥ k

vertices.
It now only remains to show how to find the paths T ∗

i . Fix some i : 0 ≤ i ≤
�3 logn�. If ki/2i ≤ 1, then choose any vertex v ∈ Bi, and the path T ∗

i then only
consists of the vertex v. Otherwise, consider the tour Ti. This tour contains all ki vertices
of Bi, and its length is at most βHK ·2i+5 ·L∗. We partition Ti into at least 2i−2 disjoint
consecutive segments, each containing �ki/2i� vertices of Bi. We let T ∗

i be the segment
of minimum length, so the length of T ∗

i is bounded by O(βHK · L∗).
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1 Introduction

Online auction is the essence of many modern markets, particularly networked mar-
kets, in which information about goods, agents, and outcomes is revealed over a period
of time, and the agents must make irrevocable decisions without knowing future infor-
mation. Optimal stopping theory is a powerful tool for analyzing such scenarios which
generally require optimizing an objective function over the space of stopping rules for
an allocation process under uncertainty. Combining optimal stopping theory with game
theory allows us to model the actions of rational agents applying competing stopping
rules in an online market. This first has been done by Hajiaghayi et al. [24] who consid-
ered the well-known secretary problem in online settings and initiated several follow-up
papers (see e.g. [4,5,6,25,29,33]).

Perhaps the most classic problem of stopping theory is the secretary problem. Imag-
ine that you manage a company, and you want to hire a secretary from a pool of n
applicants. You are very keen on hiring only the best and brightest. Unfortunately, you
cannot tell how good a secretary is until you interview him, and you must make an
irrevocable decision whether or not to make an offer at the time of the interview. The
problem is to design a strategy which maximizes the probability of hiring the most qual-
ified secretary. It is well-known since 1963 [12] that the optimal policy is to interview
the first t − 1 applicants, then hire the next one whose quality exceeds that of the first
t − 1 applicants, where t is defined by

∑n
j=t+1

1
j−1 ≤ 1 <

∑n
j=t

1
j−1 ; as n → ∞,

the probability of hiring the best applicant approaches 1/e, as does the ratio t/n. Note
that a solution to the secretary problem immediately yields an algorithm for a slightly
different objective function optimizing the expected value of the chosen element. Sub-
sequent papers have extended the problem by varying the objective function, varying
the information available to the decision-maker, and so on, see e.g., [2,21,40,42].

An important generalization of the secretary problem with several applications (see
e.g., a survey by Babaioff et al. [5]) is called the multiple-choice secretary problem in
which the interviewer is allowed to hire up to k ≥ 1 applicants in order to maximize
performance of the secretarial group based on their overlapping skills (or the joint utility
of selected items in a more general setting). More formally, assuming applicants of a
set S = {a1, a2, · · · , an} (applicant pool) arriving in a uniformly random order, the
goal is to select a set of at most k applicants in order to maximize a profit function f :
2S �→ R. We assume f is non-negative throughout this paper. For example, when f(T )
is the maximum individual value [19,20], or when f(T ) is the sum of the individual
values in T [33], the problem has been considered thoroughly in the literature. Indeed,
both of these cases are special monotone non-negative submodular functions that we
consider in this paper. A function f : 2S �→ R is called submodular if and only if
∀A, B ⊆ S : f(A)+ f(B) ≥ f(A∪B)+ f(A∩B). An equivalent characterization is
that the marginal profit of each item should be non-increasing, i.e., f(A∪{a})−f(A) ≤
f(B∪{a})− f(B) if B ⊆ A ⊆ S and a ∈ S \B. A function f : 2S �→ R is monotone
if and only if f(A) ≤ f(B) for A ⊆ B ⊆ S; it is non-monotone if is not necessarily
the case. Since the number of sets is exponential, we assume a value oracle access to
the submodular function; i.e., for a given set T , an algorithm can query an oracle to
find its value f(T ). As we discuss below, maximizing a (monotone or non-monotone)
submodular function which demonstrates economy of scale is a central and very general
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problem in combinatorial optimization and has been subject of a thorough study in the
literature.

The closest setting to our submodular multiple-choice secretary problem is the ma-
troid secretary problem considered by Babaioff et al. [6]. In this problem, we are given
a matroid by a ground set U of elements and a collection of independent (feasible) sub-
sets I ⊆ 2U describing the sets of elements which can be simultaneously accepted.
We recall that a matroid has three properties: 1) the empty set is independent; 2) every
subset of an independent set is independent (closed under containment)1; and finally
3) if A and B are two independent sets and A has more elements than B, then there
exists an element in A which is not in B and when added to B still gives an inde-
pendent set2. The goal is to design online algorithms in which the structure of U and
I is known at the outset (assume we have an oracle to answer whether a subset of U
belongs to I or not), while the elements and their values are revealed one at a time
in random order. As each element is presented, the algorithm must make an irrevoca-
ble decision to select or reject it such that the set of selected elements belongs to I
at all times. Babaioff et al. present an O(log r)-competitive algorithm for general ma-
troids, where r is the rank of the matroid (the size of the maximal independent set), and
constant-competitive algorithms for several special cases arising in practical scenarios
including graphic matroids, truncated partition matroids, and bounded degree transver-
sal matroids. However, they leave as a main open question the existence of constant-
competitive algorithms for general matroids. Our constant-competitive algorithms for
the submodular secretary problem in this paper can be considered in parallel with this
open question. To generalize both results of Babaioff et al. and ours, we also consider
the submodular matroid secretary problem in which we want to maximize a submod-
ular function over all independent (feasible) subsets I of the given matroid. Moreover,
we extend our approach to the case in which l matroids are given and the goal is to find
the set of maximum value which is independent with respect to all the given matroids.
We present an O(l log2 r)-competitive algorithm for the submodular matroid secretary
problem generalizing previous results.

Prior to our work, there was no polynomial-time algorithm with a nontrivial guaran-
tee for the case of l matroids—even in the offline setting—when l is not a fixed con-
stant. Lee et al. [34] give a local-search procedure for the offline setting that runs in time
O(nl) and achieves approximation ratio l + ε. Even the simpler case of having a linear
function cannot be approximated to within a factor better than Ω(l/ log l) [28]. Our re-
sults imply an algorithm with guarantees O(l log r) and O(l log2 r) for the offline and
(online) secretary settings, respectively. Both these algorithms run in time polynomial
in l. In case of the knapsack constraints, the only previous relevant work that we are
aware of is that of Lee et al. [34] which gives a (5 + ε) approximation in the offline set-
ting if the number of constraints is a constant. In contrast, our results work for arbitrary
number of knapsack constraints, albeit with a loss in the guarantee; see Theorem 3.

Our competitive ratio for the submodular secretary problem is 7
1−1/e . Though our al-

gorithm is relatively simple, it has several phases and its analysis is relatively involved.
As we point out below, we cannot obtain any approximation factor better than 1− 1/e

1 This is sometimes called the hereditary property.
2 This is sometimes called the augmentation property or the independent set exchange property.
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even for offline special cases of our setting unless P = NP. A natural generalization of
a submodular function while still preserving economy of scale is a subadditive function
f : 2S �→ R in which ∀A, B ⊆ S : f(A) + f(B) ≥ f(A ∪B). In this paper, we show
that if we consider the subadditive secretary problem instead of the submodular secre-
tary problem, there is no algorithm with competitive ratio õ(

√
n). We complement this

result by giving an O(
√

n)-competitive algorithm for the subadditive secretary problem.

Background on submodular maximization. Submodularity, a discrete analog of con-
vexity, has played a central role in combinatorial optimization [35]. It appears in many
important settings including cuts in graphs [30,22,37], plant location problems [11,10],
rank function of matroids [13], and set covering problems [14].

The problem of maximizing a submodular function is of essential importance,
with special cases including Max Cut [22], Max Directed Cut [26], hypergraph cut
problems, maximum facility location [1,11,10], and certain restricted satisfiability prob-
lems [27,16]. While the Min Cut problem in graphs is a classical polynomial-time solv-
able problem, and more generally it has been shown that any submodular function can
be minimized in polynomial time [30,38], maximization turns out to be more difficult
and indeed all the aforementioned special cases are NP-hard.

Max-k-Cover, where the goal is to choose k sets whose union is as large as possible,
is another related problem. It is shown that a greedy algorithm provides a (1 − 1/e)
approximation for Max-k-Cover [32] and this is optimal unless P = NP [14]. More
generally, we can view this problem as maximization of a monotone submodular func-
tion under a cardinality constraint, that is, we seek a set S of size k maximizing f(S).
The greedy algorithm again provides a (1 − 1/e) approximation for this problem [36].
A 1/2 approximation has been developed for maximizing monotone submodular func-
tions under a matroid constraint [18]. A (1−1/e) approximation has been also obtained
for a knapsack constraint [39], and for a special class of submodular functions under a
matroid constraint [9].

Recently constant factor (3
4 + ε)-approximation algorithms for maximizing non-

negative non-monotone submodular functions has also been obtained [17]. Typical
examples of such a problem are max cut and max directed cut. Here, the best approxi-
mation factors are 0.878 for max cut [22] and 0.859 for max directed cut [16]. The ap-
proximation factor for max cut has been proved optimal, assuming the Unique Games
Conjecture [31]. Generalizing these results, Vondrák very recently obtains a constant
factor approximation algorithm for maximizing non-monotone submodular functions
under a matroid constraint [41]. Subadditive maximization has been also considered
recently (e.g. in the context of maximizing welfare [15]).

Submodular maximization also plays a role in maximizing the difference of a mono-
tone submodular function and a modular function. A typical example of this type is the
maximum facility location problem in which we want to open a subset of facilities and
maximize the total profit from clients minus the opening cost of facilities. Approxima-
tion algorithms have been developed for a variant of this problem which is a special case
of maximizing nonnegative submodular functions [1,11,10]. The current best approxi-
mation factor known for this problem is 0.828 [1]. Asadpour et al. [3] study the problem
of maximizing a submodular function in a stochastic setting, and obtain constant-factor
approximation algorithms.
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Our results and techniques. The main theorem in this paper is as follows.

Theorem 1. There exists a 7
1−1/e -competitive algorithm for the monotone submodular

secretary problem. More generally there exists a 8e2-competitive algorithm for the non-
monotone submodular secretary problem.

We prove Theorem 1 in Section 2. We first present our simple algorithms for the prob-
lem. Since our algorithm for the general non-monotone case uses that of monotone case,
we first present the analysis for the latter case and then extend it for the former case. We
divide the input stream into equal-sized segments, and show that restricting the algo-
rithm to pick only one item from each segment decreases the value of the optimum by at
most a constant factor. Then in each segment, we use a standard secretary algorithm to
pick the best item conditioned on our previous choices. We next prove that these local
optimization steps lead to a global near-optimal solution.

The argument breaks for the non-monotone case since the algorithm actually ap-
proximates a set which is larger than the optimal solution. The trick is to invoke a new
structural property of (non-monotone) submodular functions which allows us to divide
the input into two equal portions, and randomly solve the problem on one.

Indeed Theorem 1 can be extended for the submodular matroid secretary problem as
follows.

Theorem 2. There exists an O(l log2 r) competitive algorithm for the (non-monotone)
matroid submodular secretary problem, where r is the maximum rank of the given l
matroids.

We prove theorem 2 in Section 3. We note that in the submodular matroid secretary
problem, selecting (bad) elements early in the process might prevent us from selecting
(good) elements later since there are matroid independence (feasibility) constraints. To
overcome this issue, we only work with the first half of the input. This guarantees that
at each point in expectation there is a large portion of the optimal solution that can be
added to our current solution without violating the matroid constraint. However, this set
may not have a high value. As a remedy we prove there is a near-optimal solution all of
whose large subsets have a high value. This novel argument may be of its own interest.

We shortly mention in Section 4 our results for maximizing a submodular secretary
problem with respect to l knapsack constraints. In this setting, there are l knapsack
capacities Ci : 1 ≤ i ≤ l, and each item j has different weights wij associated with
each knapsack. A set T of items is feasible if and only if for each knapsack i, we have∑

j∈T wij ≤ Ci.

Theorem 3. There exists an O(l)-competitive algorithm for the (non-monotone) mul-
tiple knapsack submodular secretary problem, where l denotes the number of given
knapsack constraints.

Lee et al. [34] gives a better (5 + ε) approximation in the offline setting if l is a fixed
constant.

We next show that indeed submodular secretary problems are the most general cases
that we can hope for constant competitiveness.
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Theorem 4. For the subadditive secretary problem, there is no algorithm with competi-
tive ratio in õ(

√
n). However there is an algorithm with almost tight O(

√
n) competitive

ratio in this case.

We prove Theorem 4 in Section 5. The algorithm for the matching upper bound is very
simple, however the lower bound uses clever ideas and indeed works in a more general
setting. We construct a subadditive function, which interestingly is almost submodular,
and has a “hidden good set”. Roughly speaking, the value of any query to the oracle
is proportional to the intersection of the query and the hidden good set. However, the
oracle’s response does not change unless the query has considerable intersection with
the good set which is hidden. Hence, the oracle does not give much information about
the hidden good set.

Remark. Subsequent to our study of online submodular maximization [7], Gupta et
al. [23] consider similar problems. By reducing the case of non-monotone submodular
functions to several runs of the greedy algorithm for monotone submodular functions,
they present O(p)-approximation algorithms for maximizing submodular functions (in
the offline setting) subject to p-independence systems (which include the intersection
of p matroids), and constant factor approximation algorithms when the maximization is
subject to a knapsack constraint. In the online secretary setting, they provide O(1)-
competitive results for maximizing a submodular function subject to cardinality or
partition matroid constraints. They also obtain an O(log r) competitive ratio for
maximization subject to a general matroid of rank r. The latter result improves our
Theorem 2 when l = 1.

2 The Submodular Secretary Problem

2.1 Algorithms

In this sections, we present the algorithms used to prove Theorem 1. In the classic
secretary problem, the efficiency value of each secretary is known only after she arrives.
In order to marry this with the value oracle model, we say that the oracle answers the
query regarding the efficiency of a set S′ ⊆ S only if all the secretaries in S′ have
already arrived and been interviewed.

Our algorithm for the monotone submodular case is relatively simple though its anal-
ysis is relatively involved. First we assume that n is a multiple of k, since otherwise we
could virtually insert n − k�n

k � dummy secretaries in the input: for any subset A of
dummy secretaries and a set B ⊆ S, we have that f(A ∪ B) = f(B). In other words,
there is no profit in employing the dummy secretaries. To be more precise, we simulate
the augmented input in such a way that these secretaries are arriving uniformly at ran-
dom similarly to the real ones. Thus, we say that n is a multiple of k without loss of
generality.

We partition the input stream into k equally-sized segments, and, roughly speaking,
try to employ the best secretary in each segment. Let l := n

k denote the length of each
segment. Let a1, a2, · · · , an be the actual ordering in which the secretaries are inter-
viewed. Break the input into k segments such that Sj = {a(j−1)l+1, a(j−1)l+2, . . . , ajl}
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for 1 ≤ j < k, and Sk = {a(k−1)l+1, a(k−1)l+2, . . . , an}. We employ at most one sec-
retary from each segment Si. Note that this way of having several phases of (almost)
equal length for the secretary problem seems novel to this paper, since in previous works
there are usually only two phases (see e.g. [24]). The phase i of our algorithm corre-
sponds to the time interval when the secretaries in Si arrive. Let Ti be the set of secre-
taries that we have employed from

⋃i
j=1 Sj . Define T0 := ∅ for convenience. In phase

i, we try to employ a secretary e from Si that maximizes f(Ti−1 ∪ {e}) − f(Ti−1).
For each e ∈ Si, we define gi(e) = f(Ti−1 ∪ {e}) − f(Ti−1). Then, we are trying
to employ a secretary x ∈ Si that has the maximum value for gi(e). Using a classic
algorithm for the secretary problem (see [12] for instance) for employing the single
secretary, we can solve this problem with constant probability 1/e. Hence, with con-
stant probability, we pick the secretary that maximizes our local profit in each phase.
It leaves us to prove that this local optimization leads to a reasonable global guarantee.

Algorithm 2.1. Monotone Submodular
Secretary Algorithm
Input: A monotone submodular function
f : 2S �→ R, and a randomly per-
muted stream of secretaries, denoted by
(a1, a2, . . . , an), where n is an integer
multiple of k.
Output: A subset of at most k secretaries.

Let T0 ← ∅
Let l ← n/k
for i← 1 to k do {phase i}

Let ui ← (i− 1)l + l/e
Let αi ← max

(i−1)l≤j<ui

f(Ti−1 ∪{aj})

if αi < f(Ti−1) then
αi ← f(Ti−1)

end if
Pick an index pi : ui ≤ pi < il such
that f(Ti−1 ∪ {api}) ≥ αi

if such an index pi exists then
Let Ti ← Ti−1 ∪ {api}

else
Let Ti ← Ti−1

end if
end for
Output Tk as the solution

The previous algorithm fails in the
non-monotone case. Observe that the first
if statement is never true for a monotone
function, however, for a non-monotone
function this guarantees the values of sets
Ti are non-decreasing. Algorithm 2.1
first divides the input stream into two
equal-sized parts: U1 and U2. Then, with
probability 1/2, it calls Algorithm 2.1 on
U1, whereas with the same probability, it
skips over the first half of the input, and
runs Algorithm 2.1 on U2.

2.2 Analysis

In this section, we prove Theorem 1.
Since the algorithm for the non-
monotone submodular secretary problem
uses that for the monotone submodular
secretary problem, first we start with the
monotone case.

Monotone Submodular. We prove in
this section that for Algorithm 2.1, the
expected value of f(Tk) is within a con-
stant factor of the optimal solution. Let
R = {ai1 , ai2 , · · · , aik

} be the opti-
mal solution. Note that the set {i1, i2, · · · , ik} is a uniformly random subset of
{1, 2, · · · , n} with size k. It is also important to note that the permutation of the el-
ements of the optimal solution on these k places is also uniformly random, and is
independent from the set {i1, i2, · · · , ik}. For example, any of the k elements of the
optimum can appear as ai1 . These are two key facts used in the analysis.
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Algorithm 2.2. Submodular Secretary Algorithm
Input: A (possibly non-monotone) submod-
ular function f : 2S �→ R, and a randomly
permuted stream of secretaries, denoted by
(a1, a2, . . . , an), where n is an integer multiple
of 2k.
Output: A subset of at most k secretaries.

Let U1 := {a1, a2, . . . , an/2}
Let U2 := {an/2 + 1, . . . , an−1, an}
Let 0 ≤ X ≤ 1 be a uniformly random value.
if X ≤ 1/2 then

Run Algorithm 2.1 on U1 to get S1
Output S1 as the solution

else
Run Algorithm 2.1 on U2 to get S2
Output S2 as the solution

end if

Before starting the analysis,
we present a simple property of
submodular functions which will
prove useful in the analysis. The
proof of the lemma is standard, and
is included in the appendix for the
sake of completeness.

Lemma 1. If f : 2S �→ R

is a submodular function,
we have f(B) − f(A) ≤∑

a∈B\A [f(A ∪ {a})− f(A)]
for any A ⊆ B ⊆ S.

Define X := {Si : |Si ∩ R| 	= ∅}.
For each Si ∈ X , we pick one
element, say si, of Si ∩ R ran-
domly. These selected items form
a set called R′ = {s1, s2, · · · , s|X |} ⊆ R of size |X |. Since our algorithm approxi-
mates such a set, we study the value of such random samples of R in the following lem-
mas. We first show that restricting ourselves to picking at most one element from each
segment does not prevent us from picking many elements from the optimal solution
(i.e., R).

Lemma 2. The expected value of the number of items in R′ is at least k(1− 1/e).

The next lemma materializes the proof of an intuitive statement: if you randomly sample
elements of the set R, you expect to obtain a profit proportional to the size of your
sample. An analog of this is proved in [15] for the case when |R|/|A| is an integer.

Lemma 3. For a random subset A of R, the expected value of f(A) is at least |A|
k ·

f(R).

Here comes the crux of our analysis where we prove that the local optimization steps
(i.e., trying to make the best move in each segment) indeed lead to a globally approxi-
mate solution.

Lemma 4. The expected value of f(Tk) is at least |R′|
7k · f(R).

The following theorem wraps up the analysis of the algorithm.

Theorem 5. The expected value of the output of our algorithm is at least 1−1/e
7 f(R).

Non-monotone Submodular. Before starting the analysis of Algorithm 2.1 for non-
monotone functions, we show an interesting property of Algorithm 2.1. Consistently
with the notation of Section 2.2, we use R to refer to some optimal solution. Recall
that we partition the input stream into (almost) equal-sized segments Si : 1 ≤ i ≤ k,
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and pick one item from each. Then Ti denotes the set of items we have picked at the
completion of segment i. We show that f(Tk) ≥ 1

2ef(R ∪ Ti) for some integer i,
even when f is not monotone. Roughly speaking, the proof mainly follows from the
submodularity property and Lemma 1.

Lemma 5. If we run the monotone algorithm on a (possibly non-monotone) submodu-
lar function f , we obtain f(Tk) ≥ 1

2e2 f(R ∪ Ti) for some i.

Unlike the case of monotone functions, we cannot say that f(R ∪ Ti) ≥ f(R), and
conclude that our algorithm is constant-competitive. Instead, we need to use other tech-
niques to cover the cases that f(R ∪ Ti) < f(R). The following lemma presents an
upper bound on the value of the optimum.

Lemma 6. For any pair of disjoint sets Z and Z ′, and a submodular function f , we
have f(R) ≤ f(R ∪ Z) + f(R ∪ Z ′).

We are now at a position to prove the performance guarantee of our main algorithm.

Theorem 6. Algorithm 2.1 has competitive ratio 8e2.

3 The Submodular Matroid Secretary Problem

In this section, we prove Theorem 2. We first design an O(log2 r)-competitive algorithm
for maximizing a monotone submodular function, when there are matroid constraints
for the set of selected items. Here we are allowed to choose a subset of items only if it
is an independent set in the given matroid.

The matroid (U , I) is given by an oracle access to I. Let n denote the number of
items, i.e., n := |U|, and r denotes the rank of the matroid. Let S ∈ I denote an optimal
solution that maximizes the function f . We focus our analysis on a refined set S∗ ⊆ S
that has certain nice properties: 1) f(S∗) ≥ (1−1/e)f(S), and 2) f(T ) ≥ f(S∗)/ log r
for any T ⊆ S∗ such that |T | = �|S∗|/2�. We cannot necessarily find S∗, but we prove
that such a set exists.

Start by letting S∗ = S. As long as there is a set T violating the second property
above, remove T from S∗, and continue. The second property clearly holds at the termi-
nation of the procedure. In order to prove the first property, consider one iteration. By
submodularity (subadditivity to be more precise) we have f(S∗\T ) ≥ f(S∗)−f(T ) ≥
(1− 1/ log r)f(S∗). Since each iteration halves the set S∗, there are at most log r iter-
ations. Therefore, f(S∗) ≥ (1− 1/ log r)log r · f(S) ≥ (1− 1/e)f(S).

We analyze the algorithm assuming the parameter |S∗| is given, and achieve a com-
petitive ratio O(log r). If |S∗| is unknown, though, we can guess its value (from a pool
of log r different choices) and continue with Lemma 7. This gives an O(log2 r) com-
petitive ratio.

Lemma 7. Given |S∗|, the above algorithm picks an independent subset of items with
size |S∗|/2 whose expected value is at least f(S∗)/4e log r.
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Finally, it is straightforward (and hence the details are omitted) to combine the algo-
rithm in this section with Algorithm 2.1 for the non-monotone submodular secretary
problem, to obtain an O(log2 r)-competitive algorithm for the non-monotone submod-
ular secretary problem subject to a matroid constraint.

Here we show the same algorithm works when there are l ≥ 1 matroid constraints
and achieves a competitive ratio of O(l log2 r). We just need to respect all matroid
constraints in the algorithm. This finishes the proof of Theorem 2.

Lemma 8. Given |S∗|, the above algorithm picks an independent subset of items (i.e.,
independent with respect to all matroids) with expected value at least f(S∗)/4el log r.

4 Knapsack Constraints

In this section, we prove Theorem 3. We first outline how to reduce an instance with
multiple knapsacks to an instance with only one knapsack, and then we show how to
solve the single knapsack instance.

Without loss of generality, we can assume that all knapsack capacities are equal to
one. Let I be the given instance with the value function f , and item weights wij for
1 ≤ i ≤ l and 1 ≤ j ≤ n. Define a new instance I ′ with one knapsack of capacity one
in which the weight of the item j is w′

j := maxi wij . We first prove that this reduction
loses no more than a factor 4l in the total value. Take note that both the scaling and the
weight transformation can be carried in an online manner as the items arrive. Hence,
the results of this section hold for the online as well as the offline setting.

Lemma 9. With instance I ′ defined above, we have 1
4l OPT(I) ≤ OPT(I ′) ≤

OPT(I).

Here we show how to achieve a constant competitive ratio when there is only one knap-
sack constraint. Let wj denote the weight of item j : 1 ≤ j ≤ n, and assume without
loss of generality that the capacity of the knapsack is 1. Moreover, let f be the value
function which is a non-monotone submodular function. Let T be the optimal solution,
and define OPT := f(T ). The value of the parameter λ ≥ 1 will be fixed below.
Define T1 and T2 as the subsets of T that appears in the first and second half of the
input stream, respectively. We first show the this solution is broken into two balanced
portions.

Lemma 10. If the value of each item is at most OPT /λ, for sufficiently large λ, the
random variable |f(T1)− f(T2)| is bounded by OPT /2 with a constant probability.

The algorithm is as follows. Without loss of generality assume that all items are feasible,
i.e., any one item fits into the knapsack. We flip a coin, and if it turns up “heads,”
we simply try to pick the one item with the maximum value. We do the following
if the coin turns up “tails.” We do not pick any items from the first half of the stream.
Instead, we compute the maximum value set in the first half with respect to the knapsack
constraint; Lee et al. give a constant factor approximation for this task. From the above
argument, we know that f(T1) is at least OPT/4 since all the items have limited value
in this case (i.e., at most OPT /λ). Therefore, we obtain a constant factor estimation
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of OPT by looking at the first half of the stream: i.e., if the estimate is ˆOPT, we get
OPT /c ≤ ˆOPT ≤ OPT. After obtaining this estimate, we go over the second half of
the input, and pick an item j if and only if it is feasible to pick this item, and moreover,
the ratio of its marginal value to wj is at least ˆOPT/6.

Lemma 11. The above algorithm is a constant competitive algorithm for the non-
monotone submodular secretary problem with one knapsack constraint.

5 The Subadditive Secretary Problem

In this section, we prove Theorem 4 by presenting first a hardness result for approxi-
mation subadditive functions in general. The result applies in particular to our online
setting. Surprisingly, the monotone subadditive function that we use here is almost sub-
modular; see Proposition 1 below. Hence, our constant competitive ratio for submodular
functions is nearly the most general we can achieve.

Definition (Subadditive function maximization). Given a nonnegative subadditive
function f on a ground set U , and a positive integer k ≤ |U |, the goal is to find a subset
S of U of size at most k so as to maximize f(S). The function f is accessible through
a value oracle.

5.1 Hardness Result

In the following discussion, we assume that there is an upper bound of m on the size of
sets given to the oracle. We believe this restriction can be lifted. If the function f is not
required to be monotone, this is quite easy to have: simply let the value of the function
f be zero for queries of size larger than m. Furthermore, depending on how we define
the online setting, this may not be an additional restriction here. For example, we may
not be able to query the oracle with secretaries that have already been rejected.

The main result of the section is the following theorem. It shows the subadditive
function maximization is difficult to approximate, even in the offline setting.

Theorem 7. There is no polynomial time algorithm to approximate an instance of
subadditive function maximization within Õ(

√
n) of the optimum. Furthermore, no

algorithm with exponential time 2t can achieve an approximation ratio better than
Õ(

√
n/t).

First, we are going to define our hard function. Afterwards, we continue with proving
certain properties of the function which finally lead to the proof of Theorem 7.

Let n denote the size of the universe, i.e., n := |U |. Pick a random subset S∗ ⊆ U
by sampling each element of U with probability k/n. Thus, the expected size of S∗

is k.
Define the function g : U �→ N as g(S) := |S ∩ S∗| for any S ⊆ U . One can easily

verify that g is submodular. We have a positive r whose value will be fixed below.
Define the final function f : U �→ N as

f(S) :=

{
1 if g(S) = 0
�g(S)/r� otherwise.
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It is not difficult to verify the subadditivity of f ; it is also clearly monotone.
In order to prove the core of the hardness result in Lemma 12, we now let r := λ·mk

n ,

where λ ≥ 1 +
√

3tn
mk and t = Ω(log n) will be determined later.

Lemma 12. An algorithm making at most 2t queries to the value oracle cannot solve
the subadditive maximization problem to within k/r approximation factor.

Now we can prove the main theorem of the section.

Proof (Theorem 7). We just need to set k = m =
√

n. Then, λ =
√

3t, and the
inapproximability ratio is Ω(

√
n
t ). Restricting to polynomial algorithms, we obtain

t := O(log1+ε n), and considering exponential algorithms with running time O(2t′),
we have t = O(t′), giving the desired results. �

In case the query size is not bounded, we can define f(X) := 0 for large sets X , and
pull through the same result; however, the function f is no longer monotone in this case.

We now show that the function f is almost submodular. Recall that a function g is
submodular if and only if g(A) + g(B) ≥ g(A ∪B) + g(A ∩B).

Proposition 1. For the hard function f defined above, f(A) + f(B) ≥ f(A ∪ B) +
f(A∩B)− 2 always holds; moreover, f(X) is always positive and attains a maximum
value of Θ̃(

√
n) for the parameters fixed in the proof of Theorem 7.

5.2 Algorithm

An algorithm that only picks the best item clearly gives a k competitive ratio. We now
show how to achieve an O(n/k) competitive ratio, and thus by combining the two, we
obtain an O(

√
n)-competitive algorithm for the monotone subadditive secretary prob-

lem. This result complements our negative result nicely.
Partition the input stream S into � := n/k (almost) equal-sized segments, each of

size at most k. Randomly pick all the elements in one of these segments. Let the seg-
ments be denoted by S1, S2, . . . , S�. Subadditivity of f implies f(S) ≤

∑
i f(Si).

Hence, the expected value of our solution is
∑

i
1
� f(Si) ≥ 1

� f(S) ≥ 1
� OPT, where

the two inequalities follow from subadditivity and monotonicity, respectively.

6 Conclusions and Further Results

In this paper, we consider the (non-monotone) submodular secretary problem for which
we give a constant-competitive algorithm. The result can be generalized when we have
a matroid constraint on the set that we pick; in this case we obtain an O(log2 r)-
competitive algorithm where r is the rank of the matroid. However, we show that it
is very hard to compete with the optimum if we consider subadditive functions instead
of submodular functions. This hardness holds even for “almost submodular” functions;
see Proposition 1.
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Abstract. We provide improved approximation algorithms for the min-
max generalization problems considered by Du, Eppstein, Goodrich, and
Lueker [1]. In min-max generalization problems, the input consists of
data items with weights and a lower bound wlb, and the goal is to parti-
tion individual items into groups of weight at least wlb, while minimizing
the maximum weight of a group. The rules of legal partitioning are spe-
cific to a problem. Du et al. consider several problems in this vein: (1)
partitioning a graph into connected subgraphs, (2) partitioning unstruc-
tured data into arbitrary classes and (3) partitioning a 2-dimensional
array into non-overlapping contiguous rectangles (subarrays) that sat-
isfy the above size requirements.

We significantly improve approximation ratios for all the problems
considered by Du et al., and provide additional motivation for these
problems. Moreover, for the first problem, while Du et al. give approx-
imation algorithms for specific graph families, namely, 3-connected and
4-connected planar graphs, no approximation algorithm that works for
all graphs was known prior to this work.

1 Introduction

We provide improved approximation algorithms for the min-max generalization
problems considered by Du, Eppstein, Goodrich, and Lueker [1]. In min-max
generalization problems, the input consists of data items with weights and a
lower bound wlb, and the goal is to partition individual items into groups of
weight at least wlb, while minimizing the maximum weight of a group. The rules
of legal partitioning are specific to a problem. Du et al. consider several problems
in this vein: (1) partitioning a graph into connected subgraphs, (2) partitioning
unstructured data into arbitrary classes and (3) partitioning a 2-dimensional
array into non-overlapping contiguous rectangles (subarrays) that satisfy the
above size requirements. We call these problems (1) Min-Max Graph Partition,
(2) Min-Max Bin Covering and (3) Min-Max Rectangle Tiling.

Du et al. motivate the min-max generalization problems by applications to
privacy-preserving data mining. Generalization is widely used in the data mining
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community as means for achieving k-anonymity (see [2] for a survey). Generaliza-
tion involves replacing a value with a less specific value. To achieve k-anonymity
each record should be generalized to the same value as at least k − 1 other
records. For example, if the records contain geographic information (e.g., GPS
coordinates), and the plane is partitioned into axis-parallel rectangles each con-
taining locations of at least k records, to achieve k-anonymity, the coordinates
of each record can be replaced with the corresponding rectangle. Generalization
can also be viewed as a natural way of compressing a dataset.

We briefly discuss several other applications of generalization. Geographic In-
formation Systems contain very large data sets that are organized either accord-
ing to the (almost) planar graph of the road network, or according to geographic
coordinates (see, e.g., [3]). These sets have to be partitioned into pages that can
be transmitted to a mobile device or retrieved from secondary storage. Because
of the high overhead of a single transmission/retrieval operation, we want to as-
sure a minimum size of a single part (page), while controlling the maximum size.
When the process that is exploring a graph needs to investigate a node whose in-
formation it has not retrieved yet, it has to request a new page. Therefore, pages
are more useful if they contain information about connected subgraphs. Min-
Max Graph Partition captures the problem of distributing information about
the graph among pages.

Min-Max Bin Covering is a variant of the classical Bin Covering problem. In
the classical version, the input is a set of items with positive weights and the
goal is to pack items into bins, so that the number of bins that receive items
of total weight at least 1 is maximized (see [4,5,6] and references therein). Both
variants are natural. For example, when Grandfather Frost1 partitions presents
into bundles for kids, he clearly wants to ensure that each bundle has items of at
least a certain value to make kids happy. Grandfather Frost could try to minimize
the value of the maximum bundle, to avoid jealousy (Min-Max Bin Covering),
or to maximize the number of kids who get presents (classical Bin Covering).
Min-Max Bin Covering can also be viewed as a variant of scheduling on parallel
identical machines where, given n jobs and their processing times, the goal is
to schedule them on m identical parallel machines while minimizing makespan,
that is, the maximum time used by any machine [8]. In our variant, the number
of machines is not given in advance, but instead, there is a lower bound on the
processing time. This requirement is natural, e.g., when “machines” represent
workers that must be hired for at least a certain number of hours.

Rectangle tiling problems with various optimization criteria arise in applica-
tions ranging from databases and data mining to video compression and manu-
facturing, and have been extensively studied [9,10,11,12,13,14,15,16]. The min-
max version can be used to design a Geographic Information System, described
above. If the data is a set of coordinates specifying object positions, as opposed
to a road network, we would like to partition it into pages that correspond to

1 Grandfather Frost is a secular character that played the role of Santa Claus for
Soviet children. The Santa Claus problem [7] is not directly related to our problem.
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rectangles on the plane. As before, we would like to ensure that pages have at
least the minimum size while controlling the maximum size.

1.1 Problems

In each of the problems we consider, the input is an item set I, non-negative
weights wi for all i ∈ I and a non-negative bound wlb. For I ′ ⊆ I, we use w(I ′)
to denote

∑
i∈I′ wi. Each problem below specifies a class of allowed subsets of I.

A valid solution is a partition P of I into allowed subsets such that w(I′) ≥ wlb
for each I ′ ∈ P . The goal is to minimize the cost of P, defined as maxI′∈P w(I ′).

In Min-Max Graph Partition, I is the vertex set V of an (undirected) graph
(V, E), and a subset of V is allowed if it induces a connected subgraph. In
Min-Max Bin Covering, every subset of I is allowed. A partition of I is called
a packing, and the parts of a partition are called bins. In Min-Max Rectangle
Tiling, I = {1, . . . , m}×{1, . . . , n}, and the allowed sets are rectangles, i.e., sets
of the form {a, . . . , b} × {c, . . . , d}. A partition of I is called a tiling, and the
parts of a partition are called tiles.

All three min-max problems above are NP-complete. Moreover, if P 	=NP no
polynomial time algorithm can achieve an approximation ratio better than 2 for
Bin Covering (and hence for Graph Partition) or better than 1.33 for Graph
Partition on 3-connected planar graphs and Rectangle Tiling [1].

1.2 Our Results and Techniques

Our main technical contribution is a 3-approximation algorithm for Min-Max
Graph Partition. The remaining algorithms are very simple, even though the
analysis is non-trivial.

Min-Max Graph Partition. We present the first polynomial time approxi-
mation algorithm for Min-Max Graph Partition. Du et al. gave approximation
algorithms for specific graph families, i.e., a 4-approximation for 3-connected and
a 3-approximation for 4-connected planar graphs. We give a 3-approximation al-
gorithm for the general case, simultaneously improving the approximation ratio

Table 1. Approximation Ratios for Min-Max Generalization Problems. (Note: Graph
Partition generalizes Bin Covering, and hence inherits its inapproximability.)

Min-Max Problem Hardness [1] Ratio in [1] Our ratio
Graph Partition 2 —

3
on 3-connected planar graphs 1.33 4
on 4-connected planar graphs — 3 2.5

Bin Covering 2 2 + ε in time 2
exp in ε−1

Rectangle Tiling 1.33 5 4
with 0-1 entries — — 3
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and applicability of the algorithm. We also improve the approximation ratio for
4-connected planar graphs from 3 to 2.5.

Our 3-approximation algorithm for Min-Max Graph Partition constructs a 2-
tier partition where nodes are partitioned into groups, and groups are partitioned
into supergroups. Intuitively, supergroups represent parts in a legal partition,
while groups represent (nearly) indivisible subparts. The initial 2-tier partition
is obtained greedily and then transformed using 4 carefully designed transforma-
tions until all supergroups of large weight have well-defined central nodes, and
almost all non-central nodes in those supergroups are only connected to central
nodes (possibly of multiple supergroups). Supergroups of small weight are used
as parts in the final solution. The remaining supergroups are more tricky to deal
with. We create one part in the final solution for each supergroup or, more pre-
cisely, for each group with a central node. We redistribute other groups among
supergroups using a scheduling algorithm of Lenstra, Shmoys and Tardos [17],
while ! leaving all central nodes in separate parts. Roughly, central nodes play a
role of the machines and the groups that we need to redistribute play a role of
jobs to be scheduled on these machines. The final part of the algorithm repairs
parts of insufficient weight to obtain the final partition.

Our use of the scheduling algorithm of Lenstra et al. is gray-box in the follow-
ing sense: our algorithm runs the scheduling algorithm in a black-box manner.
However, in the analysis, we look inside the black box. Namely, we apply the
Rounding Theorem of Lenstra et al. to show that the LP used by their algorithm
yields a good solution for our problem.

For partitioning 4-connected planar graphs, following Du et al., we use the
fact that such graphs have Hamiltonian cycles [18] which can be found in linear
time [19]. Our algorithm is simple and efficient: It goes around the Hamiltonian
cycle and greedily partitions the nodes, starting from the lightest contiguous part
of the cycle that satisfies the weight lower bound. If the last part is too light,
it is combined with the first part. Thus, the algorithm runs in linear time. Our
algorithm and analysis apply to any graph that contains a Hamiltonian cycle
which can be computed efficiently or is given as part of the input.

Min-Max Bin Covering. We present a simple 2-approximation algorithm that
runs in linear time. Du et al. gave a schema with approximation ratio 2+ ε, and
time complexity exponential in ε−1. They also showed that approximation ratio
better than 2 cannot be achieved in polynomial time unless P=NP. Thus, we
completely resolve the approximability of this problem.

Our algorithm greedily places items in the bins in the order of decreasing
weights, and then redistributes items in the first and the last three bins.

Min-Max Rectangle Tiling. We improve the approximation ratio for this
problem from 5 to 4. We can get a better ratio of 3 when the entries in the
matrix are restricted to be 0 or 1. This case covers the scenarios where each
entry indicates the presence or absence of some object, as in applications with
geographic data, such as GPS coordinate data originally considered by Du et al.
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Our algorithm builds on the slicing and dicing method introduced by Berman
et al. [15]. The idea is to first partition the rectangle horizontally into slices, and
then partition slices vertically. The straightforward application of slicing and
dicing gives ratio 5. We improve it by doing simple preprocessing. For the case
of 0-1 entries, the preprocessing step is more sophisticated.

Summary and Organization. We summarize our results in Table. 1. The results
on Graph Partition are stated in Theorems 2.1 and 2.2 in Sect. 2, on Bin Cover-
ing, in Theorem 3.1 in Sect. 3, and on Rectangle Tiling, in Theorems 4 and 4.2
in Sect. 4. All omitted proofs are deferred to the full version.

Terminology and Notation. Here we describe terminology and notation common
to all technical sections. We use opt as the cost of an optimal solution.

Definition 1.1. An item (or a set of items) is fat if it has weight at least wlb,
and lean otherwise. We apply this terminology to nodes and sets of nodes in an
instance of Graph Partition, and to elements and rectangles in Rectangle Tiling.

A solution is legal if it obeys the minimum weight constraint, i.e., all parts are fat.

2 Min-Max Graph Partition

We present two approximation algorithms for Min-Max Graph Partition whose
performance is summarized in Theorems 2.1 and 2.2.

Theorem 2.1. Min-Max Graph Partition can be approximated with ratio 3 in
polynomial time.

Theorem 2.2. Min-Max Graph Partition on 4-connected planar graphs can be
approximated with ratio 2.5 in linear time. (The proof is omitted.)

The rest of this section is devoted to the proof of Theorem 2.1.
Recall that an input to Min-Max Graph Partition is a graph (V, E) with

node weights w : V → R+ and a weight lower bound wlb. W.l.o.g. assume that
wlb = 1. (All weights can be divided by wlb to obtain an equivalent instance
with wlb = 1.) For now, we will also assume that all nodes in the graph are lean.
(Recall Definition 1.1 of fat and lean.) We remove this assumption in Sect. 2.4.

As described in Sect. 1.2, our algorithm first constructs a 2-tier partition into
groups and supergroups (Sect. 2.1), then transforms it until all supergroups of
large weight have well-defined central nodes, and nearly all non-central nodes
in those supergroups are only connected to central nodes (Sect. 2.2) and finally
solves an instance of Scheduling on Unrelated Parallel Machines (Sect. 2.5), in-
terprets it as a partition and adjusts it to get the final solution.

2.1 A Preliminary 2-Tier Partition

We start by defining a 2-tier partition. (See illustration in Fig. 1.)
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Fig. 1. An example of a 2-tier parti-
tion. Shaded background indicates groups;
curved lines indicate supergroups. The top
supergroup has a 4-node central group and
3 mobile groups. The two bottom super-
groups are group-pairs.

Definition 2.1 (2-tier partition). A 2-tier partition of a graph (V, E, w) con-
taining only lean nodes is a partition of V into lean sets, called groups, together
with a partition of the groups into fat sets, called supergroups. The set of nodes
in a group, or in a supergroup, should induce a connected graph. The set of
groups contained in a supergroup S is denoted by G(S).

Since groups are lean and supergroups
are fat, each supergroup contains at
least two groups. We assign names to
some types of groups and supergroups.

Definition 2.2. Group-pair, triangle,
star supergroups; central group
• A supergroup is a group-pair if it
consists of two groups.
• A supergroup is a triangle if it
consists of three groups, pairwise con-
nected by an edge.
• A supergroup S with 3 or more
groups is a star if it forms a star graph
on groups, i.e., it contains a group G,
called central, such that groups in
G(S) − {G} form connected compo-
nents of S −G.

Lemma 2.1 (Initial partition). Given a connected graph on lean nodes, in
polynomial time we can compute a 2-tier partition where (a) each supergroup is
a group-pair, a triangle or a star and (b) w(G) + w(H) ≥ 1 for all adjacent
groups G and H.

Proof. First, form the groups greedily: Make each node a group. While there are
two groups G, H such that G ∪H is lean and connected, merge G and H .

Second, form group-pairs greedily: While there are two adjacent groups G, H
that are not included in a supergroup, form a supergroup G ∪H .

Next, insert remaining groups into supergroups: For each group G still not
included in a supergroup, pick an adjacent group H . Since the second step halted,
H is in some group-pair created in that step. Insert G into H ’s supergroup.

Finally, break down supergroups that are not stars: Consider a group-pair P
created in the second step from groups G and H , and let S be the supergroup
that was formed from P . Suppose S has 4 or more groups, but is not a star.
Since groups in S − P are not connected, and neither G nor H can become the
center of S, there are two different groups G′ and H ′ in S that are adjacent to
G and H , respectively. Let S1 be the the union of G, G′ and all other groups in
S that are not adjacent to H . Replace S with S1 and S − S1. In the resulting
2-tier partition, all supergroups with 4 or more groups are stars, so item (a) of
the lemma holds. Item (b) is guaranteed by the first step of the construction. �
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2.2 Improving the Initial 2-Tier Partition

In this section, we modify the initial 2-tier partition, while maintaining property
(a) and a weaker version of property (b) of Lemma 2.1. As we are working on
our 2-tier partition, we will rearrange groups and supergroups. A group G is
called mobile if it can be removed from its supergroup S while keeping property
(a) of Lemma 2.1. Namely, the modified S has to be a group-pair or a star.

Definition 2.3 (Mobile group). A group is mobile if it is not in a group-pair
and it is not a central group.

The goal of this phase of the algorithm is to separate supergroups into two
types: (i) the ones that will be repartitioned by the scheduling algorithm and
(ii) the ones that will be used in the final partition as they are. Supergroups
of type (i) will be well structured: in such a supergroup, the central group will
have a unique central node, and mobile groups will be connected only to central
nodes (possibly in multiple central groups). Supergroups of type (ii) will have
at most 3 groups, and thus weight at most 3— sufficiently light to form parts
in a 3-approximate solution. Central groups of supergroups of type (i) will be
allocated their own parts in the final partition. Mobile groups will be distributed
among these parts by the scheduling algorithm. To guarantee that the optimal
distribution of central nodes and mobile groups into parts provides a sufficiently
good solution, we require that mobile groups are connected only to central nodes
of the supergroups of type (i). (Non-central nodes of central groups will join
the parts of their central nodes after the scheduling algorithm produces a 2-
approximate solution. Since, by definition, each group is lean, even after adding
central groups, we will still be able to guarantee a 3-approximation.).

We explain this phase of the algorithm by specifying several transformations of
a 2-tier partition (see Figs. 2 and 3). The algorithm applies these transformations
to the initial 2-tier partition from Lemma 2.1. Each transformation is defined
by the trigger and the action. The algorithm performs the action for the first
transformation for which the trigger condition is satisfied for some group(s) in
the current 2-tier partition. This phase terminates when no transformation can
be applied.

The purpose of the first transformation, CombG, is to ensure that w(G) +
w(H) ≥ 1 for all adjacent groups G and H , where one of the groups is mobile.
Even though an even stronger condition, property (b) of Lemma 2.1, holds for
the initial 2-tier partition, it might be violated by other transformations. The
second transformation, ConP, is getting rid of edges between mobile group. The
third transformation, SplitC, is ensuring that each central group has a unique
central node to which mobile groups connect. To accomplish this, while there is a
central group G that violates this condition, SplitC splits G into two parts, each
containing a node to which mobile groups connect. Later, it rearranges resulting
groups and supergroups to ensure that all previously achieved properties of our
2-tier partition are preserved (in some cases, relying on CombG and ConP to
reinstate these properties).
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• CombG = Combine groups.
Trigger: Groups G and H are connected by an edge, G ∪H is lean and H is
mobile.
Action: Remove H from its supergroup and merge the two groups.

• ConP = Connect group-pairs.
Trigger: Two mobile groups are connected with an edge, and they belong
either to two different supergroups or to a supergroup with more than three
groups.
Action: Remove them from their supergroup(s) and combine them into a
group-pair.

• SplitC = Split the center.

Trigger: G is the central group of a supergroup S, u and v are two different
nodes in G, and two mobile groups Hu, Hv (not necessarily from G(S)) have
edges to u and v, respectively.
Action: Split G into two connected sets, Gu and Gv, containing u and v,
respectively. Split S into Su and Sv, by attaching each non-central group to
Gu or Gv. If Hu ∈ G(S) attach Hu to Gu. Similarly, if Hv ∈ G(S) attach Hv

to Gv.
[LeanLean case]: If both Su and Sv are lean, we make them groups, and S
becomes a group-pair.
[FatFat case]: If both Su and Sv are fat, they become new supergroups.
Now assume that Su is fat and Sv is lean.
[FatLean-IN case]: If Hv ∈ G(S) then change the partition of S by replacing
G and Hv with Gu and Sv. If S is not a star, but has 4 or more groups, apply
CombG or ConP.
[FatLean-OUT case]: If Hv 	∈ G(S) then remove Sv from G and S and treat it
like a mobile group in contact with Hv, which triggers CombG or ConP.

• ChainR = Chain Reconnect.
Trigger: An unstructured supergroup S has 4 or more groups.
Action: Since CombG, ConP cannot be applied, we have a chain of super-
groups S = S1, . . . , Sk where Sk is a group-pair, a mobile group of Sk−1 is
adjacent to Sk and for i = 1, . . . , k−2 a mobile group of Si is adjacent to the
central group of Si+1. Then for i = 1, . . . , k − 1, move a mobile group from
Si to Si+1.

Fig. 2. Transformations. (Perform the first one that applies.)

If the previously described transformations cannot be applied, star super-
groups in the current 2-tier partition are well structured: they have unique cen-
tral nodes, and all mobile groups connect only to these central nodes, with one
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Fig. 3. Transformations that improve the initial partition. Solid lines connect groups
of a supergroup, circles indicate groups, unless they are within ovals—then ovals are
groups and circles are fragments of groups. SplitC transformation has four cases: all
split a central group G into two parts and combine them with groups Hu and Hv to
form new groups or supergroups (depending on the weight of the resulting pieces).

exception—they could still connect to group-pairs. Group-pairs are not guaran-
teed to have any structure. But they are light enough to be used as parts in
the final partition. The same applies to triangles and stars with 3 groups. All
group-pairs and triangles will be used as parts in the final partition, and thus
will be of type (ii), according to the description after Definition 2.3. Stars with
3 groups could be of type (i) or (ii). As we already explained, it is important for
the success of the next (scheduling) phase of the algorithm that mobile groups
of supergroups of type (i) are adjacent only to the central nodes of supergroups
of type (i). Next, we define structured and unstructure! d supergroups. After this
phase completes, structured supergroups of the resulting 2-tier partition will be
assigned type (i) and unstructured supergroups will be assigned type (ii). We call
all group-pairs unstructured. Each star whose mobile group is adjacent to an
unstructured supergroup is not ready to become a group of type (i) and is also
called unstructured.

Definition 2.4 (Structured and unstructured supergroups). An unstruc-
tured supergroup is either a group-pair or (recursively) a star that has a mobile
group adjacent to an unstructured supergroup. A structured supergroup is a star
that is not unstructured.
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The purpose of ChainR is to ensure that each remaining unstructured super-
group has at most 3 groups. ChainR is triggered if there is an unstructured
supergroup S with 4 or more groups. This can happen only if S is connected
by a chain of unstructured supergroups to a group-pair. The mobile nodes along
this chain are reconnected, as explained in Fig. 2 and illustrated in Fig. 3. This
completes the description of transformations and this phase of the algorithm.

2.3 Analysis of Transformations

We analyze the properties of a 2-tier partition to which our transformations
cannot be applied in Lemma 2.2 and bound the running time of this stage of the
algorithm in Lemma 2.3. (The proofs of these lemmas are omitted.)

Lemma 2.2. When transformations CombG, ConP, SplitC and ChainR
cannot be applied, the resulting 2-tier partition satisfies the following:
a. If G is a center group and H is a mobile group of the same supergroup then

w(G) + w(H) ≥ 1.
b. No edges exist between mobile groups except for groups in the same triangle.
c. Each supergroup S with a central group G also has a central node c(S) such

that all edges between G and mobile groups include node c(S).
d. Each supergroup with 4 or more groups is structured.

Lemma 2.3. An algorithm performing transformations defined in Fig. 2 on a
2-tier partition until none of them are applicable runs in polynomial time.

2.4 A 2-Tier Partition on Graphs with Arbitrary Weights

In this section we remove the assumption that all nodes in our input graph are
lean. To obtain a 2-tier partition of a graph with arbitrary node weights, first
allocate a separate supergroup for each fat node. Let Vlean be the set of lean
nodes. Form isolated groups from lean connected components of Vlean. For fat
connected components of Vlean, compute the 2-tier partition using the method
from Sections 2.1 and 2.2.

The next lemma summarizes the main outcome of improving the 2-tier parti-
tion using transformations in Fig. 2. It follows directly from Lemma 2.2.

Lemma 2.4 (Main). Consider a 2-tier partition of a graph G = (V, E, w)
obtained by our method. Let C be the set consisting of fat nodes and central
nodes of structured supergroups in that 2-tier partition. Then mobile groups of
structured supergroups are connected components of V − C.

Proof. By definition, each group is connected. It remains to show that a node
in a mobile group cannot be adjacent to nodes of V − C which are in different
groups. Recall that all groups are either central, mobile or in a group-pair. A
node in a mobile group cannot be adjacent to a node in a different mobile group
by Lemma 2.2(b). It cannot be adjacent to a non-central node in a central group
by Lemma 2.2(c). Finally, it cannot be adjacent to a node in a group-pair by
Definition 2.4 and Lemma 2.2(d). �
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2.5 Reduction to Scheduling and the Final Partition

We reduce Min-Max Graph Partition to Scheduling Unrelated Parallel Machines
(SUPM), and use a 2-approximation algorithm of Lenstra et al. for SUPM to
get a 3-approximation for graph partition.

The number of parts in the final partition will be equal to the number of super-
groups in the 2-tier partition of Sect. 2.4. We use all unstructured supergroups
and triangles as parts in the final partition. By Lemma 2.2(d), the weight of
these supergroups is below 3. We use central groups of structured supergroups
and fat nodes as seeds of the remaining parts, that is, in the final partition,
we create a part for each central group and each fat node, and partition the
remaining groups among these parts using a reduction to SUMP.

Now we explain our reduction. In SUPM, the input is m parallel machines, n
jobs and processing times pji of job j on machine i. For each job j, we can also
specify a set M(j) of machines on which it can be scheduled. (This is equivalent
to setting pji to infinity for i /∈ M(j)). The starting point of the reduction is the
2-tier partition from Sect. 2.4. We create a machine for every node in C, where
C is the set consisting of fat nodes and central nodes of structured supergroups,
as defined in Lemma 2.4. We create a job for every node in C, and for every
mobile and isolated group. To simplify the notation, we identify the names of
the machines and jobs with the names of the corresponding nodes and groups. A
job corresponding to a node i in C can be scheduled only on machine i, that is,
M(i) = {i}, and we set pii = w(i). A job corresponding to a mobile or isolated
group j can be scheduled on machine mi iff group j is connected to C-node i.
This defines M(j). We set pji = w(j).

We run the algorithm of [17] for SUPM on the instance defined above. The
solution returned by the algorithm is interpreted as a partition of the nodes
of the original graph as follows. If job j is scheduled on machine i then node
(group) j is assigned to part i of the partition. Each central group is assigned to
the same part as the central node of the group.

The final part of the algorithm repairs lean parts in the resulting partition.
While there is a lean part P in the partition, reassign a group as follows. Let S
be the supergroup in the 2-tier partition whose center was a seed for P . (A lean
part cannot have a fat node as a seed.) Let C be the central group of S. Then, by
construction, P contains C. Remove a mobile group of S, say H , from its current
part and insert it into P . Now, by Lemma 2.2(a), w(P ) ≥ w(C) + w(H) ≥ 1
because P contains C and H .

This repair process will terminate because each part is repaired at most once.
Since we repair P using a mobile group from the supergroup corresponding to P
(that is, the supergroup from the 2-tier partition whose center is C), the future
repairs of other parts will not remove H from part P . Later, even if P looses
a mobile group when we repair some other part P ′, the weight of P will still
satisfy: w(P ) ≥ w(C) + w(H) ≥ 1. Thus, after a number of steps which is at
most the number of parts, all parts will be fat.

Theorem 2.1 follows from the following lemma whose proof is omitted.
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Lemma 2.5. The final partition returned by the algorithm above has parts of
weight at most opt + 2.

3 Min-Max Bin Covering

In this section, we present our algorithm for Min-Max Bin Covering.

Theorem 3.1. Min-Max Bin Covering can be approximated with ratio 2 in time
O(n).

Proof. W.l.o.g. assume that wlb = 1, I = {1, . . . , n} and w1 ≥ w2 ≥ . . . ≥ wn.
We also assume that wi < 1 for all items i, since items of larger weight can be
placed in their own bins without affecting the quality of the solution. (Each such
bin has weight at least 1 and at most opt.)

If w(I) < 3, a legal packing consists of ≤ 2 bins. Therefore, opt ≥ w(I)/2.
Thus, w(I) ≤ 2opt, and we get a 2-approximation by returning one bin B1 = I.
Theorem 3.1 follows from Lemma 3.1, dealing with instances with w(I) ≥ 3. �

Lemma 3.1. Given a Min-Max Bin Covering instance I with n items and
w(I) ≥ 3, a solution with cost at most opt + 1 can be found in time O (n).

Proof. We compute a preliminary packing greedily, filling successive bins with
items in order (of decreasing weights), and moving to a new bin when the weight
of the current bin reaches or exceeds 1. Let B1, . . . , Bk be the resulting bins.

Definition 3.1. A bin B is good if w(B) ∈ [1, 2]. A packing where all bins are
good is called good.

All bins in the preliminary packing, excluding Bk, are good. If w(Bk) ≥ 1,
the preliminary packing is good. However, Bk can have weight less than 1. If
w(Bk−1) + w(Bk) ≤ 2, we obtain a good packing by combining Bk−1 and Bk.
In the remainder of the proof, we show how to rearrange items in Bk when

w(Bk) < 1; (1)
w(Bk−1) + w(Bk) > 2 (2)

to obtain a legal packing with cost at most opt + 1.

Observation 3.2 If i ∈ Bj then w(Bj) < 1 + wi. Thus, w(Bj)− wi < 1.

Definition 3.2. An item i is called small if wi ≤ 1/2, and large otherwise.

Since w(Bk) < 1, w(Bk−1) < 2 and w(I) ≥ 3, the number of bins k ≥ 3.
We repack bins B1, Bk−2, Bk−1 and Bk to ensure that the last bin satisfies the
weight lower bound. The remaining proof (omitted) is broken down into cases,
depending on how many bins contain small items. �
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4 Min-Max Rectangle Tiling

We present two approximation algorithms for Min-Max Rectangle Tiling whose
performance is summarized in Theorems 4.1 and 4.2.

Theorem 4.1. Min-Max Rectangle Tiling can be approximated with ratio 4 in
time O(mn).

Proof. Our algorithm first preprocesses the array to ensure that the last row is
fat. (Recall that fat and lean were defined in Definition 1.1.) Then it greedily
slices the array, that is, partitions it using horizontal lines. The resulting groups
of consecutive rows are called slices. Finally, each slice is greedily diced using
vertical lines into sub-rectangles, called chunks.

Let Ri denote the ith row of A. While Rm is thin, we perform a step of
preprocessing that replaces the last two rows, Rm−1 and Rm, with row Rm−1 +
Rm (and decrements m by 1). When Rm is thin, every subset of Rm is thin, and
cannot be a valid tile. Thus, every element of Rm has to be in the same tile as
the element directly above it. Therefore, a preprocessing step does not change
the set of valid tilings of A.

In a step of slicing, we start at the top (that is, go through the rows in the
increasing order of indices). Let j be the smallest index such that remaining (not
yet sliced) top rows up to row Rj form a fat rectangle. Then we cut horizontally
between rows Rj and Rj+1, and call the top set of rows a slice. Continue on
the matrix formed by the bottom rows. Since the preprocessing ensured that the
last row is fat, all resulting slices are fat.

In a step of dicing, analogously to the slicing step, we cut up a slice vertically,
dicing away chunks, minimal fat sets of leftmost columns, unless the remaining
columns form a lean rectangle.

chunks

lean lean lean

lean

Rj

sliceC1 . . . Ci−1
wi

Ci+1 . . . Ct

Consider a
tile/chunk pro-
duced by our
algorithm. The
rectangle formed
by all rows of
the tile, ex-
cluding the bottom row, is lean because it is obtained by partitioning a valid
slice. Thus, the weight of this rectangle is less than wlb, and consequently, less
than opt. Let C1, . . . , Ct be the columns of the tile (partial columns of the orig-
inal matrix), and w1, . . . , wt be the entries in the bottom row of the slice. Let
i be the smallest index such that C1, · · · , Ci form a fat rectangle. (If this tile
is the last chunk in its slice, then i might be less than t.) By the choice of i,
the rectangle formed by C1, . . . , Ci−1 is lean, and so is the rectangle formed by
Ci+1, . . . , Ct. Ci without wi is also lean, because it is a subset of the lean part
of the slice. Finally, since wi has to participate in a tile, wi ≥ opt. Consequently,
the weight of the tile is smaller than opt + 3wlb ≤ 4opt.

It is easy to implement the algorithm so that each step performs a constant
number of operations per matrix entry, and the algorithm takes time O(mn). �
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We can get a better approximation ratio when the entries in the matrix are
restricted to be 0 or 1. This case covers the scenarios where each entry indicates
the presence or absence of some object.
Theorem 4.2. Min-Max Rectangle Tiling with 0-1 entries can be approximated
with ratio 3 in time O(mn). (The proof is omitted.).
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1999. LNCS, vol. 1684, pp. 500–511. Springer, Heidelberg (1999)

12. Smith, A., Suri, S.: Rectangular tiling in multi-dimensional arrays. In: SODA, pp.
786–794 (1999)

13. Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two di-
mensions: Algorithms, complexity, and applications. In: Beeri, C., Bruneman, P.
(eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)

14. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Improved approx-
imation algorithms for rectangle tiling and packing. In: SODA, pp. 427–436 (2001)

15. Berman, P., DasGupta, B., Muthukrishnan, S.: Slice and dice: A simple, improved
approximate tiling recipe. In: SODA, pp. 455–464 (2002)

16. Berman, P., DasGupta, B., Muthukrishnan, S.: Approximation algorithms for max-
min tiling. J. Algorithms 47(2), 122–134 (2003)

17. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(3), 259–271 (1990)

18. Tutte,W.T.: A theorem on planar graphs. Trans. Amer.Math. Soc. 82, 99–116 (1956)
19. Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for

4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)



Min-Power Strong Connectivity

Gruia Calinescu�

Abstract. Given a directed simple graph G = (V, E) and a cost function
c : E → R+, the power of a vertex u in a directed spanning subgraph H
is given by pH(u) = maxuv∈E(H) c(uv), and corresponds to the energy
consumption required for wireless node u to transmit to all nodes v with
uv ∈ E(H). The power of H is given by p(H) =

∑
u∈V pH(u).

Power Assignment seeks to minimize p(H) while H satisfies some
connectivity constraint. In this paper, we assume E is bidirected (for
every directed edge e ∈ E, the opposite edge exists and has the same
cost), while H is required to be strongly connected. This is the original
power assignment problem introduce in 1989 and since then the best
known approximation ratio is 2 and is achieved by a bidirected mini-
mum spanning tree. We improve this to 2 − ε for a small ε > 0. We do
this by combining techniques from Robins-Zelikovsky (2000) for Steiner
Tree, Christofides (1976) for Metric Travelling Salesman, and Caragian-
nis, Flammini, and Moscardelli (2007) for the broadcast version of Power
Assignment, together with a novel property on T-joins in certain two-
edge-connected hypergraphs. With the restriction that c : E → {A, B},
where 0 ≤ A < B, we improve the best known approximation ratio from
1.8 to π2/6−1/36+ε ≤ 1.61 using an adaptation of the algorithm devel-
oped by Khuller, Raghavachari, and Young (1995,1996) for (unweighted)
Minimum Strongly Connected Subgraph.

1 Introduction

There has been a surge of research in Power Assignment problems since 2000
(among the earlier papers are [23,29,14]) This class of problems take as in-
put a directed simple graph G = (V, E) and a cost function c : E → R+.
The power of a vertex u in a directed spanning subgraph H of G is given by
pH(u) = maxuv∈E(H) c(uv), and corresponds to the energy consumption required
for wireless node u to transmit to all nodes v with uv ∈ E(H). The power (or
total power) of H is given by p(H) =

∑
u∈V pH(u).

The study of the min-power power assignment was started by Chen and Huang
[6], which consider, as we do, the case when E is bidirected (the case is sometimes
called “symmetric” or “undirected” in the literature) while H is required to be
strongly connected. We call this problem Min-Power Strong Connectivity. We
use with the same name both the (bi)directed and the undirected version of G.
[6] prove that the bidirected version of a minimum (cost) spanning tree (MST )
of the input graph G has power at most twice the optimum, and therefore the
� Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616,
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MST algorithm has approximation ratio at most 2. This is known to be tight
(see Section 2).

We improve this to 2−ε for a small ε > 0. We do this by combining techniques
from Robins-Zelikovsky [24,25] for Steiner Tree, Christofides [7] for Metric Trav-
elling Salesman, Caragiannis, Flammini, and Moscardelli [4] for the broadcast
version of symmetric Power Assignment (assuming a bidirected G = (V, E, c)
and a “root” u ∈ V is given, H must contain a path from u to every other
vertex of G), together with what we believe to be a new property on T-joins
in certain two-edge-connected hypergraphs. Familiarity with the fundamental
NP-Hard optimization problems Steiner Tree and Travelling Salesman will help
the reader make sense of this extended abstract; however all our proofs are self-
contained and only refer to previous papers for intuition.

Carmi and Katz [5] consider the case c : E → {A, B}, where 0 ≤ A < B.
It is easy to see that for minimizing total power, the hardest case is A = 0
and B = 1. Then we have to minimize the number of nodes with power B. [5]
gives a 9/5 approximation and a faster 11/6 approximation algorithm. We adapt
the algorithms of Khuller, Raghavachari, and Young [17,18] for (unweighted)
Minimum Strongly Connected Subgraph (given a strongly connected directed
graph G = (V, E), find minimum-size F ⊆ E with (V, F ) strongly connected) to
obtain a π2/6− 1/36 + ε ≤ 1.61 approximation in this case. We also show that
the algorithms of Carmi and Katz have approximation ratio exactly 7/4.

Very restricted versions of Min-Power Strong Connectivity have been proven
NP-Hard [19,8,5]. We are not aware of better than a factor of 2 approximation
except for [5], [2] (where c is assumed to be a metric), and the exact (dynamic
programming) algorithms [19] for the specific case where each vertex of G maps
to a point on a line, and c(uv) is an increasing function of the Euclidean distance
between the images of u and v, A related version, also NP-Hard, asks for H to be
bidirected (also known as “undirected” or “symmetric”). This problem is called
Min-Power Symmetric Connectivity, and the best known ratio of 5/3 + ε [1] is
obtained with techniques first applied to Steiner Tree; when c : E → {A, B} one
gets 3/2 with the same method [22]. In fact, many but not all power assignment
algorithms use techniques from Steiner Tree variants (or direct reduction to
Steiner Tree variants; these connections to Steiner Tree are not obvious and
cannot be easily explained), and in particular Caragiannis et al [4] uses the
relative greedy heuristic of Zelikovsky [30]. New interesting techniques were also
developed for power assignment problem, as in [20], an improvement over [15].

The existing lower bound of the optimum, which we use, is the cost of the
minimum spanning tree of G. Indeed, the optimum solution OPT contains an
in-arborescence rooted at v, for some v ∈ V , and then, for all u ∈ V \ {v},
pOPT (u) is at least the cost of the directed edge connecting u to its parent in
the arborescence.

We also use a relative greedy method as in [30,24]; Robins-Zelikovsky [24]
is rarely used as a technique, and not by only citing the ratio (improved by
now in [3]). We use the natural structures of [4] to improve over the minimum
spanning tree. We are at a disadvantage as our new lower bound is not far from
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optimum (and the algorithm more than adds the two lower bounds); still the
greedy Robins-Zelikovsky method allows an improvement over the factor of 2.

The new lower bound resembles the T-joins implicit in Christofides’ approx-
imation algorithm for Traveling Salesman Problem, however we have hyper-
graphs rather than graphs. Precisely, we are given an edge-weighted hypergraph
K = (VK , EK) and an even-sized set of vertices S ⊆ VK , and we need a mini-
mum weight set M of hyperedges such that every T-cut is covered by M ; that
is, for any Q ⊂ V with |Q∩S| odd, there is a hyperedge e ∈M intersecting both
Q and V \ Q. Such a set M is called a T-join, and a minimum-weight one can
be computed in polynomial-time if K is a graph (Chapter 29 of [26]) . Our gen-
eralization of Minimum Weight Graph T-join, which we call Hypergraph T-join,
is however NP-hard (Section 2) and we cannot directly use the Christofides ap-
proach; instead we resort to Robins-Zelikovsky. For our new lower bound, we also
need to know the maximum, over two-edge-connected instances of Hypergraph
T-join, of the minimum weight T-join divided by the weight of (all edges in) the
hypergraph. For graphs, this T-ratio is known (and not too hard to prove) to be
1/2 [9]. For hypergraphs, we discovered a sequence of examples where the T-ratio
converges to 2/3, and prove it is at most 7/8 for the particular hypergraphs we
need.

Min-Power Strong Connectivity has a flavor similar to two more fundamental
problems for which the best known ratio is 2: Min-Cost Strong Connectivity
and Min-Cost Two Edge Connectivity, and we hope this extended abstract will
renew the interest in those two problems.

2 Preliminaries

In directed graphs, we use arc to denote a directed edge. In a directed graph K,
an incoming arborescence rooted at x ∈ V (K) is a subgraph T of K such that
the underlying undirected graph of T is a tree and every vertex of T other than
x has exactly one outgoing arc in T . The vertices of T with no incoming arcs in
T are called leafs.

Given an arc xy, its undirected version is the undirected edge with endpoints
x and y. Arcs xy and yx are antiparallel, and the antiparallel arcs resulting from
undirected edge uv are uv and vu; if undirected edge uv has cost then each of
the two antiparallel arcs resulting from undirected edge uv have this cost.

An alternative definition of our problem is: we are given a simple undirected
graph G = (V, E) and a cost function c : E → R+. A power assignment is
a function p : V → R+, and it induces a simple directed graph H(p) on ver-
tex set V given by xy being an arc of H(p) if and only if {x, y} ∈ E and
p(x) ≥ c({x, y}). The problem is to minimize

∑
u∈V p(u) subject to H(p) be-

ing strongly connected. To see the equivalence of the definition, given directed
spanning subgraph H , define for each u ∈ V the power assignment p(u) = pH(u).

The following example shows that the ratio of 2 for the MST algorithm is
tight. Consider 2n points located on a single line such that the distance between
consecutive points alternates between 1 and ε < 1, and c be the square of the
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Euclidean distance (see Figure 1). Then the minimum spanning tree MST con-
nects consecutive neighbors and has power p(MST ) = 2n. On the other hand,
the tree T with edges connecting each other node (see Figure 1(b)) has power
equal p(T ) = n(1 + ε)2 + (n− 1)ε2 + 1. When n →∞ and ε → 0, we obtain that
p(MST )/p(T )→ 2.

2
2

2
2 2

2 2
ε

1+ε

ε

ε
(1+  )εε (1+  )ε(1+  )ε ε (1+  )ε

(b)

ε
1+ε 1

1 1 1ε ε

1 1 1 1 1 1 1 1

(a)

1

ε

Fig. 1. Tight example for the performance ratio of the MST algorithm. (a) The MST-
based power assignment (b) Optimum power assignment.

The example above may give intuition on how Power Assignment (and even
more specifically, Min-Power Symmetric Connectivity) relates to the k-restricted
Steiner trees, with stars (trees of height 1) taking the place of restricted compo-
nents. Another example from [1], below, shows how Min-Power Strong Connec-
tivity differs from Min-Power Symmetric Connectivity, and may give intuition
how Min-Power Strong Connectivity relates to Travelling Salesman, and also
Min-Cost Strong Connectivity and Min-Cost Two-Edge Connectivity (a two
edge connected graph has an edge orientation that makes it strongly connected
- see for example Chapter 2, written by A. Frank, of [12]). However we can-
not think of direct reductions either way, and, as we mention in conclusions,
the methods we use (more precisely, the Christofides algorithm) only applies
to certain instances of Min-Cost Strong Connectivity and Min-Cost Two-Edge
Connectivity.

The power of a Min-Power Strong Connectivity optimum solution can be al-
most half the power of an Min-Power Symmetric Connectivity optimum solution
for the same instance: we present a series of examples illustrated in Figure 2.
The n(n + 1) vertices are embedded in the plane in n groups of n + 1 points
each. Each group has two “terminals” (represented as thick circles in Figure 2),
and the 2n terminals are the corners of a regular 2n-gon with sides of length 1.
Each group has another n− 1 equally spaced points (dashes in Figure 2) on the
line segment between the two terminals. The cost function c is the square of the
Euclidean distance. It is easy to see that a minimum power assignment ensuring
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strong connectivity assigns a power of 1 to one thick terminal in each group and
a power of ε2 = (1/n)2 to all other points in the group - the arcs going clockwise.
The total power then equals n+1. For symmetric connectivity it is necessary to
assign power of 1 to all but two of the thick points, and of ε2 to the remaining
points, which results in total power of 2n− 1− 1/n + 2/n2. Also, keep in mind
that the minimum spanning tree solution is a symmetric solution.

ε2
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ε ε ε ε ε ε

εεεε 1/n
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1 1

1

1

1

1 1

1
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1 1

1

1

1

1 1

1
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(a)

1

Fig. 2. Total power for the Min-Power Strong Connectivity can be half the to-
tal power for Min-Power Symmetric Connectivity. (a) Minimum power assignment
ensuring strong connectivity. (b) Minimum power assignment ensuring symmetric
connectivity.

While it may be already known, it is easy to check that Hypergraph T-join
is indeed NP-hard, by a reduction from 4-D Matching (which asks if a 4-regular
hypergraph K with V (K) a multiple of 4, contains a perfect matching, that is,
a set of disjoint hyperedges containing every vertex of the input hypergraph; see
Garey and Johnson [11] problem SP1). It is easy to check that for S = V (K), a
T-join of size at most |V (K)|/4 must be a perfect matching.

3 (Weighted) Min-Power Strong Connectivity

Theorem 1. There exists an ε > 0 and a polynomial time algorithm for Min-
Power Strong Connectivity with approximation ratio 2− ε.

Our algorithm uses a greedy approach similar to [30,24,4]. Let T be the undi-
rected minimum spanning tree of G. We will not use that T is minimum except
to note opt ≥ c(T ), where opt = p(OPT ) for an optimum solution OPT . Let T̂
be the bidirected version of T .

For u ∈ V and r ∈ {c(uv) | uv ∈ E}, let S(u, r) be the directed star with
center u containing all the arcs uv with c(uv) ≤ r; note that r is the power of S.
For a directed star S, let E(S) be its set of arcs and V (S) be its set of vertices.
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For given S(u, r), let Q(u, r) be the set of edges of T on a path in T between
some x, y ∈ V (S(u, r)). Let Q̂(u, r) be the set of arcs of T̂ on a directed path
from u to some x ∈ V (S(u, r)); it is easy to verify that the undirected version
of Q̂(u, r) is Q(u, r).

For a collection A of directed stars S(ui, ri), define Q(A) =
∪S(ui,ri)∈AQ(ui, ri) and f(A) =

∑
e∈Q(A) c(e). We will use later that this

function is increasing and submodular, a well-known fact which appears as
an example in Subchapter 44.1.a of [26]. Also define w(A) =

∑
S(u1,ri)∈A ri,

the total power used by the stars in A. For S = S(u, r), define fA(S) =
f(A ∪ {S}) − f(A) =

∑
e∈Q(u,r)\Q(A) c(e) =

∑
e∈IA(S) c(e), where IA(S) is

defined to be those arcs of Q̂(u, r) for which the undirected version is not in
Q(A).

The algorithm starts with M = T̂ as the set of arcs, and greedily adds directed
stars to collection A (initially empty) while removing arcs from M to improve
the following quantity which is an upper bound on our output: the cost the arcs
in M plus the total power of the stars in A. To simplify later proofs, we make
changes even if our quantity stays the same. To be precise:

Algorithm Greedy:
A ← ∅, M ← T̂
While (f(A) < c(T ) ) do
(u, r) ← argmax(u′,r′)fA(S(u′, r′))/r′

M ←M \ IA(S(u, r))
A ← A∪ {S(u, r)}

Output ∪S∈AE(S) ∪M

Note that a star S(u, r) always exists for which fA(S(u, r)) > 0 and
fA(S(u, r))/r ≥ 1. Indeed, as long as a pair of antiparallel arcs e′ and e′′ are in
M , we can pick as next star S(u, r) the one given by u being the tail of e′ and
r = c(e′); this star will be added to A while e′ is removed from M .

Lemma 1. The output is a spanning strongly connected subgraph of G.

Proof Sketch. We prove the following invariant: X := ∪S∈AE(S)∪M gives a
spanning strongly connected subgraph whenever the while condition is checked
by the algorithm. Moreover, suppose we remove from T all edges e for which
both antiparallel arcs appear in M , splitting T in components with vertex sets
Tj, for some range of j. We prove that for every j and every x, y ∈ Tj, there
exists a directed path P from x to y using only vertices of Tj and arcs from X .

The invariant is true before the first iteration, when each Tj has just one
vertex, and keeping it is rather straightforward, based on the following idea:
when we add an arc uz and remove arcs xiyi on the simple path in T from u to
z, then arcs yixi are kept and can be used together with paths inside components
Tj as above, and arc uz, to produce a directed cycle C containing none of the
arcs xiyi and passing through u, z and all the yi, xi.
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Lemma 2. There exists a collection of stars B with f(B) = c(T ) and w(B) ≤
(7/8)opt, where opt is the power of the optimum solution.

The factor of 7/8 above cannot be improved to a constant better than 1/2, as we
can see by looking at the example in Figure 1. To “cover” the whole minimum
spanning tree (that is, have f(B) = c(T )) one needs to select every second star of
optimum (that is, use with power (1 + ε)2 nodes 3, 7, 11 . . .). Our proof is based
on T-joins and the 7/8 above cannot be improved to more than 2/3 with the
same method. Due to page limitations, we omit the long, technical part of the
proof.

Proof Idea. Let (Sv)v∈V , be the directed stars of OPT , with Sv centered at
v, and let A be collection of these stars. Let K = (VK , EK) be the (undirected)
hypergraph defined by VK = V and EK = {V (S) | S ∈ A}. Define the weight
of an hyperedge to be the power of the corresponding directed star. A path in
a hypergraph consists of an alternating sequence of vertices and hyperedges for
which each hyperedge contains the two vertices which precede and follow it in
the sequence. A hypergraph is two-edge-connected if there exist two hyperedge-
disjoint paths between any two vertices.

Recall from the introduction that, with given R ⊆ V with |R| even, a T-cut
is a partition of V into two parts Q and Q̄ := V \ Q such that |Q ∩ R| is odd.
A T-join in K for R is a set of hyperedges M ⊆ EK such that for every T-cut
(Q, Q̄) has a hyperedge e ∈M intersecting both Q and Q̄.

The following is the equivalent of Christofides’ method:

Claim. Let R be the vertices of the tree T of odd degree (note that |R| is even).
Let D be a set of stars such that the corresponding hyperedges form a T-join in
K for R. Then f(D) = c(T ).

Proof. Note that when it comes to computing f , for each star S only V (S)
counts, and which vertex is the center is not relevant. For star S = S(u, r), let
Q(S) := Q(u, r), defined previously as be the set of edges of T on a path in T
between some x, y ∈ V (S).

We need to show that for every e ∈ T , there is a star S ∈ D with e ∈ Q(S).
Indeed, if we remove e from T , we create two subtrees Tu and Tv, where u and
v are the endpoints of e. Then |R ∩ V (Tu)| is odd, since if we take Tu and add
the vertex v and the edge uv, we have an even number of vertices of odd degree,
of which one is v. Thus (V (Tu), V (Tv)) is a T-cut for R and the T-join given by
D must have an hyperedge intersecting both V (Tu) and V (Tv), and thus a star
S ∈ D with e ∈ Q(S).

Based on the claim above, Lemma 2 follows from:

Claim. For any arbitrary R, there exists a T-join in K with weight at most
(7/8)w(K).

Due to page limitations, we must omit the very long and technical proof of the
above claim. We discuss it nevertheless. While K is indeed two-edge-connected
(which we do not prove here) and it may very well be the case that the 7/8
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ratio holds for any two-edge-connected hypergraph, our current proof relies on
the structure of K (how it was obtained from OPT ).

The series of example showing that 2/3 is the best we can hope instead of
7/8 also requires too much space. As mentioned before, if we were dealing with
graphs rather than hypergraphs the ratio would be 1/2. We only have space for
a 3/5 example: nine vertices x, y0, y1, y2, z0, z1, z2, u1, u2, edges of cost 2: xy0 and
xz0, edges of cost 1: y1y2, z1z2, and u1u2, and edges of cost 0: y0y1, z0z1, y2u1,
z2u1, and u2x. OPT has cost 5: x has power 2 and y1, z1, and u1 each have power
1. The minimum spanning tree has the four edges of cost 0 and the three edges
of cost 1. R consists of the vertices x, y0, z0, u1, and one can check by inspection
that any T-join has weight 3 (here one can “cover” the minimum spanning
tree with just the star of power 2 rooted at x, but our proof method relies on T-
joins!).

Now we need the following lemma, whose proof is obtained from Robins-
Zelikovsky as presented in [13] by changing what quantities represent and some
parameters.

Lemma 3. Assuming that there exists a collection of stars B with f(B) = c(T )
and w(B) ≤ αopt , where opt is the power of the optimum solution and α < 1,
the algorithms’ output has power at most β where β = 1 + α + α ln(1/α).

Proof. First, if c(T ) ≤ αopt , then before any improvement we have a solution
of cost at most 2αopt and 2α < β. Thus in the following we assume c(T ) > αopt .

Note that at the end of the algorithm, M contains one of the two antiparallel
arcs for each edge of T . Then the power of the output cannot exceed

c(T ) + w(A) (1)

for the final A, as a f(A) = c(T ), and for every H and u, pH(u) =
maxuv∈Hc(uv) ≤

∑
uv∈H c(uv).

Let S1, S2, . . . , Sq be the stars picked by our algorithm and letAi, for 1 ≤ i ≤ q
be the collection of the first i stars; also let for convenience A0 be the empty
collection. For 1 ≤ i ≤ q, let pi = p(Si) = ri, where ri comes from Si = S(ui, ri),
and let fi = fAi−1(Si).

The greedy choice of the algorithm and the submodularity of f gives:

pi

fi
≤ w(B)

fAi−1(B)
=

w(B)
c(T )− f(Ai−1)

=
w(B)

c(T )−
∑i−1

j=1 fj

.

Rewriting and replacing w(B) with αopt , we obtain

pi ≤ fi
αopt

c(T )−
∑i−1

j=1 fj

. (2)

Define the function g : [0..c(T )] → [0..1] by g(x) = αopt/(c(T ) − x) for x ≤
c(T )− αopt , and g(x) = 1 for x > c(T )− αopt . Then from Equation 2 and the
observation (made right after the algorithm) that pi

fi
≤ 1, we obtain:
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q∑
i=1

pi ≤
∫ c(T )

0
g(x)dx =

∫ c(T )−αopt

0

αopt
c(T )− x

dx +
∫ c(T )

c(T )−αopt

1dx

= (−αopt) ln(c(T )− x)|c(T )−αopt
0 + (c(T )− (c(T )− αopt))

= αopt
(

1 + ln
c(T )
αopt

)
Using this and c(T ) ≤ opt and Equation 1 (recall that w(A) =

∑q
i=1 pi), we

obtain that the power of the output is at most

c(T ) + αopt
(

1 + ln
c(T )
αopt

)
≤ opt (1 + α + α ln(1/α))

finishing the proof.

Based on Lemmas 1 and 2, Theorem 1 follows immediately from the fact that
α < 1 implies β < 2, which follows from α(1 + ln(1/α)) < 1, which is equivalent
to ln(1/α) < 1/α − 1, a fact that holds for all α > 1. For α = 7/8, we obtain
β ≤ 1.992. If one were to prove α = 1/2 or α = 2/3 in Lemma 2, the resulting
approximation ratio would be less than 1.85 or 1.94 respectively.

4 Min-Power Strong Connectivity with Two Power
Levels

In this section, it is more convenient to to work with the alternative definition
of power assignment described in the preliminary section.

Theorem 2. For every integer k ≥ 4, there exists a O(nk+3) algorithm with
approximation ratio π2/6− 1/36 + 1/(k(k − 1)).

Given set of vertices S ⊆ V , we define the function pS : V → {0, 1} as follows:
pS(u) = 1 if u ∈ S and pS(u) = 0 if u ∈ V \ S.

We say that S ⊆ V is impeccable if no arc of H(pS) has endpoints in distinct
strongly connected components of H(pS). See Figures 3 and 4 for illustrations,
where we use the following conventions: In our pictures, we use full small circles
to denote nodes with power 1, that is, S. Empty little circles are nodes with power
0, continuous thin line segments are edges of E of cost c = 0; both antiparallel
corresponding arcs are in H . Thicker segments with arrows are for arcs of H(pS)
coming from edges of E of cost 1, and thicker dashed segments for edges of E of
cost 1 for which none of the two antiparallel corresponding arcs are in H . Larger
ellipses represent strongly connected components of H(pS).

We say that Q ⊆ V is quasi-perfect with respect to impeccable S ⊆ V if the
following holds: Let X1, X2, . . . , Xs be the strongly connected components of
H(pS). Then for all i = 1, 2, . . . , q, |Q ∩Xi| ≤ 1, and all vertices of Q are in the
same strongly connected component of H(pQ∪S). See Figure 5 for illustrations.
If Q is quasi-perfect w.r.t impeccable S and Q∪S is impeccable, then Q is called
perfect w.r.t. S.
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y
x

Fig. 3. This S is not impeccable as H(pS)
has the arc xy crossing between its strongly
connected component

Fig. 4. An impeccable S

x

y

z

v

Fig. 5. The set Q = {x, y, z} is
quasiperfect w.r.t the given S as
the thick dotted closed curve gives
the strongly connected component of
H(pQ∪S) containing Q. Q is not perfect
since the arc zv has endpoints in dif-
ferent strongly connected component of
H(pQ∪S)

Our algorithm grows an impeccable set of vertices S (Si, below) by adding to
S a perfect set Q. Perfect sets of vertices play for us the role of directed cycles in
the Khuller et al. algorithms [17,18]. In [17,18] strongly connected components
are contracted, for simplicity, to a single vertex; we have to keep them during the
algorithm. Below is our modified version of the Khuller et al. algorithm. Both
running time and approximation ratio depend on integer parameter k ≥ 4.

1 Set i = 0, j = k, S0 = ∅.
2 while j ≥ 4
3 if there exists Q ⊆ V with |Q| ≥ j and perfect w.r.t. Si

4 Si+1 = Si ∪Q; i = i + 1
5 else
6 j = j − 1
7 endwhile
8 Find minimum R ⊆ V that makes H(pSi∪R) strongly connected
9 Return pSi∪R

We need to elaborate for step 3 and step 8, which differ from [17,18]. Step
3 adapts the [17,18] method; this cannot be done for Step 8. Due to space
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y1

x2

Y

Z

x1
y2

x3

y3

Fig. 6. Here circles are the strongly connected components of H(pS); members of S
are not depicted and the filled small circles give the set J . Empty small circles are in
neither S nor J . The dashed ellipses give the strongly connected components of L (we
kept parallel arcs in the picture). In this example, Y and Z exist and are depicted. M
is also implicit in the figure: the solid circles not in dashed ellipse, and here one such
path P can be x1y1, x2y2, and x3y3.

limitations we omit our solution (based on Graphical Matroid Parity [21,10,27]),
but mention that we believe the algorithms of Carmi and Katz [5] gives the
optimum indeed for instances where every perfect set has at most three vertices.

Step 3. First, Step 3 can be implemented in O(nk+2), as described in the
following procedure, whose input is Si (from now on we use S instead of Si).
Compute X1, X2, . . . , Xs, the strongly connected components of H(pS). Try all
combinations of sets J ⊆ S \ Si of exactly j elements. If there exists a k ∈
{1, 2, . . . , s} with |J ∩Xk| > 1, reject J (and try another combination).

Otherwise, construct the directed graph L = L(S, J) with vertex set {k | |J ∩
Xk| = 1} and put an arc from k to q if there exists an edge e ∈ E endpoints in
J ∩Xk and Xq. See Figure 6 for an illustration of this paragraph. Compute the
strongly connected components of L. If L is strongly connected proceed to the
extension phase, described in the next paragraph. If L has more than one strongly
connected component with no incoming arc, or more than one strongly connected
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Fig. 7. Splitting the graph in two by the middle cut-vertex results in a loss in approx-
imation ratio as some vertices of G - like the middle one here - can contribute to both
sides of the split

component with no outgoing arc, reject J . Else, let Y be the vertex set of the
strongly connected component of L with no incoming arc, and Z be the vertex
set of the strongly connected component of L with no outgoing arc. Construct
an undirected simple graph M with vertex set {vk | |J ∩Xk| = 0 or k ∈ Y } and
put an edge from vk to vq if there exists an edge e ∈ E with endpoints in Xq and
Xk. Let W = {vk ∈ V (M) | ∃x ∈ J ∩(∪r∈ZXr) ∃y ∈ Xk ∃e ∈ E (e = {x, y})}. If
M does not have a path from some vk with k ∈W to some vq with q ∈ Y , then
reject J . Else, let P be such a path with minimum number of edges. Each edge
f of P comes from an edge {xf , yf} ∈ E, and permute xf and yf if necessary
such that, if xf ∈ Xk and yf ∈ Xq, then k is before q on P when starting from
W . Put all such xf in J and proceed.

Now we have the extension phase: as long as there exists an edge e ∈ E with
one endpoint in J and the other in some Xk with |J ∩Xk| = 0, we add to J the
endpoint of e in Xk.

Due to space limitations, the correctness and analysis of this algorithm is left
for a full (journal) version of this extended abstract.

5 Conclusions

Based on the discussion in Section 3, we also have: if we are looking for a min-
imum weight strongly connected spanning subgraph in a directed graph, and a
bidirected tree exists of cost at most twice optimum, then Christofides’ method
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gives a 1.5 approximation. The same holds for Minimum Weight Two-Edge-
Connected Spanning Subgraph if there always exists a “double tree” (that is,
where each edge has a twin) of weight at most twice optimum. These facts are
probably known.

The approximation ratio of Khuller, Raghavachari, and Young [18] has been
improved to 1.5 by Vetta [28]. However we see no way of adapting [28] (or [16])
to power assignment with two power levels: the first step of [28] (Lemma 3.1)
is to split the graph until no cut vertex exists. For us, the equivalent of a cut
vertex would be a strongly connected component of p∅ - and what we choose in
this strongly connected component can affect all the graph as in Figure 7. Thus
we cannot split the input graph, and with cut vertices the lower bound of [28]
is not 1.5 but 2.

It is possible that the very recent breakthrough by Byrka et. al [3] for Steiner
Tree gives techniques to improve our approximation ratio for Min-Power Strong
Connectivity.

We leave open the correct T-ratio in two-edge-connected hypergraphs.
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Abstract. We investigate the complexity of approximately counting sta-
ble matchings in the k-attribute model, where the preference lists are
determined by dot products of “preference vectors” with “attribute vec-
tors”, or by Euclidean distances between “preference points“ and
“attribute points”. Irving and Leather [16] proved that counting the
number of stable matchings in the general case is #P -complete. Count-
ing the number of stable matchings is reducible to counting the number
of downsets in a (related) partial order [16] and is interreducible, in
an approximation-preserving sense, to a class of problems that includes
counting the number of independent sets in a bipartite graph (#BIS) [7].
It is conjectured that no FPRAS exists for this class of problems. We
show this approximation-preserving interreducibilty remains even in the
restricted k-attribute setting when k ≥ 3 (dot products) or k ≥ 2 (Eu-
clidean distances). Finally, we show it is easy to count the number of
stable matchings in the 1-attribute dot-product setting.

1 Introduction

1.1 Stable Matchings

The stable matching problem (or stable marriage problem) is a classical combi-
natorics problem. An instance of this problem consists of n men and n women,
where each man has his own preference list (a total ordering) of the women,
and, similarly, each woman has her own preference list of the men. A one-to-one
pairing of the men with the women is called a matching (or marriage). Given a
matching, if there exists a man M and a woman w in the matching who prefer
each other over their partners in the matching, then the matching is considered
unstable and the man-woman pair (M, w) is called a blocking pair. (M and w
would prefer to drop their current partners and pair up with each other.) If a
matching has no blocking pairs, then we call it a stable matching. In 1962, Gale
and Shapley proved that every stable matching instance has a stable matching,
and described an O(n2) algorithm for finding one [8].

The stable matching problem has many variants, where ties in the prefer-
ence lists could be allowed, where people might have partial preference lists (i.e.
someone might prefer to remain single rather than be paired with certain mem-
bers of the opposite sex), generalizations to men/women/pets, universities and
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applicants, students and projects, etc. Some of these generalizations have also
been well-studied and, indeed, algorithms for finding stable matchings are used
for assigning residents to hospitals in Scotland, Canada, and the USA [4,20,22].

In this paper, we concentrate solely on the classical problem, so the term
“matching instance” will refer to one where the number of men is equal to the
number of women, and each man or women has their own full totally-ordered
(i.e. no ties allowed) preference list for the opposite sex.

Irving and Leather [16] demonstrated that counting the number of stable
matchings for a given instance is #P -complete. This completeness result relies
on the connection between stable marriages and downsets in a related partial
order (explained in more detail in Section 2), as counting the number of downsets
in a partial order is another classical #P -complete problem [21].

Knowing that exactly counting stable matchings is difficult (under standard
complexity-theoretic assumptions), one might turn to methods for approximately
counting this number. In particular, we would like to find a fully-polynomial ran-
domized approximation scheme (an FPRAS) for this task, i.e. an algorithm that
provides an arbitrarily close approximation in time polynomial in the input size
and the desired error. One method that has proven successful for other counting
problems is the Markov Chain Monte Carlo (MCMC) method. This technique
exploits a relationship between counting and sampling described by Jerrum,
Valiant, and Vazirani [17], namely, for self-reducible combinatorial structures,
the existence of an FPRAS is computationally equivalent to a polynomial-time
algorithm for approximate sampling from the set of structures. Although the
set of stable matchings for an instance does not obviously fit into the class of
self-reducible problems, an efficient algorithm for (approximately) sampling a
random stable matching can be transformed into a method for (approximately)
counting this number.

Bhatnagar, Greenberg, and Randall [1] considered this problem of sampling
a random stable matching using the MCMC method. They examined a natural
Markov chain that uses “male-improving” and “female-improving” rotations (see
Section 2.3) to define a random walk on the state space of stable matchings for a
given instance. In the most general setting, matching instances can be exhibited
for which the mixing time of the random walk has an exponential lower bound,
meaning that it will take an exponential amount of time to (approximately)
sample a random stable matching. This exponential mixing time is due to the
existence of a “bad cut” in the state space. Bhatnagar, et al. considered several
restricted settings for matching instances and were still able to show instances for
which such a bad cut exists in the state space, implying an exponential mixing
time in these restricted settings.

Of particular interest to us in this paper, Bhatnagar et al. examined the
so-called k-attribute model. In this setting each man and woman has two k-
dimensional vectors associated with them, a “preference” vector and a “position”
(or “attribute”) vector. A man Mi has a preference vector denoted by M̂i, and
a position vector denoted by M̄i (similarly denoted for the woman wj). Then,
Mi prefers wj over wk (i.e. wj appears higher on his preference list than wk) if
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and only if M̂i · w̄j > M̂i · w̄k, where M̂i · w̄j denotes the usual k-dimensional dot
product of vectors. Since we assume that each man has a total order over the
women (and vice-versa), we note that M̂i · w̄j 	= M̂i · w̄k whenever j 	= k (and
analogously for the women’s preference vectors/men’s position vectors).

Even in this restricted k-attribute setting (not every matching instance can be
represented in this manner if k is small [3]), Bhatnagar, Greenberg, and Randall
were still able to demonstrate examples of matching instances having a “bad cut”
where the Markov chain has an exponential mixing time. Bhatnagar et al. also
considered two other restricted settings, the so-called k-range and k-list models,
but we will not be considering those cases here. (Again, they gave instances
having an exponential mixing time for the Markov chain.)

It must be noted that even though the male-improving/female-improving
Markov chain might have an exponential mixing time, this does not neces-
sarily imply the non-existence of an FPRAS for the corresponding counting
problems. However, Dyer et al. [7] give evidence suggesting that even approxi-
mately counting the number of stable matchings is itself difficult, i.e. suggesting
that an FPRAS may not exist. They do this by demonstrating approximation-
preserving reductions amongst several counting problems, one being that of
counting downsets in a partial order (once again, the connection to stable match-
ings is outlined in Section 2). The main point is that the existence of an FPRAS
for one problem would imply the existence of an FPRAS for this entire class of
counting problems. Currently, the existence of such an FPRAS remains an open
question.

It is precisely the goal of this paper to consider the complexity of the approx-
imate counting problem for the k-attribute model.

Before we continue, let us formally define some counting problems. Two count-
ing problems relevant to us are #SM , the problem of computing the number of
stable matchings, given a stable matchings instance, and #SM(k-attribute), the
problem of computing the number of stable matchings, given a stable matching
instance in the k-attribute setting, where preference lists are determined using
dot products between k-dimensional preference and position vectors.

If k is small (relative to n), there exist preference lists that are not realizable
in the k-attribute setting [3]. On the other hand, if k = n then we can clearly
represent any set of n preference lists by simply using a separate coordinate for
each person to rank the members of the opposite sex. Another counting problem
we consider in this paper is #SM(k-Euclidean), which is the problem of com-
puting the number of stable matchings given an instance in the k-dimensional
Euclidian setting. In this setting, men and women each have a “preference point”
and “position point”. Preference lists are determined using Euclidean distances
between preference points and position points. In other words, for a k-Euclidean
stable matching instance man Mi prefers woman wj to woman wk if and only if
d(M̂i, w̄j) < d(M̂i, w̄k), where d(x, y) is the Euclidean distance between points
x and y. Once again, ties are not allowed in the preference lists. Before we de-
scribe our results, let us give a brief introduction to approximation-preserving
(AP) reductions and AP-reducibility.
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1.2 AP-Reducibility (A Brief Introduction)

A randomized approximation scheme is an algorithm for approximately com-
puting the value of a function f : Σ∗ → R. The approximation scheme has a
parameter ε > 0 which specifies the error tolerance. A randomized approxima-
tion scheme for f is a randomized algorithm that takes as input an instance
x ∈ Σ∗ (e.g., for the problem #SM , the input would be an encoding of a stable
matching instance) and a rational error tolerance ε > 0, and outputs a rational
number z (a random variable of the “coin tosses” made by the algorithm) such
that, for every instance x, Pr

[
e−εf(x) ≤ z ≤ eεf(x)

]
≥ 3

4 . The randomized ap-
proximation scheme is said to be a fully polynomial randomized approximation
scheme, or FPRAS, if it runs in time bounded by a polynomial in |x| and ε−1.
Note that the quantity 3/4 in the definition could be changed to any value in the
open interval (1

2 , 1) without changing the set of problems that have randomized
approximation schemes [17, Lemma 6.1].

We now define the notion of an approximation-preserving (AP) reduction.
Suppose that f and g are functions from Σ∗ to R. Informally speaking, an AP-
reduction from f to g gives a way to turn an FPRAS for g into an FPRAS
for f . Here is the formal definition. An approximation-preserving reduction from
f to g is a randomized algorithm A for computing f using an oracle for g. The
algorithm A takes as input a pair (x, ε) ∈ Σ∗× (0, 1), and satisfies the following
three conditions: (i) every oracle call made by A is of the form (w, δ), where
w ∈ Σ∗ is an instance of g, and 0 < δ < 1 is an error bound satisfying δ−1 ≤
poly(|x|, ε−1); (ii) the algorithmAmeets the specification for being a randomized
approximation scheme for f (as described above) whenever the oracle meets the
specification for being a randomized approximation scheme for g; and (iii) the
run-time of A is polynomial in |x| and ε−1. We write f ≤AP g to mean that f
has an AP-reduction to g. Similarly, we write f ≡AP g to mean that f ≤AP g
and g ≤AP f , or that f and g are AP-interreducible.

The complexity class #RHΠ1 of counting problems was introduced by Dyer,
Goldberg, Greenhill and Jerrum [7] as a means to classify a wide class of approx-
imate counting problems that were previously of indeterminate computational
complexity. The problems in #RHΠ1 are those that can be expressed in terms
of counting the number of models of a logical formula from a certain syntacti-
cally restricted class. Although the authors were not aware of it at the time, this
syntactically restricted class had already been studied under the title “restricted
Krom SNP” [5]. The complexity class #RHΠ1 has a completeness class (with re-
spect to AP-reductions) which includes a wide and ever-increasing range of natu-
ral counting problems, including: independent sets in a bipartite graph, downsets
in a partial order, configurations in the Widom-Rowlinson model (all [7]) and
the partition function of the ferromagnetic Ising model with mixed external
field [10]. Either all of these problems have an FPRAS, or none do. No FPRAS
is currently known for any of them, despite much effort having been expended
on finding one.

All the problems in the completeness class mentioned above are inter-reducible
via AP-reductions, so any of them could be said to exemplify the completeness
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class. However, mainly for historical reasons, the problem #BIS, which is the
problem of computing the number of independent sets in a given bipartite graph,
tends to be taken as a key example in the class, much in the same way that Sat

has a privileged status in the theory on NP-completeness.
Ge and Štefankovič [9] recently proposed an interesting new MCMC algorithm

for sampling independent sets in bipartite graphs. Unfortunately, however, the
relevant Markov chain mixes slowly [12] so even this interesting new idea does
not give an FPRAS for #BIS. In fact, Goldberg and Jerrum [11] conjecture
that no FPRAS exists for #BIS (or for the other problems in the completeness
class). We make this conjecture on empirical grounds, namely that the problem
has survived its first decade despite considerable efforts to find an FPRAS and
the collection of known #BIS-equivalent problems is growing.

Since Dyer et al. show that #BIS and counting downsets are both complete in
this class, and it is known that counting downsets is equivalent to counting stable
matchings, the result of Dyer et al. implies #BIS ≡AP #SM . The goal of this
paper is to demonstrate AP-interreducbility of #BIS with the two restricted
stable matching problems defined in Section 1.1.

1.3 Our Results

In this paper we outline the following results:

Theorem 1. #BIS ≡AP #SM(k−attribute) when k ≥ 3.

In other words, #BIS is AP-interreducible with counting stable matchings in
the k-attribute setting when k ≥ 3, so this problem is equivalent in terms of
approximability to the complete problems in the complexity class #RHΠ1.

Theorem 2. #SM(1−attribute) is solvable in polynomial time.

We can also prove AP-interreducibility with #BIS in the k-Euclidean setting
(when k ≥ 2) in a similar manner. Recall that in the k-Euclidean setting, pref-
erence lists are determined by (closest) Euclidean distances between the “pref-
erence points” and “position points”.

Theorem 3. #BIS ≡AP #SM(k−Euclidean) when k ≥ 2.

Section 2 reviews some combinatorics of the stable matching problem that is
relevant for our purposes in this paper. Section 3 gives the construction that can
be used to demonstrate Theorem 1. Theorems 2 and 3 are not proven in this
extended abstract.

2 Combinatorics of the Stable Matching Problem

The (classical) stable matching problem has a rich combinatorial structure which
has been widely studied. We relate some aspects of this structure that we will
need in this paper. Many of the definitions and results that follow can be found,
for example, in [18,16,14,13].



86 P. Chebolu, L.A. Goldberg, and R. Martin

2.1 The Gale-Shapley Algorithm

In their seminal paper on the stable matching problem, Gale and Shapley [8]
gave a polynomial-time algorithm for constructing a stable matching. This is
generally referred to as the “proposal algorithm” and bears the names of Gale
and Shapley in all of the literature on stable matchings. One sex (typically the
men) make proposals to members of the other, forming “engagements”. Once all
the “proposers” are engaged, the algorithm terminates with a stable matching.
As noted by Gale and Shapley (and others), their algorithm computes the male-
optimal stable matching, which is optimal in the very strong sense that every man
likes his partner in this matching at least as much as his partner in any other
stable matching. Given an instance with n men and n women, the algorithm
computes the male-optimal stable matching in time O(n2).

During the algorithm, after a woman becomes “engaged” she never becomes
free, though she might be engaged to different men at different times during the
execution of the algorithm. On the other hand, a man could oscillate between
being free and being engaged. It is well-known (see, e.g. [8,18]) that the male-
optimal matching may be obtained by taking any ordering of the men and have
them make proposals in that order, i.e. when “a free man M proposes...” we
can take the highest free man in our ordering of the men to perform the next
proposal. By reversing the roles of men and women (i.e. the women are the
“proposers”), we can obtain the female-optimal stable matching.

2.2 Stable Matching Lattice

Given a matching instance and two stable matchings M and M′ where

M = {(M1, w1), · · · , (Mn, wn)}, M′ = {(M ′
1, w1), · · · , (M ′

n, wn)},

we define max{Mi, M
′
i}, min{Mi, M

′
i}, max{M,M′} and min{M,M′} as

follows:

max{Mi, M
′
i} = favorite choice of woman wi between men Mi and M ′

i

min{Mi, M
′
i} = least preferred choice of woman wi between men Mi and M ′

i

max{M,M′} = {(max{M1, M
′
1}, w1), · · · , (max{Mn, M ′

n}, wn)}
min{M,M′} = {(min{M1, M

′
1}, w1), · · · , (min{Mn, M ′

n}, wn)}

Note that in the expression max{Mi, M
′
i}, the woman wi can deduced from

the arguments since she is the only woman married to Mi in M and in M ′
i in

M′. From [18], we have that max{M,M′} and min{M,M′} are themselves
stable matchings. Further, we define the relation M ≤M′ if and only if M′ =
max{M,M′}. It is clear that the relation ≤ is reflexive, antisymmetric, and
transitive. Hence, the stable matchings of a stable matching instance form a
lattice under the ≤ relation.

In fact, this lattice is a distributive lattice under the “max” and “min” oper-
ations defined above [18]. The male-optimal matching is the minimum element
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in this lattice (under the ≤ relation), while the female-optimal matching is the
maximum element.

It is well-known (see, for instance, [6]) that a finite distributive lattice is
isomorphic to the lattice of downsets of another partial order (ordered by subset
inclusion). We shall shortly see how this other downset lattice arises in the
context of stable matchings, and its connection to the stable matching lattice.

2.3 Stable Pairs and Rotations

Definition 1. A pair (M, w) is called stable if and only if (M, w) is a pair in
some stable matching M. A pair (M, w) that is not stable is called an unstable
pair.

Definition 2. Let M be a stable matching. For any man M (woman w), let
spM(M) (spM(w)) denote the spouse of man M (woman w) in the matching
M.

Definition 3. [1] LetM be a stable matching. The suitor of a man M is defined
to be the first woman w′ on M ’s preference list such that (i) M prefers spM(M)
over w′ and (ii) w′ prefers M over spM(w). The suitor of man M is denoted by
SM(M).

We note that SM(M) may not exist for every man. For instance, if M is the
female-optimal stable matching, then SM(M) would not exist.

Definition 4. [16] LetM be a stable matching. Let R={(M0, w0), (M1, w1), · · · ,
(Mk−1, wk−1)} be an ordered list of pairs from M such that for every i, 0 ≤ i ≤
k − 1, SM(Mi) is wi+1( mod k). Then R is a rotation (exposed in the matching
M).

A stable matching may have many or no exposed rotations. Applying an exposed
rotation to a stable matching (i.e. breaking the pairs (Mi, wi) and forming the
new pairs (Mi, wi+1)) gives a new stable matching in which the women are
“happier” and the men are less happy. In other words, after a rotation, every
woman (respectively, man) involved in the rotation is married to someone higher
(resp. lower) on her (resp. his) preference list than her (resp. his) partner in the
rotation.

We can similarly define suitors for the women, given some stable matchingM.
We do not need to do so for the purposes of this paper, but the Markov chain that
Bhatnagar, et al. examine in [1] consists of moves that are “male-improving” and
“female-improving” rotations. Starting from any stable matching, it is possible
to obtain any other stable matching using some (appropriately chosen) sequence
of male-improving and/or female-improving rotations [16].

Definition 5. [13] A pair (M, w), not necessarily stable, is said to be eliminated
by the rotation R if R moves w from M or below on her preference list to a man
strictly above M .
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Note that if a stable pair (M, w) in a rotation R is eliminated by R, and if
(M, w′) is any other pair eliminated by R, then man M prefers w over w′, for
otherwise no matching that has R exposed in it could be stable.

Lemma 1. [16] No pair is eliminated by more than one rotation, and for any
pair (M, w), at most one rotation moves M to w.

We can now define a relation on rotations.

Definition 6. [16] Let R and R′ be two distinct rotations. Rotation R is said to
explicitly precede R′ if and only if R eliminates a pair (M, w), and R′ moves M
to a woman w′ such that M (strictly) prefers w to w′. The relation “precedes”
is defined as the transitive closure of the “explicitly precedes” relation.

If a rotation R explicitly precedes R′ then there is no stable matching with R′

exposed such that applying R′ results in a stable matching with R exposed —
the intermediate matching would have a blocking pair (hence would not be sta-
ble). The relation precedes (≤) defines a partial order on the set of rotations of
the stable matching instance. We call the partial order on the set of rotations
the rotation poset of the instance and denote it (P,≤). The following theorem
relates the rotations in the rotation poset to the stable matchings of the instance
via the downsets of P .

Theorem 4. [16, Theorem 4.1] For any stable matching instance, there is a
one-to-one correspondence between the stable matchings of that instance and the
downsets of its rotation poset.

Every stable matching of the instance can be obtained by starting with the
male-optimal stable matching and performing the rotations in the correspond-
ing downset (ensuring that a rotation is performed before any rotation that
succeeds it is performed). Note that the downsets corresponding to the male-
optimal stable matching and the female-optimal stable matching are ∅ and P ,
respectively.

To construct the rotation poset, we need (i) the rotations and (ii) the prece-
dence relations between them. We note that once we have all the rotations in the
poset, we can establish the precedence relations using the “explicitly precedes”
relation, i.e. by determining which (stable or unstable) pairs are eliminated by
each rotation.

Gusfield [13] gave an algorithm that runs in O(n2) time for finding all rota-
tions of a stable matching instance. His algorithm is a refinement of successive
applications of the “breakmarriage” procedure of McVitie and Wilson [19]. For
the sake of presentation, we can use a slower variant of his algorithm (the variant
still runs in polynomial time, which suffices for our purposes).

2.4 #BIS, Independent Sets, and Stable Matchings

The rotation poset for a matching instance plays a key role in what follows. To
prove Theorem 1, we take a #BIS instance G = (V1 ∪ V2, E) and view this as
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the rotation poset of a matching instance. In particular, G is the Hasse diagram
of the poset when we draw G with the set V2 “above” V1.

Each independent set in the bipartite graph naturally corresponds to a downset
in the partial order, and vice-versa. See Figure 1 for an example. An indepen-
dent set, namely {d, f, g}, is shown in the left of that figure. The corresponding
downset is shown on the right. This downset is obtained by taking the set {d, f, g}
and adding the two elements a and b, as a < f and b < f (and b < g) in the
Hasse diagram. Conversely, given a downset, such as the one on the right of the
diagram, we can find the corresponding independent set in G by taking the set
of maximal elements of the downset. So given G, we then construct a matching
instance (using 3-dimensional preference and attribute vectors) whose rotation
poset is (isomorphic to) G, giving a 1-1 correspondence for our AP-reduction from
#BIS to #SM(k-attribute), showing that #BIS ≤AP #SM(k-attribute). The
reverse implication #SM(k-attribute) ≤AP #BIS follows from the two results
that #SM ≤AP #Downsets (Theorem 4, quoted here from [16]) and #Downsets
≤ #BIS [7, Lemma 9], where #Downsets is the problem of counting the number
of downsets in a partial order.

a b c d

f g h i j

a b c d

f g h i j
V2

V1

Fig. 1. The correspondence between independent sets and downsets

3 Stable Matchings in the k-attribute Model (k ≥ 3)

In this section we give our construction to show AP-reducibility from #BIS to
the k-attribute stable matching model when k ≥ 3. Given our previous remarks
about the relation between #BIS, independent sets, and stable matchings, our
procedure is as follows:

1. Let G = (V1 ∪ V2, E) denote a bipartite graph where |E| = n. Our goal
will be to construct a k-attribute stable matching instance for which we
can show that the Hasse diagram of its rotation poset is G. This will give
a bijection between stable matchings and downsets of G, hence a bijection
between stable matchings and independent sets of G.

2. Using G, in the manner to be specified in Section 3.1, we construct preference
lists for a 3-attribute stable matching instance with 3n men and 3n women.

3. Given this matching instance, we find the male-optimal and female-optimal
matchings.

4. Using the Find-All-Rotations algorithm, we extract the rotations from
our stable matching instance.



90 P. Chebolu, L.A. Goldberg, and R. Martin

5. Having these rotations, we construct the partial order, P , on these rotations
(specified by the transitive closure of the “explicitly precedes” relation).

6. We finally show that P is isomorphic to G (when G is viewed as a partial
order), thereby showing our construction is an approximation-preserving re-
duction from #BIS to #SM(3−attribute).

Due to space constraints, we are only able to specify the position and preference
vectors of the men and women. The proof that these vectors give rise to a
matching instance whose rotation poset is isomorphic to G will appear in the
full version of the paper.

3.1 Construction of the Stable Matching Instance

BIS and Permutations. Let G = (V1 ∪V2, E) denote our BIS instance, where
E ⊆ V1×V2 and |E| = n. Using G we will construct a 3-attribute stable matching
instance with 3n men and 3n women. The men and women of the instance are de-
noted{A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn} and{a1, . . . , an, b1, . . . , bn, c1, . . . , cn},
respectively. To describe our construction, we label the edges of G B1 through Bn

from “left-to-right” with respect to the vertices (V1) on the bottom. This becomes
more clear from the example in Figure 2. We refer to edge Bi as man Bi, and this
will be clear from the context.

B1
B2

B3

B4 B5

B6

B7

B8

V2

V1

Fig. 2. A BIS instance and our labeling of its edges

For our construction we associate two permutations, ρ and σ, of [n] = {1, . . . , n}
with the BIS instance. The cycles of ρ correspond to vertices in V1 and those of
σ correspond to vertices in V2. In other words, if the edges incident to a vertex
in V2 are Bi1 , Bi2 , . . . , Bid

, then (i1, i2, . . . , id) is a σ-cycle. We define ρ-cycles in
a similar fashion. If G has k = |V1| vertices on the bottom and l = |V2| vertices
on the top, then the permutations ρ and σ have k and l cycles, respectively. Since
the graph G will turn out to be isomorphic to a rotation poset, every vertex in
G will represent a rotation in the stable matching instance. The rotations of the
stable matching instance will be governed by the ρ- and σ-cycles in a manner to
be specified. The rotations corresponding to the ρ-cycles will be called ρ-rotations
and those corresponding to the σ-cycles will be called σ-rotations.
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In the example of Figure 2, the three ρ-cycles are ρ1 = (1, 2, 3), ρ2 = (4, 5, 6),
and ρ3 = (7, 8). The four σ-cycles are σ1 = (1, 7), σ2 = (2, 4), σ3 = (5), and
σ4 = (3, 6, 8).

Here is a brief overview of how we go about constructing a stable match-
ing instance from a given bipartite graph. First of all, the male-optimal stable
matching that we construct in our matching instance will consist of the pairs
(Ai, ai), (Bi, bi), (Ci, ci) for all i ∈ [n]. (We must show later this is indeed the case
for the construction we describe.) A ρ-cycle of the form (i1, i1 + 1, . . . , i2) will
correspond to the ρ-rotation, R, of the form {(Bi1 , bi1), (Ai1 , ai1), (Bi1+1, bi1+1),
(Ai1+1, ai1+1), . . . , (Bi2 , bi2), (Ai2 , ai2)}. This rotation R arises from a vertex v ∈
V1 with edges Bi1 , Bi1+1, . . . , Bi2 incident to it. We can show that a σ-rotation R′

is of the form {(Bi1 , ai1), (Ci1 , ci1), (Bi2 , ai2), (Ci2 , ci2), . . . , (Bip , aip), (Cip , cip)},
where (i1, i2, . . . , ip) is the corresponding σ-cycle, and that the rotation R′ cor-
responds to the vertex v′ ∈ V2 with edges Bi1 , Bi2 , . . . , Bip incident to it. In
this manner, every rotation in the rotation poset is defined in terms of the men
involved in them, the women being the (then-current) partners of the men that
are in the rotation. Assuming that the above two claims regarding rotations are
valid (as we will show below), we make the following observation.

Observation 5. A ρ-cycle and a σ-cycle can have at most one element in com-
mon. (This is because G is a graph and not a multi-graph.) This means that a
ρ-rotation and a σ-rotation can have at most one man in common. This similarly
holds for the women.

Assigning Preference and Position Vectors. Suppose D1, . . . , Dl are the
l cycles of σ of lengths p1, . . . , pl, respectively. Let ei be a representative el-
ement of cycle Di. In other words, we can represent the σ-cycle Di as Di =(
ei, σ(ei), . . . , σpi−1(ei)

)
. (We may, for example, select ei to be the smallest num-

ber in the cycle, and we will do so here). In what follows we will often abbreviate
σx = σ(x), σ2x = σ2(x), σ−1x = σ−1(x), etc, and, similarly, ρx = ρ(x), etc. Let
Rep(σ) = {e1, e2 · · · , el} be the set of representative elements we choose for the
cycles of σ. Let Wi = {ax : x ∈ Di} ∪ {bρx : x ∈ Di} ∪ {cσ−1x : x ∈ Di}.
Let T (x) = {cσ−1x, ax, bρx} where x ∈ Di. It follows that Wi = ∪x∈DiT (x) and
T (i) ∩ T (j) = ∅ for i 	= j.

Using the definitions above, first we fix the position vectors of the women. The
z-coordinate of women ai and ci is set to 0 for 1 ≤ i ≤ n. The z-coordinate of
woman bi is set to 4i for 1 ≤ i ≤ n. The x- and y-coordinates of ai, bi, and ci are
such that the projection of each women’s position vector onto the x-y plane lies
on the unit circle x2 + y2 = 1. Furthermore, we group the projections according
to the sets Wi. In other words, all women in Wi are embedded in an angle of
ε on the unit circle, where ε = 2π/n2. These groups are embedded around the
circle in the order W1 through Wl, and the angle between two adjacent groups
is (2π − lε)/l. Note that Wl is adjacent to Wl−1 and W1. Group Wi starts at
angle 2π(i− 1)/l and ends at 2π(i− 1)/l + ε. Within the group Wi, the women
are further sub-grouped into triplets T (ei), T (σ(ei)), . . . , T (σpi−1(ei)).
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Within the angle of size ε, the sub-groups are embedded in the order T (ei)
through T (σpi−1(ei)), with each T (·) spanning an angle of 6θi. The angle between
two adjacent T (·)’s is θi, where θi = ε/(7pi − 1). Within each T (x), the women
appear in the order cσ−1x, ax, and bρx, and the angle between c̄σ−1x and āx is 4θi,
and the angle between āx and b̄ρx is 2θi. We summarize the above description
by giving the exact coordinates for the position vector for the women.

x

y

W1

W2
W3

Wl

Arrange (projections of) posi-
tion vectors for each Wi inside
the sectors shown

x

y

c̄σ−1ei

āei

b̄ρei

b̄ρσpi−1ei

Ĉσ−1ei

Âei

(parallel to proj(B̂ei
))

Zoom-in on one of the Wi,
showing the women’s position
vectors and men’s preference
vectors

Fig. 3. Placement of the women’s position vectors and men’s preference vectors

Let ε =
2π

n2 . For ei ∈ Rep(σ), let θi =
ε

7pi − 1
. Then for 0 ≤ m ≤ pi − 1 define

āσmei = (cos(2π(i− 1)/l + 7mθi + 4θi), sin(2π(i− 1)/l + 7mθi + 4θi), 0) ,

c̄σm−1ei
= (cos(2π(i− 1)/l + 7mθi), sin(2π(i− 1)/l + 7mθi), 0) , and

b̄ρσmei = (cos(2π(i− 1)/l + 7mθi + 6θi), sin(2π(i− 1)/l + 7mθi + 6θi), 4ρσmei).

Next we define the preference vectors of the men. The z-coordinates of all Âi

and Ĉi are set to 0. We place Âi between āi and the projection onto the x-y
plane of b̄ρi. If the angle between āi and (the projection of) b̄ρi is α, then the
angle between āi and Âi is 1

3α, and the angle between Âi and (the projection
of) b̄ρi is 2

3α. This will ensure that Ai prefers ai over bρi. We will later show
that the preference list of Ai starts with aibρi. We place Ĉi between c̄i and āσi

such that if the angle between c̄i and āσi is β, then the angle between c̄i and Ĉi

is 2
5β and the angle between Ĉi and āσi is 3

5β. This will ensure that Ci prefers
ci over aσi. We will later show that the preference list of Ci starts with ciaσi.
Finally, we place B̂i, which is of unit length, such that B̂i makes an angle of
φ = 2π/100 with the vertical axis (z-axis) and its projection on the x-y plane is
parallel to āi. In other words, the projection of B̂i on the z = 0 plane is sinφ āi.
We summarize the above discussion by providing the exact coordinates of Âi,
B̂i, and Ĉi.
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Let ε =
2π

n2 , φ =
2π

100
and γi =

2π(i− 1)
l

. For ei ∈ Rep(σ), let θi =
ε

7pi − 1
.

Then for 0 ≤ m ≤ pi − 1 define

Âσmei = (cos(γi + 7mθi + (14/3)θi), sin(γi + 7mθi + (14/3)θi), 0) ,

B̂σmei = (sinφ cos(γi + 7mθi + 4θi), sinφ sin(γi + 7mθi + 4θi), cosφ), and

Ĉσm−1ei
= (cos(γi + 7mθi + (8/5)θi), sin(γi + 7mθi + (8/5)θi), 0) .

We can similarly define the position vectors of the men and preference vectors
of the women. Because of space constraints, we simply give these vectors below.

Let ε =
2π

n2 , φ =
2π

100
and ηi =

2π(i− 1)
k

. For fi ∈ Rep(ρ), let ωi =
ε

7qi − 1
.

Then, for 0 ≤ m ≤ qi − 1, we define
Āρm−1fi

= (cos(ηi + 7mωi), sin(ηi + 7mωi), 0) ,

B̄ρmfi = (cos(ηi + 7mωi + 4ωi), sin(ηi + 7mωi + 4ωi), 0) , and

C̄ρmfi = (cos(ηi + 7mωi + 6ωi), sin(ηi + 7mωi + 6ωi), 4ρmfi). Also,
âρmfi = (sinφ cos(ηi + 7mωi + 4ωi), sinφ sin(ηi + 7mωi + 4ωi), cosφ),

b̂ρmfi = (cos(ηi + 7mωi + (8/5)ωi), sin(ηi + 7mωi + 8/5ωi), 0) , and
ĉρmfi = (cos(ηi + 7mωi + 14/3ωi), sin(ηi + 7mωi + (14/3)ωi), 0) .

Using the vectors we define above, we can show that the preference lists of men
Ai, Ci and Bi and women bi, ci and ai begin as follows:

for ei ∈ Rep(σ) and fi ∈ Rep(ρ),
Aσmei : aσmeibρσmei , 0 ≤ m ≤ pi − 1,

Cσ(m−1)ei
: cσ(m−1)ei

aσmei , 0 ≤ m ≤ pi − 1,

Bσmei : bn · · · b1aσmeicσmei , 0 ≤ m ≤ pi − 2, and
Bσ(pi−1)ei

: bn · · · b1aσ(pi−1)ei
cσ(pi−2)ei

aσ(pi−2)ei
· · · aσeiceiaeicσ(pi−1)ei

. Also,

bρmfi : Aρ(m−1)fi
Bρmfi , 0 ≤ m ≤ qi − 1,

cρmfi : BρmfiCρmfi , 0 ≤ m ≤ qi − 1,

aρmfi : Cn · · ·C1BρmfiAρmfi , 0 ≤ m ≤ qi − 2, and
aρ(qi−1)fi

: Cn · · ·C1Bρ(qi−1)fi
Aρ(qi−2)fi

· · ·Bρ2fi
AρfiBρfiAfiBfiAρ(qi−1)fi

.

We have not specified the entire preference lists for the men and women. The
remaining portion of each preference list appears after the part that we have
given above, and there will never be any stable pairs involving a man/woman
pair that is not shown on the partial preference lists given. The partial lists we
have given are sufficient to find the male- and female-optimal matchings, and
they contain the necessary information to generate all of the stable matchings
for our constructed instance, or equivalently, to find all of the rotations for this
instance.
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Abstract. We present a simple factor 6 algorithm for approximating
the optimal multiplicative distortion of embedding (unweighted) graph
metrics into tree metrics (thus improving and simplifying the factor 100
and 27 algorithms of Bǎdoiu et al. (2007) and Bǎdoiu et al. (2008)). We
also present a constant factor algorithm for approximating the optimal
distortion of embedding graph metrics into outerplanar metrics. For this,
we introduce a notion of metric relaxed minor and show that if G contains
an α-metric relaxed H-minor, then the distortion of any embedding of
G into any metric induced by a H-minor free graph is ≥ α. Then, for
H = K2,3, we present an algorithm which either finds an α-relaxed minor,
or produces an O(α)-embedding into an outerplanar metric.

1 Introduction

1.1 Avant-Propos

The structure of the shortest-path metrics of special classes of graphs, in partic-
ular, graphs families defined by forbidden minors (e.g., line metrics, tree metrics,
planar metrics) is one of the main areas in the theory of metric spaces. From
the algorithmic point of view, such metrics have more structure than general
metrics, and this structure can often be exploited algorithmically. Thus, if the
input metric can be well approximated by a special metric, this usually leads to
an algorithmic advantage; see, e.g., [13] for a survey of algorithmic applications
of embeddings. One way of understanding this structure is to study the low dis-
tortion embeddings from one metric class to another. To do this successfully,
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one needs to develop tools allowing a decomposition of the host space consistent
with the embedded space. If this is impossible, one usually learns much about
the limitations of the host space and the richness of the embedded space. In this
paper, we pursue this direction and study the embeddings into tree metrics and
the metrics of K2,3-minor free graphs (essentially outerplanar metrics).

The study of tree metrics can be traced back to the beginning of the 20th
century, when it was first realized that weighted trees can in some cases serve as
an (approximate) model for the description of evolving systems. More recently,
as indicated in [16], it was observed that certain Internet originated metrics dis-
play tree-like properties. It is well known [17] that tree metrics have a simple
structure: d is a tree metric iff all submetrics of d of size 4 are such. Moreover,
the underlying tree is unique, easily reconstructible, and has rigid local structure
corresponding to the local structure of d. But what about the structure of ap-
proximately tree metrics? We have only partial answers for this question, and yet
what we already know seems to indicate that a rich theory might well be hiding
there. The strongest results were obtained, so far, for the additive distortion. A
research on the algorithmical aspects of finding a tree metric of least additive
distortion has culminated in the paper [1] (see also [8]), where a 6-approximation
algorithm was established (in the notation of [1], their algorithm is a 3 approx-
imation, however, in our more restrictive definition, this is a 6-approximation),
together with a (rather close) hardness result. Relaxing the local condition on d
by allowing its size-4 submetrics to be δ-close to a tree metric, one gets precisely
Gromov’s δ-hyperbolic geometry. For study of algorithmic and other aspects of
such geometries, see e.g. [7,14]. The situation with the multiplicative distortion
is less satisfactory. The best result for general metrics is obtained in [4]: the
approximation factor is exponential in

√
log Δ/ log log n, where Δ is the aspect

ratio. Judging from the parallel results of [2] for line metrics, it is conceivable
that any constant factor approximation for the general metric is NP-hard. For
some small constant γ, the hardness result of [1] implies that it is NP-hard to
approximate the multiplicative distortion better than γ even for metrics that
come from unit-weighted graphs. For a special interesting case of shortest path
metrics of unit-weighted graphs, [4] gets a large (around 100) constant approxi-
mation factor (which was improved in [3] to a factor 27). The proof introduces
a certain metric-topological obstacle for getting embeddings of distortion bet-
ter than α, and then algorithmically either produces an O(α)-embedding, or an
α-obstacle (such an obstacle was used also in [11], and, essentially, in [15]).

1.2 Our Results

In this paper, we simplify and improve the construction of [4], using a decompo-
sition procedure developed earlier in [5,6]. The improved constant is 6 and the
running time of the algorithm is linear once the distance matrix is computed. We
also introduce the notion of metric relaxed minor and show that if G contains an
α-metric relaxed H-minor, then the distortion of any embedding of G into any
metric induced by a H-minor free graph is at least α. This generalizes the ob-
stacle of [4]. Using this newly defined H-obstacle, we show that it is an essential



Constant Approximation Algorithms for Embedding Graph Metrics 97

obstacle not only for trees, but also for graphs without H = K2,3 minors. We fur-
ther develop an efficient algorithm which either embeds the input metric induced
by a unit-weighted graph G into an outerplanar metric with distortion O(α), or
finds an α-metric relaxed K2,3-minor in G. This is a first result of this kind for any
H different from a C4 (which is the α-metric relaxed minor corresponding to the
four-point condition used for embedding into tree-metrics).

1.3 Preliminaries

A metric space (X, d) is isometrically embeddable into a host metric space (Y, d′)
if there exists a map ϕ : X �→ Y such that d′(ϕ(x), ϕ(y)) = d(x, y) for all
x, y ∈ X. More generally, ϕ : X �→ Y is an embedding with (multiplicative)
distortion λ ≥ 1 if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ λ · d(x, y) for all x, y ∈ X. Given
a metric space (X, d) and a class M of host metric spaces, we denote by λ∗ :=
λ∗(X,M) the minimum distortion of an embedding of (X, d) into a member of
M. Analogously, ϕ : X �→ Y is an embedding with additive distortion λ ≥ 0
if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ d(x, y) + λ for all x, y ∈ X and, in a similar
way, we can define the minimum additive distortion. In this paper, we consider
unweighted graphs as input metric spaces and tree metrics (trees) or outerplanar
metrics as the class of host metric spaces. If not specified, all our results concern
embeddings with multiplicative distortion. For a connected unweighted graph
G = (V, E), we denote by dG(u, v) the shortest-path distance between u and v.
A finite metric space (X, d) is called a tree metric [17] if it isometrically embeds
into a tree, i.e., there exists an weighted tree T = (X ′, E′) such that X ⊆ X ′

and d(u, v) = dT (u, v) for any two points u, v ∈ X, where dT (u, v) is the length
of the unique path connecting u and v in T. Analogously, an outerplanar metric
is a metric space isometrically embeddable into an outerplanar weighted graph.
Denote by T the class of tree metric spaces and by O the class of outerplanar
metric spaces.

2 Preliminary Results

In this section, we establish some properties of layering partitions and of embed-
dings with distortion λ of graph metrics into weighted graphs.

2.1 Layering Partitions

The layering partitions have been introduced in [5,6] and recently used in a
slightly more general forms in both approximation algorithms of [3,4] and in
other similar contexts [7,9,10]. Let G = (V, E) be a graph with a distinguished
vertex s and let r := max{dG(s, x) : x ∈ V }. A layering of G with respect to
s is the decomposition of V into the spheres Li = {u ∈ V : d(s, u) = i}, i =
0, 1, 2, . . . , r. A layering partition LP (s) = {Li

1, . . . , L
i
pi

: i = 0, 1, 2, . . . , r} of G

is a partition of each Li into clusters Li
1, . . . , L

i
pi

such that two vertices u, v ∈ Li

belong to the same cluster Li
j iff they can be connected by a path outside the
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ball Bi−1(s) of radius i− 1 centered at s. Let Γ be a graph whose vertex set is
the set of all clusters Li

j in a layering partition LP and C = Li
j and C′ = Li′

j′ are
adjacent in Γ iff there exist u ∈ Li

j and v ∈ Li′
j′ such that u and v are adjacent

in G. Γ is a tree [6], called the layering tree of G. LP and Γ are computable in
linear time [6]. We can construct a new tree H = (V, F ) (closely reproducing the
global structure of Γ ) by identifying for each cluster C = Li

j an arbitrary vertex
xC ∈ Li−1 (the support vertex for cluster C) which has a neighbor in C and by
making xC adjacent in H with all vertices v ∈ C. In what follows, we assume
that Γ and H are rooted at s. Let D be the largest diameter of a cluster in LP ,
i.e., D := maxC∈LP maxv,u∈C{dG(u, v)}. The following result (also implicitly
used in [5,6,7]) shows that the additive distortion of the embedding of G into H
is essentially D:

Proposition 1. If x, y ∈ V, then dH(x, y)− 2 ≤ dG(x, y) ≤ dH(x, y) + D.

Proof. Let Cx and Cy be the clusters containing x and y. Let C be the nearest
common ancestor of Cx and Cy in Γ. For C 	= Cx, let x′, y′ ∈ C be the ancestors
of x and y in a BFS(G, s)-tree. Then dΓ (Cx, C) = dG(x, x′) and dΓ (Cy , C) =
dG(y, y′). By construction of H , dH(x, y) is equal to dΓ (Cx, C) + dΓ (Cy , C) or
to dΓ (Cx, C) + dΓ (Cy , C) + 2. By the triangle inequality, dG(x, y) ≤ dG(x, x′) +
dG(x′, y′)+dG(y, y′) ≤ dΓ (Cx, C)+dΓ (Cy , C)+D ≤ dH(x, y)+D. By definition
of clusters, dG(x, y) ≥ dG(x, x′) + dG(y, y′) ≥ dH(x, y)− 2. �

The BFS-tree H preserves the distances between the root s and any other vertex
of G. We can locally modify H by assigning uniform weights to its edges or by
adding Steiner points to obtain a number of other desired properties. Assigning
length w := D + 1 to each edge of H, we will get a tree Hw = (V, F, w) in which
G embeds with distortion essentially equal to D + 1 : dG(u, v) ≤ dHw (u, v) ≤
(D + 1)(dG(u, v) + 2) ∀u, v ∈ V. Adding Steiner points and using edge lengths
0 and 1, H can be transformed into a tree H ′ which has the same additive
distortion and satisfies the non-expansive property. For this, for each cluster
C := Li

j we introduce a Steiner point pC , and add an edge of length 0 between
any vertex of C and pC and an edge of length 1 between pC and the support
vertex xC for C: dH′ (u, v) ≤ dG(u, v) ≤ dH′(u, v) + D ∀u, v ∈ V. Finally, by
replacing each edge in H ′ with edge of length w := D+1

2 , we obtain a tree H ′
w

so that dG(u, v) ≤ dH′
w
(u, v) ≤ (D + 1)(dG(u, v) + 1) ∀u, v ∈ V.

2.2 Embeddings with Distortion λ of Graph Metrics

We continue with two auxiliary standard results about embeddings.

Lemma 1. If G = (V, E), G′ = (V ′, E′) are two graphs, one unweighted and
second weighted, and ϕ : V �→ V ′ is a map so that dG′(ϕ(u), ϕ(v)) ≤ λ ∀uv ∈ E,
then dG′(ϕ(x), ϕ(y)) ≤ λdG(x, y) ∀x, y ∈ V.

Lemma 2. If G = (V, E), G′ = (V ′, E′) are two graphs, one unweighted and
second weighted, and ϕ : V �→ V ′ is a map so that dG′(ϕ(u), ϕ(v)) ≥ dG(u, v)
∀ϕ(u)ϕ(v) ∈ E′, then dG′(ϕ(x), ϕ(y)) ≥ dG(x, y) ∀x, y ∈ V.
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3 Embedding into Trees

We describe now a simple factor 6 algorithm for approximating the optimal
distortion λ∗ = λ∗(G, T ) of embedding finite unweighted graphs G into trees.
For this, we first investigate the properties of layering partitions of graphs which
λ-embed into trees, i.e., for each such graph G = (V, E) there exists a tree T =
(V ′, E′) with V ⊆ V ′ such that (1) dG(x, y) ≤ dT (x, y) (non-contractibility)
and (2) dT (x, y) ≤ λ · dG(x, y) (bounded expansion) for every x, y ∈ V . Denote
by PT (x, y) the path connecting the vertices x, y in T. For x ∈ V ′ and A ⊆ V ′,
we denote by dT (x, A) = min{dT (x, v) : v ∈ A} the distance from x to A. First
we show that the diameters of clusters in a layering partition of such a graph
G are at most 3λ, allowing already to build a tree with distortion 9λ∗. Refining
this property of layering partitions, we construct in O(|V ||E|) time a tree into
which G embeds with distortion ≤ 6λ∗.

Lemma 3. If G λ-embeds into a tree, then for any x, y ∈ V, any (x, y)-path
PG(x, y) of G and any vertex c ∈ PT (x, y), dT (c, PG(x, y)) ≤ λ/2.

Proof. Removing c from T , we separate x from y. Let Ty be the subtree of
T \ {c} containing y. Since x /∈ Ty, we can find an edge ab of PG(x, y) with
a ∈ Ty and b /∈ Ty. Therefore, the path PT (a, b) must go via c. If dT (c, a) > λ/2
and dT (c, b) > λ/2, then dT (a, b) = dT (a, c)+dT (c, b) > λ and since dG(a, b) = 1,
we obtain a contradiction with the assumption that the embedding of G in T has
distortion λ (condition (2)). Hence dT (c, PG(x, y)) ≤ min{dT (c, a), dT (c, b)} ≤
λ/2, concluding the proof. �

Lemma 4. If G λ-embeds into a tree T , then the diameter in G of any cluster
C of a layering partition of G is ≤ 3λ, i.e., dG(x, y) ≤ 3λ for any x, y ∈ C. In
particular, λ∗(G, T ) ≥ D/3.

Proof. Let PG(x, y) be a (x, y)-path of G outside the ball Bk(s), where k =
dG(s, x) − 1. Let PG(x, s) and PG(y, s) be two shortest paths of G connecting
x, s and y, s, respectively. Let c ∈ V (T ) be the unique vertex of T in PT (x, y) ∩
PT (x, s),∩PT (y, s). Since c belongs to each of the paths PT (x, y), PT (x, s),
and PT (y, s), applying Lemma 3 three times, we infer that dT (c, PG(x, y)),
dT (c, PG(x, s)), and dT (c, PG(y, s)) are ≤ λ/2. Let a be a closest to c vertex
of PG(x, s) in the tree T, i.e., dT (a, c) = dT (c, PG(x, s)) ≤ λ/2. Let z be a closest
to a vertex of PG(x, y) in T. From (1) and previous inequalities we conclude
that dG(a, z) ≤ dT (a, z) = dT (a, PG(x, y)) ≤ dT (a, c) + dT (c, PG(x, y)) ≤ λ.
Since z ∈ PG(x, y) and PG(x, y) ∩ Bk(s) = ∅, necessarily dG(s, z) ≥ dG(s, y) =
dG(s, a) + dG(a, x), yielding dG(a, x) ≤ dG(a, z) ≤ λ. Analogously, if b is a
closest to c vertex of PG(y, s) in T, then dG(b, y) ≤ λ and dT (b, c) ≤ λ/2. By
non-contractibility condition (1) and triangle condition, dG(a, b) ≤ dT (a, b) ≤
dT (a, c)+dT (b, c) ≤ λ. Summarizing, we obtain the desired inequality dG(x, y) ≤
dG(x, a) + dG(a, b) + dG(b, y) ≤ 3λ. �

Lemma 1 and the properties of H ′ imply that one can construct in linear time
an unweighted tree H = (V, F ) (without Steiner points) and a {0, 1}-weighted
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tree H ′ = (V ∪ S′, F ′) (with Steiner points), so that dH(x, y) − 2 ≤ dG(x, y) ≤
dH(x, y) + 3λ and dH′(x, y) ≤ dG(x, y) ≤ dH′(x, y) + 3λ ∀x, y ∈ V . Hence, for
any graph G, it is possible to turn its non-contractive multiplicative distortion
embedding into a weighted tree to a non-expanding additive distortion embed-
ding into a {0, 1}-weighted tree. ¿From properties of the trees Hw and H ′

w, we
obtain:

Corollary 1. If G = (V, E) λ-embeds into a tree, then there exists uniformly
weighted trees Hw = (V, F, w) and H ′

w = (V ∪S′, F ′, w) (without and with Steiner
points), both constructible in O(|V ||E|) time, such that dG(u, v) ≤ dHw (u, v) ≤
(3λ+1)(dG(u, v)+2) and dG(u, v) ≤ dH′

w
(u, v) ≤ (3λ+1)(dG(u, v)+1) ∀u, v ∈ V.

Corollary 1 implies already that there exists a factor 12 (factor 8 if Steiner points
are used) approximation algorithm for considered problem. We will show now
that, by strengthening Lemma 4, one can improve the approximation ratio from
12 to 9 and from 8 to 6.

Lemma 5. If G = (V, E) λ-embeds into a tree T , C = Li
j ∈ LP is a cluster of a

layering partition of G and v is a vertex of C, then dG(v′, u) ≤ max{3λ−1, 2λ+1}
for any neighbor v′ ∈ Li−1 of v and any u ∈ C.

Proof. Let c ∈ V (T ) be the nearest common ancestor in the tree T (rooted at
s) of all vertices of cluster C = Li

j. Let x and y be two vertices of C separated
by c. Let PG(x, y) be a path of G connecting vertices x and y outside the ball
Bi−1(s). Then, as in the proof of Lemma 4, we have dT (c, PG(x, y)) ≤ λ/2. Pick
an arbitrary vertex v ∈ C and a shortest path PG(v, s) connecting v with s in G.
Since c separates v from s in T , by Lemma 3, dT (c, PG(v, s)) ≤ λ/2 holds. Let
av be a closest to c vertex of PG(v, s) in the tree T . Then, dT (av, PG(x, y)) ≤
dT (av, c) + dT (c, PG(x, y)) ≤ λ. The choice of the path PG(x, y) and inequality
(1) imply that dG(av, v) ≤ dG(av, PG(x, y)) ≤ dT (av, PG(x, y)) ≤ λ.

Consider an arbitrary vertex u ∈ C, u 	= v. By the triangle inequality and (1),
we have dG(av, au) ≤ dT (av, au) ≤ dT (av, c) + dT (au, c) ≤ λ, thus dG(av, u) ≤
dG(av, au) + dG(au, u) ≤ 2λ. Let v′ ∈ Li−1 be a neighbor of v in PG(v, s). If
av = v, then dG(v, u) = dG(av, u) ≤ 2λ, i.e., dG(v′, u) ≤ dG(v, u) + 1 ≤ 2λ + 1.
Otherwise, if av 	= v, then dG(v′, u) ≤ dG(v′, av)+dG(av, u) ≤ λ−1+2λ = 3λ−1,
dG(v′, u) ≤ max{3λ− 1, 2λ + 1}. �

To make the embedding non-contractive, it suffices to assign the length � :=
max{3λ− 1, 2λ + 1} to each edge of H and get a uniformly weighted tree H� =
(V, F, �). Then dG(u, v) ≤ dH�

(u, v) ≤ max{3λ−1, 2λ+1}(dG(u, v)+2). The tree
H� (without Steiner points) provides a 9-approximation to our problem. If we
allow Steiner points and assign the length � := 3λ

2 to each edge of H ′, then get
a uniformly weighted tree H ′

� such that dG(u, v) ≤ dH′
�
(u, v) ≤ 3λ(dG(u, v) + 1).

For a graph G = (V, E), we do not know λ in advance, however we know
from Lemma 4 that λ∗(G, T ) ≥ D/3. Therefore, the length � to be assigned
to the edges of the tree H (which is defined independently of the value of λ),
can be found as follows: � = max{dG(u, v) : uv is an edge of H}. The length
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�, which needs to be assigned to each edge of H ′, can be found as follows:
� = 1

2 max{D, max{dG(u, v) : uv is an edge of H}}. Hence, � can be computed
in O(|V ||E|) time. Our main result of this section is the following theorem.

Theorem 1. There exists a factor 6 approximation algorithm for the optimal
distortion of embedding an unweighted graph G into a tree.

The approximation ratio 6 of our algorithm holds only for adjacent vertices of
G. It decreases when distances in G increase. Our tree H� does not have any
Steiner points and the edges of both trees H� and H ′

� are uniformly weighted.
The tree H ′

�, with Steiner points, is better than the tree H� only for small graph
distances. So, the Steiner points do not really help, confirming A. Gupta’s claim
[12].

4 Minors, Relaxed Minors, and Metric Minors

We define metric relaxed minors, which, together with layering partitions, are
used for approximate embedding of graphs into outerplanar metrics.

4.1 Minors and Relaxed Minors

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained
from G by contracting or delating some edges and some isolated vertices. To
adapt the concept of minor to our embedding purposes, note that H = (V ′, E′)
is a minor of G = (V, E) if there exists a map μ : V ′ ∪E′ �→ 2V , such that

(i) for any vertex v of H, G(μ(v)) is connected;
(ii) for any vertices v 	= v′ of H, G(μ(v)) ∩G(μ(v′)) = ∅;
(iii) for any edge e = uv of H, G(μ(e)) is a path Pe of G with ends in G(μ(u))

and G(μ(v));
(iv) for any vertex v and any edge e of H with v /∈ e, Pe ∩G(μ(v)) = ∅;
(v′) for any edges e = (x, y), e′ = (u, v) of H , Pe and Pe′ intersect iff {x, y} ∩

{u, v} 	= ∅ and if e = (x, y), e′ = (x, v), then Pe ∩ Pe′ = μ(x).

Indeed, if μ exists, then contracting each μ(v), v ∈ V ′, to a single vertex v and
each Pe to an edge e, (ii),(iii), and (v′) ensure that the resulting graph will be
isomorphic to H. Note that if in (v′) two paths Pe and Pe′ intersect, then they
intersect in G(μ(u)), where u is the common end of e and e′. In particular, if e, e′

are non-incident, then Pe and Pe′ are disjoint. For our metric purposes we need
a weaker notion of minor by allowing intersecting paths to intersect anywhere.
A graph H = (V ′, E′) is a relaxed minor of a graph G = (V, E) if there exists a
map μ : V ′ ∪ E′ �→ 2V satisfying (i)-(iv) and the following relaxation of (v′):

(v) for any two non-incident edges e, e′ of H , the paths Pe ∩ Pe′ = ∅.
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The concept of relaxed minor is weaker than that of minor: the triangle C3 is not
a minor of any tree, but it is a relaxed minor of the star K1,3 : μ maps the three
vertices of C3 to the three leaves of K1,3 and maps each edge uv of C3 to the path
of K1,3 between the leaves μ(u) and μ(v). The map μ satisfies (i)-(v) but does
not satisfy (v′). Relaxed and α-metric relaxed minors (see Subsection are crucial
because their existence corresponds to a witness that G cannot be embedded into
H-relaxed-minor-free graphs with small distortion (see Proposition 3). Thus it
seems important to relate this notion to standard minors. We conjecture that
if the graph H is triangle-free, then the notion of relaxed minor is not weaker
than that of minor. We established a weaker statement which is enough to deal
with H of special form: H will be bipartite H = (V, F ; E) with every vertex
f ∈ F of degree two. Such subdivided graphs H can be seen as a subdivision of
an arbitrary graph H ′ = (V, E′) where (u, v) ∈ H ′ iff there is a member f ∈ F
such that (u, f), (v, f) ∈ E.

Proposition 2. If a graph G = (V, E) has a subdivided graph H = (V ′, E′) as
a relaxed minor, then G has H as a minor.

4.2 α-Metric Relaxed Minors

Two sets A, B are α-far if min{dG(a, b) : a ∈ A, b ∈ B} > α. For α ≥ 1, we call
a graph H = (V ′, E′) an α-metric relaxed minor of G = (V, E) if there exists
a map μ : V ′ ∪ E′ �→ 2V satisfying (i)-(v) and the following stronger version of
condition (v):

(v+) for any non-incident edges e = uv and e′ = u′v′ of H , the sets μ(u) ∪ Pe ∪
μ(v) and μ(u′) ∪ Pe′ ∪ μ(v′) are α-far in G.

Let ϕ be an embedding of a graph G = (V, E) into a graph G′ = (V ′, E′) with
distortion ≤ α. For S ⊆ V inducing a connected subgraph G(S) of G, we denote
by [ϕ(S)] a union of shortest paths of G′ running between each pair of vertices of
ϕ(S) which are images of adjacent vertices of G(S), one shortest path per pair.

Lemma 6. If G α-embeds into G′ and two sets of vertices A, B inducing con-
nected subgraphs of G are α-far, then [ϕ(A)] ∩ [ϕ(B)] = ∅.

Proposition 3. If a subdivided 2-connected graph H = (V ′, E′) is an α-metric
relaxed minor of G = (V, E), then any embedding of G into an H-minor free
graph has distortion > α.

Proof. Suppose G has an embedding ϕ with distortion ≤ α into an H-minor
free graph G′. Let μ : V ′ ∪ E′ �→ 2V be a map showing that H is an α-metric
relaxed minor of G. Extend ϕ from V to the edge-set E by associating with
each edge e of G the shortest path Pe := [ϕ(e)] of G′. Pick any vertex v of H.
Then, ϕ(μ(v)) is a connected subgraph of G′ because μ and ϕ map connected
subgraphs to connected subgraphs. From Lemma 6 we know that ϕ maps two
α-far connected subgraphs of G to two disjoint subgraphs of G′. As to the map
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μ, we assert that for any distinct vertices v, v′ of H, μ(v) and μ(v′) are α-far
and for any vertex v and any edge e of H with v /∈ e, μ(v) and μ(e) = Pe are
α-far. We will prove the first part. Since H is 2-connected, any two vertices v, v′

belong to a common cycle C of H. Since H is triangle-free, v and v′ belong to
non-incident edges e, e′ of C. Applying (v+) to e and e′, we conclude that μ(v)
and μ(v′) are α-far. Now, we define the following map ν : V ′ ∪ E′ �→ 2V (G′)

from H to G′. For each v ∈ V ′, set ν(v) = ϕ(μ(v)). For each edge e = uv of H,
μ(e) = Pe is a path of G with end-vertices u∗ ∈ μ(u) and v∗ ∈ μ(v). Each edge f
of Pe is mapped by ϕ to a path ϕ(f) of G′. Let ν(e) be any path of G′ between
u′ = ϕ(u∗) and v′ = ϕ(v∗) contained in the set

⋃
{ϕ(f) : f is an edge of Pe}.

From definition of ν and properties of μ and ϕ it follows that ν satisfies (i) and
(iii). We will show that ν satisfies (ii), (iv), and (v) as well. To verify (ii), pick
two vertices u, v of H. The sets μ(u) and μ(v) are α-far, thus Lemma 6 implies
that ν(u) = ϕ(μ(u)) and ν(v) = ϕ(μ(v)) are disjoint, showing (ii). Analogously,
if v is a vertex and e is an edge of H with v /∈ e, then, since the sets μ(v) and
Pe = μ(e) are α-far, thus, by Lemma 6, ν(v) = ϕ(μ(v)) and ϕ(Pe) are disjoint.
Since ν(e) ⊆ ϕ(Pe), ν(v) and ν(e) are disjoint as well, establishing (iv). The
last condition (v) can be derived in a similar way by using (v+) and Lemma 6.
Hence, ν satisfies (i)-(v), i.e., H is a relaxed minor of G′. By Proposition 2, H
is a minor of G′, contradicting that G′ is H-minor free. �

4.3 Lower Bounds for α-Embeddings into K2,r-Minor Free Graphs

We use the previous results to give lower bounds for the distortion of embedding
a graph G = (V, E) into K2,r-minor free graphs.

Proposition 4. If a cluster C of a layering partition LP of G contains r ≥ 3
vertices v∗1 , . . . , v∗r that are pairwise (4α + 2)-far, then any embedding ϕ of G
into a K2,r-minor free graph has distortion > α.

Proof. Let LP be defined with respect to s and let T be a BFS tree rooted
at s. Let k be the distance from s to C. Since C contains (4α + 2)-far vertices
v∗1 , . . . , v∗r , k ≥ 2α + 2. We will define a mapping μ from K2,r to G allowing to
conclude that K2,r is an α-metric relaxed minor of G. Since K2,r is a subdivided
graph, Proposition 3 will show that any embedding of G into a K2,r-minor free
graph has distortion > α.

Let u1, . . . , ur, v, w be the vertices of K2,r, where v, w have degree r. Denote
by ei the edge vui and by fi the edge wui, i = 1, . . . , r. Let P1, . . . , Pr be
the paths of T of length α + 1 from v∗1 , . . . , v∗r towards the root s. Denote by
u∗

1, . . . , u
∗
r the other end vertices of the paths P1, . . . , Pr. Let R1, . . . , Rr be the

paths of T of length α + 1 from u∗
1, . . . , u

∗
r towards s. Denote by w∗

1 , . . . , w
∗
r

the other end vertices of the paths R1, . . . , Rr. Set μ(ui) := u∗
i , μ(ei) := Pi

and μ(fi) := Ri for i = 1, . . . , r. Let μ(v) be the connected subgraph of G
induced by all (or some) paths connecting the vertices v∗1 , . . . , v∗r outside the ball
Bk−1(s). Finally, let μ(w) := Bk−2α−2(s) (clearly, w∗

1 , . . . , w
∗
r belong to μ(w)).

From the definitions of μ and LP , we conclude that μ satisfies (i) and (iii). Since
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μ(v) ⊆ ∪j≥kLj , μ(w) = Bk−2α−2(s), and the vertices u∗
1 = μ(u1), . . . , u∗

r = μ(ur)
belong to Lk−α−1, the μ-images of the vertices of K2,r are pairwise α-far in G.
Analogously, any vertex of μ(v) is at distance > α from any path Ri = μ(fi) and
any vertex of μ(w) is at distance > α from any path Pi = μ(ei). If a vertex u∗

i is
at distance ≤ α from x ∈ Pj∪Rj for j 	= i, then, by triangle inequality, we obtain
dG(v∗i , v∗j ) ≤ dG(v∗i , u∗

i ) + dG(u∗
i , x) + dG(x, v∗j ) ≤ α + 1 + α + dG(v∗j , x). Since

x 	= w∗
j , dG(v∗j , x) ≤ 2α + 1, yielding dG(v∗i , v∗j ) ≤ α + 1 + α + 2α + 1 = 4α + 2,

contrary to the assumption that v∗i and v∗j are (4α + 2)-far. This contradiction
shows that the μ-images of any vertex and any non-incident edge of K2,r are
α-far. It remains to show that any two paths Pi and Rj with i 	= j are α-far.
If dG(x, y) ≤ α for x ∈ Pi \ {v∗i , u∗

i } and y ∈ Rj \ {u∗
j , w

∗
j }, then dG(v∗i , v∗j ) ≤

dG(v∗i , x) + dG(x, y) + dG(y, v∗j ) ≤ α + α + 2α + 1 ≤ 4α + 1, contrary to the
assumption that v∗i and v∗j are α-far. This contradiction shows that K2,r is an
α-metric relaxed minor of G. �

5 Embedding into Outerplanar Graphs

We present now the algorithm for approximate embedding of graph metrics into
into outerplanar metrics.

5.1 The Algorithm

Let G = (V, E) be the input graph and let LP be a layering partition of G.
We assume that λ ≥ 1 is so that each cluster C of LP contains at most two
(4λ+2)-far vertices (otherwise, by Proposition 4, the optimal distortion is larger
than λ). Set Λ := 4λ+2. We call a cluster C bifocal if it has two Λ-far vertices c1
and c2. In addition, for such cluster C let C1 = {x ∈ C : dG(x, c1) ≤ dG(x, c2)}
and C2 = {x ∈ C : dG(x, c2) ≤ dG(x, c1)}, and call C1 and C2 the cells of C
centered at c1 and c2 (we will suppose below that c1 and c2 form a diametral pair
of C). If diam(C) ≤ Λ (i.e., C is not bifocal), then the cluster C is called small.
Then C has a unique cell centered at an arbitrary vertex of C. A bifocal cluster
C is called big if diam(C) > 16λ + 12, otherwise, if Λ < diam(C) ≤ 16λ + 12,
then C is a medium cluster. An almost big cluster is a medium cluster C such
that diam(C) > 16λ + 10. A cluster C is Δ-separated if C is bifocal with cells
C1 and C2 and dG(u, v) > Δ for any u ∈ C1 and v ∈ C2. Further, we will set
Δ := 8λ + 6. A bifocal cluster C′ is spread if both cells C1, C2 of its father C
are adjacent to C′. Given a cluster C at distance k from s and its son C′, we
call the union of C with the connected component of G(V \ Bk(s)) containing
C′ the CC′-fiber of G and denote it by F(C, C′). We now ready to describe the
algorithm.

5.2 Small, Medium, and Big Clusters

We present here without proof several simple properties of clusters of LP .

Lemma 7. If C is bifocal, then the diameter of each of its cells is ≤ 2Λ.
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Algorithm Approximation by Outerplanar Metric

Input: A graph G = (V, E), a layering partition LP of G, and λ
Output: An outerplanar graph G′ = (V, E′) or an answer “not”
1. For each cluster C of the layering partition LP do
2. If C has two big sons or C is big and has two spread sons, then

return “not”.
3. Else for each son C′ of C do
4. Case 1: If C′ is small, then pick the center c of a cell of C

adjacent to C′ and in G′ make c adjacent to all vertices of C′.
5. Case 2: If C′ is medium and C is not big, or C′ is medium and

not spread and C is big, then pick the center c of a cell of C
adjacent to C′ and in G′ make c adjacent to all vertices of C′.

6. Case 3: If C′ is medium, C is big, and C′ is the (unique) spread
son of C, then in G′ make the center c1 of cell C1 of C adjacent
to all vertices of C′. Additionally, make the center c2 of cell C2

of C adjacent to all vertices of C′.
7. Case 4: If C′ = C′

1 ∪ C′
2, such that C′

1 is adjacent to C1 and
C′

2 is adjacent to C2, where C1 and C2 are the cells of C with
centers c1 and c2, then in G′ make c1 adjacent to all vertices
of C′

1 and c2 adjacent to all vertices of C′
2.

Lemma 8. If C is bifocal and diam(C) = dG(c1, c2) > 12λ + 6, then (i) C is
(diam(C)− 2Λ− 1)-separated, in particular C1 ∩C2 = ∅ and (ii) diam(C1) ≤ Λ
and diam(C2) ≤ Λ.

If C is big, then C is (8λ + 8)-separated and if C is almost big, then C is
(8λ + 6)-separated, whence big and almost big clusters are Λ-separated. If C is
big or almost big, then diam(C1) ≤ Λ and diam(C2) ≤ Λ.

Lemma 9. If C is big, then C has a bifocal spread son C′ such that contracting
the four cells of C and C′ (but preserving the inter-cell edges), we will obtain a
2K2.

Lemma 10. If C′ is big or almost big, then its father C is bifocal and the
neighbors in C of the centers c′1 and c′2 of the cells C′

1 and C′
2 of C′ belong to

different cells of C. Big and almost big clusters are spread.

Lemma 11. If C is big, no son of C has a cell adjacent to both cells of C. No
big cluster C has a small son adjacent to both cells of C.

5.3 Correctness of the Algorithm

The following results establish the correctness and the approximation ratio of
our algorithm.

Theorem 2. Let G = (V, E) be a graph and λ ≥ 1. If the algorithm returns
the answer “not”, then any embedding of G into a K2,3-minor free graph has
distortion > λ. If the algorithm returns the outerplanar graph G′ = (V, E′), then
assigning to its edges weight w := 20λ + 15, we obtain an embedding of G to G′
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such that dG(x, y) ≤ dG′(x, y) ≤ 5wdG(x, y) ∀x, y ∈ V. As a result, we obtain a
factor 100λ + 75 approximation of the optimal distortion of embedding a graph
into an outerplanar metric.

The proof of this theorem is subdivided into two propositions. We start with a
technical result, essentially showing that in both cases when our algorithm re-
turns the answer “not”, any embedding of G into an outerplanar metric requires
distortion > λ:

Proposition 5. Let C be a big or an almost big cluster having two sons C′, C′′

such that the two cells of C can be connected in both CC′- and CC′′-fibers of G.
Then, any embedding of G in a K2,3-minor free graph has distortion > λ. These
conditions hold in the following two cases: (i) C is big and has two spread sons;
(ii) C has two big sons C′, C′′. In particular, if the algorithm returns the answer
“not”, then any embedding of G in a K2,3-minor free graph requires distortion
> λ.

Now suppose that the algorithm returns the graph G′. By construction, G′ is
outerplanar. Let dG′(x, y) be the distance in G′ between x and y, where each
edge of G′ has length w := 20λ + 15. We continue with the basic property of G′

allowing to analyze the approximation ratio.

Proposition 6. For each edge xy of G, x and y can be connected in the graph
G′ by a path consisting of at most 5 edges, i.e. dG′(x, y) ≤ 5w. Conversely, for
each edge xy of G′, dG(x, y) ≤ 20λ + 15.

5.4 Proof of Proposition 6

We start with first assertion. First suppose that dG(s, x) = dG(s, y). Let C be
the cluster of G containing xy. Then, either C is not big or C is big and x, y
belong to the same cell of C. In both cases, by construction of G′, we deduce
that x and y will be adjacent in G′ to the same vertex from the father C0 of C,
implying dG′(x, y) = 2w. Now suppose that x ∈ C, y ∈ C′ and C′ is a son of C.
Let C0 be the father of C. Let z be a vertex of C to which y is adjacent in G′.
If C is small, medium, or C is big but x and z belong to the same cell, then in
G′ the vertices z and x will be adjacent to the same vertex xC0 of C0, yielding
dG′(x, y) ≤ 3w. So, suppose that C is big and the vertices z and x belong to
different cells C1 and C2 of C, say z ∈ C1 and x ∈ C2. By Lemma 11, C′ is not
small. According to the algorithm, z is the center of the cell C1, i.e., z = c1.
Note also that x and the center c2 of its cell are both adjacent in G′ to a vertex
xC0 ∈ C0, whence dG′(x, c2) = 2w. If C′ is big and say y ∈ C′

1, then since y
is adjacent to z in G′, from the algorithm we conclude that a vertex of C′

1 is
adjacent in G to a vertex of C1. On the other hand, y ∈ C′

1 is adjacent in G to
x ∈ C2. As a consequence, the cell C′

1 is adjacent in G to both cells C1 and C2 of
C, which is impossible by Lemma 11. So, the cluster C′ must be medium. If C
has a big son C′′, then since both cells of C are adjacent in G to the medium son
C′, we obtain a contradiction with Proposition 5(i). Hence, C cannot have big
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sons. Moreover, by Proposition 5, C′ is the unique spread son of C. According
to the algorithm (see Case 3), the centers z = c1 and c2 of the cells of C are
adjacent in G′ to a common vertex u from C′, yielding dG′(z, c2) = 2w. As a
result, we obtain a path with at most 5 edges connecting the vertices y and x in
G : (y, z = c1, u, c2, xC0 , x).

We continue with second assertion. Any edge xy of G′ runs between two
clusters lying in consecutive layers of G (and G′); let x ∈ C and y ∈ C′, where C
is the father of C′. In G, y has a neighbor x′ ∈ C. Let x′ 	= x, otherwise we are
done. If C is not big, then dG(x, x′) ≤ 16λ+12, whence dG(x, y) ≤ 16λ+13. So,
suppose C is big. If x, x′ belong to the same cell of C, then Lemma 7 implies that
dG(x, x′) ≤ 2Λ = 8λ+4, yielding dG(x, y) ≤ 8λ+5. Now, let x ∈ C1 and x′ ∈ C2.
By Lemma 11, C′ is medium or big. If C′ is big and y ∈ C′

1, since x and y are
adjacent in G′, according to the algorithm, C′

1 contains a vertex that is adjacent
in G to a vertex of C1. Since y ∈ C′

1 is adjacent in G to x′ ∈ C2, we obtain a
contradiction with Lemma 11. Hence C′ is a medium cluster. According to the
algorithm, x is the center of the cell C1 and C1 contains a vertex z adjacent in
G to a vertex v ∈ C′. Since x, z ∈ C1 implies dG(x, z) ≤ 4λ + 2 and y, v ∈ C′

implies dG(y, v) ≤ 16λ + 12, we obtain dG(x, y) ≤ 20λ + 15.

5.5 Proof of Proposition 5

By Proposition 3, it suffices to show that G contains K2,3 as a λ-metric relaxed
minor. Indeed, suppose that C is a big or an almost big cluster with cells C1 and
C2 having two sons C′, C′′, such that C1 and C2 can be connected by a path in
each of the CC′- and CC′′-fibers of G. Let k = dG(s, C). Denote by P ′ and P ′′

the shortest such paths connecting two vertices of C, one in C1 and another in
C2, in F(C, C′) and F(C, C′′), respectively. Denote by x′ ∈ C1 and y′ ∈ C2 the
end-vertices of P ′ and by x′′ ∈ C1 and y′′ ∈ C2 the end-vertices of P ′′. The choice
of P ′ implies P ′ ∩C = {x′, y′} and the choice of P ′′ implies P ′′ ∩C = {x′′, y′′}.
Let w′ and w′′ be middle vertices of P ′ and P ′′, respectively. Let a′, b′ be the
vertices of P ′ at distance λ + 1 (measured in P ′) from w′, where a′ is between
w′ and x′ and b′ is between w′ and y′. Let L′ be the subpath of P ′ between a′

and w′ and R′ the subpath of P ′ between w′ and b′. Analogously, for P ′′ we
can define the vertices a′′, b′′ and the paths L′′, R′′ of length λ + 1 each. Finally,
denote by P ′

1, P
′
2 the subpaths of P ′ between a′ and x′ and between b′ and y′.

Analogously, define the supbaths P ′′
1 and P ′′

2 of P ′′. Pick any shortest path M ′

in G between the vertices x′, x′′ and any shortest path M ′′ between y′, y′′. Let
F ′ be a subpath of a shortest path P (x′, s) from x′ to the root s starting with
x′ and having length 3λ. Analogously, let F ′′ be a subpath of a shortest path
P (y′′, s) from y′′ to s starting with y′′ and having length 3λ. Let J ′ and J ′′ be
the subpaths of length λ+ 1 of P (x′, s) and P (y′, s), which continue F ′ and F ′′,
respectively, towards s.

Now we define a mapping μ : V (K2,3)∪E(K2,3) �→ V (G) certifying that K2,3
is a λ-metric relaxed minor of G. Denote the vertices of K2,3 by a, b, c, q′, q′′,
where the vertices q′ and q′′ are assumed to be adjacent to each of the ver-
tices a, b, c. We set μ(a) := {w′}, μ(b) := {w′′}, μ(q′) := P ′

1 ∪ P ′′
1 ∪M ′ ∪ F ′ =:
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Q′, μ(q′′) := P ′
2 ∪ P ′′

2 ∪ M ′′ ∪ F ′′ := Q′′, and μ(c) := Bk′ =: S, where k′ =
k − 4λ − 1. Additionally, for each edge of K2,3, we set μ(aq′) := L′, μ(aq′′) :=
R′, μ(bq′) := L′′, μ(bq′′) := R′′, μ(q′s) := J ′, μ(q′′s) := J ′′. We will call the paths
L′, L′′, R′, R′′, P ′

1, P
′
2, P

′′
1 , P ′′

2 , F ′, F ′′, J ′, J ′′, M ′, M ′′, the vertices w′, w′′, and the
set S the elements of the map μ. Notice first that each vertex of K2,3 is mapped
to a connected subgraph of G and each edge of K2,3 is mapped to a path of G,
thus μ satisfies the conditions (i) and (iii) of a metric relaxed minor. It remains
to show that μ satisfies the remaining conditions of a λ-metric relaxed minor.
The proof of this is subdivided into several results: (1) dG(w′, C) ≥ 4λ + 3 and
dG(w′′, C) ≥ 4λ + 3, (2) S is λ-far from all elements of μ except J ′, J ′′ (3) w′

is λ-far from all elements of μ except L′, R′ and w′′ is λ-far from all elements
of μ except L′′, R′′, (4) L′, R′ are λ-far from L′′, R′′, P ′′

1 , P ′′
2 , J ′, J ′′ and L′′, R′′

are λ-far from P ′
1, P

′
2, J

′, J ′′, (5) Q′ is λ-far from the R′, R′′, J ′′ and Q′′ is λ-far
L′, L′′, J ′, and (6) Q′ and Q′′ are λ-far.

To prove the second assertion of Proposition 5, first suppose that the cluster
C is big and C has a big and a medium sons C′, C′′ such that both cells C1 and
C2 are adjacent to C′′ or that C has two medium sons C′, C′′ adjacent to both
cells of C. By definition of the layering, each vertex of C′ ∪ C′′ is adjacent to a
vertex of C. If all vertices of C′ are adjacent to vertices from the same cell of C,
say C1, then for any x′, y′ ∈ C′ we have dG(x′, y′) ≤ 2 + 4λ + 2, contrary to the
assumption that C′ is big. Hence, both cells of C are adjacent to C′, say x ∈ C1
is adjacent to x′ ∈ C′ and y ∈ C2 is adjacent to y′ ∈ C′. By Lemma 11, x′ and
y′ belong to different cells of C′, say x′ ∈ C′

1 and y′ ∈ C′
2. Let k := dG(s, C).

Since x′, y′ ∈ C′, the vertices x′ and y′ are adjacent in G(V \ Bk(s)) by a path
P (x′, y′). Then P (x, y) := xx′ ∪ P (x′, y′) ∪ y′y is a path between x and y in the
CC′-fiber F(C, C′). Analogously, since both cells C1 and C2 are adjacent to C′′,
we conclude that two vertices from different cells of C can be connected by a
path belonging to the CC′′-fiber, showing that the first condition of Proposition
5 is fulfilled. This establishes (i). Now suppose that C has two big sons C′ and
C′′. Then C is either a big or an almost big cluster. By Lemma 9, each of the
clusters C′, C′′ is (8λ + 8)-separated while the cluster C is (8λ + 6)-separated
and that its cells C1 and C2 have diameters at most Λ. As in previous cases,
one can deduce that C1 is adjacent to one cell of each of the clusters C′ and C′′,
while C2 is adjacent to the second cell of these clusters, establishing (ii).

5.6 Proof of Theorem 2

The algorithm returns the answer “not” when a cluster C has two big sons or a
big cluster C has two spread sons. In this case, by Proposition 5 any embedding
of G into a K2,3-minor free graph requires distortion > λ, whence λ∗(G,O) > λ.
Now suppose that the algorithm returns the outerplanar graph G′ weighted
uniformly with w = 20λ + 15. Notice that in Case 4 of the algorithm, the
required matching between the four cells of the big clusters C and C′ exists
by Lemma 9 and because C′ is the unique spread son of C. By Proposition 6
we have dG(x, y) ≤ 20λ + 15 = dG′(x, y) for each edge xy of the graph G′.
By Lemma 2 we conclude that dG(x, y) ≤ dG′(x, y) for any pair x, y ∈ V. By
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Proposition 6, for any edge xy of G, the vertices x and y can be connected in G′

by a path with at most 5 edges, i.e., dG′(x, y) ≤ 5w = 100λ + 75. By Lemma 1
we conclude that dG′(x, y) ≤ (100λ + 75)dG(x, y) for any pair x, y of V. Hence
dG ≤ dG′ ≤ (100λ + 75)dG.
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Abstract. We study constraint satisfaction problems on the domain
{−1, 1}, where the given constraints are homogeneous linear threshold
predicates. That is, predicates of the form sgn(w1x1 + · · · + wnxn) for
some positive integer weights w1, . . . , wn. Despite their simplicity, current
techniques fall short of providing a classification of these predicates in
terms of approximability. In fact, it is not easy to guess whether there
exists a homogeneous linear threshold predicate that is approximation
resistant or not.

The focus of this paper is to identify and study the approximation
curve of a class of threshold predicates that allow for non-trivial approx-
imation. Arguably the simplest such predicate is the majority predicate
sgn(x1 + · · ·+ xn), for which we obtain an almost complete understand-
ing of the asymptotic approximation curve, assuming the Unique Games
Conjecture. Our techniques extend to a more general class of “majority-
like” predicates and we obtain parallel results for them. In order to clas-
sify these predicates, we introduce the notion of Chow-robustness that
might be of independent interest.

Keywords: Approximability, constraint satisfaction problems, linear
threshold predicates.

1 Introduction

Constraint satisfaction problems or more succinctly CSPs are at the heart of
theoretical computer science. In a CSP we are given a set of constraints, each
putting some restriction on a constant size set of variables. The variables can
take values in many different domains but in this paper we focus on the case of
variables taking Boolean values. This is the most fundamental case and it has
also attracted the most attention over the years. We also focus on the case where
each condition is given by the same predicate, P , applied to a sequence of literals.
The role of this predicate P is key in this paper and as it is more important for
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us than the number of variables, we reserve the letter n for the arity of this
predicate while using N to be the number of variables in the instance. We also
reserve m to denote the number of constraints.

Traditionally we ask for an assignment that satisfies all constraints and in this
case it turns out that all Boolean CSPs are either NP-complete or belong to P
and this classification was completed already in 1978 by Schaefer [15]. In this
paper we study Max-CSPs which are optimization problems where we want to
satisfy as many constraints as possible. Almost all Max-CSPs of interest turn
out to be NP-hard and the main focus is that of efficient approximability.

The standard measure of approximability is given by a single number C and
an algorithm is a C-approximation algorithm if it, on each input, finds an as-
signment with an objective value that is at least C times the optimal value.
Here we might allow randomization and be content if the assignment found sat-
isfies these many constraints on average. A more refined question is to study
the approximation curve where for each constant c, assuming that the optimal
assignment satisfies cm constraints, we want to determine the maximal number
of constraints that we can satisfy efficiently.

To get a starting point to discuss the quality of approximation algorithms it is
useful to first consider the most simple algorithm that chooses the values of the
variables randomly and uniformly from all values in {0, 1}N . If the predicate P is
satisfied by t inputs in {0, 1}n it is easy to see that this algorithm, on the average,
satisfies mt2−n constraints. By using the method of conditional expectations it
is also easy to deterministically find an assignment that satisfies this number of
constraints.

A very strong type of hardness result possible for a Max-CSP is to prove
that, even for instances where the optimal assignment satisfies all constraints, it
is NP-hard to find an assignment that does significantly better (by a constant
factor independent of N) than the above trivial algorithm. We call such a predi-
cate “approximation resistant on satisfiable instances”. A somewhat weaker, but
still strong, negative result is to establish that the approximation ratio given by
the trivial algorithm, namely t2−n, is the best approximation ratio that can be
obtained by an efficient algorithm. This is equivalent to saying that we cannot
satisfy significantly more than mt2−n constraints when given an almost satis-
fiable instance. We call such a predicate “approximation resistant”. It is well
known that, unless P=NP, Max-3-Sat (i.e. when P is the disjunction of the
three literals) is approximation resistant on satisfiable instances and Max-3-Lin
(i.e. when P is the exclusive-or of three literals) is approximation resistant [8].

When it comes to positive results on approximability the most powerful tech-
nique is semi-definite programming introduced in this context in the classical
paper by Goemans and Williamson [6] studying the approximability of Max-
Cut, establishing the approximability constant αGW ≈ .878. In particular, this
result implies that Max-Cut is not approximation resistant. Somewhat surpris-
ingly as proved by Khot et al. [12], this constant has turned out, assuming the
Unique Games Conjecture, to be best possible. We note that these results have



112 M. Cheraghchi et al.

been extended in great generality and O’Donnell and Wu [14] determined the
complete approximation curve of Max-Cut.

The general problem of determining which predicates are approximation re-
sistant is still not resolved but as this is not the main theme of this paper let us
cut this discussion short by mentioning a general result by Austrin and Mossel
[2]. This paper relies on the Unique Games Conjecture by Khot [11] and proves
that, under this conjecture, any predicate such that the set P−1(1) supports a
pairwise independent measure is approximation resistant.

On the algorithmic side there is a general result by Hast, [7], that is somewhat
complementary to the result of Austrin and Mossel. Hast considers the real
valued function P≤2 which is the sum of the linear and quadratic parts of the
Fourier expansion of P . Oversimplifying slightly, the result by Hast says that
if P≤2 is positive on all inputs accepted by P then we can derive a non-trivial
approximation algorithm and hence P is not approximation resistant.

To see the relationship between the results of Austrin and Mossel, and Hast,
note that the condition of Austrin and Mossel is equivalent to saying that there
is a probability distribution on inputs accepted by P such that the average of
any unbiased quadratic function1 is 0. In contrast, Hast needs that a particular
unbiased quadratic function is positive on all inputs accepted by P . It is not
difficult to come up with predicates that satisfies neither of these two condi-
tions and hence we do not have a complete classification, even if we are willing
to assume the Unique Games Conjecture. The combination of the two results,
however, points to the class of predicates that can be written on the form

P (x) = sgn(Q(x))

for a quadratic function Q as an interesting class of predicates to study and
this finally brings us to the topic of this paper. We study this scenario in the
simplest form by assuming that Q is in fact an unbiased linear function, L. In
other words we have

P (x) = sgn(L(x)) = sgn

(
n∑

i=1

wixi

)
,

for some, without loss of generality, positive integral weights (wi)n
i=1. Note that if

we allow a constant term in L the situations is drastically different as for instance
3-Sat is the sign of linear form if we allow a non-zero constant term. One key
difference is that a probability distribution supported on the set “L(x) > 0”
cannot have even unbiased variables in the case when L is without constant
term and thus hardness results such as the result by Austrin and Mossel do not
apply.

To make life even simpler we make sure that L never takes the value 0 and
as L(−x) = −L(x), P accepts precisely half of the inputs and thus the number
of constraints satisfied by a random assignment is, on the average, m/2.

1 Throughout this work, we find it more convenient to represent Boolean values by
{-1,+1} rather than {0,1}.
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The simplest such predicate is majority of an odd number of inputs. For this
predicate it easy to see that Hast’s condition is fulfilled and hence, for any odd
value of n, his results imply that majority is not approximation resistant. This
result generalizes to “majority-like” functions as follows. For a linear threshold
functions, the Chow parameters, P̄ = (P̂ (i))n

i=0, [3] are for, i > 0, defined to be
the correlations between the output of the function and inputs xi. We have that
P̂ (0) is the bias of the function and thus in our case this parameter is always
equal to 0 and hence ignored.

Now if we order the weights (wi)n
i=1 in nondecreasing order then also the

P̂ (i)’s are nondecreasing but in general quite different from the weights. It is well
known that the Chow parameters determine the threshold function uniquely [3]
but the computational problem of given P̄ , how to recover the weights, or even
to compute P efficiently is an interesting problem and several heuristics have
been proposed [10,17,9,4] together with an empirical study that compares various
methods [18]. More recently, the problem of finding an approximation of P given
the Chow parameters has received increased attention, see e.g. [13] and [5]. The
most naive method is to use P̄ as weights. This does not work very well in general
but this is a case of special interest to us as it is precisely when this method
gives us back the original function that we can apply Hast’s results directly. We
call such a threshold function “Chow-robust” and we have not been able to find
the characterization of this class of functions in the literature. If we ignore some
error terms and technical conditions a sufficient condition to be Chow-robust is
roughly that

n∑
i=1

(w3
i − wi) ≤ 3

n∑
i=1

w2
i (1)

and thus it applies to functions with rather modest weights. We believe that
this condition is not very far from necessary but we have not investigated this
in detail.

Having established non-approximation resistance for such predicates we turn
to study the full curve of approximability and, in an asymptotic sense as a
function of n, we get almost tight answers establishing both approximability
results and hardness results. Our results do apply with degrading constants to
more general threshold functions but let us here state them for majority. We
have the following theorem.

Theorem 1. (Informal) Given an instance of Max-Maj-n with n odd and m
constraints and assume that the optimal assignment satisfies (1 − δ

n+1 )m con-
straints, for some δ < 1. Then it is possible to efficiently find an assignment that
satisfies (

1
2

+ Ω

(
(1− δ)3/2

n1/2

)
−O

(
log4 n

n5/6

))
m

constraints.

Thus for large n we need almost satisfiable instances to get above the threshold
1
2 obtained by a a random assignment. This might seem weak but we prove that
this is probably the correct threshold.
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Theorem 2. (Informal) Assume the Unique Games Conjecture and let ε > 0 be
arbitrary. Then it is NP-hard to distinguish instances of Max-Maj-n where the
optimal value is (1− 1

n+1 − ε)m, from those where the optimal value is (1
2 + ε)m.

This proves that the range of instances to which Theorem 1 applies is essentially
the correct one. A drawback is that the error term O

(
log4 n
n5/6

)
in Theorem 1

dominates the systematic contribution of (1 − δ)3/2n−1/2 for δ very close to 1
and hence the threshold is not sharp. We are, however, able to sharply locate
the threshold where something nontrivial can be done by combining our result
with the general results by Hast. For details, see Section 3.

To see that the advantage obtained by the algorithm is also the correct order
of magnitude we have the following theorem.

Theorem 3. (Informal) Assume the Unique Games Conjecture and let ε > 0
be arbitrary. Then there is an absolute constant c such that it is NP-hard to
distinguish instances of Max-Maj-n where the optimal value is (1 − ε)m, from
those where the optimal value is (1

2 + c√
n

+ ε)m.

In summary, we get an almost complete understanding of the approximabil-
ity curve of majority, at least in an asymptotic sense as a function of n. This
complements the results for majority on three variables, for which there is a 2/3-
approximation algorithm [19] and it is NP-hard to do substantially better [8].

The idea of the algorithm behind Theorem 1 is quite straightforward while
its analysis gets rather involved. We set up a natural linear program which we
solve and then use the obtained solution as biases in a randomized rounding.
The key problem that arises is to carefully analyze the probability that a sum of
biased Boolean variables is positive. In the case of majority-like variables we have
the additional complication of the different weights. This problem is handled by
writing the probability in question as a complex integral and then estimating
this integral by the saddle-point method. The resulting proof is quite long and
does not fit within the page limit of the current abstract. This proof and several
other proofs are hence omitted and can be found in the full version of the paper.

The hardness results given in Theorem 2 and Theorem 3 resort to the tech-
niques of Austrin and Mossel [2]. The key to these results is to find suitable
pairwise independent distributions relating to our predicate. In the case of ma-
jority it is easy to find such distributions explicitly, while in the case of more
general weights the construction gets more involved. In particular, we need to
answer the following question: What is the minimal value of Pr[L(x) < 0] when
x is chosen according to a pairwise independent distribution. This is a nice com-
binatorial question of independent interest.

An outline of the paper is as follows. Notation and conventions used through-
out the paper are presented in Section 2. This is followed by the adaptation
of Hast’s algorithm for odd Chow-robust predicates and the result that (essen-
tially) the condition

∑n
j=1 w3

j − wj ≤ 3
∑n

j=1 w2
j on the weights is sufficient for

a predicate to be Chow-robust. In Section 4, we present our main algorithm
for Chow-robust predicates which establishes Theorem 1 in the special case of
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majority. These positive results are then complemented in Section 5 where we
show essentially tight hardness results assuming the Unique Games Conjecture.
Finally, we discuss the obtained results together with interesting future direc-
tions (Section 6). As already stated, the current abstract only contains some of
our shorter proofs and a reader interested in the full proofs must turn to the full
version of the paper.

2 Preliminaries

We consider the optimization problem Max-CSP(P ) for homogeneous linear
threshold predicates P : {−1, 1}n → {−1, 1} of the form

P (x) = sgn(w1x1 + · · ·+ wnxn),

where we assume that the weights are non-decreasing positive integers 1 ≤ w1
≤ . . . ≤ wn such that

∑n
j=1 wj is odd and wmax := maxj wj = wn. The special

case of equal weights, which requires n to be odd, is denoted by Majn, and we
also write Max-Maj-n for Max-CSP(Majn). Using Fourier expansion, any such
function can be written uniquely as

P (x) =
∑

S⊆[n]

P̂ (S)
∏
j∈S

xj .

The Fourier coefficients are given by P̂ (S) = E[P (X)
∏

j∈S Xj ], where X is
uniform on {−1, 1}n. Since all homogeneous linear threshold predicates are odd
we have P̂ (S) = 0 when |S| is even. We will also write P̂ (j) = P̂ ({j}) for the
first level Fourier coefficients (i.e. the Chow parameters) and let P−1(1) denote
the set of assignments that satisfy P , i.e. P−1(1) = {x : P (x) = 1}.

For an instance I = (m, N, l, s) of Max-CSP(P ) consisting of m constraints, N
variables and matrices l ∈ Nm×n, s ∈ {−1, 1}m×n, the objective is to maximize
the number of satisfied constraints or, equivalently since P (−x) = −P (x) and
thus E[P (x)] = 0, the average advantage

Adv(x) :=
1
m

m∑
i=1

P (si,1xli,1 , . . . , si,nxli,n)

subject to x ∈ {−1, 1}N .

3 Adaptation of the Algorithm by Hast

Using Fourier expansion we may write the advantage of an assignment to a
Max-CSP(P ) instance as

Adv(x) =
1
m

m∑
i=1

sgn

⎛⎝ n∑
j=1

wjsi,jxli,j

⎞⎠ =
∑

S⊆[N ]:|S|≤n

cS

∏
k∈S

xk. (2)
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Hast [7] gives a general approximation algorithm for Max-CSP(P ) that achieves
a non-trivial approximation ratio whenever the linear part of the instance’s ob-
jective function is large enough. We use his algorithm, but as our basic predicates
are odd we have that cS = 0 for any S of even size and we get slightly better
bounds.

Theorem 4. For any δ > 0, there is a probabilistic polynomial time algorithm
which given an instance of Max-CSP(P ) with objective function

Adv(x1, . . . , xN ) =
∑

S⊆[N ],|S|≤n

cS

∏
k∈S

xk

satisfying
∑N

k=1 |c{k}| ≥ δ and cS = 0 for any set S of even cardinality, achieves

E[Adv(x)] ≥ δ3/2

8n3/4 .

Proof. Let ε > 0 be a parameter to be determined. We set each xi randomly and
independently to one with probability (1 + sgn(c{i})ε)/2. Clearly this implies
that E[c{i}xi] = ε|c{i}| and that |E[

∏
k∈S xk]| = ε|S|.

By Cauchy Schwarz inequality and Parseval’s identity we have that

∑
|T |=k

|P̂ (T )| ≤
(

n

k

)1/2
⎛⎝ ∑

|T |=k

P̂ 2(T )

⎞⎠1/2

≤
(

n

k

)1/2

and hence ∑
|S|=k

|cS | ≤
(

n

k

)1/2

. (3)

We conclude that the advantage of the given algorithm is, given that cS = 0 for
even cardinality S, at least

ε
n∑

i=1

|ci| −
∑
|S|≥3

εk|cS | ≥ εδ −
n∑

k=3

εk

(
n

k

)1/2

. (4)

The sum in (4) is, provided ε ≤ (2
√

n)−1, and using Cauchy-Schwarz bounded
by(

n∑
k=3

(
1
n

)k (
n

k

))1/2 ( n∑
k=3

(ε2n)k

)1/2

≤
(

1 +
1
n

)n/2

(2ε6n3)1/2 ≤ 3ε3n3/2,

where we used
∑n

k=0

( 1
n

)k (n
k

)
=

(
1 + 1

n

)n and
∑n

k=3(ε
2n)k ≤ ε6n3 ∑∞

k=0
1
2k for

the first inequality. Setting ε = δ1/2(2n3/4)−1, which is at most (2
√

n)−1 by (3)
with k = 1, we see that the advantage of the algorithm is

εδ − 3ε3n3/2 =
δ3/2

8n3/4 .

and the proof is complete.
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Let us see how to apply Theorem 4 in the case when P is majority of n variables.
Suppose we are given an instance that is 1− δ

n+1 satisfiable and let us consider

N∑
i=1

c{i}αi (5)

where xi = αi is the optimal solution and prove that this is large. Any lower
bound for this is clearly a lower bound for

∑N
i=1 |c{i}|.

Let P̂1 be the value of any Fourier coefficient of a unit size set. Then any
satisfied constraint contributes at least P̂1 to (5) while any other constraint
contributes at least −nP̂1. We conclude that (5) is at least(

1− δ

n + 1

)
P̂1 −

δ

n + 1
nP̂1 = (1− δ)P̂1.

Using Theorem 4 and the fact that P̂1 = Θ(n−1/2) we get the following corollary.

Theorem 5. Suppose we are given an instance of Max-Maj-n which is (1 −
δ

n+1 )-satisfiable. Then it is possible, in probabilistic polynomial time, to find an
assignment that satisfies a fraction

1
2

+ Ω((1 − δ)3/2n−3/2)

of the constraints.

Let us sketch how to generalize this theorem to predicates other than majority.
Clearly the key property is to establish that the sum (5) is large when most
constraints can be simultaneously satisfied. In order to have any possibility for
this to be true it must be that whenever a constraint is satisfied, then the con-
tribution to (5) is positive and this is exactly being “Chow-robust” as discussed
in the introduction. Furthermore, to get a quantitative result we must also make
sure that it is positive by some fixed amount. Let us turn to a formal definition.

Recall that the Chow parameters of a predicate P are given by its degree-0
and degree-1 Fourier coefficients, i.e., P̂ (0), P̂ (1), . . . , P̂ (n) for i = 1, 2, . . . , n. As
we are here dealing with an odd predicate, P̂ (0) = 0. If it holds that

P (x) = sgn(P̂ (1)x1 + P̂ (2)x2 + · · ·+ P̂ (n)xn) for all x ∈ {−1, 1}n

we say that such a predicate is Chow-robust and it is γ-Chow-robust iff

0 < γ ≤ min
x:P (x)=1

⎛⎝ n∑
j=1

P̂ (j)xj

⎞⎠ .

Note that γ ≤ P̂ (1) and in fact γ = Θ
(

1√
n

)
for majority. Let us state our

extension of Theorem 5 in the present context.
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Theorem 6. Let P (x) = sgn(w1x1+w2x2+· · ·+wnxn) be a γ-Chow-robust pred-
icate and suppose that I is a 1− δγ

γ+
∑n

j=1 P̂ (j)
satisfiable instance of Max-CSP(P )

where δ < 1. Then there is a probabilistic polynomial time algorithm that achieves
E[Adv(x)] = (1−δ)3/2γ3/2

8n3/4 .

The proof of this theorem is given in the full version of the paper.
Given Theorem 6 it is interesting to discuss sufficient conditions for P to be

Chow-robust and we have the following theorem.

Theorem 7. Suppose we are given positive integers (wj)n
j=1 such that

β(w) := 1−
∑n

j=1(w
3
j − wj)

3
∑n

j=1 w2
j

> 0.

Further, suppose that for at least 400 logn different values of j, say 1, 2, . . . , n1,
we have wj = 1. Then the predicate P (x) = sgn(x1 + · · · + xn1 + wn1+1xn1+1

+ · · ·+ wnxn) is γ-Chow-robust with γ =
(
β(w) −O

(
w2

max
n

))
P̂ (1).

Note that we need n sufficiently large to make γ positive.
Also this proof is postponed to the full version. Let us comment on the con-

dition on the Ω(log n) weights that we require to be one. This should be viewed
as a technical condition and we could have chosen other similar conditions. In
particular, we have made no effort to optimize the constant 400. In our calcu-
lations this condition is used to bound the integrand of a complex integral on
the unit circle when we are not close to the point z = 1 and this could be done
in many ways. We would like to point out that although there are choices for
the technical condition, some condition is needed. The condition should imply
some mathematical form of “when z on the unit circle is far from 1 then many
numbers of the form zwj are not close to 1”. Sets of weights violating such con-
ditions are cases when almost all weights have a common factor. An interesting
example is the function which, for odd n, has n − 4 weights equal to 3 and 4
weights equal to 1. This function is not Chow-robust for any value of n. The
above example shows that there are functions with weights of at most 3 that are
not Chow-robust. This is a tight bound as the techniques used in the proof of
Theorem 7 can be used to show that a function with weights equal to 1 or 2 is
Chow-robust.

4 Our Main Algorithm

We now give an improved algorithm for Max-CSP(P) for homogeneous linear
threshold predicates. On almost satisfiable instances, this algorithm achieves an
advantage Ω

(
1√
n

)
over a random assignment in comparison to the Ω

( 1
n3/2

)
advantage achieved by the adaptation of Hast’s algorithm presented in the pre-
vious section. However, a drawback of the more advanced algorithm is that we
are unable to analyze its advantage on instances that are close to the threshold
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where Hast’s algorithm still achieves a non-trivial advantage. Thus, in order to
fully understand the approximability curve, a combination of the algorithm pre-
sented below and Hast’s algorithm is needed. We now proceed by describing the
algorithm. Recall that we write the i’th constraint as

P (si,1xli,1 , . . . , si,nxli,n) = sgn(Li(x)),

where Li(x) =
∑n

j=1 wjsi,jxli,j , and let W :=
∑n

j=1 wj . The algorithm which is
parameterized by a noise parameter 0 < ε < 1 is described as follows:
Algorithm ALP,ε

1. Let x∗, Δ∗ be the optimal solution to the following linear program

maximize 1
m

∑m
i=1 Δi

subject to Li(x) ≥ Δi, ∀i ∈ [m]
x ∈ [−1, 1]N , Δ ∈ [−W, 1]m

2. Pick X1, . . . , XN ∈ {−1, 1} independently with bias E[Xi] = εx∗
i and return

this assignment.

As in Theorem 7 we now define β(w) for a set of weights w = (w1, . . . , wn) as

β(w) = 1−
∑n

j=1(w
3
j − wj)

3
∑n

j=1 w2
j

.

Note that β ≤ 1 for any set of weights, while for majority β = 1. Further, if
β(w) > 0, then Theorem 7 shows that P is γ-Chow-robust provided that n is
large enough.

We have the following theorem whose proof will appear in the full version.

Theorem 8. Fix any homogeneous threshold predicate P (x) = sgn(w1x1 + · · ·+
wnxn) having wj = 1 for at least 200 logn different values of j and satisfying
β := β(w) > 0. Then, for any 1 − δ

1+W satisfiable instance I of Max-CSP(P),
where δ < β, we have

E[Adv(ALP,ε(I))] = (β − δ)3/2 Ω

(
1√
n

)
−O

(
log4 n

n5/6

)
, (6)

where ε = (β − δ)1/2ε0 and ε0 > 0 is an absolute constant.

Thus, for δ bounded away from β, and large enough n, this algorithm is an
improvement over the algorithm of Theorem 6. We may also note that both the
algorithm ALP,ε and the algorithm of Theorem 6 can be de-randomized using
the method of conditional expectation.

As β = 1 for Majn the following result follows directly from Theorem 8:

Corollary 1. For all 1− δ
n+1 satisfiable instances I of Max-Maj-n, where δ < 1,

we have

E[Adv(ALP,ε(I))] = (1− δ)3/2Ω

(
1√
n

)
−O

(
log4 n

n5/6

)
,

where ε = (1− δ)1/2ε0 and ε0 > 0 is an absolute constant.
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5 Unique Games Hardness

The hardness results in this section are under the increasingly prevalent assump-
tion that the Unique Games Conjecture (UGC) holds. The conjecture was made
by Khot [11] and states that a specific combinatorial problem known as Unique
Games, or Unique Label Cover, is very hard to approximate (see e.g. [11] for
more details). The basic tool that we use is the result by Austrin and Mossel [2],
which states that the UGC implies that a predicate is approximation resistant
if it supports a uniform pairwise independent distribution, and hard to approx-
imate if it “almost” supports a uniform pairwise independent distribution. We
now state their result in a simplified form tailored for the application at hand:

Theorem 9 ([2]). Let P : {−1, 1}n → {−1, 1} be a n-ary predicate and let μ be
a balanced pairwise independent distribution over {−1, 1}n. Then, for any ε > 0,
the UGC implies that it is NP-hard to distinguish between those instances of
Max-CSP(P ).

– that have an assignment satisfying at least a fraction Prx∈({−1,1}n,μ)[P (x) =
1]− ε of the constraints;

– and those for which any assignment satisfies at most a fraction |P−1(1)|/2n+
ε of the constraints.

We first give a fairly easy application of the above theorem to the predicate Majn.
We then generalize this approach to more general homogeneous linear threshold
predicates.

Theorem 10. For any ε > 0 the UGC implies that it is NP-hard to distinguish
between those instances of Max-Maj-n

– that have an assignment satisfying at least a fraction 1 − 1
n+1 − ε of the

constraints;
– and those for which any assignment satisfies at most a fraction 1/2 + ε of

the constraints.

Proof. Consider the following distribution μ over {−1, +1}n: with probability
1

n+1 , all the bits in μ are fixed to −1, and with probability n
n+1 , μ samples

a vector with (n + 1)/2 ones, chosen uniformly at random among all possi-
bilities. To see that this gives a pairwise independent distribution let X =
(X1, . . . , Xn) be drawn from μ. Then E [

∑n
i=1 Xi] = 1

n+1 · (−n)+ n
n+1 ·1 = 0 and

E

[∑n
i,j=1
i�=j

XiXj

]
= E

[
(
∑n

i=1 Xi)
2
]
− n = 1

n+1 · (n2) + n
n+1 · 1− n = 0. Because

of the symmetry of the coordinates, it follows that for all i, E[Xi] = 0 and for
every i 	= j, E[XiXj] = 0. Therefore, the distribution μ is balanced pairwise
independent. Theorem 9 now gives the result.

For predicate Majn, we can also obtain a hardness result for almost satisfiable
instances:
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Theorem 11. For any ε > 0 the UGC implies that it is NP-hard to distinguish
between those instances of Max-Maj-n
– that have an assignment satisfying at least a fraction 1− ε of the constraints;
– and those for which any assignment satisfies at most a fraction 1

2 + cn
1√
n

+ ε

of the constraints, where

cn =
√

n

2n−2

(
n− 2
n−1

2

)
≈

√
2
π

.

Proof. Let k = n− 2 and consider the predicate P : {−1, 1}k → {−1, 1} defined
as P (x) = sgn(x1 + · · · + xk + 2). Our interest in P stems from the fact that
Max-Maj-n is at least as hard to approximate as Max-CSP(P ). Indeed, given an
instance of Max-CSP(P ), we can construct an instance of Max-Maj-n by letting
each constraint P (l1, . . . lk) equal Majn(y1, y2, l1, . . . , lk) for two new variables y1
and y2, that are the same in all constraints and always appear in the positive
form. As any good solution to the instance of Max-Maj-n sets both y1 and y2 to
one, we can conclude that any optimal assignments to the two instances satisfy
the same fraction of constraints.

Now consider the following distribution μ over {−1, 1}k: with probability 1
k+1 ,

all the bits in μ are fixed to ones, and with probability k
k+1 , μ samples a vector

with (k + 1)/2 minus ones, chosen uniformly at random among all possibilities.
The same argument as in the proof of Theorem 10 shows that the distribution
μ is uniform and pairwise independent. Theorem 9 now gives that for any ε > 0
the UGC implies that it is NP-hard to distinguish between those instances of
Max-CSP(P ) that have an assignment satisfying a fraction 1 − ε of the con-
straints; and those for which any assignment satisfies at most a fraction

|P−1(1)|
2k

+ ε =
1
2k

k+1
2∑

j=0

(
k

j

)
+ ε =

1
2

+

(
k

k+1
2

)
2k

+ ε =
1
2

+

√
2
πk

+ o(1/k) + ε.

The result now follows from the observation above that we can construct an
instance of Max-Maj-n from an instance of Max-CSP(P ) such that optimal
assignments to the two instances satisfy the same fraction of the constraints.

Taking the convex combination of the results in Theorems 10 and 11 yields:

Corollary 2. For any δ : 0 ≤ δ ≤ 1 and any ε > 0, the UGC implies that it is
NP-hard to find an assignment x to a given 1 − δ

n+1 − ε satisfiable instance of
Max-Maj-n achieving

Adv(x) ≥ (1− δ)cn
1√
n

+ ε,

where cn is the constant defined in Theorem 11.

The above techniques also extend to general weights and we have the following
theorem.

Theorem 12. Suppose we are given positive integers (wj)n
j=1 such that

∑n
j=1 w3

j

< 100n and
∑n

j=1 wj is odd. Further, suppose that for at least 400 logn different
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values of j we have wj = 1. Let P (x) = sgn(w1x1 + · · ·+ wnxn), then, for any
ε > 0, the UGC implies that it is NP-hard to distinguish between those instances
of Max-CSP(P )

– that have an assignment satisfying at least a fraction 1 − O
(

w4
max
n

)
− ε of

the constraints;
– and those for which any assignment satisfies at most a fraction 1/2 + ε of

the constraints.

Of course the key to this theorem is to study suitable pairwise independent
distributions. In particular, we prove that similar ideas as used in the proof of
Theorem 10 can be used to construct almost pairwise distributions for more
general “majority-like” threshold predicates. As we allow predicates with dif-
ferent weights, the analysis gets more involved and again the problem reduces
to estimating complex integrals using the saddle point method. For this reason
we need the technical conditions on the weights that were previously discussed
after Theorem 7. We then show that such distributions can be slightly adjusted
to obtain perfect balanced pairwise distributions and the final result follows by
applying Theorem 9. The details will appear in the full version of the paper.

6 Conclusions

We have studied, and obtained rather tight bounds for the approximability curve
of “majority-like” predicates. There are still many questions to be addressed and
let us mention a few.

This work has been in the context of predicates given by Chow-robust thresh-
old functions. Within this class we already knew, by the results of Hast [7], that
no such predicate can be approximation resistant and our contribution is to ob-
tain sharp bounds on the nature of how approximable these predicates are. It is
a very nice open question whether there are any approximation resistant predi-
cates given as thresholds of balanced linear functions. It is not easy to guess the
answer to this question.

Looking at our results from a different angle one has to agree that the ap-
proximation algorithm we obtain is rather weak. For large values of n we only
manage to do something useful on almost satisfiable instances and in this case
we beat the random assignment by a rather slim margin. On the other hand we
also prove that this is the best we can do. One could ask the question whether
there is any other predicate that genuinely depends on n variables, accepts about
half the inputs and which is easier to approximate than majority. It is not easy
to guess what such a predicate would be but there is also very little information
to support the guess that majority is the easiest predicate to approximate.

Using the results of Austrin and Mossel, Austrin and H̊astad [1] proved that
almost all predicates are approximation resistant. One way to interpret the re-
sults of this paper is that for the few predicates of large arity where we can
get some nontrivial approximation, we should not hope for too strong positive
results.
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Abstract. We give the first constant-factor approximation algorithm
for Sparsest-Cut with general demands in bounded treewidth graphs. In
contrast to previous algorithms, which rely on the flow-cut gap and/or
metric embeddings, our approach exploits the Sherali-Adams hierarchy
of linear programming relaxations.

1 Introduction

The Sparsest-Cut problem is one of the most famous graph optimization prob-
lems. The problem has been studied extensively due to the central role it plays in
several respects. First, it represents a basic graph partitioning task that arises in
several contexts, such as divide-and-conquer graph algorithms (see e.g. [29, 40]
and [42, Chapter 21]). Second, it is intimately related to other graph param-
eters, such as flows, edge-expansion, conductance, spectral gap and bisection-
width. Third, there are several deep technical links between Sparsest-Cut and
two seemingly unrelated concepts, the Unique Games Conjecture and Metric
Embeddings.

Given that Sparsest-Cut is known to be NP-hard [34], the problem has been
studied extensively from the perspective of polynomial-time approximation al-
gorithms. Despite significant efforts and progress in the last two decades, we are
still quite far from determining the approximability of Sparsest-Cut. This is true
not only for general graphs, but also for several important graph families, such
as planar graphs or bounded treewidth graphs. The latter family is the focus of
this paper; we shall return to it after setting up some notation and defining the
problem formally.

Problem definition. For a graph G = (V, E) we let n = |V |. For S ⊂ V , the
cutset (S, S̄) ⊂ V ×V is the set of unordered pairs with exactly one endpoint in
S, i.e. {{u, v} ∈ V ×V : u ∈ S, v /∈ S}. In the Sparsest-Cut problem (with general
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demands), the input is a graph G = (V, E) with edge capacities cap : E → R≥0
and a set of demand pairs, D = ({s1, t1}, . . . , {sk, tk}) with a demand function
dem : D → R≥0. The goal is to find S ⊂ V (a cut of G) that minimizes the ratio

Φ(S) =

∑
(u,v)∈(S,S̄)∩E cap(u, v)∑
(u,v)∈(S,S̄)∩D dem(u, v)

.

The demand function dem is often set to dem(s, t) = 1 for all (s, t) ∈ D. The
special case where, in addition to this, the demand set D includes all vertex pairs
is referred to as uniform demands.

Treewidth. Let G = (V, E) be a graph. A tree decomposition of G = (V, E) is
a pair (B, T ) where B = {B1, . . . , Bm} is a family of subsets Bi ⊆ V called bags,
and T is a tree whose nodes are the bags Bi, satisfying the following properties:
(i) V =

⋃
i Bi; (ii) For every edge (u, v) ∈ E, there is a bag Bj that contains

both u, v; and (iii) For each v ∈ V , all the bags Bi containing v form a connected
subtree of T . The width of the tree decomposition is maxi |Bi|−1. The treewidth
of G, denoted tw(G), is the smallest width among all tree decompositions of
G. The pathwidth of G is defined similarly, except that T is restricted to be a
path; thus, it is at least tw(G). It is straightforward to see that every graph G
excludes as a minor the complete graph on tw(G) + 2 vertices. Thus, the family
of graphs of tree width r contains the family of graphs with pathwidth r, and is
contained in the family of graphs excluding Kr+2 as a minor (here Kr+2 refers
to the complete graph on r + 2 vertices).

1.1 Results

We present the first algorithm for general demand Sparsest-Cut that achieves a
constant factor approximation for graphs of bounded treewidth r (the restriction
is only on the structure of the graph, not the demands). Such an algorithm
is conjectured to exist by [20] (they actually make a stronger conjecture, see
Section 1.3 for details). However, previously such an algorithm was not known
even for r = 3, although several algorithms are known for r = 2 [20, 7, 14] and
for bounded-pathwidth graphs [28] (which is a subfamily of bounded-treewidth
graphs).

Theorem 1. There is an algorithm for Sparsest-Cut (general demands) on graphs
of treewidth r, that runs in time (2rn)O(1) and achieves approximation factor
C = C(r) (independently of n, the size of the graph).

Table 1 lists the best approximation algorithms known for various special cases
of Sparsest-Cut. We remark that the problem (with general demands) is NP-hard
even for pathwidth 2 (see the full version for details).
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Table 1. Approximation algorithms for Sparsest-Cut

Demands Graphs Approximation Based on Reference

general

arbitrary Õ
(√

log |D|
)

SDP [2]
treewidth 2 2 LP (flow) [20, 7]
fixed outerplanarity O(1) LP (integer flow) [12, 14]
excluding W4-minor O(1) LP (flow) [7]
fixed pathwidth O(1) LP (flow) [28]
fixed treewidth O(1) LP (lifted) This work

uniform
arbitrary O(

√
log n) SDP [3]

excluding fixed-minor O(1) LP (flow) [24, 18]
fixed treewidth O(1) LP (flow) [35, 13]
fixed treewidth 1 dynamic programming

Techniques. Similarly to almost all previous work, our algorithm is based on
rounding a linear programming (LP) relaxation of the problem. A unique feature
of our algorithm is that it employs an LP relaxation derived from the hierarchy
of (increasingly stronger) LPs, designed by Sherali and Adams [39]. Specifically,
we use level r + O(1) of this hierarchy. In contrast, all prior work on Sparsest-
Cut uses either the standard LP (that arises as the dual of the concurrent-flow
problem, see e.g. [29]), or its straightforward strengthening to a semidefinite
program (SDP). Consequently, the entire setup changes significantly (e.g. the
known connections to embeddings and flow, see Section 1.2), and we face the
distinctive challenges of exploiting the complex structure of these relaxations
(see Section 1.3).

While bounding the integrality gap of the standard LP (the flow-cut gap)
for various graph families remains an important open problem with implications
in metric embeddings (see Section 1.2), our focus is on directly approximating
Sparsest-Cut. Accordingly, our LP is larger and (possibly much) stronger than
the standard flow LP, and hence our rounding does not imply a bound on the
flow-cut gap (akin to rounding of the SDP relaxation in [3, 10, 2]).

Finally, note that the running time stated in Theorem 1 is much better than
the nO(r) running time typically needed to solve the r + O(1) level of Sherali-
Adams (or any other hierarchy). The reason is that only O(3rn|D|) of the
Sherali-Adams variables and constraints are really needed for our analysis to
go through (see Remark 1), thus greatly improving the time needed to solve
the LP. As the rounding algorithm we use is a simple variant of the standard
method of randomized rounding for LP’s (adapted for Sherali-Adams relaxations
on bounded-treewidth graphs), the entire algorithm is both efficient and easily
implementable.

1.2 The GNRS Excluded-Minor Conjecture

Gupta, Newman, Rabinovich and Sinclair (GNRS) conjectured in [20] that met-
rics supported on graphs excluding a fixed minor embed into �1 with distortion
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O(1) (i.e. independent of the graph size). By the results of [30, 4, 20], this con-
jecture is equivalent to saying that in all such graphs (regardless of the capaci-
ties and demands), the ratio between the sparsest-cut and the concurrent-flow,
called the flow-cut gap, is bounded by O(1). Since the concurrent-flow problem
is polynomial-time solvable (e.g. by linear programming), the conjecture would
immediately imply that Sparsest-Cut admits O(1) approximation (in polynomial-
time) on these graphs.

Despite extensive research, the GNRS conjecture is still open, even in the
special cases of planar graphs and of graphs of treewidth 3. The list of special
cases that have been resolved includes graphs of treewidth 2, O(1)-outerplanar
graphs, graphs excluding a 4-wheel minor, and bounded-pathwidth graphs; see
Table 1, where the flow LP is mentioned.

Our approximation algorithm may be interpreted as evidence supporting the
GNRS conjecture (for graphs of bounded treewidth), since by the foregoing
discussion, the conjecture being true would imply the existence of such approx-
imation algorithms, and moreover that our LP’s integrality gap is bounded. In
fact, one consequence of our algorithm and its analysis can be directly phrased
in the language of metric embeddings:

Corollary 1. For every r there is some constant C = C(r) such that every
shortest-path metric on a graph of treewidth ≤ r, for which every set of size
r + 3 is isometrically embeddable into L1 in a locally consistent way (i.e. the
embeddings of two such sets, when viewed as probability distributions over cuts,
are consistent on the intersection of the sets), can be embedded into L1 with
distortion at most C.

If, on the other hand, the GNRS conjecture is false, then our algorithm (and
its stronger LP) gives a substantial improvement over techniques using the flow
LP, and may have surprising implications for the Sherali-Adams hierarchy (see
Section 1.3). Either way, our result opens up several interesting questions, which
we discuss in Section 1.4.

1.3 Related Work

Relaxation hierarchies and approximation algorithms. A research plan
that has attracted a lot of attention in recent years is the use of lift-and-project
methods to design improved approximation algorithms for NP-hard optimiza-
tion problems. These methods, such as Sherali-Adams [39], Lovász-Schrijver [31],
and Lasserre [26] (see [27] for a comparison), systematically generate, for a given
{0, 1} program (which can capture many combinatorial optimization problems,
e.g. Vertex-Cover), a sequence (aka hierarchy) of increasingly stronger relax-
ations. The first relaxation in this sequence is often a commonly-used LP re-
laxation for that combinatorial problem. After n steps (which are often called
rounds or levels), the sequence converges to the convex hull of the integral solu-
tions, and the k-th relaxation in the sequence is a convex program (LP or SDP)
that can be solved in time nO(k). Therefore, the first few, say O(1), relaxations in
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the sequence offer a great promise to approximation algorithms — they could be
much stronger than the commonly-used LP relaxation, yet are polynomial-time
computable. This is particularly promising for problems for which there is a gap
between known approximations and proven hardness of approximation (or when
the hardness relies on weaker assumptions than P 	= NP ).

Unfortunately, since the work of Arora, Bollobás, Lovász, and Tourlakis [1]
on Vertex-Cover, there has been a long line of work showing that for various
problems, even after a large (super-constant) number of rounds, various hier-
archies do not yield smaller integrality gaps than a basic LP/SDP relaxation
(see, e.g. [38, 19, 37, 41, 8]). In particular, Raghavendra and Steurer [36] have
recently shown that a superconstant number of rounds of certain SDP hierar-
chies does not improve the integrality gap for any constraint satisfaction problem
(MAX-CSP).

In contrast, only few of the known results are positive, i.e. show that certain
hierarchies give a sequence of improvements in the integrality gap in their first
O(1) levels — this has been shown for Vertex-Cover in planar graphs [32], Max-
Cut in dense graphs [43], Knapsack [21, 6], and Maximum Matching [33]. There
are even fewer results where the improved approximation is the state-of-the-art
for the respective problem — such results include recent work on Chromatic
Number [15], Hypergraph Independent Set [16], and MaxMin Allocation [5].

In the context of bounded-treewidth graphs, a bounded number of rounds in
the Sherali-Adams hierarchy is known to be tight (i.e. give exact solutions) for
many problems that are tractable on this graph family, such as CSPs [44]. This
is only partially true for Sparsest-Cut — due to the exact same reason, we easily
find in the graph a cut whose edge capacity exactly matches the corresponding
expression in the LP. However, the demands are arbitrary (and in particular do
not have a bounded-treewidth structure), and analyzing them requires consid-
erably more work.

Hardness and integrality gaps for sparsest-cut. As mentioned earlier,
Sparsest-Cut is known to be NP-hard [34], and we further show in the full version
that it is even NP-hard on graphs of pathwidth 2. Two results [23, 9] indepen-
dently proved that under Khot’s unique games conjecture [22], the Sparsest-Cut
problem is NP-hard to approximate within any constant factor. However, the
graphs produced by the reductions in these two results have large treewidth.

The standard flow LP relaxation for Sparsest-Cut was shown in [29] to have
integrality gap Ω(log n) in expander graphs, even for uniform demands. Its stan-
dard strengthening to an SDP relaxation (the SDP used by the known approx-
imation algorithms of [3, 2]) was shown in [23, 25, 17] to have integrality gap
Ω(log log n), even for uniform demands. For the case of general demands, a
stronger bound (log n)Ω(1) was recently shown in [11]. Some of these results
were extended in [8, 36] to certain hierarchies and a nontrivial number of rounds,
even for uniform demands. Again, the graphs used in these results have large
treewidth.
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Integrality gaps for graphs of treewidth r (or excluding a fixed minor of size
r) follow from the above in the obvious way of replacing n with r (or so), for
instance, the standard flow LP has integrality gap Ω(log r). However, no stronger
gaps are known for these families; in particular, it is possible that the integrality
gap approaches 1 with sufficiently many rounds (depending on r, but not on n).

1.4 Discussion and Further Questions

We show that for the Sparsest-Cut problem, the Sherali-Adams (SA) LP hi-
erarchy can yield algorithms with better approximation ratio than previously
known. Moreover, our analysis exhibits a strong (but rather involved) connec-
tion between the input graph’s treewidth and the SA hierarchy level. Several
interesting questions arise immediately:

1. Can this approach be generalized to excluded-minor graphs?
2. Can the approximation factor be improved to an absolute constant (inde-

pendent of the treewidth)?

A particularly intriguing and more fundamental question is whether this hierar-
chy (or a related one, or for a different input family) is strictly stronger than the
standard LP (or SDP) relaxation. One possibility is that our relaxation can actu-
ally yield an absolute constant factor approximation (as in Question 2). Such an
approximation factor is shown in [8] to require at least Ω(log r) rounds of Sherali-
Adams, and we would conclude that hierarchies yield strict improvement —
higher (yet constant) levels of the Sherali-Adams hierarchy do give improved
approximation factors, for an increasing sequence of graph families. We note,
however, that this would require a different rounding algorithm (see Remark 2).
Another possibility is that the GNRS conjecture does not hold even for bounded
treewidth graphs, in which case the integrality gap of the standard LP exhibits
a dependence on n, while, as we prove here, the stronger LP does not.

2 Technical Overview

Relaxations arising from the Sherali-Adams (SA) hierarchy, and lift-and-project
techniques in general, are known to give LP (or SDP) solutions which satisfy the
following property: for every subset of variables of bounded size (bounded by the
level in the hierarchy used), the LP/SDP solution restricted to these variables
is a convex combination of valid {0, 1} assignments. Such a convex combination
can naturally be viewed as a distribution on local assignments. In our case, for
example, in an induced subgraph on r + 1 vertices S, an (r + 1)-level relaxation
gives a local distribution on assignments f : S → {0, 1} such that for every edge
(i, j) within S, the probability that f(i) 	= f(j) is exactly the contribution of
edge (i, j) to the objective function (which we also call the LP-distance of this
pair). Our algorithm makes explicit use of this property, which is very useful for
treewidth r graphs.
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Given an (r + 3)-level Sherali-Adams relaxation, for every demand pair there
is some distribution which (within every bag) matches the local distributions
suggested by the LP, and also cuts/separates this demand pair (i.e. assigns dif-
ferent values to its endpoints) with the correct probability (the LP distance).
Unfortunately, there might not be any single distribution which is consistent
with all demand pairs, so instead our algorithm assigns {0, 1} values at random
to the vertices of the graph G in a stochastic process which matches the local
distributions suggested by the LP solution (per bag), but is oblivious to the
structure of the demands D.

Intuition. To achieve a good approximation ratio, it suffices to ensure that every
demand pair is cut with probability not much smaller than the its LP distance.
To achieve this, the algorithm fixes an arbitrary bag as the root, and traverses
the tree decomposition one bag at a time, from the root towards the leaves, and
samples the assignment to currently unassigned vertices in the current bag. This
assignment is sampled in a way that ignores all previous assignments to vertices
outside the current bag, but achieves the correct distribution on assignments
to the current bag. Essentially, the algorithm finds locally correct distributions
while maximizing the entropy of the overall distribution. Intuitively, this should
only “distort” the distribution suggested by the LP (for a given demand pair)
only by introducing noise, which (if the noise is truly unstructured) mixes the
correct global distribution with a completely random one in which every two ver-
tices are separated with probability 1

2 . In this case, the probability of separating
any demand pair would decrease by at most a factor 2. Unfortunately, we are
not able to translate this intuition into a formal proof (and on some level, it is
not accurate – see Remark 2). Thus we are forced to adopt a different strategy in
analyzing the performance of the rounding algorithm. Let us see one illustrative
special case.

Example: Simple Paths. Consider, for concreteness, the case of a single sim-
ple path v1, v2, . . . , vn. For every edge in the path (vi−1, vi), the LP suggests
cutting it (assigning different values) with some probability pi. Our algorithm
will perform the following Markov process: pick some assignment f(v1) ∈ {0, 1}
at random according to the LP, and then, at step i (for i = 2, . . . , n) look only
at the assignment f(vi−1) and let f(vi) = 1 − f(vi−1) with probability pi, and
f(vi) = f(vi−1) otherwise. Each edge has now been cut with exactly the prob-
ability corresponding to its LP distance. However, for (v1, vn), which could be
a demand pair, the LP distance between them might be much greater than the
probability qn = Pr[f(v1) 	= f(vn)]. Let us see that the LP distance can only be
a constant factor more.

First, if the above probability satisfies qn ≥ 1
3 , then clearly we are done, as

all LP distances will be at most 1. Thus we may assume that qn ≤ 1
3 . Let us

examine what happens at a single step. Suppose the algorithm has separated
v1 from vi−1 with some probability qi−1 ≤ 1

3 (assuming that all qi ≤ 1
3 is a

somewhat stronger assumption than qn ≤ 1
3 , but a more careful analysis shows
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it is also valid). After the current step (flipping sides with probability pi), the
probability that vi is separated from v1 is exactly (1 − qi−1)pi + qi−1(1 − pi).
This is an increase over the previous value qi−1 of at least

[(1 − qi−1)pi + qi−1(1− pi)]− qi−1 = (1− 2qi−1)pi ≥ pi/3.

However, the LP distance from v1 can increase by at most pi (by triangle in-
equality). Thus, we can show inductively that we never lose more than a factor 3.

In general, our analysis will consider paths of bags of size r + 1. Even though
we can still express the distribution on assignments chosen by the rounding
algorithm as a Markov process (where the possible states at every step will be
assignments to some set of at most r vertices), it will be less straightforward to
relate the LP values to this process. It turns out that we can get a handle on
the LP distances by modeling the Markov process as a layered digraph H with
edges capacities representing the transitions (this is only in the analysis, or in
the derandomization of our algorithm). In this case the LP distance we wish
to bound becomes the value of a certain (s, t)-flow in H . We then bound the
flow-value from above by finding a small cut in H . Constructing and bounding
the capacity of such a cut in H constitutes the technical core of this work.

3 The Algorithm

3.1 An LP Relaxation Using the Sherali Adams Hierarchy

Let us start with an informal overview of the Sherali-Adams (SA) hierarchy. In
an LP relaxation for a 0–1 program, the linear variables {yi | i ∈ [n]} represent
linear relaxations of integer variables xi ∈ {0, 1}. We can extend such a relaxation
to include variables {yI} for larger subsets I ⊆ [n] (usually, up to some bounded
cardinality). These should be interpreted as representing the products

∏
i∈I xi

in the intended (integer) solution. Now, for any pair of sets I, J ⊆ [n], we will
denote by yI,J the linear relaxation for the polynomial

∏
i∈I(1 − xi)

∏
j∈J xj .

These can be derived from the variables yI by the inclusion-exclusion principle.
That is, we define

yI,J =
∑

I′⊆I(−1)|I
′|yI′∪J .

The constraints defined by the polytope SAt(n), that is, level t of the Sherali-
Adams hierarchy starting from the trivial n-dimensional LP, are simply the
inclusion-exclusion constraints:

∀I, J ⊆ [n] s.t. |I ∪ J | ≤ t : yI,J ≥ 0 (1)

For every solution other than the trivial (all-zero) solution, we can define a
normalized solution {ỹI} as follows:

ỹI = yI/y∅,

and the normalized derived variables ỹI,J can be similarly defined.
As is well-known, in a non-trivial level t Sherali-Adams solution, for every set

of (at most) t vertices, constraints (1) imply a distribution on {0, 1} assignments
to these vertices matching the LP values:
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Lemma 1. Let {yI} be a non-zero vector in the polytope SAt(n). Then for every
set L ⊆ [n] of cardinality |L| ≤ t, there is a distribution μL on assignments
f : L→ {0, 1} such that for all I, J ⊆ L,

PrμL [(∀i ∈ I : f(i) = 0) ∧ (∀j ∈ J : f(j) = 1)] = ỹI,J .

In a Sparsest Cut relaxation, we are interested in the event in which a pair of
vertices is cut (i.e. assigned different values). This is captured by the following
linear variable:

yi�=j = y{i},{j} + y{j},{i}.

We can now define our relaxation for Sparsest Cut, SCr(G):

min
∑

(i,j)∈E

cap(i, j)yi�=j (2)

s.t.
∑

i,j∈D

dem(i, j)yi�=j = 1 (3)

{yI} ∈ SAr+3(n) (4)
yI,J = yJ,I ∀I, J s.t. |I ∪ J | ≤ r + 3 (5)

Note that constraint (3) is simply a normalization ensuring that the objective
function is really a relaxation for the ratio of the two sums. Also note that
constraint (5), which ensures that the LP solution is fully symmetric, does not
strengthen the LP, in the following sense: For any solution {y′

I} to the above
LP without constraint (5), a new solution to the symmetric LP (with the same
value in the objective function) can be achieved by taking yI = (y′

I + y′
I,∅)/2

without violating any of the other constraints. In particular, for every vertex
i ∈ V this gives ỹi = 1 − ỹi = 1

2 . While our results hold true without imposing
this constraint, we will retain it as it simplifies our analysis.

Remark 1. The size of this LP (and the time needed to solve it) is nO(r). Specifi-
cally for bounded-treewidth graphs, we could also formulate a much smaller LP,
where constraint (4) would be replaced with the condition {yI | I ⊆ B∪{i, j}} ∈
SAr+3(r + 3) for every bag B and demand pair (i, j) ∈ D. This would reduce
the size of the LP to (and time needed to solve it) to at most poly(2rn), and our
rounding algorithm and analysis would still hold.

3.2 Rounding the LP

Before we present the rounding algorithm, let us introduce some notation which
will be useful in describing the algorithm. This notation will allow us to easily
go back-and-forth between the LP solution and the local distributions on as-
signments described in Lemma 1. For ease of notation, whenever two functions
f1, f2 have disjoint domains, we will denote by f1 ∪ f2 the unique function from
the union of the domains which is an extension of both f1 and f2.

– For every set of vectors {yI} and subset L ⊆ [n] as in Lemma 1, we will
denote by μ

{yI}
L the distribution on random assignments to L guaranteed by
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the lemma. We will omit the superscript {yI}, and simply write μL, when it
is clear from the context.

– Conversely, for any fixed assignment f ′ : L → {0, 1}, we will write ỹf ′ =
ỹL0,L1, where Lb = {i ∈ L | f ′(i) = b} for b = 0, 1. Thus, for a random
assignment f : L → {0, 1} distributed according to μL, we have Pr[f =
f ′] = ỹf ′ .

– For any nonempty subset L′ ⊆ L, and a given assignment f0 : L\L′ → {0, 1}
in the support of μL\L′ , we will denote by μL′,f0 the distribution on random
assignments f ∼ μL conditioned on the partial assignment f0. Formally, a
random assignment f ′ : L′ → {0, 1}, distributed according to μL′,f0 satisfies
Prf ′ [f ′ = f1] = ỹf0∪f1/ỹf0 for every choice of f1 : L′ → {0, 1}.

Let G be an graph with treewidth r for some integer r > 0, and let (B, T ) be
the corresponding tree decomposition. Let {yI} be a vector satisfying SCr(G).
We now present the rounding algorithm:

Algorithm SC-Round(G, (B, T ), {yI}) [Constructs a random assignment f ]

1. Pick an arbitrary B0 ∈ B as the root of T , and sample f |B0 ∼ μB0 .
2. Traverse the rest of the tree T in any order from the root towards the

leaves. For each bag B traversed, do the following:
(a) Let B+ be the set of vertices in B for which f is already defined,

and let B− = B \B+. Let f0 be the existing assignment f0 = f |B+ .
(b) If B− is non-empty, sample f |B− at random according to μB−,f0 .

Let us first see that every edge (i, j) ∈ E is cut with probability exactly ỹi�=j .
Since every edge is contained in at least one bag, it suffices to show that within
every bag B, the assignment f |B is distributed according to μB. This is shown
by the following lemma, whose straightforward proof appears in the full version.

Lemma 2. For every bag B, the assignment f |B produced by running algorithm
SC-Round(G, (B, T ), {yI}) is distributed according to μB .

This lemma shows that the expected value of the cut is
∑

(i,j)∈E cap(i, j)ỹi�=j ,
which is exactly the value of the objective function (2) scaled by 1/y∅. In partic-
ular, for a host of other problems where the objective function and constraints
depend only on the edges (e.g. Minimum Vertex Cover, Chromatic Number),
this type of LP relaxation (normalized by setting y∅ = 1), along with the above
rounding, always produces an optimal solution for bounded-treewidth graphs.
Thus, in some sense, we consider this to be a “natural” rounding algorithm.

Before we analyze the expected value of the cut demands (or specifically, the
probability that each demand is cut), let us show that the order in which the
tree T is traversed has no effect on the distribution of cuts produced (it will
suffice to show a slightly weaker claim – that the joint distribution of cuts in
any two bags is not affected). This is shown in the following lemma, whose proof
appears in the appendix.

Lemma 3. Let B1, B2 ∈ B be two arbitrary bags. Then the distribution on as-
signments f |B1∪B2 is invariant under any connected traversal of T .
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4 Markov Flow Graphs

We show the following lemma, whose proof appears in the full version, which
together with Lemma 2 implies Theorem 1 (see Remark 3).

Lemma 4. For every integer r > 0 there exists a constant cr > 0 such that
for any treewidth-r graph G with tree decomposition (B, T ), and vectors {yI}
satisfying SCr(G), algorithm SC-Round(G, (B, T ), {yI}) outputs a random f :
V → {0, 1} s.t. for every i, j ∈ V ,

Pr[f(i) 	= f(j)] ≥ cr ỹi�=j . (6)

Remark 2. The constant cr arising in our analysis is quite small (roughly 2−r2r

).
While we believe this can be improved, we cannot eliminate the dependence on r,
as a lower bound on the performance of our rounding algorithm (which appears
in the full version) shows that cr cannot be more than 2−r/2.

Remark 3. In fact, Lemmas 2 and 4 taken together show the following: Given
any solution to SCr(G) with objective function value α > 0, algorithm SC-Round
produces a random assignment f satisfying

E

⎡⎣ ∑
(i,j)∈E

cap(i, j) |f(i)− f(j)| − α
cr

∑
(i,j)∈D

dem(i, j) |f(i)− f(j)|

⎤⎦ ≤ 0.

This means the algorithm produces a 1/cr-approximation with positive proba-
bility, but does not immediately imply a lower bound on that probability. Fortu-
nately, following the analysis in this section, the algorithm can be derandomized
by the method of conditional expectations, since, at each step, finding the prob-
ability of separating each demand pair reduces to calculating the probability of
reaching a certain state at a certain phase in some Markov process, which simply
involves multiplying O(n) transition matrices of size at most 2r × 2r (in fact,
these can be consolidated so that every step of the algorithm involves a total of
O(n|T |) small matrix multiplications for all demands combined, where T is the
set of vertices participating in demand pairs).

For vertices i, j ∈ V belonging to (at least) one common bag, Lemma 2 implies
equality in (6) for cr = 1. For i, j ∈ V which do not lie in the same bag, consider
the path of bags B1, . . . , BN in tree T from the (connected) component of bags
containing i to the component of bags containing j. By Lemma 3, we may assume
that the algorithm traverses the path in order from B1 to BN .

To understand the event that vertices i and j are separated, it suffices to
consider the following incomplete (but consistent) description of the stochastic
process involved: Let S0 = {i} and SN = {j}, and let Sl = Bl ∩ Bl+1 for
l = 1, . . . , N − 1. The algorithm assigns f(i) a value in {0, 1} uniformly at
random, and then for l = 1, . . . , N , samples f |Sl

from the distribution μSl,f |Sl−1

(we extend the definition of μS,f ′ in the natural way to include the case where
S may intersect the domain of f ′).
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This is a Markov process, and can be viewed as a Markov flow graph. That
is, a layered graph, where each layer consists of nodes representing the different
states (in this case, assignments to Sl), with exactly one unit of flow going from
the first to the last layer, with all edges having flow at full capacity. Since all
edges in the flow graph represent pairs of assignments within the same bag,
Lemma 2 implies that the capacity of an edge (transition) (f1, f2) is exactly
ỹf1∪f2 , and the amount of flow going through each node f0 is ỹf0 .

We now would like to analyze the contribution of a demand pair to the LP. By
constraint (5), this contribution (up to a factor dem(i, j)) is ỹi�=j = 2ỹ{i},{j} =
2ỹf∗ , where f∗ : {i, j} → {0, 1} is the function assigning 0 to i and 1 to j. Now
consider a layer graph as above where each edge (f1, f2) has flow ỹf∗∪f1∪f2 . To see
that this is indeed a flow, note that two consecutive layers along with i and j only
involve at most r+3 vertices in G, and so by Lemma 1 for any l > 0 and function
f2 : Sl → {0, 1} the incoming flow at f2 must be

∑
f1∈Sl−1

ỹf∗∪f1∪f2 = ỹf∗∪f2 ,

and so is the outgoing flow. The total flow in this graph is exactly ỹf∗ (half
the LP contribution ỹi�=j). Moreover, for each such edge (transition) we also
have ỹf∗∪f1∪f2 ≤ ỹf1∪f2 . Hence, the flow with values {ỹf∗∪f1∪f2} is a legal flow
respecting the capacities {ỹf1∪f2} in the Markov flow graph which represents the
rounding algorithm.

Thus it suffices to show the following theorem (proved in the full version):

Theorem 2. For every integer k > 1, there is a constant C = C(k) > 0 such
that for any symmetric Markov flow graph G = (L0, . . . , LN , E) representing a
Markov process X0, . . . , XN with sources L0 = {s0, s1} and sinks LN = {t0, t1}
and at most k nodes per layer, the total amount of capacity-respecting flow in G
from s0 to t1 can be at most C · Pr[X0 = s0 ∧XN = t1].

Applying this theorem to the Markov flow graph described above with k = 2r

immediately implies Lemma 4. As usual, to bound the amount of flow in a graph
from above, it suffices to find a suitable cut. See the full version for details.

Acknowledgments. We would like to thank Claire Mathieu for a series of
helpful conversations.
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Abstract. For 3 ≤ q < Q we consider the ApproxColoring(q, Q)
problem of deciding whether χ(G) ≤ q or χ(G) ≥ Q for a given graph
G. Hardness of this problem was shown in [7] for q = 3, 4 and arbitrary
large constant Q under variants of the Unique Games Conjecture [10].

We extend this result to values of Q that depend on the size of a given
graph. The extension depends on the parameters of the conjectures we
consider. Following the approach of [7], we find that a careful calculation
of the parameters gives hardness of coloring a 4-colorable graph with
lgc(lg(n)) colors for some constant c > 0. By improving the analysis of
the reduction we show that under related conjectures it is hard to color
a 4-colorable graph with lgc(n) colors for some constant c > 0.

The main technical contribution of the paper is a variant of the Ma-
jority is Stablest Theorem, which says that among all balanced functions
whose each coordinate has o(1) influence, the Majority function has the
largest noise stability. We adapt the theorem for our applications to get
a better dependency between the parameters required for the reduction.

Keywords: Hardness of Approximation, Graph Coloring, Majority is
Stablest.

1 Introduction

Graph Coloring is one of the most fundamental problems in combinatorics and
computer science. A graph G on n vertices is said to be q-colorable if there is an
assignment of labels {1, . . . , q} to the vertices of G, so that every two neighboring
vertices receive different colors. The chromatic number of G, denoted by χ(G),
is the minimal number q such that G is q-colorable. Due to the self reducibility
of the coloring problem, ApproxColoring(q, Q) is computationally equivalent
to coloring a q-colorable graph with Q− 1 colors.

For q < Q we consider the problem ApproxColoring(q, Q): Given a graph
G, decide whether χ(G) ≤ q or χ(G) ≥ Q. It is well known that for any constant
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q ≥ 3 the problem ApproxColoring(q, q+1) is NP-hard [9]. If we consider q to
be some small fixed number (e.g. 3 or 4), there is a huge gap between the values
of Q for which an efficient algorithm for the problem is known, and that for
which hardness results exist. For example for q = 3 the best known polynomial
time algorithm is due to Chlamtac [5]. The semi-definite programming based
algorithm solves the problem for Q = O(n0.2072) colors (see also [1], [2], [12]).
On the other hand, the strongest known hardness result shows that the problem
is NP-hard for Q = 5 (see [8], [11]). So for q = 3 the problem is open for all
5 < Q < O(n0.2072).

Many inapproximability results are shown by a reduction from the PCP the-
orem, formulated in terms of the hardness of gap Label Cover. An instance of
the Label Cover problem is a bipartite graph G = (V ∪ W, E), a number R,
and a constraint πe ⊂ [R] × [R] per edge e. The goal is to find a labeling that
maximizes the fraction of satisfied constraints, i.e. of constraints that are satis-
fied by the labels on the relevant vertices. The value of instance Φ, denoted by
val(Φ), is the fraction of satisfied constraints under such assignment. A Label
Cover instance has the ”d-to-1 property” if there are subsets RV = {1, . . . , R},
RW = {1, . . . , dR}, and the constraints are projections πe : RW → RV , such
that for every a ∈ RV there are at most d values b ∈ RW that (a, b) ∈ πe. Khot
[10] has made following conjecture.

Conjecture 1 (d-to-1 Conjecture[10]). For any ε > 0 there is R = R(ε) s.t.
the following problem is NP-hard. Given a d-to-1 Label Cover instance Φ =
(V ∪W, E) with label sets RV = {1, . . . , R} and RW = {1, . . . , dR}, distinguish
between the case where val(Φ) = 1 and the case where val(Φ) < ε.

1.1 Our Result

Assuming Khot’s 2-to-1 conjecture it is shown in [7] that the problem of coloring
a 4-colorable graph with any constant number of colors is NP-hard. We give
a quantitative version of this result. Specifically, we analyze the dependency
between the inapproximability factor of the 2-to-1 Label Cover problem and the
number Q of colors with which it is still hard to color a 4-colorable graph. Our
main result is the following theorem:

Theorem 1. Assume that given a 2-to-1 Label Cover instance Φ with the label
set of size R = O(lg(n)), it is NP-hard to distinguish between the case where
val(Φ) = 1 and the case where val(Φ) < 1

f(n) , for some f(n).
Then it is NP-hard to color a 4-colorable graph with f c(n) colors for some

constant c > 0. For example if f(n) = lgδ(n), then it is NP-hard to color a
4-colorable graph with lgcδ(n) colors.

The theorem improves the dependency between the inapproximability factor of
2-to-1 Label Cover ( 1

f(n)) and the hardness of the graph coloring problem. For
comparison, the (implicit) dependency in [7] is logarithmic, i.e. the soundness of
1/f(n) in the Label Cover is translated into hardness of coloring a 4-colorable
graph with Ω(lg(f(n))) colors.
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The main technical contribution of the paper is the following theorem. It
follows from a variation of the Majority is Stablest Theorem, which has been
developed in the paper of Mossel et al. [13].

Theorem 2. Let q be a fixed integer and let T be a symmetric Markov operator
on [q] with spectral radius ρ = r(T ) < 1. Then for any ε > 0 there exist δ = εO(1)

and k = O(lg(1
ε )), where the constants in the O notation depend only on ρ and

q, such that the following holds: For any f, g : [q]n → [0, 1], if E[f ] > ε, E[g] > ε
and 〈f, T⊗ng〉 = 0, then

∃i ∈ {1, . . . , n} s.t. Inf≤k
i (f) ≥ δ and Inf≤k

i (g) ≥ δ

In the analogous theorem in [7, Corollary 4.12], the (implicit) dependence be-
tween δ and ε is exponential, e.g. δ = exp(− 1

ε ). Our contribution is a new
analysis that gives a polynomial dependence between the parameters, which in
turn allows us to improve our inapproximability factor to be polynomial rather
that logarithmic in the assumed gap of the 2-to-1 Label Cover problem.

In Section 3 we prove a variant of the Majority is Stablest Theorem with
adjustments for our purposes and conclude Theorem 2. For the sake of com-
pleteness we present the reduction of [7] from 2-to-1 Label Cover problem to
the ApproxColoring problem and work out the parameters of the reduction,
proving Theorem 1.

2 Preliminaries

2.1 Functions on the q-Ary Hypercube

Let q be a fixed integer. Let [q] denote the set {0, . . . , q − 1}. For an element
x ∈ [q]n denote by |x| the number of nonzero coordinates of x. Consider the
space of real valued function with domain [q] or, equivalently, a vector space Rq

with inner product defined as

〈v, w〉 = E[vw] =
1
q

q∑
i=1

viwi

and norm of a vector defined as

‖v‖ =
√
〈v, v〉

Let α0 = 1, α1, . . . , αq−1 be some orthonormal basis of Rq. It defines naturally
an orthonormal basis of Rqn

by applying the n-fold tensor product. It is easy
to see that the set {αx = αx1 ⊗ αx2 ⊗ · · · ⊗ αxn ∈ Rqn

: x ∈ [q]n} is indeed an
orthonormal basis of Rqn

. Equivalently, we may think of αx as a function from
[q]n to R defined by αx(y) =

∏n
i=1 αxi(yi). Thus any function f : [q]n → R can

be written as
f =

∑
x∈[q]n

f̂(αx)αx (1)

Next we define the notion of influence of a variable on a function, introduced to
computer science by Ben-Or and Linial in [3].
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Definition 1. Let f : [q]n → R be a function on a q-ary hypercube. The influ-
ence of the i’th variable on f , is defined as

Infi(f) = Ex\i[Varxi [f(x)|x1, . . . , xi−1, xi+1, . . . , xn]]

where x1, . . . , xn are uniformly distributed in [q].

Some standard formulas are easily checkable using independence and
orthonormality.

Proposition 1. Let f : [q]n → R be as in (1). Then

E[f ] = f̂(α0) E[f2] =
∑

x

f̂(αx)2

Var[f ] =
∑
|x|>0

f̂(αx)2 Infi(f) =
∑

x:xi �=0

f̂(αx)2

Analogously we can define ”low-degree influence”, a notion useful in PCPs due
to the fact that a bounded function cannot have too many coordinates with
non-negligible low-degree influences.

Definition 2. The d-low-degree influence of f : [q]n → R is

Inf≤d
i (f) =

∑
x:xi �=0,|x|≤d

f̂(αx)2

The remark above follows from the following easy proposition

Proposition 2. Let f : [q]n → R be as in (1). Then∑
i

Inf≤d
i (f) ≤ d ·Var[f ]

In particular for f : [q]n → [−1, 1] holds∑
i

Inf≤d
i (f) ≤ d

and thus there are at most d/ε variables i with Inf≤d
i (f) ≥ ε.

Instead of picking x at random, changing one coordinate, and seeing how it
changes the value of f , we can change a constant fraction (in expectation) of the
coordinates.

Definition 3. Let f : [q]n → R, and let ρ ∈ [0, 1]. Suppose the string x is picked
uniformly at random and each coordinate yi is independently chosen to be xi

with probability ρ and is a uniformly random element of [q] otherwise. We define
the noise stability of f to be

Sρ(f) = E[f(x)f(y)]

Analogously we generalize the notion of stability with respect to two functions:

Sρ(f, g) = E[f(x)g(y)]
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The notion above can be also considered as following: For any ρ ∈ [0, 1] define
the following Markov operator on [q] (called the Bonami-Beckner operator)

Tρ =

⎛⎜⎜⎜⎜⎝
ρ + 1−ρ

q
1−ρ

q . . . 1−ρ
q

...
. . .

...
. . .

1−ρ
q . . . 1−ρ

q ρ + 1−ρ
q

⎞⎟⎟⎟⎟⎠
Clearly Tρ1 = 1 and Tρv = ρ · v for any vector v ⊥ 1. In particular holds
T1(f) = f and T0(f) = E[f ]. The following formulas are standard and easily
checkable

Proposition 3. Let f, g : [q]n → R be as in (1) w.r.t. some orthonormal basis
{αi}. Then

T⊗n
ρ (f) =

∑
x

ρ|x|f̂(αx)αx

and by orthonormality

Sρ(f, g) =
〈
f, T⊗n

ρ g
〉

=
∑

x

ρ|x|f̂(αx)ĝ(αx)

By applying Tρ on a function f : [q]n → [0, 1], the weight of f on higher lev-
els reduces exponentially. More precisely if g = Tρf , then

∑
x:|x|≥k ĝ(αx)2 ≤

ρ2k
∑

x f̂(αx)2 ≤ ρ2k. We think of Tρ as a smoothing operator.

Definition 4. Let g : [q]n → R, and let η ∈ (0, 1). We say that g is η-smooth if∑
x:|x|≥k ĝ(αx)2 ≤ ηk for all k ≥ 0.

2.2 Functions in Gaussian Space

Before we continue, we need to define some basic notions in L2(Rn, γ), the space
of real valued functions with domain Rn equipped with the standard Gaussian
measure. The density function of the standard normal distribution is denoted
by γ(x) = 1

(2π)n/2 exp(− ‖x‖2

2 ). The inner product is defined as

〈f, g〉 = Eγ [fg] =
∫

Rn

f(x)g(x)γ(x)dx

For ρ ∈ [−1, 1] denote by Uρ the Ornstein-Uhlenbeck operator

(Uρf)(x) = Ey∼γ [f(ρx +
√

1− ρ2y)]

For μ ∈ (0, 1) define an indicator of half space function L2(R, γ) as

Fμ(x) = 1x<Φ−1(μ)(x)
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where Φ(t) =
∫ t

−∞ γ(x)dx is the cumulative distribution function.
A useful quantity that will appear later is 〈Fε, Uρ(1 − F1−ε)〉 = 〈Fε, U−ρ(Fε)〉

for ρ ∈ (0, 1). Observe that 〈Fε, U−ρFε〉 = Pr[X < Φ−1(ε), Y < Φ−1(ε)], where
X and Y are −ρ correlated normal random variables with mean 0, variance 1.
That is X ∼ N(0, 1) and for Z ∼ N(0, 1) the r.v. Y is −ρX +

√
1− ρ2Z.

It can be found in the literature, (see e.g. in [14], [6]) that as ε → 0

〈Fε, U−ρFε〉 ∼ ε2/(1−ρ)(4π ln(1/ε))ρ/(1−ρ) (1− ρ)3/2

(1 + ρ)1/2

In particular if ρ is a constant bounded below 1, then

〈Fε, Uρ(1− F1−ε)〉γ = poly(ε) (2)

2.3 The Majority Is Stablest Theorem

The Majority is Stablest Theorem [13] roughly says that for all functions f :
[q]n → [0, 1] in which each coordinate has o(1) influence, the noise stability of f
is bounded by some function of E[f ]. More specifically.

Theorem 3 ([13, Theorem 4.4]). Fix q ≥ 2 and ρ ∈ [0, 1]. Then for any ε > 0
there is a small enough δ = δ(ε, ρ, q) such that for any function f : [q]n → [0, 1]
such that

Infi(f) ≤ δ ∀i ∈ {1, . . . , n}
holds

Sρ(f) ≤
〈
FE[f ], UρFE[f ]

〉
γ

+ ε

In particular case of q = 2 and a balanced functions f : {0, 1} → {0, 1} the
theorem states that if

Sρ(f) >
〈
FE[f ], UρFE[f ]

〉
γ

+ ε =
1
4

+
1
2π

arcsinρ + ε = Sρ(Maj) + ε

then f has some influential coordinate. That is among all balanced boolean
functions in which each coordinate has o(1) influence, the Majority function has
the largest noise stability.

This theorem is generalized in [7] in two directions: the stability is defined
with respect to two functions and for any Markov operator T on [q] (not only
for Tρ). The idea is that given a symmetric Markov operator T with eigenvalues
1 = λ0 > λ1 ≥ · · · ≥ λq−1, it is enough to bound its spectral radius ρ = r(T ) =
max {|λ1|, |λq−1|} below 1. Suppose we are given a symmetric Markov operator
T on [q] with spectral radius ρ < 1, and two functions f, g : [q]n → [0, 1] that
satisfy the inequality 〈

f, T⊗ng
〉

>
〈
FE[f ], UρFE[g]

〉
γ

+ ε

The main technical result in [7, Theorem 3.1] says that in such case f and g have
a common coordinate with non-negligible influence. In our setup, however, we
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consider functions f and g with small expectation and ρ some fixed constant and
thus we allow ourselves to consider the case of 〈f, T⊗ng〉 >

〈
FE[f ], Uρ′FE[g]

〉
γ
+ε,

for some ρ′ > ρ. In return we conclude that f and g have a common coordinate
with relatively large influence on both functions. The exact formulation and the
proof appear in the next section.

3 A Variant of the Majority Is Stablest Theorem

In this section we prove our main technical theorem, which is used in the sound-
ness of the reduction. This is a variant of [7, Theorem 3.1] that we adjust for
our purposes. The main new idea is in Lemma 2 (analogue of Lemma 3.9 in [7]).

Let q be a fixed integer, and let T be a symmetric Markov operator on [q] with
eigenvalues 1 = λ0 > λ1 ≥ · · · ≥ λq−1 > −1, and let α0 = 1, α1, . . . , αq−1 be
the corresponding eigenvectors. Denote the spectral radius of T by ρ = r(T ) =
max {|λ1|, |λq−1|} < 1.

Now suppose we are given two functions f, g : [q]n → [0, 1] that do not
have any common influential coordinates. We show the following bound on the
quantity 〈f, T⊗ng〉:
Theorem 4. Let q be a fixed integer, and let T be a symmetric Markov operator
on [q] such that ρ = r(T ) < 1 and let ρ′ ∈ (ρ, 1). Then for any ε > 0 there are
δ = εO(1) and k = O(lg(1

ε )), where the constants in the O notation depend only
on ρ

ρ′ and q, such that the following holds: If f, g : [q]n → [0, 1] are two functions
with μ = E[f ], ν = E[g] satisfying

∀i min
(
Inf≤k

i (f), Inf≤k
i (g)

)
< δ

then 〈
f, T⊗ng

〉
≥ 〈Fμ, Uρ′(1− F1−ν)〉γ − ε (3)

and 〈
f, T⊗ng

〉
≤ 〈Fμ, Uρ′Fν〉γ + ε (4)

Observe that compared to the analogous theorem of [7, Theorem 3.1], we gain
a better tradeoff between ε and δ. We allow δ to be poly(ε), i.e. not too small,
(instead of δ = exp(− 1

ε ) implicitly appearing in [7]). On the other hand, we get
a bound on 〈f, T⊗ng〉 as a function of ρ′ ∈ (ρ, 1) instead of ρ.

For our application of the theorem, we think of ρ and ρ′ as constants smaller
than 1, and of μ and ν as small quantities compared to ε. In this setup, the
polynomial dependency between ε and δ improves the dependency of [13] and
[7]. The following corollary proves Theorem 2.

Corollary 1. Let q be a fixed integer and T be a symmetric Markov operator on
[q] with spectral radius ρ = r(T ) < 1. Then for any ε > 0 there exist δ = εO(1)

and k = O(lg(1
ε )), where the constants in the O notation depend only on ρ and

q, such that the following holds: For any f, g : [q]n → [0, 1], if

E[f ] > ε E[g] > ε and
〈
f, T⊗ng

〉
= 0
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then
∃i ∈ {1, . . . , n} s.t. Inf≤k

i (f) ≥ δ and Inf≤k
i (g) ≥ δ

Proof. Let ρ′ =
√

ρ (note that ρ < ρ′ < 1), and let ε0 = 〈Fε, Uρ′(1− F1−ε)〉γ .
Then 〈

f, T⊗ng
〉

<
〈
FE[f ], Uρ′(1− F1−E[g])

〉
γ
− ε0

We apply Theorem 4 to get δ = poly(ε0) and k = O(lg( 1
ε0

)), and some i ∈
{1, . . . , n} s.t. Inf≤k

i (f) > δ and Inf≤k
i (g) > δ. The corollary follows from equa-

tion (2), since ε0 = 〈Fε, Uρ′(1 − F1−ε)〉γ = poly(ε), where the degree of the
polynomial depends only on ρ′.

3.1 Proof of Theorem 4

Note that (3) follows from (4). Indeed, apply (4) to 1− g to obtain〈
f, T⊗n(1− g)

〉
≤ 〈Fμ, Uρ′F1−ν〉γ + ε

and then use the equalities〈
f, T⊗n(1− g)

〉
= 〈f, 1〉−

〈
f, T⊗ng

〉
= μ−

〈
f, T⊗ng

〉
= 〈Fμ, Uρ′1〉γ−

〈
f, T⊗ng

〉
.

So our goal in this section is to prove (4).
The following lemma is the first step in the proof of Theorem 4. It is proven

in [7] and essentially follows from the Invariance Principle [13] and Borell’s in-
equality [4].

Let T be some fixed Markov operator on [q] with eigenvalues 1 = λ0 > λ1
≥ · · · ≥ λq−1 > −1 and let α0 = 1, α1, . . . , αq−1 be the corresponding orthonor-
mal eigenbasis. Assume that ρ = r(T ) < 1.

Lemma 1 ([7, Lemma 3.9]). Let T be a symmetric linear operator on Rq with
spectral radius ρ = max{|λ1|, |λq−1|} < 1. Then for any η < 1, ε > 0 there is

δ = εO( lg(q)
1−η ) s.t. the following holds: Let f, g : [q]n → [0, 1] be two functions with

E[f ] = μ, E[g] = ν and decomposition as in (1). If both functions are η-smooth,
i.e.

∀k
∑

x:|x|≥k

f̂(αx)2 ≤ ηk and ∀k
∑

x:|x|≥k

ĝ(αx)2 ≤ ηk

and all influences in both of them are bounded by δ, i.e.

∀i Infi(f) < δ and ∀i Infi(g) < δ

then 〈
f, T⊗ng

〉
≤ 〈Fμ, UρFν〉+ ε

We complete the proof of Theorem 4 in the following lemma.. Recall that for
any γ > 0 the linear operator Tγ on Rq is defined by: Tγ1 = 1 and Tγv = γv for
v ⊥ 1. It is easy to see that the operator S = TTγ has the same eigenvectors as
T and the corresponding eigenvalues are 1 = λ0 > λ1γ ≥ · · · ≥ λq−1γ > −1 (as
long as γ < 1/ρ).
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Lemma 2. Fix T as above and let ρ′ ∈ (ρ, 1). For any ε > 0 there are δ = εO(1)

and k = O(lg(1
ε )), where the constants in the O notation depend only on ρ

ρ′ and
q, such that the following holds: If f, g : [q]n → [0, 1] are two functions with
μ = E[f ], ν = E[g] satisfying

∀i min
(
Inf≤k

i (f), Inf≤k
i (g)

)
< δ

then 〈
f, T⊗ng

〉
≤ 〈Fμ, Uρ′Fν〉γ + ε

In order to apply Lemma 1 we need to make sure that all variables of f and g
have small influence and that the given functions are smooth. The first part is
achieved by observing that coordinates that have large influence either on f or
on g, make small contribution to 〈f, T⊗ng〉.

One approach to the second part is to smooth f and g a little, that is to define
f1 = T1−ε lg( 1

ε )f and g1 = T1−ε lg( 1
ε )g and show that |〈f, T⊗ng〉−〈f1, T

⊗ng1〉| < ε.
But then f1 and g1 are only 1− ε lg(1

ε )-smooth and δ that we get from Lemma
1 is exponential in ε.

A different approach is to use the fact that ρ is some constant smaller than
1 and to define f1 = Tηf and g1 = Tηg for some constant η ∈ (ρ, 1) . Then f1
and g1 are η-smooth and 〈f, T⊗ng〉 = 〈f1, S

⊗ng1〉 for some operator S whose
spectral radius is larger than r(T ), but still constant smaller than 1. By applying
Lemma 1 on f1 and g1 with the operator S we get δ = poly(ε).

Proof. Set η = ρ
ρ′ < 1 and denote S = TT 1

η
. Then S has the same eigenvectors

as T , largest eigenvalue 1 and r(S) = ρ
η = ρ′ < 1. We also denote

f1 = T√
ηf =

∑
f̂(αx)η

|x|
2 αx and g1 = T√

ηg =
∑

ĝ(αx)η
|x|
2 αx

Using this notation it is easy to see that we can express 〈f, T⊗ng〉 as〈
f, T⊗ng

〉
=

∑
x

f̂(αx)λxĝ(αx) =
〈
f1, S

⊗ng1
〉

(5)

We apply Lemma 1 with operator S and parameters η and ε/2 to get δ′ =
δ1(S, η, ε

2 )/2 = εO( 1
1−η ) = poly(ε), where the degree of the polynomial depends

only on η and q. Let k = O(lg(1
ε )) be such that ηk < min(δ′, ε/4), and let

δ = ( εδ′
8k )2 = poly(ε). We show that these δ and k satisfy the requirements of the

lemma.
Take two functions f, g : [q]n → [0, 1] such that ∀i min

(
Inf≤k

i (f), Inf≤k
i (g)

)
<

δ. Then f1 and g1 are η-smooth and satisfy the same assumption. However,
we cannot apply Lemma 1 on them with the operator S, as the requirement is
that all influences in both of them are small. In order overcome this problem
we define two functions f2 and g2 with small influences such that 〈f1, S

⊗ng1〉 ≈

〈f2, S
⊗ng2〉. Define

Bf = {i : Inf≤k
i (f) ≥ δ′} Bg = {i : Inf≤k

i (g) ≥ δ′}
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Then |Bf |, |Bg| ≤ k/δ′. Moreover Bf ∩ Bg = ∅ as δ < δ′ and ∀i min(Inf≤k
i (f),

Inf≤k
i (g)) < δ. We define f2(y) and g2(y) as the average over the coordinates in

Bf and Bg respectively, namely

f2(y) = E
yi:i∈Bf

[f1(y)] =
∑

x:xBf
=0

f̂(αx)η
|x|
2 αx(y)

g2(y) = E
yi:i∈Bg

[g1(y)] =
∑

x:xBg=0

ĝ(αx)η
|x|
2 αx(y)

Clearly E[f2] = E[f ] = μ, E[g2] = E[g] = ν. We have Infi(f2) = 0 for i ∈ Bf and
Infi(f2) ≤ Inf≤k

i (f) + ηk < 2δ′ otherwise. Same holds for g2. Their smoothness
follows from smoothness of f1, g1 and we can apply Lemma 1 with the operator
S to get

〈f2, S
⊗ng2〉 ≤ 〈Fμ, Uρ′Fν〉+ ε/2 (6)

It is only left to show that

|
〈
f1, S

⊗ng1
〉
−
〈
f2, S

⊗ng2
〉
| ≤ ε/2 (7)

Here we use the assumption that a coordinate cannot have a significant influence
on both functions.

|
〈
f1, S

⊗ng1
〉
−
〈
f2, S

⊗ng2
〉
| =

∣∣∣∣∣∣
∑

x:xBf∪Bg �=0

⎛⎝ ∏
i:xi �=0

λxi

η

⎞⎠ η|x|f̂(αx)ĝ(αx)

∣∣∣∣∣∣
≤

∑
x:|x|≤k

x:xBf∪Bg �=0

|f̂(αx)ĝ(αx)|+
∑

x:|x|>k

∣∣∣ρ|x||f̂(αx)ĝ(αx)
∣∣∣

[ρ < η] ≤
∑

i∈Bf∪Bg

∑
x:|x|≤k
xi �=0

|f̂(αx)ĝ(αx)|+ ηk

[Cauchy Schwartz] ≤
∑

i∈Bf∪Bg

√
Inf≤k

i (f)
√

Inf≤k
i (g) + ηk

[i ∈ Bf ⇒ Infi(g) < δ] ≤ (|Bf |+ |Bg|)
√

δ + ηk[
|Bf |, |Bg| ≤ k/δ′, ηk ≤ ε/4

]
≤ 2k

δ′
εδ′

8k
+ ε/4

= ε/2

Combining (5), (6) and (7) we get the required result 〈f, T⊗ng〉 ≤ 〈Fμ, Uρ′Fν〉+ε
and complete the proof of theorem.

Theorem 1 is proven by following the reduction of [7], applying Theorem 2 and
calculating the exact parameters of the reduction. For the sake of completeness
we include the reduction in the appendix.
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Theorem 5. There is a reduction from 2-to-1 Label Cover problem to Approx-
Coloring problem with the following properties: Given an instance of 2-to-1
Label Cover Φ = (V ∪W, E, R, Π) it produces a graph G on |W | · 42R vertices.

– If val(Φ) = 1, then G is 4-colorable.

– If G contains an independent set of size ε, then val(Φ) ≥ Ω
(

εδ2

k2

)
= poly(ε),

where δ and k are as in Theorem 2. In other words, if val(Φ) ≤ 1
f(n) , then

χ(G) ≥ f c(n) for some constant c > 0.

The running time of the reduction is linear in the size of the output.
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A Reduction

In this section we present the reduction of [7], which proves our main Theorem 1.
Our starting point is the following conjecture [10]:

Conjecture 2 (2-to-1 Conjecture). For any ε > 0 there is R = R(ε) s.t. the fol-
lowing problem is NP-hard. Given a bipartite 2-to-1 LC instance Φ = (V ∪W, E)
with label sets {1, . . . , R} for V and {1, . . . , 2R} for W , distinguish between the
case where val(Φ) = 1 and the case where val(Φ) < ε.

In our case we make a stronger conjecture. We allow the label set to be of size
O(lg(n)). The best possible soundness we could hope for is lg(n)−c for some
constant c > 0. In addition, as a small technicality, we assume that all vertices
of W have the same degree.

The proof of Theorem 1 is by showing a reduction with the following proper-
ties: given an instance of 2-to-1 Label Cover Φ = (V ∪W, E, R, Π) it produces
a graph G on |W | · 42R vertices. In the completeness part it is shown that if
val(Φ) = 1, then G is 4-colorable. The soundness of the reduction says that if G

contains an independent set of size ε, then val(Φ) ≥ Ω
(

εδ2

k2

)
= poly(ε), where δ

and k are as in Theorem 2. In other words if val(Φ) ≤ 1
f(n) , then χ(G) ≥ f c(n)

for some constant c > 0.

Definition 5. We define a symmetric Markov operator T on {0, 1, 2, 3}2 such
that r(T ) < 1 and such that T ((x1, x2) ↔ (y1, y2)) > 0 if and only if {x1, x2} ∩
{y1, y2} = ∅.

Our operator has three types of transitions, with transitions probabilities β1, β2,
and β3.

– With probability β1 we have (x, x) ↔ (y, y) where x 	= y.
– With probability β2 we have (x, x) ↔ (y, z) where x, y, z are all different.
– With probability β3 we have (x, y) ↔ (z, w) where x, y, z, w are all different.

For T to be a symmetric Markov operator, we need that β1, β2 and β3 are non-
negative and

3β1 + 6β2 = 1, 2β2 + 2β3 = 1.

For example for β1 = 1
12 , β2 = 1

8 , and β3 = 3
8 we have ρ = r(T ) = 5/6

Reduction. We start with a 2-to-1 Label Cover instance Φ = (V ∪W, E).
Each (v, w) ∈ E is associated with a constraint πvw s.t. for each b ∈ 2R there
is a unique a s.t. (a, b) ∈ πvw (we denote a = πvw(b)) and for each a ∈ R there
are exactly two b1, b2 ∈ 2R s.t. (a, bi) ∈ πvw (denote (b1, b2) = π−1

vw (a)). We
construct G′ = (V ′, E′) as follows:

– Each vertex w ∈ W is replaced by a copy of {0, 1, 2, 3}2R (denote by [w]).
The set of vertices in G′ is V ′ =

⋃
w∈W [w] = W × {0, 1, 2, 3}2R.
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– Let T be as in Definition 5. For every w1, w2 ∈ W that have a common
neighbor v ∈ V let π1, π2 be the corresponding constraints. We set an edge
between (w1, x) and (w2, y) if T (xπ−1

1 (k), yπ−1
2 (k)) 	= 0 for all k ∈ R, or

equivalently {xi1 , xj1}∩{xi2 , xj2} = ∅ where π−1
1 (k) = (i1, j1) and π−1

2 (k) =
(i2, j2).

Completeness. Assume there is a labeling L such that wL(Φ) = 1. Let c(w, x) =
xL(w) for all w ∈ W . We show that this is a legal coloring of G′. Pick an edge
((w1, x), (w2, y)) ∈ E′. Then w1, w2 have a common neighbor v ∈ V . Let π1 and
π2 be the corresponding constraints, and let k = L(v). Then π1(L(w1)) = k =
π2(L(w2)), as L satisfies all the constraints.

Since ((w1, x), (w2, y)) ∈ E′, the sets xπ−1
1 (k) and yπ−1

2 (k) are disjoint and
hence c(w1, x) 	= c(w2, y) as c(w1, x) = xL(w1) ∈ xπ−1

1 (k) and c(w2, y) = yL(w2) ∈
yπ−1

2 (k). �

Soundness. Assume that χ(G′) ≤ Q. Then G′ contains an independent set
S ⊆ V ′ s.t. |S|

|V ′| ≥
1
Q = 2ε·. Our goal is to show that is such case val(Φ) > poly(ε).

Let J be a subset of W that make a non-negligible contribution to S

J = {w ∈W :
[w] ∩ S

[w]
> ε}

Markov inequality implies |J | ≥ ε|W |.
For each w ∈ J let fw : {0, 1, 2, 3}2R → {0, 1} be the indicator function of S,

i.e. fw(x) = 1 iff (w, x) ∈ S. Then E[fw] > ε for such w’s. Let δ and k be as in
Theorem 2 applied on the operator T from Definition 5 with parameter ε. We
define a small set of labels for w.

L(w) = {i : Inf≤2k
i > δ/2}

Observe that |L(w)| < 4k
δ . Next we give labels to neighbors of J in Φ.

Claim. Let v ∈ N(J) and let w1, w2 ∈ N(v)∩J . Let π1, π2 be the corresponding
constraints. Then there are i ∈ Lw1 , j ∈ Lw2 s.t. π1(i) = π2(j).

Proof. Recall that fw’s are indicators of an independent set. Thus fw1(x) = 1 =
fw2(y) implies that ((w1, x), (w2, y)) /∈ E′. Therefore T

(
xπ−1

1 (k), yπ−1
2 (k)

)
= 0

for some k ∈ R and thus

T⊗R
(
(xπ−1

1 (1), . . . , xπ−1
1 (R)), (yπ−1

2 (1), . . . , yπ−1
2 (R))

)
= 0

Define
f(xπ−1

1 (1), . . . , xπ−1
1 (R)) = fw1(x1, . . . , x2R)

g(yπ−1
2 (1), . . . , yπ−1

2 (R)) = fw2(y1, . . . , y2R)
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where we think of f, g as functions in R variables, each taking values in {0, 1, 2, 3}2.
We show that

〈
f, T⊗Rg

〉
= 0. Then using Theorem 2 we conclude that there is

� ∈ R s.t. Inf≤k
� (f) > δ and Inf≤k

� (g) > δ. Using the relation between f and fw1 ,
we conclude that there is some i ∈ π−1

1 (�) such that Inf≤2k
i (fw1) > δ/2. Similarly

for g there is some j ∈ π−1
2 (�) such that Inf≤2k

j (fw2) > δ/2. Therefore there are
i ∈ Lw1 , j ∈ Lw2 s.t. π1(i) = π2(j).

So it is left to show that
〈
f, T⊗Rg

〉
= 0. And indeed:

〈
f, T⊗Rg

〉
=

1
42R

∑
x∈({0,1,2,3}2)R

f(x)
∑

y∈({0,1,2,3}2)R

T⊗R(x, y)g(y)

=
1

42R

∑
x

fw1(x)
∑

y

T⊗R(xπ−1
1

, yπ−1
2

)fw2(y)

=
1

42R

∑
x:fw1(x)=1
y:fw2(y)=1

T⊗R(xπ−1
1

, yπ−1
2

)

=
1

42R

∑
x:fw1(x)=1
y:fw2(y)=1

0

= 0

From the claim above we get that for all v ∈ N(J) and any w1, w2 ∈ N(v) ∩ J

Pr
i∈L(w1)
j∈L(w2)

[π1(i) = π2(j)] ≥
1

|L(w1)||L(w2)|
≥

(
δ

4k

)2

By averaging there is L0 : V ∪W → 2R such that

Pr
v∈N(w)

[L0(v) = π(L0(w))|w ∈ J ] ≥
(

δ

4k

)2

Hence, if we assume regularity on the vertices of W , we get

Pr
vw

[L(v) = π(L(w))] ≥ Pr
w∈W

[w ∈ J ] Pr
v∈N(w)

[L0(v) = π(L0(w))|w ∈ J ]

≥ ε

(
δ

4k

)2

= poly(ε)

We conclude that val(Φ) > poly(ε), which completes the soundness analysis of
the reduction. �
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of trees H with a loss of O(log n). We call this a tree-based flow-sparsifier—it uses
a convex combination of trees.1 Here and throughout, k = |K| denotes the number of
terminals, and n = |V | the size of the graph.

For the case where K � V , it was shown by Moitra [Moi09] and by Leighton and
Moitra [LM10] that for every G and K, there exists a flow-sparsifier H = (K, EH) whose
loss is O( log k

log log k ), and moreover, one can efficiently find an H′ = (K, EH′) whose loss

is O( log2 k
log log k ). They used these to give approximation algorithms for several terminal-

based problems, where the approximation factor depended poly-logarithmically on the
number of terminals k, and not on n. We note that they construct an arbitrary graph on
K, and do not attempt to directly obtain “simple” graphs; e.g., to get tree-based flow-
sparsifiers on K, they apply [Räc08] to H′, and increase the loss by an O(log k) factor.

In this paper, we simplify and unify some of these results: we show that using
the general framework of interchanging distance-preserving mappings and capacity-
preserving mappings from [Räc08] (which was reinterpreted in an abstract setting by
Andersen and Feige [AF09]), we obtain the following improvements over the results
of [Moi09, LM10].2

1. We show that using the 0-extension results [CKR04, FHRT03] in the framework
of [Räc08, AF09] almost immediately gives us efficent constructions of flow-
sparsifiers with loss O( log k

log log k ). While the existential result of [LM10] also used the
connection between 0-extensions and flow sparsifiers, the algorithmically-efficient
version of the result was done ab initio, increasing the loss by another O(log k) fac-
tor. We use existing machinery, thereby simplifying the exposition somewhat, and
avoiding the increased loss.

2. We then use a randomized tree-embedding due to [GNR10], which is a variant of
the so-called FRT tree-embedding [FRT04] where the expected stretch is reduced to
O(log k) by requiring the non-contraction condition only for terminal pairs. Using
this refined embedding in the framework of [Räc08, AF09], we obtain efficient
constructions of tree-based flow-sparsifiers with loss O(log k).

3. We then turn to special families of graphs. For planar graphs, we give a new 0-
extension algorithm that outputs a convex combination of 0-extensions f : V → K
(with f (x) = x for all x ∈ K), such that all the corresponding 0-extension graphs
H f = (K, E f ) (namely, E f = {( f (u), f (v)) : (u, v) ∈ E}) are planar graphs, and
its expected stretch maxu,v∈V E[dH f ( f (u), f (v))]/dG(u,v) ≤ O(1). In particular, the planar
graphs H f produced are graph-theoretic minors of G. We remark that the known 0-
extension algorithms [CKR04, AFH+04, LN05] do not ensure planarity of H f .

It follows that planar graphs admit a planar-based flow-sparsifier (i.e., which is
a convex combination of capacitated planar graphs on vertex-set K) with loss O(1),
and that we can find these efficiently. The fact that flow-sparsifiers with this loss
exist was shown by [LM10], but their sparsifiers are not planar-based.

1 Given a class F of graphs, we define an F -flow-sparsifier to be a sparsifier that uses a single
graph from F and an F -based flow sparsifier to be a sparsifier that uses a convex combination
of graphs from F .

2 Recently, it has come to our attention that, independent of and concurrent to our work, Charikar,
Leighton, Li, and Moitra, and independently Makarychev and Makarychev, obtained results
similar to the first two below, as well as related lower bounds.



154 M. Englert et al.

Moreover, the 0-extension algorithm itself can be viewed as a randomized version
of Steiner point removal in metrics: previously, it was only known how to remove
Steiner points from tree metrics with O(1) distortion [Gup01]. We believe this ran-
domized procedure is of independent interest; e.g., combined with an embedding
of [GNRS04], this gives an alternate proof of the fact that the metric induced on the
vertices of a single face of a planar graph can be embedded into a distribution over
trees [LS09].

4. The results for planar graphs are in fact much more general. Suppose G is a βG-
decomposable graph (see definition in Section 1.1). Then we can efficiently output
a distribution over graphs H f = (K, E f ) such that these are all minors of G, and
the expected stretch maxu,v∈V E[dH f ( f (u), f (v))]/dG(u,v) is bounded by O(βG log βG). Now
applying the same ideas of interchanging distance and capacity preservation, given
any G and K, we can find minor-based flow sparsifiers with loss O(βG log βG).

5. Finally, we show lower bounds on flow-sparsifiers: we show that flow-sparsifiers
that are 0-extensions of the original graph must have loss at least Ω(

√
log k) in

the worst-case. For this class of possible flow sparsifiers, this improves on the
Ω(log log k) lower bound for sparsifiers proved in [LM10]. We also show that any
flow-sparsifier that only uses edge capacities which are bounded from below by a
constant, must suffer a loss of Ω(

√
log k/ log log k) in the worst-case.

We can use these results to improve the approximation ratios of several application
problems. In many cases, constructions based on trees allow us to use better algorithms.
Our results are summarized in Table 1. Note that apart from the two linear-arrangement
problems, our results smoothly approach the best known results for the case k = n.

Table 1. Summary of our results. Previous results marked with † from [Räc08], all others
from [Moi09, LM10].

Previous Best
Result

Our Result
Best Result when

k = n

Flow Sparsifiers (efficient) O( log2 k
log log k ) O( log k

log log k ) —

Tree-Based Flow Sparsifiers O(log n)†, O( log3 k
log log k ) O(log k) Θ(log n)

Minor-based Flow Sparsifiers — O(βG log βG) —

Steiner Oblivious Routing Õ(log2 k) O(log k) Θ(log n)

�-Multicut Õ(log3 k) O(log k) O(log n)

Steiner Minimum Linear
Arrangement (SMLA)

Õ(log2.5 k) O(log k log log k) O(
√

log n log log n)

SMLA in planar graphs Õ(log1.5 k) O(log log k) O(log log n)

Steiner Min-Cut Linear
Arrangement

Õ(log4 k) O(log2 k) O(log1.5 n)

Steiner Graph Bisection O(log n)†,O( log3 k
log log k ) O(log k) O(log n)

Many of these applications further improve when the graph comes from a minor-
closed family (and hence has good β-decompositions): e.g., for the Steiner Minimum
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Linear Arrangement problem on planar graphs, we can get an O(log log k)-approximation
by using our minor-based flow-sparsifiers to reduce the problem to planar instances on
the k terminals. Finally, in the full version we show how to get better approximations
for the Steiner linear arrangement problems above using direct LP/SDP approaches.

1.1 Notation

Our graphs will have edge lengths or capacities; all edge-lengths will be denoted by
� : E → R≥0, and edge costs/capacities will be denoted by c : E → R≥0. When we refer
to a graph (G, �), we mean a graph G with edge-lengths �(·); similarly (H, c) denotes
one with capacities c(·). When there is potential for confusion, we will add subscripts
(e.g., cH(·) or �G(·)) for disambiguation. Given a graph (G, �), the shortest-path distances
under the edge lengths � is denoted by dG : V × V → R≥0.

Given a graph G = (V, E) and a subset of vertices K ⊆ V designated as terminals, a
retraction is a map f : V → K such that f (x) = x for all x ∈ K. For (G, c) and terminals
K ⊆ V , a K-flow in G is a multicommodity flow whose sources and sinks lie in K.

Decomposition of Metrics. Let (X, d) be a metric space with terminals K ⊂ X. A par-
tition (i.e., a set of disjoint “clusters”) P of X is called Δ-bounded if every cluster
S ∈ P satisfies maxu,v∈S d(u, v) ≤ Δ. The metric (X, d) with terminals K is called β-
decomposable if for every Δ > 0 there is polynomial time algorithm to sample from a
probability distribution μ over partitions of X, with the following properties:

• Diameter bound: Every partition P ∈ supp(μ) is Δ-bounded.
• Separation event: For all u, v ∈ X, PrP∈μ[∃S ∈ P such that u ∈ S but v � S ] ≤ β ·

d(u, v)/Δ.

β-decompositions of metrics have become standard tools with many applications; for
more information see, e.g., [LN05].

We say that a graph G = (V, E) is β-decomposable if for every nonnegative edge-
lengths �G, the resulting shortest-path metric dG is β-decomposable. Additionally, we
assume that each cluster S in any partition P induces a connected subgraph of G; if not,
break such a cluster into its connected components. The diameter bound and separation
probabilities for edges remain unchanged by this operation; the separation probability
for non-adjacent pairs (u, v) can be bounded by β · d(u, v)/Δ by noting that some edge
on the u-v shortest path must be separated for (u, v) to be separated, and applying the
union bound.

2 0-Extensions

In this section we provide a definition of 0-extension which is somewhat different than
the standard definition, and review some known results for 0-extensions. We also derive
in Corollary 1 a variation of a known result on tree embeddings, which will be applied
in Section 3.

A 0-extension of graph (G = (V, E), �G) with terminals K ⊆ V is usually defined
as a retraction f : V → K. We define a 0-extension to be a retraction f : V → K
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along with another graph (H = (K, EH), �H); here, the length function �H : EH → R+
is defined as �H(x, y) = dG(x, y) for every edge (x, y) ∈ EH . Note that this immediately
implies dH(x, y) ≥ dG(x, y) for all x, y ∈ K. Note also that H f defined in Section 1 is a
special case of H in which EH = {( f (u), f (v)) : (u, v) ∈ E}, whereas, in general, H is
allowed more flexibility (e.g., H can be a tree). This flexibility is precisely the reason
we are interested both in the retraction f and in the graph H—we will often want H to
be structurally simpler than G (just like we want a flow-sparsifier to be simpler than the
original graph).

For a (randomized) algorithm A that takes as input (G, �G) and outputs a (random)
0-extension (H, �H), the stretch factor of algorithmA is the minimum α ≥ 1 such that

EH[ dH( f (x), f (y)) ] ≤ α dG(x, y) for all x, y ∈ V.

The following are well-known results for 0-extension.

Theorem 1 ([FHRT03]). There is an algorithm AFHRT for 0-extension with stretch
α = αFHRT := O( log k

log log k ).

Theorem 2 ([CKR04], see also [LN05]). If the graph is β-decomposable, there is an
algorithmACKR for 0-extensions with stretch α = αCKR := O(β).

In particular, if the graph G belongs to a non-trivial family of graphs that is minor-
closed, it follows from [KPR93, FT03] that α = O(1).

2.1 0-Extension with Trees

The following result is a direct corollary of [GNR10, Theorem 7] (which in turn is
an extension of the tree-embedding theorem of [FRT04]). Details omitted from this
version.

Corollary 1 (Tree 0-extension). There is a randomized polynomial-time algorithm
AGNR for 0-extension that has αGNR = O(log k); furthermore, the graphs output by the
algorithm are trees on the vertex set K.

As an aside, a weaker version of Corollary 1 with O( log2 k
log log k ) can be proved as follows.

First use Theorem 1 to obtain a random 0-extension H from G such that EH[dH(x, y)] ≤
O( log k

log log k ) dG(x, y) for all x, y ∈ K. Then use the result of [FRT04] to get a random
tree H′ = (K, EH′) such that EH′ [dH′(x, y)] ≤ O(log k) dH(x, y) for all x, y ∈ V(H).
Combining these two results proves the weaker claim.

3 Flow-Sparsifiers

Recall that given an edge-capacitated graph (G, c) and a set K ⊆ V of terminals, a flow-
sparsifier with quality ρ is another capacitated graph (H = (K, EH), cH) such that (a) any
feasible K-flow in G can be feasibly routed in H, and (b) any feasible K-flow in H can
be routed in G with congestion ρ.
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3.1 Interchanging Distance and Capacity

We use the framework of Räcke [Räc08], as interpreted by Andersen and Feige [AF09].
Given a graph G = (V, E), let P be a collection of multisets of E, which will henceforth
be called paths. A mapping M : E → P maps each edge e to a path M(e) in P. Such a
map can be represented as a matrix M in Z|E|×|E| where Me,e′ is the number of times the
edge e′ appears in the path (multiset) M(e). Given a collectionM of mappings (which
we call the admissible mappings), a probabilistic mapping is a probability distribution
over (or, convex combination of) admissible mappings; i.e., define λM ≥ 0 for each
M ∈ M such that

∑
M∈M λM = 1.

Distance Mappings. Given G = (V, E) and lengths � : E → R>0,
• The stretch of an edge e ∈ E under a mapping M is

∑
e′ Me,e′�(e′)/�(e).

• The average stretch of e under a probabilistic mapping {λ} is
∑

M λM(
∑

e′ Me,e′
�(e′)
�(e) ).

• The stretch of a probabilistic mapping is the maximum over all edges of their aver-
age stretch.

Capacity Mappings. Given a graph G with edge capacities c : E → R>0,
• The load of an edge e′ ∈ E under a mapping M is

∑
e Me,e′c(e)/c(e′).

• The expected load of e′ under a probabilistic mapping {λ} is
∑

M λM(
∑

e Me,e′
c(e)
c(e′) ).

• The congestion of a probabilistic mapping is the maximum over all edges of their
expected loads.

The Transfer Theorem. Andersen and Feige [AF09] distilled ideas from Räcke [Räc08]
to state:

Theorem 3 (Theorem 6 in [AF09]). Fix a graph G and a collectionM of admissible
mappings. For every ρ ≥ 1, the following are equivalent:

1. For every collection of edge lengths �e, there is a probabilistic mapping with stretch
at most ρ.

2. For every collection of edge capacities ce, there is a probabilistic mapping with
congestion at most ρ.

In our settings, the techniques of Räcke [Räc08] can be used to make the result algorith-
mic: if one can efficiently sample from the probabilistic mapping with stretch ρ (which
is true for the settings in this paper), one can efficiently sample from a probabilistic
mapping with congestion O(ρ) (and vice versa). In fact, one can obtain an explicit dis-
tribution on polynomially many admissible mappings. We defer further discussion of
efficiency issues to the full version of the paper.

3.2 Tree-Based Flow Sparsifiers

The distance mappings we will consider will be similar to Räcke’s application. Let us
first fix for each u, v ∈ K a canonical shortest-path S uv between u, v in G. Now, consider
a tree 0-extension (T, f ) where T = (K, ET ) and f : V → K is a retraction. For each
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edge e = (w, x) ∈ E(G), consider the (unique) f (w)- f (x)-path PT ( f (w), f (x)) in the tree
T . Define the mapping MT : E → P corresponding to the 0-extension (T, f ) by

MT ((w, x)) = �(u,v)∈PT ( f (w), f (x))S uv. (3.1)

In other words, this maps each tree edge (w, x) to its canonical path; for each non-tree
edge (w, x), it considers the edges on the tree-path between the images of w and x in the
tree, and maps (w, x) to the disjoint union of the canonical paths of these edges. Recall
that MT ((w, x)) is a multiset. In the corresponding matrix representation, Me,e′ is the
multiplicity of e′ in the set �(u,v)∈PT ( f (w), f (x))S uv. Corollary 1 now implies the following:

Theorem 4. Given a graph (G, �) with terminals K ⊆ V(G), there is a polynomial-time
procedure to sample from a probabilistic mapping (which is a distribution over tree 0-
extensions) with stretch ρdist = O(log k). Moreover, ρdist ≥ 1 if K � ∅.
Now we can apply the Transfer Theorem. Recall that in a K-flow, all source-sink pairs
belong to set K.

Theorem 5 (Tree-Based Flow-Sparsifiers). Given an edge-capacitated graph (G, c),
and a set of terminals K ⊆ V, there is a polynomial-time algorithm that outputs a graph
H = (K, EH) that is a convex combination of edge capacitated trees such that:

(a) every K-flow that can be routed in G, can also be routed in H; and
(b) every K-flow that can be feasibly routed in H, can be routed with congestion

O(log k) in G.

In other words, if we were to scale up the capacities in G to route all feasible flows in H,
then the factor by which we would have to scale up capacities would only be O(log k).

Proof. We apply Theorem 3 and Theorem 4 to G = (V, E) to get a convex combination
{λT, f } of maps (T = (K, ET ), f ) such that each edge in E has an average load of O(ρdist).
Let us see how this implies (a) and (b) above: this is essentially a matter of unraveling
the definitions. For each such (T, f ), we define capacities on the edges eT ∈ ET thus: let
(A, B) be node sets of the two connected components of T formed by deleting the edge
eT , where A ∪ B = K. Let A′ = {v ∈ V | f (v) ∈ A}, and B′ = V \ A′. Define

cT, f (eT ) :=
∑

e∈E∩(A′×B′)

c(e). (3.2)

We claim that this convex combination {λT, f } of capacitated trees satisfies (a) and (b).
For (a), the definition of the capacities cT, f ensures that each edge of G can be concur-
rently routed feasibly in each T using capacities cT, f (·), hence so can any K-flow feasi-
ble in G. Since this holds for each (T, f ) pair, it holds for the convex combination.

To prove (b), we want to route edges in the convex combination of trees in the graph
G, where we scale the capacities cT, f of edges from (T, f ) by its convex multiplier
λT, f . Consider any edge eT = (u, v) ∈ ET with capacity cT, f (eT ) defined in (3.2): we
can use the canonical shortest path S uv to route this flow. Hence the load on any edge
e′ = (w′, x′) ∈ E due to the convex combination of trees is at most

1
c(e′)

∑

T, f

λT, f

∑

eT∈ET :e′∈S uv

cT, f (eT ). (3.3)
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Since cT, f (eT ) is the sum of the capacity of all edges e = (w, x) such that eT lies on the
unique tree-path between f (w), f (x), we rewrite (3.3) as

1
c(e′)

∑

T, f

λT, f

∑

eT=(u,v)∈ET :e′∈S uv

∑

(w,x)∈E:eT ∈PT ( f (w), f (x))

c(wx) (3.4)

=
1

c(e′)

∑

T, f

λT, f

∑

(w,x)∈E
c(wx) × (multiplicity of e′ in �(u,v)∈PT ( f (w), f (x)) S uv). (3.5)

However, this is exactly the expected load for e′ under the notion of admissible maps
defined in (3.1); hence this is bounded by the congestion (the maximum expected load
over all edges), which is at most ρdist by Theorem 3. This proves condition (b) above,
that the congestion to route any K-flow in the convex combination H in the graph G is
at most ρdist. ��

3.3 General Flow Sparsifiers

Theorem 6 (Flow-Sparsifiers). Given any graph G and terminals K, there is a ran-
domized polynomial-time algorithm to output a flow-sparsifier H with loss O( log k

log log k ).

Proof. Suppose we use Theorem 1 instead of using the tree 0-extension result
(Corollary 1), we use the constructive version of the Transfer Theorem to get a polyno-
mial number of graphs H1,H2, . . . on the vertex set K such that a convex combination
of these graphs is a flow-sparsifier for the original graph G where the load is O( log k

log log k ).
We can then construct a single graph H by setting the capacity of an edge to be the ap-
propriate weighted combination of capacities of those edges in Hi; all feasible K-flows
in G can be routed in H, and all feasible K-flows in H can be routed in G with conges-
tion O( log k

log log k ). ��
The same idea using 0-extension results for β-decomposable graphs (Theorem 2) gives
us the following:

Theorem 7 (Flow-Sparsifiers for Minor-Closed Families). For any graph G that is β-
decomposable and any K, there is a randomized polynomial-time algorithm to construct
a flow-sparsifier with loss O(β).

Note that the decomposability holds if G belongs to a non-trivial minor-closed-family
G (e.g., if G is planar). However, Theorem 7 does not claim that the flow-sparsifier for
G also belongs to the family G; this is the question we resolve in the next section.

4 Connected 0-Extensions and Minor-Based Flow-Sparsifiers

The results in this section apply to β-decomposable graphs. A prominent example of
such graphs are planar graphs, which (along with every family of graphs excluding
a fixed minor) are O(1)-decomposable [KPR93, FT03]. Thus, Theorem 8, Corollary 5
and Theorem 9 below all apply to planar graphs (and more generally to excluded-minor
graphs) with β = O(1). We now state our results for β-decomposable graphs in general.
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In Section 4.2 we define a related notion called terminal-decomposability, and show
analogous results for β̂-terminal-decomposable graphs.

In what follows we use the definition of 0-extension from Section 2 with H = H f ,
i.e., EH = {( f (u), f (v)) : (u, v) ∈ E}, hence the 0-extension is completely defined by the
retraction f . We say that a 0-extension f is connected if for every x, f −1(x) induces a
connected component in G. Our main result shows that we get connected 0-extensions
with stretch O(β log β) for β-decomposable metrics.

Theorem 8 (Connected 0-Extension). There is a randomized polynomial-time algo-
rithm that, given (G = (V, E), �G) with terminals K such that dG is β-decomposable, pro-
duces a connected 0-extension f : V → K such that for all u, v ∈ V, we have

E[dH( f (u), f (v))] ≤ O(β log β) · dG(u, v).

Note that if f is a connected 0-extension, the graph H f is a minor of G. Applying
Theorem 3 to interchange the distance preservation with capacity preservation, we get
the following analogue of Theorem 5.

Corollary 2 (Minor-Based Flow-Sparsifiers). For every β-decomposable graph G =
(V, E) with edge capacities cG and a subset K ⊂ V of k terminals, there is a minor-
based flow-sparsifier with quality O(β logβ) . Moreover, a minor-based flow-sparsifier
for G, cG,K can be computed efficiently in randomized poly-time.

Since planar graphs are O(1)-decomposable and since their minors are planar, by
Corollary 2 they have an efficiently constructable planar-based flow-sparsifier with qual-
ity O(1). By Theorem 8, they always have a connected 0-extension with stretch at most
O(1). An interesting consequence of the latter result is that given any planar graph
(G, �G), and a set K of terminals, we can "remove" the non-terminals and get a related
planar graph on K while preserving inter-terminal distances in expectation. This gener-
alizes a result of Gupta [Gup01] who showed a similar result for trees. (Obviously, this
extends to every family of graphs excluding a fixed minor.)

Theorem 9 (Steiner Points Removal). There is a randomized polynomial-time algo-
rithm that, given (G = (V, E), �G) and K such that dG is β-decomposable, outputs mi-
nors H = (K, EH) of G such that 1 ≤ E[dH (x,y)]

dG(x,y) ≤ O(β log β) for all x, y ∈ K.

Note that these results only give us an O(log n log log n)-approximation for connected
0-extension on arbitrary graphs (or an O(log2 k log log k)-approximation using results
of Section 4.2). We can improve that to O(log k); details in the full version.

Theorem 10 (Connected CKR). There is a randomized polynomial-time algorithm
that on input (G = (V, E), �G) and K, produces a connected 0-extension f with stretch
factor E[dH( f (u), f (v))] ≤ O(log k) · dG(u, v) for all u, v ∈ V.

Using the semi-metric relaxation for 0-extension, we get a connected 0-extension whose
cost is at most O(log k) times the optimal (possibly disconnected) 0-extension. To our
knowledge, this is the first approximation algorithm for connected 0-extension, and
in fact shows that the gap between the optimum connected 0-extension and the opti-
mum 0-extension is bounded by O(log k). The same is true with an O(1) bound for pla-
nar graphs. We remark that the connected 0-extension problem is a special case of the
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connected metric labeling problem, which has recently received attention in the vision
community [VKR08, NL09].

4.1 The Algorithm for Decomposable Metrics

We now give the algorithm behind Theorem 8. Assume that edge lengths �G are integral
and scaled such that the shortest edge is of length 1. Let the diameter of the metric be
at most 2δ. For each vertex v ∈ V , define Av = minx∈K dG(v, x) to be the distance to the
closest terminal. The algorithm maintains a partial mapping f at each point in time—
some of the f (v)’s may be undefined (denoted by f (v) = ⊥) during the run, but f is
a well-defined 0-extension when the algorithm terminates. We say a vertex v ∈ V is
mapped if f (v) � ⊥. The algorithm appears as Algorithm 1.

Algorithm 1. Algorithm for Connected 0-extension
1: input: (G, �G),K.
2: let i← 0, f (x) = x for all x ∈ K, f (v) = ⊥ for all v ∈ V \ K.
3: while there is a v such that f (v) = ⊥ do
4: let i← i + 1, ri ← 2i

5: sample a β-decomposition of dG with diameter bound ri to get a partition P
6: for all clusters Cs in the partition P that contains both mapped and unmapped vertices do
7: delete all vertices u in Cs with f (u) � ⊥
8: for each connected component C from Cs do
9: choose a vertex wC ∈ Cs that was deleted and had an edge to C

10: reset f (u) = f (wC) for all u ∈ C.
11: end for
12: end for
13: end while

We can assume that in round δ = log diam(G), the partitioning algorithm returns a
single cluster, in which case all vertices are mapped and the algorithm terminates. Let
fi be the mapping at the end of iteration i. For x ∈ K, let V x

i denote f −1
i (x), the set of

nodes colored x. The following claim follows inductively:

Lemma 1. For every i and x ∈ K, the set V x
i induces a connected component in G.

Proof. We prove the claim inductively. For i = 0, there is nothing to prove since V x
i ={x}. Suppose that in iteration i, we map vertex u to x so that u ∈ V x

i . Thus for some
component C containing u, the mapped neighbor wC chosen by the algorithm was in
V x

i−1. Since we map all of C to x, there is a path connecting v to wC in V x
i . Inductively,

wC is connected to x in V x
i−1 ⊆ V x

i , and the claim follows. ��
The following lemma will be useful in the analysis of the stretch; it says that any node
mapped in iteration i is mapped to a terminal at distance O(2i).

Lemma 2. For every iteration i and x ∈ K, and every u ∈ V x
i , dG(x, u) ≤ 2ri.

Proof. The proof is inductive. For i = 0, the claim is immediate. Suppose that in it-
eration i, we map vertex u to x so that u ∈ V x

i . Thus for some component C contain-
ing u, the mapped neighbor wC chosen by the algorithm was in V x

i−1. Moreover, u and
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wC were in the same cluster in the decomposition so that d(u,wC) ≤ ri. Inductively,
d(wC , x) ≤ 2ri−1 and the claim follows by triangle inequality. ��
In the rest of the section, we bound the stretch of the 0-extension; for every edge e =
(u, v) of G, we show that

E[dG( f (u), f (v)] ≤ O(β log β) dG(u, v).

Note that for e = (u, v), dG(( f (u), f (v)) = dH(( f (u), f (v)), and so it’s enough to prove
the claim for dG. The analogous claim for non-adjacent pairs will follow by triangle
inequality, but here with dH. We say that the edge e = (u, v) is settled in round j if the
later of its endpoints gets mapped in this round; e is untouched after round j if both u
and v are unmapped at the end of round j. Let dG(u,K) ≤ dG(v,K) and let Ae denote the
distance dG(u,K). Let je := �log(Ae)� − 1.

Lemma 3. For edge e = (u, v),
(a) edge e is untouched after round je − 1,
(b) if edge e is settled in round j then dG( f (u), f (v)) = O(2 j + dG(u, v)).

Proof. For (a), if one of the end points of e is mapped before round je, then 2 · 2 je ≤
Ae = dG(e,K), which contradicts Lemma 2. For (b), both dG(u, f (u)), dG(v, f (v)) ≤ 2 j+1

by Lemma 2; the triangle inequality completes the proof. ��
LetB j denote the “bad” event that the edge is settled in round j and that both end-points
are mapped to different terminals. Let z := max{Ae, dG(u, v)}. We want to use

E[d( f (u), f (v))] =
∑

j

Pr[B j] · E[d( f (u), f (v)) | B j].

Claim. Pr[B j] ≤ min{4β z
2 j , 1} · 5β dG(u,v)

2 j .

Proof. Recall that an edge is untouched after round j′ if neither of its endpoints is
mapped at the end of this round. For this to happen, u must be separated from its
closest terminal in the clustering in round j′, which happens with probability at most
min{β Ae

2 j′ , 1}. Also recall that the probability that an edge e = (u, v) is cut in a round j′

is at most β dG(u,v)
2 j′ . Let i denote the round in which the edge is first touched. We upper

bound the probability of the event B j separately depending on how i and j compare.
Note that for j ≤ 2, the right hand side is at least 1 so the claim holds trivially.

• i ≤ j − 2. For B j to occur, the edge e must be cut in round j − 2 and j − 1, as
otherwise it would already be settled in one of these rounds. The probability of this
is at most min{β dG (u,v)

2 j−2 , 1} · β dG(u,v)
2 j−1 ≤ min{4β z

2 j , 1} · 2β dG(u,v)
2 j .

• i = j − 1. For B j to occur, the edge e must be cut in round j − 1 and must be
untouched after round j−2. The probability of this is at most min{β Ae

2 j−2 , 1}·β dG(u,v)
2 j−1 ≤

min{4β z
2 j , 1} · 2β dG(u,v)

2 j .
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• i = j. For B j to occur, e must be cut in round j and must be untouched after round
j−1. The probability of this is at most min{β Ae

2 j−1 , 1}·β dG(u,v)
2 j ≤ min{4β z

2 j , 1}·β dG(u,v)
2 j .

Since Pr[B j] = Pr[B j ∧ (i ≤ j− 2)]+Pr[B j ∧ (i = j− 1)]+Pr[B j ∧ (i = j)], the claim
follows. ��
Lemma 3(b) implies that if the edge is settled before round jd := �log(dG(u, v))�, the
conditional expectation E[dG( f (u), f (v)) | B j] is O(dG(u, v)). Moreover the edge e can-
not be settled before round je = �log(Ae)� − 1 by Lemma 3(a). Let jm := max{ jd, je}. It
therefore suffices to to show that

∑

j≥ jm

Pr[B j] · O(2 j) ≤ O(β logβ) dG(u, v) .

Plugging in the upper bound for Pr[B j] into the left hand side, we get

∑
j≥ jm Pr[B j] · O(2 j) ≤ ∑ j≥ jm min{4β z

2 j , 1} · 5β dG(u,v)
2 j · O(2 j)

≤ ∑ j≥ jm min{4β z
2 j , 1} · β · O(dG(u, v)) ≤ O(β logβ) dG(u, v) .

In the last step, we used that z = max{Ae, dG(u, v)} ≤ max{2 je+2, 2 jd+1} ≤ 2 jm+2, so the
first O(log β) terms contribute O(β dG(u, v)), while the remaining terms form a geomet-
ric series and sum to O(dG(u, v)). This completes the proof of Theorem 8.

4.2 Terminal Decompositions

The general theorem for connected 0-extensions gives a guarantee in terms of its de-
composition parameter β, and in general this quantity may depend on n. This seems
wasteful, since we decompose the entire metric while we mostly care about separating
the terminals.

To this end, we define terminal decompositions (the reader might find it useful to
contrast it with definition of decompositions in Section 1.1). A partial partition of a
set X is a collection of disjoint subsets (called “clusters” of X). A metric (X, d) with
terminals K is called β̂-terminal-decomposable if for every Δ > 0 there is probability
distribution μ over partial partitions of X, with the following properties:

• Diameter bound: Every partial partition P̂ ∈ supp(μ) is connected and Δ-bounded.
• Separation event: For all u, v ∈ X, PrP̂∈μ[∃S ∈ P̂ such that u ∈ S but v � S ] ≤ β̂ ·

d(u, v)/Δ.
• Terminal partition: For all x ∈ K, every partial partition P̂ ∈ supp(μ) has a cluster

containing x.
• Terminal-centered clusters: For every partial partition P̂ ∈ supp(μ), every cluster

S ∈ P̂ contains a terminal.

A graph G = (V, E) with terminals K is β̂-terminal-decomposable if for every nonneg-
ative lengths �G assigned to its edges, the resulting shortest-path metric dG with termi-
nals K is β̂-terminal-decomposable. Throughout, we assume that there is a polynomial
time algorithm that, given the metric, terminals and Δ as input, samples a partial parti-
tion P̂ ∈ μ. Note that if K = V , the above definitions coincide with the definitions of
β-decomposable metrics and graphs.
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Our main theorem for terminal decomposable metrics is the following:

Theorem 11. Given (G = (V, E), �G), suppose dG is β̂-terminal-decomposable with re-
spect to terminals K. There is a randomized polynomial-time algorithm that produces a
connected 0-extension f : V → K such that for all u, v ∈ V, we haveE[dG( f (u), f (v))] ≤
O(β̂2 log β̂) · dG(u, v).

This theorem is interesting when β̂ is much less than β, the decomposability of the met-
ric itself. E.g., one can alter the CKR decomposition scheme to get β̂(k, n) = O(log k),
while β = O(log n).

The Modified Algorithm. Algorithm 2 for the terminal-decomposable case is very
similar to Algorithm 1: the main difference is that in each iteration we only obtain a
partial partition of the vertices, we color only the nodes that lie in clusters of this partial
partition.

A few words about the algorithm: recall that a partial partition returns a set of con-
nected diameter-bounded clusters such that each cluster contains at least one terminal,
and each terminal is in exactly one cluster— we use V x to denote the cluster containing
x ∈ K. (Hence either V x = Vy or V x ∩ Vy = ∅.) Now when we delete all the vertices in
some cluster V x that are already mapped, this includes the terminal x—and hence there
is at least one candidate for wC in Line 9. Eventually, there will be only one cluster, in
which case all vertices are mapped and the algorithm terminates.

Algorithm 2. Algorithm for Connected 0-extension: the terminal-decomposable case
1: input: (G, �G),K.
2: let i← 0, f (x) = x for all x ∈ K, f (v) = ⊥ for all v ∈ V \ K.
3: while there is a v such that f (v) = ⊥ do
4: let i← i + 1, ri ← 2i

5: find a β̂-terminal-decomposition of dG with diameter bound ri; let V x be the cluster con-
taining terminal x.

6: for all clusters V x in the partial partition do
7: delete all vertices u in V x with f (u) � ⊥
8: for each connected component C from V x thus formed do
9: choose a vertex wC ∈ V x that was deleted and had a neighbor in C

10: reset f (u) = f (wC) for all u ∈ C.
11: end for
12: end for
13: end while

The analysis for Theorem 11 is almost the same as for Theorem 8; the only difference
is that Claim 4.1 is replaced by the following weaker claim (proof omitted from this
version), which immediately gives the O(β̂2 log β̂) bound.

Claim. Pr[B j] ≤ min{8β̂ z
2 j , 1} · 23β̂2 d(u,v)

2 j .

5 Future Directions

We gave a set of results on and around the idea of flow-sparsifiers and 0-extensions.
Some of these results are not tight, and it would be interesting to obtain better bounds
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for these problems. Another interesting direction for future work is this: define an �-
sparse-extension of graph G = (V, E) with terminals K to be any graph H = (Z, EH) with
|Z| = �, K ⊆ Z ⊆ V , along with a retraction f : V → Z that satisfies dH(x, y) ≥ dG(x, y)
for all x, y ∈ Z. (Note that a |K|-sparse-extension is just a 0-extension; one possible |V |-
sparse-extension is G itself.) What if we consider �-sparse-extensions (H, f ) with

E[ dH( f (x), f (y)) ] ≤ α dG(x, y) for all x, y ∈ V,

where ideally � = poly(k), and α = O(1) (or just α� log k
log log k )? In other words, if we are

willing to retain a small number of non-terminals, can we achieve better stretch bounds?
Note that standard lower bounds for 0-extension have the property that |V | = poly(k)—
hence the entire graph G is a “good” solution (poly(k)-sparse-extension with α = 1).
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Abstract. We study the planar version of Minimum-Weight Set Cover,
where one has to cover a given set of points with a minimum-weight
subset of a given set of planar objects. For the unit-weight case, one PTAS
(on disks) is known. For arbitrary weights however, the problem appears
much harder, and in particular no PTASs are known. We present the
first PTAS for Weighted Geometric Set Cover on planar objects, namely
on axis-parallel unit squares. By extending the algorithm, we also obtain
a PTAS for Minimum-Weight Dominating Set on intersection graphs
of unit squares and Geometric Budgeted Maximum Coverage on unit
squares. The running time of the developed algorithms is optimal under
the exponential time hypothesis. We also show inapproximability results
for Geometric Set Cover on various object shapes that are more general
than unit squares.

1 Introduction

One of the most fundamental and best-known optimization problems is Minimum
Set Cover. Given a universe U, a set of elements P ⊆ U, and a set S of subsets
of U, one should find a minimum set S ⊆ S such that each element of P is
contained in (covered by) a set in S. If U = Rd for some d > 0, we talk about
Geometric Set Cover. In particular, we are interested in the case where d = 2 and
the sets in S are induced by simple geometric shapes, such as disks or squares.
Geometric Set Cover can be better approximated than general Minimum Set
Cover [2,5,23,29], but for many object shapes the approximability has not been
settled yet, particularly in the weighted case. In this paper, we consider the
approximability of Geometric Set Cover and several of its variants, with emphasis
on weighted cases.

Motivation. Minimum Set Cover is known to be approximable within 1+ln |P|,
even in the weighted case [20,25,4]. This algorithm is also optimal. That is, Min-
imum Set Cover has no polynomial-time algorithm attaining an approximation
ratio of (1−ε) ln |P| for any ε > 0, unless NP ⊂DTIME(nO(log log n)) [11]. Because
of its applicability in the design of (wireless) networks, Geometric Set Cover has
recently received a lot of attention. Geometric Set Cover is NP-hard on unit
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squares and on unit disks [12,21], even if the point set P corresponds to the cen-
ters of the squares or disks. This has led to researchers studying approximation
algorithms for variations of the problem.

The biggest focus of approximation algorithms for Geometric Set Cover has
been on (unit) disks. Several constant-factor approximation algorithms were pro-
posed on unweighted unit disks [2,6,30,3]. This line of research recently culmi-
nated in the discovery of a PTAS for Geometric Set Cover on general disks [29]
using a transformation into the geometric version of Minimum Hitting Set on
three-dimensional half-spaces.

The above algorithms are not known to be applicable to the weighted case
and only recently have algorithms approximating the problem started to appear.
After a few iterations [1,19,7], a (4+ε)-approximation algorithm on unit disks, in-
dependently proposed by Zou et al. [34] and Erlebach and Mihalák [9], currently
is the best known result. Varadarajan [32] gives a 2O(log∗ n)-approximation on
general disks. On unit squares, a 2-approximation algorithm exists [28]. It seems
however that past approaches are insufficient to reach a PTAS, except when the
disk centers have a constant minimum distance from each other [13,24].

We also consider the geometric version of the Budgeted Maximum Coverage
problem. Here each element u of P has a profit p(u), each set Si of S a cost
c(Si), and we aim to maximize the total profit of the points covered by some
S ⊆ S, while the total cost of S is no more than a given budget B. Budgeted
Maximum Coverage has a (1 − 1

e )-approximation algorithm in both the unit
cost [33,18,16] and the general case [22]. Khuller, Moss, and Naor [22] proved
that no polynomial-time algorithm can obtain an approximation ratio better
than 1 − 1

e , unless NP ⊂ DTIME(nO(log log n)). As far as we know, Geometric
Budgeted Maximum Coverage has not been studied yet. The problem can be
shown to be NP-hard on unit squares by reduction from Geometric Set Cover.

Observe that Geometric Set Cover differs significantly from the Geometric
Covering problem, where the position of the objects may be chosen freely. This
problem has a well-known PTAS both on unit disks [17] and on unit squares [14].

Our Results. In this paper, we present a PTAS for Geometric Set Cover
on any set of axis-parallel unit squares. Using a novel dynamic programming
idea, refining the classic sweep-line technique, we are able to solve this problem
optimally in nO(k) time when the given sets of points lie within a horizontal strip
of height k. Combining this with the well-known shifting technique then yields
the PTAS. We also observe that it follows from Marx [26,27] that the scheme
has essentially optimal running time (up to constants), unless the exponential
time hypothesis is false.

The presented scheme extends to the weighted case of Geometric Set Cover
and Minimum Dominating Set on intersection graphs of unit squares and in fact
to the more general Geometric Budgeted Maximum Coverage problem. We note
that the optimality result for our PTAS continues to hold.

Beside these positive algorithmic results, we also give several negative results.
In particular, we show that Geometric Set Cover is APX-hard on arbitrary four-
sided convex polygons. We also obtain APX-hardness results on axis-parallel
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rectangles and ellipses. Finally, we show that on convex polygons, translated
copies of a single polygon, rotated copies of a single convex polygon, and α-fat
objects, Geometric Set Cover is as hard as Minimum Set Cover.

2 A PTAS on Unit Squares

We consider Geometric Set Cover on unit squares and show that it has a PTAS
by applying the shifting technique. So let P be a set of points and S a set
of axis-aligned unit squares. For sake of notation, when referring to the (x, y)-
coordinates of a square, we mean the coordinates of the bottom left corner of
that square. For a square s, the x-coordinate of s is denoted by x(s), while the
y-coordinate is denoted by y(s). We can assume that no horizontal (vertical)
boundary of a square is on the same line as the horizontal (vertical) boundary
of another square, that no point lies on the boundary of a square, and that none
of the square or point coordinates are integers.

Consider the horizontal lines y = h (h ∈ Z). They partition the plane into
horizontal slabs of height 1. Any point is contained in a slab and every square
intersects precisely one line. Let k ≥ 1 be an integer determined later. Using the
shifting technique, it suffices to prove that we can optimally solve Geometric Set
Cover on unit squares if we restrict to k consecutive slabs and the k + 1 lines
defining them.

Theorem 1. For any instance of Geometric Set Cover on a set of unit squares
S where all points of P are inside k ≥ 1 consecutive height 1 horizontal slabs,
one can find an optimal solution in O((3|S|)4k+4 |P|) time.

The idea of the proof of this theorem will be to apply a sweep-line algorithm.
To this end, consider the subset of squares of an optimum solution intersecting
a horizontal line y = h for some h ∈ Z. Any such square must appear on the
lower or upper envelope of this subset, or all points it covers would be covered
by other squares. Following this observation, for each position of the sweep-line
and for each of the k+1 integer horizontal lines, we should consider at most two
squares intersecting the sweep-line: one that will appear on the upper envelope
and one that will appear on the lower envelope of the final solution.

However, a square might appear on the lower envelope for some position of
the sweep-line and on the upper envelope for a later position. This makes it
difficult to avoid counting certain squares twice. To circumvent this, we split
the sweep-line into k parts, one part per slab. We move these parts at different
speeds, but always in such a way that if a square appears both on the lower and
the upper envelope, then the split sweep-line is positioned such that it intersects
the square both at the point where the square appears on the lower and on the
upper envelope. We formalize this intuition below. We remark that the basic idea
of having a split sweep-line was also used by Erlebach and Mihalák [9], but the
details of how the split sweep-line is then handled by a dynamic programming
approach are very different in our case.
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Just as in any sweep-line algorithm, we maintain a data structure (the front)
containing the squares that are ‘active’ at a given position of the sweep-lines and
allow only a limited number of operations on it.

Let Sl and Sr be two dummy sets of k+1 squares each, such that the squares
in Sl (Sr) are to the left (right) of all squares in S and each integer horizontal line
intersects precisely one square of Sl and one square of Sr. Let S = S ∪ Sl ∪ Sr .
Given some set S ⊆ S, let Si denote the set of squares in S intersecting line i.
Let Ri ⊆ Si be the set containing precisely the rightmost square of Si (denote
it by si) and those squares s that overlap part of the left boundary of si and
whose right boundary is not fully covered by squares of Si.

We now define a front. For a better understanding of the definition, imagine
that the squares are being inserted in order of increasing x-coordinate and that
we want to keep track of the upper and lower envelope of each line i.

Definition 1. Let S be the union of Sl and some subset of S. Then a front
F = {u1, . . . , uk+1, l1, . . . , lk+1, b1, . . . , bk+1, x1, . . . , xk} for S has the following:

– ui, li ∈ Ri with ui = si or li = si, y(s) ≤ y(ui) for any s ∈ Si to the right of
ui (i.e. with x(s) > x(ui)) and y(s) ≥ y(li) for any s ∈ Si to the right of li
(i.e. with x(s) > x(li)),

– bi equals the lowest square of Si to the right of li if x(ui) > x(li), the highest
square of Si to the right of ui if x(li) > x(ui), and si if x(ui) = x(li),

– xi equals the larger x-coordinate from which li+1 appears on the lower enve-
lope of Si+1 and from which ui appears on the upper envelope of Si.

Fronts are the representative of the current state of the sweep-line algorithm.
The squares ui and li track the current square on respectively the upper and
the lower envelope of line i. The value of xi is the x-coordinate of the part of
the sweep-line between lines i and i + 1. The square bi is used in checking if a
certain square may be inserted into the front or not. An example is depicted in
Figure 1.

ui bi

li = si

ui
ui

li = si = bi

ui
li

ui = si = bi

Fig. 1. The left figure shows a set Si. The solid squares are in Ri, the dashed square is
not. By Definition 1, the labeling of the left figure is correct. The middle figure shows
the same set Ri, with a different and still correct labeling. The labeling in the right
figure is incorrect.
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ui

bi

li = si

si = ui = bi

bi

li

ui

bi

li = si

Fig. 2. The left figure shows two (dashed) squares that are upper-insertable. The mid-
dle figure shows the resulting front after upper-inserting the rightmost square. The
right figure shows two (dashed) non-upper-insertable squares.

We make two observations about fronts. Firstly, y(ui) ≥ y(li) and as ui, li ∈
Ri, |x(ui)− x(li)| < 1 for any i = 1, . . . , k + 1. Secondly, y(li) ≤ y(bi) ≤ y(ui).

For a given front, we distinguish four types of insertions that are possible: an
upper-insertion for squares that will appear only on the upper envelope for some
line, a lower-insertion for squares appearing only on the lower envelope, and a
middle-insertion and a skip-insertion for squares appearing on both envelopes.
We define these four insertions, describe when they may be applied, and prove
that any geometric set cover can be obtained using these insertions.

From now on, S will denote the union of Sl and some subset of S.

Definition 2. Let F be a front for some S and let s 	∈ S be a square inter-
secting line i ∈ {1, . . . , k}. We say that s is upper-insertable into F if all of
the following hold: 1) y(s) > y(li) and if x(li) > x(ui), then y(s) > y(bi), 2)
x(s) ∈ (x(li), x(li) + 1] and x(s) ∈ (x(ui), x(ui) + 1], 3) x′

i > xi, 4) any point of
P in [xi, x

′
i]× [i, i+1] is covered by ui or li+1, where x′

i is the x-coordinate from
which s is on the upper envelope of (S ∪ {s})i.

Condition 1 ensures that s lies above li and all squares between ui and li (rep-
resented by bi), Condition 2 ensures that s appears on the upper envelope of
(S ∪ {s})i, Condition 3 ensures that this appearance happens after ui appears
on the upper envelope, and Condition 4 ensures that we cover all points between
two consecutive sweep-line positions. An example of upper-insertable squares
and squares that are not upper-insertable is given in Figure 2.

Lemma 1. Let F be a front for some S and let s 	∈ S be a square intersecting
line i ∈ {1, . . . , k} that is upper-insertable into F . Then between the appearance
of ui and the appearance of s on the upper envelope of (S∪{s})i no other squares
appear on the upper envelope of (S ∪ {s})i.

Proof. If ui = si, this follows from x(s) > x(ui) = x(si) and x′
i > xi. So assume

that ui 	= si. Then li = si and x(li) > x(ui). Recall the definition of a front and
observe that bi is the highest square of Si to the right of ui. As x(li)−x(ui) < 1
and y(bi) < y(ui), it suffices for s to lie above bi (i.e. y(s) > y(bi)) and for s to
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cover the x-range [x(ui) + 1, x(li) + 1] (i.e. x(li) < x(s) < x(ui) + 1). This holds
from the definition of upper-insertable. �

Lemma 2. Let F be a front for some S and let s 	∈ S be a square intersecting
line i ∈ {1, . . . , k} that is upper-insertable into F . Then S ∪ {s} has a front F ′

equal to F , except ui is replaced by s, xi is set to x′
i, where x′

i is equal to x(s) if
y(s) > y(ui) and to x(ui) + 1 otherwise, and if x(ui) ≤ x(li) or y(s) ≤ y(bi), bi

is set to s.

Proof. Since x(s) > max{x(ui), x(li)} = x(si) by Condition 2 of Definition 2,
we can replace ui by s. Note that li can remain the same by Condition 1 and 2.
By Lemma 1, x′

i is indeed the x-coordinate from which s appears on the upper
envelope of (S∪{s})i. From Condition 3, xi should be set to x′

i. If x(ui) ≤ x(li),
then as x(s) > x(li), bi should be set to s. If x(ui) > x(li), then bi must be
changed if s lies below bi, i.e. if y(s) ≤ y(bi). Then F ′ is indeed a front for
S ∪ {s}. �

Constructing the front F ′ from F as prescribed in the lemma statement is called
the upper-insertion of s into F .

We can define the notions of lower-/middle-/skip-insertable and lower-/middle-
/skip-insertions in similar ways. The definitions of upper- and lower-insertable/-
insertion are similar, except that we check if the square we want to insert will
appear on the lower envelope directly after li appears on the lower envelope. The
definition of middle-insertable/-insertion combines the definitions of upper- and
lower-insertable/-insertion. Skip-insertions are used when the square we want to
insert does not intersect ui or li, i.e. when x(s) > 1 + max{x(ui), x(li)}. Full
definitions are in [31].

In general, we call an upper-/lower-/middle-/skip-insertion an insertion and
we say s is insertable if it is upper-/lower-/middle-/skip-insertable. A valid in-
sertion is the upper- (respectively lower-/middle-/skip-) insertion of a square
that is upper- (respectively lower-/middle-/skip-) insertable.

Denote by F l and F r the fronts for Sl and S respectively.

Lemma 3. Assume P = ∅. Let S be some set such that S = Sl ∪ Si ∪ Sr for
some i ∈ {1, . . . , k + 1} and any square in Si appears on the lower or the upper
envelope of Si. Then there is a sequence of |Si|+ k − 1 valid insertions starting
from F l, leading to fronts F l = F0, F1, . . . , F|Si|+k−1 = F r such that for any
square s ∈ Si, there is a front Fj containing s.

Proof (Sketch). We assume that if i = 1, then no squares of Si appear only on
the lower envelope of Si. Similarly, if i = k + 1, assume that no squares of Si

appear only on the upper envelope of Si. Order the squares in Si\Sl by increasing
x-coordinate, i.e. s1, . . . , s|Si|−1. Note that the squares appearing on the upper
envelope form an increasing subsequence of Si. Similarly, the squares appearing
on the lower envelope form an increasing subsequence. We claim that one can
obtain the requested sequence of valid insertions by inserting sj into Fj−1 for
all j = 1, . . . , |Si| − 1 as follows. If sj appears only on the upper envelope of Si,
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then sj is upper-insertable and will be upper-inserted. If sj appears only on the
lower envelope of Si, then sj is lower-insertable and will be lower-inserted. If sj

appears on the upper and lower envelope of Si and a square of Si covers part of
its left boundary, then sj is middle-insertable and will be middle-inserted. If sj

appears on the upper and lower envelope of Si and no square of Si covers part of
its left boundary, then sj is skip-insertable and will be skip-inserted. Now apply
induction on the number of inserted squares. �

Lemma 4. Assume P = ∅. Let S be some subset of S containing Sl ∪ Sr, such
that for the set Si of squares in S intersecting line i for i ∈ {1, . . . , k + 1},
any square in Si appears on the upper or lower envelope of Si. Then there is
a sequence of |S| − k − 1 valid insertions starting from F0 = F l, leading to
F1, . . . , F|S|−k−1 = F r such that for any square s ∈ S, there is a front Fj

containing s.

Proof (Sketch). By the previous lemma, we can insert the squares intersecting
each horizontal line in order of increasing x-coordinate. However, we should
interleave the sequences of the different lines. For any i = 1, . . . , k, consider the
squares appearing on the upper envelope of Si and the lower envelope of Si+1.
Order these squares according to the x-coordinate from which they appear on
the upper envelope of Si or on the lower envelope of Si+1 respectively. Combining
these two orders, we can extend this to an order by which to insert the squares
of S. We can then prove that the j-th square sj according to this order is
insertable into Fj−1 and that after inserting sj , all squares sj′ with j′ > j are
still insertable. �

The next lemmas follow from the coverage constraints on valid insertions.

Lemma 5. Let S be any smallest subset of S containing Sl ∪ Sr and covering
all points in P. Then there is a sequence of |S| − k − 1 valid insertions starting
from F l, leading to F1, . . . , F|S|−k−1 = F r such that for any square s ∈ S, there
is a front Fj containing s.

Lemma 6. Let l ≥ 0. Then any sequence of l + k + 1 valid insertions starting
from F l and resulting in F r corresponds to a set S ⊆ S of cardinality l covering
all points in P.

Proof (of Theorem 1). Construct a directed graph G with V (G) equal to the
set of all fronts and a directed edge from front F to front F ′ if F ′ can be
obtained from F by a single valid insertion. From the definition of a front,
|V (G)| = O(|S|4k+3). As each front allows for at most 4|S| valid insertions,
|E(G)| = O(|S|4k+4). Because the validity of an insertion can be checked in
O(|P|) time, G can be constructed in O(|S|4k+4|P|) time.

From Lemma 5 and 6, a shortest path in G from F l to F r corresponds to a
minimum subset of S covering all points in P . Then a shortest path can be found
in O(|E(G)|) = O(|S|4k+4) time. Observe that |S| = |S| + |Sl| + |Sr| ≤ 3|S|,
because if no square intersects a certain line, we may ignore it. The running time
of the algorithm is O((3|S|)4k+4|P|). �
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Using Theorem 1 with the shifting technique, we get a PTAS for Geometric Set
Cover on unit squares. The proof of this theorem can be found in [31].

Theorem 2. There is a PTAS for Geometric Set Cover on unit squares.

3 Geometric Budgeted Maximum Coverage

The above PTAS easily extends to the weighted case of Geometric Set Cover,
by weighting the graph constructed in the proof of Theorem 1. We can however
extend to the more general budgeted case as well.

Let S be a set of unit squares, P a set of points, c a cost function over S,
p a nonnegative profit function over P , and B a budget. Let pmax denote the
maximum profit of any single point. We define the function cov (s) as the set of
points in P covered by a square s ∈ S. This notation extends to cov(S) for a set
S ⊆ S. Abusing notation, we will use p(S) to denote p(cov (S)).

Theorem 3. In Geometric Budgeted Maximum Coverage on a set of unit squares
S where all points are inside k − 1 consecutive height 1 horizontal slabs and all
profits are positive integers, one can find a cheapest set of profit at least r (if one
exists) for all 0 ≤ r ≤ |P| · pmax in time O((3|S|)4k (|P| · pmax)).

Proof. We modify the algorithm described above. Assume the cost of squares in
Sl ∪Sr to be zero. Remove the coverage constraints from the four definitions of
insertable. Then, as in the proof of Theorem 1, we construct a directed graph G
with V (G) equal to the set of all fronts and an edge from F to F ′ if F ′ can be
obtained from F by a single valid insertion.

We assign two weights, a cost and a profit, to each edge of this graph G. For
any edge in E(G) from some front F to a front F ′ that represents the insertion
of a square s, the cost of the edge is the cost c(s) of s and the profit of the edge
is the total profit of the points covered by the insertion of s. For example, for
an upper-insertion of a square s intersecting line i, the profit of the edge is the
total profit of the points covered by ui or li+1 in [xi, x

′
i]× [i, i + 1].

Now the sum of the profits of the edges on a F l–F r path equals the profit of
the solution corresponding to this path. Moreover, the sum of the costs of the
edges of the path equals the cost of that solution. Hence we aim to find for any
0 ≤ r ≤ |P| ·pmax a lightest path (with respect to edge costs) of total edge profit
at least r. A straightforward dynamic programming algorithm for this problem
takes O(|E(G)| · |P| · pmax) = O((3|S|)4k(|P| · pmax)) time. �

We now apply the shifting technique and scaling to obtain a PTAS. First assume
integer profits. For each integer 0 ≤ a ≤ k − 1, let Na denote the set of points
between lines y = bk + a and y = bk + a + 1 for any b ∈ Z. Moreover, for any
b ∈ Z, let Pb

a be the set of points between lines y = bk+a+1 and y = (b+1)k+a.
For any 0 ≤ r ≤ |P| ·pmax, let Cb

a(r) denote the set returned by the algorithm
of Theorem 3, applied on S and Pb

a, attaining profit at least r. We assume that
c(Cb

a(r)) = ∞ if profit at least r cannot be attained.
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Let the nonempty sets Pb
a be numbered P0

a , . . . ,P la
a in an arbitrary way, and

let C0
a , . . . , Cla

a be the corresponding solutions. Define

sa(0, r) = c(C0
a(r))

sa(b, r) = min
0≤r′≤r

{c(Cb
a(r′)) + sa(b− 1, r − r′)}

for 1 ≤ b ≤ la and 0 ≤ r ≤ |P| · pmax. Observe that computing sa can be done in
O(|P| · (|P| · pmax)2) time.

Let Ca denote a set attaining max0≤r≤|P|·pmax{r | sa(la, r) ≤ B} and let Cmax
denote a most profitable such set. By definition, c(Cmax) ≤ B.

Lemma 7. p(Cmax) ≥ (1− 1/k) · p(OPT ), where OPT is an optimal solution.

Proof. Let Sb
a denote the set of squares in S covering at least one point in Pb

a.
Then it can be easily seen that c

(
Cb

a

(
p
(
cov

(
OPT ∩ Sb

a

)
∩ Pb

a

)))
≤ c(OPT∩Sb

a)
for any 0 ≤ a ≤ k−1 and 0 ≤ b ≤ la. Because for fixed a the sets Sb

a are pairwise
disjoint,

∑la
b=0 c(OPT ∩Sb

a) ≤ B. Then it follows from the definition of s and by
induction that p(Ca) ≥

∑la
b=0 p(cov(OPT ∩ Sb

a) ∩ Pb
a). Since we can show that∑la

b=0 p(cov(OPT ∩Sb
a)∩Pb

a) = p(OPT )− p(cov(OPT )∩Na) and any point is
in Na for precisely one value of a, k · p(Cmax) ≥

∑k−1
a=0 p(Ca) ≥ (k− 1) · p(OPT).

It follows immediately that p(Cmax) ≥ (1− 1/k) · p(OPT ). �

Using scaling for noninteger profits, we obtain a PTAS. Details can be found
in [31].

Theorem 4. There is a PTAS for Geometric Budgeted Maximum Coverage on
unit squares.

4 Optimality and Relation to Domination

Geometric Set Cover and the geometric version of Minimum Dominating Set
are closely related. An instance of Minimum Dominating Set on an intersection
graph of unit squares can be easily transformed into an instance of Geometric
Set Cover on unit squares [28]. Then the following is immediate from Theorem 2
and the remarks at the beginning of Section 3.

Theorem 5. There is a PTAS for Minimum-Weight Dominating Set on inter-
section graphs of unit squares.

Theorem 5 is the first PTAS for Minimum-Weight Dominating Set on inter-
section graphs of two-dimensional objects. Another consequence of the above
reduction from Minimum Dominating Set on unit square graphs to Geometric
Set Cover on unit squares is the following. Recall that the exponential time
hypothesis (ETH) states that n-variable 3SAT cannot be decided in 2o(n) time.

Theorem 6. If there exist constants δ ≥ 1, 0 < β < 1 such that Geometric
Set Cover or Geometric Budgeted Maximum Coverage on n unit squares has a
PTAS with running time 2O(1/ε)δ

nO(1/ε)1−β

, then ETH is false.
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This holds, as Marx [27] showed that Minimum Dominating Set on intersec-
tion graphs of unit squares cannot have such a PTAS. Similarly, one can show
from Marx [26] that Geometric Set Cover and Geometric Budgeted Maximum
Coverage on unit squares have no EPTAS.

Theorem 7. Geometric Set Cover and Geometric Budgeted Maximum Cover-
age on unit squares cannot have an EPTAS, unless FPT=W [1].

This is an indication that one cannot hope to improve the running time of the
algorithms of Theorems 2 and 4.

5 Hardness of Approximation

Not many explicit inapproximability results for Geometric Set Cover problems can
be found in the literature. Our approximation scheme settles the approximability
of Geometric Set Cover on unit squares. In this section, we adapt known results
for related problems to give several hardness results for more general shapes. A
convex subset s of R2 is α-fat for some α ≥ 1 if the ratio between the radii of the
smallest disk enclosing s and the largest disk inscribed in s is at most α [8].

Theorem 8. Geometric Set Cover is not approximable within (1 − ε) lnn for
any ε > 0, unless NP ⊂ DTIME(nO(log log n)), on convex polygons, translated
copies of a single polygon, rotated copies of a single convex polygon, and α-fat
objects for any α > 1, where n is the number of points,

Theorem 9. Geometric Set Cover is APX-hard on convex polygons with r ≥ 4
corners, α-fat objects of constant description complexity for any α > 1, axis-
parallel rectangles, and ellipses.

Theorem 8 and Theorem 9 can be proved using constructions where points are
arranged on a line or circle and the objects can cover arbitrary subsets (of
bounded size, in case of Theorem 9) of these points. On axis-parallel rectangles
and ellipses we need a more elaborate construction. The ideas are similar to
ones used for the geometric version of Minimum Dominating Set [10]. See [31]
for details. We remark that Har-Peled [15] recently showed that Geometric Set
Cover is even APX-hard on fat convex polygons with r ≥ 3 corners.

Using ideas from Khuller et al. [22], one can obtain the following.

Corollary 1. Geometric Budgeted Maximum Coverage is not approximable with
ratio better than (1 − 1/e), unless NP ⊂ DTIME(nO(log log n)), on convex poly-
gons, translated copies of a single polygon, rotated copies of a single convex
polygon, and α-fat objects for any α > 1.

6 Conclusions

We have given the first PTAS for Weighted Geometric Set Cover, in the case of
axis-parallel unit squares. The scheme extends to Geometric Budgeted Maximum
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Coverage. Moreover, we presented evidence that one cannot hope to improve
on the running time of these algorithms. This settles the approximability of
Geometric Set Cover on unit squares.

Many problems surrounding Weighted Geometric Set Cover remain open how-
ever. In particular, the question of a PTAS on (unit) disks or arbitrary squares
is very interesting. The techniques in this paper seem insufficient to deal with
these problems and probably completely different insight is required. In general,
it is an interesting question for which objects (Weighted) Geometric Set Cover
can still be approximated well. The hardness results of this paper however set
clear limits to its approximability.

References
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bound of Ω(log n) for the universal TSP implies a matching lower bound
for the black-box a priori TSP.
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1 Introduction

A delivery person has a fixed list of potential clients that is known in advance, but
on each day only a subset of the clients must be served. Rather than re-optimizing
the delivery route every day, the delivery person might seek to minimize distance
traveled using the following heuristic: decide in advance on a master tour of the
entire client list, and on each particular day visit the set of active clients in
the order that they would be served by the master tour. How well does this
heuristic perform? That is, given a list of clients residing in an arbitrary finite
metric space, is there a master tour of the list such that the tour induced on
an active subset of clients by shortcutting the master tour tends to be close to
optimal? Naturally, the answer depends on how active subsets are generated;
the two canonical models are the adversarial and the probabilistic.

In the adversarial model, the master tour is announced and an adversary
chooses an active subset S that maximizes the ratio of the length of the induced
tour to the length of the optimal tour of S. In this case the delivery person
faces the universal traveling salesman problem (TSP). If for a given master tour
there is a ρ such that for every active subset, the length of the induced tour is
guaranteed to be no more than ρ times the length of the optimal tour, we say
that this master tour achieves competitive ratio ρ.

Alternately, in the probabilistic model there is a fixed probability distribution
over subsets of clients, and the delivery person seeks a master tour that minimizes
the expected cost of the induced tour. This is known as the a priori TSP. In
this paper we will focus on the black-box a priori model in which information
about the distribution on active client sets is available only through calls to a
black-box oracle. Note that both the universal and a priori variants of TSP are
NP-hard since they are both generalizations of metric TSP.

In this paper we give improved lower bounds for the universal and a priori
TSP. In particular, we exhibit a family of metric spaces on which the competitive
ratio of any solution to the universal TSP is Ω(log n), improving on the previous
bound of Ω( 6

√
log n/ log log n) (proved for a different family of metric spaces;

details below). We then extend this bound to the a priori TSP by showing how to
translate a universal lower bound into a matching lower bound on approximation
for a large class of a priori optimization problems (that includes TSP).

Prior work. The universal TSP was originally motivated by the need for an easy
and efficient vehicle routing system for the “Meals on Wheels” program in At-
lanta, GA. This problem was considered in Bartholdi et al. [3], who phrased it as
the universal TSP on a finite subset of the plane and suggested a heuristic based
on space-filling curves. Bartholdi & Platzman proved in [2] that this heuristic
yields master tours with a competitive ratio of O(log n) (not only on the plane
but in Euclidean space in general; see also [18]).

Bertsimas & Grigni subsequently showed in [4] that O(log n) is asymptotically
tight for this particular method, and made the general conjecture that Ω(log n)
is a lower bound for the universal TSP on the plane. Working towards this
conjecture, Hajiaghayi, Kleinberg & Leighton showed in [12] that any master
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tour of the vertices of the n × n grid has its competitive ratio bounded by
Ω( 6

√
log n/ log log n). The main result of this paper (Theorem 1) is an improved

lower bound of Ω(log n) on the competitive ratio for the universal TSP, though
for a different, non-planar family of metrics (see the discussion below).

Recently, there has been significant progress on algorithms for the universal
TSP; inspired by [2], Jia et al. formulate in [14] the universal TSP for general
finite metric spaces and give an algorithm that produces, given a metric space
on n points, a master tour with competitive ratio O(log4 n/ log log n). Their
algorithm achieves a competitive ratio of O(log n) on doubling metrics (which
include constant-dimensional Euclidean metrics). At present, the best universal
TSP algorithm is due to Gupta et al. [10] (using ideas of [7]) and produces a
master tour with competitive ratio O(log2 n) on n-point metric spaces.

There has been considerably less work on the a priori TSP. The general no-
tion of a priori optimization was introduced in Jaillet’s PhD thesis [13] (see
also [5]). The current best algorithmic results for the black-box a priori TSP
are a 4-approximation due to Shmoys & Talwar [20] for the case of independent
activation (in which points appear in the active set independently), and a ran-
domized O(log n)-approximation algorithm due to Shmoys & Schalekamp [19]
for the general problem. The former algorithm depends deterministically on a
single black-box sample while the latter is entirely distribution-free (that is, it
requires no samples). We observe that any algorithm for the universal TSP with
competitive ratio ρ can be made into a distribution-free algorithm for the a pri-
ori TSP that achieves a ρ-approximation. Save for the trivial observation that
an inapproximability result for the classical metric TSP translates to a matching
lower bound for the a priori TSP, no lower bounds for the a priori TSP were
known prior to this paper: a corollary to our second main result (Corollary 1)
is a lower bound of Ω(log n) on the approximation ratio of any deterministic
algorithm for the black-box a priori TSP.

A great deal of recent work in approximation algorithms has been devoted to
the design and analysis of optimization algorithms that must produce solutions
when the input is only partially known, or is determined stochastically. Exam-
ples include online algorithms, stochastic optimization (see [11]), the work of Jia
et al. [14] on universal optimization, as well as recent results on oblivious routing
(see [10] and the references within). Our work on universal and a priori variants
of the classical metric TSP fits squarely within this conceptual framework. More-
over, though we focus on the TSP, there are many other classical optimization
problems which yield natural and interesting universal and a priori variants. The
second main result of the paper provides a direct connection between worst-case,
universal lower bounds and average-case, a priori lower bounds, elucidating the
connection between these two problem variants not only for the TSP but for a
large class of natural combinatorial optimization problems.

Main results and techniques. Recall that given a master tour of a metric space
X , its competitive ratio is the maximum ratio, over all S ⊆ X , of the length of
the induced tour of S to the length of the optimum tour of S. The competitive
ratio of the universal TSP on X is the minimum of the competitive ratio over
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all master tours of X . In our first main result (Theorem 1) we exhibit a family
of metric spaces (in particular, shortest-path metrics on Ramanujan graphs)
for which the competitive ratio of the universal TSP is Ω(log n). This proves a
conjecture of Hajiaghayi, Kleinberg & Leighton from [12].

Our proof of this result is probabilistic and proceeds as follows. Let X be the
shortest-path metric on a Ramanujan graph, and fix some master tour of X .
We give a simple procedure for producing S ⊆ X such that the length of the
induced tour of S is at least Ω(log n) times the length of the optimal tour: take
a random walk on the graph and let S be the set of distinct vertices encountered
by the walk. We show that with positive probability a constant fraction of the
vertices in S are Ω(log n)-far from their successors with respect to the tour of S
induced by the master tour. Since the length of an optimal tour of S is O(|S|),
this proves the desired property. Our proof makes essential use of the spectral
properties of Ramanujan graphs.

Our second main result (Theorem 3) shows that for a large class of natu-
ral optimization problems that includes TSP, a lower bound on the competitive
ratio of the universal version of the problem implies a matching bound on the ap-
proximation ratio of a deterministic algorithm for the black-box a priori version.
Thus our lower bound implies that no deterministic approximation algorithm for
the black-box a priori TSP has approximation ratio o(log n). This limit on the
power of deterministic algorithms provides an interesting complement to positive
results in the existing literature ([19],[20],[1]). For example, if randomization is
allowed then the distribution-free algorithm of Shmoys & Schalekamp [19] (using
ideas from [7]) achieves an approximation of O(log n) for the a priori TSP, but
no deterministic algorithm that is allowed even a polynomial number of samples
from the distribution can achieve a better asymptotic approximation. For the
full version of this paper, see [9].

2 Universal and a priori TSP

Given a metric space (X, δ) with |X | = n, a master tour is a total ordering of
the points of X , which we write as a bijection τ : [n] → X . Given x ∈ X we
will refer to τ−1(x), the preimage of x under τ , as its index. The total length
of a master tour τ will be written δ(τ): δ(τ) =

∑n
i=1 δ(τ(i), τ(i + 1)), where we

identify element τ(n + 1) with element τ(1). In words, δ(τ) is the total distance
traveled when traversing X in the order given by τ (including returning, at the
end of the tour, from τ(n) back to τ(1)).

If S ⊆ X then we write τ |S for the tour of S obtained by shortcutting τ ; this
tour starts at the element of S of smallest index, travels to the element of S of
second smallest index, etc., and at the end returns to the element of smallest
index. We will write δ(τ |S) for the total length of this tour. Given S ⊆ X let
opt(S) denote some optimal tour of (S, δ), i.e. a tour of S that minimizes total
distance traveled. The length of an optimal tour of S will be written δ(opt(S)).
The object opt(S) is clearly not well-defined as there could exist multiple optimal
tours, but we will ignore this technicality since our analysis is only concerned
with the quantity δ(opt(S)).
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We define ρ(X, δ, τ) to be the competitive ratio of a master tour τ of (X, δ),
ρ(X, δ, τ) = maxS⊆X(δ(τ |S)/δ(opt(S))), and define ρ(X) to be the competitive
ratio of the universal TSP on (X, δ), ρ(X) = minτ ρ(X, δ, τ) = minτ maxS⊆X

δ(τ |S)
δ(opt(S)) .

Notation: In this paper, (X, δ) will usually be the metric space associated with
an undirected graph G; that is, X is the vertex set of G and δ is the shortest-
path metric on G (the edges of G will always be unit-weighted). In this case, we
write ρ(G) instead of ρ(X). The universal TSP has as its input a finite metric
space (X, δ) and asks to produce a master tour τ that minimizes ρ(X, δ, τ). In
the a priori TSP, we are given (X, δ) with a probability distribution D over 2X .
The problem asks to produce a master tour τ that minimizes ED[δ(τ |S)], the
expected length of the induced tour of S with respect to D. In this paper we
consider the black-box model of the a priori TSP in which no information about
D is part of the input, but an algorithm may sample subsets of X according to
D from a black box in polynomial time.

3 A Lower Bound for the Universal TSP

In this section we prove a lower bound for the universal TSP on Ramanujan
graphs. In order to define these precisely and formally state our result, we must
make a few additional definitions. Given an n×n symmetric matrix M , we denote
its (real) eigenvalues, in decreasing order, by λi(M) for i = 1, . . . , n. Recall that
if G is an undirected d-regular graph, A is its adjacency matrix, and M = 1

dA
is the transition matrix for a random walk on G, then λ1(M) = 1. Let us refer
to the eigenvalues of the transition matrix M as the eigenvalues of the graph G,
written 1 = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). We say that a d-regular graph G is
a Ramanujan graph if

|λi(G)| ≤ 2
√

d− 1/d (3.1)

for i ≥ 2 (i.e., if the Alon-Boppana bound [17] is asymptotically tight for G).
Now we may state our main result. Recall that the girth of G is the length of

its shortest cycle.

Theorem 1. For all sufficiently large d, ∃n0 such that if G is a d-regular Ra-
manujan graph on n ≥ n0 vertices whose girth is ≥ 2

3 logd−1 n, then ρ(G) =
Ω(log n).

Before moving on to the proof of this theorem, we note that its hypotheses are
an explicit reference to the Ramanujan graphs constructed by Lubotzky, Phillips
& Sarnak in [15]: for every odd prime p, there exists an infinite family of (p+1)-
regular Ramanujan graphs whose girth is at least 2

3 logp n (this construction was
later extended by Morgenstern in [16] to allow prime powers). It is well-known
that if G is a d-regular graph on n vertices then its girth can be at most 2 logd−1 n
(see, for instance, Section IV.1 of [6]), so that the girth of the Lubotzky-Phillips-
Sarnak graphs is very nearly as large as possible. As we will see, this large-girth
property will be central to the proof of Theorem 1.
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The strategy: a probabilistic proof. We will prove Theorem 1 by using the prob-
abilistic method. Namely, in this section we will reduce the theorem to a claim
about random walks on Ramanujan graphs (then prove this claim in subsequent
sections). We require several lemmas analyzing random walks on graphs of large
girth; these lemmas and their proofs can be found in the full version of the
paper [9].

Let G be a d-regular Ramanujan graph on the vertex set V , with |V | = n, and
let δ be the shortest-path metric on G. Given a master tour τ of the metric space
(V, δ), let us use the term bad set for a set S ⊂ V such that δ(τ |S)/ opt(S) =
Ω(log n). We would like to prove that a bad set exists for every master tour of
G, which would imply ρ(G) = Ω(log n). Our strategy is as follows.

Fix a master tour τ of G, let g be the girth of G (recall that one of the
assumptions in Theorem 1 is that g is large), and consider uniformly sampling
a random walk of L = 70g steps; that is, choose a starting vertex uniformly at
random and perform a random walk for L steps. We regard an L-step random
walk as a map W : [L] → [n] where W(i) is the index of the ith vertex in the
walk. Note that W(i) refers to an index rather than a vertex; the ith vertex of
W would be written τ(W(i)).

Define VW to be the set of distinct vertices encountered by W: that is, VW =
{τ(W(i)) | i = 1, . . . , L}. It is easy to see that δ(opt(VW)) = O(L), since walking
along W and then back again produces a tour of VW. If we can show that there
exists a VW for which δ(τ |VW

) = Ω(L log n) then we are done, for such a VW is a
bad set. We will prove the existence of such a VW using probabilistic arguments.
To this end, given a walk W and an index W(i) define the successor of W(i) (with
respect to τ) to be Wsucc(i) = min{W(j) | W(i) < W(j)}. That is, Wsucc(i) is the
index of the vertex in VW that follows W(i) when VW is traversed by shortcutting
τ (as usual, the successor of the vertex in VW with largest index is the vertex
with the smallest index).

Theorem 2. Let G be a d-regular Ramanujan graph on n vertices with girth
g ≥ 2

3 logd−1 n, fix a master tour of G, and set L = 70g. For all sufficiently
large d there exists n0 such that if n ≥ n0 and W is a uniformly sampled L-step
random walk on G, then

Pr
[
δ
(
τ(W(i)), τ(Wsucc(i))

)
>

2
3d

logd−1 n

]
= Ω(1)

for every i = 1, 2, . . . , g/2, where δ is the shortest-path metric on G.

Before proving this theorem, let us see how it implies the existence of a VW that
is a bad set. Given an L-step walk W, let X(W) be the number of events of the
form

δ
(
τ(W(i)),τ(Wsucc(i))

)
>

2
3d

logd−1 n, and

the vertex τ(W(i)) is visited at most 140 times by W. (3.2)
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The key observation is that we can bound δ(τ |VW
) from below by

δ(τ |VW
) ≥

(
X(W)
140

)(
2
3d

logd−1 n

)
=

(
1

210d log(d− 1)

)
X(W) log n

because traversing VW according to τ means making at least X(W)/140 trips of
length at least 2

3d logd−1 n. We will use Theorem 2 to prove the existence of a W
such that X(W) = Ω(L), which would prove the existence of a bad VW.

For brevity, let us write the events “δ
(
τ(W(i)), τ(Wsucc(i))

)
> 2

3d logd−1 n”
and “τ(W(i)) is visited at most 140 times by W” as Ei and E′

i, respectively.
Now, E[X(W)] is the sum of the probabilities of Ei ∩ E′

i:

E[X(W)] =
L∑

i=1

Pr[Ei ∩E′
i] ≥

g/2∑
i=1

Pr[Ei ∩E′
i]. (3.3)

First note that Pr[Ei ∩ E′
i] ≥ Pr[Ei]− Pr[E′

i]. Theorem 2 says that there exists
a constant A such that Pr[Ei] ≥ A when i ≤ g/2. It is proved in the full paper
that Pr[E′

i] can be made arbitrarily small by taking d and then n large enough
(hence this requirement in the statement of Theorem 1). Let us take d and n
large enough so that Pr[E′

i] ≤ A/2. In light of all this, equation (3.3) now gives

E[X(W)] ≥
g/2∑
i=1

(
Pr[Ei]− Pr[E′

i]
)
≥ A

4
g =

A

280
L.

Since E[X(W)] = Ω(L), there must exist a walk W for which X(W) = Ω(L),
meaning the event (3.2) holds for a constant fraction of the L steps of the walk.
As noted in the discussion above, this implies δ(τ |VW

) = Ω(L log n), which shows
that VW is a bad set. Thus we find that Theorem 2 implies Theorem 1, so it
remains to prove the former.

Proving Theorem 2. This section is dominated by technical arguments concern-
ing random walks on graphs. In order to present these as clearly as possible, we
introduce some notation. Recall that Theorem 2 is a statement about a random
walk W on a Ramanujan graph; we shall reserve this notation for this particular
random walk, owing to its central role in the proof of Theorem 1 (as discussed in
Section 3). Our proof of Theorem 2, however, will require general lemmas about
random walks on regular graphs, which we will later apply to W, or more often
sub-walks of W. In these lemmas we will use the notation w for an arbitrary ran-
dom walk. As before, w(i) is the index of the vertex at step i of w, and τ(w(i)),
where τ will always be some fixed master tour, is the vertex at step i.

One last piece of notation: given j ∈ [n] and a positive integer � ≤ n, define

[j : �]n = {(j + 1) mod n, (j + 2) mod n, . . . , (j + �) mod n}.

This notation will appear in the following context: fix a master tour τ of a graph
G and consider a random walk w on G. Then w(i) is the index of the vertex at
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step i of w, and [w(i) : �]n consists of the � indices that follow w(i) in τ , with
wraparound modulo n.

The proof of Theorem 2 requires the following technical lemmas.

Lemma 1. Let G be a d-regular, n-vertex graph such that |λi(G)| ≤ η for i ≥ 2,
say η = .05. Fix a master tour of V (G), some integer k, and set � = �n/(32k)�.
If w is a uniformly sampled k-step random walk on G, then the probability that
w encounters a vertex whose index is in [w(1) : �]n is less than 1/4.

Lemma 2. Let G be a d-regular graph, d ≥ 7, with n vertices and girth g, and
consider an L′-step random walk, with g/2 ≤ L′ ≤ kg/2, for some integer k ≥ 2,
that begins at a fixed vertex v. Then the probability that

(i) in the first g/2 steps the walk leaves the g/d-ball around v, and
(ii) the walk never returns to this g/d-ball in subsequent steps

is at least 1 − 6ke−Ω(g). In particular, if g = Ω(logd−1 n) then the probability
that (i) and (ii) both hold is at least 1− 6kn−Ω(1)/ log(d−1).

The proofs of these lemmas can be found in the full version of the paper [9]. We
proceed to the proof of Theorem 2.

Proof of Theorem 2. Recall the setting of Theorem 2: we have a d-regular Ra-
manujan graph G on n vertices whose girth is g ≥ 2

3 logd−1 n. We fix a master
tour of G and uniformly sample an L-step random walk W, where L = 70g. We
want to show that for every i = 1, 2, . . . , g/2 we have

Pr
[
δ
(
τ(W(i)), τ(Wsucc(i))

)
>

2
3d

logd−1 n

]
= Ω(1).

Fix, then, some i ∈ {1, . . . , g/2}. We can regard W as two independent random
walks w1, w2 that both begin at τ(W(i)), i.e. w1(1) = w2(1) = W(i). See Fig.
1. Note that τ(W(i)) is uniformly sampled from V since W itself is a uniformly
sampled walk. Let L1, L2 be the number of steps of w1 and w2, respectively.
Since i ≤ g/2 we know that L1 ≤ g/2 and 139

2 g ≤ L2 ≤ 70g.
First we apply Lemma 1 to w1 (with k = g/2) and then once again to the

first g/2 steps of w2. Observe that this requires choosing d large enough so that

g/d

τ(W(i))

Fig. 1. The g/d-ball centered at τ (W(i)). The walk w1 is drawn to the left of τ (W(i))
and the much longer walk w2 is drawn to the right. Note that W(i) = w1(1) = w2(1).
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|λi(G)| ≤ .05 for i ≥ 2, which is possible since G is a Ramanujan graph (recall
inequality (3.1)). Now, combining these two applications of Lemma 1 with the
union bound, we find that with probability at least 1/2 both of the following
events hold:

(i) w1 doesn’t encounter any of the �n/(16g)� indices that follow w1(1);
(ii) in its first g/2 steps, w2 doesn’t encounter these indices either.

Now, we apply Lemma 2 to the walk w2 (use k = 140), and choose n large
enough so that the probability of the two events

(iii) in its first g/2 steps, w2 leaves the g/d-ball around τ(W(i)), and
(iv) w2 never returns to this g/d-ball in subsequent steps

is at least 9/10. Putting it all together via the union bound, we find that all four
of the events (i)− (iv) hold with probability at least 1−1/2−1/10 = 2/5. Next,
note that there are at least 69g steps left in w2 after the first g/2. We claim that
with probability 4/5,

(v) one of the last 64g steps of w2 contains one of the �n/(16g)� indices that
follow w2(1) = W(i).
This claim will complete the proof: if event (v) holds along with events (i)− (iv)
(which happens with probability at least 1 − 3/5 − 1/5 = 1/5 by the union
bound) then Wsucc(i), which is the next-largest (modulo n) index in W after
W(i), must be one of the �n/(16g)� indices that follow W(i). But none of these
indices are encountered by W inside the g/d-ball around τ(W(i)), which implies
δ
(
τ(W(i)), τ(Wsucc(i))

)
> 2

3d logd−1 n.
The claim about (v) is motivated by the following intuition. Because our

graph is a strong expander, w2 rapidly mixes in its first 11
2 g steps. Therefore the

last 64g steps approximate a stationary random walk on G. Since the indices
that follow w2(1) are a (16g)−1-fraction of the vertices and stationary random
walks resemble independent sampling, we would expect a 64g-step, almost sta-
tionary random walk to hit this index set with large probability. This argument
is formalized in the full version of the paper [9] and relies on a lemma from [8].�

4 Universal TSP Bound Implies a priori TSP Bound

Using a framework for abstract optimization (similar to [14], [11] for, respectively,
universal and stochastic optimization) we show how to convert universal lower
bounds into matching a priori lower bounds on deterministic algorithms for a
large and natural class of optimization problems that contains TSP. In order to
be applicable to the TSP, our definitions describe minimization problems, but
analogous definitions and results hold for maximization problems.

Abstract optimization problems. An abstract combinatorial optimization prob-
lem is a triple Π = (X, c, M) where X is a universe of clients and c, M are
functions defined as follows.1 With each S ⊆ X we associate a collection of
1 Regard c and M as polynomial-time algorithms that are part of the description of

Π in the form of a Turing machine encoding.
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feasible solutions that we denote sol(S). The function c is a cost function that
maps, for every S ⊆ X , solutions in sol(S) to R. The function M is a restric-
tion map that given S′ ⊆ S and F ∈ sol(S) outputs a feasible solution for S′:
M(F, S′) ∈ sol(S′). When S = X with F ∈ sol(X), we will use the notation
F |S′ for M(F, S′), and say that F |S′ is the master solution F restricted to S′,
or that F |S′ is the solution for S′ induced by F .

Given S ⊆ X we use opt(S) to denote a feasible solution for S of minimum
cost. The classical version of Π specifies S ⊆ X and asks to produce F ∈ sol(S)
of minimum cost. The universal version of Π asks for F ∈ sol(X) that minimizes
the competitive ratio

ρ(X, F ) = max
S⊆X

c(F |S)
c(opt(S))

.

We write ρ(Π) for the competitive ratio of Π

ρ(Π) = min
F∈sol(X)

(
max
S⊆X

c(F |S)
c(opt(S))

)
and use the notation optu(X) for a solution that is optimal with respect to this
universal objective, i.e. for which ρ(X, optu(X)) = ρ(Π).

In the a priori version of Π , there is a distribution D on subsets of X . The
a priori objective is to return F ∈ sol(X) that minimizes ED[F |S ]. We denote
a solution optimal with respect to this objective by optap(X, D), so that if p(S)
is the probability given to S ⊆ X by D, then

c(optap(X, D)) = min
F∈sol(X)

∑
S⊆X

c(F |S)p(S).

We will focus on the black-box model of a priori optimization in which no in-
formation about D is part of the input describing the a priori version of Π ,
but an algorithm may sample subsets of X according to D from a black box in
polynomial time.

Notice that the definitions in this section generalize the content of Section 2:
in the case of TSP, X is a set of points, feasible solutions to S ⊆ X are total
orderings of S, the cost function c encodes the metric on X , and M restricts
tours by shortcutting.

Approximate solutions to a priori problems. There are two key definitions of
approximate a priori solutions that feature in the literature. Given the a priori
optimization problem (Π, D), an algorithm A is a hard β-approximation if A
runs in polynomial time (in the description of Π), makes polynomially-many
black-box queries, and produces a solution F ∈ sol(X) such that

Pr
[

ED[F |S ]
ED[optap(X, D)|S ]

≤ β

]
>

1
2

(4.1)

where the probability is over the black-box output as well random choices made
by A.
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We say that an algorithm A is a soft β-approximation if A runs in polynomial
time, makes polynomially-many black-box queries, and produces a solution F ∈
sol(X) such that

E

[
ED[F |S ]

ED[optap(X, D)|S ]

]
≤ β. (4.2)

The expectation is over the black-box output as well as choices made by A.
Notice that, via Markov’s inequality, any soft β-approximation to an a priori

minimization problem is a hard 2β-approximation.
We say that A is a deterministic hard or soft β-approximation if it is de-

terministic in the black-box output. In this case the outermost probability in
inequality (4.1) and the outermost expectation in inequality (4.2) depend only
on the black-box output. On the other hand, we may explicitly say that A is
randomized when we want to stress this fact.

Worst-case bounds to average-case bounds. In this section we show how to con-
vert universal lower bounds into a priori lower bounds on deterministic hard
approximations for a certain class of optimization problems.

Our result applies to the class of optimization problems Π = (X, c, M) that
satisfy three properties:

• Non-negative costs : For all S ⊆ X , c(F ) ≥ 0 for every F ∈ sol(S).
• Trivial set : There exists a (possibly empty) trivial T ⊆ X such that

c(F |T ) = 0 for all F ∈ sol(X).
• Optimal sub-solutions are recoverable: For any S ⊆ X there exists some

F ∈ sol(X) such that M maps F to F ′ ∈ sol(S) with c(F ′) = c(opt(S)).

Problems satisfying these axioms will be called regular. The reader can verify
that TSP is a regular problem. It is easy to see that most of the examples given
in [5] are regular, including Steiner Tree and Max Cut.

Theorem 3. If Π is a regular minimization problem with competitive ratio
ρ(Π) ≥ γ then no deterministic hard approximation for the a priori version
of Π can have approximation ratio better than γ.

Proof. We prove the contrapositive: if there exists a deterministic hard β-
approximation algorithm A for the a priori version of Π then ρ(Π) ≤ β. Since
A is a hard β-approximation, there exists α < 1/2 such that

Pr
[

ED[F |S ]
ED[optap(X, D)|S ]

≤ β

]
≥ 1− α. (4.3)

Let f(|Π |) be the number of black-box samples queried by A. Choose δ > 0
sufficiently small so that 1− α− δ > 0 and set k = �log (f(|Π |)/δ)� so that(

1− 1
2k

)f(|Π|)
≥ 1− f(|Π |)

2k
≥ 1− δ. (4.4)
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Let T be a trivial subset (as in the definition of a regular optimization problem).
Since A is deterministic, when it observes problem instance Π and f(|Π |) sam-
ples which are each T , it must return some specific F̂ ∈ sol(X). We claim that
with probability at least 1 − δ − α > 0, F̂ has competitive ratio ρ(X, F̂ ) ≤ β.
Proving this claim will imply ρ(X) ≤ β and complete the proof.

To prove the claim, construct an instance of a priori Π by defining a distri-
bution D as follows: choose R ⊆ X that maximizes c(F̂ |R)

c(opt(R)) , i.e. that achieves

ρ(X, F̂ ), and set

PrD[S] =

{
1− 1

2k if S = T
1
2k if S = R.

We have chosen k so that when we run A on (Π, D) the probability that the
black-box queries made by A return a non-T subset is at most δ (see inequal-
ity (4.4)). Therefore, when we run A on (Π, D) it follows from the union bound
(and the fact that A is a hard β-approximation) that the following happens with
probability at least 1 − δ − α > 0: the collection of black-box samples contains
no non-T subset, and A produces a β-approximate solution.

What are the consequences of this event? Since each sample observed is T ,
and the problem instance is Π , A must return F̂ (since A is deterministic). Let
optap(X, D) denote the optimal a priori solution in the instance (Π, D). Since
A gave a β-approximate solution in this case, we have (cf. inequality 4.3)

ED[c(F̂ |S)] ≤ β ED[c(optap(X, D)|S)

=⇒Pr(S = T ) · 0 + Pr(S = R)c(F̂ |R) ≤
β
(
Pr(S = T ) · 0 + Pr(S = R)c(optap(X, D)|R)

)
=⇒c(F̂ |R) ≤ βc(optap(X, D)|R).

Consider optap(X, D)|R: all tours perform the same on the active set T (by the
second regularity axiom), so optap(X, D) is any solution in sol(X) which has
minimal cost when restricted to a solution on R via M , i.e. c(optap(X, D)|R) =
c(opt(R)). Note that such a master solution must exist since Π is regular, hence
optimal sub-solutions are recoverable.

We conclude that c(F̂ |R) ≤ βc(opt(R)), so that c(F̂ |R)/c(opt(R)) ≤ β. Since
we chose R to maximize this ratio, the bound holds for every Q ⊆ X :

c(F̂ |Q)
c(opt(Q))

≤ β.

Thus, with probability at least 1− δ−α > 0, the master solution F̂ has compet-
itive ratio β for the universal version of Π . In particular, there exists a master
solution for universal Π with this competitive ratio, hence ρ(Π) ≤ β.

Combining Theorem 3 with our lower bound on the competitive ratio for uni-
versal TSP (Theorem 1), we immediately get the following corollary.

Corollary 1. No deterministic (hard or soft) approximation algorithm for a
priori TSP has approximation ratio o(log n).
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Deterministic vs. randomized approximations. We can use Theorem 3 to trans-
late universal lower bounds into lower bounds on deterministic a priori approx-
imations for other regular optimization problems. Applying the theorem to the
Steiner Tree problem illustrates that randomized a priori approximations can
sometimes perform dramatically better than deterministic ones.

In the a priori Steiner Tree problem, we have a graph G = (V, E) and a
distribution D over 2V . A feasible solution for U ⊆ V is a subtree of G that
spans U . The solution induced by U ′ ⊆ U and some T ∈ sol(U) is the smallest
connected subtree of T that spans U ′. The a priori objective is to minimize the
expected cost of the induced subtree. To bound the competitive ratio of universal
Steiner tree, let G be the n-cycle with all edges of unit length. A master solution
T is a spanning tree of G, hence is simply G with some edge (u, v) omitted.
Setting U = {u, v}, the sub-solution on U induced by T has length n − 1, but
the optimal solution on U has length 1. Thus the competitive ratio of any master
solution is Ω(n).

A randomized algorithm can do much better: simply sample a tree-metric ap-
proximation of the shortest-path metric on G using the algorithm of Fakcharoen-
phol, Rao & Talwar [7]. Since the expected distortion is O(log n), this random-
ized (distribution-free!) algorithm achieves a soft approximation of O(log n) (the
analysis is identical to the proof of Corollary 4 in [19]).

Corollary 2. No deterministic (hard or soft) approximation algorithm for a
priori Steiner Tree has approximation ratio o(n), whereas there exists a random-
ized, distribution-free soft O(log n)-approximation.

Returning briefly to TSP, Schalekamp & Shmoys give in [19] a randomized soft
O(log)-approximation algorithm for a priori TSP that is distribution-free. Corol-
lary 1 shows that no polynomial number of black-box samples can help a deter-
ministic algorithm asymptotically beat this randomized approximation guaran-
tee. In the independent activation case of a priori TSP, Shmoys & Talwar give
in [20] a deterministic soft 4-approximation which relies on a single black-box
sample. Our results show that without the assumption of independence, no poly-
nomial number of samples is enough to help a deterministic algorithm achieve a
o(log n) approximation ratio.

5 Open Problems

Though we have proved a general lower bound of Ω(log n) for the universal TSP,
the conjecture of Bertsimas & Grigni [4] that this bound holds even for finite sub-
sets of the plane remains open. The best known algorithm for the universal TSP
(Gupta, Hajiaghayi & Räcke [10]) produces, for an arbitrary metric space (X, δ)
on n points, a master tour τ with ρ(X, δ, τ) = O(log2 n). Is either bound tight? In
[14], Jia et al. give an algorithm that produces τ with ρ(X, δ, τ) = O(log n) when
(X, δ) is a constant-dimension Euclidean or bounded-growth metric. Schalekamp
& Shmoys observe in [19] that a straightforward application of the tree-metric
embedding scheme of Fakcharoenphol et al. [7] gives a randomized algorithm
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that produces a master tour whose expected competitive ratio for any fixed
S ⊆ X is O(log n). We conjecture that this expected guarantee for a fixed S can
be matched by a deterministic guarantee for all S.

Conjecture 1. There is a deterministic, polynomial-time algorithm that, given a
metric space (X, δ) with |X | = n, produces τ with ρ(X, δ, τ) = O(log n).
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Abstract. We introduce a new problem in the study of doubling spaces:
Given a point set S and a target dimension d∗, remove from S the fewest
number of points so that the remaining set has doubling dimension at
most d∗. We present a bicriteria approximation for this problem, and
extend this algorithm to solve a group of proximity problems.

1 Introduction

In the last few years, researchers have increasingly made use of the doubling
dimension in the design of algorithms. Analyzing algorithmic tasks via the dou-
bling dimension is natural for proximity problems such as nearest neighbor
search [KL04, BKL06, CG06b] and clustering [Tal04, ABS08, FM10], and for
graph problems such as spanner construction [GGN06, CG06a, DPP06, GR08a,
GR08b], the traveling salesman problem [Tal04], and routing [KSW04, Sli05,
AGGM06, KRXY07, KRX08]. The doubling dimension has proved to be a power-
ful tool in embeddings [Ass83, GKL03, ABN07, ABN08, CGT08, BRS07, GK09]
and has found applications in fields such as machine learning [BLL09, GKK10].
Interestingly, the problem of computing the exact doubling dimension of a point
set is NP-hard. (This result seems to be folklore.) Yet this fact has not deterred
the development of algorithms that are based on the doubling dimension, partly
because it can be approximated within a constant factor, and partly because
many of these algorithms function without explicit knowledge of the doubling
dimension – it appears only in the analysis.

However, a host of algorithms previously developed for doubling dimension –
perhaps even the majority of them – suffer from a more serious problem: They
are not robust to severe yet infrequent irregularities in the space. The guarantees
provided by these algorithms are markedly degraded even if only a small subset
of the working set possesses high doubling dimension. This problem was noted
for example by [CG08] who instead defined a global notion of dimension (which
can be thought of as the average doubling dimension over the set) and developed
an algorithm under this new definition.

We pursue a different approach. We introduce the following key problem:
Given an n-point set S and a target dimension d∗, remove from S the fewest
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number of points so that the remaining set has doubling dimension at most
d∗ (or equivalently, target doubling constant λ∗ = 2d∗

). We thus call a data
set nearly-doubling if all but a negligible fraction of the points have bounded
doubling dimension.

A solution to this point removal problem yields a contribution in two related
areas. The first paradigm, broadly speaking, is outlier detection. In this scenario,
the removed points are ignored and only the remaining points are processed. A
direct motivation for this model stems from the dimension induced clustering
framework of [GHPT05], which given a point set seeks a subset with low intrinsic
dimension. Further motivation stems from algorithms which have “slack”; that
is, they give guarantees for most but not all of the point set [KRXY07, FM10].
These algorithm can be extended to nearly-doubling data sets by simply ignoring
the removed points (i.e. throwing them into the slack). The second paradigm
is an original one: Here, both the removed points and the remaining ones are
processed, albeit by separate algorithms tailored to the properties of the two
point sets.

Results. The point removal problem is NP-hard, and it is not difficult to show
that the problem does not admit even an approximate multiplicative-factor so-
lution (see Lemma 1). However, we develop a framework that yields a bicriteria
approximation for this problem. In Section 3, we present bicriteria algorithms
that achieve the following bounds:

1. In time 2O(d∗)n3, we remove a number of points arbitrarily close to optimal,
while achieving doubling dimension 4d∗ + O(1) (Corollary 1).

2. In time 2O(d∗)n log α (where α is the aspect ratio of S), we remove a number
of points arbitrarily close to optimal, while achieving doubling dimension
10d∗ + O(1) (Corollary 2).

3. In time 2O(d∗)n log3 n, we remove a number of points arbitrarily close to
optimal, while achieving doubling dimension 12d∗ + O(1) (Corollary 2).

Returning to the first paradigm presented above, our algorithms solve the clus-
tering problem posed by [GHPT05]. (They provided heuristic solutions to this
question.) In Section 4, we present algorithms that function under the second
paradigm delineated above: These algorithms process the removed points and
the remaining ones with separate techniques tailored to the properties of the
two point sets. When the data set is nearly-doubling, or more precisely, when all
but at most square root of the points have bounded doubling dimension, we give
near-linear time algorithms for constructing (1 + ε)-stretch spanners, approxi-
mate minimum spanning trees, O(1)-query time distance oracles, and calculating
approximate all points nearest neighbor.

2 Preliminaries

In this section we define doubling dimension, and present some basic hardness
results. We then review point hierarchies for doubling spaces.
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Doubling dimension. For a metric (X, d), let λ be the infimum value such that
every closed ball in X can be covered by λ closed balls of half the radius, where
a ball is centered at a point of the metric. λ is the doubling constant of X , and
the doubling dimension of X is dim(X) = log2 λ. A metric is doubling when its
doubling dimension is finite. It is a folklore result that determining the doubling
constant (and dimension) of a point set is an NP-hard problem. We formalize
this result below.

Lemma 1. Given a metric (S, d), computing the doubling constant of S is
NP-hard.

Proof. The proof is a reduction from vertex cover with bounded degree Δ [PY91].
Let G = (V, E) be an input instance of vertex cover with degree Δ <

√
|V |. Note

that the size of any vertex cover of G must be greater than
√
|V |. Create a set

S containing |V | points, each corresponding to a vertex in V . Let d(u, v) = 1
2

for u, v ∈ S if the corresponding vertices have an edge in E, and let d(u, v) = 1
otherwise. The radius of S is 1.

Now, any subset of S found in a closed ball of radius 1
2 contains fewer than√

|V | points (since the degree of V is less than
√
|V |), so the doubling constant

of the subset is less than
√
|V |. However, the minimum covering of all of S by

closed balls of radius 1
2 is equivalent to the minimum vertex cover of V , which is

necessarily greater than
√
|V |. It follows that determining the doubling constant

of S is equivalent to determining the minimum vertex cover of V .

Note that the above reduction preserves hardness of approximation: It is NP-
hard to determine the doubling constant of a metric within a factor 16

15 − ε
(see [Cle99]). This problem does admit an approximation – for example, a 2-
approximation to the doubling dimension (equivalently, the square of the dou-
bling constant) can be determined by the algorithm of Lemma 3 (see also [HM05,
Theorem 9.1]).

A further consequence of Lemma 1 is that the problem of removing the min-
imum number of points from a set S in order to obtain a set S′ with some
target doubling constant does not admit a multiplicative-factor approximation
algorithm: That is, it is NP-hard to distinguish the case where no points need
be removed, from the case that one point must be removed.

Point hierarchies. Here, we define hierarchical partitions and describe three
different partitions that have appeared in the literature and will be utilized in
this paper.

Similar to what was described in [GGN06, KL04], a subset of points X ⊆ Y
is an (r, s)-discrete center set (or net in the terminology of [KL04]) of Y (r ≤ s)
if it satisfies the following properties:

(i) Packing: For every x, y ∈ X , d(x, y) > r.
(ii) Covering: Every point y ∈ Y is strictly within distance s of some point

x ∈ X : d(x, y) ≤ s.
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We say that x covers y if x ∈ X , y ∈ Y and d(x, y) ≤ s. The previous conditions
require that the points of X be spaced out, yet nevertheless cover all points of Y .
A hierarchical partition for a set S is a hierarchy of discrete center sets, where
each level of the hierarchy is a discrete center set of the level beneath it. The
bottom level contains all points, and the top level contains only a single point.
(For ease of presentation, we assume that the minimum inter-point distance in
S is 1.)

The first hierarchy we describe is that of [KL04]. The hierarchy is composed of
levels H2i (for integer i = 0, . . .), where each level H2i (i > 0) is a (2i, 2i)-discrete
center set for the previous level H2i−1 . (The subscript in the notation of the level
indicates that the packing and covering properties of subsequent levels grow by
a factor of 2.) The bottom level of the hierarchy is the set Y20=1 = S, and the
top level is the set Y2�log α� that contains only a single point. The construction
supports insertions and deletions to the hierarchy in time 2O(log λ) log α. (Recall
that α is the aspect ratio of S.)

The second hierarchy is that of [GR08a]. This hierarchy is similar to that of
[KL04], but level H2i is a (1

22i, 2i)-discrete center set for H2i−1 . This hierarchy
supports insertions and deletions in 2O(log λ) log n amortized time. Hence, a series
of n insertions and deletions can be done deterministically in 2O(log λ)n log n time.

The third hierarchy is that of [CG06b]. In this hierarchy, level H5i is a
(1
55i, 3

55i)-discrete center set for H5i−1 . (The packing and covering properties
of subsequent levels grow by a factor of 5.) The hierarchy supports insertions in
time 2O(log λ) log n, though points cannot be removed from within the hierarchy.
(A static hierarchy with similar construction time was also presented in [HM06].)

On top of these hierarchies, we define a parent-child relationship: Point y ∈
H2i (or H5i) is the child of one of the points in H2i+1 (or H5i) that covers y.
This immediately defines an ancestral relationship as well.

3 Point Removal Algorithm

In this section, we present the bicriteria algorithm for the problem of removing
points to obtain a target doubling constant. The construction, presented below,
proceeds roughly as follows: We formulate the notion of a “bad” witness set,
which can be found efficiently and exists if and only if the doubling constant is
too large (to within some constant factors). Given this setup, the algorithms is
greedy: Repeatedly find such a witness set and remove it entirely.

We first define the density constant (in Section 3.1), and explain the existence
of witness sets for the density constant. We show that it is NP-hard to locate
a maximum witness set, but we are able to give an approximation algorithm
for locating witness sets. In Section 3.2, we use this approximation algorithm
for witness sets to develop a bicriteria point removal algorithm for achieving
a target density constant. This bicriteria algorithm in turn yields a bicriteria
point removal algorithm for achieving a target doubling constant. Finally, in
Section 3.3, we show how to improve the runtime of the two bicriteria algorithms.
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3.1 Density Constant and Witness Sets

Let a closed ball B(x, r) ∈ S be centered at point x and include all points of set
S within distance r of x. We define the density constant μ(S) of point set S as
follows: μ(S) is the smallest number such that every open r-radius ball of S (for
every r) contains at most μ(S) points of mutual inter-point distance greater than
r/2. Clearly the doubling constant cannot be greater than the density constant.
Further, the density constant is not greater than the square of the doubling
constant (since μ(S) balls of radius r

4 are required to cover these points). It
follows that √

μ(S) ≤ λ(S) ≤ μ(S).

Now, we consider the following point removal problem: Given a point set S and a
target density constant μ∗ ≤ μ(S), remove the minimum number of points from
S to obtain a set S∗ with density constant μ∗. (This problem can serve as a
proxy for the problem of removing points to obtain a target doubling constant.)
However, we demonstrate in Lemma 2 below that the problem of determining
the density constant of a point set S is NP-hard. An immediate consequence of
Lemma 2 is that the point removal problem to achieve a target density constant
is NP-hard.

Lemma 2. Given a point set S, the problem of determining the density constant
of S is NP-hard.

Proof. The proof is a reduction from the maximum independent set problem with
bounded degree Δ [PY91]. Let G = (V, E) be an input instance of the max
independent set problem with degree Δ <

√
|V |. Note that the size of any maxi-

mal independent set for G is greater than
√
|V |. Create a set S containing |V |

points, each corresponding to a vertex in V . Let d(u, v) = 1
2 + ε for u, v ∈ S

(and an infinitely small ε) if the corresponding vertices have an edge in E, and
let d(u, v) = 1 otherwise. The radius of S is 1.

Now, any subset of S found in a closed ball of radius 1
2 +ε contains fewer than√

|V | points (since the degree of V is less than
√
|V |), so the density constant of

any subset of points of S that all fall in a ball of radius 1
2 +ε and have inter-point

distance greater than 1
4 + ε

2 is less than
√
|V |. However, the maximum number of

points in all of S with inter-point distance greater than 1
2 is necessarily greater

than
√
|V |. It follows that determining the density constant of S is equivalent

to determining the maximum independent set in V .

As an aside, note that the reduction preserves hardness of approximation: It is
NP-hard to approximate the density constant of a point set S within a factor of
|S| 12−ε (this follows easily from [Has96]).

It follows from Lemma 2 that the point removal problem to achieve a tar-
get density constant is NP-hard. Further, this problem does not even admit a
multiplicative-factor approximation algorithm: It is NP-hard to distinguish the
case where no points need be removed, from the case that one point must be
removed. However, we can approximate the density constant of a point set, as
in Lemma 3 below. We will first require a definition.
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Definition 1. Given a point set S, a witness set S′ ⊂ S is a set of points
contained in a closed ball of radius r with mutual inter-point distance greater
than r

2 .

Comment. Note that the existence of a witness set S′ ⊂ S implies that μ(S) ≥
|S′|. The notion of a witness set exists for the density constant, but a similar
notion does not exist for the doubling constant. That is, the addition of points to
a set S with doubling constant λ(S) may in fact result in a set with somewhat
lower doubling constant than λ(S). This motivates our decision to define the
density constant.

Lemma 3. Given an n-point set S with minimum inter-point distance 1, there ex-
ists an O(2O(log μ(S))n3) time algorithm that locates a witness set of size �

√
μ(S)�.

Proof. Note that there are O(n2) inter-point distances in S, so there exist O(n2)
distinct balls of S, each of size O(n). For each ball B(x ∈ S, r), we greedily
build the point hierarchy of [KL04] consisting of four radii levels {r, r

2 , r
4 , 1},

where level r contains only one point, and level 1 contains all points. This can
be done in time 2O(log μ)n per ball (where μ = μ(S)), yielding a total runtime of
O(2O(log μ)n3).

Now there must exist in S a point set S′ of size exactly μ with radius r and
minimum inter-point distance greater than r/2, for some r. In the hierarchy for
the ball that contains S′ (and possibly contains other points as well), one of the
following must hold:

(i) Level r
2 contains at least �√μ� points; it follows that these points are con-

tained in a ball of radius r and have minimum inter-point distance greater
than r

2 , so that they are a witness set. Or,
(ii) Level r

2 contains fewer than �√μ� points. Now, since the μ points of S′ have
minimum distance r

2 , they must be covered by distinct points of level r
4 , so

there must exist more than μ points in level r
4 . It follows that some point of

level r
2 covers more than

√
μ points of level r

4 . These points have minimum
inter-point distance greater than r

4 and are found in a set of radius less than
r
2 , so they are a witness set.

Comment. As an aside, note that the algorithm of Lemma 3 yields a
2-approximation to the doubling dimension of S.

Lemma 3 shows that the density constant can be approximated. In the next
section, we will use this tool to develop a bicriteria algorithm for the problem of
removing points to obtain a target density constant. This will in turn allow us
to develop a bicriteria algorithm for the problem of removing points to obtain
a target doubling constant. However, for the purposes of efficient algorithmic
runtime, we need to introduce a slightly stronger variant of Lemma 3, as follows:

Lemma 4. Given an n-point set S with minimum inter-point distance 1 and a
parameter μ′ ≤ μ(S), there exists an O(2O(log μ′)n3) time algorithm that locates
a maximal collection of distinct witness sets each of size �

√
μ′�.
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Proof. The construction is similar to the one presented in the proof of Lemma 3.
We identify all O(n2) balls, and for each ball B(x, r) we build its hierarchy one
point at a time. If the insertion of a point into the hierarchy of B(x, r) implies
a witness set of size �

√
μ′� – that is, either level r

2 contains �
√

μ′� points, or
a point of level r

2 covers �
√

μ′� points – then we output the witness set as an
element of the collection, and delete the points of this witness set from all ball
hierarchies. We then repair the hierarchies (as usual after a deletion, see [KL04])
and resume the hierarchy construction. The removal of the witness set points
and subsequent repair of the hierarchies do not increase the runtime.

3.2 Bicriteria Algorithm

Given Lemma 4, we prove the following theorem, which is a bicriteria algorithm
for the problem of removing points to achieve a target density constant. A corol-
lary of this theorem gives a bicriteria algorithm for the problem of removing
points to achieve a target doubling constant.

Theorem 1. Given a point set S with density constant μ(S) and a target density
constant μ∗, let k∗ = k∗(S, μ∗) be the minimum number of points that must be
removed from S to obtain a set S∗ with density constant μ∗. Then there exists a
2O(log μ∗)n3 time algorithm that removes k′ ≤ cμ∗+1

(c−1)μ∗+1 · k∗ points from S (for
any desired c ≥ 1), and yields a point set S′ with density constant μ(S′) ≤ (cμ∗)2.

Proof. We first prove the theorem for c = 1. We run the algorithm of Lemma 3
to find a collection of distinct witness sets of size exactly μ∗ + 1. Remove these
sets from S. It follows that the resulting set S′ has density constant at most
(μ∗)2. Now, in the optimal solution S∗, at least one of the points in each witness
set must be removed. Hence, the algorithm removes k′ ≤ (μ∗ + 1)k∗ points.

Turning to c > 1, we run the algorithm of Lemma 3 to find a collection
of distinct witness sets of size exactly cμ∗ + 1. Remove these sets from S. It
follows that the resulting set S′ has density constant at most (cμ∗)2. Now, if
our algorithm has removed a witness set of size m, then in the optimal solution
at least m − μ∗ of these points must have been removed. It follows that the
algorithm removes k′ ≤ cμ∗+1

cμ∗+1−μ∗ k∗ = cμ∗+1
(c−1)μ∗+1 · k∗ points from S.

This algorithm for the density constant implies a similar one for the doubling
constant:

Corollary 1. Given a point set S with doubling constant λ(S) and a target
doubling constant λ∗, let m∗ = m∗(S, λ∗) be the minimum number of points that
must be removed from S to obtain a set S∗ with doubling constant λ∗. Then there
exists an 2O(log λ∗)n3 time algorithm that removes m′ ≤ c(λ∗)2+1

(c−1)(λ∗)2+1 ·m∗ points
from S (for any desired c ≥ 1), and yields a point set S′ with doubling constant
λ(S′) ≤ (c(λ∗)2)2.

Proof. The proof follows from Theorem 1 with μ∗ = (λ∗)2.
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3.3 Improved Run Time

While the bicriteria algorithms implied by Theorem 1 and Corollary 1 provide
a powerful tradeoff for the two point removal problems, the algorithmic runtime
may be undesirable for some applications. Here we present bicriteria algorithms
that feature near-linear runtime at the expense of slightly higher dimension.

Theorem 2. Given a point set S with density constant μ(S) and a target density
constant μ∗, let k∗ = k∗(S, μ∗) be the minimum number of points that must be
removed from S to obtain a set S∗ with density constant μ∗. Then there exists

(i) An algorithm that runs in 2O(log μ∗)n log α time that removes k′ ≤ cμ∗+1
(c−1)μ∗+1 ·

k∗ points from S (for any desired c ≥ 1), and yields a point set S′ with density
constant μ(S′) ≤ (cμ∗)5.

(ii) An algorithm that runs in 2O(log μ∗)n log3 n time that removes k′ ≤ cμ∗+1
(c−1)μ∗+1 ·

k∗ points from S (for any desired c ≥ 1), and yields a point set S′ with den-
sity constant μ(S′) ≤ (cμ∗)6.

Proof. We begin by building the hierarchy of [KL04] for S, inserting one point
at a time. Now, if a point insertion causes a point of level H2i to possess more
than (cμ∗)5 neighbors in H2i within distance 32 · 2i, then we can find a witness
set: By building a hierarchy for just the neighbor set on distances {32 · 2i, 16 ·
2i, 8 · 2i, 4 · 2i, 2 · 2i, 2i}, we locate in the neighbor set some witness set of size at
least cμ∗. (That is, some point in the neighbor set hierarchy must cover cμ∗ + 1
points one level down, and these points form a witness set for S.) As before, the
points of the witness set are then deleted from the hierarchy of S. The algorithm
terminates with set S′ when no more witness sets can be found. This can all
be be done in O(2O(log μ∗)n log α) time. The analysis for optimality of removed
points is the same as above.

It is only left to show that the resulting set cannot have density constant
greater than (cμ∗)5: Suppose in contradiction that S′ contained a witness set of
size greater than (cμ∗)5 with diameter r and minimum inter-point distance r

2 .
Now, each point of the witness set appears in H1, the bottom level of the full
hierarchy, and a geometric series gives that the distance between each point and
its ancestor in level H2i is less than 2i+1. Hence, the distance between the level
Hi ancestors of two different points of the witness set is greater than r

2 − 2i+2

and less than r + 2i+2. Now let j be the index for which r ≥ 2j > r
2 . Let

i = j − 3, so that the distance between the ancestors of two points is greater
than r

2 − 2j−1 ≥ 0 (and so at least 2i) and less than r + 2j−1 ≥ 20 · 2i. This
contradicts the assumption that there does not exist in the hierarchy a set of
more than (cμ)5 points within radius 32·2i and minimum inter-point distance 2i.

The runtime of 2O(log μ∗)n log3 n can be achieved by using the hierarchy of
[GR08a] instead of the hierarchy of [KL04]. (Note however that the semi-dynamic
hierarchy of [CG06b] or the static hierarchy of [HM05] are not sufficient for our
purposes.) The analysis is similar.
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This above point removal algorithm for the density constant implies a similar
one for the doubling constant:

Corollary 2. Given a point set S with doubling constant λ(S) and a target
doubling constant λ∗, let m∗ = m∗(S, λ∗) be the minimum number of points that
must be removed from S to obtain a set S∗ with doubling constant λ∗. Then there
exists

(i) An algorithm that runs in 2O(log λ)n log α time that removes m′ ≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·

m∗ points from S (for any desired c ≥ 1), and yields a point set S′ with doubling
constant λ(S′) ≤ (c(λ∗)2)5.

(ii) An algorithm that runs in 2O(log λ)n log3 n time that removes m′≤ c(λ∗)2+1
(c−1)(λ∗)2+1 ·

m∗ points from S (for any desired c ≥ 1), and yields a point set S′ with doubling
constant λ(S′) ≤ (c(λ∗)2)6.

4 Applications

The algorithms of Section 3 are given a point set S, and remove from S a set R,
resulting in a set S′ = S−R of low doubling constant (λ∗)O(1). If |R| = O(n1/2)
(that is, S is nearly-doubling), we can use techniques from [GR08b, BGK+10] to
construct near-linear runtime algorithms for spanners and fast distance oracles.

We first review the spanner of [GR08b] in Section 4.1, and then present the
near-linear algorithms in Section 4.2

4.1 Spanner Review

We review the (1 + ε)-stretch spanner presented in [GR08b] (which itself draws
on the work of [GGN06]). This spanner is constructed as follows: Given a point
set S, the point hierarchy of [CG06b] is constructed for S. First, all parent-
child pairs in the hierarchy are connected by edges in the spanner; these are the
parent-child edges. Next, we add edges to connect all point pairs p, q ∈ H5i (for
all i) if p and q are c-neighbors, that is if d(p, q) ≤ c5i for some fixed constant
c = Θ(1/ε). These are the lateral edges. Notice that the lateral edges of level H5i

are much longer than the parent-child edges of that level (by a factor of θ(1/ε)).
The entire construction can be done in time 2O(log λ(S)) log n + ε−O(log λ(S)).

It was shown in [GR08b] that given two points p, q ∈ S, there exists a simple
spanner path that connects p and q and has stretch at most (1 + ε). Let p′, q′ ∈
H5j be the lowest ancestral c-neighbors of p and q. (That is, j is the smallest
index for which p′ and q′, the respective ancestors of p and q in H5j , are c-
neighbors.) The low stretch spanner path is the path that begins at p, follows a
series of parent-child edges up to p′, a single lateral edge to q′, and a series of
parent-child edges down to q. The length of the path is dominated by the length
of the single lateral edge: The length of the lateral edge is Θ(5j/ε), while the
length of all other edges in the path are bounded by two geometric series that
each sum to O(5j). This implies a (1 + ε)-stretch spanner path for the pair p, q.
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4.2 Near Linear Algorithms

In this section we present near-linear algorithms for nearly-doubling spaces. We
have the following theorem:

Theorem 3. There exists an algorithm that, given point sets S′ and R (|R| =
O(

√
|S′|)), builds a (1 + ε)-stretch spanner for S = S′ ∪ R (n = |S|) with

ε−O(log λ∗)n edges in 2O(log λ∗)n log n + ε−O(log λ∗)n time.

Proof. We first construct the full graph for R, which is a 1-stretch spanner of
O(n) edges for these points. We then construct a (1 + ε) spanner for S′ in the
manner described above. It is left only to guarantee (1 + ε) stretch between
the points of S′ and R. To this end, for each point p ∈ R we locate the lowest
hierarchical level H2i of S′ in which p is covered, and connect p to its covering
point with a parent-child edge, and to all points of levels H2i and below within
distance c2i using lateral edges. As in [GR08b], there are ε−O(log λ) edges incident
on p, and this construction mimics an actual insertion of p into the hierarchy. It
follows that there exists low stretch paths connecting p ∈ R to all points of S′.

The following corollary is a consequence of the spanner construction of
Theorem 3.

Corollary 3. There exists an algorithm that, given point sets S′ and R (|R| =
O(

√
|S′|)), computes

(i) A (1+ε) approximation to the minimum spanning tree(MST) for S, in time
2O(log λ∗)n log n + ε−O(log λ∗)n.

(ii) A (1 + ε) approximation to all pairs nearest neighbor in time 2O(log λ∗)n log
n + ε−O(log λ∗)n.

(iii) A (1+ε)-approximate distance oracle that supports O(1)-time distance queries
with storage 2O(log λ∗ log log λ∗)n + ε−O(log λ∗)n, with construction time
2O(log λ∗)n log n + 2O(log λ∗ log log λ∗)n + ε−O(log λ∗)n.

Proof
(i) Given the above (1+ε)-stretch spanner, a (1+ε)-approximate MST for S can
be construction by a simple breadth first search algorithm (such as Dijkstra’s
algorithm) on the points and edges of the spanner.
(ii) A (1 + ε)-approximate nearest neighbor for each point p may be found by
consulting the spanner edges incident on p, and choosing the closest incident
point. This can be maintained in O(1) time per edge insertion.
(iii) A (1 + ε)-approximate O(1) query time distance oracle for doubling spaces
was presented in [BGK+10]. This oracle was built on the spanner of [GR08b]
described above: The structure records the exact distance between any pair of
points that are connected in the spanner. For query points p and q, the algorithm
simply locates the lowest ancestral c-neighbors p′, q′ of p, q, and returns their
distance. (Recall that p′, q′ are connected by a lateral edge, so their true distance
is recorded in the spanner.) It follows from the discussion above that the distance
between p′ and q′ is a (1 + ε)-approximation to the distance between p and q.
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We extend the construction of [GR08b] to the spanner in the proof of Theorem
3: We record the distance between any pairs of points that are connected in
the spanner of the proof of Theorem 3. It follows that the distance between
any pair p, q ∈ R is recorded explicitly. For all pairs p, q ∈ S′, a search for the
lowest ancestral c-neighbors of p and q returns an approximation for the distance
between p and q. For points p ∈ R and q ∈ S′, their distance can similarly be
derived via a search for the lowest ancestral c-neighbors, making use of the edges
added to the spanner in the construction for the proof of Theorem 3.

Acknowledgments. The authors thank Uri Feige and Liam Roditty for useful
discussions.
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Abstract. We revisit the matrix problems sparse null space and matrix
sparsification, and show that they are equivalent. We then proceed to seek
algorithms for these problems: We prove the hardness of approximation
of these problems, and also give a powerful tool to extend algorithms
and heuristics for sparse approximation theory to these problems.

1 Introduction

In this paper, we revisit the matrix problems sparse null space and matrix
sparsification.

The sparse null space problem was first considered by Pothen in 1984 [27]. The
problem asks, given a matrix A, to find a matrix N that is a full null matrix for A
– that is, N is full rank and the columns of N span the null space of A. Further,
N should be sparse, i.e. contain as few nonzero values as possible. The sparse
null space problem is motivated by its use to solve Linear Equality Problems
(LEPs) [9]. LEPs arise in the solution of constrained optimization problems via
generalized gradient descent, segmented Lagrangian, and projected Lagrangian
methods. Berry et al. [4] consider the sparse null space problem in the context
of the dual variable method for the Navier-Stokes equations, or more generally
in the context of null space methods for quadratic programming. Gilbert and
Heath [16] noted that among the numerous applications of the sparse null space
problem arising in solutions of underdetermined system of linear equations, is
the efficient solution to the force method (or flexibility method) for structural
analysis, which uses the null space to create multiple linear systems. Finding a
sparse null space will decrease the run time and memory required for solving
these systems. More recently, it was shown [36,26] that the sparse null space
problem can be used to find correlations between small numbers of times series,
such as financial stocks. The decision version of the sparse null space problem is
known to be NP-Complete [9], and only heuristic solutions have been suggested
for the minimization problem [9,16,4].

The matrix sparsification problem is of the same flavor as sparse null space.
One is given a full rank matrix A, and the task is to find another matrix B
that is equivalent to A under elementary column operations, and contains as
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few nonzero values as possible. Many fundamental matrix operations are greatly
simplified by first sparsifying a matrix (see [12]) and the problem has applica-
tions in areas such as machine learning [30] and in discovering cycle bases of
graphs [20]. But there seem to be only a small number of heuristics for matrix
sparsification ([7] for example), or algorithms under limiting assumptions ([17]
considers matrices that satisfy the Haar condition), but no general approxima-
tion algorithms. McCormick [22] established that the decision version of this
problem is NP-Complete.

For these two classic problems, we wish to investigate potentials and lim-
its of approximation algorithms both for the general problems and for some
variants under simplifying assumptions. To this end, we will need to consider
the well-known vector problems min unsatisfy and exact dictionary representa-
tion (elsewhere called the sparse approximation or highly nonlinear approximation
problem [32]).

The min unsatisfy problem is an intuitive problem on linear equations. Given a
system Ax = b of linear equations (where A is an integer m×n matrix and b is an
integer m-vector), the problem is to provide a rational n-vector x; the measure to
be minimized is the number of equations not satisfied by Ax = b. The term “min
unsatisfy” was first coined by Arora et al. [2] in a seminal paper on the hardness
of approximation, but they claim that the the NP-Completeness of the decision
version of this problem is implicit in a 1978 paper of Johnson and Preparata [18].
Arora et al. demonstrated that it is hard to approximate min unsatisfy to within
a factor 2log.5−o(1) n of optimal (under the assumption that NP does not admit a
quasi-polynomial time deterministic algorithm). This hardness result holds over
Q, and stronger results are known for finite fields [10]. For this problem, Berman
and Karpinski [3] gave a randomized m

c log m -approximation algorithm (where c

is a constant). We know of no heuristics studied for this problem.
The exact dictionary representation problem is the fundamental problem in

sparse approximation theory (see [23]). In this problem, we are given a matrix of
dictionary vectors D and a target vector s, and the task is to find the smallest
set D′ ⊂ D such that a linear combination of the vectors of D′ is equal to s. This
problem and its variants have been well studied. According to Temlyakov [31],
a variant of this problem may be found as early as 1907, in a paper of Schmidt
[28]. The decision version of this problem was shown to be NP-Complete by
Natarajan [24]. (See [21] for further discussion.)

The field of sparse approximation theory has become exceedingly popular:
For example, SPAR05 was largely devoted to it, as was the SparseLand 2006
workshop at Princeton, and a mini-symposium at NYU’s Courant Institute in
2007. The applications of sparse approximation theory include signal represen-
tation and recovery [8,25], amplitude optimization [29] and function approxima-
tion [24]. When the dictionary vectors are Fourier coefficients, this problem is a
classic problem in Fourier analysis, with applications in data compression, fea-
ture extraction, locating approximate periods and similar data mining problems
[37,14,15,6]. There is a host of results for this problem, though all are heuristics
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or approximations under some qualifying assumptions. In fact, Amaldi and Kann
[1] showed that this problem (they called it RVLS – ‘relevant variables in the
linear system’) is as hard to approximate as min unsatisfy, though their result
seems to have escaped the notice of the sparse approximation theory community.

Our contribution. As a first step, we note that the matrix problems sparse
null space and matrix sparsification are equivalent, and that the vector problems
min unsatisfy and exact dictionary representation are equivalent as well. (Due to
space constraints, proofs of equivalence are deferred to the full version of this
paper. Note that although these equivalences are straightforward, they seem to
have escaped researchers in this field. For example, [5] claimed that the sparse
null space problem is computationally more difficult than matrix sparsification.)

We proceed to show that matrix sparsification is hard to approximate, via a
reduction from min unsatisfy. We will thereby show that the two matrix problems
are hard to approximate within a factor 2log.5−o(1) n of optimal (assuming NP does
not admit quasi-polynomial time deterministic algorithms).

This hardness result for matrix sparsification is important in its own right,
but it further leads us to ask what can be done for this problem. Specifically,
what restrictions or simplifying assumptions may be made upon the input ma-
trix to make matrix sparsification problem tractable? In addressing this question,
we provide the major contribution of this paper and show how to adapt the
vast number of heuristics and algorithms for exact dictionary representation to
solve matrix sparsification (and hence sparse null space as well). This allows us
to conclude, for example, that matrix sparsification admits a randomized m

c log m -
approximation algorithm, and also to give limiting conditions under which a
known �1 relaxation scheme for exact dictionary matching solves matrix sparsifi-
cation exactly. All of our results assume that the vector variables are over Q.

An outline of our paper follows: In Section 2 we review some linear algebra
and introduce notation. In Section 3 we prove that matrix sparsification is hard
to approximate, and in Section 4 we show how to adapt algorithms for exact
dictionary representation to solve matrix sparsification.

2 Preliminaries

In this section we review some linear algebra, introduce notation and definitions,
and formally state our four problems.

2.1 Linear Algebra and Notation

Matrix and vector properties. Given a set V of n m-dimensional column
vectors, an m-vector v /∈ V is independent of the vectors of V if there is no linear
combination of vectors in V that equals v. A set of vectors is independent if each
vector in the set is independent of the rest.

Now let the vectors of V be arranged as columns of an m×n matrix A; we refer
to a column of A as ai, and to a position in A as aij . We define #col(A) to be the
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number of columns of A. The column span of A (col(A)) is the (infinite) set of
column vectors that can be produced by a linear combination of the columns of
A. The column rank of A is the dimension of the column space of A (rank(A) =
dim(col(A))); it is the size of the maximal independent subset in the columns of
A. If the column rank of A is equal to n, then the columns of A are independent,
and A is said to be full rank.

Other matrices may be produced from A using elementary column operations.
These include multiplying columns by a nonzero factor, interchanging columns,
and adding a multiple of one column to another. These operations produce a
matrix A′ which has the same column span as A; we say A and A′ are column
equivalent. It can be shown that A, A′ are column equivalent iff A′ = AX for
some invertible matrix X .

Let R be a set of rows of A, and C be a set of columns. A(R, C) is the
submatrix of A restricted to R and C. Let A(:, C) (A(R, :)) be the submatrix of
A restricted to all rows of A and to columns in C (restricted to the rows of R
and all columns in A). A square matrix is an m×m matrix. A square matrix is
nonsingular if it is invertible.

Null space. The null space (or kernel) of A (null(A)) is the set of all nonzero
n-length vectors b for which Ab = 0. The rank of A’s null space is called the
corank of A. The rank-nullity theorem states that for any matrix A, rank(A)+
corank(A) = n. Let N be a matrix consisting of column vectors in the null space
of A; we have that AN = 0. If the rank of N is equal to the corank of A then N
is a full null matrix for A.

Given matrix A, a full null matrix for A can be constructed in polynomial time.
Similarly, given a full rank matrix N , polynomial time is required to construct
a matrix A for which N is a full null matrix [26].

Notation. Throughout this paper, we will be interested in the number of zero
and nonzero entries in a matrix A. Let nnz(A) denote the number of nonzero
entries in A. For a vector x, let ||x||0 denote the number of nonzero entries in
x. This notation refers to the quasi-norm �0, which is not a true norm since
λ||x||0 	= ||λx||0, although it does honor the triangle inequality.

For vector x, let xi be the value of the ith position in x. The support of x
(supp(x)) is the set of indices in x which correspond to nonzero values, i ∈
supp(x)⇔ xi 	= 0.

The notation A|B indicates that the rows of matrix B are concatenated to
the rows of matrix A. The notation

(
A
B

)
indicates that the columns of B are

appended to the columns of A. M = A ⊗ B denotes the Kronecker product of
two matrices, where M is formed by multiplying each individual entry in A by
the entire matrix B. (If A is m× n, B is p× q, then M is mp× nq.)

By equivalent problems, we mean that reductions between them preserve ap-
proximation factors. A formal definition of approximation equivalence is deferred
to the full version of this paper.
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2.2 Minimization Problems

In this section, we formally state the four major minimization problems discussed
in this paper. The first two problems have vector solutions, and the second two
problems have matrix solutions. Our results hold when the variables are over Q,
although these problems can be defined over R. IF is the set of input instances,
SF (x) is the solution space for x ∈ IF , MF (x, y) is the objective metric for
x ∈ IF and y ∈ SF (x).

Problem 1. exact dictionary representation (EDR)
IEDR = 〈D, s〉, m× n matrix D, vector s with s ∈ col(D)
SEDR(D, s) = {v ∈ Qn : Dv = s}
mEDR(〈D, s〉, v) = ||v||0

Problem 2. min unsatisfy (MU)
IMU = 〈A, y〉, m× n matrix A, vector y ∈ Qm

SMU(A, y) = {x : x ∈ Qn}
mMU(〈A, y〉, x) = ||y −Ax||0

Problem 3. sparse null space (SNS)
ISNS = matrix A
SSNS(A) = {N : N is a full null matrix for A}
mSNS(A, N) = nnz(N)

Problem 4. matrix sparsification (MS)
IMS = full rank m× n matrix B
SMS(B) = {matrix N : N = BX for some invertible matrix X}
mMS(B, N) = nnz(N)

3 Hardness of Approximation for Matrix Problems

In this section, we prove the hardness of approximation of matrix sparsification
(and therefore sparse null space). This motivates the search for heuristics or
algorithms under simplifying assumptions for matrix sparsification, which we un-
dertake in the next section. For the reduction, we will need a relatively dense
matrix which we know cannot be further sparsified. We will prove the existence
of such a matrix in the first subsection.

3.1 Unsparsifiable Matrices

Any m × n matrix A may be column reduced to contain at most (m − r + 1)r
nonzeros, where r = rank(A). For example, Gaussian elimination on the columns
of the matrix will accomplish this sparsification. We will say that a rank r, m×n
matrix A is completely unsparsifiable if and only if, for any invertible matrix X ,
nnz(AX) ≥ (m − r + 1)r. A matrix A is optimally sparse if, for any invertible
X , nnz(AX) ≥ nnz(A). The main result of this section follows.
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Theorem 1. Let A be an m×n matrix with m ≥ n. If every square submatrix of
A is nonsingular, then A has rank n and is completely unsparsifiable. Moreover,
in such case the matrix

(
I
A

)
is optimally sparse, where I is the n × n identity

matrix.

Before attempting a proof of the theorem, we need a few intermediate results.

Lemma 1. Matrix A is optimally sparse if and only if, for any vector x 	= 0,
||Ax||0 ≥ maxi∈supp(x) ||ai||0.

Proof. Suppose that there exists an x that, for some i ∈ supp(x), ||Ax||0 <
||ai||0. Then we may replace the matrix column ai by Ax, and create a matrix
with the same rank as A which is sparser than A; a contradiction. Similarly,
suppose that A is not optimally sparse, so that there exists B = AX with
nnz(B) < nnz(A), for some invertible X . Assume without loss of generality that
the diagonal of X is full, xii 	= 0 (otherwise just permute the columns of X to
make it so). Then there must exist an index j ∈ [n] with ||bj||0 < ||aj ||0, and we
have ||Axj ||0 = ||bj ||0 < ||aj ||0 ≤ maxi∈supp(xj) ||ai||0, since xjj 	= 0. �
A submatrix A(R, C) is row-inclusive iff r 	∈ R implies that A(r, C) is not in the
row span of A(R, C). In other words, A(R, C) includes all the rows of A(:, C)
which are in the row span of this submatrix. A submatrix A(R, C) is a candidate
submatrix of A (written A(R, C)�A) if and only if A(R, C) is both row-inclusive
and rank(A(R, C)) = |C|−1. This last property is equivalent to stating that the
columns of A(R, C) form a circuit – they are minimally linearly dependent.
We can potentially zero out |R| entries of A by using the column dependency
of A(R, C); being row-inclusive means there would be exactly |R| zeros in the
modified column of A.

The next lemma demonstrates the close relationship between candidate sub-
matrices and vectors x which may sparsify A as in Lemma 1.

Lemma 2. For any m× n matrix A: (1) For any x 	= 0 and i ∈ supp(x), there
exists A(R, C)�A for which |R| ≥ m−||Ax||0, and i ∈ C ⊂ supp(x). (2) For any
A(R, C)�A there exists a vector x for which supp(x) = C and ||Ax||0 = m−|R|.

Proof. Part 1: Let R′ = [m] − supp(Ax) (where [m] = {1, 2, ..., m}), and
choose C so that i ∈ C ⊂ supp(x), and the columns of A(R′, C) form a cir-
cuit. (Note that the columns A(R′, supp(x)) are dependent since A(R′, :)x = 0).
Now expand R′ to R so that A(R, C) is row-inclusive. Then rank(A(R, C)) =
rank(A(R′, C)) = |C| − 1, so that A(R, C) � A.

Part 2: Since the columns of A(R, C) form a circuit, there is an x̃ with x̃i 	= 0 ∀i
and A(R, C)x̃ = 0. Then dim(col(A(R, C)T )) = |C|−1 = dim(null(x̃T )) and also
col(A(R, C)T ) ⊂ null(x̃T ), which together imply col(A(R, C)T ) = null(x̃T ). So
A(r, C)x̃ = 0 is true iff r ∈ R (using the fact that A(R, C) is row-inclusive). Now
choose x so that x(C) = x̃ and all other coordinates are zero; then supp(Ax)
= [m]−R. �
The following is an immediate consequence of the lemma, and is crucial to our
proof of Theorem 1.
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Corollary 1. The m×n matrix A is optimally sparse if and only if there is no
candidate submatrix A(R, C) � A with m− |R| < ||ai||0 for some i ∈ C.

We are now ready to prove the theorem.

Proof of Theorem 1. Let B =
(

I
A

)
. We prove that B is optimally sparse.

Suppose B(R, C) � B. Let RI = R ∩ [n] and RA = R − [n]. Now B(RI , C) is a
submatrix of I with dependent columns, so B(RI , C) = 0. By row-inclusiveness,
RI must include all zero rows in B([n], C), so |RI | = n−|C|. Since B(RI , C) = 0,
it follows that rank(B(RA, C)) = rank(B(R, C)) = |C| − 1, and |RA| ≥ |C| − 1.
Any |C| × |C| subsquare of B(RA, C) would make the rank at least |C|, so we
must have |RA| < |C|; thus |RA| = |C| − 1. Combined with |RI | = n− |C|, this
implies that |R| = n− 1. Then m + n− |R| = m + 1 = ||bi||0 for any column bi

of B, proving that B is optimally sparse by corollary 1.
Recall that Gaussian elimination on matrix A→ G yields nnz(G) = (m−n+

1)n. Now suppose there is an invertible matrix X with nnz(AX) < (m−n+1)n.
Then nnz(BX) = nnz(

(
X

AX

)
) < n2 + (m−n + 1)n = (m + 1)n, contradicting the

optimal sparsity of B. Hence no such X exists and A is completely unsparsifiable.
�

3.2 Efficiently Building an Unsparsifiable Matrix

The next lemma establishes that we can easily construct an unsparsifiable matrix
with a given column, a useful fact for the reductions to follow.

Lemma 3. If n×n matrix M = (Mij) has entries mij = ipj for distinct positive
reals p1, p2, . . . , pn, then every subsquare of M is nonsingular.

Proof. Let f be a signomial (a polynomial allowed to have nonintegral expo-
nents). We define positive zeros(f) := {x : x > 0 & f(x) = 0} and #sign changes
(f) := #{i : μiμi+1 < 0}, where f =

∑
i μix

pi , and no μi = 0. A slight general-
ization of Descartes’ rule of signs [35] states that

#positive zeros(f) ≤ #sign changes(f) (1)

Consider any k×k subsquare M(R, C) given by R = {r1, . . . , rk}, C ={c1, . . . , ck}
⊂ [n], and any nonzero vector μ ∈ Rk. Then M(R, C) · μ matches the signomial
f(x) =

∑
μix

pci evaluated at x = r1, . . . , rk. Using (1), #{i : f(ri) = 0} ≤
#sign changes(f) < k, so that some f(ri) 	= 0, and M(R, C)μ 	= 0. Hence the
subsquare has a trivial kernel, and is nonsingular. �

To avoid problems of precision, we will choose powers of pj to be consecutive
integers beginning at 0. This yields the Vandermonde matrix over Q. It can also
be shown, by an elementary cardinality argument, that a random matrix (using
a non-atomic distribution) is unsparsifiable with probability 1 over infinite fields.
The above lemma avoids any probability and allows us to construct such a matrix
as quickly as we can iterate over the entries.
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3.3 Reduction for Matrix Problems

After proving the existence of an unsparsifiable matrix in the last section, we
can now prove the hardness of approximation of matrix sparsification. We reduce
min unsatisfy to matrix sparsification. Given an instance 〈A, y〉 of min unsatisfy,
we create a matrix M such that matrix sparsification on M solves the instance of
min unsatisfy.

Before describing the reduction, we outline the intuition behind it. We wish
to create a matrix M with many copies of y and some copies of A. The number
of copies of y should greatly outnumber the number of copies of A. The desired
approximation bounds will be achieved by guaranteeing that M is composed
mostly of zero entries and of copies of y. It follows that minimizing the number
of nonzero entries in the matrix (solving matrix sparsification) will reduce to min-
imizing the number of nonzero entries in the copies of y by finding a sparse linear
combination of y with some other dictionary vectors (solving min unsatisfy).

The construction is as follows: Given an instance 〈A, y〉 of min unsatisfy (where
A is an m×n matrix, y ∈ Rm, and q ≥ p are free parameters), take an optimally
sparse (p + q) × p matrix

(
Ip

X

)
as given by Lemma 3 and Theorem 1 (where Ip

is a p × p identity matrix), and create matrix Ml =
(
Ip

X

)
⊗ y =

(
Ip⊗y
X⊗y

)
(of size

(p+ q)m× p). Further create matrix Iq ⊗A (of size qm× qn), and take matrix 0
(of size pm× qn) and form matrix Mr =

( 0
Iq⊗A

)
(of size (p+ q)m× qn). Append

Mr to the right of Ml to create matrix M = Ml|Mr of size (p + q)m× (p + qn).

We can summarize this construction as M =
(

Ip ⊗ y 0
X ⊗ y Iq ⊗A

)
.

Ml is composed of p + pq m-length vectors, all corresponding to copies of y.
Mr is composed of qn m-length vectors, all corresponding copies of vectors in
A. By choosing p = q = n2, we ensure that the term pq is larger than qn by a
factor of n. Note that M now contains O(n3) columns.

It follows that the number of zeros in M depends mostly on the number
of zeros induced by a linear combination of dictionary vectors that include y.
Because Ml is unsparsifiable, vectors in the rows of Ml will not contribute to
sparsifying other vectors in these rows; only vectors in Mr (which are copies of
the vectors of A) may sparsify vectors in Ml (which are copies of the vectors in
y). It follows that an approximation to matrix sparsification will yield a similar
approximation – within a factor of 1 + n− 1

3 – to min unsatisfy, and that matrix
sparsification is hard to approximate within a factor 2log.5−o(1) n1/3

= 2log.5−o(1) n

of optimal (assuming NP does not admit quasi-polynomial time deterministic
algorithms).

4 Solving matrix sparsification through min unsatisfy

In the previous section we showed that matrix sparsification is hard to approxi-
mate. This motivates the search for heuristics and algorithms under simplifying
assumptions for matrix sparsification. In this section we show how to extend al-
gorithms and heuristics for min unsatisfy to apply to matrix sparsification – and
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hence sparse null space – while preserving approximation guarantees. (Note that
this result is distinct from the hardness result; neither one implies the other.)

We first present an algorithm for matrix sparsification which is in essence iden-
tical to the one given by Coleman and Pothen [9] for sparse null space. The
algorithm assumes the existence of an oracle for a problem we will call the spars-
est independent vector problem. The algorithm makes a polynomial number of
queries to this oracle, and yields an optimal solution to matrix sparsification.

The sparsest independent vector problem takes full-rank input matrices A and
B, where the columns of B are a contiguous set of right-most columns from A
(informally, one could say that B is a suffix of A, in terms of columns). The
output is the sparsest vector in the span of A but not in the span of B. For
convenience, we add an extra output parameter — a column of A \B which can
be replaced by the sparsest independent vector while preserving the span of A.
More formally, sparsest independent vector is defined as follows.

Problem 5. sparsest independent vector (SIV)
ISIV = 〈A, B〉; A is an m × n full rank matrix with A = (C|B) for some non-
empty matrix C.
SSIV(A, B) = {a : a ∈ col(A), a /∈ col(B)}
mSIV(〈A, B〉, a) = nnz(a)

The following algorithm reduces matrix sparsification on an m×n input matrix
A to making a polynomial number of queries to an oracle for sparsest independent
vector:

Algorithm Matrix Sparsification(A)
B ← null
for i = n to 1:
〈bi, aj〉 = SIV(A, B)
A← (A \ {aj}|bi)
B ← (bi|B)

return B

This greedy algorithm sparsifies the matrix A by generating a new matrix B
one column at a time. The first-added column (bn) is the sparsest possible, and
each subsequent column is the next sparsest. It is decidedly non-obvious why
such a greedy algorithm would actually succeed; we refer the reader to [9] where
it is proven that greedy algorithms yield an optimal result on matroids such as
the set of vectors in col(A). Our first contribution is in expanding the result of
[9] as follows.

Lemma 4. Let subroutine SIV in algorithm Matrix Sparsification be a λ-approx-
imation oracle for sparse independent vector. Then the algorithm yields a λ-
approximation to matrix sparsification.

Proof. Given m× n matrix A, suppose C̃ exactly solves MS(A), and that the
columns c̃1, . . . , c̃n of C̃ are sorted in decreasing order by number of nonzeros.
Let si = ||c̃i||0; then s1 ≥ s2 ≥ . . . ≥ sn. As already mentioned, given a true
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oracle to sparsest independent vector, algorithm Matrix Sparsification would first
discover a column with sn nonzeros, then a column with sn−1 nonzeros, etc.

Now suppose algorithm Matrix Sparsification made calls to a λ−approximation
oracle for sparse independent vector. The first column generated by the algorithm,
call it bn, will have at most λsn nonzeros, since the optimal solution has sn nonze-
ros. The second column generated will have at most λsn−1 nonzeros, since the
optimal solution to the call to SIV has no more than sn−1 nonzeros: even if bn

is suboptimal, it is true that at least one of c̃n or c̃n−1 is an optimal solution to
SIV(A, bn).

More generally, the ith column found by the algorithm has no more then λsi

nonzeros, since at least one of {c̃n, . . . , c̃i} is an optimal solution to the ith query
to SIV. Thus we have nnz(B) =

∑
i ||bi||0 ≤

∑
λ||c̃i||0 = λ nnz(C̃), and may

conclude that the algorithm yields a λ−approximation to matrix sparsification. �

It follows that in order to utilize the aforementioned algorithm for matrix sparsi-
fication, we need some algorithm for sparsest independent vector. This is in itself
problematic, as the sparsest independent vector problem is hard to approximate
– in fact, we will demonstrate later that sparsest independent vector is as hard to
approximate as min unsatisfy. Hence, although we have extended the algorithm
of [9] to make use of an approximation oracle for sparsest independent vector, the
benefit of this algorithm remains unclear.

To this end, we will show how to solve sparsest independent vector while making
queries to an approximate oracle for min unsatisfy. This algorithm preserves
the approximation ratio of the oracle. This implies that all algorithms for min
unsatisfy immediately carry over to sparsest independent vector, and further that
they carry over to matrix sparsification as well. This also implies a useful tool for
applying heuristics for min satisfy to the other problems.

The problem sparsest independent vector on input 〈A, B〉 asks to find the spars-
est vector in the span of A but not in the span of B. It is not difficult to see
that min unsatisfy solves a similar problem: Given a matrix A and target vector
y not in the span of A, find the sparsest vector in the span of (A|y) but not
in the span of A. Hence, if we query the oracle for min unsatisfy once for each
vector aj /∈ col(B), one of these queries must return the solution for the sparsest
independent vector problem. This discussion implies the following algorithm:

Algorithm Sparse Independent Vector(A, B)
s ← m + 1
for j = 1 to n:

if aj /∈ col(B) :
Aj ← A\{aj}
x ← MU(Aj , aj)
c′ ← Ajx− aj

if ||c′||0 < s
c ← c′; s ← ||c||0; α ← aj

return 〈c, α〉
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Note that when this algorithm is given a λ-approximate oracle for min unsat-
isfy, it yields a λ-approximate algorithm for sparsest independent vector. (In this
case, the approximation algorithm is valid over the field for which the oracle is
valid.)

We conclude this section by giving hardness results for sparsest independent
vector by reduction from min unsatisfy; we show that any instance 〈A, b〉 of min
unsatisfy may be modeled as an instance 〈A′, B′〉 of sparsest independent vector:
Let A′ = A|y, and B′ = A. This suffices to force the linear combination to
include y. It follows that sparsest independent vector is as hard to approximate as
min unsatisfy, and in fact that the two problems are approximation equivalent.

4.1 Approximation Algorithms

We have presented a tool for extending algorithms and heuristics for exact dic-
tionary representation to min unsatisfy and then directly to the matrix problems.
When these algorithms make assumptions on the dictionary of EDR, it is neces-
sary to investigate how these assumptions carry over to the other problems.

To this end, we consider here one of the most popular heuristic for EDR – �1-
minimization – and the case where it is guaranteed to provide the optimal result.
The heuristic is to find a vector v that satisfies Dv = s, while minimizing ||v||1
instead of ||v||0. (See [34,33,11] for more details.) In [13], Fuchs shows that under
the following relatively simple condition �1-minimization provides the optimal
answer to EDR.

In the following, we write sgn(x) to indicate x
|x| , or zero if x = 0. Given a

matrix D whose columns are divided into two submatrices D0 and D1, we may
write D = (D0 D1), even though D0 and D1 may not be contiguous portions
of the full matrix. (The reader may view this as permuting the columns of D
before splitting into D0 and D1.)

Theorem 2 (Fuchs). Suppose that s = Dv, and that ||v||0 is minimal (so
that this v solves EDR(D, s)). Split D = (D0 D1) so that D0 contains all the
columns in the support of v. Accordingly, we split the vector v =

(
v0
0

)
, in which

all coordinates of v0 are nonzero.
If there exists a vector h so that DT

0 h = sgn(v0), and ||DT
1 h||∞ < 1, then

||v||1 < ||w||1 for all vectors w 	= v with Dw = s.

We extend this result to each of our major problems.

Theorem 3. min unsatisfy. Suppose, for a given A, y pair, that x minimizes
||y − Ax||0. Split y =

(
y0
y1

)
and A =

(
A0
A1

)
so that A1 is maximal such that

y1 = A1x, and let v = y0 − A0x. If there is a matrix u with ||u||∞ < 1 and
AT

1 u = −AT
0 sgn(v), then our reduction of MU(A, y) to an �1 approximation of

EDR(D, s) gives the truly optimal answer.
matrix sparsification. For a given m×n matrix B, suppose C minimizes nnz(C)

such that C = BX for invertible X. For any i ∈ [n], split column ci =
(
ci,0
0

)
so that ci,0 is completely nonzero, and, respectively, B =

(
Bi,0
Bi,1

)
, so that ci,0 =
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Bi,0xi. If, for all i ∈ [n], there exists vector ui with ||ui||∞ < 1 and BT
i,1ui =

−BT
i,0sgn(ci,0), then our reduction algorithm to an �1 approximation of EDR via

min unsatisfy will give a truly optimal answer to this MS instance.
sparse null space For a given matrix A with corank c, suppose matrix V solves

SNS(A). For each i ∈ [c], split column vi =
(

vi,0
0

)
so that vi,0 is completely

nonzero and, respectively, A = (Ai,0 Ai,1) so that Ai,0vi,0 = 0. If, for all i ∈
[c], there exists vector hi with ||AT

i,1hi||∞ < 1 and AT
i,0hi = sgn(vi,0), then

our reduction to an �1 approximation of EDR via matrix sparsification and min
unsatisfy gives a truly optimal answer to this SNS instance.

Proof. min unsatisfy. As in our reduction from MU to EDR, we find matrix D
with DA = 0 and vector s = Dy. Then(

sgn(v0)
u

)
∈ null(AT ) = col(DT ) =⇒ ∃h : DT h =

(
sgn(v)

u

)
.

Splitting D = (D0 D1), we see that DT
0 h = sgn(v) and ||DT

1 h||∞ < 1, exactly
what is required for theorem 2, showing that �1 minimization gives the answer
D0v0. Since D0v0 = (D0 D1)

(
v
0

)
= D(y −Ax) = s, this completes the proof.

matrix sparsification. We write A \ i to denote matrix A with the ith column
removed. In our reduction of MS to MU, we need to solve instances of MU over
equations of the form (B\i)x = bi. According to the MU portion of this theorem,
it suffices to show that (Bi,1 \ i)T ui = −(Bi,0 \ i)T sgn(ci,0). The condition for
this portion of the theorem implies this, since removing any corresponding rows
from a matrix equation of the form Ax = By still preserves the equality.

sparse null space. As in our reduction from SNS to MS, we find a matrix B
such that A is a full null matrix for B. For any i, let ui = AT

i,1hi so that AT hi =(sgn(vi,0)
ui

)
. Then

(sgn(vi,0)
ui

)
∈ col(AT ) = null(BT ), and BT

i,1ui = −BT
i,0sgn(vi,0),

which is exactly what is necessary for matrix sparsification to function through
�1 approximation. �
The following intuitive conditions give insight into which matrices are amenable
to �1 approximations. A+ denotes (AT A)−1AT , the pseudoinverse of A.

Corollary 2. min unsatisfy. Suppose matrix A =
(
A0
A1

)
is split by an optimal

answer as in theorem 3. If row(A0) ⊂ row(A1) and ||(AT
1 )+AT

0 ||1,1 < 1, our �1
approximation scheme will give a truly optimal answer.

matrix sparsification. Suppose matrix B =
(
Bi,0
Bi,1

)
is split by the columns of an

optimal answer C = BX as in theorem 3. If, for any i, row(Bi,0) ⊂ row(Bi,1) and
||(BT

i,1)
+BT

i,0||1,1 < 1, then our �1 approximation will give the optimal answer.
sparse null space. Suppose matrix A = (Ai,0 Ai,1) is split by the columns of

an optimal answer V with AV = 0 as in theorem 3. If col(Ai,0) ⊂ col(Ai,1) and
||A+

i,0Ai,1||1,1 < 1 ∀i, then our �1 approximation will give an optimal answer.
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Abstract. In this paper we consider the checkpoint problem. The input consists
of an undirected graph G, a set of source-destination pairs {(s1, t1), . . . , (sk, tk)},
and a collection P of paths connecting the (si, ti) pairs. A feasible solution is a
multicut E′; namely, a set of edges whose removal disconnects every source-
destination pair. For each p ∈ P we define cpE′(p) = |p ∩ E′|. In the sum
checkpoint (SCP) problem the goal is to minimize

∑
p∈P cpE′(p), while in the

maximum checkpoint (MCP) problem the goal is to minimize maxp∈P cpE′(p).
These problem have several natural applications, e.g., in urban transportation and
network security. In a sense, they combine the multicut problem and the minimum
membership set cover problem.

For the sum objective we show that weighted SCP is equivalent, with respect
to approximability, to undirected multicut. Thus there exists an O(log n) approx-
imation for SCP in general graphs.

Our current approximability results for the max objective have a wide gap: we
provide an approximation factor of O

(√
n log n/opt

)
for MCP and a hardness

of 2 under the assumption P 
= NP. The hardness holds for trees, in which case
we can obtain an asymptotic approximation factor of 2.

Finally we show strong hardness for the well-known problem of finding a path
with minimum forbidden pairs, which in a sense can be considered the dual to the
checkpoint problem. Despite various works on this problem, hardness of approx-
imation was not known prior to this work. We show that the problem cannot be
approximated within c n for some constant c > 0, unless P = NP. This is the
strongest type of hardness possible. It carries over to directed acyclic graphs and
is a huge improvement over the plain NP-hardness of Gabow (SIAM J. Comp
2007, pages 1648–1671).

1 Introduction

In many countries, trains and urban transport operate largely on the honor system with
enforcement by roving inspectors or conductors. The typical transaction consists of a
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user buying a ticket from a vending machine or a salesperson in advance and then time
stamping it with a validating machine at the station just before use. Inspectors check the
tickets at certain stations (or indeed on the train in between stations) called checkpoints
that might vary from day to day and fine people without validated tickets. In these
scenarios, the transportation companies generally want to make sure a ticket is checked
at least once, (in all routes, even those that carry small number of people) but avoid
many checkpoints at popular source-destination travel paths. Due to the inconvenience
of checking tickets for passengers many times, potential delays, and lack of resources,
we consider the problem of placing checkpoints to minimize the average or maximum
checks of tickets for some popular source-destination paths.

This problem can be modeled as follows. We are given an undirected graph G(V, E)
corresponding to stations and their connections via the transit system. We are also given
a set of source-destinations {(s1, t1), (s2, t2), . . . , (sk, tk)} and a set of fixed paths P
between them. The goal is to find a set of checkpoint edges E′ that forms a multicut,
i.e., for every i, si and ti are in different connected components in G(V, E \ E′) and
minimizes the average (equivalently sum) or minimizes the maximum intersection with
each path p ∈ P . In this paper, we consider this problem, which we call the checkpoint
problem. We note that the problem has other potential applications beyond our motivat-
ing example in transportation networks; for instance, in network security, we may want
to check certain malicious source-destinations pair without incurring too much delay
along certain critical paths.

1.1 Related Work

Closely related to the checkpoint problem are the more common multicut problems in
which given an edge-weighted (undirected or directed) graph and a collection of pairs
{(si, ti)}k

i=1, the goal is to find a subset E′ ⊆ E of minimum cost so that in E \ E′

there is no si-ti path for any i. The only difference between our problems and these is
the objective function.

The literature on undirected multicut (UM) problems is extensive. Garg et al. [7]
showed that UM is at least as hard to approximate as the well-known vertex-cover
problem even if the underlying graph is a star. This implies that unless P = NP, it
is hard to approximate the undirected multicut problem on stars within a factor better
than 10

√
5 − 21 [4]. Garg et al. [7] also gave a 2 approximation for UM in trees via

the primal dual approach. The best known approximation for UM in general undirected
graphs is O(log n) [8]. Conditional on the Unique Game Conjecture [11], Chawla et
al. [1] proved that the UM problem admits no constant approximation ratio for any
constant. A stronger version of the conjecture implies that the UM problem can not be
approximated within a factor Ω(

√
log log n).

The multicut problem can also be viewed as a set cover problem in which we want to
cover all paths between specific source-destination pairs (as elements) by a minimum
number of edges (as sets). Set cover problems in which we are restricted to cover ele-
ments are also considered. In the minimum membership set-cover problem of Kuhn et
al. [16], we want to cover all elements while minimizing the maximum number of sets
covering an element. In the unique coverage problem of Demaine et al. [3], we want
to maximize elements which are covered exactly once. Both these problems have
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applications concerning interference reduction in cellular networks. Roughly speaking,
our checkpoint problem combines multicut and minimum membership set cover.

Multicut problems are associated with a dual multicommodity flow problem, where
instead of disconnecting pairs, the objective is to connect them. In our setting, these
flow problems are quite hard even if the input contains a single pair. We consider the
well-known problem of finding a path with minimum forbidden pairs (PAFP), a prob-
lem that has been studied since the seventies [15]. The input consists of a (directed or
undirected) graph G(V, E), a pair (s, t) of vertices, and a collection of forbidden pairs
F = {bib

′
i}�

i=1 where the forbidden pairs are the pairs of vertices that may not appear
simultaneously on the solution path. A vertex may appear in many forbidden pairs. The
goal is to find an s-t path with the minimum number of pairs bib

′
i ∈ F such that both

bi ∈ p and b′i ∈ p.
The PAFP problem is particularly important for its relation to automatic software

testing and validation [15,19], and its applications in bioinformatics [2]. In [5] it is
proved that PAFP is NP-complete on directed acyclic graphs. Yinnone [22] studied the
problem in directed graphs under the so called skew-symmetry condition constraining
the set of edges and the set of forbidden pairs. Yinnone gives a polynomial algorithm
for the problem under that restriction. Chen et al. [2] study a special case of the problem
coming from protein identification via tandem mass spectronomy. Kolman et al. [12]
study PAFP under the so-called halving structure for which they prove the problem
remains NP-complete, and also under the hierarchical structures condition for which
they give a polynomial-time algorithm.

Notation and problem definitions. In this section, we define useful notations and
formally define the problems considered in this paper. Let OPT be the optimum solution
and opt be its value for the problem and instance at hand. For the rest of the paper we fix
a collectionH = {(si, ti)}k

i=1 of k source-destination pairs. The given set of si-ti paths
will throughout be denoted by P . We require that every (si, ti) pair has at least one path
in P . Generally we assume that |P| is polynomial in n, unless stated otherwise. When
working with trees,P is uniquely defined byH because there is a single path connecting
every source-sink pair.

Let p be a path in P and e be an edge in p. We will say that e stabs or covers p. For
a set E′ ⊆ E we denote by cpE′(p) = |p ∩ E′| the number of edges in E′ that stab p.

Definition 1. The sum checkpoint (SCP) problem is to find a multicut E′ ⊆ E minimiz-
ing

∑
p∈P cpE′(p). The max checkpoint (MCP) problems is to find a multicut E′ ⊆ E

minimizing maxp∈P cpE′(p).

The checkpoint value cp treats all edges uniformly since it simply counts the number
of checkpoints in the multicut. In some cases, though, edges may be endowed with
weights. In these cases, cp can be defined as the weight of edges chosen in the multicut
that are in the path. We explore this variant for SCP.

Definition 2. Given a (directed or undirected) graph G, a pair st, and a collection
F = {bib

′
i}�

i=1 of forbidden pairs of vertices, the path with minimum forbidden pairs
(PAFP) problem is to find a path p from s to t minimizing the number of pairs bib

′
i ∈ F

such that both bi ∈ p and b′i ∈ p.
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Note that a forbidden pair bib
′
i ∈ F such that at most one of bi or b′i lies on p does not

contribute towards the PAFP objective function.

Our results. First, we study MCP in trees. A tree input for MCP is said to have as-
cending paths if for all (si, ti) ∈ H either si is an ancestor of ti or vise-versa. MCP
on ascending path tree inputs can be solved in polynomial time by linear programming.
This follows from the well-known fact [21] that the edge-path incident matrix is totally
unimodular. However, such a solution would have a very large running time. Even if T
is a path, it is non-trivial to come up with purely combinatorial algorithms. We develop
a linear-time algorithm for MCP in trees with ascending paths, which gives a solu-
tion with cost opt+1. Then we build upon this to obtain a combinatorial polynomial-
time exact algorithm, which runs orders of magnitude faster than the obvious linear-
programming based algorithm.

Beyond this special case, the problem becomes hard. We prove that unless P = NP,
MCP in trees does not admit an approximation ratio better than 2. This solves an open
problem of [17]. On the positive side, using standard techniques one can show a nearly
matching approximation ratio.

For general graphs, we design an O
(√

n log n
opt

)
-approximation algorithm for MCP

using a more sophisticated approach. Our algorithm is based on a somewhat unusual
application of sphere growing. First the sphere growing is combinatorial, that is, we
grow spheres on the graph itself rather than on the LP solution à la Garg et al. [8].
Second, we use an LP solution to remove some edges in order to ensure that the every
source-sink pair is “far apart”. Combining these two ingredients, we guarantee that
when the neighborhood of a set S is removed to disconnect a source-sink pair, the set S
contains no “uncut” pairs.

Then we focus our attention on the weighted version of SCP. We show that weighted
SCP is equivalent to UM from the point of view of approximability. In particular, SCP
admits an O(log n) approximation ratio in general graphs and a 2 approximation ratio
in trees.

Finally, we give a strong hardness of approximation for PAFP for undirected graphs.
We show that unless P 	= NP, PAFP admits no c · n approximation ratio for some
c > 0. Moreover, our construction can be easily modified to give the same hardness of
approximation on directed acyclic graphs. This represents a huge improvement over the
plain NP-hardness result of Gabow [6]. In fact, such a linear lower bound is one of the
largest that can be found in the literature.

We close the section by mentioning that, independently, Nelson [17] also studied
MCP. He designed an exact algorithm for paths, an asymptotic 2 approximation for
trees, and showed 1.5-hardness for general graphs. The algorithm in Section 2 is a gen-
eralization of Nelson’s algorithm for paths. We thank him for letting us include his
result here. Our 2-approximation for general trees is slightly different. Our hardness
result improves the one of Nelson in two aspects. First, our hardness ratio is slightly
better; second, our proof is for trees and Nelson’s is for general graphs. In fact estab-
lishing whether the problem is hard on trees is stated as an open problem in [17].
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2 The MCP Problem in Trees with Ascending Paths

In this subsection we consider MCP in trees with ascending paths. That is, we look
at instances where G is a rooted tree and for each pair (si, ti) we have a unique path
connecting them where si is an ancestor of ti. For a given path p ∈ P we denote with
s(p) the starting point (closest vertex to the root) of p and with f(p) the finishing point
(furthest vertex from the root) of p. We call the edge e ∈ p that is adjacent to f(p) the
furthest edge in p. For a given set X of paths, we define

F (X) = ∪p∈X{the furthest edge in p}. (1)

For a path p ∈ P and a set of paths A, we define IA(p) to be the number of paths in A
that are contained in p.

Algorithm GREEDY(P)

1. A← ∅
2. for p ∈ P in increasing depth of f(p) do
3. if p ∩ F (A) = ∅
4. then A ← A ∪ {p}
5. return A

Additive one approxima-
tion. Our main algorithm
builds upon the following
greedy procedure for comput-
ing a set paths. First, we show
that the set of paths found by
GREEDY can be used to pro-
duce a solution for MCP that
is close to optimum. Later, we show how this algorithm can be used to find an optimal
solution.

Let A be the set returned by GREEDY. Notice that taking the furthest edge of each
path in A yields a feasible solution: For any path p ∈ P , if p ∈ A then it is clear that
F (A) stabs p; otherwise, by Line 3, we know that F (A) stabs p. The next lemma shows
that the set F (A) is a good approximation of the optimum.

Lemma 1. Let A be the set returned by GREEDY and p be an arbitrary path in P . Then
every feasible solution stabs p at least IA(p) times and F (A) stabs p at most IA(p)+ 1
times.

Proof. We claim that the intervals in A contained in p are pairwise disjoint. Suppose,
for the sake of contradiction, that there are paths a, a′ ∈ A contained in p that share an
edge. Assume without loss of generality that a was added to A before a′. Thus we have
that either f(a) = f(a′) or f(a) is a proper ancestor of f(a′). Now because both paths
lie in p and they intersect, it must be the case that the furthest edge of a stabs a′—here
we use the property that all paths are ascending. Thus, we reach the contradiction that
a′ was not added to A. We conclude that the paths in A are pairwise disjoint.

Let a be a path in A whose furthest edge stabs p. Because the paths are ascending,
either s(a) is a proper ancestor of s(p), or s(a) belongs to p (that is, a lies inside p);
let us call these paths of type 1 and 2, respectively. The key observation is that there is
at most one path of type 1 (otherwise the furthest edge of one would stab the other and
hence they could not be disjoint). Also, all paths of type 2 are disjoint and lie inside p;
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that is, IA(p) equals the number of type 2 paths. Therefore, furthest edges of paths of
type 2 stab p exactly IA(p) times and the type 1 path, if any, can stab p one more time.

Notice that any solution must stab the type 2 paths using different edges. Therefore,
any solution must stab p at least IA(p) times. �

It follows that F (A) is a feasible solution that uses at most one extra checkpoint than
the optimal solution. In addition, GREEDY can be implemented to run in linear time.
The proof of this fact is omitted due to lack of space.

Lemma 2. There is an O(n + k) time additive-1 approximation for MCP in trees with
ascending paths.

Algorithm ITERATIVE-REFINEMENT(P)

1. A ← B ← GREEDY(P)
2. M ← maxp∈P IA(p)
3. while maxp∈P IA(p) = M do
4. if ∃ bad pair a ∈ A, p ∈ P
5. then f(a)← s(p) and A← GREEDY(P)
6. else return F (A) // opt = M
7. return F (B) // opt = M + 1

From approximate to
optimal. Our exact algo-
rithm is based on the idea
of trying to weed out the
structure that forces the
previous algorithm to use
an extra checkpoint. We
call a ∈ A, p ∈ P a bad
pair if IA(p) = M and
s(a) is proper ancestor of
s(p), and s(p) is a proper ancestor of f(a), and f(a) is a proper ancestor of f(p); notice
that in this case the furthest edge of a stabs p. From the proof of Lemma 1, it immedi-
ately follows that the solution F (A) has cost M + 1 if and only if there is a bad pair
because if p is involved in a bad pair, then it will be stabbed by the furthest edge of a.

Lemma 3. If a ∈ A, p ∈ P is a bad pair and there is a feasible solution with cost M
then the solution is also feasible for the modified instance where f(a) ← s(p). Also,
any feasible solution to the modified instance is feasible for the original instance.

Proof. Recall that there are IA(p) = M disjoint paths in A inside of p. These paths
together with a form a set of disjoint paths. Suppose X is solution with cost M . Since
p is stabbed only M times in X then it must be that a is stabbed in a \ p. Therefore, X
remains feasible after we set f(a)← s(p).

The second part is trivial since after the modification, a is a subset of its original self.
�

With this observation in hand, an algorithm follows suit. Compute A and iteratively
try to find a bad pair. If we cannot find a bad pair then F (A) has cost M and this is
optimal. Otherwise, we modify the instance as described in Lemma 3 and recompute
A. If maxp∈P IA(p) becomes M +1 then the new instance cannot have a solution with
cost M and hence our implicit assumption that the original instance admitted a solution
with cost M must have been wrong.
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Theorem 1. There is a polynomial-time algorithm for MCP in trees with ascending
paths.

Proof. As mentioned above the correctness follows directly from repeatedly applying
Lemma 3. To bound the running time we note that each iteration runs in O(n + k) time
and that there could be at most k2 iterations since once a bad pair (a, p) is fixed, it never
again becomes a bad pair. We note that the number of iterations can be brought down
to min{n, k2} if we are more aggressive when handling a bad pair (a, p). �

3 Hardness

In this section we show hardness of approximation for MCP in trees via a gap-inducing
reduction from 1-in-3-SAT. Recall that a 3-CNF formula belongs to 1-in-3-SAT if there
exists a satisfying assignment where each clause has exactly one true literal. Schaefer
[18] proved that 1-in-3-SAT is NP-complete. Our reduction maps yes (no) instances of
1-in-3-SAT to instances of MCP with cost two (one). Due to lack of space we state our
result without proof.

Theorem 2. Unless P = NP, MCP in trees admits no better than ratio 2 approximation.

4 Approximations for MCP

LP formulation. In this section we present our approximation results for MCP. Our
algorithms are based on the following linear programming relaxation. LetQ be the full
set of paths connecting the source-sink pairs. (Recall that P is just a subset of Q.)

minimize z (LP1)

subject to ∑
e∈q xe ≥ 1 for all q ∈ Q (2)∑
e∈p xe ≤ z for all p ∈ P (3)

xe ≥ 0 e ∈ E

Variable xe indicates whether edge e is chosen in the multicut. Constraint (2) enforces
that the set of edges chosen indeed forms a multicut. The objective is to minimize z, the
maximum number of edges any one path sees (3). For general graph, the set Q can be
exponentially large. The program (LP1) can be solved in polynomial time by running
the Ellipsoid algorithm on its dual.

Due to lack of space the presentation of our approximation algorithm for MCP in
trees is deferred for the journal version.

Theorem 3. There is a polynomial-time algorithm for MCP in trees that returns a so-
lution with cost no more than 2 · opt + 2.
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4.1 MCP in General Graphs

Algorithm APPROXIMATING-MCP(G,H)

1. x ← fraction optimal solution for (LP1)

2. Sol ←
{

e ∈ E : xe ≥ 1
2

√
opt

n·(lnn+1)

}
3. remove the edges Sol from G
4. while Sol is not a multicut do
5. S ← {s}, for some arbitrary uncut source s

6. while |N(S)| ≥
(
1 +

√
opt·(lnn+1)

n

)
|S| do

7. S ← N(S)
8. Sol ← Sol ∪ E(N(S) \ S)
9. remove E(N(S) \ S) from G

10. return Sol

Throughout this section,
Sol will denote the par-
tial solution accumulated
by our algorithm. We
say that a source si is
uncut, if G(V, E \ Sol)
contains an si-ti path.
For simplicity, we as-
sume that opt, the value
of the optimal solution,
is known. This value can
easily be guessed, or, al-
ternatively, we can use
the value of the optimal
fractional solution instead.

Along the way, we prove the following result: If the minimum distance between
every (si, ti) pair is �, then there exists a vertex cut of size at most Õ(n/�) whose
deletion disconnects all pairs. We believe this fact is known, but are not aware of any
specific reference. Some results along these lines are known for the directed case; for
example, it was shown independently in [20] and [13] that if every pair in a directed
graph has distance at least �, then there is an edge cut separating all pairs whose size is
at most Õ(n2/�2).

Given a fractional solution x to (LP1), we denote the fractional checkpoint value of
a path p by cpx(p) =

∑
e∈p x(e). Let dist(u, v) denote the length of the shortest path

in G between u and v measured by the number of edges. The following operators are
used by our algorithm:

N(X) = X ∪ {v ∈ V : ∃u ∈ X s.t. (u, v) ∈ E)},

and
E(X) = {(u, v) ∈ E : u ∈ X ∨ v ∈ X}.

In other words, N(X) equals X and its all neighbors, while E(X) equals the set of
edges with at least one endpoint in X . We note that both operators are defined with
respect to the graph G(V, E). As the algorithm progresses and removes edges from G,
these operators change accordingly.

The algorithm can be thought off as having two main parts: a filtering step and a
region-growing step. The next two lemmas, which we state without proof, establish
some important properties of the first step.

Lemma 4. Consider the value of Sol and G right after Line 3. Then dist(si, ti) >

2
√

n·(ln n+1)
opt for all (si, ti) ∈ H.

Lemma 5. Consider Sol right after Line 2. Then cpSol (p) = cpx(p) · O
(√

n log n
opt

)
for all p ∈ P .
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After the initial filtering step (after the initial Sol is computed in Line 2), the algorithm
iteratively finds sets S1, S2, . . ., using a region-growing procedure out of uncut sources
s1, s2, . . ., respectively. We note that our approach is related to that of Garg et al.[8].
There are, however, two major differences. First, instead of “growing our regions on
the LP solution”, we do so in the input graph itself. Second, instead of using edge cuts,
we use vertex cuts—indeed, the edges removed in Line 9 correspond to removing the
vertices N(X) \ S.

Lemma 6. The sets S1, S2, . . . are pair-wise disjoint.

Proof. Consider an arbitrary set Si. Upon existing the while loop in Line 6, the algo-
rithm adds E(N(Si) \ Si) to Sol . This effectively disconnects Si from the rest of the
graph defined by E \ Sol .

We claim that the number of iterations of the while loop in Line 6 needed to compute

Si is at most
√

n·(lnn+1)
opt . Indeed, since the size of |S| increases by 1+

√
opt·(ln n+1)

n

factor in each iteration, if the while loop were to run for
√

n·(ln n+1)
opt iterations then we

would reach the contradiction that

|S| >
(

1 +
√

opt·(ln n+1)
n

)√
n·(ln n+1)

opt

≥ n ≥ |S|.

A corollary of this, is that the diameter of the graph induced by Si is most 2
√

n·(lnn+1)
opt .

Now consider a set Sj constructed in some subsequent iteration. If sj /∈ Si then
clearly Sj and Si must be disjoint. We claim that this is the only option. Indeed, if

sj ∈ Si then, since the diameter of Si is at most 2
√

n·(lnn+1)
opt , it follows that right

after Si is created dist(sj, tj) ≤ 2
√

n·(lnn+1)
opt , which contradicts Lemma 4. �

Everything is in place to prove the main result of this section.

Theorem 4. The MCP problem admits a polynomial-time O
(√

n log n
opt

)
approxima-

tion algorithm.

Proof. Let p be an arbitrary path in P . Notice that when E(N(Si)\Si) is added to Sol ,
since p is simple, the value of cpSol (p) increases by at most |N(Si) \ Si|. Therefore, in
order to bound total increase in cpSol (p) due to edges to Sol after Line 2, we need to
bound

∑
i |N(Si) \ Si|:∑

i

|N(Si) \ S| <
∑

i

√
opt·(lnn+1)

n · |Si| ≤
√

n · opt · (ln n + 1), (4)

where the first inequality follows from the exit condition of the while loop in Line 6,
and the second, from Lemma 6. Putting (4) and Lemma 4 together, we conclude that

cpp(Sol) = cpx(Sol) ·O
(√

n ln n
opt

)
+
√

n · opt · (ln n + 1) = opt ·O
(√

n lnn
opt

)
.

�
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5 Approximation for SCP

For this problem we allow the graph to be weighted, in which case cpE′(p) is the com-
bined weight of edges in E′ ∩ p. Recall that w(e) denotes the edge e.

Theorem 5. Any ρ approximation for UM gives a ρ approximation for weighted SCP,
and vise-versa

Proof. We first show the forward direction. We construct edge capacities c as follows:
For every edge e let p(e) be the number of paths p ∈ P that use e; notice that if
for a fixed pair (si, ti) the set Pi contains many paths going trough e, each one will
contribute towards p(e). We give edge e capacity c(e) = p(e)w(e). We show that ca-
pacity of a multicut E′ equals the min-sum checkpoint value, that is,

∑
e∈E′ c(e) =∑

p∈P cpE′(p). Given an edge e ∈ E′, we charge w(e) to each of the p(e) paths con-
taining that edge; this exhausts the c(e) term in the cost of the UM objective. Therefore,∑

e∈E′ c(e) =
∑

p∈P cpE′(p) and every ratio ρ that applies to UM also applies to SCP.
In the other direction, assume we have a ρ approximation for SCP. We approximate

UM by a reduction to SCP as follows. Create a SCP instance with every e having capac-
ity w(e)/p(e). For any multicut E′, w(e) will be counted p(e) times thus the checkpoint
cost of E′ is c(E′). Thus the best solution is the minimum capacity multicut. Thus, SCP
and UM are equivalent with respect to approximation. �

Corollary 1. SCP admits an O(log n) approximation in general graphs and a 2 ap-
proximation in trees.

6 A Lower Bound for PAFP

Recall that in PAFP we are given a pair (s, t) to connect and a collection of forbidden
pairs {(bi, b

′
i)}�

i=1 ⊆ V × V . The goal is to find an s-t path minimizing the number of
pairs (bi, b

′
i) such that both belong to the path. To disallow a zero cost solution we may

arbitrarily define (s, t) as a forbidden pair or we can define the cost of a solution as the
maximum between the number of bad pairs in the path and 1.

Background. The LABELCOVER-MAX problem is introduced in [10, Chapter 10]
for presenting one-round two-provers systems. Here we use an alternative formula-
tion, called MAX-REP, defined in [14]. In MAX-REP, we are given a bipartite graph
G(V1, V2, E). The sets V1 and V2 are partitioned into a disjoint union of q sets: V1 =⋃q

i=1 Ai and V2 =
⋃q

j=1 Bj . The bipartite graph and the partition of V1 and V2 induce
a super-graph H in the following way: The vertices in H are the sets Ai and Bj . Two
sets Ai and Bj are connected by a super-edge in H if and only if there exist ai ∈ Ai

and bj ∈ Bj which are adjacent in G. In MAX-REP we are to select a unique represen-
tative vertex ai ∈ Ai from each subset Ai, and a unique representative vertex bj ∈ Bj

from each Bj . We say that a super-edge (Ai, Bj) is covered if the two corresponding
representatives are neighbors in G; that is, (ai, bj) ∈ E. The goal is to select unique
representatives so as to maximize the number of super-edges covered. Håstad’s break-
through hardness for 3-SAT-5 [9] translates into the following hardness for MAX-REP.
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Theorem 6 ([9]). There is a polynomial time reduction that maps each instance φ of
SAT into an instance G of MAX-REP with n′ vertices and h = Θ(n′) super-edges. If
φ is satisfiable then there exists a set of unique representatives of G that covers all h
super-edges. If φ is not satisfiable then every set of unique representatives of G covers
at most 23

24h super-edges.

Reduction. The reduction from MAX-REP to PAFP is relatively simple. Arbitrarily
order the super-vertices from left to right: X1, X2, . . . , X2q. Join Xi to Xi+1 with a
complete bipartite graph for every 1 ≤ i ≤ 2q − 1. Let (A, B) be a super-edge in
our MAX-REP instance. For each a ∈ A and b ∈ B such that (a, b) /∈ E, we create a
forbidden pair (a, b). Thus, forbidden pairs correspond to vertices that are not connected
in the MAX-REP graph and whose corresponding super-nodes are connected in the
super-graph. Finally, join a vertex s to all the vertices of X1 and join a vertex t to all
the vertices of Xh. This defines the PAFP instance.

Theorem 7. Unless P = NP, PAFP on undirected graphs admits no c·n approximation
ratio, where n is the number of vertices and c > 0 is some constant. The same holds for
directed acyclic graphs.

Proof. Consider the reduction above. We show that a solution for the PAFP instance
with t forbidden pairs translates into solution for the MAX-REP instance covering h− t
super-edges, and vice-versa. Without loss of generality we restrict our attention to PAFP
solutions that use a single vertex from each super-vertex Xi. Under this restriction,
there is a clear one-to-one correspondence between solutions for the PAFP instance (s-
t paths) and solutions for the MAX-REP instance (unique representative choices). Let
X be a unique representative choice and p its corresponding s-t path. Let (A, B) be
an arbitrary super-edge, and let a and b be the representatives of A and B respectively.
If (A, B) is covered by X then none of the forbidden pairs induced by (A, B) appear
in p. Otherwise, if (A, B) is not covered by X , we know that (a, b) is a forbidden
pair. It follows that the number of super-edges covered by X is h minus the number of
forbidden pairs in p.

In Theorem 6, satisfiable formulas map to instances of MAX-REP that have a perfect
cover, which in turn our reduction maps to instances of PAFP that have a path with no
forbidden pairs, which have value 1 (recall that the cost of a path is the maximum of 1
and the number of forbidden pairs.) On the other hand, unsatisfiable formulas map to
instances of MAX-REP with value at most 23

24h, which in turn map to instances of PAFP
having value at least h

24 . In addition, Theorem 6 tells us that the MAX-REP instance
has h = Θ(n), where n is the number of vertices in the PAFP instance. This finishes
the proof for undirected order. In order to get the result on directed acyclic graphs, just
direct all the edges from s to t. �

7 Discussion and Open Problems

Can the approximation for SCP be used to approximate MCP? If the optimum for SCP
is opts then the optimum for MCP is at least opts/|P|. Therefore, by approximating
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the SCP objective, we obtain a lower bound for the MCP objective. The multicut for the
SCP problem, however, cannot be used directly as a solution for the MCP problem since
the path with the largest checkpoint value may be well above the average checkpoint
value. One could try to deal with these “expensive” paths in a later stage, but this may
increase the checkpoint value of paths previously having low checkpoint value in the
SCP solution. Indeed, the MCP problem seems highly non-separable.

Finally, it would be interesting to know whether MCP admits a polylog(n) approxi-
mation, or whether it has a hardness is similar to MAX-REP.

Acknowledgement. The first author thanks Erik Demaine and Jelani Nelson for several
fruitful discussions especially on initiating the problem.
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The Euclidean Distortion of Flat Tori

Ishay Haviv� and Oded Regev��

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. We show that for every n-dimensional lattice L the torus
Rn/L can be embedded with distortion O(n·

√
log n) into a Hilbert space.

This improves the exponential upper bound of O(n3n/2) due to Khot
and Naor (FOCS 2005, Math. Annal. 2006) and gets close to their lower
bound of Ω(

√
n). We also obtain tight bounds for certain families of

lattices.
Our main new ingredient is an embedding that maps any point u ∈

Rn/L to a Gaussian function centered at u in the Hilbert space L2(Rn/L).
The proofs involve Gaussian measures on lattices, the smoothing param-
eter of lattices and Korkine-Zolotarev bases.

Keywords: Lattice, Embedding, Torus.

1 Introduction

An n-dimensional full-rank lattice L ⊆ Rn is the set of all integer combinations
of n linearly independent vectors. Such a lattice defines the torus Rn/L, i.e., the
space Rn where two points are identified if and only if the difference between
them is a lattice vector. For u, v ∈ Rn/L the distance distRn/L(u, v) in the torus
Rn/L is defined as the distance between a representative of u−v in Rn from the
lattice L.

In this paper we study the ability to embed a torus Rn/L into a Hilbert space
in a distance-preserving manner. For a lattice L we are interested in a Hilbert
space L2, an embedding H : Rn/L → L2 and a number c2 > 0 such that for
any u, v ∈ Rn/L, distRn/L(u, v) ≤ distL2(H(u), H(v)) ≤ c2 · distRn/L(u, v). The
distortion of an embedding H is the least c2 for which the above holds. The least
distortion that one can get over all the embeddings H is known as the Euclidean
distortion of Rn/L and is denoted by c2(Rn/L).

For example, consider the n-dimensional lattice Zn. The torus Rn/Zn can be
embedded into the Euclidean space R2n by the embedding H : Rn/Zn → R2n

defined by H(x1, . . . , xn) = (cos 2πx1, sin 2πx1, . . . , cos 2πxn, sin 2πxn). It is easy
to see that H has a constant distortion independent of n. It is not difficult to
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extend this example and to achieve an embedding with constant distortion for
every lattice generated by n orthogonal vectors.

Metric embeddings have been extensively investigated in the last few years
by the theoretical computer science community. One of the main motivations
for research on embedding metric spaces comes from applications to designing
geometric approximation algorithms. Indeed, in order to approximate the dis-
tance between two points in a certain metric space one can apply an efficient low
distortion embedding and then compute (or approximate) the distance between
the corresponding embedded points. Studying the Euclidean distortion of flat
tori might have applications to the complexity of lattice problems, and might
also lead to more efficient algorithms for lattice problems through the use of our
metric embeddings. For example, consider the Closest Vector Problem with Pre-
processing (CVPP). In this problem a (not necessarily efficient) preprocessing
step is applied to the lattice. Then, given a target point, we are supposed to effi-
ciently approximate its distance from the lattice. Embedding flat tori suggests a
special type of algorithms for CVPP, in which the data performed in the prepro-
cessing step enables to approximate distances in the embedded space efficiently.
A recent result by Micciancio and Voulgaris [8] demonstrates how CVPP can
lead to breakthroughs for standard lattice problems. For further information on
CVPP we refer the reader to [3].

In this work we study the distortion required to embed an n-dimensional torus
into a Hilbert space. This question was introduced by Khot and Naor in [4] who
provided a partial answer as stated below. The following theorem provides a
lower bound on c2(Rn/L) in terms of λ1(L∗) and μ(L∗), which are, respectively,
the length of a shortest nonzero vector and the covering radius of L∗, the dual
lattice of L.

Theorem 1 ([4]). For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) =
Ω
(

λ1(L∗)
μ(L∗) ·

√
n
)
.

It is known that for every large enough n there exists an n-dimensional self-dual
lattice L (i.e., L = L∗) such that λ1(L) = Θ(μ(L)). This fact is due to Conway
and Thompson; see [9, Page 46] for details. Theorem 1 and this family of lattices
imply that for any large enough n there exists an n-dimensional lattice L for
which c2(Rn/L) = Ω(

√
n). We note that in [4] it was shown that the bound

in Theorem 1 holds even for embeddings into the space L1. The next theorem
shows an upper bound on c2(Rn/L) for n-dimensional lattices and in particular
implies that the supremum of c2(Rn/L) over all n-dimensional lattices L is finite.

Theorem 2 ([4]). For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) =
O(n3n/2).

We note that the true performance of the embedding of Khot and Naor used in
the proof of Theorem 2 is not clear. Yet, it can be shown that there are lattices
for which the distortion achieved by their embedding is super-polynomial. We
discuss this issue in the full version of the paper.
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1.1 Our Results

The gap between the above lower and upper bounds on c2(Rn/L) is huge. In this
work we significantly reduce this gap. Our main result is that for every lattice
the torus Rn/L can be embedded into a Hilbert space with distortion slightly
higher than linear in n.

Theorem 3. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) = O(n ·√
log n).

For n-dimensional lattices L with ratio μ(L)
λ1(L) ≤ no(n) we provide the following

better bound.

Theorem 4. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) =

O
(√

n · log
(

4μ(L)
λ1(L)

))
.

Notice that Theorem 1 yields that the bound in Theorem 4 is tight up to a
multiplicative constant for the self-dual lattices that were mentioned above (see
Corollary 1).

Finally, we observe that Theorem 1 can be slightly improved to the following.

Theorem 5. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) ≥
λ1(L∗)·μ(L)

4
√

n
.

It can be shown that μ(L) · μ(L∗) ≥ Ω(n) holds for any n-dimensional lattice
and hence Theorem 5 improves Theorem 1.

1.2 Intuitive Overview of Proofs and Techniques

Our goal is to construct, given a lattice L, a function H from the torus Rn/L
to a Hilbert space such that H preserves distances up to a multiplicative factor
that is as small as possible. Our basic idea is to map any u ∈ Rn to the Gaussian
function defined on Rn centered at u with parameter s, i.e., the function mapping
x ∈ Rn to e−π‖(x−u)/s‖2

. It is not difficult to see that the L2 distance between
H(u) and H(v) depends more or less linearly on the distance between u and v
as long as the latter is at most s, beyond which the distance between H(u) and
H(v) is saturated and no longer increases linearly. This is illustrated in the left
side of Figure 1.

However, the embedding defined above is not an embedding of Rn/L because
it is not L-periodic. We therefore replace the Gaussian function centered at u
with the sum of all Gaussian functions centered at points in u + L, i.e., all the
shifts of u by vectors of L. See the right side of Figure 1.

An important role in the performance of our basic embedding is played by the
choice of the parameter s. Notice that we cannot take s to be significantly smaller
than the covering radius of L (the maximum distance between two elements in
Rn/L). Indeed, as mentioned above, the distance between the embedded func-
tions is saturated beyond distance s, thereby leading to a distortion of at least
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Fig. 1. The left plot shows the L2 distance between the (one-dimensional) Gaussian
function centered at 0 and the Gaussian function centered at u ∈ R (as a function of u;
s = 1). The right plot shows the L2 distance between the sum of all Gaussian functions
centered at points in Z and the sum of all Gaussian functions centered at points in
u + Z (as a function of u; s = 0.3).

μ(L)/s. On the other hand, s cannot be larger than λ1(L): for such s, small shifts
in the direction of a shortest vector of L are much less noticeable than shifts in
directions orthogonal to it, and this creates a huge distortion. By choosing s to be
slightly smaller than λ1(L) our basic embedding achieves distortion proportional
to μ(L)

λ1(L) (see Theorem 7).
In order to improve the distortion we need two more ideas. First, we combine

several basic embeddings for various choices of the parameter s in the range
[λ1(L), μ(L)]. The idea is that every distance in Rn/L is handled by at least one
of these choices. This proves Theorem 4. The second idea which is used in the
proof of Theorem 3 is to use our basic embedding on projected lattices using
Korkine-Zolotarev bases. In our analysis of the basic embedding we employ and
extend techniques originating in a paper by Banaszczyk [2] that were found useful
in several recent papers on the complexity of lattice problems (see, e.g., [1]).

1.3 Open Question

As mentioned before, we show in this paper that any n-dimensional lattice L
satisfies c2(Rn/L) = O(n ·

√
log n), and it was shown in [4] that there are lattices

for which c2(Rn/L) = Ω(
√

n). The main open question raised by our work is
the following.

Question 1. Is it true that for any n-dimensional lattice L, c2(Rn/L) = O(
√

n)?

We observe that a positive answer to this question using Theorem 5 immediately
implies that any n-dimensional lattice L satisfies λ1(L∗) ·μ(L) ≤ O(n). The only
proof we are aware of for this tight bound is the one of Banaszczyk [2] whose
tools and techniques are the heart of the current paper. This might hint that our
approach to the embedding question is natural and that it has not been pushed
to its limit yet.

A more ambiguous open question is to obtain tight bounds on c2(Rn/L) for
every lattice L in terms of geometrical parameters of L.
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1.4 Outline

The paper is organized as follows. In Section 2 we gather all the definitions on
embeddings, lattices, Gaussian measures and Korkine-Zolotarev bases that we
need in this paper. In Section 3 we prove properties of Gaussian distributions
on lattices. In Section 4 we prove Theorems 4 and 3. The proof of Theorem 5
and a discussion on the performance of the embedding of Khot and Naor used
in the proof of Theorem 2 can be found in the full version of the paper.

2 Preliminaries

For a real x, �x� stands for the integer that satisfies −0.5 < x − �x� ≤ 0.5.
The �2 norm of u ∈ Cn is defined as ‖u‖ = (

∑n
i=1 |ui|2)1/2 where ui is the ith

coordinate of u. The inner product of u, v ∈ Cn is defined as 〈u, v〉 =
∑n

i=1 uivi.
For a point u ∈ Cn and a set S ⊆ Cn, denote u + S = {u + x | x ∈ S}
and dist(u, S) = infx∈S ‖u− x‖. The open unit ball is defined as B = {w ∈
Rn | ‖w‖ < 1}. For a scalar function f and a subset A of its domain, we use the
notation f(A) =

∑
x∈A f(x).

We will need the following simple fact, in which we do not make any attempt
to optimize the constants.

Fact 6. For any a ≥ 0 and 0 ≤ b < 1√
2
, cosh(2πab)− 1 ≤ 230 · b2e

3π
4 a2

.

Proof: We separate the proof into two cases as follows. If πab ≤ 1 then use
the fact that any α ∈ [−2, 2] satisfies cosh(α) − 1 ≤ α2 and α ≤ eα to obtain
cosh(2πab) − 1 ≤ 4π2 · b2ea2

. Otherwise, use the fact that any α ≥ 0 satisfies
cosh(α) ≤ eα and α2 ≤ eα and the assumption b ≤ 1√

2
to obtain

cosh(2πab)− 1 ≤ e2πab ≤ (πab)2 · e
√

2πa ≤ π2 · b2e(
√

2π+1)a ≤ 230 · b2e
3π
4 a2

,

where the last inequality is easy to prove by taking the logarithm on both sides.

2.1 Embeddings

For two metric spaces (X, distX) and (Y, distY ) and a function f : X → Y we
define the Lipschitz constant of f as

‖f‖Lip = sup
x �=y∈X

distY (f(x), f(y))
distX(x, y)

.

If f is injective we define its distortion as distortion(f) = ‖f‖Lip · ‖f−1‖Lip,
and otherwise distortion(f) = ∞. By cY (X) we denote the least distortion with
which X can be embedded into Y , i.e.,

cY (X) = inf {distortion(f) | f : X → Y }.

We use cp(X) to denote cLp(X). Of special interest are embeddings into Hilbert
spaces and in this case the parameter c2(X) is called the Euclidean distortion
of X .
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2.2 Lattices

An n-dimensional lattice L ⊆ Rn is the set of all integer combinations of a set of
linearly independent vectors {b1, . . . , bm} ⊆ Rn, i.e., L = {

∑m
i=1 aibi | ∀i. ai ∈

Z}. The set {b1, . . . , bm} is called a basis of L and m, the number of vectors in it,
is the rank of L. Let B be the n by m matrix whose ih column is bi. We identify
the matrix and the basis that it represents and denote by L(B) the lattice that
B generates. The determinant of L is defined by det(L) =

√
det(BT B). It is not

difficult to verify that det(L) is independent of the choice of the basis. The dual
lattice, denoted by L∗, is defined as the set of all vectors in Rn that have integer
inner product with all the lattice vectors of L, that is L∗ = {u ∈ Rn | ∀v ∈
L. 〈u, v〉 ∈ Z}, and a self-dual lattice is one that satisfies L = L∗. The length of
a shortest nonzero vector in L is denoted by λ1(L) = min{‖u‖ | u ∈ L \ {0}}.
This definition is naturally extended to the successive minima λ1, . . . , λm defined
as follows:

λi(L) = inf{r > 0 | rank(span(L ∩ r · B)) ≥ i}.
It will be convenient to define also λ0(L) = 0. For a full-rank lattice L (that
is, m = n) the covering radius μ(L) is defined as the smallest r such that balls
of radius r centered at all lattice points cover the entire space, or equivalently
μ(L) = max{dist(x,L) | x ∈ Rn}. It is well known that 1

2 · λn(L) ≤ μ(L) ≤√
n

2 · λn(L) (see, e.g., [6, Page 138]).
The space Rn/L is the quotient space defined by a lattice L. Let u, v ∈ Rn/L

be two points. By abuse of notation we sometimes identify between points in
Rn/L and their representatives in Rn. For example, distRn/L(u, v) is defined as
dist(u,L + v), i.e., the distance between representatives of u and v modulo the
lattice. A function f : Rn → C is L-periodic if f(x) = f(x+y) for all x ∈ Rn and
y ∈ L. The Hilbert space L2(Rn/L) is a space of scalar functions with domain
Rn/L. We sometimes identify a function in L2(Rn/L) with its corresponding
L-periodic function with domain Rn. For f, g ∈ L2(Rn/L), the distance between
them is defined as

distL2(Rn/L)(f, g) =

(∫
Rn/L

|f(x)− g(x)|2dx

)1/2

.

2.3 Gaussian Measures and the Smoothing Parameter

For n ∈ N and s > 0 let ρs : Rn → (0, 1] be the Gaussian function centered at
the origin scaled by a factor of s defined by

∀x ∈ Rn. ρs(x) = e−π‖x/s‖2
.

We omit the subscript when s = 1. We define the discrete Gaussian distribution
with parameter s on a lattice L by its probability function

∀x ∈ L. DL,s(x) =
ρs(x)
ρs(L)

.



238 I. Haviv and O. Regev

Notice that the sum ρs(L) over all lattice vectors is finite, as follows from the
fact that

∫
Rn ρs(x)dx = sn. It can be shown that a vector sampled from DL,s

has the zeros vector as expectation and has expected squared norm close to
s2n/2π if s is large enough. Micciancio and Regev [7] defined a lattice parameter
that measures how big s should be for the distribution DL,s to “behave like”
a continuous Gaussian distribution in Rn (and in particular to have expected
squared norm close to s2n/2π). This parameter is called the smoothing parameter
and is defined as follows.

Definition 1. For a lattice L and a positive ε > 0 the smoothing parameter
ηε(L) is defined as the smallest s > 0 such that ρ1/s(L∗ \ {0}) ≤ ε.

A main property of the smoothing parameter is that, roughly speaking, the
distribution of a uniformly chosen random lattice point from L perturbed by
a Gaussian with s = ηε(L) is ε/2-close to a uniform distribution on the entire
space. For more details on the smoothing parameter the reader is referred to [7].

We state below a lemma due to Banaszczyk [2] and a simple bound on the
smoothing parameter that it yields (whose proof can be found in the full version
of the paper).

Lemma 1 ([2]). For any n ≥ 1, an n-dimensional lattice L and a vector u ∈
Rn,

ρ((L − u) \ 2
√

nB) ≤ 2−11n · ρ(L).

Lemma 2. For any n ≥ 1 and an n-dimensional lattice L, ηε(L) ≤ 2
√

n
λ1(L∗)

where ε = 2−10n.

2.4 Korkine-Zolotarev Bases

The question of specifying a basis of a lattice with valuable properties is known
as reduction theory. In 1873, Korkine and Zolotarev [5] defined and studied a
notion of a reduced basis whose vectors are in some sense close to orthogonal.
These bases are known as Korkine-Zolotarev bases.

Before defining Korkine-Zolotarev bases we need to define the Gram-Schmidt
orthogonalization process. For a sequence of vectors b1, . . . , bn define the corre-
sponding Gram-Schmidt orthogonalized vectors b̃1, . . . , b̃n by

b̃i = bi −
i−1∑
j=1

μi,j b̃j , μi,j =
〈bi, b̃j〉
〈b̃j , b̃j〉

.

In words, b̃i is the component of bi orthogonal to b1, . . . , bi−1. A Korkine-Zolotarev
basis is defined as follows.

Definition 2. Let B be a basis of an n-dimensional lattice L and let B̃ be the
corresponding Gram-Schmidt orthogonalized basis. For 1 ≤ i ≤ n define the pro-
jection function π

(B)
i (x) =

∑n
j=i 〈x, b̃j〉 · b̃j/‖b̃j‖2 that maps x to its projection

on span(b̃i, . . . , b̃n). A basis B is a Korkine-Zolotarev basis if for all 1 ≤ i ≤ n,
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– b̃i is a shortest nonzero vector in π
(B)
i (L) = {π(B)

i (u) | u ∈ L},
– and for all j < i, the Gram-Schmidt coefficients μi,j of B satisfy |μi,j | ≤ 1

2 .

We now state two simple lemmas on Korkine-Zolotarev bases whose proofs can
be found in the full version of the paper. For an n-dimensional lattice L and a
Korkine-Zolotarev basis B that generates it, let Li = π

(B)
i (L) be the projection of

L on span(b̃i, . . . , b̃n). Notice that Li is a lattice for every 1 ≤ i ≤ n. Intuitively
speaking, since the vectors of B are close to being orthogonal, we expect a
shortest nonzero vector in Li to have length similar to λi(L). This is stated
formally in the following lemma. Notice that the lower bound is meaningful only
when there is a gap between λi−1(L) and λi(L).

Lemma 3. Let B be a Korkine-Zolotarev basis of an n-dimensional lattice L
and denote Li = π

(B)
i (L). Then for all 1 ≤ i ≤ n,

4
i + 3

· λi(L)2 − i− 1
4

· λi−1(L)2 ≤ λ1(Li)2 ≤ λi(L)2.

The next lemma says that if the distance of a vector u ∈ Rn from L is somewhat
higher than λi−1(L), then it is close to the distance between Li and the projected
vector πi(u).

Lemma 4. Let B be a Korkine-Zolotarev basis of an n-dimensional lattice L
and denote Li = π

(B)
i (L). Then for any u ∈ Rn and 1 ≤ i ≤ n,

dist(u,L)2 − i− 1
4

· λi−1(L)2 ≤ dist(πi(u),Li)2 ≤ dist(u,L)2.

3 Properties of Gaussian Distributions

For an n-dimensional lattice L ⊆ Rn and a positive number s > 0 we define the
function hL,s : Rn → [0, 1) by

∀u ∈ Rn. hL,s(u) = 1− ρs(L − u)
ρs(L)

.

It can be shown that the function hL,s is nonnegative.1 Notice that if u ∈ L then
hL,s(u) = 0.

In this section we gather and prove several results on hL,s that, roughly speak-
ing, show that for certain choices of s, hL,s(u) is closely related to the distance
of u from L. The following lemma provides upper and lower bounds on hL,s(u).
Its first item is due to [2] and we include its proof for completeness. We remark
that the lemma can also be proven using Fourier transform.

Lemma 5. For any n ≥ 1, an n-dimensional lattice L, a vector u ∈ Rn and
s > 0,
1 For example, this follows from Proposition 1.
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1. hL,s(u) ≤ π
s2 · dist(u,L)2.

2. If 0 < ε ≤ 1
1000 , s ≤ 1

2ηε(L∗) and dist(u,L) ≤ s√
2

then hL,s(u) ≥ c
s2 ·

dist(u,L)2, where c is an absolute constant.

Proof: Assume without loss of generality that dist(u,L) = ‖u‖ and observe
that

hL,s(u) = 1− 1
ρs(L)

·
∑
x∈L

e−
π‖x−u‖2

s2 =1− 1
2ρs(L)

·
∑
x∈L

(
e−

π‖x−u‖2

s2 + e−
π‖x+u‖2

s2

)

= 1− e−
π‖u‖2

s2

ρs(L)
·
∑
x∈L

(
e−

π‖x‖2

s2 · cosh
(

2π〈x, u〉
s2

))

= 1− e−
π‖u‖2

s2 − e−
π‖u‖2

s2

ρs(L)
·

∑
x∈L\{0}

(
e−

π‖x‖2

s2 ·
(

cosh
(

2π〈x, u〉
s2

)
− 1

))
.

For Item 1, use the fact that for all α ∈ R, cosh(α) ≥ 1 and 1− e−α ≤ α to get
that

hL,s(u) ≤ 1− e−
π‖u‖2

s2 ≤ π‖u‖2
s2 =

π

s2 · dist(u,L)2.

For Item 2, use the Cauchy-Schwarz inequality and Fact 6 to get that any x ∈
L \ {0} satisfies

cosh
(

2π〈x, u〉
s2

)
− 1 ≤ cosh

(
2π‖x‖ · ‖u‖

s2

)
− 1 ≤ 230 · ‖u‖

2

s2 · e
3π‖x‖2

4s2 .

This implies that

hL,s(u) ≥ 1− e−
π‖u‖2

s2 − 230‖u‖2
s2 ·

∑
x∈L\{0}

(
e−

π‖x‖2

s2 · e
3π‖x‖2

4s2

)

= 1− e−
π‖u‖2

s2 − 230‖u‖2
s2 · ρ2s(L \ {0}) ≥

‖u‖2
s2

(π

4
− 230ε

)
,

where the last inequality follows from the inequality 1− e−α ≥ α
4 that holds for

any α ≤ 2 and the assumptions ‖u‖ ≤ s√
2

and ηε(L∗) ≤ 1
2s . This completes the

proof by our assumption on ε.

We turn to deal with lower bounds on hL,s(u) for vectors u that are far from
the lattice.

Lemma 6. For any n ≥ 1, an n-dimensional lattice L, s > 0 and u ∈ Rn,

1. If dist(u,L) > 2s ·
√

n then hL,s(u) ≥ 1− 2−11n.
2. If λ1(L) ≥ 4s

√
n then hL,s(u) ≥ 1− e−π dist(u,L)2/s2 − 2−11n.
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Proof: First, apply Lemma 1 to 1
s · L to get that

hL,s(u) ≥ 1− 2−11n − ρs((L − u) ∩ 2s ·
√

nB)
ρs(L)

.

If dist(u,L) > 2s ·
√

n then the intersection (L − u) ∩ (2s ·
√

nB) is empty and
we are done. For Item 2, notice that there is at most one point of L − u inside
the (open) ball of radius 2s ·

√
n.

4 The Embedding

In this section we prove the main results of the paper. We define an embedding
from a torus Rn/L into the Hilbert space L2(Rn/L) and relate the distortion
that it achieves to the function hL,s defined in Section 3.

For an n-dimensional lattice L and s > 0 we define the embedding HL,s :
Rn/L → L2(Rn/L) that maps any vector u ∈ Rn/L to the function that maps
any x ∈ Rn to

s√
2ρs(L)

·
(

2
s

)n/2

· ρ s√
2
(L+ x− u).

In words, HL,s(u) is the function that maps any x ∈ Rn to the mass of the
Gaussian function centered at u with parameter s√

2
on all the shifts of x by

lattice vectors (up to some normalization factor).
The following proposition relates the distance between two embedded points

and the function hL,s from Section 3. This enables us to use the lemmas from
Section 3 to bound the distortion achieved by our embedding.

Proposition 1. For any n ≥ 1, an n-dimensional lattice L, a real s > 0 and
u, v ∈ Rn/L,

distL2(Rn/L)(HL,s(u), HL,s(v))2 = s2 · hL,s(u− v).

Proof: We start by calculating the integral
∫

Rn/L ρ s√
2
(L+ z − u)ρ s√

2
(L+ z − v)

dz for general u, v ∈ Rn. Notice that L = x + L for every x ∈ L and hence the
integral equals to∑
x∈L

∫
Rn/L

ρ s√
2
(x + z − u)ρ s√

2
(L + x + z − v)dz =

∫
Rn

ρ s√
2
(w)ρ s√

2
(L + w + u − v)dw

=
∑
y∈L

∫
Rn

ρs(2w + y + u − v)ρs(y + u − v)dw =
( s

2

)n

· ρs(L + v − u),

where for the second equality we use the parallelogram law.
Now we prove the lemma using the integral from above. The squared distance

distL2(Rn/L)(HL,s(u), HL,s(v))2 equals to

s2

2ρs(L)
·
(

2
s

)n

·
∫

Rn/L
(ρ s√

2
(L+ z − u)− ρ s√

2
(L+ z − v))2dz
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=
s2

2ρs(L)
·
(

2
s

)n

·
(
2 ·

(s

2

)n

· ρs(L) − 2 ·
(s

2

)n

· ρs(L+ v − u)
)

= s2 ·
(

1− ρs(L+ v − u)
ρs(L)

)
= s2 · hL,s(u − v).

4.1 Upper Bounds in Terms of Lattice Parameters

In this section we prove an upper bound on c2(Rn/L) in terms of λ1(L) and
μ(L). We start with the following theorem for didactical reasons and then prove
its strengthening Theorem 4.

Theorem 7. For any n ≥ 1 and an n-dimensional lattice L, c2(Rn/L) =
O
(

μ(L)
λ1(L) ·

√
n
)
.

Proof: Let L be an n-dimensional lattice, consider the embedding HL,s for
s = λ1(L)

4
√

n
, and fix distinct u, v ∈ Rn/L. By Proposition 1 our goal is to bound

A :=
distL2(Rn/L)(HL,s(u), HL,s(v))2

distRn/L(u, v)2
=

s2 · hL,s(u− v)
distRn/L(u, v)2

from above and from below. For the upper bound use Item 1 of Lemma 5 to
obtain A ≤ s2 · π

s2 = π. For the lower bound consider the following two cases.
If distRn/L(u, v) ≤ s√

2
then by Item 2 of Lemma 5 applied to u− v we get A ≥

s2 · c
s2 = c, using Lemma 2 that yields 2ηε(L∗) ≤ 4

√
n

λ1(L) = 1
s for ε = 2−10n ≤ 1

1000 .
Otherwise, if distRn/L(u, v) > s√

2
, by Item 2 of Lemma 6 applied to u − v we

have A ≥ s2 · 1−e−π/2−2−11n

μ(L)2 , using the fact that λ1(L) = 4s · √n. Hence, our

embedding achieves distortion O
(

μ(L)
s

)
= O

(
μ(L)
λ1(L) ·

√
n
)
.

For the proof of Theorem 4 we extend the embedding HL,s as follows. For an n-
dimensional lattice L, s > 0 and k ≥ 1, we define the embedding H

(k)
L,s : Rn/L →

L2(Rn/L)k by H
(k)
L,s = (HL,s1 , HL,s2 , . . . , HL,sk

), where si = 2i−1 · s.

Proof of Theorem 4: Let L be an n-dimensional lattice and consider the em-
bedding H

(k)
L,s for s = λ1(L)

4
√

n
and k =

⌈
log

(
4μ(L)
λ1(L)

)⌉
. This embedding maps any

point u ∈ Rn/L to a vector of Gaussian functions with various radii in the inter-
val between the length of a shortest nonzero vector in L and its covering radius.
Intuitively, in this way for every possible distance between two points in Rn/L
we have a Gaussian function sensitive to it.

Fix distinct u, v ∈ Rn/L and use Proposition 1 to observe that

distL2(Rn/L)k(H(k)
L,s(u), H(k)

L,s(v))2

distRn/L(u, v)2
=

k∑
i=1

distL2(Rn/L)(HL,si(u), HL,si(v))2

distRn/L(u, v)2
,
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where si = 2i−1 · s. Denoting Ai(u, v) = s2
i ·hL,si

(u−v)
distRn/L(u,v)2 for 1 ≤ i ≤ k, the above

equals to
∑k

i=1 Ai(u, v). We will show that

Ω

(
1
n

)
≤

k∑
i=1

Ai(u, v) ≤ O(k), (1)

which implies that our embedding has distortion O(
√

nk), as required.
By Item 1 of Lemma 5 we have Ai(u, v) ≤ s2

i · π
s2

i
= π for every 1 ≤ i ≤ k,

which proves the upper bound in (1). In order to prove the lower bound in (1)
we now show that there exists an i such that Ai(u, v) ≥ Ω( 1

n ). Consider the
following three cases:

– Case 1: distRn/L(u, v) ≤ 1
4
√

2n
· λ1(L).

Notice that by Lemma 2 we have 2ηε(L∗) ≤ 4
√

n
λ1(L) = 1

s1
for ε = 2−10n ≤ 1

1000 .
Hence, by Item 2 of Lemma 5, A1(u, v) ≥ s2

1 · c
s2
1

= c.
– Case 2: 1

4
√

2n
· λ1(L) < distRn/L(u, v) ≤ λ1(L).

Since λ1(L) = 4s1
√

n, by Item 2 of Lemma 6 we get hL,s1(u − v) ≥ 1 −
e−π/2 − 2−11n and hence

A1(u, v) ≥ (1− e−π/2 − 2−11n) · s2
1

dist2Rn/L(u, v)
≥ 1− e−π/2 − 2−11n

16n
.

– Case 3: λ1(L) < distRn/L(u, v) ≤ μ(L).

Let 1 ≤ i ≤ k be the index that satisfies si <
distRn/L(u,v)

2
√

n
≤ 2 · si = si+1.

This index exists due to our choice of k. So distRn/L(u, v) = dist(u− v,L) >
2si ·

√
n. Hence, by Item 1 of Lemma 6, we have hL,si(u − v) ≥ 1 − 2−11n

and we get that Ai(u, v) ≥ (1− 2−11n) · s2
i

dist2
Rn/L(u,v) ≥

1−2−11n

16n .

In the following two corollaries we observe that our bounds are nearly tight for
certain families of lattices. The first follows immediately by combining Theo-
rems 5 and 7 and the second requires a transference theorem by Banaszczyk [2].

Corollary 1. Let L be an n-dimensional lattice such that λ1(L), μ(L) are equal
up to a multiplicative constant and λ1(L∗) · μ(L) ≥ Ω(n). Then, c2(Rn/L) =
Θ(
√

n).

Corollary 2. Let L be an n-dimensional lattice such that λ1(L∗) and μ(L∗) are
equal up to a multiplicative constant. Then, Ω(

√
n) ≤ c2(Rn/L) ≤ O(

√
n log n).

4.2 General Upper Bound

In this section we prove an upper bound on c2(Rn/L) that depends only on n and
is almost linear. Before presenting the proof let us start with some intuition. No-
tice that using the tools presented in Section 3 we have an embedding that works
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well for distances at most λ1(L) (Item 2 of Lemma 5) and an embedding that
works for specific distances (Lemma 6). Consider a Korkine-Zolotarev basis and
the projections that it defines: the lattice Li = πi(L) is the lattice L projected
to span(b̃i, . . . , b̃n). We think of Li as a full-rank lattice inside an (n − i + 1)-
dimensional space. Our embedding consists of n Gaussian functions where the ith
function corresponds to the lattice Li. Due to the use of a Korkine-Zolotarev ba-
sis using Item 2 of Lemma 5 we can show that the ith Gaussian function handles
distances that are both somewhat larger than λi−1(L) and somewhat smaller
than λi(L). In order to treat distances around the λi(L)’s we add additional
O(log n) Gaussian functions for every i and use Lemma 6 to prove correctness.

Proof of Theorem 3: LetLbeann-dimensional lattice generatedbyaKorkine-
Zolotarev basis B. For 1 ≤ i ≤ n let πi = π

(B)
i be the corresponding orthogonal

projection function that maps vectors to the orthogonal complement of span(b1,

. . . , bi−1). Denote Li = πi(L), ni = n − i + 1, si = λi(L)
4n , k = � 1

2 · (5 + 3 log n)�
and ri,j = 2j−1 · λi(L)

8n
√

2n
for 1 ≤ j ≤ k. Consider the embedding HL that maps

u ∈ Rn/L to the vector of n + nk = O(n log n) functions

(HL1,s1(π1(u)), . . . , HLn,sn(πn(u)), H
(k)
L,r1,1

(u), . . . , H
(k)
L,rn,1

(u)).

This is an element in the space L2=L2(Rn1/L1)⊕· · ·⊕L2(Rnn/Ln)⊕L2(Rn/L)nk.
Fix distinct u, v ∈ Rn/L. By Proposition 1,

distL2(HL(u), HL(v))2

distRn/L(u, v)2
=

n∑
i=1

Ai(u, v) +
∑

1≤i≤n,1≤j≤k

Bi,j(u, v),

where

Ai(u, v) =
s2

i · hLi,si(πi(u)− πi(v))
distRn/L(u, v)2

, Bi,j(u, v) =
r2
i,j · hL,ri,j(u − v)
distRn/L(u, v)2

.

We will show that

Ω

(
1
n

)
≤

n∑
i=1

Ai(u, v) +
∑

1≤i≤n,1≤j≤k

Bi,j(u, v) ≤ O(n log n), (2)

which implies that our embedding has distortion O(n ·
√

log n), as required.
By Item 1 of Lemma 5, for every 1 ≤ i ≤ n and 1 ≤ j ≤ k we have

Ai(u, v) ≤
distRni/Li

(πi(u), πi(v))2

distRn/L(u, v)2
· s2

i ·
π

s2
i

≤ π, Bi,j(u, v) ≤ r2
i,j ·

π

r2
i,j

= π,

where for the bound on Ai(u, v) we use the upper bound from Lemma 4 applied
to u− v. This yields the upper bound in (2). In order to prove the lower bound
in (2) we now show that there exists an i such that Ai(u, v) ≥ Ω( 1

n ) or there
exist i, j such that Bi,j(u, v) ≥ Ω( 1

n ). Since distRn/L(u, v) = dist(u − v,L) ≤
μ(L) ≤

√
n

2 · λn(L) the vectors u and v correspond to one of the following two
cases:
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– Case 1: There exists an i s.t.
√

n
2 · λi−1(L) < distRn/L(u, v) ≤ 1

4
√

2·n · λi(L).
Think of Li as a full-rank ni-dimensional lattice, and use Lemma 2 to obtain
for εi = 2−10ni ≤ 1

1000 that

ηεi (L∗
i )

2 ≤ 4ni

λ1(Li)2
≤ 4ni

4
i+3 · λi(L)2 − i−1

4 · λi−1(L)2
≤ 4n2

λi(L)2
,

where the second inequality follows from Lemma 3 and the third from a
straightforward calculation. This yields that 2 · ηεi(L∗

i ) ≤ 4n
λi(L) = 1

si
, so we

get that Ai(u, v)≥ s2
i ·

dist
R

ni /Li
(πi(u),πi(v))2

distRn/L(u,v)2 · c
s2

i
≥ c·

(
1− i−1

4 · λi−1(L)2

distRn/L(u,v)2

)
≥

c
n , where the first inequality follows from Item 2 of Lemma 5, the second
follows from Lemma 4 applied to u − v, and the third from the assumption
that

√
n

2 · λi−1(L) < distRn/L(u, v).
– Case 2: There exists an i s.t. 1

4
√

2·n · λi(L) < distRn/L(u, v) ≤
√

n
2 · λi(L).

Let 1 ≤ j ≤ k be the index that satisfies ri,j <
distRn/L(u,v)

2
√

n
≤ 2 ·ri,j = ri,j+1.

This index exists due to our choice of k. So distRn/L(u, v) = dist(u− v,L) >
2ri,j ·

√
n. Hence, by Item 1 of Lemma 6, we have hL,ri,j (u− v) ≥ 1− 2−11n

and we get that Bi,j(u, v) ≥ (1− 2−11n) · r2
i,j

dist2
Rn/L(u,v) ≥

1−2−11n

16n .
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Abstract. We initiate the study of on-line metric embeddings. In such
an embedding we are given a sequence of n points X = x1, . . . , xn one
by one, from a metric space M = (X, D). Our goal is to compute a
low-distortion embedding of M into some host space, which has to be
constructed in an on-line fashion, so that the image of each xi depends
only on x1, . . . , xi. We prove several results translating existing embed-
dings to the on-line setting, for the case of embedding into 	p spaces, and
into distributions over ultrametrics.

Keywords: Computational geometry, online algorithms, metric
embeddings.

1 Introduction

A low-distortion (or bi-Lipschitz) embedding between two metric spaces M =
(X, D) and M ′ = (X ′, D′) is a mapping f such that for any pair of points
p, q ∈ X we have D(p, q) ≤ D′(f(p), f(q)) ≤ c · D(p, q); the factor c is called
the distortion of f . In recent years, low-distortion embeddings found numerous
applications in computer science [17,12]. This can be, in part, attributed to the
fact that embeddings provide a general method for designing approximation
algorithms for problems defined over a “hard” metric, by embedding the input
into an “easy” metric and solving the problem in there.

For some problems, however, applying this paradigm encounters difficulties.
Consider for example the nearest neighbor problem: given a set P of n points in
some metric (X, D), the goal is to build a data structure that finds the nearest
point in P to a query point q ∈ X . A fundamental theorem of Bourgain [4]
shows that it is possible to embed P and the query point q into an “easy”
metric space, such as �2 with distortion log n. This, however, does not translate
to an efficient approximation algorithm for the problem for the simple reason
that the query point q is not known at the preprocessing stage, so it cannot be
embedded together with the set P . More specifically, for the approach to work
in this scenario we must require that we can extend the embeddings f : P → �2

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 246–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to g : P ∪ {q} → �2. We note that the aforementioned Bourgain’s theorem [4]
does not have such an extendability property.

An even more straightforward setting in which the standard notion of embed-
dings is not quite the right notion comes up in the design of on-line algorithms.
Often, the input considered is metric space; at each step the algorithm receives
an input point and needs to make decisions about it instantly. In order to use
the embedding method, we must require that the embedding would observe the
inputs sequentially, so that a point is mapped based only on the distance infor-
mation of the points observed so far. Here is a precise definition of the desired
object.

Definition 1. An on-line embedding of an n-point metric space M = (X, D)
where X = {x1, . . . xn} into some host metric space M ′ is a sequence of functions
fk for k = 1, . . . , n (possibly randomized) such that

– fk depends only on Mk, the restriction of M on {x1, . . . , xk}.
– fk extends fk−1: for each x ∈ {x1, . . . , xk−1}, fk(x) = fk−1(x). If the func-

tions are randomized, the extendability property means that the random bits
used for fk−1 are a subset of the random bits for fk, and when these bits be-
tween fk−1 and fk coincide the (deterministic) image of x ∈ {x1, . . . , xk−1}
is the same for these functions.

The associated distortion of the above f1, . . . , fn is the distortion of fn. If fi can
be obtained algorithmically, then we say that we have an on-line algorithm for
the embedding problem. We also consider on-line embeddings into shortest-path
metrics of graphs. In this case, we require that Mk is mapped into a graph Gk,
and that every Gk is subgraph of Gk+1.

In this work we investigate fundamental embedding questions in the on-line con-
text. Can we hope, for example, to embed a general metric space in Euclidean
space in an on-line fashion? Not surprisingly, the use of randomization is almost
always essential in the design of such embeddings. It is interesting to relate the
above notion to “oblivious embeddings”. An embedding is said to be oblivious, if
the image of a point does not depend on other points. In the usual (off-line) em-
beddings, the image of a point may depend on all other points. In this language,
on-line embedding is some type of middle-ground between these two types of
embeddings. In particular, oblivious embeddings are a special, very restricted
case of on-line embedding. Oblivious embeddings play an important role in the
design of algorithms, for example in the context of streaming algorithms [11]
or in the design of near linear algorithms that rely on embeddings [1]. Indeed,
some of our results use oblivious embeddings as a building block, most notably,
random projections and construction of random decompositions.

1.1 Results and Motivation

Embedding into �p spaces, and into distributions over ultrametrics.
We start our investigation by considering embeddings into �p spaces, and into
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distributions over ultrametrics. These target spaces have been studied exten-
sively in the embedding literature.

We observe that Bartal’s embedding [2] can be easily modified to work in
the on-line setting. We remark that this observation was also made by En-
glert, Räcke, and Westermann [6]. As a consequence, we obtain an on-line ana-
log of Bourgain’s theorem [4]. More specifically, we deduce that any n-point
metric space with spread1 Δ can be embedded on-line into �p with distortion
O((log Δ)1/p log n). Similarly, we also obtain an analog of a theorem due to
Bartal [2] for embedding into ultrametrics. More precisely, we give an on-line
probabilistic embedding of an input metric into a distribution over ultrametrics
with distortion O(log n · log Δ).

Doubling metrics. For the special case when the input space is doubling, we
give an improved on-line embedding into ultrametrics with distortion O(log Δ).
We complement this upper bound by exhibiting a distribution F over doubling
metrics (in fact, subsets of R1) such that any on-line embedding of a metric
chosen from F into ultrametrics has distortion Ω(min{n, log Δ}).

Embedding into �∞. We also consider on-line analogs of another embedding
theorem, due to Fréchet, which states that any n-point metric can be embedded
into �∞ with distortion 1. We show that this theorem extends to the on-line
setting with the same distortion, albeit larger dimension. By composing our on-
line embedding into �2, with a random projection, we obtain for any α >

√
2,

an on-line embedding into �∞ with distortion O(α · log n
√

log Δ), and dimension
Ω(max{(log n)2/(1−1/e), n4/(α2−2)}).

On-line embedding when an (off-line) isometry or near-isometry is
possible. Finally, we consider the case of embedding into constant-dimensional
�p spaces. It is well known ([18]) that for any constant dimension there are
spaces that require polynomial distortion (e.g. via a simple volume argument).
It is therefore natural to study the embedding question for instances that do
embed with small distortion. When a metric embeds isometrically into �2 or �d

2,
it is clear that this isometry can be found on-line. We exhibit a sharp contrast
with this simple fact for the case when there is only a near-isometry guaranteed.
Using a topological argument, we prove that there exists a distribution D over
metric spaces that (1 + ε)-embed into �d

2, yet any on-line algorithm with input
drawn from D computes an embedding with distortion nΩ(1/d). In light of our
positive results about embedding into �2 and a result of Matoušek [18], this
bound can be shown to be a near-optimal for on-line embeddings.

Remark 1. For simplicity of the exposition, we will assume that n is given to the
on-line algorithm in advance. We remark however that with the single exception
of embedding into �∞, all of our algorithms can be modified to work without
this knowledge.

1 The ratio between the largest and the smallest non-zero distances in the metric
space.
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Table 1. Summary of results

Input Space Host Space Distortion Section Comments

General 	p O(log n(log Δ)1/p) 2 p ∈ [1,∞]
General Ultrametrics O(log n log Δ) 2
Doubling 	2 O(log Δ) 3
Doubling Ultrametrics O(log Δ) 3
Doubling Ultrametrics Ω(min{n, log Δ}) 4

(1, 2)-metric 	n
∞ 1 5

General 	∞ 1 5 The input is drawn from a

fixed finite set of metrics.

	2 	d
∞ D 5.1 d ≈ Ω(n4/(D2−2))

	∞ 	∞ > 1 [21]
(1 + ε)-embeddable into 	d

2 	d
2 Ω(n1/(d−1)) 6

1.2 Related Work

The notion of low-distortion on-line embeddings is related to the well-studied
notion of Lipschitz extensions. A prototypical question in the latter area is: for
spaces Y and Z, is it true that for every X ⊂ Y , and every C-Lipschitz2 mapping
f : X → Z it is possible to extend f to f ′ : Y → Z which is C′-Lipschitz, for C′

not much greater than C? For many classes of metric spaces the answer to this
question is positive (e.g., see the overview in [16]).

One could ask if analogous theorems hold for low-distortion (i.e., bi-Lipschitz)
mapping. If so, we could try to construct on-line embeddings by repeatedly con-
structing bi-Lipschitz extensions to points p1, p2, . . .. Unfortunately, bi-Lipschitz
extension theorems are more rare, since the constraints are much more stringent.

In the context of the aforementioned work, the on-line embeddings can be
viewed as “weak” bi-Lipschitz extension theorems, which hold for only some
mappings f : X → Z, X ⊂ Y .

1.3 Notation and Definitions

For a point y ∈ Rd, we denote by yi the i-th coordinate of y. That is, y =
(y1, . . . , yd). Similarly, for a function f : A → Rd, and for a ∈ A, we use the
notation f(a) = (f1(a), . . . , fd(a)). Also, we denote by �p the space of sequences
with finite p-norm, i.e., ‖x‖p = (

∑∞
i=1 |xi|p)1/p

< ∞.
Consider a finite metric space (X, D) and let n = |X |. For any point x ∈ X

and r ≥ 0, the ball with radius r around x is defined as BX(x, r) = {z ∈
X | D(x, z) ≤ r}. We omit the subscript when it is clear from the context.
A metric space (X, D) is called Λ-doubling if for any x ∈ X , r ≥ 0 the ball
B(x, r) can be covered by Λ balls of radius r/2. The doubling constant of X
is the infimum Λ so that X is Λ-doubling. The doubling dimension of X is
dim(X) = log2 Λ. A metric space with dim(X) = O(1) is called doubling. A
γ-net for a metric space (X, D) is a set N ⊆ X such that for any x, y ∈ N ,
2 I.e., a mapping which expands the distances by a factor at most C.
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DX(x, y) ≥ γ and X ⊆ ∪x∈NBX(x, γ). Let M1 = (X, D1) and M2 = (X, D2) be
two metric spaces. We say that M1 dominates M2 if for every i, j ∈ X , D1(i, j) ≥
D2(i, j). Let (X, D1) and (Y, D2) be two metric space and an embedding f :
X → Y . We say that f is non-expanding if f doesn’t expand distances between
every pair x1, x2 ∈ X , i.e., D2(f(x1), f(x2)) ≤ D1(x1, x2). Similarly, f is non-
contracting if it doesn’t contract pair-wise distances. Also we say that f is α-
bi-Lipschitz if there exists β > 0 such that for every x1, x2 ∈ X , βD1(x1, x2) ≤
D2(f(x1), f(x2)) ≤ αβD1(x1, x2).

2 Embedding General Metrics into Ultrametrics and into
�p

In this section we will describe an on-line algorithm for embedding arbitrary
metrics into �p, with distortion O(log n · (log Δ)1/p), for any p ∈ [1,∞]. We also
give an on-line probabilistic embedding into a distribution over ultrametrics with
distortion O(log n · log Δ). Both algorithms are on-line versions of the algorithm
of Bartal [2], for embedding metrics into a distribution of dominating HSTs, with
distortion O(log2 n). Before we describe the algorithm we need to introduce some
notation.

Definition 2 ([2]). An l-partition of a metric M = (X, D) is a partition
Y1, . . . , Yk of X, such that the diameter of each Yi is at most l.

For a distribution F over l-partitions of a metric M = (X, D), and for u, v ∈ X ,
let pF(u, v) denote the probability that in an l-partition chosen from F , u and
v belong to different clusters.

Definition 3 ([2]). An (r, ρ, λ)-probabilistic partition of a metric M = (X, D)
is a probability distribution F over rρ-partitions of M , such that for each u, v ∈
X, pF(u, v) ≤ λD(u,v)

r . Moreover, F is ε-forcing if for any u, v ∈ X, with
D(u, v) ≤ ε · r, we have pF (u, v) = 0.

We observe that Bartal’s algorithm [2] can be interpreted as an on-line algorithm
for constructing probabilistic partitions. The input to the problem is a metric
M = (X, D), and a parameter r. In the first step of Bartal’s algorithm, every edge
of length less than r/n is contracted. This step cannot be directly performed in
an on-line setting, and this is the reason that the parameters of our probabilistic
partition will depend on Δ. More precisely, our partition will be 1/Δ-forcing,
while the one obtained by Bartal’s off-line algorithm is 1/n-forcing.

The algorithm proceeds as follows. We begin with an empty partition P . At
every step j, each Yt ∈ P will correspond to a ball of some fixed radius rt around
a point yt ∈ Xj . Once we have picked yt, and rt, they will remain fixed until the
end of the algorithm. Assume that we have partitioned all the points x1, . . . , xi−1,
and that we receive xi. Let P = {Y1, . . . , Yk}. If xi /∈

⋃
j∈[k] B(yj , rj), then we

add a new cluster Yk+1 in P , with center yk+1 = xi, and we pick the radius rk+1 ∈
[0, r log n), according to the probability distribution p(rk+1) =

(
n

n−1

)
1
r e−rk+1/r.
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Otherwise, let Ys be the minimum-index cluster in P , such that xi ∈ B(ys, rs),
and add xi to Ys.

By Bartal’s analysis on the above procedure, we obtain the following lemma.

Lemma 1. Let M be a metric, and r ∈ [1, Δ]. There exists an 1/Δ-forcing,
(r, O(log n), O(1))-probabilistic partition F of M , and a randomized on-line al-
gorithm that against any non-adaptive adversary, given M computes a partition
P distributed according to F . Moreover, after each step i, the algorithm computes
the restriction of P on Xi.

By the above discussion it follows that for any r > 0 we can compute an
(r, O(log n), O(1))-probabilistic partition of the input space M = (X, D). It is
well known that this implies an embedding into �p for any p ∈ [1,∞]. Since
the construction is folklore (see e.g. [8,9,22]), we will only give a brief overview,
demonstrating that the embedding can be indeed computed in an on-line fashion.

For each i ∈ {1, . . . , log Δ}, and for each j ∈ {1, . . . , O(log n)} we sample a
probabilistic partition Pi,j of M with clusters of radius 2i. Each such cluster
corresponds to a subset of a ball of radius 2i centered at some point of M .
For every i, j we compute a mapping fi,j : X → R as follows. For each cluster
C ∈ Pi,j we chose si,j ∈ {−1, 1} uniformly at random. Next, for each point
x ∈ X we need to compute its distance hi,j(x) to the “boundary” of the union
of all clusters. For every C ∈ Pi,j let a(C), r(C) be the center and radius of
C, respectively. We can order the clusters in Pi,j = (C1, . . . , Ck), so that Ct is
created by the on-line algorithm before Cl for every t < l. For a point x ∈ X
let C(x) be the cluster containing x. Suppose C(x) = Ct. We set hi,j(x) =
minl∈{1,...,t} |r(Cl) −D(x, a(Cl))|. Note that hi,j(x) can be computed in an on-
line fashion. We set fi,j(x) = si,j · hi,j(x). The resulting embedding is ϕ(x) =⊕

i,j fi,j(x). It is now straightforward to verify that with high probability, for
all x, y ∈ X we have D(x, y) ·Ω((log n)1/p/ logn) ≥ ‖ϕ(x) − ϕ(y)‖p ≥ D(x, y) ·
Ω((log n)1/p/ log n), implying the following result.

Theorem 1. There exists an on-line algorithm that for any p ∈ [1,∞], against a
non-adaptive adversary, computes an embedding of a given metric into �

O(log n log Δ)
p

with distortion O(log n·(log Δ)1/p). Note that for p = ∞ the distortion is O(log n).

Following the analysis of Bartal [2], we also obtain the following result.

Theorem 2. There exists an on-line algorithm that against a non-adaptive ad-
versary, computes a probabilistic embedding of a given metric into a distribution
over ultrametrics with distortion O(log n · log Δ).

We remark that in the off-line probabilistic embedding into ultrametrics of [2]
the distortion is O(log2 n). In this bound there is no dependence on Δ due
to a preprocessing step that contracts all sufficiently small edges. This step
however cannot be implemented in an on-line fashion, so the distortion bound
in Theorem 2 is slightly weaker. Interestingly, Theorem 5 implies that removing
the dependence on Δ is impossible, unless the distortion becomes polynomially
large.
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3 Embedding Doubling Metrics into Ultrametrics and
into �2

In this section we give an embedding of doubling metrics into �2 with distortion
O(log Δ). We proceed by first giving a probabilistic embedding into ultrametrics.
Let M = (X, D) be a doubling metric, with doubling dimension λ = log2 Λ.

We begin with an informal description of our approach. Our algorithm pro-
ceeds by incrementally constructing an HST3, and embedding the points of the
input space M into its leaves. The algorithm constructs an HST incrementally,
embedding X into its leaves. The construction is essentially greedy: assume a
good HST was constructed to the points so far, then when a new point p arrives
it is necessary to “go down the right branch” of the tree so as to be at a small
tree-distance away from points close to p. This is done by letting each internal
vertex of the HST of height i correspond to a subset of M of (appropriately
randomized) radius about 2i. When p is too far from the previous centers of the
balls it will branch out. The only issue that can arise (and in general, the only
reason for randomness) is that while p is too far from the centre of a ball, it is
in fact close to some of its members, and so a large expansion may occur when
it is not placed in that part of the tree. Randomness allows to deal with this,
but when decisions are made online and cannot be changed as in our case, it
is not guaranteed to work. What saves the day is the fact that when a metric
has bounded doubling dimension the obtained tree has bounded degree. This is
crucial when bounding the probability of the bad event described above to hap-
pen, as at every level of the tree there could be only constant number of possible
conflicts, each with low probability.

We now give a formal argument. Let δ = Λ3. Let T = (V, E) be a complete
δ-ary tree of depth log Δ, rooted at a vertex r. For each v ∈ V (T ), let l(v) be
the number of edges on the path from r to v in T . We set the length of an edge
{u, v} ∈ E(T ) to Δ · 2−min{l(u),l(v)}. That is, the length of the edges along a
branch from r to a leaf, are Δ, Δ/2, Δ/4, . . . , 1. Fix a left-to-right orientation
of the children of each vertex in T . For a vertex v ∈ V (T ), let Tv denote the
sub-tree of T rooted at v, and let c(v) denote the left-most leaf of Tv. We refer
to the point mapped to c(v) as the center of Tv. Let B(x, r) denote the ball
centered at x with radius r.

We will describe an on-line embedding f of M into T , against a non-adaptive
adversary. We will inductively define mappings f1, f2, . . . , fn = f , with fi :
{x1, . . . , xi} → V (T ), such that fi+1 is an extension of fi. We pick a value
α ∈ [1, 2], uniformly at random.

We inductively maintain the following three invariants.

(I1) For any v ∈ V (T ), if a point of Xi is mapped to the subtree Tv, then there
is a point of Xi that is mapped to c(v). In other words, the first point of X
that is mapped to a subtree Tv has image c(v), and is therefore the center
of Tv. Formally, if fi(Xi) ∩ V (Tv) 	= ∅, then c(v) ∈ fi(Xi).

3 See [3, Definition 8] for a definition of HST.
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(I2) For any v ∈ V (T ), all the points in Xi that are mapped to Tv are contained
inside a ball of radius Δ/2l(v)−1 around the center of Tv in M . Formally,
f−1

i (V (Tv)) ⊂ B(f−1
i (c(v)), Δ/2l(v)−1).

(I3) For any v ∈ V (T ), and for any children u1 	= u2 of v, the centers of Tu1

and Tu2 are at distance at least Δ/2l(v)+1 in M . Formally, D(f−1
i (c(u1)), f−1

i

(c(u2))) > Δ/2l(v)+1.

We begin by setting f1(x1) = c(r). This choice clearly satisfies invariants (I1)–
(I3). Upon receiving a point xi, we will show how to extend fi−1 to fi. Let
P = p0, . . . , pt be the following path in T . We have p0 = r. For each j ≥ 0, if there
exists a child q of pj such that V (Tq) ∩ fi−1(Xi−1) 	= ∅, and D(f−1

i−1(c(q)), xi) <
α·Δ/2j, we set pj+1 to be the left-most such child of pj. Otherwise, we terminate
P at pj .

Claim. There exists a child u of pt, such that c(u) /∈ fi−1({x1, . . . , xi−1}).

Proof. Suppose that the assertion is not true. Let y = f−1
i−1(pt). Let v1, . . . , vδ

be the children of pt. By the inductive invariants (I1) and (I2), it follows that
for each i ∈ [δ], D(f−1

i−1(c(vi)), y) ≤ Δ/2t−1. Moreover, by the choice of pt,
D(y, xi) ≤ α ·Δ/2t−1 ≤ Δ/2t−2. Therefore, the ball of radius Δ/2t−2 around z
in M , contains the δ+1 = Λ3 +1 points xi, f

−1(c(v1)), . . . , f−1(c(vδ)). However,
by the choice of pt, and by the inductive invariant (I3), it follows that the balls
in M of radius Δ/2t+1 around each one of these points are pairwise disjoint,
contradicting the fact that the doubling constant of M is Λ.

By Claim 3, we can find a sub-tree rooted at a child q of pt such that none
of the points in Xi−1 has its image in Tq. We extend fi−1 to fi by setting
fi(xi) = c(q). It is straight-forward to verify that fi satisfies the invariants (I1)–
(I3). This concludes the description of the embedding. It remains to bound the
distortion of f .

Lemma 2. For any x, y ∈ X, DT (f(x), f(y)) ≥ 1
3D(x, y).

Proof. Let v be the nearest-common ancestor of f(x) and f(y) in T . By invari-
ant (I2) we have D(x, y) ≤ D(x, f−1(c(v))) + D(y, f−1(c(v))) ≤ Δ · 2−l(v)+2.
Moreover, DT (f(x), f(y)) = 2 · Δ

∑log Δ
i=l(v) 2−i = Δ · 2−l(v)+2 − 2. The lemma

follows since the minimum distance in M is 1.

Lemma 3. For any x, y ∈ X, E[DT (f(x), f(y))] ≤ O(Λ3 · log Δ) ·D(x, y).

Proof (Proof sketch (full details in the full version):). The distance between x
and y is about 2i when they are separated at level i. For this to happen, y
must be assigned to a sibling of x at level i − 1. The probability of assigning
to any particular such sibling is O(D(x, y)/2i). It is here that we utilize the
bounded-degree property. By a union bound over all siblings at this level we get
a contribution of O(Λ3) on the expected expansion. Summing up over all log Δ
levels we get the desired bound.
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Theorem 3. There exists an on-line algorithm that against any non-adaptive
adversary, given a metric M = (X, D) of doubling dimension λ, computes a
probabilistic embedding of M into a distribution over ultrametrics with distortion
2O(λ) · log Δ.

It is well known that ultrametrics embed isometrically into �2, and it is easy to
see that such an embedding can be computed in an on-line fashion for the HSTs
constructed above. We therefore also obtain the following result.

Theorem 4. There exists an on-line algorithm that against any non-adaptive
adversary, given a doubling metric M = (X, D) of doubling dimension λ, com-
putes a probabilistic embedding of M into �2 with distortion 2O(λ) · log Δ.

Remark 2. In the off-line setting, Krauthgamer et al. [15] have obtained embed-
dings of doubling metrics into Hilbert space with distortion O(

√
log n). Their

approach however is based on the random partitioning scheme of Calinescu,
Karloff, and Rabani [5], and it is not known how to perform this step in the
on-line setting.

4 Lower Bound for Probabilistic Embeddings into
Ultrametrics

In this section we present a lower bound for on-line probabilistic embeddings
into ultrametrics. Consider the following distribution F over metric spaces. Each
space M = (X, D) in the support of F is induced by an n-point subset of R1,
with X = {x1, . . . , xn}, and D(xi, xj) = |xi − xj |. We have x1 = 0, x2 = 1,
x3 = 1/2. For each i ≥ 4, we set xi = xi−1 + bi2−i+2, where bi ∈ {−1, 1} is
chosen uniformly at random.

Fig. 1. The evolution of the construction of the ultrametric

It is easy to see that for each i ≥ 3, there exist points li, ri ∈ X such that
li = xi − 2−i+2, ri = xi + 2−i+2, and {x1, . . . , xi} ∩ [li, ri] = {li, xi, ri}. More-
over, for each i ∈ {3, . . . , n − 1}, there uniquely exists yi ∈ {li, ri}, such that
{xi+1, . . . , xn} ⊂ [min{xi, yi}, max{xi, yi}].

Claim. Let M = (X, D) be a metric from the support of F . Let f be an embed-
ding of M into an ultrametric M ′ = (X, D′). Then, for each i ≥ 3, there exists
zi ∈ {li, ri}, such that D′(xi, zi) ≥ D′(li, ri).
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Proof. It follows immediately by the fact that M ′ is an ultrametric, since for
any xi, li, ri ∈ X , D′(li, ri) ≤ max{D′(li, xi), D′(xi, ri)}.

In order to simplify notation, we define for any i ≥ 4, δi = D(xi, yi), and
δ′i = D′(xi, yi).

Claim. Let M = (X, D) be a metric from the support of F . Let f be an on-
line embedding of M into an ultrametric M ′ = (X, D′). Then, for any i ≥ 3,
Pr[δ′i ≥ δ′i−1|∀j ∈ {4, . . . , i− 1}, δ′j ≥ δ′j−1] ≥ 1/2.

Proof. Assume without loss of generality that zi = li, since the case zi = ri is
symmetric. By the construction of M , we have that Pr[yi = zi|∀j ∈ {4, . . . , i−
1}, δ′j ≥ δ′j−1] = 1/2. If yi = zi, then δ′i = D′(xi, zi) ≥ D′(li, ri) = δ′i−1,
concluding the proof.

Lemma 4. Let f be an on-line, non-contracting embedding of M into an ultra-
metric M ′. Then, E[δ′n−1/δn−1] = Ω(n).

Proof. Let i ≥ 4, and 1 ≤ t ≤ i−1. By Claim 4 we have Pr[δ′i ≥ δi−t] ≥ Pr[δ′i ≥
δ′i−t] ≥ Pr[∀j ∈ {1, . . . , t}, δ′i−j+1 ≥ δ′i−j ] =

∏t
j=1 Pr[δ′i−j+1 ≥ δ′i−j |∀s ∈

{1, . . . , j − 1}, δ′i−s+1 ≥ δ′i−s] ≥ 2−t. Therefore E[δ′n−1] ≥
∑n−1

i=3 δi · 2−n+i+1 =∑n−1
i=3 2−i+2 · 2−n+i+1 = Ω(n · 2−n) = Ω(n) · δn−1.

Since the aspect ratio (spread) is Δ = Θ(2n), we obtain the following result.

Theorem 5. There exists a non-adaptive adversary against which any on-line
probabilistic embedding into a distribution over ultrametrics has distortion Ω(min
{n, logΔ}).

We remark that the above bound is essentially tight, since the input space is a
subset of the line, and therefore doubling. By Theorem 3, every doubling metric
space probabilistically embeds into ultrametrics with distortion O(log Δ).

5 Embedding into �∞

In the off-line setting, it is well-known that any n-point metric space isometrically
embeds into n-dimensional �∞. Moreover, there is an explicit construction of the
embedding due to Fréchet. Let M = (X, D) be an arbitrary metric space. The em-
bedding f : (X, D) → �d

∞ is simply f(xi) = (D(xi, x1), D(xi, x2), . . . , D(xi, xn)).
It is clear that the Fréchet embedding does not fit in the on-line setting, since the
image of any point x depends on the distances between x and all points of the
metric space, in particular the future points.

A similar question regarding the existence of on-line embeddings can be posed:
does there exist a bi-Lipschitz extension for any embedding into �∞. The connec-
tion with the on-line setting is immediate; it is well-known (see e.g. [16]) that for
any metric space M = (X, D), for any Y ⊂ X , and for any a-Lipschitz function
f : Y → �∞, there exists an a-Lipschitz extension f̃ of f , with f̃ : X → �∞.



256 P. Indyk et al.

It seems natural to ask whether this is also true when f and f̃ are required to
be a-bi-Lipschitz. Combined with the fact that any metric embeds isometrically
into �∞, this would immediately imply an on-line algorithm for embedding iso-
metrically into �∞: start with an arbitrary isometry, and extend it at each step
to include a new point. Unfortunately, as the next proposition explains, this is
not always possible, even for the special case of (1, 2)-metrics (the proof appears
in the full version). We need some new ideas to obtain such an embedding.

Proposition 1. There exists a finite metric space M = (X, D), Y ⊂ X, and
an isometry f : Y → �∞, such that any extension f̃ : X → �∞ of f is not an
isometry.

Although it is not possible to extend any 1-bi-Lipschitz mapping into �∞, there
exists a specific mapping that is extendable, provided that the input space is
drawn from a fixed finite family of metrics. We will briefly sketch the proof of
this fact, and defer the formal analysis to the full version. Consider a metric space
M ′ obtained from M by adding a point p. Suppose that we have an isometry
f : M → �∞. As explained above, f might not be isometrically extendable to
M ′. The key step is proving that f is always Lipschitz-extendable to M ′. We
can therefore get an on-line embedding as follows: We maintain a concatenation
of embeddings for all metrics in the family of input spaces. When we receive a
new point xi, we isometrically extend all embeddings of spaces that agree with
our input on {x1, . . . , xi}, and Lipschitz-extend the rest.

Theorem 6. Let F be a finite collection of n-point metric spaces. There ex-
ists an on-line embedding algorithm that given a metric M ∈ F , computes an
isometric embedding of M into �∞.

5.1 Low-Distortion Embeddings into Low-Dimensional �∞

In the pursuit of a good embedding of a general metric space into low dimensional
�∞ space we demonstrate the usefulness (and feasibility) of concatenation of
two on-line embeddings. In fact one of these embeddings is oblivious, which in
particular makes it on-line. Why the concatenation of two on-line embeddings
results in yet another on-line embeddings is fairly clear when the embeddings
are deterministic; in the case of probabilistic embeddings it suffices to simply
concatenate the embeddings in an independent way. In both cases the distortion
is the product of the distortions of the individual embeddings. Recall that Section
2 provides us with an on-line embedding of a metric space into Euclidean space.
The rest of the section shows that the classical method of projection of points
in Euclidean space onto a small number of dimensions supplies low distortion
embedding when the host space is taken to be �∞. To put things in perspective,
the classical Johnson-Lindenstrauss lemma [13] considers the case where the
image space is equipped with the �2 norm, and it is well-known that a similar
result can be achieved with �1 as the image space [10, p. 92]. As we will see, �∞
metric spaces behave quite differently than �2 and �1 spaces in this respect, and
while a dimension reduction is possible, it is far more limited than the first two
spaces.
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The main technical ingredient we need is the following concentration result.
See also [23] for a similar analysis. The proof is given in the full version.

Lemma 5. Let u ∈ Rn be a nonzero vector and let α > 1 and d ≥ e2. Let
y be the normalized projection of u onto d dimensions by a Gaussian matrix
as follows: y = (2/m)Ru where R is a d × n Gaussian random matrix, i.e., a
matrix with i.i.d. normal entries and m = 2

√
ln d. Then Pr [‖y‖∞/‖u‖2 ≤ 1] ≤

exp(− 1
4

√
d/ lnd), and Pr [‖y‖∞/‖u‖2 ≥ α] ≤ (2/α)d1−α2/2.

With the concentration bound of Lemma 5 it is not hard to derive a good
embedding for any n-point set, as is done, say, in the Johnson Lindenstrauss
Lemma [13], and we get

Lemma 6. Let X ⊂ Rn an n-point set and let α >
√

2. If d =
Ω(max{(log n)2/(1−1/e), n4/(α2−2)}), then the above mapping f : X → �d

∞ satis-
fies ∀x, y ∈ X, ‖x− y‖2 ≤ ‖f(x)− f(y)‖∞ ≤ α‖x− y‖2 with high probability.

By a straightforward composition of the embeddings in Theorem 1 and Lemma 6,
we get

Theorem 7. There exists an on-line algorithm against any non-adaptive adver-
sary that for any α >

√
2, given a metric M = (X, DM ), computes an embedding

of M into �d∞ with distortion O(α·log n·
√

log Δ) and d = Ω(max{(log n)2/(1−1/e),

n4/(α2−2)}).

Remark 3. The embeddings into �∞ given in Theorems 1 and 7 are incompara-
ble: the distortion in Theorem 1 is smaller, but the dimension is larger than the
one in Theorem 7 for large values of Δ.

6 On-Line Embedding When an Off-Line (Near-)Isometry
Is Possible

It is not hard to see that given an n-point �d
2 metric M , one can compute an online

isometric embedding of M into �d
2. This is simply because there is essentially

(up to translations and rotations) a unique isometry, and so keeping extending
the isometry online is always possible. However, as soon as we deal with near
isometries this uniqueness is lost, and the situation changes dramatically as we
next show: even when the input space embeds into �d

2 with distortion 1 + ε, the
best online embedding we can guarantee in general will have distortion that is
polynomial in n. We use the following topological lemma from [20].

Lemma 7 ([20]). Let δ < 1
4 and let f1, f2 : Sd−1 → Rd be continuous maps

satisfying

– ‖fi(x)− fi(y)‖2 ≥ ‖x− y‖2 − δ for all x, y ∈ Sd−1 and all i ∈ {1, 2},
– ‖f1(x) − f2(x)‖2 ≤ 1

4 for all x ∈ Sd−1, and
– Σ1 ∩Σ2 = ∅, where Σi = fi(Sd−1).
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Let Ui denote the unbounded component of Rd \ Σi. Then, either U1 ⊂ U2, or
U2 ⊂ U1.

Theorem 8. For any d ≥ 2, for any ε > 0, and for sufficiently large n >
0, there exists a distribution F over n-point metric spaces that embed into �d

2
with distortion 1 + ε, such that any on-line algorithm on input a metric space
chosen from F outputs an embedding into �d

2 with distortion Ω(n1/(d−1)), and
with probability at least 1/2.

Proof. The proof will appear in the full version of this paper.

Acknowledgements. We thank the anonymous referee for pointing out Theorem 4.
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Abstract. We study three complexity parameters that in some sense
measure how chordal-like a graph is. The similarity to chordal graphs
is used to construct simple polynomial-time approximation algorithms
with constant approximation ratio for many NP-hard problems, when
restricted to graphs for which at least one of the three complexity param-
eters is bounded by a constant. As applications we present approximation
algorithms with constant approximation ratio for maximum weighted in-
dependent set, minimum (independent) dominating set, minimum vertex
coloring, maximum weighted clique, and minimum clique partition for
large classes of intersection graphs.

1 Introduction

Complexity parameters can help to solve many NP-hard problems of theoret-
ical or practical importance on a subclass of instances for which the chosen
parameter is very small. Treewidth is one of the classical complexity parameters
studied in graph theory. Graphs of bounded treewidth have a tree-like structure
that allows a generalization of efficient algorithms for hard problems on trees to
graphs of bounded treewidth. In particular, all decision problems that can be
expressed in monadic second-order logic can be solved in polynomial time on
graphs of bounded treewidth [3,8].We study three complexity parameters that
all generalize in some kind another class of graphs, namely chordal graphs. One
of them is new, whereas the others also appear in [34] and [25], but were not
analyzed in detail in these papers. See Section 2 for a detailed definition of the
complexity parameters. Like trees, chordal graphs have a simple structure that
facilitates the solution of a large number of NP-hard problems. For example,
there are linear time algorithms on chordal graphs for maximum clique (MC),
for minimum clique partition (MCP) [15], for maximum weighted independent
set (MWIS) [13], and for minimum vertex coloring (MVC).Thus, it seems natural
to search for a generalization of chordal graphs. In doing so, we obtain new ap-
proximation algorithms for the problems above on big graph classes containing
many intersection graph classes such as t-interval graphs, circular-arc graphs,
(unit) disk graphs, and intersection graphs of regular polygons or of arbitrary
polygons of so-called bounded fatness. In general, intersection graphs are use-
ful subclasses of graphs with several practical applications. See [17] or [18] for
an overview of applications on these graphs. It is not surprising that, for small

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 260–273, 2010.
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graph classes such as unit disk graphs, one can achieve better results than by
our new algorithms designed for bigger classes of graphs. Nevertheless, also on
small graph classes such as disk graphs we obtain new results for some of the
problems above as well as for minimum dominating set (MDS) and minimum
independent dominating set (MIDS).

Table 1 summarizes the best previously known and new approximation results
for the intersection graphs of disks, regular polygons, fat objects, t-intervals,
and t-fat-objects. MIS denotes the unweighted version of MWIS and MWC the
weighted version of MC. By an r-regular polygon we mean a polygon with r
corners placed on a cycle such that all pairs of consecutive corners of the polygon
have the same distance. We assume that r ∈ O(1). We define a set C of geometric
objects in IRd—i.e., a set of points in IRd—to be a set of fat objects if the following
holds: First of all, let us call the radius of a smallest d-dimensional ball containing
the closure of a geometric object S in IRd the size of S. Moreover, let R be the
size of the largest object in C. C is called fat if there is a constant c such that,
for each d-dimensional ball B of radius r with 0 < r ≤ R, there exist c points
(possibly also outside B) such that every B-intersecting object S ∈ C of size
at least r contains at least one of the c points. We also say that C has fatness
c. C is called a (c-)restricted set of fat objects if in the condition above every
B-intersecting object in C (with arbitrary size) contains at least one of the c
points. By a unit set of objects—in opposite to arbitrary—we mean that each
object must be a copy of each other object, i.e., it has to be of the same size
and shape. However, unit and arbitrary objects may be rotated and moved to
any position. An intersection graph G of t-intervals is an intersection graph,
where each vertex represents a t-interval, i.e., the union of t intervals taken from
a set S of intervals. By the intersection graph G of t-fat-objects we mean an
intersection graph, where each vertex represents a t-fat-object, i.e., the union of
t objects taken from a fat set S of objects. In both cases S is the universe of G.

As usual, disks and regular polygons should be defined in the plane IR2, in-
tervals in IR and fat objects in IRd, where we assume that d = O(1). Concerning
the results in table 1 including the hardness results, we assume that—beside
an intersection graph itself—a representation of the intersection graph is given.
More precisely, for the intersection graph of a set S of (1) disks, (2) r-regular
polygons, (3) t-intervals, (4) fat objects, or (5) t-fat objects, we are given for
each element in S its radius and the coordinates of its center in case 1, the co-
ordinates of the center and at least one corner in case 2, the start and end point
of each interval in case 3. In case 4, we should be given a representation that,
for each pair X, Y of objects, each point p ∈ IRd, and each d-dimensional ball B
represented by the coordinates of its center and its radius r ≤ R, supports the
following computations in polynomial time: Decide whether X and Y intersect,
whether X and B intersect, and whether p is contained in X . Moreover, deter-
mine the size s of X as well as the center of the ball with a radius s containing
the closure of X , and find c points that are contained in every object of size ≥ r
intersecting B. In case 5, each t-fat-object has a representation of its objects as
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described in case 4. The representations described are given explicitly in many
applications.

Table 1. Approximation results. We use PA. and NP-h. as abbreviation for polynomial-
time approximation algorithm and NP-hard, respectively. By n we denote the number
of vertices of the intersection graph. [∗] denotes a new result shown in this paper.

disk r-reg. polygon fat objects t-interval t-fat-objects
MIS arbitrary: arbitrary: fatness c: 2t-PA. [2] fatness c:

PTAS [6,10] PTAS [6,10] PTAS [6,10] 2tc-PA. [∗]
unit: unit: unit: t ≥ 3 :
PTAS [22] PTAS [22] APX -h.
NP-h. [12] NP-h. [12] NP-h. [12] [21,31] NP-h. [12]

MWIS arbitrary: arbitrary: fatness c: 2t-PA. [2] fatness c:
PTAS [10] PTAS [10] PTAS [10] 2tc-PA. [∗]

MDS arbitrary: c-restricted: c-restricted: t2-PA. [4] c-restricted:
PTAS [16] c-PA. [∗] c-PA. [∗] tc-PA. [∗]

unit: unit: unit: t ≥ 2 : t ≥ 2 :
PTAS [22] PTAS [22] APX -h. APX -h.
NP-h. [7] NP-h. [7] NP-h. [7] [21,31] [21,31]

MIDS c-restricted: c-restricted: c-restricted: c-restricted:
c-PA. [∗] c-PA. [∗] c-PA. [∗] tc-PA. [∗]

unit: unit: unit: t ≥ 2 :
PTAS [23] PTAS [23]
NP-h. [7] NP-h. [7] NP-h. [7] NP-h. [7]

MVC arbitrary: arbitrary: fatness c: 2t-PA. [2] fatness c:
5-PA. O(1)-PA. c-PA. [34] 2tc-PA. [∗]
[19,28,29] [27,34]

unit: 3-PA. [29] unit: unit:
4/3-PA. is NP O(1)-PA. [29]
-h. [7,14,24] NP-h. [14,24] NP-h. [14,24]

MC arbitrary: arbitrary: fatness c: t2−t+1
2

-PA. [4] fatness c:
8-PA. [∗] O(1)-PA. [∗] c-PA. [∗] 4t-PA. [∗] 2tc-PA. [∗]

unit: t ≥ 3 : t ≥ 3 :
∈ P [7] NP-h. [4] NP-h. [4]

MWC arbitrary: arbitrary: fatness c: t2−t+1
2

-PA. [4] fatness c:
8-PA. [∗] O(1)-PA. [∗] c-PA. [∗] 4t-PA. [∗] 2tc-PA. [∗]

MCP arbitrary: arbitrary: fatness c: O(log2 n/ c-restricted:
8-PA. [∗] O(1)-PA. [∗] c-PA. [∗] log(1 + 1/t))- tc-PA. [∗]

unit: 3-PA. [5] PA. [∗]
PTAS [9,32]

Very related to the graph classes considered in this paper is the so-called
class of sequentially k-independent graphs introduced by Akcoglu, Aspnes, Das-
Gupta, and Kao [1] and studied more extensively in a recent paper by Ye and
Borodin [34]. We omit an exact definition of this graph class, but want to remark
that even though the results of Ye et al. and our results are achieved completely
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independently, there are similarities between the papers. This indicates that our
generalizations of chordal graphs are quite natural, but surprisingly have not
been studied more extensively before. Other generalized classes of graphs in-
cluding the intersection graphs of unit disks or r-regular polygons of unit size
are graph classes of so-called polynomially bounded growth studied by Nieberg,
Hurink and Kern [23,30]. Nieberg et al. presented a PTAS for MWIS, MDS
and MIDS for these classes of graphs. However, graphs of polynomially bounded
growth do not include the intersection graphs of arbitrary disks, arbitrary r-
regular polygons, t-interval graphs, etc.

Our results include the first polynomial-time approximation algorithms with
constant approximation ratio for maximum clique and minimum clique partition
on disk graphs and on intersection graphs of r-regular polygons. We also present
a polynomial-time approximation algorithm with constant approximation ratio
for minimum dominating set on the intersection graphs of a restricted set of
r-regular polygons. Recently, Erlebach and van Leeuwen [11] presented an ap-
proximation algorithm with constant approximation ratio for the same problem
on an arbitrary set of r-regular polygons, however, they do not allow to rotate
the polygons in contrast to this paper. Our results also imply an approximation
algorithm with constant approximation ratio for minimum dominating set on in-
tersection graphs of an arbitrary set of non-rotated r-regular polygons. With the
introduction of the completely new graph class of k-perfect orientable graphs, we
also can solve an open question posted by Butman et al. [4], namely to improve
their approximation bound of (t2 − t + 1)/2 for maximum clique on t-interval
graphs. Our results lead to a 4t-approximation. In general, our results also ex-
tend to intersection graphs of a restricted set of t-fat objects and further classes
of graphs not discussed in this paper.

2 New Complexity Parameters

In this section, the following definitions introduce three complexity parameters.
For each complexity parameter, we present examples of classes of intersection
graphs for which the complexity parameter is bounded by a constant. For a set
S of vertices in a graph G, let G[S] be the subgraph of G induced by S.

Definition 1 (k-perfectly groupable). A graph is k-perfectly groupable if
the neighbors of each vertex v can be partitioned into k sets S1, . . . , Sk such that
G[Si ∪ {v}] is a clique for each i ∈ {1, . . . , k}.

For each object S of a k-restricted set C of fat objects and a smallest ball B
containing S, there exists a set PS of k points such that every object in C
intersecting B covers a point in PS . For each S-intersecting and hence also B-
intersecting object S′ ∈ C, choose one of the points in S′∩PS as a representative.
Then all S-intersecting objects having the same representative in PS induce a
clique in the intersection graph. Hence, the intersection graph of a k-restricted
set of fat objects is k-perfectly groupable. Note that graphs of maximum degree k
are also k-perfectly groupable. The set of the well studied (k+1)-clawfree graphs
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contains all k-groupable graphs. As we see in this section, unit disk graphs and
unit square graphs are k-perfectly groupable for a suitable constant k.

Definition 2 (k-simplicial, k-simplicial elimination order, successor). A
graph G is k-simplicial if there is an order v1, . . . , vn of the vertices of G such
that, for each vertex vi (1 ≤ i ≤ n), the subset of neighbors of vi contained in
{vj | j > i} can be partitioned into k sets S1, . . . , Sk such that G[Sj ∪ {vi}] is a
clique for each j ∈ {1, . . . , k}. The vertices in {vj | j > i, {vi, vj} ∈ E(G)} are
called the successors of vi and the order above of the vertices in G is called a
k-simplicial elimination order.

The k-simplicial graphs are already defined in [25] and [34], whereas in the latter
paper they are called G̃(VCC k). Let C be a set of fat objects S1, . . . , Sn ordered
by non-decreasing size. Let k be the fatness of C. Then, for each object Si with
i ∈ {1, . . . , n}, we can find k points such that every Si-intersecting object in
{Si+1, . . . , Sn} contains one of the k points. Let vi be the vertex representing Si

in the intersection graph G of C. Then v1, . . . , vn defines a k-simplicial elimina-
tion order. Therefore, G is k-simplicial. Also note that disk graphs and square
graphs are k-simplicial for a suitable constant k. Chordal graphs are exactly
the 1-simplicial graphs. Moreover, every planar graph is 5-simplicial and every
k-simplicial graph is sequentially k-independent (see [34]).

Definition 3 (k-perfectly orientable). A graph G is called k-perfectly ori-
entable if each edge {u1, u2} of G can be assigned to exactly one of its endpoints
u1 and u2 such that, for each vertex v, the vertices connected to v by edges as-
signed to v can be partitioned into k sets S1, . . . , Sk such that G[Si ∪ {v}] is a
clique for each i ∈ {1, . . . , k}. We write a({u1, u2}) = u1 if {u1, u2} is assigned
to u1.

We now show that the intersection graph G = (V, E) of a set of t-fat-objects C
with a universe of fatness c is (t·c)-perfectly orientable. Let V = {v1, . . . , vn} and,
for each i ∈ {1, . . . , n}, let Si be the union of t objects Si,1, . . . , Si,t represented
by vi. Choose, for each edge {vi, vj} in G with i < j, a pair {p, q} of indices
such that Si,p and Sj,q intersect. Assign {vi, vj} to vi if the size of Si,p is smaller
than the size of Sj,q and to vj otherwise. Then, for each vertex vi, one can
find t · c points such that each Si-intersecting t-fat-object Sj with {vi, vj} being
assigned to vi must intersect Si in at least one of the t · c points. Therefore, the
set of vertices being endpoints of edges assigned to vi can be partitioned into
≤ t ·c cliques. This proves that G is (t ·c)-perfectly orientable. Note also that the
intersection graphs of t-intervals are 2t-perfectly orientable. For these graphs,
an edge {vi, vj} with i < j is assigned to vi if the t-interval represented by vj

intersects one of 2t endpoints of the intervals whose union is represented by vi.
Otherwise, {vi, vj} is assigned to vj .

We next present explicit upper bounds for the three complexity parameters
on some special intersection graphs. Before that let us define the inball and the
outball of a geometric object S to be a ball with largest radius contained in
the closure of S and the ball with smallest radius containing the closure of S,
respectively. The center of S is the center of its outball.
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Theorem 4. An intersection graph of t-squares, i.e., of unions of t (not neces-
sarily axis-parallel) squares, is

1. 10-perfectly groupable if t = 1 and if the squares are of unit size,
2. 10-simplicial if t = 1, and
3. 10t-perfectly orientable.

Proof. For proving the first two cases, let G be the intersection graph of a set
S of squares. It remains to show that, for a square Q of minimal side length
�, there are 10 points—called the barriers of Q—such that every Q-intersecting
square Q′ of length ≥ � must cover at least one of them. This fact also proves
case 3 since the universe of a set of t-squares then has fatness 10.

We first describe our choice of the 10 barriers of Q. See also the left side of
Fig. 1 for the following construction. Let b1 and b2 be the two perpendicular
bisectors of the sides of Q. Choose two barriers x and y of Q as points on b1 such
that the part of b1 inside Q is divided into three parts of equal length. We call
these two points the inner barriers of Q. Let C be the curve surrounding Q that
consists of all points having a distance of exactly � to one of the inner barriers
and a distance of at least � to the remaining inner barrier. The remaining 8
barriers, called outer barriers, are almost equidistant points on C. More exactly,
4 outer barriers of Q are placed on the 2+2 intersection points of C with b1 and
b2. Choosing the other 4 outer barriers of Q is more sophisticated. Let x′ and
y′ be the two points on b1 having the same distance to the center of Q as to x
and y, respectively. In addition, let r1, . . . , r4 be the 4 rays starting from x′ and
y′, respectively, and intersecting a corner of Q but neither b1 nor b2. The four
remaining outer barriers are placed on the intersection points of C with the rays
r1, . . . , r4.

By a simple mathematical analysis one can show that the distance between
any two consecutive outer barriers on C is strictly smaller than �. It remains to
show that each square of side length at least � intersecting Q also covers one of
the barriers of Q. Assume for a contradiction that we can find a square Q′ of
side length at least � intersecting Q but none of the barriers of Q. W.l.o.g. we
can assume that Q′ has side length exactly � since otherwise Q′ also contains
a smaller square intersecting Q. Let H be the convex hull of the outer barriers
and let B be the largest circle contained in H such that B has the same center
as Q. B and thus also H contain at least one corner of Q′ since Q′ intersects
Q and B, and since a simple mathematical analysis shows that each chord of B
with length at most l does not intersect Q. We now distinguish two cases.

Case 1: No side of Q′ is completely contained in the convex hull H of the
outer barriers. For each pair of consecutive outer barriers p and q on C, let us
define Cp,q to be the semi-circle inside H with endpoints p, q and hence having a
diameter equal to the distance between p and q. See again the left side of Fig. 1.
Let z be the corner of Q′ inside B with the smallest distance to a point in Q.
Note that the two sides of Q′ ending in z are not completely contained in H.
Consequently, by Thales’ theorem and the fact that Q′ does not contain any
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Fig. 1. The left side shows a square with some barriers, and on the right side, we see
a square intersecting 7 disjoint squares

barriers there must be two consecutive outer barriers p and q on C such that z
is contained in the face enclosed by Cp,q and pq. Again a simple mathematical
analysis shows that none of our semi-circles intersects Q. Thus, neither z nor
any other point of Q′ is covered by Q. Contradiction.

Case 2: At least one side of Q′ is completely contained in H. Since each pair of
consecutive outer barriers on C has a distance smaller than �, the center q of Q′

is inside H.
By symmetry, w.l.o.g. we can assume that the distance between q and y is

smaller or equal than the distance between q and x. Let H′ be the convex hull
of x and the outer barriers having a distance of at most � to y. On the one hand,
for each pair of consecutive barriers q1 and q2 on H′, there is at most one corner
in the face bounded by q1q2 and the semi-circle outside H′ with endpoints q1
and q2. On the other hand, at least one corner of Q′ is outside H′ since the inball
of Q′, which does not contain y, must intersect the border of H′. Consequently,
there are two sides s1 and s2 of Q′ that have a common corner p outside H′ and
that intersect H′ between to outer barriers, say q1 and q2.

Let T be the triangle with corners y, q1 and q2. Since Q′ is a square of side
length �, since p is not covered by T , and since T is a triangle with two sides of
length � and with an s1-intersecting side of length at most �, y has to be inside
Q′. Contradiction. �

Observation 5. Some square graphs are not 6-perfectly groupable as shown on
the right side of Fig. 1.

Lemma 6. The intersection graph of a set of rectangles, all having aspect ratio
of α, is 10�α�-simplicial.

Proof. Consider each rectangle as a set of �α� squares. For each rectangle r1
replaced by squares of a size s1, one can find 10�α� points such that every r1-
intersecting square of size s2 ≥ s1 replacing another rectangle r2 must cover one
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of these points. Here we use the fact that each rectangle can be replaced by �α�
unit squares.

Theorem 7. Let c be a fixed constant and G be an intersection graph, where
each vertex represents a union of t polygons taken from a universe of non-rotated
c-regular polygons. Then G is (t · c)-perfectly orientable.

Proof. The intersection of two non-rotated c-regular polygons must contain at
least one of the corners of the two polygons. Note that this does not hold for
general rotated polygons. Let {v1, . . . , vn} be the vertices of G. We assign an
edge {vi, vj} in G with i < j to vi if and only if one of the polygons in the union
of polygons represented by vi has a corner contained in the union of polygons
represented by vj . Otherwise, we assign it to vj . The edges assigned to a vertex
v can be partitioned into t ·c sets such that the endpoints of the edges of each set
induce a clique in G since we have one clique for each corner of the t polygons. �

Theorem 8. Let G be the intersection graph of some geometric objects in IRd.
If the objects are convex and if, additionally, there is a constant k such that,
for each object, the ratio between its size and the radius of its inball is bounded
by k, then G is (3

2

√
dπ(k + 1))d/Γ (d/2 + 1)-simplicial, where Γ should denote

the Gamma function. If the ratio between the largest size of the objects and
the radius of a smallest inball of the objects is bounded by a constant k′, G is
(3
2

√
dπ(k′ + 1))d/Γ (d/2 + 1)-perfectly groupable (even in the case of non-convex

objects).

Proof. For proving the lemma we first show how to find, for a given ball B with
radius ≤ R′ and a real number r > 0, a set of points such that every ball b
with radius at least r intersecting B must cover at least one of these points.
Therefore, let us consider the d-dimensional space, paved with d-dimensional
cubes of edge length s = 2r/

√
d and volume sd = 2drdd−

d
2 . Then, every ball b

of radius at least r must contain at least one of their midpoints, as the cubes’
diagonals have length 2r. Furthermore, the distance between the center of a ball
b of radius ≥ r intersecting B and B’s center is at most R′ + r. Hence it suffices
to pave a ball of radius R′ + 2r. To do this, we do not need more cubes than
completely fit in a ball of radius R′ + 3r. A ball of radius R′ + 3r has volume
(
√

π(R′ + 3r))d/Γ (d
2 + 1) and hence the following number of cubes are enough:⌊

(
√

π(R′ + 3r))d

Γ (d
2 + 1)

· 1

2drdd−
d
2

⌋
=

⎢⎢⎢⎣(√dπ

2

(
R′

r
+ 3

))d

/Γ

(
d

2
+ 1

)⎥⎥⎥⎦
Let S be a set of geometric objects such that G is the intersection graph of
S. We first consider the case, where all objects are convex and where there is
a k such that, for each object, the ratio between its size and the radius of its
inball is bounded by k. Let S1 be an object of S with smallest size R and let
S2 be an S1-intersecting object in S with size s2 ≥ R. Choose S′

2 as the image
of a dilation of S2 with an arbitrary point p ∈ S1 ∩ S2 as center and scaling
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factor λ = R/s2 > 0. Then—as S2 is convex—every point covered by S′
2 is also

covered by S2. Furthermore, the inball of S′
2 having radius r ≥ R/k must be

completely contained in the ball of radius R′ := 3R around the center of S1.
Now the considerations above imply that S′

2—and hence S2—must cover the
midpoint of at least one cube of edge length s = 2r/

√
d completely contained

in a ball of radius R′ + 3r. If we number the vertices of G in an order such
that the sizes of objects represented by the vertices do not decrease, we obtain
a (3

2

√
dπ(k + 1))d/Γ (d/2 + 1))-simplicial elimination order proving the claim.

Finally, let us consider the case, where the objects of S are not necessarily
convex, but the ratio between the largest size of the objects and the radius of a
smallest inball of the objects is bounded by a constant k′. Consider intersecting
geometric objects S1 (with size R1) and S2 (with size R2 and inball radius r2) in
S. Then the considerations above imply, that the inball of S2 must completely
lie inside the ball of radius R′ := R1 + 2R2 around the center of S1. With
R′
r2

= R1+2R2
r2

≤ 3k′ the second part of the lemma follows immediately. �

Theorem 9. An intersection graph of t-disks, i.e., of unions of t disks, is

1. 8-perfectly groupable if t = 1 and if the squares are of unit size,
2. 8-simplicial if t = 1, and
3. 8t-perfectly orientable.

The theorem above can be shown with a proof similar to Theorem 4. Due to space
limitations, we only want to remark that one can choose barriers—defined as in
the proof of Theorem 4—of a disk with radius r as follows: One barrier is placed
on the center of the disk and the remaining 7 barriers are placed equidistant on
a circle of radius 3/2r with the same center than the disk.

3 Relations and Recognition

In the following we study the relations between the complexity parameters de-
fined in the last section to each other and the NP-hardness of determining their
minimal possible value.

Observation 10. Each k-perfectly groupable graph is k-simplicial since any or-
dering of the vertices defines a k-simplicial elimination order. Conversely, an
n-vertex star, i.e., an n-vertex tree with n−1 leaves, is not k-perfectly groupable
for all k < n− 1, but it is 1-simplicial.

Lemma 11. A k-simplicial graph is also k-perfectly orientable, but for every
n ∈ IN with n ≥ 12, there exists a 2-perfectly orientable graph with n vertices
that is not �-simplicial for all � < �

√
n/3�.

Proof. Let G be a k-simplicial graph having a k-simplicial elimination order
v1, . . . , vn. If all edges incident to a vertex v and one of its successors are assigned
to v, the endpoints u 	= v of the edges assigned to v can be partitioned into k
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sets S1, . . . , Sk such that G[Si ∪{v}] is a clique for every i ∈ {1, . . . , k}. In other
words, G is k-perfectly orientable.

Let us choose an arbitrary n ∈ IN with n ≥ 12 and let k = �
√

n/3�. We
now construct a 2-perfectly orientable graph G= (V, E) with n vertices that
is not �-simplicial for any � < k. The vertices of this graph are divided into
three disjoint sets S0, S1 and S2 of size k2 and, if n − 3k2 > 0, a further set
R = V \ (S0 ∪ S1 ∪ S1) of isolated vertices. Each set Si (i ∈ {0, 1, 2}) is di-
vided into k subsets Si,1, . . . , Si,k of size k. For each i ∈ {0, 1, 2} and each
j ∈ {1, . . . , k}, we introduce edges between each pair of vertices contained in
the same subset Si,j and assign each of these edges arbitrarily to one of its end-
points. Let us define a numbering on the vertices of Si,j such that we can refer
to the h-th vertex of Si,j . For each i ∈ {0, 1, 2} and each h, j ∈ {1, . . . , k}, we
additionally introduce edges between the h-th vertex u of Si,j and all vertices of
S(i+1) mod 3,h. We assign them to u. The constructed graph G is 2-perfectly ori-
entable since the endpoints of an edge assigned to a vertex u being the h-th vertex
of a subset Si,j belong to one of the two cliques induced by the vertices of Si,j

and S(i+1) mod 3,h. However, u is also adjacent to k vertices in S(i−1) mod 3. Since
there is no edge between a vertex in S(i−1) mod 3,j1 and a vertex in S(i−1) mod 3,j2

for j1 	= j2, G cannot be �-simplicial for any � < k. �
A graph has inductive degree k if it can be obtained from a single vertex by
repeatedly adding a new vertex with k edges. Then we can easily conclude:

Lemma 12. All graphs of inductive degree k are k-simplicial and therefore also
k-perfectly orientable.

Note that an important subclass of the graphs of inductive degree k is the ex-
entsively studied class of graphs of treewidth k (not defined in this paper).

Observation 13. The n-vertex clique is an example for a 1-perfectly groupable
graph G that does not have treewidth n − 2. Conversely, the n-vertex star is a
graph with treewidth 1 that is not (n− 2)-perfectly groupable.

Lemma 14. It is NP-hard to decide, for a tuple (G, k) of graph G and an integer
k, whether G is k-perfectly groupable, k-simplical, or k-perfectly orientable.

Proof. In this version of the paper we only proof the result for k-perfectly ori-
entable graphs. The proofs for the other graph classes are based on similiar
reductions. Given an n-vertex graph G = (V, E) as an instance of the minimum
clique partition problem, we add a set V ′ of nk+1 new vertices to G and connect
each new vertex to each vertex in V . Let G′ be the graph obtained. We next
show that G′ is k-perfectly orientable if G has clique partition of size at most
k. For this purpose, assign all incident edges of a vertex v′ ∈ V ′ to v′ and edges
e ∈ E to an arbitrary endpoint of e. Then a vertex v together with the endpoints
of edges assigned to v ∈ V ∪V ′ induce k cliques, i.e., G′ is k-perfectly orientable.

Conversely, let us assume that G′ is k-perfectly orientable and let a : E →
V ∪ V ′ be a suitable assignment of the edges to their endpoints. For each vertex
v ∈ V at most k of the nk +1 new edges incident to v can be assigned by a to v
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since there are no edges between two vertices of V ′. Thus, there is at least one
v′ ∈ V ′ with all its edges assigned to itself. Thus, G must have a clique partition
of size at most k.

For each constant k, one can use a fixed parameter algorithm for the MCP, e.g.,
see [20], to decide in polynomial time whether a graph G is k-groupable.

4 Algorithms

We present now polynomial time approximation algorithms for several NP-hard
problems on graph classes with one of the three complexity parameters bounded
by a constant. We implicitly assume that we are given an explicit representation
of a graph as a k-perfectly groupable, k-simplicial, or k-perfectly orientable graph
G. By that we mean that we are given, for each vertex v, a partition of its
neighbors, of its successors, and of the vertices connected to v by edges assigned
to v, respectively, into k sets S1, . . . , Sk such that G[Si ∪ {v}] is a clique for all
i ∈ {1, . . . , k}. In addition, we are given a k-simplicial elimination order in the
case of a k-simplicial graph and, for each vertex of G, the edges assigned to it
in the case of a k-perfectly orientable graph. These representations are sufficient
even for intersection graphs. We do not need the explicit representations as
intersection graphs described in Section 1, but we can use them to construct our
new representations in polynomial time (see also the Theorems 4 and 9).

Theorem 15. On k-perfectly groupable graphs, minimum dominating set and
minimum independent dominating set can be k-approximated in polynomial time.

Proof. As a k-approximative solution on a k-perfectly groupable graph G we
output a maximal—not necessarily maximum—independent set S of G. To prove
correctness, let us consider a minimum (independent) dominating set Sopt of G.
For all v ∈ S \ Sopt, there must be a neighbor of v in Sopt. However, each such
neighbor cannot cover more than k vertices of S, since G is k-perfectly groupable.
Consequently, S is an independent dominating set of size at most k|Sopt|. �

Theorem 16. Minimum clique partition, maximum weighted independent set,
and maximum weighted clique, are k-approximable on k-simplicial and on k-
perfectly groupable graphs in polynomial time.

Proof (minimum clique partition). Given a graph G and a k-simplicial elimina-
tion order v1, . . . , vn for G, we first compute the graph G′ obtained by removing
v1 and its neighbors from G. We then solve the problem recursively on G′. Let
S′ be the collection of vertex sets obtained as a solution for G′. Note that the
graph induced by the removed vertices can be partitioned into a set Z of at most
k cliques. We output S = S′∪Z as a solution for G. Note that v1 is not incident
to any vertex of G′. This guarantees that the difference between the size of a
clique partition for G and for G′ is at least 1. Thus, the clique partition obtained
uses at most k times as many cliques as an optimal clique partition for G. �

Proof (maximum weighted independent set). See [1], [27], or [34]. �
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Proof (maximum weighted clique). Given a k-simplicial graph, choose, for each
vertex v, a clique Cv of maximal weight among the cliques obtained from one of
the k cliques induced by v and the successors of v. Return the clique with max-
imal weight among the cliques in {Cv | v ∈ V }. This solution has approximation
ratio k since a maximum weighted clique Copt must also contain a vertex v with
Copt consisting only of v and a subset of its successors. �

Theorem 17. On k-perfectly orientable n-vertex graphs, there are polynomial-
time algorithms with approximation ratio

1. 2k for maximum weighted independent set, minimum vertex coloring and
maximum weighted clique.

2. O(log2 n/ log(1 + 1/k)) for minimum clique partition.

For the following proofs let G = (V, E) be a k-perfectly orientable n-vertex
graph, and for each u ∈ V , let Vu,1, . . . , Vu,k be k pairwise disjoint vertex sets
such that their union are the neighbors of u and such that Cu,i = G[Vu,i ∪ {u}]
is a clique for all 1 ≤ i ≤ k. Moreover, define C = {Cu,i | u ∈ V, 1 ≤ i ≤ k}.

The proof for maximum weighted independent set bases on the ideas including
the local ratio technique of [2] and is omitted here.

Proof (minimum vertex coloring). Construct an order v1, . . . , vn of the vertices
of G such that, for each vertex vi (i ∈ {1, . . . , n}), at least half of the edges in
G[{vi, . . . , vn}] being adjacent to vi are assigned to vi. We now want to color the
vertices vn, . . . , v1 in this order with numbers in {1, . . . , n}. We color each vertex
v ∈ V with the smallest number different from the colors of all already colored
neighbors of v. Concerning the approximation ratio, let us define, for each vertex
v, Dv to be a set of vertices of maximal weight such that Dv consists only of
successors of v with respect to the order above and such that G[Dv] is a clique.
Then, each vertex v of G obtains a color smaller or equal 2k|Dv| + 1, whereas
an optimal coloring must color v and its neighbors with at least |Dv|+ 1 colors.
Therefore, the coloring obtained is a 2k-approximation.

Proof (maximum weighted clique). As a 2k-approximative solution, return the
clique C ∈ C of maximal weight. Let us compare the weight of C with the weight
of a maximal clique COPT of G. The subgraph of G induced by the vertices of
COPT contains at least one vertex u for which the sum of the weights of the
neighbors not being endpoints of edges assigned to u does not exceed the sum of
the weights of the neighbors being endpoints of edges assigned to u. Thus, the
weight of C is at most a factor 2k smaller than the weight of COPT. �

Proof (minimum clique partition). As part of our computation, we want to find
a minimal number of cliques in C in polynomial time such that the union of
their vertex sets is V . Unfortunately, this is an instance of the NP-hard set cover
problem. However, using the Johnson’s algorithm [26] we can find a subset of
the cliques in C that covers V and that is at most a factor O(log |V |) larger
than the minimal number of cliques in C. We return this subset as an approx-
imative solution. We achieve the approximation ratio O(log2 |V |/ log 2k

2k−1 ) =
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O(log2 |V |/ log(1+ 1
k )) since there is a clique partition of V using only cliques in

C that uses O(log |V |/ log 2k
2k−1 ) as many cliques as a minimum clique partition

COPT of q ≤ n arbitrary cliques C1, . . . , Cq of G: Choose a vertex v of C1 such
that in the subgraph of G induced by the vertices of C1 at least half of the edges
adjacent to v are assigned to v. Remove the clique among Cv,1, . . . , Cv,k con-
taining the largest number of not already deleted vertices in C1. This decreases
the number of vertices of C1 by a factor of at least 1 − 1

2k = 2k−1
2k . Repeat this

step recursively until, after O(log |V |/ log 2k
2k−1 ) steps, C1 contains no vertices

any more. More precisely, when choosing a vertex v for which at least half of the
adjacent edges are assigned to v, only count the edges not already being deleted.
If we do the same for the remaining cliques, we obtain a clique partition with
O(q log |V |/ log 2k

2k−1 ) cliques part of C. �
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28. Malesińska, E.: Graph-theoretical models for frequency assignment problems, PhD
thesis, University of Berlin (1997)

29. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple
heuristics for unit disk graphs. Networks 25, 59–68 (1995)

30. Nieberg, T., Hurink, J., Kern, W.: Approximation Schemes for Wireless Networks.
ACM Transactions on Algorithms 4, Article No. 49 (2008)

31. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. System Sci. 43, 425–440 (1991)

32. Pirwani, I.A., Salavatipour, M.R.: A weakly-robust PTAS for minimum clique par-
tition on unit disk graphs. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp.
188–199. Springer, Heidelberg (2010)
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Abstract. In this paper, we study an approximation algorithm for the
maximum edge-disjoint paths problem. In the maximum edge-disjoint
paths problem, we are given a graph and a collection of pairs of vertices,
and the objective is to find the maximum number of pairs that can be
connected by edge-disjoint paths. We give an O(log n)-approximation al-
gorithm for the maximum edge-disjoint paths problem when an input
graph is either 4-edge-connected planar or Eulerian planar. This im-
proves an O(log2 n)-approximation algorithm given by Kleinberg [10] for
Eulerian planar graphs. Our result also generalizes the result by Chekuri,
Khanna and Shepherd [2,3] who gave an O(log n)-approximation algo-
rithm for the edge-disjoint paths problem with congestion 2 when an
input graph is planar.

1 Introduction

1.1 Background and Our Main Result

In the edge- (vertex-) disjoint paths problem, we are given a graph G and a set
of k pairs of vertices in G, and we have to decide whether or not G has k edge-
(vertex-) disjoint paths connecting given pairs of terminals. This is certainly
a central problem in algorithmic graph theory and combinatorial optimization.
See the surveys [5,19]. It has attracted attention in the contexts of transporta-
tion networks, VLSI layout and virtual circuit routing in high-speed networks or
Internet. A basic technical problem is to interconnect certain prescribed “chan-
nels” on the chip such that wires belonging to different pins do not touch each
other. In this simplest form, the problem mathematically amounts to finding
disjoint trees in a graph or disjoint paths in a graph, each connecting a given set
of vertices.
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Let us give previous known results on the edge-disjoint paths problem. If k is a
part of the input of the problem, then this is one of Karp’s NP-complete problems
[7], and it remains NP-complete even if G is constrained to be planar [13]. In
fact, even for series-parallel graphs (allowing multiple edges), it remains NP-
complete [15]. This is one of the few problems that are known to be NP-complete
for series-parallel graphs or bounded tree-width graphs. Let us observe that the
vertex-disjoint paths problem is solvable for bounded tree-width graphs (and
hence for series-parallel graphs), see [17]. On the positive side, the seminal work
of Robertson and Seymour says that there is a polynomial-time algorithm for
the edge-disjoint paths problem when the number of terminals, k, is fixed [18].
The running time of their algorithm is O(m3) and it is improved to O(n2) in
[9], where m, n are the number of edges and vertices, respectively. Robertson
and Seymour’s algorithm is one of the spin-offs of their groundbreaking work on
graph minor project, spanning 23 papers, and giving several deep and profound
results and techniques in discrete mathematics.

We can also consider the maximization problem of the edge-disjoint paths
problem. In the maximum edge-disjoint paths problem, we are given a graph and
a collection of pairs of vertices, and the objective is to find the maximum num-
ber of pairs that can be connected by edge-disjoint paths. The maximum edge-
disjoint paths problem receives considerable attention in view of approximation
algorithms and hardness results. A c-approximation algorithm for this problem
is a polynomial-time algorithm that finds at least 1/c of the maximum possible
number of the edge-disjoint paths. Although a significant amount of research in
this area is done, there are wide gaps in understanding of the approximability
of the maximum edge-disjoint paths problem. It is known that no polynomial-
time algorithm can achieve an approximation guarantee of O(m1/2−ε) for any
ε > 0 on directed graphs with m edges unless P = NP [6], but the result is
intrinsically based on intractability for the directed case (specifically, hardness
with just two terminals pair) that does not have analogues in the undirected
case. The current strongest hardness of approximation bound for the undirected
case is due to Andrews, Chuzhoy, Khanna and Zhang [1], leading to a lower
bound of Ω((log m)1/2−ε) for any ε > 0. This may be the right upper bound —
though there may be a far reaching approximation algorithm that achieves a cor-
responding poly-logarithmic upper bound. Currently constant factor and poly-
logarithmic factor approximation algorithms are known for restricted classes of
graphs such as trees, meshes, and highly connected graphs such as expanders.

Concerning planar graphs, there is also an O(log n)-approximation algorithm
by Chekuri, Khanna and Shepherd [2,3] if a congestion two is allowed, that is, we
allow up to two paths to share an edge. But on the other hand, a poly-logarithmic
approximation algorithm for the maximum edge-disjoint paths problem for pla-
nar graphs seems to be very hard, despite Kleinberg and Tardos [11,12] have ob-
tained poly-logarithmic approximation algorithms for some special class of planar
graphs. They posed an open question that there is a poly-logarithmic approxima-
tion algorithm for the maximum edge-disjoint paths problem when a given graph
is planar and Eulerian. This conjecture was solved by Kleinberg [10] who gave an



276 K.-i. Kawarabayashi and Y. Kobayashi

O(log2 n)-approximation algorithm. In this paper, we improve Kleinberg’s result
by showing that there is an O(log n)-approximation algorithm for the maximum
edge-disjoint paths problem when an input graph is planar and either Eulerian or
4-edge-connected. Thus we give a logarithmic approximation algorithm for bigger
class of planar graphs (i.e, Eulerian planar graphs and 4-edge-connected planar
graphs).

Theorem 1. Suppose G is either a 4-edge-connected planar graph or an Eule-
rian planar graph. Then there is an O(log n)-approximation algorithm for the
maximum edge-disjoint paths problem.

Let us observe that if G is a planar graph, and we replace each edge by parallel
edges, then the resulting graph is clearly Eulerian planar. Thus a c-approximation
algorithm for the maximum edge-disjoint paths problem for Eulerian planar
graphs would imply a c-approximation algorithm for the maximum edge-disjoint
paths problem for planar graphs with congestion two. Hence, our result gener-
alizes the above mentioned result by Chekuri, Khanna and Shepherd [2,3] who
gave an O(log n)-approximation algorithm for the edge-disjoint paths problem
if an input graph is planar and a congestion is two.

Let us point out that obtaining a poly-logarithmic approximation algorithm
for the maximum edge-disjoint paths problem when an input graph is even a
wall (for the definition of the wall, we refer the reader to the next section) is
actually an open problem that appears to be quite difficult. In fact, this problem
is very close in nature to the comparably hard vertex-disjoint paths problem for
grids. Understanding the tractability of the disjoint paths problem is a funda-
mental issue in graph algorithms and combinatorial optimization, and progress
in seeking for the boundary between approximability and inapproximability is
certainly a crucial issue in this light. We believe that Theorem 1 makes some
contribution on these issues. We, however, remark that it may be possible to ob-
tain an O(1)-approximation algorithm for Theorem 1, because Chekuri, Khanna
and Shepherd [4] proved that there is an O(1)-approximation algorithm for the
maximum edge-disjoint paths problem for planar graphs with congestion four,
and they conjectured that the same conclusion would hold with congestion two.

1.2 4-Edge-Connected Graphs and Eulerian Graphs

In this paper, we are interested in 4-edge-connected graphs and Eulerian graphs.
4-edge-connected graphs and Eulerian graphs appear very often in the context of
the edge-disjoint paths problem. First, let us mention that there are many exactly
solvable special cases for the edge-disjoint paths problem in planar graphs [16,20],
but almost all require some type of Eulerian assumption. For more details, see
[5,19]. But on the other hand, if k is a part of input, then the edge-disjoint
paths problem is NP-complete even for 4-edge-connected graphs or Eulerian
graphs [14].

We now mention how 4-edge-connected graphs play a role in the edge-disjoint
paths problem. It helps to consider the following point. Consider the edge-disjoint
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paths problem in planar graphs with all terminal pairs on the outer face bound-
ary. If every vertex has degree at most 3, then the edge-disjoint paths problem
and the vertex-disjoint problem are essentially same (not only for planar graphs,
but also for general graphs), thus there is a topological obstruction. On the other
hand, if a given graph is 4-edge-connected, we can produce large sets of mutually
crossing paths, which can act as “switching” structures for connecting up termi-
nal pairs. Thus the edge-disjoint paths problem seems more tractable if an input
graph is 4-edge-connected. In fact, in [8], we significantly simplify the algorithm
of Robertson and Seymour for the edge-disjoint paths problem when an input
graph G is either 4-edge-connected or Eulerian.

It is natural to ask at this point why we do not consider the weaker condition
that the minimum degree being at least four. This assumption plays the same
role to create a cross for sure, but in fact this weaker restriction would not
gain us anything. Consider an instance of the edge-disjoint paths problem on
an arbitrary graph G that may have degree three vertices. Then attach by two
edges to each vertex in G a constant-sized graph of high minimum degree. This
new graph G′ has minimum degree high, but the resulting instance of the edge-
disjoint paths problem is clearly equivalent to the original one in G. This example
shows that 4-edge-connectivity is necessary. Thus we really need to stick the 4-
edge-connectivity in our proof.

1.3 Overview

We now give a sketch for Theorem 1. At a high level, we follow the approach
adapted by Kleinberg [10], and Kleinberg follows the approach by Chekuri,
Khanna and Shepherd [2,3]. In fact, we first adapt very interesting recent work
by them [2,3]. The crucial ingredient of their work is the following. For a vertex
set X in a graph G, we say that X is well-linked if for every vertex set Z of G
containing at most half of the vertices of X , |δ(Z)| ≥ |X ∩Z| holds, where δ(Z)
denotes the set of all edges with one end in Z and the other end in G− Z.

Kleinberg [10] proved that, by adapting the idea of Chekuri et al., for an
input graph G that is Eulerian planar with the set of terminal pairs T , one
can compute vertex disjoint subgraphs G1, . . . , Gr of G and their corresponding
disjoint sets of vertex pairs T1, . . . , Tr of T such that

(a) each vertex in Gi, except for the outer face boundary of Gi, has even degree,
(b) each Ti consists of the pairs of terminals,
(c) each terminal pair in Ti belongs to Gi for i = 1, . . . , r,
(d) the members of the terminal pairs in Ti are well-linked in Gi, and
(e) the total size of the sets Ti is at least OPT/f(n), where f(n) is bounded by

O(log2 n).

We will refer to each instance (Gi, Ti) as an even well-linked instance. Here, OPT
is the optimum value of the maximum edge-disjoint paths problem. Note that
the maximum value of the LP-relaxation of the maximum edge-disjoint paths
problem can be used as an upper bound of OPT.
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For each of the even well-linked instances (Gi, Ti), Kleinberg found a “cross-
bar”. More precisely, he found a wall W of height Ω(|Ti|) in Gi, and he used W
as a “crossbar” to route the paths with terminals of Ti in Gi. In fact, one can
find, in polynomial time, such a wall W which is “attached” to the terminals
in Ti, i.e, roughly there are Ω(|Ti|) edge-disjoint paths from the terminals of Ti

to W in Gi. This, together with the famous result of Okamura and Seymour
[16], allows Kleinberg to route Ω(|Ti|) pairs of terminals in Ti in Gi. Since the
total size of the sets Ti is at least Ω(OPT/ log2 n), thus he can get an O(log2 n)-
approximation algorithm for the maximum edge-disjoint paths problem when an
input graph is Eulerian planar.

We now sketch how to improve to an O(log n)-approximation algorithm. Let
us first observe that if we do not impose the condition (a), then the result by
Chekuri, Khanna and Shepherd [2] implies that the condition (e) can be replaced
by the following: the total size of the sets Ti is at least OPT/f(n), where f(n)
is bounded by O(log n). This is our first key observation.

Our second new technique is the following: We first construct a wall W of
height Ω(|Ti|) which is “attached” to the terminals in Ti in Gi. As discussed
above, this can be done in polynomial time. We then divide this wall W into
Ω(|Ti|2) parts W1, . . . , Wl, where l = Ω(|Ti|2) and each Wj is a proper subwall
of W of height 2. The outer face boundary of Wj bounds a disk Dj . Let W ′

j

be the induced subgraph of Gi embedded into the disk Dj . We now try to find
two edge-disjoint paths connecting two opposite corners of Wj in W ′

j . This may
not be possible if, after ≤ 3-edge-cuts reduction, W ′

j has no vertex of degree 4
or more. But since the original graph G is either 4-edge-connected or Eulerian
and W ′

j contains at least one vertex of degree at least 3 in W ′
j , so if we add all

the well-linked instances Gi′ that are contained in the disk Dj in G, then we
can always find such desired two paths. By applying this argument to each W ′

j ,
we can construct a clique minor of order Ω(|Ti|) in the line graph of G, which
allows us to route Ω(|Ti|) edge-disjoint paths.

The problem here is that the above constructed paths may go through some
other well-linked instances. In order to avoid this problem, we adapt the idea of
Kleinberg [10] who constructs a tree-representation of the well-linked instances.
Roughly, if Gi is contained in a face of Gj , we say that Gi is a descendant of Gj .
This allows us to construct a tree-representation of the well-linked instances with
the corresponding tree T . Kleinberg picked up disjoint subtrees of T that are
pairwise far apart from any other in T . This allows Kleinberg to focus on each
subtree which gives rise to an “almost” Eulerian planar graph, i.e, each vertex,
except for the outer face boundary, has even degree. Then using Okamura and
Seymour’s result [16], he can reroute Ω(|Ti|) edge-disjoint paths for each well-
linked instance Gi. But his method has to loose log n factor.

Our new idea is the following: Instead of keeping “almost evenness” in each
well-linked instance (which was the case for Kleinberg’s method), for each well-
linked instance Gi, we also take all the descendants of Gi too. Let Gi be the
resulting graph. Then Gi is 4-edge-connected or Eulerian (more or less, except
for some part in the boundary of Gi). As remarked above, we can certainly find
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Ω(|Ti|) desired edge-disjoint paths with terminals in Ti in Gi, but we also impose
the following important condition:

Each descendant Gj of Gi can intersect at most one subpath of the
constructed edge-disjoint paths in Gi.

This important property allows us to show that, in each well-linked instance Gi,
we can always find Ω(|Ti|)− |C(Gi)| edge-disjoint paths, where C(Gi) is the set
of “children” of Gi. More precisely, when constructing the edge-disjoint paths
for Gi, we sacrifice one path for each child of Gi. As a result, we get Ω(|Ti|) −
|C(Gi)| edge-disjoint paths in Gi. Then, we can get Ω(

∑
i |Ti|) edge-disjoint

paths in total. This allows us to show an O(log n)-approximation algorithm for
the edge-disjoint paths problem when an input graph is Eulerian planar or 4-
edge-connected planar.

This paper is organized as follows. In Section 2, we give some notations needed
in this paper. In Section 3, we introduce Chekuri, Khanna and Shepherd’s theo-
rem [2] and give our key theorem finding a wall attached to the well-linked sets.
In Section 4, we present a result concerning tree-representation of the well-linked
instances. In Section 5, we give an algorithm for finding edge-disjoint paths in
each graph Gi. This is one of the key ideas in our paper. Finally in Section 6,
we give a complete description of our algorithm.

2 Preliminary

In this paper, n and m always mean the numbers of vertices and edges of a given
graph, respectively. For a vertex set X in a graph G = (V, E), let δ(X) be the
set of edges between X and V \X , and such an edge set is called an edge-cut.

An elementary wall of height eight is depicted in Fig. 1. An elementary wall
of height h for h ≥ 2 is similar. It consists of h levels each containing h bricks,
where a brick is a cycle of length six. A wall of height h is obtained from an
elementary wall of height h by subdividing some of the edges, i.e. replacing the
edges with internally vertex disjoint paths with the same endpoints. The nails
of a wall are the vertices of degree three within it. Any wall has a unique planar

Fig. 1. An elementary wall of height 8
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embedding. The perimeter of a wall W , denoted per(W ) is the boundary of the
unique face in this embedding which contains 4(h−1) nails. Nails on per(W ) are
called perimeter-nails, and the set of perimeter-nails is denoted by pn(W ). For
any wall W in a given graph G, there is a unique component U of G− per(W )
containing W − per(W ). The compass of W in G, denoted compG(W ), consists
of the graph with vertex set V (U) ∪ V (per(W )) and edge set

E(U) ∪E(per(W )) ∪ {xy | x ∈ V (U), y ∈ V (per(W ))}.

A subwall of a wall W is a wall which is a subgraph of W . A subwall of W of
height h is proper if it consists of h consecutive bricks from each of h consecutive
rows of W .

3 Well-Linked Instance

Our algorithm builds on very useful work of Chekuri, Khanna and Shepherd
(CKS) [2,3], together with apparently new techniques. Here is the key CKS
theorem [2].

Theorem 2 (Chekuri, Khanna and Shepherd [2]). Let T be the set of k
terminal pairs of the edge-disjoint paths problem (k is not fixed). Then there is
a polynomial-time algorithm to compute vertex-disjoint induced connected sub-
graphs G1, . . . , Gr, and corresponding disjoint terminal pairs T1, . . . , Tr such that
the following holds:

(1) each Ti consists of the pairs of terminals in T , and belongs to Gi;
(2) the members of the terminal pairs in Ti are well-linked in Gi;
(3) the total size of the sets Ti is at least OPT/f(n) for a poly-logarithmic func-

tion f(n).

Furthermore, f(n) is bounded by O(log n) if a given graph G is planar.

We will refer to each instance (Gi, Ti) as a well-linked instance.
Chekuri, Khanna and Shepherd [2,3] also use the fact that we may assume

that the original graph G has maximum degree 5 (In fact, maximum degree
at most 4). This is because if G has a vertex v of degree more than 5, then we
replace v by a grid as in Fig. 2. One can see that this reduction does not affect the
existence of the edge-disjoint paths. We also note that if the original graph is 4-
edge-connected planar (resp. Eulerian planar), then the obtained graph is 4-edge-
connected planar (resp. Eulerian planar). Note that if we only consider Eulerian
planar graphs, our construction implies that maximum degree is at most 4 (as
Kleinberg did in [10]), because the size of a grid we will attach to each vertex
of degree ≥ 5 has even order. But on the other hand, if we consider 4-edge-
connected planar graphs, we may need one vertex of degree 5 in the grid when
we apply our operation to the odd degree vertex of degree at least five (because
the size of a grid we will attach has odd order).

The key for the proof of our main result is the following, which allows us to
find a “crossbar” for routings. Due to the space constraint, the proof of this
theorem is omitted.
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Fig. 2. Vertex of degree more than 5

Theorem 3. Let (G, T ) be a well-linked instance, where G is a planar graph of
maximum degree 5. Then, there exist an integer t = Ω(|T |), a wall W of size
10t, and a set of t terminal pairs T ′ ⊆ T satisfying the following. There are 2t
edge-disjoint paths from the terminals in T ′ to the perimeter-nails of W such
that their end vertices are distinct and they do not intersect with compG(W )
except for their end vertices.

4 Rooted Forest Representation

In this section, we shall borrow some tools from [10].
We fix an embedding of an input planar graph G in the plane; we will also

use G to denote the drawing of G too, if there is no fear of confusion. Since we
fix an embedding of G, we can uniquely determine the outer face of G. All other
faces are called internal faces of G.

Suppose that the graph G is partitioned into r graphs G1, . . . , Gr as in The-
orem 2. From the drawing of G, we can define a drawing of each Gi. Now every
internal face of Gi is either also a face of G, or else it is the result of deletion
of some other well-linked instance. In the second case, we call it an exceptional
face. Note that we will not refer to the outer face of each graph as exceptional.

Given two graphs Gi and Gj , since they are connected and disjoint, either
one is drawn inside an exceptional face of the other, or each is drawn in the
outer face of the other. We define a partial order on the graphs Gi, Gj , writing
Gi ≺ Gj if Gi is drawn inside an exceptional face of Gj . For each Gi, let Gi be
the subgraph of G induced by the vertex set

⋃
Gj≺Gi

V (Gj).
The following is the key observation in [10].

Lemma 1. The graphs G1, . . . , Gr obtained in Theorem 2 are tree-representable
(see Fig. 3). More precisely, there are rooted trees R1, . . . , Rl such that each
vertex vi in Rl corresponds to one graph Gi, and Gi ≺ Gj if and only if vi and
vj are in the same tree, and vi is a descendant of vj .

Kleinberg [10] takes each of the rooted tree in Lemma 1, and then partitions
it into components. This decomposition has to pay O(log n) factor. Instead of
paying it, we shall directly consider each rooted tree.
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G2 G3

G1

G4

Fig. 3. Example of the decomposition

5 Disjoint Paths in Planar Graphs

In this section, we prove a key lemma for Theorem 1. Let (Gd, Td) be a well-linked
instance obtained in Theorem 2. Note that an input graph G is 4-edge-connected
planar or Eulerian planar, and recall that for each Gi, Gi is the subgraph of G
induced by the vertex set

⋃
Gj≺Gi

V (Gj).

Lemma 2. Let W be a wall in Gd and W ′ be its proper subwall of height 2.
Then, Gd has two edge-disjoint paths inside W ′ such that

1. each path connects the diagonally opposite corners of W ′, and
2. for each Gj ≺ Gd, at most one of the two paths intersects with Gj.

Proof. Let v be a nail of W ′ that is not on the perimeter of W ′. So v has
degree three in W ′, and W ′ contains three edge-disjoint paths P1, P2, P3 from
v to per(W ′). Let u1, u2, u3 be the end vertices of P1, P2, P3 that are on the
perimeter of W ′ (see Fig. 4).

vu1

u2

u3

P1

P2
P3

Fig. 4. Three disjoint paths from v to per(W ′)

We now contract each of the Gj that is in an exceptional face of Gd, into a
single vertex, and let G′ be the resulting graph. Since G is 4-edge-connected or
Eulerian, there are at least four edge-disjoint paths from v to per(W ′) in G, and
hence there are at least four edge-disjoint paths from v to per(W ′) in G′, too.

Since we have three edge-disjoint paths P1, P2, P3 from v to per(W ′), we can
find four edge-disjoint paths in G′ from v to per(W ′) by finding one augmenting
path P from v to per(W ′). More precisely, let G′′ be the digraph obtained from
G′ by replacing every edge with two directed edges in opposite directions to each
other, and then removing directed edges along Pi from v to ui for i = 1, 2, 3.
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Then we find a simple directed path P from v to per(W ′) in G′′, and hence we
can modify P1, P2, P3 along P to obtain four edge-disjoint paths P ′

1, P
′
2, P

′
3, P

′
4

from v to per(W ′).
Suppose that the end vertices of P ′

1, P
′
2, P

′
3, P

′
4 are on per(W ′) in this order.

Then, G′ contains two edge-disjoint paths P ′
1 ∪ P ′

3 and P ′
2 ∪ P ′

4, which, together
with the outer face boundary of W ′, give rise to two edge-disjoint paths P ′′

1 , P ′′
2

connecting the diagonally opposite corners of W ′ inside W ′.
Let vj be the vertex in G′ corresponding to Gj ≺ Gd. Since P1, P2, and P3 do

not go through vj and P is simple, at most one of P ′
1, P

′
2, P

′
3, and P ′

4 contains
vj . This means that at most one of P ′′

1 and P ′′
2 intersects with Gj .

We are now ready to give an algorithm that finds edge-disjoint paths in Gi.

Theorem 4. Let (G1, T1), . . . , (Gr, Tr) be well-linked instances obtained in The-
orem 2. Then, for each d = 1, . . . , r, Gd has Ω(|Td|) edge-disjoint paths such that

1. each path connects a pair of terminals in Td, and
2. for each Gj ≺ Gd, at most one path intersects with Gj.

Proof. By Theorem 3, we can find an integer t = Ω(|Td|), a wall W0 of size
10t, and a set of t terminal pairs T ′ ⊆ T satisfying the following. There are 2t
edge-disjoint paths from the terminals in T ′ to the perimeter-nails of W0 such
that they do not intersect with compG(W0) except for their end vertices. Let
v1, v2, . . . , v2t be the end vertices of these 2t paths on the perimeter-nails of W0.
We show that v1, v2, . . . , v2t can be linked in W0 in any desired way.

Let W be the proper subwall of W0 of height 6t that is at the center of W0. Let
Pi be the horizontal path in W separating the i-th level of W and the (i + 1)-st
level of W for each i. Similarly, let P ′

i be the vertical path in W separating the i-
th column of W and the (i+1)-st column of W for each i. Let Qi = P3i−2∪P ′

3i−2
for i = 1, 2, . . . , 2t.

We first observe that the intersection of Qi and Qj consists of two paths,
and each of them is the “center” of a subwall W ′ of height 2 (Fig. 5). Then we
shall make a “cross” in the line graph of compGd

(W ′). More precisely, let Q′
i, Q

′
j

be the subpaths of Qi, Qj, respectively, in W ′. Then by Lemma 2, the paths
Q′

i, Q
′
j can be modified in compGd

(W ′) so that they are edge-disjoint and their
endpoints are still same. Moreover, by the second condition in Lemma 2, each
graph Gl contained in an exceptional face in Gd intersects with at most one of
Q′

i and Q′
j. Note that clearly Gl would not hit any other subpaths of Qi′ for

i′ 	= i, j. We now perform the above operation for each intersection of Qi and
Qj for i 	= j. Then clearly we can modify Qi in compGi

(W ) so that each Qi

is edge-disjoint from any other Qj , and any pair Qi and Qj share a common
vertex.

We find 2t edge-disjoint paths in W0 − W connecting {v1, v2, . . . , v2t} and
{u1, u2, . . . , u2t}, where ui ∈ V (Qi) ∩ pn(W ) for i = 1, 2, . . . , 2t. Such 2t paths
can be easily found, since we still have enough spaces in W0 − W . Since any
pair Qi and Qj share a common vertex, we can link up {u1, u2, . . . , u2t} by
edge-disjoint paths in W .
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Qi

Qj

Fig. 5. Intersection of Qi and Qj

Thus, we can link up the terminals in T ′ by edge-disjoint paths in any desired
way. The second condition in this theorem follows from the construction of Qi,
which completes the proof.

6 The Full Routing Algorithm

We are now ready to describe our algorithm for Theorem 1. Suppose an input
graph G that is either Eulerian planar or 4-edge-connected planar is given. Sup-
pose furthermore that the set of terminal pairs T is given. By using the reduction
in Section 3, we can work on a graph G of maximum degree at most 5.

We begin with the well-linked decomposition of G as in Section 3. Suppose that
G is decomposed into r vertex-disjoint induced connected subgraphs G1, . . . , Gr,
as in Theorem 2. By Lemma 1, the subgraphs G1, . . . , Gr are tree-representable.
Then, the subgraphs G1, . . . , Gr are tree-representable. Thus there are rooted
trees R1, . . . , Rl such that each vertex vi in Rj corresponds to one subgraph Gi.
If Gi ≺ Gj and there exists no subgraph Gq with Gi ≺ Gq ≺ Gj , then Gi is
called a child of Gj . Let C(Gj) be the set of children of Gj .

By Theorem 4, there exists a constant α > 0 such that for each Gi, we can
connect at least α|Ti| pairs of terminals in Ti by edge-disjoint paths in Gi. By
ignoring the paths through C(Gi), Gi contains at least α|Ti| − |C(Gi)| edge-
disjoint paths. Thus, G contains at least∑

i

(α|Ti| − |C(Gi)|) ≥
∑

i

α|Ti| − r

edge-disjoint paths, where r is the number of subgraphs.
On the other hand, since each Gi is connected, we can easily find one path

connecting a terminal pair in Gi, and hence we can find r edge-disjoint paths in
G.

Thus, we can find

max

{∑
i

α|Ti| − r, r

}
≥ 1

2

∑
i

α|Ti|

edge-disjoint paths, which is Ω(OPT/ logn) by Theorem 2.
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Abstract. In this paper, we consider the half integral disjoint paths
packing. For a graph G and k pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk)
in G, the objective is to find paths P1, . . . , Pk in G such that Pi joins
si and ti for i = 1, 2, . . . , k, and in addition, each vertex is on at most
two of these paths. We give a polynomial-time algorithm to decide the
feasibility of this problem with k = O((log n/ log log n)1/12). This im-
proves a result by Kleinberg [12] who proved the same conclusion when
k = O((log log n)2/15). Our algorithm still works for several problems
related to the bounded unsplittable flow. These results can all carry over
to problems involving edge capacities. Our main technical contribution is
to give a “crossbar” of a polynomial size of the tree-width of the graph.

1 Introduction

1.1 Background of the Disjoint Paths Problem

In the vertex- (edge-) disjoint paths problem, we are given a graph G and a set
of k pairs of vertices in G, and we have to decide whether or not G has k vertex-
(edge-) disjoint paths connecting given pairs of terminals. This is certainly a
central problem in algorithmic graph theory and combinatorial optimization. See
the surveys [6,22]. It has attracted attention in the contexts of transportation
networks, VLSI layout and virtual circuit routing in high-speed networks or
internet. A basic technical problem here is to interconnect certain prescribed
“channels” on the chip such that wires belonging to different pins do not touch
each other. In this simplest form, the problem mathematically amounts to finding
disjoint trees in a graph or disjoint paths in a graph, each connecting a given set
of vertices.

Let us give previous known results on the vertex-disjoint paths problem. If k
is a part of the input of the problem, then this is one of Karp’s NP-complete
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problems [9], and it remains NP-complete even if an input graph G is constrained
to be planar [14]. The seminal work of Robertson and Seymour says that there
is a polynomial-time algorithm (actually O(n3) time algorithm, where n is the
number of vertices of an input graph G) for the disjoint paths problem when
the number of terminals, k, is fixed [20]. Actually, this algorithm is one of the
spin-offs of their groundbreaking work on graph minor project, spanning 23
papers, and giving several deep and profound results and techniques in discrete
mathematics.

In this multicommodity flow question, the commodities at the sources s1
through sk are different and the demand at each ti is for a specific commod-
ity. This is the type of question we need to resolve when sending information
through the information highway network and so has become increasingly of in-
terest to computer scientists (see, for example the work of Chekuri et al. [3,4]
and of Kleinberg [11,12]). The unsplittable flow problem, which generalizes the
disjoint paths problem is also motivated by these practical issues. In one basic
version of this problem, we are given a graph, a set of k pairs of vertices in G
and a nonnegative demand di associated with each given pair of terminals. We
now have to decide whether or not it is possible to choose a single path for each
pair of terminals so that the cumulative demand sent by these paths through
any vertex is at most 1. So the vertex disjoint paths problem is one of the special
cases of this problem. The other special case which is of great interest is that all
demands are at most 1/2. This is the bounded unsplittable flow problem, which
often behaves very different from the disjoint paths problem. For example, the
natural multicommodity flow relaxation of the problem provides very strong in-
formation for designing approximation algorithms when all demands are at most
1/2, but the relaxation seems to be very weak when the demands are as large as
1 (see [7]). Thus by imposing this mild relaxation, one can get fairly dramatic
changes on the global structure of the routing problem.

Indeed there are many such flow type problems for which the half integral
version can be at least approximately solved although the integral version is
intractable ([13,16]). A similar situation holds with respect to the k-disjoint
path problem. The proof of correctness of Robertson and Seymour’s algorithm
requires almost all of the graph minors project spanning 23 papers and more
than 500 pages. Its running time has the form f(k)n3, where f is an extremely
rapidly growing function. Actually this function f depends on the size of grid
minor in Robertson-Seymour structure theorem, and it is believed to have very
large bounds (see [8]).

We now contrast this with the solution to the following problem:

Half-integral Disjoint Paths Packing

Input: A graph G and k pair of vertices (s1, t1), (s2, t2), . . . , (sk, tk) in G (which
are sometimes called terminals).

Problem: Determine whether or not there exist paths P1, . . . , Pk in G such
that Pi joins si and ti for i = 1, 2, . . . , k, and in addition, each vertex is on
at most two of these paths.
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It is known that the half-integral disjoint paths packing is still NP-complete,
see [16]. When the number of terminals k is fixed, a polynomial time algorithm
for this problem is obtained from Robertson and Seymour’s algorithm for the
integral version [20]. Kleinberg [12] gave a simpler polynomial-time algorithm
for the half-integral disjoint paths packing. The correctness of his algorithm is
much simpler than that of Robertson and Seymour’s. This algorithm was gener-
alized by Kawarabayashi and Reed [10] who gave a nearly linear time algorithm.
Furthermore, the constants in both algorithms [10,12] are much smaller, and
actually both polynomial-time algorithms work provided k = O((log log n)2/15).

1.2 Our Main Results

The main purpose of this paper is to prove the following.

Theorem 1. There is a polynomial-time algorithm to solve the half-integral dis-
joint paths packing with k = O((log n/ log log n)1/12) terminals, where n is the
number of vertices of an input graph.

Thus this improves the above mentioned result by Kleinberg [12] who proved the
same conclusion of Theorem 1 when k = O((log log n)2/15). Our proof method for
Theorem 1 can be used to design a polynomial-time algorithm for the following
problems when the number of terminals k = O((log n/ log log n)1/12).

1. Not only half-integral, but also that each vertex is on at most c paths, where
c ≥ 2.

2. Not only vertex capacities problem, but also edge capacities problem.

We note that our method can be also applied to the bounded unsplittable flow
problem (see [12]). In the bounded unsplittable flow problem, each terminal pair
(si, ti) has a real-valued demand di with 0 ≤ di ≤ 1/2, and the objective is to
find a single path for each terminal pair so that the cumulative demand sent
by these paths thorough any vertex is at most 1. This problem can be solved
in (w + k)O((w+k)k)nO(1) time when the tree-width of the graph is bounded
by w. By using this running time instead of Theorem 5, we can show that
the bounded unsplittable flow problem can be solved in polynomial time when
k = O((log n/ log log n)1/24).

Since our proof can be easily modified for these problems, so we omit proofs.

2 Overview

We now give an overview of our algorithm, but since we are going to improve
Kleinberg’s algorithm, let us sketch his algorithm first, and then clarify our
improvement.

Kleinberg’s algorithm differentiates between two different kind of inputs which
it treats differently: either a given graph G has bounded tree-width or else it has a
large tree-width. In the first case, one can apply dynamic programming [1,2,17]
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to a tree-decomposition of bounded tree-width. In the second case, there is a
huge grid minor by the result in [5,17,19,21]. Now, we shall use this grid minor
as a “crossbar structure”. Let us see how to use the grid minor.

We can think of a k × k grid minor as a union of k2 disjoint trees Ti,j for
1 ≤ i, j ≤ k such that when we contract each tree Ti,j , then it becomes a
k × k grid such that the image ti,j of Ti,j (that is, the vertex obtained from
Ti,j by contracting it into a single point) is adjacent to ti−1,j , ti+1,j , ti,j−1, ti,j+1.
Suppose we have a 4k×4k grid minor and 2k disjoint paths from the terminals to
images of the vertices on the top and bottom rows which are pairwise nonadjacent
and internally disjoint from the image of the grid. Within the grid minor, we can
find paths between the endpoints of the paths using no vertex more than twice
and using the endpoint of each path only once. Combining these with the paths
from the terminals to the grid minor gives the desired half-integral disjoint paths
packing. Actually it turns out that given a 2k3/2 × 2k3/2 grid minor for which
there is no small cut separating the terminals from this grid minor, we can still
find the desired paths.

Even if there is a small cutset that separates the 2k terminals and this grid
minor, we will be able to reduce the problem. So once we have a huge grid
minor, either we can make a smaller graph or we can conclude that the desired
half-integral disjoint paths packing exists. This was Kleinberg’s key idea, and
his approach is a simplification of Robertson and Seymour’s algorithm for the
integral case.

Our algorithm of Theorem 1 also follows this approach, but there is one big
problem. Unfortunately, the tree-width results that guarantee the existence of a
gird minor are too weak to obtain our main result by this method. The current
best known result is the following: if G has tree-width at least 202r5

, then G has
a r × r grid minor [5,17,21]. So, we cannot use a grid minor as a “crossbar” at
the moment. We would need a result saying that if G has tree-width poly(r),
then G would have a r× r grid minor. This has been conjectured for more than
20 years, but it is still wide open at the moment.

Instead, we shall use a “grid-like minor” as a crossbar, which is introduced
by Reed and Wood [18]. Here we say that G has a grid-like minor of order r if
the graph G∗ = G�K2, i.e, Cartesian product of G and K2, contains a clique
minor of order r with some additional condition (see Section 4). Note that a
r × r grid contains a grid like minor of order r + 1. Reed and Wood [18] proved
that if tree-width is at least Ω(r4√log r), then G has a grid-like minor of order
r. Very recently, Kruetzer and Tazari [15] provided a polynomial-time algorithm
to construct such a grid-like minor.

An outline of our algorithm is as follows:

We first take Cartesian product G∗ = G�K2. By the definition of the
grid-like minor, there is a clique minor M∗ of order r in G∗. By using
the result of Robertson and Seymour [20], we show that we can use M∗

as a “crossbar” to find vertex disjoint paths connecting the specified
terminals in G∗. Let us observe that if there are desired paths in G∗,
clearly they correspond to a half-integral disjoint paths packing in G.
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Moreover, if there is a small separation that separates the terminals and
the clique minor M∗, then there is an irrelevant vertex v in G, i.e, G has
a feasible solution if and only if G− v has.

Note that finding the above irrelevant vertex v is not trivial compared to the
disjoint paths case, in the sense that we have to work on the original graph G
but not on the graph G∗ (the image creates a little problem).

This allows us to prove Theorem 1. Our main technical contribution can be
regarded as constructing a “crossbar” of order poly(r), where r is tree-width
of the input graph. Note that if the tree-width is w, then by using dynamic
programming approach [1,2,17], we can solve the half-integral disjoint paths
packing in (k + w)O(k+w)nO(1) time, where n is the number of vertices. It seems
that this dynamic programming step is unavoidable, and the running time is
polynomial of n when w = O(log n/ log log n). Thus we believe that it is hopeless
to solve the half-integral disjoint paths packing when the number of terminals,
k, is bigger than O(log n/ log log n), say.

This paper is organized as follows: In Section 3, we give some notation. In
Section 4, we introduce the key concept of the paper, which is called “grid-like
minor”, and show how to construct a grid-like minor. Finally, in Section 5, we
will complete the proof of Theorem 1.

3 Preliminary

In this paper, n and m always mean the number of vertices of a given graph and
the number of edges of a given graph, respectively. A pair of subgraphs (A, B)
of a graph G is a separation of G if G = A ∪ B and there are no edges between
A−B and B−A. The order of the separation (A, B) is |V (A∩B)|. An r×r grid
is a graph with vertex set {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which two vertices
(i, j) and (i′, j′) are adjacent if and only if |i − i′| + |j − j′| = 1. A complete
graph (or a clique) with n vertices is denoted by Kn.

A tree-decomposition of a graph G is a pair (T,W), where T is a tree and W
is a family {Wt | t ∈ V (T )} of vertex sets Wt ⊆ V (G), such that the following
two properties hold:

(W1)
⋃

t∈V (T ) Wt = V (G), and every edge of G has both ends in some Wt.
(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then

Wt ∩Wt′′ ⊆ Wt′ .

For two graphs G1 = (V1, E1) and G2 = (V2, E2), their Cartesian product
G1�G2 = (V ∗, E∗) is the graph defined as follows:

– the vertex set V ∗ is {(v1, v2) | v1 ∈ V1, v2 ∈ V2}, and
– there exists an edge between (v1, v2) ∈ V ∗ and (v′1, v

′
2) ∈ V ∗ if and only if

either v1 = v′1 and v2v
′
2 ∈ E2, or v2 = v′2 and v1v

′
1 ∈ E1.

For example, an r × r grid is a Cartesian product of two paths of length r − 1.
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A clique minor of order r can be thought of r disjoint trees T1, . . . , Tr such that
there is an edge between Ti and Tj for any i, j with i 	= j. Sometimes, one tree
Ti is called a node of the clique minor. A topological clique minor is a subgraph
obtained from a clique by subdividing edges, and a node of the topological clique
minor means a node of the original clique.

4 Grid-Like Minor

Let P1 and P2 be sets of disjoint connected subgraphs in a given graph G.
We denote by I(P1,P2) the intersection graph of P1 and P2 defined as follows:
I(P1,P2) is the bipartite graph with partite sets P1 and P2, which has one vertex
for each element of P1 and P2, and an edge between two vertices exists if the
corresponding subgraphs in P1 and in P2, respectively, intersect. Thus there are
|P1| vertices in one partite set of the bipartite graph, and |P2| vertices in the
other partite set.

We say that G contains a grid-like minor of order r if G has sets of disjoint
paths P1 and P2 such that I(P1,P2) contains the complete graph Kr as a minor.
If the Kr-minor is, in fact, a topological minor, we call the structure a topological
grid-like minor of order r. Note that a grid-like minor of order r consists of two
sets P1,P2, each consists of disjoint paths, with |P1| ≥ r−1 and |P2| ≥ r−1 (for
otherwise, we cannot construct a Kr-minor in the intersection graph I(P1,P2)).
Let us observe that the intersection graph of the rows and columns of the r × r
grid is the complete bipartite graph Kr,r which clearly contains a Kr+1-minor
(formed by contracting a matching of r − 1 edges). Hence the r × r grid minor
contains a grid-like minor of order r + 1.

The motivation to introduce the grid-like minor is the following: The current
best known result for the existence of the r × r grid minor is the following: if
a given graph G has tree-width at least 202r5

, then G has a r × r grid minor
[5,17,21]. An outstanding open problem in this area is whether polynomial tree-
width forces a large grid minor. This question seems to be out of reach at the
moment, but polynomial tree-width does force a large “grid-like minor”. In [18],
Reed and Wood proved the following useful result.

Theorem 2 (Reed and Wood [18]). Every graph with tree-width at least
cr4√log r contains a grid-like minor of order r, for some constant c.

The proof given in [18] can be converted into polynomial-time algorithm. This
was done by Kreutzer and Tazari [15] as follows.

Theorem 3 (Kreutzer and Tazari [15, Theorem 4.2]). There is a constant
c such that if tree-width of a given graph G is cr12, then G has either a Kr-minor
or a topological gird-like minor of order r. Furthermore, given such a graph, there
is a polynomial-time algorithm to construct the corresponding object.
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5 Main Proof

In this section, we give our main proof. To do so, we observe that if G contains
a grid-like minor of order r, then G�K2 contains a topological clique minor of
order r (Lemma 3.4 in [18]).

Let P = {P1, . . . Pt} be a set of paths in a graph H and r be an integer with
r ≤ t. We say that H contains a P-contracted topological Kr-minor if there exists
a subset P ′ of P such that the graph obtained from H by contracting all paths
in P ′ contains a topological Kr-minor whose nodes correspond to paths in P ′.

For a graph G = (V, E), let G∗ = G�K2, i.e., G∗ consists of G, its copy G′ =
(V ′, E′), and |V | edges each connecting one vertex in V and its corresponding
vertex in V ′.

Lemma 1. Suppose G has sets of disjoint paths P1 = {P1, . . . Pt} and P2 =
{P ′

1, . . . P
′
t} such that I(P1,P2) contains a topological K2r-minor, where t ≥

2r− 1. Let G′ be a copy of G as in the definition of G∗, and P ′
2 be a set of paths

in G′ corresponding to P2. Then, G∗ contains a P1-contracted topological clique
minor of order r, or a P ′

2-contracted topological clique minor of order r.

Proof. One can see that I(P1,P2) can be obtained from a subgraph of G∗ by
contracting all paths in P1 and P ′

2 (See Figure 1). Since the intersection graph
I(P1,P2) contains a topological K2r-minor, thus G∗ contains a topological K2r-
minor as well. Since P1 or P ′

2 contains at least r nodes of the K2r-minor, we
obtain a P1-contracted topological Kr-minor, or a P ′

2-contracted topological Kr-
minor. �

G

G′

P1

P2
P3

P ′
1 P ′

2 P ′
1 P ′

2

P2P1 P3

Fig. 1. Construction of I(P1,P2)

Our plan is to consider the clique minor as in Lemma 1 in G∗, and use it as
a “crossbar”. Thus let us give a theorem concerning a graph with a huge clique
minor.

Theorem 4 (Robertson and Seymour [20, Theorem (5.4)])
Let s1, . . . , sk, t1, . . . , tk be the terminals in a given G. If there is a clique minor
of order at least 3k in G, and there is no separation (A, B) of order at most
2k − 1 in G such that A contains all the terminals and B −A contains at least
one node of the clique minor, then there are disjoint paths Pi with two ends in
si, ti for i = 1, . . . , k.
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Furthermore, given the above clique minor, desired disjoint paths can be found
in O(km) time.

Even if there is a separation (A, B) of order at most 2k − 1, we can reduce the
problem to a smaller problem as follows.

Corollary 1. Let G, s1, . . . , sk, t1, . . . , tk be as in Theorem 4. If there is a clique
minor of order at least 3k in G, then either there are desired k disjoint paths Pi

with two ends in si, ti for i = 1, . . . , k, or there is a separation (A, B) of order at
most 2k − 1 such that A contains all the terminals and B −A contains at least
one node of the clique minor. Moreover, if the second happens, we can replace
B by A ∩ B with A ∩ B becoming a clique, so that the resulting graph has the
feasible solution if and only if G has. Furthermore, given the above clique minor,
desired disjoint paths or such a separation (A, B) can be found in O(km) time.

Proof. If there is no separation (A, B) of order at most 2k − 1 such that A
contains all the terminals and B − A contains at least one node of the clique
minor, then we obtain the first result by Theorem 4.

If such a separation exists. We take a separation (A, B) with minimum |V (A∩
B)|. Furthermore, we assume that V (B) is minimal among such separations.
Note that such a separation can be found by a standard flow algorithm in O(km)
time. Then, by applying Theorem 4 to B (in place of G) with the terminals in
A∩B (in place of s1, . . . , sk, t1, . . . , tk), we can link up V (A∩B) in any desired
way in B. Thus, replacing B with a clique does not affect the solution of the
disjoint paths problem. �

We are now ready to describe our algorithm for Theorem 1.

Proof of Theorem 1. Let T be the set of 2k terminals, where k satisfies that
k = O((log n/ log log n)1/12). By Theorem 3, in which r = 12k, we can find one
of the following.

– a tree-decomposition of G of width O(log n/ log log n),
– sets of disjoint paths P1 = {P1, . . . Pt} and P2 = {P ′

1, . . . P
′
t} such that

t ≥ 6k and I(P1,P2) contains a topological K12k-minor, or
– a K12k-minor.

Case 1. Suppose that we have a tree-decomposition of G of width O(log n/ log
log n).

In this case, we can apply dynamic programming to solve problems on graphs
of bounded tree-width, in the same way that we apply it to trees. In fact, the
k-vertex-disjoint paths problem (and also half-integral k-disjoint paths packing)
can be solved efficiently (see e.g. [1,2,17]).

Theorem 5. For integers w and k, there exists a (w + k)O(w+k)nO(1) time al-
gorithm for the half-integral k-vertex-disjoint paths packing problem in graphs of
tree-width w.
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Thus if the tree-width of G is O(k) and k = O(log n/ log log n), then the half-
integral k-vertex-disjoint paths packing problem in G is solvable in polynomial
time of n.

Case 2. Suppose that we obtain a topological K12k-minor in I(P1,P2).
We now take Cartesian product of G and K2, and let G∗ = G�K2. We assume

V (G∗) = V (G)∪V (G′), where G′ is a copy of G. By symmetry, we may assume
that G∗ contains a P1-contracted topological clique minor of order 6k by Lemma
1, which we call M∗. Note that every node of M∗ is contained in the original
graph G. Let T ′ be the corresponding vertex set of the terminal set T in the
copy G′ of G. By Theorem 4, if there is no separation (A∗, B∗) of order at most
4k − 1 in G′ such that A∗ contains all the terminals in T ∪ T ′ and B∗ − A∗

contains at least one node of the clique minor, then there are 2k disjoint paths
with one terminal in T and the other pair of the terminals in T ′, i.e, each path
joins si ∈ T and t′i ∈ T ′, or s′i ∈ T ′ and ti ∈ T . This clearly gives rise to desired
paths Pi in G with two ends in si, ti in T for i = 1, . . . , k.

On the other hand, suppose such a separation (A∗, B∗) exists in G∗. We take
such a separation with minimum order. Let Q1 be the node of the clique minor
M∗ that is contained in B∗−A∗. By the definition of P1-contracted topological
clique minor, Q1 is a path in P1.

Let (A1, B1) be the corresponding separation of (A∗, B∗) restricted to G, and
let (A′

2, B
′
2) be the corresponding separation of (A∗, B∗) restricted to G′. Then

Q1 is in B1 −A1.

G

G′

A1 B1

A′
2 B′

2

T ′

T Q1

Fig. 2. Definitions of (A1, B1) and (A′
2, B

′
2).

We need to consider two cases:

Case 2.1. |V (A1) ∩ V (B1)| ≤ |V (A′
2) ∩ V (B′

2)|.
Let (A′

1, B
′
1) be the separation of G′ corresponding to (A1, B1). Then, (A1 ∪

A′
1, B1 ∪B′

1) is a separation of G∗, A1 ∪A′
1 contains all terminals, (B1 ∪B′

1)−
(A1∪A′

1) contains Q1, and |V (A1∪A′
1)∩V (B1∪B′

1)| ≤ |V (A∗)∩V (B∗)|. Since
we take (A∗, B∗) with the minimum order, we can apply Corollary 1 to replace
(B1∪B′

1) by (A1∪A′
1)∩(B1∪B′

1) in such a way that (A1∪A′
1)∩(B1∪B′

1) becomes
a clique, and the resulting graph has the same solution to find 2k disjoint paths,
each connects one terminal in T and the other pair of the terminals in T ′, if and
only if G∗ has.
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Thus after replacing B1 by A1∩B1 in such a way that A1∩B1 is a clique, the
resulting graph has a feasible solution if and only if G has. By Corollary 1, such
a replacement can be done in polynomial time. We just recurse the algorithm to
the resulting graph which has smaller vertices. This completes the description
of Case 2.1.

Case 2.2. |V (A1) ∩ V (B1)| > |V (A′
2) ∩ V (B′

2)|. So |V (A′
2) ∩ V (B′

2)| ≤ 2k − 1.
Let (A2, B2) be the separation of G corresponding to the separation (A′

2, B
′
2)

of G′. Since M∗ is a P1-contracted topological clique minor of order 6k and its
node Q1 is contained in B1 − A1, there are at least 6k − |V (A∗) ∩ V (B∗)| ≥
2k + 1 nodes of M∗ in B1 − A1. Hence at least one node Q2 of M∗ in B1 −A1
does not intersect with V (A2) ∩ V (B2), which implies that Q2 is contained in
B2 − A2 by the construction of G∗. Then, (A2 ∪ A′

2, B2 ∪ B′
2) is a separation

of G∗, A2 ∪ A′
2 contains all terminals, (B2 ∪ B′

2) − (A2 ∪ A′
2) contains Q2, and

|V (A2 ∪A′
2)∩ V (B2 ∪B′

2)| ≤ |V (A∗)∩ V (B∗)|. Hence, in the same way as Case
2.1, we can replace B2 by A2 ∩B2 in such a way that A2 ∩B2 is a clique. Then,
the resulting graph has a feasible solution if and only if G has.

Case 3. Suppose that we obtain a K12k-minor in G.
In this case, we can reduce the problem in the same way as Corollary 1. Then,

we recurse the algorithm to the resulting graph which has smaller vertices.

With this observation, Theorem 1 follows. �
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Abstract. In this paper, we investigate whether a constant round
Lasserre Semi-definite Programming (SDP) relaxation might give a good
approximation to theUniqueGamesproblem. We show that the answer is
negative if the relaxation is insensitive to a sufficiently small perturbation
of the constraints. Specifically, we construct an instance of UniqueGames

with k labels along with an approximate vector solution to t rounds of the
Lasserre SDP relaxation. The SDP objective is at least 1 − ε whereas the
integral optimum is at most γ, and all SDP constraints are satisfied up to
an accuracy of δ > 0. Here ε, γ > 0 and t ∈ Z+ are arbitrary constants and
k = k(ε, γ) ∈ Z+. The accuracy parameter δ can be made sufficiently small
independent of parameters ε, γ, t, k (but the size of the instance grows as δ
gets smaller).

1 Introduction

In recent years the Unique Games problem and the Unique Games Conjecture
(UGC) stating that the problem is hard to approximate [16] have received con-
siderable attention thanks to their connection to inapproximability results and
Semi-definite Programming based algorithms for a wide range of optimization
problems. An inapproximability (a.k.a. hardness of approximation) result, under
a widely believed hypothesis such as P 	= NP, shows that there is no polynomial
time algorithm achieving a good approximation. On the other hand, existence
of an integrality gap instance is taken as evidence that an algorithm based on
LP/SDP relaxation is unlikely to give a good approximation. An integrality gap
instance is a specific instance (or a family of instances) where the optimum of the
LP/SDP relaxation differs significantly from the integral (i.e. true) optimum. In
the following, we review (a subset of) the known results for three problems: the
Maximum Cut, the Sparsest Cut, and the Unique Games.

For the Maximum Cut problem, Goemans and Williamson [11] showed that
a basic SDP relaxation combined with a random hyperplane rounding achieves
an approximation guarantee of α−1

GW ≈ 1.13 where αGW is a certain trigonomet-
ric constant. Based on the Unique Games Conjecture [16] and the Majority is
Stablest Theorem [23], a matching inapproximability result was shown in [17].
However, as the hardness is based on a conjecture, it remained an open question

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 298–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(in addition to resolving the Unique Games Conjecture itself) whether intro-
ducing additional SDP constraints such as the triangle-inequality constraints
improves the approximation guarantee. Khot and Vishnoi [19] were able to con-
struct an integrality gap instance to show that adding the triangle-inequality
constraints does not help.

For the Sparsest Cut problem, adding triangle inequality constraints to the
basic SDP relaxation does indeed help. In a breakthrough work, Arora, Rao, and
Vazirani [3] gave an upper bound of O(

√
log n) on the integrality gap of the SDP

relaxation equipped with triangle inequality constraints. This was subsequently
extended by Arora, Lee, and Naor [2] to the non-uniform version of the problem.
On the other hand, good lower bounds are known on the integrality gap as
well: (log log n)Ω(1) by Khot and Vishnoi [19], Ω(log log n) by Krauthgamer and
Rabani [20] as well as by Devanur, Khot, Saket and Vishnoi [9]. In recent work,
Cheeger, Kleiner, and Naor [7] have shown an integrality gap of (log n)Ω(1) based
on earlier works of Lee and Naor [22] and Cheeger and Kleiner [6]. These lower
bounds are for the non-uniform version except [9] that holds for the uniform
version.

For the Unique Games problem itself several approximation algorithms have
been developed, see [16,28,13,4]. All these algorithms are based on LP or SDP
relaxation and find a near satisfying assignment to a Unique Games instance if
there exists one. However their performance deteriorates as the number of labels
and/or the size of the instance grows, and therefore they fall short of disproving
the UGC. On the other hand, Khot and Vishnoi [19] give a strong integrality
gap for a basic SDP relaxation of the Unique Games problem (the algorithmic
result of Charikar, Makarychev, and Makarychev [4] essentially matches this
integrality gap).

Given the above mentioned works, it is worthwhile to investigate whether
stronger LP/SDP relaxations help for problems like Unique Games, Maximum

Cut or Sparsest Cut. One can obtain stronger relaxations by adding (say
polynomially many) natural constraints that an integral solution must satisfy.

Natural families of constraints considered in literature include the Lovász-
Schrijver LP and SDP heirarchies, the Sherali-Adams LP heirarchy, and Lasserre
SDP heirarchy. Instead of attempting a complete survey of known results, we
refer the reader to the relevant papers [1,27,26,10,25,5,24,18]. and focus on the
results pertaining to the Sherali-Adams and Lasserre heirarchies. The t-round
Sherali-Adams LP hierarchy enforces the existence of local distributions over
integral solutions. Specifically, a solution to such an LP gives a distribution
over assignments to every set of at most t variables and the distributions over
pairwise intersecting sets are consistent on the intersection. Strong lower bounds
have been obtained by Charikar, Makarychev, and Makarychev [5] for up to
nδ rounds of Sherali-Adams relaxation for the Maximum Cut problem. Their
result shows 2 − ε gap for Maximum Cut, and since the gap of the basic SDP
relaxation is at most α−1

GW , their result shows that even a large number of rounds
of the Sherali-Adams hierarchy fail to capture the power of the basic SDP. In
recent work, Raghavendra and Steurer [24] have obtained integrality gaps for
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a combination of a basic SDP and (log log n)Ω(1) rounds of the Sherali-Adams
LP: they obtain a strong gap for Unique Games, α−1

GW − ε for Maximum Cut

and (log log n)Ω(1) for Sparsest Cut. Simultaneously, Khot and Saket [18] also
obtained similar but quantitatively weaker results.

One may also consider the t-round Lasserre SDP hierarchy [21] which intro-
duces a SDP vector for every subset of variables of size at most t and each
integral assignment to that subset. Appropriate consistency and orthogonality
constraints are also added. As it turns out, a vector solution to the t-round
Lasserre SDP also yields a solution to the t-round Sherali-Adams LP, and there-
fore the Lasserre SDP is at least as powerful as the Sherali-Adams LP.

Currently, we know very few integrality gap results for the Lassere hierarchy.
Schoenebeck [25] obtained Lasserre integrality gap for Max-3-Lin and Tulsiani
extended it to Max-k-CSP, and also obtained a gap of 1.36 for Vertex Cover.
However, we already know corresponding NP-hardness results, e.g. H̊astad’s [14]
hardness result for Max-3-Lin and Dinur and Safra’s 1.36 hardness result for
Vertex Cover. Indeed Tulsiani’s integrality gap for Vertex Cover follows
by simulating the Dinur-Safra reduction. It would be very interesting to have
Lasserre gaps where we only know UGC-based hardness results, e.g. 2 − ε for
Vertex Cover, α−1

GW − ε for Maximum Cut, and a superconstant gap for
Sparsest Cut. Currently, such gaps are not known even for the third level of
Lassere hierarchy, leaving open the tantalizing possibility that a constant round
Lasserre SDP relaxation might give better approximations to these problems,
and consequently disprove the UGC.

In this paper, we make a partial progress towards this question. We show
that if the constraints of a t-round Lasserre SDP are allowed to have a tiny
but non-zero error δ > 0, then a strong integrality gap exists for the Unique

Games problem. Using standard reductions from Unique Games, similar in-
tegrality gaps can be obtained for Max-Cut, Vertex Cover etc. (we omit
the details in this extended abstract). In fact the error can be made as small as
desired independent of other parameters (except the size of the instance). All
recent integrality gap constructions involving Sherali-Adams LP (see [5,24,18])
first construct such approximate solutions followed by an error-correction step.
However correcting Lasserre vector solution seems challenging (due to a global
constraint of positive definiteness) and we leave this as an open problem. On the
other hand, our result does demonstrate that a Lasserre SDP relaxation will not
give good approximation if it is insensitive to a tiny perturabation of the vector
solution. To the best of our knowledge, all SDP based algorithms known are
indeed insenstive to tiny perturbations (usually because rounding is very local).
Next we introduce the Lasserre SDP hierarchy, informally state our results and
give an overview of the construction.

Lasserre Hierarchy of SDP Relaxations
For a CSP such as Unique Games on n vertices with a label set [k], a t-round
Lasserre SDP relaxation introduces vectors xS,σ for every subset S of vertices
of size at most t and every assignment σ : S �→ [k] of labels to the vertices in
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S. The intention is that in an integral solution, xS,σ = 1 if σ is restriction of
the global assignment and xS,σ = 0 otherwise. Therefore, for a fixed set S, one
adds the SDP constraint that the vectors {xS,σ}σ are orthogonal and the sum
of their squared Euclidean norms is 1. One may interpret the squared Euclidean
norms of these vectors as a probability distribution over assignments to S (in an
integral solution the distribution is concentrated on a single assignment).

Natural consistency constraints satisfied by an integral solution are added as
well. Specifically, for two sets T ⊆ S, each of size at most t, and every assignment
τ to T , the following natural constaint is added:∑

σ:S �→[k],σ|T =τ

xS,σ = xT,τ , (1)

where σ|T denotes the restriction of σ to subset T . Note that in an integral
solution, both sides of the above equation are 1 if τ is restriction of the global
assignment to T and zero otherwise. The objective value of the relaxation can
be written in terms of pairwise inner products of vectors on singleton sets. The
t-round Lasserre SDP relaxation entails adding O(nt) constraints in the SDP
relaxation.

We will be interested in approximate solutions to the Lasserre hierarchy. To-
wards this end, we call a vector solution δ-approximate if Equation (1) is satisfied
with error δ, i.e. ∥∥∥∥∥∥

∑
σ:σ|T =τ

xS,σ − xT,τ

∥∥∥∥∥∥ ≤ δ. (2)

We now state informally the main result of this paper.

Theorem 1. (Informal) Let ε > 0 and k, t ∈ Z+ be arbitrary constants. Then
for every constant δ > 0, there is an instance U of Unique Games with label
set [k] that satisfies:

1. There exist vectors xS,σ for every set S of vertices of U of size at most t,
and every assignment of labels σ to the vertices in S such that it is a δ-
approximate solution to the SDP relaxation with t-round Lasserre hierarchy.

2. The SDP objective value of the above approximate vector solution is at least
1− ε.

3. Any labeling to the vertices of U satisfies at most k−ε/2 fraction of edges.

Overview of Our Construction
Our construction relies in large part on the work of Khot and Vishnoi [19] who
gave SDP integrality gap examples for Unique Games and cut-problems includ-
ing Maximum Cut. We also borrow ideas from [18] and [24] who build upon
the work of [19] to obtain stronger integrality gap results as mentioned earlier.

Our strategy is to first construct approximate Lasserre vectors for the Unique

Games instance U presented in [19]. This construction is not good enough by
itself as the number of labels [N ] is too large relative to the quality of the
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accuracy parameter. We therefore apply the reduction of [17] to the instance U
to obtain a new instance Ũ of Unique Games with a much smaller label set
[k]. This reduction preserves the low integral optimum, transforms the vectors
corresponding to the instance U into corresponding vectors for the instance Ũ ,
and preserves the high SDP objective. These new vectors constitute the final
δ-approximate Lasserre solution to Ũ . Below we describe the construction of
Lasserre vectors for the instance U . In the actual construction we present, we do
no explicitly construct these vectors, but rather directly construct the instance
Ũ along with its approximate Lasserre solution. However, the description of the
implicit intermediate step does illustrate the main ideas involved.

Lasserre Vectors for [19] Unique Games Instance. We start with the
Unique Games instance U along with a basic SDP solution constructed in [19].
Let G(V, E) be its constraint graph and [N ] be the label set. The SDP solution
consists of (up to a normalization) an orthonormal tuple {Tu,j}j∈[N ] for every
vertex u ∈ V . A useful property of this solution is that the sum of vectors in
every tuple is the same, i.e. for some fixed unit vector T,

T =
1√
N

∑
j∈[N ]

Tu,j ∀u ∈ V. (3)

As observed in [18], one can define a single vector Tu := 1√
N

∑
j∈[N ] T

⊗4
u,j for

each tuple {Tu,j} such that the distance ‖Tu − Tv‖ captures the closeness
between the pairs of tuples {Tu,j} and {Tv,j}. Roughly speaking, the edge (i.e.
constraint) set E corresponds to all pairs (u, v) such that ‖Tu −Tv‖ ≤ γ for a
sufficiently small γ > 0. For any such edge, it necessarily holds that ∀j ∈ [N ],
‖Tu,j − Tv,π(j)‖ ≤ O(γ) for some bijection π = π(u, v) : [N ] �→ [N ]. This is
precisely the bijection defining the Unique Games constraint on edge (u, v)
and also ensures that the SDP objective is high, i.e. 1−O(γ2).

Another key observation is that in the graph G(V, E), any local neighborhood
can be given a consistent labeling; in fact, once an arbitrary label for a vertex is
fixed, it uniquely determines labels to all other vertices in a local neighborhood.
Specifically, fix a small positive constant p ≤ 0.1. A set C ⊆ V is called p-local
if ‖Tu − Tv‖ ≤ p ∀ u, v ∈ C. As observed in [18], for any p-local set C, there
is a set L(C) of N labelings, such that each labeling τ ∈ L(C) satisfies all the
induced edges inside C. The jth labeling is obtained by fixing the label of one
vertex in C to be j ∈ [N ] and then uniquely fixing labels to all other vertices in
C.

This gives a natural way to define Lasserre vectors for all subsets S ⊆ C. Fix
an arbitrary vertex w ∈ C. Consider any subset S ⊆ C, and a labeling σ to the
vertices in S. We wish to construct a vector yS,σ. If σ is not consistent with any
of the N labelings τ ∈ L(C) then set yS,σ = 0. Otherwise, let yS,σ = 1√

N
Tw,j

where the labeling σ is consistent with a labeling τ ∈ L(C) which assigns j to
w. It can be seen that this is a valid Lasserre SDP solution for all subsets of C.
All edges that are inside C contribute well (i.e. 1 − O(γ2) ) towards the SDP
objective.
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We now try to extend the above strategy to the whole set V . Even though the
following naive approach does not work, it helps illustrate the main idea behind
the construction. We partition V into local sets and construct Lasserre vectors
that are a tensor product of vectors constructed for each local set. Towards
this end, we think of the set of vectors {Tu}u∈V as embedded on the unit
sphere S|V |−1. Partition the unit sphere into clusters of diameter at most p. This
naturally partitions the set of vertices V into disjoint p-local subsets C1, . . . , Cm.
As before, fix wi to be any arbitrary vertex in Ci for i = 1, . . . , m. Now consider a
subset S ⊆ V , and a labeling σ to the vertices in S, for which we wish to construct
a vector xS,σ. Suppose that there is a subset Ci such that σ|S∩Ci is not consistent
with any labeling in L(Ci); in this case set xS,σ = 0. Otherwise, construct vector
yi

S,σ as follows: if |S ∩ Ci| = ∅, then let yi
S,σ = T; else set yi

S,σ = 1√
N

Twi,j ,
where σ|S∩Ci is consistent with a labeling in L(Ci) that assigns label j to wi.
Finally, let xS,σ :=

⊗m
i=1 yi

S,σ. It can be seen that this construction is a valid
SDP Lasserre solution. The tensor product is a vector analogue of assigning
labeling to different clusters independently.

However, the above construction does not work because the unit sphere has
dimension |V |−1 and partitioning such a high-dimensional sphere into local clus-
ters necessarily means that almost all edges of G(V, E) will have two endpoints
in different clusters, and therefore the two endpoints get labels independently.
This results in a very low SDP objective. A natural approach is to use dimen-
sionality reduction that w.h.p. preserves the geometry of any set points that is
not too large.

We therefore first randomly project the vectors {Tu}u∈V onto Sd−1 for an
appropriate constant d. The Johnson-Lindenstrauss lemma implies that for a
set S ⊆ V of at most t vertices, w.h.p. the mapping approximately preserves
all pairwise distances between the vectors {Tu}u∈S . This is followed, as before,
by a (randomized) partition of Sd−1 into low-diameter clusters that induces
a partition of V into subsets C1, . . . , Cm. The dimension d is low enough to
ensure that most of the edges in E fall inside some cluster. However, since the
projection fails to preserve distances with some non-zero probability, the subsets
Ci (1 ≤ i ≤ m) are not guaranteed to be p-local. Nevertheless, for any set S
of at most t vertices, if the projection preserves all distances between vectors
{Tu}u∈S , then each of the sets S∩Ci for i = 1, . . . , m is a p-local set. For a fixed
projection and a partition, a vector xS,σ for the set S and its labeling σ can then
be constructed as described earlier, except that there is no fixed representative
vertex wi for each Ci. Instead, an arbitrary vertex is chosen from the set S ∩Ci

to serve as the representative vertex wi, and the set of labelings L(S ∩ Ci) is
used. Since the projection and the partitioning are randomized, we implement
the construction for each choice of random string and let the final vectors to be
a (weighted) direct sum of the vectors constructed for each random string.

The above approach yields Lasserre vectors which have a good SDP objective
value but only approximately satisfy the Lasserre constraints. There are two
sources of error. One is that the random projection preserves distances within
a set S, |S| ≤ t, w.h.p. but not with probability 1. Secondly, since an arbitrary
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vertex from S ∩ Ci is chosen as a representative, for T ⊆ S, the representative
for S∩Ci need not coincide with the representative for T ∩Ci. Still, since S∩Ci

and T ∩Ci are local sets (provided that the random projection has succeeded in
preserving distances in S), their representative vectors are close enough.

Obtaining a δ-Approximate Lasserre Solution. As stated earlier, once we
have the SDP vectors to instance of [19], we apply the reduction of [17] and
obtain a new instance of Unique Games with a constant label set [k]. We also
obtain vectors which constitute the δ-approximate Lasserre solution to the new
instance of Unique Games. We ensure that the objective value of the vectors
remains high.

Organization of the Paper
In Section 2 we formally define the Unique Games problem and a formulation of
the Lasserre hierarchy. In Section 2.3, we formally state our main theorem with
quantitative parameters. In Section 3 we describe the basic Unique Games

instance from [19] along with the reduction from [17] to obtain a new Unique

Games instance with a constant label set [k]. Finally, in Section 4 we construct
Lasserre vectors for the new Unique Games instance.

2 Preliminaries

2.1 Unique Games

An instance of Unique Games U(G(V, E), [k], {πe}e∈E) is a constraint satis-
faction problem. For every edge e = (u, v) in the graph, there is a bijection
πuv

e : [k] �→ [k] on the label set [k], and a weight function wt(e). For notational
convenience we define πvu

e := (πuv
e )−1. A labeling σ : V �→ [k] satisfies an edge

e = (u, v) ∈ E iff πuv
e (σ(u)) = σ(v). The goal is to find a labeling that satisfies

the maximum fraction of edges.
Let U be an instance of Unique Games. Figure 1 gives a natural SDP relax-

ation SDP-UG. The relaxation is over the vector variables xu,i for every vertex u
of the graph G and label i ∈ [k].

2.2 Lasserre Relaxation

One can write a natural integer quadratic program for solving Unique Games,
where the set of variables is xS,σ for every S ⊆ V and every assignment σ :
S �→ [k] to vertices in S. The solution to this quadratic program would ensure
xS,σ = 1 if the global labeling of V induces the assignment σ on S and xS,σ = 0
otherwise.

The Lasserre semi-definite relaxation of Unique Games L’-UG(t) (see the
full version of the paper) is obtained by relaxing the variables of this quadratic
program to vectors instead of integers and replacing the multiplication of two
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max
∑

e=(u,v)∈E

∑
i∈[k]

〈
xu,i,xv,πuv

e (i)

〉
wt(e)

Subject to,

∀u ∈ V
∑
i∈[k]

‖xu,i‖2 = 1 (I)

∀u ∈ V , i, j ∈ [k], i 
= j 〈xu,i, xu,j〉 = 0 (II)

∀u, v ∈ V , i, j ∈ [k] 〈xu,i,xv,j〉 ≥ 0 (III)

Fig. 1. Relaxation SDP-UG for Unique Games

max
∑

e=(u,v)∈E

∑
i∈[k]

〈
xu,i,xv,πuv

e (i)

〉
wt(e)

Subject to,

‖xφ‖2 = 1 (IV)

∀ S, |S| ≤ t, σ 
= σ′ 〈xS,σ,xS,σ′〉 = 0 (V)

∀ T ⊆ S, τ ∈ [k]T
∑

σ:σ|T =τ

xS,σ = xT,τ (VI)

Fig. 2. Relaxation L-UG(t) for Unique Games

numbers by dot products of the corresponding vectors. In the t-round Lasserre
relaxation, we consider sets of size up to t. In this paper, we work with another
relaxation L-UG(t) in Figure 2 which is essentially equivalent to L’-UG(t), but
rephrases the constraints in terms of vector sums instead of dot-products. The
two relaxations have the exact same objective function. In the full version of the
paper, we show that the two relaxations are essentially equivalent.

We say σ|T to mean assignment σ restricted to set T . We say (S, σ) ' (S′, σ′)
to mean that the assignments σ and σ′ are consistent i.e. σ|S∩S′ = σ′|S∩S′ .
Otherwise, we say (S, σ) 	' (S′, σ′). Let xu,i := xS,σ for S = {u} and σ(u) = i.

Thus, we want to construct k|S| orthogonal vectors for each set S of size up
to t, such that the vectors for different sets are consistent with each other in the
sense of Equation (VI).
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2.3 Main Theorem

Theorem 2. Fix an arbitrarily small constant ε > 0 and integer k ∈ Z+. Then
for all sufficiently large N (that is a power of 2), there is an instance U of
Unique Games on 2N

N · kN−1 vertices with label set [k] such that,

1. There exist vectors xS,σ for every set S of vertices of U of size at most t,
and every assignment of labels σ : S �→ [k] such that it is a O(t · η1/16)-
approximate solution for η := (log N)−0.99 to the SDP relaxation with t-
round Lasserre hierarchy of constraints.

2. The SDP objective value of the above approximate vector solution is at least
1−O(ε).

3. Any labeling to the vertices of U satisfies at most k−ε/2 fraction of edges.

Proof. The construction is presented in Section 4 and properties (1), (2) and (3)
are proved in the full version of the paper.

3 The Instance

3.1 Basic Instance

The starting point of our reduction is a Unique Games integrality gap instance
Uη for SDP-UG constructed in [19]. Our presentation of the Unique Games

instance Uη follows that in [18].
For η > 0 and N = 2m for some m ∈ Z+, Khot and Vishnoi [19] construct

the Unique Games instance Uη(G′(V ′, E′), [N ], {πe}e∈E) where the number of
vertices |V ′| = 2N/N . The instance has no good labeling, i.e. has low optimum.

Lemma 1. Any labeling to the vertices of the Unique Games instance
Uη(G′(V ′, E′), [N ], {πe}e∈E) satisfies at most 1

Nη fraction of the edges.

In the construction of [19] the elements of [N ] are identified with the additive
group (F[2]m,⊕). The authors construct a vector solution that consists of unit
vectors Tu,i for every vertex u ∈ V ′ and label i ∈ [N ]. These vectors (up to a
normalization) form the solution to the Unique Games SDP relxation SDP-UG.
We highlight the important properties of the SDP solution below:

Properties of the Unique Games SDP Solution

– (Orthonormal basis) ∀ u ∈ V ′, ∀ i 	= j ∈ [N ],

‖Tu,i‖ = 1, 〈Tu,i,Tu,j〉 = 0. (4)

– (Non-negativity) ∀ u, v ∈ V ′, ∀ i, j ∈ [N ],

〈Tu,i,Tv,j〉 ≥ 0. (5)
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– (Symmetry) ∀ u, v ∈ V ′, ∀ i, j, s ∈ [N ],

〈Tu,i,Tv,j〉 = 〈Tu,s⊕i,Tv,s⊕j〉 (6)

where ‘⊕’ is the group operation on [N ] as described above.
– (High SDP Value) For every edge e = (u, v) ∈ E′,

∀ i ∈ [N ],
〈
Tu,i,Tv,πuv

e (i)
〉
≥ 1− 4η. (7)

In fact, there is suv
e ∈ [N ] such that ∀ i ∈ [N ], πuv

e (i) = suv
e ⊕ i.

– (Sum to a Constant Vector) For every vertex u ∈ V ′,

1√
N

N∑
i=1

Tu,i = T (8)

where T is a fixed unit vector.
– (Local Consistency) A set W ⊆ V ′ of vertices is p-local if ||Tu −Tv|| ≤

p ≤ 0.1 for all u, v ∈ W .

Lemma 2 ([18]). Suppose a set W ⊆ V ′ is p-local. Then there is set L(W )
of N locally consistent assignments to vertices in W such that if μ : W �→
[N ] ∈ L(W ) then

∀u, v ∈ W :
〈
Tu,μ(u),Tv,μ(v)

〉
≥ 1−O(p2). (9)

The assignments in L(W ) are disjoint i.e. if μ 	= μ′ ∈ L(W ) then ∀ u ∈
W, μ(u) 	= μ′(u).

The authors in [18] define for every vertex u ∈ V ′ a unit vector Tu

Tu :=
1√
N

∑
i∈[N ]

T⊗4
u,i. (10)

and prove that that the Euclidean distances between the vectors {Tu}u∈V ′ are a
measure of the ‘closeness’ between the orthonormal tuples {Tu,i | i ∈ [N ]}u∈V ′ .

Lemma 3 ([18]). For every u, v ∈ V ′,

min
i,j∈[N ]

‖Tu,i −Tv,j‖ ≤ ‖Tu −Tv‖ ≤ 2 · min
i,j∈[N ]

‖Tu,i −Tv,j‖ (11)

3.2 Reduction to Constant Label Size

In this section we transform the instance Uη(G′(V ′, E′), [N ], {πe}e∈E′) described
in the previous section to another Unique Games instance Uε(G(V, E), [k],
{πe}e∈E) using a reduction presented in [17]. Here [k] is to be thought of as
the set {0, 1, . . . , k − 1} with the group operation of addition modulo k.
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We start with the Unique Games instance Uη(G′(V ′, E′), [N ], {πe}e∈E′) and
replace each vertex v ∈ V ′ by a block of kN−1 vertices (v, s) where s ∈ [k]N and
s1 = 0.

For every pair of edges e = (v, w), e′ = (v, w′) ∈ E′, there are (all possible)
weighted edges between the blocks (w, ·) and (w′, ·) in the instance
Uε(G(V, E), [k], {πe}e∈E). The edge between a := (w, s) and b := (w′, s′) is
constructed as follows:-

1. Pick p uniformly at random from [k]N and p′ ∈ [k]N such that each co-
ordinate p′

i is chosen to be pi with probability 1−ε and is chosen uniformly
at random from [k] with probability ε for all i ∈ [N ].

2. Define q,q′ ∈ [k]N as q := p ◦ πwv
e , q′ := p′ ◦ πw′v

e′ where p ◦ π :=
(pπ(1), . . . ,pπ(N)).

3. Define r, r′ ∈ [k]N as ri := qi − q1 and r′i := q′
i − q′

1 for all i from 1
through N .

4. Add an edge e∗ between a = (w, s) and b = (w′, s′) such that πab
e∗ (i) :=

(i + q′
1 − q1) for all i ∈ [k] and wt(e∗) := Pr[s = r, s′ = r′].

The third step in the construction incorporates a PCP trick called folding. To
prove that the instance constructed has low optimum, we need the property that
any labelling to vertices in Uε is balanced on every block of vertices arising out
of some vertex in Uη i.e. it assigns each label in every block equally often.

We achieve this by reducing the number of vertices in each block by a factor
of 1

k , and then extend any labelling on the reduced vertex set to a balanced
labelling on the original vertex set. In our case, we only consider strings s with
s1 = 0 and as a mental exercise we extend any labeling σ to all strings as

σ(s′1, s′2, . . . , s′N) := σ(0, s′2 − s′1, . . . , s′N − s′1) + s′1

The following is a reformulation of Theorem 12 and Corollary 13 of [17].

Lemma 4. Any labeling to the vertices of the Unique Games instance
Uε(G(V, E), [k], {πe}e∈E) satisfies at most k−ε/2 fraction of the edges provided
the optimum of the instance Uη (which is at most N−η)) is sufficiently small as
a function of ε and k.

4 Approximate Vector Construction

In this section we construct Lasserre vectors for the Unique Games instance
Uε(G(V, E), [k], {πe}e∈E) described in the previous section. Our construction will
be randomized, i.e. we first create vectors yr

S,σ for every choice of random bits
r and then set

xS,σ :=
⊕

r

√
Pr[r] yr

S,σ (12)

where Pr[r] is the probability of choosing the random bit-sequence r (vectors for
different choices of randomness live in independent, mutually orthogonal spaces).
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4.1 Construction

We will use the following results.

Lemma 5. (see full version for proof) There is a randomized mapping Γ :
Sn−1 �→ Sd−1 with d = 8 ln(2t2/η)/p2, such that for any set X ⊆ Sn−1, |X | ≤ t,
with probability 1− η, we have

∀x, y ∈ X,
1
32
‖Γ (x)− Γ (y)‖ ≤ ‖x− y‖ ≤ 4p + 2 ‖Γ (x)− Γ (y)‖.

If this conclusion holds, we say that the randomized mapping (projection) suc-
ceeded.

Theorem 6 ([12]). Let Sd−1 = {x ∈ Rd : ||x|| = 1} denote the (d − 1) dimen-
sional unit sphere. For every choice of diameter p > 0 there is a randomized
partition P̃ of Sd−1 into disjoint clusters such that,

1. For every cluster C ∈ P̃ , C ⊆ Sd−1, diam(C) ≤ p.
2. For any pair of points u, v ∈ Sd−1 such that ‖u− v‖ = β ≤ p

4 ,

Pr
P̃

[
u and v fall into different clusters

]
≤ 100βd

p
.

We intend to construct vectors xS,σ for every set S ⊆ V , |S| ≤ t, and every
assignment σ : S �→ [k]. Set p = η1/16 and d = 8 ln(2t2/η)/p2.

1. Projection:
Use Lemma 5 to obtain a mapping Tu �→ T′

u ∈ Sd−1 ∀ u ∈ V ′.
2. Partition:

Use Theorem 6 to randomly partition Sd−1 with diameter p. Let C1, C2, . . . ,
Cm denote this partition of Sd−1 as well as the induced partition of V ′ (by
a slight abuse of notation).

3. Constructing vectors for a fixed set S ⊆ V , |S| ≤ t:
Recall that every vertex of S is of the form a = (v, s) for some v ∈ V ′ and
s ∈ [k]N , s1 = 0. Let S = ∪m

l=1S� be a partition of S such that

S� := {a = (v, s) ∈ S | v ∈ C�}.

Also define for the sake of notational ease,

S′
� := {v | ∃ a = (v, s) ∈ S�} ⊆ C� and S′ := ∪m

�=1S
′
�.

Since |S| ≤ t, at most t of the sets S� (and hence S′
�) are non-empty. Let r

be the randomness used in Steps (1) and (2). If the Projection succeeds for
the entire set S′ (see Lemma 5), go to Step 4.

Otherwise set yr
S,σ := 0 for all σ : S �→ [k] and go to Step 5.
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4. Since S = ∪m
�=1S� is a partition, an assignment σ : S �→ [k] can be split

into assignments σ� : S� �→ [k] for � = 1, . . . , m. The construction below is
the vector analogue of choosing an assignment σ� for set S� from a certain
distribution, but independently for all � = 1, . . . , m.

For each � such that S� = ∅, let yr,l
S�,σ�

:= T.
For each � such that S� 	= ∅, observe that the set S′

� is O(p)-local since
the projection succeeded for S′ and since the diameter of C� is at most p. Let
L(S′

�) denote the set of N locally consistent assignments to S′
� as in Lemma

2, Equation (9).
We partition the set L(S′

�) of locally consistent assignments into different
classes depending on how they behave w.r.t. assignments σ� : S� �→ [k].
Towards this end, let

Lr,�
S�,σ�

:=
{
μ | μ ∈ L(S′

�) such that ∀ a = (v, s) ∈ S�, sμ(v) = σ�(a)
}

.

Now arbitrarily pick a representative element u ∈ S′
� and set

yr,�
S�,σ�

:=
1√
N

∑
μ∈Lr,�

S�,σ�

Tu,μ(u).

Finally define,

yr
S,σ :=

m⊗
l=1

yr,�
S�,σ�

(13)

5. Construct vectors xS,σ :=
⊕

r

√
Pr[r] yr

S,σ as in Equation (12).
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Abstract. We study the fundamental problem of computing an arbi-
trary Nash equilibrium in bimatrix games. We start by proposing a novel
characterization of the set of Nash equilibria, via a bijective map to the
solution set of a (parameterized) quadratic program, whose feasible space
is the (highly structured) set of correlated equilibria. We then proceed
by proposing new subclasses of bimatrix games for which either an exact
polynomial-time construction, or at least a FPTAS, is possible. In partic-
ular, we introduce the notion of mutual (quasi-) concavity of a bimatrix
game, which assures (quasi-) convexity of our quadratic program, for at
least one value of the parameter. For mutually concave bimatrix games,
we provide a polynomial-time computation of a Nash equilibrium, based
on the polynomial tractability of convex quadratic programming. For the
mutually quasi-concave games, we provide (to our knowledge) the first
FPTAS for the construction of a Nash equilibrium.

Of course, for these new polynomially tractable subclasses of bima-
trix games to be useful, polynomial-time certificates are also necessary
that will allow us to efficiently identify them. Towards this direction,
we provide various characterizations of mutual concavity, which allow
us to construct such a certificate. Interestingly, these characterizations
also shed light to some structural properties of the bimatrix games sat-
isfying mutual concavity. This subclass entirely contains the most pop-
ular subclass of polynomial-time solvable bimatrix games, namely, all
the constant-sum games (rank−0 games). It is though incomparable to
the subclass of games with fixed rank [16]: Even rank−1 games may not
be mutually concave (eg, Prisoner’s dilemma), but on the other hand,
there exist mutually concave games of arbitrary (even full) rank. Finally,
we prove closeness of mutual concavity under (Nash equilibrium preserv-
ing) positive affine transformations of bimatrix games having the same
scaling factor for both payoff matrices. For different scaling factors the
property is not necessarily preserved.
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1 Introduction

One of the “holy grail quests” of theoretical computer science in the last decade,
has been the characterization of the computational complexity of construct-
ing an arbitrary Nash equilibrium (NE) in a finite normal form game. There
has been a massive attack on various refinements of the problem (eg, a NE
maximizing the payoff of some player, or its support size), that have lead to
NP−hardness results (eg, [15,9]). Eventually the unconstraint problem of find-
ing any NE proved in finite normal form games proved to be PPAD−complete
[10,13], even for the bimatrix case [6]. Moreover, even the problem of computing
an

(
n−Θ(1)

)
−approximate NE for the bimatrix case is PPAD−complete [7],

excluding even the existence of a FPTAS for the problem, unless PPAD = P.
Additionally, it was proved that the celebrated combinatorial algorithm of Lemke
and Howson [20] may take an exponential number of steps to terminate [26].

Given the apparent hardness in computing NE in bimatrix games, two main
research trends emerged quite naturally: To discover polynomial-time, constant-
approximation algorithms (or even a PTAS) for computing NE for the general
case, or to identify general subclasses of games that admit a polynomial-time con-
struction of exact NE, or at least a (F)PTAS. Even if one exchanges the “poly-
nomiality” to “strict subexponentiality”, there is still much room for research.
Indeed, the first subexponential-time approximation scheme was provided in [21]
(see also [2]), while a new one appeared only recently [28]. A sequence of papers
have also provided polynomial-time algorithms for various notions of approx-
imation (eg, [17,11,4,12,27,19]), the current winners being the gradient-based
algorithm of [27] that provides 0.3393−approximation for the most common no-
tion of ε−Nash equilibria, while [19] provides an LP-based 0.667−approximation
for the stricter notion of ε−well supported approximate NE.

As for exact solutions (or even FPTAS) for general subclasses of bimatrix
games, it is well known (due to von Neumann’s minimax theorem [23]) that
any constant-sum bimatrix game is solvable in polynomial time. Trivially, any
bimatrix game with a pure Nash equilibrium is also solvable in polynomial time.
Finally, for the particular case of win-lose bimatrix games, [8] provided a linear-
time (exact) algorithm for games with very sparse payoff matrices and [1] pro-
vided a polynomial-time algorithm when the graph of the game is planar. [16]
introduced a hierarchy of the bimatrix games, according to the rank of the ma-
trix R + C of the game 〈R, C〉, which was called the rank of the game. Then,
for any fixed constant k ≥ 0, they present a FPTAS for bimatrix games of rank
k. It is worth mentioning at this point that the bimatrix games of zero rank are
the zero-sum games, while the class of rank−1 games is already a rich class.

An alternative pathway to tractability is, rather than compute, to have the
players cooperatively learn a Nash equilibrium of a game. For example, [24]
initially proved that the fictitious play on behalf of both players leads to a Nash
equilibrium, for every zero-sum bimatrix game. In [25] Rosen introduced the
notion of concave strategic games, ie, strategic games in which every player’s
utility function (to be maximized) is concave in her own strategy. Then, for the
special case of strictly concave games, he proved global asymptotic stability and
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provided a gradient method for constructing an equilibrium point. Of course, for
the bimatrix case Rosen’s concavity trivially holds, due to the bilinearity of the
payoff functions. Very recently, [14] introduced the notion of social concavity,
according to which (i) there must exist a strict convex combination of all the
players’ payoff functions, that is a concave function in its domain, and (ii) each
player’s payoff function is convex in the opponents’ profile of strategies. It was
then proved that for any strategic game possessing this property, any no-external
regret protocol adopted by every player assures that the empirical distributions
of the players converge to a NE point.

1.1 Our Contribution and Roadmap

In this work we first propose a novel quadratic program which characterizes
the NE set of a bimatrix game (cf. Section 3). Of course, this is not the first
quadratic program that characterizes this set. For example [22] already provided
a quadratic program whose solution set is exactly the NE set of the bimatrix
game at hand. Nevertheless, our approach is (to our knowledge) the first to make
a direct connection between the set of correlated equilibria (and their marginal
distributions) and the NE points of a bimatrix game. Indeed, the feasible space
of our program is exactly the set of correlated equilibria of the game at hand.
The profiles of (independent) strategies for the players that we consider, are
provided as the marginal probability distributions of correlated strategies which
are already correlated equilibria. We prove (cf. Theorem 1) that the solution set
of our program has a bijective correspondence with the NE set of the game.

We then proceed to determine new subclasses of bimatrix games which ad-
mit polynomial-time algorithms, or at least FPTAS, for finding any NE. The
natural thing to do, is to consider properties that assure (at least quasi-) con-
vexity of our quadratic program, in order to be solvable in polynomial time,
or at least admit a FPTAS. Therefore, we introduce the property of mutual
concavity (cf. Definition 1), which demands the existence of some strict convex
combination of the two payoff matrices, such that the corresponding convex com-
bination of the payoff functions of the two players be a concave function. This is
enough to guarantee convexity of our proposed quadratic program. Indeed, our
quadratic program may be seen as a generalization of a parameterized version of
the quadratic program of [22], where we have substituted the feasible space with
correlated equilibria of the game, and we have changed their objective function
(which was an unweighed sum of the players’ regrets) to a properly weighed sum
of the regrets of the profile of marginal distributions from the original correlated
strategy. Therefore, mutual concavity assures also convexity of the variant of the
(parameterized) quadratic program of [22]. If we now substitute in our property
the demand for concavity with a demand for quasi-concavity, then it is easy to see
that the mutual quasi-concavity property of bimatrix games (cf. Definition 1) is
even broader than simple mutual concavity, and implies quasi-convexity for our
quadratic program. This is still a nice thing, since instead of a polynomial-time
exact algorithm, it provides a FPTAS of the quasi-convex program, implying an
FPTAS for ε−NE in the original game. Observe that the social concavity of [14]
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boils down to mutual concavity for bimatrix games, since the second condition
of the social concavity is trivial in our case. But rather than trying to learn, we
choose to compute in polynomial-time a NE of any mutually concave bimatrix
game, or at least provide a FPTAS for any mutually quasi-concave bimatrix
game (cf. Theorem 2).

Nevertheless, we are still far from being able to claim tractability of a certain
new subclass of bimatrix games (even if we are able either to compute or to learn
a NE for any particular member of the class), unless we are able to solve the
corresponding decision problem in polynomial time. For example, it is trivial to
recognize in polynomial time either a constant-sum game, a game of fixed rank,
or a game possessing pure NE. In order to explore this possibility also for the
new subclasses, we proceed (cf. Section 4) with a series of characterizations of
mutual concavity in bimatrix games (Propositions 4 and 8), which eventually
allow us to solve the corresponding decision problem in polynomial time (cf.
Theorem 3). Therefore, we conclude that the class of mutually concave bimatrix
games is indeed solvable in polynomial time. Moreover, these characterizations
allow us to understand in more depth the structure and the expressiveness of this
subclass of games. For example, we prove that any constant-sum game belongs
to this class (cf. Corollary 1), but also demonstrate that there is a continuum
of mutually concave games which are non-constant-sum. Additionally, we ob-
serve that the subclass of mutually concave bimatrix games, is incomparable to
the subclass of games of fixed rank [16]. A game 〈R, C〉 is of fixed rank when
rank(A + B) is some constant. The mutually concave games demand the exis-
tence of some strict convex combination of the payoff matrices which has rank
of at most 2 (cf. Proposition 8). Nevertheless, even rank−1 games may not be
mutually concave (eg, Prisoner’s dilemma), but on the other hand, there exist
mutually concave games of arbitrary (even full) rank. As for mutually concave
games of fixed rank, rather than providing an approximate Nash equilibrium (eg,
via the approximation technique of [29], as in [16]), we provide an exact Nash
equilibrium via the solution to a convex quadratic optimization problem. We
conclude by studying the closeness of mutual concavity of bimatrix games under
Nash equilibrium preserving game transformations, such as the positive affine
transformations.

Due to space limitations, the technical proofs are deferred to the full ver-
sion [18] of the paper.

2 Preliminaries

Algebraic Notation. For any positive number k ∈ N, [k] ≡ {1, 2, . . . , k}. In
a k−dimensional space, for any positive integer i, ei is the vector having all its
elements zero, except for its i−th element which is equal to 1. 1 =

∑
i∈[k] ei is

the “all-ones” vector, 0 is the “all-zeroes” vector, and E = 1 ·1T is an “all-ones”
square matrix. For any positive integer k, Δk = {z ∈ Rk : 1T z = 1; z ≥ 0} is
the set of all probability distributions over a k−element set, and Ok = {z ∈ Rk :
1T z = 0}. For any vector x ∈ Rk and any i ∈ [k], (x)i = xi is the i−th element of
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x. For any matrix A ∈ Rm×n, (A)i,j = Ai,j is the value of the corresponding cell
in the matrix, Ai,� is the i−th row of A (as a row vector) and A�,j is the j−th
column of A (as a column vector). AT denotes the transpose matrix of A. For
any pair of m× n real matrices A, B ∈ Rm×n, A •B ≡

∑
i∈[m]

∑
j∈[n] Ai,jBi,j .

Game Theoretic Notation. For any 2 ≤ m ≤ n, we denote by 〈R, C〉 an
m × n bimatrix game, where the first player (aka the row player) has R ∈
Rm×n as its payoff matrix and the second player (aka the column player) has
C ∈ Rm×n as its payoff matrix. If both the payoff matrices have exclusively
rational entries, R, C ∈ Qm×n, then we refer to a rational bimatrix game.
These are mainly the games of concern in this work, for computational reasons.
The row (column) player is assumed to choose as her action one of the rows
(columns) of the payoff bimatrix (R, C) = (Ri,j , Ci,j)(i,j)∈[m]×[n]. For any pair
of choices, (i, j) ∈ [m]× [n], the payoff to the row (column) player is Ri,j (Ci,j).

– A (mixed in general) strategy for the row (column) player is a probability
distribution x ∈ Δm (y ∈ Δn), according to which she determines her action,
independently of the opponent’s final choice of action. If all the probability
mass of a mixed strategy is assigned to a particular action of the correspond-
ing player, then we refer to a pure strategy.

– The utility of the row (column) player for the profile (x,y) is the expected
payoff xT Ry (xT Cy) that she gets.

– For any real number ε ≥ 0, a profile of strategies (x̄, ȳ) ∈ Δm × Δn is an
ε−Nash equilibrium (ε−NE in short) of 〈R, C〉, iff each player’s strategy
is an approximate best response (within an additive term of ε) to the op-
ponent’s strategy: ∀x ∈ Δm, x̄T Rȳ ≥ xT Rȳ − ε and ∀y ∈ Δn, x̄T Cȳ ≥
x̄T Cy − ε. We denote by NE(R, C) the set of (exact) 0−NE of 〈R, C〉.

– A correlated strategy of 〈R, C〉 is a joint probability distribution W ∈
Δm×n over the whole set of action profiles [m]× [n] for both players.

– A correlated strategy W ∈ Δm×n is a correlated equilibrium (CE in
short) of 〈R, C〉, iff it satisfies the following system of linear inequalities:

∀i, k ∈ [m],
∑

j∈[n](Ri,j −Rk,j)Wi,j ≥ 0
∀j, � ∈ [n],

∑
i∈[m](Ci,j − Ci,�)Wi,j ≥ 0∑

i∈[m]
∑

j∈[n] Wi,j = 1
∀(i, j) ∈ [m]× [n], Wi,j ≥ 0

[CE Property]

We denote by CE(R, C) the (polyhedral) set of correlated equilibria of
〈R, C〉.

3 A Quadratic Formulation of NE Points

In this section we provide a parameterized quadratic program that computes CE
of a bimatrix game, whose optimal solutions are in a bijective correspondence
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with the NE of the game. For any correlated strategy W ∈ Δm×n, we consider
the marginal probabilities x(W ),y(W ) defined as follows:

∀i ∈ [m], xi(W ) =
∑
�∈[n]

Wi,� ∀j ∈ [n], yj(W ) =
∑

k∈[m]

Wk,j (1)

Consequently, we define the row player’s loss gR(W ) when both players adopt
the marginal distributions of a correlated strategy W , rather than abiding with
the correlated strategy (the column player’s loss gC(W ) is analogous, we only
substitute matrix R with matrix C):

gR(W ) ≡
∑

i∈[m]

∑
j∈[n]

Ri,jWi,j − x(W )T Ry(W )

=
∑

i∈[m]

∑
j∈[n]

Ri,j

⎡⎣Wi,j −
∑

k∈[m]

∑
�∈[n]

Wi,�Wk,j

⎤⎦
We consider the following parameterized quadratic program, NEQP(λ), for any
constant λ ∈ (0, 1), bounded away from both its boundaries:

minimize{λ · gR(W ) + (1− λ) · gC(W ) : W ∈ CE(R, C)} [NEQP(λ)]

We denote with opt(NEQP(λ)) the set of optimal solutions for NEQP(λ). We
shall prove that there is a bijective map between opt(NEQP(λ)) and NE(R, C).
The proof proceeds in steps which we present as a sequence of propositions, whose
correctness is provided in the full version of the paper. We start by showing that
both players’ losses for (mutually) adopting their marginal distributions, rather
than abiding with the correlated strategy, are non-negative:

Proposition 1. ∀R, C ∈ Rm×n, ∀W ∈ CE(R, C), gR(W ) ≥ 0 ∧ gC(W ) ≥ 0 .

We continue by showing that any NE point of 〈R, C〉 induces an optimal solution
of NEQP(λ):

Proposition 2. ∀λ ∈ (0, 1), ∀(x̄, ȳ) ∈ NE(R, C), W̄ ≡ x̄·ȳT ∈ opt(NEQP(λ)) .

Our final step is to verify that every optimal solution W̄ ∈ opt(NEQP(λ)) induces
a profile of marginal strategies which is a NE point of the game.

Proposition 3. ∀λ ∈ (0, 1), ∀W̄ ∈ opt(NEQP(λ)), (x(W̄ ),y(W̄ ))∈ NE(R, C) .

From the above discussion it is now obvious that for any λ ∈ (0, 1), NEQP(λ)
provides a characterization of the NE property in bimatrix games, as claimed in
the following theorem:

Theorem 1. For any real number λ ∈ (0, 1), any pair of payoff matrices, R, C ∈
Rm×n, and any profile of strategies (x̄, ȳ) ∈ Δm × Δn, the following holds:
(x̄, ȳ) ∈ NE(R, C) if and only if W̄ ≡ x̄ · ȳT ∈ opt(NEQP(λ)).
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It is now quite natural to investigate for which cases the characterization of
Theorem 1 can help us in constructing an arbitrary Nash equilibrium of the
game. For computational reasons we have to focus our attention to rational
bimatrix games only. Observe that for any λ ∈ (0, 1), the program NEQP(λ)
corresponding to such a game, has at least one rational solution: Any rational
bimatrix game 〈R, C〉 has at least one solution (x̄, ȳ) ∈ NE(R, C) in which both
players’ strategies are rational vectors. The joint distribution W̄ ≡ x̄ȳT is also
a rational optimum to NEQP(λ). Observe also that strict containment of λ in
(0, 1) is crucial, in order for Proposition 3 to hold. We consider the following
two properties of bimatrix games, which assure tractability (or at least FPTAS)
of NEQP (λ) for some value λ ∈ (0, 1), when all the payoff values are rational
numbers:

Definition 1. Consider any R, C ∈ Qm×n, λ ∈ (0, 1), Z(λ) = λR + (1 − λ)C,
and Hλ(x,y) ≡ xT Z(λ)y.
1. 〈R, C〉 is mutually concave (MC in short) game iff the following holds:

[MC1] ∃λ ∈ (0, 1) s.t. Hλ(x,y) is a concave function of (x,y) ∈ Δm×Δn: ∀μ ∈
(0, 1), ∀(x̄, ȳ), (x̂, ŷ) ∈ Δm×Δn, Hλ(μ(x̄, ȳ)+(1−μ)(x̂, ŷ)) ≥ μHλ(x̄, ȳ)+
(1− μ)Hλ(x̂, ŷ) .

2. 〈R, C〉 is mutually quasi-concave (MQC in short) game, iff the following
holds:

[MQC] ∃λ ∈ (0, 1) s.t. Hλ(x,y) is a quasi-concave function of (x,y) ∈ Δm ×
Δn: ∀μ ∈ (0, 1), ∀(x̄, ȳ), (x̂, ŷ) ∈ Δm × Δn, Hλ(μ(x̄, ȳ) + (1 − μ)(x̂, ŷ)) ≥
min {Hλ(x̄, ȳ), Hλ(x̂, ŷ)} .

Returning to our quadratic formulation for the NE set of a bimatrix game,
observe that the objective function of NEQP(λ) is:

Gλ(W ) ≡ λ · gR(W ) + (1− λ) · gC(W )

=
∑

i∈[m]

∑
j∈[n]

[λRi,j + (1− λ)Ci,j ] Wi,j − x(W )T [λR + (1 − λ)C]y(W )

= Z(λ) •W −Hλ(x(W ),y(W ))

Theorem 2. Consider any pair of natural numbers 2 ≤ m ≤ n, and any R, C ∈
Qm×n.

– If 〈R, C〉 is mutually concave, then either there is a pure NE, or else mutual
concavity holds for a unique rational number λ∗ ∈ (0, 1) (of the same bit
complexity as the input). In the latter case, an exact NE can be constructed
in time O(T (m, n)), where T (m, n) is the time for solving the corresponding
instance of NEQP(λ∗).

– If 〈R, C〉 is mutually quasi-concave game for some fixed rational number
λ∗ ∈ (0, 1) bounded away from both boundaries, then for any ε > 0 an

ε
min{λ∗,1−λ∗}−NE can be constructed in time O

(
log2

( 1
ε

)
· T (m, n)

)
, where

T (m, n) is an upper bound on the time for solving any of the corresponding
convex (feasibility) quadratic programs used in the bisection that is employed.
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Remark: The time complexity for solving an N−variable convex program

min {f0(x) : ∀i ∈ [M ], fi(x) ≤ 0; Ax = b}

where A ∈ Qk×N , b ∈ Qk, and the functions fi are all convex, is roughly
proportional to

√
M · max{N3, N2 ·M, F}, where F is the worst-case cost for

evaluating any of the fi’s, their first and second derivatives (eg, see [3,5]). For
the particular case of NEQP(λ), for some rational number λ ∈ (0, 1), N = n ·m
and M = 2(m2 + n2) − (m + n) while F = O

(
(m · n)2

)
. This would therefore

imply that the worst case cost for NEQP(λ) is T (m, n) = O
(
n7
)

(assuming
m ≤ n) which is quite large. This is because of the large number of variables and
inequality constraints in NEQP(λ). Nevertheless, this heavy time-complexity can
be very easily dropped down to O

(
n3.5

)
, if we replace NEQP(λ) with a simple

quadratic relaxation that only considers the marginal distributions (rather than
the correlated strategy itself), and thus involves only m+n variables and m+n−2
constraints, and the convexity of this latter program again depends on the mutual
concavity of the game. But then we lose the direct connection to the correlated
equilibria that NEQP(λ) returns, since the mapping from correlated strategies
to their marginal distributions is a many-to-one relation. We leave the details of
this construction for the full version of the paper.

4 Tractability of Mutual Concavity

Although we already know that for any mutually (quasi-) concave rational bima-
trix game it is possible to construct in polynomial time (or provide a FPTAS for)
a Nash equilibrium via convex optimization techniques, we still need to be able
to recognize such games in polynomial time. For example, it is trivial to check
whether a bimatrix game has the constant-sum property, possesses a pure NE,
is a coordination game (ie, equal payoffs to both players, for any action profile),
or is a game of fixed rank, and then solve it (in case of an affirmative answer).
In this section we provide a characterization of the mutual-concavity property
that: (i) demonstrates the generality of the subclass, and (ii) shows how to check
it in polynomial time.

It should be reminded at this point that mutual concavity [MC1] matches con-
dition [A1] of social concavity of [14, Definition 2.1], when we consider a bimatrix
game. As for the second condition ([A2]) of social concavity, namely, the convex-
ity of each player’s payoff in the profile of the opponents, it trivially holds for the
bimatrix case. That is, social concavity of strategic games boils down to mutual
concavity in the bimatrix case. In our approach though, rather than having the
two players learn a NE using no-external-regret algorithms in the correspond-
ing infinitely repeated game, we choose to solve the proper (convex) quadratic
optimization problem. But as said before, for any of the two approaches for con-
structing NE points to be really a polynomial-time method, mutual concavity
should be checkable in polynomial time for rational bimatrix games. The follow-
ing proposition provides a characterization of mutual concavity, which shall be
quite useful (the proof is deferred to the full version):
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Proposition 4. For any rational bimatrix game 〈A, B〉 and λ ∈ (0, 1), let
Z(λ) = λA + (1 − λ)B, Hλ(x,y) ≡ xT Z(λ)y. 〈A, B〉 is mutually concave iff
any the following conditions holds:

[MC1] ∃λ ∈ (0, 1) s.t. Hλ(x,y) is a concave function of (x,y) ∈ Δm×Δn: ∀μ ∈
(0, 1), ∀(x̄, ȳ), (x̂, ŷ) ∈ Δm×Δn, Hλ(μ(x̄, ȳ)+ (1−μ)(x̂, ŷ)) ≥ μHλ(x̄, ȳ)+
(1− μ)Hλ(x̂, ŷ) .

[MC3] ∃λ ∈ (0, 1) : ∀(ξ, ψ) ∈ Om ×On, ξT Z(λ)ψ = 0.
[MC4] ∃λ ∈ (0, 1) : ∀ψ ∈ On, Z(λ)ψ = 1 · (Z(λ)ψ)1.
[MC5] ∃λ ∈ (0, 1) : ∀ξ ∈ Om, Z(λ)T ξ = 1 · (Z(λ)T ξ)1.

It is now easy to observe that any constant-sum bimatrix game is mutually
concave:

Corollary 1. For any A ∈ Rm×n and c ∈ R, the c−sum m× n bimatrix game
〈A,−A + c · E〉, where E = 1 · 1T , is a mutually concave game.

Proof. If we set λ = 1
2 then Z(λ) = c

2 ·E and now, for any (ξ, ψ) ∈ Om ×On it
holds that ξT Z(λ)ψ = c

2 · ξT ·E · ψ = c
2 · ξ

T · 1︸ ︷︷ ︸
=0

·1T · ψ︸ ︷︷ ︸
=0

= 0. �

At this point we explore the mutual concavity of 2 × 2 bimatrix games. The
following proposition provides a simple characterization of mutual concavity for
this simple case:

Proposition 5. For any A, B ∈ R2×2, let ā = A1,1 + A2,2 − A1,2 − A2,1 and
b̄ = B1,1 + B2,2 −B1,2−B2,1. The bimatrix game 〈A, B〉 is mutually concave iff
the following condition holds:

[B1] ā = b̄ = 0 ∨min{ā, b̄} < 0 < max{ā, b̄}

For example, in figure 1.(a,b,c) we present 2× 2 games both with and without
the mutual concavity. Observe that example (c) actually presents a continuum
of 2× 2, non-constant MC-games, rather than just a single game.

Consider now, for integers 2 ≤ m ≤ n, an arbitrary pair of payoff matrices
A, B ∈ Rm×n. Let ∀1 ≤ i < k ≤ m, ∀1 ≤ j < � ≤ n, āik,j� = Ai,j + Ak,� −Ai,� −
Ak,j and b̄ik,j� = Bi,j + Bk,� − Bi,� − Bk,j . An obvious necessary condition for
the mutual concavity of 〈A, B〉 is the following:

Proposition 6. If 〈A, B〉 is mutually concave, then the following condition holds:

[B2] ∃λ ∈ (0, 1) : ∀1 ≤ i < k ≤ m, ∀1 ≤ j < � ≤ n,

[āik,j� = b̄ik,j� = 0]
∨[

max{āik,j�, b̄ik,j�} > 0 > min{āik,j�, b̄ik,j�} ∧ λ = −b̄ik,j�

āik,j�−b̄ik,j�

]
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silent betray
silent (−1,−1) (−10, 0)

betray (0,−10) (−5,−5)

cinema football
cinema (2, 1) (0, 0)
football (0, 0) (1, 2)

(a) Prisoners’ Dilemma. (b) Battle of Sexes.

L R
T (2, 1) (1, 1 + γ)
B (1, 1) (3, 0)

L R
T (2, 1) (1, 1 + γ)
M (1, 1) (3, 0)
B (δ1, δ2) (ε1, ε2)

(c) 2 × 2 MC game. (d) 3 × 2 MC game.

Fig. 1. (a) The non-mutually concave rank−1 “Prisoner’s Dilemma” game. (b) The
non-mutually concave rank−2 game “Battle of Sexes”. (c) A generic (non-constant-
sum) 2× 2 game that is mutually concave, ∀γ > −1. (d) A generic (non-constant-sum)
3 × 2 game that is a mutually concave ∀γ > −1, δ1, δ2, ε1 ∈ R, ε2 = δ2 + 1

3
· [2γ −

1− (1 + γ) · (ε1 − δ1)]. Observe that the unique value λ = 1+γ
4+γ

makes xT Z(λ)y in this
game a concave function.

Remark: [B2] is also a sufficient condition, for any 2×n bimatrix game, since if

for any
[

ξ
−ξ

]
∈ O2 it holds that ∀j ∈ [n], [ξ,−ξ] · (Z(λ))�,1 = [ξ,−ξ] · (Z(λ))�,j ,

then clearly ∀ψ ∈ On, [ξ,−ξ] · Z(λ) · ψ = 0. The unique parameter of mutual
concavity is λ∗ = −b̄12,12

ā12,12−b̄12,12
. The example in figure 1.(d) provides a continuum

of non-constant 3× 2 MC-games.

Next we prove that computing a NE point in a bimatrix game with all the ā
and b̄ values equal to zero, is polynomial-time tractable (independently of the
validity of the mutual concavity).

Proposition 7. For any pair of m × n matrices A, B ∈ Qm×n, for which
∀{i, k} ⊆ [m], ∀j, � ⊆ [n], āik,j� = b̄ik,j� = 0, finding a (pure) Nash equilibrium of
the rational bimatrix game 〈A, B〉 is tractable in polynomial time.

We now provide a necessary and sufficient condition for mutual concavity of
〈A, B〉 that applies directly to the combined matrix Z(λ) = λA + (1 − λ)B.
This property also indicates how to construct non-trivial instances of mutually
concave bimatrix games. It also indicates that Z(λ) must have rank at most 2,
but of course this is not a sufficient condition for mutual concavity, as was shown
in previous examples (cf. figure 1). On the other hand, as we shall see shortly, a
mutually concave game may have arbitrary (even full) rank.

Proposition 8. For any m, n ≥ 2 and real matrices A, B ∈ Rm×n, the bimatrix
game 〈A, B〉 is mutually concave if and only if any of the following properties
holds:

[MC6] ∃λ ∈ (0, 1), ∃ a ∈ Rm, ∃ δ = [0, δ2, . . . , δn]T ∈ Rn : ∀j ∈ [n], Z(λ)�,j =
−δj · 1 + a.
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[MC7] ∃λ ∈ (0, 1), ∃ b ∈ Rn, ∃ ε = [0, ε2, . . . , εm]T ∈ Rm : ∀i ∈ [m], Z(λ)i,� =
−εi · 1T + bT .

It is not hard to construct n× n games of full rank, which are nevertheless mu-
tually concave. Eg, for n = 7, consider the vectors b = [1, 2, 4, 8, 16, 32, 64]T , ε =
[0,−1, 1,−2, 2,−3, 3]T . The corresponding matrix Z that complies with [MC7]
is the following:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4 8 16 32 64
0 1 3 7 15 31 63
2 3 5 9 17 33 65
−1 0 2 6 14 30 62

3 4 6 10 18 34 66
−2 −1 1 5 13 29 61

4 5 7 11 19 35 67

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with rank(Z) = 2. Nevertheless, for A = I7 being the identity matrix and λ =
1/4, the unique choice of B so that Z(λ) = λA+(1−λ)B = Z is B = 4

3Z− 1
3A.

It is now easy to check that rank(A) = rank(B) = rank(A + B) = 7, and thus
the game has full rank.

The above discussion allows us now to prove the efficiency of checking mu-
tual concavity in non-trivial bimatrix games (eg, those having no pure Nash
equilibria):

Theorem 3. For any natural numbers n ≥ m ≥ 2, and real matrices A, B ∈
Rm×n, for the bimatrix game 〈A, B〉 either all the ā− and b̄−values of its 2× 2
submatrices are zero (and then there is a pure Nash equilibrium), or there is at
most one candidate parameter λ∗ ∈ (0, 1) for which mutual concavity must be
checked, and this can be done in time O

(
n2 ·m2

)
. Moreover, in the latter case,

if the bimatrix game is rational, then (in case of non-trivial mutual concavity)
the unique parameter λ∗ is also a rational number.

5 Closeness of Mutual Concavity

In game theory literature it is quite common to consider various Nash equilibrium
preserving transformations of a game, and then try to work on the new game.
One of the most typical transformations of this kind is defined as follows:

Definition 2. Consider the matrices R, C ∈ Rm×n and the corresponding bi-
matrix game 〈R, C〉. For any scalars γI , γII ∈ R>0 and vectors r ∈ Rn, c ∈ Rm,
the game 〈A, B〉 where:

A = γI · R +

⎡⎢⎣rT

...
rT

⎤⎥⎦ , B = γII · C + [c, c, · · · , c] ,

is called a positive affine transformation (PAT) of 〈R, C〉. In case that
γI = γII ∈ R>0, then we refer to a uniform positive affine transformation
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(UPAT) of the game 〈R, C〉. If additionally γI = γII = 1, then we refer to an
additive transformation (AdT).

A well-known (and trivial to prove) fact is that any PAT of a bimatrix game
preserves the Nash equilibrium set:

Fact 1 For any scalars γI , γII ∈ R>0 and any real vectors r ∈ Rn, c ∈ Rm, any
bimatrix game 〈R, C〉 and its corresponding PAT 〈A, B〉 with parameters (γI , r)
for the row player and (γII , c) for the column player, have exactly the same Nash
equilibria.

We shall prove that the mutual concavity of bimatrix games is closed under
UPAT, but unfortunately is not necessarily closed under non-uniform PAT.

Theorem 4. For any scalar γ ∈ R>0, any real vectors r ∈ Rn, c ∈ Rm and
any bimatrix game 〈R, C〉, let 〈A, B〉 be its UPAT with common scaling factor γ
and additive vectors r, c. Then, 〈R, C〉 is mutually concave if and only if 〈A, B〉
is mutually concave.

Unfortunately, the MC property of bimatrix games is not necessarily preserved un-
der general (in particular, non-uniform) PAT. Additionally, one might also argue
that there exist (non-affine) transformations of particular bimatrix games, which
are Nash equilibrium preserving, for which the MC property is not preserved.
For example, one might use the form for the prisoner’s dilemma game given in
figure 2. It is trivial to see that this form of PD has the MC property, but there
is actually no affine transformation (let alone PAT) that can lead from the non-
mutually concave PD version in figure 1, to this mutually concave PD version.
In our opinion, it is crucial to focus our interest on generic Nash equilibrium
preserving transformations of games, such as PAT. It is nevertheless mentioned
that also other crucial properties, such as the ratio of approximate (rather than
exact) Nash equilibria is not preserved, indeed not even under AdT alone. This
of course does not lessen the importance of such properties, but rather indicates
an additional difficulty that we face when exploring them.

silent betray
silent (6, 6) (0, 10)

betray (10, 0) (4, 4)

Fig. 2. An alternative form of the PD game, which happens to have the MC property

6 Conclusions and Future Work

In this paper we have presented a novel characterization of the Nash equilibrium
set of a bimatrix game, via the solution set of a proper quadratic program, whose
feasible space contains all the correlated equilibria of the game. Consequently,
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we explored two properties (mutual concavity and mutual quasi-concavity) of
a bimatrix game that we can exploit in this quadratic formulation, in order to
assure polynomial time construction, or at least a FPTAS, for a Nash equilib-
rium point. We then proceeded to characterize the first of the two classes, and
proved that it entirely contains all constant-sum games but is incomparable to
the subclass of games with fixed rank. Nevertheless, it should be noted that for
the intersection of mutually concave games of fixed rank, rather than giving a
FPTAS, we find in polynomial time an exact Nash equilibrium point via the
optimal solution to our convex quadratic program.

For further research, we shall explore the expressiveness and decidability of
the mutual quasi-concavity property, which (when it holds) allows for a FPTAS
for the game. Of course, the main challenge still remains to improve the approx-
imation ratio, or even find a PTAS, for the general case of rational bimatrix
games.
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Abstract. We consider the question: What is the maximum flow achiev-
able in a network if the flow must be decomposable into a collection of
edge-disjoint paths? Equivalently, we wish to find a maximum weighted
packing of disjoint paths, where the weight of a path is the minimum
capacity of an edge on the path. Our main result is an Ω(log n) lower
bound on the approximability of the problem. We also show this bound
is tight to within a constant factor. Surprisingly, the lower bound applies
even for the simple case of undirected, planar graphs.

Our results extend to the case in which the flow must decompose
into at most k disjoint paths. There we obtain Θ(log k) upper and lower
approximability bounds.

1 Introduction

Network flows have played a fundamental role in the advancement of combina-
torial optimization [13] and are ubiquitous in applications [2]. In the standard
single-commodity flow problem we have a capacitated graph G = (V, E) and
terminal vertices s and t.1 The goal is to find a maximum valued flow from
s to t that satisfies the capacity constraints on each edge. Equivalently, we are
searching for a maximum packing of weighted s−t paths; the packing constraints
simply state that the total weight of all paths passing through an edge must not
exceed the capacity/weight, we, of that edge. Viewed in this light, a special case
is the classical problem of finding a maximum collection of disjoint paths.

Thus, there has been a long-standing and close relationship between network
flows and the disjoint packing of unweighted paths. An immediate question arises:
what about the weighted case, namely, what if we desire that our network flow
decomposes into a disjoint collection of weighted paths? Surprisingly given the
apparent simplicity of the question, as far as we are aware, this question has not
previously been considered in the literature.

Consequently, this paper investigates how to find a maximum flow whose
path decomposition consists only of disjoint paths. Specifically, take a collection
of pairwise edge-disjoint s− t paths P . Then the maximum flow, w(P ), we can
1 Of course, by incorporating a supersource and supersink, this framework also models

the case of multiple sources and sinks, provided any source can route to any sink.

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 326–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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send down a path P ∈ P is simply the minimum capacity of an edge in P . The
value of the flow is then the sum of the flows along each path,

∑
P∈P w(P ). Our

goal is to obtain a flow P consisting of edge-disjoint paths that has maximum
value. We call this the Disjoint Weighted Flow Problem.

Observe this problem does indeed correspond to a simple weighted path-
packing problem. Specifically, let the weight of an s − t path P be w(P ) :=
min{w(e) | e ∈ E(P )}. Then we are looking for a collection P of disjoint paths of
maximum total weight, that is

∑
P∈P w(P ) as before. As well as being an elegant

combinatorial question, we remark that this requirement for disjoint paths is also
a natural one in applications where flow paths can interfere with one another or
where technological constraints at links and nodes compel disjointness.

In this paper, we examine approximation algorithms for the the disjoint
weighted flow problem. We present Θ(log n) lower and upper approximation
bounds for the weighted disjoint paths problem, where n is the number of ver-
tices. Standard reductions show that these bounds also apply in directed graphs
and/or if we insist the paths be vertex-disjoint rather than edge-disjoint. Fur-
thermore, our lower bound applies even for the special case of planar graphs.

1.1 Related Work

Given the applicability of network flows there is a vast literature optimizing
flows given additional constraints. These side-constraints may arise from the
application itself, but they can also arise due to restrictions induced by available
technology or by the choice of routing protocol; see [12] for a survey illustrating
some of these issues. The work most closely related to our own, though, concerns
k-splittable flows introduced by Baier, Köhler and Skutella [7]. A k-splittable
flow is a flow that can be routed along k paths - note that these paths are not
required to be disjoint. Thus, Kleinberg’s unsplittable flows [9] can be viewed
as 1-splittable flows. Baier et al. present a 2-approximation algorithm for the
k-splittable single-commodity flow problem.

Our results also extend to the case in which feasible solutions must be de-
composable into at most k disjoint paths, for some k. Disjoint weighted flows
are, however, are harder to deal with and approximate than k-splittable flows.
In particular, for single-commodity flows, we obtain Θ(log k) lower and upper
approximations bounds when we are constrained to use at most k disjoint paths.

2 The Lower Bound

In this section we present our main result:

Theorem 1. For undirected planar networks, the hardness of approximation for
the maximum disjoint weighted flow problem is Ω(log n), unless P = NP .

Before proving Theorem 1 we outline the structure of the proof. First, we in-
troduce a graph GN that has a maximum disjoint weighted flow of value equal
to the harmonic number HN ≈ log N . But if we use a slightly modified weight
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function for the paths then GN has a maximum disjoint weighted flow of value
one.

We then build a new network G by replacing each node of GN by an instance
of an NP-hard routing problem. The routing problem will be chosen to have the
following properties. If it is a YES-instance then path weightings for the disjoint
weighted flow problem on G will correspond to the original weighting scheme
on GN . In contrast, if it is a NO-instance, then path weightings for the disjoint
weighted flow problem on G will correspond to the modified weighting scheme
on GN .

It follows that an approximation algorithm with guarantee better than log-
arithmic would allow us to distinguish between YES- and NO-instances of our
routing problem, giving a lower bound of Θ(log N). We will see that this bound
is equal to Θ(log n).

Furthermore, at all stages we will show this reduction can be applied using
only undirected, planar graphs. Theorem 1 will follow.

2.1 A Half-Grid Graph

Let’s begin by defining the graph GN . There are N rows (numbered from top
to bottom) and N columns (numbered from left to right). All the edges in the
ith row and all the edges in the ith column have weight 1

i . The ith row extends
as far as the ith column and vice versa; thus, we obtain a “half-grid” that is a
weighted version of the network considered by Guruswami et al [8]. Finally we
add a source s and a sink t. There are edges of weight 1

i from s to the first vertex
in row i and from t to the last vertex in column i. The complete construction is
shown in Figure 1.

Note that there is a unique s− t path Pi consisting only of edges of weight 1
i ,

that is, the L-shaped path that goes from s along the ith row and then down the
ith column to t. Moreover, for i 	= j, the path Pi intersects Pj precisely once.
Clearly each path Pi has weight w(Pi) = 1

i , so the collection of edge-disjoint
paths P∗ = {P1, P2, . . . , PN} gives a flow of total value HN = 1 + 1

2 + . . . 1
N .

Since every edge incident to s is used in P∗ with its maximum weight, this
solution is optimal. Similarly, if we are constrained to use flows that decompose
into at most k disjoint paths then the optimal flow has weight Hk.

Now consider what happens when we modify the weight function for the paths.
Given a collection P of paths, let the modified weight, ŵP (P ), of a path P ∈ P
be the the minimum weight amongst its edges and those edges incident to a
vertex at which P crosses another path Q ∈ P . Formally,

ŵP (P ) = min{wuv | v ∈ P, uv ∈ Q for some Q ∈ P}

where we will omit the subscript if P is clear.
The maximum value of a flow is significantly reduced if we use these modified

weights.
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Fig. 1. Grid Graph GN

Lemma 1. The maximum modified value of a weighted flow in GN is 1.

Proof. Define the rank of a path P to be the index j for which this path uses
the weight 1

j edge incident to t. Suppose 1
i is the maximum modified value of

any path in a flow P . Let j be the rank of some path Q ∈ P of modified weight
1
i . Then set P+ to be the collection of paths in P with ranks greater than j, and
P− to be the paths with ranks less than j.

Observe that Q must contain as a sub-path all the edges in column j that lie
below row i. Otherwise, Q would contain an edge in a row of lower weight than
1
i , contradicting the fact that Q has modified weight 1

i . Similarly, no other other
path in P crosses Q on this sub-path, as this would reduce Q’s modified weight.
This implies that any path in P+ must use one edge of the columns j to i + 1
between row i and row i + 1. Consequenty, |P+| ≤ i− j. Obviously |P−| ≤ j− 1
and so |P| ≤ 1 + (i − j) + (j − 1) = i. Since each path has modified weight at
most 1

i , this gives an upper bound of 1 on the modified value of the flow.
For P∗ = {P1, P2, . . . , PN}, we see that ŵ(Pi) = 1

N , for all i. Thus, this
collection of paths obtains the maximum modified value of one. �
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2.2 The 2-Edge-Disjoint Weighted Paths Problem

Recall the next step is to replace, in GN , each vertex at the crossing of two
paths Pi and Pj with an instance of an NP-hard routing problem. To define this
routing problem, let H be an undirected graph whose edges have weight either
a or b, where b > a. Given two pairs of vertices (s1, t1) and (s2, t2), we wish to
find a path P1 from s1 to t1 and a path P2 from s2 to t2 with the properties that

(i) P1 and P2 are edge-disjoint.
(ii) P2 may only use edges of weight b (P1 may use either weight a or weight b
edges).

We call this the Two Edge-Disjoint Weighted Paths Problem, or 2-EDWP.
Evidently, we will be most interested in the case where the graph H is planar.

Then we have:

Theorem 2. Planar-2-EDWP is NP-hard, even if the pairs of terminals lie
on the outer face of H in the order s1, s2, t1, t2.

We remark that in graphs which are directed and not planar, the hardness of
2-EDWP follows directly from the hardness of the 2-arc-disjoint paths problem
([6]).

Before embarking on the proof, observe that Theorem 2 immediately tells
us that the maximum disjoint weighted flow problem is hard in planar graphs.
Simply take an instance of Planar-2-EDWP and add a super-source s and
a super-sink t. Then connect s to s1 and s2 with edges of weights a and b,
respectively. Similarly, connect t to t1 and t2 with edges of weights a and b,
respectively. Then there is a disjoint weighted s − t flow of value a + b if and
only if there are paths P1 and P2 satisfying properties (i) and (ii). Of course,
we desire a much stronger hardness result than this, but this observation will be
useful in motivating the subsequent construction.

In order to prove Theorem 2, we will need the following geometric result.

Lemma 2. Let G = (V, E) be an embedded planar graph, and φe ⊆ R2 the open
curve corresponding to the embedding of e, for each edge e ∈ E. Then there is
a simple closed curve in R = R2 \

⋃
e∈E φe that intersects the image of every

vertex.

Proof. Let φu ∈ R2 denote the image of u ∈ V . We prove the following stronger
property by induction on the number of vertices: for every edge uv of G, there
is a simple curve in R with endpoints φu and φv that intersects the image of
every vertex. We remark that we may add an embedded edge to G or remove
loops and parallel edges from G, without loss of generality.

If G has only two vertices or G is a cycle, the property is obvious. Otherwise,
we can suppose G is two vertex connected - to see this, note that we can al-
ways add edges between the neighbours of a vertex such that its neighbourhood
becomes connected. Now let F be a simple face containing uv. Let the ordered
vertices on the cycle defined by the boundary of F be {u1 = u, u2, . . . , uk = v},
where k ≥ 3.
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Let Γ (u) be the neighbourhood of u. If Γ (u) = {u2, uk} then contract u along
one of its two incident edges, say uu2. Since u2 and v = uk are now adjacent,
we can find by induction a curve D from u2 to uk using every vertex except u.
Extending the curve from u2 to u in R gives the desired curve in G.

So assume that |Γ (u)| ≥ 3. Let F ′ 	= F be the other face containing u1u2,
and let u1w, w 	= u2 be the second edge incident to u1 in F ′. Let G′ be the
graph obtained by contracting the edges contained in F and removing the loops
and parallel edges, and call the new contracted vertex vF . By the induction
hypothesis, there is a curve between vF and w going consecutively through the
images of every vertex in G′. Let this curve be DG′ = {x1 = vF , x2, . . . , xl = w}.
After uncontracting vF , the curve DG′ begins at some vertex uj in F .

Suppose DG′ enters x2 through F ′. Then we may assume that uj = u2. So
we may extend the curve DG′ at one end from w to u = u1 within F ′, and at
the other end by a path from xj = u2 through u3, . . . , uk = v within F . Since
F ∪ F ′ ⊆ R, we obtain our desired curve in R from u to v.

On the other hand, suppose that x2 /∈ F ′. If uj = u1 then we first ex-
tend the curve DG′ from w to u2 within F ′ and thence extend it from u2
through u3, . . . uk = v within F . Again, we obtain our desired curve in R
from u to v. Otherwise suppose j ≥ 2. At one end, we first extend the curve
DG′ from w to u within F ′ and at the other end extend it from uj through
uj−1, uj−2, . . . , u2, uj+1, uj+2, . . . , uk = v within F . Again, we obtain our de-
sired curve in R from u to v. �

In the following, we identify vertices, edges and graphs with their respective
images on the plane. For γ ∈ {a, b}, we call an edge of weight γ a γ-edge.

Proof of Theorem 2. We give a reduction from Planar-3-Sat to Planar-

2-EDWP. Let C be a set of clauses over the variables X , such that the bipartite
graph G = (X ∪C, {xC : x ∈ X , C ∈ C, x ∈ C ∨x ∈ C}) is planar. Without loss
of generality, we can suppose that each variable appears at most three times.
To see this, observe that if x appears in k ≥ 4 clauses we may introduce k new
variables, x1, . . . , xk, and new clauses x1 ∨ x2, x2 ∨ x3, . . . , xk ∨ x1, and replace
each occurrence of x by an occurrence of one of the xi. Without loss of generality,
we can also suppose that each variable appears exactly once negatively. These
transformations can clearly be implemented whilst preserving the planarity of G.
Thus, we obtain a formula whose corresponding bipartite graph G has maximum
degree 3.

Now take a planar embedding for G. By Lemma 2, we may find a closed curve
D intersecting the embedding of G exactly on its vertices.

We will transform (G,D) into an instance of Planar-2-EDWP in polynomial-
time. To do this, we need to build an auxiliary edge-weighted planar graph G′

for the routing problem. Towards this goal, we first take G and use D to induce
an additional set of embedded a-edges whose endpoints are in V (G).

Then we replace each edge e = uv ∈ E(G) by a 4-cycle consisting of b-edges
use, ute, vse, vte, where se and te are new vertices.
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Next we replace each variable vertex x ∈ X by a variable gadget and each clause
vertex by a clause gadget. Each variable vertex x of degree three is replaced by one
of four possible variable gadgets; the actual choice is dependent upon the relative
position of D with respect to the edges incident to x and upon the sign of x in the
adjacent clauses. These four gadgets are illustrated in Figure 2, where the edges
corresponding to D and the other a-edges are dashed, the edges corresponding to
E(G) and the other b-edges are bold (recall there must be two edges out of the
gadget for each edge in G as we initially replaced such edges by a 4-cycle). The +
and − signs indicate whether the variable appears positively or negatively in the
adjacent clause.

+ +

−

++

−

− +

+

+−

+

−

+

+
+

+

−
+

−

+
+

−

+

Fig. 2. Variable gadgets

Each clause vertex C of degree three is replaced by one of two possible clause
gadgets; again, the actual choice is dependent upon the relative position of D
with respect to the edges incident to C. These two gadgets are shown in Figure 3.
The gadgets for clauses with two literals and for variables occuring only twice
are similar to those presented, but simpler.

To complete the construction we need to specify the sources and the sinks. To
do so, we first specify a multicommodity flow formulation with many source-sink
pairs. Later we will show how to implement it as a flow with just two source-sink
pairs. Towards the former goal, we will have a source-sink pair (se, te) for each
edge e ∈ G. Furthermore, we will have one additional source-sink pair (sa, ta).
To define this pair, arbitrarily choose one of the edges uv of D. Then replace uv
by two edges usa and vta each with weight a. Observe that sa and ta are on the
boundary of a common face of the resultant planar graph G′.

This multicommodity flow problem relates to the planar 3-SAT instance in
the following manner.

Claim. The formula is satisfiable if and only if there are edge-disjoint paths
{Pe}e∈E(G) and Q in G′, with the following properties.
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Fig. 3. Clause gadgets, with the same convention as in Figure 2

(i) Pe has endpoints se and te and uses only b-edges.
(ii) Q has endpoints sa and ta.

Proof. First, note the 4-cycles of b-edges that initially replaced each edge have
become larger under the construction but are still b-cycles. Moreover, these b-
cycles (call them He, for each e ∈ G) are edge disjoint and their union covers all
of the b-edges in G′.

Now suppose that all the paths exist. There are only two possible routes in
He between se and te that Pe can take; if e = xC then one route passes through
the variable gadget x and the other passes through the clause gadget C. Since
se and te have degree two, it follows immediately that Q cannot use any of the
edges incident to them. Consequently, Q must follow the curve D. We will show
how to obtain from Q a satisfying truth-assignment.

For any edge e = xC, we say that the cycle He is positive if x appears positively
in C, negative otherwise. Then, for a variable gadget x, it is easy to see that if
Q does not intersect the unique negative cycle going through the gadget then it
must use at least one edge of each of the positive cycles He going through that
gadget. If it intersects the negative cycle, set variable x to true, otherwise set it
to false.

To see that this does produce a satisfying assignment, take any clause C, say
over the variables x, y and z. Since Q follows D it must pass through each clause
gadget. Consequently, Q intersects at least one of HxC , HyC , and HzC . Without
loss of generality, let it intersect HxC . This means that PxC cannot go through
the clause gadget C and, hence, must go through the variable gadget x. But,
again, as Q follows D it must pass through the variable gadget x too. Therefore,
Q cannot intersect HxC in the variable gadget x. This precisely means that x is
true if x appears positively in C, and x is false if it appears negatively. So C is
satisfied by x.

On the other hand, given a satisfying assignment, it is easy to find a collection
of feasible paths. This is because, for each variable gadget, there is a sub-path
that intersects only the positive cycles in that gadget and there is a sub-path that
intersects only the negative cycle. Therefore, Q can always follow the appropriate
sub-path. �
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To complete the proof of Theorem 2 we need to reduce the number of com-
modities in the flow to two. For this, we will keep the source-sink pair (sa, ta)
but group into one all of the pairs (se, te) via the use of a new source sink pair
(sb, tb). To accomplish this, we first need to position the new vertices sb and tb
in G′. Let B be a closed curve that intersects G′ on sa and ta only. Then add sb

arbitrarily on the “upper” path between sa and ta induced by B. Similarly add
tb on the “lower” path between sa and ta induced by B.

Our goal now is to force any path of b-edges between sb and tb to follow b-
paths between se and te for every e ∈ G. To do this, let e1, e2, . . . , em be any
ordering of the edges of G. For a cycle He, we define its inside as the connected
component of R2 \He that does not contain any vertex of G′. Then set R to be
the union of the inside of every cycle He plus V (G′) and the inside of B. Observe
that R is a union of disjoint balls, so its complement is connected. Let P be
a path between sb and se1 in this complement. Build a path of b-edges along
P and add them to G′, inserting new vertices whenever P crosses an a-edge
(note that these are the only edges P can cross). Next add P to R; this does
not change the connectedness of its complementary set. In this manner, we may
iteratively add paths of b-edges between ti and si+1, for 1 ≤ i ≤ m − 1, and
finally between between tm and tb. By construction, these paths are disjoint and
cross only a-edges. We thus obtain a new planar graph G′′ with four terminals
on the same face, as desired.

Clearly this new instance of Planar-2-EDWP is equivalent to the previous
multicommodity flow problem. To see this, simply note that the new b-edges
are isthmi in the subgraph consisting of the b-edges. Consequently, the (sb, tb)-
path must use each of these new b-edges and then, as before, in each He route
through either the variable gadget or through the clause gadget. This completes
the reduction. �

2.3 The Hardness Result

We can now complete the proof of the approximation hardness. Observe that
any vertex of degree four in GN is incident to two edges of weight 1

i and to two
edges of weight 1

j , for some i 	= j. We construct a graph G by replacing each
vertex of degree four with the routing graph H . We do this in such a way that
the weight 1

i edges of GN are incident to s1 and t1, and the weight 1
j edges are

incident to s2 and t2. Moreover, for that copy of H placed at the intersection of
Pi and Pj , we then let a = 1

i and b = 1
j , where we may assume that j < i.

The hardness result will follow once we see how this construction relates to
the original and modified weight functions.

Lemma 3. If H is a YES-instance then the optimal disjoint weighted flow in G
has value HN . If H is a NO-instance then the optimal disjoint weighted flow in
G has value at most 1.

Proof. It is clear that if H is a YES-instance, then paths in G induce paths in
GN which are free to cross at any vertex without restrictions on their values. This
means we obtain a flow of value HN by using the canonical paths Pi, 1 ≤ i ≤ N .
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However, if H is a NO-instance, then it contains only an s1− t1 path, or only
an s2 − t2 path, or the s2 − t2 path is forced to use a lower weight a-edge. This
implies that the induced paths P in GN either do not cross at all, or if they
cross then the weight of the path using the 1

j -edge is forced down to a weight
of 1

i (recall j < i). But this means that the weight of a path is upper bounded
by the modified weight function ŵ. This allows us to apply Lemma 1, and hence
the value of an optimal flow in this case is at most 1. �

Proof of Theorem 1. It follows that if we could approximate the maximum
disjoint weighted flow problem in G to a factor better than HN , we could deter-
mine whether the optimal solution is 1 or HN . This in turn would allow us to
determine whether H is a YES- or a NO-instance.

Note that G has n = Θ(pN2) edges, where p = |V (H)|. If we take N =
Θ(p

1
2 ( 1

ε −1)), where ε > 0 is a small constant, then log n = Θ(HN ) = Θ(log p).
This gives our lower bound of Ω(log n). �

Similarly, if we are restricted to consider only flows that decompose into k
disjoint paths then it is not hard to see that:

Theorem 3. For undirected, planar networks, there is a Ω(log k) hardness of
approximation, unless P = NP , for the problem of finding a maximum flow that
decomposes into at most k edge-disjoint paths. �

3 An Approximation Algorithm

Our lower bound is tight to within a constant factor - there is a simple approx-
imation algorithm that gives an almost matching upper bound.

Theorem 4. For any network, there is an O(log n) approximation algorithm
for the maximum disjoint weighted flow problem.

Proof. To begin, round each edge weight down to the nearest power of 2. This
can only cost us a factor 2 in our approximation guarantee. Next, we claim
that we may assume that every edge weight lies between 1 = 20 and 2t where
t = 1 + �log n�. To see this, first note that there can be at most n edge-disjoint
s−t paths in any flow. Therefore, for any j, the total contribution from all paths
that contain an edge of weight 2j or less is upper bounded by n2j . Now, let 2j0

be the highest edge weight such that there exists a path of weight 2j0 . Deleting
the edges of weight 2j for all indices j where 2j < 1

n2j0−1 loses us at most 2j0−1

in weight, that is, half of the optimal flow value. The lowest remaining edge
weight, 2j1 , then satisfies j1 ≥ j0 − 1 − �log n�. Scaling down the edge weights
by a factor 2j1 gives the claim.

The approximation algorithm now proceeds as follows. For each i such that
0 ≤ i ≤ t = 1 + �log n�, let Ei be the edges of weight at least 2i, and let
Gi = (V, Ei). Let φi be the maximum number of edge-disjoint s − t paths in
Gi. Clearly, these paths induce a weighted disjoint flow of value at least 2iφi

in G. Furthermore the optimal weighted disjoint flow must have value at most
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∑t
i=0 2iφi. To see this, note that the paths of weight 2i in the optimal solution

together form a feasible solution for the disjoint paths problem in Gi. Then, since
t = 1 + �log n�, one of the Gi produces a weighted disjoint flow whose value is
at least a logarithmic fraction of the optimal flow value. As we can easily solve
the maximum disjoint paths problem in Gi in polynomial time, this gives the
claimed O(log n) approximation algorithm. �

Corollary 1. There is an O(log k) approximation algorithm for the problem of
finding a maximum flow that decomposes into at most k edge-disjoint paths.

Proof. This previous argument applies. The approximation guarantee, however,
improves to O(log k) because now the paths of weight at most 2j can only con-
tribute a total value of at most k2j . �

4 Conclusion

We have given approximation guarantees for the maximum disjoint weighted flow
problem in single-commodity networks. Therefore, a natural question would be to
look at the multi-commodity case, where we wish to find weighted flows between
si and ti, for i = 1, . . . , k, that are disjoint and maximize total weight. By the
techniques of Section 3, we can easily obtain an upper bound of O(α log n),
where α is the approximation achievable in the unweighted case. Unfortunately,
the unweighted version is extremely hard to approximate since it is the edge-
disjoint paths problem studied by Guruswami et al. [8]. They show this problem
is inapproximable to within α = m

1
2−ε, for any ε > 0, in directed graphs and

give an approximation algorithm that essentially matches this lower bound.
In addition, given that our lower bound is essentially tight, the search for

bi-criteria results is of interest. Here we would relax the condition that the paths
in a weighted flow be strictly disjoint; instead, one would allow a limited amount
c ≥ 2 of congestion on each edge. For multi-commodity flows, the unweighted
version of the problem has recently been studied extensively; for ground-breaking
results in this area, see Chekuri et al. [3] for upper bounds in planar graphs, and
Andrews et al. [1] and Chuzhoy et al. [4] for lower bounds in general graphs.
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Abstract. We consider optimization problems that can be formulated
as minimizing the cost of a feasible solution wT x over an arbitrary com-
binatorial feasible set F ⊂ {0, 1}n. For these problems we describe a
broad class of corresponding stochastic problems where the cost vector
W has independent random components, unknown at the time of solu-
tion. A natural and important objective that incorporates risk in this
stochastic setting is to look for a feasible solution whose stochastic cost
has a small tail or a small convex combination of mean and standard
deviation. Our models can be equivalently reformulated as nonconvex
programs for which no efficient algorithms are known. In this paper, we
make progress on these hard problems.

Our results are several efficient general-purpose approximation schemes.
They use as a black-box (exact or approximate) the solution to the un-
derlying deterministic problem and thus immediately apply to arbitrary
combinatorial problems. For example, from an available δ-approximation
algorithm to the linear problem, we construct a δ(1 + ε)-approximation
algorithm for the stochastic problem, which invokes the linear algorithm
only a logarithmic number of times in the problem input (and polynomial
in 1

ε
), for any desired accuracy level ε > 0. The algorithms are based on a

geometric analysis of the curvature and approximability of the nonlinear
level sets of the objective functions.

Keywords: Approximation algorithms, reliable optimization, stochastic
optimization, risk, mean-risk, nonlinear programming, nonconvex
optimization.

1 Introduction

In this paper, we consider generic combinatorial problems and ask what hap-
pens when their associated costs are stochastic. The most common approaches
in stochastic optimization are to find the solution of minimum expected cost.
However, in many applications reliability considerations are very important: risk-
averse users need reassurance regarding the level of risk, and not just the ex-
pected cost of the provided solution. For example, the transportation community
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has recognized the importance of reliable route plans (e.g., [7,27,24,36,9]), how-
ever the solutions offered are typically inefficient or heuristic with unknown ap-
proximation guarantee. Similarly, reliability is a key consideration in finance and
other continuous optimization settings [33]. It has been noted that incorporating
reliability [33,28] transforms the problems into nonconvex ones for which there
are no known efficient algorithms and rigorous approximative analysis is scarce.
In this paper, we provide a rigorous treatment of reliable combinatorial opti-
mization, offering fully-polynomial approximation schemes for a rich framework
of reliability measures.

To illustrate our framework, consider an application such as driving to the
airport in uncertain traffic. Our goal is to find a route that gets us to the airport
on time. Clearly, the route which minimizes our expected travel time may not
be an appropriate choice. In fact, the natural objectives may vary depending on
when we are submitting the route query: ahead of time, when we are debating
how much time to budget for our trip, or at the start of our trip, when we
are optimizing our chance of ontime arrival. In the former setting, we would
typically want to allocate enough time to ensure some confidence of ontime
arrival, say 95%. In the latter, given a deadline to reach our destination, we
need to find the route which will most likely reach by the deadline. Another
natural objective, used for example by the Federal Highway Administration as
a travel time reliability criterion, is given by the mean plus standard deviation
of a route [10]. The latter reliability criterion has been considered in the context
of stochastic minimum spanning treess as well [2], and this model is sometimes
referred to as mean-risk optimization (e.g., [2]).

We thus focus on a general framework for reliable stochastic combinatorial
optimization, which includes the following problem settings:

1. minimize (mean + c · standard deviation) for a non-negative constant c
which parametrizes the level of risk-aversion. [Call this the Mean-risk model
or objective.]

2. maximize Pr(solution cost ≤ budget) for a given budget. [Probability tail
model / objective.]

3. minimize budget such that Pr(solution cost ≤ budget) ≥ p for a given con-
fidence probability p. [Value-at-risk model.]

In contrast with the diversity in model specifications above, we will show that the
same approximation algorithm design can simultaneously address all. Through-
out, we assume that the cost distributions are independent, although our algo-
rithms also extend to the case of correlations of neighboring edges for example
in shortest path problems (the graph with correlated edges is transformed into
a slightly larger graph with independent edges and thus all our results here
immediately carry through.)

Contributions. We start our discussion with the (relatively) simpler mean-risk
model, which is equivalent to minimizing

(
mean + c ·

√
variance

)
. We provide

strong results that apply to arbitrary cost distributions with given means and
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variances, and achieve essentially the same approximation factor as what is pos-
sible for the underlying deterministic problem. In particular, we provide general-
purpose algorithms that use as a black-box an algorithm for the deterministic
problem. We summarize our results for this setting below:

Theorem 1 (See Theorems 3, 4). There is a fully-polynomial approxima-
tion scheme for the mean-risk stochastic model, when there is an exact or fully-
polynomial approximation algorithm for the underlying deterministic problem.

In addition, there is a (1+ε)δ-approximation for the stochastic model running
in time polynomial in 1

ε , when there is an available δ-approximation for the
deterministic problem.

A rigorous approximation-algorithmic analysis of the second and third models in
the framework, which involve optimization of the probability tails, necessitates
an assumption on the distribution: in the absence of any knowledge on the
distributions, the best one can do is bound the tails, for example using Chernoff
or Chebyshev bounds, and optimize those tail bounds instead—this will yield a
conservative overestimate of the probability of exceeding the budget.

We provide strict approximation results under the commonly assumed Gaus-
sian distributions; we then show how the same algorithmic techniques can apply
to arbitrary distributions using tail bounds. In the former setting, minimizing
the probability tail in the second model is equivalent to maximizing budget−mean√

variance

and we get the following approximations:

Theorem 2 (See Theorems 3, 5). There is a fully-polynomial approximation
scheme for the probability tail model, when there is an exact or fully-polynomial
approximation algorithm for the underlying deterministic problem.

In addition, when there is an available δ-approximation for the deterministic

problem, there is a
√

1−
[

δ−(1−ε2/4)
(2+ε)ε/4

]
-approximation for the stochastic model

running in time polynomial in 1
ε .

We remark that the above algorithms find the approximate solution, assuming
there is a feasible solution with expected cost at most the budget, or (1−ε) times
the budget in the exact and approximate deterministic settings respectively (in
other words, the probability of exceeding the budget is at most 1

2 ). Otherwise,
if a given budget is so small that the probability of exceeding it is greater than
1
2 , we are in a risk-loving, rather than a risk-averse situation, which would be
similar to minimizing a (mean − standard deviation)-type objective in model
(1). In other words, we would prefer solutions with higher variances (for example,
looking for longest paths).

The third (value-at-risk) model under Gaussian distributions is equivalent to
the mean-risk model, with risk-aversion coefficient c = Φ−1(p), where Φ−1(·) is
the inverse cumulative distribution function of the standard normal N(0, 1).

For arbitrary distributions, the third model again reduces to the mean-risk
model, but with a more conservative risk-aversion coefficient c =

√
p

1−p , as a
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Fig. 1. (a) Level sets of the probability tail objective function and the convex hull of
the projected feasible set on the mean-variance plane. (b) Level sets and approximate
separation oracle for the mean-risk objective on the mean-variance plane.

result of which our algorithms provide an overestimate of the true error prob-
ability of exceeding the budget. Optimizing a tail bound in the second model
similarly provides an overestimate of the true probability, which is again the best
one can hope to achieve in the absence of other distributional information.

Background and Challenges. Our algorithms build on the fact that the model
formulations in our framework are all instances of concave minimization, for
which it is known that the optimal solution is attained at an extreme point of
the feasible set (see, e.g., [4]). In particular, our objective functions depend only
on the means and variances of feasible solutions. Thus, we can project the feasible
set on the plane spanned by the mean and variance vectors and only consider
extreme points on the projection (see Figure 1(a)). This greatly restricts the
number of relevant extreme points. For example, in the case of minimum span-
ning trees and matroids there are only polynomially many such extreme points,
which can be efficiently enumerated, hence the corresponding reliable spanning
trees and matroids in a stochastic environment can be found with a straightfor-
ward polynomial-time algorithm. However, an arbitrary combinatorial problem
would most likely have too many extreme points even on a two-dimensional pro-
jection (for example, shortest paths have nlog n such points [29]), hence our focus
on approximation in this paper.

We can geometrically visualize the objective function in terms of its level sets
on the mean-variance plane. These form parabolas, corresponding to higher ob-
jective function values at greater mean and variance values. The optimal solution
is obtained at the lowest parabola touching the projected feasible set. Figure 1(a)
depicts these parabolas and the challenge that arises with concave minimization
problems: along the convex hull boundary of the feasible set, the objective func-
tion fluctuates and, in particular, many extreme points may be local optima and
thus local search algorithms would fail to find a good approximation. What we
do instead is follow the objective function levels to guide us into the relevant
portion of the feasible set, as explained below.
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Overview of Algorithms and Techniques. [For the case of easy deterministic
problems.] The algorithm constructs a (non-linear) separation oracle for telling
us whether, for a given function level set,1 there is a feasible solution below
the level set (with value less than the given function value) or else, whether
the entire feasible set is above the given level. Afterwords, a binary search on the
optimum objective function value combined with the separation oracle finds the
desired approximate solution.

The separation oracle approximates a given level set curve by inscribing a
(partial) polygon in it. Each side of the polygon induces a linear objective over
the feasible set, which we minimize via a black-box call to the algorithm for
the deterministic problem. If the resulting solution is below the current level
set (more precisely, its associated original objective function value is smaller
than (1 + ε) times the given level), the separation oracle returns that solution.
Else, if after minimizing with respect to all linear segments, we do not find any
solutions below the level set, the separation oracle returns a negative answer
that the entire feasible set is above it.

The subtlety arises in how to construct the polygonal segments to ensure
a good and efficient approximation. To get an efficient algorithm, we need to
approximate the level set curves with as few linear segments as possible. On the
other hand, to get a good approximation factor, we need a finer polygon (with
more and smaller sides), which is sandwiched between the desired level set with
function value λ and the level set with function value λ(1+ ε) (See Figure 1(b)).
In particular, in the worst case when the level sets touch, as is the case for the
probability tail objective, a polygon sandwiched between the two level sets will
have infinitely many sides. We resolve this problem by carefully bounding the
optimal solution so that we do not need all infinitely many linear segments from
the polygon, and we prove that it suffices to consider only polynomially many
such segments.

[Hard deterministic problems.] We could use the same algorithm design as
above, by appropriately modifying its analysis and approximation factors, when
we have a δ-approximation rather than an exact algorithm for solving the under-
lying deterministic problem. It turns out that for this case, a cruder and simpler
algorithm gives the same approximation factor. In particular, all we need to do
here is apply the algorithm for the deterministic problem on a small sequence of
linear cost functions of the form mean+k ·variance, for a geometric progression
of coefficients k.

However, even if we know what single choice of k would find the optimal solu-
tion, the difficulty is to translate the approximation given by the deterministic
black-box algorithm for the linear function into an approximation for the orig-
inal concave function: the two functions have nothing in common (except that
the former is a gradient of the latter at some point), and a priori it is not clear
that an approximation of the former would at all yield a meaningful approxima-
tion factor for the original objective. Fortunately, all objective functions in our

1 The level set of a function f for value λ is the subset of the domain on which the
function equals λ, Lλ = {x | f(x) = λ}.
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framework admit such an approximation (the probability tail objective is again
more challenging due to the given budget and requires us to know that there is
a feasible solution at least a small distance away from the budget).

Related Work. A rich body of work in stochastic combinatorial optimization
focuses on two-stage and multistage optimization (e.g., [35,17,21,16,18]). The
models there typically look for solutions of minimum expected cost, and Swamy
and Shmoys remark that “it would be interesting to explore stochastic models
that incorporate risk” [38]. There are models that incorporate additional budget
constraints [37] or threshold constraints for specific problems such as knapsack,
load balancing and others [8,13,23].

At the other end of the spectrum is the paradigm of robust optimization (see
survey [5]), which provides completely reliable (robust) solutions, though this
is only possible when the uncertainty is bounded, namely the random variables
have bounded support. Our framework for reliable optimization falls between
stochastic optimization, which minimizes expected cost, and robust optimiza-
tion, which minimizes the maximum cost. Interestingly, part of our framework
(the mean-risk model) arises in robust discrete optimization under ellipsoidal un-
certainty sets [6]. Bertsimas and Sim offer for it pseudopolynomial algorithms,
assuming that the underlying deterministic problem can be solved exactly, in
contrast with our fully polynomial approximation schemes that work with both
exact and approximate algorithms for the deterministic problem.

Atamtürk and Narayanan [2] also consider mean-risk minimization in discrete
optimization, giving a characterization in terms of submodular minimization.
Our feasible set is an arbitrary subset of the hypercube vertices, on which it is
not known how to do submodular minimization.

The probability tail objective was previously considered in the special context
of stochastic shortest paths and an exact algorithm was given based on enumer-
ating relevant extreme points from the path polytope [29]. The same type of
algorithm extends to arbitrary combinatorial problems and its complexity is
polynomial for minimum spanning trees and matroids. However, in general, it is
superpolynomial or exponential, hence our focus on approximation algorithms
in this paper.

A comprehensive survey of models that incorporate risk in continuous settings
is provided by Rockafellar [33]. The solution concepts and continuous nature of
the problems make this work very different from ours. Similarly, continuous
optimization work with probability (chance) constraints (e.g., [28]) applies for
linear and not discrete optimization problems. Additional related work on the
combinatorial optimization side includes research on multi-criteria optimization
(e.g., [31,1,34,39]) and combinatorial optimization with a ratio of linear ob-
jectives [26,32]. Our models can also be seen as instances of concave discrete
minimization; however, the existing work in this area requires assumptions that
do not hold in our framework, such as restrictive properties on the feasible set,
strictly positive range of the objective function, or boundedness/positivity of the
objective function gradient [30,3,22,14].
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2 An FPTAS for the Reliable Versions of Easy
Combinatorial Problems

In this section, we formally define the models in our reliable stochastic optimiza-
tion framework and present a general-purpose FPTAS design for these problems.
The FPTAS uses as a black-box an exact algorithm for the underlying deter-
ministic problem and is based on a geometric analysis of the curvature and
approximability of the level sets of the objective functions.

Suppose we have an arbitrary combinatorial set of feasible solutions F ⊂
{0, 1}n, together with an oracle for optimizing linear objectives over the set. In
addition, we are given nonnegative vectors of means μ ∈ Rn and variances τ ∈
Rn for the stochastic cost vector W, coming from independent distributions so
that the mean and variance of a solution x ∈ F is μTx and τ Tx ≥ 0 respectively.
We are interested in finding a feasible solution with optimal cost, where the
notion of optimality incorporates risk.

1. [Mean-risk model] A family of objectives that has been analyzed in contin-
uous optimization settings, mostly in the context of finance [11,25], is the
family of convex combinations of mean and standard deviation. Formally,
this problem is to:

minimize μTx + c
√

τ Tx (1)
subject to x ∈ F ,

where the constant c parametrizes the degree of the user’s risk aversion.
2. [Probability tail model] An alternative natural model maximizes the proba-

bility that the stochastic solution cost is within a desired budget or threshold
t: maximize Pr

(
WTx ≤ t

)
subject to x ∈ F . When the stochastic costs W

are Gaussian, subtracting the mean and dividing by the standard deviation
transforms the problem into the following equivalent formulation (which is
also approximation-preserving as we show in the extended version):

maximize
t− μTx√

τ Tx
(2)

subject to x ∈ F .

When the stochastic costs W come from arbitrary distributions, the max-
imum probability is lower-bounded by (t−μT x)2

(t−μT x)2+(τT x) (by the one-sided
Chebyshev bound, also known as Cantelli’s inequality [15], Pr(X ≤ E[X ] +
k
√

V ar(X)) ≥ 1− 1
1+k2 , with k = t−μT x√

τ T x
). While maximizing a lower-bound

will not yield a strict approximation of the probability tail objective, it is the
best one can achieve in the absence of other distributional information—and
our techniques can strictly approximate this bound as well:

maximize
(t− μTx)2

(t− μTx)2 + τ Tx
(3)

subject to x ∈ F .
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3. [Value-at-risk model] Finally, we may wish to minimize the budget t such
that the probability of not exceeding it is at least a given confidence level p:

minimize t (4)
subject to Pr(WT x ≤ t) ≥ p

x ∈ F .

Depending on whether we have Gaussian or arbitrary distributions, this
problem is exactly equivalent to, or its solution can be upper-bounded using
Chebyshev’s bound by the mean-risk model (1) with c = Φ−1(p) or c =√

p
1−p (See Ghaoui et al. [12]; more details are provided in the extended

version of this paper).

We can obtain fully-polynomial approximation schemes (FPTAS) for all models
above, with the same FPTAS template, which we explain below. All models
are instances of concave minimization (equivalently, convex maximization) over
x ∈ F . Our algorithms make black-box calls to an exact algorithm (sometimes
referred to as the linear oracle) for solving the underlying deterministic (linear)
problem:

minimize wTx (5)
subject to x ∈ F ,

for a carefully chosen small set of linear objectives w ≥ 0. We remark that in
general such a set may not even exist; for example, the necessary number of
linear objectives may be large or even infinite if the objective function has un-
bounded gradient (as is the case in the second model above). From a complexity
perspective, minimizing a concave function over some feasible set may be hard
to approximate even if minimizing a linear function over the same set can be
done in polynomial time [22].

Thanks to the form of the objective functions, they can all be projected onto
the mean-variance plane span(μ, τ ) and can be thought of as functions on two
dimensions. In that plane, the projected level sets of the objective functions
are parabolas. We construct an approximate separation oracle, which tells us
whether for a given function value λ there is a feasible solution below the (1−ε)λ-
level set or else if the entire feasible set is above the λ-level set. We do this by
inscribing a (partial) polygon between these two level sets. Geometrically, the
optimal polygon choice (with fewest sides) is such that its vertices are on one
level set and its sides are tangent to the other, as shown in Figure 1(b).

Theorem 3. There is an oracle fully-polynomial time approximation scheme for
all problems in the reliable stochastic framework above, which uses as a black-box
an exact algorithm for solving the underlying deterministic problem (5).

In the rest of this section we prove this theorem. The crux of the proof is in
establishing that the approximate separation oracle can be constructed from
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polynomially many linear segments, as described in the following main techni-
cal lemma. (The Lemma is stated for a stochastic maximization problem as in
Eq. (2); the analogous statement holds for a stochastic minimization problem
as in Eq. (1).) The argument for how the theorem follows from the Lemma is
provided in the extended version.

Lemma 1 (Approximate Separation Oracle). Suppose we have an exact
algorithm for solving the deterministic problem (5). Then, we can construct an
oracle which solves the following approximate separation problem: given a level
λ and ε ∈ (0, 1), the oracle returns

1. A solution x ∈ F with f(x) ≥ (1 − ε)λ, or
2. An answer that f(x) < λ for all x ∈ F ,

and the number of linear oracle calls it makes is polynomial in 1
ε and the size of

the input.

The proof-construction of the Approximate Separation Oracle from Lemma 1
follows from a series of lemmas about bounding the size and number of the
linear segments that approximate a level set and comprise the separation oracle.
Since the level sets and their position with respect to each other is different for
the different objectives, the actual computations of the size and number of linear
segments differs. For lack of space we provide the proof for the probability tail
formulation (2), which is more subtle due to the budget threshold and the fact
the level sets are tangent to each other. The proofs for the remaining objectives
are analogous.

Consider the lower level sets Lλ = {z | f(z) ≤ λ} of the objective function
f(m, s) = t−m√

s
, where m, s ∈ R. Denote Lλ = {z | f(z) = λ}. We will prove

that any level set boundary can be approximated by a small number of linear
segments. The main work here involves deriving a condition for a linear segment
with endpoints on Lλ, to have objective function values within (1− ε) of λ.

Lemma 2. Consider the points (m1, s1), (m2, s2) ∈ Lλ with s1 > s2 > 0.
The segment connecting these two points is contained in the level set region
Lλ\Lλ(1−ε) whenever s2 ≥ (1 − ε)4s1, for every ε ∈ (0, 1).

Using Lemma 2, we show that any level set Lλ can be approximated within a
multiplicative factor of (1−ε) via a small number of segments. Let smin and smax

be a lower and upper bound respectively for the variance of the optimal solution.
For example, take smin to be the smallest positive coordinate of the variance
vector, and smax the variance of the feasible solution with smallest mean.

Lemma 3. The level set Lλ = {(m, s) ∈ R2 | t−m√
s

= λ} can be approximated

within a factor of (1− ε) by
⌈

1
4 log

(
smax
smin

)
/ log 1

1−ε

⌉
linear segments.

The above lemma yields the approximate separation oracle for the level set Lλ

and the feasible set F , by applying the black-box algorithm for the determinis-
tic problem to cost vectors aμ + τ , for all possible slopes (−a) of the segments
approximating the level set. This concludes the proof-construction for the sepa-
ration oracle in Lemma 1.
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3 Approximating the Reliable Versions of Hard
Combinatorial Problems

In this section, we show that a δ-approximate oracle to the deterministic prob-
lem (5), also called the linear oracle, can be used to construct efficient approx-
imation algorithms for the reliable stochastic models. As in the approximative
analysis for easy combinatorial problems, we first check whether the optimal
solution has zero variance and if not, proceed with the algorithm and analysis
below.

We can use the same approximation algorithm template that constructs a
separation oracle as in the previous section, but it turns out that a cruder al-
gorithm which simply tests a geometric progression of mean-variance tradeoffs
provides the same approximation guarantees. The main technical challenge in
the algorithm analysis is that even if we know the optimal mean-variance trade-
off to query from the black-box algorithm for the deterministic problem, it is not
obvious and not intuitive what approximation factor one can get for the reliable
objectives from the δ-approximation factor for the deterministic one.

We obtain a very strong result for the relatively simpler mean-risk objective—
we can get essentially the same approximation factor as the available one for the
deterministic problem:

Theorem 4. Suppose we have a δ-approximation oracle for solving the determin-
istic combinatorial problem (5). The mean-risk model (1) can be approximated to a
multiplicative factor of δ(1 + ε) by calling the oracle for the deterministic problem
polynomially many times in the input size and 1

ε .

We can also get the following approximation for the probability tail formulation
(2):

Theorem 5. Suppose we have a δ-approximation oracle for solving the deter-
ministic combinatorial problem (5). The probability tail model (2) has a√

1−
[

δ−(1−ε2/4)
(2+ε)ε/4

]
-approximation algorithm that calls the algorithm for the de-

terministic problem polynomially many times in 1
ε and the input size, assuming

the optimal solution to (2) satisfies μT x∗ ≤ (1− ε)t.

The high-level analysis for these approximation algorithms is the same; it differs
in the computation of the approximation factors. For lack of space, we only offer
an overview of the proof of Theorem 5; the remaining details for both theorems
are in the extended version.

We first prove several geometric lemmas that enable us to derive the approx-
imation factor. The first lemma is key for the transition from approximating a
linear objective (by the algorithm for the deterministic problem) to approximat-
ing the probability tail objective.

Lemma 4 (Geometric lemma). Consider two objective function values λ∗ >
λ and points (m∗, s∗) ∈ Lλ∗ , (m, s) ∈ Lλ with positive coordinates, such that
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the tangents to the points at the corresponding level sets are parallel. Then, the
y-intercepts b∗, b of the two tangent lines satisfy

b− b∗ = s∗
[
1−

( λ

λ∗
)2]

.

The next lemma shows that if we know the optimal linear objective to use with
the available δ-approximate algorithm for the deterministic problem (5), then
we can approximate the optimal solution well.

Lemma 5 (Optimal Linear Objective Lemma). Suppose we have a δ-
approximate linear oracle for optimizing over the feasible set F and suppose
that the optimal solution satisfies μTx∗ ≤ (1 − ε)t. If we can guess the slope of
the tangent to the corresponding level set at the optimal point x∗, then we can

find a
√

1− δ 2−ε
ε -approximate solution to the nonconvex problem (2).

In particular, setting ε =
√

δ gives a (1 −
√

δ)-approximate solution.

Next, we give a geometric lemma that is needed to analyze the approximation
factor we get when applying the linear oracle on an approximately optimal slope.

Lemma 6. Consider the level set Lλ and points (m∗, s∗) and (m, s) on it, at
which the tangents to Lλ have slopes −a and −a(1 + ξ) respectively. Let the y-
intercepts of the tangent line at (m, s) and the line parallel to it through (m∗, s∗)
be b1 and b respectively. Then b

b1
≤ 1

1−ξ2 .

We now show that we get a good approximation even when we use an approxi-
mately optimal linear objective with our linear oracle.

Lemma 7. Suppose that we use an approximately optimal linear objective with
a δ-approximate linear oracle for solving the probability tail model (2). In par-
ticular, suppose the linear objective (slope) that we use is within (1 + ξ) of the
slope of the tangent at the optimal solution. Then this will give a solution to

the probability tail model (2) with value at least
√

1−
[

δ
1−ξ2 − 1

]
2−ε

ε times the

optimal, provided the optimal solution satisfies μTx∗ ≤ (1− ε)t.

Consequently, we can approximate the optimal solution by applying the approx-
imate linear oracle on a small number of appropriately chosen linear functions
and picking the best resulting solution, as explained in the proof of Theorem 5
in the extended version.

When δ = 1, that is when we can solve the underlying linear problem ex-
actly in polynomial time, the above algorithm gives an approximation factor of√

1
1+ε/2 , or equivalently 1− ε′, where ε = 2[ 1

(1−ε′)2 − 1]. While this algorithm is
still an oracle-fully polynomial time approximation scheme, it gives a bi-criteria
approximation: it requires that there is a small gap between the mean of the
optimal solution and the budget t so it is weaker than our previous algorithm,
which had no such requirement. This is expected since, of course, this algorithm
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is cruder, simply taking a geometric progression of linear functions rather than
tailoring the black-box algorithm calls for the deterministic problem to the ob-
jective function value that it is searching for, as in the approximate separation
oracle that the FPTAS from the previous section is based on.

4 Conclusion

We have presented a framework for reliable stochastic combinatorial optimiza-
tion that includes mean-risk minimization and models involving the probability
tail of the stochastic cost of a solution. Our algorithms are independent of the
feasible set structure and use solutions for the underlying linear (deterministic)
problems as oracles for solving the corresponding stochastic models. As such,
they apply to very general combinatorial settings for which exact or approxi-
mate linear oracles are available.

Our primary motivation for this work was to design an approximation algo-
rithm for finding the most reliable route in a network with uncertain edge delays
(in the sense that the route maximizes the probability of arriving on time under
a given deadline), which consequently extended to the rich class of problems
and reliability models considered here. An implementation of our approximation
algorithm in the context of reliable routes reveals that they are also very prac-
tical: for example, they achieve 99.9%-accuracy with only up to 6 iterations of
an algorithm for the deterministic problem.

In future work, it would be interesting to extend our offline stochastic models
to online models, as has previously been done with offline linear to online linear
problems [20,19]. It would be also useful to consider adaptive stochastic reliability
models, building on the framework of multistage stochastic optimization.
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Abstract. We consider a situation where jobs arrive over time at a data
center, consisting of identical speed-scalable processors. For each job, the
scheduler knows how much income is lost as a function of how long the
job is delayed. The scheduler also knows the fixed cost of a unit of energy.
The online scheduler determines which jobs to run on which processors,
and at what speed to run the processors. The scheduler’s objective is to
maximize profit, which is the income obtained from jobs minus the energy
costs. We give a (1+ε)-speed O(1)-competitive algorithm, and show that
resource augmentation is necessary to achieve O(1)-competitiveness.

1 Introduction

As the price of server hardware has remained relatively stable, energy cost be-
comes one of the primary components in the total cost of ownership for computer
server systems in data centers [11]. In fact, according to Dr. Eric Schmidt, CEO
of Google:

“What matters most to the computer designers at Google is not speed,
but power, low power, because data centers can consume as much elec-
tricity as a city.” [24].

A commonly used power management technique is speed scaling, changing the
speed of the processor. As the dynamic power used by a processor is approxi-
mately the cube of the speed of the processor (this is called the cube-root rule
for CMOS based processors [12,25]), even a modest reduction in speed can have
a dramatic impact on power. Researchers at Google reported an approximately
twenty percent energy savings from implementing the following reactive strat-
egy: When the workload of a processor was light, the speed was scaled down,
and when most processors were at maximum speed, some less time critical tasks
were suspended, to be restarted when the system was not so heavily loaded [19].
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Scheduling problems related to speed scaling and power management natu-
rally have competing dual objectives: some quality of service (QoS) objective,
and some power related objective. By now there are many tens of papers on speed
scaling in the algorithmic literature (and many more in the general computer
science literature). Roughly speaking, all of the formal problems considered in
the algorithmic speed scaling literature fall into one of two categories. The first
type of problem turns one of the QoS or power objectives into a constraint,
and optimizes the other objective. An example is minimizing the total flow time
subject to the constraint that the energy used doesn’t exceed an energy bound
representing the energy stored in a battery. The second type of problem opti-
mizes the sum of the QoS and power objectives. An example of this type of
problem is minimizing the sum of energy used and total flow time.

In this paper, we introduce a new class of speed scaling problems, which makes
the monetary cost of energy more explicit, and we provide algorithmic results
for a particular problem in this class. We assume that the scheduler is aware of
the income obtainable from finishing particular jobs by particular times, and is
aware of the cost of energy. We then naturally assume that the scheduler’s goal
is to maximize profit, which is the aggregate income minus the aggregate energy
cost. One can easily formulate many natural problems within this framework,
depending on how one formalizes income and energy costs (and also, of course,
depending on the processor and job environments). Here we consider a rather
general model for the income of jobs: We assume that there is an non-negative
non-increasing income function Ii(t) associated with each job i that specifies the
income that is obtained if the job is finished at time t. And we consider the most
natural and simple model for energy costs: We assume a fixed cost per unit of
energy.

We now explain the job and machine environments that we consider in this
paper. Jobs arrive over time at the data center consisting of m identical speed-
scalable processors. There is an arbitrary power function P (s) that specifies
the power when a processor is run at speed s. Job i arrives at time ri, with
known work/size wi, and known income function Ii(t). The online scheduler
must decide, at each time, which job to run on each processor, and at what
speed to run each processor. We allow preemption and migration, that is, jobs
can be suspended at any time, and restarted from the point of suspension at
a later time, possibly on a different machine. Recall that our objective is to
maximize the income from the scheduled jobs minus the total energy costs.

The standard measure of goodness for an online algorithm is competitiveness,
which in this setting is, roughly speaking, the worst-case, over all possible inputs,
of the relative error between the optimal profit and the profit achieved by the
online algorithm. One generally seeks algorithms that are competitive, that is,
where this relative error is bounded. The motivation for seeking competitive
algorithms is that if the online algorithm achieves very little profit, then it must
be because great profit was not achievable, and not because the algorithm was
at fault.
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1.1 Our Results

The most obvious first concern that arises when seeking a competitive algorithm
for this problem is that one can imagine a situation where the online algorithm
does not achieve a positive profit, even though a positive profit is achievable,
immediately killing any hope of a competitive algorithm. We start by observing,
in Section 3 that this situation cannot occur, that is, that there is a simple online
algorithm that achieves a positive profit if it is possible to do so. Unfortunately,
we show that, in some sense, this result is the best positive result possible for
the competitive ratio by showing that the competitive ratio can not be bounded
by any function of the number of jobs. The intuition behind this lower bound
is that the online algorithm can be forced to run, and then later abandon, a
high-cost low-profit job, thus wasting a lot of energy and money on this job.

Reflecting on this lower bound instance, one notices that if the processors
used by the online algorithm were only slightly more energy efficient, then the
online algorithm could be competitive on this instance. We show in Section 4
that this phenomenon holds for all instances. More specifically, we assume that
the online algorithm has (1+ε)-speed augmentation, which in this setting means
that if a processor can run at power P and speed s, then the online algorithm
can run the processor at power P and speed (1 + ε)s. We then give an online
scheduling algorithm that we show is O( 1

ε3 )-competitive in terms of profit. Using
standard terminology [20,26,28,27], one could say that this algorithm is a scalable
scheduling algorithm, that is, it is (1 + ε)-speed O(1)-competitive. Intuitively,
scalable algorithms can handle almost the same load as optimal. For elaboration
see [28,27].

We now give an overview of the development of our scalable algorithm. The
first key idea is that of a critical speed function ŝi(t), which, for job i, specifies
the fastest speed that the adversary can run job i and still obtain a non-negative
profit if the job completes at time t. When a job i is released, the online algorithm
determines whether to admit the job, and if the job is admitted, determines
a deadline di for the job. Whenever an admitted job i is run by the online
algorithm, it will be run at speed slightly faster than the critical speed for its
deadline, ŝi(di). Fixing the speed for a job defines a density for the job, which is
roughly the profit that will be obtained by the job if it is completed at its deadline
divided by the time that the job must be run to be completed. Intuitively, the
online algorithm always picks the highest density jobs to run. Also intuitively,
when a job is released, the online algorithm sets the deadline to be the time
where it will obtain maximum profit from this job, assuming that in the future
no more jobs arrive and that the highest density jobs will be run at their critical
speeds.

To show that the online algorithm is scalable, we show that the profit obtained
by the online algorithm is a constant fraction of the profit of the jobs that the
online algorithms admits, and that the profit of these admitted jobs is a constant
fraction of the optimal profit. In order to accomplish the latter goal, we show that
there is a near optimal schedule OPT ′, that, with modest speed augmentation,
is O(1)-competitive in terms of profit with the optimal schedule, and OPT ′ has
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the property that it runs each job i at speed approximately equal to the critical
speed of the job for the completion time ŝi(CO

i ). of that job in the optimal
schedule OPT . Thus OPT ′ is still nearly optimal, but is structurally similar to
the online schedule in that jobs are run at their critical speeds. A priori, it is not
clear that such a schedule OPT ′ exists since a job i may be run at very different
speeds in OPT ′ and in the online schedule. In other words, ŝi(CO

i ) and ŝi(di)
may be very different, since there is no reason that the completion time in the
optimal schedule, CO

i , and the deadline set by the online algorithm, di, need be
similar.

Note that our algorithm can be converted into one that constructs non-
migratory schedules using the results in [18].

The income model in our paper was considered in [7], a scalable algorithm for
maximizing income on a single fixed speed processor was given. Our algorithm
and analysis necessarily generalize the results in [7] as we have multiple proces-
sors instead of a single processor, our processors are speed scalable instead of
fixed speed, and we have profit as the objective instead of income. The fact that
the processors are speed scalable creates complications because the algorithm
and analysis in [7] use the fact that the processing time for a job is fixed. The
objective of profit also creates complications because the algorithm and analysis
in [7] use the fact that income is monotonic in time, which isn’t true for profit.

1.2 Related Results

The first theoretical study of speed scaling algorithms was in the seminal paper
[31], which introduced the deadline feasibility framework, and considered mini-
mizing energy usage on a single processor. This problem is the most investigated
speed scaling problem in the literature [31,5,14,4,23,22,2,9]. In [31], the authors
showed that the optimal offline schedule can be efficiently computed by a greedy
algorithm. Several online algorithms for this problem have been proposed and
analyzed, including AVR [31,5], OA [31,4], BKP [4], and qOA[9]. The competi-
tive ratios of all of these algorithms grow in an unbounded manner as the power
function becomes steeper, but the competitive ratio is O(1) if the power function
is bounded by a fixed polynomial. These results have been extended in several
ways including to parallel processors[2], analyzing BKP with respect to temper-
ature minimization[4], a variant in which one minimizes the recharge rate from
a solar cell[3], and scalable algorithms for throughput optimization on a single
speed scalable processor with a polynomial power function and an upper bound
on the maximum speed[15,6].

Another class of problems considers flow time and energy. [29] give an offline
algorithm to minimize flow time subject to an energy budget for a single pro-
cessor. For a single processor [1] gives a competitive online algorithm for unit
work jobs for the objective of total flow plus energy assuming the power func-
tion is a polynomial. Their results were extended to arbitrary sized and arbitrary
weighted jobs in [10], and to arbitrary power functions in [8]. An extension to
nonclairvoyant algorithms on a uniprocessor is given in [16]. An extension to
nonclairvoyant algorithms on a multiprocessor is given in [17].
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There have been several papers in the literature on speed scaling with the
makespan objective [13,30].

The scalable algorithm for income in [7] generalizes a scalable algorithm given
in [20] for the special case of maximizing the profit of jobs completed before their
deadline (there are many papers on this problem in the literature).

2 Definitions

Jobs arrive over time at the data center. Job i (also referred to as job i)arrives at
time ri, with known work/size wi, and known income function Ii(t). The function
Ii(t), defined for all t > 0, gives the income earned if job i is completed at time
t. We assume that the income function Ii(t) is non-negative and non-increasing.
We assume that the income goes to zero at the completion time approaches
infinity, that is, limt→∞ Ii(t) = 0. And we assume that if a job doesn’t complete,
the income is zero.

We allow preemption, that is, jobs can be suspended at any time, and restarted
at a later time, possibly on a different machine. However a schedule can run a
job on at most one machine at a time. To formally define a schedule, one needs
to describe, for each time on each machine, which job is run on that machine
and the speed at which it is run. Due to the convexity of the power function,
we need only consider schedules where each job is only run at a fixed speed.
With this in mind, a schedule can be given by describing, for each job, the speed
at which the job runs, and, for each time, which (if any) machine it is running
on. A job i completes at the first time Ci where the speed that the job is run,
integrated over all the times the that job is run, equals the work wi. If a job
does not complete, Ci = ∞.

We are also given an arbitrary power function P (s) that, for any non-negative
s, specifies the power used while running at speed s on each machine. As observed
in [8], one can without loss of generality assume that P is convex and increasing.
The energy used is the sum over the processors, of the integral over time of
the power of that machine. The income associated with a job is Ii(Ci). If a job
does not complete, the income is zero. One can also compute the energy cost
associated with running a job i at speed si as Ei = P (si)wi/si, since it runs
for wi/si units of time, at power P (si). The profit associated with job i is pi =
Ii(Ci)−Ei. Our objective is the total profit

∑
i pi. We will sometimes superscript

these quantities by A for the online algorithm, or by O for the optimal/adversary.
An online algorithm A is c-competitive if for all inputs the total profit achieved

by A is at least 1
c of the maximum achievable profit. An online algorithm A is

(1 + ε)-speed c-competitive if for all inputs the total profit achieved by A with
power function P ( s

1+ε ) is at least 1
c of the maximum achievable profit. More

precisely, to have power function P ( s
1+ε ) means that if the adversary can run at

power P and speed s, then the online algorithm can run at power P and speed
(1 + ε)s.

We ignore any issues about the time to access and solve equations involving the
income and power functions. Presumably in most applications these functions
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will be compactly described, and sufficiently simple, that manipulating these
functions, as required by our algorithms, should not be a significant issue.

3 No Resource Augmentation

Our first results concern the situation where we do not allow resource augmenta-
tion, that is the adversary and the on-line algorithm both have the same power
function. We first note that it is always possible for an on-line algorithm to ob-
tain positive profit if the adversary can also receive positive profit. In contrast,
we then show that the competitive ratio can be arbitrarily large.

Lemma 1. At the release time ri for job i, an online algorithm can compute
whether it is possible to achieve positive profit for job i.

Proof. Assume job i is completed at time t. To minimize energy, job i should be
run at constant speed wi/(t − ri) during the time period [ri, t]. Job i will then
have energy cost Ei(t) = P (s(t))wi/(t − ri). So the online algorithm need only
determine whether there exists t such that Ii(t)− Ei(t) > 0.

Lemma 2. If the adversary can obtain a positive profit, then so can the online
algorithm.

Proof. For each job i, when it arrives, the online algorithm computes whether it
is possible to make a positive profit by running the job, using Lemma 1. For the
first such job, the online algorithm runs the job and obtains a positive profit. If
no such job arrives, then the adversary cannot obtain positive profit either.

We now show that it is possible that the competitive ratio can be arbitrary large.

Lemma 3. The competitive ratio of any deterministic algorithm can not be
bounded by any function of n, even if jobs have unit work.

Proof. We consider a two job instance and a power function for which P (1) = 1
and P (1/ε) = L/ε, where ε > 0 is a small number and L > 1. (For intuition,
think of L as large.) So each processor has only two possible speeds, 1 and 1/ε.
Job 1 has r1 = 0, w1 = 1 and I1(t) = 1+ ε if t ≤ 1 and I1(t) = 0 for t > 1. When
this job is released at time 0, by the reasoning of Lemma 2, the algorithm has
to run this job immediately, or else the algorithm will have non-positive profit
while the adversary could run the job for positive profit. Therefore, we assume
that the algorithm runs job 1 at speed 1 (any other speed would incur a loss).

Job 2 has r2 = 1 − ε, w2 = 1, and I2(t) = L + 1 − ε if t ≤ 1 and I2(t) = 0
for t > 1. When job 2 is released, the algorithm can either run job 2 or not. If
the algorithm does not switch to job 2 and finishes job 1, then it obtains p1 =
(1+ε)−P (1)·1 = ε. If it switches, it obtains profit p2 = (L+1−ε)−P (1/ε)ε = 1−ε
from job 2 , but it also has to pay the energy cost of running job 1 which is 1− ε.
Thus, if it switches it actually obtains no profit. Therefore we can assume the
algorithm does not switch and obtains a net profit of ε from running job 1. The
adversary on the other hand, only runs job 2 and obtains a profit of 1− ε. The
competitive ratio is therefore at least (1 − ε)/ε and by making ε small, we can
make this ratio as large as we like.
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4 The Online Algorithm and Its Analysis

Given the results in the previous section, we consider resource augmentation in
the remainder of this paper. Our main result is the following theorem:

Theorem 1. For any ε > 0, there is an online algorithm A that is (1+ ε)-speed
O( 1

ε3 )-competitive for profit maximization.

The purpose of this section is to prove Theorem 1.
In subsection 4.1 we define the concept of critical speed function, which is

required for both the definition and the analysis of our online algorithm. In
subsection 4.2 we describe our online algorithm. In subsection 4.3 we prove the
existence of a near-optimal schedule with nice structural properties that will
facilitate the comparison with the online schedule. Finally, in subsection 4.4 we
compare the online schedule to this structurally-nice near-optimal schedule.

4.1 Critical Speed Function

If i is completed at time t, then the minimum speed at job i is run is smin
i (t) =

wi/(t− ri). Recall that we can assume without loss of generality that each job
runs at a fixed speed. Thus in order for the adversary to obtain positive profit
from job i with power function P (s), when completing the job at time t, it must
be the case that:

Ii(t)− P (smin
i (t))

wi

smin
i (t)

> 0. (1)

Alternatively, a feasible schedule complete job i at time t by running job i at a
faster speed than smin

i (t), and then no running job i for some times during the
time interval [ri, t]. As the speed that job i is run increases (with the completion
time fixed at t), the energy cost increases. Thus there is a maximum speed at
which job i can run, and complete at time t, while still having non-negative
profit. We call this speed the critical speed function ŝi(t). For time t, ŝi(t) is by
the unique solution to the equation:

Ii(t)− P (ŝi(t))
wi

ŝi(t)
= 0. (2)

Dividing (2) through by 1 + ε and regrouping terms, we can rewrite (2) as

Ii(t)− P (ŝi(t))
wi

(1 + ε)ŝi(t)
=

ε

1 + ε
Ii(t) (3)

Lemma 4. In any schedule in which non-negative profit is earned from job i with
power function P (s), the speed si that job i runs is in the range [smin

i (Ci), ŝi(Ci)].

Proof. Immediate from equations 1 and 2.
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4.2 The Description of the Online Algorithm

We break the description of the online algorithm into four parts: invariants that
are maintained throughout the course of the algorithm, the policy for setting
deadlines and assigning jobs, the policy for job selection, and the speed scaling
policy.

At a high level, when a job arrives, we use the deadline setting and job as-
signment policy to set a deadline and assign the job to various time intervals on
machines. This assignment is not a schedule, as we may assign multiple jobs to
the same machine at the same time. We also set a speed via the speed scaling
policy. We then use the job selection policy to take some jobs from the intervals
and machines on which they are assigned and actually run them on machines.

Throughout this section, we use δ = ε/2.

Invariants: The online algorithm maintains a pool Q of admitted jobs. A job
i remains in Q until it is completed or its deadline passes. Each job i in Q has
several associated attributes:

– A deadline di assigned to job i when it was released.
– The critical speed ŝA

i = ŝA
i (di) derived from the deadline di, and defined by

(2). The online algorithm will run job i at speed (1 + 2δ)ŝA
i .

– A collection of time intervals J(i) = {[t1, t′1], [t2, t′2], . . . [th, t′h]}, where ri ≤
t1 ≤ t′1 ≤ t2 ≤ . . . ≤ th ≤ t′h = di. This collection J(i) is fixed when job i is
released (but depends on previously scheduled jobs). The total length of the
time intervals in J(i) will be (1+δ)wi

(1+2δ)ŝA
i

.
– A processor mi,k associated with job i and each time interval [tk, t′k] ∈ J(i)

that was fixed at time ri. Intuitively, at the time that job i was released, the
online algorithm is tentatively planning on running job i on processor mi,k

during the time period [tk, t′k]. We say that job i is assigned to run on mk

during times [tk, t′k].

Deadline Setting and Job Assignment Policy: Consider a job i that is
released at time ri. Setting the deadline at some di will fix a critical speed
ŝA

i = ŝi(di) for job i, a job profit pA
i = Ii(di) − P (ŝA

i )wi

ŝA
i (1+2δ) , and an online density

uA
i = pA

i ŝA
i /wi. The online algorithm considers the possible choices for deadlines

by nonincreasing order of the resulting profit pA
i . So assume that the online

algorithm is considering setting the deadline di to be a time t. Let c = 1 + 2
δ .

Let X(uA
i

c ) be the set of jobs in Q with density at least uA
i

c . Consider the time

interval [ri, t] and the associated intervals of jobs in X(uA
i

c ). Let A be the maximal
subintervals of [ri, t] of times such that for each [a, a′] ∈ A, there is a processor
mk for which no job in X(uA

i

c ) is assigned to run on mk during any time in
[a, a′]. We now consider two cases. In the first case assume that the total length
of intervals in A is at least (1+δ)wi

(1+2δ)ŝA
i

. The deadline di is then set to be the time

such that the measure of the portion A∗ of A earlier than di is exactly (1+δ)wi

(1+2δ)ŝA
i

.
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J(i) is set to be A∗, and the processor associated with each interval in J(i) is
the processor mk in the definition of the interval in A. If the job profit for the
adversary with completion time COPT

i = di, Ii(di) − P (ŝA
i )wi/ŝA

i , is positive,
then job i is admitted to the pool Q, In the second case, when the total length
of intervals in A is less than (1+δ)wi

(1+2δ)ŝA
i

, the online algorithm rejects this candidate
deadline, and the next most profitable time t is considered for the deadline. A
job is not admitted if there is no time t satisfying the stated conditions.

Speed Scaling Policy: Every job is run at its critical speed for its set deadline.

Job Selection Policy: At any time t, on any processor mk, run the job
i,assigned to mk at time t, of maximum density.

4.3 Construction of a Structurally-Nice Near-Optimal Schedule
OPT ′

Using the results from [21], given an optimal schedule on m processors, one can
create a non-migratory schedule on 6m processors that has objective value at
least as large. A schedule is non-migratory if no job ever runs on more than one
processor. Therefore, by taking the m processors with the largest total net profit,
one can assume that the optimal schedule is non-migratory (modulo a factor of
6 in the profit objective). Thus for the rest of this subsection, we assume that
the optimal schedule is non-migratory.

In order to facilitate the comparison of the online schedule to the optimal
schedule, we assume that each job has a separate power function P ′

i (s) that is
slightly smaller than P (s) for speeds less than the critical speed ŝi(CO

i ). More
formally,

P ′
i (s) =

{
P (s/(1 + ε)) if s ∈ [smin

i (Ci), ŝi(CO
i )]

P (s) otherwise . (4)

Notice that P ′
i (s) ≤ P (s), so clearly the optimal schedule with respect to power

function P ′ is at least as profitable as the optimal with respect to the original
power function. We then show that with these modified per-job power functions,
there is a near optimal schedule where each job runs at near this critical speed.

Lemma 5. There is a schedule OPT ′ such that in OPT ′ each job i that runs
does so at speed (1 + ε)ŝi(CO

i ), and the total profit obtained using the modified
power functions is at least

(
ε

1+ε

)
times the profit that OPT achieves using the

power function P .

Proof. For notation simplicity let ŝi = ŝi(CO
i ), and smin

i = smin
i (CO

i ). We modify
the optimal schedule so that each job i is run at speed ŝi, and the profit pO

i

decreases by at most a factor of ε
1+ε . In OPT , by the definition of ŝi in equation

2, we know that each job that runs is already running at speed at most ŝi.
Combined with equation 1, we see that i is running at a speed si satisfying
smin

i ≤ si ≤ ŝi. Thus, if we change the speed to ŝi(1 + ε), we are speeding the
job up, which implies that the schedule will certainly be feasible, i.e. each job
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still completes by its completion time CO
i . Now, the net profit associated with

job i is at least

Ii(CO
i )− P ′

i (ŝi(1 + ε))
wi

ŝi(1 + ε)
= Ii(CO

i )− P (ŝi)
wi

ŝi(1 + ε)

=
ε

1 + ε
Ii(CO

i )

≥
(

ε

1 + ε

)
pO

i .

The first equality follows from the definition of P ′, the second equality follows
from (3), and the final inequality follows because the income must be greater
than the profit.

4.4 Analysis of the Online Algorithm

In this section we compare the online algorithm with (1+ε)2 speed augmentation
to OPT ′ in terms of profit. To simplify the analysis, we will generously assume
that the power function for OPT ′ is P (s/(1 + ε)), and that the power function
for the online algorithm is P (s/(1 + ε)2). In our analysis, it will be convenient
to scale work or speed so that the power functions for OPT ′ and the online
algorithm are P (s) and P (s/(1 + ε)) respectively. We also generously assume
that the online algorithm only gains income Ii(di) from finishing a job i before
its deadline, when in fact its real income is Ii(CA

i ). Superscripting or subscripting
by the variable O means that we are referring to the schedule OPT ′.

We define the notion of adversarial density of a job i as uO
i = pO

i sO
i /wi, where

pO
i is the profit obtained from job i in the schedule OPT ′. The density of the

online schedule at time t on a processor mk is the density of the highest density
admitted job assigned to processor mk at that time t. The density of the online
schedule at time t is the minimum density of any processor at that time. Let
C be the set of jobs completed by the online algorithm, and let R be the set
admitted jobs. For any set X of jobs, let ||X ||A be the total profit of jobs in X if
each job in X was run at its critical speed and finished at its deadline. Similarly,
let ||X ||O be the total profit of jobs in X if each job in X was run at its critical
speed and finished at the completion time of the job in OPT ′.

Observation 2. At any time t, let i and j be two admitted jobs where there is
a time t and a processor mk such that both jobs are assigned to mk at time t.
Then, either uA

i > c · uA
j or uA

j > c · uA
i .

Observation 3. Consider any job i and a time t that the deadline setting policy
of the online algorithm considered, but decided not to use as the deadline. Let v
be what the density for job i would have been, if di were set to t. Let L be the
amount of time during [ri, t] such that the density of the online schedule at that
time is at least v/c. Then, L ≥ δ

1+2δ (t− ri).

Lemma 6. For C and R as defined above, ||C||A ≥ (1− 1
δ(c−1) )||R||A, or equiv-

alently, ||R||A ≤ δ(c−1)
δ(c−1)−1 ||C||A.
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Proof. We use a charging scheme to prove the lemma. We initially give pA
i units

of credit to each job i ∈ C.The jobs in R−C are initially given 0 units of credit.
We will describe a method to transfer the credits such that at the end, each job
i ∈ R has credit at least (1 − 1

δ(c−1))p
A
i , which completes the proof.

The method to transfer credit is as follows. At any time t, and any processor
mk, let S be the set of jobs assigned to mk at time t. Let job i be the highest
density job in S. Then, for each other job j ∈ S, at time t job i transfers credit
to j at a rate of (1+2δ

δ )uA
j units of credit per unit time.

We first show that every job j ∈ R receives credit at least pA
j either initially

or transferred from other jobs. This clearly holds for jobs in C. For any job
j ∈ R − C, as job j could not be completed during J(j), it must have received
credit for at least δ

1+2δ ·
wj

sA
j

units of time. Thus, the total credit obtained is at
least (

δ

1 + 2δ

)(
wj

sA
j

)(
1 + 2δ

δ

)
uA

j =
wju

A
j

sA
j

= pA
j

We now show that the credit transferred out of each job i is at most 1
δ(c−1)p

A
i .

When a job i is the highest density job in S, by observation 2 the remaining
jobs in S have geometrically decreasing densities and hence their total density
is at most 1

c−1uA
i . Therefore, the rate of credit transferring out of i is at most

( uA
i

c−1 )(1+2δ
δ ). Since job i is the highest density job for at most wi

ŝA
i (1+2δ) units of

time, the total credit transferred out of job i is at most(
uA

i

c− 1

)(
1 + 2δ

δ

)(
wi

ŝA
i (1 + 2δ)

)
=

1
δ(c− 1)

pA
i .

Next, we upper bound the profit obtained by the adversary. Let B be the set
of jobs completed by the adversary. Let B2 be the set of jobs in B for which
the adversary’s completion time is a deadline rejected by the online algorithm.
Let B1 = B \ B2. For any u > 0, let T (u) be the total length of time that the
adversary is running a job in B2 with adversarial density at least u. Let L(u

c )
be the total length of time such that the density of the online schedule at that
time is at least u

c .

Lemma 7. For every u > 0, T (u) ≤ 2(1+2δ)
δ L(u

c ).

Proof. For any job i ∈ B2, let the span of i be the time interval [ri, C
O
i ], where

CO
i is the completion time for the adversary. For any u > 0, let B2(u) be the set

of jobs in B2 with density at least u. Consider the union of spans of all jobs in
B2(u). This union may consist of a number of disjoint time intervals. Let � be
its total length. Clearly, T (u) ≤ �.

Let M ⊆ B2 be a minimal cardinality subset of B2 such that the union of
spans of jobs in M equals that of B2. Note that the minimality property implies
no three jobs in M have their spans overlapping at a common time. This implies
that we can further partition M into M1 and M2 such that within M1 (resp.
M2), any two jobs have disjoint spans. Now, either M1 or M2 has total span
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of length at least half of that of M . Without loss of generality, suppose that it
is M1. Note that each interval in M1 corresponds to a span of some job in B2.
Applying Observation 3 to each such interval, it follows that the density of the
online schedule is at least u

c for at least δ
1+2δ fraction of time during the intervals

of M1. Thus, L(u
c ) ≥ δ

2(1+2δ) · T (u).

Lemma 8. ||B||O ≤ (1 + 2(1+δ)c
δ )||R||A.

Proof. Let {φ1, φ2, . . . , φm} be the set of the adversarial densities of jobs in B2,
where φi > φi+1 for i = 1, . . . , m − 1. For i = 1, . . . , m, let �i be the sum
over all processors of the length of time that the adversary is running jobs of
density φi on that processor. Similarly, for i = 1, . . . , m, let αi be the sum over
all processors of the length of time that the online schedule on that processor
has density in the range [φi/c, φi−1/c). Let qi be the total profit for jobs whose
density for the online algorithm is in the range of [φi/c, φi−1/c). Then applying
Lemma 7

||B2||O ≤
2(1 + 2δ)

δ

m∑
i=1

αiφi ≤
2(1 + δ)c

δ

m∑
i=1

qi ≤
2(1 + δ)c

δ
||R||A

The proof then follows by noting that ||B||O = ||B1||O + ||B2||O ≤ ||R||A +
||B2||O.

That the online algorithm is (1 + ε)-speed, O( 1
ε3 )-competitive now follows im-

mediately from Lemma 5, Lemma 6 and Lemma 8.

5 Conclusions

We introduced a new type of power management problem into the algorithmic
literature, and showed that there is a scalable algorithm for the problem of
maximizing profit when you have to buy your energy. It would be interesting to
investigate other problems within this general framework.
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 409–420. Springer, Heidelberg (2008)

7. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date scheduling.
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Abstract. In this work, we study the strength of the Chvátal-Gomory
cut generating procedure for several hard optimization problems. For
hypergraph matching on k-uniform hypergraphs, we show that using
Chvátal-Gomory cuts of low rank can reduce the integrality gap signifi-
cantly even though Sherali-Adams relaxation has a large gap even after
linear number of rounds. On the other hand, we show that for other prob-
lems such as k-CSP, unique label cover, maximum cut, and vertex cover,
the integrality gap remains large even after adding all Chvátal-Gomory
cuts of large rank.

1 Introduction

Linear Programming is an enormously useful tool in the study of combinatorial
optimization problems, giving exact algorithms for several problems in P, and
approximation algorithms for several NP-hard problems. Typically, one writes an
integer linear program for the problem at hand, and solves its linear programming
relaxation. For a large number of problems of interest, such a relaxation has an
optimum value that is within a small multiplicative factor of the optimal. A
more powerful tool that sometimes gives better polynomial time approximations
is semidefinite programming. In both cases, the approximation factor one gets
depends on the integer linear program (or the vector program) that one starts
with. For many problems, a natural linear program suggests itself and can be
shown to have the best possible gap (e.g. bipartite matching, set cover). In many
other cases (e.g. graph matching, sparsest cut), the “natural” linear program for
the problem does not suffice and one needs to add carefully designed constraints
that force the linear program to reveal information about optimal solutions.

Cut generating procedures are algorithms for adding constraints to the linear
relaxation with the property that every integer solution in the polytope satisfies
the new constraints. Starting with a polytope P , such a procedure gives a new
polytope that is closer to PI , the convex hull of integer points in P . Thus they
provide a generic way to strengthen the linear relaxation of the integer program,
without changing the set of integer feasible solutions. They can thus be thought
of as an alternative to the addition of the carefully designed constraints that have
been used. Indeed for several problems, the ingeniously added constraints can
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in hindsight be shown to be also generated by these cut generating procedures.
A number of such procedures have been proposed including Chvátal-Gomory
(CG) [11,22,23], Lovász-Schrijver (LS, LS+) [31], Sherali-Adams (SA) [37] and
Lassere [29].

For a large class of combinatorial optimization problems, the best known
approximation algorithms are matched by hardness of approximation results,
ruling out the possibility of better approximations based on smarter LP relax-
ations (or on other techniques) unless P=NP. Certain interesting problems such
as Vertex Cover, Max Cut, Sparsest Cut and Unique Label cover have so far re-
sisted attempts to prove matching upper and lower bounds. For these problems,
it is therefore natural and interesting to ask if one can design stronger LP (or
SDP) relaxations. A negative answer would rule out a large class of algorithmic
approaches, suggesting that computing better approximations may in fact be
NP-hard. Arora, Lovász and Bollobas [2] initiated this direction of research, and
showed that starting with a natural linear program for vertex cover, and itera-
tively applying the LS cut generating procedure does not reduce the integrality
gap below (2−ε), even after a linear number of rounds. Similar results have been
shown for other problems, and for LS+, SA and Lassere, which strengthen LS.

Somewhat disconcertingly however, such gap results can also be shown for
some polynomial-time solvable problems. This is not surprising since despite
its generality, linear programming does not capture all algorithmic tools at our
disposal, and other tools such as dynamic programming and local search are
often useful in cases where natural convex relaxations fail. However, such gap
results exist even for problems where good LP relaxations exist. Indeed if one
starts with the natural LP for maximum matching, it can be shown that the gap
is at least (1 + ε) even after 1

ε rounds of SA [32], even though the problem is
polynomial time solvable using an (exponentially sized) LP relaxation. Starker
gaps exist for hypergraph matching on k-uniform hypergraphs, where the gap
stays above (k− 2) even after a linear number of rounds of SA starting with the
natural LP. On the other hand, when k is a constant, there is a polynomial sized
linear program that has gap at most k+1

2 [9]. Thus even for simple combinatorial
problems, SA can fail to capture the power of LP based algorithms.

The gap results from these lift-and-project schemes can be interpreted in
several different ways. The guide-the-algorithmicist viewpoint looks at such result
as a strong integrality gap for a family of linear programs. Thus an algorithm
designer considering a new strengthened linear program could check whether or
not the constraints in her LP are quickly generated by this procedure, and if so,
she would conclude that the new LP will not help in the worst case, and thus may
be guided towards other constraints to add. With this viewpoint, it is interesting
to try to strengthen the integrality gaps to other cut generating procedures that
may capture large families of efficient linear programs (even though the cut
generating procedure considered in its full generality may not be efficient). A
somewhat more controversial viewpoint is the limits-of-techniques viewpoint,
where one interprets a gap result as suggesting that ”LP based approaches” will
not be able to give good approximation algorithms. However the above examples
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of matching and hypergraph matching make such a viewpoint less appealing.
Finally, one can view these results as structural results which prove the limits of
a certain proof system (e.g. SA).

In this work we study Chvátal-Gomory rounding, a popular cut generating
procedure that is often used in practice. Buresh-Oppenheim et al. [7] previously
showed that optimal integrality gaps survive a linear number of rounds of CG
for MAX kSAT and MAX kXORSAT, for k ≥ 5 (see also [3]). For problems
such as unique label cover, where known hardness results do not match the best
known upper bounds, most of the attention has been diverted to LS and other
procedures, and little is known about CG cuts. It is particularly interesting to
look at this procedure since it does in fact handle the (graph) matching example
above: one round of Chvátal-Gomory suffices to make the matching polytope
integral! Further as we show, the polynomial-sized linear program for hypergraph
matching from [9] is also captured by a few rounds of C-G. Thus C-G does in
fact capture useful and efficient linear programs that SA fails to capture, making
it interesting to study C-G gaps from the guide-the-algorithmicist viewpoint.
Moreover, C-G is an interesting proof system in its own right.

Chvátal-Gomory rounding is defined as follows. Let P be a polyhedron in Rn,
define

P ′ = {x ∈ P : aT x ≥ b whenever a ∈ Zn, b ∈ Z, and min{aT x : x ∈ P} > b−1}

to be the polyhedron obtained after doing a single round of Chvátal-Gomory
rounding. Trivially P ∩ Zn ⊆ P ′, define P (0) = P and recursively,

P (j) = (P (j−1))′

for all positive integers j. Also let PI denote the convex hull of P ∩Zn. We clearly
have PI ⊆ P (j) ⊆ P (j−1) for each j ≥ 1. We call P (j) to be the polyhedron
obtained after j rounds of CG rounding.

1.1 Our Contributions and Results

In this work, we study the power of Chvátal-Gomory rounding to reduce inte-
grality gaps for various combinatorial optimization problems as compared to lift
and project procedures like Sherali-Adams.

Our first result shows an integrality gap separation between C-G and SA
which show that C-G cuts can be much stronger than SA hierarchy.

Theorem 1. For the maximum matching problem in k-uniform hypergraphs,
O(k2) rounds of CG suffice to reduce the integrality gap to k+1

2 .

We contrast the above theorem with result from Chan and Lau [9] that the
integrality gap remains at least k − 2 after Ω(n) rounds of the SA hierarchy.
Thus C-G can generate significantly stronger linear programs than SA can.

Can C-G rounding then lead to better LP relaxations for other problems? Our
next set of results show that CG rounding performs as poorly as the Sherali-
Adams hierarchy on a number of problems. We show integrality gaps for the
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max-cut problem, Unique Label Cover problem, k-CSPq and the vertex cover
problem. We prove the following theorems.

Theorem 2. For any ε > 0, there exists a γ > 0 such that integrality gap of
linear programming relaxation for the max-cut problem obtained using all cuts
of CG rank at most r is at least 2− ε where r = nγ .

Theorem 3. For any ε > 0, and integer q, there exists a γ > 0 such that inte-
grality gap of linear programming relaxation for the unique label cover problem
on q labels, using all cuts of CG rank at most r is at least q − ε where r = nγ.

Theorem 4. For any ε > 0, integer k and prime q, there exists a γ > 0 such
that integrality gap of linear programming relaxation for the k-CSPq problem
using all cuts of CG rank at most r is at least qk

kq(q−1) − ε where r = γn.

We note that the integrality gaps above resemble closely the bounds obtained
for the Sherali-Adams hierarchy for the corresponding problems [10,39]. Inter-
estingly, the proofs of all the above results follow a similar outline and use the
integrality gap instances for the Sherali-Adams hierarchy as a starting point.
Using our general technique we also show the following integrality gap for the
vertex cover problem.

Theorem 5. For any ε > 0, there exists a γ > 0 such that integrality gap of
relaxation for the vertex cover problem obtained after r rounds of C-G rounding
is at least 2− ε where r = nγ.

We believe that our positive result gives strong motivation for studying C-G cuts
as an algorithmic technique1. The resulting hopes are somewhat dashed by our
negative results. In the process we enlarge the class of linear programs that are
provably ineffectual for the problems studied. Moreover, our results enhance our
understanding of C-G as a proof system.

1.2 Related Work

Gomory [22,23] introduced the Chvátal-Gomory rounding and proved that for
every bounded polyhedron P , there exists a non-negative integer j such that
P (j) = PI . Chvátal [11] gave an alternate proof of the result. The smallest such
integer j is called the Chvátal rank of P . There has been a significant work on
both lower and upper bounding Chvátal rank of a polyhedron. Although the
Chvátal rank can, in general, be very large, Bockmayr et al. [6] proved that it is
bounded by O(n3 log n) when the polytope is contained in the hypercube [0, 1]n.
This bound was improved to O(n2 log n) by Eisenbrand and Schulz [18]. Chvátal,
1 One important difference between Chvátal-Gomory rounding and other hierarchies

such as SA, is that unlike the latter, C-G does not come with a general efficient
algorithmic procedure. Indeed optimizing over the Chvátal-Gomory closure is ac-
tually NP-hard in general [17]. Nevertheless, these cuts are commonly used by
practitioners [13].
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Cook and Hartmann [12] proved lower bounds on the Chvátal rank of many
combinatorial optimization problems including maximum cut problem, stable
set problem and traveling salesman problem. We also note that their results can
also be used to show (1 + ε) integrality gaps after Ω(1

ε ) rounds for the vertex
cover problem and maximum cut problem while our results show much stronger
integrality gaps. However, the Chvátal-Gomory closure from a theoretical point
of view does not behave very well algorithmically; Eisenbrand [17] proved that
optimizing over the polytope resulting from one round of C-G cuts is a NP-hard
problem in general. Nevertheless, Bienstock and Zuckerberg [5] show that for
a large class of polytopes (e.g. covering problems), one can optimize over (a
subset of) the rth iterate of the polytope, up to an arbitrarily small error, for
any constant r in polynomial time.

Arora, Lovász and Bollobas [2] initiated the study of integrality gaps of linear
programming relaxations obtained via lift and project hierarchies. Since then
there has been a series of works [1,24,10,16,36,39,35] showing integrality gaps
for linear and semi-definite relaxations for various combinatorial optimization
problems. Closely related to our work is the work of Charikar, Makarychev and
Makarychev [10] who show integrality gaps for linear programming relaxations
obtained via Sherali-Adams hierarchy for the maximum cut, vertex cover and
the unique games problem. We also note that the integrality gap for the vertex
cover problem obtained in Theorem 5 can also be obtained using the results of
Arora et al [2]. Lift and project hierarchies and CG rounding can also be used
as proof systems for satisfiability and other problems. There has been a series of
works [7,34,33,14,15] which lower bound the size or depth of the proofs obtained
using these hierarchies. Buresh-Oppenheim et al. [7] show that for MAX k-SAT,
and MAX k-XOR SAT, a linear number of rounds of CG are needed to reduce
the integrality gap.

2 Maximum Matching in k-Uniform Hypergraphs

The maximum matching problem on a hypergraph G = (V, E) is to find the max-
imum cardinality subset F ⊆ E of hyperedges such that for any vertex v ∈ V ,
there is at most one hyperedge in F incident on v. A hypergraph G = (V, E) is
said to be k-uniform if |e| = k for every e ∈ E. We study the (unweighted) max-
imum matching problem in k-uniform hypergraphs. We note that the problem
is NP-hard and APX-hard even for k = 3 [4]. Hazan, Safra and Schwartz [26]
show an Ω(k/ log k)-inapproximability result, while Hurkens and Schrijver [27]
give a (k

2 + ε)-approximation algorithm.
Figure 1 gives the natural linear programming relaxation for the hypergraph

matching problem. Here δ(v) denotes the set of edges incident at vertex v ∈ V .
Let P denote the polytope defined by feasible solutions to this linear program.
Chan and Lau [9] show that the integrality gap of this linear program remains
at least k− 2 even after O(n/k3) rounds of the Sherali-Adams hierarchy. On the
other hand, they show a polynomial sized linear program with integrality gap at
most k+1

2 , for any constant k.
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max
∑

e∈E xe

s.t.∑
e∈δ(v) xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀ e ∈ E

Fig. 1. Linear program for the Hypergraph Matching Problem

This latter result is derived in two steps. First, Chan and Lau [9] define a
rather large linear program whose gap is shown to be bounded by k+1

2 . Next
they use a result in extremal combinatorics to construct an equivalent linear
program with a polynomial number of constraints. We use similar techniques to
show that the polytope P (2k2) satisfies all the constraints defining the polytope
considered by Chan and Lau [9].

A set of hyperedges K is said to be an intersecting family if every pair of hy-
peredges in K has a non-empty intersection. Clearly, for any intersecting family
in E, a matching can contain at most one hyperedge. Thus one can add to the
linear program the constraint

∑
e∈K xe ≤ 1 for any intersecting family K. Chan

and Lau [9] show that

Theorem 6 ([9]). Consider the linear program in Figure 1 above, augmented
with the constraints

∑
e∈K xe ≤ 1 for all intersecting families K ⊆ E. For a

k-uniform hypergraph, the integrality gap of this program is bounded by k+1
2 .

Next we define a Kernel. Given a subset S ⊆ V and a hyperedge e, we let eS

denote e ∩ S. For a subset K of hyperedges, we can then define KS = {eS : e ∈
K}. A subset S ⊆ V is a kernel for an intersecting family K, if the family KS is
intersecting. In other words, S is a kernel for K if every pair of hyperedges in K
has an non-empty intersection in S. It can be shown [8] that every intersecting
family has a Kernel of size s(k) for some function s(k) independent of |V |.
Theorem 7 ([8]). There exists a function s(k) such that for any k-uniform
hypergraph H, and any intersecting family K of hyperedges in H, there is a
kernel S containing at most s(k) vertices.

The best bounds on s(k) are Θ(
(2k

k

)
) [19,40,41].

Note that if S is a kernel of K, then the constraint
∑

e∈K xe ≤ 1 is equivalent
to the constraint

∑
f∈KS

∑
e∈K:eS=f xe ≤ 1. We next argue that all constraints

of the latter form are derived in a small number of rounds of C-G. In the lemma
below,

Lemma 1. Let P (0) = P be the polytope in figure 1, let P (j) = (P (j−1))′ and
let l0 = 2 and lt+1 = 2lt− 1. Then for any S and any intersecting family KS on
S, P (j) satisfies all constraints of the form∑

f∈L

∑
e:eS=f

xe ≤ 1,

where L ⊆ KS is arbitrary with |L| = lj.



372 M. Singh and K. Talwar

Proof. The proof is by induction on j. For j = 0, the claim follows from the
definition of an intersecting family. Indeed, in this case, L contains two hyper-
edges which intersect in a vertex, and the relevant inequality is implied by the
packing constraint for that vertex. Now suppose that the claim holds for j ≤ t.
We prove the claim for j = t + 1. Let L ⊆ KS be arbitrary with |L| = lt+1. By
the induction hypothesis, the constraint is satisfied for each of the

(
lt+1
lt

)
subsets

of L of size lt. Adding up these constraints and dividing by
(
lt+1−1
lt−1

)
, we conclude

that P (t) satisfies the constraint∑
f∈L

∑
e:eS=f

xe ≤
(
lt+1
lt

)(
lt+1−1
lt−1

) =
lt+1

lt
.

Thus P (t+1) satisfies the above constraints with the right hand side replaced by
its floor. Since the ratio on the right hand side is strictly smaller than two, this
completes the induction. 
�

It is easy to see that l2t ≥ 2t. Moreover, for |S| < s(k), any intersecting family
KS is of size at most s(k)k. It follows that

Theorem 8. Let P (0) = P be the polytope in figure 1, and let P (j) = (P (j−1))′.
Then the integrality gap of P (2k log s(k)) is bounded by k+1

2 .

Using the bound of s(k) above, we conclude that O(k2) rounds of C-G suffice to
bring down the integrality gap to k+1

2 .

3 Integrality Gaps for Max-Cut

Let P denote the linear programming relaxation for the max-cut problem given
in Figure 2. The variables xuv for an edge {u, v} ∈ E denote whether the edge
is in the cut. The variable yu for each vertex u ∈ V denotes whether the vertex
is on the left side of the cut.

max
∑

{u,v}∈E wuvxuv

s.t.
xuv ≤ yu + yv ∀{u, v} ∈ E
xuv ≤ 2 − (yu + yv) ∀ {u, v} ∈ E
xuv ≥ 0 ∀ {u, v} ∈ E
0 ≤ yu ≤ 1 ∀ u ∈ V

Fig. 2. Linear program for the Max-Cut Problem

The following lemma characterizes the constraints for P (k) and is crucial in
showing integrality gaps.

Lemma 2. Let aTx ≤ b + cTy be a non-trivial facet of P (k) for any k. We can
assume without loss of generality that a, b and c are integral, a ≥ 0.
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Proof. The integrality follows simply from the fact that P is a rational poly-
hedron and hence P (k) is rational for each integer k. The non-negativity of a
follows since using the constraint xuv ≥ 0, one can obtain a stronger constraint.


�

Proof of Theorem 2: The proof uses the integrality gap example for the
Sherali-Adams hierarchy to argue nearly the same integrality gap. We show
that the fractional solution which survives the Sherali-Adams hierarchy, with
a small scaling, also survives the Chvátal-Gomory hierarchy. Let the norm of
a constraint aTx ≤ b + cTy be defined as the size of the support of a. To
show that the fractional solution satisfies all the constraints generated by the
Chvátal-Gomory rounding, we argue separately for the constraints which have
small norm and large norm. Using the properties of the Sherali-Adams hierarchy,
one can show that the constraints with small norm are implied by the Sherali-
Adams hierarchy and thus the fractional solution to the integrality gap example
satisfies these constraints. For the constraints with large norm, we show that
in each round of C-G rounding, the constraint is strengthened by at most 1 in
the constant term. Since the constraint had large norm, this implies that slight
degradation of the original fractional solution satisfies the new tighter constraint.
We now expand on the above outline.

We use the following theorem which follows from the integrality gap exam-
ple given by Charikar, Makarychev and Makarychev [10] for the Sherali-Adams
Hierarchy.

Theorem 9 ([10]). For any ε > 0, there exists a γ > 0 and a graph G = (V, E)
such that any integral cut has at most (1

2 + ε
8 ) fraction of the edges but the

fractional solution x0
uv = 1− ε

16 for each {u, v} ∈ E and y0
u = 1

2 for each u ∈ V

is in P t
SA for t = 32nγ

ε . Therefore, for every subset S ⊂ V of size at most t, there
exists a distribution D of solutions such that (i) expected value of the solutions
equals (x0,y0) and (ii) each of the solution with non-zero probability in D is
integral over S.

Let G be the graph given by Theorem 9. We prove the following lemma.

Lemma 3. Let xk
uv = (1 − ε

16 −
2k
t ) for each (u, v) ∈ E and yk

v = 1
2 for each

v ∈ V for any nonnegative integer k. Then the fractional solution (xk,yk) ∈ P (k)

for each 0 ≤ k ≤ nγ.

Before we prove Lemma 3, we complete the proof of Theorem 2. Consider k = nγ .
Lemma 3 implies that

xk
uv = (1− ε

16
− 2nγ

t
) = 1− ε

8

for each (u, v) ∈ E. Consider the weight vector which is uniformly 1. Then

max{wTx : (x,y) ∈ PI} ≤
(1
2

+
ε

8
)
|E|
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but
max{wTx : (x,y) ∈ P (k)} ≥ 1Txk ≥

(
1− ε

8
)
|E|

proving Theorem 2.
Now we prove Lemma 3. We show (xk,yk) ∈ P (k) by induction on k. For

k = 0, the claim is trivially true. Suppose that the claim is true for k − 1 ≥ 0;
we prove that the claim holds for k if k ≤ r = nγ .

Let aTx ≤ b + cTy be a non-trivial facet of P (k). First suppose that the
size of the support of a, ‖a‖0 ≤ t

2 . Let S denote the set of vertices at which
some edge in support of a is incident. We have |S| ≤ t. From Theorem 9, there
exists a distribution D over a set of feasible solutions to P which are integral
on S and whose expectation is (x0,y0). Modify these integral solutions in the
following manner. For each edge not incident at a vertex in S, set xe = 0 and
for each vertex v not in S, set yv = yu where u is the smallest index vertex
in S (or any fixed vertex in S). Thus, we obtain a distribution D over integral
feasible solutions. Let (x∗,y∗) denote the expectation of these solutions under
distribution D. We have the following properties for (x∗,y∗).

1. x∗
uv = x0

uv if both u, v ∈ S.
2. y∗

v = 1
2 for each v ∈ V .

The second property holds for each vertex v ∈ S from Theorem 9 and for each
vertex v /∈ S by construction. Observe that (x∗,y∗) satisfies aT x∗ ≤ b + cTy∗

since (x∗,y∗) ∈ PI . But yk = y∗ and xk
e ≤ x0

e = x∗
e for each e with ae > 0. Thus

aTxk − cTyk ≤ aT x∗ − cT y∗ thus showing that (xk,yk) satisfies the constraint.
Now, suppose that ‖a‖0 > t

2 . Since aTx ≤ b + cTy is valid for P (k), we must
have max{aTx − cTy : (x,y) ∈ P (k−1)} < b + 1. But we have (xk−1,yk−1) ∈
P (k−1). Thus we have

aTxk − cT yk = (aT xk−1 − aT · (2
t
1))− cTyk−1 (By definition of xk,yk)

= aT xk−1 − cTyk−1 − 2
t
‖a‖1 (Rearranging)

≤ aT xk−1 − cTyk−1 − 2‖a‖0
t

(For integer vectors, ‖ · ‖1 ≥ ‖ · ‖0)

< b + 1− 1 (By definition of CG)
= b �

4 Integrality Gaps for Unique Games

We now prove Theorem 3 and present integrality gap result for the unique games
problem. The problem is defined as follows. Given a graph G = (V, E), a set of
q labels L = {1, . . . , q} and permutation πuv : L → L for each edge {u, v} ∈ E,
the task is to assign a label Λ(v) to each vertex v of G to maximize the number
of satisfied edges πuv(Λ(u)) = Λ(v).
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Figure 3 is a linear program for the unique label cover problem. Here variable
y(u, i) denotes whether the vertex u gets label i. The variable x(uv, i) denotes
whether edge (u, v) ∈ E is violated (value 1) with u getting label i and v not
getting label πuv(i). Note that the LP here is for maximizing the number of
satisfied constraints; the LP for minimizing the number of satisfied constraints
can be obtained by changing the objective function to

∑
(u,v)∈E

∑
i∈L x(uv, i).

max
∑

(u,v)∈E(1 −
∑

i∈L x(uv, i))
s.t.
x(uv, i) ≥ y(u, i) − y(v, πuv(i)) ∀(u, v) ∈ E, i ∈ L∑

i∈L y(u, i) = 1 ∀ u ∈ V∑t
i=1 x(ui−1ui, li−1) ≥ y(u, l0) ∀C,∀u ∈ C,∀l0 ∈ B(u, C)

x(uv, i) ≥ 0 ∀ (u, v) ∈ E
y(u, i) ≥ 0 ∀ u ∈ V

Fig. 3. Linear program for the Unique Label Cover Problem

We will in fact look at a richer LP from [25]. Let C be a simple cycle u =
v0, v1, . . . , vt = u in G containing u. Let l0 be a label for v0: for each value of
i ∈ [1, t], inductively define li as li = πvi−1vi(li−1). I.e., the li’s are defined so
that l0, l1, . . . , li are labels that satisfy each of the edges (v0, v1), . . . , (vi−1, vi).
Note that this process also defines another label lt for u = vt which may or may
not agree with the initial label l0: indeed, we say that the label l0 is bad for u
with respect to C if lt �= l0. Let Bu,C be the set of labels that are bad for u
with respect to C. Note that for any labeling f , if the label f(u) = l0 lies in
Bu,C , there must be at least one position i such that the label f(vi) = li and the
next label f(vi+1) �= li+1; i.e., there must be at least one edge (vi, vi+1) that is
violated. Hence for every such cycle C and every label l0 ∈ Bu,C , we can write
a constraint

∑t
i=1 x(ui−1ui, li−1) ≥ y(u, l0).

We use the following gap results for the unique label cover problem shown by
Charikar, Makarychev and Makarychev [10].

Theorem 10 ([10]). For any ε > 0, integer q there exists a γ > 0 and a
unique label cover instance on a graph G = (V, E) on n vertices such that a)
Any labeling satisfies at most (1+ ε)/q fraction of the constraints, but b) for any
set S of t = nγ vertices, there is a distribution D over assignments ΛS of labels
to these vertices such that (i) the marginal on any vertex is uniform over the
labels, i.e. PrΛS∼D[ΛS(v) = l] = 1

q for any l ∈ [q], and v ∈ S, and (ii) for any
e = (u, v) ∈ E with u, v ∈ S, PrΛS∼D[ΛS(v) = πuv(ΛS(u)) = l] ≥ 1−ε

q .

The result then follows along lines similar to the previous section. We inductively
construct feasible solutions for the polytope P (k). Valid constraints involving few
x variables are handled by the fact that local distributions ΛS exist with the right
marginals. Valid constraints involving many x variables are satisfied by induction
due to the right scaling.
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We set (xk,yk) as follows: yk(u, i) is set to 1
q for each u ∈ V, i ∈ [q]. xk(uv, i)

is set to ε
q + 2(k+1)

t . We will show by induction that (xk,yk) lies in P (k).
We first show that any constraint in P (k) has a specific structure.

Lemma 4. Let aTx + bT y ≥ c be a valid non-trivial constraint for P (k). Then
the following hold without loss of generality.

– a,b and c are integral and ai ≥ 0 for each i.
– Every vector (x,y) in PI satisfies aTx + bTy ≥ c.
– aT x + bTy > c− 1 for any (x,y) ∈ P (k−1).

Proof. The first property follows by observing that they hold for the inequalities
in P , and are preserved under summation. The last two properties are a conse-
quence of the definition of P (k). 
�

Lemma 5. Under the definitions above, (xk,yk) ∈ P (k).

Proof. For the base case, note that x0,y0 satisfies all equation of the type
x(uv, i) ≥ y(u, i)−y(v, πuv(i)) since the right hand side is zero. Also

∑
i y(u, i) is

indeed 1. For the cycle constraints, note that any cycle of length greater than � t
2�

is satisfied since each x0(uv, i) is at least 2/t. For a constraint aTx+bTy ≥ c cor-
responding to a shorter cycle C, let F = {e ∈ E : ∃i : ai

e > 0} denote the set of
edges with a positive a, and let S = {u ∈ V : ∃e ∈ F ∩δ(u)}. Thus |S| ≤ |C| ≤ t

2 .
Let D denote the distribution of labelings of S guaranteed by Theorem 10. For a
partial labeling ΛS , let Comp(ΛS) denote a completion of ΛS to all of V giving
each vertex the same label as the lexicographically smallest vertex in S, and let
(x∗,y∗) denote the expected value of the integer solution defined by Comp(ΛS),
when ΛS is drawn from D. Clearly (x∗,y∗) ∈ PI so that aT x∗ + bTy∗ ≥ c. By
Theorem 10, for any u, v ∈ S, x∗(uv, i) ≤ ε

q ≤ x0(uv, i). Moreover, for any u ∈ S,
y∗(u, i) = 1

q = y0(u, i). Thus aT x0 + bTy0 ≥ aTx∗ + bTy∗ ≥ c.
Suppose that the claim holds for k − 1, i.e. (xk−1,yk−1) ∈ P (k−1). We argue

that the claim holds for k. Now let aT x + bTy ≥ c be a constraint in P (k).
We wish to argue that the solution (xk,yk) above satisfies this constraint. Let
F = {e ∈ E : ∃i : ai

e > 0} denote the set of edges with in support of a, and let
S = {u ∈ V : ∃e ∈ F ∩ δ(u)}. It is easy to see that |S| ≤ 2|F | ≤ 2‖a‖0.

First suppose that |S| ≤ t. Let D denote the distribution of labelings of
S guaranteed by theorem 10. For Comp(ΛS) as above, let (x∗,y∗) denote the
expected value of the integer solution defined by Comp(ΛS), when ΛS is drawn
from D. Clearly (x∗,y∗) ∈ PI so that aTx∗ + bTy∗ ≥ c. By theorem 10, for any
u, v ∈ S, x∗(uv, i) ≤ ε

q ≤ xk(uv, i). Moreover, for any u ∈ V , y∗(u, i) = 1
q =

yk(u, i). Thus aTxk + bT yk ≥ aTx∗ + bTy∗ ≥ c.
Now suppose that |S| > t. Then

∑
i ai ≥ ‖a‖0 > t

2 . By the last property is
Lemma 4, aTxk−1 + bTyk > c− 1. Thus

aTxk+bTyk = aT xk−1+
2
t

∑
i

ai+bTyk−1 ≥ aT xk−1+1+bTyk−1 ≥ c−1+1 = c

This completes the induction and the claim follows. 
�
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Proof of Theorem 3 now follows form observing that the solution (xk,yk) has an
objective value at least (1− 2ε) times the number of constraints while by Theo-
rem 10 no integral solution satisfies more than 1+ε

q fraction of the constraints.

5 Other Results

Our results for k-CSP and vertex cover go along similar lines and are proved in
the full version of the paper [38].

6 Open Problems

Our negative results suggest that the connection between SA and C-G integrality
gaps may extend to a fairly general class of linear programs. While this class
would have to exclude hypergraph matching due to our negative result, it may
include other interesting problems such as the sparsest cut. It also seems natural
to investigate whether combining the various cut generation procedures improves
integrality gaps when they individually do not.
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Abstract. A recurring theme in the literature on derandomization is that proba-
bilistic algorithms can be simulated quickly by deterministic algorithms, if one
can obtain impressive (i.e., superpolynomial, or even nearly-exponential) circuit
size lower bounds for certain problems. In contrast to what is needed for deran-
domization, existing lower bounds seem rather pathetic (linear-size lower bounds
for general circuits [30], nearly cubic lower bounds for formula size [23], nearly
n log log n size lower bounds for branching programs [12], n1+cd for depth d
threshold circuits [26]). Here, we present two instances where “pathetic” lower
bounds of the form n1+ε would suffice to derandomize interesting classes of
probabilistic algorithms. We show:

– If the word problem over S5 requires constant-depth threshold circuits of size
n1+ε for some ε > 0, then any language accepted by uniform polynomial-
size probabilistic threshold circuits can be solved in subexponential time
(and more strongly, can be accepted by a uniform family of deterministic
constant-depth threshold circuits of subexponential size.)

– If no constant-depth arithmetic circuits of size n1+ε can multiply a sequence
of n 3-by-3 matrices, then for every constant d, black-box identity testing
for depth-d arithmetic circuits with bounded individual degree can be per-
formed in subexponential time (and even by a uniform family of determinis-
tic constant-depth AC0 circuits of subexponential size).

Keywords: Derandomization, Circuit Complexity, Polynomial Identity Testing.

1 Introduction

Hardness-based derandomization is one of the success stories of the past quarter cen-
tury. This line of research dates back to the work of Shamir, Yao, and Blum and Micali
[39,46,14], and involves showing that, if given a suitably hard function f , one can con-
struct pseudorandom generators and hitting-set generators. Much of the progress on this
front over the years has involved showing how to weaken the hardness assumption on f
and still obtain useful derandomizations [10,9,28,29,32,6,5,7,15,33,18,17,27,41,38,42].
In rare instances, it has been possible to obtain unconditional derandomizations using
this framework; Nisan and Wigderson showed that uniform families of probabilistic
AC0 circuits can be simulated by uniform deterministic AC0 circuits of size nlogO(1) n

[34]. More often, the derandomizations that have been obtained are conditional, and
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rely on the existence of functions f that are hard on average. For certain large complex-
ity classes C (notably including #P, PSPACE, and exponential time), various types of
random self-reducibility and hardness amplification have been employed to show that
such hard-on-average functions f exist in C if and only if there is some problem in C
that requires large Boolean circuits [10,28].

Some more recent work in derandomization studies the implications of arithmetic
circuit lower bounds for derandomization. Kabanets and Impagliazzo showed that the
probabilistic algorithm to test if two arithmetic formulae (or more generally, two arith-
metic circuits of polynomial degree) are equivalent can be simulated by a quick deter-
ministic algorithm, if the Permanent requires large arithmetic circuits [31]. Dvir, Sh-
pilka, and Yehudayoff subsequently adapted those techniques, to show that if one could
present a multilinear polynomial (such as the permanent) that requires depth d arith-
metic formulae of size 2nε

, then the probabilistic algorithm to test if two arithmetic
circuits of depth d − 5 are equivalent (where in addition, the variables in these circuits
have degree at most logO(1) n) can be derandomized to obtain a 2logO(1) n deterministic
algorithm for the problem.

Here, we combine these two lines of work with the recent insight that, in some cases,
extremely modest-sounding (or even “pathetic”) lower bounds can be amplified to ob-
tain superpolynomial bounds [4]. In order to do this, we must identify and exploit some
special properties of certain functions in and near NC1.

– The word problem over S5 is one of the standard complete problems for NC1 [11].
Many of the most familiar complete problems for NC1 have very efficient strong
downward self-reductions [4]. We show that the word problem over S5, in addition,
is randomly self-reducible. (This was observed previously by Goldwasser et al.
[19].) This enables us to transform a “pathetic” worst-case size lower bound of
n1+ε on constant-depth threshold circuits, to a superpolynomial size average-case
lower bound for this class of circuits. In turn, by making some adjustments to the
Nisan-Wigderson generator, this average-case hard function can be used to give
uniform subexponential derandomizations of probabilistic TC0 circuits.

– Iterated Multiplication of n three-by-three matrices is a multilinear polynomial that
is complete for arithmetic NC1 [13]. In the Boolean setting, this function is strongly
downward self-reducible via TC0 self-reductions [4]. Here we present an arithmetic
self-reduction; this enables us to amplify a lower bound of size n1+ε for constant-
depth arithmetic circuits, to obtain a superpolynomial lower bound for constant-
depth arithmetic circuits. Then, by building on the approach of Dvir et al. [16], we
obtain subexponential derandomizations of the identity testing problem for a class
of constant-depth arithmetic circuits.

The rest of the paper is organized as follows: In Section 2 we give the preliminary defi-
nitions and notation. In Section 3 we convert a modest worst-case hardness assumption
to a strong average-case hardness separation of NC1 from TC0, and in Section 4 we use
this to give a uniform derandomization of probabilistic TC0 circuits. Finally, in Section
5 we prove our derandomization of a special case of polynomial identity testing under
a modest hardness assumption.
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2 Preliminaries

This paper will mainly discuss NC1 and its subclass TC0. The languages in NC1 are
accepted by families of circuits of depth O(log n) that are built with fan-in two AND
and OR gates, and NOT gates of fan-in one. For any function s(n), TC0(s(n)) con-
sists of languages that are decided by constant-depth circuit families of size at most
s(n) which contain only unbounded fan-in MAJORITY gates as well as unary NOT
gates. TC0 = ∪k≥0TC0(nk). TC0(SUBEXP) = ∩δ≥0TC0(2nδ

). The definitions of
AC0(s(n)), AC0, and AC0(SUBEXP) are similar, although MAJORITY gates are not
allowed, and unbounded fan-in AND and OR gates are used instead.

As is usual in arguments in derandomization based on the hardness of some function
f , we require not only that f not have small circuits in order to be considered “hard”,
but furthermore we require that f needs large circuits at every relevant input length.
This motivates the following definition.

Definition 2.1. Let A be a language, and let DA be the set {n : A ∩ Σn �= ∅}.
We say that A ∈ io-TC0

∞(s(n)) if there is an infinite set I ⊆ DA and a language
B ∈ TC0(s(n)) such that, for all n ∈ I, An = Bn (where, for a language C, we let
Cn denote the set of all strings of length n in C). Similarly, we define io-TC0

∞ to be
∪k≥0io-TC0

∞(nk).

Thus A requires large threshold circuits on all relevant input lengths if A �∈ io-TC0
∞. (A

peculiarity of this definition is that if A is a finite set, or An is empty for infinitely many
n, then A �∈ io-TC0

∞. This differs starkly from most notions of “io” circuit complexity
that have been considered, but it allows us to consider “complex” sets A that are empty
on infinitely many input lengths; the alternative would be to consider artificial variants
of the “complex” sets that we construct, having strings of every length.)

Probabilistic circuits take an input divided into two pieces, the actual input and the
random coin flips. We say an input x is accepted by such a circuit C if, with respect
to the uniform distribution UR over coin flips, Prr∼UR [C(x, r) = 1] ≥ 2

3 while x is
rejected by C if Prr∼UR [C(x, r) = 1] ≤ 1

3 .
DLOGTIME-uniformity is the standard uniformity condition for small complexity

classes. In order to provide its proper definition, we need to mention the direct connec-
tion language associated with a circuit family.

Definition 2.2. Let C = (Cn)n∈N be a circuit family. The direct connection language
LDC of C is the set of all tuples having either the form 〈n, p, q, b〉 or 〈n, p, d〉, where

– If q = ε, then b is the type of gate p in Cn;
– If q is the binary encoding of k, then b is the kth input to p in Cn.
– The gate p has fan-in d in Cn.

The circuit family C is DLOGTIME-uniform if there is a deterministic Turing machine
that accepts LDC in linear time. For any circuit complexity class C, uC is its uniform
counterpart, consisting of languages that are accepted by DLOGTIME-uniform circuit
families. For more background on circuit complexity, we refer the reader to the textbook
by Vollmer [45]. The term “uniform derandomization” in the title refers to the fact
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that we are presenting uniform circuit families that compute derandomized algorithms;
this should not be confused with doing derandomization based on uniform hardness
assumptions.

A particularly important complete language for NC1 is the word problem WP for
S5, where S5 is the symmetric group over 5 distinct elements [11]. The input to the
word problem is a sequence of permutations from S5 and it is accepted if and only if
the product of the sequence evaluates to the identity permutation. The corresponding
search problem FWP is required to output the exact result of the iterated multiplication.
A closely related balanced language is BWP, which stands for Balanced Word Problem.

Definition 2.3. The input to BWP is a pair 〈w1w2..wn, S〉, where ∀i ∈ [1..n], wi ∈
S5, S ⊆ S5 and |S| = 60. BWP contains 〈w1w2..wn, S〉 if and only if Πn

i=1wi ∈ S.

It is easy to verify that BWP is complete for NC1 as well.
In the following sections, let FWPn be the sub-problem of FWP where the domain

is restricted to inputs of length n and let BWPn be BWP ∩ {〈φ, S〉 | φ ∈ Sn
5 , |φ| =

n, S ⊆ S5, |S| = 60}. Note that BWPn accepts exactly half of the instances in
{〈φ, S〉 | φ ∈ Sn

5 , |φ| = n, S ⊆ S5, |S| = 60} since |S5| = 120.
The following simplified version of Chernoff’s bound is useful in our application.

Lemma 2.4 (Chernoff’s bound). Let X1, .., Xm be i.i.d. 0-1 random variables with
E[Xi] = p. Let X = Σn

i=1Xi. Then for any 0 < δ ≤ 1,

Pr[X < (1 − δ)pm] ≤ e−
δ2pm

2 .

3 The Existence of an Average-Case Hard Language

In this section, we use random self-reducibility to show that, if NC1 �= TC0, then there
are problems in NC1 that are hard on average for TC0. First we recall the definition of
hardness on average for decision problems.

Definition 3.1. Let UD denote the uniform distribution over all inputs in a finite domain
D. For any Boolean function f : D → {0, 1}, f is (1 − ε)-hard for a set of circuits S,
if, for every C ∈ S, we have that Prx∼UD [f(x) = C(x)] < 1− ε.

We will sometimes abuse notation by identifying a set with its characteristic function.
For languages to be considered hard on average, we consider only those input lengths
where the language contains some strings.

Definition 3.2. Let Σ be an alphabet. Consider a language L = ∪nLn, where Ln =
L∩Σn, and let DL = {n : Ln �= ∅}. We say that L is (1− ε)-hard for a class of circuit
families C if DL is an infinite set and, for any circuit family {Cn} in C, there exists m0
such that for all m ∈ DL such that m ≥ m0, Prx∈Σm [f(x) = C(x)] < 1− ε.

The next theorem shows that BWP is hard on average for TC0 if FWP �∈ io-TC0∞.

Theorem 3.3. There exist constants c, δ > 0 and 0 < ε < 1 such that for any constant
d > 0, if FWPn is not computable by TC0(δn(s(n) + cn)) circuits of depth at most
d + c, then BWPn is (1− ε)-hard for TC0 circuits of size s(n) and depth d.
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Proof. Let ε < 1
4(120

60 ) . We prove the contrapositive. Assume there is a circuit C of

size s(n) and depth d such that Prx[BWPn(x) = C(x)] ≥ 1 − ε. We first present a
probabilistic algorithm for FWPn.

Let the input instance for FWPn be w1w2 . . . wn. Generate a sequence of n + 1
random permutations u0, u1, . . . , un in S5 and a random set S ⊆ S5 of size 60. Let φ
be the sequence (u0 ·w1 ·u1)(u−1

1 ·w2 ·u2)..(u−1
n−1 ·wn ·un). Note that φ is a completely

random sequence in Sn
5 .

Let us say that φ is a “good” sequence if ∀S′ ⊂ S5 with |S′| = 60, C(〈φ, S′〉) =
BWPn(〈φ, S′〉).

If we have a “good” sequence φ (meaning that for every set S′ of size 60, C gives
the “correct” answer BWPn(φ, S) on input (φ, S′)), then we can easily find the unique
value r that is equal to Πn

i=1φi where φi = ui−1wiui, as follows:

– If C(φ, S) = 1, then it must be the case that r ∈ S. Pick any element r′ ∈ S5 \ S
and observe that r is the only element such that C(φ, (S \ {r}) ∪ {r′}) = 0.

– If C(φ, S) = 0, then it must be the case that r �∈ S. Pick any element r′ ∈ S and
observe that r is the only element such that C(φ, (S \ {r′}) ∪ {r}) = 1.

Thus the correct value r can be found by trying all such r′. Hence, if φ is good, we have

r = Πn
i=1φi = u0w1u1Π

n
i=2u

−1
i−1wiui.

Produce as output the value u−1
0 ru−1

n = Πn
i=1wi = FWPn(w).

Since ε < 1
4(120

60 ) , a standard averaging argument shows that at least 3
4 of the se-

quences in Sn
5 are good. Thus with probability at least 3

4 , the probabilistic algorithm
computes FWPn correctly. The algorithm can be computed by a threshold circuit of
depth d + O(1) since the subroutines related to C can be invoked in parallel and more-
over, the preparation of φ and the aggregation of results of subroutines can be done by
constant-depth threshold circuits. Its size is at most 122s(n) + O(n) since there are
122 calls to C. Next, we put 104n independent copies together in parallel and output
the majority vote. Let Xi be the random variable that the outcome of the ith copy is
Πn

i=1wi. By Lemma 2.4, on every input the new circuit computes FWPn with proba-
bility at least 1 − 120−n

2 . Thus there is a random sequence that can be hardwired in to
the circuit, with the property that the resulting circuit gives the correct output on every
input (and in fact, at least half of the random sequences have this property). This yields
a deterministic TC0 circuit computing FWPn exactly which is of depth at most d+c and
of size no more than (122 ∗ 104)n(s(n) + cn) for some universal constant c. Choosing
δ ≥ (122 ∗ 104) completes the proof.

The problem FWP is strongly downward self-reducible [4, Definition , Proposition 7].
Hence, its worst-case hardness against TC0 circuit families can be amplified as observed
by Allender and Koucký [4, Corollary 17].

Theorem 3.4. [4] If there is a γ > 0 such that FWP �∈ io-TC0
∞(n1+γ), then FWP �∈

io-TC0
∞.

(Theorem 3.4 is not stated in terms of io-TC0∞ in [4], but the proof shows that if there
are infinitely many input lengths n where FWP has circuits of of size nk, then there



Uniform Derandomization from Pathetic Lower Bounds 385

are infinitely many input lengths m where FWP has circuits of size m1+γ . The strong
downward self-reducibility property allows small circuits for inputs of size m to be
constructed by efficiently using circuits for size n < m as subcomponents.)

Since FWP is equivalent to WP via linear-size reductions on the same input length,
the following corollary is its easy consequence.

Corollary 3.5. If there is a γ > 0 such that WP �∈ io-TC0
∞(n1+γ), then FWP �∈

io-TC0∞.

Combining Corollary 3.5 with Theorem 3.3 yields the average-case hardness of BWP
from nearly-linear-size worst-case lower bounds for WP against TC0 circuit families.

Corollary 3.6. There exists a constant ε > 0 such that if ∃γ > 0 such that WP �∈
io-TC0∞(n1+γ), then for any k and d there exists n0 > 0 such that when n ≥ n0,
BWPn is (1− ε)-hard for any TC0 circuit of size nk and depth d.

Define the following Boolean function WPMn : Sn × S60 → {0, 1}, where WPMn

stands for Word Problem over Multi-set.

Definition 3.7. The input to WPMn is a pair 〈w1w2..wn, v1v2..v60〉, where ∀i ∈ [1..n],
wi ∈ S5 and ∀j ∈ [1..60], vi ∈ S5. 〈w1w2..wn, v1v2..v60〉 ∈ WPM if and only if
∃j ∈ [1..60], Πn

i=1wi = vj .

BWP is the restriction of WPMn to the case where all vis are distinct. Hence, WPM
inherits the average-case hardness of BWP, since any circuit that computes WPMn on
a sufficiently large fraction of inputs also approximates BWP well. Formally,

Lemma 3.8. There is an absolute constant 0 < c < 1 such that for every ε > 0, if
BWPn is (1− ε)-hard for TC0 circuits of size nk and depth d, then WPMn is (1− cε)-
hard for TC0 circuits of size nk and depth d.

Proof. Let c = (120
60 )

(120)60 . Note that c is the probability that a sequence of 60 permutations
contains no duplicates and is in sorted order. Suppose there is a circuit C with the
property that Prx∈Sn×S60 [C(x) �= WPM(x)] ≤ cε. Then the conditional probability
that C(x) �= WPM(x) given that the last 60 items in x give a list in sorted order with
no duplicates is at most ε. This yields a circuit having the same size, solving BWP
with error at most ε, using the uniform distribution over its domain, contrary to our
assumption.

Corollary 3.9. There exists a constant ε > 0 such that if ∃γ > 0 such that WP �∈
io-TC0

∞(n1+γ), then for any k and d there exists n0 > 0 such that when n ≥ n0,
WPMn is (1 − ε)-hard for TC0 circuits of size nk and depth d.

Yao’s XOR lemma [46] is a powerful tool to boost average-case hardness. We utilize
a specialized version of the XOR lemma for our purpose. Several proofs of this useful
result have been published. For instance, see the text by Arora and Barak [8] for a proof
that is based on Impagliazzo’s hardcore lemma [25]. For our application here, we need
a version of the XOR lemma that is slightly different from the statement given by Arora
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and Barak. In the statement of the lemma as given by them, g is a function of the form
{0, 1}n → {0, 1}. However, their proof works for any Boolean function g defined over
any finite alphabet, because both the hardcore lemma and its application in the proof
of the XOR lemma are insensitive to the encoding of the alphabet. Hence, we state the
XOR Lemma in terms of functions over an alphabet set Σ.

For any Boolean function g over some domain Σn, define g⊕m : Σnm → {0, 1} by
g⊕m(x1, x2, .., xm) = g(x1)⊕ g(x2)⊕ ..⊕ g(xm) where ⊕ is the parity function.

Lemma 3.10. [46] Let 1
2 < ε < 1, k ∈ N and θ > 2(1− ε)k. There is a constant c > 1

that depends only on |Σ| such that if g is (1 − ε)-hard for TC0 circuits of size s and
depth d, then g⊕k is (1

2 + θ)-hard for TC0 circuits of size θ2s
cn and depth d− 1.

Let Σ = S5. The next corollary follows from Corollary 3.9 and Lemma 3.10.

Corollary 3.11. If there is a γ > 0 such that WP �∈ io-TC0
∞(n1+γ), then for any k, k′

and d there exists n0 > 0 such that when n ≥ n0 (WPMn)⊕n is (1
2 + 1

nk′ )-hard for

TC0 circuits of size nk and depth d.

Let WP⊗ = ∪n≥1{x | (WPMn)⊕n(x) = 1}. Note that it is a language in uNC1 and,
moreover, it is decidable in linear time.

Theorem 3.12. If there is a γ > 0 such that WP �∈ io-TC0
∞(n1+γ), then for any integer

k > 0, WP⊗ is (1
2 + 1

nk )-hard for TC0.

4 Uniform Derandomization

The Nisan-Wigderson generator, the canonical way to build pseudo-random generators
based on hard functions, relies on the following definition of combinatorial designs.

Definition 4.1 (Combinatorial Designs). Fix a universe of size u. An (m, l)-design of
size n on [u] is a list of subsets S1, S2, ..., Sn satisfying:

1. ∀i ∈ [1..n], |Si| = m;
2. ∀i �= j ∈ [1..n], |Si ∩ Sj | ≤ l.

Nisan and Wigderson [34] invented a general approach to construct combinatorial de-
signs for various ranges of parameters. The proof given by Nisan and Wigderson gives
designs where l = log n, and most applications have used that value of l. For our ap-
plication, l can be considerably smaller, and furthermore, we need the Si’s to be very
efficiently computable. For completeness, we present the details here. (Other variants of
the Nisan-Wigderson construction have been developed for different settings; we refer
the reader to one such construction by Viola [44], as well as to a survey of related work
[44, Remark 5.3].)

Lemma 4.2. [43] For l > 0, the polynomial x2·3l

+ x3l

+ 1 is irreducible over F2[x].

Lemma 4.3. [34] For any integer n, any α such that log log n/ logn < α < 1, let
b = �α−1� and m = �nα�, there is a (m, b)-design with u = O(m6). Furthermore,
each Si can be computed within O(bm2) time.
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Proof. Fix q = 22·3l

for some l such that m ≤ q ≤ m3. Let the universe be Fq × Fq

and Si be the graph of the ith univariate polynomial of degree at most b in the standard
order. Since qb ≥ (nα)b ≥ n, there are at least n distinct Sis. No two polynomials share
more than b points, hence, the second condition is satisfied. The first condition holds
because we could simply drop elements without increasing the size of intersections.

The arithmetic operations in Fq are performed within logO(1) q time because of the
explicitness of the irreducible polynomial by Lemma 4.2. It is evident that for any i ∈
[n], we are able to enumerate all elements of Si in time O(m ·b(logO(1) q)) = O(bm2).

Lemma 4.4. For any constant α > 0 and for any large enough integer n, if g is (1
2 +

1
n2 )-hard for TC0 circuits of size n2 and depth d+2, then any probabilistic TC0 circuit
C of size n and depth d can be simulated by another probabilistic TC0 circuit of size
O(n1+α) and depth d+1 which is given oracle access to gnα� and uses at most O(n6α)
many random bits.

The proof is omitted due to space limitations. For details, see [2].
The simulation in Lemma 4.4 is quite uniform, thus, plugging in appropriate seg-

ments of WP⊗ as our candidates for the hard function g, we derive our first main result.

Theorem 4.5. If WP is not infinitely often computed by TC0(n1+γ) circuit families for
some constant γ > 0, then any language accepted by polynomial-size probabilistic
uniform TC0 circuit family is in uTC0(SUBEXP).

Proof. Fix any small constant δ > 0. Let L be a language accepted by some proba-
bilistic uniform TC0 circuit family of size at most nk and of depth at most d for some
constants k, d.

Choose m such that n
δ
12 ≤ m ≤ n

δ
6 , and let α be such that m = nα. By Theorem

3.12, when m is large enough, WP⊗
m is (1

2 + 1
n2k )-hard for TC0 circuits of size n2k and

depth d+ c, where c is any constant. Hence, as a consequence of Lemma 4.4, we obtain
a probabilistic oracle TC0 circuit for Ln of depth d + 1. Since the computation only
needs O(m6) random bits, it can be turned into a deterministic oracle TC0 circuit of
depth d + 2 and of size at most O(n2k) ∗ 2O(m6) ≤ 2O(nδ) (when n is large enough),
where we evaluate the previous circuit on every possible random string and add an extra
MAJORITY gate at the top. The oracle gates all have fan-in m ≤ nδ/6, and thus can
be replaced by DNF circuits of size 2O(nδ), yielding a deterministic TC0 circuit of size
2O(nδ) and depth d + 3.

We need to show that this construction is uniform, so that the direct connection lan-
guage can be recognized in time O(nδ). The analysis consists of three parts.

– The connectivity between the top gate and the output gate of individual copies is
obviously computable in time m6 ≤ nδ.

– The connectivity inside individual copies is DLOGTIME-uniform.
– By Lemma 4.3 each Si is computable in time O(dm2) which is O(m2) since d is a

constant only depending on δ. Moreover, notice that WP⊗ is a linear-time decidable
language. Therefore, the DNF expression corresponding to each oracle gate can be
computed within time O(m2) ≤ nδ.
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In conclusion, the above construction produces a uniform TC0 circuit of size 2nδ

.
Since δ is arbitrarily chosen, our statement holds.

This can be strengthened as follows: Any language accepted by a polynomial-size prob-
abilistic o(n)-uniform TC0 circuit family is in uTC0(SUBEXP).

5 Consequences of Pathetic Arithmetic Circuit Lower Bounds

In this section we show that a pathetic lower bound assumption for arithmetic circuits
yields a uniform derandomization of a special case of polynomial identity testing (in-
troduced and studied by Dvir et al [16]).

The explicit polynomial that we consider is {IMMn}n>0, where IMMn is the (1, 1)
entry of the product of n 3×3 matrices whose entries are all distinct indeterminates. No-
tice that IMMn is a degree n multilinear polynomial in 9n indeterminates, and IMMn

can be considered as a polynomial over any field F.
Arithmetic circuits computing a polynomial in the ring F[x1, x2, . . . , xn] are directed

acyclic graphs with the indegree zero nodes (the inputs nodes) labeled by either a vari-
able xi or a scalar constant. Each internal node is either a + gate or a × gate, and
the circuit computes the polynomial that is naturally computed at the output gate. The
circuit is a formula if the fanout of each gate is 1.

Before going further, we pause to clarify a point of possible confusion. There is
another way that an arithmetic circuit C can be said to compute a given polynomial
f(x1, x2, . . . , xn) over a field F; even if C does not compute f in the sense described
in the preceding paragraph, it can still be the case that for all scalars ai ∈ F we have
f(a1, . . . , an) = C(a1, . . . , an). In this case, we say that C functionally computes f
over F. If the field size is larger than the syntactic degree of circuit C and the degree
of f , then the two notions coincide. Assuming that f is not functionally computed by
a class of circuits is a stronger assumption than assuming that f is not computed by
a class of circuits (in the usual sense). In our work in this paper, we use the weaker
intractability assumption.

An oracle arithmetic circuit is one that has oracle gates: For a given sequence of
polynomials A = {An} as oracle, an oracle gate of fan-in n in the circuit evaluates the
n-variate polynomial An on the values carried by its n input wires. An oracle arithmetic
circuit is called pure (following [4]) if all non-oracle gates are of bounded fan-in. (Note
that this use of the term “pure” is unrelated to the “pure” arithmetic circuits defined by
Nisan and Wigderson [35].)

Arithmetic NC1 is the class of polynomials computed by polynomial-size arithmetic
formulas; by [13] the polynomial IMMn is complete for this class. Whether IMMn has
polynomial size constant-depth arithmetic circuits is a long-standing open problem in
the area of arithmetic circuits [35]. In this context, the known lower bound result is that
IMMn requires exponential size multilinear depth-3 circuits [35].

Very little is known about lower bounds for general constant-depth arithmetic cir-
cuits, compared to what is known about constant-depth Boolean circuits. Exponential
lower bounds for depth-3 arithmetic circuits over finite fields were shown in [21] and
[20]. On the other hand, for depth-3 arithmetic circuits over fields of characteristic zero
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only quadratic lower bounds are known [40]. However, it is shown in [37] that the de-
terminant and the permanent require exponential size multilinear constant-depth arith-
metic circuits. More details on the current status of arithmetic circuit lower bounds can
be found in Raz’s paper [36, Section 1.3].

Definition 5.1. We say that a sequence of polynomials {pn}n>0 in F[x1, x2, . . . , xn] is
(s(n), m(n), d)-downward self-reducible if there is a pure oracle arithmetic circuit Cn

of depth O(d) and size O(s(n)) that computes the polynomial pn using oracle gates
only for pm′ , for m′ ≤ m(n).

Analogous to [4, Proposition 7], we can easily observe the following. It is a direct divide
and conquer argument using the iterated product structure.

Lemma 5.2. For each 1 > ε > 0 the polynomial sequence {IMMn} is (n1−ε, nε, 1/ε)-
downward self-reducible.

An easy argument, analogous to Theorem 3.4, shows that Lemma 5.2 allows for the
amplification of weak lower bounds for {IMMn} against arithmetic circuits of constant
depth:

Theorem 5.3. Suppose there is a constant δ > 0 such that for all d and every n, the
polynomial sequence {IMMn} requires depth-d arithmetic circuits of size at least n1+δ.
Then, for any constant depth d the sequence {IMMn} is not computable by depth-d
arithmetic circuits of size nk for any constant k > 0.

Our goal is to apply Theorem 5.3 to derandomize a special case of polynomial identity
testing (first studied in [16]). To this end we restate a result of Dvir et. al [16].

Theorem 5.4 (Theorem 4 in [16]). Let n, s, r, m, t, d be integers such that s ≥ n. Let
F be a field which has at least 2mt elements. Let P (x, y) ∈ F[x1, . . . , xn, y] be a non-
zero polynomial with deg(P ) ≤ t and degy(P ) ≤ r such that P has an arithmetic
circuit of size s and depth d over F. Let f(x) ∈ F[x1, . . . , xn] be a polynomial with
deg(f) = m such that P (x, f(x)) ≡ 0. Then f(x) can be computed by a circuit of size
s′ = poly(s, mr) and depth d′ = d + O(1) over F.

Let the underlying field F be large enough (Q, for instance). The following lemma is a
variant of Lemma 4.1 in [16]. For a detailed proof, see [2].

Lemma 5.5 (Variant of Lemma 4.1 in [16]). Let n, r, s be integers and let f ∈
F[x1, x2, . . . , xn] be a nonzero polynomial with individual degrees at most r that is
computed by an arithmetic circuit of size s ≥ n and depth d. Let m = nα be an
integer where α > 0 is an arbitrary constant. Let S1, S2, . . . , Sn be the sets of the
(m, b)-design constructed in Lemma 4.3 where b = � 1

α�. Let p ∈ F[z1, . . . , zm] be a
multilinear polynomial with the property that

F (y) = F (y1, y2, . . . , yu) � f(p(y|S1), . . . , p(y|Sn)) ≡ 0 (1)

Then there exists absolute constants a and k such that p(z) is computable by an arith-
metic circuit over F with size bounded by O((smr)a) and having depth d + k.
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At this point we describe our deterministic black-box identity testing algorithm for
constant-depth arithmetic circuits of polynomial size and bounded individual degree.
Let n, m, u, α be the parameters as in Lemma 4.3. Given such a circuit C over variables
{xi | i ∈ [n]} of size nt, depth d and individual degree r, we simply replace xi with
IMM(y|Si) where y is a new set of variables {yj | j ∈ [u]}. Let C̃[y1, . . . , yu] denote
the polynomial computed by the new circuit.

Notice that the total degree of C̃ is bounded by uc where c is a constant depending
on the combinatorial design and r. Let R ⊆ F be any set of uc + 1 distinct points. Then
by the Schwartz-Zippel Lemma the polynomial computed by C̃ is identically zero if
and only if C̃(a1, a2, . . . , au) = 0 for all (a1, a2, . . . , au) ∈ Ru.

This gives us the claimed algorithm. Its running time is bounded by O((uc +1)u) =
O(27αn6α

). Since α can be chosen to be arbitrarily small, we have shown that this
identity testing problem is in deterministic sub-exponential time. The correctness of the
algorithm follows from the next lemma.

Lemma 5.6. If for every constant d′ > 0, the polynomial sequence {IMMn} is not com-
putable by depth-d′ arithmetic circuits of size nk for any k > 0, then C[x1, . . . , xn] ≡ 0
if and only if C̃[y1, . . . , yu] ≡ 0.

Proof. The only-if part is easy to see. Let us focus on the if part. Suppose it is not the
case, which means that C̃[y1, . . . , yu] ≡ 0 but C[x1, . . . , xn] �≡ 0. Then let the role of
f [x1, . . . , xn] in Lemma 5.5 be played by C[x1, . . . , xn] and let IMM[z1, . . . , zm] take
the place of p[z1, . . . , zm]. Therefore, IMM[z1, . . . , zm] is computable by a circuit of
depth d + k and size at most (ntmr)a = mO(1), a contradiction.

Putting it together, we get the following result.

Theorem 5.7. If there exists δ > 0 such that for any constant e > 0, IMM requires
depth-e arithmetic circuits of size at least n1+δ, then the black-box identity testing
problem for constant-depth arithmetic circuits of polynomial size and bounded indi-
vidual degree is in deterministic sub-exponential time.

Next, we notice that the above upper bound can be sharpened considerably. The al-
gorithm simply takes the OR over subexponentially-many evaluations of an arithmetic
circuit; if any of the evaluations does not evaluate to zero, then we know that the expres-
sions are not equivalent; otherwise they are. Note that evaluating an arithmetic circuit
can be accomplished in logspace. (When evaluating a circuit over Q, this is shown
in [24, Corollary 6.8]; the argument for other fields is similar, using standard results
about the complexity of field arithmetic.) Note also that every language computable in
logspace has AC0 circuits of subexponential size. (This appears to have been observed
first by Gutfreund and Viola [22]; see also [3] for a proof.) This yields the following
uniform derandomization result.

Theorem 5.8. If there are no constant-depth arithmetic circuits of size n1+ε for the
polynomial sequence {IMMn}, then for every constant d, black-box identity testing
for depth-d arithmetic circuits with bounded individual degree can be performed by a
uniform family of constant-depth AC0 circuits of subexponential size.
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We call attention to an interesting difference between Theorems 4.5 and 5.8. In Theorem
5.8, in order to solve the identity testing problem with uniform AC0 circuits of size
2nε

for smaller and smaller ε, the depth of the AC0 circuits increases as ε decreases.
In contrast, in order to obtain a deterministic threshold circuit of size 2nε

to simulate a
given probabilistic TC0 algorithm, the argument that we present in the proof of Theorem
4.5 gives a circuit whose depth is not affected by the choice of ε. We do not know if
a similar improvement of Theorem 5.8 is possible, but we observe here that the depth
need not depend on ε if we use threshold circuits for the identity test.

Theorem 5.9. If there are no constant-depth arithmetic circuits of size n1+ε for the
polynomial sequence {IMMn}, then there is a constant c such that, for every constant d
and every γ > 0, black-box identity testing for depth-d arithmetic circuits with bounded
individual degree can be performed by a uniform family of depth d+c threshold circuits
of size 2nγ

.

Proof. (Sketch.) Choose α < γ/14, where α is the constant from the discussion in
the paragraph before Lemma 5.6. Thus, our identity testing algorithm will evaluate a
depth d arithmetic circuit C(x1, . . . , xn) at fewer than 2nγ/2

points v = (v1, . . . , vn),
where each vi is obtained by computing an instance of IMMnα consisting of nα 3-by-3
matrices, whose entries without loss of generality have representations having length
at most nα. Thus these instances of IMM have DNF representations of size 2O(n2α).
These DNF representations are uniform, since the direct connection language can be
evaluated by computing, for a given input assignment to IMMnα , the product of the
matrices represented by that assignment, which takes time at most (nα)3 < log(2nγ/2

).
Evaluating the circuit C on v can be done in uniform TC0 [1,24].
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Abstract. Two boolean functions f, g : {0, 1}n → {0, 1} are isomorphic
if they are identical up to relabeling of the input variables. We consider
the problem of testing whether two functions are isomorphic or far from
being isomorphic with as few queries as possible.

In the setting where one of the functions is known in advance, we
show that the non-adaptive query complexity of the isomorphism testing
problem is Θ̃(n). In fact, we show that the lower bound of Ω(n) queries
for testing isomorphism to g holds for almost all functions g.

In the setting where both functions are unknown to the testing al-
gorithm, we show that the query complexity of the isomorphism testing
problem is Θ̃(2n/2). The bound in this result holds for both adaptive and
non-adaptive testing algorithms.

1 Introduction

The field of property testing, originally introduced by Rubinfeld and Sudan [20],
considers the following general problem: given a property P , determine the min-
imum number q of queries required to determine with high probability whether
an input has the property P or whether it is “far” from P . The field has been
extremely active over the last few years – see, e.g., the recent surveys [18,19].

In this paper, we concern ourselves with property testing of boolean func-
tions. Despite significant progress in the study of the query complexity of many
properties of boolean functions (e.g., monotonicity [7,11,13], juntas [10,5], hav-
ing concise representations [6], halfspaces [16,17]), our overall understanding of
the testability of boolean function properties still lags behind our understanding
of the testability of graph properties, whose study was initiated by Goldreich,
Goldwasser, and Ron [14].

A notable example that illustrates the gap between our understanding of
graph and boolean function properties is isomorphism. Two graphs are isomor-
phic if they are identical up to relabeling of the vertices, while two boolean
functions are isomorphic if they are identical up to relabeling of the input vari-
ables. There are three main variants to the isomorphism testing problem. (In
the following list, an “object” refers to either a graph or a boolean function.)
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1. Testing isomorphism to a given object O. The query complexity re-
quired to test isomorphism in this variant depends on the object O; the goal
for this problem is to characterize the query complexity for every graph or
boolean function.

2. Testing isomorphism to the hardest known object. A less fine-grained
variant of the first problem asks to determine the maximum query complexity
of testing isomorphism to O over objects of a given size.

3. Testing isomorphism of two unknown objects. In this variant, the
testing algorithm has query access to two unknown objects O1 and O2 and
must distinguish between the cases where they are isomorphic to each other
or far from isomorphic to each other.

The problem of testing graph isomorphism was first raised by Alon, Fischer,
Krivelevich, and Szegedy [1] (see also [8]), who used a lower bound on testing
isomorphism of two unknown graphs to give an example of a non-testable first-
order graph property of a certain type. Fischer [9] studied the problem of testing
isomorphism to a given graph G and characterized the query complexity of the
problem in terms of a complexity measure of G. Tight asymptotic bounds on the
query complexity of the problem of testing isomorphism to a known graph and
testing isomorphism of two unknown graphs were then obtained by Fischer and
Matsliah [12]. As a result, all three versions of the graph isomorphism testing
problem are well understood.

The picture is much less complete in the setting of boolean functions. Testing
isomorphism against a known function f was first studied by Fischer, Kindler,
Ron, Safra, and Samorodnitsky [10]. They gave a general upper bound on the
problem showing that for every function f that depends on k variables (that is,
for every k-junta), the problem of testing isomorphism to f requires poly(k/ε)
queries. Conversely, they showed that when f is a parity function on k < o(

√
n)

variables, testing isomorphism to f requires Ω̃(k) queries. No other progress was
made on the problem of testing isomorphism on boolean functions until very
recently, when Blais and O’Donnell [3] showed that for every function f that
“strongly” depends on k variables, testing isomorphism to f requires Ω(log k)
queries. Taken together, the results in [10,3] give only an incomplete solution
to the problem of testing isomorphism to a given boolean function and provide
only weak bounds on the other two versions of the isomorphism testing problem.

Our results. We introduce new results for all three variants of the problem of
testing isomorphism to boolean functions.

In the problem of testing isomorphism to a given function g : {0, 1}n → {0, 1},
it is easy to show that O(n log n

ε ) queries always suffice to ε-test isomorphism
to any function g. (For completeness, we give the proof of this statement in
Section 3.1.) Our main result is a matching lower bound (up to a logarithmic
factor) that applies for almost all functions g.

Theorem 1.1. Fix 0 < ε < 1
2 . For a 1 − o(1) fraction of the functions

g : {0, 1}n → {0, 1}, any non-adaptive algorithm for ε-testing isomorphism to g
must make at least n

100 queries.
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We present the proof of Theorem 1.1 in Sections 3.2 and 3.3. The lower bound
of the theorem and the aforementioned upper bound immediately give a tight
bound on the query complexity of testing isomorphism to a known function:

Corollary 1.2. The maximum possible query complexity for testing isomor-
phism to a known function {0, 1}n → {0, 1} non-adaptively is Θ̃(n). This bound
holds for testing algorithms with 1-sided and 2-sided error.

Finally, we examine the problem of testing two unknown functions for the prop-
erty of being isomorphic. A simple algorithm can ε-test isomorphism in this
setting with Õ(2n/2/

√
ε) queries. We give a matching lower bound establishing

that no other algorithm can do better.

Theorem 1.3. The query complexity for testing isomorphism of two unknown
functions in {0, 1}n → {0, 1} is Θ̃(2n/2). This bound holds for all testing algo-
rithms (adaptive or non-adaptive, with 1-sided or 2-sided error).

We present the proof of Theorem 1.3 in Section 4.

Related work. Recently, Chakraborty, Garćıa-Soriano, and Matsliah [4] inde-
pendently obtained results very similar to Corollary 1.2 and Theorem 1.3. In
fact, their version of Corollary 1.2 contains a stronger lower bound that also
applies to adaptive testing algorithms.

Furthermore, [4] also show tight bounds on the query complexity for testing
isomorphism to the hardest known function within some restricted classes of
functions. Notably, they show that O(k log k) queries are sufficient to test iso-
morphism to any k-juntas and that Ω(k) queries are required to test isomorphism
to some k-juntas.

2 Preliminaries and Notation

Throughout the paper, f and g represent boolean functions {0, 1}n → {0, 1}.
The weight of an input x = (x1, . . . , xn) ∈ {0, 1}n is |x| = x1 + · · · + xn. All
big O notation in this paper refers to asymptotic statements as n →∞ while the
other parameters (typically, ε) remain constant. Tilde notation is used to hide
polylogarithmic factors – for example f = Θ̃(n) if there is a positive constant c
such that f ≥ Ω( n

logc n ) and f ≤ O(n logc n).
For a permutation π : [n] → [n] and x = (x1, . . . , xn) ∈ {0, 1}n, we write

π(x) = (xπ(1), . . . , xπ(n)). The function gπ : {0, 1}n → {0, 1} represents the
function defined by gπ(x) = g(π(x)) for every x ∈ {0, 1}n. Two functions f and
g are isomorphic if there is a permutation π such that f = gπ.

Given a set X ⊆ {0, 1}n and a permutation π on [n], we write π(X) =
{π(x) : x ∈ X}. With some abuse of notation, we also write f(X) ∈ {0, 1}|X| to
represent the value of f over each x ∈ X , over some ordering of X . In particular,
f(X) = g(X) iff f(x) = g(x) for every x ∈ X .
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Given two random variables A, B defined on a common discrete sample space
Ω, the total variation distance between A and B is

dTV (A, B) =
1
2

∑
ω∈Ω

∣∣Pr[A = ω]− Pr[B = ω]
∣∣.

A property P of boolean functions {0, 1}n → {0, 1} is simply a subset of those
functions. The distance of a function f to P is the minimum distance between
f and g over all g ∈ P , where the distance between two functions is dist(f, g) =
Prx[f(x) �= g(x)] = 1

2n

∑
x∈{0,1}n 1[f(x) �= g(x)].

A (q, ε)-tester for the property P is a randomized algorithm T that queries an
unknown function f on q different inputs in {0, 1}n and then (1) accepts f with
probability at least 2

3 when f ∈ P , and (2) rejects f with probability at least 2
3

when f is ε-far from P . (If the property deals with a pair of input functions, the
algorithm may query both.)

When a tester T chooses all its queries in advance, it is non-adaptive; if it uses
the responses to some of its queries to decide what queries to make afterwards,
it is adaptive. A tester that accepts functions in P with probability 1 (instead
of 2

3 ) has 1-sided error, otherwise it has 2-sided error.
The query complexity of a property P for a given ε > 0 is the minimum value

of q for which there is a (q, ε)-tester for P .

3 Testing Isomorphism to a Given Function

3.1 Upper Bound

The trivial algorithm T for testing isomorphism to g queries the unknown func-
tion f : {0, 1}n → {0, 1} on a set Q ⊆ {0, 1}n of n ln n

ε randomly selected inputs.
The algorithm accepts f if and only if there is a permutation π ∈ Sn such that
f(x) = g(π(x)) for every x ∈ Q.

Clearly, the trivial algorithm T is non-adaptive and accepts functions iso-
morphic to g with probability 1. The following simple proposition completes
the proof of correctness of T by showing that it rejects functions ε-far from
isomorphic to g with probability at least 2

3 .

Proposition 3.1. Fix ε > 0. Let g : {0, 1}n → {0, 1} be any boolean function
and f : {0, 1}n → {0, 1} be a function ε-far from isomorphic to g. Then T
accepts f with probability o(1).

Proof. For any permutation π ∈ Sn, there are at least ε2n values of x ∈ {0, 1}n

for which f(x) �= g(π(x)). The probability that none of those inputs are queried
by T is at most (1− ε)|Q| ≤ e−ε(n lnn/ε) = n−n. Thus, by the union bound, the
probability that there is a permutation π ∈ Sn such that f(x) = g(π(x)) for
every x ∈ Q is at most n!/nn = o(1). 
�
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3.2 Lower Bound

We prove Theorem 1.1 in this section. The proof of this theorem combined with
the upper bound of the previous section immediately yields Corollary 1.2.

The proof of Theorem 1.1 uses Yao’s Minimax Principle [21]. For a fixed
function g we introduce two distributions Fyes and Fno such that a function
f ∼ Fyes is isomorphic to g and a function f ∼ Fno is ε-far from isomorphic to
g with high probability. We then show that for most choices of g, deterministic
non-adaptive testing algorithms cannot distinguish functions drawn from either
of these distributions with only n

100 queries.
We define Fyes to be the uniform distribution over functions isomorphic to g.

In other words, we draw a function f ∼ Fyes by choosing π ∈ Sn uniformly at
random and setting f = gπ.

A first idea for Fno may be to make it the uniform distribution over all boolean
functions {0, 1}n → {0, 1}. This idea does not quite work, since, for example, a
random function differs from g and all functions isomorphic to it on the all 0 input
or the all 1 input with probability at least 3/4. However, a simple modification
of this idea does work: to draw a function f ∼ Fno, we choose a permutation
π ∈ Sn uniformly at random and we choose a function frand uniformly at random
from all boolean functions on n variables. We then let f be the function defined
by

f(x) =

{
frand(x) if n

3 ≤ |x| ≤
2n
3 ,

gπ(x) otherwise.

With high probability, a function f ∼ Fno is far from isomorphic to g.

Proposition 3.2. Fix 0 < ε < 1
2 . For any function g : {0, 1}n → {0, 1}, the

function f ∼ Fno is ε-close to isomorphic to g with probability at most o(1).

Proof. Fix any permutation π ∈ Sn. Let frand be the random function generated
in the draw of f ∼ Fno. By the triangle inequality,

dist(f, gπ) ≥ dist(frand, gπ)− dist(f, frand).

Since dist(f, frand) ≤ 2
∑n/3

i=0

(
n
i

)
/2n ≤ o(1), to complete the proof it suffices to

fix ε < ε′ < 1
2 and show that dist(frand, gπ) > ε′ with high probability.

Let η = 1− 2ε′. For any x ∈ {0, 1}n, frand(x) = gπ(x) with probability 1
2 , so

E[dist(frand, gπ)] = 1
2 . By Chernoff’s bound (see, e.g., Appendix A in [2]),

Pr[dist(frand, gπ) < ε′] = Pr[dist(frand, gπ) < (1− η)1
2 ] ≤ e−2nη2/6 ≤ o( 1

n! ).

Taking the union bound over all choices of π ∈ Sn completes the proof. 
�

Let T be any deterministic non-adaptive algorithm that attempts to test g-
isomorphism with at most n

100 queries to an unknown function f . We will show
that T cannot reliably distinguish between the cases where f was drawn from
Fyes or from Fno.
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Let Q ⊆ {0, 1}n be the set of queries performed by T on f . We partition the
queries in Q in two: the set Qb = {q ∈ Q : n

3 ≤ |q| ≤
2n
3 } of balanced queries,

and the set Qu = Q \Qb of unbalanced queries.
When f is drawn from Fyes or from Fno, the responses to the unbalanced

queries Qu are consistent with some function gπ isomorphic to g. Our next
proposition shows that when T makes only n

100 queries to f , then in fact the
responses to the unbalanced queries will be consistent with many functions iso-
morphic to g. More precisely, define

Πg(f, Qu) = {π ∈ Sn : gπ(Qu) = f(Qu)}

to be the set of permutations π for which gπ is consistent with the responses to
the queries Qu. The following proposition shows that when the unknown function
is drawn from Fyes or from Fno, then with high probability the set Πg(f, Qu) is
large.

Proposition 3.3. Let Qu be any set of unbalanced queries and let f be a func-
tion drawn from Fyes or from Fno. Then for any 0 < t < 1,

Pr
f

[
|Πg(f, Qu)| < t · n!

2|Qu|
]
≤ t.

Proof. When f ∼ Fyes or f ∼ Fno, then f(x) = gπ(x) for every unbalanced
input x, where π is chosen uniformly at random from Sn. So it suffices to show
that Prπ[|Πg(gπ, Qu)| < t · n!

2|Qu| ] ≤ t.
For every r ∈ {0, 1}|Qu|, let Sr ⊆ Sn be the set of permutations σ for which

gσ(Qu) = r. A set Sr is small if |Sr| ≤ t n!
2|Qu| . The union of all small sets covers

at most 2|Qu| · t n!
2|Qu| = tn! permutations, so the probability that a randomly

chosen permutation π belongs to a small set is at most t. 
�

The last proposition showed that when f is drawn from Fyes or from Fno, then
with high probability Πg(f, Qu) is large; the next lemma shows that conditioned
on Πg(f, Qu) being large, the distribution on the responses to the balanced
queries is nearly uniform, even when f ∼ Fyes. Specifically, given a function g
and a set S of permutations, we define the discrepancy of g on S to be

ΔS(g) = max
Qb:|Qb|= n

100

r∈{0,1}|Qb|

∣∣∣∣ Pr
π∈S

[gπ(Qb) = r]− 2−
n

100

∣∣∣∣ .
We then define the discrepancy of g to be

Δ(g) = max
Qu:|Qu|= n

100

π:|Πg(gπ ,Qu)|≥n!/2n/50

ΔΠg(gπ,Qu)(g).

The following lemma shows that Δ(g) is small for almost all functions g.

Lemma 3.4. When g is drawn uniformly at random from the set of functions
{0, 1}n → {0, 1},

Pr
g

[
Δ(g) > 1

3 · 2
− n

100
]
≤ 2−Ω(2n/25).
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We prove Lemma 3.4 in the next section, but first we show how it implies
Theorem 1.1.

Proof (Theorem 1.1). By Lemma 3.4, with probability at least 1− 2−Ω(2n/25) =
1 − o(1), the discrepancy of a randomly drawn function g : {0, 1}n → {0, 1} is
Δ(g) ≤ 1

32−
n

100 . Fix g to be any function that satisfies this condition. We will
show that testing isomorphism to g requires at least n

100 queries.
As discussed earlier, we complete the proof with Yao’s Minimax Principle,

with the distributions Fyes and Fno as defined at the beginning of the section. Let
T be any deterministic non-adaptive algorithm that makes at most n

100 queries
to the input function f , and let Q = Qu ∪Qb represent the queries made by T .
Without loss of generality, we can assume |Qu| = |Qb| = n

100 . (If |Qb| < n
100 ,

simply add extra balanced queries to Qb; this can only help T determine whether
f was drawn from Fyes or from Fno. Similarly, adding unbalanced queries to Qu

can only help T .)
By Proposition 3.3, the probability that |Πg(f, Qu)| < n!

2n/50 is at most 1
2n/100 =

o(1). Assume, thus, that this event does not happen. Let Ryes and Rno be the
distribution of the responses to the balanced queries Qb. Then the total variation
distance between Ryes and Rno is bounded by

dTV (Ryes,Rno) =
1
2

∑
r∈{0,1} n

100

∣∣∣∣ Pr
π∈Πg(f,Qu)

[gπ(Qb) = r]− 2−
n

100

∣∣∣∣
≤ 1

2 · 2
n

100 Δ(g) ≤ 1
6
. (1)

Therefore, if T accepts functions drawn from Fyes with probability at least 2
3 ,

(1) implies that T also accepts functions drawn from Fno with probability at
least 2

3 −
1
6 = 1

2 . But by Proposition 3.2, a function drawn from Fno is ε-far
from isomorphic to g with probability 1− o(1), so T can’t be a valid ε-tester for
isomorphism to g. 
�

3.3 Proof of Lemma 3.4

The first step in the proof of Lemma 3.4 is to show that for any sufficiently small
set Q of balanced queries and sufficiently large set S of permutations, the set
{π(Q)}π∈S can be partitioned into a number of large pairwise disjoint sets. The
proof of this claim uses the celebrated theorem of Hajnal and Szemerédi [15].

Hajnal-Szemerédi Theorem. Let G be a graph on n vertices with maximum
vertex degree Δ(G) ≤ d. Then G has a (d + 1)-coloring in which all the color
classes have size

⌊
n

d+1

⌋
or

⌈
n

d+1

⌉
.

Lemma 3.5. Let S be a set of at least n!
2n/50 permutations on [n], and let Qb be

a set of at most n
100 balanced queries. Then there exists a partition S1∪̇ · · · ∪̇Sk

of the permutations in S such that for i = 1, 2, . . . , k,
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(i) |Si| ≥ 2n/20, and
(ii) The sets {π(Qb)}π∈Si are pairwise disjoint.

Proof. Construct a graph G on S where two permutations σ, τ are adjacent iff
there exist u, v ∈ Qb such that σ(u) = τ(v). By this construction, when T is
a set of permutations that form an independent set in G, then {π(Qb)}π∈T are
pairwise disjoint.

Consider a fixed permutation σ ∈ S. A second permutation τ is adjacent to
σ in G iff there are two vectors u, v in Qb such that the permutation τσ−1 maps
the indices where u has value 1 to the indices where v has value 1 as well. There
are

(|Qb|
2

)
≤ ( n

100 )2 ways to choose u, v ∈ Qb and at most |u|!(n − |u|)! ways to
satisfy the mapping condition, so the graph has degree at most

max
n
3 ≤k≤ 2n

3

(
n

100

)2 · k! (n− k)! =
( n

100

)2
·
(n

3

)
!
(

2n

3

)
! =

( n

100

)2
· n!(

n
n/3

) ≤ n!
2cn

− 1

for a constant c = 1−H2(1
3 )− o(1) ≥ 0.07.1 Therefore, by the Hajnal-Szemerédi

Theorem, G can be colored with n!/20.07n colors, with each color class having
size at least n!/2n/50

n!/20.07n = 2n/20. 
�

Lemma 3.5 is useful because most functions g have low discrepancy on large
pairwise disjoint sets.

Lemma 3.6. Fix Qb to be a set of n
100 balanced queries and fix r ∈ {0, 1} n

100 .
Let S be a fixed set of at least 2

n
20 permutations such that the sets {π(Qb)}π∈S

are pairwise disjoint. Then

Pr
g

[∣∣∣∣ Pr
π∈S

[gπ(Qb) = r]− 2−
n

100

∣∣∣∣ > 1
3 · 2

− n
100

]
< 2−Ω(2n/25).

Proof. For every function g : {0, 1}n → {0, 1} and every permutation π of [n],
define the indicator random variable

Xg,π =

{
1 if gπ(Qb) = r,

0 otherwise.

When g is chosen uniformly at random from the set of all boolean functions
{0, 1}n → {0, 1}, Eg[Xg,π] = Prg[gπ(Qb) = r] = 2−

n
100 , so

Eg

[
Pr

π∈S
[gπ(Qb) = r]

]
=

1
|S|

∑
π∈S

Eg[Xg,π] = 2−
n

100 .

Furthermore, the pairwise disjointness property of S guarantees that the indica-
tor variables Xg,π are pairwise independent. Therefore, by Chernoff’s bound,

Pr
g

[∣∣∣∣ Pr
π∈S

[gπ(Qb) = r]− 2−
n

100

∣∣∣∣ > 1
3 · 2

− n
100

]
< e−Ω(|S|2−n/100). 
�

1 H2(p) represents the binary entropy of p. H2( 1
3
) ≈ 0.918.
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The proof of Lemma 3.4 can now be completed as follows.

Proof (Lemma 3.4). Fix a permutation π and a set Qu of n
100 unbalanced queries

such that |Πg(gπ, Qu)| ≥ n!
2n/50 . Let S = Πg(gπ, Qu), and fix a set Qb of n

100
balanced queries.

By Lemma 3.5, there exists a partition S1∪̇ · · · ∪̇Sk of S such that for each
part Si, |Si| ≥ 2n/20 and {π(Qb)}π∈Si are pairwise disjoint. By Lemma 3.6, for
every set Si in the partition,

Pr
g

[∣∣∣ Pr
π∈Si

[gπ(Qb) = r] − 2−
n

100

∣∣∣ > 1
3 · 2

− n
100

]
≤ 2−Ω(2n/25).

Taking the union bound over all k < n! sets Si, we get that

Pr
g

[∣∣∣ Pr
π∈S

[gπ(Qb) = r] − 2−
n

100

∣∣∣ > 1
3 · 2

− n
100

]
< n! · 2−Ω(2n/25).

Applying a union bound once again, this time over all
( 2n

n/100

)
< 2

n2
100 choices of

Qb and 2
n

100 choices for r, we obtain

Pr
g

[
ΔS(g) > 1

3 · 2
− n

100
]

< 2
n2
100+ n

100 · n! · 2−Ω(2n/25).

Finally, applying the union bound one last time over the n! choices for π and( 2n

n/100

)
≤ 2

n2
100 choices for Qu, we get

Pr
g

[
Δ(g) >

1
3
· 2− n

100

]
< 2

2n2
100 + n

100 · n!2 · 2−Ω(2n/25) = 2−Ω(2n/25). 
�

4 Testing Isomorphism of Two Unknown Functions

4.1 Upper Bound

Algorithm T
1. Generate two sets Qf , Qg ⊂ {0, 1}n of 2n/2

√
n ln n

ε
queries independently

and uniformly at random.
2. Query f(x) for every x ∈ Qf .
3. Query g(x) for every x ∈ Qg.
4. Accept iff there exists π ∈ Sn such that for every element x ∈ Qf where

π(x) ∈ Qg, f(x) = g(π(x)).

The algorithm T is non-adaptive and makes Õ(2n/2) queries. Clearly, it always
accepts when f and g are isomorphic. The following simple argument completes
the proof of correctness of the algorithm by showing that it rejects functions
that are ε-far from isomorphic with high probability.

Proposition 4.1. Fix ε > 0. Let f and g be ε-far from isomorphic. Then T
rejects (f, g) with probability 1− o(1).
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Proof. For any permutation π ∈ Sn, there are at least ε2n inputs x ∈ {0, 1}n for
which f(x) �= g(π(x)). It is not too difficult to show that the probability that
none of these inputs satisfy x ∈ Qf and π(x) ∈ Qg is at most

4
(

1− |Qf |
2n

· |Qg|
2n

)ε2n

= 4
(

1− n ln n

ε2n

)ε2n

≤ 4e−
n ln n
ε2n ·ε2n

= 4n−n.

By the union bound, the probability that f and g are accepted by the algorithm
is at most n!/nn = o(1). 
�

4.2 Lower Bound

The following Lemma, combined with the upper bound in the previous section,
implies Theorem 1.3.

Lemma 4.2. Any algorithm for testing two unknown functions f, g : {0, 1}n →
{0, 1} for the property of being isomorphic must make at least Ω(2n/2

n1/4 ) queries
to the functions.

Proof. Let T be an algorithm making o(2n/2

n1/4 ) queries to f and g. We will define
two distributions Dyes and Dno on pairs of functions (f, g) that are isomorphic
and ε-far from isomorphic with probability 1− o(1), respectively, and show that
T can not determine with probability greater than 1

2 + o(1) which distribution
generated an input.

Let T = {x ∈ {0, 1}n : n
2 −

√
n ≤ |x| ≤ n

2 +
√

n} consist of the elements in the
middle slice of the hypercube and let M be the set of all functions from {0, 1}n

to {0, 1} that map each x �∈ T to 0. A pair of functions (f, g) from Dyes is drawn
by the following procedure:

1. Pick π ∈ Sn uniformly at random.
2. Choose f ∈ M uniformly at random.
3. Let g = fπ.

A pair of functions (f, g) is drawn from Dno by independently choosing two
functions uniformly at random from M . With probability 1 − o(1), f is 1

4 -far
from isomorphic to g.

We now introduce two random processes Pyes and Pno that answer the queries
of T while generating a pair of functions (f, g) from Dyes or from Dno, respec-
tively. Without loss of generality, we can assume that the tester queries the value
of f or of g only on inputs x ∈ T , since functions drawn from Dyes or from Dno
always take the value 0 on the remaining inputs.

The process Pyes starts by choosing a permutation π ∈ Sn uniformly at ran-
dom. It then proceeds to answer all the queries of the algorithm T randomly,
with one exception: Pyes “quits” if T queries the value of f(x) after previously
having queried g(π(x)), and similarly Pyes quits if T queries g(x) after having
queried f(π−1(x)).
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When Pyes quits or reaches the end of the queries, it completes the generation
of (f, g) by choosing f uniformly at random from all the functions that are
consistent with the previously-answered queries (note: in this step, the value of
f(x) for every x where g(π(x)) was queried is also determined by the value that
was returned to the tester) and setting g = fπ. If there are more queries that
have not yet been answered because Pyes quit, they are answered as per the
generated f and g.

The process Pno is defined similarly. First, it chooses a permutation π ∈ Sn

uniformly at random. It then answers the queries of T randomly, with the same
exception as in the Pyes case: if T queries f(x) after having queried g(π(x)), or
if T queries g(x) after having queried f(π−1(x)), then Pno “quits”.

When Pno quits or reaches the end of the queries, it completes the definitions
of f and of g independently, randomly fixing the value of f(x) and g(x) for every
input x ∈ T that has not been queried by T . If Pno quit before answering all the
queries, those queries are then answered with the values of f and g that have
been fixed.

It is easy to check that Pyes and Pno generate pairs of functions from Dyes and
Dno, respectively. Furthermore, when Pyes and Pno do not quit, they induce the
same (i.e., uniformly random) distribution on the responses. So to complete the
proof of the Lemma, it suffices to show that neither process quits with probability
greater than o(1).

The process Pyes or Pno quits if there is a pair of inputs xf , xg ∈ T such
that f(xf ) and g(xg) are queried by T and π(xf ) = xg. For any such pair, the
probability that π(xf ) = xg is at most O(

√
n

2n ). But the answers to the queries
yield no information about π to the tester T , so the probability that it causes
Pyes or Pno to quit is at most o(2n/2

n1/4 )2 ·O(
√

n
2n ) = o(1). 
�
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Abstract. We consider the problem of doing fast and reliable estimation
of the number of non-zero entries in a sparse boolean matrix product.

Let n denote the total number of non-zero entries in the input ma-
trices. We show how to compute a 1 ± ε approximation (with small
probability of error) in expected time O(n) for any ε > 4/ 4

√
n. The pre-

viously best estimation algorithm, due to Cohen (JCSS 1997), uses time
O(n/ε2). We also present a variant using O(sort(n)) I/Os in expectation
in the cache-oblivious model.

We also describe how sampling can be used to maintain (independent)
sketches of matrices that allow estimation to be performed in time o(n)
if z is sufficiently large. This gives a simpler alternative to the sketching
technique of Ganguly et al. (PODS 2005), and matches a space lower
bound shown in that paper.

1 Introduction

In this paper we will consider a d × d boolean matrix as the subset of [d] × [d]
corresponding to the nonzero entries. The product of two matrices R1 and R2
contains (i, k) if and only if there exists j such that (i, j) ∈ R1 and (j, k) ∈ R2.
The matrix product can also be expressed using basic operators of relational
algebra: R1 � R2 denotes the set of tuples (i, j, k) where (i, j) ∈ R1 and (j, k) ∈
R2, and the projection operator π can be used to compute the tuples (i, k) where
there exists a tuple of the form (i, ·, k) in R1 � R2. Since most of our applications
are in database systems we will primarily use the notation of relational algebra.

We consider the following question: given relations R1 and R2 with schemas
(a, b) and (b, c), estimate the number of distinct tuples in the relation Z =
πac(R1 � R2). This problem has been referred to in the literature as join-project
or join-distinct1. We define n1 = |R1|, n2 = |R2|, and n = n1 + n2. As observed
� This work was supported by the Danish National Research Foundation, as part of

the project “Scalable Query Evaluation in Relational Database Systems”. A full
version of this paper is available on arXiv [2].

1 Readers familiar with the database literature may notice that we consider projections
that return a set, i.e., that projection is duplicate eliminating. We also observe that
any equi-join followed by a projection can be reduced to the case above, having two
variables in each relation and projecting away the single join attribute. Thus, there
is no loss of generality in considering this minimal case.

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 406–419, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Better Size Estimation for Sparse Matrix Products 407

above, the join-project problem is equivalent to the problem of estimating the
number of non-zero entries in the product of two boolean matrices, having n1
and n2 non-zero entries, respectively.

In recent years there has been several papers presenting new algorithms for
sparse matrix multiplication [3,12,14]. In particular, these algorithms can be used
to implement boolean matrix multiplication. However, the proposed algorithms
all have substantially superlinear time complexity in the input size n: On worst-
case inputs they require time ω(n4/3), even when the output Z only has size
O(n).

In an influential work, Cohen [5] presented an estimation algorithm that, for
any constant error probability δ > 0, and any ε > 0, can compute a 1 ± ε
approximation of z = |Z| in time O(n/ε2). Cohen’s algorithm applies to the
more general problem of computing the size of the transitive closure of a graph.

Our main result is that in the special case of sparse matrix product size
estimation, we can improve this to expected time O(n) for ε > 4/ 4

√
n. This

means that we have a linear time algorithm for relative error where Cohen’s
algorithm would use time O(n3/2).

Approach. To build intuition on the size estimation question, consider the sets
Aj = {i |(i, j) ∈ R1} and Cj = {k |(j, k) ∈ R2}. By definition, Z =

⋃
j Aj ×

Cj . The size of Z depends crucially on the extent of overlap among the sets
{Aj × Cj}j . However, the total size of these sets may be much larger than both
input and output (see [3]), so any approach that explicitly processes them is
unattractive.

The starting point for our improved estimation algorithm is a well-known
algorithm for estimating the number of distinct elements in a data streaming
context [4]. (We remark that the idea underlying this algorithm is similar to
that of Cohen [5].) Our main insight is that this algorithm can be extended
such that a set of the form Aj × Cj can be added to the sketch in expected
time O(|Aj | + |Cj|), i.e., without explicitly generating all pairs. The idea is to
use a hash function that is particularly well suited for the purpose: sufficiently
structured to make hash values easy to handle algorithmically, and sufficiently
random to make the analysis of sketching accuracy go through.

1.1 Motivation

Cohen [6] investigated the use of the size estimation technique in sparse matrix
computations. In particular, it can be used to find the optimal order of multiply-
ing sparse matrices, and in memory allocation for sparse matrix computations.

In addition, we are motivated by applications in database systems, where size
estimation is an important part of query optimization. Our result also has an
application in data mining, where it gives a way choosing the support threshold
of the Apriori algorithm [1] to obtain a given space usage. Further details can
be found in the full version of this paper [2].
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1.2 Further Related Work

JD sketch. Ganguly et al. [8] previously considered techniques that compute a
data structure (a sketch) for R1 and R2 (individually), such that the two sketches
suffice to compute an approximation of z.

Define na = |{i | ∃j.(i, j) ∈ R1}| and nc = |{k | ∃j.(j, k) ∈ R2}|. Ganguly et
al. show that for any constant c and any β, a sketching method that returns a
c-approximation with probability Ω(1) whenever z ≥ β must, on a worst-case
input, use expected space

Ω(min(n1+n2, nanc(n1/na+n2/nc)/β))=Ω(min(n1+n2, (n1nc+n2na)/β)) bits.

The lower bound proof applies to the case where n1 = n2, na = nc, and z <
na + nc. We note that [8] claims a stronger lower bound, but their proof does
not establish a lower bound above n1 + n2 bits. Ganguly et al. present a sketch
whose worst-case space usage matches the lower bound times polylogarithmic
factors (while not stated in [8], the trivial sketch that stores the whole input can
be used to nearly match the first term in the minimum).

In Section 3 we analyze a simple sketch, previously considered in other con-
texts by Gibbons [10] and Ganguly and Saha [9]. It similarly matches the above
worst-case bound, but the exact space usage is incomparable to that of [8].

The focus of [8] is on space usage, and so the time for updating sketches, and
for computing the estimate from two sketches, is not discussed in the paper.
Looking at the data structure description we see that the update time grows
linearly with the quantity s1, which is Ω(n) in the worst case. Also, the sketch
uses a number of summary data structures that are accessed in a random fashion,
meaning that the worst case number of I/Os is at least Ω(n) unless the sketch
fits internal memory. By the above lower bound we see that keeping the sketch
in internal memory is not feasible in general. In contrast, the sketch we consider
allows collection and combination of sketches to be done efficiently in linear time
and I/O.

Distinct elements and distinct paths estimation. Our work is related in
terms of techniques to papers on estimating the number of distinct items in a
data stream (see [4] and its references). However, our basic estimation algorithm
does not work in a general streaming model, since it crucially needs the ability
to access all tuples with a particular value on the join attribute together.

Ganguly and Saha [9] consider the problem of estimating the number of dis-
tinct vertex pairs connected by a length-2 path in a graph whose edges are given
as a data stream of n edges. This corresponds to size estimation for the spe-
cial case of squaring a matrix (or self-join in database terminology). It is shown
that space

√
n is required, and that space roughly O(n3/4) suffices for constant

ε (unless there are close to n connected components). The estimation itself is
a join-distinct size estimation of a sample of the input having size no smaller
than O(n3/4/ε2). Using Cohen’s estimation algorithm this would require time
O(n3/4/ε4), so this is O(n) time only for ε > 1/ 16

√
n.
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Distinct sampling. Gibbons [10] considered different samples that can be
extracted by a scan over the input, and proposed distinct samples, which offer
much better guarantees with respect to estimating the number of distinct values
in query results. Gibbons shows that this technique applies to single relations,
and to foreign key joins where the join result has the same number of tuples
as one of the relations. In Section 3 we show that the distinct samples, with
suitable settings of parameters, can often be used in our setting to get an accurate
estimate of z = |Z|.

2 Our Algorithm

The task is to estimate the size z of Z = πac(R1 � R2). We may assume that
attribute values are O(log n)-bits integers, since any domain can be mapped
into this one using hashing, without changing the join result size with high
probability. When discussing I/O bounds, B is the number of such integers that
fits in a disk block. In linear expected time (by hashing) or sort(n) I/Os we can
cluster the relations according to the value of the join attribute b. By initially
eliminating input tuples that do not have any matching tuples in the other
relation we may assume without loss of generality that z ≥ n/2.

In what follows, k is a positive integer parameter that determines the space
usage and accuracy of our method. The technique used is to compute the kth
smallest value v of a hash function h(x, y), for (x, y) ∈ Z. Analogously to the
result by Bar-Yossef et al. [4] we can then use z̃ = k/v as an estimator for z.

Our main building block is an efficient iteration over all tuples (x, ·, y) ∈
R1 � R2 for which h(x, y) is smaller than a carefully chosen threshold p, and is
therefore a candidate for being among the k smallest hash values. The essence
of our result lies in how the pairs being output by this iteration are computed
in expected linear time. We also introduce a new buffering trick to update the
sketch in expected amortized O(1) time per pair. In a nutshell, each time k
new elements have been retrieved, they are merged using a linear time selection
procedure with the previous k smallest values to produce a new (unordered) list
of the k smallest values.

Theorem 1. Let R1(a, b) and R2(b, c) be relations with n tuples in total, and
define z = |πac(R1 � R2)|. Let ε, 0 < ε < 1

2 be given. There are algorithms
that run in expected O(n) time on a RAM, and expected O(sort(n)) I/Os in the
cache-oblivious model, and output a number z̃ such that for k = 9/ε2:

– Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 when z > k2, and
– Pr[z̃ < (1 + ε)k2] ≥ 2/3 when z ≤ k2.

Observe that for ε > 4/ 4
√

n, since z ≥ n/2 we will be in the first case, and get
the desired 1± ε approximation with probability 2/3. The error probability can
be reduced from 1/3 to δ by the standard technique of doing O(log(1/δ)) runs
and taking the median (the analysis follows from a Chernoff bound). We remark
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that this can be done in such a way that the O(log(1/δ)) factor affects only
the RAM running time and not the number of I/Os. For constant relative error
ε > 0 we have the following result:

Theorem 2. In the setting of Theorem 1, if ε is constant there are algorithms
that run in expected O(n) time on a RAM, and expected O(sort(n)) I/Os in the
cache-oblivious model, that output z̃ such that Pr[(1 − ε)z < z̃ < (1 + ε)z] =
O(1/

√
n).

The error probability can be reduced to n−c for any desired constant c by running
the algorithms O(c) times, and taking the median as above.

Finding pairs. For B = πb(R1)∪πb(R2) and each i ∈ B let Ai = πa(σb=i(R1))
and Ci = πc(σb=i(R2)). We would like to efficiently iterate over all pairs (x, y) ∈
Ai × Ci, i ∈ B, for which h(x, y) is smaller than a threshold p. This is done as
follows (see Algorithm 1 for pseudocode).

For a set U , let h1, h2 : U → [0; 1] be hash functions chosen independently at
random from a pairwise independent family, and define h : U × U → [0; 1] by2

h(x, y) = (h1(x)− h2(y)) mod 1.

It is easy to show that h is also a pairwise independent hash function — a
property we will utilize later. Now, conceptually arrange the values of h(x, y) in
an |Ai| × |Ci| matrix, and order the rows by increasing values of h1(x), and the
columns by increasing values of h2(y). Then the values of h(x, y) will decrease
(modulo 1) from left to right, and increase (modulo 1) from top to bottom.

For each i ∈ B, we traverse the corresponding |Ai| × |Ci| matrix by visiting
the columns from left to right, and in each column t finding the row s̄ with the
smallest value of h(xs̄, yt). Values smaller than p in that column will be found
in rows subsequent to s̄. When all such values have been output, the search
proceeds in column t + 1. Notice, that if h(xs̄, yt) was the minimum value in
column t, then the minimum value in column t+1 is found by increasing s̄ until
h(xs̄, yt+1) < h(x(s̄−1) mod |Ai|, yt+1). We observe that the algorithm is robust to
decreasing the value of the threshold p during execution, in the sense that the
algorithm still outputs all pairs with hash value at most p.

Estimating the size. While finding the relevant pairs, we will use a technique
that allows us to maintain the k smallest hash values in an unordered buffer
instead of using a heap data structure (lines 14–18 in Algorithm 1). In this way
we are able to maintain the k smallest hash values in constant amortized time
per insertion in the buffer, eliminating the log k factor implied by the heap data
structure.

Let S and F be two unordered sets containing, respectively, the k smallest
hash values seen so far (all, of course, smaller than p), and the latest up to k

2 We observe that this is different from the “composable hash functions” used by
Ganguly et al. [8].
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Algorithm 1. Pseudocode for the size estimator
1: procedure DisItems(p, ε)
2: k ← �9/ε2�
3: F ← ∅
4: for i ∈ B do
5: x ← Ai sorted according to h1-value
6: y ← Ci sorted according to h2-value
7: s̄ ← 1
8: for t := 1 to |Ci| do
9: while h(xs̄, yt) > h(x(s̄−1) mod |Ai|, yt) do 
 Find s̄ s.t. h(xs̄, yt) is min.

10: s̄ ← (s̄ + 1) mod |Ai|
11: end while
12: s ← s̄
13: while h(xs, yt) < p do 
 Find all s where h(xs, yt) < p
14: F ← F ∪ {(xs, yt)}
15: if |F | = k then 
 Buffer filled, find smallest hash values in S ∪ F
16: (p, S) ← Combine(S, F )
17: F ← ∅
18: end if
19: s ← (s + 1) mod |Ai|
20: end while
21: end for
22: end for
23: (p, S) ← Combine(S, F )
24: if |S| = k then
25: return “z̃ = k

p
and z̃ ∈ [(1 ± ε)z] with probability 2/3”

26: else
27: return “z̃ = k2, z ≤ k2 with probability 2/3”
28: end if
29: end procedure

30: procedure Combine(S, F )
31: v ← Rank(h(S) ∪ h(F ), k) 
 Rank(·, k) returns the kth smallest value
32: S ← {x ∈ S ∪ F |h(x) ≤ v}
33: return (v, S)
34: end procedure

elements seen. We avoid duplicates in S and F (i.e., the sets are kept disjoint) by
using a simple hash table to check for membership before insertion. Whenever
|F | = k the two sets S and F are combined in order to obtain a new sketch S.
This is done by finding the median of S ∪F , which takes O(k) time using either
deterministic methods (see [7]) or more practical randomized ones [11].

At each iteration the current kth smallest value in S may be smaller than the
initial value p, and we use this as a better substitute for the initial value of p.
However, in the analysis below we will upper bound both the running time and
the error probability using the initial threshold value p.
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2.1 Time Analysis

We split the time analysis into two parts. One part accounts for iterations of
the inner while loop in lines 13–20, and the other part accounts for everything
else. We first consider the RAM model, and then outline the analysis in the
cache-oblivious model.

Inner while loop. Observe that for each iteration, one pair (xs, yt) is added to F
(if it is not already there). For each t ∈ Ci, p|Ai| elements are expected to
be added since each pair (xs, yt) is added with probability p. This means that
the expected total number of iterations is O(p|Ai||Ci|). Each call to Combine

costs time O(k), but we notice that there must be at least k iterations between
successive calls, since the size of F must go from 0 to k. Inserting a new value
into F costs O(1) since the set is not sorted. Hence, the total cost of the inner
loop is O(p|Ai||Ci|).

Remaining cost. Consider the processing of a single i ∈ B in Algorithm 1. The
initial sorting of hash values can be done with bucket sort requiring expected
time O(|Ai| + |Ci|) since the numbers sorted are pairwise independent (by the
same analysis as for hashing with chaining).

For the iteration in lines 9–11 observe that h(xs̄, yt) is monotone modulo 1,
and we have at most a total of 2|Ai| increments of s̄ among all t ∈ Ci. Thus,
the total number of iterations is O(|Ai|), and the total cost for each i ∈ B is
O(|Ai|+ |Ci|).

The time for the final call to Combine is dominated by the preceding cost of
constructing S and F .

I/O efficient variant. As for I/O efficiency, notice that a direct implementation
of Algorithm 1 may cause a linear number of cache misses if Ai and Ci do
not fit into internal memory. To get an I/O-efficient variant we use a cache-
oblivious sorting algorithm, sorting R1 according to (b, h1(a)), and R2 according
to (b, h2(c)), such that the sorting steps for each i ∈ B is replaced by one global
sorting step.

The rest of the algorithm works directly in a cache-oblivious setting. To see
this, notice that it suffices to keep in internal memory the two input blocks that
are closest to each of the pointers s, t, and s̄. The cache-oblivious model assumes
the cache to behave in an optimal fashion, so also in this model there will be
Ω(B) operations between cache misses, and O(n/B) I/Os, expected, in total.

Lemma 1. Suppose R1(a, b) and R2(b, c) are relations with n tuples in total.
Let p > 0 and ε > 0 be given. Then Algorithm 1 runs in expected O(n +∑

i p|Ai||Ci|) time and O(1/ε2) space on a RAM, and can be modified to use
expected O(sort(n)) I/Os in the cache-oblivious model.

Choice of threshold p. We would like a value of p that ensures the expected
processing time is O(n). At the same time p should be large enough that we
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expect to reach line 25 where an exact estimate is returned (except possibly in
the case where z is small).

Lemma 2. Let j ∈ B satisfy |Ai||Ci| ≤ |Aj ||Cj | for all i ∈ B. Then p =
min(1/k, k/(|Aj||Cj |)) gives an expected O(n) running time for Algorithm 1.

Proof. We argue that for each i, p|Ai||Ci| ≤ max(|Ai|, |Ci|), which by Lemma 1
implies running time O(n +

∑
i p|Ai||Ci|) = O(n +

∑
i max(|Ai|, |Ci|)) = O(n).

Suppose first that |Ai||Ci| ≥ k2. Then p = k/(|Aj ||Cj|) and p|Ai||Ci| ≤ k ≤√
|Ai||Ci| ≤ max(|Ai|, |Ci|). Otherwise, when |Ai||Ci| < k2, we have p = 1/k and

p|Ai||Ci| = |Ai||Ci|/k ≤ max(|Ai|, |Ci|). 
�
We note that when R1 and R2 are sorted according to b, the value of p specified
above can be found by a simple scan over both inputs. Our experiments indicate
that in practice this initial scan is not needed, see Section 4 for details.

2.2 Error Probability

Theorem 3. Let h be a pairwise independent hash function. Suppose we are
provided with a stream of elements N with h(x) < v for all x ∈ N . Further, let ε,
0 < ε < 1

2 be given and assume that p ≥ min
(

k
2z , 1

k

)
, where k ≥ 9/ε2, and z is

the number of distinct items in N . Then Algorithm 1 produces an approximation
z̃ of z such that
– Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 for z > k2, and
– Pr[z̃ < (1 + ε)k2] ≥ 2/3 for z ≤ k2.

Proof. The error probability proof is similar to the one that can be found in [4],
with some differences and extensions. We bound the error probability of three
cases: the estimate being smaller/larger than the multiplicative error bound, and
the number of obtained samples being too small.

Estimate too large. Let us first consider the case where z̃ > (1 + ε)z, i.e. the
algorithm overestimates the number of distinct elements. This happens if the
stream N contains at least k entries smaller than k/(1 + ε)z. For each pair
(a, c) ∈ Z define an indicator random variable X(a,c) as

X(a,c) =

{
1 h(a, c) < k/(1 + ε)z
0 otherwise

That is, we have z such random variables for which the probability of X(a,c) = 1
is exactly k/(1+ε)z and E[X(a,c)] = k/(1+ε)z. Now define Y =

∑
(a,c)∈Z X(a,c)

so that E[Y ] = E[
∑

(a,c)∈Z X(a,c)] =
∑

(a,c)∈Z E[X(a,c)] = k/(1 + ε). By the
pairwise independence of the X(a,c) we also get Var(Y ) ≤ k/(1 + ε). Using
Chebyshev’s inequality [13] we can bound the probability of having too many
pairs reported:

Pr [Y > k] ≤ Pr
[
|Y −E[Y ]| > k − k

1+ε

]
≤ Var[Y ](

k − k
1+ε

)2 ≤
k/(1 + ε)(
k − k

1+ε

)2 ≤
1
6

since k ≥ 9/ε2.
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Estimate too small. Now, consider the case where z̃ < (1− ε)z which happens
when at most k hash values are smaller than k/(1 − ε)z and at least k hash
values are smaller than p. Define X ′

(a,c) as

X ′
(a,c) =

{
1 h(a, c) < k/(1− ε)z
0 otherwise

so that E[X ′
(a,c)] = k/(1−ε)z < (1+ε)k/z. Moreover, with Y ′ =

∑
(a,c)∈Z X ′

(a,c)
we have E[Y ′] = k/(1−ε), and since the indicator random variables defined above
are pairwise independent, we also have Var[Y ′] ≤ E[Y ′] < (1+ε)k. Chebyshev’s
inequality gives:

Pr [Y ′ > k] ≤ Pr
[
|Y ′ −E[Y ′]| > k

1−ε − k
]
≤ Var[Y ′](

k − k
1+ε

)2 ≤
(1 + ε)k(
k

1−ε − k
)2 < 1

9

since k ≥ 9/ε2.

Not enough samples. Consider the case where |S| < k after all pairs have been
retrieved. In this case the algorithm returns β = k2 as an upper bound on the
number of distinct elements in the output, and we have two possible situations:
either there is actually less than k2 distinct pairs in the output, in which case the
algorithm is correct, or there are more than k2 distinct elements in the output,
in which case it is incorrect. In the latter case, less than k hash values have been
smaller than p and the kth smallest value v is therefore larger than p. Define
X ′′

(a,c) as

X ′′
(a,c) =

{
1 h(a, c) < p

0 otherwise

and let again Y ′′ =
∑

(a,c)∈Z X ′′
(a,c). It results that E[X ′′

(a,c)] = p and E[Y ′′] = zp,
and because of pairwise independancy of X ′′

(a,c), also Var[Y ′′] ≤ E[Y ′′]. Using
Chebyshev’s inequality and remembering that z > k2 in this case we have:

Pr[Y ′′ < k] ≤ Pr[|Y ′′ −E[Y ′′]| > zp− k] ≤ zp

(zp− k)2
≤ zp( 1

2zp
)2 ≤ 2/k ≤ 1/18.

using that k ≥ 9/ε2 ≥ 36.
In conclusion, the probability that the algorithm fails to output an estimate

within the given limits is at most 1/6 + 1/9 + 1/18 = 1/3. 
�

For the proof of Theorem 2 we observe that in the above proof, if ε is constant
the error probability is O(1/k). Using k =

√
n we get linear running time and

error probability O(1/
√

n).

Realization of hash functions. We have used the idealized assumption that
hash values were real numbers in (0; 1). Let m = n3. To get an actual implemen-
tation we approximate (by rounding down) the real numbers used by rational
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numbers of the form i/m, for integer i. This changes each hash value by at most
2/m. Now, because of the way hash values are computed, the probability that
we get a different result when comparing two real-valued hash values and two
rational ones is bounded by 2/m. Similarly, the probability that we get a differ-
ent result when looking up a hash value in the dictionary is bounded by 2k/m.
Thus, the probability that the algorithm makes a different decision based on the
approximation, in any of its steps, is O(kn/m) = o(1). Also, for the final output
the error introduced by rounding is negligible.

3 Distinct Sketches

A well-known approach to size estimation in, described in generality by Gib-
bons [10] and explicitly for join-project operations in [9,3], is to sample random
subsets R′

1 ⊆ R1 and R′
2 ⊆ R2, compute Z ′ = πac(R′

1 � R′
2), and use the size

of Z ′ to derive an estimate for z. This is possible if R′
1 = σa∈Sa(R1), where

Sa ⊆ πa(R1) is a random subset where each element is picked independently
with probability p1, and similarly R′

2 = σc∈Sc(R2), where Sc ⊆ πc(R2) includes
each element independently with probability p2. Then z′ = |Z ′|/(p1p2) is an
unbiased estimator for z. The samples can be obtained in small space using hash
functions whose values determine which elements are picked for Sa and Sc. The
value |Z ′| can be approximated in linear time using the method described in sec-
tion 2 if the samples are sorted — otherwise one has to add the cost of sorting.
In either case, the estimation algorithm is I/O-efficient.

Below we analyze the variance of the estimator z′, to identify the minimum
sampling probability that introduces only a small relative error with good prob-
ability. The usual technique of repetition can be used to reduce the error prob-
ability. Recall that we have two relations with n1 and n2 tuples, respectively,
and that na and nc denotes the number of distinct values of attributes a and c,
respectively. Our method will pick samples R′

1 and R′
2 of expected size s from

each relation, where s = p1n1 = p2n2 is a parameter to be specified.

Theorem 4. Let R′
1 and R′

2 be samples of size s, obtained as described above.
Then z′ = |πac(R′

1 � R′
2)|/(p1p2) is a 1±ε approximation of z = |πac(R1 � R2)|

with probability 5/6 if z > β, where β = 14
ε2

(
ncn1+nan2

s

)
. If z ≤ β then z′ <

(1 + ε)β with probability 5/6.

3.1 Analysis of Variance

To arrive at a sufficient condition that z′ is a 1±ε approximation of z with good
probability, we analyze its variance. To this end define Zi· = {j | (i, j) ∈ Z},
Z·j = {i | (i, j) ∈ Z}, and let

Xi =
{

1− p1, if i ∈ Sa

−p1, otherwise Yj =
{

1− p2, if j ∈ Sc

−p2, otherwise .

By definition of Sa, E[Xi] = Pr[i ∈ Sa](1 − p1) − Pr[i �∈ Sa]p1 = 0. Similarly,
E[Yi] = 0. We have that (i, j) ∈ Z ′ if and only if (i, j) ∈ Z and (i, j) ∈ Sa × Sc.



416 R.R. Amossen, A. Campagna, and R. Pagh

This means that z′p1p2 =
∑

(i,j)∈Z(Xi+p1)(Yj +p2). By linearity of expectation,
E[(Xi+p1)(Yj+p2)] = p1p2, and we can write the variance of z′p1p2, Var(z′p1p2)
as

E

⎡⎢⎣
⎛⎝ ∑

(i,j)∈Z

((Xi + p1)(Yj + p2)− p1p2)

⎞⎠2
⎤⎥⎦ .

Expanding the product and using linearity of expectation, we get

Var(z′p1p2) =
∑

(i,j)∈Z

∑
(i,j′)∈Z

E
[
X2

i p2
2

]
+

∑
(i,j)∈Z

∑
(i′,j)∈Z

E
[
Y 2

j p2
1

]
+

∑
(i,j)∈Z

E
[
X2

i Y 2
j

]
=

∑
i∈A

∑
j,j′∈Zi·

p2
2 E

[
X2

i

]
+
∑
j∈C

∑
i,i′∈Z·j

p2
1 E

[
Y 2

i

]
+ z E

[
X2

i

]
E
[
Y 2

i

]
Since E

[
X2

i

]
= p1(1 − p1)2 + (1 − p1)(−p1)2 = p1 − p2

1 < p1, and similarly
E
[
Y 2

j

]
< p2 we can upper bound Var(z′) as follows:

Var(z′) = (p1p2)−2 Var(z′p1p2)

< (p1p2)−2
(∑

i∈A

∑
j,j′∈Zi·

p1p
2
2 +

∑
j∈C

∑
i,i′∈Z·j

p2
1p2 + z p1p2

)
≤ (p1p2)−2 (ncz p1p

2
2 + naz p2

1p2 + z p1p2
)

=
(
nc/p1 + na/p2 + (p1p2)−1) z .

3.2 Sufficient Sample Size

We are ready to derive a bound on the probability that z′ deviates significantly
from z. Choose 0 < ε < 1. Since z = E[z′] Chebyshev’s inequality says

Pr[|z′ − z] > εz] <
Var(z′)
(εz)2

≤
(
nc/p1 + na/p2 + (p1p2)−1) /(ε2z).

This can equivalently be expressed in terms of the sample size s, since p1 = s/n1
and p2 = s/n2:

Pr[|z′ − z] > εz] < (ncn1 + nan2 + n1n2/s) /(sε2z).

We seek a sufficient condition on s that the above probability is bounded by
some constant δ < 1

2 (e.g. δ = 1/6). In particular it must be the case that
n1n2/(s2ε2z) < δ, which implies s >

√
n1, n2/(δz) ≥

√
n1, n2/(δnanc). Hence,

using the arithmetic-geometric inequality:

n1n2/s <
√

ncn1nan2δ ≤ (ncn1 + nan2)/(2
√

δ).

In other words, it suffices that

(ncn1 + nan2) (1 + (2
√

δ)−1)
sε2z

< δ ⇐⇒ s >

(
ncn1 + nan2

z

)(
1 + (2

√
δ)−1

ε2δ

)
.
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Fig. 1. The cumulative distribution functions for k = 256 and k = 1024. It is seen
that k = 1024 yields a more precise estimate than k = 256 with 2/3 of the estimates
being within 4% and 10% of the exact size, respectively.

One apparent problem is the chicken-egg situation: z is not known in advance.
If a lower bound on z is known, this can be used to compute a sufficient sample
size. Alternatively, if we allow a larger relative error whenever z ≤ β we may
compute a sufficient value of s based on the assumption z ≥ β. Whenever z < β
we then get the guarantee that z′ < (1 + ε)β with probability 1− δ. Theorem 4
follows by fixing s and solving for β.

Optimality. For constant ε and δ our upper bound matches the lower bound of
Ganguly et al. [8] whenever this does not exceed n1 + n2. It is trivial to achieve
a sketch of size O((n1 + n2) log(n1 + n2)) bits (simply store hash signatures for
the entire relations). We also note that the lower bound proof in [8] uses certain
restrictions of parameters (n1 = n2, na = nc, and z < na + nc), so it may be
possible to do better in some settings.

4 Experiments

We have run our algorithm on most of the datasets from the Frequent Itemset
Mining Implementations (FIMI) Repository3 together with some datasets ex-
tracted from the Internet Movie Database (IMDB). Each dataset represents a
single relation, and motivated by the Apriori space estimation example in the
introduction, we perform the size estimation on self-joins of these relations.

Rather than selecting h1 and h2 from an arbitrary pairwise independent fam-
ily, we store functions that map the attribute values to fully random and inde-
pendent values of the form d/264, where d is a 64 bit random integer formed by
reading 64 random bits from the Marsaglia Random Number CDROM4.

We have chosen an initial value of p = 1 for our tests in order to be certain to
always arrive at an estimate. In most cases we observed that p quickly decreases
3 http://fimi.cs.helsinki.fi
4 http://www.stat.fsu.edu/pub/diehard/

http://fimi.cs.helsinki.fi
http://www.stat.fsu.edu/pub/diehard/
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Fig. 2. Plots for sampling with probability 10% and 1%. If the sampling probability
is too small, no elements at all may reach the sketch and in these cases we are not able
to return an estimate. Instances with no estimates have been left out of the graph.

to a value below 1/k anyway. But as the sampling probability decreases, the
probability that the sketch will never be filled increases, implying that we will
not get a linear time complexity with an initial value of p = 1. In the cases where
the sketch is not filled, we report |F |/(p1p2) as the estimate, where |F | is the
number of elements in the buffer.

Tests have been performed for k = 256 and k = 1024. In each test, 60 indepen-
dent estimates were made and compared to the exact size of the join-project. By
sorting the ratios “estimate”/”exact size” we can draw the cumulative distribu-
tion function for each instance that, for each ratio-value on the x-axis, displays
on the y-axis the probability that an estimate will have this ratio or less. Figure 1
shows plots for k = 256 and k = 1024.

In Figure 2 we perform sampling with 10% and 1% probability, as described in
Section 3. Again, the samples are chosen using truly random bits. The variance
of estimates increase as the probability decreases, but increases more for smaller
than for larger instances. If the sampling probability is too small, no elements at
all may reach the sketch and in these cases we are not able to return an estimate.

5 Conclusion

We have presented improved algorithms for estimating the size of boolean matrix
products, for the first time allowing o(1) relative error to be achieved in linear
time. An interesting open problem is if this can be extended to transitive closure
in general graphs, and/or to products of more than two matrices.

Acknowledgement. We would like to thank Jelani Nelson for useful discus-
sions, and in particular for introducing us to the idea of buffering to achieve
faster data stream algorithms. Also, we thank Sumit Ganguly for clarifying the
lower bound proof of [8] to us.
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Abstract. Three results are shown regarding locally testable and locally
decodable linear codes. All three results rely on the observation that
repetition codes have the same local testability and local decodability
parameters as the unrepeated base code used to create them.

The first two results deal with families of sparse linear codes, i.e.,
codes with dimension logarithmic in the code blocklength n. Such codes
have been shown by Kaufman and Sudan [8] to be locally testable and
decodable as long as all nonzero codewords have Hamming weight n ·(

1
2
± n−Ω(1)

)
. Our first result shows that certain sparse codes are nei-

ther locally testable, nor locally decodable. This refutes a conjecture of
Kopparty and Saraf [9] which postulated that all sparse codes are locally
testable. Our second result shows that the result of Kaufman and Sudan
is surprisingly tight, and for any function h(n) = o(1) there exist families
of sparse codes all of whose codewords have weight n ·

(
1
2
± n−h(n)

)
and

these codes are neither locally testable, nor locally decodable.
Our third and final result is about the redundancy of locally testable

codes. Informally, the redundancy of a locally testable code is the mini-
mal number of redundant tests sampled by a tester, where a test is said
to be redundant if is a linear combination of other tests. Ben-Sasson et al.
[1] introduced the notion of redundancy and showed that for every linear
locally testable code the redundancy is at least linear in the dimension
of the code. Our last result shows that redundancy is indeed a function
of the code dimension, not blocklength, and that the bound given in [1]
is nearly tight.

1 Introduction

This paper deals with locally testable, and locally decodable, linear codes, which
have drawn much attention in recent years in theoretical computer science (cf.
[12]). We show tightness of various parameters associated with locally testable
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(decodable) codes and refute a recently suggested conjecture regarding them.
All results in this paper rely on the same simple observation: If C is a code and
C′ is its t-wise repetition, obtained by repeating each codeword of C a t number
of times, then C and C′ have essentially the same local-testability and local-
decodability parameters. The rate of the repeated code is, however, smaller, and
we use this fact in our proofs time and again.

Given a linear code C ⊆ Fn, the dimension of C, denoted by dim(C), is its
dimension as a vector space and its distance, denoted by Δ(C), is the minimal
Hamming distance between two closest different codewords. A family of linear
codes C =

{
C(n) ⊂ Fn

2
}

n∈Z
is called sparse if dim(C(n)) = O(log n). We say

that a code C is ε-biased if all nonzero codewords of C have relative weight in
the range (1

2 − ε, 1
2 + ε), where ε may be a function of n. (Notice that an ε-biased

code has relative distance is at least 1
2 − ε.)

Inverse polynomial bias is necessary for local testability and decodability of sparse
codes. Kaufman and Sudan [8] showed that local testability and decodability
exists in random sparse linear codes. They showed that for any constant γ > 0 all
sparse linear codes with relative distance 1

2 −n−γ are (strongly) locally testable.
They also showed that for any constant γ > 0 all sparse n−γ-biased linear codes
are locally decodable 1. In particular, sparse random linear codes have low-bias
and hence are locally testable and decodable. This result was later generalized
by Kopparty and Saraf [10] to the problem known as “local list-decoding and
testing in the high error regime” (see [10] for the definition and discussion of the
problem), i.e., they proved that all sparse n−Ω(1)-biased linear codes are locally
testable and locally list-decodable even in the high error regime.

One of our results (Theorem 5) shows that the results of [8,10] are surprisingly
tight. We show a family of sparse n−o(1)-biased linear codes which are non-locally
testable/decodable. In plain words, relaxing the bias-requirement of n−Ω(1) to
any slightly larger bias of the form n−o(1) implies that local testability and
decodability of sparse codes are no longer guaranteed, even in the easier to
obtain, low-error, regime.

Sparse codes are not necessarily locally testable/decodable. Kopparty and Saraf
[9] conjectured that all families of sparse linear codes — even those with sub-
constant relative distance — are locally testable. In particular, this conjecture
suggested that the result of Kaufman and Sudan could be extended to all sparse
linear codes.

Another result of this paper (Theorem 4) refutes several plausible relaxations
of this conjecture by showing that for any d(n) ranging from ω(1) to Ω(n)
there exists a family of linear codes

{
C(n) ⊂ Fn

2
}

n∈Z
with linear distance and

dim(C(n)) = Θ(d(n)) which are non-locally testable/decodable.

Tester redundancy is proportional to code dimension and unrelated to code block-
length. Ben-Sasson et al. suggested in [1] to study the redundancy of a locally
1 In fact, Kaufman and Sudan [8] proved a stronger result. They showed that sparse

“low-bias” linear codes are locally self-correctable and thus are locally decodable.
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testable code. A tester for a linear code can be viewed as a distribution over
words in the dual code that have small weight. The support of a tester is the
set of (small-weight) dual words sampled by the tester and the redundancy of
the tester is the number of dual words in its support that are linearly depen-
dent on the rest of the support (they are called redundant because they are not
required for characterizing the code). The redundancy of a locally testable code
is the minimal redundancy of a tester of the code. The main result of [1] was
to show that the redundancy of any locally testable code must be linear in the
dimension of the code. This dependence seems a bit strange and one could imag-
ine the redundancy being linear in the blocklength of the code. Our final result
(Theorem 6) says that redundancy should indeed be related to code dimension,
and not to blocklength, and that the dependence showed in [1] is tight up to a
polylogarithmic factor in the dimension.

Organization of the paper. In the following section we provide standard defi-
nitions regarding locally testable and locally decodable codes. In Section 3 we
state our main results. Section 4 contains our main observation — that repeti-
tion does not affect testability/decodability parameters. Finally, in Section 5 we
use this observation to prove our main theorems.

2 Definitions

Notation. Let F be a finite field and [n] be the set {1, . . . , n}. Let C ⊆ Fn be a
linear code over F (In this work, we consider only linear codes). For w ∈ Fn, let
supp(w) = {i ∈ [n] | wi �= 0} and |w| = |supp(w)|. We define the relative distance
between two words x, y ∈ Fn to be δ(x, y) = Δ(x,y)

n and let Δ(x, y) = δ(x, y) ·n.
The distance of a code is denoted by Δ(C) and defined to be the minimal
value of Δ(x, y) for two distinct codewords x, y ∈ C. Similarly, the relative
distance of the code is denoted δ(C) = Δ(C)

n . For x ∈ Fn and C ⊆ Fn, let
δ(x, C) = δC(x) = min

y∈C
{δ(x, y)} denote the relative distance of x from the code

C. We note that Δ(C) = min
c∈C\{0}

{wt(c)}. For two linear codes C1, C2 ⊆ Fn

we let δ(C1, C2) = min
c1∈C1\{0}

{δ(c1, C2)}. If δ(x, C) ≥ ε, we say that x is ε-far

from C and otherwise x is ε-close to C. Let dim(C) be the dimension of C.
For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilinear

function from Fn × Fn to F defined by 〈u, v〉 =
n∑

i=1

uivi The dual code C⊥

is defined as C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}. In a similar way we define
C⊥

≤t =
{
u ∈ C⊥ | |u| ≤ t

}
and C⊥

t =
{
u ∈ C⊥ | |u| = t

}
. For w ∈ Fn and S =

{j1, j2, ..., jm} ⊆ [n] we let w|S = (wj1 , wj2 , ..., wjm), where j1 < j2 < . . . < jm,
be the restriction of w to the subset S. Similarly, we let C|S = {c|S | c ∈ C}
denote the projection of the code C onto S. We say that a code C has a q-
characterization if span(C⊥

≤q) = C⊥. For w ∈ Fn and t ∈ N let w(t) ∈ Fnt be
the concatenation of w to itself t times. For S ⊆ Fn, where S is not a vector
space, with some abuse of notation we let dim(S) = dim(span(S)).
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2.1 Locally Testable and Locally Decodable Codes

We use the definition of a (linear) locally testable code provided in [4]. The
justification for this definition is given there. The notion of redundancy is defined
(and explained) in [1].

Definition 1 ((Locally testable codes (LTCs))). A linear code C ⊆ Fn is
said to be a (q, ε, δ)-LTC if it has a (q, ε, δ)-tester, defined next. A (q, ε, δ)-tester
for C is a distribution D over subsets I ⊆ [n] such that |I| ≤ q and for all
w ∈ Fn that is δ-far from C

Pr
I∼D

[w|I /∈ C|I ] ≥ ε.

(Note that I defines C|I which is a linear subspace of FI .)

We shall say that the tester accepts w when the set I selected according to D is
such that w|I ∈ C|I , otherwise we say the tester rejects w.

A family of codes
{
C(n)

∣∣ n ∈ Z
}

is locally testable if there exist constants
q, ε, δ > 0 such that for infinitely many n it holds that C(n) ⊆ Fn is a (q, ε, δ)-
LTC.

Remark. Usually we assume that δ ≤ 1/3 (see the discussion in [1] regarding
this issue). So later on we shall say that a family of codes is not locally testable
if for all constants q, ε > 0, large enough n and distribution Dn over subsets
I ⊆ [n], such that |I| ≤ q there is a word w that is (1/3)-far from C(n) and
Pr

I∼Dn

[w|I /∈ C|I ] < ε.

Ben-Sasson et al. [1] defined the redundancy of a tester using the following
definition. We point out that this definition assumes that a q-query tester is a
distribution over dual words of support at most q. While this definition seems to
be less general than Definition 1 (for instance, a tester according to the former
definition can select I that is the support of two words in the dual code), it
turns out that the two definitions are essentially equivalent (see [1, Section 2]
for details).

Definition 2 ((Distributions and redundancy)). The support of the distri-
bution D over C⊥

≤q is

DS =
{
u ∈ C⊥

≤q | D(u) > 0
}
.

The redundancy of the distribution D is defined to be Redun(D) = |DS | −
dim(DS).

Now we define locally decodable codes.

Definition 3 ((Locally decodable codes (LDCs) and decoders)). Let
C ⊆ Fn

2 and EC : Fk
2 → Fn

2 be its encoding function, i.e., C =
{
EC(x) | x ∈ Fk

2
}
.

Then C is a (q, ε, δ)-LDC if there exists a randomized decoder (D) such that:
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– In every invocation, D makes at most q queries.
– For all x ∈ Fk, i ∈ [k] and ĉ ∈ Fn such that Δ(EC(x), ĉ) ≤ δn we have

Pr
[
Dĉ[i] = xi

]
≥ 1

2
+ ε, i.e., with probability at least 1

2 + ε entry xi will be
recovered correctly.

Note that the definition implies that δ < δ(C)/2 and ε ≤ 1
2 . We can assume

without loss of generality that the decoder for a linear code is non-adaptive [5].
We say that a family of codes

{
C(n)

∣∣ n ∈ Z
}

is locally decodable if there exist
constants q, ε, δ > 0 such that for infinitely many n it holds that C(n) ⊆ Fn is a
(q, ε, δ)-LDC.

Informally, locally correctable codes (LCCs) allow to recover each entry of a
codeword with high probability by reading only a few entries of the codeword
even if a large fraction of it is adversely corrupted (see [8]). It is well-known that
q-query LCCs are also q-query LDCs so if we show that a code C is not q-query
LDC then it is not q-query LCC either.

Remark. Notice that a message space M for an LDC can be a strict subspace
of Fk, i.e., not every word in Fk is a message. The linearity of C the message
space M must be a linear subspace and the dimension of the code is defined to
be dim(M).

3 Main Results

In this section we present our main results. Theorem 4 refutes several possible
formulations of the conjecture of Kopparty and Saraf [9], which says that all
sparse linear codes are locally testable. Theorem 5 shows the surprising tightness
of the results in [8]. Theorem 6 shows that the redundancy of a tester should be
measured as a function of the dimension of the code, not its blocklength.

3.1 Sparse Biased Codes Can Be Non-locally Testable

Our first main result that there exists a family of sparse linear codes with relative
distance ≥ 0.49 which are non-locally testable (decodable). One could conjecture
that all sparse linear codes with small characterization are locally testable or
decodable. So, Theorem 4 also shows that there are sparse linear codes which
have a small characterization and linear distance, but are non-locally testable
(decodable).

We also show that there are sparse linear codes with dual distance strictly
greater than 2 which are non-locally testable (decodable). We believe that this
case is interesting since it shows that non-redundant2 sparse codes can be non-
locally testable (decodable). Equivalently, picking a large fraction of columns
2 The term “non-redundant” here means the dual distance of the code is at least 3.

Note that if the dual distance of a code is 1 then some of its bits are identically
0, and if the dual distance is 2 then some pairs of bits are equal to each other and
hence one of each pair is redundant.
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from the Hadamard generating matrix (G ∈ F
[n]×[2n]
2 ) may result in a generating

matrix of a code which is non-locally testable (decodable). This contrasts with
the result of [8] which says that taking a large random fraction of columns
from the Hadamard generating matrix gives, with high probability, a generating
matrix of a locally testable (decodable) code.

Theorem 4 ((Low Rate does not imply LTC or LDC)). For every q, ε >
0, function w(1) ≤ d(n) ≤ O(n) and infinitely many n > 0

1. There exists Cε ⊂ Fn
2 such that δ(C) ≥ 1

2 − ε, dim(Cε) = Θ(d(n)) and Cε is
non-locally testable with o(d(n)) queries and is not-locally decodable with q
queries.

2. There exists C ⊂ Fn
2 such that dim(C) = Θ(d(n)), Δ(C) ≥ Ω(n), span(C⊥

≤3)
= C⊥ and C is non-locally testable with o(d(n)) queries and is non-locally
decodable with q queries.

3. There exists C ⊂ Fn
2 such that dim(C) = 1.1 log(n), Δ(C) ≥ Ω(n), Δ(C⊥) >

2 and C is non-locally testable with o(log(n)) queries and is non-locally de-
codable with q queries.

Remark. Folklore claim 17 states that every linear code C is testable by dim(C)+
1 queries. Intuitively, C is non-trivially testable if it can be testable with o(dim(C))
queries. So, Theorem 4 shows the families of linear codes that cannot be non-
trivially testable.

Remark. The construction in the third bullet of Theorem 4 cannot achieve di-
mension lower than log(n), since every linear code C ⊆ Fn

2 such that dim(C) <
log(n) has Δ(C⊥) ≤ 2.

3.2 Inverse Polynomial Bias Is Necessary for Local Testability and
Decodability of Sparse Codes

Recall that Kaufman and Sudan showed that sparse linear codes with bias n−Ω(1)

are locally testable and decodable. Our next main result is that the requirement
of such small bias is necessary because for every h(n) = o(1) there exists a
family of sparse linear codes with bias n−h(n)) which are non-locally testable
(decodable).

Theorem 5 ((Inverse polynomial bias needed for sparse LTCs (LDCs))).
For every constant q > 0, computable function h(n) = o(1) and infinitely many
n > 0 there exists C ⊂ Fn

2 such that dim(C) = log(n), C is n−h(n)-biased and C
is non-locally testable (decodable) with q queries.

3.3 Redundancy Is Proportional to Dimension, Not to Blocklength

[1] showed that if C ⊆ Fn is a LTC, dim(C) ≥ ω(1) and D is its tester then
Redun(D) ≥ Ω(dim(C)). However, the only known upper bound on Redun(D)
was Redun(D) = O(n).
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One could conjecture a stronger lower bound on redundancy, of the form
Redun(D) ≥ Ω(n). We refute this conjecture in our last main theorem that
the bound Redun(D) ≥ Ω(dim(C)) is nearly tight. In plain words, this theorem
proves that the redundancy of a tester can be close to the dimension of the tested
code, up to a multiplicative polylogarithmic factor.

Theorem 6. For every ω(1) ≤ f(n) ≤ n/poly(log n) there exists a locally
testable code C with tester D such that Redun(D) ≤ O(f(n)), where δ(C) ≥ Ω(1)
and dim(C) ≥ f(n)/poly(log f(n)) ≥ ω(1).

4 Repetition Does Not Affect LTCs and LDCs

In this section we show that repeating codewords does not affect testability and
decodability. To do this we first define projected testers and decoders and then
prove our main propositions — Propositions 8 and 9.

4.1 Projected Testers and Decoders

Definition 7 ((Repetition Code)). Let R ⊆ Fm be a linear code and t > 0.
We say that C ⊆ F(im) is the t-wise repeated code of R, or, simply, the t-
repetition of R if every codeword of C is a codeword of R repeated t times.
Formally, c ∈ C if and only if c = r(t) for some r ∈ R.

Notice that the linearity of R implies the linearity of its repetition.

Projected testers and decoders. Let R ⊂ Fm
2 be a linear code and C ⊂ F(mt)

2 be
its t-repetition. Let n = m·t. For I ⊆ [n] let I mod m = {i mod m | i ∈ I} ⊆ [m].
Given a tester DC for C we define its projected tester by the distribution obtained
from picking tests I mod m where I ∼ DC .

The projected decoder is defined in a similar way, i.e., invokes the decoder of
C and queries all indices modulo m.

Note that if w ∈ Fm
2 then the tester (decoder) for C will view the same values

on the t-wise repetition of w as the projected tester (decoder) views on w. In this
way, if tester for C rejects w(t) then the tester for R rejects w and if the decoder
for C recovers correctly from w(t) a certain message bit then the decoder for R
recovers correctly the same message bit.

4.2 Main Propositions

We prove a number of simple and important propositions which say that rep-
etition does not affect the testability and the decodability of a code. These
propositions (Proposition 8 and Proposition 9) are shown for binary codes but
can be easily extended to any field.

Proposition 8. Let R ⊂ Fm
2 be a linear code and t > 0 be an integer. Let

C ⊂ F(mt)
2 be a (t)-repetition of R. Then,
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– if R is a (q, ε, δ)-LTC then C is a (q, min{ε/2, δ/2}, 2δ)-LTC
– if C is a (q, ε, δ)-LTC then R is a (q, ε, δ)-LTC.

Proof. Note that C|[m] = R. For the first part, assume that R is a (q, ε, δ)-LTC
and let DR be a (q, ε, δ)-tester for R. We define the following tester DC for C.

– Flip a coin
– If “heads,”

• pick j ∈ [m] and �1 ∈ [t− 1] independently at random,
• pick I = {j, j + m · �1} (note that I ⊆ [mt]);

– Else pick I ∼ DR (note that I ⊆ [m]).

We argue that DC is a (q, min{ε/2, δ/2}, 2δ)-tester for C. Let w ∈ F(mt) be a
word such that δ(w, C) ≥ 2δ. If δ(w|[m], C|[m]) = δ(w|[m], R) ≥ δ we are done,
since

Pr
I∼DC

[w|I /∈ C|I ] ≥
1
2
· Pr

I∼DR

[
(w|[m])|I /∈ R|I

]
≥ ε

2
.

Otherwise we have δ(w|[m], C|[m]) = δ(w|[m], R) < δ.
But δ(w, C) ≥ 2δ implies that

E
j∈[t−1]

[
δ(w|{jm+1,...,(j+1)m}, w|[m])

]
≥ 2δ − δ = δ.

Hence Pr
I∼DC

[w|I /∈ C|I ] ≥
1
2

Pr
j∈[m],�1∈[t−1]

[
w|{j,j+m·�1} /∈ C|{j,j+m·�1}

]
≥ δ/2. This

completes the proof of the first part and now we deal with the second part.
Assume that C is a (q, ε, δ)-LTC and let DC be its (q, ε, δ)-tester. Let DR be

a projected tester of C. Note that DR is a distribution over subsets I ⊆ [m] such
that |I| ≤ q.

We argue that DR is a (q, ε, δ)-tester for R. Let w ∈ Fm
2 be a word such that

δ(w, R) ≥ δ. Assume by way of contradiction that Pr
I∼DR

[w|I /∈ R|I ] < ε. Notice

that δ(w(tm), C) = δ(w, R) ≥ δ. We have Pr
I∼DC

[
w(tm)|I /∈ C|I

]
< ε since if for

I ⊂ [im] it holds that w(tm)|I /∈ C|I then w|
I mod m /∈ R. We conclude that

DC is not a (q, ε, δ)-distribution for C. Contradiction.

Proposition 9. Let R ⊂ Fm
2 be a code such that the first dim(R) bits of R are

message bits. Let t > 0 and C be an (t)-repetition of R. Then,

– If R is not (q, ε, δ)-LDC then C is not (q, ε, δ)-LDC.
– If R is a (q, ε, δ)-LDC then C is a (q, ε/2, εδ

2 )-LDC.

Proof. Let k = dim(R) = dim(C). Assume without loss of generality that the
first k bits of C are message bits. For the first part, if R is not a (q, ε, δ)-LDC
then for every q-query decoder there exists a word w ∈ Fm

2 and i ∈ [k] such
that δ(w, R) ≤ δ and the probability that the decoder recovers correctly the ith

message bit is less than 1+ε
2 .

Assume by way of contradiction that C is a (q, ε, δ)-LDC with decoder DC . Let
DR be the projected decoder of DC . But then there exists w ∈ Fm, δ(w, R) ≤ δ
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such that the decoder DR recovers some message bit i with probability less
than 1+ε

2 . But DC views the same values on w(n/m) as DR views on w and
moreover δ(w(n/m), C) = δ(w, R) ≤ δ. Thus DC is not a (q, ε, δ)-decoder for C.
Contradiction.

For the second bullet assume R is (q, ε, δ)-LDC and let DR be its (q, ε, δ)-
decoder. For j ∈ [t] and I = {i1, i2, . . . , iq} ⊆ [m] let jm + I =
{jm + i1, jm + i2, . . . , jm + iq}. Note that jm + I ⊆ {mj + 1, . . . , m(j + 1)}.
The decoder DC for C recovers message bit � from the given word w ∈ Fim as
follows:

– Pick random j ∈ [t− 1] and select I = jm + [m],
– Return D(w|I)

R [�], i.e., return the value output by DR[�] on w|I .

We argue that if δ(w, C) ≤ εδ
2 then DC recovers correctly the �th message bit

of C with probability at least 1
2 + ε

2 . Let r(t) ∈ C be a codeword of C closest to
w, i.e., δ(w, r(t)) = δ(w, C) ≤ εδ

2 .
For j ∈ [t] we say that w|(jm+[m]) is a j-block of w. We say that j-block is

corrupted if δ(w|jm+[m], r) > δ. The fraction of corrupted blocks is bounded by
ε
2 , because otherwise we have δ(w, r(t)) > εδ

2 . Recall that the decoder DC for C
picks random j ∈ [t− 1] and invokes the decoder for R on the j-block of w. The
probability that DR will be invoked on a non-corrupted block and will recover
a message bit correctly is at least (1

2 + ε) · (1− ε
2 ) ≥ 1

2 + ε− ε
2 = 1+ε

2 , where the
inequality follows since 0 ≤ ε ≤ 1

2 .

Summing up the previous propositions we get:

Corollary 10. Let R ⊂ Fm
2 be a linear code and t > 0 be an integer. Let

C ⊂ F(mt)
2 be an (t)-repetition code of R. Then,

– if R is not (q, ε, δ)-LTC then C is not (q, ε, δ)-LTC.
– if R is not (q, ε, δ)-LDC then C is not (q, ε, δ)-LDC.

5 Proof of Main Results

5.1 Sparse Biased Codes Are Not Necessarily Locally
Testable/Decodable — Proof of Theorem 4

Proof of the first bullet of Theorem 4. Let ε > 0 be a constant and
m = d(n) ≥ w(1). Let Rε ⊂ Fm

2 be a linear code such that δ(Rε) ≥ 1
2 − ε and

δ(Rε
⊥) ≥ Ω(1) and dim(Rε) = Θ(m) (e.g., a random linear code of constant

rate will have these properties). Claim 16 implies that Rε is non-locally testable
with o(m) queries. Lower bounds on the blocklength of locally decodable codes
from [7] imply that Rε is not q-query locally decodable code.

Let Cε ⊂ Fn
2 be a (n/m)-repetition code of Rε. We have dim(Cε) = Θ(m) =

Θ(d(n)) and δ(Cε) ≥ 1/2− ε. Furthermore, Corollary 10 implies that Cε is not
locally testable with o(m) queries and non-locally decodable with q queries and
the proof is complete.
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Proof of the second bullet of Theorem 4. Let m = d(n) ≥ w(1). Then, for
sufficiently large m, Theorem 18 implies the existence of a linear code R ⊂ Fm

2
such that dim(R) = Θ(d(n)), Δ(R) ≥ Ω(m), span(R⊥

≤3) = R⊥ and R is non-
locally testable with o(m) queries and non-locally decodable with q queries.

Let C ⊂ Fn
2 be a (n/m)-repetition code of R. Then Proposition 8 implies that

C is non-locally testable with o(m) = o(d(n)) queries. Proposition 9 implies that
C is non-locally decodable with q queries. Notice that span(C⊥

≤3) = C⊥. This
completes the proof.

Proof of the third bullet of Theorem 4. Given two linear codes C1, C2 ⊆
Fn, let C1 + C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}. Notice that (C1 + C2) is a linear
code.

We start from a straightforward proposition that will be useful in the next
theorem.

Proposition 11. Let C1, C2 ⊆ Fn
2 be two linear binary codes. Then (C1 + C2)

⊥ =
C1

⊥ ∩ C2
⊥ and so (C1 + C2)

⊥ ⊆ C1
⊥ and (C1 + C2)

⊥ ⊆ C2
⊥.

Proof. We have u ∈ (C1 + C2)
⊥ iff (u ∈ C1

⊥ and u ∈ C2
⊥) iff u ∈ (C1

⊥ ∩C2
⊥).

It follows that if C1 is a repetition code but C2 is not then C1 + C2 is not
repetition code. Moreover, if there is a “small-size” intersection between low-
weight dual words of C1 and of C2 then C1 + C2 will have a small number of
low-weight dual words and hence, intuitively will not be a locally testable code.

Claim 12. Let C ⊆ Fn be a linear code and a (q, ε, δ)-LDC. Assume that C′ ⊂
C is a linear code (subcode of C). Then C′ is a (q, ε, δ)-LDC.

Proof. Assume C is associated with the (linear) message space S ⊆ F k and its
decoder is D. Let S′ ⊂ S be a (linear) message space for C′. We argue that C′

has the same decoder D. Let w be δ-close to C′ (δ-close to the encoding of some
message m ∈ S′). Then w is δ-close to C and thus for all i ∈ [k] the decoder D
recovers correctly the message entry (mi) with probability at least 1

2 + ε.
Notice that the message space S′ of the subcode C′ will have smaller dimension

than S, i.e., dim(S′) < dim(S). S′ is a linear vector space because for every two
messages x1, x2 ∈ S′ which are encoded to c1, c2 ∈ C′, respectively, we have
(x1 +x2) ∈ S′ and (x1 + x2) is encoded to c1 + c2. For every α ∈ F we also have
that αx1 ∈ S′ and is encoded to αc1.

Proposition 13. Let C1, C2 ⊆ Fn
2 be linear codes. If C1 is non-locally decodable

with q queries then C1 + C2 is non-locally decodable with q queries.

Proof. If C1 +C2 is locally decodable with q queries then C1 is locally decodable
with q queries by Claim 12, because C1 is a subcode of C1 + C2.

We are ready to prove the third bullet of Theorem 4. Let m = log(n) and R ⊂ Fm
2

be a linear code with Δ(R) ≥ m/5, Δ(R⊥) ≥ Θ(m) and dim(R) = m/10 (e.g., a
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random linear code of constant rate will have these properties). Claim 16 implies
that R is non-locally testable with o(m) queries and in particular non-locally
testable with q queries.

Let w ∈ Fm
2 be a word such that δ(w, R) ≥ 1.1

3 (a random w ∈ Fm satisfies
this condition with high probability). Notice that for all u ∈ R⊥

≤o(m) we have
〈u, w〉 = 0 because R⊥ has no words of weight less then o(m), i.e., R⊥

≤o(m) = ∅.
Let C1 ⊂ Fn

2 be a (n/m)-repetition code of R. Then δ(w(n/m), C1) = δ(w, R) ≥
1.1
3 . Notice that by construction for all u ∈ C1

⊥
≤o(m) we have 〈u, w(n/m)〉 = 0. We

also have δ(C1) ≥ 1/5 and dim(C1) = log(n)/10. Let C2 ⊆ Fn
2 be the Hadamard

code3 (assume w.l.o.g. that n is a power of 2). Note that Δ(C2
⊥) > 2.

Let π : [n] �→ [n] be a permutation. With some abuse of notation, for w =
(w1, w2, . . . , wn) ∈ Fn let π(w) = (wπ(1), wπ(2), . . . , wπ(n)) be a π-permuted
word. Let π(C2) = {π(c) | c ∈ C2} be a set of all permuted codewords of C2.
Note that for every permutation π : [n] �→ [n] it holds that δ(π(C2)) = δ(C2),
dim(π(C2)) = dim(C2) and Δ((π(C2))

⊥) = Δ(C2
⊥) > 2.

Recall that δ(C1, C2) = min
c1∈C1\{0}

{δ(c1, C2)}. We say that a permutation π :

[n] �→ [n] is good if δ(w(n/m), C1 + π(C2)) ≥ 1
3 and δ(C1, π(C2)) ≥ 1/10.

We argue that a random permutation π : [n] �→ [n] is good with probability
at least 1− o(1). It is sufficient to show that a random permutation π : [n] �→ [n]
is bad with probability at most o(1).

By the Chernoff inequality the probability that for some c1 ∈ (C1 \ {0}) and
c2 ∈ (C2 \ {0}) we get δ(w(n/m), c1 + π(c2)) < 1/3 with probability at most

1
2Ω(n) . Note that if c2 = 0 then δ(w(n/m), c1 + π(c2)) = δ(w(n/m), c1) ≥ 1.1

3 by
construction.

Take a union bound over all c1 ∈ (C1 \ {0}) and c2 ∈ C2 to get that
δ(w(n/m), C1 + π(C2)) < 1/3 with probability at most O(n2)

2Ω(n) = o(1). Moreover,
the probability that for given c1 ∈ (C1 \ {0}) and c2 ∈ C2 we have δ(c1, π(c2)) ≤
1/10 is bounded by 1

2Ω(n) . Take a union bound over all c1 ∈ (C1 \ {0}) and
c2 ∈ C2 to get that the probability that δ(C1, π(C2)) ≤ 1/10 is bounded by
O(n2)
2Ω(n) = o(1).

We conclude that a random permutation π : [n] �→ [n] is bad with probability
at most o(1). So, let π : [n] �→ [n] be a good permutation. Then, we have
δ(C1 +π(C2)) = δ(C1, π(C2)) ≥ 1/10 and δ(w(n/m), C1 +C2) ≥ 1/3. Proposition
11 implies that w(n/m) satisfies all constraints in (C1 + C2)

⊥
≤o(m) and thus w(n/m)

will be accepted with probability 1 by any tester for C1 + π(C2) with query
complexity ≤ o(m). We conclude that (C1 + π(C2)) is non-locally testable with
o(m) queries. Notice that dim(C1 + π(C2)) = dim(C1) + dim(C2) = 1.1 log(n).

The proof for local decodability is almost the same. R is not q-query locally
decodable by the lower bound on the blocklength of locally decodable codes of
[7]. Corollary 10 implies that C1 is not q-query locally decodable. Proposition
13 implies that C1 + π(C2) is not q-query locally decodable.

3 Instead of the Hadamard code we could take any binary, sparse code with linear
distance and dual distance > 2.
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5.2 Inverse Polynomial Bias Necessary for Local
Testability/Decodability — Proof of Theorem 5

In this proof we always assume that n > 2. Let h(n) = o(1) such that h(n) > 0
for all n > 2. Without loss of generality we can assume that h(n) ≥ 1

3 log(log(n))

(otherwise let h(n) = 1
3 log(log(n)) ) because if h(n) < 1

3 log(log(n)) then n−h(n) >

n− 1
3 log(log(n)) , so we will prove the Theorem even for a lower bias than n−h(n).

Hence we assume that h(n) ≥ 1
3 log(log(n)) .

Let g(n) = 3h(n) and then g(n) ≥ 1
log(log(n)) for all n > 2. Let f(n) = 1

g(n) =
ω(1), note that f(n) ≤ log(log(n)). Let m = ng(n) and R ⊆ Fm

2 be a random
linear code such that dim(R) = log(m) · f(n) = log(n). The probability that
at least one nonzero codeword of R has relative weight less than 1

2 −m−1/3 or

more than 1
2 + m−1/3 is bounded by

2 · 2(log(m)·f(n))

2Ω(m1/3)
= o(1), and this follows

from the Chernoff inequality and the union bound. Moreover, the probability
that Δ(R⊥) < log(f(n)) = ω(1) is bounded by mlog(f(n))

2dim(R) = o(1), and this follows
from the union bound. So, let R be a m−1/3-biased code such that dim(R) =
log(m) · f(n) and Δ(R⊥) ≥ log(f(n)) = ω(1), i.e., R⊥

≤log(f(n)) = R⊥
≤ω(1) = ∅.

Assume without loss of generality that the first dim(R) bits of R are message
bits.

Notice that log(m) · f(n) = log(n) and m−1/3 = n−(1/3)g(n) = n−h(n). Claim
16 implies that R is non-locally testable (decodable) with q = O(1) queries.

Let C ⊆ Fn
2 be the (n/m)-repetition code of R. We have dim(C) = dim(R) =

log(n) and C has the same bias as R, i.e., C is n−h(n)-biased. In particular we
have δ(C) ≥ 1

2 −n−h(n). Furthermore, Corollary 10 implies that C is not locally
testable (decodable) with q = O(1) queries. The Theorem follows.

5.3 Repetition Preserves Redundancy of Testers — Proof of
Theorem 6

We prove Theorem 6 by showing (in the following proposition) that the repetition
of a code preserves the redundancy of the associated tester.

Proposition 14. Let t > 1 be an integer. Let R ⊂ Fm
2 be a (q, ε, δ)-LTC and

let D be its (q, ε, δ)-tester. Let C ⊂ F(mt)
2 be the (t)-repetition of R. Then C has

a (q, min{ε/2, δ/2}, 2δ)-tester D′ such that Redun(D′
S) = Redun(DS).

Proof. The proof of Proposition 14 is omitted due to space limitations.

[3,6] constructed a family of LTCs of inverse poly-logarithmic rate with linear
distance and only O(1) queries (see also [11]). Then, [1] showed that a tester
for every locally testable code “uses” only ≤ 3n tests. Let us record these two
results for future reference.

Proposition 15. There exist constants q, ε, δ > 0, polynomial p(·) and a fam-
ily of (q, ε, δ)-LTCs {Rm}m∈Z with testers Dn, where Rm ⊆ Fm, dim(C) ≥
m/p(logm) and Dm is a (q, ε, δ)-tester for Rn. Moreover, Redun(Dm) ≤ 3m.
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We are ready to prove Theorem 6.

Proof of Theorem 6. Let R ⊆ Fm be the LTC described in Proposition 15 and
let Dm be its tester. The code and tester satisfy Redun(Dm) ≤ 3m, dim(R) ≥
m/poly(log m) and Δ(R) = Θ(m). Let t > 0 be an integer such that f(mt) =
Θ(m) and let n = mt and C ⊆ Fn be the (t)-repetition code of R. Proposi-
tion 14 implies that C is a LTC and has tester Dn such that Redun(Dn) =
Redun(Dm) ≤ 3m = O(f(mt)) = O(f(n)). Furthermore, dim(C) = dim(R) ≥
m/poly(log m) = f(n)/poly(log f(n)).
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Appendix

Claim 16 states that the small dual distance of the linear code C ⊆ Fn is
necessary for its local testing and local decoding. We explain this claim now.

[2] showed that a q-query tester for a locally testable code is (w.l.o.g.) a
distribution over dual codewords of weight at most q. In particular, if Δ(C⊥) ≥
q+1 we conclude that C is non-locally testable with q queries. Now, assume that
the first dim(C) entries of the code C are message entries and Δ(C⊥) ≥ q + 1.
Then any local decoder which makes only q − 1 queries always obtains a “local
view” that contains no information about the message entries and hence message
entries cannot be recovered with non-trivial probability.

Claim 16 (Folklore). Let C ⊆ Fn be a linear code such that Δ(C⊥) ≥ (q +1),
where q ≥ 1. Assume that the first dim(C) entries of C are message entries.
Then C is non-locally testable with q queries and non-locally decodable with q−1
queries.

The other folklore claim (stated e.g. in [1]) says that every linear code is testable
with query complexity equal to its dimension plus one.

Claim 17 (Folklore 2). Every linear code C is testable by dim(C)+1 queries.

Let us state the central theorem (which we rephrase) from [2]. [2] showed a family
of codes Cm ⊂ Fm

2 which has linear distance, constant rate and was characterized
by 3 weight dual words. They proved that this family is non-locally testable with
o(m) queries. Note that this family of codes is not local decodable with constant
number of queries (q) because of the lower bound on the blocklength of locally
decodable codes due to Katz and Trevisan [7].

Theorem 18. Let q > 0 be a constant integer. For infinitely many m > 0 there
exists a family of codes Cm ⊂ Fm

2 which has δ(Cm) = Θ(1), dim(Cm) = Θ(m)
and span((Cm)⊥3 ) = (Cm)⊥. Moreover, Cm is non-locally testable with o(m)
queries and non-locally decodable with q queries.
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Abstract. In this paper we consider the reconstruction problem on the
tree for the hardcore model. We determine new bounds for the non-
reconstruction regime on the k-regular tree showing non-reconstruction
when

λ <
(ln 2 − o(1)) ln2 k

2 ln ln k

improving the previous best bound of λ < e − 1. This is almost tight as
reconstruction is known to hold when λ > (e+o(1)) ln2 k. We discuss the
relationship for finding large independent sets in sparse random graphs
and to the mixing time of Markov chains for sampling independent sets
on trees.

1 Introduction

The reconstruction problem on the tree was originally studied as a problem in
statistical physics but has since found many applications including in computa-
tional phylogenetic reconstruction [8], the study of the geometry of the space of
random constraint satisfaction problems [1,14] and the mixing time of Markov
chains [5,17]. For a Markov model on an infinite tree the reconstruction problem
asks when do the states at level n provide non-trivial information about the
state at the root as n goes to infinity. In general the problem involves determin-
ing the existence of solutions of distribution valued equations and as such exact
thresholds are known only in a small number of examples [4,10,5,25].

In this paper we analyze the reconstruction problem for the hardcore model on
the k-regular tree, where each vertex of the tree has degree k. The hardcore model
is a probability distribution over independent sets I weighted proportionally to
λ|I|. Previously Brightwell and Winkler [7] showed that reconstruction is possible
when λ > (e + o(1)) ln2 k. Improving on their bound for the non-reconstruction
regime, Martin [16] showed that non-reconstruction holds when λ < e − 1 still
leaving a wide gap between the two thresholds. Our main result establishes that
the bound of Brightwell and Winkler is tight up to a ln ln k multiplicative factor.

Theorem 1. The hardcore model on the k-regular tree has non-reconstruction
when

λ <
(ln 2− o(1)) ln2 k

2 ln ln k
.
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1.1 The Hardcore Model

For a finite graph G the independent sets I(G) are subsets of the vertices con-
taining no adjacent vertices. The hardcore model is a probability measure over
σ ∈ I(G) ⊂ {0, 1}G such that

P(σ) =
1
Z

λ
∑

v∈G σv�σ∈I(G) (1)

where λ is the fugacity parameter and Z is a normalizing constant. The defi-
nition of the hardcore model can be extended to infinite graphs by way of the
Dobrushin-Lanford-Ruelle condition which essentially says that for every finite
set A the configuration on A is given by the Gibbs distribution given by a ran-
dom boundary generated by the measure outside of A. Such a measure is called
a Gibbs measure and there may be one or infinitely many such measures (see
e.g. [12] for more details). For every λ, there exists a unique translation invariant
Gibbs measure on the k-regular tree and it is this measure which we study.

An alternative equivalent formulation of the hardcore model is as a Markov
model on the k-regular tree. An independent set σ is generated by first choosing
the root according to the distribution

(π1, π0) =
(

ω

1 + 2ω
,

1 + ω

1 + 2ω

)
for some 0 < ω < 1. The states of the remaining vertices of the graph are
generated from their parents’ states by taking one step of the Markov transition
matrix

M =
(

p11 p10
p01 p00

)
=

(
0 1
ω

1+ω
1

1+ω

)
.

It can easily be checked that π is reversible with respect to M and that this
generates a translation invariant Gibbs measure on the tree with fugacity

λ = ω(1 + ω)k−1.

Restating Theorem 1 in terms of ω we have non-reconstruction when

ω ≤ 1
k

[
ln k + ln ln k − ln ln ln k − ln 2 + ln ln 2− o(1)

]
=: ω̄. (2)

In contrast, from [7], for every fixed ε > 0 and k large enough, reconstruction is
known to hold when

ω ≥ 1
k

[
ln k + ln ln k + 1 + ε

]
. (3)

We will introduce some further notation which we will make use of in the proof.

π01 ≡
π0

π1
=

1 + ω

ω
, Δ ≡ π01 − 1 =

1
ω

,

θ ≡ p00 − p10 = p11 − p01 = − ω

1 + ω
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A particularly important role is played by θ, the second eigenvalue of M as is
discussed in the following subsection. We denote by P1

T , E1
T (and resp. P0

T , E0
T and

PT , ET ) the probability and expectations with respect to the measure obtained
by conditioning on the root ρ of T to be 1 (resp. 0, and stationary). We let
L = L(n) denote the set of vertices at depth n and σ(L) = σ(L(n)) denote the
configuration on level n. We will write PrT [·|σ(L) = A] to denote the measure
conditioned on the leaves being in state A ∈ {0, 1}L(n).

1.2 The Reconstruction Problem

The reconstruction problem on the tree essentially asks if we can recover infor-
mation on the root from the spins deep inside the tree. In particular we say that
the model has non-reconstruction if

PT [σρ = 1|σ(L)]→ π1 (4)

in probability as n → ∞, otherwise the model has reconstruction. Note that if
we do not condition on the configuration at the leaves, the probability above is
exactly π1 by the Markov model formulation of the hardcore measure. Equiva-
lent formulations of non-reconstruction are that the Gibbs measure is extremal
or that the tail σ-algebra of the Gibbs measure is trivial [23]. It follows from
Proposition 12 of [22] that there exists a λR such that reconstruction holds for
λ > λR and non-reconstruction holds for λ < λR. The reconstruction problem
is to determine the threshold λR.

1.3 Related Work

A significant body of work has been devoted to the reconstruction problem on
the tree by probabilists, computer scientists and physicists. The earliest such
result is the Kesten-Stigum bound [15] which states that reconstruction holds
whenever θ2(k − 1) > 1. This bound was shown to be tight in the case of
the Ising model [4,10] where it was shown that non-reconstruction holds when
θ2(k−1) ≤ 1. Similar results were derived for the Ising model with small external
field [2] and the 3-state Potts model [25] which constitute the only models for
which exact thresholds are known. On the other hand, at least when k is large,
the Kesten-Stigum bound is known not to be tight for the hardcore model [7].
As such, the most one can reasonably ask to show is the asymptotics of the
reconstruction threshold λR(k) for large k.

The Kesten-Stigum bound is known to be the correct bound for robust re-
construction for all Markov models [13]. Robust reconstruction asks whether
reconstruction is possible after adding a large amount of noise to the spins in
level n. It was shown in [13] that when θ2(k − 1) < 1 after adding enough noise
to the spins at level n, the “information” provided by the modified spins at level
n decays exponentially quickly.

In both the coloring model and the hardcore model the reconstruction thresh-
old is far from the Kesten-Stigum bound for large k. In the case of the hardcore
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model θ2(k − 1) = (1 + o(1)) 1
k ln2 k. As such, given a noisy version of the spins

at level n, the information on the root decays rapidly as n grows. In the coloring
model close to optimal bounds [3,24] were obtained by first showing that, when
n is small, the information on the root is sufficiently small. Then a quantitative
version of [13] establishes that the information on the root converges to 0 ex-
ponentially quickly. The hardcore model behaves similarly. Indeed, the form of
our bound in equation (2) is strikingly similar to the bound for the q-coloring
model which states that reconstruction (resp. non-reconstruction) holds when
the degree is at least (resp. at most) q[ln q + ln ln q + O(1)].

Our proof then proceeds as follows. We first establish that when ω satisfies (2)
then even for a tree of depth 3 there is already significant loss of information of
the spin at the root. In particular we show that if the state of the root is 1 then
the typical posterior probability that the state of the root is 1 given the spins at
level 3 will be less than 1

2 . The result is completed by linearizing the standard
tree recursion as in [5,25]. In this part of the proof we closely follow the notation
of [5] who analyzed the reconstruction problem for the Ising model with small
external field. We do not require the full strength of their analysis as in our case
we are far from the Kesten-Stigum bound. We show that a quantity which we
refer to as the magnetization decays exponentially fast to 0. The magnetization
provides a bound on the posterior probabilities and this completes the result.

The ln ln k term in our bound on λ is explained as the first point at which
there is significant decay of information at level 3 on the tree. In particular the
analysis in Proposition 2 part c) is essentially tight. It may be possible to get
improved bounds by considering higher depth trees although the description of
the posterior distribution necessarily becomes more complex. A sharper analysis
of this sort was done in [24] for the coloring model although the method there
made crucial use of the symmetry of the states.

Replica Symmetry Breaking and Finding Large Independent Sets. The
reconstruction problem plays a deep role in the geometry of the space of solutions
of random constraint satisfaction problems. While for problems with few con-
straints the space of solutions is connected and finding solutions is generally easy,
as the number of constraints increases the space may break into exponentially
many small clusters. Physicists, using powerful but non-rigorous “replica symme-
try breaking” heuristics, predicted that the clustering phase transition exactly
coincides with the reconstruction region on the associated tree model [19,14].
This picture was rigorously established (up to first order terms) for the coloring
and satisfiability problems [1] and further extended to sparse random graphs
by [20]. As solutions are far apart, local search algorithms will in general fail.
Indeed for both the coloring and SAT models, no algorithm is known to find
solutions in the clustered phase. It has been conjectured to be computationally
intractable beyond this phase transition [1].

The associated CSP for the hardcore model corresponds to finding large in-
dependent sets in random k-regular graphs. The replica heuristics again predict
that the space of large independent sets should be clustered in the reconstruction
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regime. Specifically this refers to independent sets of size sn where s > π1(R),
the density of 1’s in the hardcore model at the reconstruction threshold. It is
known that the largest independent set is with high probability (2−o(1)) ln k

k n [6].
On the other hand the best known algorithm finds independent sets only of size
(1+o(1)) ln k

k n which is equal to π1(R)n [27]. This is consistent with the physics
predictions and it would be of interest to determine if the space of independent
sets indeed exhibits the same clustering phenomena as colorings and SAT at
the reconstruction threshold. Determining the reconstruction threshold more
precisely thus has implications for the problem of finding large independent sets
in random graphs.

Glauber Dynamics on Trees. The reconstruction threshold plays a key role
in the study of the rate of convergence of the Glauber dynamics Markov chain for
sampling spin systems on trees. This problem has received considerable atten-
tion (see e.g. [2,9,17,18,26]) and in the case of the Ising model, the mixing time
is known to undergo a phase transition from Θ(n ln n) in the non-reconstruction
regime to n1+Θ(1) in the reconstruction regime [2]. In fact, the mixing time is
n1+Θ(1) for any spin system above the reconstruction threshold. A similar tran-
sition was shown to take place for the coloring model [26]. Sharp bounds of this
type are not known for the hardcore model, however, it is predicted that the
Glauber dynamics should again be O(n log n) in the non-reconstruction regime.

Phylogenetic Reconstruction. Phylogenetic reconstruction is an important
problem in evolutionary biology [11]. The results of [8,21] imply that for binary
symmetric channels the amount of data needed for phylogenetic reconstruction
is closely related to the corresponding reconstruction threshold on the tree. This
sampling efficiency undergoes a phase transition from O(log(N)) in the recon-
struction regime to NΩ(1) in the non-reconstruction regime, where N is the
number of leaves (or species) at the bottom of the phylogenetic tree. The results
of [5] for non-reconstruction also imply lower bounds on the sample complexity
for phylogenetic reconstruction for asymmetric channels.

2 Proof of Theorem 1

For ease of notation we establish our bounds for the k-ary tree (where each
vertex has k children) instead of on the k-regular tree. It is not difficult to
modify the recursion we will obtain for the k-ary tree to a recursion for the
(k + 1)-regular tree, showing that non-reconstruction also holds in that case.
Finally, we can show that non-reconstruction on the k-regular tree is equivalent
to non-reconstruction on the (k+1)-regular tree once we note that in equation (2)
we have that ω̄(k + 1) − ω̄(k) = o(k) so the difference can be absorbed in the
error term. Let T denote the infinite k-ary tree and let Tn denote the restriction
of T to its first n levels.
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Before reading further, it might help the reader to quickly recall the notation
from the end of Section 1.1. As in [5] we analyze a random variable X which
denotes weighted magnetization of the root which is a function of the leaf states
of the tree. We define X = X(n) on Tn by

X = π−1
0 [π0P(σρ = 1|σ(L) = A)− π1P(σρ = 0|σ(L) = A)]

=
1

π01

[
P[σρ = 1|σ(L) = A]

π1
− 1

]
(5)

Since ET [P[σρ = 1|σ(L) = A]] = P[σρ = 1] = π1, from the above expression, we
have that E[X ] = 0. Also, X ≤ 1 since P[σρ = 1|σ(L) = A] ≤ 1. We will make
extensive use of the following second moments of the magnetization.

X = ET [X2], X1 = E1
T [X2], X0 = E0

T [X2]

The following equivalent definition of non-reconstruction is well known and fol-
lows from the definition in (4) using (5).

Proposition 1. Non-reconstruction for the model (T , M) is equivalent to

lim
n→∞X(n) = 0,

where X(n) = ETn [X2].

In the remainder of the proof we derive bounds for X. We begin by showing that
already for a 3 level tree, X becomes small. Then we establish a recurrence along
the lines of [5] that shows that once X is sufficiently small, it must converge to
0. As this part of the derivation follows the calculation in [5] we will adopt their
notation in places. Non-reconstruction is then a consequence of Proposition 1.
In the next lemma we determine some basic properties of X .

Lemma 1. The following relations hold:

a) ET [X ] = π1E1
T [X ] + π0E0

T [X ] = 0.
b) X = π1X1 + π0X0.
c) E1

T [X ] = π01X and E0
T [X ] = −X.

Proof. Note that for any random variable which depends only on the states at
the leaves, f = f(A), we have ET [f ] = π1E1

T [f ] + π0E0
T [f ]. Parts a) and b)

therefore follow since X is a random variable that is a function of the states at
the leaves. For part c) we proceed as follows. The first and last equalities below
follow from (5).

E1
T [X ] = π−1

01

∑
A

PT [σ(L) = A|σρ = 1]
(

PT [σρ = 1|σ(L) = A]
π1

− 1
)

= π−1
01

∑
A

PT [σ(L)=A]
PT [σρ = 1|σ(L) = A]

π1

(
PT [σρ = 1|σ(L) = A]

π1
− 1

)
= π−1

01

(
ET [(PT [σρ = 1|σ(L) = A′])2]

π2
1

− 1
)

= π01E[X2]
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The second part of c) follows by combining this with a). 
�

The following proposition estimates typical posterior probabilities which we will
use to bound X . For a finite k-ary subtree T of the k + 1-regular tree let T i be
the subtrees rooted at the children of the root ui.

Proposition 2. For a finite k-ary subtree T we have that

a) For any configuration at the leaves A = (A1, · · · , Ak),

PT [σρ = 0|σ(L) = A] =
(
1 + λ

∏
i

PT i [σui = 0|σLi = Ai]
)−1

.

b) Let G be the set of leaf configurations

G =
{

σ(L) | P[σρ = 0|σ(L)] =
1
2

(
1 +

1
1 + 2λ

)}
.

Then

P0
T [σ(L) ∈ G]

P1
T [σ(L) ∈ G]

=
π1

π0

1 + λ

λ
.

c) Let β > ln 2− ln ln 2 and ω = 1
k

[
ln k + ln ln k − ln ln ln k − β

]
. Then in the 3

level k-ary tree T3 we have that

E1
T3

[P[σρ = 1|σ(L)]] ≤ 1
2
.

Proof. Part a) is a consequence of standard tree recursions for Markov models
established using Bayes rule.

For part b) first note that

P[σρ = 1 | σ(L) ∈ G] = 1− P[σρ = 0 | σ(L) ∈ G]

=
1
2

(
1− 1

1 + 2λ

)
(6)

Now,

P0
T [σ(L) ∈ G] =

P[σρ = 0 | σ(L) ∈ G]P[σ(L) ∈ G]
π0

=
π1

π0

1 + λ

λ

(
P[σρ = 1 | σ(L) ∈ G]P[σ(L) ∈ G]

π1

)
=

π1

π0

1 + λ

λ
P1

T [σ(L) ∈ G]

where the first and third equations follow by definition of conditional probabili-
ties and the second follows from (6) which establishes b).
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For part c), we start by calculating the probability of certain posterior prob-
abilities for trees of small depth. With our assumption on ω we have that

λ = ω(1 + ω)k =
(1 + ok(1))e−β ln2 k

ln ln k

Since σ(L) ≡ 0 under P1
T1

, by part a) we have that

P1
T1

[σρ = 0|σ(L)] =
1

1 + λ
w.p. 1.

Also,

PT1(ui = 0 ∀ i|σρ = 0) =
(

1
1 + ω

)k

Using the two equations above, we have that

P0
T1

(σρ = 0|σ(L)) =

⎧⎪⎨⎪⎩
1 w.p. 1−

(
1

1+ω

)k

1
1+λ w.p.

(
1

1+ω

)k

.

The first case above corresponds to leaf configurations of the tree T1 where at
least one of the leaves is 1, while the second case corresponds to the configurations
where all the leaves are 0. Next, applying part a) to a tree of depth 2, we have

P1
T2

[σρ = 0|σ(L)] =
1

1 + λ
∏

i P0
T1

[σui = 0|σ(L)]

Using this expression we can write down this conditional probability based on
the leaf configurations of the subtrees of the root of depth 1.

P1
T2

[σρ = 0|σ(L)] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1+λ w.p.
(
1− ( 1

1+ω )k
)k

1
2

(
1 + 1

1+2λ

)
w.p.

(
1− ( 1

1+ω )k
)k−1 (

1
1+ω

)k

k

> 1
2

(
1 + 1

1+2λ

)
o.w.

(7)

The first case above corresponds to the situation when each subtree of the root of
depth 1 has a leaf configuration where at least one of the leaves is 1. The second
case is when one of the k subtrees has a leaf configuration where all leaves are
0, while the remaining subtrees have leaf configurations where at least one leaf
is 1. The third case corresponds to the remaining possibilities.

By part b) with G as defined, and (7) we have that after substituting the
expressions for λ and ω,

P0
T2

[σ(L) ∈ G] =
π1

π0

1 + λ

λ
P1

T2
[σ(L) ∈ G]

=
ω(1 + λ)
λ(1 + ω)

(
1−

(
1

1 + w

)k
)k−1 (

1
1 + ω

)k

k

≥ (1− ok(1))
eβ ln ln k

k
(8)
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We can now calculate the values of P 1
T3

[σρ = 0|σ(L)] as follows. By part a)

P1
T3

[σρ = 0|σ(L)] =
1

1 + λ
∏

i P0
T2

[σui = 0|σ(L)]

Denote

p =
ω(1 + λ)
λ(1 + ω)

(
1−

(
1

1 + w

)k
)k−1 (

1
1 + ω

)k

k

Thus, p is the probability that if we started with σρ = 0 in T2, the configuration
at the leaves is from G. If we start with σρ = 1 in T3, the number subtrees of the
root with leaf configurations in G is distributed binomially and will be about kp.
By Chernoff bounds, and the bound on p from (8),

P(Bin(k, p) < eβ ln ln k − 2
√

eβ ln ln k) <
1
3
.

Finally, by the definition of G,

P0
T2

[σui = 0|σ(L) ∈ G] =
1
2

(
1 +

1
1 + 2λ

)
and hence,

E1
T3

[P[σρ = 1|σ(L)]] = E1
T3

[1− P[σρ = 0|σ(L)]]

≤
(

1− 1

1 + λ[2(1− ok(1))]−(eβ ln lnk−2
√

eβ ln ln k)

)
2
3

+
1
3

By taking k large enough above, we conclude that for β and large enough k,

E1
T3

[P[σρ = 1|σ(L)]] ≤ 1
2


�

Lemma 2. Let β > ln 2 − ln ln 2 and ω = 1
k

[
ln k + ln ln k − ln ln ln k − β

]
. For

k large enough,
X(3) ≤ ω

2
.

Proof. By part c) of Lemma 1, and part c) of Proposition 2,

X(3) =
1

π2
01

(
E1

T3
[P[σρ = 1 | σ(L)]]

π1
− 1

)
≤ 1

π2
01

(
1

2π1
− 1

)
≤ ω

2

Next, we present a recursion for X and complete the proof of the main result.
The development of the recursion follows the steps in [5] closely so we follow
their notation and omit some of the calculations in this short version.
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Fig. 1. A finite tree T

Magnetisation of a Child. With T and x as defined previously, let y be a
child of x and let T ′ be the subtree of T rooted at y (see Figure 1). Let A′ be
the restriction of A to the leaves of T ′. Let Y = Y (A′) denote the magnetization
of y.

Lemma 3. We have

a) E1
T [Y ] = θE1

T ′ [Y ] and E0
T [Y ] = θE0

T ′ [Y ].
b) E1

T [Y 2] = (1− θ)ET ′ [Y 2] + θE1
T ′ [Y 2].

c) E0
T [Y 2] = (1− θ)ET ′ [Y 2] + θE0

T ′ [Y 2].

The proof follows from the first part of Lemma 1 and the Markov property when
we condition on x.

Next, we can write the effect on the magnetization of adding an edge to the
root and merging roots of two trees as follows. Referring to Figure 2, let T ′ (resp.
T ′′) be a finite tree rooted at y (resp. z) with the channel on all edges being given
M , leaf states A (resp A′′) and weighted magnetisation at the root Y (resp. Z).
Now add an edge (ŷ, z) to T ′′ to obtain a new tree T̂ . Then merge T̂ with T ′ by
identifying y = ŷ to obtain a new tree T . To avoid ambiguities, denote by x the
root of T and X the magnetization of the root of T . We let A = (A′, A′′) be the
leaf state of T . Let Ŷ be the magnetization of the root of T̂ .

Note: In the above construction, the vertex y is a vertex “at the same level” as
x, and not a child of x as it was in Lemma 3.

Lemma 4. With the notation above, Ŷ = θZ.

The proof follows by applying Bayes rule, the Markov property and Lemma 1.
These facts also imply that
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Fig. 2. The tree T after obtained after merging T ′ and T ′′. The dashed subtree is T̂ .

Lemma 5. For any tree T̂ ,

X =
Y + Ŷ + ΔY Ŷ

1 + π01Y Ŷ
.

With these lemmas in hand we can use the following relation to derive a recursive
upper bound on the second moments. We will use the expansion

1
1 + r

= 1− r + r2 1
1 + r

.

Taking r = π01Y Ŷ , by Lemma 5 we have

X = (Y + Ŷ + ΔY Ŷ )
[
1− π01Y Ŷ + (π01Y Ŷ )2

1
1 + π01Y Ŷ

]
= Y + Ŷ + ΔY Ŷ − π01Y Ŷ

(
Y + Ŷ + ΔY Ŷ

)
+ (π01)2(Y Ŷ )2X

≤ Y + Ŷ + ΔY Ŷ − π01Y Ŷ
(
Y + Ŷ + ΔY Ŷ

)
+ (π01)2(Y Ŷ )2 (9)

where the last inequality follows since X ≤ 1 with probability 1.
Let ρ′ = Y 1/Y and ρ′′ = Z1/Z. Below, the moments Y etc. are defined

according to the appropriate measures over the tree rooted at y (i.e. T ′) etc.
By applying Lemmas 1, 3 and 4, we have the following relations.

E1
T [X ] = π01X, E1

T [Y ] = π01y, E1
T [Y 2] = Y ρ′

E1
T [Ŷ ] = π01θ

2Z, E1
T [Ŷ 2] = θ2Z((1 − θ) + θρ′′) (10)



Reconstruction Threshold for the Hardcore Model 445

Applying (π01)−1E1
T [·] to both sides of (9), we obtain the following.

X ≤ Y + θ2Z + Δπ01Y Z − π01θ
2Y Zρ′ − π01θ

2Y Z((1− θ) + θρ′′)
−Δθ2Y Zρ′((1− θ) + θρ′′) + π01θ

2Y Zρ′((1 − θ) + θρ′′)
= Y + θ2Z − π01θ

2Y Z[A−ΔB]

where

A = ρ′ + (1− ρ′)[(1 − θ) + θρ′′],

and B = 1− (π01)−1ρ′[(1 − θ) + θρ′′] = 1− ω

1 + ω
ρ′[(1− θ) + θρ′′].

If A−ΔB ≥ 0, this would already give a sufficiently good recursion to show that
X(n) goes to 0, so we will assume is negative and try to get a good (negative)
lower bound. First note that by their definition ρ′, ρ′′ ≥ 0. Further since Y =
π1Y 1 + π0Y 0,

ρ′ ≤ (π1)−1 =
1 + 2ω

ω
.

Similarly,

ρ′′ ≤ (π1)−1 =
1 + 2ω

ω
.

Since E1
T [Ŷ 2] and Z ≥ 0, it follows from (10) that (1 − θ) + θρ′′ ≥ 0. Together

with the fact that ρ′ ≥ 0, this implies that B ≤ 1.
Since A is multi-linear in (ρ′, ρ′′), to minimize it, its sufficient to consider the

extreme cases. When ρ′ = 0, A is minimized at the upper bound of ρ′′ and hence

A ≥ 1− π01
ω

1 + ω
= 0.

When ρ′ = (π1)−1,

A = (π1)−1 + (1− (π1)−1)[1− θ(1− ρ′′)] ≥ 0.

Hence, we have

X ≤ Y + θ2Z +
1

1 + ω
Y Z.

Applying this recursively to the tree, we obtain the following recursion for the
moments.

X ≤ (1 + ω)θ2

[(
1 +

Z

1 + ω

)k

− 1

]

We bound the (1 + x)k − 1 term as,

|(1 + x)k − 1| ≤ e|x|k − 1 =
∫ |x|k

0
es ds ≤ e|x|kk|x|

and this implies the following recursion.
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Theorem 2. If for some n, X(n) ≤ ω
2 , we have that

X(n + 1) ≤ ω2e
1
2 ωkkX(n).

Thus if ω2e
1
2 ωkk < 1 then it follows from the recursion that

lim
n

X(n) = 0. (11)

When ω = 1
k

[
ln k+ln ln k−ln ln ln k−β

]
and β > ln 2−ln ln 2, by Lemma 2, for k

large enough, X(3) ≤ ω
2 . Hence by equation (11) we have that X(n) → 0 and so

by Proposition 1 we have non-reconstruction. Since reconstruction is monotone
in λ and hence in ω it follows that we have non-reconstruction for ω ≤ ω̄ for
large k. This completes the proof of Theorem 1.
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1 Introduction

Graph spanners were introduced in the context of distributed computing [1],
and since then have found numerous applications, such as efficient routing [2–6],
simulating synchronized protocols in unsynchronized networks [7], parallel and
distributed algorithms for approximating shortest paths [8–10], and algorithms
for distance oracles [11, 12]. Several variants on graph spanners have been de-
fined. In this work, we focus on transitive-closure spanners that were introduced
in [13] as a common abstraction for applications in access control, property test-
ing and data structures.

Definition 1.1 (TC-spanner). Given a directed graph G = (V, E) and an
integer k ≥ 1, a k-transitive-closure-spanner (k-TC-spanner) of G is a
directed graph H = (V, EH) with the following properties:

1. EH is a subset of the edges in the transitive closure of G.
2. For all vertices u, v ∈ V , if dG(u, v) < ∞, then dH(u, v) ≤ k.

Thus, a k-transitive-closure-spanner (or k-TC-spanner) is a graph with small
diameter that preserves the connectivity of the original graph. In the applications
above, the goal is to find the sparsest k-TC-spanner for a given k and G. The
number of edges in the sparsest k-TC-spanner of G is denoted by Sk(G).

Our Contributions. The contributions of this work fall into two categories: (1)
We show that an efficient local monotonicity reconstructor implies a sparse 2-
TC-spanner of the directed hypergrid (hypercube), providing a new technique
for proving lower bounds for local monotonicity reconstructors. (2) We present
tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the
directed hypercube and hypergrid. These bounds imply tighter lower bounds for
local monotonicity reconstructors for these graphs that nearly match the upper
bounds given in [14].

1.1 Lower Bounds for Local Monotonicity Reconstruction

Property-preserving data reconstruction was introduced in [15]. In this model,
a reconstruction algorithm, called a filter, sits between a client and a dataset. A
dataset is viewed as a function f : D → R. The client accesses the dataset using
queries of the form x ∈ D to the filter. The filter looks up a small number of val-
ues in the dataset and outputs g(x), where g must satisfy some fixed structural
property P . Extending this notion, Saks and Seshadhri [14] defined local recon-
struction. A filter is local if it allows for a local (or distributed) implementation:
namely, if the output function g does not depend on the order of the queries.

Definition 1.2 (Local filter). A local filter for reconstructing property P is an
algorithm A that has oracle access to a function f : D → R, and to an auxiliary
random string ρ (the “random seed”), and takes as input x ∈ D. For fixed f and
ρ, A runs deterministically on input x to produce an output Af,ρ(x) ∈ R. (Note
that a local filter has no internal state to store previously made queries.) The
function g(x) = Af,ρ(x) output by the filter must satisfy the following conditions:
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– For each f and ρ, the function g must satisfy P.
– If f satisfies P, then g must be identical to f with probability at least 1− δ,

for some error probability δ ≤ 1/3. The probability is taken over ρ.

In answering query x ∈ D, the filter A may ask for values of f at domain points
of its choice (possibly adaptively) using its oracle access to f . Each such access
made to the oracle is called a lookup to distinguish it from the client query x. A
local filter is non-adaptive if the set of domain points that the filter looks up to
answer an input query x does not depend on answers given by the oracle.

In [14], the authors also required that g must be sufficiently close to f : With
high probability (over the choice of ρ), Dist(g, f) ≤ B(n)·Dist(f,P), where B(n)
is called the error blow-up. (Dist(g, f) is the number of points in the domain
on which f and g differ. Dist(f,P) is ming∈P Dist(g, f).) If a local filter along
with Definition 1.2 satisfies this condition, we call it distance-respecting.

Local Monotonicity Reconstructors. The most studied property in the local re-
construction model is monotonicity of functions [14, 15]. To define monotonic-
ity of functions, consider an n-element poset Vn and let Gn = (Vn, E) be
the relation graph, i.e., the Hasse diagram, for Vn. A function f : Vn → R

is called monotone if f(x) ≤ f(y) for all (x, y) ∈ E. We particularly focus
on posets which have the directed hypergrid graph as its relation graph. The
directed hypergrid, denoted Hm,d, has vertex set {1, 2, . . . , m}d and edge set
{(x, y) : ∃ unique i ∈ {1, . . . , d} such that yi − xi = 1 and for j �= i, yj = xj}.
For the special case m = 2, H2,d is called a hypercube and is also denoted by Hd.
A monotonicity filter needs to ensure that the output function g is monotone.
For instance, if Gn is a directed line, Hn,1, the filter needs to ensure that the
output sequence specified by g is sorted.

To motivate monotonicity reconstructors for hypergrids, consider the scenario
of rolling admissions: An admissions office assigns d scores to each application,
such as the applicant’s GPA, SAT results, essay quality, etc. Based on these
scores, some complicated (third-party) algorithm outputs the probability that a
given applicant should be accepted. The admissions office wants to make sure
“on the fly” that strictly better applicants are given higher probability, that
is, probabilities are monotone in scores. A hypergrid monotonicity filter may
be used here. A local filter can be implemented in a distributed manner with
an additional guarantee that every copy of the filter will correct to the same
monotone function of the scores. This can be done by supplying the same random
seed to each copy of the filter.

[14] gives a distance-respecting local monotonicity filter for the directed hyper-
grid, Hm,d, that makes (log m)O(d) lookups per query. No non-trivial monotonic-
ity filter for the hypercube Hd (performing o(2d) lookups per query) is known.
One of the monotonicity filters in [15] is a local filter for the directed line Hm,1
with O(log m) lookups per query (but a worse error blow up than in [14]). As
observed in [14], this upper bound is tight. A lower bound of 2αd, on the num-
ber of lookups per query for a distance-respecting local monotonicity filter on
Hd with error blow-up 2βd, where α, β are sufficiently small constants, appeared
in [14]. Notably, all known local monotonicity filters are non-adaptive.



Lower Bounds for Local Monotonicity Reconstruction from TC Spanners 451

We show how to construct sparse 2-TC-spanners from local monotonicity re-
constructors with low lookup complexity. These constructions, together with
our lower bounds on the size of 2-TC-spanners of the hypergrid and hypercube
(Section 1.2), imply lower bounds on lookup complexity of local monotonicity
reconstructors for these graphs with arbitrary error blow-up. We state our trans-
formations from non-adaptive and adaptive reconstructors separately.

Theorem 1.1 (Transformation from non-adaptive Local Monotonicity
Reconstructors to 2-TC-spanners). Let Gn = (Vn, E) be a poset on n nodes.
Suppose there is a non-adaptive local monotonicity reconstructor A for Gn that
looks up at most �(n) values on any query and has error probability at most δ.
Then there is a 2-TC-Spanner of Gn with O(n�(n) · �log n/ log(1/δ)�) edges.

Next theorem applies even to adaptive local monotonicity reconstuctors. It takes
into account how many lookups on query x are points incomparable to x. In
particular, if there are no such lookups, then constructed 2-TC-spanner is of the
same size as in Theorem 1.1. (The proof and the implications of Theorem 1.2
are deferred to the full version.)

Theorem 1.2 (Transformation from adaptive Local Monotonicity Re-
constructors to 2-TC-spanners). Let Gn = (Vn, E) be a poset on n nodes.
Suppose there is an (adaptive) local monotonicity reconstructor A for Gn that,
for any query x ∈ Vn, looks up at most �1(n) vertices comparable to x and at
most �2(n) vertices incomparable to x, and has error probability at most δ. Then
there is a 2-TC-Spanner of Gn with O(n�1(n) · 2�2(n)�log n/ log(1/δ)�) edges.

In Theorem 1.1 and 1.2, when δ is sufficiently small, the bounds on the 2-TC-
Spanner size become O(n�(n)) and O(n�1(n) · 2�2(n)), respectively.

As mentioned earlier, all known monotonicity reconstructors are non-adaptive.
It is an open question whether it is possible to give a transformation from adap-
tive local monotonicity reconstructors to 2-TC-spanners without incurring an
exponential dependence on the number of lookups made to points incomparable
to the query point. We do not know whether this dependence is an artifact of
the proof or an indication that lookups to incomparable points might be helpful
for adaptive local monotonicity reconstructors.

In Theorems 1.3 and 1.4 (Section 1.2), we present nearly tight bounds on
the size of the sparsest 2-TC-spanners of the hypercube and the hypergrid.
Theorem 1.1, together with the lower bounds in Theorems 1.3 and 1.4, im-
plies the following lower bounds on the lookup complexity of local monotonicity
reconstructors for these graphs with arbitrary error blow-up.

Corollary 1.1. Consider a nonadaptive local monotonicity filter with constant
error probability δ. If the filter is for functions f : Hm,d → R, it must perform

Ω
(

logd−1 m
dd(2 log log m)d−1

)
lookups per query. If the filter is for functions f : Hd → R,

it must perform Ω
(
2αd/d

)
lookups per query, where α ≥ 0.1620.

Prior to this work, no lower bounds for monotonicity reconstructors onHm,d with
dependence on both m and d were known. Unlike the bound in [14], our lower
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bounds hold for any error blow-up and for non-distance-respecting filters. Our
bounds are tight for non-adaptive reconstructors. Specifically, for the hypergrid
Hm,d of constant dimension d, the number of lookups is (log m)Θ(d), and for the
hypercube Hd, it is 2Θ(d) for any error blow-up.

Testers vs.Reconstructors. [13] obtainedmonotonicity testers from2-TC-spanners.
Unlike in the application to monotonicity testing, here we use lower bounds on the
size of 2-TC-spanners to prove lower bounds on complexity of local monotonicity
reconstuctors.Lowerbounds on the size of 2-TC-spanners donot imply correspond-
ing lower bounds on monotonicity testers. E.g., the best monotonicity tester onHd

runs in O(d2) time [16, 17], while, as shown in Theorem 1.4, every 2-TC-spanner of
Hd must have size exponential in d.

1.2 Our Results on 2-TC-Spanners of the Hypercube and Hypergrid

Our main theorem gives a set of explicit bounds on S2(Hm,d):

Theorem 1.3 (Hypergrid). Let S2(Hm,d) denote the number of edges in the
sparsest 2-TC-spanner of Hm,d. Then1 for m ≥ 3,

Ω

(
md logd m

(2d log log m)d−1

)
= S2(Hm,d) ≤ md logd m.

The upper bound in Theorem 1.3 follows from a general construction of k-TC-
spanners for graph products for arbitrary k ≥ 2, presented in the full version.
The lower bound is the most technically difficult part of our work. It is proved by
a reduction of the 2-TC-spanner construction for [m]d to that for the 2× [m]d−1

grid and then directly analyzing the number of edges required for a 2-TC-spanner
of 2 × [m]d−1. We show a tradeoff between the number of edges in the 2-TC-
spanner of the 2 × [m]d−1 grid that stay within the hyperplanes {1} × [m]d−1

and {2} × [m]d−1 versus the number of edges that cross from one hyperplane
to the other. The proof proceeds in multiple stages. Assuming an upper bound
on the number of edges staying within the hyperplanes, each stage is shown to
contribute a substantial number of new edges crossing between the hyperplanes.
The proof of this tradeoff lemma is already non-trivial for d = 2 and is presented
in Section 3. The proof for d > 2 is deferred to the full version of the paper.

While Theorem 1.3 is most useful when m is large and d is small, in Section 4
we present bounds on S2(Hm,d) which are optimal up to a factor of d2m and,
thus, supersede the bounds from Theorem 1.3 when m is small. The general
form of these bounds is a somewhat complicated combinatorial expression but
they can be estimated numerically. Specifically, S2(Hm,d) = 2cmd poly(d), where
c2 ≈ 1.1620, c3 ≈ 2.03, c4 ≈ 2.82 and c5 ≈ 3.24, each significantly smaller than
the exponents corresponding to the transitive closure sizes for the different m.

As a special case of the above, for m = 2 we obtain the following theorem for
the hypercube. The proof of this theorem is omitted from this version.
1 Logarithms are always to base 2 unless otherwise indicated.
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Theorem 1.4 (Hypercube). Let S2(Hd) be the number of edges in the sparsest
2-TC-spanner of Hd. Then Ω(2cd) = S2(Hd) = O(d32cd), where c ≈ 1.1620.

As a comparison point for our bounds, note that the obvious bounds on S2(Hd)
are the number of edges in the d-dimensional hypercube, 2d−1d, and the number
of edges in the transitive closure ofHd, which is 3d−2d. (An edge in the transitive
closure of Hd has 3 possibilities for each coordinate: both endpoints are 0, both
endpoints are 1, or the first endpoint is 0 and the second is 1. This includes self-
loops, so we subtract the number of vertices in Hd to get the desired quantity.)
Thus, 2d−1d ≤ S2(Hd) ≤ 3d − 2d. Similarly, the straightforward bounds on the
number of edges in a 2-TC-spanner ofHm,d in terms of the number of edges in the

directed grid and in its transitive closure are dmd−1(m−1) and
(

m2+m
2

)d

−md,
respectively.

1.3 Previous Work on Bounding Sk for Other Families of Graphs

Thorup [18] considered a special case of TC-spanners of graphs G that have at
most twice as many edges as G, and conjectured that for all directed graphs G on
n nodes there are such k-TC-spanners with k polylogarithmic in n. He proved
this for planar graphs [19], but Hesse [20] gave a counterexample for general
graphs by constructing a family for which all n

1
17 -TC-spanners need n1+Ω(1)

edges. TC-spanners were studied for directed trees: implicitly in [17, 21–24] and
explicitly in [25]. For the directed line, [21] (and later, [22]) expressed Sk(Hn,1)
in terms of the inverse Ackermann function.

Lemma 1.1 ([13, 21, 22]). Let Sk(Hn,1) denote the number of edges in the
sparsest k-TC-spanner of the directed line Hn,1. Then S2(Hn,1) = Θ(n log n),
S3(Hn,1) = Θ(n log log n), S4(Hn,1) = Θ(n log∗ n) and, more generally, Sk(Hn,1)
= Θ(nλk(n)) where λk(n) is the inverse Ackermann function.

The same bound holds for directed trees [21, 23, 25]. An O(n log n ·λk(n)) bound
on Sk for H-minor-free graph families (e.g., bounded genus and bounded tree-
width graphs) was given in [13].

Notation. For a positive integer m, we denote {1, . . . , m} by [m]. For x ∈ {0, 1}d,
we use |x| to denote the weight of x, that is, the number of non-zero coordinates
in x. Level i in a hypercube contains all vertices of weight i. The partial order
� on the hypergrid Hm,d is defined as follows: x � y for two vertices x, y ∈ [m]d

iff xi ≤ yi for all i ∈ [d]. Similarly, x ≺ y, if x and y are distinct vertices in [m]d

satisfying x � y. Vertices x and y are comparable if either y is above x (that is,
x � y) or y is below x (that is, y � x). We denote a path from v1 to v�, consisting
of edges (v1, v2), (v2, v3), . . . , (v�−1, v�) by (v1, . . . , v�).

2 From Monotonicity Reconstructors to 2-TC-Spanners

In this section, we prove Theorem 1.1.
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Proof (of Theorem 1.1). Let A be a local reconstructor given by the statement
of the theorem. Let F be the set of pairs (x, y) with x, y in Vn such that x ≺ y.
Then, F is of size at most

(
n
2

)
. Given (x, y) ∈ F , let cube(x, y) be the set

{z ∈ Vn : x � z � y}. Define function f (x,y)(v) to be 1 on all v ! x and all
v ! y, and 0 everywhere else. Also, define function f (x,y)(v), which is identical
to f (x,y)(v) for all v /∈ cube(x, y) and 0 for v ∈ cube(x, y). Both, f (x,y) and
f (x,y), are monotone functions for all (x, y) ∈ F . Let Aρ be the deterministic
algorithm which runs A with the random seed fixed to ρ. We say a string ρ is
good for (x, y) ∈ F if filter Aρ on input f (x,y) returns g = f (x,y) and on input
f (x,y) returns g = f (x,y).

Now we show that there exists a set S of size s ≤ �2 log n/ log(1/2δ)�, consist-
ing of strings used as random seeds by A, such that for every (x, y) ∈ F some
string ρ ∈ S is good for (x, y). We choose S by picking strings used as random
seeds uniformly and independently at random. Since A has error probability at
most δ, we know that for every monotone f , with probability at least 1−δ (with
respect to the choice of ρ), the function Af,ρ is identical to f . Then, for fixed
(x, y) ∈ F and uniformly random ρ,

Pr[ρ is not good for (x, y)] ≤ Pr[Aρ on input f (x,y) fails to output f (x,y)]

+ Pr[Aρ on input f (x,y) fails to output f (x,y)] ≤ 2δ.

Since strings in S are chosen independently, Pr[no ρ ∈ S is good for (x, y)] ≤
(2 · δ)s, which, for s = �2 logn/ log(1/2δ)�, is at most 1/n2 < 1/|F|. By a union
bound over F , Pr[for some (x, y) ∈ F , no ρ ∈ S is good for (x, y)] < 1.

Thus, there exists a set S with required properties.
We construct our 2-TC-spanner H = (Vn, EH) of Gn using set S described

above. Let Nρ(x) be the set consisting of x and all vertices looked up by Aρ on
query x. (Note that the set Nρ(x) is well-defined since algorithm A is assumed
to be non-adaptive). For each string ρ ∈ S and each vertex x ∈ Vn, connect x
to all comparable vertices in Nρ(x) (other than itself) and orient these edges
according to their direction in Gn.

We prove H is a 2-TC-Spanner as follows. Suppose not, i.e., there exists
(x, y) ∈ F with no path of length at most 2 in H from x to y. Consider ρ ∈ S
which is good for (x, y). Define function h by setting h(v) = f (x,y)(v) for all
v /∈ cube(x, y). Then h(v) = f (x,y)(v) for all v /∈ cube(x, y), by definition of
f (x,y). For a v ∈ cube(x, y), set h(v) to 1 for v ∈ Nρ(x) and to 0 for v ∈ Nρ(y).
All unassigned points are set to 0. By the assumption above, Nρ(x) ∩ Nρ(y)
does not contain any points in cube(x, y). Therefore, h is well-defined. Since ρ
is good for (x, y) and h is identical to f (x,y) for all lookups made on query x,
Aρ(x) = h(x) = 1. Similarly, Aρ(y) = h(y) = 0. But x ≺ y, so Ah,ρ(v) is not
monotone. Contradiction.

The number of edges in H is at most∑
x∈Vn,ρ∈S

|Nρ(x)| ≤ n · �(n) · s ≤ n�(n) · �2 logn/ log(1/2δ)�. 
�
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3 2-TC-Spanners for Low-Dimensional Hypergrids

In this section, we describe the proof of Theorem 1.3 which gives explicit bounds
on the size of the sparsest 2-TC-spanner for Hm,d. The upper bound in The-
orem 1.3 follows straightforwardly from a more general statement about TC-
spanners of product graphs; details are in the full version. Here, we show
the lower bound on S2(Hm,d). Actually, in this extended abstract, we treat
only the special case of this lower bound for d = 2, since it already contains
most of the difficulty of the larger dimensional case. The extension to arbitrary
dimension is deferred to the full version due to space constraints.

Theorem 3.1. Any 2-TC-spanner of the 2-dimensional grid Hm,2 must have

Ω
(

m2 log2 m
loglog m

)
edges.

One way to prove the Ω(m log m) lower bound on the size of a 2-TC-spanner for
the directed lineHm,1, stated in Lemma 1.1, is to observe that at least "m

2 # edges
are cut when the line is halved: namely, at least one per vertex pair (v, m−v+1)
for all v ∈

[
"m

2 #
]
. Continuing to halve the line recursively, we obtain the desired

bound.
A natural extension of this approach to proving a lower for the grid is to

recursively halve the grid along both dimensions, hoping that each such op-
eration on an m × m grid cuts Ω(m2 log m) edges. This would imply that
the size S(m) of a 2-TC-spanner of the m × m grid satisfies the recurrence
S(m) = 4S(m/2) + Ω(m2 log m); that is, S(m) = Ω(m2 log2 m), matching the
upper bound in Theorem 1.3.

An immediate problem with this approach is that in some 2-TC-spanners of
the grid only O(m2) edges connect vertices in different quarters. One example of
such a 2-TC-spanner is the graph containing the transitive closure of each quarter
and only at most 3m2 edges crossing from one quarter to another: namely, for
each node u and each quarter q with vertices comparable to u, this graph contains
an edge (u, vq), where vq is the smallest node in q comparable to u.

The TC-spanner in the example above is not optimal because it has too many
edges inside the quarters. The first step in our proof of Theorem 3.1 is under-
standing the tradeoff between the number of edges crossing the cut and the
number of edges internal to the subgrids, resulting from halving the grid along
some dimension. The simplest manifestation of this tradeoff occurs when a 2×m
grid is halved into two lines. (In the case of one line, there is no trade off: the
Ω(m) bound on the number of crossing edges holds even if each half-line con-
tains all edges of its transitive closure.) Lemma 3.1 formulates the tradeoff for
the two-line case, while taking into account only edges needed to connect com-
parable vertices on different lines by paths of length at most 2:

Lemma 3.1 (Two-Lines Lemma). Let U be a graph with vertex set [2]× [m]
that contains a path of length at most 2 from u to v for every u ∈ {1}× [m] and
v ∈ {2} × [m], where u � v. An edge (u, v) in U is called internal if u1 = v1,
and crossing otherwise. If U contains at most m log2 m

32 internal edges, it must
contain at least m log m

16 log log m crossing edges.
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Note that if the number of internal edges is unrestricted, a 2-TC-spanner ofHm,2
may have only m crossing edges.

Proof. The proof proceeds in log m
2 log log m stages dealing with pairwise disjoint sets

of crossing edges. In each stage, we show that U contains at least m
8 crossing

edges in the prescribed set.
In the first stage, divide U into log2 m blocks, each of length m

log2 m
: namely, a

node (v1, v2) is in block i if v2 ∈
[

(i−1)·m
log2 m

+ 1, i·m
log2 m

]
. Call an edge long if it starts

and ends in different blocks, and short otherwise. Assume, for contradiction, that
U contains fewer than m

8 long crossing edges.
Call a node (v1, v2) low if v1 = 1 (high if v1 = 2), and left if v2 ∈

[
m
2

]
(right

otherwise). Also, call an edge (u, v) low-internal if u1 = v1 = 1 and high-internal
if u1 = v1 = 2. Let L be the set of low left nodes that are not incident to
long crossing edges. Similarly, let R be the set of high right nodes that are not
incident to long crossing edges. Since there are fewer than m

8 long crossing edges,
|L| > m

4 and |R| > m
4 .

L

Rmidline

high nodes & 
internal edges

left nodes right nodes

block
long internal edge

low nodes & 
internal edges

u

v

Fig. 1. Illustration of the first stage in the proof of Lemma 3.1

A node u ∈ L can connect to a node v ∈ R via a path of length at most
2 only by using a long internal edge. Observe that each long low-internal edge
can be used by at most m

log2 m
such pairs (u, v): one low node u and high nodes

v from one block. This is illustrated in Figure 1. Analogously, every long high-
internal edge can be used by at most m

log2 m
such pairs. Since |L| · |R| > m2

16 pairs
in L × R connect via paths of length at most 2, graph U contains more than
m2

16 ·
log2 m

m = m log2 m
16 long internal edges, which is a contradiction.

In each subsequent stage, call blocks used in the previous stage megablocks,
and denote their length by B. Subdivide each megablock into log2 m blocks of
equal size. Call an edge long if it starts and ends in different blocks, but stays
within one megablock. Assume, for contradiction, that U contains fewer than m

8
long crossing edges.
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Call a node (v1, v2) left if it is in the left half of its megablock, that is, if
v2 ≤ �+r

2 whenever (v1, v2) is in a megablock [2] × {�, . . . , r}. (Call it right
otherwise). Consider megablocks containing fewer than B

4 long crossing edges
each. By an averaging argument, at least m

2B megablocks are of this type. (Recall
that there are m

B megablocks in total). Within each such megablock more than B
4

low left nodes and more than B
4 high right nodes have no incident long crossing

edges. By the argument from the first stage, each such megablock contributes
more than B2

16b long internal edges, where b = B
log2 m

is the size of the blocks.

Hence there must be more than B2

16b ·
m
2B = m log2 m

32 long internal edges, which is
a contradiction to the fact that U contains at most m log2 m

32 internal edges.
We proceed to the next stage until each block is of length 1. Therefore, the

number of stages, t, satisfies m
log2t m

= 1. That is, t = log m
2 log log m , and each stage

contributes m
8 new crossing edges, as desired. 
�

Next we generalize Lemma 3.1 to understand the tradeoff between the number
of internal edges and crossing edges resulting from halving a 2-TC-spanner of a
2�×m grid with the usual partial order.

Lemma 3.2. Let S be a 2-TC-spanner of the directed [2�]× [m] grid. An edge
(u, v) in S is called internal if u1, v1 ∈ [�] or u1, v1 ∈ {� + 1, . . . , 2�}, and crossing
otherwise. If S contains at most �m log2 m

64 internal edges, it must contain at least
�m log m

32 log log m crossing edges.

Proof. For each i ∈ [�], we match the lines {i} × [m] and {2� − i + 1} × [m].
Observe that a path of length at most 2 between the matched lines cannot use
any edges with both endpoints in {i+1, . . . , 2�− i}× [m]. We modify S to ensure
that there are no edges with only one endpoint in {i+1, . . . , 2�− i}× [m] for all
i ∈ [�], and then apply Lemma 3.1 to the matched pairs of lines.

Call the [�]× [m] subgrid and all vertices and edges it contains low, and the
remaining {�+1, . . . , 2�}×[m] subgrid and its vertices and edges high. Transform
S into S′ as follows: change each low internal edge (u, v) to (u, (u1, v2)), change
each high internal edge (u, v) to ((v1, u2), v), and finally change each crossing
edge ((i1, j1), (2�− i2 + 1, j2)) to ((i, j1), (2�− i + 1, j2)), where i = min(i1, i2).
Intuitively, we are projecting the edges in S to be fully contained in one of the
matched pairs of lines, while preserving whether the edge is internal or crossing.
Crossing edges are projected onto the outer matched pair of lines chosen from
the two pairs that contain the endpoints of a given edge.

Clearly, S′ contains at most the number of internal (crossing) edges as S.
Observe that S′ contains a path of length at most 2 from u to v for every
comparable pair (u, v) where u is low, v is high, and u and v belong to the same
pair of matched lines. Indeed, since S is a 2-TC-spanner, it contains either the
edge (u, v) or a path (u, w, v). In the first case, S′ also contains (u, v). In the
second case, if (u, w) is a crossing edge S′ contains (u, (v1, w2), v), and if (u, w) is
an internal edge S′ contains (u, (u1, w2), v). As claimed, each edge in S′ belongs
to one of the matched pairs of lines.
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Finally, we apply Lemma 3.1. If S contains at most �m log2 m
64 internal edges,

then so does S′, and so at least half
(
i.e., �

2

)
of the matched line pairs each contain

at most m log2 m
32 internal edges. By Lemma 3.1, each of these pairs contributes at

least m log m
16 log log m crossing edges. Thus S′ must contain at least �m log m

32 log log m crossing
edges. Since S contains as many crossing edges as S′, the lemma follows. 
�
Now we prove Theorem 3.1 by recursively halving Hm,2 along the horizontal
dimension. Some resulting � ×m subgrids may violate Lemma 3.2, but we can
guarantee that the lemma holds for a constant fraction of the recursive steps for
which � ≥

√
m. This is sufficient for obtaining the lower bound in the theorem.

Proof (of Theorem 3.1). Assume m is a power of 2 for simplicity. For each step
i ∈ {1, . . . , 1

2 log m}, partition Hm,2 into the following 2i−1 equal-sized subgrids:
{1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m], . . . , {m − li + 1, . . . , m} × [m] where
li = m/2i−1. For each of these subgrids, define internal and crossing edges as in
Lemma 3.2. Now, suppose that there exists a step i such that at least half of the
2i−1 subgrids have > lim log2 m

64 internal edges. Since at a fixed i, the subgrids
are disjoint, there are 2i−1Ω(lim log2 m) = Ω(m2 log2 m) edges in S, proving the
theorem. On the other hand, suppose that for every i ∈ {1, . . . , 1

2 log m}, at least
half of the 2i−1 subgrids have ≤ lim log2 m

64 internal edges. Then, applying Lemma
3.2, the number of crossing edges in those subgrids is ≥ lim log m

32 log log m . Counting over
all steps i and for all appropriate subgrids from those steps, the number of edges
in S is bounded by Ω

(
m2 log m log m

log log m

)
= Ω

(
m2 log2 m

log log m

)
. 
�

In the full version,we extend the above proof to establish lower bounds onS2(Hm,d)
for arbitrary d ≥ 2. The main technical deferred result is a tradeoff lemma between
internal and crossing edges with respect to two (d− 1)-dimensional hyperplanes.
An important part of the generalization is the appropriate definition of the notions
of blocks and megablocks, so that the iterative argument in the proof of Lemma
3.1 applies in the high-dimensional setting.

4 2-TC-Spanners for High-Dimensional Hypergrids

Theorem 4.1 gives matching upper and lower bounds up to a d2m factor in terms
of an expression involving binomial coefficients. This result supersedes the results
of the previous section when, for instance, m is constant and d is growing.

Before stating Theorem 4.1, we introduce some notation.

Definition 4.1. For the hypergrid Hm,d , define a level to be a set of vertices,
indexed by vector i ∈ [d]m with i1 + · · · + im = d, that consists of vertices
x = (x1, . . . , xd) ∈ [m]d containing i1 positions of value 1, i2 positions of value
2, . . . , and im positions of value m.

Notice that the number of vertices in level i = (i1, i2, . . . , im) is the multinomial
coefficient(

d

i

)
=

(
d

i1, ..., id

)
=

(
d

i1

)(
d− i1

i2

)(
d− i1 − i2

i3

)
. . .

(
d−

∑m−1
l=1 il

im

)
.
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Indeed, there are
(

d
i1

)
choices for the coordinates of value 1. For each such choice

there are
(
d−i1

i2

)
choices for the coordinates of value 2, and repeating this argu-

ment one obtains the above expression.
For levels i, j ∈ [d]m, say j majorizes i, denoted j $ i, if j contains a vertex

which is above some vertex in i, i.e., , if
m∑

�=t

j� ≥
m∑

�=t

i� for all t ∈ {m, m−1, ..., 1}.

For j $ i, the number of vertices y at level i comparable to a fixed vertex x
at level j is M(i, j):

(
jm

im

)(
jm + jm−1 − im

im−1

)(
jm + jm−1 + jm−2 − im − im−1

im−2

)
. . .

( m∑
l=1

jl −
m∑

l=2

il

i1

)
.

Indeed, there are
(
jm

im

)
choices for the coordinates of value m in y. For each such

choice, there are
(
jm+jm−1−im

im−1

)
choices for the coordinates of value m − 1 in y,

and one can repeat this argument to obtain the claimed expression.
For j $ i, the number of vertices y at level j comparable to a fixed vertex x

at level i is

N (i, j) =
M(i, j)

(
d
j

)(
d
i

) .

Indeed, there are M(i, j)
(
d
j

)
comparable pairs of vertices in levels i and j, and

level i contains
(
d
i

)
vertices. Since, by symmetry, each vertex in i is comparable

to the same number of vertices in level j, we get the desired expression.

Theorem 4.1. Let

B(m, d) = max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(
d
j

)
M(i,k)N (k, j)

max {M(i,k),N (k, j)} .

Then the number of edges in the sparsest 2-TC-spanner of the directed hypergrid
Hm,d is O

(
d2mB(m, d)

)
and Ω (B(m, d)).

The proof for the upper bound part of Theorem 4.1 appears in the full version.
We now prove the lower bound.

Lemma 4.1. Any 2-TC-spanner of Hm,d has at least Ω(B(m, d)) many edges,
where B(m, d) is defined as in Theorem 4.1.

Proof. Let S be a 2-TC-spanner for Hm,d. We count the edges in S that occur on
paths connecting two particular levels of Hm,d. Let Pi,j = {(v1, v2) : v1 ∈ i, v2 ∈
j, v1 ≺ v2}. We will lower bound e∗i,j, the number of edges in the paths of length
at most 2 in S, that connect the pairs Pi,j. Notice that |P (i, j)| =

(
d
j

)
M(i, j).

Let ek,� denote the number of edges in S that connect vertices in level k to
vertices in level �. Then

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j). (1)
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We say that a vertex v covers a pair of vertices (v1, v2) if S contains the edges
(v1, v) and (v, v2) or, for the special case v = v1, if S contains (v1, v2). Let V

(k)
i,j

be the set of vertices in level k that cover pairs in Pi,j. Let αk be the fraction of
pairs in Pi,j that are covered by the vertices in V

(k)
i,j . Since each pair in Pi,j must

be covered by a vertex in levels k with i ≺ k ≺ j, we must have
∑

i≺k≺j αk ≥ 1.

For any vertex v ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices

of level i incident to v and let outv be the number of outgoing edges to vertices of
level j incident to v. For each level k with i ≺ k ≺ j, since each vertex v ∈ V

(k)
i,j

covers inv · outv pairs,∑
v∈V

(k)
i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)
(

d

j

)
. (2)

We upper bound
∑

v∈V
(k)
i,j

inv · outv as a function of ei,k + ek,j, and then use

Equation (2) to lower bound ei,k + ek,j. For all k with i ≺ k ≺ j, variables inv

and outv satisfy the following constraints:∑
v∈V

(k)
i,j

inv ≤ ei,k ≤ ei,k + ek,j,
∑

v∈V
(k)
i,j

outv ≤ ek,j ≤ ei,k + ek,j,

inv ≤M(i,k) ∀v ∈ V
(k)
i,j , outv ≤ N (k, j) ∀v ∈ V

(k)
i,j .

The last two constraints hold because inv and outv count the number of edges
to a vertex of level k from vertices of level i, and from a vertex of level k to
vertices of level j, respectively. Using these bounds we obtain∑
v∈V

(k)
i,j

inv·outv ≤
∑

v∈V
(k)
i,j

M(i,k) · outv =M(i,k)·
∑

v∈V
(k)
i,j

outv ≤M(i,k)·(ei,k+ek,j).

Similarly,
∑

v∈V
(k)
i,j

inv · outv ≤ N (k, j) · (ei,k + ek,j). Therefore,∑
v∈V

(k)
i,j

inv · outv ≤ (ei,k + ek,j)min {M(i,k),N (k, j)} .

From Equation (2), ei,k + ek,j ≥ αkM(i, j)
(

d

j

)
1

min {M(i,k),N (k, j)} for all

i ≺ k ≺ j. Applying Equation (1) and the fact that
∑

i≺k≺j αk ≥ 1, we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j) ≥
∑
k

αk
1

min {M(i,k),N (k, j)}M(i, j)
(

d

j

)

≥ min
k

1
min {M(i,k),N (k, j)}M(i, j)

(
d

j

)
= min

k

1
M(i,k)N (k, j)

M(i, j)
(

d

j

)
max {M(i,k),N (k, j)}.

Since this holds for arbitrary i and j, the size of the 2-TC-spanner is |S| ≥
B(m, d). 
�
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Abstract. We study the problem of monotonicity testing over the hypercube.
As previously observed in several works, a positive answer to a natural question
about routing properties of the hypercube network would imply the existence of
efficient monotonicity testers. In particular, if any set of source-sink pairs on the
directed hypercube (with all sources and all sinks distinct) can be connected with
edge-disjoint paths, then monotonicity of functions f : {0, 1}n → R can be
tested with O(n/ε) queries, for any totally ordered range R. More generally, if
at least a μ(n) fraction of the pairs can always be connected with edge-disjoint
paths then the query complexity is O(n/(εμ(n))).

We construct a family of instances of Ω(2n) pairs in n-dimensional hyper-
cubes such that no more than roughly a 1√

n
fraction of the pairs can be simul-

taneously connected with edge-disjoint paths. This answers an open question of
Lehman and Ron [LR01], and suggests that the aforementioned appealing com-
binatorial approach for deriving query-complexity upper bounds from routing
properties cannot yield, by itself, query-complexity bounds better than ≈ n3/2.
Additionally, our construction can also be used to obtain a strong counterexam-
ple to Szymanski’s conjecture about routing on the hypercube. In particular, we
show that for any δ > 0, the n-dimensional hypercube is not n

1
2−δ-realizable

with shortest paths, while previously it was only known that hypercubes are not
1-realizable with shortest paths.

We also prove a lower bound of Ω(n/ε) queries for one-sided non-adaptive
testing of monotonicity over the n-dimensional hypercube, as well as additional
bounds for specific classes of functions and testers.

1 Background

Testing monotonicity of functions [DGL+99],[Ras99],[GGL+00],[EKK+00],[Fis04],
[FLN+02],[AC06],[Bha08],[HK08] is one of the oldest and most studied problems in
Property Testing. The problem is defined as follows: Let D be a partially ordered set
(poset) and let R ⊆ Z. A function f : D → R is monotone if for every (comparable)
pair x, y ∈ D, x ≤ y implies f(x) ≤ f(y). A function f is ε-far from monotone if
it has to be changed on at least an ε-fraction of the domain D to become monotone. A

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 462–475, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(q, ε)-monotonicity tester for domain D and range R is a probabilistic algorithm that,
given oracle access to a function f : D → R, satisfies the following: (a) it makes at
most q queries to f ; (b) it accepts with probability at least 2/3 if f is monotone; (c) it
rejects with probability at least 2/3 if f is ε-far from monotone.

The simplest monotonicity testers are those that specify all their queries in advance
(non-adaptively) and reject if and only if they reveal a violation, i.e. if f(x) > f(y)
for some comparable pair x ≤ y of points queried from D. These non-adaptive testers
with one-sided error are the only ones considered in this paper, unless explicitly stated
otherwise. We note that nearly all known monotonicity testers are non-adaptive and
have one-sided error. Furthermore, it is also known that if D is totally ordered then non-
adaptive testers with one-sided error are as powerful (in terms of query complexity) as
general ones [Fis04].

For general domains D, Fischer et al. [FLN+02] proved that testing monotonicity
is equivalent to several natural problems, including testing certain graph properties
and testing assignments for Boolean formulae. Domains of the form {0, 1, . . . , m}n,
however, received most of the attention [DGL+99], [EKK+00], [GGL+00], [Fis04],
[Ras99], [Bha08], [BGJ+09a], [BGJ+09b]. Here the order relation x ≤ y is defined to
hold for x, y ∈ {0, . . . , m}n when xi ≤ yi for all i ∈ [n]. In this paper we focus on a
well-studied subcase of the above, where m = 1 andR ⊆ Z.

1.1 Preliminaries

Every x ∈ {0, 1}n is identified with the subset support(x) = {i ∈ [n] : xi = 1}
as usual. With a slight abuse of notation, we interpret binary strings as sets (and vice-
versa). E.g., we write x ⊆ y (or x ≤ y) for two strings x, y ∈ {0, 1}n such that
support(x) ⊆ support(y).

The directed n-dimensional hypercube (or simply n-cube) is a directed graph Hn =
(Vn, En) with Vn = {0, 1}n and En = {(x, y) : x ⊆ y and |y| = |x| + 1}. The h-th
layer (or level) of Hn contains all x ∈ Vn with |x| = h.

Definition 1. A set P ⊆ Vn×Vn of � pairs {(si, ti)}�
i=1 is called a source-sink pairing

(of size �), with sources s1, . . . , s� and sinks t1, . . . , t�, if
– si ⊂ ti for all i ∈ [�] and
– si �= sj , si �= tj and ti �= tj for all i, j ∈ [�], i �= j.

P is aligned if in addition |si| = |sj | and |ti| = |tj | for all i, j ∈ [�].

Notice that P is a source-sink pairing if and only if it forms a (partial) matching in the
transitive closure of Hn. Throughout this paper we denote by P only sets of pairs that
form a source-sink pairing, even when it is not explicitly mentioned.

A (directed) path in Hn is called a P-path if it connects some source si from P to
its sink ti. A subset C ⊆ En is called a P-cut if every P-path in Hn uses at least one
edge from C. Similarly, a subset S ⊆ Vn is called a P-vertex-cut if every P-path uses
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at least one vertex from S. We write maxflow(P) for the size of the largest set of edge-
disjoint P-paths, mincut(P) for the size of the smallest P-cut and minvertexcut(P)
for the size of the smallest P-vertex-cut. Clearly mincut(P) is an upper bound on both
minvertexcut(P) and maxflow(P). Unlike the case with a single pair in P , these quan-
tities need not coincide.

We define the terms sparsity and meagerness as in [RL05], [ABY08], [AHJ+06].
The sparsity of P is the ratio mincut(P)/|P|, and the vertex-sparsity of P is the
ratio minvertexcut(P)/|P|. The sparsity and the vertex-sparsity of Hn are defined
as minP{mincut(P)/|P|} and minP{minvertexcut(P)/|P|}, respectively. In other
words, sparsity is the average number of edges per source-sink pair that one has to
remove to disconnect every source from its sink, whereas vertex-sparsity is the aver-
age number of vertices per source-sink pair that one has to remove to disconnect every
source from its sink. The definitions of meagerness and vertex-meagerness are similar,
except for the stronger requirement that the corresponding cuts disconnect all sources
si from all sinks tj .

Observe that (1) sparsity ≥ vertex-sparsity; (2) meagerness ≥ vertex-meagerness;
(3) meagerness≥ sparsity and (4) vertex-meagerness≥ vertex-sparsity.

GivenR ⊆ Z and a function f : {0, 1}n → R, we say that a pair (x, y) ∈ Vn × Vn

is violated by f if x ≤ y and f(x) > f(y). If in addition (x, y) ∈ En, we call it a
violated edge. We denote by Viol(f) the set of all pairs (x, y) violated by f , and by
EdgeViol(f) the set of all edges violated by f . Thus, f is monotone if and only if
Viol(f) = EdgeViol(f) = ∅.

We denote by εM (f) ∈ [0, 1] the relative distance of f from being monotone, i.e. the
minimum of Prx[f(x) �= g(x)] taken over all monotone functions g : {0, 1}n →R. Let
δM (f) ∈ [0, 1] denote the fraction |EdgeViol(f)|/|En| = |EdgeViol(f)|/(n2n−1) of
edges violated by f .

2 Our Results and Related Work

2.1 Monotonicity Testers via Sparsity Lower Bounds

One of the earliest upper bounds on the query complexity of monotonicity testing on
the hypercube used an approach based on the concepts of meagerness and sparsity
[GGLR98]. In particular, [GGLR98] observed that if the meagerness of Hn is at least 1,
then monotonicity of Boolean functions can be tested with O(n/ε) queries. Then they
proved that vertex-meagerness (and hence meagerness too) is 1 if the possible pairings
P are restricted to aligned sets, satisfying |si| = |sj | and |ti| = |tj | for all i, j (see also
[LR01] for a detailed proof). This sufficed to derive an upper-bound of O(n2) queries
for any constant ε > 0.

While a lower bound on meagerness implies query-complexity upper bounds for
Boolean functions, a lower bound on sparsity implies query-complexity upper bounds
for functions with general range (see Section 3.1 for details). In particular, if the sparsity
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of Hn is at least μ = μ(n), then monotonicity of functions with any linearly ordered
range can be tested with O(n/(εμ)) queries. In [LR01] the authors ask whether the spar-
sity of anyP (or even just of the aligned ones) is at least 1, noting that this would imply
the existence of efficient monotonicity testers as well as progress on some long-standing
questions regarding routing in the hypercube network. We prove that the answer to both
of their questions is no. The following theorem is proved in Section 3.2:

Theorem 2. The sparsity of Hn is at most n− 1
2+o(1). Furthermore, this upper bound

on the sparsity can be demonstrated both with aligned sets and with Ω(2n)-sized sets:

– for any δ > 0 and large enough n there is an aligned set P in Hn with sparsity at
most n− 1

2+δ;
– for any δ > 0 there is ε > 0, such that for large enough n there is a set P in Hn of

size |P| ≥ ε2n with sparsity at most n− 1
2+δ .

2.2 Routing in the Hypercube and Szymanski’s Conjecture

The hypercube is a natural and well-studied architecture for multi-processor systems
and networks. The ability to route arbitrary permutations on it models flow of infor-
mation in a network of processors. In this context, a doubly-directed version of Hn is
usually considered, where each edge in En is replaced with a pair of anti-parallel edges.
Let us denote the doubly-directed version of Hn by H

↑↓
n . A permutation π of Vn is 1-

realizable if there exist pairwise edge-disjoint paths in H
↑↓
n that connect every v with

π(v). A permutation π is k-realizable if there exist paths connecting every v with π(v)
such that each edge is used in at most k paths. Szymanski [Szy89] conjectured that any
permutation π of Vn is 1-realizable with shortest paths. It was proved that the conjecture
holds up to dimension 3, but later Lubiw [Lub90] provided a counterexample in dimen-
sion 5 that is not 1-realizable using shortest paths. While it is still unknown whether
or not every permutation is 1-realizable without requiring shortest paths1, the fact that
any permutation is 2-realizable follows from the classical work of Beneš [Ben65] (see
[Lub90] for details). In contrast, we prove that if we insist on the shortest-path condi-
tion, there are permutations that are not k-realizable for any k significantly smaller than√

n. Specifically, the construction in Theorem 2 can be used (see Section 3.3) to prove
the following.

Theorem 3. For any δ > 0 and large enough n, there are permutations on Vn that
cannot be n

1
2−δ-realized in H

↑↓
n with shortest paths.

Remark 1. Any upper bound μ(n) on the sparsity of Hn can be used to show that H
↑↓
n

is not 1/μ(n)-realizable with shortest paths. But the opposite is not true; in particular,
the counterexample from [Lub90] does not imply that the sparsity of H5 is less than 1.

1 Since the original conjecture was shown to be false, the weaker version that does not require
shortest paths is now called Szymanski’s conjecture.
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2.3 New Bounds on Testing Monotonicity

At the moment the best known query-complexity bounds for testing monotonicity (non-
adaptively with one-sided error) of functions f : {0, 1}n → R are:

– an upper bound of O(n
ε log |R|) for any rangeR [DGL+99];

– a lower bound of Ω(
√

n/ε) for Boolean ranges (and hence for wider ranges too)
[FLN+02].

The tester used in the upper bound of [DGL+99] is perhaps the most natural one: it
picks an edge (x, y) ∈ En uniformly at random, and rejects if f(x) > f(y). Let us call
this test an edge-test. [DGL+99] prove that the probability that a single execution of an
edge-test rejects is Ω( εM (f)

n log |R|), by relating the distance of a function from monotone
to the number of edges that it violates.

It is an interesting open question whether the general upper bound of [DGL+99] can
be improved into one that is independent of |R| (or at least has a better dependence on
it). Since we can assume without loss of generality that |R| ≤ 2n, any upper bound of
o(n2/ε) queries would be an improvement. We make a small step in this direction. Call
a function f : {0, 1}n → R dist-k monotone if f(y) ≥ f(x) for every y > x with
|y| > |x| + k. In this terminology dist-0 monotone is simply monotone. In Section 3.4
we prove that given a dist-3 monotone function f , we can test if f is monotone with
O(n3/2/ε) queries. We actually prove the following stronger claim:

Theorem 4. Let ε > 0,R ⊆ Z and let f : {0, 1}n →R be a dist-3 monotone function.

If f is ε-far from being monotone then |EdgeViol(f)| ≥ Ω
(

2n

ε
√

n

)
.

The upper bound on the query complexity follows using the edge-tests described above.
The reasons for considering dist-3 monotonicity here are twofold. Firstly, it is the

first non-trivial case (it is easy to see that both dist-1 and dist-2 monotone functions can
be tested in O(n/ε) queries). Secondly, we will see later that non-trivial sparsity upper
bounds already exist for pairings in which every source is at distance 3 from its sink.

In Section 3.5 we also extend the lower bound of Ω(
√

n/ε) of [FLN+02] to Ω(n/ε),
for large enough |R|. Using the “Range-Reduction Lemma” of [DGL+99], the new
bound implies an improved lower bound of Ω(n/(ε log n)) for the Boolean range, in the
special case of pair-testers whose query complexity can be written as q(n)/ε for some
function q. (A pair-tester picks independent pairs of comparable vertices according to
some distribution, and rejects if and only if one of them forms a violation). We note
that such testers are not overly restricted: essentially all known query-complexity up-
per bounds for monotonicity-testing use (or can be easily converted into ones that use)
pair-tests of this kind. Furthermore, the new lower-bound almost matches the aforemen-
tioned upper-bound of O(n/ε) achieved by edge-tests (a special case of pair-tests).
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3 Proofs

3.1 From Sparsity to Monotonicity Testers

The basic combinatorial interpretation of εM (f) is given in the following lemma:

Lemma 1. [DGL+99], [FLN+02], [GGL+00] Let f : {0, 1}n → R be a function,
and define the violation graph of f as the undirected graph G = ({0, 1}n, E), where
{x, y} ∈ E if either (x, y) or (y, x) is in Viol(f). Then εM (f)2n is exactly the size of
a minimum vertex cover of G. Consequently, there is a matching in G of size at least
εM (f)2n−1.

An important observation is that since G is a subgraph of the transitive closure of Hn,
the matching of violated pairs in Lemma 1 forms a source-sink pairing P (see Defini-
tion 1) of size εM (f)2n−1.

As we mentioned earlier, the best known upper bounds for testing monotonicity over
hypercubes are obtained by a simple edge-tester, which picks a set of edges from Hn

uniformly at random, queries f on their endpoints, and rejects if one of them is violated.
Recall that δM (f) denotes the fraction of edges in Hn that are violated by f ; thus the
success probability of the edge-tester is determined by δM (f). Goldreich et al prove the
following:

Theorem 5. [GGLR98], [GGL+00] For any f : {0, 1}n → {0, 1}, δM (f) ≥ εM (f)
n .

More generally, [DGL+99] use their range-reduction lemma to conclude that for any
f : {0, 1}n → R, δM (f) ≥ εM (f)

n log |R| . Since without loss of generality |R| ≤ 2n,

this gives an upper bound of O(n2/ε) queries for testing monotonicity of all functions
f : {0, 1}n →R.

Clearly, obtaining better lower bounds on δM (f) is sufficient for improving the upper
bounds on the query complexity of testing monotonicity. (It may even be the case that
Theorem 5 holds for anyR). The next lemma states that this can also be done by proving
lower bounds on the sparsity of Hn.

Lemma 2. Let μ(n) denote the sparsity of Hn. For any ε > 0 andR ⊆ Z, monotonicity
of functions f : {0, 1}n →R can be tested with O( n

εμ(n) ) queries.

Proof: Let ε > 0 and let f : {0, 1}n → R be ε-far from monotone. Let P be the
set of εM (f)2n−1 ≥ ε2n−1 vertex-disjoint violated pairs promised by Lemma 1. By
definition, P is a source-sink pairing. Notice that since every (si, ti) ∈ P is violated,
we have that every path from si to ti must contain at least one violated edge. It follows
that the set EdgeViol(f) is a P-cut and |EdgeViol(f)|/|P| ≥ μ(n). Hence δM (f) =
|EdgeViol(f)|

|En| ≥ εμ(n)
n . We can thus conclude that O

(
n

εμ(n)

)
edge queries suffice to find

an edge-violation with constant probability. 
�
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3.2 Proof of Theorem 2

We use a number of properties of the parity-check matrix of Hamming codes, which
we now describe. For an integer k ≥ 1, let the strings y ∈ {0, 1}k\{0}k represent the
indices of bit positions of binary strings of length n = 2k − 1. The Hamming code
consists of the n-bit strings x ∈ {0, 1}n that, for every i ∈ [k], have an even number
of positions y for which yi = 1 and xy = 1. The columns of its k × n parity check
matrix p are all possible non-zero k-bit vectors y; this matrix represents a linear map
p : {0, 1}n → {0, 1}k, with arithmetic done modulo 2. Therefore, for any unit vector
ey (i.e., the vector having 1 at position y and 0 elsewhere), p(ey) = y. Consequently,
for all x, y, p(x⊕ ey) = p(x) ⊕ y.

Codewords of the Hamming code correspond to strings satisfying p(x) = 0 (here
and in what follows we use 0 to denote the all-zero vector of the appropriate size). The
k bit positions of the form 2i (i.e., 1, 2, 4, . . . , (n + 1)/2) can be viewed as the parity
bits of the code; in a codeword they are determined by the remaining n− k bits.

Warm-up. To showcase the main ideas in the construction, we first show that the
sparsity of the hypercube is at most O( 1

n1/3 ); better bounds are derived in Section 3.2.

Proposition 6. Let k > 0 be a multiple of three, and n = 2k − 1. There is a pairing
P ⊆ Vn × Vn in Hn of size |P| = Ω(2n) having a P-cut C ⊆ En of size |C| =
O(2n/n1/3).

Proof: For a ∈ {0, 1}n, consider the k parity bits p(a) and divide them into three
groups of size k/3 each, denoted x(a), y(a) and z(a). For convenience, we will write
(v1, v2, v3) to denote the concatenation of three vectors v1, v2, v3 ∈ {0, 1}k/3, and
whenever no confusion may arise, we interpret every v ∈ {0, 1}k as an element of
{0}∪ [n]. With this convention, we have p(a) = (x(a), y(a), z(a)), and if one of v1, v2

or v3 is non-zero, then (v1, v2, v3) ∈ [n].
The set S of sources of P is the set of all s ∈ {0, 1}n that satisfy(

x(s) �= 0∧y(s) �= 0∧z(s) �= 0
)
∧
(
s(x(s),y(s),0) = s(x(s),0,z(s)) = s(0,y(s),z(s)) = 0

)
.

For each source s ∈ S, we define its sink t as

t = s ∪ {(x(s), y(s), 0), (x(s), 0, z(s)), (0, y(s), z(s))}.

That is, the three directions leading from s to t are (x(s), y(s), 0), (x(s), 0, z(s)) and
(x(s), 0, z(s)). The first three conditions on a member s of S ensure that all three direc-
tions are (1) distinct; (2) proper (i.e. non-zero); and (3) have a k-bit binary representa-
tion with Hamming weight strictly greater than one. The last condition ensures that the
relevant bits of s are set to zero.

The pairing P will be given by all pairs (s, t) defined in this way. Clearly s ⊆ t and

|t− s| = 3. It is easy to verify that |S| =
(
2k/3 − 1

)3
2n−k−3 = Ω(2n), since none of

the directions used corresponds to a parity bit, i.e., none of them is a power of 2.
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To prove that P is a pairing, it remains to show that all sources are distinct, and
that no source is also a sink. Because of the properties of map p, after flipping e.g. bit
(x, y, 0) from a source s with parity (x, y, z), we reach a vertex with parity (0, 0, z).
Thus, we see that the parities of the eight vertices in the cube from s to t are:

– Level 3 (sink): (x, y, z).
– Level 2: (x, 0, 0), (0, y, 0), (0, 0, z).
– Level 1: (0, 0, z), (0, y, 0), (x, 0, 0).
– Level 0 (source): (x, y, z).

Notice that the parities at level 1 are distinct, as are the parities at level 2.
Since the three directions from s to t are determined by p(s) = (x, y, z) = p(t), it

follows that the set of sinks is disjoint from the set of sources (these bits already belong
to t, so t /∈ S). Likewise, if two different sources s1 and s2 were associated with the
same sink t, we would get p(s1) = p(t) = p(s2), so the three directions from s1 to t

are the same as from s2 to t, implying s1 = s2. Hence P is indeed a pairing.
Let Q ⊆ Vn be the set of vertices at level 1 or 2 for some pair (s, t) ∈ P (that is,

lying on a path from s to t and different from s and t). All vertices in Q have parities
of one of the forms (0, 0, z), (0, y, 0), (x, 0, 0), hence |Q| = O(2n/n2/3). Now take
the set C ⊆ En of all edges of Hn with both endpoints in Q; it is clearly a P-cut.
Furthermore, each vertex of Q is incident with at most 3 · 2k/3 = O(n1/3) edges from
C. This follows from the fact that every v ∈ Q with parity vector, say, (x, 0, 0), can
be incident only with those edges in C that have directions corresponding to vectors
of the form (x, y, 0), (x, 0, z) or (x′, 0, 0), for various y, z, x′ ∈ {0, 1}k/3. Therefore,
|C| = O(2n/n1/3), concluding the proof. 
�

Improved Bounds. In the main construction, we divide the length-k strings into m

equally-sized parts, we let d be the distance between pairs in the pairing and w be the
number of non-zero length-(k/m) parts of the parity strings of the direction vectors.
The main tool is the following lemma about certain sets of vectors used to generalize
the proof in the warm-up. The reader should keep in mind that an example of such a set
of vectors for m = 3, d = 3, w = 2, is V = {110, 101, 011}, and was used implicitly
in the previous proof.

For our purposes, all parameters involved except k and n should be thought of as
constants, although the constants hidden in the Big-O notation are absolute.

Lemma 3. Suppose V ⊆ {0, 1}m, d = |V |, and w ∈ N are such that:
1. 2 ≤ |v| ≤ w for all v ∈ V ,
2.

⊕
v∈V v = 0, and

3. For all W ⊆ V of size |W | = "d/2#, |
⊕

v∈W v| ≥ �m/2�

Let k be a positive multiple of m and n = 2k − 1. Then there is a pairing P ⊆
Vn × Vn of vertices of Hn of size |P| = Ω(2n−d) that has a P-cut C ⊆ En of size

|C| = O
(

2n√
n

nw/m
√

d2d
)

and with the additional property that each source in P is

at distance exactly d from its sink.
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Proof: Divide [k] into m disjoint subsets G1, . . . , Gm ⊆ [k] of size k/m; e.g. Gi =
{(i−1)k/m+1, . . . , ik/m}. For a ∈ {0, 1}n, consider the k parity bits p(a) ∈ {0, 1}k

of a, and split them into m blocks according to G1, . . . , Gm
2; let us call each of the

corresponding k/m-bit substrings x1(a), . . . , xm(a). Thus, p(a) is the concatenation
of x1(a), x2(a), . . . , xm(a).

For a subset v ⊆ [m], let Zv =
⋃

i∈v Gi ⊆ [k]. Given p ⊆ [k], define the projection
of p on v to be Πv(p) = p ∩ Zv, (remember that p and Πv(x) can be interpreted as
strings in {0, 1}k as well). For example, in the preceding subsection, Π110((x, y, z)) =
(x, y, 0). Consider the set

S = {a ∈ {0, 1}n : ∀i∈[m] xi(a) �= 0 and ∀v∈V aΠv(p(a)) = 0}.

This will be set of sources in P . Note that the expression aΠv(p(a)), referring to bit
number Πv(p(a)) of a, is well-defined, because the condition ∀i xi(a) �= 0, along with
v �= 0, implies Πv(p(a)) �= 0.

The set of d directions between a source s and the corresponding sink t will be
determined by the parity of s alone, in the following way: for p ∈ {0, 1}k, let D(p) =⋃

v∈V {Πv(p)}. Condition 1 of the hypothesis of the lemma implies that if s ∈ S,
|D(p(s))| = |V | = d, and all elements of D(p(s)) have weight ≥ 2.

For each source s ∈ S, we define the sink t = s∪D(p(s)); by construction s ⊆ t, and
t − s = |D(p(s))| = d. P is defined as the union of all such ordered pairs (s, t): P =
∪s∈S{(s, s ∪D(p(s)))}. Notice that |P| = |S| =

(
2k/m − 1

)m
2n−k−d = Ω(2n−d).

We prove now that P forms a pairing: the set of sinks is disjoint from the set
of sources, and no two different sources have the same sink. Because of the afore-
mentioned properties of the parity check p, for any source-sink pair (s, t) we have
p(t) = p(s) ⊕

⊕
v∈V Πv(p(s)) = p(s)⊕Π⊕

v∈V v(p(s)) = p(s) (where we used the
second property of V and simple properties of the projection operator). Since for every
d ∈ D(p), d /∈ s but d ∈ t, it follows that no sink is a source too. Likewise, if two sinks
t1 and t2 (corresponding to sources s1 and s2) were the same (t1 = t2), we would have
p(s1) = p(s2), which implies D(p(s1)) = D(p(s2)) and therefore s1 = s2.

To conclude, we only need to bound the size of a smallest P-cut. Consider the set of
vertices halfway between a source and a sink:
Q = {x ∈ {0, 1}n : there exists (s, t) ∈ P such that s ⊆ x ⊆ t and |x− s| = "d/2#}

(notice the slightly different definition of Q, compared to that in 3.2).
Due to the third property of V and the definition of D(p(s)), it follows that b ∈ Q

implies that at least half of x1(b), . . . , xm(b) are zero. For any b ∈ {0, 1}n, if r(b) is
the m-bit string such that for all 1 ≤ i ≤ m, xi(b) = 0 iff r(b)i = 0, then the set
{r(b) : b ∈ Q} has size bounded by

(
d

d/2

)
: for all s ∈ S, r(s) is the all-ones string

and any for any b ∈ Q, r(b) is r(s) XORed with some d/2 vectors in V . So the set
{p(b) : b ∈ Q} has size at most

(
d

d/2

)
(2k/m− 1)m/2, and does not contain unit vectors;

therefore |Q| ≤ 2n

n+1

(
d

d/2

)
(2k/m − 1)m/2 = O( 2n√

n
2d√

d
).

2 Actually, in order to do this we first impose an arbitrary ordering on the elements of each Gi.
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An edge cut is given by C = {(b, c) ∈ En : b ∈ Q ∧ c − b ∈ D(p(S))}, where
D(p(S)) =

⋃
s∈S{D(p(s))}. Thus, |C| ≤ |Q||D(p(S))|. The claim follows since

|D(p(S))| ≤ d(2k/m − 1)w. 
�

Proof of Theorem 2: We prove a strengthening of the second part of the theorem that
implies the first as well. To be precise, we show that, for every 1 > δ > 0, there
exist ε > 0 and d such that, for all large enough n, there is a pairing P in Hn of size
|P| ≥ ε2n, sparsity at most n−1/2+δ and with the additional property that all pairs in
P have distance exactly d. By partitioning the pairs in P according the level modulo d

of their source, and applying a simple averaging argument, we conclude that there must
exist an aligned pairing in Hn with sparsity at most n−1/2+δ.

First note that, whatever our choice of m, w and d (as long as m and w are constants
depending only on δ), we can assume without loss of generality that n is of the form
n = 2k − 1 and m divides k. Otherwise, let n′ be the largest integer less than n such
that n′ is of the form n′ = 2k − 1 and m divides k. Note that n′ > n/2m+1. Hn′ can
be embedded into Hn, so if we find a set P in Hn′ that satisfies the conclusion of the
theorem for n′ then the embedding of P in Hn will also suffice for n with a smaller ε′.

Let w = �1/δ�, m = w2, d = 2w. It only remains to show that sets with parameters
m, d, w, as in the hypotheses of Lemma 3, exist. The size of P is Ω(2n−d) and hence
the ε we get depends on d and hence on δ.

Arrange the w2 elements of [m] into a square matrix A ∈ {0, 1}w×w. Associate
one vector with each row and each column of A (2w vectors in total). The i-th row is
associated with the subset (or vector in {0, 1}w) Ri = {r ∈ [m] : (i− 1)w < r ≤ iw};
the j-th column will correspond to the subset Cj = {r ∈ [m] : (r−1) mod w = j−1}.
Let V =

⋃
i∈[w]{Ri, Si}. Clearly, |V | = 2w and for all v ∈ V , we have |v| = w > 1.

It is also apparent that⊕v∈V v = 0, because any k ∈ [m] belongs to exactly two vectors
in V , namely Ri and Cj , where k = (i− 1)w + j with i, j ∈ [w].

Finally, we show that, for any W ⊆ V with |V | = d/2 = w, | ⊕v∈W v| ≥ m
2 =

w2

2 . Suppose W contains a row elements Ri and w − a column elements Cj ; then

| ⊕v∈W v| = a2 + (w − a)2 ≥ w2

2 by the QM-AM inequality. 
�

3.3 Proof of Theorem 3

Let P and C be the pairing and the cut constructed in the proof of Theorem 2. Let
π be any permutation on Vn that maps each source in P to its sink. Notice that any
shortest path in H

↑↓
n that connects a source of P to its sink must also be a directed path

in Hn. Hence, any realization of P with shortest paths must use some edge in C at least
|P|/|C| = Ω(n1/2−δ) times. 
�

3.4 Proof of Theorem 4

Let ε > 0, R ⊆ Z and let f : {0, 1}n → R be a dist-3 monotone function. If f is
ε-far from being monotone, then by Lemma 1 there is a set P of ε2n−1 vertex disjoint
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pairs in Hn that are violated by f . Furthermore, since f is dist-3 monotone, for every
(si, ti) ∈ P we have |ti| ≤ |si|+ 3. To prove Theorem 4 we show that the sparsity of
such P must be Ω(1/

√
n).

Let C be a smallest P-cut, and let us prove that |C|/|P| ≥ Ω(1/
√

n). First we note
that it is possible to assume that C has no edges that are incident with any source si or
sink tj from P (and in particular, this will mean that no pair in P has distance 1 or 2):
Let p > 0 be the number of edges in C that are incident to some source or sink of a pair
in P . If p ≥ |P|/4 then we are done, since clearly |C| ≥ p. Otherwise, removing these
p edges from C and the corresponding pairs from P leaves a set C′ of size |C| − p that
cuts a subset P ′ ⊆ P of at least |P| − 2p pairs. This is due to the fact that the pairs
in P are disjoint, and hence each edge can be incident with at most two pairs. Since
p ≤ |P|/4, we have |C|−p

|P|−2p ≤ 2 C
|P| , so it is enough to prove the claim for C � C′ and

P � P ′.
For 0 ≤ h ≤ n − 3, let Ph ⊆ P be the set of pairs (si, ti) ∈ P with |si| = h (and

|ti| = h + 3). Clearly C is a Ph-cut for every h. Let Ch ⊆ C denote the set of edges in
C that lie on some Ph-path. Since Ch has no edges incident to any si or tj , in order to
cut Ph we must use exactly those edges between levels h+1 and h+2 that lie on some
Ph-path. So the sets Ch, 0 ≤ h ≤ n − 3, are in fact disjoint. Therefore it is sufficient
to prove that Ch/|Ph| ≥ Ω(1/

√
n) for all h.

Fix h, and for clarity let us redefine P � Ph and C � Ch. Each pair (si, ti) ∈
P defines a sub-cube of dimension 3, which we will denote by Hi

3, that contains all
vertices and edges that belong to one of the six possible paths from si to ti.

Observation 7. For any two pairs (si, ti), (sj , tj) ∈ P , |E(Hi
3) ∩ E(Hj

3)| ≤ 1.

Proof: Assume that |E(Hi
3) ∩ E(Hj

3)| ≥ 2 for some i �= j, and let e = (a, b) and
e′ = (a′, b′) be two edges in E(Hi

3) ∩ E(Hj
3). Since the pairs (si, ti) and (sj , tj) are

disjoint, both e and e′ should lie between layers h + 1 and h + 2. Therefore, a = a′ =
si ∪ sj and b = b′ = ti ∩ tj , contradicting the assumption that e �= e′. 
�

Consider the directed graph G = (V, E) with V =
⋃

(si,ti)∈P V (Hi
3) and E =⋃

(si,ti)∈P E(Hi
3). Since every si has out-degree 3 in G (and in-degree 0), the num-

ber of edges between layers h and h + 1 of Hn that belong to G is exactly 3|P|. Let
A = a1, . . . , ak be the vertices in layer h + 1 of Hn that belong to G, let α1, . . . , αk

denote their in-degrees and let β1, . . . , βk denote their out-degrees in G. We have that∑
i∈[k] αi = 3|P|, and our goal is to prove that |C| ≡

∑
i∈[k] βi = Ω(|P|/√n).

Consider vertex ai. For every pair (sj , tj) ∈ P such that ai ∈ V (Hj
3) there are two

edges in Hj
3 going out of ai. Since for any two pairs (sj , tj), (sj′ , tj

′
) ∈ P we have

|E(Hj
3) ∩ E(Hj′

3 )| ≤ 1, it follows that
(
βi

2

)
≥ αi. So βi >

√
αi for all i and hence

|C| =
∑

i∈[k] βi >
∑

i∈[k]
√

αi =
∑

i∈[k]
αi√
αi
≥ 3|P|√

n
, as αi ≤ n.
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3.5 An Ω(n/ε) Lower Bound for General Functions

Theorem 8. LetR ⊆ Z, |R| = Ω(
√

n). Testing monotonicity of functions f{0, 1}n →
R (non-adaptively with one-sided error) requires Ω(n/ε) queries.

Proof: We first prove a lower bound of Ω(n) for some constant ε and argue at the end
how we can achieve the promised lower bound of Ω(n/ε).

A non-adaptive q-query monotonicity tester with one-sided error queries f on a set
Q of at most q vertices and rejects if and only if one of the comparable pairs in Q is
violated. Hence, it is sufficient to show a family Fn of functions f : {0, 1}n → R
that are ε-far from monotone (for a fixed ε > 0 and all n) and such that, for any fixed
set Q ⊆ {0, 1}n of size o(n), a random f ∼U Fn induces a violated pair in Q with
probability less than 1/3.

For every n, we will define a familyFn = {f1, . . . , fn} of n functions fi : {0, 1}n →
R with the following properties:

– every fi is ε-far from monotone, for some absolute constant ε > 0;
– for any set Q ⊆ {0, 1}n, Pri∼U [n][(Q×Q) ∩ Viol(fi) �= ∅] ≤ |Q|−1

n .

This implies any tester making fewer than 2n
3 queries will fail with probability≥ 1/3.

Similarly to [FLN+02], each fi ∈ Fn will violate some pairs that differ in the i-th
coordinate. But here we will make sure that only the actual edges of Hn are violated,
making it more difficult to catch violated pairs.

We now formally define Fn. LetR = {0, 1, . . . , 2
√

n}, and let h(x) � |x| − n/2 +√
n for all x ∈ {0, 1}n. For each i ∈ [n] we define fi : {0, 1}n →R as follows:

fi(x) =

⎧⎪⎪⎨⎪⎪⎩
0, h(x) < 0
2
√

n, h(x) > 2
√

n

h(x), h(x) ∈ R and xi �= h(x) mod 2
h(x) + (−1)xi , h(x) ∈ R and xi = h(x) mod 2

Notice that for all i ∈ [n], Viol(fi) = EdgeViol(fi), and the edges in EdgeViol(fi)
are vertex disjoint. So by Lemma 1, the functions fi ∈ Fn are ε-far from monotone (for
some fixed ε > 0) if |EdgeViol(fi)| ≥ ε2n. Indeed, |EdgeViol(fi)| equals the number
of points x ∈ {0, 1}n such that: h(x) ∈ R, h(x) = 0 (mod 2) and xi = 0. Notice that
for n > 10, these constitute roughly a quarter of all points y ∈ {0, 1}n with h(y) ∈ R.
On the other hand, it follows from Chernoff bounds that for some constant ρ > 0 and
for all n > 10, the number of points y ∈ {0, 1}n with h(y) ∈ R is at least ρ2n. Setting
ε = ρ/5, we conclude that all functions fi ∈ Fn are ε-far from monotone.

Now we prove that Pri∼U [n][(Q×Q) ∩ Viol(fi) �= ∅] ≤ |Q|−1
n . Fix Q and consider

the undirected graph G = (V, E), where V = Q and E = {{x, y} ∈ Q×Q : (x, y) ∈
En}. In other words, G is the undirected skeleton of the subgraph of Hn induced on
Q. For x, y ∈ {0, 1}n we write x = y(j) if x equals y in all coordinates except j. Let
T ⊆ [n] be a set of directions spanned by E, namely, T = {j : there exists {x, y} ∈
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E such that x = y(j)}. Clearly, the success probability of the test is bounded by |T |/n.
To finish the proof, we show that |T | ≤ |Q| − 1.

Consider a minimal subgraph G′ of G that spans all directions in T . Then clearly,
|E(G′)| = |T |. Since any cycle in the undirected skeleton of Hn travels in any direction
even number of times so G′ is acyclic. So |T | = |E(G′)| ≤ |V (G′)| − 1 = |Q| − 1.

We proved a lower bound of Ω(n) queries for some constant ε > 0. To get a lower
bound of Ω(n/ε) for any ε = ε(n) we need to compose our lower bound with a simple
“hiding” procedure. Namely, we define a distribution F ′

n that fools any deterministic
tester with o(n/ε) queries as follows: first, partition Hn into disjoint subcubes, each
of size ε2n (for simplicity we assume that 1/ε is a power of 2); then pick a random
subcube C in this partition, and value it with a random fi ∈ Fn−log 1/ε; value the other
subcubes so that there are no violations outside C. Now for any fixed set Q of o(n/ε)
queries, the expected number of queries that hit C is o(n), and we know that with o(n)
queries it is impossible to find a violation in a random fi. 
�

Notice that the range R of the functions fi is of size O(
√

n) - much smaller than the
2n different values a function on the hypercube may have. Consider pair-testers (see
Section 2.3) of Boolean monotonicity making at most q(n)/ε queries for some function
q : N → N and any ε > 0; it follows from the range-reduction lemma of [DGL+99]
and Theorem 8 that for any such tester, q(n) = Ω(n/ log n) must hold. This is tight up
to the log n factor.

4 Concluding Remarks

We suggest three open problems related to this line of work:
First, is it true that the best testers for monotonicity over Hn are in fact pair-testers?

The question is of interest even just for Boolean-range functions, since a positive answer
coupled with our Ω( n

ε log n ) lower bound for pair testers would give an almost-tight
lower bound.

Another challenge is to find better upper bounds for the special case of testing mono-
tonicity of dist-k monotone functions, for some k ≥ 3. As we saw in Section 3.2,
non-trivial sparsity upper bounds can be found even if we restrict ourselves to pairings
in which all pairs are at distance 3. This seems to indicate, in our opinion, that a bet-
ter understanding of the small-distance situations will yield new insights that may be
applicable in the general case.

Finally, recall from Section 3.4 that for k ≤ 3, dist-k monotonicity can be tested
with O(n3/2) queries; on the other hand, the construction in Section 3.2 shows that
sparsity considerations alone will never yield upper bounds better than this. In view of
these results, it is natural to ask whether these two measures need to coincide for larger
k; that is, whether the complexity of edge-testers may be better than the values derived
from sparsity upper-bounds.
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Abstract. Gap Hamming Distance is a well-studied problem in communication
complexity, in which Alice and Bob have to decide whether the Hamming dis-
tance between their respective n-bit inputs is less than n/2 −

√
n or greater than

n/2 +
√

n. We show that every k-round bounded-error communication protocol
for this problem sends a message of at least Ω(n/(k2 log k)) bits. This lower
bound has an exponentially better dependence on the number of rounds than the
previous best bound, due to Brody and Chakrabarti. Our communication lower
bound implies strong space lower bounds on algorithms for a number of data
stream computations, such as approximating the number of distinct elements in a
stream.
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1 Introduction

1.1 The Communication Complexity of the Gap Hamming Distance Problem

Communication complexity studies the communication requirements of distributed com-
puting. In its simplest and best-studied setting, two players, Alice and Bob, receive in-
puts x and y, respectively, and are required to compute some function f(x, y). Clearly,
for most functions f , the two players need to communicate to solve this problem. The
basic question of communication complexity is the minimal amount of communication
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needed. By abstracting away from the resources of local computation time and space,
communication complexity gives us a bare-bones but elegant model of distributed com-
puting. It is interesting for its own sake but is also useful as one of our main sources of
lower bounds in many other models of computation, including data structures, circuits,
Turing machines, VLSI, and streaming algorithms. The basic results are excellently cov-
ered in the book of Kushilevitz and Nisan [12], but many additional fundamental results
have appeared since its publication in 1997.

One of the few basic problems whose randomized communication complexity is not
yet well-understood, is the Gap Hamming Distance (GHD) problem, defined as follows.

GHD: Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n,
with the promise that |Δ(x, y) − n/2| ≥

√
n, where Δ denotes the Hamming

distance. Decide whether Δ(x, y) < n/2 or Δ(x, y) > n/2.

Mind the gap between n/2 −
√

n and n/2 +
√

n, which is what makes this problem
interesting and useful. Indeed, the communication complexity of the gapless version,
where there is no promise on the inputs, can easily be seen to be linear (for instance
by a reduction from disjointness). The gap makes the problem easier, and the question
is how it affects the communication complexity: does it remain linear? A gap size of
Θ(
√

n) is the natural choice – a Θ(1) fraction of the inputs lie inside the promise area
for this gap size, and as we’ll see below, it is precisely this choice of gap size that has
strong implications for streaming algorithms lower bounds. Moreover, understanding
the complexity of the

√
n-gap version can be shown to imply a complete understanding

of the GHD problem for all gaps.
Randomized protocols for GHD and more general problems can be obtained by sam-

pling. Suppose for instance that it is promised that either Δ(x, y) ≤ (1/2 − γ)n or
Δ(x, y) ≥ (1/2 + γ)n. Choosing an index i ∈ [n] at random, the predicate [xi �= yi]
is a coin flip with heads probability ≤ 1/2 − γ in the first case and ≥ 1/2 + γ in the
second. It is known that flipping such a coin Θ(1/γ2) times suffices to distinguish these
two cases with probability at least 2/3. Hence if we use shared randomness to choose
Θ(1/γ2) indices, we obtain a one-round bounded-error protocol with communication
Θ(1/γ2) bits. In particular, for GHD (where γ = 1/

√
n), the communication is Θ(n)

bits, which is no better than the trivial upper bound of n when Alice just sends x to Bob.
What about lower bounds? Indyk and Woodruff [10] managed to prove a linear lower

bound for the case of one-round protocols for GHD, where there is only one message
from Alice to Bob (see also [20,11]). However, going beyond one-round bounds turned
out to be quite a difficult problem. Recently, Brody and Chakrabarti [5] obtained linear
lower bounds for all constant-round protocols:

Theorem 1. [5] Every k-round bounded-error protocol for GHD sends a message of

length
n

2O(k2) .

In fact their bound is significant as long as the number of rounds is k ≤ c0
√

log n, for
a universal constant c0. Regarding lower bounds that hold irrespective of the number
of rounds, an easy reduction gives an Ω(

√
n) lower bound (which is folklore): take an

instance of the gapless version of the problem on x, y ∈ {0, 1}
√

n and “repeat” x and
y
√

n times each. This blows up the gap from 1 to
√

n, giving an instance of GHD on
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n bits. Solving this n-bit instance of GHD solves the
√

n-bit instance of the gapless
problem. Since we have a linear lower bound for the latter, we obtain a general Ω(

√
n)

bound for GHD.1

1.2 Our Results

Our main result is an improvement of the bound of Brody and Chakrabarti, with an
exponentially better dependence on the number of rounds:

Theorem 2. Every k-round bounded-error protocol for GHD sends a message of length

Ω

(
n

k2 log k

)
.

In fact we get a bound for the more general problem of distinguishing distance Δ(x, y)≤
(1/2 − γ)n from Δ(x, y) ≥ (1/2 + γ)n, as long as γ = Ω(1/

√
n): for this problem

every k-round protocol sends a message of Ω
(

1
k2 log k

1
γ2

)
bits.

Like the result of [5], our lower bound deteriorates with the number of rounds. Also
like their result, our proof is based on round elimination, an important framework for
proving communication lower bounds. Our proof contains an important insight into this
framework that we now explain.

A communication problem usually involves a number of parameters, such as the in-
put size, an error bound, and in our case the gap size. The round elimination framework
consists of showing that a k-round protocol solving a communication problem for a
class C of parameters can be turned into a (k− 1)-round protocol for an easier class C′,
provided the message communicated in the first round is short. This fact is then applied
repeatedly to obtain a 0-round protocol (say), for some nontrivial class of instances.
The resulting contradiction can then be recast as a communication lower bound. His-
torically, the easier class C′ has contained smaller input lengths2 than those in C.

In contrast to previous applications of round elimination, we manage to avoid shrink-
ing the input length: the simplification will instead come from a slight deterioration in
the error parameter. Here is how this works. If Alice’s first message is short, then there
is a specific message and a large set A of inputs on which Alice would have sent that
message. Roughly speaking, we can use the largeness of A to show that almost any
input x̃ for Alice is close to A in Hamming distance. Therefore, Alice can “move” x̃ to
its nearest neighbor, x, in A: this makes her first message redundant, as it is constant for
all inputs x ∈ A. Since x and x̃ have small Hamming distance, it is likely that both pairs

1 In fact the same proof lower-bounds the quantum communication complexity; a linear quan-
tum lower bound for the gapless version follows easily from Razborov’s work [18] and the
observation that Δ(x, y) = |x|+ |y|−2|x∧y|. However, as Brody and Chakrabarti observed,
in the quantum case this

√
n lower bound is essentially tight: there is a bounded-error quantum

protocol, based on a well-known quantum algorithm for approximate counting, that commu-
nicates O(

√
n log n) qubits. This also implies that lower bound techniques which apply to

quantum protocols, such as discrepancy, factorization norms [15,13], and the pattern matrix
method [19], cannot prove better bounds for classical protocols.

2 In fact, C and C′ are often designed such that an instance in C is a “direct sum” of several
independent instances in C′.



Better Gap-Hamming Lower Bounds via Better Round Elimination 479

(x̃, y) and (x, y) are on the same side of the gap, i.e. have the same GHD value. Hence
the correctness of the new protocol, which is one round shorter, is only mildly affected
by the move. Eliminating all k rounds in this manner, while carefully keeping track of
the accumulating errors, yields a lower bound of Ω(n/(k4 log2 k)) on the maximum
message length of any k-round bounded-error protocol for GHD.

Notice that this lower bound is slightly weaker than the above-stated bound of
Ω(n/(k2 log k)). To obtain the stronger bound, we leave the purely combinatorial set-
ting and analyze a version of GHD on the unit sphere:3 Alice’s input is now a unit
vector x ∈ Rn and Bob’s input is a unit vector y ∈ Rn, with the promise that either
x · y ≥ 1/

√
n or x · y ≤ −1/

√
n (as we show below in Section 2, this version and

the Boolean one are essentially equivalent in terms of communication complexity). Al-
ice’s input is now close to the large, constant-message set A in Euclidean distance. The
rest of the proof is as outlined above, but the final bound is stronger than in the com-
binatorial proof for reasons that are discussed in Section 2.2. Although this proof uses
arguments from high-dimensional geometry, such as measure concentration, it arguably
remains conceptually simpler than the one in [5].

Related work. The round elimination technique was first formalized in Miltersen et
al. [17] and dates back even further, at least to Ajtai’s lower bound for predecessor data
structures [1]. For us, the most relevant previous use of this technique is in the result by
Brody and Chakrabarti [5], where a weaker lower bound is proved on GHD.

Their proof, as ours, identifies a large subset A of inputs on which Alice sends the
same message. The “largeness” of A is used to identify a suitable subset of (n/3) coor-
dinates such that Alice can “lift” any (n/3)-bit input x̃, defined on these coordinates, to
some n-bit input x ∈ A. In the resulting protocol for (n/3)-bit inputs, the first message
is now constant, hence redundant, and can be eliminated.

The input size thus shrinks from n to n/3 in one round elimination step. As a result
of this constant-factor shrinkage, the Brody-Chakrabarti final lower bound necessarily
decays exponentially with the number of rounds. Our proof crucially avoids this shrink-
age of input size by instead considering the geometry of the set A, and exploiting the
natural invariance of the GHD predicate to small perturbations of the inputs.

Remark. After we obtained our results, a subset of the authors independently proved
an optimal Ω(n) lower bound, independent of the number of rounds [6]. However, the
techniques they introduce are completely different, and rather involved. In contrast, our
result, through its relatively simple and elegant proof, should be of independent interest
to the community.

1.3 Applications to Streaming

The introduction of gapped versions of the Hamming distance problem by Indyk and
Woodruff [10] was motivated by the streaming model of computation, in particular the

3 The idea of going to the unit sphere was also used by Jayram et al. [11] for a simplified
one-round lower bound. As we will see in Section 2, doing so is perhaps even more natural
than working with the combinatorial version; in particular it is then easy to make GHD into a
dimension-independent problem.
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problem of approximating the number of distinct elements in a data stream. For many
data stream problems, including the distinct elements problem, the goal is to output a
multiplicative approximation of some real-valued quantity. Usually, both randomization
and approximation are required. When both are allowed, there are often remarkably
space-efficient solutions.

As Indyk and Woodruff showed, communication lower bounds for the Gap Hamming
Distance problem imply space lower bounds on algorithms that output the number of
distinct elements in a data stream up to a multiplicative approximation factor 1±γ. The
reduction from GHD works as follows. Alice converts her n-bit string x = x1x2 · · ·xn

into a stream of tuples σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉. Bob converts y into τ =
〈(1, y1), (2, y2), . . . , (n, yn)〉 in a similar fashion. Using a streaming algorithm for the
distinct elements problem, Alice processes σ and sends the memory contents to Bob,
who then processes τ starting from where Alice left off. In this way, they estimate
the number of distinct elements in σ ◦ τ . Note that each element in σ is unique, and
that elements in τ are distinct from elements in σ precisely when xi �= yi. Hence, an
accurate approximation (γ = Ω(1/

√
n) is required) for the number of distinct elements

in σ ◦ τ gives an answer to the original GHD instance. This reduction can be extended
to multi-pass streaming algorithms in a natural way: when Bob is finished processing
τ , he sends the memory contents back to Alice, who begins processing σ a second time.
Generalizing, it is easy to see that a p-pass streaming algorithm gives a (2p− 1)-round
communication protocol, where each message is the memory contents of the streaming
algorithm. Accordingly, a lower bound on the length of the largest message of (2p−1)-
round protocols gives a space lower bound for the p-pass streaming algorithm.

Thus, the one-round linear lower bound by Indyk and Woodruff [10] yields the de-
sired Ω(1/γ2) (one-pass) space lower bound for the streaming problem. Similarly, our
new communication lower bounds imply Ω(1/(γ2p2 log p)) space lower bounds for p-
pass algorithms for the streaming problem. This improves on previous bounds for all
p = o(n1/4/

√
log n).

Organization of the paper. We start with some preliminaries in Section 2, including a
discussion of the key measure concentration results that we will use, both for the sphere
and for the Hamming cube, in Section 2.2. In Section 3 we prove our main result,
while in Section 4 we give the simple combinatorial proof of the slightly weaker result
mentioned above.

2 Preliminaries

Notation. For x, y ∈ Rn, let d(x, y) := ‖x − y‖ be the Euclidean distance between
x and y, and x · y their inner product. For z ∈ R, define sgn(z) := 0 if z ≥ 0, and
sgn(z) = 1 otherwise. For a set S ⊆ Rn, let d(x, S) be the infimum over all y ∈ S of
d(x, y). The unique rotationally-invariant probability distribution on the n-dimensional
sphere Sn−1 is the Haar measure, which we denote by ν. When we say that a vector
is taken from the uniform distribution over a measurable subset of the sphere, we will
always mean that it is distributed according to the Haar measure, conditioned on being
in that subset.
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Define the max-cost of a communication protocol to be the length of the longest
single message sent during an execution of the protocol, for a worst-case input. We
use Rk

ε (f) to denote the minimal max-cost amongst all two-party, k-round, public-coin
protocols that compute f with error probability at most ε on every input (here a “round”
is one message).

2.1 Problem Definition

We will prove our lower bounds for the problem GHDd,γ , where d is an integer and
γ > 0. In this problem Alice receives a d-dimensional unit vector x, and Bob receives
a d-dimensional unit vector y, with the promise that |x · y| ≥ γ. Alice and Bob should
output sgn(x · y).

We show that GHDn,1/
√

n has essentially the same randomized communication
complexity as the problem GHD that we defined in the introduction. Generalizing that
definition, for any g > 0 define the problem GHDn,g, in which the input is formed of
two n-bit strings x and y, with the promise that |Δ(x, y) − n/2| ≥ g, where Δ is the
Hamming distance. Alice and Bob should output 0 if Δ(x, y) < n/2 and 1 otherwise.

The following proposition shows that for any
√

n ≤ g ≤ n, the problems GHDn,g

and GHDd,γ are essentially equivalent from the point of view of randomized commu-
nication complexity (with shared randomness) as long as d ≥ n and γ = Θ(g/n). It
also shows that the randomized communication complexity of GHDd,γ is independent
of the dimension d of the input, as long as d is large enough with respect to γ.

Proposition 1. For every ε > 0, there is a constant C0 = C0(ε) such that for all
integers k, d ≥ 0 and

√
n ≤ g ≤ n, we have

Rk
2ε(GHDd,C0g/n) ≤ Rk

ε(GHDn,g) ≤ Rk
ε (GHDn,2g/n).

Proof. We begin with the right inequality. The idea is that a GHDn,g protocol can
be obtained by applying a given GHD protocol to a suitably transformed input. Let
x, y ∈ {0, 1}n be two inputs to GHDn,g. Define x̃ = 1√

n
((−1)xi)i∈[n] and ỹ =

1√
n

((−1)yi)i∈[n]. Then x̃, ỹ ∈ Sn−1. Moreover, x̃ · ỹ = 1− 2Δ(x, y)/n. Therefore, if
Δ(x, y) ≥ n/2 + g then x̃ · ỹ ≤ −2g/n, and if Δ(x, y) ≤ n/2− g then x̃ · ỹ ≥ 2g/n.
This proves Rk

ε(GHDn,g) ≤ Rk
ε (GHDn,2g/n).

For the left inequality, let x and y be two unit vectors (in any dimension) such that
|x · y| ≥ γ, where γ = C0g/n. Note that since g ≥ √n, we have n = Ω(γ−2). Us-
ing shared randomness, Alice and Bob pick a sequence of vectors w1, . . . , wn, each
independently and uniformly drawn from the unit sphere. Define two n-bit strings
x̃ = (sgn(x · wi))i∈[n] and ỹ = (sgn(y · wi))i∈[n]. Let α = cos−1(x · y) be the angle
between x and y. Then a simple argument (used, e.g., by Goemans and Williamson [8])
shows that the probability that a random unit vector w is such that sgn(x · w) �=
sgn(y · w) is exactly α/π. This means that for each i, the bits x̃i and ỹi differ with
probability 1

π cos−1(x · y), independently of the other bits of x̃ and ỹ. The first few



482 J. Brody et al.

terms in the Taylor series expansion of cos−1 are cos−1(z) = π
2 − z − z3

6 + O(z5).
Hence, for each i, Prwi (x̃i �= ỹi) = 1/2−Θ(x·y), and these events are independent for
different i. Choosing C0 sufficiently large, with probability at least 1− ε, the Hamming
distance between x̃ and ỹ is at most n/2 − g if x · y ≥ γ, and it is at least n/2 + g if
x · y ≤ −γ.

2.2 Concentration of Measure

It is well known that the Haar measure ν on a high-dimensional sphere is tightly con-
centrated around the equator — around any equator, which makes it a fairly counter-
intuitive phenomenon. The original phrasing of this phenomenon, usually attributed to
P. Lévy [14], goes by showing that among all subsets of the sphere, the one with the
smallest “boundary” is the spherical cap Sx

γ = {y ∈ Sn−1 : x · y ≥ γ}. The following
standard volume estimate will prove useful (see, e.g., [2], Lemma 2.2).

Fact 3. Let x ∈ Sn−1 and γ > 0. Then ν(Sx
γ ) ≤ e−γ2n/2.

Given a measurable set A, define its t-boundary At := {x ∈ Sn−1 : d(x, A) ≤ t}, for
any t > 0. At the core of our results will be the standard fact that, for any not-too-small
set A, the set At contains almost all the sphere, even for moderately small values of t.

Fact 4 (Concentration of measure on the sphere). For any measurable A ⊆ Sn−1

and any t > 0,

Pr(x ∈ A) Pr(x /∈ At) ≤ 4 e−t2n/4, (1)

where the probabilities are taken according to the Haar measure on the sphere.

Proof. The usual measure concentration inequality for the sphere (Theorem 14.1.1
in [16]) says that for any set B ⊆ Sn−1 of measure at least 1/2 and any t′ > 0,

Pr(x /∈ Bt′) ≤ 2 e−(t′)2n/2.

This suffices to prove the fact if Pr(x ∈ A) ≥ 1/2, so assume that Pr(x ∈ A) < 1/2.
Let t0 be such that At0 has measure 1/2; such a t0 exists by continuity. Applying
measure concentration to B = At0 gives

Pr(x /∈ At′+t0) ≤ 2 e−(t′)2n/2, (2)

for all t′ > 0, while applying it to B = At0 yields

Pr(x ∈ At0−t′′) ≤ Pr(x �∈ Bt′′) ≤ 2 e−(t′′)2n/2 (3)

for all t′′ ≤ t0, since At0−t′′ is included in the complement of (At0)t′′ . Taking t′′ = t0
gives us Pr(x ∈ A) ≤ 2 e−t20n/2. If t ≤ t0 then this suffices to prove the inequality.
Otherwise, set t′ := t − t0 in (2) and t′′ := t0 in (3) and multiply the two inequalities
to obtain the required bound, by using that t20 + (t − t0)2 ≥ t2/2 (which holds since
2t20 + t2/2− 2t t0 = (

√
2t0 − t/

√
2)2 ≥ 0).
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Why the sphere? In Section 4 we give a proof of a slightly weaker lower bound than the
one in our main result by using measure concentration facts on the Hamming cube only.
We present those useful facts now, together with a brief discussion of the differences,
in terms of concentration of measure phenomenon, between the Haar measure on the
sphere and the uniform distribution over the hypercube. These differences point to the
reasons why the proof of Section 4 gives an inferior bound.

On the Hamming cube, the analogous notion of spherical cap is the Hamming ball:
let T x

c = {y ∈ {0, 1}n : Δ(x, y) ≤ n/2 − c
√

n} be the Hamming ball of radius
n/2− c

√
n centered at x. The analogue of Fact 3 is given by the Chernoff bound:

Fact 5. For all c > 0, we have 2−n|T x
c | ≤ e−2c2

.

A result similar to Lévy’s, attributed to Harper [9], states that among all subsets (of
the Hamming cube) of a given size, the ball is the one with the smallest boundary.
Following a similar proof as for Fact 4, one can get the following statement for the
Hamming cube (see e.g. Corollary 4.4 in [3]):

Fact 6 (Concentration of measure on the Hamming cube). Let A ⊆ {0, 1}n be any
set, and define Ac = {x ∈ {0, 1}n : ∃y ∈ A, Δ(x, y) ≤ c

√
n}. Then

Pr(x ∈ A) Pr(x /∈ Ac) ≤ e−c2
, (4)

where the probabilities are taken according to the uniform distribution on the Hamming
cube.

To compare these two statements, embed the Hamming cube in the sphere by mapping
x ∈ {0, 1}n to the vector vx = 1√

n
((−1)xi)i∈[n], so that two strings of Hamming

distance c
√

n are mapped to vectors with Euclidean distance
√

2c/n1/4. While on the
sphere inequality (1) indicates that most points are at distance roughly 1/

√
n from any

set of measure half, if we are restricted to the Hamming cube then very few points are at
a corresponding Hamming distance of 1 from, say, the set of all strings with fewer than
n/2 1s, which has measure roughly 1/2 in the cube. This difference is crucial: it indi-
cates that the n-dimensional cube is too rough an approximation of the n-dimensional
sphere for our purposes, perhaps explaining why our combinatorial bound in Section 4
yields a somewhat weaker dependence on the number of rounds.

3 Main Result

Our main result is the following.

Theorem 7. Let 0 ≤ ε ≤ 1/50. There exist constants C, C′ depending only on ε
such that the following holds for any γ > 0 and any integers n ≥ ε2/(4γ2) and
k ≤ C′/(γ ln(1/γ)): if P is a randomized ε-error k-round communication protocol for
GHDn,γ then some message has length at least C

k2 ln k ·
1
γ2 bits.

Using Proposition 1 we immediately get a lower bound for the Hamming cube version
GHD = GHDn,

√
n:
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Corollary 1. Any ε-error k-round randomized protocol for GHD communicates at least
Ω(n/(k2 ln k)) bits.

This follows from Theorem 7 when k = o(
√

n/ logn). If k is larger, then the bound
stated in the Corollary is in fact weaker than the general Ω(

√
n) lower bound which we

sketched in the introduction.

3.1 Proof Outline

We now turn to the proof of Theorem 7. Let ε, γ and n be as in the statement of the
theorem. Since lowering n only makes the GHDn,γ problem easier, for the rest of this
section we assume that n := ε2/(4γ2) is fixed, and for simplicity of notation we write
GHDγ for GHDn,γ .

Measurability. Before proceeding with the proof, we first need to handle a small tech-
nicality arising from the continuous nature of the input space: namely, that the distri-
butional protocol might make decisions based on subsets of the input space that are not
measurable. To make sure that this does not happen, set δ = γ/6 and consider players
Alice and Bob who first round their inputs to the closest vector in a fixed δ-net, and then
proceed with an ε-error protocol for GHDγ/2. Since by definition rounding to the δ-net
moves any vector a distance at most δ, the rounding will affect the inner product x ·y by
at most 2δ + δ2 ≤ γ/2. As a result, Alice and Bob will succeed with probability 1 − ε
provided they are given valid inputs to GHDγ . Hence any randomized ε-error protocol
for GHDγ/2 can be transformed into a randomized ε-error protocol for GHDγ with the
same communication, but which initially rounds its inputs to a discrete set. We prove a
lower bound on the latter type of protocol. This will ensure that all sets encountered in
the proof are measurable.

Distributional complexity. By Yao’s principle it suffices to lower-bound the distribu-
tional complexity, i.e., to analyze deterministic protocols that are correct with probabil-
ity 1− ε under some input distribution. As our input distribution for GHDγ we take the
distribution that is uniform over the inputs satisfying the promise |x · y| ≥ γ. Given our
choice of n, Claim 8 below guarantees that the ν × ν-measure of non-promise inputs is
at most ε. Hence it will suffice to lower-bound the distributional complexity of proto-
cols making error at most 2 ε under the distribution ν×ν. We define an ε-protocol to be
a deterministic communication protocol for GHDn,γ whose error under the distribution
ν×ν is at most ε, where we say that a protocol P makes an error if P (x, y) �= sgn(x, y).

We prove a lower bound on the maximum length of a message sent by any ε-protocol,
via round elimination. The main reduction step is given by the following technical
lemma:

Lemma 1 (Round Elimination on the sphere). Let ε, γ > 0, n = ε2/(4γ2), and
1 ≤ κ ≤ k. Assume there is a κ-round ε-protocol P such that the first message has
length bounded as c1 ≤ C1

n
k2 ln k − 7 ln(2k) where C1 is a universal constant. Then

there is a (κ− 1)-round ε′-protocol Q (obtained by eliminating the first message of P ),
where ε′ ≤

(
1 + 1

k

)
ε + 1

16k .



Better Gap-Hamming Lower Bounds via Better Round Elimination 485

Before proving this lemma in Section 3.2, we show how it implies Theorem 7.

Proof (of Theorem 7). We will show that in any k-round (2 ε)-protocol, there is a mes-
sage sent of length at least C1n/(k2 ln k) − 7 ln(2k). The discussion in the “Distribu-
tional complexity” paragraph above shows this suffices to prove the theorem, by setting
C = C1ε

2/8, and choosing C′ small enough so that the bound on k in the statement of
the theorem implies that 7 ln(2k) < C1n/(2k2 ln k).

Let P be a k-round (2 ε)-protocol, and assume for contradiction that each round
of communication uses at most C1n/(k2 ln k) − 7 ln(2k) bits. Solving the recurrence
εκ = (1 + 1/k)εκ−1 + 1/(16k), ε0 = 2 ε gives εκ = (1 + 1/k)κ(2 ε + 1/16)− 1/16,
so that applying Lemma 1 k times leads to a 0-round protocol for GHDγ that errs
with probability at most ε′ ≤ e (2 ε + 1/16)− 1/16 ≤ 1/4 over the input distribu-
tion ν × ν. We have reached a contradiction: such a protocol needs communica-
tion and hence cannot be 0-round. Hence P must send a message of length at least
C1n/(k2 ln k)− 7 ln(2k).

3.2 The Main Reduction Step

Proof (of Lemma 1). Let P (x, y) denote the output of the protocol on input x, y. Define
x ∈ Sn−1 to be good if Prν×ν(P (x, y) errs |x) ≤ (1 + 1/k)ε. By Markov’s inequality,
at least a 1/(k + 1)-fraction of x (distributed according to ν) are good. For a given
message m, let Am be the set of all good x on which Alice sends m as her first message.
The sets Am, over all messages m ∈ {0, 1}c1, form a partition of the set of good x.
Define m1 := argmaxmν(Am) and let A := Am1 . We then have ν(A) ≥ 1

k+12−c1 ≥
e−c1−ln(k+1).

We now define protocol Q. Alice receives an input x̃, Bob receives ỹ, both distributed
according to ν. Alice computes the point x ∈ A that is closest to x̃, and Bob sets y := ỹ.
They run protocol P (x, y) without Alice sending the first message, so Bob starts and
proceeds as if he received m1 from Alice.

To prove the lemma, it suffices to bound the error probability ε′ of Q with input

x̃, ỹ distributed according to ν × ν. Define d1 = 2
√

c1+6 ln(2k)+2
n . We consider the

following bad events:

– BAD1 : d(x̃, A) > d1,
– BAD2 : P (x, y) �= sgn(x · y),
– BAD3 : d(x̃, A) ≤ d1 but sgn(x · y) �= sgn(x̃ · ỹ).

If none of those events occurs, then protocol P outputs the correct answer. We bound
each of them separately, and will conclude by upper bounding ε′ with a union bound.

The first bad event can be easily bounded using the measure concentration inequality
from Fact 4. Since x̃ is uniformly distributed in Sn−1 and Pr(A) ≥ e−c1−ln(k+1),
we get

Pr(BAD1) ≤ 4 e−d2
1n/4+c1+ln(k+1) ≤ 4 e−5 ln(2k)−2 ≤ 1

32k
.

The second bad event has probability bounded by (1+1/k) ε by the goodness of x. Now
consider event BAD3. Without loss of generality, we may assume that x̃ · ỹ = x̃ · y > 0
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but x ·y < 0 (the other case is treated symmetrically). In order to bound BAD3, we will
use two claims. The first shows that the probability that x̃ · y is close to 0 for a random
x̃ and y is small. The second uses measure concentration to show that, if x̃ · y is not
too close to 0, then moving x̃ to the nearby x is unlikely to change the sign of the inner
product.

Claim 8. Let x, y be distributed according to ν. For any real α ≥ 0, we have

Pr(0 ≤ x · y ≤ α) ≤ α
√

n.

Proof. With ωn the volume of the n-dimensional Euclidean unit ball, we write (see
e.g. [4], Lemma 5.1)

Pr(0 ≤ x · y ≤ α) =
(n− 1)ωn−1

n ωn

∫ α

0
(1− t2)

n−3
2 dt ≤ α

√
n,

where we used ωn−1
ωn

<
√

n+1
2π <

√
n.

Claim 9. Let x, x̃ be two fixed unit vectors at distance ‖x − x̃‖ = d ∈ [0, d1], and
0 < α ≤ 1/(4

√
n). Let y be taken according to ν. Then

Pr(x̃ · y ≥ α ∧ x · y < 0) ≤ e−α2n/(8d2
1).

Proof. Note that x · x̃ = 1−‖x− x̃‖2/2 = 1−d2/2. Since the statement of the lemma
is rotationally-invariant, we may assume without loss of generality that

x̃ = (1, 0, 0 . . . , 0),

x = (1− d2/2,−
√

d2 − d4/4, 0, . . . , 0),
y = (y1, y2, y3, . . . , yn).

Therefore, y1 ≥ α when x̃ · y ≥ α. Note that

x · y = x1y1 + x2y2 ≥ (1− d2/2)α−
√

d2 − d4/4 y2.

Hence the event x̃ · y ≥ α ∧ x · y < 0 implies

y2 >
(1− d2/2)α√

d2 − d4/4
≥ α

2d
,

where we used the fact that d ≤ d1 ≤ 1, given our assumption on c1. By Fact 3,
the probability that, when y is sampled from ν, y2 is larger than α/(2d) is at most
e−α2n/(8d2). Hence the probability that both x̃ · y ≥ α and x · y < 0 happen is at most
as much.

Setting α = 1/(128k
√

n), by Claim 8 we find that the probability that 0 ≤ x̃ · y ≤ α
is at most 1/(128k). Furthermore, the probability that x̃ · y ≥ α and x · y < 0 is at

most exp
(
− n

219k2(c1+6 ln(2k)+2)

)
by Claim 9. This bound is less than 1/(128k) given



Better Gap-Hamming Lower Bounds via Better Round Elimination 487

our assumption on c1, provided C1 is a small enough constant. Putting both bounds
together, we see that

Pr(x̃ · y ≥ 0 ∧ x · y < 0) < 1/(64k).

The event that x̃ ·y < 0 but x ·y ≥ 0 is bounded by 1/(64k) in a similar manner. Hence,
Pr(BAD3) < 1/(32k). Taking the union bound over all three bad events concludes the
proof of the lemma.

4 A Simple Combinatorial Proof

In this section we present a combinatorial proof of the following:

Theorem 10. Let 0 ≤ ε ≤ 1/50. There exists a constant C′′ depending on ε only,
such that the following holds for any g ≤ C′′√n and k ≤ n1/4/(1024 logn): if P is a
randomized ε-error k-round communication protocol for GHDn,g then some message
has length at least n

(512k)4 log2 k
bits.

Even though this is a weaker result than Theorem 7, its proof is simpler and is based on
concentration of measure in the Hamming cube rather than on the sphere (we refer to
Section 2.2 for a high-level comparison of the two proofs). Interestingly, the dependence
on the number of rounds that we obtain is quadratically worse than that of the proof
using concentration on the sphere. We do not know if this can be improved using the
same technique.

We proceed as in Section 3.1, observing that it suffices to lower-bound the distribu-
tional complexity of GHDn,g under a distribution uniform over the inputs satisfying
the promise |Δ(x, y)− n/2| ≥ g. In fact, as we did before, by taking C′′ small enough
we can guarantee that the number of non-promise inputs is at most ε 2n. Hence it will
suffice to lower-bound the distributional complexity of protocols making error at most
2 ε under the uniform input distribution. We define an ε-protocol to be a deterministic
communication protocol for GHD whose distributional error under the uniform distri-
bution is at most ε. The following is the analogue of Lemma 1, from which the proof of
Theorem 10 follows as in Section 3.1.

Lemma 2 (Round Elimination on the Hamming cube). Let ε > 0 and κ, k be two
integers such that k ≥ 128 and 1 ≤ κ ≤ k ≤ n1/4/(1024 logn). Assume that
there is a κ-round ε-protocol P such that the first message has length bounded by
c1 ≤ n/((512k)4 log2 k). Then there exists a (κ− 1)-round ε′-protocol Q (obtained by
eliminating the first message of P ) where ε′ ≤

(
1 + 1

k

)
ε + 1

16k .

Proof. Define x ∈ {0, 1}n to be good if Pr(P (x, y) errs |x) ≤ (1+1/k)ε. By Markov’s
inequality, at least a 1/(k + 1)-fraction of x ∈ {0, 1}n are good. For a given message
m, let Am := {good x : Alice sends m given x}. The sets Am, over all messages m ∈
{0, 1}c1, together form a partition of the set of good x. Define m1 := argmaxm|Am|,
and let A := Am1 . By the pigeonhole principle, we have |A| ≥ 1

k+12n−c1 .
We now define protocol Q. Alice receives an input x̃, Bob receives ỹ, uniformly

distributed. Alice computes the string x ∈ A that is closest to x̃ in Hamming distance,
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and Bob sets y := ỹ. They run protocol P (x, y) without Alice sending the first message,
so Bob starts and proceeds as if he received the fixed message m1 from Alice.

To prove the lemma, it suffices to bound the error probability ε′ of Q under the
uniform distribution. Define d1 := 9

√
n/((1024k)2 log k). As in the proof of Lemma 1,

we consider the following bad events:

– BAD1 : Δ(x, x̃) > d1
√

n,
– BAD2 : P (x, y) �= GHD(x, y),
– BAD3 : Δ(x, x̃) ≤ d1

√
n but GHD(x̃, y) �= GHD(x, y).

If none of those events occurs, then protocol P outputs the correct answer. We bound
each of them separately, and will conclude by a union bound. BAD1 is easily bounded
using Fact 6, which implies

Pr(x̃ /∈ Ad1) ≤ e−81n/((1024k)4 log2 k)2c1+log(k+1) ≤ 2
k2 ≤

1
32k

,

given our assumptions on c1 and k. The second bad event is bounded by (1 + 1/k) ε,
by definition of A.

We now turn to BAD3. The event that GHD(x̃, y) �= GHD(x, y) only depends on
the relative distances between x, x̃, and y, so we may apply a shift to assume that
x = (0, . . . , 0). Without loss of generality, we assume that Δ(x̃, y) > n/2 and |y| <
n/2 (the error bound when Δ(x̃, y) < n/2 and |y| > n/2 is proved in a symmetric
manner). Note that, since y is uniformly random (subject to |y| < n/2), by a standard
head estimate for the binomial distribution with probability at least 1 − 1/(128k) we
have |y| ≤ n/2−

√
n/(128k) (this is analoguous to the estimate from Claim 8 that we

used in the continuous setting). Hence we may assume that this holds with an additive
loss of at most 1/(128k) in the error. Now

Δ(x̃, y) > n/2⇐⇒ |x̃|+ |y| − 2|x̃ ∩ y| > n/2⇐⇒ |x̃ ∩ y| < |x̃|+ |y| − n/2
2

.

It is clear that the worst case in this statement is for |y| = n/2 − √n/(128k) and
|x̃| = Δ(x, x̃) = d1

√
n. By symmetry, the probability that this event happens is the

same as if we fix any y of the correct weight, and x̃ is a random string of weight d1
√

n.
The expected intersection size is |y||x̃|/n = |x̃|/2− d1/(128k), and so by Hoeffding’s
inequality (see e.g. the bound on the tail of the hypergeometric distribution given in [7]),
for a =

√
n/(256k)− d1/(128k), we have

Pr
(
|x̃ ∩ y| ≤ |x̃|+ |y| − n/2

2

)
= Pr (|x̃ ∩ y| ≤ E[|x̃ ∩ y|]− a) ≤ e−2a2/(d1

√
n).

Given our choice of d1 we have a ≥ 3
√

n/(4 · 256k), and hence the upper bound is at
most 1/k2 ≤ 1/(128k), given our assumption on k. Applying the union bound over all
bad events then yields the lemma.
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7. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Mathematics 25(3), 285–
287 (1979)

8. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145
(1995)

9. Harper, L.: Optimal numbering and isoperimetric problems on graphs. Journal of Combina-
torial Theory 1, 385–393 (1966)

10. Indyk, P., Woodruff, D.: Tight lower bounds for the distinct elements problem. In: Proceed-
ings of 44th IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 283–
289 (2003)

11. Jayram, T.S., Kumar, R., Sivakumar, D.: The one-way communication complexity of Ham-
ming distance. Theory of Computing 4(1), 129–135 (2008)

12. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cam-
bridge (1997)

13. Lee, T.,, S.: Disjointness is hard in the multi-party number-on-the-forehead model. In: Pro-
ceedings of 23rd IEEE Conference on Computational Complexity (CCC 2008), pp. 81–91
(2008)
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Abstract. We study the concept of propagation connectivity on ran-
dom 3-uniform hypergraphs. This concept is defined for investigating
the performance of a simple algorithm for solving instances of certain
constraint satisfaction problems. We derive upper and lower bounds for
edge probability of random 3-uniform hypergraphs such that the propa-
gation connectivity holds. Based on our analysis, we also show the way to
implement the simple algorithm so that it runs in linear time on average.

1 Introduction and Results

There are several natural ways to define connectivity for 3-uniform hypergraphs
H = (V, E) (recall that in a 3-uniform hypergraph each edge is a set of three
vertices). For instance, a standard concept is to consider H connected if the
graph obtained by replacing each edge e by a triangle is connected. In this paper
we study a different concept that we call propagation connectivity.

Definition 1. Let H = (V, E) be a 3-uniform hypergraph on n = |V | vertices.
We call a sequence e1, . . . , en−2 ∈ E a propagation sequence if for any 1 ≤ l <

n− 2 we have |el+1 ∩
⋃l

i=1 el| = 2. If H has a propagation sequence, then we say
that H is propagation connected.

This definition is motivated by a simple algorithm for a certain kind of con-
straint satisfaction problem. For the time being, let us focus on the concrete
example of a system of linear equations over a finite field with three variables
per equation. We can associate a hypergraph H with this system by thinking
of the variables as vertices and of the equations as hyperedges. If we are given
a propagation sequence e1, . . . , en−2 for H , then we can find a solution to the
system of equations in linear time (if there is one). Namely, suppose that the
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variables of e1 are x, y, z. We can easily ‘guess’ the correct values of x, y (i.e.,
we can try all possible assignments because the field is finite). Then the value of
z is implied. Now, assume inductively that we have obtained the values of the
variables occurring in the first l edges/equations e1, . . . , el already. Then el+1
contains precisely one additional variable (by the definition of propagation se-
quence), whose value we can thus infer directly. Thus, after passing through the
entire sequence e1, . . . , en−2, we have determined the values of all n variables. If
this solves the linear system, we are done. Conversely, if we find that no assign-
ment to the first two variables x, y leads to a solution, then it is safe to conclude
that no solution exists.

The contribution of this paper is close upper and lower bounds on the edge
probability that the propagation connectivity holds in random hypergraphs.
More precisely, we consider the following random hypergraph model H(n, p):
the vertex set of the random hypergraph is V = [n] = {1, . . . , n}, and each of
the

(
n
3

)
possible edges is present with probability 0 ≤ p ≤ 1 independently. We

write H : H(n, p) to indicate that H is a random hypergraph chosen from this
distribution. Moreover, we say that the random hypergraph has some property
with high probability (w.h.p.) if the probability that the property holds converges
to one as n →∞.

Theorem 1. Suppose that p = c/(n ln n) for a constant c > 0.

(1) If c < 0.16, then H : H(n, p) fails to be propagation connected w.h.p.
(2) If c > 0.25, then H : H(n, p) is propagation connected w.h.p.

Determining the threshold for ‘standard’ connectivity (where each hyperedge is
replaced by a triangle) is easy. The result is a hardly surprising p ∼ 2n−2 ln n,
and the proof is via a simple coupon collecting argument. By contrast, analyzing
propagation connectivity is quite non-trivial. Our proof is based on a kind of large
deviations analysis of a time-dependent random walk. A precise solution of this
problem might close the gap left by Theorem 1.

For a propagation connected hypergraph H one can determine a propagation
sequence in polynomial time via a generalized breadth first search procedure.
However, the running time of this algorithm is superlinear (in contrast to BFS
on graphs). Based on our analysis, we derive a simple algorithm with linear
expected running time.

Theorem 2. There is a randomized algorithm A that satisfies the following.
For any given hypergraph, A finds a propagation sequence if it exists. For any
parameter p, the expected running time of A applied to H : H(n, p) is linear in
the number of edges of H.

As an application, we show how Theorem 2 yields an algorithm for deciding a
class of random constraint satisfaction problems. A CSP instance with domain
[k] = {1, . . . , k} consists of a 3-uniform hypergraph H = (V, E) with V = [n]
and a family (fe)e∈E of maps fe : [k] × [k] × [k] → {0, 1}. Moreover, a solution
is a map σ : V → [k] such that for any triple 1 ≤ x < y < z ≤ n of vertices
with e = {x, y, z} ∈ E we have fe(σ(x), σ(y), σ(z)) = 1. Thus, intuitively the
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hypergraph H describes the interactions of the variables V , and for any edge e
the map fe characterizes the values that can be assigned to the variables in e so
as to satisfy the constraint that e represents.

Furthermore, we say that a CSP instance is uniquely extendable if for any
x, y ∈ [k], any i ∈ {1, 2, 3}, and any edge e ∈ E there is precisely one value
zi ∈ [k] such that fe(z1, x, y) = fe(x, z2, y) = fe(x, y, z3) = 1. In other words,
once we assign two variable in a constraint e, there is precisely one way to assign
the third variable so as to satisfy e. Clearly, systems of linear equations over a
finite field provide an example of uniquely extendable problems, but there are
many others.

By combining Theorem 2 with the simple propagation procedure outlined
after Definition 1, we obtain the following result.

Corollary 1. Fix c > 0.25 and k ≥ 2 and let p = c/(n lnn). Moreover, assume
that P is a probability distribution over uniquely extendable CSP instance with
domain [k] such that the distribution of the random hypergraph underlying the
problem instance coincides with the distribution H(n, p). There is an algorithm
with linear expected running time that decides whether a random CSP instance
chosen from the distribution P has a solution w.h.p.

There are a variety of probability distribution over CSPs that satisfy the as-
sumptions of Corollary 1. Examples include uniformly random systems of linear
equations, which at the density assumed in Corollary 1 do not have solutions
w.h.p. Thus, for these problems running the algorithm in Corollary 1 will pro-
vide a succinct proof that no solution exists w.h.p. On the other hand, distribu-
tions that do admit solutions w.h.p. include systems of linear equations with a
‘planted’ solution, for which the algorithm will find a solution w.h.p.

Related Work
The ‘standard’ concept of random hypergraph connectivity (where edges are
replaced by triangles) has been studied, e.g., in [BCK07, CMV07], particularly
with respect to the emergence and size of the giant component. These results
generalize what was known for random graphs (see [JLR00] for a comprehensive
summary). A further related random hypergraph concept is that of a core. This
concept is related to local search algorithms such as the ‘pure literal rule’ for the
satisfiability. Contributions on these subjects include [DN05, Mol05].

Berke and Onsjö [BO09] approached the propagation connectivity thresh-
old for random 3-uniform hypergraphs. They established a lower bound of p =
Ω(1/n(log n)2) and an upper bound of p = O(1/n(log n)0.4). As Theorem 1
shows, the correct order of magnitude is p = Θ(1/(n ln n)).

With respect to the application to random constraint satisfaction problems,
it is clear that the case of linear equations over finite fields can be solved in
polynomial (albeit superlinear) time by Gaussian elimination. However, if the
underlying hypergraph comes with a propagation sequence, then the problem can
be solved in linear time as indicated. While linear equations provide an example
of uniquely extendable constraint satisfaction problems, there are more; in fact,
some of them are NP-hard [CM04].
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2 The Propagation Process

In this section we show how the propagation connectivity problem can be mod-
eled by a stochastic process, which we call the propagation process. We start out
by describing this process for a fixed hypergraph H = (V, E) with vertex set
V = {1, . . . , n}. Let (v1, v2) be a pair of distinct vertices, which we refer to as
the initial pair. In the course of the prcoess, vertices are either active, neutral, or
dead. Initially v1 is dead, v2 is active, and all other vertices are neutral; formally,
we let

D(v1,v2)
0 [H ] = {v1} , A(v1,v2)

0 [H ] = {v2} .

Once there is no active vertex left, the process stops. Otherwise at each time
t ≥ 1, the least active vertex u is chosen (recall that V = [n] is an ordered set).
All neutral vertices v for which there is a dead vertex w such that {u, v, w} ∈
E are declared active, and then u is declared dead. In symbols, we let u =
minA(v1,v2)

t−1 [H ] and

D(v1,v2)
t [H ] = D(v1,v2)

t−1 [H ] ∪ {u} ,

A(v1,v2)
t [H ] =

(
A(v1,v2)

t−1 [H ] \ {u}
)

∪
{
v �∈ D(v1,v2)

t−1 [H ] : ∃w ∈ D(v1,v2)
t−1 [H ] : {u, v, w} ∈ E

}
.

Thus, at time t the total number of dead vertices equals t+1. Let T (v1,v2) [H ] be
the time when the process stops. To avoid case distinctions, we consider vertices
dead (or active, or neutral) at times t > T (v1,v2) [H ] if they had the corresponding
predicate at time T (v1,v2) [H ]. Observe that for a fixed hypergraph H , the process
is entirely deterministic.

The process is related to the propagation connectivity problem as follows.
Assume that vertex v was declared active at time t ≥ 2. Then H has an edge
et that contains v and two vertices from D(v1,v2)

t [H ]. Proceeding inductively,
we obtain a sequence e2, . . . , et such that v1, v2 ∈ e2 and |el+1 ∩

⋃l
i=2 el| ≥ 2

for all 2 ≤ l < t. Hence, if all vertices are declared dead eventually, i.e., if
T (v1,v2) [H ] = n−1, then we obtain a propagation sequence. Conversely, if there
is a propagation sequence e2, . . . , en−1 such that v1, v2 ∈ e2, then the propagation
process will not stop before time n− 1. Thus, we have the following.

Fact 1. H is propagation connected iff there is a pair (v1, v2) such that
T (v1,v2) [H ] = n− 1.

To prove Theorem 1, we are going to study the propagation process on a random
hypergraph H : H(n, p). In this case we omit the reference to H , i.e., we just write
D(v1,v2)

t etc. It will be convenient to use the terminology of stochastic processes.
In particular, for t ≥ 0 we let F (v1,v2)

t signify the coarsest σ-algebra on H(n, p)
in which all events {v ∈ D(v1,v2)

s } and {v ∈ A(v1,v2)
s } for s ≤ t and v ∈ V are

measurable. Then (F (v1,v2)
t )t≥0 is a filtration. We will also use the concept of
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conditional probabilities with respect to the filtration (Ft)t≥0 (see [D05]). To
remind the reader, for an event A and a (fixed) hypergraph H0 the conditional
probability is

Pr
[
A|F (v1,v2)

t

]
(H0) =

Pr
[
A occurs and D(v1,v2)

s = D(v1,v2)
s [H0] , A(v1,v2)

s = A(v1,v2) [H0] for all s ≤ t
]

Pr
[
D(v1,v2)

s = D(v1,v2)
s [H0] , A(v1,v2)

s = A(v1,v2) [H0] for all s ≤ t
] .

In words, Pr
[
A|F (v1,v2)

t

]
(H0) is the probability of the event A in a random

hypergraph H : H(n, p) given that the first t steps of the propagation process
on H work out the same as in H0. When the argument H0 is omitted, it is
understood that the corresponding statement holds for all H0.

For any t ≥ 1 the first t steps of the propagation process on the random
hypergraph H : H(n, p) only depend on the presence (or absence) of edges that
contain at least two vertices that have been declared dead by time t, i.e., from
the set D(v1,v2)

t . This means that the presence of edges e with |e ∩ D(v1,v2)
t | < 2

is stochastically independent of the first t steps.

Fact 2. Given Ft, for all triples e = {u, v, w} such that
∣∣∣e ∩ D(v1,v2)

t

∣∣∣ < 2, the
edge e is present in H : H(n, p) with probability p independently. In symbols, for
any set

E ⊂
{

e ∈
(

V

3

)
:
∣∣∣e ∩ D(v1,v2)

t

∣∣∣ < 2
}

we have Pr
[
E ⊂ E(H)|F (v1,v2)

t

]
= p|E|.

The above propagation process is similar in spirit to the branching process ap-
proach for the giant component problem in random graphs/digraphs [Kar90].
The difference between our proofs and the standard argument is that we need
to investigate whether there exists a pair (v1, v2) such that T (v1,v2) ≥ n− 1 (cf.
Fact 1). Since there are a total of

(
n
2

)
initial pairs to choose from, this means

that we need to study unlikely trajectories of the propagation process (that occur
with probability merely about 1/

(
n
2

)
).

By contrast, for the giant component problem the corresponding process has
to be studied only from a random start vertex, a problem which relatively easily
reduces to the typical behavior of a standard Galton-Watson branching pro-
cess. Alternatively, the problem can be tackled via a whole arsenal of different
techniques, ranging from differential equations to random walks. Unfortunately,
the fact that here we need to study an ‘exceptional’ event puts these standard
arguments out of business.

To get started, we point out that the hypergraph distribution H : H(n, p) is
invariant w.r.t. permutations of the vertices. Therefore, the distribution of the
propagation process is the same for any initial pair. For the sake of concreteness
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we will refer to (v1, v2) = (1, 2). For this initial pair we will omit the superscript
(v1, v2) from the notation. Moreover, we let At = |At| be the number of active
vertices at time t (from the initial pair (1, 2)). Then A0 = 1 by construction. For
any t ≥ 1, we define a further random variable Xt via

Xt = At −At−1 + 1. (1)

That is, Xt is the number of vertices that got declared active at time t.

Fact 3. If 1 ≤ t ≤ T , then given Ft−1, the random variable Xt is binomially
distributed Bin(n− t−At−1, 1− (1− p)t).

Proof. The number of neutral vertices at time t− 1 equals n−At−1− |Dt−1| =
n−At−1− t. Suppose that v is neutral at time t−1 and let u = minAt−1. Then
v becomes active at time t iff there is w ∈ Dt−1 such that {u, v, w} ∈ E. By
Fact 2 each of these t edges is present in H with probability p independently.
Hence, the probability that all of them are absent is 1− (1 − p)t. �

To outline the proof of Theorem 1, let us interpret the propagation process in
terms of a time-dependent random walk. The process continues up to time t iff
As > 0 for all 1 ≤ s ≤ t. Due to (1), this is true iff

∑s
q=1(Xq − 1) ≥ 0 for all

1 ≤ s ≤ t. Thus, if we think of the random variables Xs − 1 as the steps of a
random walk, then the propagation process continues to time t iff the random
walk stays non-negative at all times s ≤ t. As Fact 3 shows, this random walk
is time-dependent.

In the regime p = Θ(1/(n ln n)) that we are interested in, and for times
s ' ln n, the random walk has a negative drift. More precisely, for s ' ln n
Fact 3 implies that the expectation of Xs−1 is (1+o(1))nps−1 < 0. Therefore,
standard results on random walks show that the probability that the random
walk will continue to time, say, lnn is o(1). If, however, the process happens to
survive up to time t = (1 + ε)/(np) = Θ(ln n) for a fixed ε > 0, then Fact 3
shows that the ‘drift’ of Xt − 1 becomes positive and thus the process is likely
to continue up to time n− 1.

The previous paragraph shows that the probability that one specific initial
pair leads to a propagation sequence is o(1). But this does not imply that the
random hypergraph H : H(n, p) is not propagation connected w.h.p., because
there is a total

(
n
2

)
initial pairs to choose from. This observation suggests that

in order find the threshold for propagation connectivity we need to determine
for what p the random walk continues to time 1/(np) with probability 1/

(
n
2

)
. In

Section 3 we will derive a lower bound on this value of p. The more challenging
problem is to obtain an upper bound, which we address in Section 4.

3 The Lower Bound

In this section we prove the first part of Theorem 1, i.e., we show that the random
hypergraph H : H(n, p) is not propagation connected w.h.p. if p < 0.16/(n lnn).
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(Throughout this section, we fix p = c/(n lnn) and let c > 0 denote this con-
stant.) To this end, we will derive that the probability that the initial pair (1, 2)
leads to a propagation sequence is o(n−2). By symmetry and the union bound,
this implies that w.h.p. no initial pair (v1, v2) does. We start by reducing the
problem of estimating the probability that (1, 2) yields a propagation sequence to
an exercise in calculus. The proof employs the following Chernoff bound on the
tails of a binomially distributed random variable X with mean μ (e.g., [JLR00,
p. 21]): letting ϕ(x) = (1 + x) ln(1 + x)− x, we have for any t > 0

Pr[ X ≤ μ− t ] ≤ exp
(
−μ · ϕ(−t/μ)

)
, and

Pr[ X ≥ μ + t ] ≤ exp
(
−μ · ϕ(t/μ)

)
,

(2)

Lemma 1. For the constant c, assume that d satisfies 0 < d ≤ 2/c and d(cd/2+
ln(2/cd)− 1) > 2. Let t0 = d ln n. Then Pr [T > t0] = o(n−2).

Proof. Let {X̃t}t≥1 be a family of mutually independent random variables such
that X̃t has distribution Bin(nt, p). Let t ≥ 1. By construction, for each ver-
tex v ∈ At \ At−1 that becomes active at time t, there is an edge {u, v, w} in
H : H(n, p) such that u = minAt−1 and w ∈ Dt−1. In particular, the number
Xt of newly active vertices v is bounded by the number of such edges {u, v, w}.
By Fact 2, given Ft−1, each such edge is present in H with probability p inde-
pendently. As |Dt−1| = t and because the number of neutral vertices v to choose
from is bounded by n, this shows that Xt|Ft−1 is stochastically dominated by
the binomial variable X̃t = Bin(nt, p).

If the stopping time T exceeds some specific time t0, then At ≥ 1 for all
t ∈ [t0]. Hence, (1) implies

∑
1≤t≤t0

Xt ≥ t0. Because each Xt is dominated by
X̃t, we can bound the probability of this event by

Pr [T ≥ t0] ≤ Pr

⎡⎣ ∑
1≤t≤t0

X̃t ≥ t0

⎤⎦ = Pr
[

Bin
(

n · t0(t0 + 1)
2

, p

)
≥ t0

]
. (3)

Let μ0 denote the expectation of this last binomial distribution. Then

μ0 = n · t0(t0 + 1)
2

· p =
cd2

2

(
1 +

2
d ln n

)
ln n ∼ cd2

2
ln n. (4)

We are going to verify that our assumption on c, d implies that the r.h.s. of (3)
is o(n−2). Since we assume d ≤ 2/c, we have cd2

2 ln n = μ0 ≤ t0 = d ln n.
Therefore, we can bound the probability (3) via Chernoff (2) as follows:

Pr
[

Bin
(

n · t0(t0 + 1)
2

, p

)
≥ t0

]
≤ e−μ0·ϕ

(
t0
μ0

−1
)

= n
− μ0

ln n ·ϕ
(

t0
μ0

−1
)
.

Thus, we just need to verify that

μ0

ln n
· ϕ

(
t0
μ0
− 1

)
> 2. (5)
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Using the approximation (4), we obtain

μ0

ln n
· ϕ

(
t0
μ0
− 1

)
∼ cd2

2

(
2
cd

ln
2
cd
− 2

cd
+ 1

)
= d

(
cd

2
+ ln

2
cd
− 1

)
.

Thus, our assumption on c, d implies (5). �

Proof of Theorem 1, part (1). Let c = 0.16 and f(d) = d(cd/2+ln(2/cd)−1).
Then we see that max0<d<2/c f(d) > 2. Hence, Lemma 1 entails that for c < 0.16,
we have Pr [T > t0] = o(n−2) for a certain t0 = O(ln n). By the union bound,
this implies that w.h.p. there is no pair (v1, v2) such that T (v1,v2) = n−1, whence
H : H(n, p) is not propagation connected w.h.p. by Fact 1. �

4 The Upper Bound

In this section we sketch the proof of part (2) of our main theorem, that is, an
upper bound for p such that H : H(n, p) is propagation connected w.h.p. Due
to space limitation, some of the proofs will be omitted, which can be found in
[COW10].

Here again we fix p and c such that p = c/(n lnn). As we saw in Section 2, the
propagation process can be viewed as a time-dependent random walk. At first,
the drift of this random walk is negative, but after a certain time the drift turns
positive. The following proposition reflects this fact by showing that once the
process has survived up to a certain time, it will likely continue to time n − 1.
In the following, we use ν = �ln3 n�.

Proposition 1. W.h.p. there is no pair (u, v) such that ν ≤ T (u,v) < n− 1.

In the light of Proposition 1, we call a pair of vertices (u, v) good if T (u,v) ≥ ν.
Let N be the number of good pairs of H : H(n, p). Then by Proposition 1 in
order to prove that H : H(n, p) is propagation connected w.h.p., we just need
to establish that N > 0 w.h.p. We first estimate the expected number of good
pairs.

Proposition 2. For any fixed c > 0.25 there is a number δ = δ(c) > 0 such
that E[N ] ≥ Ω(nδ) holds.

Then by the following proposition, we relate the above result on the expectation
of N to showing that N > 0 w.h.p. The proof of this proposition is based on a
second moment argument; see [COW10] for the proof.

Proposition 3. Assume that δ > 0 is a constant such that E [N ] ≥ Ω(nδ) holds
for c > 0 and p = c/(n lnn). Then in fact N ≥ Ω(nδ) > 0 w.h.p.

The second part of Theorem 1 is a direct consequence of Propositions 1–3.
In the rest of this section we sketch the proof of Proposition 2. As indicated in

Section 2, this basically means that we need to analyze the probability that the
random walk described by the variables Xt = At − At−1 + 1 remains positive.
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From now on, we fix a number c > 0.25 and let p = c/(n lnn) for n sufficiently
large. We will keep the notation from Section 2.

For a time t and a number g ≥ 1, we let AT(t, g) denote the event that At ≥ g.
That is, the process does not stop before time t, and at this time there are at
least g active vertices. As we saw in Section 2, the ‘drift’ of the time-dependent
random walk described by the variables Xt is negative for small t ' ln n. The
following lemma will help us get over the first few steps of the process. Intuitively,
it shows that with a decent probability the process will not only survive up to
time γ ln n, but also amass a small excess of γ ln n active vertices for a small
γ > 0.

Lemma 2. For any δ > 0, there is γ0 = γ0(c, δ) > 0 such that for all 0 < γ <
γ0, the event AT(�γ ln n�, �γ ln n�) holds with probability at least n−δ.

Proof. As limγ→0 2γ ln(c) − cγ2/2 + 2γ ln(γ/2) = 0, for any δ > 0, there is
γ0 > 0 such that for all 0 < γ < γ0, we have 2γ ln(c)− cγ2/2 + 2γ ln(γ/2) > −δ.
Assume that γ, 0 < γ < γ0, is sufficiently small so that this is the case. Let
t1 = �γ ln n� and t0 = "t1/2#. Then

Pr [AT(�γ ln n�, �γ ln n�)] ≥ Pr

⎡⎣ ∧
1≤t≤t0

Xt = 1 ∧
∧

t0<t≤t1

Xt = 3

⎤⎦ .

(For if Xt > 0 for all t ∈ [t1], then the process won’t stop before time t1, i.e.,
T ≥ t1. Moreover, the number of active vertices at time t1 equals

∑t1
t=1(Xt−1) =

2(t1 − t0) ≥ γ ln n.) For 0 ≤ t ≤ t1, we let Et signify the event that Xs = 1 for
all 1 ≤ s ≤ min {t, t0} and Xs = 3 for all t0 < s ≤ t. Then our objective is to
lower bound Pr [Et1 ].

If we condition on the event Et−1 for some t ∈ [t1], then the number of neutral
vertices at time t works out to be n− (t+1)−At ≥ n−2t1−2 = n−O(ln n).
Furthermore, Fact 3 entails that Xt given Et−1 is binomially distributed Bin(n−
t−At−1, 1− (1− p)t). Consequently,

Pr [Xt = 1|Et−1] ≥ (n−O(ln n))(1 − (1− p)t)(1 − p)tn

∼ ct

ln n
· exp(−ct/ lnn), and

Pr [Xt = 3|Et−1] ≥
(

n−O(ln n)
3

)
(1 − (1− p)t)3(1− p)tn

∼ (ct)3

(ln n)3
· exp(−ct/ lnn).

Therefore,

Pr [Et1 ] =
∏

1≤t≤t0

Pr [Xt = 1|Et−1]
∏

t0<t≤t1

Pr [Xt = 3|Et−1] ≥ c3t1−2t0n−cγ2/2 ·

(γ

2

)3γ ln(n)/2
·
exp

(∑t0
t=1 ln t

)
(ln n)t0

≥ Ω
(
n2γ ln(c)−cγ2/2+2γ ln(γ/2)

)
.



Propagation Connectivity of Random Hypergraphs 499

Since we have chosen γ so that 2γ ln(c)− cγ2/2+2γ ln(γ/2) > −δ, the assertion
follows. �

Lemma 2 shows that with a decent probability the first few steps of the process
will yield a good number of active vertices. The following lemma studies the
continuation of the process up to the time c−1 ln n where the ‘drift’ of the random
walk turns positive.

Lemma 3. There exists δ > 0 such that Pr[ T ≥ �(c−1 + δ) ln n� ] ≥ nδ−2.

Proof. Since c > 0.25, we can choose δ > 0 so that 4c(1− δ) > 1. Let γ0 be the
number promised by Lemma 2. Moreover, choose 0 < γ < γ0 sufficiently small so
that 1+4cγ− ln(1−cγ) < 4c(1−δ). We may also assume that �(c−1 +δ) ln n� ≤
�γ ln n� ·

(
"(cγ)−1#+ 1

)
.

Let g = �γ ln n� and s0 = "(cγ)−1#. Then our goal is to estimate the proba-
bility that the propagation process lasts at least (s0 + 1)g steps. To this end, we
partition this period into s0 + 1 chunks of size g. That is, for each s ∈ [s0], we
define Ys =

∑
sg<t≤(s+1)g Xt. We are going to lower bound the probability of

the event
AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys0 ≥ g). (6)

If this event occurs, then T ≥ g(s0 + 1). To see this, we show by induction that
for each 1 ≤ s ≤ s0 at time t = sg there are at least g active vertices. For s = 1
this follows directly from the definition for AT(g, g). Proceeding inductively, we
note that the following period up to time (s + 1)g will generate g new active
vertices, because Ys+1 ≥ g. This ensures that at time (s + 1)g there are at least
g active vertices as well.

Thus, in order to establish the proposition, we just need to prove that the
event (6) holds with probability nδ−2. Lemma 2 shows that Pr [AT(g, g)] ≥ n−δ.
In addition, we are going to estimate probability that Ys ≥ g given AT(g, g) ∧
(Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g) for any s ∈ [s0]. In doing so we may assume that
Asg ≤ 2c−1 ln n, because otherwise the process will continue to time 2c−1 ln n >
(c−1 + δ) ln n with certainty. Hence, we may assume that there are always more
than n′ = (n− 2c−1 ln n) = n(1 − o(1)) neutral vertices. On the other hand, at
times sg < t ≤ (s + 1)g there are at least sg dead vertices. Thus, Fact 3 implies
that

Pr
[
Asg ≥ 2c−1 ln n ∨ Ys ≥ g |AT(g, g) ∧ (Y1 ≥ g) ∧ · · · ∧ (Ys−1 ≥ g)

]
≥ Pr

⎡⎣ ∑
sg<t≤(s+1)g

Xt ≥ g

∣∣∣∣∣∣ (Asg < 2c−1 ln n
)
∧AT(g, g) ∧ (Y1 ≥ g) ∧ · · ·

⎤⎦
≥ Pr [ Bin(gn′, 1− (1 − p)sg) ≥ g ] ≥

(
g2n′s

g

)
pg(1− p)g2n′s−g.

Let μs = g2n′sp and xs = g/μs. Applying Stirling’s formula, we obtain(
g2n′s

g

)
pg(1− p)g2n′s−g ≥ exp (−g ln xs + g − μs −O(ln lnn) ) .
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Hence,

Pr[ (6) ] = Pr[ AT(g, g) ] · Pr[ (Y1 ≥ g) ∧ · · · ∧ (Ys0 ≥ g) |AT(g, g) ]

≥ n−δ ·
∏

1≤s≤s0

exp (−g ln xs + g − μs − c′′ ln lnn )

= n−δ · exp

⎛⎝ ∑
1≤s≤s0

(−g ln xs + g − μs − c′′ ln lnn)

⎞⎠ (7)

Approximating the sum in the exponent by an integral, we see that∑
1≤s≤s0

(−g ln xs + g − μs − c′′ ln lnn) ≥ − lnn

2c
·
(
1 + o(1) + 3cγ − ln(1− cγ)

)
> −2 lnn + 2δ ln n,

where the last step is due to our choice of γ and δ. Finally, combining this
estimate with (7) yields Pr[ (6) ] ≥ n−δ · n−1/2cpos+2δ = nδ−2, as desired. �

The basic idea in the above proof was to study the behavior of the random
walk by partitioning the time up to about c−1 ln n in short periods of length
g = �γ ln n� with a small γ > 0. What we estimated was the probability that
for each of these periods the total number of newly generated active vertices
is at least g, without taking into account how these g vertices are distributed
over the period. Alternatively, one could lower bound the probability that the
process survives up to time c−1 ln n by the probability that the process generates
at least one active vertex at each individual step. However, this argument gives
a significantly weaker result. Intuitively, this means that typically the process
will generate a little bit of ‘leeway’ for itself by aggregating a certain excess of
active vertices.

Once the process ‘survives’ up to time c−1 ln n, we are on firm ground, because
then the ‘drift’ of the underlying random walk becomes positive. This observation
yields the following corollary to Lemma 3, which in turn implies Proposition 2;
again see [COW10] for the details.

Corollary 2. There is δ > 0 such that Pr [(1, 2) is good] = Ω(nδ−2).

5 Computing a Propagation Sequence

An algorithm A with the properties claimed in Theorem 2 is outlined in Figure 1.
This algorithm behaves as stated for any probability parameter p = c(n)/(n ln n);
for convenience we will assume c(n) ≥ ln n/n.

The algorithm is divided into two steps. At the first step (i.e., step (1) of
Figure 1) a random hash table HashTable is constructed. For any given pair
of vertices x and y, the hash table yields a list (e.g. by reference to a linked
list) of edges in E that contain both x and y. By using a standard pairwise
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algorithm A (for computing a propagation sequence);
given H = (V, E) following H(n, p), where V = [n] and E = {e1, . . . , em};
(1) prepare a random hash table HashTable with O(m) entries such that one may

search for edges containing any pair of vertices using the pair as a key;
(2) for each initial edge e ∈ E that has not been examined do {

let the candidate propagation sequence be (e);
let u, v, w be the vertices of edge e;
D ← {u}; A ← {v}; N ← V − D ∪ A;
while A 
= ∅ and N 
= ∅ do { //try propagation from e

x ← any one element of A;
(a) for each y ∈ D do {

use HashTable to search for edges containing x and y;
(b) for each such edge with x and y do {

z ← the third vertex of the edge;
if z ∈ N then {

append this edge to the candidate propagation sequence;
A ← A ∪ {z}; N ← N − {z};

} } }
A ← A − {x}; D ← D ∪ {x};

}
if N = ∅ (i.e., the process succeeds) then

output the candidate propagation sequence and terminate;
} (if for loop completes) output failure;

Fig. 1. Outline of Algorithm A

independent random hash function family (see, e.g., [MU05, Theorem 13.11]),
we can construct a ‘perfect’ such hash table with O(m) entries in O(m) time on
average.

The second step (i.e., step (2) of of Figure 1) is based on the propagation
process we introduced in section 2. In this step the algorithm searches for an
initial pair, that is called good, such the propagation process succeeds, i.e., such
that n−1 edges are obtained in order with each (after the first) covering exactly
one previously uncovered vertex. Pairs that are not good are called bad. Let D,
A, and N be variables for the current set of dead, active, and neutral vertices
respectively. Notice that for the propagation process of step (2) to reach some
i vertices, the worst case time is trivially O(i3) as each vertex pair is used at
most once and each time at most i new vertices are processed. Furthermore the
worst case time of the entire algorithm is O(n6) as there are less than n2 initial
vertex pairs to try.

From the proof of Proposition 1, it is easy to show that the probability there
is some bad initial vertex pair from which we reach (lnn)3 vertices, is smaller
than O(n−6). Since the worst case time of algorithm A is trivially O(n6) we may
therefore assume without further remark that any initial pair that propagates
to (ln n)3 vertices will propagate to the entire graph; the total expected time for
the other case is at most a constant and therefore negligible.
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Before proceeding, let us point out that for the sake of brevity and readability,
the exposition of algorithm A in Figure 1 is slightly wrong on one point and
should be refined, namely: If an initial edge in step (2) is good, the process will
eventually deplete the set, N, of neutral vertices; but when N becomes small the
number of pairs x, y the algorithm must try to find an appropriate z, may be
too large.

Modification of the algorithm: Let n′ = n−|N| be the number of active and
dead vertices at some point in stage (2) of the algorithm. If n′ > (ln n)3, then
the way to search for a new vertex z is changed as follows: Fix any active vertex
x and scan the edges containing x for an edge {x, y, z} where z ∈ N and y ∈ D.

Proposition 4. If an initial vertex pair is good, the time to complete step (2)
in algorithm A with the modification described, is O(m) on average.

Proof. No vertex is investigated more than once as it is moved from active to
dead after. Since an edge contains exactly three vertices, no edge is investigated
more than three times. Thus the total time is O((ln n)9 + 3m) = O(m). �

We now come to the key points of our analysis of the expected running time
for step (2). First we consider a parameter range in which we know the graph is
almost surely propagation connected.

Proposition 5. Let c(n) > 0.3. The time spent of step (2) in algorithm is O(m)
on average.

Proof. By the proof of Proposition 3 we have that with probability > 1− n−ε

the graph has at least nδ good pairs for some positive constants δ and ε. This is
true for c(n) > 0.3. If there are indeed more than nδ good pairs, and the pairs are
investigated in random order, we expect to hit on a good pair in time O(n2−δ).
Since the propagation from bad pairs must finish before reaching (ln n)3 vertices
the expected time is trivially O((ln n)9n2−δ) = O(m). With probability less
than n−ε it happens that there is not a sufficient number of good pairs in the
graph. But then the expected time spent on bad pairs is still O((ln n)9n2−ε) =
O(m). �

Finally we have the case where there may or may not exist a propagation se-
quence, but the graph at any rate has not too many edges. In this region, any
given vertex pair is in fact very bad with high probability, as will be seen.

Proposition 6. Let c(n) ≤ 0.3. The time spent of step (2) in algorithm is O(m)
on average.

Proof. Consider the argument for the lower bound in Section 3, but this time
choose a constant stopping time, t0 = 20. The probability that a given vertex pair
will propagate past the corresponding number of vertices is therefore bounded
as

Pr
[

Bin
(

n
t0(t0 + 1)

2
, p

)
≥ t0

]
≤ e−μ0ϕ(t0/μ0−1) ≤ e−

t0
2 ln ln n = (lnn)−10
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for sufficiently large n. We have the following three cases, each of which has
expected linear time.
1. The process stops short of 20 vertices: O(203m) = O(m).
2. It stops between 20 and (lnn)3 vertices: O(m(ln n)9−10) = O(m).
3. It propagates to the entire graph: O(m) as given by Proposition 4. �

Proof of Theorem 2. The Propositions 5 and 6 together with the previous
argument about step (1), show that the expected time of the algorithm is lin-
ear in m. If the algorithm fails it must have tried all possible initial pairs and
found them bad, hence there is no propagation sequence. On the other hand any
sequence outputted by the algorithm is trivially a propagation sequence. �
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Abstract. We prove the existence of a poly(n,m)-time computable
pseudorandom generator which “1/poly(n, m)-fools” DNFs with n vari-
ables and m terms, and has seed length O(log2 nm · log log nm). Pre-
viously, the best pseudorandom generator for depth-2 circuits had seed
length O(log3 nm), and was due to Bazzi (FOCS 2007).

It follows from our proof that a 1/mÕ(log mn)-biased distribution
1/poly(nm)-fools DNFs with m terms and n variables. For inverse poly-
nomial distinguishing probability this is nearly tight because we show
that for every m, δ there is a 1/mΩ(log 1/δ)-biased distribution X and a
DNF φ with m terms such that φ is not δ-fooled by X.

For the case of read-once DNFs, we show that seed length O(log mn ·
log 1/δ) suffices, which is an improvement for large δ.

It also follows from our proof that a 1/mO(log 1/δ)-biased distribution
δ-fools all read-once DNF with m terms. We show that this result too
is nearly tight, by constructing a 1/mΩ̃(log 1/δ)-biased distribution that
does not δ-fool a certain m-term read-once DNF.

Keywords: DNF, pseudorandom generators, small bias spaces.

1 Introduction

One of the main open questions in unconditional pseudorandomness and deran-
domization is to construct logarithmic-seed pseudorandom generators that “fool”
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bounded-depth circuits.1 Ajtai and Wigderson [1] first considered the problem
of pseudorandomness against bounded-depth circuits, and constructed a pseu-
dorandom generator against AC0 with a seed of length O(nε) for any ε > 0.
This was substantially improved by Nisan [17], who used the hardness of parity
against AC0 [8] to construct a pseudorandom generator against depth d circuits
with a seed of length O(log2d+6 n). This remains the best known result for AC0.

Even for depth-2 circuits, the construction of optimal pseudorandom genera-
tors remains a challenging open question. A depth-2 circuit is either a CNF or
a DNF formula, and a pseudorandom generator that fools DNFs must also fool
CNFs with the same distinguishing probability, so from now on we will focus
without loss of generality on DNFs, and denote by n the number of variables
and m the number of terms.

Nisan’s result quoted above gives a pseudorandom generator for DNFs with
seed length O(log10 nm). Luby, Velickovic and Wigderson [13] reduced the
seed length to O(log4 nm) via various optimizations. For the simpler task
of approximating the number of satisfying assignments to a DNF formula,
Luby and Velickovic [12] provide a deterministic algorithm running in time
(m log n)exp(O(

√
log log m)).

The current best pseudorandom generator for DNFs is due to Bazzi [5]. In
1990, Linial and Nisan [11] conjectured that depth-d circuits are fooled by every
distribution that is (log mn)Od(1)-wise independent. Bazzi proved the depth-2
case of the Linial-Nisan conjecture, and showed that every O(log2(m/δ))-wise
independent distribution δ-fools DNFs. This result gives two approaches to con-
structing a pseudorandom generator for DNFs of seed O(log n·log2(m/δ)), which
is O(log3 nm) when δ = 1/poly(n, m). One is to use one of the known construc-
tions of k-wise independent generators of seed length O(k log n). The other is to
use a result of Alon, Goldreich and Mansour [3] showing that every ε-biased dis-
tribution, in the sense of Naor and Naor [16], over n bits is εnk-close to a k-wise
independent distribution. This means that, because of Bazzi’s theorem, every
exp(−O(log n · log2(m/δ)))-biased distribution fools DNFs; Naor and Naor [16]
prove that an ε-biased distribution over n bits can be sampled using a seed of
O(log(n/ε)) random bits, and so a exp(−O(log n·log2(m/δ)))-biased distribution
can be sampled using O(log n · log2(m/δ)) random bits.

Razborov [19] considerably simplified Bazzi’s proof (retaining the same quan-
titative bounds). In a recent breakthrough, building on Razborov’s argument,
Braverman [6] has proved the full Linian-Nisan conjecture.

For width-w DNF formulas2, better bounds are known for small w. Luby and
Velickovic [12] prove the existence of a generator with seed length O(log n +
w2w log 1/δ) which δ-fools all width-w DNFs. It follows from their proof that

1 We say that a random variable X, ranging over {0, 1}n, “δ-fools” a function f :
{0, 1}n → R if

|Ef(X) − Ef(Un)| ≤ δ,

where Un is uniformly distributed over {0, 1}n. If C is a class of functions, then we
say that X δ-fools C if X δ-fools every function f ∈ C.

2 Each term involves at most w variables.
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DNF Family Seed length
[17] general DNFs O(log10(mn/δ))
[13] general DNFs O(log4(mn/δ))
[5] general DNFs O(log n · log2(m/δ))
This work general DNFs O(log n + log2(m/δ) · log log(m/δ))
[12] width-w DNFs O(log n + w2w · log(1/δ))
This work width-w DNFs O(log n + w log w · log(m/δ))
[4] read-once DNFs O(log n · log m · log(1/δ))
This work read-once DNFs O(log n + log m · log(1/δ))

Fig. 1. Pseudorandom generators to δ-fool DNFs with m terms and n variables

every exp(−O(w2w log 1/δ))-biased distribution δ-fools width-w DNFs. One may
always assume without loss of generality that w = O(log(m/δ)), and so if the
Luby-Velickovic result could be improved to a seed length of O(w + log(n/δ)),
the result would be a generator of optimal seed length O(log(mn/δ)).

For read-once DNFs, Bazzi proves that every O(log m · log 1/δ)-wise indepen-
dent distribution δ-fools every read-once DNF, and hence every exp(−O(log n ·
log m · log 1/δ))-biased distribution δ-fools read-once DNFs. This gives a genera-
tor of seed length O(log n · log m · log 1/δ), which is O(log2 nm) for constant δ.

Our Results. We prove that every width-w DNF is δ-fooled by every
exp(−O(log n+w log w(log m+log 1/δ)))-biased distribution. This gives a pseu-
dorandom generator of seed length O(log2 mn · log log mn) for general DNFs and
δ = 1/poly(n, m).

Regarding read-once DNFs, we show that they are δ-fooled by every
exp(−O(log m · log 1/δ))-biased distribution, leading to a generator with seed
length O(log n + log m · log 1/δ), which is O(log nm) for constant δ.

We prove that our quantitative connections between small bias and DNF
derandomization are nearly tight. Specifically, we construct an m-term DNF
that is not δ-fooled by a certain 1/mΩ(log 1/δ)-biased distribution, which means
that seed length Ω(log n + log m · log 1/δ) is necessary if one wants to δ-fool
DNFs using a generic small bias distribution. This matches our positive result
up to a log log nm term when δ = 1/poly(n, m). It remains open whether seed
length O(log nm) is achievable for constant δ.

We also construct an m-term read-once DNF that is not δ-fooled by a certain
1/mΩ̃(log 1/δ)-biased distribution (where the Ω̃ notation hides a 1/ log log 1/δ
term). This means that seed length Ω(log2 nm/ log log nm) is necessary if one
wants to 1/poly(nm)-fool read-once DNFs using a generic small bias distribution.

Due to lack of space, we defer the first example to the full version.

Our Techniques. Our positive results for DNFs and read-once DNFs are
based on techniques similar to the ones developed by Bazzi [5] and simplified by
Razborov [19].
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Bazzi shows that a sufficient (and necessary) condition for a function g to
be δ-fooled fooled by a k-wise independent distribution is that the function
be “sandwiched” between two real-valued functions f�, fu which are degree-
k polynomials and such that f�(x) ≤ g(x) ≤ fu(x) holds for every x, and
Ex∈Un [fu(x)− f�(x)] ≤ δ. We provide a similar sufficient (and necessary) condi-
tion for a function g to be δ-fooled by an ε-biased distribution in terms of g being
sandwiched between functions whose Fourier transform has small �1 norm.

Bazzi and Razborov then proceed to show how to construct the sandwiching
functions for every DNF by showing that it suffices to find just one low-degree
function that approximates the DNF in the �2 norm, and such a function is
provided by a result of Linial, Mansour and Nisan [10] on the Fourier spectrum
of DNFs. Our goal, instead, is to find a function of small �1 Fourier norm which
approximates the given DNF well in the �2 norm. The existence of such a function
follows from the result in [10]. However, we use the better quantitative bounds
obtained by Mansour[14].

For the case of read-once DNFs we explicitly construct the sandwiching func-
tions with bounded Fourier �1 norm, using the inclusion-exclusion formula for
the DNF. To analyze the error in the truncated inclusion-exclusion formula, we
apply an argument which is similar to the one appearing in a paper by Even
et al. [7] on the related subject of pseudorandomness for combinatorial rectan-
gles. The technical difference between our argument and the one in [7] is that
while they use the kth-truncations of the inclusion-exclusion series to directly
show that k-wise independence fools combinatorial rectangles, we use these to
compute functions with low �1 norm sandwiching the given DNF.

Our negative example for read-once DNFs goes as follows. We start from a
“tribe” function, a read-once DNF with m terms each with log m literals, and
we show how to construct a 1/mΩ̃(log 1/δ)-biased distribution that does not δ-
fool the tribe function. We show that for every parameter d we can construct a
distribution X that is roughly 1/md-biased, and is such that the distinguishing
probability of the tribe between X and the uniform distribution is the same as
the error of the d-th term of the inclusion-exclusion formula in approximating
the tribe. The latter error is roughly 1/d!, so we get our result by setting d =
(log 1/δ)/(log log 1/δ).

Subsequent Work. Klivans et al. [9] obtained better bounds on the �1 norm
of sandwiching functions for the case of random and read-k DNF formulas. They
thus get pseudorandom generators with seed length O(log n + log m · log(1/δ))
for random and read-k DNF formulas. For the case of read-k DNF formulas, the
implicit constant in the seed length is exponentially dependent on k and it is
open to improve this dependence.

2 Preliminaries

An arbitrary function f : {0, 1}n → R can be expressed as a linear combination
of the character functions χS(x) =

∏
i∈S(−1)xi, as f(x) =

∑
S f̂(S)χS(x). The
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coefficient f̂(S) is referred to as the Fourier coefficient of f corresponding to the
set S. We use the following notation for the Fourier �1 norm of f and a minor
variant of it as below:

‖f‖1 :=
∑
S

∣∣∣f̂(S)
∣∣∣ and ‖f‖ �=∅

1 :=
∑
S �=∅

∣∣∣f̂(S)
∣∣∣

For a probability distribution X over {0, 1}n, we say that X ε-fools a real function
f : {0, 1}n → R if

|E[f(X)] − E[f(Un)]| ≤ ε

where Un denotes the uniform distribution over {0, 1}n. We say a probability
distribution X over {0, 1}n is ε-biased if it ε-fools the character functions χS .

Proposition 1 (Efficient construction of ε-biased sets [16,2]). A subset
B ⊆ {0, 1}n is called an ε-biased set if the uniform distribution with support
B is ε-biased. There exist ε-biased sets of size O(n2/ε2) such that a random
element from the set can be sampled using a seed of length O(log(n/ε)), in time
poly(n, log(1/ε)).

A DNF formula φ is of the form φ =
∨m

i=1 Ci where each term Ci is an AND
of literals (variables or negations). φ is said to be of width w if every term Ci

involves at most w distinct variables. A DNF is said to be read-once if every
variable appears in at most one of the terms. A DNF is said to be read-k if every
variable appears in at most k of the terms.

2.1 Sandwich Bound

The following claims give a a characterization of functions that can be fooled
well by ε-biased probability distributions, similar to one derived by Bazzi [5].
The proofs of these propositions can be found in the full version.

Proposition 2 (Sandwich bound). Suppose f, f�, fu : {0, 1}n → R are three
functions such that for every x ∈ {0, 1}n we have f�(x) ≤ f(x) ≤ fu(x). Fur-
thermore, assume E[f(Un)] − E[f�(Un)] ≤ δ and E[fu(Un)] − E[f(Un)] ≤ δ.
Let l = max(‖f�(x)‖ �=∅

1 , ‖fu(x)‖ �=∅
1 ). Then any ε-biased probability distribution

(δ + εl)-fools f .

The following result shows that the condition of Proposition 2 is not only a
sufficient condition for being fooled by ε-biased distributions but also a necessary
condition.

Proposition 3 (Inverse of the sandwich bound). Suppose f : {0, 1}n → R

is ε′-fooled by any ε-biased set. Then there exist functions f�, fu : {0, 1}n → R

and δ, l ∈ R ≥ 0 with the following properties:
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– For every x ∈ {0, 1}n we have f�(x) ≤ f(x) ≤ fu(x).
– E[f(x)] − E[f�(x)] ≤ δ and E[fu(x)] − E[f(x)] ≤ δ,
– ‖f�(x)‖ �=∅

1 ≤ l, ‖fu(x)‖ �=∅
1 ≤ l, and δ + εl ≤ ε′.

It is easy to check the following properties of �1 norm of functions over the fourier
domain.

Observation 1. If f, g : {0, 1}n → R, then ‖f +g‖1 ≤ ‖f‖1+‖g‖1 and ‖fg‖1 ≤
‖f‖1‖g‖1.

Observation 2. If φ : {0, 1}n → {0, 1} is an AND of some subset of literals
(i.e., variables or their negations), then ‖φ‖1 = 1.

3 Fooling Read-Once DNF Formulas

The following result shows that ε-biased sets can fool read-once DNFs.

Theorem 3. Let φ be a read-once DNF formula with m terms. For 1 ≤ k ≤ m,
ε-biased distributions O(2−Ω(k) + εmk)-fool φ. In particular, we can δ-fool φ by
an ε-biased distribution, for ε = m−O(log(1/δ)).

We first recall the inclusion-exclusion principle. Let A1, . . . , Am be m arbitrary
events in a probability space. The principle of inclusion and exclusion asserts
that

Pr[A1 ∪ · · · ∪ Am] =
m∑

j=1

(−1)j−1Tj,

where

Tj =
∑

S⊆[m],|S|=j

Pr

[⋂
i∈S

Ai

]
.

Moreover, the partial sum
∑r

j=1(−1)j−1Tj is an upper bound for Pr[A1∪· · ·∪Am]
for odd values of r, and a lower bound for Pr[A1 ∪ · · · ∪Am] for even values of r.

We now return to the proof of Theorem 3. The proof follows that of Theorem
2 in [7].

Proof of Theorem 3: Let φ = C1 ∨ · · · ∨ Cm be the read-once formula. For
1 ≤ i ≤ m, let Ai denote the event that term Ci is satisfied. We divide the
analysis into two cases depending on whether

∑m
i=1 Pr[Ai] ≤ k/(2e) or not.

Case 1:
∑m

i=1 Pr[Ai] ≤ k/(2e).
Let Tk denote the kth term of the inclusion-exclusion formula. Since the terms

are disjoint, we have
Tk =

∑
S⊆[m],|S|=k

∏
i∈S

Pr[Ai].
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We now observe that Tk ≤ 2−k. Indeed, subject to the restriction
∑m

i=1 Pr[Ai] =
α and Pr[Ai] ≥ 0, a convexity based argument implies that Tk is maximized
when all the Pr[Ai]’s are equal implying that Tk ≤

(
m
k

)
(2em/k)−k ≤ 2−k.

Consider the rth approximation to φ, obtained by inclusion-exclusion:

φr(x) =
r∑

j=1

(−1)j−1
∑

S⊆[m],|S|=j

∧
l∈S

Cl(x),

where
∧

is the AND function. The functions φk−1 and φk sandwich φ and we
shall use them in applying Proposition 2. To verify the conditions, we note that
the function

∧
l∈S Cl(x) is an AND of AND terms, therefore ‖

∧
l∈S Cl(x)‖ �=∅

1 =
O(1), and hence ‖φr‖ �=∅

1 = O(mr). We also have |E[fk(Un)] − E[fk−1(Un)]| =
Tk ≤ 2−k. and hence, by Proposition 2, φ is O(2−k + εmk)-fooled by ε-biased
distributions.

Case 2:
∑m

i=1 Pr[Ai] > k/(2e).
Consider the first m′ where

∑m′

i=1 Pr[Ai] ≥ k/(2e). Define φ′ = C1∨· · ·∨Cm′ .
Observe that the DNF φ′ is satisfied with probability 1 − 2−Ω(k), for it is not
satisfied with probability

∏m′

i=1(1−Pr[Ai]) ≤ (1−k/(2em′))m′ ≤ 2−Ω(k). (Again
by a convexity argument,

∏
i(1−Pr[Ai]) is maximized when Pr[Ai]s are equal.)

Let φ′
r(x) denote the rth approximation to φ′. Also, (without loss of gener-

ality) let k be even so that φ′
k ≤ φ′ ≤ φ. Note that while φ′

k−1 is a an upper
bound on φ′, it is not an upper bound on φ. We shall use φ′

k and identically 1
function respectively as lower and upper bounds for applying Proposition 2 to
φ.

From argument above, we know that E[1−φ] ≤ E[1−φ′] ≤ 2−Ω(k). To bound
E[φ − φ′

k], we note that

E [φ − φ′
k] = E [φ − φ′] + E [φ′ − φ′

k] ≤ E [1 − φ′] + E
[
φ′

k−1 − φ′
k

]
≤ 2−Ω(k)

where in the last inequality we used that E[φ′
k−1 − φ′

k] as in the previous case,

since
∑m′

i=1 Pr[Ai] < k/(2e)+1. The bound on the ‖φ′
k‖

�=∅
1 is as before. Applying

Proposition 2, we then get that ε-biased sets O(2−Ω(k) + εm′k)-fool φ.

If we plug in the construction from Proposition 1 in Theorem 3, we get a pseudo-
random generator which δ-fools a read-once DNF with n variables and m terms
and has seed length O(log n + log m · log(1/δ)).

4 Fooling General DNF Formulas

In this section, we show that small biased distributions fool general DNFs. While
the seed length will not be as good as in the previous section, the result will be
more general. Also, this section will involve use of more analytic tools. Our proof
shall be along the lines of Razborov’s simplified proof of Bazzi’s theorem [19].
The following two theorems will be the main theorems of this section.
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Theorem 4. Let φ be a width w-DNF formula with m terms. Then, φ is δ-fooled
by every ε-biased distribution where ε = w−O(w log(m/δ)).

Theorem 5. Let φ be a DNF formula with m terms. Then, φ is δ-fooled by
every ε-biased distribution where ε = (log(m/δ))O(− log2(m/δ)).

Plugging in the pseudorandom generator construction from Proposition 1 in
Theorem 4, we get a pseudorandom generator which δ-fools width-w DNFs with
m terms over n variables and has a seed of length O(log n + w log w log(m/δ)).
Doing the same for Theorem 5, we get a pseudorandom generator which δ-
fools DNFs with m terms over n variables and has a seed of length O(log n +
log2(m/δ) log log(m/δ)). Theorem 5 follows by a reduction to Theorem 4, by
deleting the terms with large width, as we describe later. For most of this section,
we will be concerned with DNFs of a bounded width. To prove Theorem 4, we will
be interested in finding sandwiching functions fl and fu to apply Proposition 2.

Using an argument similar to [5], we reduce this to the problem of finding a
function g such that ‖φ − g‖2 and ‖g‖1 are small, and φ(x) = 0 =⇒ g(x) = 0.
We then show how to remove the last condition and then find an appropriate
g using a Fourier concentration result of Mansour [15]. More formally, we prove
the following three lemmas.

Lemma 1. Let φ : {0, 1}n → {0, 1} be a DNF with m terms and g : {0, 1}n → R

be such that: ‖g‖1 ≤ l, ||φ − g||2 ≤ ε1 and g(x) = 0 whenever φ(x) = 0. Then,
we can get f�, fu : {0, 1}n → R such that

– ∀ x, f�(x) ≤ φ(x) ≤ fu(x)
– Ex∈Un [fu(x) − φ(x)] ≤ mε21 and Ex∈Un [φ(x) − f�(x)] ≤ mε21.
– ‖f�‖1, ‖fu‖1 ≤ (m + 1)(l + 1)2 + 1

Lemma 2. Let φ : {0, 1}n → {0, 1} be a width-w DNF with m terms. Suppose
for every width-w DNF φ1, there is a function g1 : {0, 1}n → R such that:
‖g1‖1 ≤ l1 and ||φ1 − g1||2 ≤ ε2. Then, we can get g : {0, 1}n → R such that
‖g‖1 ≤ m(l1 + 1), ||φ − g||2 ≤ mε2 and g(x) = 0 whenever φ(x) = 0.

Lemma 3. Let φ : {0, 1}n → {0, 1} be a width w DNF and ε2 > 0. Then there is
a function g1 : {0, 1}n → R such that ||φ− g1||2 ≤ ε2 and ‖g1‖1 = wO(w log(1/ε2))

Before, we prove these lemmas, we show how they imply Theorem 4.

Proof (of Theorem 4). Set ε2 =
√

δ/2m3 and ε1 =
√

δ/2m. By applying
Lemma 3, for every width-w DNF φ1, we can get a function g1 : {0, 1}n → R

such that

– ||φ1 − g1||2 ≤ ε2 =
√

δ/2m3

– ||g1||1 = wO(w log(1/ε2)) = wO(w log(m/δ))

Now, we apply Lemma 2 with l1 = wO(w log(m/δ)) and ε2 =
√

δ/2m3. Then,
for the given DNF φ, we get a function g such that ||g||1 = wO(w log(m/δ)) and
||g − φ||2 ≤ mε2 = ε1 =

√
δ/2m. Finally, we apply Lemma 1 with g and ε1 as
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defined and l = wO(w log(m/δ)) to get f� and fu such that φ is sandwiched by f�

and fu, ||f�||1, ||fu||1 ≤ wO(w log(m/δ)) and

E
x∈Un

[fu(x) − φ(x)] ≤ δ

2
and E

x∈Un

[φ(x) − f�(x)] ≤ δ

2

By applying Proposition 2, we get that an ε = w−O(w log(m/δ)) (for an appropri-
ately large constant inside O(·)) biased set fools φ by δ/2 + εl ≤ δ.

We first sketch the proof of Lemma 1.

Proof Sketch of Lemma 1: Let φ =
∨m

i=1 Ai where Ai are the terms. We
define f� and fu as follows:

– f� = 1 − (1 − g)2
– fu = 1 − (1 −

∑m
i=1 Ai)(1 − g)2

We note that this is the same construction of functions as in Lemma 3.3 in [5].
In particular, the first two claims about f� and fu are already proven in [5]. The
third claim regarding f� and fu (about their �1 norm) follows easily by repeated
applications of Observation 1. �
We next give the proof of Lemma 2 which follows the proof by Razborov [19].

Proof of Lemma 2: We first observe as in [19] (attributed to Avi Wigderson)
that if φ =

∨m
i=1 Ai where Ai ∈ {0, 1} are the individual terms, then φ can be

rewritten as
∑m

i=1 Ai(1 −
∨i−1

j=1 Aj). Let φi denote
∨i−1

j=1 Aj (φi = 0 if i = 1).
Then, we can say that φ =

∑m
i=1 Ai(1−φi). Note that each of the φi is a width w-

DNF and we can apply the hypothesis to get functions g1, . . . , gm : {0, 1}n → R

such that for all i, ‖gi‖1 ≤ l1 and ‖gi−φi‖2 ≤ ε2. Let g : {0, 1}n → R be defined
as

g =
m∑

i=1

Ai(1 − gi)

We observe that if φ(x) = 0 for some x, then ∀ i, Ai(x) = 0 which implies
that g(x) = 0. Applying Observation 1 and using that Ai’s are terms and hence
||Ai||1 = 1, we also get that ‖g‖1 ≤ m(l1 + 1). So, the only thing that remains
to be proven is that ‖φ − g‖2 ≤ mε2. Though this is done in [19], we do it here
for the sake of completeness.

‖g − φ‖2
2 = E

x∈Un

⎡⎣( m∑
i=1

Ai(φi − gi)(x)

)2
⎤⎦ ≤ m E

x∈Un

[
m∑

i=1

(Ai · (φi − gi)(x))2
]

= m

m∑
i=1

E
x∈Un

[
(Ai · (φi − gi)(x))2

]
≤ m

m∑
i=1

E
x∈Un

[
(φi − gi)(x)2

]
= m

m∑
i=1

||φi − gi||22 ≤ m2ε22

This proves that ||φ − g||2 ≤ mε2 which finishes the proof.
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We now come to the proof of Lemma 3. The proof is dependent upon the follow-
ing well-known concentration result by Mansour [15] (or see Ryan O’Donnell’s
lecture notes on fourier analysis [18]).

Theorem 6. [15] Let φ : {0, 1}n → {0, 1} be a width w-DNF with m terms and
ε2 > 0. Let

∑
S⊂[n] φ̂(S)χS be the fourier expansion of φ. Then there is a subset

Γ ⊂ 2[n] of size wO(w log(1/ε2)) such that g defined as g1 =
∑

S∈Γ φ̂(S)χS is such
that ||φ − g1||2 ≤ ε2.

Proof of Lemma 3: For the given φ and ε2, let g1 be the function given
by Theorem 6. Clearly, it satisfies ||φ − g1||2 ≤ ε2. To bound ‖g1‖1, note that
‖g1‖1 =

∑
S∈Γ |φ̂(S)| where |Γ | = wO(w log(1/ε2)). Note that

∑
S∈Γ |φ̂(S)|2 = α

for some α ∈ [0, 1] (by Parseval-Plancherel identity and the fact that φ lies in
[0, 1]). Now, we have(∑

S∈Γ

|φ̂(S)|
)2

≤ |Γ |
(∑

S∈Γ

|φ̂(S)|2
)

≤ |Γ | (By Jensen’s inequality)

Hence, this gives us
∑

S∈Γ |φ̂(S)| ≤
√
|Γ | = wO(w log(1/ε2)) which proves the

lemma.

To prove Theorem 5, we prove the following proposition (proof is deferred to the
full version).

Proposition 4. Let φ be any m-term DNF and φ′ be the DNF obtained from φ
by removing all the terms which have more than w distinct variables. Also, let D
be an ε′-biased distribution which δ′-fools φ′. Then φ is δ′ + m2−w + mε′ fooled
by D.

To get Theorem 5, we plug in w = log(m/2δ), ε′ = w−O(w log(m/δ)) and δ′ = δ/4
in the above proposition and use Theorem 4.

5 Almost Tight Lower Bounds for Fooling Read-Once
DNFs

We now investigate the question of how small a bias is required for fooling
DNFs using arbitrary small bias distributions. In section 3, we showed that to δ-
fool an m-term read-once DNF using an ε biased distribution, it suffices to have
ε = m−O(log(1/δ)). Below we give a construction of a specific ε-biased distribution
which shows that to δ-fool the “tribes” DNF (described below), one must have
ε = m−Ω(log(1/δ)/ log log(1/δ)).

The following theorem states the existence of the required read-once DNF and
small bias distribution. The lower bound of ε = m−Ω(log(1/δ)/ log log(1/δ)) follows
as an easy corollary.



514 A. De et al.

Theorem 7. For every sufficiently large integer n of the form n = m log m for
m which is power of 2 and for every integer d ≥ 1, there is an (m/2)−d-biased
distribution D over {0, 1}n and a read-once DNF φ with m terms such that φ
distinguishes D from uniform by at least 1/(2d + 3)!.

Proof. We first describe the DNF. The DNF is defined by splitting the n variables
into m chunks of size log m. Let the variables in the ith chunk be xi,1, . . . , xi,log m.
The DNF is

φ(x) =
m∨

i=1

Ci where Ci ≡
log m∧
j=1

xi,j

The following two claims, describe the required distribution D.

Claim 8. There is a distribution Y = Y1◦. . .◦Ym over {0, 1}m with the following
properties

– for every 1 ≤ i ≤ m, Pr[Yi = 1] = 1/m.
– Y1, . . . , Ym are d-wise independent;
– For every y ∈ Supp(Y ), y1 + . . . + ym ≤ d.

We can now describe the distribution D in terms of the random variables
Y1, . . . , Ym. Given values y1, . . . , ym, we choose xi,1, . . . , xi,log m to be all 1, if
yi = 1 and uniformly from {0, 1}logm \1log m if yi = 0. In particular, this ensures
that

∧log m
j=1 xi,j = yi and hence Ci is satisfied if and only if yi = 1. We claim

that the distribution has a small bias.

Claim 9. The distribution D defined above has bias at most (m/2)−d.

Before proving these two claims, lets see why they suffice to construct the coun-
terexample. First, observe that by Claim 8, term Ci being satisfied is equivalent
to yi = 1. By inclusion-exclusion principle, the probability that x ∈r D satisfies
φ is

Pr
x∈D

[φ is satisfied] =
∑

S∈[m],|S|>0

(−1)|S|−1 Pr[∀i ∈ S, Ci is satisfied]

=
∑

S∈[m],|S|>0

(−1)|S|−1 Pr[∀i ∈ S, yi = 1]

=
∑

S∈[m],d≥|S|>0

(−1)|S| Pr[∀i ∈ S, yi = 1] (Using
m∑
i

yi ≤ d)

=
d∑

t=1

(−1)t−1
(

m

t

)
1

mt

The last equality uses that yi’s are d-wise independent and Pr[yi = 1] = 1/m.
To estimate the above probability for the uniform distribution, we can obtain
upper and lower bounds on it by truncating the inclusion-exclusion respectively
at d + 1 and d + 2 when d is even (the upper and lower bounds are switched
when d is odd). Thus φ distinguishes D from uniform with probability at least
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(
m

d + 1

)
1

md+1 −
(

m

d + 2

)
1

md+2

=
m!

md+1(d + 1)!(m − d − 2)!

(
1

m − d − 1
− 1

m(d + 2)

)
≥ m!

md+1(d + 1)!(m − d − 2)!
1

2m

≥ 1
2(d + 1)!

d+1∏
i=1

(
1 − i

m

)

=
1

2(2d + 2)!

d+1∏
i=1

(
(d + 1 + i)

(
1 − i

m

))
≥ 1

(2d + 3)!

The last inequality uses that (d + 1 + i)(1 − i/m) ≥ 1. Hence, we need to prove
Claims 8 and 9. We start with Claim 8.

Proof of Claim 8: Let p0, . . . , pd ≥ 0 such that
∑

pi = 1 (We will non-
constructively describe pi’s later). The distribution Y is chosen as following. Pick
i, 0 ≤ i ≤ d with probability pi. Choose a uniformly random subset S ⊂ [m]
of size i and set yi = 1 if i ∈ S and yi = 0 if i �∈ S. By construction, trivially
the third property is satisfied. We need to set p0, . . . , pd such that the first and
the second properties are satisfied. Note that to ensure that Yi’s are d-wise
independent, it suffices to show that for every 0 ≤ i ≤ d and 1 ≤ j1 < . . . < ji ≤
m, we have E[yj1 · . . . · yji ] = E[yj1 ] · . . . ·E[yji ] = 1/mi (because each variable yk

takes only two possible values.) By symmetry of the construction, it suffices to
ensure these properties when {j1, . . . , ji} = {1, . . . , i} for every 0 ≤ i ≤ d. Thus
we only need to select p0, . . . , pd such that for every 0 ≤ i ≤ d,

E[y1 · . . . · yi] =
d∑

t=i

(
m−i
t−i

)(
m
t

) pt = 1/mi.

This is a triangular system of d+1 linear equations which has a unique solution
p0, . . . , pd. However, we must make sure that the values of the solution p0, . . . , pd

are nonnegative. We use descent on i to show pi ≥ 0. We have pd =
(
m
d

)
/md ≥ 0.

For i < d, we have:

pi =
(

m

i

)[
1

mi
−

d∑
t=i+1

(
m−i
t−i

)(
m
t

) pt

]
≥

(
m

i

)[
1

mi
−

d∑
t=i+1

(
m−i−1
t−i−1

)(
m
t

) mpt

]

= m

(
m

i

)[
1

mi+1 −
d∑

t=i+1

(
m−i−1
t−i−1

)(
m
t

) pt

]
= 0
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Proof of Claim 9: To compute the bias of the distribution D, consider any
character χS where S ⊂ [m log m] is non-empty. For any i ∈ [m], let us define
Si = S ∩ {(i − 1) log m + 1, . . . , i log m}. Note that

E
x∈D

[χS(x)] = E
x∈D

⎡⎣ ∏
i:Si �=φ

χSi(x)

⎤⎦
Our proof will only depend on the number of non-empty sets Si. Without loss of
generality, we can assume that the non-empty sets are S1, . . . , St for some t > 0.
We denote the set of variables xi,1, . . . , xi,log m by xi. To compute the bias, we
then need to calculate

Ex∈D

[
t∏

i=1

χSi(xi)

]
= EY

[
t∏

i=1

Exi [χSi(xi)|yi]

]

as the variables x1, . . . xm are independent given Y . We now note that

Exi [χSi(xi)|yi = 1] = (−1)|Si| and Exi [χSi(xi)|yi = 0] = − (−1)|Si|

m − 1
.

If t ≤ d, then y1, . . . , yt are independent and the bias simply becomes 0 as below.

EY

[
t∏

i=1

Exi [χSi(xi)|yi]

]
=

t∏
i=1

Exi,yi [χSi(xi)]

=
t∏

i=1

(
1
m

· (−1)|Si| −
(

1 − 1
m

)
· (−1)|Si|

m − 1

)
= 0

If t > d, we can bound the bias as

EY

[
t∏

i=1

Exi [χSi(xi)|yi]

]
≤ EY

[
t∏

i=1

|Exi [χSi(xi)|yi]|
]

≤ EY

[
d∏

i=1

|Exi [χSi(xi)|yi]|
]

=
d∏

i=1

(
1
m

+
(

1 − 1
m

)
· 1
m − 1

)
=

(
2
m

)d

which proves the claim.

By plugging d = log(1/δ)/ log log(1/δ) in the above theorem, we get the following
corollary.

Corollary 1. For m which is a power of 2 and δ > 0, there is a read-once DNF
φ over n = m log m variables and a distribution D over {0, 1}n which has bias
m−O(log(1/δ)/ log log(1/δ)) and φ distinguishes D from uniform by δ.
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Abstract. Given a function f : X → Σ, its �-wise direct product is the
function F = f� : X� → Σ� definedbyF (x1, . . . , x�) = (f(x1), . . . , f(x�)).
A two prover game G is a game that involves 3 participants: V,A, and B.
V picks a random pair (x, y) and sends x to A, and y to B. A responds
with f(x), B with g(y). A,B win if V (x, y, f(x), g(y)) = 1. The repeated
game G� is the game where A,B get � questions in a single round and each
of them responds with an � symbol string (this is also called the parallel
repetition of the game). A,B win if they win each of the questions.

In this work we analyze the structure of the provers that win the re-
peated game with non negligible probability. We would like to deduce that
in such a case A,B must have a global structure, and in particular they are
close to some direct product encoding.

A similar question was studied by the authors and by Impagliazzo et.
al. in the context of testing Direct Product. Their result can be be inter-
preted as follows: For a specific game G, if A,B win G� with non negligible
probability, then A,B must be close to be a direct product encoding. We
would like to generalize these results for any 2-prover game.

In this work we prove two main results: In the first part of the work
we show that for a certain type of games, there exist A,B that win the
repeated game with non negligible probability yet are still very far from
any Direct Product encoding. In contrast, in the second part of the work
we show that for a certain type of games, called “miss match” games, we
have the following behavior. Whenever A,B win non negligibly then they
are both close to a Direct Product strategy.

1 Introduction

Given a function f : S → Σ its �-wise direct product is the function f � : S� →
Σ� defined by: f �(s1, . . . , s�) = (f(s1), . . . , f(s�)). The Direct Product Testing
Theorem by [DG08] and [IKW09] asserts that there exists a two query test T such
that, whenever a function F : S� → Σ� passes T with non negligible probability,
then F is somewhat close to an �-wise direct product for some global function
f : S → Σ.
� Work supported by ISF grant 1179/09, BSF grant 2008293, and ERC starting grant

239985.
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Let us describe the 2-query direct product test T . The test picks a random
tuple x ∈ S� and then picks another tuple x′ as follows: For each such coordinate
i with probability α x′

i = xi, otherwise, x′
i is drawn uniformly at random from S.

The test queries F (x), F (x′) and accepts if and only if F (x), F (x′) are consistent
among the common values of x and x′.

The test can be viewed as a repeated 2-prover equality game in the following
way: The original game, EQ, is the game in which with probability α A,B
get the same question x and with probability 1 − α they get two independent
questions x and x′. A responds with a ∈ Σ and B with b ∈ Σ. If A,B get
the same question the verifier checks that a = b otherwise it always accepts.
The repeated game EQ�- the game where the verifier picks � independent pairs
of questions and sends them in a single round- is exactly the test T described
above. The Direct Product Testing Theorem asserts that for this specific game:
Whenever the provers win with non negligible probability, then the provers’
strategy has a global structure: They have a global agreement with some direct
product function.

The Parallel Repetition Theorem by [Raz98] asserts that, for any 2-prover
game, the value of the repeated game decreases exponentially with the number
of repetitions. Thus, if the provers win the repeated game with probability above
1%, then the value of the original game is almost 1. The Parallel Repetition
Theorem concludes nothing about the structure of the provers’ strategy assuming
they win with probability above 1%. Furthermore, it is easy to see that the value
of the EQ game is 1. Therefore, the Parallel Repetition Theorem, unlike the
Direct Product Testing Theorem, tells us nothing about EQ�.

This work is a bridge between the Parallel Repetition Theorem and the Direct
Product Testing Theorem showing that for every 2-prover game, if A,B win with
non negligible probability, then A,B have global structure, namely A,B are close
to a direct product encoding.

Let us introduce some of our notations: A two-prover game G is defined by
a distribution D on questions (X, Y ) and a verifier V . The verifier V picks
a questions pair (x, y) ∈ (X, Y ) according to D. Then, the verifier sends the
question x to prover A and the question y to prover B. The provers A,B are not
allowed to communicate with each other during the game, and A responds with
f(x), while B responds with g(y). The players win if V (x, y, f(x), g(y)) = 1. The
value of the game G, denoted val(G) is the maximum success probability of the
players.

For functions f : X → ΣA and g : Y → ΣB we denote by val(G, f, g)
the value of the game if A plays according to f and B according to g, i.e.
val(G, f, g) = E(x,y)∼DV (x, y, f(x), g(y)). We call the pair (f, g) a perfect strat-
egy if val(G, f, g) = 1.

The repeated game G� is the the game where V samples � independent ques-
tions: (x1, y1), . . . , (x�, y�) each is distributed according to D. The verifier sends
x = (x1, . . . , x�) to A and y = (y1, . . . , y�) to B. Each prover responds with � an-
swers. The provers win if they win each of the � coordinates. A projection game is
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a game in which the predicate V has a special structure- every pair (x, y) defines
a function Πx,y : ΣA → ΣB, and V (x, y, a, b) is satisfied iff Πx,y(f(x)) = g(y).

As mentioned earlier, the Parallel Repetition Theorem by [Raz98] bounds
the value of the repeated game. Roughly speaking, it says that for every game
G, if val(G) < 1− ε, then val(G�) < (1− ε′)� (where ε′ depends on ε and on the
length of the answer in G).

How would honest verifiers A,B play in order to win the repeated game?
They choose a pair of perfect strategies (f, g). A, upon receiving (x1, . . . , x�),
answers with (f(x1), . . . , f(x�)) while B answers with (g(y1), . . . , g(y�)). In fact,
A,B can choose � pairs of perfect strategies (f1, g1), . . . , (f�, g�) and A answers
with (f1(x1), . . . , f�(x�)) while B answers with (g1(y1), . . . , g�(y�)) and still win
with probability 1. We call such strategies A,B direct product strategies and
denote them by

∏
fi and

∏
gi.

In this work, we consider the case where the provers win the repeated game
with non negligible probability. We would like to deduce a structure for the
provers’ strategies. Ideally, such strategies are approximately direct product
strategies, in other words, global structure. Let us call this the Global Struc-
ture Hypothesis.

Without loss of generality we focus only on non trivial games, i.e. games in
which for every questions pair (x, y) there exists a pair of answers (a, b) such
that V (x, y, a, b) = 0. Otherwise, if the verifier always accepts, then it is trivial
that we cannot expect of A,B being structured, since every A,B win with
probability 1.

Results. Our first result is that the Global Structure Hypothesis does not hold
in general even for non trivial games. We show games, for which there exists a
strategy for A,B that is extremely far from any direct product strategy (i.e.
has no global structure) while attaining constant winning probability . We con-
clude, (perhaps surprisingly), that high success probability does not imply global
structure.

Our main negative result shows that the Global Structure Hypothesis fails for
any constant degree game 1 that has a large number of perfect strategies that
are pairwise far apart:

Theorem 1 (Anti Structural Theorem- Informal Statement). There ex-
ists a non-trivial constant degree game G, and constant α such that for every
�: There exist strategies A,B such that the maximal agreement between A and∏

fi for any
∏

fi is at most 2−ω(�), and similarly for B. Yet, A,B win with
probability α.

We extend Theorem 1 for games with unbounded degree, and also for the
so-called “permuting” verifiers that permute the questions (these were called
“clever” in [FK95]). For details see Section 3.

In the second part of the work we show, as our second result, that in contrast
to Theorem 1 the Global Structure Hypothesis is true for a certain type of games
called “miss-match” games. These games were first studied in [FK94].
1 The degree is the maximal number of neighbors of a certain question.
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Given a 2-prover game G its repeated “miss-match” game, denoted by Gm,�,
0 < m < �, is as follows: The verifier chooses m coordinates, on each such
coordinate it samples a pair (x, y) according to the distribution of G, these are
called the match coordinates. As for the rest of the coordinates, the so called
miss coordinates, the verifier picks x ∈ X and y ∈ Y independently uniformly
at random. Then the verifier performs a random shuffle on the coordinates. The
provers answer with an � symbols string and they win the game if they win each
of the match coordinates.2 The random shuffle of the coordinates means that
the only direct product strategies that will succeed are roughly of the form f �

and not
∏

fi for distinct fi. See also Remark 1.
We first show that for every projection game G, if the provers win Gm,� with

non negligible probability ε, then B plays according to a direct product strategy:
We show that there exists a small (poly(1/ε)) list of functions g1, . . . , gt : Y →
ΣB such that B agrees non-negligibly with (gi)� for each i. Furthermore, we show
that essentially the only way A,B win is whenever B(y) ≈ (gi)�(y) where gi is
some function from the list.

Theorem 2 (Informal Statement). Let G be a projection game. Assume A,B
win Gm,� with probability ε > �−Ω(1), then there exists a small list of t functions
g1, . . . gt : Y → ΣA such that:

– For each i ∈ [t]: Pry[B(y) ≈ g�
i (y)] > ε′, where ε′ = poly(ε).

– Pr[∃i s.t. B(y) ≈ g�
i (y)|A,B win] ≥ 1 − o(1).

The proof resembles [DG08] and [IKW09] and appears in Section 4.1.
Note that Theorem 2 only discusses B’s strategy. It turns out that deducing

a similar result for A is more subtle, and is only true if G is smooth enough.
This smoothness parameter, first defined by[HK04], is as follows:

Definition 1. A projection game G is called α-smooth if for every x ∈ X and
distinct answers a, a′ ∈ ΣA, we have: Pry[Πx,y(a) = Πx,y(a′)] < 1 − α, where y
is a random neighbor of x.

Assuming the game is sufficiently smooth, we show an analog of Theorem 2,
namely: we show that whenever A,B win Gm,� with non negligible probability,
then there exists a short list of functions pairs (f1, g1), . . . , (fs, gs) such that:
A,B agree with f �

i , g�
i non-negligibly, and val(G, fi, gi) is close to 1. We also

prove that if B plays on y according to g�
i , and A does not play according to f �

i ,
or vice versus, then with high probability A,B lose. Combining with Theorem 2
we get that there exists a small list of functions pairs (fi, gi), such that the only
way to win the repeated game is whenever A plays according to direct product
of f �

i while B plays according to g�
i . Thus, we fully explain the high winning

probability of the provers through a direct product structure of their strategies.

2 Alternatively, we can define “miss-match” as follows: Given a game G, we define
mm−G as the game that with probability α = (m/�) the verifier plays the original
game G, and with probability 1 − α it picks two independent questions and always
accept. The repeated game (mm − G)� is very similar to Gm,�.
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Theorem 3 (Informal Statement). Let G be a an α smooth projection game
(where α is a constant). Assume A,B win Gm,� with probability ε > �−Ω(1), then
there exists a small list of s pairs of functions (f1, g1), . . . (fs, gs) such that:

– fi : X → ΣA, gi : Y → ΣB and: val(G, fi, gi) > 1 − o(1).
– Let (A, B) be a random pair of questions, then:

Pr[∃i s.t. A(x) ≈ f �
i (x) and B(y) �≈ g�

i (y)|A,B win ] > 1 − o(1).

The smoothness property is essential for Theorem3. Theorem 4 shows a game
that is not smooth enough, for which there exist strategies A,B that win the
game with probability 1, yet A is unstructured.

Theorem 4 (Informal Statement). There exists a projection game G, such
that for every � there exist strategies A,B such that the maximal agreement be-
tween A and f � for any f is at most 2−ω(�). Yet, A,B win Gm,� with probability 1.

Additional Motivation and Context. The study of structure of winning strate-
gies, aside from being an interesting generalization of the direct product testing
question, has also some additional motivation coming from PCP constructions.

In recent years, stronger variants of PCPs called PCPPs [BSGH+06] or as-
signment testers [DR06] and more recently dPCPs [DH09] have been introduced.
These are constructs that are similar to PCPs but are stronger, and much more
useful in composition. Without getting into the details, let us say that the main
difference between these objects and regular PCPs lies in the soundness criterion.
The difference is closely related to the difference between just knowing that the
soundness error of repeated games is small (this only gives a PCP), and between
being able to say that strategies that have non-negligible winning probability
must be structured as direct products (such a result will give you the stronger
object, i.e., a dPCP or a PCPP). Whereas the former is already given by the
parallel repetition theorem of [Raz98], the later is the content of this work.

In fact, our structure result (Theorem 3) can be used in order to show that
a parallel repetition of a dPCP is a dPCP with amplified soundness. However,
since this has already been done (with better parameter setting) in [DM10], we
do not work out the details here.

Future Work. In this work we deal with several types of games and repetitions.
We show that for part of them, such as Gm,� the Global Structure Hypothesis
holds. Contrary, we show hat for other types of games, such as constant degree
games with many perfect strategies, the hypothesis fails. It would be interesting
to characterize the types of games and repetitions for which the hypothesis holds.

Organization of the Paper. Subsection 2.1 shows the Direct Product Lemma
which is the basis for our approach. In section 3 prove Theorem 1. Finally, in
Section 4 we prove Theorem 2 and Theorem 3.
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2 Preliminaries

In this work we deal with several kinds of repetitions: Repetition where the
provers gets ordered tuples, sets and multisets.

When the provers get ordered tuples, then we see them as tuple oracles: A
gets a tuple x = (x1, . . . , x�) ∈ X� and responds with A(x) ∈ Σ�

A, and B gets
a tuple y = (y1, . . . , y�) ∈ Y � and responds with B(y) ∈ Σ�

B. Let us define the
product encoding of functions (f1, . . . , f�), fi : S → Σ, to be a tuple oracle,∏

fi, assigning for every tuple (s1, . . . , s�) the value (f1(s1), . . . , f�(s�)). In the
case where f1 = . . . = f� = f we denote

∏
fi by f �.

When the provers get multi-sets, then we see them as multi-set oracles: A
gets a multi-set A = {x1, . . . , x�} and responds with A(A)which is a function
A → ΣA. B gets a multi-set B = {y1, . . . , y�} and responds with B(B) which is
a function B → ΣB. Let us define the � multi-set direct product encoding of a
function f : S → Σ to be a multi-set oracle, f �, assigning for every T ⊂ S of
cardinality � the restriction of f to T .

When the provers get sets, then see them as a set oracles: The definitions
are identical to multi-sets oracles besides that in this case the provers gets sets
rather than multi-sets.

For a function f : S → Σ, and T ⊂ S we denote by fT the restriction of f to
T . The definition of the support of f is important in our discussion:

Definition 2. For two vectors v,w in some alphabet Σ� we write v
ρ
≈ w to

denote Pri∈[�][vi = wi] ≥ 1 − ρ and v
ρ

�≈ w to denote Pri∈[�][vi �= wi] ≥ ρ.

For two function f, g : T → Σ we write: f
ρ
≈ g to denote Prt∈T [f(t) = g(t)] ≥

1 − ρ and f
ρ

�≈ g to denote Prt∈T [f(t) �= g(t)] ≥ ρ.
For a tuple oracle F and f : S → Σ the ρ−support denoted by suppF

ρ (f)

defined as follows: suppF
ρ (f) = {s ∈ S� |F (s)

ρ
≈ f �(s)}.

For a multi-set oracle F and f : S → Σ the ρ−support denoted by suppF
ρ (f)

defined as follows: suppF
ρ (f) = {A ⊂ S | |A| = � and F (A)

ρ
≈ f �(A)}.

Now we would like to introduce “miss match” games in these settings:

Definition 3. “Miss-Match” Games: Let G be a game, let �, m be integers
0 < m < �, then we define the miss-match, Gm,�, as follows:

1. The verifier picks m pairs (xi, yi) where each pair is selected independently
according to D. The verifier defines a multiset A′ = {x1, . . . xm} and B′ =
{y1, . . . , ym}. These are the match elements, each pair (xi, yi) is called a
match pair and A′, B′ are called the match questions.

2. The verifier picks � − m additional pairs (xj , yj), where xj , yj are chosen
independently at random from X, Y (respectively). The verifier defines mul-
tisets A′′ = {xm+1, . . . , x�} and B′′ = {ym+1, . . . , y�}. These are the confuse
elements.

3. V sends A = A′ ∪ A′′ to A, and B = B′ ∪ B′′ to B.
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4. A responds with A(A) : A → ΣA, and B responds with B(B) : B → ΣB

(A,B are multiset-oracles). The provers win G� if they win each of the match
elements, i.e. for every match pair (x, y) we have:

V (x, y,A(A)x,B(B)y) = 1.

Remark 1. Note that in our definition of miss-match games we assumed that
the provers are set-oracles and not tuple oracles, as done also in [IKW09]. This
simplifying assumption allows us to consider only direct products of the form f �

rather than
∏

fi.
One reason for this assumption is the fact that it is implicitly “enforced” if

the verifier randomly shuffles the coordinates. Indeed in such a case the provers’
answers must not depend on the order of the questions too much. A similar
situation was analyzed in [DG08].

If the verifier does not shuffle the coordinates, our results should generalize
appropriately to

∏
fi instead of f �, but we did not check the details.

2.1 Testing Direct Product

We now turn to describe the Direct Product Testing Lemma as in [DG08] and
in [IKW09]. Let F be a � set oracle that works over a set X . The goal is to test
whether F is close to a direct product encoding- i.e. whether there exists f such
that F is the direct product encoding of f . A two queries test that resemble the
“miss match” game is used. The test chooses a random subset A and a random
subset B as follows: A and B share m elements in common. As for the rest
elements of B the test picks � − m random elements from X . Then the test
checks for consistency among F (A) and F (B) i.e. for each common element x it
verifies that F (A)x = F (B)x.

The following definition is quoted from [DG08].

Definition 4. Let B a � set oracle that works over a set Y . Let B′ ⊂ Y of
cardinality m. We call B′ ε-alive if there exists b′ : B′ → ΣB such that:

Pr
B⊃B′

[B(B)B′ = b′] ≥ ε

Such an answer b′ is called a live answer for B′.

Now we are ready to state Theorem 3.14 from [IKW09]. This is a local to global
Lemma that claims that as long as there exist many live sets (the local property),
then this implies an existence of a direct product function with a large support
(the global property).

Theorem 5 (Direct Product Testing:). There exists �0 ∈ N and c > 0 such
that for every � > �0: Let B be a � set-oracle such that

Pr
B′⊂Y ||B′|=√

�
[B′ is ε/2-alive] ≥ ε/2,

where ε ≥ 1/
√

�. Then, there exists a function g : Y → ΣB such that B(B)
ρ
≈

g�(B) for at least Ω(ε6) of the B ∈
(
Y
�

)
, where ρ ≤ �−c.
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3 Negative Results

In this section we prove Theorem 1 showing that, for any constant degree game
G with many perfect strategies, A,B can win G� with constant probability and
still be very far from any direct product strategy. We extend Theorem 1 for
games of of non-constant degree in Theorem 6. Theorem 7 extends Theorem 1
to handle “Permuting Verifiers”.

For a game G we define a bipartite weighted graph, where L = X , R = Y and
wx,y = PrD[y|x]. The game is called d regular if the degree of every left node is
d, the degree of every right node is d |X | / |Y |, and wx,y = 1/d for every adjacent
x and y. d is called the degree of the game. Another property that we take into
consideration is the the rate between the cardinalities X and Y . We denote by
r the ratio |X | / |Y |, and without loss of generality we assume r > 1.

3.1 Proof of Theorem 1

In this section we prove Theorem 1. We define PA = {
∏

fi|fi : X → ΣA}, and
PB = {

∏
gi|gi : Y → ΣB}. For two functions F, G : S� → Σ� we define their

relaxed Hamming distance with parameter γ as: distγ(F, G) = Prs∈S� [F (s)
γ

�≈
G(s)]. Let us first state Theorem 1 formally:

Theorem 1 (Formal Statement). For every constants d > 1 and 0 < γ <
1/20 there exists a non-trivial constant degree d game G, and tuples-oracles
strategies A,B such that distγ(A, PA) ≥ 1−(1/ |Y |+2−ω(�)), and distγ(B, PB) ≥
1 − (1/ |Y | + 2−ω(�)). Yet, A,B win G� with probability at least 1/d.

The theorem holds for any constant degree d game G, for which there exists
a large list of t = |Y | pairs of perfect strategies (f1, g1), . . . , (ft, gt) that satisfy:
For i �= j : dist(fi, fj), and dist(gi, gj) are both greater than 10γ.

The requirement for the distance between the pairs prevents the case where
all the perfect strategies have a small relative distance. In such a case all of the
above functions pairs (fi, gi) could be clustered into a single function pair (f, g)
for which: A(x) ≈ f � and B(y) ≈ g�. Such a behavior can still be viewed as a
direct product structure for A,B.

Proof. The strategies of A,B are based on the following combinatorial claim:

Claim. Let G = (V, E) be a bipartite (c, d) regular graph (the left degree is c,
and the right degree is d), and assume wlog c ≤ d. Then there exists a subgraph
G′ = (V, E′) such that G′ is (1, d/c) regular.

Due to space limitations the proof is omitted and can found in the full version
of the paper.

Let us present the strategies A,B: As a first step A,B match for every y ∈ Y
a pair (fi, gi) from the list, so we associate the strategies list with the set Y and
we write (fy, gy). Then they choose a subgraph G′ as in claim 3.1.
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B decides according to value of thefirst coordinatey1- i.e. giveny = (y1, . . . ,y�),
B(y) = g�

y1
(y).

A strategy is similar, it is also based just on the value of the first coordinate
x1: Given x = (x1, . . . ,x�), A(x) = f �

N(x1)(x) where N(x1) is the vertex y such
that (x1, y) ∈ E′.

We now turn to prove the success probability of the proves, and the distance
between A,B and any direct product strategy.

Note that if y1 = N(x1), then A,B win the game, since they are playing
according to fy1 , gy1 , which is a perfect strategy.

What is the probability that indeed y1 = N(x1)? Note that we care only
about the values of the first coordinate. Once x1 is fixed, the probability that
y1 = N(x1) is exactly 1/d. Therefore, the winning probability is 1/d.

What is the distance between B and any product
∏

gi?
Let

∏
gi be a product strategy, we divide the proof into cases: The case where

for every y ∈ Y it holds that dist(gi, gy) > 5γ for at least 1/4 fraction of the gi,
and the case where there exists y ∈ Y such that dist(gi, gy) ≤ 5γ for at least
3/4 fraction of the gi. Note, that since dist(gy, gy′) > 10γ for y �= y′ ∈ Y , then
every function g agrees with at most a single function gy on more than 1 − 5γ
fraction of the domain, and in particular for every i there can be only a single y
with dist(gi, gy) ≤ 5γ.

Assume we are in the first case:

Pr
y

[B(y)≈ γ
∏

gi(y)]=Pr
y1

[ Pr
y2...,y�

[B(y)
γ
≈
∏

gi(y)]]=Pr
y1

[ Pr
y2...,y�

[g�
y1

(y)
γ
≈

∏
gi(y)]]

Now, we can use Chernoff inequality to deduce that Pry2...,y�
[g�

y1
(y)

γ
≈

∏
gi(y)] <

2−ω(�) (the expected number of coordinates on which there is an inequality is at
least 5γ/4), so we get that in the first case: dist(B,

∏
gi) > 1 − 2−ω(�).

As for the second case, where we assume that
∏

gi is close for some function
gy, then:

Pr
y

[B(y)
γ
≈

∏
gi(y)] = Pr[y1 = y] Pr

y2...,y�

[g�
y(y)

γ
≈

∏
gi(y)]

+ Pr[y1 �= y] Pr
y2...,y�

[g�
y1

(y)
γ
≈

∏
gi(y)]

≤ 1/|Y | + 2−ω(�)

We get that in this case distγ(B,
∏

gi) ≥ 1 − (1/ |Y | + 2ω(�)), and we are done.
The analysis for A is similar.

One may think that Theorem 1 is true just for constant degree game. However,
in Theorem 6 we extend Theorem 1 for a certain non-constant game:

Theorem 6. For every constant d > 1, 0 < γ < 1/8 there exists a non-
trivial non-constant degree d̃ game G̃, and tuple-oracles strategies A,B such that
distγ(A, PA) ≥ 1− ( d̃

d|Y | + 2−ω(�)), and distγ(B, PB) ≥ 1− ( d̃
d|Y | + 2−ω(�)). Yet,

A,B win G̃� with probability 1/d.
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The proof of Theorem 6 can be found in the full version of the paper.
Our next negative result is Theorem 7 that extends for “Permuting Verifiers”.

In this case we would like to view the provers as multi-sets oracles. [FK95] studied
this type of verifiers and called them “Clever Verifiers”. Let us first introduce
them:

Definition 5 (Permuting Verifiers:). The verifier selects � pairs of questions
(x1, y1), . . . , (x�, y�) Each is pair is drawn independently according to the distri-
bution of G. V sends A = {x1, . . . , x�} to A (note that A is a multi-set), and
B = {y1, . . . , y�} to B. A answers with A(A), and B with B(B). The verifier
accepts if for every i: V (xi, yi,A(A)xi ,B(B)yi) = 1.

We define DPA = {f �|f : X → ΣA}, and DPB = {g�|g : Y → ΣB}. Now let us
state Theorem 7 formally:

Theorem 7. For every constants d > 1 and 0 < γ < 1/8, there exists a non-
trivial constant degree d game G a constant c, and multiset-oracles strategies
A,B such that distγ(A, DPA) ≥ 1−O(�/ |Y |+2−ω(�)), and distγ(B, DPB) ≥ 1−
O(�/ |Y |+2−ω(�)) Yet, A,B win G� against “Permuting Verifier” with probability
at least c/d.

The proof of Theorem 7 can be found in the full version of the paper.
Now we would like to extend Theorem 7 to ”miss-match“ games. The result

for “miss-match” game is weaker: A,B can be unstructured and win the the
game only with probability Ω(m

d�) (and not 1/d as before). We address here that
if A,B win the game with probability � m/� then we can prove that such a
behavior is impossible, see section 4 for details.

Claim. For every constants d > 1 and 0 < γ < 1/8, there exists a constant
degree d game G, a constant c, and multiset-oracle strategies A,B such that
distγ(A, DPA) ≥ 1 − O(�/ |Y | + 2−ω(�)), and distγ(B, DPB) ≥ 1 − O(�/ |Y | +
2−ω(�)). Yet, A,B win Gm,� with probability at least cm

d� .

The proof of Claim 3.1 can be found in the full version of the paper.

4 Positive Results: “Miss-Match” Games

In this section we show that, unlike general games, “miss match” games have
the following property: If A,B win “miss match” games with non negligible
probability, then there exists a small list of pairs (f1, g1), (f2, g2), . . . such that
V al(G, fi, gi) ≈ 1 and: If A,B win then A(A) ≈ f �

i (A) and B(B) ≈ g�
i (B) for

some pair from the list, except with negligible probability.
We first prove Theorem 2. The theorem asserts the above only for B, namely:

if the provers win Gm,� with non negligible probability ε, then B plays according
to a direct product strategy.

It turns out that deducing a similar result for A is more subtle, and depends on
the smoothness of the game (see Definition 1). Assuming the game is sufficiently
smooth, we obtain in Theorem 3 the desired result claimed above.
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We also address the question of whether smoothness is essential for direct
product behavior. In subsection 4.3 we show that it is essential. In Theorem 4
we show a game that is not smooth such that Gm,� can be won with probability
1 and still A is far from being a direct product strategy.

4.1 Direct Product Structure for B
In this section we prove Theorem 2, let us state it formally:

Theorem 2 (Formal Statement). There exists �0 ∈ N and c > 0 such that
for every � > �0 the following holds. Let G be a projection game, and let m =

√
�,

ε0 = 2
√

m/� and δ =
√

ε0.
Assume A,B win Gm,� with probability ε >

√
ε0, then there exists a list of

t = O(1/(δ · ε)6) functions g1, . . . gt : Y → ΣA such that:

– For each i ∈ [t]: PrB[B(B)
ρ
≈ g�

i (B)] > Ω((δ · ε)6), where ρ = �−c.
– Pr[∃i s.t. B(B)

ρ
≈ g�

i (B)|A,B win ] ≥ 1 − δ

Before we proceed with the proof, let us make a few remarks:

– The theorem concludes that on many Bs, B(B)
ρ
≈ g�(B) rather than B(B) =

g�(B). This weaker conclusion is inherent as seen by the following example.
Take B = g� and then change each B(B) arbitrarily in fewer than �/m
of the coordinates. With high probability the verifier would not notice the
difference between B and g�, yet B is only close to g� in the above sense.

– We would like to address the relation between m and � and the value of ε in
Theorem 2. We have already proved Claim 3.1 that asserts that A,B can be
far away from direct product encoding and still win Gm,� with probability
Ω(m

d�). This enforces two constraints regarding our choice of parameters:
First, we need that the winning probability ε would be greater than m/�.
Indeed, we prove our theorem for values of ε that are bigger than 4

√
m/�.

Second, we must choose m � �, and in this work we focus on m =
√

�.
We leave the study of the entire range of m, � for future work (We mention
that this is an open question even in the Direct Product Testing settings see
[GS00], [DR06], [DG08] and [IKW09]).

– We work in the settings where � � |Y | and in particular � < 6
√
|Y |. This

enables us an easy transition between sets and multi-sets.

In order to prove Theorem 2, we first show if A,B win then there exists at least
one function g : Y → ΣB such that B(B) ≈ g�(B) on a non negligible part of
the domain.

Lemma 1. There exist �0 ∈ N, and c > 0 such that for every � > �0 the following
holds. Let G be a projection game, and let ε0 = 2

√
m
� .

Assume A,B win Gm,� where m =
√

�, with probability ε > ε0, then there
exists a function g : Y → ΣB such that for at least Ω(ε6) of the � multi-sets B,
we have B(B)

ρ
≈ g�(B), where ρ = �−c.
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The proof of Theorem 2 and Lemma 1 can be found in the full version of the
paper.

4.2 Direct Product Structure for A
In Section 4.1 we show that for every projection game G, whenever A,B win Gm,�

with non-negligible probability, then B’s strategy has a direct product structure.
However, we have not involved A strategy at all. In this section we deduce a
similar behavior for A for smooth games. Let us state Theorem 3 formally:

Theorem 3 (Formal Statement). There exist �0 ∈ N, 0 < α < 1 and c > 0
such that for every � > �0 the following holds. Let G be an α-smooth projection
game, and let ρ = �−c, ε0 = 2

√
m
� and δ =

√
ε0.

Assume A,B win Gm,�, with m =
√

�, with probability ε >
√

ε0, then there
exists a list of s = O(1/(δε)6) pairs of functions (f1, g1), . . . (fs, gs) such that:

– fi : X → ΣA, gi : Y → ΣB and: val(G, fi, gi) > 1 − 10ρ/α.
– Let (A, B) be a random pair of questions. Define the following events:

• B1 := B /∈ ∪i∈[s]suppρ(gi)
• B2 := ∃i ∈ [s] s.t. B ∈ suppρ(gi) while A /∈ supp6ρ/α(fi)).
• B3 := ∃i ∈ [s] s.t. A ∈ supp6ρ/α(fi)) while B /∈ supp40ρ/α(gi).

Then:
Pr[A,B win |B1 or B2 or B3] < δ + O(exp−Ω(ρ2m)).

In order to prove Theorem 3 we use the following three lemmas:

Lemma 2. There exist �0 ∈ N, 0 < α < 1 and c > 0 such that for every � > �0
the following holds. Let G be an α-smooth projection game, g : Y → ΣB and
ρ = �−c. Let f : X → ΣA be a function that maximizes val(G, f, g), then: If
B ∈ suppρ(g) while A /∈ supp6ρ/α(f). Then A,B win with probability at most
3 exp−Ω(ρ2m).

Lemma 3. There exist �0 ∈ N, 0 < α < 1 and c > 0 such that for every � > �0
the following holds. Let G be an α-smooth projection game, f : X → ΣA and
ρ = �−c. Let g : Y → ΣB be a function such that val(G, f, g) > 1− 10ρ/α, then:
If A ∈ supp6ρ/α(f) while B /∈ supp40ρ/α(g). Then A,B win with probability at
most 4 exp−Ω(ρ2m).

Lemma 4. There exist �0 ∈ N, 0 < α < 1 and c > 0 such that for every � > �0
the following holds. Let G be an α-smooth projection game, g : Y → ΣB and
ρ = �−c. Let f : X → ΣA be a function that maximizes val(G, f, g), then: If
val(G, f, g) < 1−10ρ/α, and assuming B ∈ suppρ(g) and A ∈ supp6ρ/α(f) then
A,B win with probability at most 3 exp−Ω(ρ2m).

The proofs of Theorem 3, Lemma 2, Lemma 3 and Lemma 4 can be found in
the full version of the paper.
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4.3 The Smoothness Is Essential

In this section we show that the smoothness property is crucial. We show the
existence of a game G that is not smooth, such that Gm,� has perfect strategies
A,B and A is far from being a direct product strategy. Let us state Theorem 4
formally:

Theorem 4 (Formal Statement). There exists a projection game G, such
that for every � and 0 < m < �: There exist multiset oracles A,B such that
for every f : X → ΣA: dist1/2(A, f �) > 1 − 2−ω(�) . Yet, A,B win Gm,� with
probability 1.

The proof of Theorem 4 can be found in the full version of the paper.
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Abstract. We consider the problem of distribution-free testing of the
class of monotone monomials and the class of monomials over n vari-
ables. While there are very efficient algorithms for testing a variety
of functions classes when the underlying distribution is uniform, de-
signing distribution-free algorithms (which must work under any arbi-
trary and unknown distribution), tends to be a more challenging task.
When the underlying distribution is uniform, Parnas et al. (SIAM Jour-
nal on Discrete Math, 2002 ) give an algorithm for testing (monotone)
monomials whose query complexity does not depends on n, and whose
dependence on the distance parameter is (inverse) linear. In contrast,
Glasner and Servedio (in Proceedings of RANDOM, 2007 ) prove that ev-
ery distribution-free testing algorithm for monotone monomials as well
as for general monomials must have query complexity Ω̃(n1/5) (for a
constant distance parameter ε).

In this paper we present distribution-free testing algorithms for these
classes where the query complexity of the algorithms is Õ(n1/2/ε). We
note that as opposed to previous results for distribution-free testing, our
algorithms do not build on the algorithms that work under the uniform
distribution. Rather, we define and exploit certain structural properties
of monomials (and functions that differ from them in a non-negligible
manner), which were not used in previous work on property testing.

1 Introduction

Testers (for properties of functions) are algorithms that decide whether a given
function has a prespecified property or is “far” from having the property with
respect to some fixed distance measure. In most works on property testing,
distance is measured with respect to the uniform distribution over the function
domain. While in many contexts this distance is appropriate, as it corresponds
to assigning equal “importance” (weight) to each point in the domain, there are
scenarios in which we may want to deal with an underlying weight distribution
that is not uniform, and furthermore, is not known to the algorithm. We refer
to the latter model as distribution-free property testing, while testing under the
� Research supported by a grant from the Israel Science Foundation (grant

No. 246/08).
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uniform distribution is considered to be the standard model. In both models the
algorithm is given query access to the tested function and in the distribution-free
model the algorithm is also given access to examples distributed according to
the unknown underlying distribution.

Indeed, the notion of distribution-free testing is inspired by the distribution-
free (Probably Approximately Correct (PAC)) learning model [20] and under-
standing the relation between testing and learning is one of the motivations for
property testing. As observed in [9], the complexity of testing a function class F
(that is, testing the property of membership in F), is not higher than (proper)
learning the class F (under the same conditions, e.g., with respect to the uni-
form distribution or distribution-free). In view of this, a natural question is for
what classes of functions is the complexity of testing strictly lower than that of
learning. Here, when we refer to the complexity of the algorithm, our main focus
is on its query complexity (where in this complexity we count all queries: both
on arbitrary points selected by the algorithm, and on points sampled according
to the underlying distribution). Note that, as opposed to learning, if we have a
testing algorithm for (membership in) a class of functions F , this does not imply
that we have a testing algorithm (with similar complexity) for all subclasses F ′

of F .
There is quite a large variety of function classes for which the complexity of

testing is strictly lower than that of learning when the underlying distribution
is uniform (e.g., linear functions [1], low-degree polynomials [18], singletons,
monomials [17] and small monotone DNF [17], monotone functions (e.g., [5,3]),
small juntas [6], small decision lists, decision trees and (general) DNF [2] linear
threshold functions [15], and more). In contrast, there are relatively few such
positive results for distribution-free testing [10,11,13], and, in general, designing
distribution-free testing algorithms tends to be more challenging.

One of the main positive results for distribution-free testing [13] is that every
function class that has a standard tester and can be efficiently self-corrected [1],
has a distribution-free tester whose complexity is similar to that of the stan-
dard tester. In particular this implies that there are efficient distribution-free
testers for linear functions and more generally, for low-degree polynomials [13].
However, there are function classes of interest (in particular from the point of
view of learning theory), which have efficient standard testers, but for which
self-correctors do not exist (or are not known to exist). Several such classes (of
Boolean functions over {0, 1}n) were studied by Glasner and Servedio [7]. Specif-
ically, they consider monotone monomials, general monomials, decisions lists,
and linear threshold functions. They prove that for these classes, in contrast to
standard testing, where the query complexity does not depend on the number of
variables n, every distribution-free testing algorithm must make Ω((n/ log n)1/5)
queries (for a constant distance parameter ε). While these negative results estab-
lish that a strong dependence on n is unavoidable for these functions classes in
the distribution-free case, it still leaves open the question of whether some sub-
linear dependence on n can be obtained (where distribution-free learning (with
queries) requires at least linear complexity [19]).
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Our Results. In this work we prove that both for monotone monomials and for
general monomials, a sublinear dependence on n can be obtained for distribution-
free testing. Specifically, we describe distribution-free testing algorithms for these
families whose query complexity is O(

√
n log n/ε). Thus we advance our knowl-

edge concerning efficient distribution-free testing for two basic function classes.
Furthermore, while previous distribution-free testing algorithms are based on,
and are similar to the corresponding standard testing algorithms, this is not
the case for our algorithms. Rather, we define and exploit certain structural
properties of monomials (and functions that differ from them in a non-negligible
manner), which were not used in previous work on property testing in the stan-
dard model. In what follows we give some intuition concerning the difficulty
encountered when trying to extend standard testing of (monotone) monomi-
als to distribution-free testing and then shortly discuss the ideas behind our
algorithms.

Standard vs. Distribution-Free Testing of Monomials. The first sim-
ple observation concerning testing monomials under the uniform distribution is
the following. If f is a k-monomial (that is, a conjunction of k literals), then
Pr[f(x) = 1] = 2−k (where the probability is over a uniformly selected x). This
implies that we can effectively consider only relatively small monomials, that is,
k-monomials for which k = log(O(1/ε)), and it allows the testing algorithm to
have an exponential dependence on k (since this translates to a linear depen-
dence on 1/ε). This is not in general the case when the underlying distribution is
arbitrary. In particular, the functions considered in the lower bound proof of [7]
(some of which are monomials, and some of which are far from being monomi-
als), depend on Ω(n) variables. Thus, for these functions, considering uniformly
selected points, essentially gives no information (since the function assigns value
0 to all but a tiny fraction of the points). Furthermore, the support of the dis-
tribution D defined in [7] is such that the following holds. If one takes a sample
(distributed according to D) of size smaller than the square-root of the support
size of D, (where there are roughly n2/5 points in the support), and performs
queries on the sampled points, then it is not possible to distinguish between the
monomials and the functions that are far from being monomials (with respect to
D). Thus, by sampling according to D, we essentially get no information unless
the size of the sample is above a (fairly high) threshold. On the other hand, if we
perform queries outside the support of D, then intuitively (and this is formalized
in [7]), violations (with respect to being a monomial) are hard to find.

Before continuing with a high level description of our algorithms, we note
that if we restrict the task of testing to distribution-free testing of (monotone)
k-monomials, where k is fixed, then there is an algorithm whose query com-
plexity grows exponentially with k. This follows by combining two results: (1)
The aforementioned result of Halevy and Kushilevitz [13] concerning the use
of “self-correction” in transforming standard testing algorithm to distribution-
free testing algorithms; (2) The result of Parnas et al. [17] for testing (mono-
tone) monomials, which has a self-corrector (with complexity 2k) as a building
block. Hence, for small k (i.e., k that is strictly smaller than log n) we have an
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algorithm with complexity that is sublinear in n, and the question is what can
be done when it is not assumed that k is small.

Our Algorithms: Ideas and Techniques. In what follows we discuss the
algorithm for testing monotone monomials over {0, 1}n. The algorithm for test-
ing general monomials has the same high-level structure, and can be viewed as
a generalization of the algorithm for testing monotone monomials.

We start by introducing the notion of a violation hypergraph for a function
f . The vertex-set of this hypergraph is {0, 1}n, and its edge-set corresponds to
subsets that contain evidence that f is not a monotone monomial. Each (hy-
per)edge includes a single point y0 such that f(y0) = 0, and for each additional
point yj in the edge, f(yj) = 1. For each such subset there is no monotone
monomial that is consistent with f on the subset. For example, we may have
y0 = 010, y1 = 011 and y2 = 110 (since y0 “forces” either x1 or x3 to be in the
monomial whereas y1 and y2 “disallow” these possibilities). Thus, the edge-set
of the hypergraph may be exponentially large in n, and edges may have large
size (e.g., Ω(n)). Clearly, if f is a monotone monomial, then the hypergraph has
no edges. On the other hand, we prove that if f is far from being a monotone
monomial (with respect to the underlying distribution, D), then every vertex
cover of the (edges of the) hypergraph must have relatively large weight (with
respect to D).

Assuming from this point on that f is far from being a monotone monomial
(and hence its violation hypergraph has a relatively large weight minimum vertex
cover), our algorithm tries to find a small edge in the hypergraph. To this end we
do the following. First we take a random sample T of Θ(

√
n/ε) points (generated

according to D), and consider all points in the sample that are labeled 0 by
f . Observe that if f were a monotone monomial, then for each such sample
point y ∈ f−1(0), there must exist at least one index, j, such that xj is a
variable in the monomial and yj = 0. But then f(1j−101n−j) must be 0. In
view of this, for each y ∈ T ∩ f−1(0), we search for such an index j (satisfying
yj = 0 and f(1j−101n−j) = 0). The search is initiated with the candidate set
{j : yj = 0}, and the set is cut in half in each iteration (by performing two
queries). Thus, if f were a monotone monomial, then such a search must always
succeed. On the other hand, if the search fails for any y ∈ f−1(0), then we
obtain evidence that f is not a monotone monomial, and the algorithm may
reject. This evidence is an edge (of size 3) in the violation hypergraph (e.g.,
(0t1n−t, 0t/21n−t/2, 1t/20t/21n−t) where the first point is in f−1(0) and the latter
two are in f−1(1)).

Assuming no search fails, the algorithm has a set J of “representative indices”.
These indices are such that if f were a monotone monomial, then for each j ∈ J ,
the variable xj would be among the variables in f . This means that for every
w ∈ f−1(1) and j ∈ J , it would hold that wj = 1. In the second stage of
the algorithm we take an additional sample of Θ(

√
n/ε) points and consider all

sample points in f−1(1). If for any such sample point w we have that wj = 0 for
some j ∈ J , then the algorithm has evidence that f is not a monotone monomial
(an edge of size 2 in the violation hypergraph) and it rejects. The crux of the
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proof is showing that if the probability that the algorithm does not find evidence
(in both stages) is small, then it is possible to construct a small-weight vertex
cover in the violation hypergraph (implying that f is close to being a monotone
monomial).

Other Related Work. In addition to the results mentioned previously,
Halevy and Kushilevitz [10,13] study distribution-free testing of monotonicity
for functions f : Σn → R (where Σ and R are fully ordered). Building on the
(one-dimensional) standard testing algorithm in [5] they give a distribution-free
testing algorithm whose query complexity is O((2 log |Σ|)n/ε). Thus, the depen-
dence on the dimension, n is exponential, in contrast to some of the standard
testing algorithms for monotonicity [8,3] where the dependence on n is linear.1

In follow-up work [12,13], Halevy and Kushilevitz showed that the exponential
dependence on n is unavoidable for distribution-free testing even in the case of
Boolean functions over the Boolean hypercube (that is, |Σ| = |R| = 2).

Halevy and Kushilevitz [11] also study distribution-free testing of graph prop-
erties in sparse graphs, and give an algorithm for distribution-free testing of
connectivity, with similar complexity to the standard testing algorithm for this
property.

We note that for some properties that have efficient standard testers, the
algorithms can be extended to work under more general families of distributions
such as product distributions (e.g., [6,2]). In recent work, Kopparty and Saraf [14]
consider tolerant testing [16] of linearity under non-uniform distributions (that
have certain properties).

Further Research. Perhaps the first question that comes to mind is what is
the exact complexity of distribution-free testing of (monotone) monomials given
the gap between our upper bound and the lower bound of [7]. It will also be
interesting to design sublinear algorithms for testing the other function classes
studied in [7]. Another direction is to study testing of monomials and other basic
function classes under known distributions (other than the uniform distribution).

Organization. We start by introducing some notation and definitions in
Section 2. In Section 3 we describe and analyze the distribution-free testing
algorithm for monotone monomials, and in Section 4 we explain how to extend
it to general monomials. All missing proofs can be found in the full version of
this paper [4].

2 Preliminaries

For an integer k we let [k] def= {1, . . . , k}. In all that follows we consider Boolean
functions f whose domain is {0, 1}n.

1 To be precise, the complexity of the algorithm in [3] is O(n log |Σ| log |R|/ε), where
|R| is the effective size of the range of the function, that is, the number of distinct
values of the function.
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Definition 1 (Monomials). A function f : {0, 1}n → {0, 1} is a monomial if
it is a conjunction (“and”) of a subset of the literals {x1, x̄1, . . . , xn, x̄n}. It is a
monotone monomial if it is a conjunction only of variables (and no negations of
variables). We denote the class of monomials by M and the class of monotone
monomials by Mm.

We note that we allow the special case that the subset of literals (variables) is
empty, in which case f is the all-1 function. the full version of this paper [4] we
discuss how to augment our tests so that they work for the case that the subset
of literals (variables) must be non-empty.

Definition 2 (Distance). For two functions f, g : {0, 1}n → {0, 1} and a dis-
tribution D over {0, 1}n, we let distD(f, g) def= Prx∼D[f(x) �= g(x)] denote the
distance between f and g with respect to D. For a class of Boolean functions
F over {0, 1}n and a function f : {0, 1}n → {0, 1}, we let distD(f,F) def=
ming∈F{distD(f, g)} denote the distance between f and the class of functions
F .

Definition 3 (Distribution-Free Testing). Let F be a class of Boolean func-
tions over {0, 1}n. A distribution-free testing algorithm for (membership in) F is
given access to examples that are distributed according to an unknown distribu-
tion D and is given query access to f . The algorithm is also given a distance
parameter 0 < ε < 1, and is required to behave as follows.

– If f ∈ F , then the algorithm should output accept with probability at least
2/3.

– If distD(f,F) > ε, then the algorithm should output reject with probability
at least 2/3.

If the algorithm accepts every f ∈ F with probability 1, then it is a one-sided
error algorithm.

In all that follows f always denotes the (unknown) tested function, and D de-
notes the (unknown) underlying distribution with respect to which the testing
algorithm should work. For a point y ∈ {0, 1}n let D(y) denote the probability
assigned to y by D, and for a subset S ⊆ {0, 1}n let D(S) =

∑
y∈S D(y) denote

the weight that D assigns to the subset S.
We assume without loss of generality that ε ≥ 2−n, or else, by performing

a number of queries that is linear in 1/ε (that is, querying f on all domain
elements) it is possible to determine whether f is a monotone monomial.

3 Distribution-Free Testing of Monotone Monomials

We start by introducing the notion of a violation hypergraph of a function and
establishing its relation to (the distance to) monotone monomials.
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3.1 The Violation Hypergraph

Before defining the violation hypergraph, we introduce some notation. For each
point y ∈ {0, 1}n let Z(y) def= {i : yi = 0}. We use 1n to denote the all-1 vector
(point).

Let g be a Boolean function over {0, 1}n and let {y0, y1, . . . , yt} ⊆ {0, 1}n

be a subset of points such that g(y0) = 0 and g(yj) = 1 for all 1 ≤ j ≤ t. A
simple but useful observation is that if g is a monotone monomial, then Z(y0)
must include at least one index i such that i /∈

⋃t
j=1 Z(yj). This observation

motivates the next definition.

Definition 4 (Violation Hypergraph). Let Hf = (V (Hf )), E(Hf )) be the
hypergraph whose vertex set, V (Hf ) is {0, 1}n, and whose edge set, E(Hf ), con-
tains all subsets {y0, y1, . . . , yt} ⊆ {0, 1}n of the following form:

– f(y0) = 0 and f(yj) = 1 for all 1 ≤ j ≤ t.
– Z(y0) ⊆

⋃t
j=1 Z(yj).

For example, if f(0011) = 0, f(0110) = 1 and f(1011) = 1, then Z(0011) =
{1, 2}, Z(0110) = {1, 4}, and Z(1011) = {2}, and so {0011, 0110, 1011} is an
edge in Hf . Note that if f(1n) = 0, then E(Hf ) contains the edge {y0 = 1n}
(because Z(y0) = ∅ and

⋃t
j=1 Z(yj) is trivially empty as well).

By the observation preceding Definition 4, if f is a monotone monomial, then
E(Hf ) = ∅. We next claim that the reverse implication holds as well, so that we
obtain a characterization of monotone monomials that is based on Hf .

Lemma 1. If E(Hf ) = ∅, then f is a monotone monomial.

Lemma 1 is proved by defining a monotone monomial h, which is the conjunction
of all variables xi such that yi = 1 for all y ∈ f−1(1), and showing that it agrees
with f on the whole domain.

Recall that a vertex cover of a hypergraph is a subset of the vertices that
intersects every edge in the hypergraph. We next establish that if f is far from
being a monotone monomial (with respect to D), then every vertex cover of Hf

must have large weight (with respect to D). This lemma strengthens Lemma 1 in
the following sense. Lemma 1 is equivalent to saying that if f is not a monotone
monomial, then E(Hf ) �= ∅. In particular this implies that if f is not a monotone
monomial, then every vertex cover of Hf is non-empty. Lemma 2 can be viewed as
quantifying this statement (and taking into account the underlying distribution
D). Lemma 2 follows by extending the proof of Lemma 1.

Lemma 2. If distD(f,Mm) > ε, then for every vertex cover C of Hf we have
D(C) > ε.

By Lemmas 1 and 2, if f is a monotone monomial, then E(Hf ) = ∅, so that
trivially every minimum vertex cover of Hf is empty, while if distD(f,Mm) > ε,
then every vertex cover of Hf has weight greater than ε with respect to D. We
would like to show that this implies that if distD(f,Mm) > ε, then we can
actually find (with high probability) an edge in Hf , which provides evidence to
the fact that f is not a monotone monomial.
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3.2 The Testing Algorithm

We first introduce a few more notation. Let ēi = 1i−101n−i. For any subset
Z ⊆ [n], let y(Z) be the point in {0, 1}n such that for every i ∈ Z its ith

coordinate is 1, and for every i /∈ Z its ith coordinate is 0. For any subset
S ⊆ {0, 1}n, let Sf,0 = {y ∈ S : f(y) = 0} and Sf,1 = {y ∈ S : f(y) = 1}.

The first observation on which our algorithm is based is that for every point
y ∈ f−1(0), there must be at least one index i ∈ Z(y) for which f(ēi) = 0,
or else we have evidence that f is not a monotone monomial. In fact, we don’t
need to verify that f(ēi) �= 0 for every i ∈ Z(y) in order to obtain evidence
that f is not a monotone monomial. Rather, if we search for such an index (in
a manner described momentarily), and this search fails, then we already have
evidence that f is not a monotone monomial.

The search procedure (which performs a binary search), receives as input a
point y ∈ f−1(0) and searches for an index j ∈ Z(y) such that f(ēj) = 0. This is
done by repeatedly partitioning a set of indices, Z, starting with Z = Z(y), into
two parts Z1 and Z2 of (almost) equal size, and continuing the search with a part
Zi, i ∈ {1, 2} for which f(y(Zi)) = 0. (If both parts satisfy the condition, then
we continue with Z1.) Note that if both f(y(Z1)) = 1 and f(y(Z2)) = 1, then we
have evidence that f is not a monotone monomial because f(y(Z1∪Z2)) = 0 (so
that {y(Z1∪Z2), y(Z1), y(Z2)} is an edge in Hf ). The search also fails (from the
start) if Z(y) = ∅ (that is, y = 1n). For the precise pseudo-code of the procedure,
see Fig. 1.

Algorithm 1: Binary Search (Input: y ∈ {0, 1}n)

1. Z ← Z(y).
2. if |Z| = 0, then output fail and halt.
3. While (|Z| ≥ 2) do

(a) Let (Z1, Z2) be a fixed partition of Z where ||Z1| − |Z2|| ≤ 1.
Specifically, Z1 is the set of the first �|Z|/2� indices in Z.
– If f(y(Z1)) = 0, then Z ← Z1;
– else if f(y(Z2)) = 0, then Z ← Z2;
– else output fail and halt.

4. Output the single index that remains in Z.

Fig. 1. The binary search procedure for monotone monomials

The testing algorithm starts by obtaining a sample of Θ(
√

n/ε) points, where
each point is generated independently according to D. (Since the points are
generated independently, repetitions may occur.) For each point in the sample
that belongs to f−1(0), the algorithm calls the binary search procedure. If any
search fails, then the algorithm rejects f (recall that in such a case the algorithm
has evidence that f is not a monotone monomial). Otherwise, the algorithm has
a collection of indices J such that f(ēj) = 0 for every j ∈ J . The algorithm
then takes an additional sample, also of size Θ(

√
n/ε), and checks whether there
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exists a point y in the sample such that f(y) = 1 and Z(y) contains some j ∈ J .
In such a case the algorithm has evidence that f is not a monotone monomial
(specifically, {ēj , y} is an edge in Hf ), and it rejects. For the precise pseudo-code
of the algorithm, see Fig. 2.

We shall use Lemma 2 to show that if distD(f,Mm) is relatively large, then
either the first sample will contain a point on which the binary search procedure
fails (with high probability over the choice of the first sample), or the second
sample will contain a point y such that f(y) = 1 and Z(y) ∩ J �= ∅ (with high
probability over the choice of both samples).

Algorithm 2: Monotone Monomials Test

1. Take a sample T of Θ(
√

n/ε) points, generated independently according to D.
2. For each point y ∈ Tf,0 run the binary search procedure (Algorithm 1) on y.
3. If the binary search fails for any of the points, then output reject and halt.

Otherwise, for each y ∈ Tf,0 let j(y) be the index returned for y, and let
J(Tf,0) =

⋃
y∈Tf,0

j(y).
4. Take a sample T ′ of size Θ(

√
n/ε) (generated independently according to D).

5. If there is a point y ∈ T ′
f,1 such that Z(y) ∩ J(Tf,0) 
= ∅, then output reject,

otherwise output accept.

Fig. 2. The distribution-free testing algorithm for monotone monomials

3.3 The Analysis of the Testing Algorithm for Monotone Monomials

The next definition will serve us in the analysis of the algorithm.

Definition 5 (Empty points and representative indices). For a point y ∈
f−1(0), we say that y is empty (with respect to f) if the binary search procedure
(Algorithm 1) fails on y. We denote the set of empty points (with respect to f)
by Y∅(f). If y is not empty, then we let j(y) ∈ Z(y) denote the index that the
binary search procedure returns. We refer to this index as the representative index
for y. If y ∈ Y∅(f), then j(y) is defined to be 0.

Note that since the binary search procedure is deterministic, the index j(y) is
uniquely defined for each y /∈ Y∅(f).

As in Algorithm 2, for a sample T and Tf,0 = T ∩ f−1(0), we let J(Tf,0) =
{j(y) : y ∈ Tf,0 \ Y∅(f)} denote the set of representative indices for the sample.
For any subset J ⊆ [n], let Yf,1(J) denote the set of all points y ∈ f−1(1)
for which Z(y)

⋂
J �= ∅. In particular, if we set J = J(Tf,0), then each point

y ∈ Yf,1(J), together with any index j in its intersection with J , provide evidence
that f is not a monotone monomial (i.e., {ēj , y} ∈ E(Hf )}). We next state our
main lemma.
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Lemma 3. Suppose that distD(f,Mm) > ε and consider a sample T of c1
√

n/ε
points generated independently according to D. For a sufficiently large constant
c1, with probability at least 5/6 over the choice of T , either Tf,0 contains an
empty point (with respect to f) or D(Yf,1(J(Tf,0))) ≥ ε

4
√

n
.

Lemma 3 is established by proving the contrapositive statement. Namely, that
if the probability (over the choice of T ) that Tf,0 does not contain an empty
point (with respect to f) and D(Yf,1(J(Tf,0))) < ε

4
√

n
is at least 1/6, then

distD(f,Mm) ≤ ε. This is done by applying a probabilistic argument to con-
struct a vertex cover C of Hf such that D(C) < ε (assuming the counter-
assumption holds).

Theorem 4. Algorithm 2 is a distribution-free 1-sided-error testing algorithm
for (membership in) Mm. Its query complexity is O(

√
n log n/ε).

Proof. Consider first the case that f is a monotone monomial. Observe that the
algorithm rejects only if it finds evidence that f is not a monotone monomial.
This evidence is either in the form of two (disjoint) subsets of indices, Z1 and
Z2 such that f(y(Z1)) = f(y(Z2)) = 1 while f(y(Z1 ∪ Z2))) = 0 (found by
the binary search procedure), or it is of the form of an index j and a point
y ∈ f−1(1), such that f(ēj) = 0 and j ∈ Z(y). Therefore, the algorithm never
rejects a monotone monomial.

Consider next the case that distD(f,Mm) > ε. By Lemma 3, for a sufficiently
large constant c1 in the Θ(·) notation for T (the first sample), with probability
at least 5/6 over the choice of T , either there is an empty point in Tf,0 ⊆ T ,
or D(Yf,1(J(Tf,0))) ≥ ε

4
√

n
. If there is an empty point in Tf,0, then the binary

search will fail on that point and the algorithm will reject. On the other hand,
if D(Yf,1(J(Tf,0))) ≥ ε

4
√

n
, then, since the size of the second sample, T ′, is

c′1
√

n/ε, the probability that no point y ∈ Yf,1(J(Tf,0)) is selected in T ′ is at
most (1 − ε

4
√

n
)c′1

√
n/ε, which is upper bounded by 1/6 for c′1 ≥ 8. But if such

a point is selected, then the algorithm rejects.2 Therefore, the probability that
the algorithm rejects a function f for which distD(f,Mm) > ε is at least 2/3.

Finally, the number of points sampled is O(
√

n/ε) since the algorithm obtains
two samples of this size. Since for each point in the first sample that belongs
to f−1(0) the algorithm performs a binary search, the query complexity of the
algorithm is O(

√
n log n/ε).

2 We note that the analysis doesn’t explicitly address the case that Tf,0 = ∅, where
the algorithm accepts (for every T ′) simply because J(Tf,0) is empty. What the
analysis implies (implicitly) is that the probability that such an event occurs when
distD(f,Mm) > ε is at most a small constant. It is possible to argue this directly
(since if distD(f,Mm) > ε, then in particular, f is ε-far with respect to D from the
all-1 function, so that the probability that no point in f−1(0) is selected in the first
sample is very small).
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4 Distribution-Free Testing of (General) Monomials

The high-level structure of the algorithm for testing general monomials is similar
to the algorithm for testing monotone monomials, but several modifications have
to be made (and hence the algorithm and the notions it is based on are seemingly
more complex). In this section we explain what the modifications are.

Recall that for a point y ∈ {0, 1}n we let Z(y) = {i : yi = 0}. Analogously,
we let O(y) = {i : yi = 1}. For a non-empty set of points Y ⊆ {0, 1}n, let
Z(Y ) =

⋂
y∈Y Z(y) and O(Y ) =

⋂
y∈Y O(y). We shall use the convention that

Z(∅) = O(∅) = [n].

4.1 The Violation Hypergraph (for General Monomials)

A basic observation concerning (general) monomials is that if g is a monomial,
then for every subset {y0, y1, . . . , yt} such that g(y0) = 0 and g(yj) = 1 for
each 1 ≤ j ≤ t, the following holds: There must be at least one index i ∈ [n]
such that either i ∈ Z({y1, . . . , yt}) and y0

i = 1 or i ∈ O({y1, . . . , yt}) and
y0

i = 0. This implies that if we have a subset {y0, y1, . . . , yt} such that g(y0) = 0
and g(yj) = 1 for each 1 ≤ j ≤ t, and such that Z({y1, . . . , yt}) ⊆ Z(y0) and
O({y1, . . . , yt}) ⊆ O(y0), then we have evidence that g is not a monomial. This
motivates the next (modified) definition of a violation hypergraph.

Definition 6 (Violation hypergraph (w.r.t. general monomials)). Let
Hf = (V (Hf )), E(Hf )) be the hypergraph whose vertex set, V (Hf ) is {0, 1}n,
and whose edge set, E(Hf ), contains all subsets {y0, y1, . . . , yt} ⊆ {0, 1}n of the
following form:

– f(y0) = 0 and f(yj) = 1 for all 1 ≤ j ≤ t.
– Z({y1, ..., yt}) ⊆ Z(y0) and O({y1, ..., yt}) ⊆ O(y0).

Observe that the second item in Definition 4 (of the violation hypergraph for
monotone monomials), which requires that Z(y0) ⊆

⋃t
j=1 Z(yj), is equivalent

to O({y1, ..., yt}) ⊆ O(y0). Therefore, the difference between Definition 4 and
Definition 6 is in the additional requirement that Z({y1, ..., yt}) ⊆ Z(y0).

Similarly to Lemma 1 here we have the next lemma (whose proof is very
similar to the proof of Lemma 1).

Lemma 5. If E(Hf ) = ∅ and f−1(1) �= ∅, then f is a monomial.

Note that slightly differently from Lemma 1, in Lemma 5 we explicitly added
the condition that f−1(1) �= ∅. The reason is that while in the case of monotone
monomials, the fact that E(Hf ) = ∅ implies that f−1(1) �= ∅ (because if f(1n) =
0, then E(Hf ) is not empty since it contains 1n), in the case of general monomials
this implication does not hold.

The next lemma is analogous to Lemma 2.

Lemma 6. If distD(f,M) > ε and f−1(1) �= ∅, then for every vertex cover C
of Hf we have D(C) > ε.
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4.2 The Algorithm for Testing General Monomials

For a vector y ∈ {0, 1}n, and for an index i ∈ [n], let y¬i be the same as y except
that the ith coordinate in y is flipped. That is, y¬i

� = y� for all � �= i and y¬i
i = ȳi.

For a subset I ⊆ [n] let y¬I be the vector y with each coordinate i ∈ I flipped.
That is, y¬I

� = y� for all � /∈ I and y¬i
� = ȳ� for all � ∈ I. Let Δ(y, w) ⊆ [n] be the

subset of indices i such that yi �= wi, and note that y = w¬Δ for Δ = Δ(y, w).

Algorithm 3: Binary Search for General Monomials (Input: y ∈ f−1(1),
w ∈ f−1(0))

1. Δ ← Δ(y, w);
2. While (|Δ| ≥ 2) do

(a) Let (Δ1, Δ2) be a fixed partition of Δ where ||Δ1| − |Δ2|| ≤ 1.
Specifically, Δ1 is the set of the first �|Δ|/2� indices in Δ.

(b) If f(w¬Δ1) = 0, then Δ ← Δ1;
(c) else if f(w¬Δ2) = 0, then Δ ← Δ2;
(d) else output fail and halt.

3. Output the single index j ∈ Δ;

Fig. 3. The binary search procedure for general monomials

We start by describing the binary search procedure (for general monomials).
Its pseudo-code is given in Algorithm 3 (see Fig. 3). The procedure receives as
input two points w, y ∈ {0, 1}n such that f(w) = 1 and f(y) = 0 and outputs an
index j ∈ [n] such that yj �= wj and such that f(w¬j) = 0. If f is a monomial,
then at least one such index must exist. Note that if w = 1n, then the output of
the search is as specified by the binary search procedure for monotone monomials
(Algorithm 1). In fact, Algorithm 1 itself (and not only its output specification)
is essentially the same as Algorithm 3 for the special case of w = 1n. (Since f(1n)
must equal 1 if f is a monotone monomial, we can think of the binary search
procedure for monotone monomials as implicitly working under this assumption.)

The search is performed by repeatedly partitioning a set of indices Δ, starting
with Δ = Δ(y, w), into two parts Δ1 and Δ2 of (almost) equal size, and querying
f on the two points, w¬Δ1 and w¬Δ2 . If f returns 1 for both, then the search fails.
Otherwise, the search continues with Δi for which f(w¬Δi) = 0, unless |Δi| = 1,
in which case the desired index is found. If the search fails, then we have evidence
that f is not a monomial. Namely, we have three points, w¬Δ1 , w¬Δ2 and w¬Δ,
where Δ = Δ1 ∪Δ2, such that f(w¬Δ) = 0 and f(w¬Δ1) = f(w¬Δ2) = 1. Since
w¬Δ1 and w¬Δ2 disagree on all coordinates in Δ, and all three points agree
on all coordinates in [n] \ Δ, we have that Z({w¬Δ1 , w¬Δ2}) ⊆ Z(w¬Δ) and
O({w¬Δ1 , w¬Δ2}) ⊆ O(w¬Δ), so that the three points constitute an edge in Hf .

The testing algorithm for general monomials starts by obtaining a sample
of Θ(1/ε) points, each generated independently according to D. The algorithm
arbitrarily selects a point w in this sample that belongs to f−1(1). If no such
point exists, then the algorithm simply accepts f (and halts). Otherwise, this
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Algorithm 4: General Monomials Test

1. Take a sample S of Θ(1/ε) points, generated independently according to D.
2. If Sf,1 = ∅, then output accept and halt. Otherwise, arbitrarily select a point

w ∈ Sf,1.
3. Take a sample T of Θ(

√
n/ε) points (generated independently according to D).

4. For each point y ∈ Tf,0 run the binary search procedure (Algorithm 3) on w, y.
5. If the binary search fails for any of the points, then output reject and halt.

Otherwise, for each y ∈ Tf,0 let jw(y) be the index returned for y, and let
Jw(Tf,0) = {jw(y) : y ∈ Tf,0}.

6. Take a sample T ′ of size Θ(
√

n/ε) (generated independently according to D).
7. If there is a point y ∈ T ′

f,1 and an index j ∈ Jw(Tf,0) such that yj 
= wj, then
output reject, otherwise output accept.

Fig. 4. The testing algorithm for general monomials

point serves as as a kind of reference point . As in the case of the binary search
procedure, the testing algorithm for monotone monomials (Algorithm 2) is es-
sentially the same as the testing algorithm for general monomials (Algorithm 4)
with w (implicitly) set to be 1n.

Next, the algorithm obtains a sample of Θ(
√

n/ε) points (each generated
independently according to D). For each point y in the sample that belongs to
f−1(0), the algorithm performs a binary search on the pair w, y. If any search
fails, then the algorithm rejects (recall that in such a case it has evidence that
f is not a monomial). Otherwise, for each point y in the sample that belongs to
f−1(0), the algorithm has an index, jw(y) ∈ Δ(y, w), such that f(w¬jw(y)) = 0.
Let the subset of all these indices be denoted by J . Note that by the construction
of J , if f is a monomial, then for every j ∈ J , if wj = 1, then the variable xj

must belong to the conjunction defining f and if wj = 0, then x̄j must belong
to the conjunction.

The algorithm then takes an additional sample, also of size Θ(
√

n/ε), and
checks whether there exists a point y in the sample that belongs to f−1(1) and
an index j ∈ J such that yj �= wj . In such a case the algorithm has evidence
that f is not a monomial. Viewing this in terms of the hypergraph Hf , we
have that f(w¬j) = 0, f(y) = f(w) = 1, and both Z({y, w}) ⊆ Z(w¬j) and
O({y, w}) ⊆ O(w¬j), so that {w¬j , y, w} ∈ E(Hf ). The pseudo-code of the
algorithm is given in Fig. 4, and our main result in this section is stated next
and its proof can be found in [4].

Theorem 7. Algorithm 4 is a distribution-free 1-sided-error testing algorithm
for (membership in) M. Its query complexity is O(

√
n log n/ε).
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Abstract. In this work we study sublinear space algorithms for detect-
ing periodicity over data streams. A sequence of length n is said to be
periodic if it consists of repetitions of a block of length p for some p ≤ n

2
.

In the first part of this paper, we give a 1-pass randomized stream-
ing algorithm that uses O(log2 n) space and reports the shortest period
if the given stream is periodic. At the heart of this result is a 1-pass
O(log n log m) space streaming pattern matching algorithm. This algo-
rithm uses similar ideas to Porat and Porat’s algorithm in FOCS 2009
but it does not need an offline pre-processing stage and is simpler.

In the second part, we study distance to p-periodicity under the Ham-
ming metric, where we estimate the minimum number of character sub-
stitutions needed to make a given sequence p-periodic. In streaming
terminology, this problem can be described as computing the cascaded
aggregate L1 ◦ F

res(1)
1 over a matrix Ap×�n

p
	 given in column ordering.

For this problem, we present a randomized streaming algorithm with ap-
proximation factor 2 + ε that takes Õ( 1

ε2
) space. We also show a 1 + ε

randomized streaming algorithm which uses Õ( 1
ε5.5 p1/2) space.

1 Introduction

A sequence, informally speaking, is said to be periodic if it consists of repetitions
of the same block of characters. In this work we study detecting periodicity
over a sequence given as a stream. We present 1-pass randomized algorithms
for discovering periodic properties of a given stream that use sublinear (in most
cases polylogarithmic) space and per-character running time.

The study of periodic sequences and patterns has been important in many
fields such as algorithms, data mining, and computational biology. Applications
involving weather patterns, stock market data mining, intrusion detection, etc.
(eg see [11]) aim to identify self-similar trends in large data in almost real time.
The search for efficient algorithms for periodicity has also generated fundamental
algorithmic tools for solving problems on sequences/strings [19,8,2].

Formally, a sequence s of length n is said to be p-periodic if s[i] = s[i + p] for
all i = 1, . . . , |s| − p. The smallest p > 0 for which s is p-periodic is referred to
as the period of s. By convention, if the length of the period of s is at most n/2,
then s is said to be periodic, otherwise it is aperiodic.

Given the intimate relationship between periodicity and pattern matching, we
first investigate sublinear space solutions for finding patterns. Recently Porat and

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 545–559, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Porat, in a breakthrough result, presented a polylogarithmic space randomized
algorithm for pattern matching that does not require the storage of the entire
pattern [25]. Briefly, given a pattern u of length m, in an off-line step, they pre-
process u and build O(log n)-size sketches of log m prefixes of u and use them
to find occurrences of the pattern in the stream. In order to find the period, we
first develop a simple and more streaming-friendly algorithm for pattern match-
ing which does not require any offline preprocessing. While our solution utilizes
ideas similar in essence to those used by [25], we achieve this by computing only
the Rabin-Karp fingerprints of the prefixes u1, . . . , ulog d where ui = u[1, 2i], and
we manage to get the same O(log n log m) bit space bound. In a high level, our
algorithm consists of log m layers. In the ith layer, we recursively match ui using
the information from the previous layers.

We then use our pattern matching algorithm to compute the period of s in
a single pass over s using O(log2 n) space when s is periodic. (otherwise we re-
port that s is aperiodic). The limitation in computing the period for aperiodic
sequences turns out to be necessary as we later show a lower bound that comput-
ing the period in 1-pass for these sequences requires linear space. On the other
hand we show that an additional pass will give us a O(log2 n) space solution for
periods of any length.

In addition to periodicity, our pattern matching algorithm enables us to get
sublinear solutions for frequency moments defined over substrings.

In real-world applications, periodic trends might be hidden or infected with
noise; thus, where exact periodicity is hard to come by, one is likely to encounter
instances where a stream is close to periodic. As result, measures that capture
approximate periodicity are a natural course to investigate. In this direction we
study distance to periodicity under Hamming distance: we define the distance
of s to p-periodicity as the minimum number of character substitutions required
to make s p-periodic.

Dp(s) = min
x is p-periodic

{H(s, x)}.

It turns out that Dp(s) can be expressed as a product-sum of a certain func-
tion defined over rows of a matrix Ap×d where n/p = d. The problem then is
to compute L1 ◦ F

res(1)
1 (A) =

∑p
i=1 F

res(1)
1 (Ai) where Ai is the ith row of A

and F
res(1)
1 (s), known as the residual tail of sequence s, equals |s| − F∞(s). In

general F
res(r)
k (s) =

∑m
i>r fk

i , where f1, . . . , fm are the character frequencies in
decreasing order. Note that when r = 0 this is the same as Fk, the kth frequency
moment of s. While there are space efficient algorithms for approximating F

res(1)
1

and F
res(r)
2 [7,13,4], aggregate computation of F

res(1)
1 over multiple streams has

a different nature and is a new challenge. In fact, this problem can be viewed
as a generalization of the Hamming distance to multiple vectors (when d = 2,
we get the classical Hamming distance), and thus might be of independent in-
terest. For this problem, we present two 1-pass randomized algorithms. The
first algorithm approximates L1 ◦F

res(1)
1 within 2+ ε factor and uses O( 1

ε2 log 1
ε )

words of space. This algorithm uses a straightforward reduction to computing L0
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difference of two vectors that are generated on the fly. Using this algorithm and a
combination of sampling and exact sparse recovey, we get a 1+ ε approximation
solution that uses O( 1

ε5.5 (p log p)1/2 log n) words of space. For constant alphabet
size, the space bound is O( 1

ε3 (p log p)1/2).

Related Work. The streaming model is well studied; see [24] for a recent survey.
Aside from the implicit implications of [25], to our knowledge, our paper is
the first to investigate the space complexity of computing the period in the
streaming model. In a related direction, Ergun et al. [12] gave an O(

√
n) tester

for distinguishing periodic strings from highly aperiodic ones under the Hamming
distance in the property testing model. Subsequently Lachish and Newman [20]
showed a lower bound of Ω(

√
n) for testing periodicity in the query model. With

a focus on time complexity, Czumaj and Gasieniec [10] presented an average case
analysis for computing the exact period. Numerous studies have been done in
the data mining community for detecting periodicity in time-series databases
and online data (e.g. see [11]), typically with quite different space considerations
than in our model. Streaming complexity of cascaded norms Lk◦Lp over matrices
is investigated in depth by Jayram and Woodruff in [16]; also see [9,23].

2 Preliminaries

Throughout this paper [n] denotes the set of integers {1, . . . , n}. We assume the
input stream is a sequence of length n over the alphabet Σ = {0, 1, . . . , L}. We
represent the length of a string s with |s|, the ith element of s with s[i], and the
substring of s between locations i and j (inclusive) with s[i, j]. A d-substring is
a substring of length d. The concatenation of two sequences (or vectors) u, v is
written as u ◦ v and ui represents the concatenation of i instances of u.

The smallest p > 0 for which s is p-periodic, i.e., s[i] = s[i + p] for all i =
1, . . . , |s| − p, is called the period of s and is denoted per(s). We use Ms(t) to
denote the set of all positions in s where an exact occurrence of string t starts;
i.e., Ms(t) = {i | s[i, i + |t| − 1] = t}. The following lemma shows the relation
between per(t) and Ms(t). (This and other missing proofs are left to the full
version of the paper.)

Lemma 1. Let i ∈ Ms(t) and let U = Ms(t) ∩ [i, i + |t| − 1]. The following are
true.

i. Let j ∈ U where j > i and there is no k ∈ U such that i < k < j. If
|i − j| ≤ |t|/2 then |i − j| = per(t).

ii. There is at most one j ∈ U such that |i − j| is not a multiple of per(t).
Moreover if |i − j| is not a multiple of per(t), then j = max (U).

Fingerprints. In Section 3 we use Rabin-Karp fingerprints [18], a standard
sketching tool which allows us to compare strings of arbitrary length in con-
stant time. Fix an integer alphabet Σ. Let q > |Σ| be a prime and r ∈ Z∗

q

be arbitrary. The Rabin-Karp fingerprint of a string s ∈ Σ∗ is defined as
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Φq,r(s) =
∑|s|

i=1 s[i] · ri−1 (mod q). The following facts are well-known and the
reader is referred to [18,25] for the proofs.

(P1) Φq,r(s) can be computed in one pass over s using O(log q) bits of space.
(P2) Let s �= t be two strings and l = max(|s|, |t|). Prr[Φq,r(s) = Φq,r(t)] ≤ l

q−1 .

(P3) Given Φq,r(s) and Φq,r(t), we can obtain Φq,r(s◦ t) by constant arithmetic
operations in Zq.

(P4) Given Φq,r(s◦ t) and Φq,r(s), we can obtain Φq,r(t) by constant arithmetic
operations in Zq.

Henceforth we set q = Θ(n4) and assume that r is chosen uniformly at random
from Z∗

q at the beginning of the respective algorithm. We also omit the subscripts
and denote the fingerprint of s by Φ(s).

3 Periodicity and Pattern Matching

In this section first we show a streaming algorithm for pattern matching and then
we present our results for periodicity and frequency moments over substrings.

3.1 The Pattern Matching Algorithm

We assume the input stream S = u ◦ s is the concatenation of the pattern u of
length m and the text s of length n. Here we present a 1-pass streaming algorithm
that generates the starting positions of the matches of u in s (equivalently,
Ms(u)), on the fly using logarithmic space and per-item time. Strictly speaking,
if s[i − m + 1, i] = u, after receiving s[i] our algorithm reports a match with
high probability. Also, the probability that our algorithm reports a match where
there is no occurrence of u is bounded by n−1.

While it is easy to generate Ms(u) when u is small, the problem is non-trivial
for large u. The following lemma implies that given a streaming algorithm that
finds length-m patterns, by taking advantage of the Rabin-Karp fingerprints, we
can obtain a streaming algorithm for length-cm patterns using only O(c log n)
extra space.

Lemma 2. Let k be an integer greater than m. Let A be a 1-pass algorithm
that generates Ms(u) using O(g) bits space. Given A and Φ(u), there is a 1-pass
algorithm that outputs Φ(s[i, i+k]) at position i+k for all i ∈ Ms(u) using space
O(g + k

m log n) bits.

Proof. The algorithm partitions the sequence of positions in Ms(u) (as generated
by A) into maximal contiguous subsequences where in each subsequence the
distance between consecutive positions is at most m

2 . To do this we only need
to keep track of the last position in Ms(u). If the next position is more than m

2
characters apart then we start a new maximal subsequence, otherwise the new
position is appended to the last subsequence.
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Now let a1, a2, . . . , ah ∈ Ms(u) be a maximal sequence of consecutive positions
in Ms(u) where |al+1 − al| ≤ 1

2m for all l ∈ [h − 1]. We claim that for this
sequence we need to maintain at most four fingerprints to generate Φ(s[al, al+k])
for all l ∈ [h]. To do this, first we launch an individual process to generate
Φ(s[a1, a1 + k]) and Φ(s[a2, a2 + k]). By Property (P3) from Section 2, this can
be done by adding Φ(s[a1, a1 + m − 1]) and Φ(s[a1 + m, a1 + k]). Now if h < 3,
our claim is proved. So suppose h ≥ 3.

First we note that by Lemma 1, we should have |al+1 − al| = per(u) for all
l ∈ [h−1]. As a result, when we reach the position a2 +m−1, we have obtained
the value of per(u). Now let x = u[1, per(u)]. We show that it is possible to
compute Φ(x) when we reach a3 +m−1. To this end, when we are in a1 +m−1,
starting from the next character we build a fingerprint until we reach a2 +m−1.
This gives us Φ(s[a1 + m, a2 + m − 1]). Note that if per(u) divides m, then
s[a1 + m, a2 + m− 1] = x and we are done. Otherwise s[a1 + m, a2 + m− 1] is x
shifted r times to the left (cyclic shift), where r = m (mod per(u)). Therefore

s[a1 + m, a2 + m − 1] = x[r + 1, per(u)] ◦ x[1, r].

Likewise, we have s[a2 + m, a3 + m− 1] = x[r + 1, per(u)] ◦ x[1, r]. Therefore, at
location a2 +m, we know the value of r and per(u), and consequently using this
information, we can build the fingerprints Φ(x[r+1, per(u)]) and Φ(x[1, r]) when
we go over s[a2 +m, a3+m−1]. Note that here we have used the properties (P3)
and (P4) from Section 2. It follows that we are able to construct Φ(x) when we
get to a3 + m − 1.

Now observe that s[al, al + k] is equivalent to the substring s[al−1, al−1 +
k] after removing a block of length per(u) from the left-end of it and adding
s[al−1 + k, al − 1] to the right-end. Therefore we can generate Φ(s[al, al + k])
by having Φ(s[al−1, al−1 + k]), Φ(s[al−1 + k, al − 1]), and Φ(x). This proves our
claim.

It should be clear that at each point in time, we run at most 4k
m parallel

fingerprint computations. Each fingerprint takes O(log n) space. This finishes
the proof of the lemma. ��

Our pattern matching algorithm is the result of a recursive application of Lemma
2. First as we go over u, we build Φ(u[1, 2i]) for all i ∈ [log m]. By Property (P1)
this can be done in 1-pass and using O(log m log n) bits of space. Let Ai be
an algorithm that generates Ms(u[1, 2i]) in space gi. When i < c where c is a
small constant, we can use the naive solution of storing the entire pattern which
gives gi = O(log n). By Lemma 2, we get an algorithm Ai+1 for Ms(u[1, 2i+1])
in space O(gi +log n) by fingerprint comparisons. Applying this O(log |u|) times
we obtain an algorithm for Ms(u) using space O(log |u| logn) bits. The success
probability is at least 1−logm/n2 and this is due to the Property (P2) in Section
2 and the observation that we make at most O(n log |u|) fingerprint comparisons.

Theorem 1. There is a 1-pass streaming algorithm that generates Ms(u) in
O(log |u| logn) bits of space and O(log |u|) per-item processing time. The error
probability is bounded by n−1.
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Remark. Since our pattern matching algorithm only requires the fingerprints of
a small set of prefixes of the pattern, it can be used to generate Ms(s[1, m])
(where the pattern itself is a prefix of the text) in one pass and in space
O(log m log n) bits. This property of our algorithm will be essential in Section
3.3. Furthermore, in addition to Ms(u), our algorithm generates Ms(u[1, 2i]) for
each i = 1, . . . , log m, which leads to further space economy in our algorithms in
the next section.

3.2 Finding the Period

Testing whether the stequence s is periodic or not is equivalent to testing if there
is a suffix of s of length at least n

2 that matches a prefix of s. Hence for finding
the period of s, we just need to check the positions that match a certain prefix
of s. Basically our algorithms for testing periodicity has two stages. In the first
stage (search), it finds the positions where they match the first half of s. This
is done by using the pattern matching algorithm we described above. Then, in
the second stage (verfication), we check if the detected position can be the start
of a suffix that matches a prefix of s. However these stages are performed in
parallel as the search and verification of different positions might overlap. In the
following, to demonstrate the idea, first we present a weaker bound and then we
handle the general case.

Let T = Ms(s[1, n/2]).1 By definition, s is periodic if there exists i ∈ T where
s[i + 1, n] = s[1, n − i]. Now if i ≤ n/4, we can build both Φ(s[i + 1, n]) and
Φ(s[1, n − i]) in one pass over s and thus we can test whether per(s) ≤ n/4 or
not as follows.

Run the pattern matching algorithm to find i = min (T ∩ [1, n/4]). Build
Φ(s[i + 1, n]) and Φ(s[1, n − i]). If Φ(s[i + 1, n]) = Φ(s[1, n − i]) then per(s) = i
otherwise output that per(s) > n/4.

The reason that we only perform the test for min (T ∩ [1, n/4]) is a conse-
quence of Lemma 1. We do not need to check whether s[i +1, n] = s[1, n− i] for
i = c min (T ) when c is an integer greater than 1 as, in this case, s[1, i] would be
of the form u ◦ . . .◦ u (a cyclic string) and thus can not be the period of s. From
these observations we get the following lemma.

Lemma 3. There is a 1-pass streaming algorithm that decides whether per(s) ≤
n/4 or not in space O(log2 n) bits. The algorithm also outputs the exact period
if per(s) ≤ n/4.

For i > n/4, checking whether s[i+1, n] = s[1, n− i] is not straightforward. This
is because when we find out i ∈ T , we have already crossed the point n−i and lost
the opportunity to build Φ(s[1, n − i]). To solve this problem we conservatively
maintain a superset of T and prune it as we learn more about the input stream.
First observe that, for i ∈ T , since s[1, n − i] = s[1, n/2] ◦ s[n/2 + 1, n − i], it is
enough to build Φ(s[n/2+1, n− i]). Now for i ∈ [1, n/2], let si = s[n/2+1, n− i].
Roughly speaking, at each point in time, we maintain a dynamic set of positions
1 To make the presentation simpler, we assume n is a power of 2.
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R that will contain T and for each i ∈ R we collect enough information to be
able to construct Φ(si). Also in parallel we run a pattern matching process to
generate T . Finally for each position in {i ∈ R ∩ T | i �= c min (T ) for c ∈ N} we
check whether Φ(s[i+1, n]) = Φ(s[1, n− i]). If Φ(s[i+1, n]) = Φ(s[1, n− i]) holds
in one case, then we declare s to be periodic, otherwise it is reported aperiodic.

The dynamic set R. Let Ik = [n/2 − 2k + 1, n/2 − 2k−1] and let H = H1 ∪
H2 ∪ . . . ∪ Hlog(n/4) where Hk = Ms(s[1, 2k]) ∩ Ik. In other words, Hk is the
positions of all occurrences of s[1, 2k] that start within the interval Ik. Clearly
T ⊆ H . In what follows, for a fixed k we show how to compute Rk ⊆ Hk and,
more importantly, how to maintain Φ(si) for each i ∈ Rk. Also we guarantee
that every member of T will be added to R = R1 ∪ . . .∪Rlog(n/4) at some point.
Initially all Rk are empty. First we distinguish two main cases. In both cases, we
use the pattern matching algorithm described in Section 3 to get the sequence
of positions in H . Also, when we detect i ∈ Hk, we add it to Rk. However,
we might prune Rk and remove some unnecessary elements. In the following let
p = per(s[1, 2k]).

The case p > 1
42k. By Lemma 1, we get |Hk| < 4. Moreover, we detect i ∈ Hk

before reaching the end of si, and thus, we can build Φ(si) at the right time.
In this case we let Rk = Hk. Clearly we can maintain R and the associated
fingerprints in O(log n) space.

The case p ≤ 1
42k. Here things get a bit complicated. In this case Hk could be

large and if we maintain Φ(si) for each i ∈ Hk individually, this might take linear
space. To solve this problem, first we note that, by Lemma 1, the positions in
Hk have a succinct representation as the distance between consecutive positions
is exactly p. As result, we can encode Rk using O(log n) space. Further, we
take advantage of the periodic structure of s[1, 2k] and possibly the substring
s[2k + 1, 2k+1]. Consider that for i ∈ Hk, si is a substring of s[i, i + 2k+1 − 1].
Now (informally) if the substrings {si} fall in a periodic region, we can maintain
all Φ(si) by saving a constant number of fingerprints. On the other hand, if the
substring s[i, i + 2k+1 − 1] is not periodic then we use the period information of
s[1, 2k+1] to prune Rk. To do this, we collect the following information when we
process the first half of the stream.

– Using the tester from Lemma 3, we compute p. If it is reported that p >
1
42k, then Ik falls into the previous case. We also compute Φ(s[1, p]) and
Φ(s[2k − p + 1, 2k]).

– Let u1 ◦u2 ◦ . . .◦ut ◦u′ be a decomposition of s[2k +1, 2k+1] into consecutive
blocks of length p except possibly for the last block. Let x to be the maximum
j such that s[1, 2k] ◦ u1 ◦ . . . ◦ uj is p-periodic. We compute x.

Now let b1, b2, . . . , br be the elements of Hk in increasing order. Since |Ik| ≤ 1
22k,

we have |bi+1−bi| = p for all i ∈ [r−1]. Let v1◦v2◦ . . .◦vl◦v′ be a decomposition
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Fig. 1. A sample run of the algorithm in Section 3.2

of the substring s[br + 2k, n/2 + 2k] into consecutive blocks of length p except
possibly the last block (see Figure 1 for a pictorial presentation of the substrings).
Now let y be the maximum j such that s[br, br+2k−1]◦v1◦. . .◦vj is p-periodic. We
consider two cases. If y = l then {si | i ∈ Hk} are substrings of a periodic interval.
Let eb1 be the right endpoint of sb1 , i.e. eb1 = n − b1. Note that we have eb1 >
eb2 > . . . > ebr . In this case, all the following substrings (except possibly the last
one) are equal: s[ebr + 1, ebr−1 ], s[ebr−1 + 1, ebr−2 ], . . . , s[eb2 + 1, eb1 ]. Therefore
to compute Φ(sbj ), we just need to maintain Φ(sb1) and Φ(s[eb2 + 1, eb1 ]). We
compute Φ(sb1 ) individually. So in this case Rk = Hk. In the other case, we have
y < l. We make the following claim.

Claim. If y < l and |r − j| + y �= x then bj /∈ T .

By Claim 3.2, |Hk ∩T | ≤ 1. Consequently it is enough to maintain Φ(sbj ) where
|j − r| + y = x and Φ(sb1). So in this case |Rk| ≤ 2.

It remains to state how to compute x and y. To compute x, we need to
know p and Φ(s[2k − p + 1, 2k]). This information can be obtained in one pass
(see the observations before Lemma 3). Computation of y is similar to x. Fi-
nally, given the above discussion, for each k ∈ {1, 2, . . . , log(n/4)}, we need to
keep O(1) number of fingerprints to maintain Rk and its associated finger-
prints which makes the total space O(log2 n) bits. Hence, we get the following
result.

Theorem 2. There is a 1-pass randomized streaming algorithm that given s ∈
Σn outputs per(s) if s is periodic, otherwise it reports that s is aperiodic. The
algorithm uses O(log2 n) bits of space and has O(log n) per-item running time.
The error probability is at most O(n−1).

In general finding the period in one pass requires linear space. With one addi-
tional pass, however, the period of an arbitrary string can be found in O(log2 n)
space. The proof of the following theorem is left to the full version.

Theorem 3. Every 1-pass exact algorithm for per(s) requires Ω(n) space.
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3.3 Frequency Moments over Substrings

Let s be a string of length n, and k ≥ 0, d ≤ n be integers. We define the kth
frequency moment of d-substrings of s as

Fk,d(s) =
∑

u∈Σd

|Ms(u)|k.

To approximate Fk,d, one can create a fingerprint for each d-substring and feed
this stream of fingerprints to a standard Fk algorithm. Thus, using the algorithms
of [15,5,14,17] one can (1 + ε)-approximate Fk,d with Õ(d + n1−2/k) space and
Õ(1) per item processing time for any k ≥ 0. It is not possible to obtain a
o(d) algorithm however, if we insist on constructing a fingerprint for each d-
substring2. We note that by replacing the reservoir sampling procedure of [1]
with the pattern matching algorithm above, one can (1 + ε)-approximate Fk,d

using space Õ( 1
ε2 n1−1/k), in particular independent of d.

Unfortunately, the estimator of [1] does not give a bound for F0,d which is
perhaps the most commonly used moment for substrings, also known as the q-
gram measure. Here we present an Õ(1

ε

√
n) space randomized algorithm that

(1 + ε)-approximates F0,d.

Theorem 4. There exists a 1-pass streaming algorithm that (1+ε)-approximates
F0,d using Õ(1

ε

√
n) space.

Proof. Let s ∈ Σn be the stream. Let K be the set of all d-substrings of s and
n′ = n − d + 1. Our basic estimator X is defined as follows. Let i be random
position between 1 and n′. We set X = 0 if there exists a j > i such that
s[i, i + d − 1] = s[j, j + d − 1], we set X = n′ otherwise. We have E[X ] =
1
n′

∑
w∈K n′ = F0,d. Also, Var(X) ≤ E[X2] = 1

n′
∑

w∈K n′2 ≤ n · F0,d. Let Y be
the average of 3

ε

√
n repetitions of X . By Chebyshev’s inequality,

Pr[|Y − F0,d| ≥ εF0,d] ≤
Var(Y )
ε2F 2

0,d

≤
√

n

3εF0,d
.

Right hand side is smaller than 1/3 when F0,d ≥ 1
ε

√
n. Note that we can compute

each X in O(log n log d) space in one pass using the pattern matching algorithm
of Section 3.1. It can be shown that one can compute F0,d exactly using space
Õ(F0,d). Therefore we compute 3

ε

√
n estimates for X , while we run the exact

algorithm in parallel. If at any point in the stream the exact algorithm detects
that F0,d ≥ 1

ε

√
n we terminate it and output the sampling estimate, otherwise

we output the value computed by the exact algorithm. ��

4 Approximating the Distance to Periodicity

Recall that Dp(s) is the minimum number of character changes on s ∈ Σn

to make it p-periodic. Assume WLOG that p divides n where n = dp, and
2 An easy information theoretic observation shows that sliding a fingerprint for d-

substrings that preserves equality with high probability requires Ω(d) space.
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view s as a p × d matrix A where A(i, j) = s[(i − 1)p + j]. If p does not
divide n, s can be represented by two matrices. Then, Dp(s) is the the min-
imum number of substitutions in A to make every row consist of d repetitions
of the same character. Also, Dp(s) = L1 ◦ F

res(1)
1 (A) =

∑p
i=1 F

res(1)
1 (Ai). It is

challenging to compute this quantity since we receive A in the column order:
A(1, 1), . . . , A(p, 1), A(1, 2), . . . , A(p, 2), . . . To compute L1 ◦ F

res(1)
1 (A) exactly,

one can compute the residual tail of each row in parallel using independent coun-
ters, in O(|Σ|p) words of space. On the other hand, one can estimate F

res(1)
i (Ai)

within 1− ε factor in O(1/ε) words of space in several ways. For instance, using
the Heavy Hitters algorithms in [22,6] we can approximate F∞(Ai) with additive
error εF

res(1)
1 (Ai), giving the following bound.

Theorem 5. There is a deterministic streaming algorithm that approximates
L1 ◦ F

res(1)
1 (A) within 1 − ε factor using O(p

ε ) words of space.

Now we turn our attention to randomized algorithms. In the following, let
F (Ai) = F

res(1)
1 (Ai) and F (A) = L1 ◦ F

res(1)
1 (A).

4.1 A (2 + ε) Algorithm

The idea of this algorithm is to reduce F (A) to L0 of a vector where each item in s
represents a set of updates to this vector. Let fi(a) be the number of occurrences
of a ∈ [m] in Ai. We first observe the following.

Fact 6. F
res(1)
1 (Ai) ≥ 1

d

∑
a<b fi(a)fi(b) ≥ 1

2F
res(1)
1 (Ai).

Proof. Notice that 1
d

∑
a<b fi(a)fi(b) = 1

2 (d− 1
d

∑
a f2

i (a)). Clearly 1
d

∑
a f2

i (a) ≤
max{fi(a)}. This proves the right hand side inequality. To prove the left inequal-
ity, we need to show d ≥ 2 max{fi(a)} − 1

d

∑
a f2

i (a). This is true because the
RHS is maximized when max{fi(a)} = d. ��

One way to produce
∑

a<b fi(a)fi(b) is to compare each location of Ai with all
other locations and sum up the mismatches. To express this in terms of L0, let
vi be an all zero vector of length d2 with a coordinate for each (j, k) ∈ [d] × [d].
Given Ai(j) = l, add l to vi(j, k) and subtract l from vi(k, j) for all k ∈ [d]. Then,
L0(vi) = 2

∑
a<b fi(a)fi(b). We generate the updates to vector v = v1 ◦ . . . ◦ vp

as we go over A and estimate L0 using the following result by Kane et al. [17].

Theorem 7. [17] Let x = (x1, . . . , xn) be an initially zero vector. Let the input
stream be a sequence of t updates to the coordinates of x of the form (i, u) where
u ∈ {−M, . . . , M} for an integer M and i is an index. There is a 1-pass stream-
ing algorithm for (1+ε)-approximating L0(x) using space O(1/ε2 log n(log(1/ε)+
log log(tM))), with success probability 7/8, and with O(1) per-item processing
time.

By Theorem 7 and Fact 6, we get a 2 + ε approximation for F (A) in space
O(1/ε2 log(1/ε) log(n)) bits. However, per-item processing time is Ω(d). To over-
come this, we pick a random subset S from [d] of size O( 1

ε2 log p) and, for j ∈ S,
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we compare Ai(j) with all the coordinates of Ai. Now this gives us a vector
v′i with dimension d|S|. Fix an i and consider random variable L0(v′i). Let Yj

be an indicator random variable which is 1 iff j ∈ S. We have E[L0(v′i)] =∑d
j=1 E[Yj ]

∑d
k=1 H(Ai(j), Ai(k)) = 2|S|

d

∑
a<b fi(a)fi(b). Since {Yj} are inde-

pendent, using Chernoff bounds,

Pr [|L0(v′i) − E[L0(v′i)| > ε E[L0(v′i)] ≤
1
8p

.

By the union bound, the probability that L0(v′)
2|S| is away from 1

d

∑p
i=1

∑
a<b fi(a)

fi(b) by a factor of ε is at most 1/8. Given this and the fact that the underlying
L0 estimation itself gives a 1 + ε approximation we get a (1 + ε)2 = 1 + θ(ε)
approximation using polylogarithmic space and O(1/ε2 log p) per-item processing
time.

Theorem 8. Let ε > 0. There is a 1-pass randomized streaming algorithm that
approximates L1 ◦F

res(1)
1 (A) within 2 + ε factor using O(1/ε2 log(1/ε)) words of

space. The error probability is at most 1/4.

4.2 A (1 + ε) Algorithm

To find a better estimate for F (A) we use a combination of naive sampling
and exact sparse recovery. If F (A) is high, naive sampling gives us a good esti-
mate. If F (A) is low, then A has few non-uniform rows (we call Ai non-uniform
if F

res(1)
1 (Ai) > 0) and in space roughly proportional to the number of non-

uniform rows, we can use sparse recovery to find all non-uniform rows with high
probability. In the latter case, we obtain F (A) exactly, or with a large alphabet,
to within 1 + ε factor. A generic implementation of this gives a Õ(n1/2) space
solution, where n = dp. Below we describe a Õ(p1/2) space algorithm which is
in line with this this approach but uses a combination of sampling, exact sparse
recovery, and the 2 + ε algorithm described earlier.

Let F ′(Ai) = 1/d
∑

a<b fi(a)fi(b). Recall that in the previous algorithm we
used F ′(Ai) as an approximation for F

res(1)
1 (Ai). The worst case for this approx-

imation happens when F
res(1)
1 (Ai) is maximized, i.e., F∞(Ai) = d/F0(Ai). On

the other hand, when F
res(1)
1 (Ai) is low, the above quantity gives us a good es-

timate. This is because F ′(Ai) is lowerbounded by 1
d (d−F∞(Ai))F∞(Ai) which

implies the following.

Fact 9. Let ε ≥ 0.SupposeF
res(1)
1 (Ai) ≤ εd.WehaveF ′(Ai) ≥ (1−ε)F res(1)

1 (Ai).

Define F ′(A) =
∑p

i=1 F ′(Ai). From the definitions, we get

F ′(A) +
1
2d

p∑
i=1

((F res(1)
1 (Ai))2 + F

res(1)
2 (Ai)) = F (A). (1)

Now let F ′′(Ai) = 1
2d((F res(1)

1 (Ai))2 + F
res(1)
2 (Ai)). From (1) it follows that if

we are given F ′′(A) =
∑p

i=1 F ′′(Ai), by using the algorithm from the previous



556 F. Ergun, H. Jowhari, and M. Sağlam

section, we get a 1+ε approximation for F (A). On the other hand, Fact 9 tells us
that we only need to compute F ′′(Ai) for rows with high contribution. For t ≤ d

define Ht to be the set {j | F
res(1)
1 (Aj) ≥ t}. The following is a consequence of

Fact 9 and (1).

F (A) ≥ F ′(A) +
∑

i∈Hεd

F ′′(Ai) ≥ (1 − ε)F (A). (2)

In our algorithm we do not compute F ′′(Ai) for Hεd but approximate them with
error proportional to F (Ai). This is achieved by sampling a few columns from A
and using a sparse recovery procedure to find non-uniform rows in the sampled
matrix. For our sparse recovery procedure, we use the following result from [21].

Theorem 10. [21] Let x, y ∈ Σn. There is a randomized 1-pass streaming al-
gorithm that, given the coordinates of x and y in arbitrary order, can check if
H(x, y) > r or not using O(r(log n+log |Σ|)) bits of space and O(log n) per-item
time. Moreover in case H(x, y) ≤ r, the algorithm finds all pairs (x[i], y[i]) where
x[i] �= y[i]. The probability of error is at most n−1.

Now we are ready to describe our algorithm. Let ε be an arbitrary constant
smaller than 1. Let δ < ε (we determine the value of δ later) and k ≥ 8 log n

δ2 . For
r ≤ p, denote by SR(r) the exact sparse recovery algorithm from Theorem 10.
We run the following three threads in parallel.

T1 Run the 2+ε-approximation algorithm from Section 4.1. Let t1 be the output.
T2 Let K ≥ 8k(p log p

ε )1/2. Let B be K sampled rows of A (picked uniformly and
independently). Compute a 1−ε approximation of F (B) using the algorithm
from Theorem 5. Let t′ be the answer. Let t2 = pt′

K .
T3 Let r0 > 4 log p be an odd integer. Run the following r0 times in parallel.

In run j, let r = 8
ε1.5 ( p

log p )1/2. Sample k columns of A uniformly and inde-
pendently, obtaining matrix C. Run SR(r) over consecutive columns in C.
If more than r non-uniform rows are detected, abort the run. Otherwise for
each non-uniform row Ci do the following. Let fCi(a) be the frequency of a in
Ci. Use f ′

i(a) = d
kfCi(a) to estimate fi(a). Let A′

i be a sequence correspond-
ing to the frequency vector f ′

i . Compute Xi = d2

2(k
2)

∑
a fCi(a)(fCi(a) − 1)

and let Yi = 1
2d(F res(1)

1 (A′
i))

2 + 1
2d(Xi − F 2∞(A′

i)). At the end we let Gj =
{(i, Yi) | F res

1 (A′
i) ≥ εd}.

In the end, if the majority of the runs have aborted, the algorithm outputs t2.
Otherwise, WLOG, assume the first l > 2 log n runs have survived. Let G be the
set of pairs (i, g(Ai)), where i appears in all G1, . . . , Gl and g(Ai) is the median
of Yi’s produced by the surviving runs. Then we output t3 = t1 +

∑
i∈G g(Ai).

Lemma 4. Assuming p is greater than a large enough constant, the above algo-
rithm gives a 1 ± 3ε approximation for F (A) with probability is at least 3/4.
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Proof. We first consider the case when we ignore T3 and take the answer of
T2. For each aborting run we have F (C) > r. Based on the observation that
E[ d

kF (C)] ≤ F (A), and by Markov inequality, we have Pr[ d
kF (C) > 8F (A)] <

1/8. By Chernoff bound, if F (A) < rd
8k , the probability that more than half of

the runs abort is at most 1/p2. So in this case, with high probability, we have
F (A) ≥ rd

8k . On the other hand, by Chebyshev’s bound, we have Pr[|t2−F (A)| ≥
2εF (A)] < pd/(ε2F (A)K). Plugging the values of r and K, we get that the
probability is bounded by 1/8 + 1/p2.

Now consider the case where the output is t3. In this case, we need to analyze
the quality of the approximation of F ′′(Ai) produced by a fixed run. The below
claim follows by Chernoff bounds.

Claim. For a ∈ Σ, with probability at least 1 − 1
8n2 , |f ′

i(a) − fi(a)| ≤ δd.

From Claim 4.2 it follows that, with probability at least 1 − 1/(8np), the error
of the first term in Yi, i.e., 1

2d (F res(1)
1 (A′

i))
2, is bounded by 2δd. To bound the

error of the second term in Yi, we use Chebyshev bound and the variance analysis
of [3] (cf. Lemma 5.3) to estimate F2. From [3], we have E[Xi] = F2(Ai) and
Var(Xi) ≤ d

k (F2(Ai))3/2. Using Chebyshev’s inequality, we get

Pr[|Xi − F2(Ai)| > δd2] ≤ (F2(Ai))3/2

δ2kd3 .

Given that k > 8
δ2 log n, this probability is bounded by 1/(8 logn). Therefore,

with probability at least 1− 1/(8 logn), the second term of Yi has error at most
3δd. Since we took the median of at least 2 log p outcomes, with probability at
least 1 − 1/(p2 log n), for i ∈ G, we have |g(Ai) − F ′′(Ai)| < 5δd. Also with
probability at least 1 − (log p)/(2n), we have

H(ε+δ)d ⊆ G, ([p] \ H(ε−δ)d) ∩ G = ∅ (3)

Now we choose δ so that 5δd ≤ ε(ε − δ)d. This gives us δ = O(ε2) and now we
guarantee that, for all i ∈ G, g(Ai) is away from F ′′(Ai) by at most εF res

1 (Ai).
Putting these observations and (1),(2), and (3) together we get |t3 − F (A)| ≤
3εF (A). This proves our lemma. ��

Threads T2 and T3 dominate our space complexity. The sampling algorithm in
T2 takes O(1

ε K) space with O(1) time per item. The runs in T3 take O(r0rk)
space in total. However since the decoding time of the sparse recovery is O(r log n),
this makes the worst-case per-item time O(r0r log2 n). Since δ = O(ε2), our final
space bound becomes O(1/ε5.5(p log p)1/2 log n). Note that with a consant alpha-
bet, eliminating the repetitions in T3 and choosing parameters differently, we can
get O(1/ε3(p log p)1/2) space.

Theorem 11. There is a randomized 1-pass streaming algorithm that outputs
a 1 ± ε approximation of L1 ◦ F res

1 (Ap×d) with probability at least 3/4 using
O(1/ε5.5(p log p)1/2 log n) words of space.
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Rumor Spreading on Random Regular Graphs
and Expanders

Nikolaos Fountoulakis and Konstantinos Panagiotou�
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Saarbrücken, Germany

Abstract. Broadcasting algorithms are important building blocks of
distributed systems. In this work we investigate further the performance
of the classical and well-studied push model. Assume that initially one
node in a given network holds some piece of information. In each round,
every one of the informed nodes chooses independently a neighbor uni-
formly at random and transmits the message to it.

In this paper, we consider random networks where each vertex has
degree d ≥ 3, i.e., the underlying graph is drawn uniformly at random
from the set of all d-regular graphs with n vertices. We show that with
probability 1− o(1) the push model broadcasts the message to all nodes
in Cd ln n + ξ rounds, where |ξ| = O((ln lnn)2) and

Cd =
1

ln(2(1 − 1
d
))

− 1
d ln(1 − 1

d
)
.

In particular, we determine precisely the effect of the node degree to the
typical broadcast time of the push model. Moreover, we consider pseudo-
random regular networks, where we assume that the degree of each node
depends on n. There we show that the broadcast time is (1+ o(1))C ln n
with probability 1 − o(1), where C = limd→∞ Cd = 1

ln 2
+ 1.

Keywords: Rumor Spreading, Random Regular Graphs.

1 Introduction

1.1 Rumor Spreading and the Push Model

In this work we consider the classical and well-studied push model (or push
protocol) for disseminating information in networks. Initially, one of the nodes
has some piece of information. In each succeeding round, every node who has
the information passes it to another node, which is chosen independently and
uniformly at random among its neighbors. The important question is: how many
rounds are typically needed until all nodes are informed?

The main advantage of randomized broadcasting is its inherent robustness
against several kinds of failures and sudden changes in the network topology.
Thus, the push model has been the topic of many theoretical works, and its
� This author was supported by the Humboldt Foundation.
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performance was evaluated on several types of networks. In the case where the
underlying network is the complete graph, Frieze and Grimmett [17] proved that
with high probability (whp.) (i.e., with probability 1 − o(1)) the broadcasting
is completed within (1 + o(1))(log2 n + lnn) rounds, where n denotes the total
number of nodes. Recently, this result was extended by the two authors and
Huber [14] to the classical Erdős-Rényi graph Gn,p, which is obtained by includ-
ing each of the possible

(
n
2

)
edges with probability p, independently of all other

edges. The main result of [14] is that if p = ω( ln n
n ), then the typical broadcast

time essentially coincides with the broadcast time on the complete graph. In
other words, as long as the average degree of the underlying graph is signifi-
cantly larger than lnn, the number of rounds needed is not affected. Prior to
this work, there has been no result describing precisely the performance of the
push model on significantly sparser networks.

The typical broadcast time of the push model was also investigated for other
types of networks. Feige et al. [13] derived rough upper bounds that hold for
arbitrary graphs. Moreover, they proved a logarithmic upper bound for the
number of rounds needed to broadcast the information if the underlying net-
work is a hypercube. This result was generalized by Elsässer and Sauerwald [11],
who determined similar bounds for several classes of Cayley graphs, and in [12],
where, among other results, lower bounds for d-regular and general graphs were
shown. Bradonjic et al. [3] considered random geometric graphs as underlying
networks, and proved that whp. the broadcast time is essentially proportional
to the diameter of these graphs. Finally, the effect of the conductance of the
underlying network on the broadcast time of the push protocol was considered
by Chierichetti, Lattanzi and Panconesi in [4].

1.2 Our Contribution

The main contribution of this paper is the precise analysis of the push model
on sparse random networks. Note that in this context the study of the Gn,p

distribution is not appropriate, as we would have to set p = c/n for some constant
c > 0. However, for such p the random graph Gn,p is typically not connected. In
fact, if we took any p = o

( ln n
n

)
, we would face the same problem, as such a p is

below the connectivity threshold for Gn,p (see for example [20]).
A candidate class of random graphs that combines the feature of constant

average degree with that of connectivity is the class of random d-regular graphs
G(n, d) for d ≥ 3. It is well-known that a random d-regular graph on n vertices
is connected with probability 1 − o(1). Thus, a typical member of this class
of graphs is suitable for the analysis of the push protocol as far as the effect
of density is concerned. Let T = T (G(n, d)) denote the broadcast time of the
push model on G(n, d). Note that in this case the choice of the vertex where the
information is placed initially does not matter. Moreover, note that getting a
crude bound of O(ln n) for the number of rounds is easy, as the diameter of a
random d-regular graph is O(ln n) with high probability. However, our theorem
determines precisely the effect of the density to the probable broadcast time.
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Theorem 1. Let d ≥ 3. With probability 1 − o(1)

|T (G(n, d)) − Cd ln n| = O((ln lnn)2),

where Cd = 1
ln(2(1− 1

d )) −
1

d ln(1− 1
d ) .

The above theorem is interpreted as follows: for almost all d-regular graphs on n
vertices, with probability 1− o(1) the push protocol broadcasts the information
within the claimed number of rounds. It is easy to see that as d grows Cd

converges to 1
ln 2 + 1, which is the constant factor of the broadcast time of the

push protocol on the complete graph, as shown by Frieze and Grimmett [17].
Thus, our result reveals the essential insensitivity of the performance of the push
protocol regarding the density of the underlying network as d grows and shows
that the crucial factor is the “uniformity” of its structure. In Subsection 1.3
below we give an informal description of the evolution of the push protocol, thus
explaining also how do the two summands involved in Cd come up.

A lower bound that holds for all d-regular graphs was shown in [12]. More
precisely, let G be any d-regular graph with n vertices. Then, in [12] it is proved
that T (G) ≥ C′

d ln n − o(ln n) with high probability, where C′
d = 1

ln(2− 1
d ) −

1
d ln(1− 1

d ) . So, our result demonstrates that this bound is not tight for almost all
d-regular graphs.

One question that remains open is the performance of the push protocol in
the case d = d(n). We explore further this aspect and we consider regular graphs
whose structural characteristics resemble those of a random regular graph. In
particular, we consider expanding graphs whose “geometry” is determined by
the spectrum of their adjacency matrix.

Regular Expanding Graphs. Expanding graphs have found numerous appli-
cations in modern theoretical computer science as well as in pure mathematics.
Their properties together with the theory of finite Markov chains have led to
the solution of central problems such as the approximation of the volume of a
convex body, approximate counting or the approximate uniform sampling from
a class of combinatorial objects. The latter applications have had further impact
outside computer science such as in the field of statistical physics. We refer the
reader to the excellent survey of Hoory et al. [18] for a detailed exploration of
the properties and the numerous applications of expanding graphs.

The main feature of an expanding graph is that every set of vertices is con-
nected to the rest of the graph by a large number of edges. This key property
makes random walks on such graphs rapidly mixing and has led to the above
mentioned applications. Moreover, this property makes expanding graphs an at-
tractive candidate for communication networks. Intuitively, the high expansion
of a graph implies that information that is initially located on a small part of
the graph can be spread quickly to the rest of the graph. This becomes possible
as the high expansion of a graph ensures the lack of “bottlenecks”, that is, local
obstructions on which a broadcasting protocol would need a significant amount
of time in order to bypass them.
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We focus on a spectral characterization of expanding graphs, which is related
to the spectral gap of their adjacency matrix. Let G = (V, E) be a connected d-
regular graph and let A be its adjacency matrix. The Perron-Frobenius Theorem
implies (see Proposition 2.10 in [21]) that the largest eigenvalue of A equals d
and that the corresponding eigenvector is proportional to the all-ones vector
[1, . . . , 1]T . Let λ1, . . . , λn be the eigenvalues of A ordered according to their
value (note that since A is symmetric, these are all real). Set λ := λ(A) :=
max2≤i≤n |λi|. If G has n vertices we say that G is an (n, d, λ) graph. One can
show (see for example p. 19 in [21]) that λ = Ω(

√
d). In particular, Alon and

Boppana (see Nilli [24]) and Friedman [16] have shown that for every d-regular
graph on n vertices we have λ2 ≥ 2

√
d − 1(1 − o(1)).

We are interested in the class of d-regular graphs for which λ almost attains
this lower bound. In particular, we are concerned with the broadcast time of
the push protocol on expanding d-regular graphs on n vertices with λ = O(

√
d).

Such graphs can be explicitly constructed through number-theoretic or group-
theoretic methods (see the survey of Krivelevich and Sudakov [21] where numer-
ous examples are presented). Informally, we show that if d = ω(

√
n), then the

broadcast time is that of the complete graph.

Theorem 2. Let G be a connected (n, d, λ) graph with λ ≤ C
√

d and d ≥
2C

√
n ln1/9 n. Then for any v ∈ V , with probability 1 − o(1)

|T (G, v) − (log2 n + lnn)| = o(ln n).

Again, this theorem shows the insensitivity of the broadcast time regarding the
density of the underlying network. In fact, the assumption that λ = O(

√
d)

does not merely yield the high expansion of the graph, but it also implies that
the edges of the graph are distributed in a uniform way among each subset of
vertices. This is an important fact exploited in the proof of Theorem 2, as the
assumption implies that the structure of the graph is not very different from
that of a random graph on n vertices and edge probability equal to d/n. For
example, the number of edges between a subset S and its complement is close
to d

n |S|(n − |S|), which is the expected value in the random graph with edge
probability d/n. In this sense, such graphs are pseudorandom. This notion was
introduced by Thomason [27] and was explored further by Chung, Graham and
Wilson [5], especially regarding its spectral characterization.

1.3 The Evolution of the Randomized Protocol in a Nutshell

Roughly speaking, the evolution of the protocol consists of three phases, which
have different characteristics regarding the rate in which the information is
spread.

Let us consider the first phase, which ends when there are at least εn informed
vertices, for some very small ε > 0. Let us denote by It the set of informed
vertices (i.e., those who possess the information), and by Ut the set of uninformed
vertices at the beginning of round t + 1 of the push model. Moreover, let e be
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some edge that is incident to a vertex in It that has not been used up to now to
transmit a message, and let Et be the set of such edges. Then we show that the
subgraph of G(n, d) induced by It is essentially a tree, and moreover, that Et

contains approximately 2t(1 − 1
d)t edges. To see this, note that as every vertex

informs some specific neighbor with probability 1/d, the expected number of
edges from Et that are going to be used is |Et|/d. This means that approximately
|Et|/d new vertices are going to be informed (as the set of informed vertices
induces a tree), implying that |Et+1| ≈ |Et| − |Et|/d + (d − 1)|Et|/d, as for every
vertex that becomes informed in this round the number of edges counted in Et

increases by d − 1. So, |Et+1| ≈ 2(1 − 1
d)|Et|. Note that in this calculation we

worked only with expected values. In the actual proof we have to show that all the
relevant quantities are sharply concentrated around their expectations. To this
end, we use a variant of Talagrand’s inequality by McDiarmid [23] (Theorem 4),
which has not been used very frequently in the analysis of distributed algorithms.
We believe that it could be widely applicable to the analysis of existing or future
randomized protocols with several different degrees of dependency.

As soon as the number of informed vertices exceeds εn, then after very few
rounds the number of informed vertices is already (1−ε)n. Here, it is essentially
the expansion properties of G(n, d), which guarantee that every large set of
vertices has linearly many neighbors and, thus, with high probability a certain
fraction of those become informed in each round.

During the final phase, the number of remaining uninformed vertices shrinks
by a factor of (1− 1

d )d. Indeed, suppose that there are o(n) uninformed vertices.
Then we expect that almost all of them have the property that the number
of their neighbors in It is d, implying that the probability that any one of
the remains uninformed is precisely (1 − 1

d )d. An easy calculation shows that
a “typical” subset of G(n, d) has this property. However, the set of uninformed
vertices might not be typical at all, implying that we need additional effort to
guarantee the desired properties.

2 Concentration Inequalities

In this section we will state two concentration inequalities that will serve as
the backbone of our proofs. The first one is a Chernoff-type bound for sums of
negatively correlated random variables, see e.g. [7].

Theorem 3. Let I1, . . . , In be a family of indicator random variables on a com-
mon probability space, which are identically distributed and negatively correlated,
i.e., E(IiIj) ≤ E(Ii)E(Ij) for all 1 ≤ i, j ≤ n. Let X :=

∑n
i=1 Ii. Then, for any

t > 0

P (|X − E(X)| > t) < 2 exp
(
− t2

2 (E(X) + t/3)

)
.

The next concentration inequality that we will need is due to McDiarmid [23],
and it is based on the work of Talagrand [26]. We give first a few necessary
definitions. Let B be a finite set and let Sym(B) be the set of all permutations
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on B. Assume that π is an element of Sym(B), drawn uniformly at random.
Also, let X = (X1, . . . , Xn) be a finite family of independent random variables,
where Xj takes values in a set Ωj . Finally, set Ω = Sym(B) ×

∏n
j=1 Ωj .

Theorem 4. Let c and r be positive constants. Suppose that h : Ω → R+ satis-
fies the following conditions. For each (σ,x) ∈ Ω we have

– if x′ differs from x in only one coordinate, then |h(σ,x) − h(σ,x′)| ≤ 2c;
– if σ′ can be obtained from σ by swapping two elements, then |h(σ,x) −

h(σ′,x)| ≤ c;
– if h(σ,x) = s, then there is a set of at most rs coordinates such that

h(σ′,x′) ≥ s for any (σ′,x′) ∈ Ω that agrees with (σ,x) on these
coordinates.

Let Z = h(π,X) and let m be the median of Z. Then, for any t > 0

P (|Z − m| > t) ≤ 4 exp
(
− t2

16rc2(m + t)

)
.

3 Properties of Random Regular Graphs and the
Configuration Model

3.1 The Configuration Model

We perform the analysis of the randomized protocol using the configuration
model introduced by Bender and Canfield [1] and independently by Bollobás [2].
For n ≥ 1 let Vn := {1, . . . , n} and [d] = {1, . . . , d}. Also for those n for which dn
is even, we let P := Vn× [d]. We call the elements of P clones. A configuration is
a perfect matching on P . If we project a configuration onto Vn, then we obtain a
d-regular multigraph on Vn. Let G̃(n, d) denote the multigraph that is obtained
by choosing the configuration on P uniformly at random. It can be shown (see
e.g. [20, p. 236]) that if we condition on G̃(n, d) being simple (i.e. it does not have
loops or multiple edges), then this is distributed uniformly among all d-regular
graphs on Vn. In other words, G̃(n, d) conditional on being simple has the same
distribution as G(n, d). Moreover, Corollary 9.7 in [20] guarantees that

lim inf
n→∞ P(G̃(n, d) is simple) > 0. (1)

(Of course the above limit is taken over those n for which dn is even.) Let An

be a subset of the set of d-regular multigraphs on Vn. Altogether the above facts
imply that if P(G̃(n, d) ∈ An) → 0 as n → ∞ then also P(G(n, d) ∈ An) → 0.
This allows us to work with G̃(n, d) instead of G(n, d) itself.

3.2 Some Useful Facts

We continue by introducing some notation. Let G be a graph, and let S, S′ be
subsets of its vertices. Then we denote by eG(S) the number of edges in G joining
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vertices only in S, and by eG(S, S′) the number of edges in G joining a vertex
in S to a vertex in S′. Moreover, we denote by ΓG(v) the set of neighbors of a
vertex v in G.

Lemma 1. Let A,B ⊆ Vn × [d] be two disjoint sets of clones, and let C ⊆ Vn be
a set of vertices such that (C × [d]) ∩ (A ∪ B) = ∅. Let M be a matching drawn
uniformly at random from the set of perfect matchings on the union of the clones
in A,B and C × [d], and set N := |A| + |B| + d|C| − 1. Then

E(eM (A))=
(
|A|
2

)
1
N

, E(eM (A,B))= |A||B| 1
N

, and E(eM (A, C))=d|A||C| 1
N

.

(2)
Moreover, let H� denote the number of vertices in C that are adjacent to exactly �
clones in A in M , where 0 ≤ � ≤ d. Then, if |B| ≥ |A| = ω(ln n)

E(H�) =
(

1 + o
( 1

ln n

))
· |C|

(
d

�

)(
|A|
N

)� (
1 − |A|

N

)d−�

. (3)

Finally, let Q =
∑

�≥2 H�. Then, if N ≥ 4

E(Q) ≤ d2|A|2|C|N−2. (4)

Let X be any of eM (A), eM (A,B), eM (A, C) or H�, and let μ = E(X). Then,
if μ = ω(ln2 n), for any ε = ω(μ−1/2)

P(|X − μ| ≥ εμ) ≤ 4e−
ε2

64d(1+ε) μ. (5)

The proof of this lemma, and all other omitted proofs can be found in the full
version [15] due to space limitations.

4 Analysis of the Randomized Broadcasting Algorithm

4.1 The Preliminary Phase

Let T0 be the first round in which the number of informed vertices exceeds ln7 n.
We will show the following statement; it is not best possible, but it suffices for
our purposes.

Lemma 2. With probability 1−o(1) we have that T0 = O(ln lnn). Moreover, for
sufficiently large n the subgraph induced by the vertices in IT0 is with probability
1 − o(1) a tree.

4.2 The Exposure Strategy

In this section we will describe our general strategy for determining the probable
broadcast time of the randomized rumor spreading protocol. We will denote by
It the set of informed vertices and by Ut the set consisting of the uninformed
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vertices, i.e., Ut = [n] \ It, at the beginning of round t. We have that I1 = {1}.
We can simulate the execution of the rumor spreading protocol as follows in two
steps. First, we choose one of the clones of vertex 1 uniformly at random, say c1.
Then, we expose the edge in the random matching whose one endpoint is c1, and
pass the message to the other endpoint, say c2. Note that this is equivalent to
selecting uniformly at random a clone c′ different from c1, and joining c1 and c′

by an edge. Clearly, c2 is a clone that corresponds to some vertex in the original
graph, which now becomes informed. This completes the first round, and I2
consists of vertex 1 and the vertex corresponding to c2.

This gradual exposure of the graph can be generalized to any other round in
the following manner. Suppose that we are in the beginning of round t + 1 ≥ 2.
We will simulate the execution of the protocol as follows in two steps.

1. For each v ∈ It we choose one of its clones uniformly at random, indepen-
dently for every such vertex. We shall denote the selected clone by cv = cv(t).

2. Set It+1 = It and let v ∈ It. If cv belongs to an edge in the random matching
that was exposed in one of the previous rounds, do nothing. Otherwise,
choose uniformly at random one of the remaining unmatched clones, say c,
and connect it to cv by an edge. Add the vertex corresponding to c to It+1,
if it is not already contained in It+1.

If a clone of a vertex in Ut is matched to cv, for some v ∈ It, then that vertex
becomes informed – we denote by Nt+1 the set of those vertices. In short, Nt+1
is the set of newly informed vertices in the t + 1st round. Let us introduce some
further notation regarding the two exposure steps. At the beginning of round
t + 1, we denote by Pt the set of clones of the vertices in It whose neighbors
have not been exposed yet (i.e., in none of the previous rounds the edges in the
matching containing those clones were exposed). Among those, during Step 1
we choose a set At+1 ⊆ Pt of clones, which are those clones chosen in Step 1
and whose neighbors have not been exposed in previous rounds. Thus, At+1
contains the clones through which new vertices might get informed. Finally, we
write Nt+1 = |Nt+1|, At+1 = |At+1| and Pt = |Pt|, and note that P0 consists of
the d clones of vertex 1.

The two steps of our exposure strategy can be also viewed as follows. In the
first step we choose according to the rule described above a random subset At+1
of Pt. Then, in Step 2, the clones in At+1 are matched to the union of the clones
in Pt and the clones corresponding to the vertices in Ut (as, per definition,
all other clones are already matched). In other words, we consider a random
perfect matching Mt+1 on the set of clones in Pt and Ut, and we will study its
combinatorial properties. In particular, the following claim relates the random
quantities in question.

Proposition 1. Let Hi,t+1 denote the number of vertices in Ut that were in-
formed i times in round t + 1, i.e., a vertex v is counted in Hi,t+1, if there are
i clones in At+1 that are matched to the clones of v in Mt+1. Then
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It+1 = It + Nt+1 and Ut+1 = Ut − Nt+1, (6)

Nt+1 =
d∑

i=1

Hi,t+1 ≤ eMt+1(At+1,Ut), (7)

Pt+1 = Pt − At+1 − eMt+1(At+1,Pt \ At+1) +
d∑

i=1

(d − i)Hi,t+1. (8)

Proof. The first two equations are easy to see. To deduce (8), note first that all
clones in At+1 are excluded from Pt+1, as they are matched to other clones in Pt

or Ut; this accounts for the “−At+1” term. Moreover, all clones in Pt \At+1 that
are contained in edges of Mt+1 with the other endpoint in At+1 are excluded
from Pt+1 as well, as the edge including them was exposed; this accounts for
the the “−eMt+1(At,Pt \ At+1)” term. Finally, for each newly informed vertex
counted in Hi,t+1, i.e., which was informed i times in round t, the number of
clones counted in Pt increases by d − i. ��

For future reference we prove already here a lemma that addresses the concen-
tration properties of At+1.

Lemma 3. For any t ≥ 1 and n ≥ 5

P

(∣∣∣At −
Pt

d

∣∣∣ ≥ Pt

d ln2 n

∣∣∣ Pt

)
≤ 2e−

Pt
3d ln4 n .

Proof. For each clone c ∈ Pt let Ic be the indicator variable for the event that c
is selected in the first step of the tth round, i.e., “Ic = 1” iff the random decisions
in Step 1 are such that c ∈ At+1 . Since each clone has probability 1/d to be
selected we have E(Ic) = 1/d. Moreover, for two distinct clones c, c′ we have that

E(IcIc′) =

{
0 , if c, c′ are clones of the same v ∈ Vn

1/d2 , otherwise
≤ 1

d2 = E(Ic)E(Ic′ ),

i.e., the Ic’s are negatively correlated. We infer that μ := E(At+1 | Pt) = Pt

d ,
and Theorem 3 implies that the sought probability is at most

P(|At+1−μ| ≥ μ/ ln2 n | Pt) ≤ 2 exp
(
− μ2 ln−4 n

2(μ + μ/(3 ln2 n))

)
≤2 exp

(
− μ

3 ln4 n

)
.

��

4.3 The Middle Phases

Let T1 be the first round where the number of informed vertices is at least
n − ln7 n, or equivalently, where UT1 ≤ ln7 n. The main accomplishment of this
section is the proof of the following lemma, which describes the likely evolution
of the number of (un)informed vertices and of Pt until t = T1.
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Lemma 4. Suppose that Pt, Ut ≥ ln7 n. Abbreviate Ft = 1 − Pt

d(Pt+dUt)
. Then,

uniformly with probability at least 1 − o( 1
ln n ),

Pt+1 =
(

1 − o
( 1

ln n

))
·
((

1 − 1
d

)
Ft · Pt + dUt(Ft − F d

t )
)

, (9)

Ut+1 =
(

1 − o
( 1

ln n

))
· F d

t · Ut. (10)

Lemma 4 allows us now to derive probable bounds for T1.

Corollary 1. With probability 1−o(1) we have that T1−T0 = Cd ln n+O(ln lnn),
where

Cd =
1

ln(2(1 − 1
d ))

− 1
d ln(1 − 1

d )
.

Proof. By applying Lemma 2 we infer that at round T0 with high probability
there are for the first time at least ln7 n informed vertices, and the set of informed
vertices induces a tree. Hence, we may assume that

ln7 n ≤ IT0 ≤ 2 ln7 n and (d − 1)IT0 ≤ PT0 ≤ dIT0 .

We will use those facts in the sequel without further reference.
Let pt and ut be given by the recursions

pt+1 =
(

1 − 1
d

)
ftpt + dut(ft − fd

t ) and ut+1 = fd
t ut,

where ft = 1 − pt

d(pt+dut)
, and pT0 = PT0 , uT0 = n − IT0 . As we are interested in

the probable values of Pt and Ut for t = O(ln n) we infer by applying Lemma 4
that pt = (1 + o(1))Pt and ut = (1 + o(1))Ut for all such t, provided that
Ut, Pt ≥ ln7 n. In what follows, we shall therefore consider only the evolution of
pt and ut.

Let q := 2
(
1 − 1

d

)
, ε = 0.01 and t1 be the maximal t such that qt−T0 ≤ εn

ln7 n
.

We will first show that for all T0 ≤ t ≤ t1

pt ≤ PT0 · qt−T0 and pt ≥ PT0 · qt−T0 − 3P 2
T0

· q2(t−T0)/n, (11)

and

ut = n − IT0 − PT0

qt−T0 − 1
d(q − 1)

± 9 · P 2
T0

q2(t−T0)/n. (12)

We proceed by induction on t. Note that for t = T0 the statement trivially holds.
In order to perform the induction step (t → t+1) we will need some facts. First,
let x = 1 − ft and note that

ft − fd
t = (1 − x) − (1 − x)d ≤ (d − 1)x = (d − 1)

pt

d(pt + dut)
≤ d − 1

d2

pt

ut
.
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So, we readily obtain the upper bound for pt in (11) by using the the recursion
for pt as follows.

pt+1 ≤
(

1 − 1
d

)
ftpt+dut·

d − 1
d2

pt

ut
≤ 2

(
1 − 1

d

)
pt =qpt ⇒ pt+1 ≤ PT0 ·qt+1−T0 .

To see the lower bound for pt, note that 1
1+ pt

dut

≥ 1 − pt

dut
. Also, a similar

calculation as above and by using the fact (1 − x)d ≤ 1 − dx +
(
d
2

)
x2 for x ≥ 0

reveals that

ft − fd
t ≥ (d − 1)x −

(
d

2

)
x2 ≥ d − 1

d

pt

pt + dut
− d2

2
p2

t

d2(pt + dut)2

≥ d − 1
d2

pt

ut(1 + pt

dut
)
− p2

t

2d2u2
t

≥ d − 1
d2

pt

ut
− 3p2

t

2d2u2
t

.

By using again the recursion for pt we infer that

pt+1 ≥
(

1 − 1
d

)
ftpt + dut ·

(
d − 1
d2

pt

ut
− 3p2

t

2d2u2
t

)
≥ qpt −

2
d

p2
t

ut
.

Note that the induction hypothesis and the fact qt−T0 ≤ εn
ln7 n

imply that ut ≥
n/2. So,

pt+1 ≥ qpt −
4
dn

p2
t ≥ PT0q

t+1−T0 −
3P 2

T0
q2(t−T0)+1

n
− 4

dn

(
PT0q

t−T0
)2

=PT0q
t+1−T0 −

P 2
T0

q2(t−T0+1)

n

(
3
q

+
4

dq2

)
≥PT0q

t+1−T0 − 3
P 2

T0
q2(t−T0+1)

n
.

This proves the lower bound for pt in (11). Next we prove the bounds for ut+1.
Note that

ut+1

ut
=

(
1 − pt

d(pt + dut)

)d

≥ 1 − pt

pt + dut
≥ 1 − pt

dut
⇒ ut+1 ≥ ut −

pt

d
.

A similar calculation using the fact (1 − x)d ≤ 1 − dx +
(
d
2

)
x2 for x ≥ 0 reveals

that
ut+1

ut
≤ 1 − pt

pt + dut
+

(
d

2

)
p2

t

d2(pt + dut)2
≤ 1 − pt

dut
+

3
4

p2
t

u2
t

.

Recall that the induction hypothesis guarantees ut ≥ n/2. The above facts
together with the bounds for pt imply after a straightforward but lengthy cal-
culation (12). We omit the details.

The above discussion settles the growth of pt and ut up to the time t1. Note
that t1 = ln(2(1− 1

d))−1 ln n +Θ(ln lnn). In order to deal with t > t1 let us first
make two important observations. First, note that at t1 we have that

pt1

ut1

= Ω(1). (13)
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Let us next consider the ratio rt := pt/ut. Note that ft = 1 − pt

d(pt+dut)
=

1 − 1
d(1+d/rt)

. The recursions for pt and ut imply that

rt+1 =
(

1 − 1
d

)
f−d+1

t rt+d(f−d+1
t −1)⇒ rt+1

rt
=
(

1 − 1
d

)
f−d+1

t +
d

rt
(f−d+1

t −1).

Consider the function

g(x) =
(

1 − 1
d

+
d

x

)(
1 − 1

d(1 + d/x)

)−d+1

− d

x
,

and note that rt+1
rt

= g(rt). A straightforward calculation shows that limx→0 g(x) = 2(1− 1
d). In the

sequel we will argue that g is monotone increasing. This implies rt+1
rt

≥ g(0) ≥ 4
3 ,

and so we have for any t′ > 0

rt+t′ ≥ rt

(
4
3

)t′

⇒ pt+t′ ≥
(

4
3

)t′

ut+t′ . (14)

This fact will become very useful later on. To see why g is increasing, note that

g′(x) =
−T (1 + d2/x) + d + d2/x

x2 + xd
, where T =

(
1 − 1

d(1 + d/x)

)−d+1

.

To show that this is positive for x ≥ 0, it suffices to show that

1 +
d2

x
≤ d

(
1 +

d

x

)(
1 − 1

d(1 + d/x)

)d−1

.

But

d

(
1 +

d

x

)(
1 − 1

d(1 + d/x)

)d−1

≥ d

(
1 +

d

x

)(
1 − d − 1

d(1 + d/x)

)
≥ d

(
1 +

d

x

)(
d + d2/x − d + 1

d(1 + d/x)

)
= 1 +

d2

x
,

which concludes the proof of the monotonicity of g.
Let t2 be the minimal t such that pt2 ≥ ut2 ln2 n. The Equations (13) and (14)

guarantee that t2 = t1 + O(ln lnn), and moreover that for any t > t2 such
that ut > 0 we have pt ≥ ut ln2 n ≥ 1. Under these conditions note that

fd
t =

(
1 − pt

d(pt + dut)

)d

=
(
1 + O(ln−2 n)

)(
1 − 1

d

)d

.

Thus, for any t such that t = t2 + O(ln n) we have that

ut = (1 + o(1)) ·
(

1 − 1
d

)d(t−t2)

ut2 .
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Recall that T1 is the first t such that UT1 ≤ ln7 n. As ut2 ≤ n, we readily obtain
that T1 ≤ t1 + O(ln lnn) − 1

d ln((1− 1
d )) ln n = Cd ln n + O(ln lnn). To see the

corresponding lower bound for T1, note that as long as pt ≥ 1 we always have

ut+1 ≥
(

1 − 1
d

)d

ut.

The proof completes with the fact ut1 = Θ(n). ��

4.4 The Final Phase

Let T1 be the first time such that the number of uninformed vertices drops
below ln7 n. In the previous section we argued that T1 = Cd ln n + O(ln lnn),
where Cd is given in Corollary 1. We conclude the proof of Theorem 1 with the
following.

Lemma 5. With probability 1 − o(1) we have T − T1 = O((ln lnn)2).

Acknowledgment. We would like to thank Colin McDiarmid for suggesting
the use of his concentration inequality (Theorem 4), which greatly facilitated
our proofs. We would also like to thank Carola Winzen for a careful reading of
our manuscript.

References

1. Bender, E.A., Canfield, E.R.: The asymptotic number of labelled graphs with given
degree sequences. J. Combin. Theory Ser. A 24, 296–307 (1978)

2. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. Europ. J. Combin. 1, 311–316 (1980)
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20. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)
21. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. In: Proceedings of the Con-

ference on Finite and Infinite Sets. Bolyai Society Mathematical Studies, vol. 15,
pp. 199–262 (2006)

22. Law, C., Siu, K.-Y.: Distributed construction of random expander networks. In:
IEEE INFOCOM 2003, pp. 2133–2143 (2003)

23. McDiarmid, C.: Concentration for independent permutations. Combinatorics,
Probability and Computing 11, 163–178 (2002)

24. Nilli, A.: On the second eigenvalue of a graph. Discrete Math. 91, 207–210 (1991)
25. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer net-

works. IEEE Journal on Selected Areas in Communications 21, 995–1002 (2003)
26. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product

spaces. Inst. Hautes Études Sci. Publ. Math. 81, 73–205 (1995)
27. Thomason, A.: Pseudo-random graphs. In: Proceedings of Random Graphs, pp.

307–331 (1987)

http://arxiv.org/abs/1002.3518
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Abstract. We take another step in the study of the testability of small-
width OBDDs, initiated by Ron and Tsur (Random’09). That is, we con-
sider algorithms that, given oracle access to a function f : {0, 1}n → {0, 1},
need to determine whether f can be implemented by some restricted class
of OBDDs or is far from any such function.

Ron and Tsur showed that testing whether a function f : {0, 1}n →
{0, 1} is implementablebyawidth-2OBDDhasquery complexityΘ(log n).
Thus, testing width-2 OBDD functions is significantly easier than learning
such functions (which requires Ω(n) queries). We show that such exponen-
tial gaps do not hold for several related classes. Specifically:
1. Testing whether f : {0, 1}n → {0, 1} is implementable by a width-4

OBDD requires Ω(
√

n) queries.
2. Testing whether f : GF(3)n → GF(3) is a linear function with 0-1

coefficients requires Ω(
√

n) queries. Note that this class of functions is
a subset of the class of all linear functions over GF(3), and that each
such linear function can be implemented by a width-3 OBDD.

3. There exists a subclass C of the linear functions from GF(2)n to GF(2)
such that testing membership in C has query complexity Θ(n). Note
that each linear function over GF(2) can be implemented by a width-2
OBDD.

Recall that each of these classes has a proper learning algorithm of query
complexity O(n).

Keywords: Property Testing, Small Width OBDDs.

1 Introduction

In the last couple of decades, the area of property testing has attracted much
attention (see, e.g., a couple of recent surveys [18,19]). Loosely speaking, property
testing typically refers to super-fast probabilistic algorithms for deciding whether
a given object has a predetermined property or is far from any object having
this property. Such algorithms, called testers, obtain local views of the object
by making suitable queries. The current work belongs to the study of property
testing, but pursues what we perceive as somewhat different themes than the
standard ones.

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 574–587, 2010.
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1.1 Testing Membership in Complexity Classes

In the foregoing description, objects are viewed as functions, and so properties
are sets of functions. Given this perspective, it is most natural to ask whether
various traditional complexity classes are testable. Arguably, this question was
not addressed till [20].1 Instead, whenever (before [20]) standard computational
devices were referred to in the context of property testing, the perspective was
that each fixed computational device defines a set of strings and the testing
problem studied was of membership of the input string in this set (cf. [2,16,14]).
In contrast, following Ron and Tsur [20], we fix a complexity class and study the
testing problem that refers to whether the input function is in this class.

To illustrate the difference recall that Alon et al. [2] fix any regular set, and
study the problem of testing whether a given (input) string is in the set. In
contrast, Ron and Tsur [20] consider the complexity class of width-2 OBDDs,2

and study the problem of testing whether a given (input) function belongs to
this complexity class.

The main result of [20] is that testing width-2 OBDD has query complexity
Θ(log n), where n denotes the length of the argument to the function being
tested (i.e., the question is whether f : {0, 1}n → {0, 1} can be implemented by
a width-2 OBDD). This should be compared to the query complexity of learning
this very class, which is Θ(n). Thus, testing this complexity class is significantly
easier than learning this class. Two natural questions arise:

1. What about width-w OBDDs, for any fixed w > 2?
That is, is testing width-w OBDDs significantly easier (i.e., (poly)
logarithmically easier) than learning width-w OBDDs? (Recall that learning
width-w OBDDs requires Ω(n) queries, whereas proper learning is possible
with O(n) queries.)

2. What about testing subclasses of width-w OBDDs, for any fixed w ≥ 2
(i.e., testing whether a given function belongs to a fixed subclass of width-w
OBDDs)? Specifically, is every subclass of width-2 OBDDs testable in query
complexity O(log n) or poly(log n)?3

1 Indeed, this is a controversial statement, which relies on not viewing the classes of
dictatorship functions, juntas, monomials, and constant-term DNFs as traditional
complexity classes. The testability of these classes was studied in various works;
see, for example [17,9,6]. Some readers have expressed strong disagreement with our
views, claiming that the foregoing classes are not that different from constant-width
OBDDs. We remain unconvinced by their objections, and argue that traditional
complexity classes refer to natural computing devices (ruling out polynomials) and
furthermore to computing devices that at the very least can scan their entire input
(ruling out constant-size decision trees, etc).

2 OBDDs are ordered binary decision diagrams, which are a restricted type of read-
once branching programs in which the variables are read in a fixed order (across all
possible computation paths). See definition in Section 1.5.

3 Note that the query complexity of testing such a subclass need not be smaller that
the query complexity of testing the class.
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We provide rather gloomy answers to both questions: We prove that even at low
computational complexity levels such as constant-width OBDDs, testing may not
be significantly easier than learning; that is, the complexities of these two tasks
are polynomially related rather than being exponentially related. Specifically:

Theorem 1 (see Theorem 4.2): Testing width-4 OBDD requires Ω(
√

n) queries.

We conjecture that the actual query complexity is Θ(n).

Theorem 2 (see Theorem 2.1): There exists a subclass of width-2 OBDDs such
that testing this subclass requires Ω(n) queries. Furthermore, this subclass is a
class of linear functions (over GF(2)).

1.2 Subclasses of Linear and Quadratic Functions

A different perspective on our results is best illustrated by a question of Shafi
Goldwasser, who asked whether there is more to algebraic property testing than
testing low degree. (Needless to say, this was a rhetorical question; she meant to
advocate such studies.) We mention that a clear example of such a study was
provided by Rubinfeld [22] in the mid 1990s, and that various properties of poly-
nomials (e.g., dictatorship functions [17], juntas [9,4], sparse polynomials [6,7])
were studied in the last decade (although these studies were not viewed from
this perspective).

In any case, taking this perspective, we view Theorem 2 as saying that a
certain property of linear functions (from GF(2)n to GF(2)) cannot be tested
significantly faster than learning (i.e., cannot be tested with o(n) queries). More
generally, we present a full hierarchy of properties (or classes) of linear functions
arranged by their query complexity:

Theorem 3 (see Theorem 2.3): For every function t : N → N that is at most
linear, there exists a property of linear functions (over GF(2)) such that testing
this property has query complexity Θ(t+ ε−1). Furthermore, learning each of the
corresponding concept classes requires Ω(n) queries.

This leads to the question of how natural are these properties, which build on
the property used in the proof of Theorem 2. Since the property is not very
natural, we also prove the following.

Theorem 4 (see Theorem 2.7 in our technical report [10]): Testing the set of
linear functions from GF(2)n to GF(2) with at most n/2 influential variables
requires Ω(

√
n) queries.

Here too, we conjecture that the actual query complexity is Θ(n). Another nat-
ural property of linear functions is the subject of the following result.

Theorem 5 (see Theorem 3.2): Testing the class of linear functions from GF(3)n

to GF(3) that have 0-1 coefficients requires Ω(
√

n) queries.
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Again, we conjecture that the actual query complexity is Θ(n). (Note that the
foregoing class is implemented by width-3 OBDDs.) Lastly, we mention that the
proof of Theorem 1 actually establishes also the following.

Theorem 6 (see end of Section 4): Testing the class of linear functions from
GF(2)n to GF(2) that have no consecutive influential variables requires Ω(

√
n)

queries.

And, again, we conjecture that the actual query complexity is Θ(n).

1.3 Techniques

The proofs of all the foregoing lower bounds, with the exception of Theorem 2,
follow a common theme and cope with a similar difficulty. The common theme is
that in all these cases the analysis reduces to upper-bounding the ability of query-
bounded observers to distinguish two specific distributions of linear functions.
In each case, these two distributions are very natural, and the difficulty is in
analyzing the corresponding answer distributions (i.e., the distributions of the
sequence of answers obtained by querying each function distribution).

To illustrate the difficulty, consider the set of linear functions from GF(3)n

to GF(3), denoted L3. It is well known that if f is uniformly distributed in L3,
then its values on a sequence of t linearly independent vectors are uniformly
distributed over GF(3)t. But it is less clear what happens when f is uniformly
distributed in some natural subset L′

3 ⊂ L3. In particular, what happens when
L′

3 is the set of all linear functions with 0-1 coefficients? Furthermore, what if
these t strings are selected adaptively?

Our proofs deal with these types of problems. For example, in the case of the
set of GF(3)-linear functions with either no or a single 2-valued coefficient, we
prove that the deviation of the answers to t (adaptively chosen) queries is at
most O(t2/n) (cf. Theorem 3.2).

1.4 Discussion

In response to comments of some anonymous reviewers, we further articulate
what we perceive to be the main conceptual messages of this work.

As stated in Section 1.1, most works in property testing that mention standard
notions of computational complexity refer to the complexity of the properties
being tested (i.e., the complexity of determining whether a given object has
the said property). In contrast, following Ron and Tsur [20], we consider the
complexity of evaluating (or implementing) single functions that have the tested
property. We ask how simple may such functions be as to form a class that is
relatively hard to test in the sense that testing membership in the class has
almost the same query complexity as learning functions in the class.

We note that the hardness result of [11,12] can be interpreted as addressing
this question. For example, one may obtain a class of functions such that each
function can be evaluated by a polynomial-size circuit, while testing member-
ship in this class requires essentially as many queries as learning functions in
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this class. A closer look at these constructions reveals that the functions can
be implemented by a poly(�)-sized circuit, where � is logarithmic in the query
complexity of testing.

The results of this paper indicate that such hardness (of testing) results may
hold for classes of functions that are implementable by computing devices of very
low complexity. We mention that this assertion holds in two different senses. The
first (and weaker) sense is that there exist hard-to-test properties that consist of
functions that are all implementable by computing devices of very low complexity
(i.e., width-2 OBDDs). The second (and stronger) sense is that there exists a
natural low complexity class (i.e., width-4 OBDDs) such that the property of
belonging to that class is hard to test.

The gap between the two aforementioned senses is demonstrated by contrast-
ing the tester of the class of width-2 OBDDs obtained in [20] with the lower
bound stated in Theorem 2. We also note that, while it seems that almost every
natural class of functions has a subclass that is hard to test, our results regarding
the hardness of testing subclasses of linear functions refer to natural subclasses
(i.e., natural properties).

1.5 Preliminaries: OBDDs and Property Testing

In this section we review the quite standard definitions used in this paper. We
merely stress that when we talk of OBDDs, we assume (as in [20]) that the order
of the variables is fixed (and known).

OBDDs: Ordered Binary Decision Diagrams. Several different definitions
of this notion appear in the literature, and we adopt the one that calls for a
fixed ordering of the variables (knows as “strict”). That is, an ordered binary
decision diagram (OBDD) is a read-once branching program in which the order
in which the variables are read is fixed for all computing devices in the model.
Specifically, we shall assume, without loss of generality, that the ith variable is
always read at the ith level. This yields the following definition.

Definition 7. An OBDD is a directed acyclic graph with labeled edges and marked
sinks that satisfies the following conditions:

1. The graph contains a single source vertex.
2. Each sink vertex in the graph is marked either 0 or 1.
3. Each non-sink vertex has two out-going edges (which may be parallel) one

labeled 0 and the other labeled 1.
4. The graph edges connect vertices in consecutive levels, where the level of a

vertex is its distance from the source.
5. All sinks have the same level, called the graph length.

The width of an OBDD is the maximum number of vertices that have the same
level. An OBDD of length n computes the function f : {0, 1}n → {0, 1} such
that, for every x ∈ {0, 1}n it holds that the sink that is reached from the source
by following the path with edge labels x is marked f(x).
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Indeed, we may view x = x1 · · ·xn as a sequence of variables, and observe that in
the ith step (i.e., when moving from the i− 1st level to the ith level) the OBDD
branches according to the value of xi.

We mention that in a subsequent work, Ron and Tsur [21] considered OBDDs
with a variable ordering of the variables. Indeed, in such a case, one should
specify the ordering, and in more general models that allow different variables
to be queried along different computation paths it is necessary to specify the
variable queried at each non-sink vertex (by marking the non-sink vertices with
variable names).

Property Testing. We merely recall the standard definition.

Definition 8. Let Π =
⋃

n∈N Πn, where Πn contains functions defined over the
domain Dn (and range Rn). A tester for a property Π is a probabilistic oracle
machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every
n ∈ N and f ∈ Πn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and n ∈ N, if
f : Dn → Rn is ε-far from Πn, then Pr[T f(n, ε)=0] ≥ 2/3, where f is ε-far
from Πn if, for every g ∈ Πn, it holds that |{e ∈ Dn : f(e) �= g(e)}| > ε·|Dn|.

If the tester accepts every function in Π with probability 1, then we say that
it has one-sided error; that is, T has one-sided error if for every f ∈ Π and
every ε > 0, it holds that Pr[T f(n, ε) = 1] = 1. A tester is called non-adaptive
if it determines all its queries based solely on its internal coin tosses (and the
parameters n and ε); otherwise it is called adaptive.

Almost all our results are lower bounds on the query complexity of property
testing tasks, and they are obtained for fixed values of the proximity parameter
ε (i.e., ε = 1/16 will do in all). In these cases we omit mention of the proximity
parameter.

2 Testing Subclasses of Width 2 OBDDs

We consider various subclasses of linear functions over GF(2), which in particular
are realizable by width-2 OBDDs. For a set of strings S ⊆ {0, 1}n we denote by
LS the set of linear functions {fv : v ∈ S}, where fv : {0, 1}n → {0, 1} satisfies
fv(x) def= 〈v, x〉 =

∑n
i=1 vixi mod 2.

We present a hierarchy of properties of linear functions arranged according to
the query complexity of testing them. Our starting point is a property of linear
functions having maximal query complexity, and the hierarchy can be derived
using any such property. (This is indeed reminiscent of [12].) After establishing
the said hierarchy (and since it refers to somewhat unnatural properties), we
also consider the natural property of linear function having a bounded number
of influential variables.
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2.1 A Hierarchy of Classes of Linear Functions

We start by presenting a class of linear functions that is hard to test, and then
exhibit the full hierarchy by combining any such class with the class of all linear
functions.

Linear functions with coefficients from a small-bias space. Let S ⊂
{0, 1}n be a small bias sample space [15,1], say, of size 20.99n and bias 2−0.3n.
Then, testing LS requires Ω(n) queries, even if we allow two-sided error and
adaptive testers. More generally, we have the following.

Theorem 2.1 (Theorem 2, restated): Let S ⊂ {0, 1}n be a δ-bias sample space;
that is, for every c ∈ {0, 1}n \ {0n}, it holds that |Prv∈S [〈c, v〉 = 1] − 0.5| ≤ δ.
Then, testing LS requires log2((1 − ρ)/3δ) queries, where ρ = |S|/2n.

The proof of Theorem 2.1 can be found in our technical report [10]. Typically
(e.g., in the following example), ρ is small (i.e., ρ ≤ 1/2), and so the lower bound
simplifies to log2(1/6δ). An appealing example consists of the set of all n-bit
long strings having a number of 1 that is a multiple of 3 (i.e., S = {v ∈ {0, 1}n :∑n

i=1 vi ≡ 0 (mod 3)}), which has exponentially small bias and density ≈ 1/3
(see Proposition A.1 in our technical report [10]). Thus, we get

Corollary 2.2. Let S be the set of all n-bit strings having a number of 1-entries
that is divisible by three. Then, testing LS requires Ω(n) queries.

The Hierarchy. The following hierarchy theorem follows by combining any
set of hard-to-test linear functions (from GF(2)t to GF(2)) with the class of all
linear functions (from GF(2)n−t to GF(2)).

Theorem 2.3 (Theorem 3, restated): For every function t : N → N that is at
most linear, there exist sets S ⊆ {0, 1}n such that testing LS has query complexity
Θ(t + ε−1). Furthermore, learning LS requires Ω(n) queries.

The proof of Theorem 2.3 can be found in our technical report [10]. Here we
only mention the fact that a straightforward tester for the aforementioned class
has query complexity Õ(t), but a slightly more sophisticated tester obtains the
O(t) bound.

Linear functions in a fixed linear space. Recall that the standard linearity
property (i.e., the set of all linear functions over GF(2)) is testable by O(1/ε)
non-adaptive queries. Here we point out that this is not the only property of
linear functions having Θ(1/ε) testing complexity, but is merely a special case
of a larger class of properties. Specifically, we consider arbitrary classes LS such
that S is a linear space. That is, let S = {Gs : s ∈ {0, 1}k}, where G is an k-
dimensional generator matrix. Thus, for every s ∈ {0, 1}k, we define the function
gs ∈ LS as gs(x) = fGs(x) = 〈Gs, x〉, and note that 〈Gs, x〉 = 〈s, G�x〉.
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Theorem 2.4. Let S ⊆ {0, 1}n be a linear space, and LS = {fv : v∈S}. Then,
LS can be tested with O(1/ε) non-adaptive queries.

The proof of Theorem 2.4 can be found in our technical report [10].

2.2 Linear Functions with at Most ρn Influential Variables

For any constant ρ > 0, let Wρ denote the class of linear functions with at most
ρn influential variables. That is, Wρ = LS for S = {v : wt(v) ≤ ρn}, where
wt(v) = |{i : vi = 1}|.

Conjecture 2.5. Testing W0.5 requires Ω(n) queries, even when allowing adap-
tive testers of two-sided error.

If true, then (by using techniques as in the proof of Theorem 2.3) it will follow
that, for any function ρ : N → [0, 1], testing Wρ requires Ω(ρ(n)·n) queries. In our
technical report [10] we present two partial results that support Conjecture 2.5:
the first is an Ω(n) lower bound for non-adaptive testers and the second is an
Ω(

√
n) lower bound for general (adaptive) testers. In particular, this establishes

Theorem 4.

3 Hardness of Testing a Subclass of Width 3 OBDDs

We shall consider the class of linear functions over GF(3), consisting of all such
functions that have binary coefficients. That is, for every v ∈ {0, 1}n, we consider
the function fv : GF(3)n → GF(3) defined by fv(x) =

∑n
i=1 vixi, where the

arithmetic is modulo 3. Let BL3 = {fv : v ∈ {0, 1}n}.

Conjecture 3.1. Testing BL3 requires Ω(n) queries, even when allowing adap-
tive testers of two-sided error.

Theorem 3.2 (Theorem 5, restated): Testing BL3 requires Ω(
√

n) queries, even
when allowing adaptive testers of two-sided error.

Proof: We consider the class bad = {bj0,v : j0 ∈ [n], v ∈ {0, 1}n} such that

bj0,v(x) def= fv(x)+xj0 . Note that all functions in bad are linear and that exactly
half of bad is not in BL3 (since bj0,v ∈ BL3 if and only if vj0 = 0). Hence, with
probability 1/2, a uniformly selected function in bad is 2/3-far from BL3. Our
goal is to prove that distinguishing a uniformly selected function in BL3 from a
uniformly selected function in bad requires Ω(

√
n) queries.

Recall that an element in either sets is selected by specifying an index j0 ∈ [n]
and an n-bit string. Fixing any sequence of queries q = (q(1), ..., q(t)), we shall
show that if this sequence has a certain feature with respect to j0, then the
answers are distributed almost identically in the two distributions. This feature
is defined next, where w is an integer (i.e., we shall use w =

√
n).
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Definition 3.2.1. An index j ∈ [n] is called w-special with respect to a sequence
of queries q = (q(1), ..., q(t)) if there exists a linear combination of these queries
that yields an n-bit string q such that j ∈ supp(q) and |supp(q)| ≤ w, where
supp(q) def= {i : qi �= 0}.

It will be convenient to use matrix notation in our analysis. Presenting q as a
matrix, denoted Q, such that the ith row of Q equals q(i), the foregoing condition
asserts that there exists a t-vector c such that supp(cQ) contains j as well as at
most w − 1 other indices. Thus, we get:

Claim 3.2.2. For any sequence of t queries, q, there exists at most w · t indices
that are w-special with respect to q.

Proof: Let S denote the set of w-special indices with respect to q. For every
j ∈ S, there exists a t-vector c(j) such that supp(c(j)Q) contains j as well as
at most w − 1 other elements of S. Using a greedy strategy, we can obtain a
set I of at least |S|/w elements of S such that for every j ∈ I it holds that
supp(c(j)Q) ∩ I = {j}. Thus, the rank of Q is lower bounded by |S|/w, and the
claim follows. ��

Claim 3.2.3. Suppose that j0 is not w-special with respect to q = (q(1), ..., q(t)).
Then, for every α ∈ {0, 1, 2}t, when v = (v1, ..., vn) is selected uniformly in
{0, 1}n, it holds that

Prv[(fv(q(1)), ..., fv(q(t))) = α] = Prv[(bj0,v(q(1)), ..., bj0,v(q(t))) = α]±2−(w−1) .
(1)

Proof: For every α ∈ {0, 1, 2}n, we denote by Dj0,q(α) the difference between the
two probabilities in Eq. (1); that is,

Dj0,q(α) def= Prv[(fv(q(1)), ..., fv(q(t)))=α] − Prv[(bj0,v(q(1)), ..., bj0,v(q(t)))=α].
(2)

Our aim is to prove that the max-norm of Dj0,q(·) is at most 2−(w−1). By using
the relation between bases (cf. Lemma A.5 in our technical report [10]).4 it
suffices to show that for every c ∈ {0, 1, 2}t it holds that

∑
τ∈{0,1,2}

∣∣∣∣∣∣
∑

α∈Sc,τ

Dj0,q(α)

∣∣∣∣∣∣ ≤ 2−(w−1), (3)

where Sc,τ
def= {α ∈ {0, 1}t :

∑t
i=1 ciαi = τ} denotes the set of all t-bit vectors

that have 3k + τ non-zero entries (for some k). The l.h.s of Eq. (3) equals

∑
τ∈{0,1,2}

∣∣∣∣∣Prv

[
t∑

i=1

cifv(q(i)) = τ

]
− Prv

[
t∑

i=1

cibj0,v(q(i)) = τ

]∣∣∣∣∣
.

(4)

4 Specifically, letting ω denote the third root of unity, it suffices to upper-bound
|
∑

τ∈GF(3) ωτ ∑
α∈Sc,τ

Dj0 ,q(α)|, where Sc,τ = {α :
∑

i ciαi = τ}. Instead, we
upper-bound each of the three terms of the outer summation (and use |ω| = 1).
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Using the linearity of both functions, and moving to matrix notation, each term
in Eq. (4) equals

Prv[fv(cQ) = τ ] − Prv[bj0,v(cQ) = τ ], (5)

which equals Prv[cQv = τ ] − Prv[cQ(v + uj0) = τ ], where uj0 = 0j0−110n−j0 is
the jth

0 unit vector. Thus, Eq. (4) equals∑
τ∈{0,1,2}

∣∣Prv

[
cQv = τ ] − Prv[cQv + cQuj0 = τ

]∣∣
.

(6)

To upper-bound Eq. (6), we consider two cases (regarding the value of cQuj0).
If cQuj0 = 0, then Eq. (6) equals zero. On the other hand, if cQuj0 �= 0,
then supp(cQ) contains j0, and it follows that |supp(cQ)| > w (because oth-
erwise j0 would have been w-special w.r.t q). But in this case, it follows that∑

τ∈{0,1,2} |Prv[cQv = τ ] − 1
3 | < 2−w and the same holds for Prv[cQv = τ −

cQuj0 ]. Thus, Eq. (6) is upper-bounded by 2 · 2−w, and the claim follows. ��

Armed with Claims 3.2.2 and 3.2.3, we prove the theorem by considering the
sequence of queries in the order they were issued. Setting w =

√
n, we evaluate

the situation after each additional query. Using Claim 3.2.3, we note that as long
as j0 is not special with respect to the queries made, the answers are almost
oblivious of whether the function is uniformly selected in bad or in BL3 in the
sense that the probabilistic deviation on each possible sequence of answers (i.e.,
α) is at most 2−(w−1). Recalling that the functions in BL3 are oblivious of j0, it
follows that the answers obtained from a random function in bad are also almost
oblivious of j0 (as long as j0 is not special with respect to the queries made).
Noting that the answers determine the next query, we infer that this query is also
almost oblivious of the currently non-special value of j0, and so the probability
that j0 is special with respect to the augmented sequence of queries can be
bounded using Claim 3.2.2. Details follow.

We may assume, (as usual and) without loss of generality, that the tester
is deterministic, and so the query sequence is determined adaptively by the
previous answers. Thus, we consider the 3t−1 possible t-query sequences that
arise from each possible sequence of t answers. For each such sequence, we first
dispose of the case that j0 is special with respect to it, which by Claim 3.2.2
happens with probability at most tw/n. Assuming that j0 is not special with
respect to that sequence, we conclude (by Claim 3.2.3) that the corresponding
sequence of answers occurs with about the same probability in both distribu-
tions. Over all, the statistical distance between the observed answers is at most
(tw/n) + 3t−1 · 2−(w−1), and the theorem follows.

4 Hardness of Testing the Class of Width 4 OBDDs

In this section we establish Theorems 1 and 6.
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Conjecture 4.1. Testing the class of functions that are implementable by width-
4 OBDDs requires Ω(n) queries, even when allowing adaptive testers of two-sided
error.

Theorem 4.2 (Theorem 1, restated): Testing the class of functions that are
implementable by width-4 OBDDs requires Ω(

√
n) queries, even when allowing

adaptive testers of two-sided error.

Proof: We consider Boolean functions of 4n-bit long strings, which are quadratic
polynomials over GF(2). Specifically, these functions are linear combinations of n
quadratic expressions, where each quadratic expression refers to a distinct block
of four variables. A generic block, containing the variables x1, x2, x3, x4, will con-
tribute a linear combination of x1x3 and x2x4, where the combination x1x3+x2x4
is considered bad because the expression x0 +x1x3 +x2x4 cannot be computed by
a width-4 OBDDs. Specifically, letting f0(x1, x2, x3, x4) = 0, f1(x1, x2, x3, x4) =
x1x3, and f2(x1, x2, x3, x4) = x2x4, we will consider the class good that consists
of functions of the form gσ1,...,σn such that

gσ1,...,σn(x1, ..., x4n) =
∑
j∈[n]

fσj (x4(j−1)+1, ..., x4(j−1)+4), (7)

where σ1, ..., σn ∈ {0, 1, 2}. Note that each such function can be computed by a
width-4 OBDD, which uses one “bit” to store the accumulated sum and another
“bit” to compute the value of the current block. In contrast, the class bad

consists of functions of the form bj0,σ1,...,σn such that

bj0,σ1,...,σn(x1, ..., x4n) =
∑

j∈[n]\{j0}
fσj (x4(j−1)+1, ..., x4(j−1)+4)

+ x4(j0−1)+1x4(j0−1)+3 + x4(j0−1)+2x4(j0−1)+4 (8)

Since, except when σ1 · · ·σj0−1 = 0j0−1, the jth
0 block can not be computed by

a width-4 OBDD (while maintaining the accumulated sum), it follows that such
functions are 1/16-far from the set of functions that are computable by width-4
OBBDs (see [10, Lem. A.6], which is a simple version of Yao’s XOR Lemma for
OBDDs, which is also an over-kill).

Our goal is to prove that a random function in good is hard to distinguish
from a random function in bad, where “random” does not necessarily refer to
the uniform distribution over the corresponding set (but rather any two distribu-
tions will do). Specifically, we consider a distribution over good, in which each
σi is set to 0 with probability 1/2 and is uniformly distributed in {1, 2} other-
wise. (This random selection process determines a function gσ1,...,σn ∈ good.)
We consider a related distribution over good ∪ bad, where σ1, ..., σn are se-
lected as above, the index j0 is selected uniformly in [n], and the function being
determined is gσ1,...,σn + aj0 , where aj0(x1, ..., x4n) = x4(j0−1)+1x4(j0−1)+3 +
x4(j0−1)+2x4(j0−1)+4. Note that the resulting function is in bad if and only if
both σ1 · · ·σj0−1 �= 0j0−1 and σj0 = 0, which means that it is in bad with
probability 1

2 − o(1).
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Our analysis reduces to analyzing related families of linear functions de-
fined over variables y1, ..., y2n such that y2(j−1)+1 = x4(j−1)+1x4(j−1)+3 and
y2(j−1)+2 = x4(j−1)+2x4(j−1)+4. Specifically, we first show that distinguishing
the foregoing two distributions (of quadratic functions) leads to distinguishing
the two corresponding distributions of linear functions, where in both the lat-
ter distributions σ1, ..., σn and j0 are selected as above (i.e., j0 is distributed
uniformly in [n] and each σi is set to 0 with probability 1/2 and is uniformly
distributed in {1, 2} otherwise). Letting f ′

0(y1, y2) = 0, f ′
1(y1, y2) = y1, and

f ′
2(y1, y2) = y2, the linear functions in these two distributions are:

g′σ1,...,σn
(y1, ..., y2n) =

∑
j∈[n]

f ′
σj

(y2(j−1)+1, y2(j−1)+2) (9)

b′j0,σ1,...,σn
(y1, ..., y2n) = g′σ1,...,σn

(y1, ..., y2n) + y2(j0−1)+1 + y2(j0−1)+2 (10)

The reduction between these distinguishing problems is quite straightforward:
Given a distinguisher D for the original distinguishing problem (i.e., regarding
quadratic functions), we obtain a distinguisher D′ for the distinguishing prob-
lem regarding linear functions. The new distinguisher (i.e., D′) invokes D and
serves each query q = (q1, ..., q4n) that it issues (to its quadratic oracle) by
forwarding the query q′ = (q′1, ..., q

′
2n) to the actual (linear function) oracle,

where q′2(j−1)+1 = q4(j−1)+1q4(j−1)+3 and q′2(j−1)+2 = q4(j−1)+2q4(j−1)+4 for ev-
ery j ∈ [n]. Thus, when given oracle access to g′σ1,...,σn

, we emulate an execution
of D with gσ1,...,σn , whereas when given oracle access to b′j0,σ1,...,σn

, we emulate
an execution of D with bj0,σ1,...,σn .

We now turn to prove that distinguishing the two aforementioned distributions
on linear functions requires Ω(

√
n) queries. Our proof follows the structure of

the proof of Theorem 3.2. Specifically, in analogy to Definition 3.2.1, we say
that j ∈ [n] is w-special with respect to a sequence of queries q if there exists
a linear combination of these queries that yields a 2n-bit string q such that
{2j − 1, 2j} ∩ supp(q) �= ∅ and |supp(q)| ≤ w. Analogously to Claim 3.2.2, the
number of w-special indices with respect to a sequence of t queries is bounded
by w · t. Next, analogously to Claim 3.2.3 we upper-bound the deviation of the
answers whenever j0 is not w-special with respect to the sequence of queries.

Claim 4.2.1. Suppose that j0 is not w-special with respect to q = (q(1), ..., q(t)) ∈
({0, 1}2n)t. Then, for every α ∈ {0, 1}t, when σ = (σ1, ..., σn) is selected as
above, it holds that

Pr[(g′σ(q(1)), ..., g′σ(q(t))) = α] = Pr[(b′j0,σ(q(1)), ..., bj0,σ(q(t))) = α] ± 2−Ω(w) .

Proof: Like in the proof of Claim 3.2.3, it suffices to show that, for every c ∈
{0, 1}t, ∣∣Prσ [g′σ(cQ) = 1] − Prσ

[
b′j0,σ(cQ) = 1

]∣∣ ≤ 2−Ω(w), (11)

where Q is the matrix with the q(i)’s as rows. Let q = cQ and recall that
b′j0,σ(q) = g′σ(q)+ q2j0−1 + q2j0 . We consider two cases. If q2j0−1 = q2j0 = 0, then
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the l.h.s of Eq. (11) equals zero. Otherwise (i.e., {2j0−1, 2j0}∩supp(q) �= ∅), since
j0 is not w-special, it holds that |supp(q) \ {2j0 − 1, 2j0}| ≥ w − 1. Hence, there
exists at least (w − 1)/2 indices j in [n] \ {j0} such that (q2j−1, q2j) �= (0, 0),
which means that for each such j the value of f ′

σj
(q2(j−1)+1, q2(j−1)+2) is not

fixed when σj is random as above. Specifically, for each such j (i.e., j such that
(q2j−1, q2j) �= (0, 0)), it holds that

Prσj

[
f ′

σj
(q2(j−1)+1, q2(j−1)+2) = 1

]
=

{ 1
4 if q2(j−1)+1 + q2(j−1)+2 = 1
1
2 if q2(j−1)+1 = q2(j−1)+2 = 1

and these events, which refer to different j’s, are independent. Recalling
Eq. (9)&(10), we conclude that each of the two probabilities in the l.h.s of
Eq. (11) is 1

2 ± 2−Ω(w), and the claim follows. ��
The rest of the analysis mimics the proof of Theorem 3.2.

Establishing Theorem 6. In the course of the proof of Theorem 4.2 we actually
established a lower bound on the complexity of testing the set of linear functions
defined in Eq. (9). Letting g′′σ(z1, ..., z3n) equal g′σ(z1, z2, z4, z5, ..., z3n−2, z3n−1)
we obtain a set of linear functions in which there are no consecutive influential
variables. Theorem 6 follows by observing that the argument establishing the
hardness of testing the former property also establishes the hardness of testing
the latter property.
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Abstract. In 2002 Jackson et al. [JKS02] asked whether AC0 circuits
augmented with a threshold gate at the output can be efficiently learned
from uniform random examples. We answer this question affirmatively by
showing that such circuits have fairly strong Fourier concentration; hence
the low-degree algorithm of Linial, Mansour and Nisan [LMN93] learns
such circuits in sub-exponential time. Under a conjecture of Gotsman and
Linial [GL94] which upper bounds the total influence of low-degree poly-
nomial threshold functions, the running time is quasi-polynomial. Our
results extend to AC0 circuits augmented with a small super-constant
number of threshold gates at arbitrary locations in the circuit. We also
establish some new structural properties of AC0 circuits augmented with
threshold gates, which allow us to prove a range of separation results
and lower bounds.

Keywords: Computational learning theory, AC0, Fourier concentration,
threshold gates, polynomial threshold functions.

1 Introduction

The seminal result of Linial, Mansour and Nisan [LMN93] showed how to learn the
class AC0 of constant depth circuits in quasi-polynomial time under the uniform
distribution with random examples. Their work introduced the Low-Degree Algo-
rithm which can learn functions where the Fourier spectrum is concentrated on
low-degree coefficients; this algorithm and its extensions have since found many
applications in learning, see e.g. [FJS91, BT96] for some early work and [JKS02,
KOS04, MOS04, OS07, BOW08, KKMS08, KOS08] for more recent results.

In the two decades since their work, despite much effort, there has been limited
progress in designing learning algorithms for more expressive circuit classes. Cir-
cuit classes like AC0 with parity gates (AC0[2]) and depth-2 circuits of arbitrary
threshold gates remain beyond the reach of currently known algorithms. One
obstacle is that there are no lower bounds known for some of these classes, such
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as depth-2 TC0, and the existence of lower bounds seems to be a pre-requisite
for any learning algorithm (see [FK09]). Devising learning algorithms and lower
bound techniques that can handle more powerful classes of circuits is a central
open problem at the intersection of computational learning theory and circuit
lower bounds.

Jackson et al. made some progress on learning circuits more expressive than
AC0 in [JKS02]. They gave a quasipolynomial-time algorithm that can learn
Majority-of-AC0 circuits – polynomial-size, constant-depth circuits augmented
with a single Majority gate at the output – under the uniform distribution.
Using a result of [Bei94], this yields a quaspolynomial-time algorithm that can
learn AC0 circuits augmented with polylog(n) many Majority gates at arbitrary
locations in the circuit. The algorithm of Jackson et al. uses the low-degree al-
gorithm as a weak learner and combines it with boosting. [JKS02] posed as an
open question whether any efficient algorithm can learn Threshold-of-AC0 cir-
cuits, in which the the topmost gate is a threshold gate (i.e. a weighted majority
in which the weights may be arbitrary). It is observed in [JKS02] via an explicit
counterexample that the analysis of their boosting-based algorithm breaks down
for Threshold-of-AC0. In this work, we take a significant step towards answering
the question of [JKS02].

AC0 circuits augmented with a few threshold gates have been well studied
in the complexity theory literature, see e.g. [ABFR94, Bei94, GHR92, Gol97,
Han07]. This is a natural class of circuits lying between the classes AC0 (which we
understand well) and TC0 (for which we do not know lower bounds). One focus of
this work has been on understanding the difference in power between unweighted
threshold gates (i.e. majorities) versus threshold gates with arbitrary weights.
Aspnes et al. [ABFR94] prove that any AC0 circuit with a single threshold gate
at the top cannot compute (or even approximate) parity, and more recently
Hansen [Han07] has established nΩ(log n) size bounds on AC0 circuits augmented
with up to ε log2 n threshold gates. In contrast, when we restrict ourselves to
Majority gates, an elegant result of Beigel [Bei94] alluded to above shows that
any polynomial-size AC0 circuit with polylog(n) Majority gates is equivalent to
a quasi-polynomial size AC0 circuit with a single majority gate at the top, and
lower bounds for such circuits follow from [ABFR94].

1.1 Our Results

We show that AC0 circuits augmented with a few threshold gates with arbitrary
weights can be learned in subexponential time under the uniform distribution.
In doing this we establish some new structural properties of such circuits, which
allow us to prove new lower bounds and separations for such circuits.

Learning AC0 with threshold gates. Our first main result is a Fourier con-
centration bound for Threshold-of-AC0 circuits: roughly speaking, this bound
says that any size-M , constant-depth Threshold-of-AC0 circuit C must satisfy∑

|α|>t

Ĉ(α)2 ≤ ε for t =
(log M)Θ(d)2Θ((log M)2/3)

ε(log M)1/3 .
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This can be viewed as a natural extension of the [ABFR94] result showing that
Threshold-of-AC0 cannot compute parity; we show that such circuits in fact
exhibit strong Fourier concentration. (Thus, roughly speaking, our result is to
[ABFR94] as the [LMN93] Fourier concentration bound for AC0 is to the earlier
AC0 lower bounds of H̊astad [H̊as86].) We note that Fourier concentration bounds
of the sort we establish were not known even for Majority-of-AC0 prior to this
work; the [JKS02] algorithm requires boosting and its analysis does not establish
Fourier concentration.

With our Fourier concentration bound for Threshold-of-AC0 in hand, apply-
ing the Low-Degree Algorithm of [LMN93] we get the first subexponential-time
learning result for this class: any size-M , constant-depth Threshold-of-AC0 can

be learned to any constant accuracy ε in time n2Θ((log M)2/3)
.

An important ingredient in our proof is a recent 2O(d)n1−1/O(d) upper bound
on the total influence of degree-d polynomial threshold functions over n Boolean
variables, proved recently by [HKM09] and [DRST09]. In 1994 Gotsman and
Linial [GL94] conjectured a stronger bound, that every degree-d PTF has to-
tal influence O(d

√
n). We show that under the [GL94] conjecture our results

become significantly stronger: every size-M depth-d Threshold-of-AC0 circuit C
has Fourier concentration∑

|α|>t

Ĉ(α)2 ≤ ε for t =
2O(d)(log M)d

ε2

and consequently such circuits can be learned to constant accuracy in time
n2O(d)(log M)d

.
We extend the above results by giving Fourier concentration and learning

results for AC0 circuits with r threshold gates in arbitrary locations in the circuit.
We unconditionally learn such circuits with r = O((log M)1/3) many threshold

gates, to any constant accuracy, in time n2Θ((log M)2/3)
. Assuming the [GL94]

conjecture, we learn such circuits with r = O(log log M) to any constant accuracy
in time n2O(d)(log M)O(d)

. These results are achieved building on our results for
Threshold-of-AC0.

Lower bounds and separation results. To complement the positive (learn-
ing) results described above, in Section 6 we establish new lower bounds and
separation results for AC0 circuits augmented with threshold gates. These re-
sults separate the classes Majority-of-AC0 and Threshold-of-AC0 and highlight
some interesting contrasts between them.

1. Since Majority-of-AC0 is already known to be learnable in quasi-polynomial
time, our learning results are only of interest if Threshold-of-AC0 is actually a
broader class than Majority-of-AC0. We show that this is indeed the case, by
exhibiting a single threshold gate for which any equivalent depth-d Majority-
of-AC0 circuit must have size 2Ω(n1/(d−1)). (See Section 6.1.)

2. Beigel [Bei94] showed that any size-s, depth-d circuit that contains m Ma-
jority gates is computed by a size-2m(O(log s))2d+1

, depth-(d + 2) circuit with
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a single Majority gate at the root. We show that this size bound cannot be
improved to polynomial, by showing that a simple AND of two Majority
gates requires any constant-depth circuit with a single Majority gate at the
top (or even an arbitrary Threshold gate at the top) to have nΩd(log n) size.
(See Section 6.2.)

3. A natural question is whether Beigel’s result can be extended from Ma-
jority gates to arbitrary Threshold gates. Perhaps every AC0 circuit which
contains polylog(n) many Threshold gates is equivalent to a quasipoly(n)-
size Threshold-of-AC0? In fact the answer is no: we show that no ana-
logue of Beigel’s result is possible for Threshold gates, by showing that
any Threshold-of-AC0 circuit that computes the AND of two (high-weight)
Threshold gates must have exponential size. (See Section 6.3.)

4. We also give lower bounds for AC0 circuits with relatively many Thresh-
old gates. We prove that any AC0 circuit with ε logn Threshold gates can-
not compute parity, for a small constant ε > 0. Previously, Aspnes et al.
[ABFR94] proved this claim for AC0 with a single threshold gate at the top.
Beigel [Bei94] showed that any AC0 circuit must be augmented with nΩ(1)

many Majority gates in order to compute parity. Our bound allows for a
smaller number of gates augmenting the basic AC0 circuit, but the gates
(Threshold instead of Majority) are more powerful. (See Section 6.4.)

We note that the previous lower bounds on Threshold-of-AC0 due to [ABFR94]
apply to functions which have high PTF degree. This approach cannot be used
for results (1) and (2) above, where we are proving lower bounds against functions
which have low PTF degree. As mentioned above, using different techniques
Hansen [Han07] has established nΩ(log n) size bounds on AC0 circuits augmented
with up to ε log2 n threshold gates. Very recently V. Podolskii [Pod10] has shown
that any AC0 circuit augmented with O(log n) threshold gates that approximates
the parity function to high accuracy must have exponential size.

2 Preliminaries

2.1 MAC0 and TAC0 and TAC0[r]

Recall that a threshold function, or halfspace, over n variables is a Boolean func-
tion h : {−1, 1}n → {−1, 1}, h(x) = sign (

∑n
i=1 wixi − θ) , where w1, . . . , wn, θ

may be arbitrary real values. We will sometimes write Thr to denote a single
threshold gate and Maj to denote a single Majority gate, where the Majority
function is the threshold function for which each wi equals 1 and the threshold
θ equals 0.

A Threshold-of-AC0 circuit, or TAC0, is a circuit consisting of a threshold
function (with arbitrary weights and fanin) as the output gate and AC0 circuits
feeding into it. A depth-d TAC0 is one in which each of the AC0 circuits feeding
into the output threshold gate has depth at most d − 1. The size of a TAC0 is
the total number of gates (so in particular, in a size-M TAC0 each of the AC0

circuits is of size at most M).



592 P. Gopalan and R.A. Servedio

A Majority-of-AC0 circuit, or MAC0, is a TAC0 in which the top threshold
function is a majority gate.

Finally, we will also consider AC0 circuits that have r arbitrary Thr gates
buried at arbitrary locations in the circuit; we refer to such a circuit as a
“Threshold-of-r-AC0s”, or TAC0[r].

We give standard definitions of polynomial threshold functions, influence of
variables on Boolean functions, noise sensitivity, and the basics of Fourier anal-
ysis in the full version of the paper [GS10].

2.2 Random Restrictions and AC0

We write “ρ ∼ Rp” to indicate that ρ is a random restriction with parameter p.
Such a restriction ρ is chosen by independently fixing each variable to +1 or −1
each with probability 1−p

2 , and leaving the variable unfixed with probability p.
We write fρ to denote the function that results from applying ρ to f.

We will use several facts about the behavior of AC0 circuits under random
restrictions. The first of these facts is H̊astad’s Switching Lemma:

Lemma 1 ([H̊as86]). Let C be a depth-2 circuit (i.e. a DNF or a CNF) of
bottom fan-in s. Then Prρ[Cρ cannot be written as a depth-t decision tree] ≤
(5ps)t, where ρ is a random restriction with parameter p.

(The above statement is implicit in [H̊as86] and is made explicit in e.g. [H̊as01].)
Repeated applications of the Switching Lemma can be used to prove the following
in a rather straightforward way:

Lemma 2 ([LMN93], Lemma 2). If C is a size-M depth-d AC0 circuit, then
for any t ≥ 0 we have Prρ[Cρ cannot be written as a depth-t decision tree] ≤
M2−t, where ρ is a random restriction with parameter p = 1

10dtd−1 .

([LMN93] actually state a slightly weaker form in which the LHS is replaced by
“Prρ[deg(Cρ) > t].” It is easy to check that using Lemma 1, the [LMN93] proof
directly yields Lemma 2 as stated above.)

2.3 Sketch of the Random Restriction Argument

The high-level idea of our proof is quite simple, and is similar to that of [LMN93].
We show that when a TAC0 is hit with a random restriction, with high prob-
ability it collapses into a “much simpler function,” specifically a low-degree
PTF. Recent results on the Fourier concentration of low-degree PTFs due to
[DRST09, HKM09] let us infer that the original TAC0 must also have had good
Fourier concentration. In the rest of this section we elaborate on this argument.

We begin by recalling the basic outline of [LMN93]’s Fourier concentration
bound for AC0 circuits. It will be useful for us to view the [LMN93] argument
as proceeding in two stages:
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1. The first stage analyzes what happens to a size-M , depth-d AC0 circuit C
when it is hit with a random restriction with parameter p ≈ 1

(log M)d−1 (recall
that p is the probability that a variable “survives” the restriction, i.e. is left
unfixed). [LMN93] show that with high probability such a restriction causes
Cρ to collapse down to a (log M)-depth decision tree.

2. The second stage is the observation that a (log M)-depth decision tree T ,
being a degree log M polynomial, has extremely strong Fourier concentra-
tion:

∑
|α|>log M T̂ (α)2 = 0. Linial et al. then use the Fourier concentration

of Cρ to argue that the original AC0 function computed by C must have had
most of its Fourier weight at levels ≤ (log M)d.

Our argument for TAC0 has a similar high-level structure, but with some sig-
nificant differences in both stages. Let C now denote a size-M , depth-d TAC0

circuit.

1′. In the first stage, we consider hitting C with a “stronger” random restriction
with a smaller value of p (so fewer variables survive the restriction). We show
that with high probability such a restriction causes Cρ to collapse down to a
“low-degree” PTF of degree k � log M . The stronger restriction is necessary
since the results of [DRST09, HKM09] are non-trivial only when the degree
of the PTF is o(

√
log n).

2′. The results of [DRST09, HKM09] imply that Cρ must have some nontrivial
Fourier concentration. The Fourier concentration for Cρ is much weaker than
what one gets for decision trees, but one can adapt the original [LMN93]
argument to show that the original circuit C itself must have had some
Fourier concentration.

The conjecture of Gotsman & Linial significantly strengthens the bounds on total
influence and noise sensitivity of low-degree PTFs that are currently known; it
implies non-trivial bounds as long as the degree is o(

√
n). This in turn strength-

ens the Fourier concentration that we get for Cρ in Stage 2′, and hence also for
C. We present each of the stages of the above argument in as self-contained a
way as possible in Section 3. Section 4 puts the pieces together to prove the main
results.

3 Random Restrictions of TAC0

3.1 Stage 1: Collapsing TAC0 to a Low-Degree PTF

In this section we prove the following:

Lemma 3. Let C be a size-M , depth-d TAC0. Let ρ be a random restriction
with parameter p (specified below) and let k ≥ 1. Then for any 0 < p′ < 1, with
failure probability at most δ the function Cρ is a degree-k PTF, where

δ = M−2 + M5
(

4e log(M)p′

k

)k

and p =
1

10d−1(4 log M)d−2 · p′.
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Proof. The proof is conceptually quite simple. Let C = Thr(C1, . . . , C�) where
Thr is the topmost threshold gate, � ≤ M is its fan-in, and each Ci is an AC0

circuit of depth at most d−1 and size Mi, where M1, . . . , M� ≤ M . We view the
restriction ρ as being obtained in two steps. The first step collapses each Ci to a
decision tree of depth O(log M). The second step significantly reduces the depth
of each decision tree, down to k. After these two steps, with high probability
each Ci has collapsed down to (Ci)ρ which is a degree-k polynomial. Thus Cρ is
a PTF of degree k.

In the first step we take a random restriction ρ1 with parameter p1 =
1

10d−1(4 log M)d−2 . For a given i, Lemma 2 gives that with failure probability at
most Mi · M−4, the function (Ci)ρ1 is equivalent to a decision tree Ti of depth
4 logM . Summing failure probabilities over all i = 1, . . . , �, this occurs for every
Ci with overall failure probability at most (M1 + · · · + M�)M−4 ≤ M−2.

In the second step, we take a random restriction with parameter p′ (thus the
overall probability that a variable survives the combined restriction is p = p1p

′ as
desired). The following simple lemma analyzes the effect of a random restriction
on a depth-t decision tree:

Lemma 4. Let T be a depth-t decision tree and ρ be a random restriction with
parameter p′. Then for k ≥ 1, we have Pr[Tρ cannot be written as a depth-k
decision tree] ≤ 2t ((etp′)/k)k

.

Proof. Suppose that under ρ at most k variables survive in each root-to-leaf path
in T. Then it is clear that Tρ can be written as a decision tree of depth at most
k. So fix any given path of length at most t in T ; wlog the variables appearing
on this path are x1, . . . , xt. The probability that at least k of these variables
survive ρ is at most (

t

k

)
(p′)k ≤

(
et

k

)k

(p′)k =
(

etp′

k

)k

.

A union bound over all (at most 2t) paths in T finishes the proof.

We apply this lemma to each of the � ≤ M decision trees Ti from step 1, taking
t = 4 log M. A union bound gives that the probability that any Ti fails to have
its depth reduced to k is at most M · 2t · (etp′/k)k . Any decision tree of depth k
is exactly computed by a Fourier polynomial of degree at most k; the top-level
Thr gate takes the sign of a weighted sum of these polynomials, and we obtain
Lemma 3.

3.2 Stage 2: From Fourier Concentration of Cρ to Fourier
Concentration of C

We will use the following recent bound on the noise sensitivity of degree-k PTFs
due to Diakonikolas et al. [DRST09] and Harsha et al. [HKM09]:

Theorem 1. For any degree-k PTF f over {−1, 1}n and any 0 ≤ ε ≤ 1, we
have nsε(f) ≤ 2O(k) · ε

1
O(k) .
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The following simple result (Corollary 17 of [KOS04]) converts noise sensitivity
upper bounds to Fourier concentration bounds:

Lemma 5. Let f : {−1, 1}n → {−1, 1} be any Boolean function and let κ :
[0, 1/2] → R+ be an increasing function such that nsε(f) ≤ κ(ε). Then∑

|α|≥m

f̂(α)2 ≤ ε for m =
1

κ−1(ε/2.32)
.

Plugging in Theorem 1 gives the following Fourier concentration bound:

Corollary 1. For any degree-k PTF f over {−1, 1}n and any 0 ≤ ε ≤ 1, we
have ∑

|α|≥m(ε)

f̂(α)2 ≤ ε where m(ε) =
2Θ(k2)

εΘ(k) .

We now show that if fρ has good Fourier concentration (w.h.p. over the choice
of random restriction ρ), then f itself has good Fourier concentration. This is
done by the following lemma, adapting arguments from [LMN93]; the proof is
in the full version [GS10].

Lemma 6. Let f : {−1, 1}n → {−1, 1} and let t, p be parameters such that
pt > 8. Then ∑

|α|>t

f̂(α)2 ≤ 2Eρ[
∑

|β|>pt/2

f̂ρ(β)2],

where ρ is a random restriction with parameter p.

As an easy corollary of Lemma 6 we have the following:

Corollary 2. Let f : {−1, 1}n → {−1, 1} and let t, p be parameters such that
tp > 8. Suppose that with probability at least 1 − δ (over the choice of a ran-
dom restriction ρ with parameter p) the function fρ has Fourier concentration∑

|β|>pt/2 f̂ρ(β)2 ≤ ε. Then we have
∑

|α|>t f̂(α)2 ≤ 2ε + 2δ.

(This follows from the lemma because f̂ρ is a Boolean function and consequently
always has total Fourier weight at most 1.)

4 Proof of the Fourier Concentration Results for TAC0

Throughout this section C is a size-M , depth-d TAC0. The regime we are most
interested in is when the circuit size M is poly(n) and the error parameter ε is
something like a small constant; in particular, we are most interested in situations
where ε > M−1. (We note that even the Majority function has f̂([n])2 = Θ(1/n),
so Fourier concentration bounds for TAC0 must certainly be vacuous for ε < 1/n.)
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4.1 The Unconditional Result

Putting together all the pieces, we have established a Fourier concentration
bound for TAC0:

Theorem 2. Let C be a size-M , depth-d TAC0. Let ε ≥ 2M−2. Then C has
Fourier concentration

∑
|α|>t

Ĉ(α)2 ≤ 4ε for t =
(log M)Θ(d) · 2Θ((log M)2/3)

εΘ((log M)1/3)
. (1)

Proof. In Stage 1 we shall take (with foresight) k = (log M)1/3 and p′ =
k

4eM7/k log M
, so consequently p = k

(40 log M)d−1·e·M7/k . This choice of parame-
ters gives failure probability at most δ = 2M−2 in Lemma 3, so with this failure
probability we have that Cρ is a degree-k PTF which satisfies

∑
α≥m

f̂(α)2 ≤ ε where m =
2Θ((log M)2/3)

εΘ((log M)1/3)
.

In Step 3, we take t = 2m/p so tp/2 = m which is at least 8. Corollary 2 thus
gives us

∑
|α|>t

Ĉ(α)2 ≤ 2ε + 2δ where t =
(log M)Θ(d) · 2Θ((log M)2/3)

εΘ((log M)1/3)
.

Applying the well-known [LMN93] machinery for uniform distribution learning
of Boolean functions with good Fourier concentration, we get the following:

Corollary 3. Size-M depth-d TAC0 circuits can be learned to accuracy ε in time
nt where

t =
(log M)Θ(d) · 2Θ((log M)2/3)

εΘ((log M)1/3)
.

Thus as long as ε ≥ 1/2O((log M)1/3)) and d ≤ O((log M)2/3/(log log M)) this

gives an algorithm to learn size-M depth-d TAC0 in time n2Θ((log M)2/3)
, i.e. sub-

exponential time (2no(1)
) for any M = poly(n).

4.2 The Gotsman-Linial Conjecture and Its Consequences

In 1994 Gotsman and Linial [GL94] asked the question of what is the maximum
total influence of any degree-k PTF over n variables. They conjectured that the
symmetric function which changes sign on the k middle layers of the Boolean
hypercube has the highest total influence of any degree-k PTF (it is easy to
see that this function is indeed a degree-k PTF). Since each layer of edges in
the Boolean hypercube contains at most

√
n2n−1 edges, a direct consequence of

their conjecture (which is nearly equivalent to it for k = o(
√

n)) is the following:
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Conjecture 1 ([GL94]). Every degree-k PTF f over n variables has Inf(f) ≤
k
√

n.

We show that using our approach, Conjecture 1 yields significantly improved
Fourier concentration (and significantly more efficient learnability) for TAC0.
The noise sensitivity bounds of [DRST09] and [HKM09] follow from a bound of
2O(k)n1−1/O(k) on the average sensitivity of degree-k PTFs. This bound becomes
trivial for k = Ω(

√
log n), and hence we needed to use a very strong random re-

striction in order to reduce our initial TAC0 to a PTF of degree o(
√

log n). Conjec-
ture 1 implies that a weaker random restriction will suffice. We use the following
noise sensitivity and Fourier concentration consequences of the Gotsman-Linial
conjecture:

Corollary 4. If Conjecture 1 holds, then for any degree k PTF f over {−1, 1}n

and any 0 ≤ ε ≤ 1,

nsε(f) ≤ 2k
√

ε and
∑

|α|≥m

f̂(α)2 ≤ ε where m =
24k2

ε2
.

The first inequality follows from the reduction from total influence to noise
sensitivity for PTFs given in [DRST09] (see Section 7), and the second inequality
then follows from Lemma 5. We thus obtain:

Theorem 3. Let C be a size-M , depth-d TAC0. Let ε ≥ 2M−2. If Conjecture 1
is true, then we have

∑
|α|>t

Ĉ(α)2 ≤ 4ε for t =
2O(d)(log M)d

ε2
.

Proof. In Stage 1 we shall take k = log M and p′ = 10−4, so p = 1
10d+3(4 log M)d−2 .

Lemma 3 gives that with probability at least 1 − 2M−2, the function Cρ is a
degree-k PTF, in which case we have, for m = 24k2/ε2,

∑
|α|>m Ĉρ(α)2 ≤ ε. For

Stage 3, in Corollary 2 we take t = 2m
p = (c1 log M)d

ε2 for some absolute constant

c1. Corollary 2 thus gives us
∑

|α|>t Ĉ(α)2 ≤ 2ε + 2δ.

Similar to before, the [LMN93] low-degree algorithm gives us:

Corollary 5. If Conjecture 1 is true, then size-M , depth-d TAC0 can be learned
to accuracy ε in time

n
2O(d)(log M)d

ε2 .

This gives quasi-polynomial time learning for M = poly(n)-size TAC0 for any
constant (or even 1/polylog(n)) accuracy ε.
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5 Learning TAC0[r]

Our learning results can be extended from TAC0 circuits to TAC0[r] circuits for
small (but superconstant) values of r. The high-level approach is as follows: We
first prove a general result showing that if a class C has Fourier concentration,
then any R-junta-of-functions-from-C must also have fairly good Fourier con-
centration provided that R is not too large. We then argue that any TAC0[r] is
equivalent to a R-junta-of-TAC0 for R = (r + 1)2r. This lemma and the argu-
ments used in its proof are similar to arguments found in [BRS95]. Combining
the above two ingredients with the Fourier concentration bounds for TAC0 which
we obtained in Section 4, we get Fourier concentration bounds for TAC0[r].

Because of space limits here we only state the results and defer full proofs
to [GS10]. We show unconditionally that TAC0[O((log M)1/3)] circuits can be
learned in essentially the same time bound that we achieved for unconditionally
learning TAC0 circuits:

Theorem 4. The class of TAC0[O((log M)1/3)] circuits of size M and depth d
can be learned to accuracy ε (for ε > 2M−2) in time nt, where

t = (log M)Θ(d) · 2Θ((log M)2/3)ε−Θ((log M)1/3).

Assuming the Gotsman-Linial conjecture, we obtain

Theorem 5. If Conjecture 1 is true, then the class of TAC0[r] circuits of size
M and depth d can be learned to accuracy ε (for ε > 2M−2) in time nt, where

t = 2O(d+r) · (log M)3dε−3.

For constant d this gives quasi-polynomial time learning for r as large as
O(log log M).

6 Lower Bounds

6.1 MAC0 Cannot Compute TAC0

In this section we prove that there are TAC0 circuits that have no small equivalent
MAC0 circuit.

Theorem 6. There is a threshold function over N = O(n2) variables such that
any equivalent MAC0 circuit of depth d ≥ 2, d = Θ(1) must have size 2Ω(n1/(d−1)).

The desired function is the function Un,4n(x) defined by Goldmann et al. in
Section 4 of [GHR92] (all variables below take values ±1):

Un,4n(x) = sign(2rn,4n(x) + 1), rn,4n(x) =
n−1∑
i=0

4n−1∑
j=0

2ixij . (2)
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It is clear that Un,4n is a TAC0 circuit (of depth 1), consisting of a single threshold
gate over N = 4n2 input variables. It remains to show that any depth-d MAC0

circuit for Un,4n(x) must be large. We do this in two steps as follows. Suppose
that C is a depth-d, size-M MAC0 circuit that computes Un,4n(x). If M =
2Ω(n1/(d−1)) then there is nothing to show, so we assume M = 2O(n1/(d−1)). We
shall consider the effect of applying a random restriction with parameter r =

1
10d−1sd−2 to C, where we select s = 3 log M. We establish the following two
lemmas in [GS10]:

Lemma 7. With probability at least 1 − M−1 over the random choice of ρ, the
function (Un,4n)ρ is a polynomial threshold function of total weight at most M7.

Lemma 8. With probability at least 1 − 2n−2 over the random choice of ρ, the
function (Un,4n)ρ has a sub-function (obtained by possibly fixing some additional
variables in (Un,4n)ρ) that is equivalent, up to renaming variables, to Um,4m

where m = Ω(n/(log M)d−2).

Fix a restriction ρ that satisfies both Lemmas (such a ρ must exist since each
of the two events has probability greater than 1/2). The function Um,4m is a re-
striction of the function (Un,4n)ρ from Lemma 7, and thus (Um,4m)ρ must have
a polynomial threshold function of weight at most M7. However, the discussion
following Corollary 8 of [GHR92] shows that the total weight of any PTF for
Um,4m must be at least Ω(2m/2/

√
m). Since m = Ω(n/(log M)d−2), straightfor-

ward manipulation yields the desired lower bound M = 2Ω(n1/(d−1)).

6.2 Lower Bounds on MAC0

Beigel [Bei94] showed that any size-s, depth-d circuit that contains m Maj gates
is computed by a size-2m(O(log s))2d+1

, depth-(d + 2) circuit with a single Maj
gate at the root. It is natural to ask whether this simulation can be improved
to a polynomial-size (rather than quasi-polynomial) Maj of AC0. In this section
we observe that no such strengthened version of Beigel’s theorem can exist, by
proving that there is no polynomial-size MAC0 (or even TAC0) for an AND of
two Maj gates:

Theorem 7. For any constant d, any TAC0 circuit of depth d that computes
f(x, y) = Maj(x1, . . . , xn) ∧ Maj(y1, . . . , yn) must have size nΩd(log n).

Proof. The proof is by contradiction. Let M = no(log n) and let C be a depth-d
TAC0 of size M that computes f(x, y). We analyze the effect of hitting C with a
very strong random restriction ρ, one which has parameter p = n−0.1. It is easy
to see that with extremely high probability – much more than 1/2 – fρ turns
into some function of the form

fρ(x, y) = sign(
∑
i∈S1

xi + C1) ∧ sign(
∑
j∈S2

yj + C2),
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where |S1|, |S2| ≥ n0.8 and |C1|, |C2| ≤ n0.51. For any such ρ, by fixing at most
2n.51 additional variables, we get Maj(x′) ∧ Maj(y′) where x′, y′ are Ω(n0.8)-bit
strings. By the recent result of Sherstov [She09], any PTF for this function must
have degree at least c1 log n for some absolute constant c1 > 0.

On the other hand, let us consider what happens to the TAC0 C under such a
strong random restriction using Lemma 3. Since p = n−0.1, we have p′ = n−0.1 ·
10d−1(4 logM)d−2 < n−0.09 for n sufficiently large. Taking k = (c1/2) logn,
Lemma 3 gives us that Cρ has a PTF of degree at most (c1/2) logn with failure
probability at most

M−2 + M5(4e log(M)p′/k)k = M−2 + M5n−Ω(log n) < 1/2

since M = no(log n). Thus, there must be some restriction ρ such that fρ has
PTF degree at least c1 log n, but Cρ has PTF degree at most (c1/2) logn. This
contradiction proves the theorem.

Aspnes et al. [ABFR94] prove lower bounds on the size of TAC0 circuits that
compute various functions such as parity. The method of [ABFR94] is useful
for functions that have high weak PTF degree (such as parity). In contrast, our
argument above gives us a TAC0 lower bound for the function Maj(x) ∧ Maj(y),
which is known [BRS95] to have PTF degree only O(log n).

6.3 Lower Bounds on TAC0

We prove that no analogue of Beigel’s theorem [Bei94] is possible for Thr gates:
even an AND of two Thr gates may require a TAC0 of more than quasi-polynomial
size. The proof (see [GS10]) is similar to that of Theorem 7, it uses a recent result
of Sherstov [She09] showing that the function f(x, y) = Un,4n(x)∧Un,4n(y) (see
Section 6.1) has PTF degree Ω(n).

Theorem 8. Fix any absolute constant d. Any TAC0 circuit of depth d that
computes f(x, y) = Un,4n(x) ∧ Un,4n(y) must have size 2Ω(n1/(d−1)).

6.4 Lower Bounds on TAC0[t(n)]

Inspection of the proof of Theorem 4 is easily seen to imply that the parity
function cannot be computed by a TAC0[(log n)2/3] circuit. In the full version
[GS10] we give an improved bound that allows up to O(log n) threshold gates.

Theorem 9. Fix any absolute constant d. Any poly(n)-size, depth-d TAC0[t(n)]
circuit that computes the parity function must have t(n) = Ω(log n).
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Abstract. A “lifting” of a Markov chain is a larger chain obtained by replacing
each state of the original chain by a set of states, with transition probabilities de-
fined in such a way that the lifted chain projects down exactly to the original one.
It is well known that lifting can potentially speed up the mixing time substan-
tially. Essentially all known examples of efficiently implementable liftings have
required a high degree of symmetry in the original chain. Addressing an open
question of Chen, Lovász and Pak, we present the first example of a successful
lifting for a complex Markov chain that has been used in sampling algorithms.
This chain, first introduced by Sinclair and Jerrum, samples a leaf uniformly at
random in a large tree, given approximate information about the number of leaves
in any subtree, and has applications to the theory of approximate counting and to
importance sampling in Statistics. Our lifted version of the chain (which, unlike
the original one, is non-reversible) gives a significant speedup over the origi-
nal version whenever the error in the leaf counting estimates is o(1). Our lifting
construction, based on flows, is systematic, and we conjecture that it may be ap-
plicable to other Markov chains used in sampling algorithms.

1 Introduction

1.1 Background and Motivation

As the field of Markov chain Monte Carlo (MCMC) algorithms matures, attention is
turning to refinements of these algorithms with improved running times. A general
framework for speeding up MCMC algorithms, known as “lifting,” was introduced ten
years ago by Chen, Lovász and Pak [2]. A lifting of a Markov chain M is a larger
chain M′ obtained by replacing each state of M by a set of states; the lifting is re-
quired to preserve the structure of M in the sense that the obvious projection obtained
by merging appropriate states of M′ gets us back to M itself. (See Section 2 for a
precise definition.) The intriguing fact, first observed by Diaconis, Holmes and Neal [4]
and explored further by Chen, Lovász and Pak [2], is that lifting can in certain cases
reduce the mixing time of the chain substantially, and hence potentially improve the
running time of algorithms in which it is used.
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Fig. 1. (a) Simple random walk on a path of length n. (b) The lifted walk; dotted ovals indicate
nodes that project to the same node in the original walk.

The simplest example of lifting, due to [4], is for simple random walk on the path
of length n, with uniform stationary distribution. The mixing time of this chain is well
known to be Θ(n2). This chain can be lifted by replacing each node by a pair of nodes,
with the two sets of copies connected in two directed paths with opposite senses, and
bidirected crossing edges between the paths. (See Fig. 1.) If the crossing probabilities
are chosen appropriately (of order 1/n), then the mixing time drops to Θ(n). The lift-
ing achieves this speedup by almost eliminating the diffusive behavior of the original
symmetric walk, and instead giving the walking particle “momentum” in its current
direction of travel. In particular, after t < n steps the lifted walk will typically be at
distance Θ(t) from its starting point, in contrast to Θ(

√
t) for the original walk.

This idea was extended by Chen et al. [2] to random walks on Cayley graphs. The
strategy, roughly, is to lift the state space Ω to Ω×{1, . . . , r} where each i ∈ {1, . . . , r}
is associated with a generator, and then to give the walk momentum around a carefully
chosen cycle through the generators. The authors give several examples of significant
speedups using this construction.

Chen et al. also give a general lifting construction that applies to arbitrary Markov
chains, and achieves a mixing time of O(ρ), where ρ is a multicommodity flow param-
eter (in the original chain) that is almost the inverse of the more familiar “conductance”
(or sparsest cut); they also show that this is essentially best possible. Unfortunately,
however, this construction is in general not feasible to implement, as simulating even
one step of the lifted chain may be as hard as sampling from the stationary distribu-
tion π. Chen et al. pose the open question whether lifting can be used to speed up actual
sampling algorithms.

In this paper we prove what is apparently the first result in this direction. We re-
visit a Markov chain introduced by Sinclair and Jerrum [26] which samples a leaf of
a tree uniformly at random given crude estimates of the number of leaves in each sub-
tree. This Markov chain was used in [26] to prove that approximate counting for all
self-reducible problems in #P is robust, in the sense that such problems either have
a fully-polynomial randomized approximation scheme, or cannot be approximated in
polynomial time within any polynomial factor (even, say, n100). It was also used in
the same paper to give a polynomial time algorithm for uniformly generating random
graphs with specified vertex degrees, based on analytic estimates for the number of such
graphs [22].

To describe the setting more precisely, let T be a binary1 tree, all of whose leaves
are at the same depth d. Our goal is to sample a leaf of T uniformly at random, in time

1 We make this assumption for simplicity of presentation only; T may in fact have an arbitrary
branching factor.
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polynomial in d. This fundamental problem goes back at least to Knuth [17]. Suppose
we are given partial information about T in the form of an estimate Ñv of the number
of leaves Nv in the subtree rooted at each node v. This estimate is guaranteed to be
within ratio 1 + δ, i.e., (1 + δ)−1Nv ≤ Ñv ≤ (1 + δ)Nv. (Such estimates may be
available, e.g., from a crude approximate counting algorithm as in the abstract frame-
work of [26], from analytic approximations as for graphs with given degrees in [22],
or from the solution of idealized approximations as in the derivative pricing framework
discussed in [3]. In the Statistics literature, the use of such estimates is often referred
to as “importance sampling.”) If δ = O( 1

d ) then we can solve the problem rather easily
by choosing a random path from the root to a leaf, branching left or right at each node
with probabilities proportional to the counting estimates at its two children. Because of
the bound on δ, we will accumulate at most a constant bias at the leaves, which can
be eliminated by “rejection sampling” with a constant number (in expectation) of re-
peated trials. (In rejection sampling, if a leaf � is sampled with probability p� then we
output the leaf with probability p∗/p�, where p∗ is a lower bound on p� for all �, and
start again otherwise. The reader is referred to the full version of the paper for a de-
tailed discussion of rejection sampling, including a comparison with the Markov chain
approach.)

For larger values of δ the above approach breaks down. To overcome this obstacle,
Sinclair and Jerrum [26] introduced a more involved sampling algorithm that runs in
polynomial time provided δ is bounded by any constant (or indeed, by any polyno-
mial in d). This algorithm works by simulating a Markov chain on T whose transition
probabilities are proportional to the edge weights Ñv (where we think of Ñv as being
associated with the edge whose lower endpoint is v). Note that transitions from a node
to its parent are allowed, so backtracking occurs. The stationary distribution of this
Markov chain is easily seen to be uniform over leaves, and to put a constant fraction
of its weight on the leaves.2 Perhaps surprisingly, the mixing time for δ = O(1) was
shown in [26] to be Õ(d2), implying that the algorithm outputs a uniformly random
leaf with bias ε in expected time Õ(d2 log ε−1). The intuition for the effectiveness of
this algorithm is that an overestimate Ñv , which leads the chain to choose a downward
edge to v with too large probability, also acts to increase the probability of backtracking
from v; thus the process is “self-correcting.” We note also that the Ω(d2) dependence
on d is unavoidable as, even in the case of perfect estimates (δ = 0), the process reduces
to symmetric random walk on the levels [0, d].

1.2 Results

In this paper we consider lifting the above Markov chain in the regime δ ∈ [ 1d , 1]. (Re-
call that the problem is trivial for δ = O( 1

d ).) Our main result is a (non-reversible)
lifting that speeds up the mixing time to O(δd2) throughout this range. Thus our lifted
chain interpolates smoothly between a trivial linear time rejection sampling algorithm
when δ = O( 1

d ) and the Sinclair-Jerrum quadratic time algorithm when δ = Ω(1). In
particular, for all δ = o(1) the lifted chain overcomes the Ω(d2) diffusion lower bound

2 The original chain in [26] puts weight O(1/d) on the leaves; a simple modification, which we
provide, improves this to a constant with the same bound on mixing time.
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on the mixing time of the original chain. (For example, when δ = O( 1√
d
), we are able

to sample leaves in time O(d3/2).) We leave open the question of whether a fast lifting
exists for larger values of δ.

We believe that the main interest value of this result is as the first application of
lifting to a complex Markov chain used in random sampling.3 However, we briefly
mention as an example one potential concrete application. Let g = (g1, . . . , gn) be
a graphical degree sequence on n vertices, and suppose we wish to sample a ran-
dom graph in which vertex i has degree gi for each i. We can construct such graphs
edge-by-edge, giving rise to a “self-reducibility tree” in which each node corresponds
to a partial graph (of edges previously chosen) and a residual degree sequence; the
leaves of the tree are precisely the desired graphs (see [26] for details). Note that
the depth of this tree is d = |E(g)|, the number of edges in the graphs. Classical
work of McKay [22] (see also [10,23]) provides analytical estimates for the num-

ber of graphs with given vertex degrees that are within ratio 1 + O( g4
max

|E(g)|), where
gmax = maxi gi. In [26] the Sinclair-Jerrum Markov chain was used with these es-
timates to sample graphs from sequences in which gmax = O(|E(g)|1/4). The lift-
ing in the present paper would potentially improve the mixing time of this Markov
chain from Õ(|E(g)|2) to O(g4

max|E(g)|), which is significantly less when gmax �
|E(g)|1/4.

Since our construction is the main contribution of the paper, we say a few words
about it here. We stress that the construction is purely local and can be implemented
efficiently, unlike the optimal liftings discussed in [2]. Our lifting creates two copies
of the tree, having “upward” and “downward” momentum respectively. To eliminate
diffusive behavior, we need to arrange for small crossing probabilities between the two
copies; this we achieve using a “flow cancellation” idea that is facilitated by our view
throughout the paper of Markov chains as flows. Another key ingredient is smoothing of
the holding time distribution at some nodes; we achieve this by lifting certain self-loops
in the original chain to two-state “traps.” This smoothing makes possible our analysis
of the mixing time via a non-Markovian coupling argument.

While some of the above features can be identified with hindsight in the efficient
liftings of [4,2], our construction is considerably more general and systematic. In par-
ticular, we do not exploit strong symmetries in the original Markov chain which make
the liftings in those papers rather simpler to construct and to analyze. Indeed, in our
case the original Markov chain is not at all symmetrical, as the tree may have arbitrary
structure and its edge weights may vary arbitrarily within their respective ranges. For
the same reason, the tree is also very far from the one-dimensional processes analyzed
in [4,7,8]. We conjecture that our flow-based approach may lead in future to a sys-
tematic framework for constructing liftings in a larger class of Markov chains where it
is possible to identify generalized “directions” along which momentum can be
defined.

In the full version of the paper, we discuss alternative approaches to the leaf-sampling
problem for δ ∈ (0, 1] based on rejection sampling combined with Markov chain Monte
Carlo.

3 We mention that, in hindsight, the “hit-and-run” Markov chain [19] used for sampling points
in a convex body has the flavor of a “lifting” of the more classical “ball walk” [20]. We return
to this point in Section 5.
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1.3 Related Work

The first authors to implicitly discuss lifting of Markov chains to speed up mixing were
Diaconis, Holmes and Neal [4], who observed that the mixing time of simple random
walk on a path of length n can be improved from Θ(n2) to Θ(n). They also proposed
an extension to more general one-dimensional chains with non-uniform stationary dis-
tribution, but did not provide bounds on the mixing time. Such an extension was subse-
quently analyzed by Hildebrand [7,8], who showed that a similar acceleration to Θ(n)
occurs when the stationary distribution is log-concave.

Chen, Lovász and Pak [2] studied lifting in a more general framework. In addition to
giving several examples of liftings for random walks on Cayley graphs, they also proved
general results on the scope and limitations of lifting. For example, they show that the
best possible lifting of any given Markov chain has mixing time (suitably defined) Θ(ρ),
where ρ is the flow parameter mentioned earlier. Since the mixing time is always Õ(ρ2),
the optimal speedup via lifting is at most roughly a square root. Chen et al. also give a
theoretical construction that achieves this optimal lifting (up to a constant factor) for an
arbitrary Markov chain; however, as mentioned earlier, this construction is in general
not efficiently implementable. Moreover, they show that if the lifted Markov chain is
reversible then the speedup obtainable is (relatively) negligible; hence any useful lifting
needs to be non-reversible (as are all the liftings mentioned in this paper).

Jung, Shah and Shin [14] build on the work of Chen et al. by considering the prob-
lem of minimizing the size of the lifted Markov chain while still achieving a similar
speedup. This measure has applications to distributed algorithms for computing aver-
ages in networks, which the same authors discuss in [15].

We mention that all of the above lifting constructions, like our own, seek to elimi-
nate or reduce diffusive behavior in the Markov chain. This is also the idea behind other,
more classical techniques for speeding up Markov chain Monte Carlo algorithms, no-
tably Hybrid Monte Carlo [5] and Horowitz’s method [9] (see also [27] for more recent
work in this direction). However, to the best of our knowledge, these methods lack
rigorous analysis in non-trivial examples.

The problem of sampling leaves of a tree can be traced back at least to Knuth [17] in
his work on estimating the efficiency of branching programs. Knuth sampled leaves by
branching uniformly to children regardless of the number of leaves in the corresponding
subtree, which yields a non-uniform distribution {p�} over leaves �; he then used the
quantity p−1

� as an unbiased estimator of the number of leaves in the tree. This can be
seen as the origin of the rejection sampling approach mentioned earlier. A paper by
Rosenbaum [24] provides some further analysis and refinement of Knuth’s scheme.

The Markov chain approach to leaf sampling appeared in the work of Sinclair and
Jerrum [26], where the main application was to show robustness of approximate count-
ing for self-reducible problems. The version of the Sinclair-Jerrum chain presented here
is slightly more efficient than the original one. The same paper also applied this Markov
chain to give the first polynomial time sampling algorithm for subgraphs of a given
graph that have specified vertex degrees, under certain constraints on the maximum de-
gree, using the fact that analytic approximations exist for the number of such graphs
(see, e.g., [22]). For subsequent developments on this problem, see [11,16,1].
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2 Preliminaries

2.1 Markov Chains, Liftings and Mixing Times

Markov chains. Let Ω be a finite state space. We shall specify Markov chains on Ω
using the following weighted graph framework.

A reversible chain is specified by an undirected graph G = (Ω, E) (possibly with
self-loops) with a positive weight Qe on each edge e ∈ E. Transitions from any vertex
u ∈ Ω are made with probabilities proportional to the edge weights: i.e., the transition
probability from u to v is P (u, v) = Q(u,v)

Wu
, where Wu =

∑
e�u Qe is the sum of the

edge weights incident at u.
This Markov chain is easily seen to be reversible with respect to the distribution

π(u) = Wu

W , where W :=
∑

u Wu (i.e., π is proportional to the weighted vertex de-
grees). As is well known, if G is connected and not bipartite (e.g., a single self-loop
suffices) then it is ergodic and converges to π from any initial state. Note that the edge
weights Qe are, up to scaling by W , the ergodic flows in the stationary distribution; i.e.,
Q(u,v) = Wπ(u)P (u, v) = Wπ(v)P (v, u) = Q(v,u).

The above framework can be extended to general, non-reversible Markov chains by
making G directed and requiring that the edge weights Qe satisfy the flow condition∑

u:(u,v)∈E Q(u,v) =
∑

u:(v,u)∈E Q(v,u) =: Wv for all v ∈ Ω. If G is strongly con-
nected and aperiodic (again, a single self-loop suffices) then it again converges to the
unique stationary distribution π(v) ∝ Wv . Again Qe is proportional to the ergodic flow
along (directed) edge e.

Mixing times. For an ergodic Markov chain (Xt)t≥0 on Ω with stationary distribu-
tion π, any x ∈ Ω and any ε ∈ (0, 1], we define

τx(ε) = min{t : ‖ηx,t − π‖ ≤ ε},

where ηx,t denotes the distribution of Xt (the state at time t) starting from initial state
X0 = x, and ‖ · ‖ is total variation distance. We will refer to τx(ε) as the mixing time
starting from state x. The mixing time, τ(ε), is defined as the maximum over x ∈ Ω of
τx(ε). We shall sometimes abuse terminology by dropping the dependence on ε from
the mixing time.

In this paper we will bound the mixing time using couplings. By a coupling of a
Markov chain, we mean a joint distribution (Xt, Yt)t≥0 such that the two random pro-
cesses (Xt)t≥0 and (Yt)t≥0, considered separately, each obey the transition rule for the
given chain. In addition, if Xt = Yt then we require Xt′ = Yt′ for all t′ ≥ t. One way of
defining such a coupling is to specify a suitable transition matrix indexed by the product
space Ω×Ω, thereby defining a Markov chain with this state space. As long as the two
marginal transition probabilities agree with the original Markov chain, this defines a
coupling, often referred to as a “Markovian coupling.” However, in general, couplings
are not required to be Markovian, and in fact, even conditioned on the previous states
Xt−1, Yt−1, it is perfectly possible for the state Xt to be correlated non-trivially with
the sequence of states Y0, . . . , Yt−2 (as will be the case for the coupling we define in
Section 4).

When we speak of couplings in the present paper, we will always mean that a class of
couplings has been defined, one for each possible initial pair of states (X0, Y0). We say
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that the coupling has coalesced by time t if the event {Xt = Yt} occurs. The following
theorem relates the mixing time to the worst-case time until coalescence, and dates back
to work of Doeblin in the 1930’s (see [18]).

Theorem 2.1 (Coupling Theorem). Let (Xt, Yt)t≥0 be any coupling of a Markov
chain on state space Ω, and define

τcouple(ε) = max
(X0,Y0)∈Ω×Ω

min{t : Pr[Xt �= Yt] ≤ ε}.

Then, for every ε > 0, τ(ε) ≤ τcouple(ε).

Liftings. Let M and M̂ be Markov chains on finite state spaces Ω, Ω̂ respectively. We
use Q, π to denote the flows and stationary distribution of M, and Q̂, π̂ for the same
quantities in M̂.

We say that M̂ is a lifting of M if there is a function f : Ω̂ → Ω such that

Q(u,v) =
∑

x∈f−1(u), y∈f−1(v)

Q̂(x,y) for all u, v ∈ Ω. (1)

Informally, if we “collapse” M̂ by merging into a single state all states that have the
same image under f , and aggregate the flows between these merged states, then we
obtain precisely the chain M. Note that equation (1) can be viewed as a homomorphism
between flows. An immediate consequence of (1) is that π(v) =

∑
x∈f−1(v) π̂(x) for

all v ∈ Ω. The reader may wish to verify that the construction in Fig. 1 is indeed a valid
lifting. We observe that our definition of lifting based on flows makes it particularly easy
to design liftings for a given Markov chain (cf. the equivalent definition given in [2]).

Note that M̂ may be non-reversible even when M is reversible. Indeed, as Chen
et al. [2] show, to substantially speed up a reversible chain one must consider non-
reversible liftings. (Note that the lifting in Fig. 1(b) is non-reversible.)

2.2 Approximate Counting and Leaf Sampling

Framework. Let T = (V, E) be a binary4 tree with root r, all of whose leaves are at
the same depth d. As discussed in the Introduction, our goal is to sample a leaf of T
u.a.r. We think of T as being very large, so we want an algorithm that is polynomial in
the depth d of T .

For each node v, let Nv denote the number of leaves in the subtree rooted at v. (Thus
N := Nr is the total number of leaves of T , and Nv = 1 for each leaf v.) We are given
an estimate Ñv of each Nv satisfying

(1 + δ)−1Nv ≤ Ñv ≤ (1 + δ)Nv, (2)

and Ñv = Nv = 1 for leaves v.5

4 The assumption that the tree is binary is made for simplicity of presentation only.
5 Note that it is not necessary to know the structure of T a priori: since (2) implies that Nv = 0

(the subtree below v is empty) iff Ñv = 0, we can actually infer the structure of T locally
from the estimates Ñv for all vertices v.
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Throughout the paper, unless otherwise stated, we will assume that δ lies in the
range [ 1d , 1]. The case when δ = O(1/d) is of little interest, since in this case, as noted
in the Introduction, there is a simple linear time sampling algorithm based on rejection
sampling. On the other hand, for larger values, δ = Ω(1), our lifting construction cannot
offer more than a constant factor speedup over the original Sinclair-Jerrum Markov
chain, which we now describe.

The Sinclair-Jerrum chain. Sinclair and Jerrum [26] proposed a reversible Markov
chain for sampling leaves from a uniform distribution in polynomial time, even when
δ is an arbitrarily large constant (or indeed polynomially large in d). We specify the
chain by giving the flows Qe on each edge of T . We set Qe = Ñv, where v is the lower
endpoint of e. Additionally we introduce at each non-leaf node a self-loop of weight
Q(v,v) equal to the total weight of the other edges incident at v, and at each leaf v a
self-loop of weight Q(v,v) = 4d − 1. (Thus the self-loop probabilities are 1

2 for non-
leaves and 1 − 1

4d for leaves.) The self-loops of 1
2 are a standard device to make the

chain aperiodic (the resulting chain is usually called “lazy”). The large self-loops at
the leaves are included to ensure that the stationary distribution puts large weight on
the leaves6.

As discussed above, the stationary distribution is given by π(v) ∝ Wv , where Wv :=∑
e�v Qe is the sum of the edge weights incident at v. Now for any non-leaf node v,

since Wv = 2(Ñv +
∑

u a child of v
Ñu) we have Wv ∈ [4(1 + δ)−1Nv, 4(1 + δ)Nv]. And

for any leaf v we have Wv = 4d. This implies the following properties of the stationary
distribution π:

1. π is uniform over the leaves.
2.

∑
v a leaf

π(v) ≥ 1
2+δ . [To see this, note that the sum of Wv over all nodes v in any

level above the leaves is at most 4(1 + δ)
∑

v Nv = 4(1 + δ)N , while the sum
of Wv over leaves is 4dN .]

Therefore, we can sample leaves as follows. Simulate the Markov chain, starting from
the root, until the distribution is close to π. If the final node is a leaf then output it, else
fail and repeat. This gives us an almost uniformly distributed leaf (within any desired
variation distance ε) in expected time O(τr(ε)), where τr(ε) is the mixing time starting
from the root r. The following theorem, which is a slightly improved version of the
original result of Sinclair and Jerrum [26], bounds the mixing time. A proof is given in
the full version of the paper.

Theorem 2.2. For any δ ≥ 0, the mixing time of the Sinclair-Jerrum chain starting
from the root satisfies τr(ε) = O(d2(1 + δ)2 log(dε−1)).

Thus, for δ bounded by a constant (which is our range of interest in this paper), the
mixing time is Õ(d2). (The Theorem actually also shows that the mixing time remains
polynomial for any δ ≤ poly(d).)

We note that a lower bound of Ω(d2) follows easily, even in the case where the
counting estimates are all exact (i.e., Ñv = Nv ∀v), since the height of the walking

6 The construction in [26] did not include these large self-loops; this simple modification actu-
ally leads to greater efficiency, since without it a leaf is sampled only with probability O( 1

d
),

leading to a factor O(d) overhead in the time to output a leaf.
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particle then behaves like symmetric random walk on [0, d]. Our main goal in this paper
is to give a lifting that improves the above mixing time to O(δd2), thus beating the
Ω(d2) lower bound for all δ = o(1).

3 The Lifted Chain

We will define a non-reversible lifted Markov chain having exactly two states for every
node of the tree, with the exception of the root which will only have one lifted state.
Roughly speaking, one set of these nodes correspond to “particles with downward mo-
mentum,” and the others to “particles with upward momentum.” The root and the leaves
are exceptions. In the case of the root there is no need for the “upward” copy, so we re-
tain just a single root node. In the case of a leaf we correspondingly have no need for a
“downward” copy; however, we do need a second copy to act as a “trap” node, whose
purpose will be to give the distribution of the departure time from the leaf a heavier tail
than that provided by the self-loop in the original chain. We describe our construction
in three steps:

Step 1: Lazy edges become 4-cycles. Let e be any non-loop edge in the original tree,
joining nodes v, w, and with bidirectional flow Qe through it. In the lifted chain, the
original node v corresponds to two nodes, v+ and v−, and likewise for w. Suppose v is
the parent of w. The new chain has a directed 4-cycle, (v+, w+, w−, v−), with each of
the four directed edges carrying flow Qe. Under the “projection” sending v+, v− �→ v
and w+, w− �→ w, this directed 4-cycle maps down to the original bidirectional flow Qe

on edge e, plus self-loops at v and w, each also of flow Qe. Note that Qe is exactly the
contribution of edge e to the lazy self-loops at v, w in the original chain. (See Fig. 2(a).)

v+ v−

w−w+

v

w
Qe

Qe Qe

Qe

Qe

Qe

Qe

v+

v

w

Qe Qe

Qe

Qe

Qe

v−

wtrap

wmain

4d−1 1/(δd)

4d−1−2/(δd)(a) (b)

Fig. 2. (a) Lifting of an internal edge {v, w}. (b) Lifting of a leaf node w.

Applying the above construction to every non-loop edge e in the original tree yields
a directed flow which exactly projects back onto the original undirected flow, with the
sole exception of the large self-loops on the leaves.

Before proceeding, we first modify the above construction slightly. In the case when
w is a leaf and e = {v, w} is the edge joining it to its parent, our lifted flow looks
slightly different. In this case, the self-loop of flow Qe at v, and the bidirectional flow
Qe on e lift to a directed 3-cycle, (v+, wmain, v−), with each of the three edges carrying
flow Qe. Similarly, in the case when v = r is the root and e = {v, w} is the edge joining
it to one of its children, the self-loops of flow Qe at v and w, and the bidirected flow Qe
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on e lift to a directed 3-cycle, (r, w+, w−), plus a self-loop at r, with each of these four
edges carrying flow Qe.

Step 2: Set traps at the leaves. Let w be any leaf of the original tree. In the lifted
chain, there will be two nodes, wmain and wtrap, corresponding to w. We next describe
the lifted version of the self-loop of flow 4d − 1 at w. This consists of a self-loop of
flow 4d − 1 − 2

δd at wtrap, together with a bidirectional flow of 1/(δd) between wmain

and wtrap. (See Fig. 2(b).)

Step 3: Cancel the crossing edges. After the above two steps we have a lifted flow
which projects down onto the original flow. However, in order to avoid the diffusive
behavior of the original Markov chain, we need to reduce the “crossing flows” between
nodes v+ and v−. We do this in a systematic way which preserves the projection onto
the original flow. Let v be a non-leaf node in the tree, with flow Qup to its parent and
aggregated flow Qdown to its children. Then, as described in Step 1, we have crossing
flows of value Qup from v+ to v−, and Qdown from v− to v+.

Let Qmin = min{Qup, Qdown}. We now cancel Qmin of the crossing flow in each
direction, replacing it with self-loops at v+ and v−, each of flow Qmin. This leaves
us with crossing flow in just one direction, of value |Qup − Qdown|. Note that this
modification does not violate the flow condition, nor does it change the projection onto
the original Markov chain. (See Fig. 3.)

w+
1 w−

1 w−
2w+

2

v+ v−

u−u+

Q2

Q2Q2 Q1
Q1

Q1

Qup

Qup Qup

Qup

Qdown

w+
1 w−

1 w−
2w+

2

v+ v−

u−u+

Q2

Q2Q2 Q1
Q1

Q1

Qup Qup

Qup

Qdown Qdown

Qup−Qdown

Fig. 3. Cancelling the crossing edges. Here Qdown = Q1 + Q2, where Q1, Q2 are the flows
between node v and its two children. The diagram assumes that Qup ≥ Qdown.

Since each step of the above construction preserves the lifting condition (1), the
resulting chain is indeed a lifting of the Sinclair-Jerrum chain defined in Section 2.2.
An immediate consequence is that the stationary distribution π̂ is the pull-back of π
along the projection, and hence has the desired properties on the lifted copies of the
leaves, namely that it projects down to a uniform distribution over the leaves having
probability mass at least 1/(2+δ). Thus, in order to use our lifted chain as an improved
sampler of leaves, all that remains is to prove that its mixing time is faster than the
original undirected chain.

4 Analysis of the Lifted Chain

In this section we prove our main result, which is the following bound on the mixing
time of the lifted chain of the previous section. As we have noted earlier, the mixing



612 T.P. Hayes and A. Sinclair

time overcomes the Ω(d2) diffusion lower bound for the original chain for all δ = o(1),
and interpolates smoothly between the trivial O(d) rejection sampling algorithm for
δ = O( 1

d ) and the original Õ(d2) Sinclair-Jerrum algorithm for δ = Ω(1).

Theorem 4.1. For any δ ∈ [ 1d , 1], the mixing time of the lifted Markov chain defined in
Section 3 satisfies τ(ε) = O(δd2 log(1/ε)).

Proof. We proceed by constructing a non-Markovian coupling for the lifted chain. Let
X0 �= Y0 be arbitrary states of this lifted chain. We will define a coupled joint evo-
lution (Xt, Yt)t≥0 in such a way that each of (Xt) and (Yt), considered separately,
obeys the law of our lifted Markov chain. We will do this in three asynchronous stages.
First, let (Xt), (Yt) each run independently until reaching the root, r, at times ρX , ρY ,
respectively.

Subsequently, let both (Xt) and (Yt) follow the same trajectory until they reach a
“leaf trap” node, at respective times σX and σY = σX +(ρY − ρX). Since ρX may not
equal ρY , this portion of the coupling is non-Markovian.

The third stage is empty for whichever chain had reached the root later, and lasts for
|ρX − ρY | steps for the chain that reached the root earlier. This means that at the end
of the third stage, the same (random) number of time steps will have elapsed for both
chains. Also note that, since both chains begin stage 3 at the same leaf trap node, there
is at least a probability of

(1 − 1/((δd)(4d − 1 − δd)))|ρX−ρY | = exp(−O(|ρX − ρY |/(δd2))) (3)

that both chains remain at this node throughout stage 3, and have therefore coalesced
by the end. If not, we can simply start over again with the first stage.

Our analysis of this coupling rests on two lemmas.

Lemma 4.2. There exists an absolute constant C such that, from any initial node X0 =
v, the expected hitting time from v to the root is ≤ Cδd2.

Proof. We split the proof into three cases, according to whether v is a downward node,
a leaf node, or an upward node. (In the case when v is the root, the hitting time is 0.)

Case 1: v = w+ is a downward node. Since v is a downward node, every non-self-loop
move either increases the depth by 1, or crosses to a rootward-oriented node. Hence,
since the self-loop probability at v is at most 1/2, in expected time at most 2d = O(δd2)
we will reach one of the other two cases. Thus, it suffices to handle cases 2 and 3.

Case 2: v = wmain or v = wtrap is a leaf node. Let u denote the parent of w in the
original tree. Now, in our lifted chain, starting from X0 = v, the first node reached by
Xt that is not in {wmain, wtrap} must be u−. What is the hitting time to u−? Solving
a system of two linear equations in two unknowns, we find that this hitting time is 4d
when starting from wmain, and (4δd2−δd−1+4d) when starting from wtrap. Since in
both cases this is O(δd2), and u− is an upward node, it thus suffices to handle case 3.

Case 3: v = w− is an upward node. Let u be the parent of w in the original tree. As
in case 2, note that, starting from X0 = w−, the first node that will be reached by Xt

that does not project into the subtree rooted at w must be u−.
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Let Qup = Ñw denote the flow up from w, and Qdown the aggregated flow down
from w to its children. When Qup ≥ Qdown (as in Fig. 3), the only edges out from w−

are a self-loop and the edge (w−, u−), so it is easy to calculate that the expected hitting
time from w− to u− equals 1 + Qdown/Qup, which is at most 1 + (1 + δ)2 = O(1).

Claim. Suppose Qup < Qdown. Let H denote the hitting time from w− to u−. Then
E(H) = O(δd).

Assuming the Claim is true, we have shown that the expected hitting time from w−

to u− is always O(δd). It follows by induction that the hitting time from w− to r is
O(δd2), since the depth of w is at most d, which completes our analysis of case 3 and
the proof of the lemma.

All that remains is to prove the Claim. To see this, consider what happens to our
lifted walk if we re-route the flow on the edge (w−, u−) to instead go along the edge
(w−, w+). In this case, starting from w−, we can never leave the subtree rooted at w,
and in fact the random walk is exactly the same as would be produced by our lifting
construction applied just to the subtree rooted at w, except that the transition probabil-
ities at the leaves are still based on d rather than on the height of the subtree below w.
Let us compute the stationary probability of w− in this modified chain.

Using the well-known fact that the stationary probability at any node is the reciprocal
of the expected return time to that node, it follows that

1
π̃(w−)

= 1 +
Qdown

Qdown + Qup
E(H ′), (4)

where H ′ is the hitting time from w+ to w−, and π̃ is the stationary distribution for
the modified lifted chain rooted at w. A straightforward calculation yields π̃(w−) ≥
1/((1 + δ)2(2d + i)) ≥ 1/(4d), where i is the height of node w, whence by (4) it
follows that E(H ′) ≤ 2(4d − 1).

Returning now to the full lifted chain, since from w− the flows out are Qup to u−,
Qup in a self-loop, and Qdown − Qup to w+, it follows that

E(H) = 1 +
Qup

Qdown + Qup
E(H) +

Qdown − Qup

Qdown + Qup
E(H ′),

which implies

E(H) = 1 +
Qup

Qdown
+

(
Qdown − Qup

Qdown

)
E(H ′) ≤ 2 + 2Pcross(w−)E(H ′),

where Pcross(w−) = O(δ) is the transition probability from w− to w+ in the lifted
chain. Since we already know that E(H ′) = O(d), it follows that E(H) ≤ 2+O(δd) =
O(δd). This concludes the proof of the Claim, and of Lemma 4.2. ��

Lemma 4.3. There exists an absolute constant C′ such that the expected hitting time
from the root to the set of “leaf trap” nodes is ≤ C′δd2.

Proof. Consider an infinite run of the Markov chain, and partition the positive integers
into epochs, where the even epochs end at the first time (after they start) that the root
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is reached, and the odd epochs end at the first time (after they start) that a leaf trap
is reached. Let us denote by L the set of all leaf trap nodes. Since no leaf traps are
visited during the odd epochs, the fraction of time in even epochs is at least π(L).
But the average length of an even epoch is at most Cδd2, by Lemma 4.2. Hence the
average length of an odd epoch must be at most Cδd2/π(L), which is O(δd2) since we
arranged for π(L) = Θ(1). This concludes the proof, as the average length of an odd
epoch equals the expected hitting time from the root to the set of leaf trap nodes. ��
We now continue with the proof of Theorem 4.1. By Lemmas 4.2 and 4.3, the expected
total length of stages 1 and 2 combined is O(δd2). Hence, by Markov’s inequality, with
probability at least 7/8, the total length is at most eight times the expectation, which
is O(δd2). An application of the triangle inequality implies that therefore E(|ρX −
ρY |) = O(δd2) (where the O hides an explicit constant of moderate size). By Markov’s
inequality, it follows that with probability Ω(1), |ρX − ρY | = O(δd2). By (3), the
coupling has coalesced by the end of the third stage with probability Ω(1). Thus the
chain coalesces within O(δd2 log(1/ε)) time steps with probability at least 1 − ε. The
corresponding bound on the mixing time follows from Theorem 2.1. ��

5 Conclusions and Future Work

We have shown that non-reversible liftings can be used to speed up MCMC sampling
(and hence also approximate counting) algorithms, even without the high degree of
symmetry present in previous examples. Although it is still highly specialized, the class
of Markov chains we consider, being random walks on trees with an approximation
oracle for the number of leaves, is nevertheless natural in the context of computation,
and encompasses many combinatorial problems with interesting and complex structure.

The first open question is whether our construction can be improved to reduce the
mixing time of the lifted chain down to the asymptotically optimal value O(ρ), where
ρ = O(d(1 + δ)2) is the flow parameter for the original chain, while retaining the local
character of the current construction which makes it a practical tool for sampling. In the
case of large bias, δ = Ω(1), our current lifting exhibits (potentially) nearly as much
diffusive behavior as the unlifted chain; intuitively this happens because “excursions”
upward or downward may typically be of length 1/δ = O(1), as is the case for symmet-
ric random walk. However, at least in the special case when the tree is a path, we have
developed a more complex (yet still local) construction that eliminates this diffusive be-
havior to a large extent; the idea is to keep track of multiple momentum values (rather
than just “up” and “down”). This will be discussed in the full version of the paper.

A second natural question is whether our techniques can be profitably applied to
other Markov chains used in sampling algorithms. Prime candidates here are Markov
chains for matchings [12,13] and for sampling points in a convex body [6,21]. The
latter example seems particularly intriguing as there is a well-defined notion of “di-
rection” along which momentum can be preserved. Indeed, we note that lifting ideas
have already appeared, albeit not explicitly, in this example: the “hit-and-run” Markov
chain [19], which at each step moves to a random point on a randomly chosen chord of
the body through the current point, has the flavor of a “lifting” of the more local “ball
walk”[20],7 which moves to a random point within a ball centered at the current point.

7 See the full version for a more precise discussion of this point.
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We conjecture that understanding this connection more formally within a lifting frame-
work may illuminate previous work on random walks on convex bodies, and perhaps
even lead to further algorithmic improvements.
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Abstract. We give a combinatorial proof of the Chernoff-Hoeffding con-
centration bound [9,16], which says that the sum of independent {0, 1}-
valued random variables is highly concentrated around the expected
value. Unlike the standard proofs, our proof does not use the method
of higher moments, but rather uses a simple and intuitive counting ar-
gument. In addition, our proof is constructive in the following sense: if
the sum of the given random variables is not concentrated around the
expectation, then we can efficiently find (with high probability) a sub-
set of the random variables that are statistically dependent. As simple
corollaries, we also get the concentration bounds for [0, 1]-valued random
variables and Azuma’s inequality for martingales [4].

We interpret the Chernoff-Hoeffding bound as a statement about Di-
rect Product Theorems. Informally, a Direct Product Theorem says that
the complexity of solving all k instances of a hard problem increases ex-
ponentially with k; a Threshold Direct Product Theorem says that it is
exponentially hard in k to solve even a significant fraction of the given k
instances of a hard problem. We show the equivalence between optimal
Direct Product Theorems and optimal Threshold Direct Product Theo-
rems. As an application of this connection, we get the Chernoff bound
for expander walks [12] from the (simpler to prove) hitting property [2],
as well as an optimal (in a certain range of parameters) Threshold Direct
Product Theorem for weakly verifiable puzzles from the optimal Direct
Product Theorem [8]. We also get a simple constructive proof of Unger’s
result [38] saying that XOR Lemmas imply Threshold Direct Product
Theorems.

1 Introduction

Randomized algorithms and random constructions have become common objects
of study in modern computer science. Equally ubiquitous are the basic tools of
probability theory used for their analysis. Some of the most widely used such
tools are various concentration bounds. Informally, these are statements saying
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that the outcome of a random experiment is likely to be close to what is ex-
pected (concentrated near the expectation). The well-known Chernoff bound [9]
is a prime example, and is probably one of the most-often used such concentra-
tion bounds. Basically, it says that repeating a random experiment many times
independently and taking the average of the outcomes results in a value that
is extremely likely to be very close to the expected outcome of the experiment,
with the probability of deviation diminishing exponentially fast with the number
of repetitions.

A computational analogue of concentration bounds in complexity are Direct
Product Theorems. Informally, these are statements saying that solving a some-
what hard problem on many independent random instances becomes extremely
hard, with the hardness growing at an exponential rate with the number of
repetitions. The main application of direct product theorems is to hardness am-
plification: taking a problem that is somewhat hard-on-average to solve, and
turning it into a problem that is extremely hard-on-average to solve. Such hard-
ness amplification is important for cryptography and complexity; for example, in
cryptography, the increased hardness of a function translates into the increased
security of a cryptographic protocol.

In this paper, we show a close connection between probability-theoretic and
complexity-theoretic concentration bounds. We give a new, constructive proof of
the Chernoff bound, and use this proof to establish an equivalence between two
versions of direct product theorems: the standard Direct Product Theorem and
the Threshold Direct Product. In the standard direct product, we want to up-
perbound the probability of efficiently solving all given instances of a somewhat
hard problem, whereas in the threshold direct product, we want to upperbound
the probability of solving more than a certain fraction of the instances.

To motivate the need for Threshold Direct Product Theorems, we give an
example of its typical use in cryptography. CAPTCHAs [1] are now widely used
to distinguish human users from artificially intelligent “bots”. Here a user is
issued a random puzzle, say distorted text, and is asked to decipher the text.
Say that a legitimate user succeeds with probability c � 1, whereas an attacker
succeeds with probability at most s < c. To boost our confidence that we are
dealing with a legitimate user, we will issue k random puzzles in parallel, and
see how many of them get answered correctly. If c = 1, then we know that the
legitimate user will answer all k instances correctly. A standard Direct Product
Theorem for CAPTCHAs [5,8] could then be used to argue that it’s very unlikely
that an attacker will answer all k instances. In reality, however, even a legitimate
user can make an occasional mistake, and so c < 1. Thus we can’t distinguish
between legitimate users and attackers by checking if all k instances are answered
correctly. Intuitively, though, we still expect that a legitimate user should answer
almost all instances (close to c fraction), whereas the attacker can’t answer
significantly more than s fraction of them. This intuition is formalized in the
Threshold Direct Product Theorem for CAPTCHAs [22], which thus allows us
to make CAPTCHAs reliably easy for humans but reliably hard for “bots”.
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The probability-theoretic analogue of a Direct Product Theorem is the state-
ment that if a random experiment succeeds with probability at most p, then the
probability that it succeeds in k independent trials is at most pk. The analogue
of a Threshold Direct Product is the Chernoff bound saying that the probabil-
ity of getting significantly more than the expected pk successes is exponentially
small in k. We give a constructive proof of the equivalence between these two
probability-theoretic statements. Namely, we show that if the probability of get-
ting more than pk successes is noticeably larger than it should be (by the Chernoff
bound), then we can efficiently find a subset S of the k trials such that the ran-
dom experiment succeeds in all trials i ∈ S with probability noticeably larger
than p|S|.

In the language of direct products, this means that there is an equivalence be-
tween standard direct product theorems and threshold direct product theorems.
Moreover, the constructive nature of the proof of this equivalence means that it
applies to the uniform setting of computation, where the hardness (security) is
measured with respect to uniform algorithms (rather than non-uniform circuits).
In particular, we get that for a wide variety of classes of cryptographic protocols,
there is a Direct Product Theorem for the class iff there is a Threshold Direct
Product theorem.

The formalized equivalence between standard and threshold direct products
also allows us to quantify the information-theoretic limitations of simple re-
ductions between the two. We then show how to overcome this limitation with
slightly more complicated reductions (using conditioning).

1.1 Chernoff-Hoeffding Bounds, Martingales and Expander Walks

The well-known Chernoff-Hoeffding bound [9,16] states that the sum of indepen-
dent {0, 1}-valued random variables is highly concentrated around the expected
value. Numerous variants of this concentration bound have been proved, with
Bernstein’s inequalities from 1920’s and 1930’s being probably the earliest [7].
The known proofs of these bounds rely on the idea of Bernstein to use the
moment-generating function of the given sum of independent random variables
X1 + · · ·+Xn; recall that the moment-generating function of a random variables
X is MX(t) = Exp[et·X ], where Exp[·] denotes the expectation.

While not difficult technically, the standard proof, in our opinion, does not
provide intuition why concentration is likely. One of the main results of our paper
is a different proof of the Chernoff bound, using a simple combinatorial argu-
ment (and, in particular, avoiding any use of the moment-generating functions).
We actually prove a generalization of the Chernoff bound, originally due to
Panconesi and Srinivasan [30] (who also used the standard method of moment-
generating functions in their proof). In this generalization, the assumption of
independence of the variables X1, . . . , Xn is replaced with the following weaker
assumption: There exists some δ > 0 such that, for all subsets S ⊆ [n] of indices,
Pr[∧i∈SXi = 1] � δ|S|. Observe that if the variables Xi’s are independent, with
each Exp[Xi] � δ, then, for all S ⊆ [n], Pr[∧i∈SXi = 1] � δ|S|.
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Theorem 1 (Generalized Chernoff bound [30]). Let X1, . . . , Xn be Boolean
random variables such that, for some 0 � δ � 1, we have that, for every
subset S ⊆ [n], Pr[∧i∈SXi = 1] � δ|S|. Then, for any 0 � δ � γ � 1,
Pr [

∑n
i=1 Xi � γn] � e−nD(γ‖δ), where D(· ‖ ·) is the relative entropy function

(defined in Section 2 below), satisfying D(γ ‖ δ) � 2(γ − δ)2.

We now sketch our proof of Theorem 1. Imagine sampling a random subset
S ⊆ [n] where each index i ∈ [n] is put in S independently with some probability
q (to be optimally chosen). We compute, in two ways, Pr[∧i∈SXi = 1], where
the probability is over S and X1, . . . , Xn.

On one hand, since Pr[∧i∈SXi = 1] � δ|S| for all S ⊆ [n], the probabil-
ity of choosing S ⊆ [n] with ∧i∈SXi = 1 is small. On the other hand, if
p = Pr[

∑n
i=1 Xi � γn] is relatively large, we are likely to sample a n-tuple

X1, . . . , Xn with very many (at least γn) 1’s. Given such a tuple, we are then
likely to sample a subset S ⊆ [n] with ∧i∈SXi = 1. Thus the overall probability of
choosing S ⊆ [n] with ∧i∈SXi = 1 is relatively large. The resulting contradiction
shows that p must be small. (The complete proof is given in Section 3.1.)

We also get several other concentration bounds as simple corollaries of Theo-
rem 1. First, we get a version of Theorem 1 in the setting of real-valued random
variables that take their values in the interval [0, 1], the Hoeffding bound [16]
(Theorem 6). Then we prove a concentration bound for martingales, known as
Azuma’s inequality [4] (Theorem 7). In another application of our Theorem 1,
we obtain a Chernoff-type concentration bound for random walks on expander
graphs (Theorem 11), almost matching the parameters of [12,15].

1.2 Applications to Direct Product Theorems

We interpret Theorem 1 as giving an equivalence between certain versions of
Direct Product Theorems (DPTs), which are statements of the form “k-wise
parallel repetition increases the complexity of a problem at an exponential rate
in the number of repetitions k”. Such theorems are known for a variety of models:
Boolean circuits [40,13], 2-prover games [34], decision trees [29], communication
complexity [31], polynomials [39], puzzles [5], and quantum XOR games [11],
just to mention a few. However, there are also examples where a direct product
statement is false (see, e.g., [5,32,36]).

More formally, for a function F : U → R, its k-wise direct product is the
function F k : Uk → Rk, where F k(x1, . . . , xk) = (F (x1), . . . , F (xk)). The main
application of this construction is to hardness amplification. Intuitively, if F (x) is
easy to compute on at most p fraction of inputs x (by a certain resource-bounded
class of algorithms), then we expect F k(x1, . . . , xk) to be easy on at most (close
to) pk fraction of k-tuples (x1, . . . , xk) (for a related class of algorithms).

A DPT may be viewed as a computational analogue of the following (ob-
vious) probabilistic statement: Given k random independent Boolean variables
X1, . . . , Xk, where each Xi = 1 with probability at most p, we have Pr[∧k

i=1Xi =
1] � pk. The Chernoff bound says that with all but exponentially small prob-
ability at most about pk of the random variables X1, . . . , Xk will be 1. The
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computational analogue of this concentration bound is often called a Threshold
Direct Product Theorem (TDPT), saying that if a function F is easy to compute
on at most p fraction of inputs (by a certain class of algorithms), then comput-
ing F k(x1, . . . , xk) correctly in significantly more than pk positions 1 � i � k
is possible for at most a (negligibly more than) exponentially small fraction of
k-tuples (x1, . . . , xk) (for a related class of algorithms). TDPTs are also known
for a number of models, e.g., Boolean circuits (follows from [20,17]), 2-prover
games [33], puzzles [22], and quantum XOR games [11].

Observe that Theorem 1 says that the Chernoff concentration bound for ran-
dom variables X1, . . . , Xn follows from the assumption that Pr[∧i∈SXi = 1] �
p|S| for all subsets S of [n]. In the language of direct products, this means that
Threshold Direct Product Theorems follow from Direct Product Theorems. We
explain this connection in more detail next.

Equivalence between DPTs and TDPTs. Let us call a DPT optimal if has
perfect exponential increase in complexity: A function F that is computable on
at most p fraction of inputs gives rise to the function F k that is computable on at
most pk fraction of inputs. Similarly, we call a TDPT optimal, if its parameters
match exactly its probabilistic analogue, the Chernoff-Hoeffding bound.

As an immediate application of Theorem 1, we get that an optimal DPT
implies an optimal TDPT. We illustrate it for the case of the DPT for Boolean
circuits. Suppose F is a Boolean function that can be computed on at most p
fraction of inputs (by circuits of certain size s). The optimal DPT for circuits
(provable, e.g., using [20,17]) says that for any k, the function F k is computable
on at most pk fraction of inputs (by any circuit of appropriate size s′ < s).

Towards a contradiction, suppose there is an algorithm A that computes
F k(x1, . . . , xk) in significantly more than pk positions 1 � i � k, for more than
the exponentially small fraction of inputs (x1, . . . , xk). Define Boolean random
variables X1, . . . , Xk, dependent on F , A, and a random k-tuple (x1, . . . , xk),
so that Xi = 1 iff A(x1, . . . , xk)i = F (xi). By our assumption, these variables
X1, . . . , Xk fail the Chernoff concentration bound. Hence, by Theorem 1, there
is a subset S ⊆ {1, . . . , k} such that Pr[∧i∈SXi = 1] > p|S|. But the latter
means that our algorithm A, restricted to the positions i ∈ S, computes F |S|

with probability greater than p|S|, contradicting the optimal DPT.
In an analogous way, we get an optimal TDPT for every non-uniform model

where an optimal DPT is known: e.g., decision trees [29] and quantum XOR
games [11]; for the latter model, an optimal TDPT was already proved in [11].

A constructive version of Theorem 1. For non-uniform models (as in the
example of Boolean circuits considered above), it suffices to use Theorem 1 which
only says that if the random variables X1, . . . , Xn fail to satisfy the concentration
bound, then there must exist a subset S of them such that ∧i∈SXi = 1 with
large probability. To obtain the Direct Product Theorems in the uniform model
of computation, it is important that such a subset S be efficiently computable
by a uniform algorithm.
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Our combinatorial proof of Theorem 1 immediately yields such an algorithm.
Namely, we just randomly sample a subset S by including each index i, 1 � i � n,
into S with probability q, where q is chosen as a function of how far the variables
X1, . . . , Xn are from satisfying the concentration bound. We then output S if
∧i∈SXi = 1 has “high” probability; otherwise we sample another set S. Here we
assume that our algorithm has a way to sample from the distribution X1, ..., Xn.
This reasoning yields the following.

Theorem 2. There is a randomized algorithm A such that the following holds.
Let X1, . . . , Xn be 0-1-valued random variables. Let 0 < δ < γ � 1 be such that
Pr[

∑n
i=1 Xi � γn] = p > 2α, for some α � e−nD(γ‖δ). Then, on inputs n, γ, δ, α,

the algorithm A, using oracle access to the distribution X1, . . . , Xn, runs in time
poly(α−1/((γ−δ)δ), n) and outputs a set S ⊆ [n] such that, with probability at least
1− o(1), Pr[∧i∈SXi = 1] > δ|S| + Ω(α4/((γ−δ)δ)).

Using this constructive version, we prove an optimal TDPT also for uniform
models. In particular, we get such a result for the case of CAPTCHA-like puzzles,
called weakly verifiable puzzles [8] (see Theorem 13).1 DPTs for puzzles are
known [5,8], with [8] giving an optimal DPT. Also TDPTs are known [22,27],
but they are not optimal. Here we immediately get an optimal TDPT for puzzles,
using the optimal DPT of [8], when the success probabilities of the legitimate
user and the attacker are constant.

We also show that the limitation on the success probabilities being constant
is unavoidable for the naive reductions between DPTs and TDPTs, as those in
Theorem 2. Namely, we give an example of a distribution X1, . . . , Xn where the
dependence on γ − δ in the exponent of α (stated in Theorem 2) is necessary.

Lemma 1. There are Boolean random variables X1, . . . , Xn, and parameters
0 < δ < γ < 1 such that Pr[

∑n
i=1 Xi � γn] = p/2 > 2α, for α � e−nD(γ‖δ), but,

for every subset S ⊆ [n], Pr[∧i∈SXi = 1]− δ|S| � (4α)δ(ln 1/δ)/(γ−δ).

We also show that this limitation can be overcome by conditioned reductions
which are allowed to use conditioning (albeit the concentration bound we get in
this case is not as tight as before).

Theorem 3. There is a randomized algorithm A satisfying the following. Let
X1, . . . , Xn be Boolean-valued random variables, and let 0 � δ < γ � 1. Suppose
that Pr

[ 1
n

∑n
i=1 Xi � γ

]
> α, where α > (32/(γ−δ))·e−(γ−δ)2n/64. Then, the al-

gorithm A on inputs n, γ, δ, α, using oracle access to the conditional distribution
(X1, . . . , Xn |

∑
j∈S Xj � γn/2), runs in time poly(n, 1/α, 1/γ, 1/δ) and outputs

a subset S ⊂ [n] (of size n/2) and an index i0 ∈ S̄ (where S̄ = [n]−S) such that,
with probability at least 1−o(1), Pr

[
Xi0 = 1 |

∑
j∈S Xj � γn/2

]
> δ+(γ−δ)/16.

1 Unger [38] claims to get a TDPT for puzzles, but in fact only proves a TDPT for
circuits from Yao’s XOR Lemma. Actually, no XOR Lemma for puzzles is known,
and so Unger’s methods don’t apply.
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Remark 1. Naive reductions between DPT and TDPT (as in Theorem 2) are ap-
plicable in any setting, whereas conditioned reductions (as in Theorem 3) need
an additional assumption (sampleability from a conditional distribution). The
universality of naive reductions, however, comes at an unavoidable cost, as wit-
nessed by Lemma 1. Together with Theorem 3, this shows that there is an actual
quantitative difference between naive and conditioned reductions. In particular,
while, surprisingly, naive reductions are optimal in terms of quantitative hard-
ness amplification, they are suboptimal in terms of preserving the adversary’s
advantage, which is only polynomailly preserved if γ − δ = Ω(1). In contrast,
conditioned reductions can preserve this advantage linearly.

Finally, our Theorem 1 implies some TDPT even when we only have a weak (sub-
optimal) DPT for the model. For example, we can get some version of a TDPT
for 2-prover games, using the best available DPT for such games [34,18,33];2

however, a better TDPT for 2-prover games is known [33]. Also, as shown by
Haitner [14], for a wide class of cryptographic protocols (interactive arguments),
even if the original protocol doesn’t satisfy any DPT, there is a slight modifi-
cation of the protocol satisfying some weak DPT. Then, our results imply that
these modified protocols also satisfy some weak TDPT.

Direct Product Theorems vs. XOR Lemmas. A close relative of DPTs
is an XOR Theorem. For a Boolean function F : {0, 1}n → {0, 1}, its k-wise
XOR function is F⊕k : ({0, 1}n)k → {0, 1}, where F⊕k(x1, . . . , xk) = ⊕k

i=1F (xi).
Intuitively, taking XOR of the k independent copies of a function F , where
F can be computed on at most p fraction of inputs, is similar to taking the
XOR of k independent random Boolean variables X1, . . . , Xk, where each Xi =
1 with probability at most p. In the latter case, it is easy to compute that
Pr[⊕k

i=1Xi = 1] � 1/2+(2p−1)k/2, i.e., the k-wise XOR approaches a fair coin
flip exponentially fast in k. In the computational setting, one would like to argue
that F⊕k becomes essentially unpredictable. Such XOR results are also known,
the most famous being Yao’s XOR Lemma for Boolean circuits [40,28,13] (many
proofs of this lemma have been given over the years, see, e.g., [23] for the most
recent proof, and the references).

We call an XOR lemma optimal if its parameters exactly match the probabilis-
tic analogue given above. Recently, Unger [38] essentially showed that an optimal
XOR result implies an optimal TDPT (and hence also an optimal DPT). More
precisely, he proved the following generalization of the Chernoff-Hoeffding bound:
Let X1, . . . , Xk be Boolean random variables such that for some −1 � β � 1,
we have that, for every subset S ⊆ {1, . . . , k}, Pr[⊕i∈SXi = 1] � 1/2 + β|S|/2.
Then for any β � ρ � 1, Pr[

∑k
i=1 Xi � (1/2 + ρ/2)k] � e−kD(1/2+ρ/2‖1/2+β/2).

Unger’s original proof uses the method of moment-generating functions and
some basic tools from Fourier analysis. In contrast, we give a simple reduc-
tion showing that the assumption in Unger’s theorem implies the assumption in

2 In fact, for 2-prover games, it is impossible to achieve the “optimal” decrease in the
success probability from p to pk, for k parallel repetitions of the game [35].
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Theorem 1, and thus we immediately get an alternative (and simpler) proof of
Unger’s result. For a random variable X ∈ {0, 1}, we define bias(X) = Pr[X =
0]−Pr[X = 1]. We show the following.

Theorem 4. Let X1, . . . , Xn be 0-1-valued random variables. Suppose that there
is −1 � β � 1 such that, for every S ⊆ [n], bias(⊕i∈SXi) � β|S|. Then, for every
S ⊆ [n], Pr[∧i∈S(Xi = 0)] � (1/2 + β/2)|S|.

Moreover, the reduction in the proof of Theorem 4 is constructive. Combining
it with the constructive version of Theorem 1, we get a constructive version
of Unger’s result: if the variables X1, . . . , Xn fail to satisfy the concentration
bound, then we can efficiently find (using a randomized algorithm) a subset S
of indices such that ⊕i∈SXi has “large” bias. Such a constructive version is not
implied by the original proof of [38].

1.3 Related Work

Chernoff bounds for negatively correlated random variables. The as-
sumption on the random variables X1, . . . , Xn used in Theorem 1 is similar to
the assumption that the Xi’s are negatively correlated ; the latter means that for
every subset S ⊆ [n], Pr[∧i∈SXi = 1] �

∏
i∈S Pr[Xi = 1]. The only difference

between the negative correlation assumption and the assumption in Theorem 1
is that the latter upperbounds Pr[∧i∈SXi = 1] by some δ|S|, where δ is an upper
bound on Pr[Xi = 1]. Panconesi and Srinivasan [30] observed that the Chernoff-
Hoeffding bound continues to hold for the case of random variables that satisfy
this generalized version of negative correlation. The proof in [30] follows the
standard, Bernstein-style, proof of the Chernoff-Hoeffding bound.

TDPTs from DPTs, and DPTs from XOR lemmas. A simple idea for
converting DPTs into TDPTs by randomly sampling a subset of a given n-
tuple of instances was also suggested by Ben-Aroya et al. [6, Theorem 10], but
their reduction doesn’t give the optimal parameters. In the setting of interactive
protocols, Chung and Liu [10] show how to obtain an almost-optimal TDPT
from an optimal DPT, also using a very similar sampling-based argument. The
fact that XOR Lemma implies DPT was also shown by Viola and Wigderson [39,
Proposition 1.4]. Our proof of Theorem 4 (showing that optimal XOR Lemma
implies optimal DPT) is a very similar argument.

While the idea of using sampling to get weak versions of TDPTs from DPTs
has been used in earlier works, the difference in our paper is to use it in the
abstract setting of probability-theoretic concentration bounds, and achieve tight
parameters. It is actually surprising that such a simple idea is powerful enough
to yield tight concentration bounds. The advantage of the abstract framework is
also that it suggests applications in settings where one doesn’t usually think in
terms of standard direct products and threshold direct products. For example,
we use our Theorem 1 to prove the Chernoff concentration bound for expander
walks [12] from the hitting property of [2]. We also show the information-theoretic
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limitations of simple reductions between DPTs and TDPTs, and suggest a way
to overcome these limitations with stronger reductions.

We consider the new proof of Chernoff-type concentration bounds more re-
vealing and intuitive than the standard Bernstein-style proofs, and hope that its
constructiveness will have other applications in computer science.

2 Preliminaries

For a natural number n, we denote by [n] the set {1, 2, . . . , n}. For 0 � ρ, σ � 1,
let D(ρ ‖ σ) be the binary relative entropy defined as D(ρ ‖ σ) = ρ ln ρ

σ +
(1 − ρ) ln 1−ρ

1−σ , with 0 ln 0 = 0. We shall also use the following simple estimate:
D(σ+ε ‖ σ) � 2ε2 (obtained by considering the Taylor expansion of the function
g(x) = D(p + x ‖ p) up to the second derivative).

For parameters 0 � δ � γ � 1, we define the function fδ,γ(q) = 1−q(1−δ)
(1−q)1−γ ; we

shall be interested in the case where 0 � q < 1. When δ, γ are clear from the
context, we drop the subscripts and simply write f(q). Taking the derivative of
the function f(q), we get that f(q) achieves its minimum at q∗ = γ−δ

γ(1−δ) . It is

easy to see that f(q∗) =
(

δ
γ

)γ (
1−δ
1−γ

)1−γ

= e−D(γ‖δ).

For parameters n ∈ N and 0 � q � 1, we denote by Bin(n, q) the binomial
distribution on sets S ⊆ [n], where a set S is obtained by picking each index
1 � i � n, independently, with probability q. We will denote by S ∼ Bin(n, q)
the random choice of S ⊆ [n] according to Bin(n, q).

We use the following “mean is median” result of Jogdeo and Samuels [26] for
general binomial distributions (where the probabilities of choosing an index i
may be different for different i’s).

Lemma 2 ([26]). For every n-tuple of real numbers p1, . . . , pn, 0 � pi � 1 for
all 1 � i � n, and for the Boolean random variables X1, . . . , Xn where each
Xi = 1 with probability pi, and Xi = 0 with probability 1− pi, let S =

∑n
i=1 Xi

and let μ =
∑n

i=1 pi. Then the median of the distribution S is either 
μ� or �μ
(and is equal to μ if μ is an integer). In particular, we have Pr [S � 
μ�] � 1/2.

3 Concentration Bounds

3.1 Boolean Random Variables

Theorem 1 is the special case of the following theorem (when δ1 = · · · = δn).

Theorem 5. Let X1, . . . , Xn be 0-1-valued random variables. Suppose that there
are 0 � δi � 1, for 1 � i � n, such that, for every set S ⊆ [n], Pr [∧i∈SXi = 1] �∏

i∈S δi. Let δ = (1/n)
∑n

i=1 δi. Then, for any γ such that δ � γ � 1, we have
Pr [

∑n
i=1 Xi � γn] � e−nD(γ‖δ).
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Proof. For a parameter 0 � q � 1 to be chosen later, consider the following
random experiment. Pick a random n-tuple (x1, . . . , xn) from the given distri-
bution X1, . . . , Xn. Pick a set S ∼ Bin(n, q) (i.e., each position 1 � i � n,
independently, is in S with probability q).

Let E be the event that
∑n

j=1 Xj � γn, and let p = Pr[E ]. By conditioning,

Exp[∧i∈SXi = 1] � Exp[∧i∈SXi = 1 | E ] · p, (1)

where the expectations are over random choices of S ∼ Bin(n, q) and X1, . . . , Xn.
For every S ⊆ [n], we have Pr[∧i∈SXi = 1] �

∏
i∈S δi. Hence,

Exp[∧i∈SXi = 1] �
∑

S⊆[n]

[
q|S|(1− q)n−|S| ∏

i∈S

δi

]
. (2)

Let us denote by (z1, . . . , zn) ∈ {0, 1}n the characteristic vector of a set S chosen
in the random experiment above. That is, each zi is 1 with probability q, and
0 with probability 1 − q; all zi’s are independent. In this new notation, the
expression in (2) equals Expz1,...,zn

[
∏n

i=1 δzi

i ] =
∏n

i=1 Expzi
[δzi

i ] =
∏n

i=1(qδi +
1− q), where the first equality is by the independence of the zi’s. By convexity,
(1/n)

∑n
i=1 ln(qδi + 1 − q) � ln(qδ + 1 − q), and hence

∏n
i=1(qδi + 1 − q) �

(qδ + 1 − q)n. (When δ1 = · · · = δn, the same upper bound on the r.h.s. of (2)
follows immediately from the binomial formula.)

On the other hand, Exp[∧i∈SXi = 1 | E ] is the probability that a random
S ∼ Bin(n, q) misses all the 0 positions in the chosen sample from X1, . . . , Xn,
conditioned on E . Since there are at most n − γn such 0 positions, we get
Exp[∧i∈SXi = 1 | E ] � (1 − q)n−γn. Combining this with Eqs. (1)–(2), we

get p �
(

qδ+1−q
(1−q)(1−γ)

)n

= (f(q))n, where f(q) is the function defined in Sect. 2

above. Choosing q = q∗ to minimize f(q) (see Sect. 2), we get p � e−nD(γ‖δ).

Remark 2. For γ = 1, Theorem 5 is tight, as e−nD(1‖δ) = δn.

3.2 Real-Valued Random Variables, and Martingales

We prove a version of Theorem 1 for the case of real-valued random variables.

Theorem 6. Let X1, . . . , Xn ∈ [0, 1] be real-valued random variables. Suppose
that there is a 0 � δ � 1 such that, for every set S ⊆ [n], Exp

[∏
i∈S Xi

]
� δ|S|.

Then, for any γ such that δ � γ � 1, Pr [
∑n

i=1 Xi � �γn] � 2 · e−nD(γ‖δ).

Proof. Let p = Pr [
∑n

i=1 Xi � �γn]. Suppose that p > 2 · exp(−nD(γ ‖ δ)).
Our proof is by a reduction to the Boolean case. Consider Boolean random
variables Y1, . . . , Yn, where Pr[Yi = 1] = Xi, for all 1 � i � n; that is, we
think of the real value Xi as the probability that a Boolean variable Yi is 1.
Suppose we sample x1, . . . , xn from the distribution X1, . . . , Xn. Conditioned on∑n

i=1 xi � �γn, we have by Lemma 2 that Pr[
∑n

i=1 Yi � �γn] � 1/2. Lifting
the conditioning (and using the assumed lower bound on the probability p), we
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get Pr [
∑n

i=1 Yi � �γn] � p/2 > e−nD(γ‖δ), where the probability is over Xi’s
and Yi’s.

By Theorem 1, we have that there is a subset S ⊆ [n] such that Pr[∧i∈SYi =
1] > δ|S|. Denote X = (X1, . . . , Xn), and similarly for Y . We can equivalently
write Pr[∧i∈SYi = 1] = ExpX

[
ExpY

[∏
i∈S Yi

]]
= ExpX

[∏
i∈S ExpY [Yi]

]
=

ExpX

[∏
i∈S Xi

]
, where the second equality is by the independence of Yi’s

(given any fixing of Xi’s), and the last equality by the definition of Yi’s. Thus,
Exp[

∏
i∈S Xi] > δ|S|, which is a contradiction.

A sequence of random variables X0, . . . , Xn is a martingale if Exp[Xi+1 | Xi,
Xi−1, . . . , X0] = Xi, for all 0 � i < n. Suppose that X0 = 0. The concentration
bound for martingales (Azuma’s inequality [4]) says that if |Xi+1 −Xi| � 1 for
all 1 � i � n, then Xn is unlikely to deviate from 0 by more than

√
n. More

precisely, for any λ > 0, Pr[Xn � λ
√

n] � exp(−λ2/2).

Theorem 7. Let 0 = X0, X1, . . . , Xn be a martingale such that |Xi+1−Xi| � 1
for all 0 � i < n. Then, for any λ > 0, Pr[Xn � �λ

√
n] � 2 · exp(−λ2/2).

Proof. Define new random variables Yi = Xi − Xi−1, for all 1 � i � n; the
sequence Y1, . . . , Yn is a martingale difference sequence. Note that each Yi ∈
[−1, 1]. Clearly, Exp[Yi+1 | Yi, Yi−1, . . . , Y1] = Exp[Yi+1 | Xi, Xi−1, . . . , X0] =
0. Let us also define the random variables Zi = (1+Yi)/2, for 1 � i � n. Observe
that each Zi ∈ [0, 1]. We want to apply Theorem 6 to the Zi’s. To this end, we
show that, for every subset S ⊆ [n], Exp[

∏
i∈S Zi] = (1/2)|S|. The proof of this

is by induction on |S|, and using the martingale property of Yi’s.
Applying Theorem 6 to the Zi’s (with δ = 1/2 and γ = 1/2 + ε), we get that,

for every 0 � ε � 1/2, Pr[
∑n

i=1 Zi � �(1/2 + ε)n] � 2 · exp(−nD(1/2 + ε ‖
1/2)) � 2·exp(−2ε2n). Since

∑n
i=1 Zi = n/2+(

∑n
i=1 Yi)/2, we get Pr[

∑n
i=1 Yi �

�2εn] � 2 · exp(−2ε2n). Using the fact that
∑n

i=1 Yi = Xn and choosing ε so
that λ = 2ε

√
n, we conclude that Pr[Xn � �λ

√
n] � 2 · exp(−λ2/2).

3.3 Expander Walks

We recall some basic definitions (for more details on expanders, see the excellent
survey [19]). For a d-regular undirected graph G = (V, E) on n vertices, let
A = (ai,j) be its normalized adjacency matrix (where each entry of the adjacency
matrix is divided by d). All eigenvalues of A are between −1 and 1, with the
largest eigenvalue being equal to 1. Order all eigenvalues according to their
absolute values. For 0 � λ � 1, we call G a λ-expander if the second largest (in
absolute value) eigenvalue of A is at most λ.

Expanders have numerous applications in computer science and mathematics
(cf. [19]), in particular, due to the following sampling properties. The hitting
property of expanders, first shown by Ajtai, Komlos, and Szemeredi [2], and
later improved by Alon et al. [3], is the following.

Theorem 8 (Hitting property of expander walks [2,3]). Let G = (V, E)
be a λ-expander, and let W ⊂ V be any vertex subset of measure μ, with μ � 6λ.
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Then the probability that a (t − 1)-step random walk started from a uniformly
random vertex stays inside W is at most μ(μ+2λ)t−1. Moreover, for any subset
S ⊆ [t], the probability that, in each of the time steps i ∈ S, the random walk
hits a vertex in W is at most (μ + 2λ)|S|.

The second sampling property, originally proved by Gillman [12], is similar to
the Chernoff-Hoeffding concentration bound, and is sometimes called the Cher-
noff bound for expander walks.

Theorem 9 (Chernoff bound for expander walks [12]). Let G = (V, E)
be a λ-expander, and let W ⊂ V be any vertex subset of measure μ. Then the
probability that a (t − 1)-step random walk started from a uniformly random
vertex contains at least (μ + ε)t vertices from W is at most e−ε2(1−λ)t/4.

The hitting property of Theorem 8 is fairly easy to prove, using basic linear
algebra. In contrast, the original proof of Theorem 9 relied on some tools from
perturbation theory and complex analysis. Subsequently, the proof was signifi-
cantly simplified by Healy [15], who used only basic linear algebra.

We first observe the following.

Theorem 10. Let G = (V, E) be a λ-expander, and let W ⊂ V be of measure
μ, where μ � 6λ. Let 1 > ε > 2λ. Then the probability that (t − 1)-step random
walk started from a uniformly random vertex contains at least (μ + ε)t vertices
from W is at most e−tD(μ+ε‖μ+2λ) � e−2(ε−2λ)2t.

Proof. Define the 0-1-valued random variables X1, . . . , Xt where Xi = 1 if the ith
step of a random walk in G lands in W , and Xi = 0 otherwise. By Theorem 8, we
have that for every subset S ⊆ [t], Pr[∧i∈SXi = 1] � (μ+2λ)|S|. By Theorem 1,
the probability that a random walk in G contains at least (μ + ε)t vertices from
W is at most e−tD(μ+ε‖μ+2λ). Using D(σ + ρ ‖ σ) � 2ρ2, we can upperbound
this probability by e−2(ε−2λ)2t.

We can lift the assumption of Theorem 10 that ε > 2λ, thereby getting

Theorem 11. Let G = (V, E) be a λ-expander, and let W ⊂ V be of measure
μ. Then the probability that a (t− 1)-step random walk started from a uniformly
random vertex contains at least (μ + ε)t vertices from W (where ε � (2/3)μ) is
at most e−ε2(1−λ)t/(2 ln 4/ε).

Proof (sketch). The idea is to view random t-vertex walks in the graph G also as
t/c-vertex walks in the graph Gc (the cth power of the graph G), for a suitably
chosen integer c. The second largest eigenvalue of Gc is at most λc. By choosing
c so that λc < ε/2, we will satisfy the assumptions of Theorem 10, for walks
of length t/c, thus getting an exponentially small upper bound on the fraction
of imbalanced walks in G. Since this probability is computed based on walks of
length t/c rather than t, we lose an extra factor (namely, (1−λ)/(ln 1/ε)) in the
exponent.
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4 Application: Uniform TDPTs for CAPTCHAs

CAPTCHAs are a special case of weakly verifiable puzzles defined by [8]. A
weakly verifiable puzzle has two components: (1) a polynomial-time sampleable
distribution ensemble D = {Dn}n�1 on pairs (x, α), where x is called the puzzle
and α the check string (n is the security parameter); and (2) a polynomial-time
computable relation R((x, α), y), where y is a string of a fixed polynomially-
related length. Here we think of α as a uniform random string used to generate
the puzzle x. The k-wise direct product puzzle P k is defined in the obvious way.

A puzzle P is called δ-hard (for some 0 � δ � 1) if, for every randomized
polynomial-time algorithm A, there is a negligible function negl so that the
success probability of A on a random P -instance is at most (1− δ) + negl.

Theorem 12 ([8]). If a puzzle P is (1− ρ)-hard, for some 0 � ρ � 1, then P k

is (1− ρk)-hard.

We show the following optimal threshold direct-product result for P k.

Theorem 13. Suppose a puzzle P is (1 − ρ)-hard, for a constant 0 � ρ � 1.
Let γ = ρ + ν � 1, for any constant 0 � ν � 1. Then, for every randomized
polynomial-time algorithm A, there is a negligible function negl such that the
following holds: The fraction of k-tuples x = (x1, . . . , xk) of instances of P k

where A solves correctly at least γk of the xi’s, is at most e−kD(γ‖ρ) + negl.

Proof. Suppose A is a randomized polynomial-time algorithm that violates the
conclusion of the theorem. For random strings α1, . . . , αk, define the 0-1-valued
random variables Z1, . . . , Zk so that, for each 1 � i � k, Zi = 1 iff the algorithm
A(x1, . . . , xk) is correct on xi, where x1, . . . , xk are the puzzles determined by the
random strings α1, . . . , αk. Note that the distribution of Z1, . . . , Zk is efficiently
sampleable since A is efficient (and since the puzzle P is defined for a polynomial-
time sampleable distribution D).

By assumption, there is some nonnegligible function η � e−kD(γ‖ρ) so that
Pr[

∑k
i=1 Zi � γk] � e−kD(γ‖ρ) + 2η. By Theorem 2, we can efficiently find a

subset S ⊆ [k] such that Pr[∧i∈SZi = 1] > ρ|S| + η′, where η′ = Ω(η4/(νρ)) is
nonnegligible. Thus we have an efficient algorithm that solves P |S| with success
probability noticeably higher than ρ|S|, contradicting Theorem 12.

Remark 3. The proof argument of Theorem 13 applies to any cryptographic
interactive protocol as long as the protocol can be efficiently simulated (so that
the corresponding distribution Z1, . . . , Zk is efficiently sampleable). Hence, for
every class of protocols that can be efficiently simulated, there is an optimal
DPT for the class iff there is an optimal TDPT ; here the hardness parameters
(as ρ and ν in Theorem 13) are assumed to be constants.

Theorem 13 provides an optimal concentration bound, but under the assumption
that the probabilities γ and ρ are constant; the same assumption is also needed
for the similar result of [10]. The earlier bounds of [22,27] do not make such an
assumption, but they are not optimal. Using conditioning in the reductions, we
can remove the said limitation on γ and δ, albeit at the expense of losing the
tightness of the probability bound.
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5 Summary

Let X1, . . . , Xn be Boolean random variables such that, for some 0 � δ � 1,
Pr[Xi = 0] � δ, for 1 � i � n. Let bias(Xi) = Pr[Xi = 0]−Pr[Xi = 1] � β =
2δ − 1, for 1 � i � n. Consider the following statements.

1. X1, . . . , Xn are independent.
2. ∀S ⊆ [n], bias(⊕i∈SXi) � β|S|.
3. ∀S ⊆ [n], Pr[∧i∈S(Xi = 0)] � δ|S|.
4. ∀S ⊆ [n], ∀0 � δ � γ � 1, Pr[{Xi}i∈S has � γ|S| zeros ] � e−|S|·D(γ‖δ).

Theorem 14. (1) ⇒ (2) ⇒ (3) ⇔ (4).

Proof. (1) ⇒ (2) is trivial. For (2) ⇒ (3), see Theorem 4. For (3) ⇒ (4), see
Theorem 5 (the implication (4) ⇒ (3) is trivial).

The analogous statement for direct product theorems is: optimal XOR The-
orems ⇒ optimal DPTs ⇔ optimal TDPTs. Moreover, the implications have
constructive proofs.
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Abstract. It has been known since 1970’s that the N-dimensional �1-
space contains almost Euclidean subspaces whose dimension is Ω(N).
However, proofs of existence of such subspaces were probabilistic, hence
non-constructive, which made the results not-quite-suitable for subse-
quently discovered applications to high-dimensional nearest neighbor
search, error-correcting codes over the reals, compressive sensing and
other computational problems. In this paper we present a “low-tech”
scheme which, for any γ > 0, allows us to exhibit almost Euclidean Ω(N)-
dimensional subspaces of �N

1 while using only Nγ random bits. Our re-
sults extend and complement (particularly) recent work by Guruswami-
Lee-Wigderson. Characteristic features of our approach include (1) sim-
plicity (we use only tensor products) and (2) yielding almost Euclidean
subspaces with arbitrarily small distortions.

1 Introduction

It is a well-known fact that for any vector x ∈ RN , its 2 and 1 norms are
related by the (optimal) inequality ‖x‖2 ≤ ‖x‖1 ≤

√
N‖x‖2. However, classical

results in geometric functional analysis show that for a “substantial fraction” of
vectors , the relation between its 1-norm and 2-norm can be made much tighter.
Specifically, [FLM77,Kas77,GG84] show that there exists a subspace E ⊂ RN

of dimension m = αN , and a scaling constant S such that for all x ∈ E

1/D ·
√

N‖x‖2 ≤ S‖x‖1 ≤
√

N‖x‖2 (1)

where α ∈ (0, 1) and D = D(α), called the distortion of E, are absolute (notably
dimension-free) constants. Over the last few years, such “almost-Euclidean” sub-
spaces of N

1 have found numerous applications, to high-dimensional nearest
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neighbor search [Ind00], error-correcting codes over reals and compressive sens-
ing [GLR08, GLW08], vector quantization [LV06], oblivious dimensionality re-
duction and ε-samples for high-dimensional half-spaces [KRS09], and to other
problems.

For the above applications, it is convenient and sometimes crucial that the
subspace E is defined in an explicit manner1. However, the aforementioned re-
sults do not provide much guidance in this regard, since they use the probabilistic
method. Specifically, either the vectors spanning E, or the vectors spanning the
space dual to E, are i.i.d. random variables from some distribution. As a result,
the constructions require Ω(N2) independent random variables as starting point.
Until recently, the largest explicitly constructible almost-Euclidean subspace of
N
1 , due to Rudin [Rud60] (cf. [LLR94]), had only a dimension of Θ(

√
N).

During the last few years, there has been a renewed interest in the problem
[AM06,Sza06, Ind07,LS07,GLR08,GLW08], with researchers using ideas gained
from the study of expanders, extractors and error-correcting codes to obtain sev-
eral explicit constructions. The work progressed on two fronts, focusing on (a)
fully explicit constructions of subspaces attempting to maximize the dimension
and minimize the distortion [Ind07,GLR08], as well as (b) constructions using lim-
ited randomness, with dimension and distortion matching (at least qualitatively)
the existential dimension and distortion bounds [Ind00,AM06,LS07,GLW08]. The
parameters of the constructions are depicted in Figure 1. Qualitatively, they show
that in the fully explicit case, one can achieve either arbitrarily low distortion or
arbitrarily high subspace dimension, but not (yet?) both. In the low-randomness
case, one can achieve arbitrarily high subspace dimension and constant distortion
while using randomness that is sub-linear in N ; achieving arbitrarily low distor-
tion was possible as well, albeit at a price of (super)-linear randomness.

Reference Distortion Subspace dimension Randomness
[Ind07] 1 + ε N1−oε(1) explicit

[GLR08] (log N)Oη(log log log N) (1 − η)N explicit
[Ind00] 1 + ε Ω(ε2/ log(1/ε))N O(N log2 N)

[AM06,LS07] Oη(1) (1 − η)N O(N)
[GLW08] 2Oη(1/γ) (1 − η)N O(Nγ)

This paper 1 + ε (γε)O(1/γ)N O(Nγ)

Fig. 1. The best known results for constructing almost-Euclidean subspaces of �N
1 . The

parameters ε, η, γ ∈ (0, 1) are assumed to be constants, although we explicitly point
out when the dependence on them is subsumed by the big-Oh notation.

Our result. In this paper we show that, using sub-linear randomness, one can
construct a subspace with arbitrarily small distortion while keeping its dimension
proportional to N . More precisely, we have:
1 For the purpose of this paper “explicit” means “the basis of E can be generated

by a deterministic algorithm with running time polynomial in N .” However, the
individual constructions can be even “more explicit” than that.
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Theorem 1 Let ε, γ ∈ (0, 1). Given N ∈ N, assume that we have at our dis-
posal a sequence of random bits of length max{Nγ , C(ε, γ)} log(N/(εγ)). Then,
in deterministic polynomial (in N) time, we can generate numbers M > 0,
m ≥ c(ε, γ)N and an m-dimensional subspace of N

1 E, for which we have

∀x ∈ E, (1 − ε)M‖x‖2 ≤ ‖x‖1 ≤ (1 + ε)M‖x‖2

with probability greater than 98%.

In a sense, this complements the result of [GLW08], optimizing the distortion
of the subspace at the expense of its dimension. Our approach also allows to
retrieve – using a simpler and low-tech approach – the results of [GLW08] (see
the comments at the end of the Introduction).

Overview of techniques. The ideas behind many of the prior constructions as well
as this work can be viewed as variants of the related developments in the context
of error-correcting codes. Specifically, the construction of [Ind07] resembles the
approach of amplifying minimum distance of a code using expanders developed
in [ABN+92], while the constructions of [GLR08,GLW08] were inspired by low-
density parity check codes. The reason for this state of affairs is that a vector
whose 1 norms and 2 norms are very different must be “well-spread”, i.e., a
small subset of its coordinates cannot contain most of its 2 mass (cf. [Ind07,
GLR08]). This is akin to a property required from a good error-correcting code,
where the weight (a.k.a. the 0 norm) of each codeword cannot be concentrated
on a small subset of its coordinates.

In this vein, our construction utilizes a tool frequently used for (linear) error-
correcting codes, namely the tensor product. Recall that, for two linear codes
C1 ⊂ {0, 1}n1 and C2 ⊂ {0, 1}n2, their tensor product is a code C ⊂ {0, 1}n1n2 ,
such that for any codeword c ∈ C (viewed as an n1×n2 matrix), each column of
c belongs to C1 and each row of c belongs to C2. It is known that the dimension
of C is a product of the dimensions of C1 and C2, and that the same holds
for the minimum distance. This enables constructing a code of “large” block-
length Nk by starting from a code of “small” block-length N and tensoring it k
times. Here, we roughly show that the tensor product of two subspaces yields a
subspace whose distortion is a product of the distortions of the subspaces. Thus,
we can randomly choose an initial small low-distortion subspace, and tensor it
with itself to yield the desired dimension.

However, tensoring alone does not seem sufficient to give a subspace with
distortion arbitrarily close to 1. This is because we can only analyze the distortion
of the product space for the case when the scaling factor S in Equation 1 is
equal to 1 (technically, we only prove the left inequality, and rely on the general
relation between the 2 and 1 for the upper bound). For S = 1, however, the
best achievable distortion is strictly greater than 1, and tensoring can make it
only larger. To avoid this problem, instead of the N

1 norm we use the 
N/B
1 (B

2 )
norm, for a “small” value of B. The latter norm (say, denoted by ‖ · ‖) treats
the vector as a sequence of N/B “blocks” of length B, and returns the sum of
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the 2 norms of the blocks. We show that there exist subspaces E ⊂ 
N/B
1 (B

2 )
such that for any x ∈ E we have

1/D ·
√

N/B‖x‖2 ≤ ‖x‖ ≤
√

N/B‖x‖2

for D that is arbitrarily close to 1. Thus, we can construct almost-Euclidean
subspaces of 1(2) of desired dimensions using tensoring, and get rid of the
“inner” 2 norm at the end of the process.

We point out that if we do not insist on distortion arbitrarily close to 1, the
“blocks” are not needed and the argument simplifies substantially. In particular,
to retrieve the results of [GLW08], it is enough to combine the scalar-valued
version of Proposition 1 below with “off-the-shelf” random constructions [Kas77,
GG84] yielding – in the notation of Equation 1 – a subspace E, for which the
parameter α is close to 1.

2 Tensoring Subspaces of L1

We start by defining some basic notions and notation used in this section.

Norms and distortion. In this section we adopt the “continuous” notation for
vectors and norms. Specifically, consider a real Hilbert space H and a probability
measure μ over [0, 1]. For p ∈ [1,∞] consider the space Lp(H) of H-valued p-
integrable functions f endowed with the norm

‖f‖p = ‖f‖Lp(H) =
(∫

‖f(x)‖p
H dμ(x)

)1/p

In what follows we will omit μ from the formulae since the measure will be
clear from the context (and largely irrelevant). As our main result concerns
finite dimensional spaces, it suffices to focus on the case where μ is simply the
normalized counting measure over the discrete set {0, 1/n, . . . (n−1)/n} for some
fixed n ∈ N (although the statements hold in full generality). In this setting, the
functions f from Lp(H) are equivalent to n-dimensional vectors with coordinates
in H.2 The advantage of using the Lp norms as opposed to the p norms that
the relation between the 1-norm and the 2-norm does not involve scaling factors
that depend on dimension, i.e., we have ‖f‖2 ≥ ‖f‖1 for all f ∈ L2(H) (note
that, for the Lp norms, the “trivial” inequality goes in the other direction than
for the p norms). This simplifies the notation considerably.

We will be interested in lialmost subspaces E ⊂ L2(H) on which the 1-norm
and 2-norm uniformly agree, i.e., for some c ∈ (0, 1],

‖f‖2 ≥ ‖f‖1 ≥ c‖f‖2 (2)

for all f ∈ E. The best (the largest) constant c that works in (2) will be denoted
Λ1(E). For completeness, we also define Λ1(E) = 0 if no c > 0 works.
2 The values from H roughly correspond to the finite-dimensional “blocks” in the

construction sketched in the introduction. Note that H can be discretized similarly
as the Lp-spaces; alternatively, functions that are constant on intervals of the type(
(k − 1)/N, k/N

)
can be considered in lieu of discrete measures.
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Tensor products. If H,K are Hilbert spaces, H⊗2 K is their (Hilbertian) tensor
product, which may be (for example) described by the following property: if (ej)
is an orthonormal sequence in H and (fk) is an orthonormal sequence in K,
then (ej ⊗ fk) is an orthonormal sequence in H ⊗2 K (a basis if (ej) and (fk)
were bases). Next, any element of L2(H) ⊗ K is canonically identified with a
function in the space L2(H ⊗2 K); note that such functions are H ⊗ K-valued,
but are defined on the same probability space as their counterparts from L2(H).
If E ⊂ L2(H) is a linear subspace, E⊗K is – under this identification – a linear
subspace of L2(H⊗2 K).

As hinted in the Introduction, our argument depends (roughly) on the fact that
the property expressed by (1) or (2) “passes” to tensor products of subspaces,
and that it “survives” replacing scalar-valued functions by ones that have values
in a Hilbert space. Statements to similar effect of various degrees of generality
and precision are widely available in the mathematical literature, see for exam-
ple [MZ39,Bec75,And80,FJ80]. However, we are not aware of a reference that
subsumes all the facts needed here and so we present an elementary self-contained
proof.

We start with two preliminary lemmas.

Lemma 1. If g1, g2, . . . ∈ E ⊂ L2(H), then∫ (∑
k

‖gk(x)‖2
H
)1/2

dx ≥ Λ1(E)
( ∫ ∑

k

‖gk(x)‖2
H dx

)1/2
.

Proof Let K be an auxiliary Hilbert space and (ek) an orthonormal sequence
(O.N.S.) in K. We will apply Minkowski inequality – a continuous version of
the triangle inequality, which says that for vector valued functions ‖

∫
h‖ ≤∫

‖h‖ – to the K-valued function h(x) =
∑

k ‖gk(x)‖H ek. As is easily seen,

‖
∫

h‖K = ‖
∑

k

( ∫
‖gk(x)‖H dx

)
ek‖K =

(∑
k ‖gk‖2

L1(H)

)1/2. Given that gk ∈
E, ‖gk‖L1(H) ≥ Λ1(E) ‖gk‖L2(H) and so∥∥∥∫

h
∥∥∥
K
≥ Λ1(E)

( ∫ ∑
k

‖gk(x)‖2
H dx

)1/2

On the other hand, the left hand side of the inequality in Lemma 1 is exactly∫
‖h‖K, so the Minkowski inequality yields the required estimate.

We are now ready to state the next lemma. Recall that E is a linear subspace
of L2(H), and K is a Hilbert space.

Lemma 2. Λ1(E ⊗K) = Λ1(E)

If E ⊂ L2 = L2(R), the lemma says that any estimate of type (2) for scalar
functions f ∈ E carries over to their linear combinations with vector coefficients,
namely to functions of the type

∑
j vjfj , fj ∈ E, vj ∈ K. In the general case,

any estimate for H-valued functions f ∈ E ⊂ L2(H) carries over to functions of
the form

∑
j fj ⊗ vj ∈ L2(H⊗2 K), with fj ∈ E, vj ∈ K.
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Proof of Lemma 2. Let (ek) be an orthonormal basis of K. In fact w.l.o.g.
we may assume that K = 2 and that (ek) is the canonical orthonormal
basis. Consider g =

∑
j fj ⊗ vj , where fj ∈ E and vj ∈ K. Then also

g =
∑

k gk ⊗ ek for some gk ∈ E and hence (pointwise) ‖g(x)‖H⊗2K =(∑
k ‖gk(x)‖2

H
)1/2. Accordingly, ‖g‖L2(H⊗2K) =

( ∫ ∑
k ‖gk(x)‖2

H dx
)1/2, while

‖g‖L1(H⊗2K) =
∫ (∑

k ‖gk(x)‖2
H
)1/2

dx. Comparing such quantities is exactly
the object of Lemma 1, which implies that ‖g‖L1(H⊗2K) ≥ Λ1(E)‖g‖L2(H⊗2K).
Since g ∈ E ⊗K was arbitrary, it follows that Λ1(E ⊗K) ≥ Λ1(E). The reverse
inequality is automatic (except in the trivial case dimK = 0, which we will
ignore).

If E ⊂ L2(H) and F ⊂ L2(K) are subspaces, E ⊗ F is the subspace of
L2(H ⊗2 K) spanned by f ⊗ g with f ∈ E, g ∈ F . (For clarity, f ⊗ g is a
function on the product of the underlying probability spaces and is defined by
(x, y) → f(x)⊗ g(y) ∈ H⊗K.)

The next proposition shows the key property of tensoring almost-Euclidean
spaces.

Proposition 1. Λ1(E ⊗ F ) ≥ Λ1(E)Λ1(F )

Proof Let (ϕj) and (ψk) be orthonormal bases of respectively E and F
and let g =

∑
j,k tjk ϕj ⊗ ψk. We need to show that ‖g‖L1(H⊗2K) ≥

Λ1(E)Λ1(F )‖g‖L2(H⊗2K), where the p-norms refer to the product probability
space, for example

‖g‖L1(H⊗2K) =
∫ ∫ ∥∥∑

j,k

tjk ϕj(x)⊗ ψk(y)
∥∥
H⊗2K dx dy.

Rewriting the expression under the sum and subsequently applying Lemma 2 to
the inner integral for fixed y gives

∫ ∥∥∑
j,k

tjk ϕj(x)⊗ ψk(y)
∥∥
H⊗2K dx =

∫ ∥∥∑
j

ϕj(x)⊗
(∑

k

tjk ψk(y)
)∥∥

H⊗2K dx

≥ Λ1(E)
(∫ ∥∥∑

j

ϕj(x)⊗
(∑

k

tjk ψk(y)
)∥∥2

H⊗2K dx
)1/2

= Λ1(E)
(∑

j

∥∥∑
k

tjk ψk(y)
∥∥2
K
)1/2

In turn,
∑

k tjk ψk ∈ F (for all j) and so, by Lemma 1,∫ (∑
j

∥∥∑
k

tjk ψk(y)
∥∥2
K

)1/2
dy ≥ Λ1(F )

( ∫ ∑
j

∥∥∑
k

tjk ψk(y)
∥∥2
K dy

)1/2

= Λ1(F ) ‖g‖L2(H⊗2K).

Combining the above formulae yields the conclusion of the Proposition.
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3 The Construction

In this section we describe our low-randomness construction. We start from a
recap of the probabilistic construction, since we use it as a building block.

3.1 Dvoretzky’s Theorem, and Its “Tangible” Version

For general normed spaces, the following is one possible statement of the well-
known Dvoretzky’s theorem:

Given m ∈ N and ε > 0 there is N = N(m, ε) such that, for any norm on RN

there is an m-dimensional subspace on which the ratio of 1 and 2 norms is
(approximately) constant, up to a multiplicative factor 1 + ε.

For specific norms this statement can be made more precise, both in describing
the dependence N = N(m, ε) and in identifying the constant of (approximate)
proportionality of norms. The following version is (essentially) due to Milman
[Mil71].

Dvoretzky’s theorem. (Tangible version) Consider the N -dimensional Eu-
clidean space (real or complex) endowed with the Euclidean norm ‖·‖2 and some
other norm ‖·‖ such that, for some b > 0, ‖·‖ ≤ b‖·‖2. Let M = E‖X‖, where X
is a random variable uniformly distributed on the unit Euclidean sphere. Then
there exists a computable universal constant c > 0, so that if 0 < ε < 1 and
m ≤ cε2(M/b)2N , then for more than 99% (with respect to the Haar measure)
m-dimensional subspaces E we have

∀x ∈ E, (1 − ε)M‖x‖2 ≤ ‖x‖ ≤ (1 + ε)M‖x‖2. (3)

Alternative good expositions of the theorem are in, e.g., [FLM77], [MS86] and
[Pis89]. We point out that standard and most elementary proofs yield m ≤
cε2/ log(1/ε)(M/b)2N ; the dependence on ε of order ε2 was obtained in the
important papers [Gor85,Sch89].

3.2 The Case of �n
1 (�B

2 )

Our objective now is to apply Dvoretzky’s theorem and subsequently Proposition
1 to spaces of the form n

1 (B
2 ) for some n, B ∈ N, so from now on we set

‖ · ‖ := ‖ · ‖�n
1 (�B

2 ) To that end, we need to determine the values of the parameter
M that appears in the theorem. (The optimal value of b is clearly

√
n, as in

the scalar case, i.e., when B = 1.) We have the following standard (cf. [Bal97],
Lecture 9)
Lemma 3

M(n, B) := Ex∈SnB−1 ‖x‖ =
Γ (B+1

2 )
Γ (B

2 )
Γ (nB

2 )
Γ (nB+1

2 )
n.

In particular,
√

1 + 1
n−1

√
2
π

√
n > M(n, 1) >

√
2
π

√
n for all n ∈ N (the scalar

case) and M(n, B) >
√

1− 1
B

√
n for all n, B ∈ N.
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The equality is shown by relating (via passing to polar coordinates) spheri-
cal averages of norms to Gaussian means: if X is a random variable uniformly
distributed on the Euclidean sphere SN−1 and Y has the standard Gaussian
distribution on RN , then, for any norm ‖ · ‖,

E‖Y ‖ =

√
2Γ (N+1

2 )
Γ (N

2 )
E‖X‖

The inequalities follow from the estimates
√

x− 1
2 <

Γ (x+ 1
2 )

Γ (x) <
√

x (for x ≥ 1
2 ),

which in turn are consequences of log-convexity of Γ and its functional equation
Γ (y + 1) = yΓ (y). (Alternatively, Stirling’s formula may be used to arrive at a
similar conclusion.)

Combining Dvoretzky’s theorem with Lemma 3 yields

Corollary 1. If 0 < ε < 1 and m ≤ c1ε
2n, then for more than 99% of the

m-dimensional subspaces E ⊂ n
1 we have

∀x ∈ E (1− ε)

√
2
π

√
n‖x‖2 ≤ ‖x‖1 ≤ (1 + ε)

√
1 +

1
n− 1

√
2
π

√
n‖x‖2 (4)

Similarly, if B > 1 and m ≤ c2ε
2nB, then for more than 99% of the m-

dimensional subspaces E ⊂ n
1 (B

2 ) we have

∀x ∈ E (1− ε)

√
1− 1

B

√
n‖x‖2 ≤ ‖x‖ ≤

√
n‖x‖2 (5)

We point out that the upper estimate on ‖x‖ in the second inequality is valid
for all x ∈ n

1 (B
2 ) and, like the estimate M(n, B) ≤

√
n, follows just from the

Cauchy-Schwarz inequality.

Since a random subspace chosen uniformly according to the Haar measure on
the manifold of m-dimensional subspaces of RN (or CN ) can be constructed
from an N ×m random Gaussian matrix, we may apply standard discretization
techniques to obtain the following

Corollary 2. There is a deterministic algorithm that, given ε, B, m, n as in
Corollary 1 and a sequence of O(mn log(mn/ε)) random bits, generates subspaces
E as in Corollary 1 with probability greater than 98%, in time polynomial in
1/ε + B + m + n.

We point out that in the literature on the “randomness-reduction”, one typically
uses Bernoulli matrices in lieu of Gaussian ones. This enables avoiding the dis-
cretization issue, since the problem is phrased directly in terms of random bits.
Still, since proofs of Dvoretzky type theorems for Bernoulli matrices are often
much harder than for their Gaussian counterparts, we prefer to appeal instead
to a simple discretization of Gaussian random variables. We note, however, that
the early approach of [Kas77] was based on Bernoulli matrices.
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We are now ready to conclude the proof of Theorem 1. Given ε ∈ (0, 1) and
n ∈ N, choose B = �ε−1 and m = 
cε2(1 − 1

B )nB� ≥ c0ε
2nB. Corollary

2 (Equation 5) and repeated application of Proposition 1 give us a subspace
F ⊂ ν

1(β
2 ) (where ν = nk and β = Bk) of dimension mk ≥ (c0ε

2)kνβ such that

∀x ∈ F (1− ε)3k/2nk/2‖x‖2 ≤ ‖x‖ ≤ nk/2‖x‖2.

Moreover, F = E ⊗ E ⊗ . . . ⊗ E, where E ⊂ n
1 (B

2 ) is a typical m-dimensional
subspace. Thus in order to produce E, hence F , we only need to generate a “typi-
cal” m ≈ c0ε

2(νβ))1/k subspace of the nB = (νβ))1/k-dimensional space n
1 (B

2 ).
Note that for fixed ε and k > 1, nB and m are asymptotically (substantially)
smaller than dim F . Further, in order to efficiently represent F as a subspace of
an 1-space, we only need to find a good embedding of β

2 into 1. This can be
done using Corollary 2 (Equation 4); note that β depends only on ε and k. Thus
we reduced the problem of finding “large” almost Euclidean subspaces of N

1 to
similar problems for much smaller dimensions.

Theorem 1 now follows from the above discussion. The argument gives, e.g.,
c(ε, γ) = (cεγ)3/γ and C(ε, γ) = c(ε, γ)−1.
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Abstract. We present an efficient algorithm for testing outerplanarity
of graphs in the bounded degree model. In this model, given a graph
G with n vertices and degree bound d, we should distinguish with high
probability the case that G is outerplanar from the case that modifying at
least an ε-fraction of the edge set of G is necessary to make G outerplanar.

Our algorithm runs in Õ
(

1
ε13d6 + d

ε2

)
time, which is independent of

the size of graphs. This is the first algorithm for a non-trivial minor-
closed property whose time complexity is polynomial in 1

ε
and d. To

achieve the time complexity, we exploit the tree-like structure inherent
to an outerplanar graph using the microtree/macrotree decomposition of
a tree.

As a corollary, we also show an algorithm that tests whether a given
graph is a cactus with time complexity Õ

(
1

ε13d6 + d
ε2

)
.

1 Introduction

Property testing [1] is a relaxation of decision. The objective of property testing
is to distinguish between the case that an object (e.g., a graph or a function)
has a predetermined property and the case that it differs significantly from any
such object. It is known that various properties are testable in constant time,
i.e., independent of the size of objects. See [2, 3] for excellent surveys.

In this paper, we study testing outerplanarity of graphs in the bounded degree
model. We only consider simple graphs, i.e., graphs without loops and multi-
edges. A graph is called outerplanar if it has an embedding in the plane such
that there is some face that includes every vertex. The bounded degree model [4]
is a model for sparse graphs, under which the maximum degree of an input graph
is bounded by a constant d. We obtain information of an input graph G = (V, E)
through an oracle by asking what the ith neighbor (1 ≤ i ≤ d) of a vertex v ∈ V
is. The efficiency of a testing algorithm is measured by the number of queries
to the oracle, which is called query complexity. A graph G with n vertices and
a degree bound d is called ε-far from a property P if we must add or remove at
least εdn

2 edges to make G satisfy P , preserving the degree bound. An algorithm
is called a testing algorithm for a property P if it accepts graphs satisfying P

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 642–655, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with probability of at least 2
3 and rejects graphs ε-far from P with probability

of at least 2
3 .

We state our main result.

Theorem 1 (main). There is a testing algorithm for outerplanarity in the
bounded degree model with query complexity Õ

( 1
ε13d6 + d

ε2

)
.

A property P of graphs is called a minor-closed property if every minor of a graph
satisfying P also satisfies P . It is well-known that outerplanarity is a minor-closed
property, and it is characterized in such a way that a graph is outerplanar iff the
graph is K4-minor free and K2,3-minor free. Testing minor-closed properties is a
well-studied problem in the bounded degree model. The first result is achieved by
[5], in which it is shown that every minor-closed property is testable with query

complexity 222poly(1/ε)

. Recently, the query complexity is reduced to 2poly( 1
ε ) [6].

It is an important challenge to construct an algorithm for minor-closed properties
whose running time is polynomial in 1

ε . Cycle-freeness, which is a minor-closed
property, can be tested in O

( 1
ε3 + d

ε2

)
time [4]. Our work extends the algorithm

for cycle-freeness to outerplanarity.
Some other properties are known to be testable with constant queries, such as

k-edge-connectivity [4] and k-vertex-connectivity [7]. Bipartiteness [8] and being
an α-expander [9] are known to be testable with Θ̃(

√
n) queries.

We explain why we use the bounded degree model. Another well-studied model
for graphs might be the adjacency matrix model [10]. The adjacency matrix
model mainly concerns dense graphs, and a graph G with n vertices is called
ε-far from a property P if we must add or remove at least εn2

2 edges to make
G satisfy P . However, any outerplanar graph cannot have more than 2n − 3
edges [11], and any graph ε-far from outerplanarity must have at least εn2

2 edges.
Since it is easy to estimate the number of edges up to, say, εn2

100 in the adjacency
matrix model, testing outerplanarity in the model is rather trivial. Thus, we use
the bounded degree model, under which the number of edges is linear in the
number of vertices.

Sketch of our algorithm: We describe a brief sketch of our algorithm. If
many (linear or larger number of) constant-size K4-minors or K2,3-minors exist,
it is easy to detect them from a vertex in them. An issue is how to distinguish
outerplanar graphs from graphs ε-far from outerplanarity with a small number
of constant-size K4-minors and K2,3-minors since we cannot detect them by
locally searching around a constant number of randomly selected vertices. The
crucial observation to resolve this issue is that an outerplanar graph cannot be
an expander [12–14]. Thus, it is hoped that almost all cycles reside in local parts
of an outerplanar graph. In particular, we concentrate on base cycles of the cycle
space of G since the number of base cycles (or the rank of the cycle space) can
be well-approximated. On the other hand, let us consider a graph ε-far from
outerplanarity with no constant-size K4-minor and K2,3-minor. Such a graph
must have a lot of cycles since it is ε-far from outerplanarity. Also, most of the
cycles cannot reside in the local part of the graph since it otherwise leads to the
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existence of constant-size K4-minors or K2,3-minors. Thus, it is hoped that a
significant number of base cycles cannot be found in the local part of the graph,
and we will show that this is the case. Therefore, by comparing the estimated
rank of the cycle space and the number of found base cycles by local search, we
can decide that the graph is outerplanar or ε-far from outerplanarity.

The length of base cycles we try to find by local search is r = O
( 1

εd

)
. To

achieve polynomial query complexity, we cannot enumerate such base cycles
by naively performing a BFS with radius r since it already makes dr = dO( 1

εd )

queries. Thus, we must selectively explore the place where base cycles exist. To do
so, we exploit the tree-like structure inherent to an outerplanar graph. Also, we
decompose the tree-like structure with the technique called microtree/macrotree
decomposition [15], which was originally designed for the marked ancestor prob-
lem. It decomposes a tree into one macrotree and microtrees in such a way that
the number of vertices with degree at least 3 in the macrotree is small and the
number of leaves in a microtree is also small. Using this structure, even if we
ignore base cycles such that the number of vertices around them are exponential
to the radius, we can detect almost all base cycles of an outerplanar graph.

Organization: The organization of this paper is as follows. In Sect. 2, we give
definitions used in this paper. We give our testing algorithm for outerplanarity
in Sect. 3. In Sect. 4, we describe how many base cycles will be detected by the
algorithm, and the proof of the main theorem is shown in Sect. 6. In Sect. 7, we
describe possible future work.

2 Definitions

Throughout this paper, we let δ < 1
100 be a small constant. Let Gn,d be the set

of graphs with n vertices and a degree bound d. Let G ∈ Gn,d be a graph. For a
set of vertices X , let G[X ] denote the subgraph of G induced by X .

The cycle space of G is the linear space generated by all simple cycles of
G where the addition is defined as a symmetric difference on edges. It is well-
known that the rank of the cycle space ρ(G) is equal to m − n + c where m is
the number of edges and c is the number of connected components in G. The
number of edges in a cycle C is denoted by |C|. The minimum cycle basis B∗

is a basis of the cycle space such that
∑

B∈B∗ |B| is minimum. Though there
may be many minimum cycle bases, we only consider the one obtained in the
following way. First, we introduce a total ordering on cycles in G such that a
cycle C is regarded as smaller than C′ if |C| < |C′|. When |C| = |C′|, we break
ties arbitrarily. We write C < C′ when C is smaller than C′ in this ordering. We
start with an empty set of cycles. Seeing cycles from the smaller one, we add a
cycle to the set if it is independent of the set. We let B∗ be the resulting set.
Since a linear space is a matroid, B∗ is indeed a minimum cycle basis.

We say C is a base cycle if C ∈ B∗ and a non-base cycle otherwise. A chord
of a cycle C is an edge connecting two vertices not adjacent in C. A cycle C is
called chordless if C has no chord. Note that a cycle in an outerplanar graph is
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a base cycle iff the cycle is chordless. A vertex or a pair of adjacent vertices is
called a hinge if the number of connected components increases by removing it.
Also, an edge is called a bridge if the number of connected components increases
by removing it.

Let B∗
v ⊆ B∗ be the set of base cycles containing a vertex v and ρv(G) =∑

B∈B∗
v

1
|B| . Note that ρ(G) =

∑
v∈V ρv(G).

Next, we briefly introduce the basic notions in the area of graph minors used
in this paper. For more details, see [16, 17]. A graph H is called a minor of
graph G if H can be obtained from G by iteratively performing edge removals,
vertex removals and edge contractions. If H is not a minor of G, then G is called
H-minor free. Subdividing an edge e of a graph G is an operation that inserts a
new vertex into the interior, thereby splitting e into two edges. For a graph H ,
an H-subdivision is a graph obtained by iteratively subdividing edges of H . If G
has no H-subdivision as a subgraph, G is called H-subdivision free. It is easily
seen that if G is H-minor free, then G is H-subdivision free. The other direction
does not hold in general. However, for outerplanarity, we can characterize it by
means of subdivisions as well as minors. The following proposition is well-known
(e.g., [16]).

Proposition 1. A graph is outerplanar if and only if the graph is K4-minor
free and K2,3-minor free. Also, a graph is outerplanar if and only if the graph is
K4-subdivision free and K2,3-subdivision free. ��

3 Algorithm Description

3.1 Outline

Let G ∈ Gn,d be a graph with m edges and c connected components. As described
in the introduction, our testing algorithm compares the (estimated) number of
base cycles ρ(G) = m − n + c1 and the (estimated) number of locally residing
base cycles. The next lemma asserts that ρ(G) can be easily approximated.

Lemma 1. There is an algorithm with query complexity Õ( d
ε2 ) that calculates

ρ̃(G) such that |ρ̃(G)− ρ(G)| ≤ δεdn
2 with probability of at least 1− δ.

Proof. Let m and c be the number of edges and connected components, respec-
tively. Sampling O( 1

ε2 ) vertices and seeing degrees of them, we can obtain m̃

such that |m̃−m| ≤ δεdn
4 with probability of at least 1− δ

2 and query complexity
O

(
d
ε2

)
. Also, there is an algorithm that outputs c̃ such that |c̃− c| ≤ δεdn

4 with
probability of at least 1− δ

2 and query complexity Õ
( 1

ε2d

)
[18]. By union bound,

ρ̃(G) = m̃ − n + c̃ satisfies |ρ̃(G) − ρ(G)| ≤ δεdn
2 with probability of at least

1− δ. ��

Our algorithm is composed of three parts, i.e., ��������	��
����, �����
���	���	������, and ������	��������������. We describe the role of
these three parts first and go into detail later.
1 We assume that n and d are known in advance.
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Algorithm 1. ������	��������������:
��������	��
��������:
Let ρ̃(G) be the output of the algorithm in Lemma 1.
Let w = 0 and S be a set of s = O( 1

ε2
) vertices chosen uniformly at random from V .

for v ∈ S do
let ϕv,ε(G) be the returned value of ���������������	���(v).
Set w = w + ϕv,ε(G).

ϕ̃ε(G) = wn
s

.
Accept if ϕ̃ε(G) ≥ ρ̃(G) − εdn

8
, reject otherwise.

Given a vertex v, ��������	��
���� locally searches around v and tries to
enumerate chordless cycles containing v with length of at most r = O( 1

εd). Note
that chordless cycles are base cycles for outerplanar graphs. If ��������	��

���� finds a non-outerplanar subgraph in the process, it immediately rejects
the graph. This can be simply done by performing a BFS with radius r from v.
However, it may take dr queries if we do it naively. To achieve polynomial query
complexity, we exploit the tree-like structure inherent to outerplanar graphs.
Using the structure, we can show that, for outerplanar graphs, almost all chord-
less cycles reside in places where a BFS with radius r visits only a polynomial
number of vertices after removing at most one hinge. Thus, by removing at most
one hinge and performing a BFS with radius r from v, ��������	��
����
enumerates almost all base cycles containing v. Since we do not know where
the hinge is, we try all possibilities. A problem that occurs by this modification
is that we can no longer guarantee that the subgraph induced by vertices with
distance at most r from v is outerplanar. Nevertheless, for graphs ε-far from
outerplanarity, we can show that the number of chordless cycles detected by
��������	��
���� is still small.
��������	���	������ “cleanses” cycles returned by��������	��
����.

Let C be one of the cycles returned by ��������	��
����(v). It might occur
that ��������	��
����(v′) for a vertex v′ ∈ C, v′ �= v does not return C.
This phenomenon makes our analysis harder. Therefore, we only adopt cycles
such that ��������	��
���� returns them for every vertex in them. We can
show that the number of base cycles ignored by this cleansing is sufficiently
small. Let Bv be a set of remaining cycles. Then, ��������	���	������ re-
turns

∑
B∈Bv

1
|B| as an approximation to ρv(G).

Finally, ������	�������������� decides whether a given graph is outer-
planar using��������	���	������ as a subroutine. Since������	��������
������ is a simple algorithm, we describe the entire process here in Algorithm 1.

First, it calculates ρ̃(G) using Lemma 1. Then, it invokes ��������	��

�	������ for a sufficiently large constant number of vertices chosen uniformly
at random and let w be the sum of returned values. It immediately rejects the
graph if an invoked ��������	���	������ rejects the graph (i.e., it finds ev-
idence of non-outerplanarity). From w, it calculates an approximation to ρ(G),
which is denoted by ϕ̃ε(G). It accepts the graph if ϕ̃ε(G) ≥ ρ̃(G) − εdn

8 and
rejects otherwise.
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Fig. 1. Left: an outerplanar graph G. Right: the tree representation GT of G. White
vertices indicate cycle vertices and black vertices indicate basic vertices.

3.2 Tree Representation

Next, we go into the details of ��������	��
����. To utilize the tree-like
structure of outerplanar graphs, we introduce the tree representation GT of an
outerplanar graph G. Here we assume that G is connected. The tree represen-
tation of a disconnected graph is just a union of the tree representation of each
connected component. An example of a tree representation is depicted in Fig. 1.
Each base cycle B in G has a corresponding vertex BT in GT , which is called a
cycle vertex. Each vertex v not contained in any cycle in G has a corresponding
vertex vT in GT , which is called a basic vertex. We use T -vertices as a general
name for cycle vertices and basic vertices.

First, for each pair of cycle vertices BT
1 and BT

2 such that B1 and B2 share
an edge (not just a vertex), we connect them. Note that the end vertices of the
edge should form a hinge. After this process, we have connected components of
T -vertices. We call these connected components T -components. Note that each
T -component forms a tree from the outerplanarity of G.

We construct a graph GT starting with an arbitrary T -component. Then, we
add other T -components one by one as follows. Through this process, we keep
GT connected. Let CT be a T -component not added to GT yet. There are two
cases that CT will be added to the current GT .

– There exist T -vertices wT
1 ∈ CT and wT

2 ∈ GT such that w1 and w2 are
connected by a bridge.

– There exist cycle vertices BT
1 ∈ CT and BT

2 ∈ GT such that B1 and B2
share a vertex.

From the outerplanarity of G, only one of the two cases can occur. We note that
wT

2 is unique in the former case and the shared vertex is unique in the latter
case. In the former case, we make an edge between wT

1 and wT
2 and add CT to

GT . In the latter case, though there may be many possibilities for BT
2 , we just

choose any of them and make an edge between BT
1 and BT

2 and add CT to GT .
The order in which we add T -components is unimportant.

Since GT is connected and the number of edges is exactly the number of ver-
tices minus one (note that each T -component is a tree), GT forms a tree. We



648 Y. Yoshida and H. Ito

can think that each edge in GT corresponds to a hinge or a bridge in G. For two
cycle vertices BT

1 , BT
2 such that B1 and B2 share an edge (u, v), the hinge (u, v)

corresponds to the edge (BT
1 , BT

2 ). For two T -vertices wT
1 , wT

2 connected by a
bridge (u, v) in G, the bridge (u, v) corresponds to the edge (wT

1 , wT
2 ). Finally, for

two cycle vertices BT
1 , BT

2 such that B1 and B2 share a vertex v in G, the hinge
v corresponds to the edge (BT

1 , BT
2 ). For each edge (wT

1 , wT
2 ) in GT , w1 and w2

become disconnected in G by removing the corresponding hinge or bridge.
Our main tool for analysis is the microtree/macrotree decomposition of a

tree [15]. Given a parameter l, the microtree/macrotree decomposition is de-
fined as follows (we arbitrarily select a root and regard the tree as rooted).

– For every maximally high vertex whose subtree contains no more than l
leaves, we designate the subtree as a microtree2.

– Vertices not in any microtree form a macrotree.

In [15], l is always set to be O(log n). However, for our applications, l must be a
parameter. It is easy to see that the following propositions hold.

Proposition 2. Let n be the number of vertices in a tree T and l be the pa-
rameter for the microtree/macrotree representation. The macrotree of T has at
most n

l vertices with degree at least 3. (Note that degrees are calculated in the
macrotree after removing microtrees.) ��

Proposition 3. Let T be a tree and S be any microtree in the microtree/macrotree
decomposition of T with the parameter l. Suppose that we perform aBFS with radius
r from v ∈ S on T after removing the edge between the root of S and its parent.
Then, the BFS reaches at most rl vertices. ��

Let G be an outerplanar graph and GT be its tree representation. Let v be a
vertex in G and suppose that a base cycle B contains v. What we want to do is
to find B given v. Assume that the cycle vertex BT corresponding to B is in a
microtree S of the microtree/macrotree decomposition of GT with parameter l.
If we can simulate the removal of the edge between the root of S and its parent,
we can efficiently find B by performing a BFS with radius |B| on G. The number
of seen vertices in GT will be |B|l from Proposition 3. Since one step of a BFS
inside a cycle vertex in GT will see at most two vertices in G, the number of seen
vertices in G will be at most 2|B|l. If the upper bound on |B| and l are set to
be polynomial in 1

ε and d, the total query complexity also becomes polynomial.
Also, for base cycles whose corresponding cycle vertices are in the macrotree, we
will show that almost all of them can be found in polynomial time (see Sect. 4).

3.3 ��������	��
����

We formalize the intuition described so far. We explained earlier that a removal of
an edge in GT can be simulated by a removal of a hinge or a bridge. Because of a
2 The original definition is described in terms of the number of vertices with degree at

least 3 instead of the number of leaves. This is essentially equivalent to our definition.
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Fig. 2. Expected behavior of invalidating temporary hinges. Dashed lines indicate re-
moved edges. (a) invalidating a temporary hinge v, which separates a cycle w1 from a
cycle w2. (b) invalidating a temporary hinge (u, v), which separates a cycle w1 from a
cycle w2.

technical reason, we simulate it by removing edges incident to a hinge. Any vertex
or any pair of adjacent vertices is called a temporary hinge. Since we actually do
not know where hinges are, we regard each temporary hinge as a hinge and check
whether it behaves like a hinge. Now, we define invalidating a temporary hinge
h. Let wT

1 and wT
2 be T -vertices, and then we design the invalidation so that it

generates (at least) two connected components, one of which contains w1 and the
other one of which contains w2 if we put vertices shared by w1 and w2 in either
of the two components. If h is a vertex v, invalidating h is an operation that
removes edges incident to v except at least one and at most two edges (see Fig. 2
(a)). We have at most O(d2) ways of invalidating v. If h is a pair of adjacent
vertices (u, v), invalidating h is an operation that removes edges incident to u
or v except (precisely) three edges (u, v), (u, u′), and (v, v′), where u′ and v′ are
any adjacent vertices of u and v, respectively (see Fig. 2 (b)). Also, we have at
most O(d2) ways of invalidating (u, v).

In the rest of the paper, we set rε = 2
δεd + 2, lε = 16rε

εd and pε = 8rε

εd . Here
rε means an upper bound on the length of a base cycle we consider, lε means
an upper bound on the number of leaves in a microtree, and pε means an up-
per bound on the number of microtrees we see in one BFS. The description of
��������	��
���� is shown in Algorithm 2. Given a vertex v, ��������	��

���� tries to enumerate base cycles containing v with length of at most rε.
First, we perform a BFS to get a set of 2lεpεrε vertices. And after invalidating a
temporary hinge, we perform a BFS with radius 2rε again. Let Y be the reached
vertices in the BFS. We reject the graph immediately if G[Y ] is not outerplanar.
If G[Y ] is outerplanar, we adopt chordless cycles containing v in G[Y ].

3.4 ��������	���	������

Algorithm 3 shows the description of��������	���	������. As described ear-
lier, ��������	���	������(v) only adopt chordless cycles B such that �����
���	��
����(v′) returns them for every v′ ∈ B. Let ϕv,ε(G) be the returned
value of ��������	���	������(v). Note that ϕv,ε(G) is not a random vari-
able. We use ϕε(G) =

∑
v ϕv,ε(G) as the expectation of ϕ̃ε(G) calculated by

������	��������������.



650 Y. Yoshida and H. Ito

Algorithm 2. ��������	��
����(v):
Let rε = O( 1

εd
), lε = O( rε

ε2d2 ), pε = O( rε
εd

) and Bv = ∅.
Perform a BFS until it reaches 2lεpεrε vertices and let X be the set of reached
vertices.
for every way of invalidating at most one temporary hinge in G[X] (possibly no
hinge is invalidated) do

Execute a BFS with radius 2rε without using invalidated edges until it reaches
2lεpε · 2rε vertices and let Y be the set of reached vertices.
if G[Y ] is not outerplanar then

reject the graph.
else if the BFS reaches all the vertices whose distance from v is at most 2rε (the
distance is measured without using invalidated edges) and the BFS does not reach
end vertices of invalidated edges except the current temporary hinge then

Let C be the set of chordless cycles with length of at most rε containing v and
the invalidated hinge. Then add C to Bv.

return Bv.

Algorithm 3. ��������	���	������(v):

Let Bv = ∅ and B′
v be the set of cycles returned by ������������
	��� given v.

for B ∈ B′
v do

if B is returned by ������������
	���(v′) for every v′ ∈ B then
Add B to Bv.

return
∑

B∈Bv

1
|B| .

We call a vertex v rε-locally outerplanar if ��������	��
����(v) does not
reject the graph. Also, we call a graph rε-locally outerplanar if every vertex
in the graph is rε-locally outerplanar. We note that, even if a graph is rε-
locally outerplanar, its subgraph may not be rε-locally outerplanar. We have the
following.

Lemma 2. Let G be a graph in Gn,d. Any chordless cycle C in G returned by
��������	���	������ is a base cycle in G.

The proof is omitted due to the space. Thus, any cycle that ��������	��

�	������ returns is indeed a base cycle and we call B detectable if �����
���	���	������(v) returns B for v ∈ B.

4 The Number of Detectable Base Cycles in Outerplanar
Graphs

In this section, we show the following lemma.

Lemma 3. Let G ∈ Gn,d be an outerplanar graph, then ϕε(G) ≥ ρ(G)− 3δεdn
2 .

We classify base cycles by their length. First, we show that the number of base
cycles with length of more than rε (that means undetectable) is small. The next
proposition is elementary.
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Proposition 4. Let G ∈ Gn,d be an outerplanar graph and r ≥ 3 be an integer.
There are at most n

r−2 base cycles with length of more than r. ��

Proof (of Lemma 3). Let z be the number of base cycles with length of more
than rε = 2

δεd + 2. From Proposition 4, we have z ≤ δεdn
2 .

We describe which base cycle with length of at most rε is detectable by �����
���	���	������. First, a base cycle B with |B| ≤ rε is detectable if BT is in
a microtree. If a BFS with radius 2rε does not reach vertices in the macrotree,
then the BFS can reach at most 2lε · 2rε vertices, since the number of leaves in a
microtree is bounded by lε. Here, the coefficient 2 comes from the fact that the
BFS may run on cycles. Also, even if the BFS reaches vertices in the macrotree,
the same argument follows by invalidating one hinge between the microtree and
the macrotree from Proposition 3.

The number of undetectable base cycles in the macrotree is also bounded.
The degree of a vertex in the macrotree is calculated in the tree after removing
microtrees. Let B be a base cycle such that BT is in the macrotree and the degree
of BT is 2. If the distance between BT and the nearest vertex in the macrotree
with degree at least 3 is at most 2rε, BT may be undetectable. The number of
vertices with degree at least 3 in the macrotree is at most n

lε
from Proposition 2.

It follows that the number of vertices in the macrotree with degree 1 or at least
3 is at most 2n

lε
. Thus, the number of BT that are undetectable by such reason

is at most 8rεn
lε

.
Suppose that the distance between BT and the nearest vertex in GT with

degree at least 3 is more than 2rε. Then, the number of vertices in the macrotree
that a BFS of ��������	��
���� sees is at most 4rε. When the total number
of microtrees incident to those vertices in the macrotree is more than pε, B may
be undetectable. However, since the number of microtrees is bounded by n, the
number of such B is at most 4rεn

pε
.

When neither of these holds, a BFS with radius 2rε from a vertex in B can
reach at most 2lεpε ·2rε vertices. Thus, B is detectable. We have ϕε(G) ≥ ρ(G)−
z − 8rεn

lε
− 4rεn

pε
≥ ρ(G)− 3δεdn

2 . ��

5 The Number of Detectable Base Cycles in Graphs
ε-Far from Outerplanarity

In this section, we prove the following lemma.

Lemma 4. Let G ∈ Gn,d be a graph ε-far from outerplanarity. Then, at least
δεn
2 vertices in G are not rε-locally outerplanar or ϕε(G) ≤ ρ(G)− 1−5δ

2 · εdn
2 .

Let G = (V, EG) be a graph and H = (V, EH) be a supergraph of G. We
introduce an algorithm ��������	��
����H(v), which is a variant of �����
���	��
����(v). ��������	��
����H(v) on G basically runs in the same
manner as ��������	��
����(v) on G. The only difference is that it uses
EH instead of EG when performing BFS. That is, the sets of seen vertices by
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��������	��
����H(v) and ��������	��
����(v) are the same. �����
���	��
����H(v) checks outerplanarity using EG and returns cycles existing
in EG. Obviously, we cannot perform such procedure when we do not know
H . The algorithm is introduced to define notions below. We call a vertex v of
G (H, rε)-locally outerplanar if ��������	��
����H(v) does not reject the
graph. Also, we call a graph (H, rε)-locally outerplanar if every vertex in the
graph is (H, rε)-locally outerplanar. The important fact is that, if a graph G is
(H, rε)-locally outerplanar, any subgraph of G is also (H, rε)-locally outerplanar.
Similarly, if a vertex v in G is (H, rε)-locally outerplanar, v is also (H, rε)-locally
outerplanar w.r.t. any subgraph of G.

We introduce ��������	���	������H , which is a variant of ��������	��
�	������. The only difference between them is that ��������	���	������H

uses ��������	��
����H(v) instead of ��������	��
����(v). A base cy-
cle B is called H-detectable if ��������	���	������H(v) returns B for v ∈ B.
Let ϕH

v,ε(G) be the returned value of ��������	���	������H(v). We define
ϕH

ε (G) =
∑

v ϕH
v,ε(G).

We introduce the contracted representation GU of an (H, rε)-locally outerpla-
nar graph G such that any edge in H-undetectable base cycles is also contained
in some other H-detectable base cycle. The contracted representation is similar
to the tree representation of an outerplanar graph. The difference is that it can
be applied for a general graph if the graph satisfies the conditions above. We
assume that G is connected. The contracted representation of a disconnected
graph is just a union of the contracted representation of each connected com-
ponent. Each H-detectable base cycle B in G has a corresponding vertex BU

in GU , which is called a cycle vertex. Also, each vertex v not contained in any
cycle in G has a corresponding vertex vU in GU , which is called a basic vertex.
We use U -vertices as a general name for cycle vertices and basic vertices.

First, for each pair of cycle vertices BU
1 and BU

2 such that B1 and B2 share an
edge (not just a vertex), we connect them. After this process, we have connected
components of U -vertices. We call these connected components U -components.

We construct a graph GU starting with an arbitrary U -component. Then, we
add other U -components one by one as follows. Through this process, we keep
GU connected. Let CU be an U -component not added to GU yet. There are two
cases that CU will be added to the current GU .

1. There exist U -vertices wU
1 ∈ CU and wU

2 ∈ GU such that w1 and w2 are
connected by an edge not used in any H-detectable base cycles.

2. There exist cycle vertices BU
1 ∈ CU and BU

2 ∈ GU such that B1 and B2
share a vertex.

We note that wU
2 is unique in the former case. If otherwise, the edge between w1

and w2 must be in a cycle. It follows that the edge is in a H-detectable cycle,
contradicting the assumption. From the same reason, only one of the two cases
can occur. In the latter case, there may exist many shared vertices, and for each
shared vertex v, there may exist many B2 such that v ∈ B2.

In the former case, we make an edge between wU
1 and wU

2 and add CU to
GU . In the latter case, for each shared vertex v ∈ B1, we make an edge. Though
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there may be many possibilities for BU
2 , we just choose any of them and make

an edge between BU
1 and BU

2 . Finally, we add CU to GU . We do not care about
the order in which we add U -components.

The following proposition is simple but useful.

Proposition 5. At most two (H-)detectable base cycles can share an edge.

Proof. Suppose that there are at least three detectable base cycles sharing a
common edge. Then, those base cycles themselves form a non-outerplanar sub-
graph, and it contradicts the detectability of them. ��

We need the following lemmas, the proofs of which appear in the full version.

Lemma 5. Let G ∈ Gn,d be an (H, rε)-locally outerplanar graph such that any
edge in H-undetectable base cycles is contained in a H-detectable base cycle.
Then, ρ(GU ) = ρ(G)− ϕH

ε (G).

Lemma 6. Let G ∈ Gn,d be an (H, rε)-locally outerplanar graph with ϕH
ε (G) =

ρ(G). Then, there exists neither K4-subdivision nor K2,3-subdivision in G.

The next lemma states that there are a small number of detectable base cycles
in a graph that is locally outerplanar but far from outerplanarity.

Lemma 7. Let G ∈ Gn,d be an (H, rε)-locally outerplanar graph (1 − δ)ε-far
from outerplanarity. Then, ϕH

ε (G) ≤ ρ(G) − 1−δ
2 · εdn

2 .

Proof. Suppose thatϕH
ε (G)>ρ(G)− 1−δ

2 · εdn
2 .WhileGcontainsanH-undetectable

base cycle with an edge not contained in any other H-detectable base cycles, we re-
move the edge.LetK be the resulting graphand γεdn

2 denote thenumber of removed
edges where 0 ≤ γ ≤ 1−δ

2 . Note that ρ(K) = ρ(G) − γεdn
2 , and ϕH

ε (K) = ϕH
ε (G).

Next, we create the contracted representation KU of K. From Lemma 5,
ρ(KU ) = ρ(K) − ϕH

ε (K) < (1−δ
2 − γ) εdn

2 . We take any spanning forest of KU .
This process is done by removing ρ(KU ) edges from KU . Each removal of an edge
in KU can be simulated by removing at most two edges in K (in a way similar to
invalidating a hinge). The resulting graph K ′ is (H, rε)-locally outerplanar and
has no H-undetectable base cycles, i.e., ϕH

ε (K ′) = ρ(K ′). Thus, from Lemma 6,
K ′ is an outerplanar graph.

The number of removed edges from G is less than γεdn
2 + (1−δ−2γ)εdn

2 =
(1−δ−γ)εdn

2 . This contradicts the (1− δ)ε-farness of G.

Proof (of Lemma 4). Suppose that the former statement does not hold, i.e., the
number of rε-locally outerplanar vertices is less than δεn

2 . Also, suppose that
ϕε(G) > ρ(G)− 1−5δ

2 · εdn
2 holds.

We remove every edge incident to vertices that are not rε-locally outerplanar
and let G′ be the resulting graph. One edge removal decreases ϕε by at most
two since at most two (G-)detectable base cycles share the edge in common from
Proposition 5. Thus, ϕG

ε (G′) ≥ ϕε(G) − δεdn > ρ(G) − 1−δ
2 · εdn

2 holds. On the
other hand, G′ is (G, rε)-locally outerplanar and (1−δ)ε-far from outerplanarity.
From Lemma 7, we have ϕG

ε (G′) ≤ ρ(G′)− 1−δ
2 · εdn

2 ≤ ρ(G)− 1−δ
2 · εdn

2 , which
is a contradiction. ��
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6 Proof of the Main Result

Proof (of Theorem 1). First, we show the query complexity of������	��������
������. The query complexity of calculating ρ̃(G) is Õ

(
d
ε2

)
from Lemma 1.

The query complexity of��������	��
���� is as follows. Since the size of X
is O(lεpεrε), there are O(d3lεpεrε) ways of invalidating hinges in X . For each way
of invalidating hinges, we perform a BFS, which requires O(dlεpεrε) queries. Thus,
the total query complexity of��������	��
���� is O(d4l2εp

2
εr

2
ε ). For each cycle

��������	��
���� returns, ��������	���	������ invokes ��������	��

���� for each vertex in the cycle. Since the number of cycles returned by�����
���	��
���� is at most d and the number of vertices in one cycle is at most
rε, the total query complexity of ��������	���	������ is O(drεd

4l2εp
2
εr

2
ε ) =

1
ε11d6 .������	�������������� selects s = O

( 1
ε2

)
vertices and performs�����

���	���	������ for each selected vertex. Thus, the total query complexity of
������	�������������� is Õ

( 1
ε13d6 + d

ε2

)
.

Next, we show that ������	�������������� actually tests outerplanarity.
From Lemma 1, |ρ̃(G)−ρ(G)| ≤ δεdn

2 holds with probability of at least 1−δ. Also,
from Hoeffding’s inequality [19], |ϕ̃ε(G) − ϕε(G)| < δεdn

2 holds with probability
of at least 1− δ by choosing sufficiently large s. From the union bound, both of
them simultaneously hold with probability of at least 1− 2δ.

Suppose that the given graph is outerplanar. Then, from Lemma 3, ϕε(G) ≥
ρ(G)− 3δεdn

2 . Thus, ϕ̃ε(G) > ρ̃(G)− εdn
8 holds with probability of at least 1−2δ.

Hence, ������	�������������� w.h.p. accepts the graph.
Suppose that the given graph is ε-far from outerplanarity. Then from Lemma 4,

either at least δεn
2 vertices are not rε-locally outerplanar orϕε(G) ≤ ρ(G)− 1−5δ

2
εdn
2

holds. In the former case, ������	�������������� w.h.p.̃rejects G since we
choose s = O

( 1
ε2

)
. In the latter case, ϕ̃ε(G) < ρ̃(G) − εdn

8 holds with probability
of at least 1−2δ. Hence,������	�������������� w.h.p.̃rejects the graph. ��

7 Conclusions

In this paper, we showed a testing algorithm for outerplanarity in the bounded
degree model. The query complexity of the algorithm is Õ

( 1
ε13d6 + d

ε2

)
.

A graph is called a cactus if every edge resides on at most one cycle. Our
algorithm can be easily modified to test whether a given graph is a cactus. The
detail is omitted due to the space. We just state the result here.

Theorem 2. There is a testing algorithm for being a cactus in the bounded
degree model with query complexity Õ

( 1
ε13d6 + d

ε2

)
. ��

A natural extension of this work is developing polynomial time algorithms for
testing wider minor-closed properties such as planar graphs. Our observation
that the number of detectable base cycles is much different between outerplanar
graphs and graphs far from it might be helpful. To achieve polynomial running
time, we utilize the microtree/macrotree decomposition. This technique might
be applicable to testing algorithms for other classes of graphs, in particular
series-parallel graphs and graphs with a bounded tree-width.
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Two-Source Extractors Secure against Quantum
Adversaries

Roy Kasher� and Julia Kempe��

School of Computer Science, Tel Aviv University

Abstract. We initiate the study of multi-source extractors in the quan-
tum world. In this setting, our goal is to extract random bits from two in-
dependent weak random sources, on which two quantum adversaries store
a bounded amount of information. Our main result is a two-source extrac-
tor secure against quantum adversaries, with parameters closely matching
the classical case and tight in several instances. Moreover, the extractor
is secure even if the adversaries share entanglement. The construction is
the Chor-Goldreich [5] two-source inner product extractor and its multi-
bit variant by Dodis et al. [9]. Previously, research in this area focused on
the construction of seeded extractors secure against quantum adversaries;
the multi-source setting poses new challenges, among which is the pres-
ence of entanglement that could potentially break the independence of the
sources.

Keywords: Extractors, Quantum Information.

1 Introduction and Results

Randomness extractors are fundamental in many areas of computer science, with
numerous applications to derandomization, error-correcting codes, expanders,
combinatorics and cryptography, to name just a few. Randomness extractors
generate almost uniform randomness from imperfect sources, as they appear
either in nature, or in various applications. Typically, the imperfect source is
modelled as a distribution over n-bit strings whose min-entropy is at least k,
i.e., a distribution in which no string occurs with probability greater than 2−k

[26,5,34]. Such sources are known as weak sources. One way to arrive at a weak
source is to imagine that an adversary (or some process in nature), when in
contact with a uniform source, stores n− k bits of information about the string
(which are later used to break the security of the extractor, i.e. to distinguish
its output from uniform). Then, from the adversary’s point of view, the source
essentially has min-entropy k.
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Ideally, we would like to extract randomness from a weak source. However,
it is easy to see that no deterministic function can extract even one bit of ran-
domness from all such sources, even for min-entropies as high as n − 1 (see
e.g. [26]). One main approach to circumvent this problem is to use a short truly
random seed for extraction from the weak source (seeded extractors) (see, e.g.,
[27]). The other main approach, which is the focus of the current work, is to
use several independent weak sources (seedless extractors) (e.g. [5,31,9,4,23] and
many more).

With the advent of quantum computation, we must now deal with the possi-
bility of quantum adversaries (or quantum physical processes) interfering with
the sources used for randomness extraction. For instance, one could imagine that
a quantum adversary now stores n − k qubits of information about the string
sampled from the source. This scenario of a bounded storage quantum adversary
arises in several applications, in particular in cryptography.

Some constructions of seeded extractors were shown to be secure in the pres-
ence of quantum adversaries: König, Maurer, and Renner [25,19,24] proved that
the pairwise independent extractor of [16] is also good against quantum adver-
saries, and with the same parameters. König and Terhal [20] showed that any
one-bit output extractor is also good against quantum adversaries, with roughly
the same parameters. In light of this, it was tempting to conjecture that any
extractor is also secure against quantum storage. Somewhat surprisingly, Gavin-
sky et al. [12] gave an example of a seeded extractor that is secure against
classical storage but becomes insecure even against very small quantum stor-
age. This example has initiated a series of recent ground-breaking work that
examined which seeded extractors stay secure against bounded storage quantum
adversaries. Ta-Shma [28] gave an extractor with a short (polylogarithmic) seed
extracting a polynomial fraction of the min-entropy. His result was improved by
De and Vidick [8] extracting almost all of the min-entropy. Both constructions
are based on Trevisan’s extractor [30].

However, the question of whether seedless multi-source extractors can remain
secure against quantum adversaries has remained wide open. The multi-source
scenario corresponds to several independent adversaries, each tampering with
one of the sources, and then jointly trying to distinguish the extractor’s output
from uniform. In the classical setting this leads to several independent weak
sources. In the quantum world, measuring the adversaries’ stored information
might break the independence of the sources, thus jeopardizing the performance
of the extractor.1 Moreover, the multi-source setting offers a completely new
aspect of the problem: the adversaries could potentially share entanglement prior
to tampering with the sources. Entanglement between several parties is known
to yield several astonishing effects with no counterpart in the classical world,
e.g., non-local correlations [1] and superdense coding [3].

We note that the example of Gavinsky et al. can also be viewed as an ex-
ample in the two-source model; we can imagine that the seed comes from a

1 Such an effect appears also in strong seeded extractors and has been discussed in
more detail in [20].
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second source (of full entropy in this case, just like any seeded extractor can be
artificially viewed as a two-source extractor). And obviously, in the same way,
recent work on quantum secure seeded extractors artificially gives secure two-
source extractors, albeit for a limited range of parameters and without allowing
for entanglement. However, no one has as of yet explored how more realistic
multi-source extractors fare against quantum adversaries, and in particular how
entanglement might change the picture. We ask: Are there any good multi-source
extractors secure against quantum bounded storage? And does this remain true
when considering entanglement?

Our results: In this paper we answer all these questions in the positive. We fo-
cus on the inner-product based two-source extractor of Dodis et al. [9] (DEOR-
extractor). Given two independent weak sources X and Y with the same length
n and min-entropies k1 and k2 satisfying k1+k2 � n, this extractor gives m close
to uniform random bits, where m ≈ max(k1, k2) + k1 + k2 − n. In recent years
several two-source extractors with better parameters have been presented; how-
ever, the DEOR-construction stands out through its elegance and simplicity and
its parameters still fare very well in comparison with recent work (e.g., [4,23]).

A first conceptual step in this paper is to define the model of quantum ad-
versaries and of security in the two-source scenario (see Defs. 2 and 3): Each
adversary gets access to an independent weak source X (resp. Y ), and is allowed
to store a short arbitrary quantum state. In the entangled setting, the two adver-
saries may share arbitrary prior entanglement, and hence their final joint stored
state is the possibly entangled state ρXY . In the non-entangled case their joint
state is of the form ρXY = ρX ⊗ ρY . In both cases, the security of the extractor
is defined with respect to the joint state they store.

Definition 1. [Two-source extractor against (entangled) quantum storage (in-
formal):] A function E : {0, 1}n × {0, 1}n → {0, 1}m is a (k1, k2, ε) extractor
against (b1, b2) (entangled) quantum storage if for any sources X, Y with min-
entropies k1, k2, and any joint stored quantum state ρXY prepared as above, with
X-register of b1 qubits and Y -register of b2 qubits, the distribution E(X, Y ) is
ε-close to uniform even when given access to ρXY .

Depending on the type of adversaries, we will say E is secure against entangled
or non-entangled storage. Note again that entanglement between the adversaries
is specific to the multi-source scenario and does not arise in the case of seeded
extractors.

Having set the framework, we show that the construction of Dodis et al. [9]
is secure, first in the case of non-entangled adversaries.

Theorem 1. The DEOR-construction is a (k1, k2, ε) extractor against (b1, b2)
non-entangled storage with m = (1 − o(1))max(k1 − b1

2 , k2 − b2
2 ) + 1

2 (k1 − b1 +
k2 − b2 − n) − 9 log ε−1 − O(1) output bits, provided k1 + k2 − max(b1, b2) >
n + Ω(log3(n/ε)).
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As we show next the extractor remains secure even in the case of entangled
adversaries. Notice the loss of essentially a factor of 2 in the allowed storage;
this is related to the fact that superdense coding allows to store n bits using
only n/2 entangled qubit pairs.

Theorem 2. The DEOR-construction is a (k1, k2, ε) extractor against (b1, b2)
entangled storage with m = (1 − o(1))max(k1 − b2, k2 − b1) + 1

2 (k1 − 2b1 +
k2 − 2b2 − n) − 9 log ε−1 − O(1) output bits, provided k1 + k2 − 2 max(b1, b2) >
n + Ω(log3(n/ε)).

Note that in both cases, when the storage is linear in the source entropy we can
output Ω(n) bits with exponentially small error. To compare to the performance
of the DEOR-extractor in the classical case, note that a source with min-entropy
k and classical storage of size b roughly corresponds to a source of min-entropy
k−b (see, e.g., [28] Lem. 3.1). Using this correspondence, the extractor of [9] gives
m = max(k1, k2)+k1−b1+k2−b2−n−6 log ε−1−O(1) output bits against clas-
sical storage, whenever k1 + k2 −max(b1, b2) > n + Ω(log n · (log2 n + log ε−1)).
Hence the conditions under which one can extract randomness are essentially
the same for DEOR and for our Thm. 1. The amount of random bits we can
extract is somewhat less than in the classical case, even when disregarding
storage.

In the non-entangled case, we are able to generalize our result to the stronger
notion of guessing entropy adversaries or so called quantum knowledge (see dis-
cussion below and the full version [18] of this paper for details). We show that
the DEOR-extractor remains secure even in this case, albeit with slightly weaker
parameters.

Theorem 3. The DEOR-construction is a (k1, k2, ε) extractor against quantum
knowledge with m = (1 − o(1))max(k1, k2) + 1

6 (k1 + k2 − n) − 9 log ε−1 − O(1)
output bits, provided k1 + k2 > n + Ω(log3(n/ε)).

For the proof of Thm. 3 refer to the full version of the paper [18].

Strong extractors: The extractor in Thms. 1, 2 and 3 is a so called weak extractor,
meaning that when trying to break the extractor, no full access to any of the
sources is given (which is natural in the multi-source setting). We also obtain
several results in the so called strong case (see Cor. 2 and Lem. 5). A strong
extractor has the additional property that the output remains secure even if
the adversaries later gain full access to any one (but obviously not both) of the
sources.2 See Sec. 2 for details and a discussion of the subtleties in defining a
strong extractor in the entangled case, and Secs. 3, 4 for our results in the strong
case.

Tightness: In the one-bit output case, we show that our results are tight, both
in the entangled and non-entangled setting.

2 In [9], this is called a strong blender.
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Proof ideas and tools: To show both of our results, we first focus on the simplest
case of one-bit outputs. In this case the DEOR extractor [9] simply computes the
inner product E(x, y) = x · y (mod 2) of the n-bit strings x and y coming from
the two sources. Assume that the two adversaries are allowed quantum storage
of b qubits each. Given their stored information they jointly wish to distinguish
E(x, y) from uniform, or, in other words, to predict x · y. We start by observing
that this setting corresponds to the well known simultaneous message passing
(SMP) model in communication complexity,3 where two parties, Alice and Bob,
have access to an input each (which is unknown to the other). They each send
a message of length b to a referee, who, upon reception of both messages, is to
compute a function E(x, y) of the two inputs. When E is hard to compute, it is
a good extractor. Moreover, the entangled adversaries case corresponds to the
case of SMP with entanglement between Alice and Bob, a model that has been
studied in recent work (see e.g. [13,14]).

Before we proceed, let us remark, that there are cases, where entanglement is
known to add tremendous power to the SMP model. Namely, Gavinsky et al. [13]
showed an exponential saving in communication in the entangled SMP model,
compared to the non-entangled case.4 This points to the possibility that some
extractors can be secure against a large amount of storage in the non-entangled
case, but be insecure against drastically smaller amounts of entangled storage.
Our results show that this is not the case for the DEOR extractor, i.e., that this
construction is secure against the potentially harmful effects of entanglement.

In the one-bit output DEOR case we can tap into known results on the quan-
tum communication complexity of the inner product problem (IP). Cleve et
al. [6] and Nayak and Salzman [21] have given tight lower bounds in the one-way
and two-way communication model, with and without entanglement (which also
gives bounds in the SMP model). For instance, in the non-entangled case, to com-
pute IP exactly in the one-way model, n qubits of communication are needed,
and in the SMP model, n qubits of communication are needed from Alice and
from Bob, just like in the classical case. Note that whereas in the communica-
tion setting typically worst case problems are studied, extractors correspond to
average case (w.r.t. to weak randomness) problems. With some extra work we
can adapt the communication lower bounds to weak sources and to the average
bias which is needed for the extractor result. In fact, the results we obtain hold
in the strong case (where later one of the sources is completely exposed), which
corresponds to one-way communication complexity.

Tightness of our results comes from matching upper bounds on the one-way
and SMP model communication complexity of the inner product. Adapting the

3 The connection between extractors and communication complexity has been long
known, see, e.g., [31].

4 This result has been shown for a relation, not a function. It is tempting to conjecture
that this result can be turned into an exponential separation for an extractor with
entangled vs. non-entangled adversaries. It is, however, not immediate how to turn
a worst case relation lower bound into an average case function bound, as needed in
the extractor setting, so we leave this problem open.
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work of [5] we can obtain tight bounds for any bias ε. Somewhat surprisingly,
it seems no one has looked at tight upper bounds for IP in the entangled SMP
model, where [6] give an n/2 lower bound for the message length for Alice and
Bob. It turns out this bound is tight,5 which essentially leads to the factor 2
separation in our results for the entangled vs. non-entangled case (see Sec. 3).

To show our results for the case of multi-bit extractors, we use the nice proper-
ties of the DEOR construction (and its precursors [31,10]). The extractor outputs
bits of the form Ax ·y. Vazirani’s XOR-Lemma allows to reduce the multi-bit to
the one-bit case by relating the distance from uniform of the multi-bit extractor
to the sum of biases of XOR’s of subsets of its bits. Each such XOR, in turn,
is just a (linearly transformed) inner product, for which we already know how
to bound the bias. Our main technical challenge is to adapt the XOR lemma to
the case of quantum side-information (see Sec. 2). This way we obtain results for
multi-bit extractors, which even hold in the case of strong extractors. Following
[9], we further improve the parameters in the weak extractor setting by combin-
ing our strong two-source extractor with a good seeded extractor (in our case
with the construction of [7]) to extract even more bits. See Sec. 4 for details.

Guessing entropy: One can weaken the requirement of bounded storage, and
instead only place a lower bound on the guessing entropy of the source given the
adversary’s storage, leading to the more general definition of extractors secure
against guessing entropy. Informally, a guessing entropy of at least k means
that the adversary’s probability of correctly guessing the source is at most 2−k

(or equivalently, that given the adversary’s state, the source has essentially min-
entropy at least k). Working with guessing entropy has the advantage that we no
longer have to worry about two parameters (min-entropy and storage) instead
only working with one parameter (guessing entropy), and that the resulting
extractors are stronger (assuming all other parameters are the same).

In the classical world, a guessing entropy of k is more or less equivalent to a
source with k min-entropy; in the quantum world, however, things become less
trivial. In the case of seeded extractors, this more general model has been suc-
cessfully introduced and studied in [24,20,11,7,29], where several constructions
secure against bounded guessing entropy were shown.

In the case of non-entangled two-source extractors, we can show (based
on [20]) that any classical one-bit output two-source extractor remains secure
against bounded guessing entropy adversaries, albeit with slightly worse pa-
rameters. Moreover, our XOR-Lemma allow us to prove security of the DEOR-
extractor against guessing entropy adversaries even in the multi-bit case (Thm. 3,
see the full version [18] for the details).6

In the entangled adversaries case, one natural way to define the model is to
require the guessing entropy of each source given the corresponding adversary’s

5 We thank Ronald de Wolf [32] for generously allowing us to adapt his upper bound
to our setting.

6 We are grateful to Thomas Vidick for pointing out that our XOR-Lemma allows us
to obtain results also in this setting.
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storage to be high. This definition, however, is too strong: it is easy to see
that no extractor can be secure against such adversaries. This follows from the
observation that by sharing a random string r1r2 (which is a special case of
shared entanglement) and having the first adversary store r1 ⊕ x, r2 and the
other store r1, r2 ⊕ y, we keep the guessing entropy of X (resp. Y ) relative to
the adversary’s storage unchanged yet we can recover x and y completely from
the combined storage.

Hence we are naturally lead to consider the weaker requirement that the
guessing entropy of each source given the combined storage of both adversaries
is high. We now observe that already the DEOR one-bit extractor (where the
output is simply the inner product) is not secure under this definition, indicating
that this definition is still too strong. To see this, consider uniform n-bit sources
X, Y , and say Alice stores x ⊕ r, and Bob stores y ⊕ r, where r is a shared
random string. Obviously, their joint state does not help in guessing X (or Y ),
hence the guessing entropy of the sources is still n; but their joint state does give
x⊕ y. If, in addition, Alice also stores the Hamming weight |x| mod 4 and Bob
|y| mod 4, the guessing entropy is barely affected, and indeed one can easily show
it is n−O(1). However, their information now suffices to compute x · y exactly,
since x ·y = 1

2 ((|x|+ |y|− |x⊕y|) mod 4). Hence inner product is insecure in this
model even for very high guessing entropies, even though it is secure against a
fair amount of bounded storage.

In light of this, it is not clear if and how entangled guessing entropy sources
can be incorporated into the model, and hence we only consider bounded storage
adversaries in the entangled case.

Related work: We are the first to consider two-source extractors in the quantum
world, especially against entanglement. As mentioned, previous work on seeded
extractors against quantum adversaries [25,19,24,20,28,8,7,2] gives rise to trivial
two-source extractors where one of the sources is not touched by the adversaries.
However, the only previous work that allows to derive results in the genuine two-
source scenario is the work by König and Terhal [20]. Using what is implicit in
their work, and with some extra effort, it is possible to obtain results in the
one-bit output non-entangled two-source scenario (which hold against guessing
entropy adversaries, but with worse performance than our results for the inner
product extractor), and we give this result in detail in the full version of the
paper [18]. Moreover, [20] show that any classical multi-bit extractor is secure
against bounded storage adversaries, albeit with an exponential decay in the
error parameter. This easily extends to the non-entangled two-source scenario,
to give results in the spirit of Thm. 1. We have worked out the details and
comparison to Thm. 1 in the full version of the paper [18]. Note, however, that
to our knowledge no previous work gives results in the entangled scenario.

Discussion and Open Problems: We have, for the first time, studied two-source
extractors in the quantum world. Previously, only seeded extractors have been
studied in the quantum setting. In the two-source scenario a new phenomenon
appears: entanglement between the (otherwise independent) sources. We have
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formalized what we believe the strongest possible notion of quantum adversaries
in this setting and shown that one of the best performing extractors, the DEOR-
construction, remains secure. We also show that our results are tight in the
one-bit output case.

Our results for the multi-bit output DEOR-construction allow to extract
slightly less bits compared to what is possible classically. An interesting open
question is whether it is possible to obtain matching parameters in the (non-
entangled) quantum case. One might have to refine the analysis and not rely
solely on communication complexity lower bounds. Alternatively, our quantum
XOR-Lemma currently incurs a penalty exponential in either the length of the
output or the length of the storage. Any improvement here also immediately im-
proves all three main theorems. In particular, by removing the penalty entirely,
Thm. 1 can be made essentially optimal (with respect to the classical case).

We have shown that inner-product-based constructions are necessarily inse-
cure in two reasonable models of entangled guessing entropy adversaries (and
hence that bounded storage adversaries are the more appropriate model in the
entangled case). It should be noted that it is possible that other extractor con-
structions (not based on inner product) could remain secure in this setting, and
this subject warrants further exploration.

As pointed out, it is conceivable that entanglement could break the security
of two-source extractors. Evidence for this is provided by the communication
complexity separation in the entangled vs. non-entangled SMP-model, given in
[13]. A fascinating open problem is to turn this relational separation into an ex-
tractor that is secure against non-entangled quantum adversaries but completely
broken when entanglement is present.

Our work leaves several other open questions. It would be interesting to see
if other multi-source extractors remain secure against entangled adversaries, in
particular the recent breakthrough construction by Bourgain [4] which works for
two sources with min-entropy (1/2−α)n each for some small constant α, or the
construction of Raz [23], where one source is allowed to have logarithmic min-
entropy while the other has min-entropy slightly larger than n/2. Both extractors
output Ω(n) almost uniform bits.

And lastly, it would be interesting to see other application of secure multi-
source extractors in the quantum world. One possible scenario is multi-party
computation. Classically, Kalai et al. [17] show that sufficiently strong two-source
extractors allow to perform multi-party communication with weak sources when
at least two parties are honest. Perhaps similar results hold in the quantum
setting.

Structure of the paper: In Sec. 2 we introduce our basic notation and definitions,
and describe the DEOR construction. Here we also present one of our tools,
the “quantum” XOR-Lemma. Sec. 3 is dedicated to the one-bit output case and
the connection to communication complexity and gives our tightness results. In
Sec. 4 we deal with the multi-bit output case and prove our main result, Thms. 1
and 2. The details of several of the proofs and an in depth treatment of guessing
entropy are relegated to the full version [18].
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2 Preliminaries and Tools

In this section we provide the necessary notation, formalize Def. 1, describe
the DEOR-extractor and present and prove our quantum XOR-Lemma. For
background on quantum information see e.g. [22].

Notation: Given a classical random variable Z and a set of density matrices
{ρz}z∈Z we denote by ZρZ the cq-state

∑
z∈Z Pr[Z = z]|z〉〈z| ⊗ ρz . When the

distribution is clear from the context we write p(z) instead of Pr[Z = z]. For any
random variable Z ′ on the domain of Z, we define ρZ′ :=

∑
z∈Z′ Pr[Z ′ = z]ρz.

For any random variable Y , let Y ρZ :=
∑

y∈Y Pr[Y = y]|y〉〈y| ⊗ ρZ|Y =y. We
denote by Um the uniform distribution on m bits. For matrix norms, we define
|A|tr = 1

2 ‖A‖1 = 1
2Tr(

√
A†A) and ‖A‖2 =

√
Tr(A†A).

Extractors against quantum storage: We first formalize the different types of
quantum storage.

Definition 2. For two random variables X, Y we say ρXY is a (b1, b2) entangled
storage if it is generated by two non-communicating parties, Alice and Bob, in
the following way. Alice and Bob initially share an arbitrary entangled state.
Alice receives x ∈ X, Bob receives y ∈ Y . They each apply an arbitrary quantum
operation on their qubits. Alice then stores b1 of her qubits (and discards the
rest), and Bob stores b2 of his qubits, giving the state ρxy.

We denote by ρA
XY the state obtained when Alice stores her entire state,

whereas Bob stores only b2 qubits of his, and similarly for ρB
XY .

We say ρXY is (b1, b2) non-entangled storage if ρxy = ρx ⊗ ρy for all x ∈
X, y ∈ Y .

The security of the extractor is defined relative to the storage.

Definition 3. A (k1, k2, ε) two-source extractor against (b1, b2) (entangled) quan-
tum storage is a function E : {0, 1}n×{0, 1}n → {0, 1}m such that for any indepen-
dent n-bit weak sources X, Y with respective min-entropies k1, k2, and any (b1, b2)
(entangled) storage ρXY , |E(X, Y )ρXY − UmρXY |tr ≤ ε.

The extractor is called X-strong if |E(X, Y )ρXY X − UmρXY X |tr ≤ ε, X-
superstrong when ρXY is replaced by ρA

XY , and similarly for Y . It is called
(super)strong if it is both X- and Y- (super)strong.

A note on the definition: A strong extractor is secure even if at the distinguishing
stage one of the sources is completely exposed. A superstrong extractor is secure
even if, in addition, the matching party’s entire state is also given. Without en-
tanglement, the two are equivalent, as the state can be completely reconstructed
from the source. Equivalently, in terms of storage, we can say an extractor is X-
strong if it is secure against (k1, b2) storage, and X-superstrong if secure against
(∞, b2) storage. Further note that in the communication complexity setting the
model of strong extractors corresponds to the SMP model where the referee also
gets access to one of the inputs, whereas the model of superstrong extractors
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corresponds to the one-way model, where one party also has access to its share
of the entangled state.

To prove E is an extractor, it suffices to show that it is either X-strong or
Y-strong. All our proofs follow this route.

Flat sources: It is well known that any source with min-entropy k is a convex
combination of flat sources (i.e., sources that are uniformly distributed over their
support) with min-entropy k. In what follows we will therefore only consider
such sources in our analysis of extractors, as one can easily verify that for every
sources X, Y and quantum storage ρXY ,

|E(X, Y )ρXY − UmρXY |tr ≤ max
i,j

∣∣E(Xi, Yj)ρXiYj − UmρXiYj

∣∣
tr ,

where X =
∑

αiXi and Y =
∑

βjYj are convex combinations of flat sources.

The DEOR construction: The following (strong) extractor construction is due
to Dodis et al. [9]. Every output bit is a linearly transformed inner product,
namely Aix · y for some full rank matrix Ai, where x and y are the n-bit input
vectors. Here x · y :=

∑n
j=1 xjyj (mod 2). The matrices Ai have the additional

property that every subset sum is also of full rank. This ensures that any XOR
of some bits of the output is itself a linearly transformed inner product.

Lemma 1 ([9]). For all n > 0, there exist an efficiently computable set of n×n
matrices A1, A2, . . . , An over GF(2) such that for any non-empty set S ⊆ [n],
AS :=

∑
i∈S Ai has full rank.

Definition 4 (strong blender of [9]). Let n ≥ m > 0, and let {Ai}m
i=1 be a

set as above. The DEOR-extractor ED : {0, 1}n × {0, 1}n → {0, 1}m is given by
ED(x, y) = A1x · y, A2x · y, . . . , Amx · y.

The XOR-Lemma: Vazirani’s XOR-Lemma [31] relates the non-uniformity of a
distribution to the non-uniformity of the characters of the distribution, i.e., the
XOR of certain bit positions. For the DEOR-extractor it allows to reduce the
multi-bit output case to the binary output case.

Lemma 2 (Classical XOR-Lemma [31,15]). Foreverym-bit randomvariable
Z

|Z − Um|21 ≤
∑

0
=S∈{0,1}m

|(S · Z)− U1|21 .

This lemma is not immediately applicable in our scenario, as we need to take
into account quantum side information. For this, we need a slightly more general
XOR-Lemma.

Lemma 3 (Classical-Quantum XOR-Lemma).7 Let ZρZ be an arbitrary
cq-state, where Z is an m-bit classical random variable and ρZ is of dimension
2d. Then
7 We thank Thomas Vidick for pointing out that we can also have a bound in terms

of m and not only d.



666 R. Kasher and J. Kempe

|ZρZ − UmρZ |2tr ≤ 2min(d,m) ·
∑

0
=S∈{0,1}m

|(S · Z)ρZ − U1ρZ |2tr .

Following the proof of the classical XOR-Lemma in [15], we first relate
‖ZρZ − UmρZ‖1 to ‖ZρZ − UmρZ‖2, and thenviewZρZ−UmρZ in theHadamard
(or Fourier) basis, giving us the desired result. The detailed proof can be found in
the full version of the paper [18].

3 Communication Complexity and One-Bit Extractors

3.1 Average Case Lower Bound for Inner Product

Cleve et al. [6] give a lower bound for the worst case one-way quantum com-
munication complexity of inner product with arbitrary prior entanglement. It is
achieved by first reducing the problem of computing the inner product to that
of transmitting one input over a quantum channel, and then using an extended
Holevo bound. Nayak and Salzman [21] obtained an optimal lower bound by
replacing Holevo with a more “mission-specific” bound.
Revisiting Cleve et al.’s reduction, we now show how to adapt it to flat sources,
to the average case error and to the linearly transformed inner product. The
main challenge is to carefully treat the error terms so as to not cancel out the
(small) amplitude of the correct state.

Lemma 4. Let X, Y be flat sources over n bits with min-entropies k1, k2, and
A, B full rank n by n matrices over GF (2). Let P be a b qubit one-way protocol
for (AX) · (BY ) with success probability 1

2 + ε. Then

(a) ε ≤ 2−(k1+k2−2b−n+2)/2, if the parties share prior entanglement and
(b) ε ≤ 2−(k1+k2−b−n+2)/2 otherwise.

The proof can be found in the full version of the paper [18].

3.2 One Bit Extractor

When the extractor’s output is binary, distinguishing it from uniform is equiva-
lent to computing the output on average. This was shown by Yao [33] when the
storage is classical and is trivially extended to the quantum setting. With this
observation, reformulating Lem. 4 in the language of trace distance yields a one
bit extractor.

Corollary 1. The function EIP (x, y) = x · y is a (k1, k2, ε) extractor against
(b1, b2) (entangled) quantum storage provided

(a) (entangled) k1 + k2 − 2 min(b1, b2) ≥ n− 2 + 2 log ε−1,
(b) (non-entangled) k1 + k2 −min(b1, b2) ≥ n− 2 + 2 log ε−1.
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Proof. With Yao’s equivalence, Lem. 4.(a) immediately gives

|(AX · Y )ρXY X − UρXY X |tr ≤ 2−(k1+k2−2b2−n+2)/2 (1)

|(AX · Y )ρXY Y − UρXY Y |tr ≤ 2−(k1+k2−2b1−n+2)/2 (2)

for any full rank matrix A, and specifically for A = I. By the assumption on ε,
EIP is either Y-strong or X-strong. Repeating this argument with Lem. 4.(b)
gives the non-entangled case.

Recall (see Def. 3 and discussion thereafter) that one-way communication cor-
responds to the model of superstrong extractors. It is not surprising then that
Lem. 4 actually implies a superstrong extractor. By choosing ε in the above
proof of Cor. 1 such that both inequalities (1) and (2) are satisfied, where we
replace ρxY by ρA

xY to include Alice’s complete state as well as Bob’s entangled
qubits and similarly for ρB

Xy, we obtain:

Corollary 2. The function EIP (x, y) = x·y is a (k1, k2, ε) superstrong extractor
against (b1, b2) (entangled) quantum storage provided

(a) (entangled) k1 + k2 − 2 max(b1, b2) ≥ n− 2 + 2 log ε−1,
(b) (non-entangled) k1 + k2 −max(b1, b2) ≥ n− 2 + 2 log ε−1.

We show that the parameters of all our extractors are tight in the full version of
the paper [18].

4 Many Bit Extractors

Here we prove our main theorems, Thms. 1 and 2. First, using our quantum
XOR-Lemma, Lem. 3, we obtain results in the strong case.

Lemma 5. ED is a (k1, k2, ε) X-strong extractor against (b1, b2) (entangled)
quantum storage provided

(a) (entangled) k1 + k2 − 2b2 ≥ 2m + n− 2 + 2 log ε−1,
(b) (non-entangled) k1 + k2 − b2 ≥ 2m + n− 2 + 2 log ε−1.

Proof. Recall that ED(x, y) = A1x · y, A2x · y, . . . , Amx · y (see Def. 4). For
0 �= S ∈ {0, 1}m, let AS =

∑
i:Si=1 Ai and note that S · E(x, y) = ASx · y. By

the XOR-Lemma 3,

|E(X, Y )ρXY X − UmρXY X |tr ≤
√

2m
∑
S 
=0

∣∣(ASX · Y )ρXY X − U1ρXY X
∣∣2
tr.

The result then follows by Ineq. (1) in the proof of Cor. 1 and its non-entangled
analogue.

In a similar way, we also obtain a Y-strong extractor with analogous parameters.
Following [9], we now apply a seeded extractor against quantum storage to the
output of an X-strong (Y-strong) extractor to obtain a two-source extractor with
more output bits.
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Lemma 6. Let EB : {0, 1}n × {0, 1}n → {0, 1}d be a (k1, k2, ε) X-strong ex-
tractor against (b1, b2) (entangled) quantum storage, let ES : {0, 1}n×{0, 1}d →
{0, 1}m be some function and define E(x, y) = ES(x, EB(x, y)).

(a) (entangled) If ES is a (k1, ε) seeded extractor against b1+b2 quantum stor-
age then E is a (k1, k2, 2ε) extractor against (b1, b2) entangled quantum
storage.

(b) (non-entangled) If ES is a (k1, ε) seeded extractor against b1 quantum
storage then E is a (k1, k2, 2ε) extractor against (b1, b2) non-entangled
quantum storage.

The proof of this lemma follows from a simple application of the triangle inequal-
ity (see the full version [18] for details). Thms. 1 and 2 now follow by composing
the strong two-source extractor of Lem. 5 with the seeded extractor of [7] as in
Lem. 6. See the full version [18] for all details.
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Abstract. We study the relation between locally testable and locally de-
codable codes. Locally testable codes (LTCs) are error-correcting codes
for which membership of a given word in the code can be tested prob-
abilistically by examining it in very few locations. Locally decodable
codes (LDCs) allow to recover each message entry with high probability
by reading only a few entries of a slightly corrupted codeword. A linear
code C ⊆ Fn

2 is called sparse if n ≥ 2Ω(dim(C)).
It is well-known that LTCs do not imply LDCs and that there is an

intersection between these two families. E.g. the Hadamard code is both
LDC and LTC. However, it was not known whether LDC implies LTC.
We show the following results.
– Two-transitive codes with a local constraint imply LDCs, while they

do not imply LTCs.
– Every non-sparse LDC contains a large subcode which is not LTC,

while every subcode of an LDC remains LDC. Hence, every non-
sparse LDC contains a subcode that is LDC but is not LTC.

The above results demonstrate inherent differences between LDCs and
LTCs, in particular, they imply that LDCs do not imply LTCs.

1 Introduction

A linear code over a finite field F is a linear subspace C ⊆ Fn. The dimension
of C is its dimension as a vector space, and its rate is the ratio of its dimension
to n. The distance of C is the minimal Hamming distance between two different
codewords. Typically, we are interested in codes whose distance is a linear to the
block length n, i.e., Ω(n).

Locally testable codes (LTCs) are error-correcting codes for which member-
ship of a given word in the code can be tested probabilistically by examining it
in very few locations. More precisely such a code has a tester, which is a ran-
domized algorithm with oracle access to the received word x. The tester reads
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at most q symbols from x and based on this local view decides if x ∈ C or not.
It should accept codewords with probability one, and reject words that are far
(in Hamming distance) from the code with noticeable probability.

In recent years, starting with the work of Goldreich and Sudan [12], several
surprising constructions of LTCs have been given (see [10] for an extensive survey
of some of these constructions). The principal challenge is to understand the
largest asymptotic rate possible for LTCs, and to construct LTCs approaching
this limit. We now know constructions of LTCs of dimension n/ logO(1) n which
can be tested with only three queries [5,7], [21]. The main open question in the
subject is whether there are asymptotically good LTCs, i.e., LTCs that have
dimension Ω(n) and distance Ω(n).

The only negative results on LTCs concern binary codes testable with just
2-queries [2,15] (which is a severe restriction), random LDPC codes [4], cyclic
codes [1]1, Solvable codes [19] and codes with small redundancy in the small
weight dual words [3].

On the other hand, locally decodable codes (LDCs) allow to recover each
message entry with high probability by reading only a few entries of the codeword
even if a constant fraction of it is adversely corrupted.

The best construction of LDCs was initiated by the breakthrough results of
Yekhanin [26] who showed a (conditional) subexponential construction of 3-query
LDCs. Later Efremenko [9] showed unconditional subexponential construction
of LDCs. Gopalan showed that these codes can be considered as a sub-family of
Reed-Muller codes [13].

Katz and Trevisan [16] were first who defined formally LDCs and showed that
LDCs have superlinear blocklength. Goldreich et al. [11] showed that linear 2-
query LDCs have exponential blocklength. This result was generalized by Dvir
and Shpilka [8] for all arbitrarily large fields. Obata [22] and then Shiowattana
and Lokam [23] showed asymptotically tight (exponential) lower bounds on the
blocklength of 2-query LDCs. Kerenidis and de Wolf [20] showed exponential
lower bounds for 2-query LDC and improved superlinear lower bound for q-
query LDCs, where q ≥ 3. Then Woodruff [25] improved this result for odd q
and showed that q-query LDCs (q ≥ 3) with k message bits and blocklength
n have n ≥ Ω(k1+ 1

�q/2−1� )/ log(k) and for 3-query linear LDCs showed that
n ≥ k2/ log log(k). The known lower bounds for q-query LDCs for q ≥ 3 seems
to be very far from tight.

LDCs are related to private information retrieval protocols, initiated by [6],
while LTCs are related to PCPs [12]. Both these families of error correcting codes
are explicitly studied, for survey see e.g. [24]. In spite of the fact, the distinction
between the two families of the codes was not made. Namely, it is well-known
that there is an intersection between the two families of codes, e.g. the famous
Hadamard code is 3-query LTC and 2-query LDC. Moreover, it is well-known

1 The last result rules out asymptotically good cyclic LTCs; the existence of asymp-
totically good cyclic codes has been a longstanding open problem, and the result
shows the “intersection” of these questions concerning LTCs and cyclic codes has a
negative answer.
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that LTCs do not imply LDCs, i.e., there are LTCs which are not LDCs. This
follows simply by comparing the upper and lower bounds on the blocklength of
these families of codes. If C ⊆ Fn is a q-query LDCs then n ≥ Ω(dim(C)q/(q−1))
(by Katz and Trevisan [16]), while there exist (best known) LTCs s.t. n ≤
O(dim(C)·poly(log dim(C))) [5,7], [21]. However, the other direction, i.e., whether
LDCs imply LTCs, was not known.

1.1 Our Results

We show that LDC does not imply LTC, and in fact there are inherent differences
between LDCs and LTCs. Specifically we show the following results.

– In Theorem 5 we show that codes invariant under two-transitive groups that
obey a local constraint are LDCs, while they are not necessarily LTCs. This
provides a general proof to the local decodability of polynomial codes such
as Hadamard code, Reed-Muller codes and dual-BCH codes. Combining this
with a recent result of [14], we obtain an explicit family of linear codes which
is locally decodable but is not locally testable.

– In Theorem 9 we show that every non-sparse code contains a large subcode
which is not LTC, while every subcode of an LDC remains LDC
(Corollary 11). Hence, every non-sparse LDC contains a subcode that is
LDC but is not LTC. Moreover, we show (Theorem 13) that if we consider
uniform-LTCs (for which a tester picks every possible local constraint with
the same probability) then, in fact, every non-sparse LDC has many large
subcodes which are not uniform-LTCs (but still LDCs).

1.2 On Sparse Codes vs. Non-sparse Codes

Recall that a code C ⊆ Fn
2 is called sparse if n ≥ 2Ω(dim(C)), otherwise the code

is non-sparse. A sparse code C is called unbiased if all nonzero codewords c ∈ C
have relative weight ranging in (1

2 − n−γ , 1
2 + n−γ) for some constant γ > 0.

Kaufman and Sudan [17] showed that all sparse unbiased codes are LTCs and
LDCs. Since every subcode of a sparse unbiased code is a sparse unbiased code
we conclude that it is an LTC and LDC. However, sparse codes have exponential
blocklength.

Our Theorem 9 shows that every non-sparse LDC contains a large subcode
which not LTC. Hence, every non-sparse LDC contains a subcode that is LDC
but is not LTC. This demonstrates an inherent difference between sparse and
non-sparse codes. In sparse codes local testability is preserved in subcodes, while
in non-sparse codes local testability is not preserved in subcodes. In contrast
to local testability, local decodability of all codes is always preserved in their
subcodes (Corollary 11).

1.3 Paper Organization

We start with some definitions in Section 2. In Section 3 we provide the proof to
our first theorem. In Section 4 we prove our second theorem, moreover we also
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prove a stronger version of our second theorem that applies only for a special
type of LTCs known as uniform-LTCs.

2 Preliminaries

Let F be a finite field and [n] be the set {1, . . . , n}. In this work, we consider
only linear codes. We start with a few definitions.

Let C ⊆ Fn be a linear code over F. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi �=
0} and |w| = |supp(w)|. We define the distance between two words x, y ∈ Fn to
be Δ(x, y) = |{i | xi �= yi}| and the relative distance to be δ(x, y) = Δ(x,y)

n .
The distance of a code is denoted by Δ(C) and defined to be the minimal
value of Δ(x, y) for two distinct codewords x, y ∈ C. Similarly, the relative
distance of the code is denoted δ(C) = Δ(C)

n . For x ∈ Fn and C ⊆ Fn, let
δ(x, C) = min

y∈C
{δ(x, y)} denote the relative distance of x from the code C. We

note that Δ(C) = min
c∈C\{0}

{|c|}. If δ(x, C) ≥ ε, we say that x is ε-far from C

and otherwise x is ε-close to C. Let dim(C) be the dimension of C. The vec-
tor inner product between u1 and u2 is denoted by 〈u1, u2〉. The dual code C⊥
is defined as C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}. In a similar way we define
C⊥≤t =

{
u ∈ C⊥ | |u| ≤ t

}
and C⊥t =

{
u ∈ C⊥ | |u| = t

}
.

For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm, let
w|S = (wj1 , wj2 , . . . , wjm) be the restriction of w to the subset S. Let C|S =
{c|S | c ∈ C} denote the restriction of the code C to the subset S. For T ⊆ Fn

and w ∈ Fn we say that w ⊥ T if for all t ∈ T we have 〈w, t〉 = 0.

2.1 Codes Invariant under Groups

Let G be a group of permutations over [n]. For π ∈ G and w = (w1, w2, ..., wn) ∈
Fn with some abuse of notation we let π(w) = (wπ−1(1), ..., wπ−1(n)) be a π-
permuted word. Note that since G is a group and π ∈ G we have π−1 ∈ G. A
linear code C is invariant under G if for every π ∈ G and c ∈ C we have π(c) ∈ C.
Note that if C is invariant under G then also C⊥ is invariant under G. G is called
2-transitive if for all i �= j ∈ [n] and i′ �= j′ ∈ [n] we have π ∈ G such that
π(i) = i′ and π(j) = j′. A linear code C is 2-transitive if it is invariant under
some 2-transitive permutation group G.

2.2 LTCs, LDCs and LCCs

In this section, we define LTCs, LDCs and LCCs formally and recall a few
concepts that will be used later in this paper. We define LTCs following [3].

Definition 1 ((LTCs and Testers)). Let C ∈ Fn be a linear code. Given
a distribution D over set C⊥, we define the support of D over C⊥ as DS ={
u ∈ C⊥ | D(u) > 0

}
. We say that D is a (q, ε, δ)-distribution for the code C, if

the following conditions are satisfied:
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– DS ⊆ C⊥≤q.
– For all x ∈ Fn such that δ(x, C) ≥ δ it holds that Pr

u∼D
[〈u, x〉 �= 0] ≥ ε.

We say that C ⊆ Fn is a (q, ε, δ)-LTC if it has a (q, ε, δ)-distribution D. If D is
uniform over C⊥≤q we say that C is a (q, ε, δ)-uniform LTC.

The parameter q is known as query complexity, ε is the rejection probability
and δ is the distance threshold.

Note that if C is a (q, ε, δ)-LTC then C is also a (q, ε, δ′)-LTC for all δ′ ≥ δ.
We say that a family of codes

{
C(n)

∣∣ n ∈ Z
}

is locally testable if there exist
constants q, ε, δ > 0 such that for infinitely many n it holds that C(n) ⊆ Fn is a
(q, ε, δ)-LTC, where δ ≤ δ(C(n))/3.

Note that every perfect code C is (0, 1, δ > δ(C)/2)-LTC, i.e., the code is
locally testable with 0 queries and highest possible rejection probability when the
distance threshold is δ > δ(C)/2 since there are no words which are δ-far from the
code. Hence, to avoid trivial cases we must require the distance threshold δ to be
at most δ(C)/2. Moreover, in the area of locally testable codes we usually require
even less distance threshold, at most δ ≤ δ(C)/3. E.g., all known constructions
of LTCs satisfy this requirement (see e.g., [12,17,18,21,7]). From the other side,
if for all constants q, ε > 0 the code C is not (q, ε, δ(C)/3)-LTC we say that C is
not locally testable (see e.g., [1,3,14]).

Remark. Our proofs will follow also if we define “uniform LTC” as LTC with a
uniform distribution over C⊥q .

We note that sometimes (e.g. [3]) uniform LTCs mean that the associated distri-
bution is uniform over its support and not over all C⊥≤q, which is a less restrictive
assumption.

Now we define Locally Decodable Codes (LDCs).

Definition 2 ((LDCs)). Let C ⊆ Fn be a linear code of dimension k. Let EC
be the encoding function, i.e., C =

{
EC(x) | x ∈ Fk

}
. Then C is a (q, ε, δ)-LDC

if there exists a randomized decoder (D) that reads at most q entries and the
following condition holds:

– For all x ∈ Fk, i ∈ [k] and ĉ ∈ Fn such that Δ(EC(x), ĉ) ≤ δn we have

Pr
[
Dĉ[i] = xi

]
≥ 1
|F| + ε, i.e., with probability at least 1

|F| + ε entry xi will

be recovered correctly.

Note that definition implies that δ < δ(C)/2. We say that a family of codes{
C(n)

∣∣ n ∈ Z
}

is locally decodable if there exist constants q, ε, δ > 0 such that
for infinitely many n it holds that C(n) ⊆ Fn is a (q, ε, δ)-LDC.

Remark. Notice that a message space for LDC can be a linear subspace M ⊂ Fk,
i.e., the messages are of the length k but not every word in Fk is a (legal)
message. In this case the dimension of the code is dim(M). Note that because
of the linearity of C the message space M must be a linear subspace.
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Now we define locally self-correctable codes (LCCs).

Definition 3 ((LCCs)). Let C ⊆ Fn be a linear code of dimension k. Then C
is a (q, ε, δ)-LCC if there exists a self-corrector (SC) that reads at most q entries
and the following condition holds:

– For all c ∈ C, i ∈ [n] and ĉ ∈ Fn such that Δ(c, ĉ) ≤ δn we have

Pr
[
SCĉ[i] = ci

]
≥ 1
|F| + ε,

i.e., with probability at least 1
|F| + ε entry ci will be recovered correctly.

We say that a code C is locally self-correctable when q, ε, δ > 0 are constants.
Note that the definition implies that δ < δ(C)/2.

The following folklore claim says that LCCs imply LDCs with the same
parameters.

Claim 4. If C ⊆ Fn is a (q, ε, δ)-LCC then C is a (q, ε, δ)-LDC.

Proof. Let k = dim(C). We pick a generator matrix G ∈ Fn×k for C, i.e., C ={
Gm | m ∈ Fk

}
such that the first k rows of G form identity matrix2. Hence

the first k symbols of the code are message symbols, i.e., for all m ∈ Fk we have
(Gm)|[k] = m.

Let SC be a self-corrector for a code C that for every i ∈ [n] reads at most
q symbols and recovers the symbol i with probability at least 1

|F| + ε even if
at most δ-fraction of the symbols was adversely corrupted. In particular, SC
recovers with probability at least 1

|F| + ε every coordinate i ∈ [k], i.e., every
message symbol. We conclude that C is a (q, ε, δ)-LDC.

We stress that LDCs do not imply LCCs. To see this let C ⊆ Fn be a LDC,
append to it one entry (with coordinate (n + 1)) obtaining C′ ⊆ F(n+1), such
that this entry will not be involved in too much low-weight constraints of C′ and
thus could not be recovered with constant query complexity after the codeword
will be corrupted, however the code remains LDC.

3 Two Transitivity with a Local Constraint Implies Local
Correction

In this section we show (Theorem 5) that 2-transitive codes with local con-
straints imply LCCs and hence also LDCs. However, there exists a family of
two-transitive codes with local constraints which is not locally testable, due to
[14]. We conclude in Corollary 6 that a family of codes

{
C(n)

}
n∈Z

(explicitly)
shown in [14] is LCC (and LDC) but is not LTC.

2 C need not be systematic but it can be easily converted into one as was stated.
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Theorem 5 ((2-transitivity implies LCCs)). If C ⊆ Fn is a 2-transitive
code such that C⊥q �= ∅ then C is a (q − 1, 1

6 , 1
3q )-LCC (LDC).

Moreover, there exists a family of 2-transitive codes
{
C(n)

}
n∈Z

, where C(n) ⊆
Fn and (C(n))

⊥
8 �= ∅, which is not (q′, ε′, 1/7)-LTC for all constants q′, ε′ > 0.

The following corollary follows immediately from Theorem 5.

Corollary 6. There exists a family of linear codes {Cn}n∈N, where Cn ⊆ Fn,
which is a (7, 1

6 , 1
24 )-LCC (LDC) but is not (q′, ε′, 1/7)-LTC for all constants

q′, ε′ > 0.

Since by Claim 4 (q, ε, δ)-LCC is also a (q, ε, δ)-LDC then Theorem 5 and the
lower bound on the blocklength of LDCs by Kerenidis and de Wolf [20] imply
the next corollary.

Corollary 7. Let C ⊆ Fn be a 2-transitive linear code and k = dim(C). If
C⊥q �= ∅ then n ≥ Ω(k/ log(k))1+1/(� q

2−1�).

Notice that under the famous conjecture that LDCs have superpolynomial block-
length we have that 2-transitive codes with constant weight duals have super-
polynomial blocklength.

Proof of Theorem 5. Assume C (and thus C⊥) is invariant under a 2-transitive
permutations group G (note that G �= ∅, e.g., G contains the identity permu-
tation). Let u ∈ C⊥q (note C⊥q �= ∅) and let supp(u) = {i1, i2, . . . , iq}. Hence for
every i ∈ [n] there exists u′ ∈ C⊥q such that i ∈ supp(u′), e.g. pick g ∈ G s.t.
g(i1) = i and let u′ = g(u).

We define the self-corrector of entry i ∈ [n] (SCi) which on word w

– picks random g ∈ G such that g(i) = i
– queries all entries of w|supp(g(u′)\{i})

– and recovers the entry w|(i) by
−

∑
j∈(supp(g(u′))\{i}) w|j · g(u′)|j

u′
(i)

.

This self-corrector queries only q − 1 entries and has perfect completeness, i.e.,
for all c = (c1, . . . , cn) ∈ C and i ∈ [n] it holds that SCi[c] returns ci. Assume
the self-corrector SCi is given a word w such that for some c ∈ C we have
δ(w, c) ≤ 1

3q . Let I = supp(w − c) and note that |I| ≤ n
3q . Think of I as a

set of corrupted coordinates. Notice that if SCi picks g ∈ G, g(i) = i such
that (supp(g(u′)) \ {i}) ∩ I = ∅ then SCi recovers correctly the entry wi, i.e.,
SCi[w] = ci. This is true because∑

j∈(supp(g(u′))\{i}) w|j · g(u′)|j
u′

(i)
=

∑
j∈(supp(g(u′))\{i}) c|j · g(u′)|j

u′
(i)

= ci,

where the last equality follows because 〈c, g(u′)〉 = 0. In other words, whenever
all the coordinates of g(u′) are correct but may be the i’s coordinate, SCi re-
covers correctly the entry wi. Proposition 8 implies that for j �= i and random
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g ∈ G such that g(i) = i we have that g(j) is uniformly distributed in [n] \ {i}.
We conclude that

Pr
g∈G,g(i)=i

[(supp(g(u′)) ∩ I) \ {i} �= ∅] ≤ (q − 1)|I|
n− 1

≤ q|I|
n

.

It follows that the probability that SCi picks g ∈ G, g(i) = i such that
supp(g(u′))∩ I ⊆ {i} is at least 1− q

3q = 2
3 . So, with probability at least 2/3 the

self-corrector SCi picks g ∈ G such that g(i) = i and |supp(g(u′)) \ {i} ∩ I| = ∅
and the correction succeeds.

To see that two transitivity does not imply local testability we recall the main
result of [14] (Theorem 16) that shows a family of 2-transitive codes

{
C(n)

}
n

such
that C⊥8 �= ∅ which is not (q′, ε′, 1/7)-LTC for all constants q′, ε′ > 0.
The proof of Proposition 8 is inspired by [1, Section 7].

Proposition 8. Let G be a 2-transitive group and G(i) = {g ∈ G | g(i) = i}.
Then G(i) is a group of permutations s.t. for all i′ �= i and j′ �= i there ex-
ists g ∈ G(i) s.t. g(i′) = j′. Furthermore, for any i′ �= i and j′ �= i we have

Pr
g∈G(i)

[g(i′) = j′] =
1

n− 1
.

Proof. Let id ∈ G be the identity permutation, i.e., for all j ∈ [n] we have
id(j) = j. We know that id ∈ G(i), for every g ∈ G(i) there exists g−1 ∈ G(i),
and if h1, h2 ∈ G(i) then also h1 ◦ h2 ∈ G(i). We conclude that G(i) is a group of
permutations.

For any i′ �= i and j′ �= i there exists g ∈ G s.t. g(i) = i and g(i′) = j′ because
G is 2-transitive, moreover, g ∈ G(i).

We argue that for any i′ �= i and j′ �= i we have Pr
g∈G(i)

[g(i′) = j′] =
1

n− 1
.

It is sufficient to show that for any i′, j′1, j
′
2 �= i we have Pr

g∈G(i)

[g(i′) = j′1] =

Pr
g∈G(i)

[g(i′) = j′2].

Assume by a way of contradiction that Pr
g∈G(i)

[g(i′) = j′1] > Pr
g∈G(i)

[g(i′) = j′2].

Let h ∈ G(i) s.t. h(j′2) = j′1. Since G(i) is a group then random g is distributed
in G(i) exactly as hg is distributed in G(i) and thus

Pr
g∈G(i)

[g(i′) = j′1] > Pr
g∈G(i)

[g(i′) = j′2] = Pr
g∈G(i)

[h(g(i′)) = j′1] = Pr
g∈G(i)

[g(i′) = j′1].

Contradiction.

4 Non-sparse LDCs Contain Subcodes That Are Not
LTCs

In this section we show (Theorem 9) that non-sparse LDCs contain subcodes that
are not LTCs. This demonstrates an important difference between LTCs and LDCs.
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It turns out that reducing dimension of LDCs remains LDCs (Corollary 11), how-
ever LTCs are not stable to the dimension reduction. This leads to an interesting
observation that every non-sparse LDC has a large subcode which is not LTC (but
still LDC). Notice that non-sparse LDCs include Reed-Muller codes of low degree
as well as subexponential LDCs that were recently discovered by Yekhanin [26]
and Efremenko [9].

Theorem 9 ((Non-sparse LDCs contain non-LTCs as subcodes)). Let
q > 0 and 0 < ε, δ < 1 be constants. Then for every linear code C ⊆ Fn that is
a (q, ε, δ)-LDC with dim(C) ≥ ω(log(n)) and any constants q′, ε′ > 0 there exists
a linear subcode C′ ⊂ C such that dim(C′) ≥ ω(log(n)), C′ is a (q, ε, δ)-LDC but
C′ is not (q′, ε′, δ(C))-LTC.

In the following we show that every subcode of an LDC remains an LDC.

Claim 10. Let C ⊆ Fn be a linear code and a (q, ε, δ)-LDC. Assume that C′ ⊂ C
is a linear subcode of C. Then C′ is a (q, ε, δ)-LDC.

Proof. Assume C has the (linear) message space S ⊆ F k and has the decoder
D. Let S′ ⊂ S be a (linear) message space for C′. We argue that C′ has the
same decoder D. Let w be δ-close to C′ (δ-close to the encoding of some message
m ∈ S′) then w is δ-close to C and thus for all i ∈ [k] the decoder D recovers
correctly the message entry (mi) with probability at least 1

2 + ε.
Notice that dim(S′) < dim(S), i.e., the message space of the linear subcode

C′ has smaller dimension than the message space of C. S′ is a linear vector space
because for every two messages x1, x2 ∈ S′ which encoded to c1 and c2 of C′,
respectively; (x1 + x2) ∈ S′ and (x1 + x2) is encoded to c1 + c2.

Remark. The special case of reducing dimension is a removing of columns from
the generator matrix. E.g., given a code C =

{
Gx | x ∈ Fk

}
, where G ∈ Fn×k

is a generator matrix for C. Let G′ ∈ Fn×(k−1) be obtained by removing the
last column of G. Then C′ =

{
G′x | x ∈ Fk−1

}
is a linear subcode of C and

dim(C′) = dim(C)−1. In this case message space of C′ is Fk−1, while the message
space of C is Fk.

Corollary 11 ((LDCs are stable for dimension reduction)). Let C ⊆ Fn

be a linear code and a (q, ε, δ)-LDC. Take any sequence of linear subcodes: C1 ⊂
C2 ⊂ . . . ⊂ Cf = C. Then for all i ∈ [f ] it holds that Ci is a (q, ε, δ)-LDC.

Now we show the auxiliary claim and then prove Theorem 9.

Claim 12. Let C ⊆ Fn be a linear code such that dim(C) = ω(log(n)). Then
there exists w ∈ Fn such that Δ(w, C⊥) ≥ ω(1).

Proof. For integer R let V (n, R) =
R∑

i=0

(
n

i

)
· (|F| − 1)i be the volume of a

sphere in Fn of radius R. Let k = dim(C) ≥ ω(log(n)) and S = C⊥. Then
dim(S) = n− k and |S| = |F|n−k = |F|n/|F|k. Recall that a covering radius of
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a code S is RS = max
w∈Fn

Δ(w, S), i.e., the largest Hamming distance of any word

in Fn from S. Note that if RS is constant then V (n, RS) is polynomial in n and
vice versa, if V (n, RS) is super-polynomial in n then RS goes to infinity with n.
Assume by a way of contradiction that there exists a constant t > 0 such that
for all w ∈ Fn we have Δ(w, S) ≤ t, i.e., RS ≤ t = O(1).

The covering radius bound3 states that

|S| · V (n, RS) ≥ |F|n.

But then V (n, RS) ≥ |F|k, where k ≥ ω(log(n)). Hence V (n, RS) must be super-
polynomial in n, and RS ≥ ω(1). Contradiction.

Proof of Theorem 9. Claim 12 implies that there exists u ∈ Fn such that
Δ(u, C⊥) ≥ ω(1) > q′. Let S = span(C⊥∪{u}). Note that for all u′ ∈ S if |u′| ≤ q′

then u′ ∈ C⊥. Let C′ = S⊥ and then C′⊥ = S. We have C⊥ ⊂ C′⊥, C′ ⊂ C and
in particular, dim(C′) = dim(C) − 1. We argue that C′ is not (q′, ε′, δ(C))-LTC.
We have c ∈ C \ C′ since C′ ⊂ C. However c ⊥ (C′)⊥≤q′ because (C′)⊥≤q′ ⊆ C⊥ by
construction. Hence c is δ(C)-far from C′ but will be accepted with probability
1 by any q′-query tester of C′.

We conclude that C′ ⊂ C and dim(C′) = dim(C)− 1 but C′ is not (q′, ε′, δ(C))-
LTC. Claim 10 guarantees that C′ is a (q, ε, δ)-LDC since C′ is a linear subcode
of C. The Theorem follows.

4.1 Non-sparse LDCs Contain Many Subcodes Which Are Not
Uniform-LTCs

Theorem 9 shows that every non-sparse LDC C contains a single sequence of
linear subcodes C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C which are all not LTCs. In the follow-
ing (Theorem 13) we show that every non-sparse LDC and every long enough
sequence of linear subcodes C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C� = C contains at least one
subcode Ci which is not uniform LTC.

Theorem 13. Let q, q′, ε, ε′, δ > 0 be constants. Let C ⊆ Fn be a linear code
such that dim(C) ≥ ω(log(n)). Then every sequence of  linear subcodes C1 ⊂
C2 ⊂ C3 ⊂ · · · ⊂ C� = C, where  ≥ (q′ log(n))/ε′, contains at least one code Ci

which is not (q′, ε′, δ(C)/2)-uniform LTC. Moreover, if C is a (q, ε, δ)-LDC then
all linear subcodes Ci in the sequence are (q, ε, δ)-LDCs.

Note that if dim(C) ≥ ω(log(n)) then C contains sequences of subcodes of length
ω(log(n)). Now we prove two simple claims that will be useful in the proof of
Theorem 13.

Claim 14. Let C ⊆ Fn be a linear code. Moreover, let a linear code C′ ⊂ C be a
(q, ε, δ(C))-uniform LTC. Then |C⊥≤q| ≤ (1− ε)|C′⊥≤q|.
3 For any code C ⊆ Fn (whether linear or not) the covering bound states that the

covering radius R of C relates to n and |C| by |C| · V (n, R) ≥ |F|n.
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Proof. Let D be the uniform distribution over C′⊥≤q. We know that C⊥≤q ⊂ C′⊥≤q.
Consider any w ∈ C \ C′ (note that C \ C′ �= ∅). Since C′ is a (q, ε, δ(C))-uniform
LTC and δ(w, C′) ≥ δ(C) it holds that Pr

u∼D
[〈u, w〉 �= 0] ≥ ε. Notice that if for

u ∈ C′⊥ it holds that 〈u, w〉 �= 0 then u /∈ C⊥. So, there are at least ε|C′⊥≤q| words
in C′⊥≤q that are not in C⊥≤q. Thus we have |C⊥≤q| ≤ (1− ε)|C′⊥≤q|.

Claim 15. Let q′, ε′ > 0 be constants. Let  be the minimal integer such that
 ≥ q′ log n

ε′ and C ⊆ Fn be a linear code such that dim(C) > q′ log n
ε′ . Then at least

one of the codes in the sequence of the linear subcodes C1 ⊂ C2 ⊂ · · · ⊂ C� = C is
not (q′, ε′, δ(C)/2)-uniform LTC.

Proof. Note that for all i ∈ [ − 1] we have dim(Ci) < dim(Ci+1). Assume that
for all i ∈ [], Ci is a (q′, ε′, δ(C)/2)-uniform LTC. If (C�)

⊥
≤q = ∅ then for any

word w ∈ Fn such that |supp(w)| = δ(C)/2 (i.e., δ(w, C�) ≥ δ(C)/2) it holds that
w ⊥ (C�)

⊥
≤q. Contradiction. We conclude that |(C�)

⊥
≤q′ | ≥ 1.

Claim 14 implies that for all i ∈ [ − 1] we have that |(Ci+1)
⊥
≤q′ | ≤ (1 − ε′) ·

|(Ci)
⊥
≤q|. Then it holds that

|(C�)
⊥
≤q′ | ≤ (1− ε′)� · |(C1)

⊥
≤q′ | < e−ε′� · nq′ ≤ 1,

where  ≥ q′ log n
ε′ . We conclude that (C�)

⊥
≤q′ = ∅. Contradiction.

Proof of Theorem 13. Assume C1 ⊂ C2 ⊂ . . . ⊂ C� = C, where  ≥ (q′ log(n))/ε′.
Claim 15 says that at least one of the codes in the sequence is not (q′, ε′, δ(C)/2)-
uniform LTC. Corollary 11 implies that for all i ∈ [] the code Ci is a (q, ε, δ)-
LDC.
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Appendix

For the sake of completeness we state the main result of Grigorescu et al. [14],
who showed a 2-transitive code with dual codewords of weight 8 which is not
LTC. For additional details see [14].

Let Tr be a trace function from F2s to F2. For positive integers k < s let

F∗
k,s =

{
f : F2s �→ F2 | ∃β, β0, . . . , βk ∈ F2n s.t. f(x) = Tr(β + β0x +

k∑
i=1

βix
2i+1)

}
.

Theorem 16 [14]. Assume k = ω(1) and s > 2k + 1. Let C = F∗
k,s be a linear

code. Then C is 2-transitive and C⊥8 �= ∅, but C is not (q, ε, 1/7)-LTC for all
constants q, ε > 0.
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Abstract. In this paper, we consider the task of answering linear queries
under the constraint of differential privacy. This is a general and well-
studied class of queries that captures other commonly studied classes,
including predicate queries and histogram queries. We show that the
accuracy to which a set of linear queries can be answered is closely re-
lated to its fat-shattering dimension, a property that characterizes the
learnability of real-valued functions in the agnostic-learning setting.

1 Introduction

The administrator of a database consisting of sensitive, but valuable information
faces two conflicting objectives. Because the data is valuable, she would like to
make statistical information about it available to the public. However, because
the data is sensitive, she must take care not to release information that exposes
the data of any particular individual in the data set. The central question in
the field of private data analysis is how these two objectives can be traded off,
and more specifically, how many queries of what type can be answered to given
degrees of accuracy, while still preserving privacy.

Recent work on differential privacy provides a mathematical framework to rea-
son about such questions. Informally, a probabilistic function f from a database
D to some range R is α-differentially private if adding or removing a single indi-
vidual from the dataset does not change the probability that f(D) = r for any
outcome r ∈ R by more than an eα factor. The intuition behind this definition
is that an individual’s privacy should not be considered to have been violated
by some event r, if r would have been almost as likely to occur even without the
individual’s data.

In this paper, we consider databases D which are real valued vectors, and
the class of queries that we consider correspond to linear combinations of the
entries of D. Formally, we consider databases D ∈ Rn

+, and queries of the form
q ∈ [0, 1]n. The answer to query q on database D is simply the dot-product of the
two vectors: q(D) = q · D. This model has previously been considered ([DN03,
DMT07, DY08, HT10]), and generalizes the class of count queries or predicate
� This work has been supported in part by an NSF Graduate Research Fellowship.
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queries, which has also been well studied ([DMNS06, BLR08, DNRRV09, RR10,
UV10]).

The fat-shattering dimension (FSD) of a class of real-valued functions C over
some domain is a generalization of the Vapnik-Chervonenkis dimension, and
characterizes a distribution-free convergence property of the mean value of each
f ∈ C to its expectation. The fat-shattering dimension of a class of functions
C is known to characterize the sample complexity necessary to PAC learn C
in the agnostic framework [ABCH97, BLW94]: that is, ignoring computation,
the sample complexity that is both necessary and sufficient to learn C in the
agnostic framework is polynomially related to the fat-shattering dimension of C.

Our main result is a similar information theoretic characterization of the mag-
nitude of the noise that must be added to the answer to each query in some class
C in terms of the fat-shattering dimension of C, FSD(C). We show polynomially
related information theoretic upper and lower bounds on the noise that must be
added to each query in C in terms of FSD(C). This generalizes the results of
[BLR08] to linear queries, and to our knowledge gives the first analysis of generic
linear queries using some parameter other than their cardinality. This yields the
first mechanism capable of answering a possibly infinite set of generic linear
queries, and the first non-trivial lower bound for infinite classes of non-boolean
linear queries. As a consequence, we extend results of Kasiviswanathan et al.
and Blum et al. [KLNRS08, BLR08] relating the sample complexity necessary
for agnostic PAC learning and private agnostic PAC learning from classes of
boolean valued functions to classes of real valued functions.

1.1 Related Work and Our Results

Dinur and Nissim studied the special case of linear queries for which both the
database and the query are elements of the boolean hypercube {0, 1}n [DN03].
Even in this special case, they showed that there cannot be any private mecha-
nism that answers n queries with error o(

√
n), because an adversary could use

any such mechanism to reconstruct a 1 − o(1) fraction of the original database,
a condition which they called blatant non-privacy. This result was strengthened
by several subsequent papers [DMT07, DY08, KRSU10].

Beimel et al. consider the class of basis vectors on the boolean hypercube,
and show that even though this class has a constant VC-dimension (and hence
fat-shattering dimension), it requires a superconstant number of samples for
useful private release [BKN10]. Specifically, they show that the log n factor which
appears in the upper bound in this paper and in [BLR08], but not in the lower
bound, is in fact necessary in some cases.

Dwork et al. gave the original definition of differential privacy, as well as
the Laplace mechanism, which is capable of answering any k “low sensitivity”
queries (including linear queries) up to error O(k). A more refined analysis of the
relationship between the laplace mechanism and function sensitivity was later
given by [NRS07].
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In a different setting, Blum Ligett and Roth considered the question of an-
swering predicate queries over a database drawn from some domain X [BLR08].
This can be viewed as a special case of linear queries in which the queries are
restricted to lie on the boolean hypercube, and the database must be integer
valued: D ∈ Zn

+. They give a mechanism for answering every query in some
class C with noise that depends linearly on the VC-dimension of the class of
queries. This is a quantity that is at most log |C| for finite classes C, and can be
finite even for infinite classes. Roth and Roughgarden later gave a mechanism
which achieved similar bounds in the online model, in which the mechanism
does not know the set of queries that must be answered ahead of time, and
instead must answer them as they arrive [RR10]. We generalize the technique
of [BLR08, RR10] to apply to general linear queries. VC-dimension is no longer
an appropriate measure of query complexity in this setting, but we show that a
quantity known as Fat-Shattering dimension plays an analogous role.

Dwork et al. [DNRRV09] also gave upper and lower bounds for predicate
queries, which are incomparable to the bounds of [BLR08, RR10] (and those
presented in this paper). The upper bounds of [DNRRV09] are for an approx-
imate form of differential privacy, and have a better dependence on α, but a
worse dependence on k. Their lower bounds are computational, whereas the
lower bounds presented in this paper are information theoretic.

Hardt and Talwar [HT10] give matching upper and lower bounds on the noise
that must be added for α-differential privacy when answering k ≤ n linear queries
of roughly Θ(

√
k log(n/k)

α ). In contrast, we prove bounds in terms of different pa-
rameters, and can handle arbitrarily (even infinitely) large values of k. For finite

sets of k queries, our mechanism adds noise roughly O

(
||D||2/3

1 ·
(

log k log n
α

)1/3
)

.

Note that for some settings of the parameters, this is significantly less noise than
the bounds of [HT10]: specifically, for k ≥ Ω(||D||4/3

1 ). To achieve low relative
error η (i.e. error ε = η||D||1), our mechanism requires only that ||D||1 be poly-
logarithmic in k, rather than polynomial in k. For infinite classes of queries |C|,
the log k in our bound can be replaced with the fat shattering dimension of the
class C. We also show a lower bound in terms of the fat shattering dimension
of the class C, which is the first non-trivial lower bound for infinite classes of
non-boolean linear queries.

2 Preliminaries

A database is some vector D ∈ Rn
+, and a query is some vector q ∈ [0, 1]n. We

write that the evaluation of q on D is q(D) = q ·D. We write ||D||1 =
∑n

i=1 Di to
denote the �1 norm of D, and note that for any query q, q(D) ∈ [0, ||D||1]. We let
C denote a (possibly infinite) class of queries. We are interested in mechanisms
that are able to provide answers ai for each qi ∈ C so that the maximum error,
defined to be maxi∈C |qi(D)−ai| is as small as possible. Without loss of general-
ity, we restrict our attention to mechanisms which actually output some synthetic
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database: mechanisms with range R = Rn
+. That is, if our mechanism outputs

some synthetic database D′, we take ai to be qi(D′) for each i.1

We formalize our notion of utility and relative utility for a randomized
mechanism M :

Definition 1 (Usefulness and Relative Usefulness). A mechanism M :
Rn

+ → Rn
+ is (ε, δ)-useful with respect to a class of queries C if with probability

at least 1 − δ (over the internal coins of the mechanism), it outputs a synthetic
database D′ such that:

sup
qi∈C

|qi(D) − qi(D′)| ≤ ε

For 0 < η ≤ 1, M is (η, δ)-relatively useful with respect to C for databases of
size s if it is (η||D||1, δ)-useful with respect to C for all input databases D with
||D||1 ≥ s.

That is, useful mechanisms should have low error for each query in C. We now
define differential privacy:

Definition 2 (Differential Privacy [DMNS06]). A mechanism M : Rn
+ →

Rn
+ is α-differentially private, if for any two databases D1, D2 such that ||D1 −

D2||1 ≤ 1, and for any S ⊆ Rn
+:

Pr[M(D1) ∈ S] ≤ eα Pr[M(D2) ∈ S]

The standard notion of differential privacy need only hold for mechanisms de-
fined over integer valued databases D1, D2 ∈ Nn, which is a weaker condition.
Our upper bounds will hold for the stronger notion of differential privacy, and
our lower bounds for the weaker notion. A useful observation is that arbitrary
(database independent) functions of differentially private mechanisms are also
differentially private:

Fact 1. If M : Rn
+ → Rn

+ is α-differentially private, and if f : Rn
+ → Rn

+ is a
(possibly randomized) function, then f(M) is α-differentially private.

2.1 Fat Shattering Dimension

Fat-shattering-dimension is a combinatorial property describing classes of func-
tions of the form f : X → [0, 1] for some domain X . It is a generalization of the
Vapnik-Chervonenkis-dimension, which is a property only of classes of boolean
valued functions of the form f : X → {0, 1}. In this section, we generalize these
concepts slightly to classes of linear queries, where we view our linear queries
as linear combinations of functions f : X → [0, 1], where we let X be the set of
standard basis vectors of Rn.

Let B = {ei}n
i=1 denote the set of n standard basis vectors of Rn (ei is the

vector with a 1 in the i’th coordinate, and a 0 in all other coordinates). For any
1 This is without loss of generality, because given a different representation for each

answer ai to error ε, it is possible to compute a synthetic database D′ with error at
most 2ε using the linear program of [DNRRV09].
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S ⊆ B of size |S| = d, we say that S is γ-shattered by C if there exists a vector
r ∈ [0, 1]d such that for every b ∈ {0, 1}d, there exists a query qb ∈ C such that
for each ei ∈ S:

qb(ei)
{

≥ ri + γ, if bi = 1;
≤ ri − γ, if bi = 0.

Note that since the range of each query is [0, 1], γ can range from 0 to 1/2.

Definition 3 (Fat Shattering Dimension [BLW94, KS94]). The γ-fat-
shattering dimension of a class of linear queries C is:

FSDγ(C) = max{d ∈ N : C γ − shatters some S ⊆ B with |S| = d}

In the special case when γ = ri = 1/2 for all i, note that the fat shattering
dimension of a class of boolean valued functions is equal to its VC-dimension.

For finite classes C, we will let k = |C| denote the cardinality of C. The
following observation follows immediately from the definition of fat-shattering
dimension:

Observation 1. For finite classes C, FSDγ(C) ≤ log k for all γ > 0, where
k = |C|.

3 Lower Bound

In this section, we show that any α-differentially private mechanism that answers
every linear query in some class C must add noise at least linear in the fat-
shattering dimension of C at any scale. The bound that we prove in this section
is in terms of the privacy parameter α and the fat shattering dimension of the
class. It differs from the upper bound proved in the next section by several
important parameters, which include a log n term and a term depending on the
size of the database. Beimel et al. [BKN10] have shown that the log n term in
the upper bound is necessary in some contexts. The database that we construct
in our lower bound is of size O(γ · FSDγ(C)). Therefore, in order to prove a
nontrivial lower bound on the relative error achievable by a private mechanism,
it would be necessary to remove a factor of γ from our current bound. This is
possible in the context of VC-dimension, and we conjecture that it should also
be possible for a bound in terms of fat-shattering dimension, and is merely a
limitation of our techniques as present. The problem of proving a tight lower
bound encapsulating all of the relevant parameters remains an interesting open
question. We now proceed with the lower bound:

Theorem 2. For any δ bounded away from 1 by a constant, let M be a mecha-
nism M that is (ε, δ) useful with with respect to some class of linear queries C.
If M preserves α-differential privacy, then

ε ≥ Ω

(
sup

0<γ≤1/2

γ2 · FSDγ(C)
eα

)
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We begin with some preliminaries which allow us to prove some useful lemmas:
Given some class of linear queries C and any γ > 0, let S ⊆ B be a collection of

basis-vectors of size FSDγ(C) that are γ-shattered by C, and let r ∈ [0, 1]FSDγ(C)

be the corresponding vector as in the definition of fat-shattering dimension. We
now partition S into 1/γ pieces. For each j ∈ {1, . . . , 1/γ}, let:

Sj = {ei ∈ S : (j − 1) · γ < ri ≤ j · γ}

Since the sets {Sj} partition S, By the pigeon-hole principle, there exists some
j∗ such that |Sj∗ | ≥ γ · |S| = γ · FSDγ(C). Let d = |Sj∗ |.

We consider subsets T ⊂ Sj∗ of size |T | = d/2. For each such subset, we
consider the database DT =

∑
ei∈T ei. Let bT ∈ {0, 1}d be the vector guaranteed

by the definition of fat shattering dimension such that:

bT
i =

{
1, ei ∈ T ;
0, otherwise.

Let qT ∈ C be the query that corresponds to bT as in the definition of fat
shattering dimension, and let CSj∗ = {qT : T ⊆ Sj∗ , |T | = d/2}.

We first show that each function qT takes its highest value on DT and cannot
take large values on databases DT ′ for sets T ′ that differ significantly from T .

Lemma 1. For all qT ∈ CSj∗ and for all T ′ ⊆ Sj∗ with |T ′| = d/2:

qT (DT ) − qT (DT ′) ≥ γ

2
· |T 	 T ′|

Proof.

qT (DT ) − qT (DT ′) =
∑
ei∈T

qT (ei) −
∑

ei∈T ′
qT (ei)

=

( ∑
ei∈T∩T ′

qT (ei) − qT (ei)

)
+

∑
ei∈T\T ′

qT (ei)

−
∑

ei∈T ′\T

qT (ei)

≥

⎛⎝ ∑
ei∈T\T ′

ri + γ

⎞⎠−

⎛⎝ ∑
ei∈T ′\T

ri − γ

⎞⎠
≥ 2γ · |T \ T ′| −

(
max

i∈T ′\T
ri − min

i∈T\T ′
ri

)
· |T \ T ′|

≥ γ · |T \ T ′|

where the last inequality follows from the fact that T, T ′ ⊂ Sj∗ which was
constructed such that: (

max
i∈Sj∗

ri − min
i∈Sj∗

ri

)
≤ γ

holds. Observing that |T 	 T ′| = 2|T \ T ′| completes the proof.
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With this lemma, we are ready to prove the main technical lemma for our lower
bound:

Lemma 2. For any δ bounded away from 1 by a constant, let M be an (ε, δ)-
useful mechanism with respect to class C. Given as input M(DT ), where DT is
an unknown private database for some T ⊆ Sj∗ with |T | = d/2, with constant
probability 1 − δ, there is a procedure to reconstruct a new database DT∗ such
that |T 	 T ∗| ≤ 4ε

γ .

Proof. Suppose that mechanism M is (ε, δ) useful with respect to C for some
constant δ bounded away from 1. Then by definition, with constant probability,
given input DT , it outputs some database D′ such that for all qi ∈ C, |qi(DT )−
qi(D′)| ≤ ε. For each T ′ ⊆ Sj∗ with |T ′| = d/2 let:

v(T ′) = qT ′(DT ′) − qT ′(D′)

and let T ∗ = argminT ′ v(T ′). Therefore, we have:

v(T ∗) ≤ v(T ) = qT (DT ) − qT (D′) ≤ ε (1)

where the last inequality follows from the usefulness of the mechanism. We also
have:

v(T ∗) = qT∗(DT∗) − qT∗(D′)
≥ qT∗(DT∗) − qT∗(DT ) − ε

≥ γ

2
· |T 	 T ∗| − ε

where the first inequality follows from the usefulness of the mechanism, and the
second inequality follows from lemma 1. Combining this with equation 1, we get:

|T 	 T ∗| ≤ 4ε

γ

We are now ready to prove the lower bound:

Proof (Proof of Theorem). Let T ⊂ Sj∗ with |T | = d/2 be some randomly
selected subset. Let DT =

∑
ei∈T ei be the corresponding database. By lemma

2, given M(DT , ε), with probability 1−δ there is a procedure P to reconstruct a
database DT∗ such that |T 	T ∗| ≤ 4ε/γ. Throughout the rest of the argument,
we assume that this event occurs. Let x ∈ T be an element selected from T
uniformly at random, and let y ∈ S \ T be an element selected from S \ T
uniformly at random. Let T ′ = T \ x ∪ {y}. Observe that:

Pr[x ∈ P (M(DT , ε))] ≥ d/2 − 2ε/γ

d/2
= 1 − 4ε

γ · d

Pr[x ∈ P (M(DT ′ , ε))] ≤ 2ε/γ

d/2
=

4ε

γ · d



690 A. Roth

Since ||DT − DT ′ ||1 ≤ 2, we have by the definition of α-differential privacy and
fact 1:

eα ≥ Pr[x ∈ P (M(DT , ε))]
Pr[x ∈ P (M(DT ′ , ε))]

≥
1 − 4ε

γ·d
4ε
γ·d

=
γ · d
4ε

− 1

Solving for ε, we find that:

ε ≥ Ω

(
γ · d
eα

)
Since this holds for all choices of γ, the claim follows from the fact that d ≥
γFSDγ(C).

4 Upper Bound

We now show that (ignoring the other important parameters), it is sufficient to
add noise linear in the fat shattering dimension of C to simultaneously guarantee
usefulness with respect to C and differential privacy. Unlike our lower bound
which was not quite strong enough to state in terms of relative error, our upper
bound is most naturally stated as a bound on relative error.

We make use of a theorem of Bartlett and Long [BL95] (improving a bound of
Alon et al. [ABCH97]) concerning the rate of convergence of uniform Glivenko-
Cantelli classes with respect to their fat-shattering dimension.

Theorem 3 ([BL95] Theorem 9). Let C be a class of functions from some
domain X into [0, 1]. Then for all distributions P over X and for all η, δ ≥ 0:

Pr

[
sup
f∈C

∣∣∣∣∣ 1
m

m∑
i=1

f(xi) − Ex∼P[f(x)]

∣∣∣∣∣ ≥ η

]
≤ δ

where {xi}m
i=1 are m independent draws from P and

m = O

(
1
η2

(
dη/5 ln2 1

η
+ ln

1
δ

))
where dη/5 = FSDη/5(C).

We use this theorem to prove the following useful corollary:

Corollary 1. Let C be a class of linear functions with coefficients in [0, 1] from
Rn

+ to R. For any database D ∈ Rn
+, there is a database D′ ∈ Nn with

||D′||1 = O

(
dη/5

η2 · log2
(

1
η

))
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such that for each q ∈ C,∣∣∣∣q(D) − ||D||1
||D′||1

q(D′)
∣∣∣∣ ≤ η||D||1

where dη/5 = FSDη/5(C).

Proof. Let B = {ei}n
i=1 denote the set of n standard basis vectors over Rn. Let

PD be the probability distribution over B that places probability Di/||D||1 on
ei. Note that for any q ∈ C:

Eei∼PD [q(ei)] =
n∑

i=1

Di

||D||1
q(ei) =

1
||D||1

n∑
i=1

q(Diei) =
q(D)
||D||1

Let x1, . . . , xm be m = O
(

1
η2

(
dη/5 ln2 1

η + ln 2
))

independent draws from PD,

and let D′ =
∑m

i=1 xi. Then:

q(D′) =
n∑

i=1

q(D′
iei) =

m∑
i=1

q(xi)

By lemma 3, we have:

Pr
[∣∣∣∣q(D′)

m
− q(D)

||D||1

∣∣∣∣ ≥ η

]
= Pr

[∣∣∣∣∣ 1
m

m∑
i=1

q(xi) − Eei∼PD [q(ei)]

∣∣∣∣∣ ≥ η

]

≤ 1
2

In particular, there exists some D′ ∈ Nn with ||D′||1 = m that satisfies∣∣∣ q(D′)
||D′||1 − q(D)

||D||1

∣∣∣ ≤ η. Multiplying through by ||D||1 gives the desired bound.

Armed with Corollary 1, we may now proceed to instantiate the exponential
mechanism over a sparse domain, analogously to the instantiation of the expo-
nential mechanism in [BLR08].

Definition 4 (The Exponential Mechanism [MT07]). Let D be some do-
main, and let s : Rn

+ ×D → R be some quality score mapping database/domain-
element pairs to some real value. Let

Δs ≥ max
r∈D

sup
D1,D2∈R

+
n :||D1−D2||1≤1

|s(D1, r) − s(D2, r)|

be an upper bound on the �1 sensitivity of s. The exponential mechanism defined
with respect to domain D and score s is the probability distribution (parame-
terized by the private database D) which outputs each r ∈ D with probability
proportional to:

r ∼ exp
(

s(D, r) · α
2Δs

)
Theorem 4 (McSherry and Talwar [MT07]). The exponential mechanism
preserves α-differential privacy.
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We let m = O
(

dη/5

η2 · log2
(

1
η

))
, and define the domain of our instantiation of

the exponential mechanism to be:

D = {D′ ∈ Nn : ||D′||1 = m}

We note that |D| = nm. Finally, we sample each D′ ∈ D with probability
proportional to:

D′ ∼ exp

⎛⎝−
supq∈C

∣∣∣q(D) − ||D||1
||D′||1 · q(D′)

∣∣∣α
4

⎞⎠ (2)

and output the database Dout ≡ ||D||1
||D′||1 ·D′2. Observe that for any two databases

D1, D2 such that ||D1 − D2||1 ≤ 1 we have:

sup
q∈C

|q(D1) −
||D1||1
||D′||1

· q(D′)| − sup
q∈C

|q(D2) −
||D2||1
||D′||1

· q(D′)| ≤

||D1 − D2||1 +
|||D1||1 − ||D2||1|

m
≤

1 +
1
m

Therefore, the distribution defined in equation 2 is a valid instantiation of the
exponential mechanism, and by [MT07] preserves α-differential privacy. It re-
mains to show that the above instantiation of the exponential mechanism yields
a useful mechanism with low error. In particular, it gives us a relatively useful
mechanisms with respect to classes C for databases that have size linear in the
fat shattering dimension of C, or only logarithmic in |C| for finite classes C.
This is in contrast to the bounds of [HT10] that require databases to be of size
polynomial in |C| before giving relatively-useful mechanisms.

Theorem 5. For any constant δ and any query class C, there is an (η, δ)-
relatively useful mechanism that preserves α-differential privacy for any database
of size at least:

||D||1 ≥ Ω̃

(
FSD2η/5(C) log n

αη3

)
Proof (Proof of Theorem). Recall that the domain D of our instantiation of the
exponential mechanism consists of all databases D′ ∈ Nn with ||D′||1 = m with
m = O

(
dη/5

η2 · log2
(

1
η

))
} In particular, by corollary 1, there exists a D∗ ∈ D

such that: ∣∣∣∣q(D) − ||D∗||1
||D′||1

q(D∗)
∣∣∣∣ ≤ η||D||1

2 If ||D||1 is not public knowledge, it can be estimated to small constant error using the
Laplace mechanism [DMNS06], losing only additive constants in the approximation
parameter ε and privacy parameter α. This does not affect our results.
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By the definition of our mechanism, such a D∗ is output with probability pro-
portional to at least:

D∗ ∼ exp(−η||D||1α
4

)

Similarly, any DB ∈ D such that
∣∣∣q(D) − ||DB||1

||D′||1 q(D∗)
∣∣∣ ≥ 2η||D||1 is output

with probability proportional to at most:

DB ∼ exp(−η||D||1α
2

)

Let DB denote the set of all such DB. Because |D| = nm, we have that:

Pr[D′ = D∗]
Pr[D′ ∈ DB ]

≥
exp(− η||D||1α

4 )

nm · exp(− η||D||1α
2 )

= n−m · exp
(

η||D||1α
2

)
Rearranging terms, we have:

Pr[D′ ∈ DB] ≤ nm exp
(
−η||D||1α

2

)
Solving, we find that this bad event occurs with probability at most δ for any
database D with:

||D||1 ≥ Ω

(
m log n

ηα
+ log

1
δ

)
= Ω̃

(
FSD2η/5(C) log n

αη3

)
We remark that the above mechanism is the analogue of the general release
mechanism of [BLR08], and answers linear queries in the offline setting, when
all queries C are known to the mechanism in advance. This is not necessary,
however. In the same way as above, corollary 1 can also be used to generalize
the Median Mechanism of Roth and Roughgarden [RR10], to achieve roughly
the same bounds, but in the online setting, in which queries arrive online, and
the mechanism must privately answer queries as they arrive, without knowledge
of future queries. This results in the following theorem:

Theorem 6. There exists a mechanism such that for every sequence of adap-
tively chosen queries q1, q2, . . . arriving online, chosen from some (possibly in-
finite) set C (unknown to the mechanism), the mechanism is (η, δ) useful with
respect to C and preserves (α, τ)-differential privacy3, where τ is a negligible
function of n, for any database D with size at least:

||D||1 ≥ Ω̃

(
FSD2η/5(C) log n

αη3

)
3 This is an approximate form of differential privacy. Specifically, a mechanism M :

Rn
+ → Rn

+ is (α, τ )-differentially private, if for any two databases D1, D2 such that
||D1 − D2||1 ≤ 1, and for any S ⊆ Rn

+:

Pr[M(D1) ∈ S] ≤ eα Pr[M(D2) ∈ S] + τ

.
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Remark 1. Notice that for finite classes of linear queries, we may replace the fat
shattering dimension in the bounds of both theorems 5 and 6 with log |C| if we
so choose.

5 Conclusion

In this paper, we have generalized the techniques used by Blum Ligett and Roth,
[BLR08] and Roth and Roughgarden [RR10] from the class of predicate queries
to the more general class of linear queries. This gives the first mechanism for
answering every linear query from some class C with noise that is bounded by
a parameter other than the cardinality of C; in particular, we have given the
first mechanism for answering all of the linear queries in certain infinite classes
of queries beyond predicate queries. We have shown that the relevant parameter
is the Fat-Shattering dimension of the class, which is a generalization of VC-
dimension to non-boolean valued queries. In particular (ignoring other parame-
ters), it is necessary and sufficient to add noise proportional to the fat shattering
dimension of C. Our results show, among other things, that the sample complex-
ity needed to privately agnostically learn real valued functions is polynomially
related to the sample complexity needed to non-privately agnostically learn real
valued functions.

At a high level, the same technique can be applied for any class of queries, all of
the answers to which can be summarized by some ‘small’ object. It is then sufficient
to instantiate the exponential mechanism only over this much smaller set of objects
(rather than the set of all databases) to obtain a useful mechanism. In the case of
linear queries, we have shown that the answers to many queries can be summarized
by integer valueddatabaseswith small �1 norm.An interesting future direction is to
determine what types of nonlinear (but low sensitivity) queries have similar small
summarizes from which useful mechanisms can be derived.
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Abstract. We prove the following results concerning the list decoding
of error-correcting codes:

1. We show that for any code with a relative distance of δ (over a large
enough alphabet), the following result holds for random errors: With
high probability, for a ρ ≤ δ − ε fraction of random errors (for any
ε > 0), the received word will have only the transmitted codeword
in a Hamming ball of radius ρ around it. Thus, for random errors,
one can correct twice the number of errors uniquely correctable from
worst-case errors for any code. A variant of our result also gives a
simple algorithm to decode Reed-Solomon codes from random errors
that, to the best of our knowledge, runs faster than known algorithms
for certain ranges of parameters.

2. We show that concatenated codes can achieve the list decoding ca-
pacity for erasures. A similar result for worst-case errors was proven
by Guruswami and Rudra (SODA 08), although their result does
not directly imply our result. Our results show that a subset of the
random ensemble of codes considered by Guruswami and Rudra also
achieve the list decoding capacity for erasures. We also show that the
exponential list size bound in our result with outer random linear
codes cannot be improved using the recent techniques of Guruswami,
H̊astad and Kopparty that achieved similar improvements for errors.

Our proofs employ simple counting and probabilistic arguments.

1 Introduction

List decoding is a relaxation of the traditional unique decoding paradigm, in
which one is allowed to output a list of codewords that are close to the re-
ceived word. This relaxation allows for designing list decoding algorithms that
can recover from scenarios where almost all of the redundancy could have been
corrupted [22,10,17,3]. In particular, one can design binary codes from which
one can recover from a 1/2 − ε fraction of worst-case errors. This fact has lead
to many surprising applications in complexity theory– see e.g. the survey by
Sudan [23] and Guruswami’s thesis [6, Chap. 12].

The results mentioned above mostly deal with worst-case errors, where the
channel is considered to be an adversary that can corrupt any arbitrary fraction
� Research supported by NSF CAREER Award CCF-0844796.
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of symbols (with an upper bound on the maximum fraction of such errors). In
this work, we deal with both random and erasure noise models, which are weaker
than the worst-case errors model, and which also have interesting applications
in complexity theory (though less frequently than worst-case errors).

1.1 Random Errors

It is well-known that for worst-case errors, one cannot uniquely recover the
transmitted codeword if the total number of errors exceeds half the distance.
(We refer the reader to Section 2 for definitions related to codes.) List decoding
circumvents this by allowing the decoder to output multiple nearby codewords.
In situations where the decoder has access to some side information, one can
prune the output list to obtain the transmitted codeword. In fact, most of the
applications of list decoding in complexity theory crucially use side information.
However, a natural question to ask is what one can do in situations where there
is no side information (this is not an uncommon assumption in the traditional
point-to-point communication model).

In such a scenario, it makes sense to look at a weaker random noise model
and try to argue that the pathological cases that prevent us from decoding a
code with relative distance δ from more than δ/2 fraction of errors are rarely
encountered.

Before we move on, we digress a bit to establish our notion of random errors.
In our somewhat non-standard model, we assume that the adversary can pick
the location of the ρ fraction of error positions but that the errors themselves
are random. For the binary case, this model coincides with worst-case errors,
so in this work, we consider alphabet size q ≥ 3. We believe that this is a nice
intermediary to the worst-case noise model and the more popular models of
random noise, where errors are independent across different symbols. Indeed, a
result with high probability in our random noise model (for roughly ρ errors)
immediately implies a similar result for a more benign random noise model such
as the q-ary symmetric noise channel with cross-over probability ρ. For the rest
of the paper, when we say random errors, we will be referring to the stronger
random noise model above.

Related Work. The intuition that pathological worst-case errors are rare has
been formalized for certain families of codes. For example, McEliece showed that
for Reed-Solomon codes with distance δ, with high probability, for a fraction
ρ ≤ δ − ε of random errors, the output list size is one [16].1 Further, for most
codes of rate 1 − Hq(ρ) − ε, with high probability, for a ρ fraction of random
errors, the output list size is one. (This follows from Shannon’s famous result on
the capacity of the q-ary symmetric channel: for a proof, see e.g. [19].) It is also
known that most codes of rate 1 − Hq(ρ) − ε have relative distance at least ρ.
Further, for q ≥ 2Ω(1/ε), it is known that such a code cannot have distance more

1 The actual result is slightly weaker: see Section 3 for more details.
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than ρ + ε: this follows from the Singleton bound and the fact that for such an
alphabet size, 1 − Hq(ρ) ≥ 1 − ρ − ε (cf. [18, Sec 2.2.2]).

Our Results. In our first main result, we show that the phenomenon above is
universal, that is, for every q-ary code, with q ≥ 2Ω(1/ε), the following property
holds: if the code has relative distance δ, then for any ρ ≤ δ − ε fraction of
random errors, with high probability, the Hamming ball of fractional radius ρ
around the received word will only have the transmitted codeword in it. We
would like to point out three related points. First, our result implies that if we
relax the worst-case error model to a random error model, then combinatorially
one can always correct twice the number of errors. Second, one cannot hope to
correct more than a δ fraction of random errors: it is easy to see that, for instance,
for Reed-Solomon codes, any error pattern of relative Hamming weight ρ > δ
will give rise to a list size greater than one. Finally, the proof of our result follows
from a fairly straightforward counting argument.

A natural follow-up question to our result is whether the lower bound of
2Ω(1/ε) on q can be relaxed. We show that if q is 2o(1/ε), then the result above is
not true. This negative result follows from the following two observations/results.
First, it is known that for any code with rate 1 − Hq(ρ) + ε, the average list
size, over all possible received words, is exponential. Second, it is known that
Algebraic-Geometric (AG) codes over alphabets of size at least 49 can have
relative distance strictly bigger than 1 − Hq(ρ) (cf. [11]). However, these two
results do not immediately imply the negative result for the random error case.
In particular, what we need to show is that there is at least one codeword c
such that for most error patterns e of relative Hamming weight ρ, the received
word c + e has at least one codeword other than c within a relative Hamming
distance of ρ from it. To show that this can indeed be true for AG codes, we use
a generalization of an “Inverse Markov argument” from Dumer et al. [1].

A Cryptographic Application. In addition to being a natural noise model
to study, list decoding in the random error model has applications in cryp-
tography. In particular, Kiayias and Yung have proposed cryptosystems based
on the hardness of decoding Reed-Solomon codes [12]. However, if for Reed-
Solomon codes (of rate R), one can list decode ρ fraction of random errors
then the cryptosystem from [12] can be broken for the corresponding parameter
settings. Since Guruswami-Sudan can solve this problem for ρ ≤ 1 −

√
R for

worst-case errors [10], Kiayias and Yung set the parameter ρ > 1−
√

R. Beyond
the 1 −

√
R bound, to the best of our knowledge, the only known algorithms

to decode Reed-Solomon codes are the following trivial ones: (i) Go through all
possible qk codewords and output all the codewords with Hamming distance of ρ
from the received word; and (ii) Go through all possible

(
n
ρn

)
error locations and

output the codeword, if any, that agrees in the (1 − ρ)n “non-error” locations.
It is interesting to note that each of the three algorithms mentioned above

work in the stronger model of worst-case errors. However, since we only care
about decoding from random errors, one might hope to design better algorithms
that make use of the fact that the errors are random. In this paper, we show
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that (essentially) the proof of our first main result implies a related result that
in turn implies a modest improvement in the running time of algorithms to
decode Reed-Solomon codes from ρ > 1 −

√
R fraction of random errors. The

related result states the following: for any code with relative distance δ (over a
large enough alphabet) with high probability, for a ρ fraction of random errors,
Hamming balls of fractional radius δ − ε around the received word only have
the transmitted codeword in them.2 Note that unlike the statement of our result
mentioned earlier, we are considering Hamming balls of radius larger than the
fraction of errors. This allows us to improve the second trivial algorithm in
the paragraph above so that one needs to verify fewer “error patterns.” This
leads to an asymptotic improvement in the running time over both of the trivial
algorithms for certain setting of parameters, though the running time is still
exponential and thus, too expensive to break the Kiayias-Yung cryptosystem.

Other Applications. In addition to the application in cryptography our results
on random errors have found the following two applications. The authors have
presented a data stream algorithm to perform tolerant testing for Reed-Solomon
codes under random errors [20]. Our result in this paper on the list size being one
with high probability is one crucial component of the analysis of the performance
of the data stream algorithm. Further, Kulhandjian, Rudra and Pados have
observed that our result implies that for the Gilbert-Elliott channel, the Reed-
Solomon code with high probability has a list size of one [13], which shows the
viability of list decoding as an error recovery paradigm for communication on the
Gilbert-Elliott channel. (The Gilbert-Elliott channel is one of the well studied
stochastic channel that models bursty errors.) We point out that the observation
in [13] crucially uses the fact that the error locations can be arbitrary and thus,
does not follow from the result of McEliece [16].

1.2 Erasures

In the second part of the paper, we consider the erasure noise model, where
the decoder knows the locations of the errors. (However, the error locations are
still chosen by the adversary.) Intuitively, this noise model is weaker than the
general worst-case noise model as the decoder knows for sure which locations
are uncorrupted. This intuition can also be formalized. E.g., it is known that
for a ρ fraction of worst-case errors, the list decoding capacity is 1 − Hq(ρ),
whereas for a ρ fraction of erasures, the list decoding capacity is 1 − ρ (cf. [6,
Chapter 10]). Note that the capacity for erasures is independent of the alphabet
size. As another example, for a linear code, a combinatorial guarantee on list
decodability from erasures gives a polynomial time list decoding algorithm. By
contrast, such a result is not known for worst-case errors.

As is often the case, the capacity result is proven by random coding arguments.
A natural quest then is to design explicit linear codes that achieve the list de-
coding capacity for erasures, and is an important milestone in the program of

2 A similar result was shown for Reed-Solomon codes by McEliece [16].
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designing explicit codes that achieve list decoding capacity for worst-case errors.
This goal is the primary motivation for our second main result.

Our Result and Related Work. For large enough alphabets, explicit linear
codes that achieve list decoding capacity for erasures are not hard to find: e.g.,
Reed-Solomon codes achieve the capacity. For smaller alphabets, the situation is
much different. For binary codes, Guruswami presented explicit linear codes that
can handle ρ = 1−ε fraction of erasures with rate Ω

(
ε2

log(1/ε)

)
[5]. For alphabets

of size 2t, a 1 − ε fraction of erasures can be list decoded with explicit linear
codes of rate Ω

(
ε1+1/t

t2 log(1/ε)

)
[6, Chapter 10]. Thus, especially for binary codes,

an explicit code with a capacity of 1 − ρ is still a lofty goal. (In fact, breaking
the ε2 rate barrier for polynomially small ε would imply explicit construction of
certain bipartite Ramsey graphs, solving an open question [5].)

To gain a better understanding about codes that achieve the list decoding
capacity for erasures, a natural question is to ask whether concatenated codes
can achieve the list decoding capacity for erasures. Concatenated codes are the
preeminent method to construct good list decodable codes over small alphabets.
In fact, the best explicit list decodable binary codes (for both erasures [5] and
worst-case errors [9]) are concatenated codes. Briefly, in code concatenation, an
“outer” code over a large alphabet is first used to encode the message. Then
“inner” codes over the smaller alphabet are used to encode each of the symbols
in the outer codeword. These inner codes typically have a much smaller block
length than the outer code, which allows one to use brute-force type algorithms
to search for “good” inner codes. Also note that the rate of the concatenated
code is the product of the rate of the outer and inner codes.

Given that concatenated codes have such a rigid structure, it seems plausible
that such codes would not be able to achieve list decoding capacity. For the
worst-case error model, Guruswami and Rudra showed that there do exist con-
catenated codes that achieve list decoding capacity [8]. However, for erasures
there is an additional potential complication that does not arise for the worst-
case error case. In particular, consider erasure patterns in which a ρ fraction of
the outer symbols are completely erased. It is clear by this example that the
outer code needs to have rate very close to 1 − ρ. However, note that to ap-
proach the list decoding capacity for erasures, the concatenated code needs to
have a rate of 1 − ρ − ε. This means that the inner codes need to have a rate
very close to 1. By contrast, even though the result of [8] has some restrictions
on the rate of the inner codes, it is not nearly as stringent as the requirement
above. (The restriction in [8] seems to be an artifact of the proof, whereas for
erasures, the restriction is unavoidable.) Further, this restriction on the inner
rate arises just by looking at a specific class of erasure patterns. It is reasonable
to wonder if when taking into account all possible erasure patterns, we can rule
out the possibility of concatenated codes achieving the list decoding capacity for
erasures.

In our second main result, we show that concatenated codes can achieve the
list decoding capacity for erasures. In fact, we show that choosing the outer
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code to be a Folded Reed-Solomon code ([3]) and picking the inner codes to be
random independent linear codes with rate 1, will with high probability, result
in a linear code that achieves the list decoding capacity for erasures. We show
a similar result (but with better bounds on the list size) when the outer code
is also chosen to be a random linear code. Both of these ensembles were shown
to achieve the list decoding capacity for errors in [8], although, as mentioned
earlier, the result for errors holds for a superset of concatenated codes (as the
inner codes could have rates strictly less than 1). The proof of our result is similar
to the proof structure in [8]. Because we are dealing with the more benign erasure
noise model, some of the calculations in our proofs are much simpler than the
corresponding ones in [8].

Our result for concatenated codes where the outer code is a random linear
code shows that most concatenated linear codes with rate 1 − ρ − ε can be list
decoded from (a constant) ρ fraction of erasures with a list size of 2O(1/ε). A
similar result holds for general random linear codes [5,6]. By contrast, for general
random codes for the same setting of parameters, the list size for erasures is
known to be O(1/ε). Until recently such an exponential gap was also true for
the error case. Guruswami, H̊astad and Kopparty have shown that for random
linear codes of rate 1 − H(ρ) − ε, one can correct ρ fraction of errors with a
list size of O(1/ε). (A similar result for general random codes has been known
since the 1980s.) It is then natural to wonder if the techniques of [7] can be
used to improve the list size for the erasure case or if the exponential gap is
inherent for erasures. (The gap is known to be necessary when ρ = 1 − ε [5]–
nothing is known for constant ρ.) We provide partial evidence for the latter by
showing that a random linear code of rate 1 − p − ε that can handle ρ fraction
of errors w.h.p. needs a list size of 2Ω(1/ε). Our proof structure follows that of
an analogous result of Rudra for errors [19]. The proof, however is a bit more
complicated. The main idea in [19] was to (a) look at only a possible subset of
“bad events” and (b) make all such bad events disjoint. Unfortunately, there is
no natural notion of a large enough subset of bad events for the erasure case.
Thus, in our proof we pick a large subset of bad events that are nearly disjoint.
This fact makes our calculations slightly more complicated.

Approximating NP Witnesses. We conclude this section by pointing out
that binary codes that are list decodable from erasures have an application in
the problem of approximating NP-witnesses [2,14]. For any NP-language L, we
have a polynomial-time decidable relation RL(·, ·) such that x ∈ L if and only if
there exists a polynomially sized witness w such that RL(x, w) accepts. Thus, for
an NP-complete language we do not expect to be able to compute the witness w
in polynomial time given x. A natural notion of approximation is the following:
given an ε fraction of the bits in a a correct witness w, can we verify if x ∈ L in
polynomial time? The results in [2,14] show that such an approximation is not
possible unless P=NP.

Guruswami and Sudan ([4]) have shown that the reductions for witnesses of
size N in [2,14] can be made to work with ε = N−1/2+γ for the Kumar and
Sivakumar problem and with ε = N−1/4+γ for the Gál et al. problem (for any
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constant γ > 0). An explicit linear code that meets the list decoding capacity for
erasures will improve the value of ε above to N−1+γ and N−1/2+γ , respectively.

Organization of the Paper. We begin with some preliminaries in Section 2.
We present our first main result on random codes in Section 3 and our results
on erasures in Section 4. Due to lack of space, omitted proofs are deferred to the
full version of the paper [21].

2 Preliminaries

For an integer m ≥ 1, we will use [m] to denote the set {1, . . . , m}.
Basic Coding Definitions. A code C of dimension k and block length n over
an alphabet Σ is a subset of Σn of size |Σ|k. The rate of such a code equals k/n.
Each n-tuple in C is called a codeword. Let Fq denote the field with q elements.
A code C over Fq is called a linear code if C is a subspace of Fn

q . In this case the
dimension of the code coincides with the dimension of C as a vector space over
Fq. By abuse of notation we can also think of a linear code C as a map from
an element in Fk

q to its corresponding codeword in Fn
q , mapping a row vector

x ∈ Fk
q to a vector xG ∈ Fn

q via a k × n matrix G over Fq which is referred to
as the generator matrix.

The Hamming distance between two vectors in x,y ∈ Σn, denoted by Δ(x,y),
is the number of places they differ in. The (minimum) distance of a code C is
the minimum Hamming distance between any two distinct codewords from C.
The relative distance is the ratio of the distance to the block length.

We will need the following notions of the weight of a vector. Given a vector
v ∈ {0, 1, . . . , q − 1}n, its Hamming weight, which is the number of non-zero
entries in the vector, is denoted by wt(v). Given a vector y = (y1, . . . , yn) ∈
{0, . . . , q − 1}n and a subset S ⊆ [n], yS will denote the subvector (yi)i∈S , and
wtS(y) will denote the Hamming weight of yS .

Code Concatenation. Concatenated codes are constructed from two different
types of codes that are defined over alphabets of different sizes. If we are inter-
ested in a concatenated code over Fq, then the outer code Cout is defined over
FQ, where Q = qk for some positive integer k, and has block length N . The sec-
ond type of codes, called the inner codes, and which are denoted by C1

in, . . . , CN
in ,

are defined over Fq and are each of dimension k (note that the message space
of Ci

in for all i and the alphabet of Cout have the same size). The concatenated
code, denoted by C = Cout ◦ (C1

in, . . . , CN
in ), is defined as follows: Let the rate

of Cout be R and let the block lengths of Ci
in be n (for 1 ≤ i ≤ N). Define

K = RN and r = k/n. The input to C is a vector m = 〈m1, . . . , mK〉 ∈ (Fk
q)K .

Let Cout(m) = 〈x1, . . . , xN 〉. The codeword in C corresponding to m is defined
as follows

C(m) = 〈C1
in(x1), C2

in(x2), . . . , CN
in (xN )〉.

The outer code Cout in this paper will either be a random linear code over FQ or
the folded Reed-Solomon code from [3]. In the case when Cout is random linear,
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we will pick Cout by selecting K = RN vectors uniformly at random from FN
Q

to form the rows of the generator matrix. For every position 1 ≤ i ≤ N , we will
choose an inner code Ci

in to be a random linear code over Fq of block length n
and rate r = k/n. In particular, we will work with the corresponding generator
matrices Gi, where every Gi is a random k×n matrix over Fq. All the generator
matrices Gi (as well as the generator matrix for Cout, when we choose a random
Cout) are chosen independently. This fact will be used crucially in our proofs.

List Decoding. We define some terms related to list decoding.

Definition 1 (List decodable code for errors). For 0 < ρ < 1 and an
integer L ≥ 1, a code C ⊆ Σn is said to be (ρ, L)-list decodable if for every
y ∈ Σn, the number of codewords in C that are within Hamming distance ρn
from y is at most L.

Given a vector c = (c1, . . . , cn) ∈ Σn and an erased received word y =
(y1, . . . , yn) ∈ (Σ ∪ {?})n,3 we will use c � y to denote the fact that for ev-
ery i ∈ [n] such that yi �=?, ci = yi. With this definition, we are ready to define
the notion of list decodability for erasures. Further, for an erased received word,
we will use wt(y) to denote the number of erased positions.

Definition 2 (List decodable code for erasures). For 0 < ρ < 1 and an
integer L ≥ 1, a code C ⊆ Σn is said to be (ρ, L)led-list decodable if for every
y ∈ (Σ ∪ {?})n with wt(y) ≤ ρn, the number of codewords c ∈ C such that
c � y is at most L.

Reed-Solomon and Related Codes. The classical family of Reed-Solomon
(RS) codes over a field F are defined to be the evaluations of low-degree poly-
nomials at a sequence of distinct points of F. Folded Reed-Solomon codes are
obtained by viewing the RS code as a code over a larger alphabet Fs by bundling
together s consecutive symbols for some folding parameter s.

3 Random Errors

In this section we consider the random noise model mentioned in the introduc-
tion: the error locations are adversarial but the errors themselves are random.
Our main result is the following.

Theorem 1. Let 0 < ε, δ < 1 be reals and let q and n ≥ Ω(1/ε) be positive
integers. Let Σ = {0, 1, . . . , q − 1}.4 Let 0 < ρ ≤ δ − ε be a real. Let C be a code
over Σ of block length n and relative distance δ. Let S ⊆ [n] with |S| = (1−ρ)n.
Then the following hold:

3 ? denotes an erasure.
4 We will assume that Σ is equipped with a monoid structure, i.e. for any a, b ∈ Σ,

a + b ∈ Σ and 0 is the identity element.
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(a) If q ≥ 2Ω(1/ε), then for every codeword c and all but a q−Ω(εn) fraction of
error patterns e ∈ Σn with wt(e) = ρn and wtS(e) = 0, the only codeword
within the Hamming ball of radius ρn around the received word c + e is c.

(b) Let γ > 0. If q > max
(

n,
(

e
1−δ+ε

)� 1
γ �
)

, then for every codeword c and

all but a (q − 1)−((1−γ)ε/2−(1−δ)γ)n fraction of error patterns e ∈ Σn with
wt(e) = ρn and wtS(e) = 0, the only codeword within the Hamming ball of
radius (δ − ε)n around the received word c + e is c.

A weaker version of Theorem 1 was previously known for RS codes [16]. (Though
the bounds for part (b) are better in [16].) In particular, McEliece showed The-
orem 1 for RS codes but over all error patterns of Hamming weight ρn. In other
words, Theorem 1 implies the result in [16] if we average our result over all
subsets S ⊆ [n] with |S| = ρn.

Part (a) of Theorem 1 implies that for e ≤ (δ − ε)n random errors, with high
probability, the Hamming ball of radius e has one codeword in it. Note that
this is twice the number of errors for which an analogous result can be shown
for worst-case errors. Part (b) of Theorem 1 implies the following property of
Reed-Solomon codes (where we pick ε = 4R and γ = 1/2).

Corollary 1. Let k ≤ n < q be integers such that q >
(

n
k

)2. Then the following
property holds for Reed-Solomon codes of dimension k and block length n over
Fq. For at least 1 − q−Ω(k) fraction of error patterns e of Hamming weight at
most n − 4k and any codeword c, the only codeword that agrees in at least 4k
positions with c + e is c.

We would like to point out that in Corollary 1, the radius of the Hamming ball
can be larger than the number of errors. This can be used to slightly improve
upon the best known algorithms to decode RS codes from random errors beyond
the Johnson bound for super-polynomially large q. See Section 3.1 for more
details.

A natural question is whether the lower bound of q ≥ 2Ω(1/ε) in part (a) of
Theorem 1 can be improved. In Section 3.2 we show that this is not possible.

Proof of Theorem 1. Let c ∈ C be the transmitted codeword. For an α ≥
1− δ + ε, we call an error pattern e (with wt(e) = ρn and wtS(e) = 0) α-bad if
there exits a codeword c′ �= c ∈ C such that Δ(c + e, c′) = (1 − α)n (and every
other codeword has a larger Hamming distance from c + e). We will show that
the number of α-bad error patterns (over all α ≥ 1 − δ + ε) is an exponentially
small fraction of error patterns e with wt(e) = ρn and wtS(e) = 0, which will
prove the theorem.

Fix α ≥ 1−δ+ε. Associate every α-bad error pattern e with the lexicograph-
ically first codeword c′ �= c ∈ C such that Δ(c + e, c′) = (1 − α)n. Let A ⊆ [n]
be the set of positions where c′ and c + e agree. Further, define S0 = S ∩ A,
S1 = A ∩ ([n] \ S) and β = |S0|/n. Thus, for every α-bad error pattern e, we
can associate such a pair of subsets (S0, S1) ⊆ S × ([n] \S). Hence, to count the
number of α-bad error patterns it suffices to count for each possible pair (S0, S1),
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with |S0| = βn and |S1| = (α − β)n for some α − ρ ≤ β ≤ α, the number of
α-bad patterns that can be associated with it. (The lower and upper bounds on
β follow from the fact that S1 ⊆ [n] \ S and S0 ⊆ A, respectively.)

Fix sets S0 ⊆ S and S1 ⊆ [n] \ S with |S0| = βn and |S1| = (α − β)n for
some α − ρ ≤ β ≤ α. To upper bound the number of α-bad error patterns
that are associated with (S0, S1), first note that such error patterns take all the
(q − 1)(ρ−α+β)n possible values at the positions in [n] \ (S ∪ S1). Fix a vector
x of length n − |S| − |S1| and consider all the α-bad error patterns e such that
e[n]\(S∪S1) = x. Recall that each error pattern is associated with a codeword
c′ �= c such that c′ and c + e agree exactly in the positions S0 ∪ S1. Further,
such a codeword c′ is associated with exactly one α-bad error pattern e, where
e[n]\(S∪S1) = x. (This is because fixing c′ fixes eS1 and eS is already fixed by
the definition of S.) Thus, to upper bound the number of α-bad error patterns
associated with (S0, S1), where e[n]\(S∪S1) = x (call this number Nα,S0,S1,x), we
will upper bound the number of such codewords c′. Note that as C has relative
distance δn, once any (1 − δ)n + 1 positions are fixed, there is at most one
codeword that agrees with the fixed positions (if there is no such codeword then
the corresponding “error pattern” does not exist). Thus, there is at most one
possible c′ once we fix (say) the “first” (1 − δ)n + 1 − |S0| values of eS1 (recall
that c′S0

= cS0). This implies that

Nα,S0,S1,x ≤ (q − 1)(1−δ−β)n+1.

Let Mα be the number of choices for (S0, S1), which is just the number of choices
for A. As the number of choices for x is (q − 1)(ρ−α+β)n, the number of α-bad
error patterns is at most

Mα · (q−1)(ρ−α+β)n · (q−1)(1−δ−β)n+1 = Mα · (q−1)(1−δ−α)n+1 · (q−1)ρn. (1)

Proof of part(a). Note that the number of α-bad patterns for any α ≥ 1−δ+ε
is upper bounded by

Mα · (q − 1)−εn+1 · (q − 1)ρn.

We trivially upper bound Mα by 2n. Recalling that there are (q − 1)ρn error
patterns e with wt(e) = ρn and wtS(e) = 0 and that α can take at most n
values, the fraction of α-bad patterns (over all α ≥ 1− ρ ≥ 1− δ + ε) is at most

n2n(q − 1)−εn+1 ≤ (q − 1)(−ε+ 2
log(q−1) + 1

n)n ≤ (q − 1)−εn/3 ≤ q−εn/6,

where the first inequality follows from the fact that n ≤ 2n, the second inequality
is true for n ≥ 3/ε and q ≥ 26/ε and the last inequality follows from the inequality
(q − 1) ≥ √

q (which in turn is true for q ≥ 3).

Proof of part (b). The proof is similar to that of part (b), except we use the
bound Mα =

(
n

αn

)
≤ (e/α)αn.
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3.1 An Implication of Corollary 1

To the best of our knowledge, for e > n −
√

kn, the only known algorithms
to decode Reed-Solomon (RS) codes from e random errors are the trivial ones:
(i) Go through all possible codewords and output the closest codeword– this
takes 2O(k log q) · n time and (ii) Go through all possible

(
n
e

)
error locations and

check that the received word outside the purported error locations is indeed a
RS codeword– this takes 2O((n−e) log(n/(n−e))) · O(n2) time.

If e ≤ n − 4k, then by Corollary 1, we can go through all the
(

n
4k

)
choices of

subsets of size 4k and check if the received word projected down to the subset lies
in the corresponding projected down RS code. This algorithm takes 2O(k log(n/k)) ·
O(n2) time, which is better than trivial algorithm (ii) mentioned above when e
is of size n − ω(k). Further, this algorithm is better than trivial algorithm (i)
when q is super-polynomially large in n.

3.2 On the Alphabet Size in Theorem 1

It is well-known that any code that is (ρ, L)-list decodable that also has rate at
least 1 − Hq(ρ) + ε needs to satisfy L = qΩ(εn) (cf. [6]). A natural way to try
to show that part (a) of Theorem 1 is false for q ≤ 2o(1/ε) is to look at codes
whose relative distance is strictly larger than 1 − Hq(ρ). Algebraic-geometric
(AG) codes are a natural candidate since they can beat the Gilbert-Varshamov
bound for an alphabet size of at least 49 (cf. [11]). The only catch is that the
lower bound on L follows from an average case argument and we need to show
that over most error patterns, the list size is more than one. For this we need
an “Inverse Markov argument,” like one in [1].

(The argument above was suggested to us by Venkat Guruswami.)
We begin with the more general statement of the “Inverse Markov argument”

from [1]. (We thank Madhu Sudan for the statement and its proof.)

Lemma 1. Let G = (L, R, E) be a bipartite graph with |L| = nL and |R| = nR.
Let the average left degree of G be denoted by d̄L. Note that the average right
degree is d̄R = nL·dL

nR
. Then the following statements are true:

(i) If we pick an edge e = (u, v) uniformly at random from E, then the probability
that5 d(v) ≤ εd̄R is at most ε.

(ii) If G is d-left regular then consider the following process: Uniformly at random
pick a vertex u ∈ L. Then uniformly at random pick a vertex v ∈ R in u’s
neighborhood. Then the probability that d(v) ≤ εdnL

nR
is at most ε.

Proof. We first note that (ii) follows from (i) as the random process in (ii) ends
up picking edges uniformly at random from E.

To conclude, we prove part (i). Consider the set R′ ⊆ R such that v ∈ R′

satisfies d(v) ≤ εd̄R. Note that that the maximum number of edges that have an
end-point in R′ is at most εd̄R ·nR = ε|E|. Thus, the probability that a uniformly
random edge in E has an end point in R′ is upper bounded by ε|E|/|E| = ε, as
desired.
5 For any vertex v, we denote its degree by d(v).
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The following is an easy consequence of Lemma 1 and the standard probabilistic
method used to prove the lower bound for list decoding capacity.

Lemma 2. Let q ≥ 2 and 0 ≤ ρ < 1 − 1/q. Then the following holds for large
enough n. Let C ⊆ {0, . . . , q− 1}n be a code with rate 1−Hq(ρ)+ γ. Then there
exists a codeword c ∈ C such that for at least a 1 − q−Ω(γn) fraction of error
patterns e of Hamming weight at most ρn, it is true that the Hamming ball of
radius ρn around c + e has at least two codewords from C in it.

Proof. Define the bipartite graph GC,ρ = (C, {0, . . . , q − 1}n, E) as follows. For
every c ∈ C, add (c,y) ∈ E such that Δ(c,y) ≤ ρn. Note that GC,ρ is a
Volq(ρn)-left regular bipartite graph, where Volq(r) is the volume of the q-ary
Hamming ball with radius r. Note that the graph has an average right degree of

d̄R =
Volq(ρn) · q(1−Hq(ρ)+γ)n

qn
≥ qγn−o(n),

where in the above we have used the following well known inequality (cf. [15]):

Volq(ρn) ≥ qHq(ρ)n−o(n).

Thus, by part (b) of Lemma 1 (with ε = (d̄R)−1 ≤ q−γn+o(n)), we have

Pr
c∈C

Pr
e∈{0,...,q−1}n

wt(e)≤ρn

[c + e has only c within Hamming distance ρn] ≤ q−γn+o(n).

Thus, there must exist at least one codeword c ∈ C with the required property.

Thus, given Lemma 2, we can prove that part (a) of Theorem 1 is not true for a
certain value of q if there exists a code C ⊆ {0, . . . , q−1}n with relative distance
δ such that it has rate at least 1−Hq(δ−ε)+γ for some γ > 0. Now it is known

that for fixed α > 0, Hq(α) ≥ α+Ω
(

1
log q

)
(cf. [24, Lecture 7]). Thus, we would

be done if we could find a code with relative distance δ and rate at least

1 − δ + ε + γ − O(1/ log q).

For q ≤ 2o(1/ε), the bound above for small enough ε is upper bounded by 1− δ−
ε − 1√

q−1 (assuming that γ = Θ(ε)). It is known that AG codes over alphabets
of size ≥ 49 with relative distance δ exist that achieve a rate of 1 − δ − 1√

q−1 .

Thus, for 49 ≤ q ≤ 2o(1/ε), AG codes over alphabets of size q are the required
codes.

4 Results on Erasures

We first show that with folded Reed-Solomon codes and independently chosen
small random linear inner codes, the resulting concatenated code can achieve
erasure capacity in a list decoding setting.
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Theorem 2. Let q be a prime power and let 0 < R ≤ 1 be an arbitrary rational
number. Let n, K, N ≥ 1 be large enough integers such that K = RN . Let
Cout be a folded Reed-Solomon code over Fqn of block length N and rate R.
Let C1

in, . . . , CN
in be random linear codes over Fq, where Ci

in is generated by a
random n × n matrix Gi over Fq and the random choices for G1, . . . ,GN are
all independent.6Then the concatenated code C∗ = Cout ◦ (C1

in, . . . , CN
in ) is a(

1 − R − ε,
(

N
ε2

)O(ε−2 log(1/R))
)

led

-list decodable code with probability at least 1−

q−Ω(nN) over the choices of G1, . . . ,GN . Further, C∗ has rate R w.h.p.

A similar result holds when the outer code is a random linear code:

Theorem 3. Let q be a prime power and let 0 < R ≤ 1 be an arbitrary ra-
tional. Let n, K, N ≥ 1 be large enough integers such that K = RN . Let Cout
be a random linear code over Fqn that is generated by a random K × N matrix
over Fqn . Let C1

in, . . . , CN
in be random linear codes over Fq, where Ci

in is gener-
ated by a random n × n matrix Gi and the random choices for Cout,G1, . . . ,GN

are all independent. Then the concatenated code C∗ = Cout ◦ (C1
in, . . . , CN

in ) is a(
1 − R − ε, 2O(1/ε)

)
led

-list decodable code with probability at least 1−q−Ω(nN) over
the choices of Cout,G1, . . . ,GN . Further, with high probability, C∗ has rate R.

Finally, we give some evidence that the list size of 2O(1/ε) in the result above is
unavoidable.

Theorem 4. Let γ > 0 and
√

γ < ρ < 1−2
√

γ be reals and q be a prime power.
Then for 0 < ε ≤ γ/4 the following result holds. With high probability a random
q-ary linear code of rate 1 − ρ − ε that is (ρ, L)led-list decodable needs to satisfy
L ≥ 2Ω(γ2/ε2).

Acknowledgments. We thank Venkat Guruswami and Parikshit Gopalan for
helpful discussions. Thanks again to Madhu Sudan for kindly allowing us to
include Lemma 1 in this paper.
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Abstract. Let (C1, C
′
1), (C2, C

′
2), . . . , (Cm, C′

m) be a sequence of ordered
pairs of 2CNF clauses chosen uniformly at random (with replacement)
from the set of all 4

(
n
2

)
clauses on n variables. Choosing exactly one clause

from each pair defines a probability distribution over 2CNF formulas. The
choice at each step must be made on-line, without backtracking, but may
depend on the clauses chosen previously. We show that there exists an on-
line choice algorithm in the above process which results whp in a satisfiable
2CNF formula as long as m/n ≤ (1000/999)1/4 . This contrasts with the
well-known fact that a random m-clause formula constructed without the
choice of two clauses at each step is unsatisfiable whp whenever m/n > 1.
Thus the choice algorithm is able to delay satisfiability of a random 2CNF
formula beyond the classical satisfiability threshold. Choice processes of
this kind in random structures are known as “Achlioptas processes.” This
paper joins a series of previous results studying Achlioptas processes in
different settings, such as delaying the appearance of a giant component
or a Hamilton cycle in a random graph. In addition to the on-line setting
above, we also consider an off-line version in which all m clause-pairs are
presented in advance, and the algorithm chooses one clause from each pair
with knowledge of all pairs. For the off-line setting, we show that the two-
choice satisfiability threshold for k-SAT for any fixed k coincides with the
standard satisfiability threshold for random 2k-SAT.

1 Introduction

The random graph process, introduced by Erdős and Rényi in the 1960’s, begins
with an empty graph on n vertices and adds a single new edge to the graph in
each round i = 1, . . . , m. Each new edge is chosen uniformly at random from
all unchosen edges. The resulting distribution over graphs is commonly denoted
Gn,m. One of the most fundamental random graph properties to be studied is
the emergence of a giant component: at what density m/n does a connected
component of size Ω(n) first appear? A classical result by Erdős and Rényi [9]
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asserts that for m/n = c, c > 1/2 a constant, a random graph with m edges will
have a unique giant component whp1.

Inspired by the celebrated “power of two choices” phenomenon for balls-and-
bins [2] (n balls are randomly thrown into n bins, each ball inspecting two random
bins and choosing the less heavily loaded of the two, resulting in a significant
decrease in the maximum bin load), Dimitris Achlioptas posed the following
question for the random graph process. Suppose that edges arrive in pairs, i.e.,
in round i the pair (ei, e

′
i) appears, and one of these edges is chosen for inclusion

in the graph. The decision is to be made on-line, possibly based on the history
of the process, but with no backtracking. Does there exist an algorithm A that
delays the appearance of the giant component? Frieze and Bohman answered
this question positively [3], describing an on-line algorithm A whose greedy rule
postpones the appearance of the giant component until m/n ≥ 0.53. Spencer
and Wormald [18] improved this result to m/n ≤ 0.83. An upper bound of
m/n = 0.964 for every on-line algorithm was proved in [4].

Quite a few subsequent papers have addressed various other facets of the
above model, including speeding up the appearance of the giant component,
delaying the appearance of certain fixed subgraphs, speeding up the appearance
of a Hamilton cycle, and so on (see, e.g., [4,10,6,16,17]).

Another class of random structures that has been widely studied is that of
random 2CNF formulas. To generate a random 2CNF formula with m clauses
over n variables, choose uniformly at random m clauses out of all 4

(
n
2

)
possible

ones. We call the resulting distribution Fn,m. Goerdt [13], and independently
Chvátal and Reed [8], showed that whenever m/n < 1 a random Fn,m formula is
whp satisfiable, while if m/n > 1 it is whp unsatisfiable. In this paper we consider
an Achlioptas process for random 2CNF formulas. Specifically, we answer the
question whether one can delay the sat/unsat threshold if at each step two
random clauses are available to choose from. As far as we are aware, this is the
first time that an Achlioptas process for random formulas has been studied.

Formally, we examine the following process: at each round i = 1, . . . , m, gen-
erate two random clauses independently and uniformly at random (with replace-
ment) out of all 4

(
n
2

)
possible clauses; then choose one of the two to be included

in the formula. The decision is to be made on-line, without backtracking, but
possibly dependent on the clauses seen so far. We note that, to avoid technical
complications, our distribution is slightly different from the Achlioptas process
for Fn,m because in our distribution some clauses may appear twice. However, a
simple calculation shows that the number of pairs of identical clauses among the
2m = Θ(n) clauses appearing in the process is o(n). Disregarding steps involving
such clauses we get exactly the Achlioptas process for Fn,m−o(n). But removing
o(n) clauses from the formula doesn’t change our result as our advantage over
the threshold will be of order Θ(n).

A random Fn,m formula can be viewed in an obvious way as a random G2n,m

graph on the set of 2n literals (i.e., variables and their negations), in which a

1 Throughout, we shall take the phrase whp (with high probability) to mean “with
probability tending to 1 as n → ∞.”
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clause (�∨ �′) is translated into an edge between � and �′. With this picture, one
might naively think that an application of the Bohman-Frieze greedy rule [3] for
delaying the giant component suffices to delay the sat/unsat threshold for 2SAT.
After all, until the emergence of the giant component the connected components
of Fn,m are simple (mostly trees, plus a few unicyclic components), and hence
one may think that the formula is likely to be satisfiable.

However, this intuition turns out to be false. A recent result of Kravitz [15]
implies that, if one only tampers with the degrees of literals in the random
formula (leaving the parities of the variables uniformly random), then once the
average degree exceeds 1 the formula will be unsatisfiable whp. The underlying
reason, of course, is that the satisfiability of a 2CNF formula is determined not
by the literal graph above, but by the implication graph. The vertices of the
implication graph are again the 2n literals; however, for every clause (� ∨ �′) in
the formula, two directed edges are added to the implication graph: �̄ → �′ and
�̄′ → �. As is well known [1], a 2CNF formula is satisfiable iff in its implication
graph there is no variable x such that x and x̄ belong to the same strongly
connected component. Thus the fact that the literal graph has a simple structure
does not exclude the possibility of contradictory cycles in the implication graph.
This tells us that any rule we use to determine which clause to choose at each
step must take into account the parities of the variables, and thus the Achlioptas
process for 2SAT will depart from the realm of pure random graph structure that
has been explored in previous such results.

Before stating our result, let us mention that alongside the on-line version, an
off-line version of the Achlioptas process has also been studied. In the off-line
version (formulated for random 2SAT), m random pairs of clauses are generated;
then an algorithm chooses one clause from each pair, given full information about
all the pairs. For the analogous off-line version of the random graph process,
Bohman and Kim [5] prove an exact threshold for avoiding the giant component,
whose value is roughly m = 0.97677n. As we shall see shortly (Theorem 1), we
are able to obtain the exact threshold for the off-line k-SAT process.

1.1 Our Contributions

Let us first state our threshold result for the off-line version. Observe that it is
not a priori clear that such a process will have a threshold, in the sense of [11].
However, we show that it does have a threshold, and that this threshold coincides
with that of random 2k-SAT. In what follows, we denote by dk the satisfiability
threshold for random k-SAT. (This threshold exists by virtue of [11]; note that
dk may depend on n as well as on k).

Theorem 1. Given m pairs (C1, C
′
1), (C2, C

′
2), . . . , (Cm, C′

m) of random k-SAT
clauses over n variables, if m/n < d2k there exists whp an off-line choice of one
clause per pair so that the resulting formula is satisfiable. If m/n > d2k whp
every such choice will result in an unsatisfiable formula.
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The proof uses a somewhat similar idea to that used in [4] in the context of
avoiding the giant component in the random graph process, and can be found
in Section 2.

We turn now to the on-line case, which is rather more challenging. Of course,
the off-line threshold provides an upper bound for the on-line setting, so we
immediately deduce from Theorem 1 that no on-line choice algorithm can de-
lay satisfiability beyond m/n = d2k. In particular, for 2SAT this upper bound
is d4, which is predicted experimentally to be about 9.25 [14]. A rigorous upper
bound on d4 is obtained by plugging k = 4 into the first moment bound 2k ln 2,
giving 11.09. Thus Theorem 1 proves that no on-line choice algorithm can delay
satisfiability for 2SAT beyond m/n = 11.09.

What about the more interesting question of a lower bound? Is it possible to
delay satisfiability beyond the threshold at all? We are able to answer this ques-
tion affirmatively for the case k = 2, and this is the main technical contribution
of our paper.

Before presenting our on-line algorithm we give a few definitions. We denote
the set of variables by x1, x2, . . . , xn. Throughout we use � to denote a literal
(i.e., � = xi or � = x̄i), and �̄ its negation.

Definition 1. A clause C = (� ∨ �′) is bad with respect to a set F of clauses if
either �̄ appears in F or �̄′ appears in F . A clause is good if it is not bad.

The procedure in Figure 1 specifies our on-line choice rule.

For each round i = 1, . . . , m do:

1. Pick two clauses C1, C2, with replacement, independently at random out
of all 4

(
n
2

)
possible clauses.

2. Set Fi = {D1, D2, . . . , Di−1}, where Dj is the clause chosen in round j.

3. If C1 is good with respect to Fi, choose it, otherwise choose C2.

Fig. 1. Generating a random 2CNF instance

Our main result is formally stated in the following theorem, which says that the
above choice rule succeeds in delaying the sat/unsat phase transition for random
2CNF formulas by a constant factor:

Theorem 2. Let F be a random 2CNF formula generated by the procedure in
Figure 1. If m/n ≤ (1000/999)1/4 then F is whp satisfiable.

Experimental results predict that the right critical value of m/n when using the
above algorithm is approximately 1.2. However, to keep the analysis clear we did
not try to optimize the constant. (We do not claim that simply optimizing over
the constants in our proof will yield the value 1.2.)



714 A. Sinclair and D. Vilenchik

One may also try other greedy rules, similar in flavor to the one we use, and
get different threshold values. The best experimental threshold we achieved with
a simple rule was approximately 1.5; this is discussed in more detail in Section 7.

Another way of extending the result is the following: suppose that in each
round one is allowed to choose from T clauses rather than just from two. Our
analysis easily implies that, using the same rule (but now choose CT only if
C1, . . . , CT−1 are all bad), the sat/unsat threshold scales as βT for some fixed
β > 1. We omit the details.

We also remark that the techniques we develop here to prove Theorem 2 may
be applicable in other settings. One such setting is delaying the threshold for
the pure-literal procedure in random 3SAT formulas. Broder et al [7] showed a
tight threshold of 1.63 for this model. We conjecture that using our techniques
it is possible to show that, given a choice of two clauses in each round, one can
delay the threshold for the pure literal procedure in 3SAT beyond this point.
More details are given in Section 7.

Finally, let us state a result concerning k-SAT for k = ω(log n).

Theorem 3. Given a choice of two clauses in the Achlioptas process for ran-
dom k-SAT with k = ω(log n), there exists an on-line algorithm that delays the
satisfiability threshold by a factor of 0.99/ ln 2.

Note that the sat/unsat threshold for k-SAT is (for any k) at most m/n = 2k ln 2
(this follows from a simple first moment calculation). Actually, for k = ω(log n)
this upper bound is tight [12]. The proof of Theorem 3 is self-contained and
short, and uses a different (even simpler) choice rule from that in Figure 1.

The remainder of the paper is organized as follows. In the next section, we
give the short proof of the off-line threshold, Theorem 1. Then we turn to the
proof of our main result, Theorem 2: in Section 3 we give an outline of the proof,
then in Section 4 we establish some useful properties of the distribution induced
by the algorithm, and finally we use these properties to prove Theorem 2 in
Section 5. Section 6 gives the short proof of Theorem 3. We conclude with a
brief discussion in Section 7.

2 The Off-Line Setting: Proof of Theorem 1

Consider m pairs of random k-SAT clauses (C1, C
′
1), (C2, C

′
2), . . . , (Cm, C′

m), and
from each pair generate a 2k-SAT clause by setting Di = Ci ∨C′

i. Set F ∗ = D1∧
D2 ∧ · · · ∧Dm. Observe that the 2k-SAT formula F ∗ may contain some “illegal”
clauses in which some variable repeats. As we shall see, this is a technicality that
is readily overcome. Hence, in what follows we allow such clauses.

The following is a general lemma that does not assume any randomness in
the choice of clauses.

Lemma 1. F ∗ is satisfiable iff there exists a choice of a satisfiable formula in
(C1, C

′
1), (C2, C

′
2), . . . , (Cm, C′

m).
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Proof. If there exists a choice of satisfiable formula, concatenating the unchosen
clause in every pair obviously lifts this to a satisfiable 2k-SAT formula. So F ∗ is
satisfiable. Conversely, if F ∗ is satisfiable, let ϕ be a satisfying assignment and
consider the following choice rule: evaluate Di = Ci ∨ C′

i under ϕ, and choose
the clause (Ci or C′

i) that contains at least one true literal under ϕ (breaking
ties arbitrarily). Since ϕ satisfies F ∗, every Di contains such a choice. Clearly,
ϕ satisfies the k-SAT formula that we chose. ��

As mentioned above, the distribution of F ∗ does not coincide exactly with that
of F2k,n,m, random 2k-SAT. The reason is that, for some i, Ci and C′

i may share
a variable, so Di will be an illegal 2k-SAT clause. However, the following lemma
asserts that the satisfiability threshold for the two distributions is the same (both
these distributions have a threshold by [11]).

Lemma 2. Let F ∗ be distributed as above. Let d∗2k be the satisfiability threshold
for that distribution, and let d2k be the threshold for Fn,m,2k. Then d∗2k = d2k

for any fixed k.

Proof. First let us estimate the probability of a shared variable in a pair (Ci, C
′
i).

This probability is easily seen to be O(k2/n). Let T be a random variable that
counts the number of such pairs. Since the regime that is relevant for us is
m = O(22kn), we have E[T ] = O(k222k) = O(1) (as k is fixed). Note that T
is binomially distributed, and so with constant probability T = 0. Hence if for
example we assume that d∗2k < d2k, then for d∗2k < m/n < d2k we get that with
some constant probability, the resulting random formula F ∗ is a random Fn,m,2k

formula, and hence satisfiable whp. Thus in turn, with constant probability F ∗ is
satisfiable above the threshold d∗2k, which contradicts the definition of a thresh-
old. The same argument shows that d∗2k > d2k cannot occur. ��

Theorem 1 follows immediately from the above two lemmas.

3 The On-Line Setting: Proof Outline

As we have already mentioned, the satisfiability of a 2CNF formula F is de-
termined by certain structures in its implication graph G(F ): namely, directed
paths from x to x̄ and from x̄ to x. The formula is unsatisfiable iff for some x
paths of both these types exist.

We may view a simple directed path p from x to x̄ in G(F ) as a sequence of
clauses C1, C2, . . . , Ct, where C1 = (x̄ ∨ �1), Ci = (�̄i−1 ∨ �i) for 2 ≤ i ≤ t − 1,
and Ct = (�̄t−1 ∨ x̄). Observe that every variable in p appears twice, and except
for the variable x, each variable appears both positively and negatively.

Our proof is a first moment calculation, estimating the number of pairs of
simple paths (x � x̄, x̄ � x) in the implication graph. We will show that this
number is o(1) for our choice of m/n, thus proving Theorem 2.

The main challenge is to estimate Pr[C1, C2, . . . , Ct], the probability of occur-
rence of a sequence of clauses as above. Note that in the standard random 2SAT
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model Fn,m this is straightforward: Pr[C1, C2, . . . , Ct] ∼
(
m/4

(
n
2

))t. However,
under the new distribution we will need to do much better in order to achieve
a first moment of o(1) for values of m with m/n > 1. In fact, the key point is
that our choice rule for clauses “punishes” paths in the implication graph, thus
enabling us to delay the sat/unsat threshold.

The key observation in the analysis is the following: given that a clause (�′∨�)
has been included already, then if (�̄ ∨ �′′) is to be included later, it will have to
be as the second clause (C2 in the procedure in Figure 1): it cannot be included
as the first clause because it is “bad” by our definition. This in turn means that
the first clause, C1, must itself be bad in order to allow us to choose C2. This
fact reduces the probability of some clauses in the path (at least half of them,
as we shall see), which allows us to achieve satisfiability even when m/n > 1.

One challenge in the analysis is the fact that the choice of a new clause depends
on the history of clauses chosen so far. Thus instead of dealing with a standard
“product” space2 like Fn,m, we have to analyze a more complicated conditioned
probability space.

4 Properties of the Distribution

In this section we establish some properties of the distribution over formulas
induced by our choice rule. We will use these in our proof of Theorem 2 in the
next section.

Definition 2. Two clauses C and C′ threaten each other if there exists a vari-
able x that appears positively in one and negatively in the other.

Proposition 1. Consider a simple path of length t in the implication graph
G(F ). In every ordering π of the clauses on the path, at least (t/2) − 1 clauses
are threatened by clauses that appear before them in π.

Proof. Fix an arbitrary ordering π of the clauses; let T be the set of clauses
that are threatened by some clause before them in π, and N the other clauses of
the path. Every clause, except possibly for the first and last clauses of the path,
threatens exactly two other clauses, and every clause in the path is threatened
by at most two clauses. Also, no clause in N can threaten another clause in N ,
since if so the one appearing first in π would threaten the second clause and the
latter would be in T (“threatening” is a symmetric relation). To conclude, the
clauses in N threaten at least 2(|N | − 2) clauses in T (we assume the worst case
for us: both the first and last clauses are in N), each of which was counted at
most twice. All in all, |T | ≥ 2(|N | − 2)/2 = |N | − 2. Further, |T | + |N | = t, and
therefore |T | ≥ (t/2) − 1 as desired. ��

Consider now a possible (simple) path in G(F ), corresponding to the clauses
C1, . . . , Ct. Our next task is to derive an upper bound on the probability that
2 Technically Fn,m is not a product space, but standard methods allow it to be viewed

as one.



Delaying Satisfiability for Random 2SAT 717

this set of clauses is chosen by the algorithm. This probability depends on the
order in which the clauses are chosen, which motivates the following definition.
Here π is an arbitrary permutation of the clause labels 1, . . . , t.

Definition 3. The clauses C1, . . . , Ct are chosen according to π if the algo-
rithm described in Figure 1 chooses these clauses in the order specified by the
permutation π. The clauses are chosen according to π in rounds k1, . . . , kt if
in addition the algorithm chooses clause Ci in round ki. (Note that the ki must
respect π in the sense that ki < kj iff π(i) < π(j).)

Let us fix a simple path in G(F ) and a corresponding set of clauses C1, . . . , Ct, as
well as an associated permutation π and a set of rounds k1, . . . , kt respecting π.
Let A(k)

i denote the event that clause Ci is chosen in round k, and A(<k)
i the

event that clause Ci is chosen in some round k′ < k. Then we have

Pr[C1, C2, . . . , Ct are chosen according to π in rounds k1, . . . , kt] (1)

=
t∏

i=1

Pr
[
A(ki)

i

∣∣∣ ⋂
j:π(j)<π(i)

A(<ki)
j

]
.

To analyze the conditional probabilities appearing in (1), we partition the clauses
into three categories as follows:

1. the first and last clauses of the path (as they appear in the implication graph,
not in π);

2. the inner clauses which are threatened by a clause that precedes them in π;
3. the inner clauses which are not threatened by a clause that precedes them

in π.

We proceed to bound the conditional probability for a clause in each category.

Proposition 2. For any fixed round k ≤ m,

Pr
[
A(k)

i

∣∣∣ ⋂
j:π(j)<π(i)

A(<k)
j

]
≤ 2

4
(
n
2

) .
The proof is immediate: since we are conditioning only on the past, each candi-
date clause in round k is uniformly distributed over the set of all 4

(
n
2

)
clauses,

and therefore 2/4
(
n
2

)
is an upper bound on Ci even being a candidate in round k.

In what follows, we use |π| to denote the number of clauses ordered by π.
(Thus |π| = t for a sequence of clauses C1, . . . , Ct.)

Proposition 3. For a fixed round k ≤ m, |π| = o(n), and α∗ = 969/970,

Pr
[
A(k)

i

∣∣∣ ⋂
j:π(j)<π(i)

A(<k)
j ∩ (Ci is threatened by some preceding clause in π)

]
≤ α∗

4
(
n
2

) .
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Proof. In order for Ci to be chosen in round k, given that all clauses that precede
it in π have been previously chosen and at least one of these threatens Ci, two
events need to occur: (a) the first clause in round k is bad; and (b) Ci appears
as the second clause in round k. Since the conditioning is only on the past, these
two events are independent. The probability of the second event is trivially
1/4

(
n
2

)
. As for the first event, with probability 1 − o(1) the two literals of the

first candidate clause will not occur in the set of clauses we condition upon
(because, by assumption, they span only o(n) variables). So we may assume this
is the case. We now derive a lower bound on the probability of the first clause
being good. Suppose w.l.o.g. that this clause is C = (x ∨ y). Let us calculate
the probability that either x or y appears more than four times up to round k.
The expected number of appearances of each such variable up to round k is at
most 2k/n ≤ 2m/n. (Here we are using the fact that the distribution induced by
our choice rule is symmetric for all variables that do not appear in the clauses
conditioned upon.) It is also easy to see that variable appearances are negatively
correlated (conditioning on x already appearing in a chosen clause, if x is to
appear again then it will be with at most the probability of the first appearance,
as now one or both of its parities are “punished”).

Using the Chernoff bound (which we can do due to negative correlation),
the probability that a variable appears four times is smaller than 0.467, and
therefore with probability at least 1 − 2 × 0.467, both x and y appear at most
three times. Let us assume this is the case. The worst case for us is that both
actually appear three times. Next observe that the configurations x, x, x and
x̄, x̄, x̄ are at least as likely as any other (again, by our choice rule). Therefore,
with probability at least 2/23 = 1/4, the appearances of x are either all negative
or all positive (that is, x appears in pure form). With probability at least 1/16
this is true for both x and y (conditioning on x’s configuration will not make
y’s non-pure configurations more likely than its pure ones). To conclude, with
probability at least (1 − 2 × 0.467)/16 both x and y appear in pure form. In
that case, with probability 1/4 the clause C is good (x and y appear in C
with the correct parities). Overall, then, C is good with probability at least
(1 − 2 · 0.467)/(16 · 4) > 1/970. To conclude, for sufficiently large n,

Pr
[
A(k)

i

∣∣∣ ⋂
j:π(j)<π(i)

A(<k)
j ∩ (Ci is threatened by some preceding clause in π)

]
≤ 969

970
· 1
4
(
n
2

) . ��

Proposition 4. For a fixed round k ≤ m and |π| ≤ r,

Pr
[
A(k)

i

∣∣∣ ⋂
j:π(j)<π(i)

A(<k)
j ∩ (Ci is an inner clause not threatened

by any preceding clause in π)
]
≤ 1 + O(r/n)

4
(
n
2

) .

Proof. Since Ci is not threatened by any clause we condition upon, it can be
chosen as either the first or the second clause in its pair. Let N be the event “Ci
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is not threatened by any preceding clause in π”; then (suppressing throughout
the proof the conditioning on

⋂
j:π(j)<π(i) A

(<k)
j ), we have

Pr[A(k)
i | N ] = Pr[Ci is chosen as first clause | N ]

+ Pr[Ci is chosen as second clause | N ].

Say w.l.o.g. Ci = (�1 ∨ �2). For Ci to be chosen as the first clause in round k,
it must be the case that �̄1 and �̄2 have not appeared in a chosen clause before
round k (otherwise Ci is bad). Therefore,

Pr[Ci chosen as first clause | N ] =
Pr[�̄1, �̄2 don’t appear before round k | N ]

4
(
n
2

) .

(2)
The denominator, 4

(
n
2

)
, accounts for the probability of the clause (�1 ∨ �2) actu-

ally appearing. Observe that in this case �1 and �2 do not appear in any of the
clauses we condition upon (otherwise Ci is threatened by a clause in that set as
Ci is an inner clause).

For Ci to be chosen as the second clause in round k, it must be the case that the
first clause is bad and Ci appears as the second clause. Again, these two events
are independent (as the conditioning is only on the past, and at each round
the two candidate clauses are chosen independently). With probability O(r/n),
some variable of the first clause appears in the set of clauses conditioned upon.
(This is because there are r such clauses by assumption, involving at most 2r
variables.) Assume this is not the case, and let �, �′ be the two literals in the first
candidate clause. Then the probability that the clause is bad is

Pr[�̄ or �̄′ appears before round k | N ]
= 1 − Pr[�̄,�̄′ don’t appear before round k | N ].

Observe that

p∗ ≡ Pr[�̄, �̄′ don’t appear before round k | N ]

is exactly the numerator in Equation (2): in both cases we ask for the probability
that two literals (whose variables do not appear among the clauses conditioned
upon) have not appeared before round k. By symmetry, the identity of the literals
doesn’t matter, and therefore the two expressions are equal. To conclude,

Pr[A(k)
i | N ] ≤ p∗

4
(
n
2

) +
O(r/n) + 1 − p∗

4
(
n
2

) =
1 + O(r/n)

4
(
n
2

) . ��

5 Proof of Theorem 2
Recall that, to prove Theorem 2, it suffices to exclude the existence of a directed
path from x to x̄ and from x̄ to x (for any x) in the implication graph G(F )
of the formula F constructed by our algorithm. We follow the same approach
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as that in [8] for proving the threshold for random 2SAT; the main challenge
in our case is to use the “power of two choices” to get a tighter bound on the
appearance of a fixed path, using the bounds we derived in the previous section.

We branch into two cases, depending on the length of the path. We will start
with the case where one of the paths x � x̄ or x̄ � x is of length, say, at least
log2 n. Take a (simple) prefix of length t = log2 n of some such path, consisting
of clauses C1, C2, . . . , Ct. Let us bound the probability of such a prefix occurring:

Pr[prefix of length t] (3)

≤
(

n

t + 1

)
· 2t+1 · (t + 1)! ·

∑
π

Pr[C1, C2, . . . , Ct are chosen according to π].

The first factor is the number of ways to choose the t + 1 variables, the second
counts their parities, and the last factor accounts for the probability the clauses
are actually chosen, summing over all possible orderings in which they are chosen.

We may bound this final summation over π by
(
m
t

)
(for the number of ways

of choosing the rounds) times an upper bound on

Pr[C1, C2, . . . , Ct are chosen according to π in rounds k1, . . . , kt]

over all choices of k1, . . . , kt. This we obtain via Equation (1), using the bounds
on the conditional probabilities derived in Propositions 2, 3 and 4. Note first that,
by Proposition 1, at least (t/2) − 1 clauses are threatened in every ordering π.
To bound the conditional probabilities for these clauses we use Proposition 3.
Otherwise, except for the first and last clauses of the prefix, every clause is an
inner clause whose probability we bound using Proposition 4. For the first and
last clauses we use Proposition 2. Putting all this together yields∑

π

Pr[C1, C2, . . . ,Ct are chosen according to π]

≤ t!
(

m

t

)(
α∗

4
(
n
2

))(t/2)−1

·
(

1 + O(t/n)
4
(
n
2

) )(t/2)−1

·
(

2
4
(
n
2

))2

.

Plugging this into Equation (3) and simplifying yields

Pr[prefix of length t]

≤ mtnt+1 · 2t ·
(

1
4
(
n
2

))t

· (α∗)(t/2)−1 · O(1) ≤ O(n) ·
(m

n

)t

· (α∗)t/2−1.

By our choice of m/n ≤ (1000/999)1/4, and the fact that α∗ = 969/970, for
sufficiently large t this last expression is at most O(n)βt for some fixed β < 1.
Since t ≥ log2 n, Pr[prefix of length t] = n−Ω(log n). Finally, there are at most
n ways to choose t (the length of the simple path), so the probability that any
path of length greater than log2 n exists in the implication graph is o(1).
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Let us now move to the case of short paths. We shall bound the probability
that, for any variable x, there exists a short path from x to x̄ and from x̄ to x
(recall that we only consider simple paths). Denote the paths from x to x̄ and
from x̄ to x by p1 and p2 respectively, and let their respective lengths be t1
and t2. Suppose w.l.o.g. that t1 ≥ t2. The path p2 may contain clauses from p1:
say, s segments of total length r from p1. The number of variables in p1 is t1, and
p2 further introduces t2 − 1 − r − s new variables. (We do the variable counting
in p2 as follows: for every clause in p2, we count the variable that appears first
along the path. However, some variables were counted already in p1 and need
to be subtracted. We subtract one for the first clause of p2 (x was already
counted), then we subtract one for every shared clause, and one for every clause
after a segment ends since that variable was counted in p1.) As for choosing
the segments, there are at most t2s

1 ways to choose the shared segments in p1
(starting and ending points) and at most ts2 ways to choose their starting points
in p2. Once the segments and starting points are fixed, there are (t2 − 1− r− s)!
ways to arrange the new variables in p2, and this completely determines p2.

Call such a path a (t1, t2, s, r)-path. We now bound the probability of any such
path occurring, for all possible choices of x. In light of the above observations,
we have

Pr[ (t1, t2, s, r)-path ] ≤(
n

t1

)
· 2t1 · t1! ·

(
n

t2 − 1 − r − s

)
· t2s

1 · ts2 · (t2 − 1 − r − s)! · 2t2−r−s

×
∑

π

Pr[C1, C2, . . . , Ct1+t2−r are chosen according to π].

We may bound the summation over π in analogous fashion to the case of long
paths above, with a factor

(
m

t1+t2−r

)
to choose the rounds in which the clauses

along the paths are chosen. By Proposition 1, at least (t1/2) − 1 clauses in any
ordering of p1 are threatened by a clause that precedes them, and this of course
remains true if we order a superset of those clauses. We can bound the conditional
probabilities for these clauses using Proposition 3. For the four clauses containing
x and x̄ we use Proposition 2. For the rest of the clauses we use Proposition 4
(some of these may be threatened as well, but we only want an upper bound).
The calculation now proceeds similarly to the single (long) path case, giving

Pr[ (t1, t2, s, r)-path ] ≤ O(1) ·
(m

n

)t1+t2−r

· (α∗)(t1/2)−1 ·
(

t21t2
n

)s

· 1
n

.

Observe that t21t2 ≤ log6 n, so
(

t21t2
n

)s

= O(1). Summing over the at most log4 n

ways to choose s and r gives

O

(
log4 n

n

)
·
(m

n

)t1+t2
· (α∗)(t1/2)−1.

Summing again over t1, t2 such that t2 ≤ t1 ≤ log2 n, we can bound the probability
of a cycle consisting of short paths through any variable and its negation by
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O

(
log6 n

n

)
·

∑
t1≤log2 n

(m

n

)2t1
· (α∗)(t1/2)−1.

Now since
(

m
n

)4
α∗ ≤

( 1000
999

) ( 969
970

)
< 1, this final summation is a decreasing

geometric series and hence bounded by a constant. Hence the probability of any
such cycle is O

(
log6 n

n

)
= o(1). This completes the proof of the theorem. ��

6 Proof of Theorem 3

We employ the following greedy rule: Fix some assignment ψ to the variables,
say the all-TRUE assignment. In each round k, if just one of the two clauses
is satisfied by ψ, choose that clause; otherwise (if neither or both are satisfied)
choose one of the clauses arbitrarily.

Let us estimate the probability that in round k both clauses are not satisfied
by ψ. W.l.o.g., consider the first clause. Regardless of which variables appear in
it, only one of the 2k possible parities of the variables results in a clause that
is not satisfied by ψ. Thus the probability of an unsatisfied clause is 2−k. The
probability of both clauses being unsatisfied by ψ is thus 2−2k.

Now suppose m = 0.99n · 2k. The expected number of unsatisfied clauses is

2−2k · 0.99n · 2k = 0.99n · 2−k.

When k = ω(log n) this quantity is o(1), and the result follows from Markov’s
inequality together with the fact that the k-SAT threshold is at most m/n =
2k ln 2. ��

7 Discussion
In this paper we considered the Achlioptas process for random 2CNF instances,
and provided a simple greedy algorithm that provably delays the sat/unsat
threshold for random 2SAT in this model.

As we mentioned in the introduction, there are several natural variations of the
greedy rule we used to prove this result. For example, one can define a clause to
be bad only if both literals appear already in negated form. Intuitively, this rule
“punishes” the path structure in the implication graph even more severely than
our rule does, and indeed experiments predict the threshold to be m/n ≈ 1.5
using this rule. However, this rule is a little harder to analyze than ours, and we
expect it to yield similar numerical bounds using our methods. We conjecture
that the techniques we developed to prove Theorem 2 can be used in other
settings as well. As an example, consider the pure literal heuristic for 3CNF
instances. It is known that for random 3SAT, whenever m/n ≤ 1.63 the pure
literal procedure ends whp with all clauses satisfied [7], and this value is tight.
The main idea of the proof is that if the peeling process of layers of pure literals
gets stuck before the formula is satisfied, then every variable in the remaining
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formula appears both positively and negatively. This combinatorial structure is
similar to the paths that we are “punishing” in the 2SAT case. Therefore one
might expect our on-line algorithm (applied to 3CNF formulas) to move the
threshold above 1.63, given a choice of two clauses at each step.

Acknowledgments. We thank Benny Sudakov for introducing us to the Achliop-
tas process, Alan Frieze for a pointer to reference [15], and Uri Feige for useful
discussions.
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Improved Rounding for Parallel Repeated
Unique Games

David Steurer�

Princeton University, Princeton NJ 08544, USA

Abstract. We show a tight relation between the behavior of unique
games under parallel repetition and their semidefinite value. Let G be a
unique game with alphabet size k. Suppose the semidefinite value of G,
denoted sdp(G), is at least 1− ε. Then, we show that the optimal value
opt(G�) of the �-fold repetition of G is at least 1 − O(

√
�ε log k). This

bound confirms a conjecture of Barak et al. (2008), who showed a lower
bound that was worse by

√
�ε log(1/ε). A consequence of our bound is

the following tight relation between the semidefinite value of G and the
amortized value opt(G) := sup�∈IN opt(G�)1/�,

sdp(G)O(logk) ≤ opt(G) ≤ sdp(G) .

The proof closely follows the approach of Barak et al. (2008). Our techni-
cal contribution is a natural orthogonalization procedure for nonnegative
functions. The procedure has the property that it preserves distances up
to an absolute constant factor. In particular, our orthogonalization avoids
the additive increase in distances caused by the truncation step of Barak
et al. (2008).

1 Introduction

A unique game G with vertex set V and alphabet Σ consists of a list of con-
straints encoded by triples (u, v, π), where u, v ∈ V are vertices and π ∈ SΣ
is a permutation of Σ. An assignment x ∈ ΣV satisfies a constraint (u, v, π) if
xv = π(xu). The (optimal) value of G, denote opt(G), is defined as the maxi-
mum fraction of constraints of G that can be satisfied simultaneously, that is,
opt(G) := maxx∈ΣV P(u,v,π)∼G {xv = π(xu)} . (Here, (u, v, π) ∼ G means that
(u, v, π) is a random constraint of G.)

Khot’s Unique Games Conjecture [9] asserts that it is NP-hard to approximate
the value of a unique game in a certain regime. (According to this conjecture, for
every constant ε > 0, there exists k ∈ IN such that given a unique game G with
alphabet size at most k, it is NP-hard to distinguish the cases opt(G) ≥ 1 − ε
and opt(G) ≤ ε.)

A sequence of recent works showed that this conjecture implies (often op-
timal) hardness results for many basic combinatorial optimization problems
[9,11,10,14,12,4,1,15,13,7]. Most strikingly, Raghavendra [15] showed that the
� Supported by NSF Grants CCF-0832797, 0830673, and 0528414.
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Unique Games Conjecture, if true, implies that for every constraint satisfaction
problem, it is NP-hard to achieve a strictly better approximation guarantee than
the one obtained by a simple generic semidefinite programming relaxation.

Due to its potential consequences, the Unique Games Conjecture is one of
the central open questions about approximation algorithms and hardness of
approximation.

In contrast to the numerous implications of a positive resolution, only few con-
sequence of a refutation of the conjecture are known (some consequence for the
approximability of graph expansion in a certain regime were recently shown [16]).
The most compelling question in this context is whether an algorithm refuting
the Unique Games Conjecture would lead to better approximation algorithms
for Max Cut. (Or equivalently: Would the optimality of current algorithms for
Max Cut, imply the Unique Games Conjecture?)

A natural candidate for such a reduction from Max Cut to Unique Games
(the problem of computing the value of a unique game) is parallel repetition.
(For simplicity, we can identify Max Cut with the problem of computing the
value of a unique game with alphabet size 2.) In general, �-fold parallel repe-
tition takes a unique game G with vertex V and alphabet Σ and outputs a
unique game, denoted G�, with vertex set V � and alphabet Σ�. For every �-
tuple (u1, v1, π1), . . . , (u�, v�, π�) of constraints in G, the game G� contains a
constraint (u, v, π), where u = (u1, . . . , u�), v = (v1, . . . , v�), and π is the per-
mutation of Σ� obtained by applying πi to the ith coordinate. By construction,
opt(G�) ≥ opt(G)�. However, this lower bound is not always tight. Raz [18]
showed the first strong upper bound on the value of parallel-repeated games:
If opt(G) = 1 − ε, then opt(G�) ≤ (1 − εc)Ω(�/s) for some constant c and
s = O(log k). Subsequently, Holenstein [8] simplified this proof and showed an
improved parallel repetition bound with c = 3. Rao [17] further improved this
result and showed a parallel repetition bound with c = 2 and s = O(1). We
remark that these bounds also hold for projection games, where π need not be a
permutation but can be an arbitrary function. (In fact, the bounds of Raz and
Holenstein hold in an even more general setting.)

Feige et al. [5] noted that a parallel repetition bound with c < 2 would imply
a reduction from Max Cut to Unique Games that achieves the goal above
(an algorithm refuting the Unique Games Conjecture would lead to a better
approximation algorithm for Max Cut). Raz [19] ruled out this possibility and
showed that for a simple family of unique games (odd-cycle games) Rao’s parallel
repetition bound is optimal.

A related, more general question is whether parallel repeated games could be
hard instances for Unique Games. Concretely, we could consider the following
strengthening of the Unique Games Conjecture: For every constant ε > 0, there
exists � ∈ IN such that given a unique game G with alphabet size 2 it is NP-hard
to distinguish the cases opt(G�) ≥ 1 − ε and opt(G�) ≤ ε. We remark that the
analogous conjecture for projection games is known to be true (a consequence
of the PCP Theorem and Raz’s parallel repetition bound). Extending the tech-
niques of Raz’s analysis of odd-cycle games, Barak et al. [2] showed that this
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variant of the Unique Games Conjecture is false (unless P = NP). The authors
give a polynomial time algorithm that given a unique game G with alphabet
size 2 and opt(G�) ≥ 1− ε, computes an assignment for G� of value 1− O(

√
ε).

(In particular, for every small enough ε > 0, this algorithm can distinguish be-
tween opt(G�) ≥ 1− ε and opt(G�) ≤ ε.)

The algorithm of Barak et al. is based on a semidefinite programming relax-
ation for opt(G). They show that the behavior of opt(G�) is closely characterized
by the optimal value of this semidefinite relaxation, denoted sdp(G). For the case
that G has alphabet size 2, the bound of Barak et al. is tight up to constant
factors. For the case of larger alphabets, the authors show bounds that are tight
up to logarithmic factors. In this work, we improve the analysis of Barak et al.
and show a relation between sdp(G) and the behavior of opt(G�), which is tight
up to constant factors even for larger alphabets.

1.1 Results

Let G be a unique game with alphabet size k. We are interested in the behavior
of the value of G under parallel repetition. Barak et al. [2] show that if the
semidefinite value of G is at least 1− ε, then the optimal value of G� is at least
1−O(

√
s�ε), where s = log k+log(1/ε). It was conjectured that the log(1/ε) term

in this bound is not necessary. (The log k term is known to be necessary.) We
confirm this conjecture and show the following lower bound on opt(G�) in terms
of sdp(G).

Theorem 1. For every unique game G with alphabet size k and sdp(G) ≥ 1−ε,

opt(G�) ≥ 1−O(
√
�ε log k) .

As a consequence of this theorem and results of Feige and Lovász [6] and Charikar,
Makarychev, and Makarychev [3], we obtain the following tight relation between
the amortized value opt(G) := sup�∈IN opt(G�)1/� and the semidefinite value of
G. (See Section A.1 for a proof of this theorem.)

Theorem 2. For every unique game G with alphabet size k,

sdp(G)O(log k) ≤ opt(G) ≤ sdp(G) .

(We remark that for every k ∈ IN, there exist unique games G that achieve
the above lower bound on opt(G). See [2] for details.) The approach of [2] for
proving lower bounds on the value of repeated games G� involves an interme-
diate relaxation, denoted here sdp+(G), which is “sandwiched” between opt(G)
and sdp(G). (This approach is also implicit in Raz’s counterexample to strong
parallel repetition [19].) Using Holenstein’s correlated sampling technique [8], it
is straightforward to derive lower bounds on opt(G�) in terms of sdp+(G) (see
Section 2.2 for the definition of sdp+(G) and [2] for more discussion about the
correlated sampling technique).
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The key result in [2] is a lower bound on sdp+(G) in terms of the semidefinite
value of G. We prove the following improved bound (which is optimal up to the
constants hidden in the O(·)-notation).

Theorem 3. For every unique G with alphabet size k and sdp(G) ≥ 1− ε,
sdp+(G) ≥ 1−O(ε log k) .

Assuming this theorem and some properties of the intermediate relaxation
sdp+(G) (which are presented in Section 2.2), we can prove Theorem 1.

Proof (Theorem 1). Let G be a unique game with alphabet size k and sdp(G) ≥
1 − ε. Theorem 3 shows that sdp+(G) ≥ 1 − O(ε log k). The intermediate re-
laxation satisfies sdp+(G�) ≥ sdp+(G)� (Lemma 9). Hence, sdp+(G�) ≥ 1 −
O(�ε log k). On the other hand, Theorem 8 implies that opt(G�) ≥ 1−O(√η) if
sdp+(G�) ≥ 1− η. Thus, we can conclude that opt(G�) ≥ 1−O(

√
�ε log k).

In the next section (Section 1.2), we give a sketch of the proof of Theorem 3 and
compare it to the proof of the previous bounds by [2]. We present a detailed
proof of Theorem 3 in Section 3.

We record another consequence of Theorem 3, which shows that the semidef-
inite value of parallel repeated unique games is a good approximation of the
optimal value (assuming that the alphabet size of the underlying unique game
is not too large). (We omit the proof.)

Theorem 4. Let H = G� be a parallel repetition of a unique game G with
alphabet size k. Suppose sdp(H) ≥ 1− ε. Then, opt(H) ≥ 1−O(

√
ε log k).

We remark that [3] show the same bound with k being replaced by the alphabet
size of H . In our setting, H has alphabet size k�. (The bound of [3] is for general
unique games H and does not assume that H is obtained by parallel repetition.)
For � = 1, the two bounds agree. For more repetitions, our bound is strictly
stronger. In this sense, parallel repeated unique games are easier to approximate
than general unique games.

1.2 Proof Overview and Techniques

Our proof of Theorem 3 closely follows the approach of [2]. It is illustrative to
start with an outline of this approach. (This discussion assumes that the reader is
somewhat familiar with unique games and the relaxation sdp(G). See Section 2.1
and Section 2.2 for formal definitions.) Let G be a unique game with vertex set
V = [n] and alphabet Σ = [k]. The unique game G is represented as a list of
triples (u, v, π), where u, v ∈ V and π is a permutation of Σ. The triple (u, v, π)
encodes the constraint that the labels of u and v satisfy the relation π. In other
words, an assignment L ∈ ΣV satisfies the constraint (u, v, π) if Lv = π(Lu).

In the relaxation sdp(G), we consider vector-valued assignments instead of
the usual assignments. More precisely, we assign orthogonal vectors u1, . . . ,uk
to every vertex u ∈ V . The vectors are normalized such that

∑
i‖ui‖2 = 1 for
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every u ∈ V . Such a vector-valued assignment satisfies a constraint (u, v, π) if ui
is close to vπ(i) for most labels i ∈ Σ. Formally, the violation of the constraint
(u, v, π) is measured by

∑
i‖ui − vπ(i)‖2.

To prove Theorem 3, we need to transform an optimal solution for sdp(G) to
a good solution for sdp+(G). As the notation suggests, the relaxation sdp+(G)
is quite similar to sdp(G). Instead of assigning arbitrary orthogonal vectors to a
vertex u ∈ V , we ask for orthogonal vectors with only nonnegative coordinates.
Note that nonnegative vectors are orthogonal only if they are supported on
disjoint sets of coordinates. It is notationally more convenient to talk about
nonnegative functions instead of vectors with only nonnegative coordinates.

To summarize, the relaxation sdp+(G) asks us to assign nonnegative functions
fu,1, . . . , fu,k with disjoint supports to every vertex u ∈ V . As before, the func-
tions are normalized such that

∑
i‖fu,i‖2 = 1 for every u ∈ V , and the violation

of a constraint (u, v, π) is measured by
∑
i‖fu,i − fv,π(i)‖2.

Let {ui}u∈V,i∈Σ ⊆ IRd be an optimal solution for sdp(G). To avoid some
technical details, let us assume that all vectors have the same length so that
‖ui‖2 = 1/k for every u ∈ V and i ∈ Σ. To construct a solution for sdp+(G),
Barak et al. consider the distributions N(ūi, σ2I) on IRd. (Here, N(ūi, σ2I)
denotes the standard d-dimensional Gaussian distribution centered at the unit
vector in direction ui, with standard deviation σ in each coordinate.) A tentative
solution for sdp+(G) is constructed by letting fu,i be the square root of the
density function of N(ui, σ2I) (suitably normalized). It turns out that the new
violations

∑
i‖fu,i−fv,π(i)‖2 exceed the original violations

∑
i‖ui−vπ(i)‖2 by at

most a factor O(σ−2). However, the supports of the functions fu,1, . . . , fu,k are
far from disjoint (in fact, all of them have the same support, namely IRd). Hence,
the idea is to massage the functions such that their supports become disjoint.
The approach taken by Barak et al. is to restrict fu,i to the Voronoi cell of the
vector ui (the set of points of IRd that are closer to ui than to any other vector
uj). Since the vectors u1, . . . ,uk are pairwise orthogonal, only a small portion
of the L2-mass of fu,i is outside of the Voronoi cell of ui. Concretely, if f ′u,i is the
restriction of fu,i to the Voronoi cell of ui, the truncated L2-mass is bounded by
∑
i‖fu,i− f ′u,i‖2 ≤ ke−Ω(1/σ2). By choosing σ appropriately, we can balance the

additional violation due to this truncation and the initial multiplicative increase
of the violations. The reason why this approach falls short of proving Theorem 3
is that the truncation causes an additive increase in the violations, whereas
for Theorem 3 we can only afford a multiplicative increase of the violation. (We
remark that this additive increase is not an artifact of the analysis but a property
of the construction.)

Our contribution is a construction that avoids this additive increase of the
violations. We refer to this construction as smooth orthogonalization for nonneg-
ative functions. We construct the functions f ′u,i in the following way: As before,
f ′u,i is identically 0 outside of the Voronoi cell of ui. Inside the Voronoi cell
of ui, we define f ′u,i(x) = fu,i(x) − fu,j(x), where j is the label of the vector
uj that is second-smallest distance to x. (In other words, we consider a refine-
ment of the Voronoi partition according to second nearest neighbors.) With this
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construction, we can write f ′u,i(x) as a piecewise-linear function of the values
fu,1(x), . . . , fu,k(x), i.e.,

f ′u,i(x) = max
{
fu,i(x)− fu,1(x), . . . , fu,i(x)− fu,k(x)

}
.

Since such piecewise-linear functions are Lipschitz, it follows that there ex-
ists a number L such that

∑
i‖f ′u,i − f ′v,π(i)‖2 ≤ L

∑
i‖fu,i − fv,π(i)‖2 for all

u, v ∈ V and permutations π of Σ. It follows that this construction causes
only a multiplicative increase of the violations. The remaining problem is to
bound the Lipschitz constant L. A priori, L could grow with k. In our case,
the Lipschitz constant L is bounded by an absolute constant independent of
k. The reason is roughly that at every point x ∈ IRd, at most four of the val-
ues fu,1(x), . . . , fu,k(x), fv,1(x), . . . , fv,k(x) contribute to the distance

∑
i‖f ′u,i−

f ′v,π(i)‖2. See Section 3.1 for details.

2 Preliminaries

2.1 Unique Games and Parallel Repetition

Let V and Σ be two (finite) sets. A unique game G with vertex set V and
alphabet Σ is defined by a distribution over triples (u, v, π), where u, v ∈ V are
vertices and π : Σ → Σ is a permutation of the alphabet Σ. We refer to the
�-fold product distribution G� as the �-fold repetition of G. Note that G� is a
unique game with vertex set V � and alphabet Σ�.

The (optimal) value of G is defined by

opt(G) def= max
L∈ΣV

P
(u,v,π)∼G

{
Lv = π(Lu)

}
. (2.1)

The amortized value of G is defined by

opt(G) def= sup
�∈IN

opt(G�)1/� . (2.2)

Theorem 5 ([17]). If G is a unique game with opt(G) ≤ 1− η, then opt(G) ≤
1−Ω(η2).

2.2 Semidefinite and Nonnegative Relaxation

The semidefinite value of a unique game G with vertex set V and alphabet Σ is
defined by

sdp(G) def= max E
(u,v,π)∼G

∑
i∈Σ〈ui,vπ(i)〉 , (2.3)

where we maximize over all collections {ui}u∈V,i∈Σ of vectors that satisfy
∑

i∈Σ‖ui‖
2 = 1 (u ∈ V ) , (2.4)

〈ui,uj〉 = 0 (u ∈ V, i �= j ∈ Σ) . (2.5)
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The optimization problem sdp(G) is a relaxation of opt(G). Hence, sdp(G) ≥
opt(G) for every unique game G.

Theorem 6 ([3]). Suppose G is a unique game with alphabet size k and sdp(G)
≥ 1− ε. Then, opt(G) ≥ 1−O(

√
ε log k) .

Theorem 7 ([6]). For every unique game G and number � ∈ IN, we have
sdp(G�) = sdp(G)� .

Theorem 7 implies that sdp(G) ≥ opt(G), i.e., sdp(G) is also a relaxation for
opt(G). Combining this fact with Theorem 6, we get that opt(G) ≤ 1−Ω(η2/ log k)
ifG is a unique game with alphabet size k and opt(G) ≤ 1−η. Note that Theorem 5
shows that the log k factor in this bound is not necessary.

The Hellinger1 value of G is defined as

sdp+(G) def= max E
(u,v,π)∼G

∑
i∈Σ〈fu,i, fv,π(i)〉 , (2.6)

where we maximize over all collections {fu,i}u∈V,i∈Σ of nonnegative functions
on Ω such that

∑

i∈Σ‖fu,i‖
2 = 1 (u ∈ V ) , (2.7)

supp(fu,i) ∩ supp(fu,j) = ∅ (u ∈ V, i �= j ∈ Σ) . (2.8)

Here, (Ω,μ) is some probability space and the norms and inner products for
functions f, g : Ω → IR are defined as 〈f, g〉 :=

∫
Ω
fg dμ and ‖f‖ := 〈f, f〉1/2.

Without loss of generality, we could assume Ω = [0, 1] and that μ is the usual
Lebesgue measure.

Notice that (2.8) is equivalent to the constraint that fu,i and fu,j are orthog-
onal for all i �= j and u ∈ V (at least if Ω is finite and every atom has positive
probability mass). Hence, the optimization problem sdp+(G) is equivalent to
sdp(G) except for the constraint that the value of the functions (coordinates of
the vectors) are nonnegative.

Our result relies on the following theorem of [2].

Theorem 8 ([2]). If G is a unique game with sdp+(G) ≥ 1−ε, then opt(G) ≥
1− 2
√

2ε.

Furthermore, we can lower bound sdp+(G�) in terms of sdp+(G) as expected.
This lemma follows from the fact that we can construct a solution for sdp+(G�)
by taking appropriate tensor products of the functions fu,i that form an optimal
solution for sdp+(G).

Lemma 9. For every unique game G, we have sdp+(G�) ≥ sdp+(G)�.
1 The relaxation sdp+(G) has an alternative description in terms minimizing squared

Hellinger distances of jointly distributed random variables subject to a certain set
of constraints (called distributional strategies in [2]). See [2] for details about this
alternative description. The two formulations of sdp+(G) are equivalent.
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2.3 Mapping Vectors to Nonnegative Functions

Let N(0, σ2)d be the Gaussian measure on IRd with mean 0 and covariance σ2I
(each coordinate is independent Gaussian with mean 0 and standard deviation σ).
Let φσ : IRd → IR+ be the density of the measure N(0, σ2)d with respect to the
usual Lebesgue measure λd on IRd,

φσ(x) def= 1
(σ√2π)d e

−‖x‖2/2σ2
.

Let L2(IRd) be the (Hilbert) space of functions f : IRd → IR such that
∫

IRd f
2 dλd

is bounded. The inner product in L2(IRd) is given 〈f, g〉 =
∫
fg dλd.

Let Tu be the translation operator on L2(IRd), so that Tuf(x) = f(x − u).
Barak et al. [2] consider the following mapping Mσ from IRd to nonnegative
functions in L2(IRd),

Mσ(u) def= ‖u‖
√
Tūφσ . (2.9)

Here, ū denotes the unit vector in the direction of u. The mappingMσ preserves
norms, that is, ‖Mσ(u)‖ = ‖u‖ for every vector u ∈ IRn. We need the following
additional properties of Mσ. (See Section A.2 for a proof of this lemma.)
Lemma 10 ([2]). For any two vectors u,v ∈ IRd,

‖Mσ(u)−Mσ(v)‖2 ≤ O(σ−2) · ‖u− v‖2 .
Furthermore, 〈Mσ(u),Mσ(v)〉 = ‖u‖ ‖v‖ · e−1/4σ2 if u and v are orthogonal.

3 Improved Rounding of Repeated Unique Games

In this section, we will prove the following theorem — our main result.

Theorem (Restatement of Theorem 3). For every unique G with alphabet
size k and sdp(G) ≥ 1− ε,

sdp+(G) ≥ 1−O(ε log k) .

The key ingredients of the proof of Theorem 3 are the mappingMσ from vectors
to nonnegative functions (Section 2.3) and the following smooth orthogonaliza-
tion procedure for nonnegative functions (or vectors).

Lemma 11 (Smooth Nonnegative Orthogonalization). There exists a
mapping Q : L2(IRd)k → L2(IRd)k with the following properties: Let f1, . . . , fk
and g1, . . . , gk be nonnegative functions in L2(IRd) such that

∑
i‖fi‖2 =∑

i‖gi‖2 = 1 and
∑
i�=j〈fi, fj〉 +

∑
i�=j〈gi, gj〉 ≤ γ. Suppose (f ′1, . . . , f ′k) =

Q(f1, . . . , fk) and (g′1, . . . , g′k) = Q(g1, . . . , gk). Then, for every permutation π
of [k], ∑

i

‖f ′i − g′π(i)‖2 ≤ 32
1−4γ

∑

i

‖fi − gπ(i)‖2 .

Furthermore,
∑
i‖f ′i‖2 =

∑
i‖g′i‖2 = 1 and supp(f ′i) ∩ supp(f ′j) = supp(g′i) ∩

supp(g′j) = ∅ for all i �= j.
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We remark that Lemma 11 does not depend in any way on the fact that
the functions fi and gi are defined on IRd. (In fact, we could formulate the same
lemma for finite dimensional vectors with nonnegative coordinates. We choose to
state and prove the lemma in this form because the proof of Theorem 3 naturally
leads to nonnegative functions defined on IRd.) We prove Lemma 11 at the end
of this section. Assuming this lemma, we can prove Theorem 3 as follows:

Proof (Theorem 3). Let G be a unique game with vertex set V and alphabet
Σ = [k]. Suppose sdp(G) ≥ 1 − ε. For a parameter σ > 0, which we determine
later, let fu,i := Mσ(ui) be the nonnegative functions in L2(IRd) obtained by
applying Mσ to a collection of vectors {ui}u∈V,i∈Σ corresponding to an optimal
solution for sdp(G). Since Mσ preserves norms, we have for every u ∈ V ,

∑

i∈Σ‖fu,i‖
2 =
∑

i∈Σ‖ui‖
2 = 1 . (3.1)

Since 〈ui,uj〉 = 0 for i �= j, Lemma 10 also shows that for every u ∈ V ,
∑

i�=j
〈fu,i, fu,j〉 ≤

∑

i�=j
‖ui‖ ‖uj‖ · e−1/4σ2

≤ e−1/4σ2
(∑

i∈Σ
‖ui‖
)2
≤ k · e−1/4σ2∑

i∈Σ
‖ui‖2 ≤ k · e−1/4σ2

. (3.2)

Hence, for σ2 = 1/(4 log(k/γ)), we can make sure that
∑
i�=j〈fu,i, fu,j〉 ≤ γ for

every u ∈ V . By Lemma 10, we have

E
(u,v,π)∼G

‖fu,i − fv,π(i)‖2 ≤ O(σ−2) E
(u,v,π)∼G

‖ui − vπ(i)‖2 ≤ O(σ−2)ε . (3.3)

For the last inequality, we used the assumption sdp(G) ≥ 1−ε of Theorem 3 and
the fact that the vectors {ui}u∈V,i∈Σ form an optimal solution for sdp(G). The
functions {fu,i}u∈V,i∈Σ form an approximate solution for sdp+(G), in the sense
of (3.1)–(3.3). Using the smooth nonnegative orthogonalization Q : L2(IRd)k →
L2(IRd)k from Lemma 11, we obtain nonnegative functions f ′u,i = Q(fu,1, . . . ,
fu,k)i that form a feasible solution for sdp+(G). Combining (3.3) and Lemma 11
also shows that for small enough γ (say γ = 1/8),

E
(u,v,π)∼G

‖f ′u,i − f ′v,π(i)‖2 ≤ O(1) E
(u,v,π)∼G

‖fu,i − fv,π(i)‖2 ≤ O(σ−2)ε .

Since we chose σ2 = Ω(1/ log k), it follows that sdp+(G) ≥ 1−O(ε log k).

3.1 Proof of Lemma 11 (Smooth Nonnegative Orthogonalization)

First, we consider the following orthogonalization step,

Q(1) : L2(IRd)k → L2(IRd)k, (f1, . . . , fk) �→ (f ′1, . . . , f ′k) , (3.4)

f ′i(x) =

{
fi(x)−maxj �=i fj(x) if fi(x) > maxj �=i fj(x) ,
0 otherwise.

(3.5)
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Next, we consider the following renormalization step,

Q(2) : L2(IRd)k → L2(IRd)k , (3.6)
(
f1, . . . , fk

)
�→ ( 1

λf1, . . . ,
1
λfk
)
, (3.7)

where λ2 =
∑
i‖fi‖2 . (3.8)

To prove Lemma 11, we choose Q as the composition of Q(1) and Q(2). Let
f1, . . . , fk and g1, . . . , gk be nonnegative functions in L2(IRd) as in Lemma 11,
i.e.,
∑
i�=j〈fi, fj〉+

∑
i�=〈gi, gj〉 ≤ γ and

∑
i‖fi‖2 =

∑
i‖gi‖2 = 1.

Let (f (1)
1 , . . . , f

(1)
k ) = Q(1)(f1, . . . , fk) and (f (2)

1 , . . . , f
(2)
k ) = Q(2)(f (1)

1 , . . . , f
(1)
k ).

Similarly, let (g(1)
1 , . . . , g

(1)
k ) = Q(1)(g1, . . . , gk) and (g(2)

1 , . . . , g
(2)
k ) = Q(2)(g(1)

1 , . . . ,
g(1)
k ). In the rest of the section, we first establish several properties of these

functions (see Claim 12 and Claim 13) and then use these properties to prove
Lemma 11.

Claim 12 (Properties of Q(1)).

1. For every permutation π of [k],
∑

i

‖f (1)
i − g(1)

π(i)‖2 ≤ 8
∑

i

‖fi − gπ(i)‖2 .

2. For all i �= j,
supp(f (1)

i ) ∩ supp(f (1)
j ) = ∅ .

3.
1 ≥
∑

i

‖f (1)
i ‖2 ≥ 1− 2γ .

Proof. Item 2 holds, since by construction supp(f (1)
i ) = {x | fi(x) > maxj �=i

fj(x)}. To prove Item 3, we observe that f (1)
i (x)2 > fi(x)2 − 2

∑
j �=i fi(x)fj(x)

and therefore as desired
∑

i

∥
∥f (1)
i

∥
∥2 ≥

∑

i

∥
∥fi
∥
∥2 − 2

∑

i�=j

〈
fi, fj
〉 ≥ 1− 2γ .

To prove Item 1, we will show that for every x ∈ IRd,
∑

i

(
f (1)
i (x)− g(1)

π(i)(x)
)2 ≤ 8

∑

i

(
fi(x)− gπ(i)(x)

)2
. (3.9)

Since Q(1) is invariant under permutation of its inputs, we may assume π is
the identity permutation. At this point, we can verify (3.9) by an exhaustive
case distinction. Fix x ∈ IRd. Let if be the index i that maximizes fi(x). (We
may assume the maximizer is unique.) Let jf be the index such that fjf (x) =
maxj �=if fj(x). Similarly, define ig and jg such that gig (x) = maxi gi(x) and
gjg (x) = maxj �=ig gj(x). We may assume that if = 1 and jf = 2. Furthermore,
we may assume ig, jg ∈ {1, 2, 3, 4}. Notice that the sum on the left-hand side of
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(3.9) has at most two non-zero terms (corresponding to the indices i ∈ {if , ig} ⊆
{1, . . . , 4}). Hence, to verify (3.9), it is enough to show

max
i∈{1,...,4}

∣∣f (1)
i (x)− g(1)

i (x)
∣∣ ≤ 4 max

i∈{1,...,4}

∣∣fi(x)− gi(x)
∣∣ . (3.10)

Put ε = maxi∈{1,...,4}|fi(x)−gi(x)|. Let qi(a1, . . . , a4) := max{ai−maxj �=i aj , 0}.
Note that f (1)

i (x) = qi
(
f1(x), . . . , f4(x)

)
and g(1)

i (x) = qi
(
g1(x), . . . , g4(x)

)
. The

functions qi are 1-Lipschitz in each of their four inputs. It follows as desired that
for every i ∈ {1, . . . , 4},
∣
∣∣f (1)
i (x)− g(1)

i (x)
∣
∣∣ =
∣
∣∣qi
(
f1(x), . . . , f4(x)

)− qi
(
g1(x), . . . , g4(x)

)∣∣∣ ≤ 4ε .

Claim 13 (Properties of Q(2)).
1. For every permutation π of [k],

∑

i

‖f (2)
i − g(2)

π(i)‖2 ≤ 4
1−4γ

∑

i

‖f (1)
i − g(1)

π(i)‖2 .

2. For all i ∈ Σ,
supp(f (2)

i ) = supp(f (1)
i ) .

3. ∑

i

‖f (2)
i ‖2 = 1 .

Proof. Again Item 2 and Item 3 follow immediately by definition of the mapping
Q(2). To prove Item 1, let λf , λg > 0 be the multipliers such that f (2)

i = f (1)
i /λf

and g(2)
i = g(1)

i /λg for all i ∈ [k]. Item 1 of Claim 12 shows that λ2
f and λ2

g lie
in the interval [1 − 2γ, 1]. We estimate the distances between f (2)

i and g(2)
π(i) as

follows,
∑

i

∥∥f (2)
i − g(2)

π(i)

∥∥2 =
∑

i

∥∥
∥ 1
λf

(
f (1)
i − g(1)

π(i)

)
+
( 1
λf
− 1
λg

)
g(1)
i

∥∥
∥

2

≤ 2
λ2
f

∑

i

∥
∥f (1)
i − g(1)

π(i)

∥
∥2 + 2

( 1
λf
− 1
λg

)2∑

i

∥
∥g(1)
i

∥
∥2 (since ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2)

≤ 2
1−2γ

∑

i

∥
∥f (1)
i − g(1)

π(i)

∥
∥2 + 2

( 1
λf
− 1
λg

)2 (using
∑

i

‖g(1)
i ‖2 ≤ 1) .

It remains to upper bound the second term on the right-hand side, (1/λf − 1/λg)2.
Since the function x �→ 1/x is 1/a2-Lipschitz on an interval of the form [a,∞), we
have
∣
∣ 1
λf
− 1
λg

∣
∣ ≤ 1

1−2γ
∣
∣λf − λg

∣
∣

= 1
1−2γ

∣
∣
∣∣
(∑
i‖f (1)
i ‖2
)1/2 −

(∑
i‖g(1)
π(i)‖2

)1/2
∣
∣
∣∣

≤ 1
1−2γ

(∑

i

(
‖f (1)
i ‖ − ‖g(1)

π(i)‖
)2
)1/2

(using triangle inequality)

≤ 1
1−2γ

(∑

i
‖f (1)
i − g(1)

π(i)‖2
)1/2

(using triangle inequality) .
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Combining the previous two estimates, we get as desired
∑

i

∥
∥f (2)
i − g(2)

π(i)
∥
∥2 ≤

(
2

1−2γ + 2
(1−2γ)2

)∑

i

∥
∥f (1)
i − g(1)

π(i)
∥
∥2
.

Combining Claim 12 and Claim 13 yields Lemma 11.

Lemma (Restatement of Lemma 11). There exists a mapping
Q : L2(IRd)k → L2(IRd)k with the following properties: Let f1, . . . , fk
and g1, . . . , gk be nonnegative functions in L2(IRd) such that

∑
i‖fi‖2 =∑

i‖gi‖2 = 1 and
∑
i�=j〈fi, fj〉 +

∑
i�=j〈gi, gj〉 ≤ γ. Suppose (f ′1, . . . , f ′k) =

Q(f1, . . . , fk) and (g′1, . . . , g′k) = Q(g1, . . . , gk). Then, for every permutation π
of [k], ∑

i

‖f ′i − g′π(i)‖2 ≤ 32
1−4γ

∑

i

‖fi − gπ(i)‖2 .

Furthermore,
∑
i‖f ′i‖2 =

∑
i‖g′i‖2 = 1 and supp(f ′i) ∩ supp(f ′j) = supp(g′i) ∩

supp(g′j) = ∅ for all i �= j.
Proof. We choose Q = Q(2)◦Q(1) as the composition of Q(1) and Q(2). In this case,
f ′i = f (2)

i and g′i = g(2)
i , where the functions f (2)

1 , . . . , f
(2)
k and g(2)

1 , . . . , g
(2)
k are

constructed as in the beginning of Section 3.1. Combining Item 1 of Claim 12 and
Item 1 of Claim 13 gives the desired upper bound on

∑
i‖f ′i − g′π(i)‖2. Similarly,

the remaining properties desired of f ′i and g′i also follow by combining Claim 12
and Claim 13.
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A Further Proofs
A.1 Relation of Amortized Value and Semidefinite Value

Theorem (Restatement of Theorem 2). For every unique game G with
alphabet size k,

sdp(G)O(log k) ≤ opt(G) ≤ sdp(G) .

Proof. Feige and Lovász [6] show the upper bound on opt(G). (In particular,
they show opt(G�) ≤ sdp(G�) and sdp(G�) = sdp(G)�.) Charikar, Makarychev,
and Makarychev [3] show that opt(G) ≥ sdp(G)−C log k/C for some absolute
constant C ≥ 1. (This constant C is necessarily larger than 1.) Hence, we are
done if sdp(G)C′ log k ≤ 1/C for some absolute constant C′ ≥ 1. (In this case, we
would have opt(G) ≥ sdp(G)−(C+C′) log k.)

On the other hand, if sdp(G) ≥ 1− ε, then Theorem 1 shows that opt(G�) ≥
1−C′′√�ε log k for some absolute constant C′′ ≥ 1. Hence, if ε log k ≤ 1/(2C′′)2,
then we can find a natural number � = Ω(1/(ε log k)) such that opt(G�) ≥ 1/2,
which implies opt(G) ≥ 2−1/� ≥ (1 − ε)O(log k) . It is straight-forward to check
that there exists an absolute constant C′ ≥ 1 (depending on C and C′′) such
that sdp(G)C′ log k > 1/C implies that ε log k ≤ 1/(2C′′)2. We conclude that in
all cases opt(G) ≥ sdp(G)O(log k).
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A.2 Mapping Unit Vectors to Nonnegative Functions

Recall the definition of the mappingMσ : IRd → L2(IRd),Mσ(u) := ‖u‖√Tūφσ .
Here, Tu is the translation operator on L2(IRd), so that Tuf(x) = f(x − u),
and φσ is the density of the Gaussian measure N(0, σ2)d with respect to the
usual Lebesgue measure λd on IRd, φσ(x) := (σ

√
2π)−de−‖x‖2/2σ2

. From the
definition ofMσ, it follows that the mapping preserves norms, so that ‖Mσ(u)‖ =
‖u‖ for every u ∈ IRd. The following fact about the (Hellinger) affinity of
translated Gaussians shows that the mapping Mσ also preserves angles (at least
approximately).

Lemma 14 ([2]). Let u and v be two unit vectors in IRd. Then
∫

IRd

√
Tuφσ · Tvφσ dλd = e−‖u−v‖2/8σ2

.

Proof. Immediate from the identity
√
Tuφσ · Tvφσ = e−‖u−v‖2/8σ2

T 1
2 (u+v)φσ .

The following technical fact shows that in order for a mapping to preserve dis-
tances it is enough to preserve lengths and distances of unit vectors (angles).

Fact 15. For any two vectors u,v ∈ IRn, we have

‖u− v‖2 = (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖ū− v̄‖2 .
Combining Fact 15 and Lemma 14 yields Lemma 10.

Lemma (Restatement of Lemma 10). For any two vectors u,v ∈ IRd,

‖Mσ(u)−Mσ(v)‖2 ≤ O(σ−2) · ‖u− v‖2 .

Furthermore, 〈Mσ(u),Mσ(v)〉 = ‖u‖ ‖v‖ · e−1/4σ2 if u and v are orthogonal.

Proof. If u and v are orthogonal, then Lemma 14 shows that 〈Mσ(u),Mσ(v)〉 =
‖u‖ ‖v‖e−1/4σ2

, because ‖ū− v̄‖2 = 2 for any two orthogonal vectors u and v.
It remains to show the upper bound on ‖Mσ(u) −Mσ(v)‖2. By construction,
Mσ(u) = ‖u‖Mσ(ū) and Mσ(v) = ‖v‖Mσ(v̄). By Fact 15,

‖Mσ(u)−Mσ(v)‖2 = (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖Mσ(ū)−Mσ(v̄)‖2 .
On the other, Lemma 14 implies that

1
2‖Mσ(ū)−Mσ(v̄)‖2 = 1− e−‖ū−v̄‖2/8σ2 ≤ ‖ū− v̄‖2/8σ2 .

(Here, we used the approximation e−x ≥ 1−x.) Combining these bounds, yields
as desired

‖Mσ(u)−Mσ(v)‖2 ≤ (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖ū− v̄‖2/4σ2 ≤ 1
4σ2 ‖u− v‖2 .

(The last inequality follows from Fact 15.)
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Abstract. Long Code testing is a fundamental problem in the area of
property testing and hardness of approximation. Long Code is a func-
tion of the form f(x) = xi for some index i. In the Long Code testing,
the problem is, given oracle access to a collection of Boolean functions,
to decide whether all the functions are the same Long Code, or cross-
influences of any two functions are small. In this paper, we study the fol-
lowing problem: How small the soundness s of the Long Code test with
perfect completeness can be by using non-adaptive q queries? We give a
Long Code test with s = (2q+3)/2q , where q is of the form 2k−1 for any
integer k > 2. Our test is a “noisy” version of Samorodnitsky-Trevisan’s
Hyper Graph linearity test with suitably chosen noise distribution. To
bound the soundness, we use Invariance-Principle style analysis in the
spirit of O’Donnell and Wu (STOC 2009).

Previously, H̊astad and Khot (Theory of Computing, 2005) had shown
s = 24

√
q/2q for infinitely many q. Chen (RANDOM 2009) improved this

to s = q3/2q for infinitely many q with “adaptive” queries. As for the
Long Code test with “almost” perfect completeness, Samorodnitsky and
Trevisan (SICOMP, 2009) have shown s = 2q/2q (or even (q + 1)/2q

for infinitely many q). Austrin and Mossel (Computational Complexity,
2009) have improved this to s = (q + o(q))/2q (or even (q +4)/2q assum-
ing the famous Hadamard Conjecture) for any q.

Keywords: Long Code test, dictatorship test, influence of variables,
amortized query complexity.

1 Introduction

Testing basic properties of Boolean functions is a well studied subject in the area
of property testing, complexity theory and learning theory [18,37]. Examples
of such properties include: Linear functions, singleton functions, juntas, low-
degree polynomials, and several concise representation [12,8,2,35,3,16,10,11]. In
property test setting, our goal is, given oracle access to Boolean function(s)
of the form f : {−1, 1}n → {−1, 1}, to decide whether the functions satisfy
a certain property, or they are far from the property, where the definition of
farness varies according to the property of interest and intended applications of
the test. There are several parameters that characterize testers: Completeness c
is the probability such that the tester accepts functions that satisfy the property

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 738–751, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with probability at least c. Soundness s is the probability such that the tester
accepts functions that are far from the property with probability at most s.
Query complexity q is the total number of oracle accesses in one execution of the
tester. An adaptive tester means that the tester can make queries that depend on
the answers of previous queries. Otherwise the tester is said to be non-adaptive.

The property of our interest in this paper is the Long Code. Long Code is
a function of the form f(x) = xi for some index i. Multi-function Long Code
testing problem is, given oracle access to a collection of Boolean functions, to
decide whether they are all the same Long Code for some i, or any two functions
are not close to some Long Code at the same time. The notion of Long Code
was introduced by Bellare et al. [9] in the context of Probabilistically Checkable
Proofs (PCPs) (also studied by Parnas et al. [35] in name of “dictatorship func-
tion”). We quickly review the use of (multi-function) Long Code test in PCPs
and hardness of approximation. From now on, when we say just PCP, it means a
PCP for some NP-complete language. Recall that most efficient PCP construc-
tions today such as the celebrated work of H̊astad [22] follow the paradigm of
composing “outer verifier” and “inner verifier”.

An outer verifier is a certain kind of two prover one round games (or equiv-
alently label cover problems); e.g., the combination of the PCP theorem [6,4]
and Raz’s parallel repetition theorem [36] (we often call the combination Raz
verifier), or Unique Games or d-to-1 Games [26]. An inner verifier is essentially
a multi-function Long Code tester. By composing outer and inner verifiers, we
obtain a PCP, which often has the same parameters of the underlying Long
Code tester. Therefore improving the quality of Long Code testers yields better
constructions of PCPs. Here we note that criterion for soundness used in a Long
Code tester/inner verifier may restrict the type of an outer verifier to ensure
that they can be composed. We elaborate on this issue later.

The use of PCP constructions in hardness of approximation is quite standard.
The acceptance criteria of Long Code testers/PCPs correspond to specific op-
timization problems and the ratio of completeness and soundness s/c gives the
inapproximability ratio of the corresponding problems. For more details on the
relation between Long Code tests, PCPs and hardness of approximation, see [27]
for the general framework and [33] for constraint satisfaction problems (CSPs).

With the connection between Long Code testers and PCPs in mind, we some-
times compare the parameters of them at the same time without distinction.
There are several interesting trade-offs between parameters as follows:

Criteria for soundness. The definition of farness is quite an important issue in
the composition paradigm. Several possible criteria for rejection are; distance
from any Long Codes or any juntas, quasi-randomness, and low-degree influ-
ences. Which criterion is used in Long Code test poses some restriction on an
outer verifier, e.g., if we use quasi-randomness, the tester can be composed with
Raz verifier, but if we use low-degree influences, it is hard to combine the tester
with Raz verifier though it may be composed with Unique Games. It may also
affect the lowest possible value of the soundness with other parameters fixed.
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Perfect completeness vs. almost perfect completeness. It is known that the sound-
ness of PCPs with perfect completeness (c = 1) can be worse than that of PCPs
with almost perfect completeness (c = 1−ε). H̊astad [22] designed non-adaptive
3-query PCPs with almost perfect completeness and s = 1/2. Zwick [43] showed
that any non-adaptive 3-query PCPs with perfect completeness must have sound-
ness s ≥ 5/8. He conjectured s = 5/8 is optimal. H̊astad [22] showed s = 3/4 is
possible and Khot and Saket [28] improved this to s = 20/27. Finally, O’Donnell
and Wu [34] showed s = 5/8 under Khot’s d-to-1 Games conjecture. We remark
that perfect completeness is important for several reasons: First, it is natural to
require that testers should always accept correct objects. Second, it is required
to show the inapproximability results for certain problems such as satisfiable
CSPs and approximate coloring problems. Third, it is robust when we compose
testers with other protocols.

Adaptive vs. non-adaptive queries. It is also known that adaptive queries are
more powerful than non-adaptive queries. Guruswami et al. [19] showed adaptive
3-query PCPs with c = 1, s = 1/2. As mentioned previously, Zwick showed non-
adaptive 3-query PCPs with c = 1 have s ≥ 5/8. Non-adaptivity is crucial in
applications for inapproximability; we need queries to be non-adaptive to relate
the parameters of PCPs to the inapproximability ratio of optimization problems.

Query complexity vs. soundness. Trade-offs between query complexity and sound-
ness is also formalized as amortized query complexity, which is defined as q

log2(1/s) .
Observe that repeating the tester t times independently, we can reduce the sound-
ness to st while query complexity grows as t · q. In this case, the amortized query
complexity of the repeated tester remains the same as that of the original one.
Hence this can be thought as a good and non-trivial measure for such trade-offs.
Thus, constructions of testers that achieve better amortized query complexity is
an interesting problem.

In this paper, we study the trade-offs between query complexity and soundness
in the Long Code testing problem. Our focus is on non-adaptive testers with
perfect completeness (c = 1).

1.1 Previous Work

The study of amortized query complexity in PCPs was initiated by Trevisan [41]
and many works followed it [38,39,25,24,17]. One of the most notable earlier
work is due to Samorodnitsky and Trevisan [39]: They constructed q-query non-
adaptive PCPs with almost perfect completeness and s = 22

√
q/2q for infinitely

many q. Later Engebretsen and Holmerin [17] improved this to s = 2
√

2q/2q.
H̊astad and Khot constructed PCPs with perfect completeness and s = 24

√
q/2q.

All these constructions use the distance from juntas in soundness condition,
which allows them to compose Raz verifier as an outer verifier. Hence the result-
ing PCPs are unconditional.

Samorodnitsky and Trevisan [40] observed that the trade-offs achieved by
these works are essentially tight if the soundness criterion is with respect to the
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distance from juntas. (Similar limitations were shown by [14,29].) To break the
s = 2Θ(

√
q)/2q barrier, they reworked the problem under the relaxed soundness

criterion, i.e., low-degree influences. They constructed so called the Hyper Graph
Long Code test, that achieves almost perfect completeness and s = 2q/2q (or
even (q+1)/2q for infinitely many q), and combined it with Unique Games to con-
struct conditional PCPs with the same parameters. They use a novel technique
from additive combinatorics, namely, Gowers uniformity norm, in the analysis.
Later Austrin and Mossel [5] improved the soundness to s = (q + o(q))/2q (or
even (q + 4)/2q assuming the famous Hadamard Conjecture) for any q. Their
technique is completely different from [40] and based on the Invariance Princi-
ple, which was developed by Mossel et al. [30,31]. Similar constructions were also
given in [23,1,20] where the emphasis is on the hardness of CSPs over “random
predicates” or predicates of non-Boolean domains. However, all these works are
affected by the loss of perfect completeness. Recently, Chen [15], building on
the work of Samorodnitsky and Trevisan [40] and H̊astad and Khot [24], showed
q-query “adaptive” Long Code testers with perfect completeness and s = q3/2q

for infinitely many q.

1.2 Our Contribution

In this paper, we prove the following theorem:

Theorem 1. For every k > 2, there exists a non-adaptive Long Code tester that
makes q = 2k − 1 queries, has completeness 1 and soundness (2q + 3)/2q.

1.3 Our Method

Our tester and its analysis is based on a natural but non-trivial extension of
O’Donnell and Wu’s analysis for hardness of satisfiable 3-CSPs over Not-Two
(NTW) predicates [34]. Most technical part of O’Donnell-Wu’s work is to bound
the term of the form E[f(x)g(y)g(z)] where x,y, z are drawn from “NTW”-
distribution. We extend this to the case of the product of large number of func-
tions with more complex distribution.

First we need to define suitable test distributions to make queries. To achieve
good query complexity-soundness trade-offs, we adopt the Hyper Graph test
introduced by Samorodnitsky and Trevisan [40]. The Hyper Graph test can only
test linearity; for testing Long Code, we need to perturb the Hyper Graph test
with some “noise” distribution.

Most often, the noise distribution is the uniform distribution. A mixture of
the distribution for linearity test and uniform distribution with sufficiently small
probability often yields a desired Long Code test. However, this forces the loss
of perfect completeness because possible query-answers supports all over the do-
main, and “yes-instance” can be rejected with small probability. To avoid this,
Chen [15] introduced a noise distribution based on H̊astad and Khot’s query-
efficient PCPs with perfect completeness [24]. His analysis is based on Fourier
analysis and Gowers norm as Samorodnitsky and Trevisan did. Although his test
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achieves good query-soundness trade-offs, one drawback is its adaptivity. In this
paper, we use a different noise distribution, modification of the All-Equal noise.
Previously, the All-Equal noise was used by O’donnell and Wu [33] combined
with 3-bit linearity test to achieve c = 1, s = 5/8, non-adaptive Long Code test
based on NTW predicate. The analysis is based on Fourier analysis and hyper-
contractivity inequality. Later the same authors [34] managed to construct PCPs
with the same parameters c = 1 and s = 5/8 under Khot’s d-to-1 Games conjec-
ture [26]. The analysis is based on Invariance Principle style argument [30,31].
The crucial point is bounding the correlation of probability spaces.

We follow the approach of [34]. Most of our analysis becomes complicated to
bound terms of the form E[f1f2 · · · fq] rather than a “cubic”-term, but some
analysis becomes easier because we only work with functions over the same
domain (or functions with “unique” constraints) rather than functions with d-
to-1 constraints as in the case of [34].

1.4 Organization of Paper

In Section 2, we introduce notations and definitions needed throughout this
paper. In Section 3, we define our multi-function Long Code testing problem
formally, then we describe our test distribution and Long Code test. In Section 4,
we present completeness and soundness analysis of our tester. Finally, we notice
some future work in Section 5.

2 Preliminaries

Let [k] = {1, 2, . . . , k}, 2[k]
≥1 = {S ⊆ [k] : |S| ≥ 1} and 2[k]

≥2 = {S ⊆ [k] : |S| ≥ 2}.
For a vector x ∈ {−1, 1}n, xi denotes the ith element of x. Write an unit vector
as 1 = (1, 1, . . . , 1) and denote by 1−i a vector obtained by flipping the ith
coordinate of 1 to −1. We denote by |S| the cardinality of a set S. A set {i} is
sometimes written as i. A Boolean function is a function f : {−1, 1}n → {−1, 1}.

2.1 Fourier Expansion

Definition 1 (Fourier expansion). The Fourier expansion of a function f :
{−1, 1}n → R is

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where
χS(x) =

∏
i∈S

xi, f̂(S) = E
x

[f(x)χS(x)] ,

and expectation is with respect to uniform distribution.

It is easy to see that for any S, T ⊆ [n], Ex[χS(x)χT (x)] = 1 if S = T and 0
otherwise. For more on Fourier expansion and Fourier analysis see, e.g., [32].
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2.2 Influences

In this section we recall basic notions from Fourier analysis, influence and the
Bonami-Beckner operator. We first define a notion of the influence of a coordi-
nate on a function f :

Definition 2. For a function f : {−1, 1}n → R, we define the influence of
i ∈ [n] on f to be

Infi(f) =
∑
Si

f̂(S)2.

We also define the degree-w influence of i ∈ [n] on f to be

Inf≤w
i (f) =

∑
Si:|S|≤w

f̂(S)2.

We next recall the Bonami-Beckner operator Tρ acting on Boolean functions:

Definition 3. Let 0 ≤ ρ ≤ 1. The Bonami-Beckner operator Tρ is a linear
operator mapping functions f : {−1, 1}n → R into functions Tρf : {−1, 1}n → R

via
(Tρf)(x) = E[f(y)],

where in the expectation, y is formed from x by setting yi = xi with probability
ρ and setting yi to be a uniformly random bit with probability 1 − ρ.

The operator Tρ can alternately be defined by the following formula:

Proposition 1
Tρf =

∑
S⊆[n]

ρ|S|f̂(S)χS .

Definition 4. Let f1, . . . , ft be a collection of Boolean functions. Then the cross-
influence of i for them is defined as

XInfi(f1, . . . , ft) = max
j �=k

min(Infi(fj), Infi(fk)).

Similarly,

XInf≤w
i (f1, . . . , ft) = max

j �=k
min(Inf≤w

i (fj), Inf≤w
i (fk)).

Proposition 2. Let f be a Boolean function and γ > 0. Suppose Infi(T1−γ/2f) ≥
τ , then there exists w such that Inf≤w

i (f) ≥ τ
2 .

Proof. Set w such that (1 − γ
2 )w ≤ τ

2 , then

τ ≤ Infi(T1−γ/2f) =
∑

S∈[n]

(1 − γ

2
)|S|f̂(S)2

=
∑

S∈[n],|S|≤w

(1 − γ

2
)|S|f̂(S)2 +

∑
S∈[n],|S|>w

(1 − γ

2
)|S|f̂(S)2

≤
∑

S∈[n],|S|≤w

f̂(S)2 + (1 − γ

2
)w = Inf≤w

i (f) +
τ

2
.

��
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2.3 Correlations

We now recall the definition of correlation for correlated probability spaces, as
introduced by Mossel [31].

Definition 5. Let (Ω, Ψ, μ) be a (finite) correlated probability space, meaning
that μ is a distribution on the finite product set Ω ×Ψ and that the marginals of
μ on Ω and Ψ have full support. Define the “correlation” between Ω and Ψ to be

ρ(Ω, Ψ ; μ) = max
{

Cov
(ω,ψ)∼μ

[f(ω)g(ψ)] | f : Ω → R, g : Ψ → R,

Var
(ω,ψ)∼μ

[f(ω)] = Var
(ω,ψ)∼μ

[g(ψ)] = 1
}

.

It is clear that in the definition of ρ(Ω, Ψ ; μ), we can equivalently maximize
|E[fg]| over f restricted to have E[f ] = 0,E[f2] ≤ 1 under μ’s marginal on Ω;
or, over similarly restricted g (or both).

3 Long Code Test

Definition 6. For i ∈ [n], the ith Long Code is the function f(x) = xi

Now let us define a t-function Long Code Test. Suppose we are given oracle
access to a collection of Boolean functions f1, f2, . . . , ft. We want to make as
few queries as possible into these functions to decide if all the functions are
the same Long Code, or no two functions have some common structure. More
precisely, we have the following definition:

Definition 7. We say that a test T = Tf1,f2,...,ft is a t-functions Long Code
test with completeness c and soundness s if T is given oracle access to a family
of t functions f1, f2, . . . , ft : {−1, 1}n → {−1, 1}, such that

– if there exists some i ∈ [n] such that for all a ∈ [t], fa(x) = xi, then T
accepts with probability at least c, and

– for every ε > 0, there exist a constant τ > 0 and a fixed positive integer w
such that if T accepts with probability at least s + ε, then there exists some
i ∈ [n] such that XInf≤w

i (f1, . . . , ft) ≥ τ .

3.1 Folding

As introduced in [9], we assume that the functions are folded. We do so by
requiring our Long Code test to make queries in a special manner. Suppose the
test wants to query f at point x ∈ {−1, 1}n. If x1 = 1, then the test queries f(x)
as usual. If x1 = −1, then the test queries at the point −x and use −f(−x) as
the evaluation of x. Folding ensures that f(−x) = −f(x) and f̂(∅) = 0.
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3.2 The Test Distribution

We now view fS : {−1, 1}n → {−1, 1} as a function over an n-fold product set
X 1

S ×X 2
S × · · · × Xn

S where each X i
S = {−1, 1}{i}.

For each integer k > 2, we construct Tk as a product probability distribution
over the n-fold product set

n∏
i=1

∏
S∈2[k]

≥1

X i
S =

n∏
i=1

X i
1 ×

n∏
i=1

X i
2 × · · · ×

n∏
i=1

X i
n ×

n∏
i=1

X i
{1,2} × · · · ×

n∏
i=1

X i
{1,2,...,k}.

For each i we have a distribution T i
k on

∏
S∈2[k]

≥1
X i

S and we think of this as a

“correlated space”.
The first distribution is the “Hyper Graph Test” distribution which is a slight

modification of the one used by Samorodnitsky and Trevisan [40].

Definition 8. Define distribution Hk generating (x1,x2, . . . ,x{1,2,...,k})
∈
∏

S∈2[k]
≥1

X i
S as follows: The bits {xj}j∈[k] are independent and uniformly at

random; then for each S ∈ 2[k]
≥2, xS is set to be −

∏
j∈S xj.

Note that under Hk, the marginal distribution on xS for each S ∈ 2[k]
≥2 is also

uniformly random. The second distribution is the “Noise” distribution.

Definition 9. Let p, q, r > 0 be such that p + q + (2k − 1)r = 1, p + r = q +
(2k − 2)r = 1/2, q = r (p = (2k − 2)/(2k+1 − 2), q = r = 1/(2k+1 − 2)).
Define distribution Nk generating x = (x1,x2, . . . ,x{1,2,...,k}) ∈

∏
S∈2[k]

≥1
X i

S as

follows: (i) With probability p, set x = 1, (ii) with probability q, set x = −1,
and (iii) with probability (2k − 1)r, first pick S ∈ 2[k]

≥1 uniformly at random,
then set x = −1−S. Additionally, for 0 < δ < 1, define distribution Hk,δ to be
the mixture distribution Hk,δ = (1 − δ)Hk + δNk; i.e., one draws from Hk with
probability 1 − δ and from Nk with probability δ.

Again note that under Nk (also Hk,δ), the marginal distribution on xS for each
S ∈ 2[k]

≥1 is uniformly random.
We are now ready to define the test distribution T i

k :

Definition 10. For each i ∈ [n] we define T i
k to be Hk,δ, with δ = ( ε

9·|2[k]
≥1|

)2,

where the domain of Hk,δ is appropriately identified with the domain
∏

S∈2[k]
≥1

X i
S

of T i
k . Tk is the product distribution of these distributions Tk = ⊗n

i=1T i
k .

Definition 11. For any positive integer k and S0 ∈ 2[k]
≥1, we define distribution

Ik,S0 generating (x1,x2, . . . ,x{1,2,...,k}) ∈
∏

S∈2[k]
≥1

X i
S as follows: First draw from

Hk; then uniformly rerandomize xS0 .

Definition 12. For 0 < δ < 1, define distribution Ik,S0,δ to be the mixture
distribution Ik,S0,δ = (1 − δ)Ik,S0 + δNk.
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3.3 A Query Efficient Long Code Test

Let k > 2 be an integer and {fS}S∈2[k]
≥1

be a collection of Boolean functions. We

define the following Long Code test based on distribution Tk:

� �
Long Code Test Tk: with oracle access to {fS}S∈2[k]

≥1

1. Pick (x1,x2, . . . ,x{1,2,...,k}) ∈
∏

S∈2[k]
≥1

∏n
i=1 X i

S from Tk.

2. For each S ∈ 2[k]
≥1, query fS(xS).

3. Accept iff either of the followings holds:
(a) (Hyper Graph) For every S ∈ 2[k]

≥2,
∏

s∈S fs(xs) �= fS(xS), or
(b) (Noise) (fS(x1), fS(x2), . . . , f{1,2,...,k}(x{1,2,...,k})) is either 1 or −1

or −1−S for some S ∈ 2[k]
≥1.

� �
Note that the acceptance conditions for the test are mutually exclusive.

Theorem 2 (main theorem restated). For every integer k > 2, there exists
a non-adaptive Long Code test Tk that makes q = t = 2k − 1 queries, has
completeness 1 and soundness (2q + 3)/2q.

4 Proof of Theorem 2

Due to the space limitation, we give the sketch of the proof here. The full proof
can be found in [42].

Completeness Analysis: The completeness analysis is entirely standard.

Soundness Analysis: We show that if the accepting probability is at least

2q + 3
2q

+ ε =
2|2[k]

≥1| + 3

2|2
[k]
≥1|

+ ε

for some ε > 0, then there exists w, τ, i such that XInf≤w
i (f1, . . . , f[k]) ≥ τ . We

arithmetize the probability that Tk accepts. Let ZS = −fS(xS)
∏

s∈S fs(xs).
Then

Pr[Tk accepts] = E
Hn

k,δ

⎡⎢⎣ ∏
S∈2[k]

≥2

(
1 + ZS

2

)
+

∏
S∈2[k]

≥1

(
1 − fS(xS)

2

)

+
∏

S∈2[k]
≥1

(
1 + fS(xS)

2

)
+

∑
S′∈2[k]

≥1

(
1 − fS′(xS′)

2

) ∏
S∈2[k]

≥1\{S′}

(
1 + fS(xS)

2

)⎤⎥⎦ .
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This can be written as

= E
Hn

k,δ

⎡⎢⎣ 1

2|2
[k]
≥2|

∑
S⊆2[k]

≥2

∏
S∈S

ZS +
1

2|2
[k]
≥1|

∑
S⊆2[k]

≥1

(−1)|S|
∏
S∈S

fS(xS)

+
1

2|2
[k]
≥1|

∑
S⊆2[k]

≥1

∏
S∈S

fS(xS) +
∑

S′∈2[k]
≥1

(
1 − fS′(xS′)

2|2
[k]
≥1|

) ∑
S⊆2[k]

≥1\{S′}

∏
S∈S

fS(xS)

⎤⎥⎦
≤ 1

2|2
[k]
≥2|

∑
S⊆2[k]

≥2

E
Hn

k,δ

[∏
S∈S

ZS

]
+

2 + |2[k]
≥1|

2|2
[k]
≥1|

∑
S⊆2[k]

≥1

∣∣∣∣∣ E
Hn

k,δ

[∏
S∈S

fS(xS)

]∣∣∣∣∣ .
We would like to prove

1

2|2
[k]
≥2|

∑
S⊆2[k]

≥2

E
Hn

k,δ

[∏
S∈S

ZS

]
=

1

2|2
[k]
≥2|

+
1

2|2
[k]
≥2|

∑
S⊆2[k]

≥2:S �=∅
E

Hn
k,δ

[∏
S∈S

ZS

]

≤ 1

2|2
[k]
≥2|

+
ε

3

and

2 + |2[k]
≥1|

2|2
[k]
≥1|

∑
S⊆2[k]

≥1

∣∣∣∣∣ E
Hn

k,δ

[∏
S∈S

fS(xS)

]∣∣∣∣∣ =
2 + |2[k]

≥1|

2|2
[k]
≥1|

+
2 + |2[k]

≥1|

2|2
[k]
≥1|

∑
S⊆2[k]

≥1:S �=∅

∣∣∣∣∣ E
Hn

k,δ

[∏
S∈S

fS(xS)

]∣∣∣∣∣ ≤
2 + |2[k]

≥1|

2|2
[k]
≥1|

+
2ε

3

for ε > 0. To do so, the following lemma is enough.

Lemma 1. For any ε > 0, there exists τ, δ, w such that if XInf≤w
i (f1, . . . , f[k]) <

τ for any i then, for any S ⊆ 2[k]
≥1∣∣∣∣∣ E

Hn
k,δ

[
∏
S∈S

fS(xS)]

∣∣∣∣∣ ≤ ε

3 · |2[k]
≥1|

.

Note that the term EHn
k,δ

[∏
S∈S ZS

]
is also represented as EHn

k,δ
[
∏

S∈S fS(xS)]
since each fS is a Boolean function. ��

4.1 Proof of Lemma 1

First note that for any S ⊆ 2[k]
≥1, |S| ≤ 2, the LHS become zero since the marginal

distribution of Hn
k,δ on

∏
S∈S

∏n
i=1 X i

S is uniformly random and functions are
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folded. We need to prove Lemma 1 for S ⊆ 2[k]
≥1, |S| ≥ 3 and actually we only

prove Lemma 1 for S = 2[k]
≥1; any choice of S can be handled in almost the

same way. It is easy to see that following lemmas with the triangle inequality
concludes the proof of Lemma 1.

Lemma 2. By taking γ > 0 small enough as a function of δ, k,∣∣∣∣∣ E
Hn

k,δ

[∏
S∈S

fS(xS) −
∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

Lemma 3. For any S0 ∈ S, |S| ≥ 3, γ, δ, there exist τ, w such that if
XInf≤w

i (f1, . . . , f[k]) < τ for any i then,∣∣∣∣∣ E
Hn

k,δ

[∏
S∈S

T1−γfS(xS)

]
− E

In
k,S0,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

Lemma 4. For any S0 ∈ S, γ, δ, it holds that∣∣∣∣∣ E
In

k,S0,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ √
δ.

The proof of Lemma 4 is given in [42]. ��

4.2 Proof of Lemma 2

We define a lexicographical order <lex between elements of 2[k]
≥1 as

1 <lex 2 <lex · · · <lex n <lex {1, 2} <lex {1, 3} <lex · · · <lex {1, 2, . . . , k},

and let Sl = {S ∈ 2[k]
≥1 : S appears within lth by <lex}. It is easy to see that the

following lemma with the triangle inequality completes the proof of Lemma 2.

Lemma 5. By taking γ > 0 small enough as a function of δ, k, we ensure, for
any l ∈ [|2[k]

≥1|],∣∣∣∣∣∣ E
Hn

k,δ

⎡⎣(∏
S∈Sl

fS(xS)

)⎛⎝ ∏
S∈S\Sl

T1−γfS(xS)

⎞⎠−

⎛⎝ ∏
S∈Sl−1

fS(xS)

⎞⎠⎛⎝ ∏
S∈S\Sl−1

T1−γfS(xS)

⎞⎠⎤⎦∣∣∣∣∣∣ ≤
√

δ/2|2
[k]
≥1|.

For the proof of Lemma 5, see [42]. ��
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4.3 Proof of Lemma 3

From Proposition 2, by setting w as a function of γ and τ , we can assume
XInfi(T1−γ/2f1, . . . , T1−γ/2f[k]) < 2τ for all i where γ is the value chosen appro-
priately (see [42]). To prove Lemma 3 for the case |S| ≥ 3, we use the inductive
proof. We replace the distribution from Hn

k,δ = ⊗n
i=1Hk,δ to In

k,δ = ⊗n
i=1Ik,S0,δ

one component at a time. We will show the following lemma.

Lemma 6. For any l ∈ [n],∣∣∣∣∣ E
⊗l−1

i=1Ik,S0,δ×⊗n
i=lHk,δ

[∏
S∈S

T1−γfS(xS)

]
−

E
⊗l

i=1Ik,S0,δ×⊗n
i=l+1Hk,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣ ≤ Δl,

where

Δl = τγ/2|S|2|S|
∑
S∈S

Inf l(T1−γ/2fS).

For the proof of Lemma 6, see [42].

Proof (of Lemma 3). From Lemma 6,∣∣∣∣∣ E
Hn

k,δ

[∏
S∈S

T1−γfS(xS)

]
− E

In
k,δ

[∏
S∈S

T1−γfS(xS)

]∣∣∣∣∣
≤ (2τ)γ/2|S|2|S|

∑
i∈[n]

∑
S∈S

Infi(T1−γ/2fS) ≤ |S|(2τ)γ/2|S|2|S|/γ.

By choosing τ = O
(
(γ

√
δ/2|S|)γ/|S|

)
, the lemma follows. ��

5 Discussion

Unfortunately, our Long Code test does not immediately imply a new PCP char-
acterization of NP. A Long Code test without consistency checks is most easily
composed with Unique Games [26] as an outer verifier in PCP constructions.
However, since Unique Games cannot have perfect completeness, an obvious ap-
proach that combines our tester and Unique Games does not imply a new PCP
construction. A variant of Unique Games, which is called d-to-1 Games [26],
is conjectured to have perfect completeness. Though it seems hard to combine
our tester and d-to-1 Games, we hope that it is possible and we obtain a new
conditional PCP construction.
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Abstract. We prove that relative to an oracle, there is no worst-case to
average-case reduction for NP. We also handle classes that are somewhat
larger than NP, as well as worst-case to errorless-average-case reduc-
tions. In fact, we prove that relative to an oracle, there is no worst-case
to errorless-average-case reduction from NP to BPPpath. The latter class
contains PNP

‖ and captures the power of randomized computations con-
ditioned on efficiently testable events. We also handle reductions from
NP to the polynomial-time hierarchy and beyond, under restrictions on
the number of queries the reductions can make.

Keywords: Average-case complexity, oracles.

1 Introduction

The study of average-case complexity concerns the power of algorithms that are
allowed to make mistakes on a small fraction of inputs. Of particular importance
is the relationship between worst-case complexity and average-case complexity.
For example, cryptographic applications require average-case hard problems,
and it would be desirable to base the existence of such problems on minimal,
worst-case complexity assumptions.

For the class PSPACE, it is known that worst-case hardness and average-case
hardness are equivalent [1]. That is, if PSPACE is worst-case hard then it is
also average-case hard. For the class NP, the situation is not well-understood. A
central open problem in average-case complexity is to prove that if NP is worst-
case hard then it is also average-case hard. Considering the lack of progress
toward proving this proposition, a natural goal is to exhibit barriers to proving
it, by ruling out certain general proof techniques. Bogdanov and Trevisan [3]
considered the possibility of a proof by reduction. Building on [5], they showed
that the proposition cannot be proven by a nonadaptive reduction unless the
polynomial-time hierarchy collapses; it remains open to provide evidence against
the existence of adaptive reductions. Another possibility that has been consid-
ered is a relativizing proof. In 1995, Impagliazzo and Rudich claimed [9] that they
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had constructed a relativized heuristica, which is a world in which NP is worst-
case hard but average-case easy, thus ruling out this possibility. However, they
have since retracted their claim. We make progress toward obtaining relativized
heuristica, by ruling out the possibility of a relativizing proof by reduction. Our
barrier holds even for adaptive reductions. More formally, we prove that there
exists an oracle relative to which there is no reduction of type(

NP,PSamp

)
⊆ HeurBPP ⇒ NP ⊆ BPP

where
(
NP,PSamp

)
is the class of distributional NP problems under polynomial-

time samplable distributions, and HeurBPP is the class of distributional prob-
lems with polynomial-time average-case randomized algorithms.

We also generalize this result in various ways. The proposition that if NP
is worst-case hard then it is also average-case hard concerns average-case algo-
rithms that may output the wrong answer on a small fraction of inputs. In light
of the aforementioned barriers, it is natural to consider the following proposi-
tion, which is potentially easier to prove: If NP is worst-case hard then it is
also hard for errorless average-case algorithms, which may output “don’t know”
on a small fraction of inputs but must never output the wrong answer.1 Our
result generalizes to rule out relativizing proofs by reduction of this proposition.
Further, we show how to rule out relativizing proofs by reduction that if NP is
worst-case hard then certain classes larger than NP are errorless-average-case
hard.

Independently of our work, Impagliazzo [10] has succeeded in constructing a
relativized heuristica, even for errorless average-case algorithms, which subsumes
our result for NP. However, this does not subsume our results for classes higher
than NP, although Impagliazzo conjectures that this may be possible using his
techniques.

1.1 Notions of Reductions and Relationship to Previous Work

Various models of worst-case to average-case reductions for NP have been con-
sidered in the literature, and they can be informally taxonomized as follows.

For the moment let us gloss over the issue of which distribution on inputs an
average-case algorithm is judged with respect to. A worst-case to average-case
reduction for NP must show that for every L1 ∈ NP there exists an L2 ∈ NP
such that if L2 has a polynomial-time average-case algorithm then L1 has a
polynomial-time worst-case algorithm. The worst-case algorithm for L1 depends
on the hypothesized average-case algorithm for L2 in some way, which we call the
decoding. There are the following four natural types of dependence, in decreasing
order of strength.

(1) Black-box dependence means that the worst-case algorithm for L1 has oracle
access to the average-case algorithm for L2, and it must solve L1 on all

1 An equivalent notion of an errorless average-case algorithm is one that always out-
puts the correct answer but whose running time is only “polynomial-on-average”
[14].
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inputs for every oracle that solves L2 on most inputs, regardless of whether
the oracle represents an efficient algorithm.

(2) The worst-case algorithm for L1 might have oracle access to the average-case
algorithm for L2 but only be guaranteed to solve L1 when the oracle is, in
fact, an efficient average-case algorithm for L2.

(3) The worst-case algorithm for L1 might require the code of an efficient average-
case algorithm for L2.

(4) The dependence can be arbitrary, meaning that if L2 has an efficient average-
case algorithm then L1 has an efficient worst-case algorithm. This type of
dependence allows for arbitrary proofs that if NP is worst-case hard then it
is also average-case hard.

For the first three types, the algorithm that solves L1 with the aid of a hypoth-
esized average-case algorithm for L2 is called the reduction itself. In this paper
we consider type (1) decoding. Note that since our results are about relativiza-
tion, the reductions we consider have access to two oracles: the reduction oracle
(representing the hypothesized average-case algorithm) and the relativization
oracle.

Bogdanov and Trevisan [3] also considered type (1) decoding. They showed
that such a reduction cannot exist unless the polynomial-time hierarchy col-
lapses, provided the reduction is nonadaptive in its oracle access to the hypoth-
esized average-case algorithm. Compared to the Bogdanov-Trevisan barrier, our
barrier has the advantages that it is unconditional and it applies to adaptive
reductions, but has the disadvantage that it only applies to reductions that rel-
ativize.

Gutfreund et al. [6] showed a positive result, namely that there is a worst-case
to average-case reduction for NP with type (2) decoding, under a distribution
on inputs that is samplable in slightly-superpolynomial time. Building on this
result, Gutfreund and Ta-Shma [7] showed that under a certain weak derandom-
ization hypothesis, there is a worst-case to average-case reduction from NP to
nondeterministic slightly-superpolynomial time with type (2) decoding, under
the uniform distribution on inputs. Moreover, the results of [6,7] relativize.

Another aspect of worst-case to average-case reductions is the encoding, which
refers to the way in which L2 depends on L1. Black-box encoding means that
the algorithm that defines L2 has oracle access to L1, and for every language
L1 (not just those in NP), if the corresponding L2 has an efficient average-case
algorithm then L1 has an efficient worst-case algorithm (via one of the above
four types of decoding).

Viola [16,17] proved two results about worst-case to average-case reductions
with black-box encoders implementable in the polynomial-time hierarchy. In [16]
he proved unconditionally that such a reduction with type (1) decoding does not
exist. In [17] he proved that if such a reduction with type (4) decoding exists
then PH is average-case hard, and thus basing the average-case hardness of PH
on the worst-case hardness of PH in this way is no easier than unconditionally
proving the average-case hardness of PH.
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1.2 Results

Our first result concerns the class BPPpath, which was introduced by Han et
al. [8], who also showed that relative to every oracle, PNP

‖ ⊆ BPPpath ⊆ BPPNP.
The class of distributional problems with polynomial-time errorless average-case
randomized algorithms is denoted by AvgZPP.

Theorem 1. There exists an oracle relative to which there is no reduction of
type (

BPPpath,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP.

Note that the type of reduction considered in Theorem 1 is weaker than a
worst-case to average-case reduction for NP, because BPPpath is larger than
NP, AvgZPP is smaller than HeurBPP, and UP is smaller than NP. Ruling out
weaker reductions yields a stronger result.

We also prove a similar result for BPPNP
‖, o(n/ log n), which denotes the class

BPPNP restricted to have o(n/ log n) rounds of adaptivity in the NP oracle
access but any number of queries within each round. In the current state of
knowledge, BPPNP

‖, o(n/ log n) is incomparable to BPPpath.

Theorem 2. There exists an oracle relative to which there is no reduction of
type (

BPPNP
‖, o(n/ log n),PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP.

If we restrict our attention to reductions that use a limited number of queries,
then we can handle classes even larger than BPPpath and BPPNP

‖, o(n/ log n).

Theorem 3. For every polynomial q there exists an oracle relative to which
there is no q-query reduction of type(

PH,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP.

Since BPPpath ⊆ PH and BPPNP
‖, o(n/ log n) ⊆ PH relative to every oracle, it may

appear at first glance that Theorem 3 subsumes Theorem 1 and Theorem 2.
The reason it does not is because of the order of the quantifiers. In Theorem
3, the reduction may not make as many queries as it likes; it may only make a
fixed polynomial q number of queries even though its running time may be an
arbitrarily high degree polynomial.

If we are willing to sacrifice all but two queries, then we can go quite a bit
further than PH.

Theorem 4. For every uniform complexity class of languages C there exists an
oracle relative to which there is no 2-query reduction of type(

C,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP.

The term “uniform complexity class of languages” has a somewhat technical
meaning, which is explained in the full version of this paper, but it encompasses
all “ordinary” complexity classes such as PSPACE and EXPEXP.



756 T. Watson

2 Preliminaries

We refer the reader to the survey paper [4] for background on average-case
complexity. In this section we provide preliminaries that are not completely
standard.

2.1 Complexity Classes

For any randomized algorithm M , we let Mr denote M using internal randomness
r.

Definition 1. BPPpath denotes the class of languages L such that for some
polynomial-time randomized algorithm M that outputs two bits, and for all x,

– Prr

[
Mr(x)2 = 1

]
> 0 and

– Prr

[
Mr(x)1 = L(x)

∣∣ Mr(x)2 = 1
]
≥ 2/3.

The above definition of BPPpath is not the same as the original one given by Han
et al. [8], but it is equivalent relative to every oracle, and it is more convenient
for our purposes. Intuitively, BPPpath captures the power of polynomial-time
randomized computations after conditioning on efficiently testable events.

We now define the average-case complexity classes we need. Recall that in
average-case complexity, we study distributional problems (L, D) where L is
a language and D = (D1, D2, . . .) is an ensemble of probability distributions,
where Dn is distributed over {0, 1}n. Recall that PSamp denotes the class of
polynomial-time samplable ensembles, and U denotes the class consisting of only
the uniform ensemble U . If C is a class of languages and D is a class of ensembles
then (C,D) =

{
(L, D) : L ∈ C and D ∈ D

}
.

Definition 2. HeurBPP denotes the class of distributional problems (L, D) that
have a polynomial-time heuristic scheme, that is, a randomized algorithm M that
takes as input x and δ > 0, runs in time polynomial in |x| and 1/δ, and for all
n and all δ > 0 satisfies

Pr
x∼Dn,r

[
Mr(x, δ) �= L(x)

]
≤ δ.

Definition 3. AvgZPP denotes the class of distributional problems (L, D) that
have a polynomial-time errorless heuristic scheme, that is, a randomized algo-
rithm M that takes as input x and δ > 0, runs in time polynomial in |x| and
1/δ, always outputs L(x) or ⊥, and for all n and all δ > 0 satisfies

Pr
x∼Dn,r

[
Mr(x, δ) = ⊥

]
≤ δ.

2.2 Reductions

In this section we informally explain what we mean when we say there exists a
reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1
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where C′
2, C2, C′

1, C1 are four complexity classes. In Section 2.3 below we give
formal definitions for the specific classes to which our theorems apply.

A complexity class is a set of computational problems, such as languages or
distributional problems. We assume for concreteness that each of C1 and C2 is
defined in the following way. By an input-output relationship we mean a random-
ized function. There is a set of algorithms, each of which induces an input-output
relationship. That is, each algorithm takes an input and produces an output sam-
pled from some distribution depending on the input. There is a predicate that
indicates for each input-output relationship and each computational problem
whether the input-output relationship solves the problem. There is a notion of
computational resources used by the algorithms, and an algorithm is said to be
efficient if it satisfies certain resource constraints. The class is defined as the set
of problems solved by efficient algorithms. This type of definition encompasses
classes defined in terms of (uniform or nonuniform) deterministic, randomized,
or quantum algorithms, but it could be generalized to handle other models as
well.

We also assume that for C1 there is an analogous set of algorithms that can
make queries to a reduction oracle, which represents an input-output relation-
ship.2 We assume that plugging any algorithm from C2’s set into the reduction
oracle yields an algorithm from C1’s set.

Now suppose P1 is a computational problem of the appropriate kind for C1
and P2 is a computational problem of the appropriate kind for C2.

Definition 4. A reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1

is an algorithm from C1’s set of reduction oracle algorithms, such that for every
reduction oracle that solves P2 according to C2, the reduction solves P1 according
to C1 and it satisfies C1’s resource constraints if we pretend each query to the re-
duction oracle uses any amount of resources allowed by C2’s resource constraints.

Note that if we plug an actual, efficient algorithm for P2 (according to C2) into
the reduction oracle of such a reduction, then the reduction becomes an efficient
algorithm for P1 (according to C1). Thus if there exists a reduction satisfying
Definition 4 then P2 ∈ C2 implies P1 ∈ C1. But the reduction must work even
when the reduction oracle is an input-output relationship that is not efficiently
implementable.

As an example, suppose C2 = BPTIME(2nε

). Then the reduction must solve
P1 according to C1 when the reduction oracle is any randomized function from
{0, 1}∗ to {0, 1} that, on input w, returns P2(w) with probability ≥ 2/3.3

2 In particular, the reduction oracle is not like a relativization oracle, which just an-
swers queries to a language.

3 One might wonder about reductions that can also choose the randomness used by
the reduction oracle. While this would be more general in one sense, it would be
more restrictive in the sense that it would limit the randomness complexity of the
reduction oracle. In this paper, queries are always just inputs to an input-output
relationship as defined above.
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Further, the reduction must satisfy the resource constraints of C1 when we pre-
tend each query of length n to the reduction oracle takes time O(2nε

).

Definition 5. We say there exists a reduction of type

C′
2 ⊆ C2 ⇒ C′

1 ⊆ C1

if for every P1 ∈ C′
1 there exists a P2 ∈ C′

2 and a reduction of type

P2 ∈ C2 ⇒ P1 ∈ C1.

We make a few remarks about Definition 5.

– When C′
1 has an appropriately complete problem P1, this is equivalent to

saying there exists a P2 ∈ C′
2 and a reduction of the above type, for the fixed

problem P1.
– Note that we do not require that the reduction is uniform in the sense of there

being a fixed algorithm R that computes the reduction for every P1 ∈ C′
1

given the code for a C′
1-type algorithm for P1.

– Note that when we say there is a reduction of the above type, this assertion
gets weaker as C′

2 and C1 get larger and C2 and C′
1 get smaller.

2.3 Relativization

When we relativize to an oracle language A, every computation gets unrestricted
oracle access to A. This includes samplers and reductions. Thus reductions have
access to two oracles: the reduction oracle and the relativization oracle. When
we write RB,A we mean B is the reduction oracle and A is the relativization
oracle for reduction R.

To illustrate the formal framework set up so far, we give the precise statement
of Theorem 1. There exists a language A and a language L1 ∈ UPA such that for
all languages L2 ∈ BPPA

path, all ensembles D ∈ PSamp
A, and all polynomial-

time randomized reductions R◦,◦, R◦,A is not of type

(L2, D) ∈ AvgZPPA ⇒ L1 ∈ BPPA.

The latter means that there exists an x ∈ {0, 1}∗ and a randomized function
B : {0, 1}∗ × R>0 → {0, 1,⊥} which is a valid AvgZPP oracle for (L2, D), such
that

Pr
r,B

[
RB,A

r (x) = L1(x)
]

< 2/3

where the probability is over both the internal randomness of R and the random-
ness of B (each query is answered with fresh independent randomness). When
we say B is a valid AvgZPP oracle for (L2, D) we mean that B(w, δ) always
returns L2(w) or ⊥, and for all n and all δ > 0,

Pr
w∼Dn,B

[
B(w, δ) = ⊥

]
≤ δ.
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When we say R◦,◦ runs in polynomial time, this includes the fact that each
query B(w, δ) to the reduction oracle is charged time polynomial in |w| and 1/δ.
In other words, δ must always be at least inverse polynomial. Throughout the
paper we tacitly assume that “polynomial-time reductions” have this restriction,
since C2 is always AvgZPP. We clarify that D ∈ PSamp

A means that for some
randomized algorithm S◦, SA(n) runs in time polynomial in n and outputs a
sample distributed according to Dn.

Regarding Theorem 3 and Theorem 4, there is one further issue to consider.
For reductions that are allowed an unlimited number of queries (like in Theorem
1 and Theorem 2), the error probability of 1/3 in the definition of BPP is unim-
portant since it can be amplified from 1/2 − 1/ poly(n) to 1/2poly(n). However,
amplification increases the number of queries, so the error probability is not ar-
bitrary for Theorem 3 and Theorem 4. For example, the existence of a q-query(
1/2 − 1/ poly(n)

)
-error reduction of type(
PH,PSamp

)
⊆ AvgZPP ⇒ UP ⊆ BPP

does not seem to imply the existence of a q-query 1/3-error reduction of the same
type, but it still does imply that if

(
PH,PSamp

)
⊆ AvgZPP then UP ⊆ BPP.

For this reason, we allow an error probability of 1/2− 1/ poly(n) (for arbitrarily
high degree polynomials) in Theorem 3 and Theorem 4.

3 Intuition

In Section 3.1 we give the intuition behind the proof of Theorem 1. The intuition
for Theorem 2 is omitted here, but it uses the same technique. In Section 3.2 we
give very brief intuition for Theorem 3 and Theorem 4. The full version of this
paper contains detailed intuition and formal proofs for all four theorems.

3.1 Intuition for Theorem 1

We start by informally describing how to construct an oracle relative to which
there is no reduction of type(

NP,U
)
⊆ HeurBPP ⇒ UP ⊆ BPP.

To obtain Theorem 1, we must strengthen HeurBPP to AvgZPP4, strengthen U
to PSamp, and strengthen NP to BPPpath. Strengthening HeurBPP to AvgZPP
and U to PSamp are not difficult, so we omit the intuition here.

Fix an arbitrary NP-type algorithm M and an arbitrary polynomial-time ran-
domized reduction R, and fix a sufficiently large n. We explain how to diagonalize
against the pair M, R. For simplicity we assume that on inputs of length n, R
only queries the reduction oracle on inputs of length nd and only with δ = 1/nd

4 Usually AvgZPP is thought of as being a weaker class than HeurBPP (since
AvgZPP ⊆ HeurBPP), but it is stronger in our situation.
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for some positive integer d; thus we can omit the δ. We consider relativization
oracles of the form A : {0, 1}n × {0, 1}n → {0, 1}, which we think of as 2n × 2n

tables. Let LA
1 : {0, 1}n → {0, 1} be defined by LA

1 (x) =
∨

y A(xy). That is, LA
1

is the language of strings x such that there exists a 1 in the xth row of A. Let
LA

2 : {0, 1}nd → {0, 1} denote the language computed by MA. We only consider
A, LA

1 , LA
2 at these input lengths since all other input lengths are irrelevant.

We wish to construct an A such that for some x ∈ {0, 1}n and some deter-
ministic5 reduction oracle B : {0, 1}nd → {0, 1}, B agrees with LA

2 on at least a
1 − 1/nd fraction of inputs and RB,A(x) outputs LA

1 (x) with probability < 2/3.
This will show that R fails to be a reduction of type

(
LA

2 , U
)
∈ HeurBPPA ⇒ LA

1 ∈ BPPA.

We also need to ensure that there is at most one 1 in each row of A so that
LA

1 ∈ UPA, but this will fall right out of the construction. We construct A
through an iterative process, and we use a potential function argument to show
that this process makes steady progress toward our goal. The process iteratively
modifies the relativization oracle, and we use A to denote the relativization
oracle throughout the whole process.6 Thus the table denoted by A changes
many times throughout our argument, and the languages LA

1 and LA
2 change

accordingly. Initially A is all 0’s.
Let us consider the computation of R on some input x. It is trying to figure out

whether there is a 1 in the xth row of A, in other words, compute LA
1 (x). It has

two sources of information about LA
1 (x): the relativization oracle A itself, and

the reduction oracle B. If R did not have access to B, then we could diagonalize
in a standard way: Observe how R behaves given that the xth row of A is all
0’s. If R outputs 1 with high probability, then we are done. If R outputs 1 with
low probability, then we find a bit in the xth row that R queries with only tiny
probability and flip that bit (such a bit must exist because R does not have
enough time to keep an eye on the entire row); then R still outputs 1 with low
probability, but now x ∈ LA

1 . Thus R must rely on the reduction oracle B for
help.

Our construction has two stages. The goal of stage 1 is to gain the upper hand
by rendering B useless to R. Then in stage 2 we deliver the coup de grâce with
the standard diagonalization argument. We cannot guarantee that B is useless
for every x, but we only need it to be useless for some x. Specifically, suppose
we could set up A in such a way that there exists an x such that

5 B will be deterministic here even though randomness is allowed; this makes the
result stronger.

6 More formally, we could say we define a sequence of relativization oracles
A0, A1, A2, . . . that leads to some final version Ak = A. We omit the subscripts
throughout the argument and simply refer to A with the understanding that this
means the “current” version.
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(1) the xth row of A is all 0’s, and
(2) for all y, flipping A(xy) would cause LA

2 (w) to change for at most a 1/nd

fraction of w’s.

Then declaring B to be LA
2 for the particular A we have set up, we know that

we can leave A alone or we can flip any bit in the xth row, and for all these
possibilities B is a valid HeurBPP oracle for the new LA

2 . Then we can observe
the behavior of R on input x, using this fixed B for the reduction oracle, and
diagonalize against R in the standard way with the assurance that whatever
happens to A during this second stage, B will remain valid.

How do we set up A so that such an x exists? We do this iteratively. In each
iteration, we find a certain x whose row is currently all 0’s, which is our “best
guess” for the good x. If condition (2) is satisfied for this x, then we are done.
Otherwise, there is some column y that violates condition (2). Then we flip
the bit A(xy) to 1 and continue with the next iteration. We just need to show
that there are < 2n iterations before we succeed. For this, we define a potential
function ΦA that assigns an energy value to A. The key is to show that if y
violates condition (2) for our best guess x, then flipping A(xy) must cause a
significant decrease in potential. Since ΦA must remain bounded, there cannot
be too many iterations before M is beaten into submission and our best guess
x works.

Let us hold off on the definition of ΦA and focus on finding a best guess x. Our
ultimate goal is to ensure that if we flip any bit in the xth row, most of the inputs
to LA

2 “don’t notice”. There is an asymmetry between inputs that are accepted
by MA and those that are rejected. If w ∈ {0, 1}nd

is such that MA(w) rejects,
then if any of the exponentially many computation paths “notices” a change in
A, the whole computation could become accepting. However, if MA(w) accepts,
then we can pick an arbitrary accepting computation path of MA(w) to be the
“designated” one. Only polynomially many bits of A are queried by M on this
path, and as long as none of these bits is flipped, w “won’t notice” any change
to A because MA(w) will still accept. In particular, there are only polynomially
many x’s such that MA(w) queries some bit in the xth row on the designated
path. Thus for every w with LA

2 (w) = 1, the vast majority of x have the property
that flipping any bit in the xth row does not cause LA

2 (w) to change to 0. By
an averaging argument, most x have the property that for most w ∈ {0, 1}nd

,
flipping any bit in the xth row does not cause LA

2 (w) to change from 1 to 0. For
the current A, there must exist an x with the latter property and such that the
xth row is all 0’s, since (by induction) we know there are not very many x’s with
a 1 in their row currently. This is our best guess x.

We know that flipping any bit in the xth row causes only a small fraction of
all w ∈ {0, 1}nd

to change from 1 to 0 under LA
2 . This is good, but it is only half

the story. We would also like that flipping any bit in the xth row causes only a
small fraction of w’s to change from 0 to 1. Suppose we budget a 1/2nd fraction
of w’s to change from 1 to 0, and a 1/2nd fraction to change from 0 to 1. Now
if some y violates condition (2), then it must be the case that flipping A(xy)
causes at least a 1/2nd fraction of w’s to change from 0 to 1. We want to define
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the potential function so that having w’s change from 0 to 1 under LA
2 causes a

decrease in potential. A natural choice is

ΦA = Pr
w∼U

nd

[
LA

2 (w) = 0
]
.

Flipping A(xy) causes at least a 1/2nd probability mass to leave the event
LA

2 (w) = 0. However, as much as a 1/2nd probability mass could enter the
event due to w’s that change from 1 to 0, which could essentially cancel out
the drop in potential from the w’s that changed from 0 to 1! The solution is
to change our budgeting. If we budget a 1/3nd fraction of w’s to change from
1 to 0 and a 2/3nd fraction to change from 0 to 1, then flipping A(xy), where
y violates condition (2), causes at least a 2/3nd probability mass to leave the
event, while at most a 1/3nd probability mass enters the event. Thus ΦA goes
down by at least 1/3nd, and there are at most 3nd < 2n iterations before our
best guess x works. This concludes the argument.

Very roughly, the big picture is as follows. For an input that is accepted by
MA, it is easy to ensure that the answer under LA

2 does not change when we
make modifications to A. For an input that is rejected by MA, we cannot ensure
that the answer does not change, but the point is that if it does change, then we
can ensure that it does not change again, since the input is now accepted.

Intuition for Strengthening NP to BPPpath. The difference from the above
proof is in the definition of the potential function ΦA, the choice of our best guess
x, and the argument that if some y violates condition (2) for our best guess x,
then flipping A(xy) causes a significant decrease in potential.

Now instead of an NP-type algorithm we have a BPPpath-type algorithm M .
Let us hold off on how to define ΦA and how to choose our best guess x. Consider
an arbitrary iteration of stage 1, let A denote the current relativization oracle,
and suppose we have somehow picked a certain x such that the xth row of A is all
0’s. Suppose there is a y such that flipping A(xy) causes LA

2 (w) to change for a
significant fraction of w’s. We want it to be the case that flipping A(xy) also causes
a significant decrease in potential. Let A′ denote A with A(xy) flipped to 1.

Consider a w such that LA′
2 (w) �= LA

2 (w). Let us make the bold assumption
that for all choices of M ’s internal randomness r such that MA

r (w)2 = 1, we have
MA′

r (w) = MA
r (w) (that is, both output bits match). Then by the definition of

BPPpath we have

Pr
r

[
MA′

r (w)2 = 1
]

≥ 3 · Pr
r

[
MA′

r (w)1 = LA
2 (w) and MA′

r (w)2 = 1
]

≥ 3 · Pr
r

[
MA

r (w)1 = LA
2 (w) and MA

r (w)2 = 1
]

≥ 3 ·
(

Pr
r

[
MA

r (w)2 = 1
]
· 2/3

)
= 2 · Pr

r

[
MA

r (w)2 = 1
]
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where the second line follows because the event in the second line is a subset
of the event on the right side of the first line. In other words, switching from A
to A′ forces the conditioning event to at least double in size, in order to reduce
the probability of outputting LA

2 (w) in the first bit (conditioned on that event)
from ≥ 2/3 to ≤ 1/3. Thus

− log2 Pr
r

[
MA′

r (w)2 = 1
]

≤ − log2 Pr
r

[
MA

r (w)2 = 1
]
− 1.

This suggests using

ΦA = E
w∈{0,1}nd

[
− log2 Pr

r

[
MA

r (w)2 = 1
]]

where w is chosen uniformly at random, because then when we flip A(xy), a
significant fraction of w’s each contribute a significant negative amount to the
potential difference ΦA′ − ΦA. There are three issues.

(1) We need to make sure the potential is not too large to begin with.
(2) We made an unjustified assumption about the behavior of M .
(3) We also need to make sure that the contribution of bad w’s to the potential

difference does not cancel out the negative contribution of good w’s.

Issue (1) is not problematic: Since we may assume r is chosen uniformly from
{0, 1}poly(n), for every w and every A we must have

Pr
r

[
MA

r (w)2 = 1
]

≥ 2− poly(n)

since otherwise the conditioning event would be empty and MA would fail to
define a language in BPPA

path (for the violating A), which would suffice to diag-
onalize against the pair M, R.

For issue (2), first note that if we relax our assumption to be that for almost all
r such that MA

r (w)2 = 1, we have MA′
r (w) = MA

r (w), then flipping A(xy) still
causes the probability of the conditioning event to go up by at least a constant
factor (say 3/2) assuming LA′

2 (w) �= LA
2 (w). Now we use our ability to choose x.

Since M runs in polynomial time, it can be shown that most x are useful, in the
sense that for the vast majority of w’s it is the case that for almost all r such
that MA

r (w)2 = 1, MA
r (w) does not query any bit in the xth row. Thus we can

pick our best guess x so that x is useful and the xth row of A is all 0’s. Then for
our fixed x and y, we know that the vast majority of w’s have the property that
for almost all r such that MA

r (w)2 = 1, we have MA′
r (w) = MA

r (w). Call the
remaining w’s horrible. Call w good if LA′

2 (w) �= LA
2 (w) and w is not horrible.

Call w bad if it is not good. By a union bound we know that a significant fraction
of w’s are good, and each good w contributes a significant negative amount to
the potential difference ΦA′ − ΦA.

Finally we consider issue (3). We consider the horrible w’s and the bad-but-
not-horrible w’s separately. The contribution of each horrible w to ΦA′ − ΦA

could be as large as poly(n) (inside the expectation), but only a tiny fraction
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of w’s are horrible so this only puts a small dent in the negative contribution
from the good w’s. Almost all of the w’s could be bad-but-not-horrible, but
the contribution of each such w to ΦA′ − ΦA can be at most a tiny positive
amount, since of the r’s with MA

r (w)2 = 1, almost all of them are such that
MA′

r (w)2 = MA
r (w)2 = 1. Thus the bad-but-not-horrible w’s only put a small

dent in the negative contribution from the good w’s.

3.2 Intuition for Theorem 3 and Theorem 4

It is well-known that error-correcting codes with efficient encoders and decoders
can be used to construct worst-case to average-case reductions, at least for large
complexity classes such as PSPACE [1,15]. Our strategy for proving Theorem 3
and Theorem 4 is to set up the relativization oracle in such a way that error-
correcting codes are in some sense the only way to construct worst-case to
average-case reductions of the appropriate types, and then argue that the ef-
ficiency of the resulting encoders and decoders is too good to be true. For Theo-
rem 3, we use a result due to Viola [16] which states that good error-correcting
codes cannot be encoded by small constant-depth circuits. For Theorem 4, we
use a lower bound due to Kerenidis and de Wolf [13] on the length of 2-query
locally decodable codes.

In a nutshell, here is the intuition. The reduction R cannot possibly hope to
solve LA

1 by looking for the answers in A, because A is so vast. It must rely on
M (the algorithm solving LA

2 ) for help. Intuitively, there are only two ways M
could help: by telling R the answers directly, or by telling R where to find the
answers in A. If M tries to tell R the answers directly, then (roughly) we have an
impossibly good error-correcting code where LA

1 is the information word, LA
2 is

the code word, M is the encoder, and R is the decoder. If M tries to tell R where
to find the answers in A, then R cannot make enough queries to the reduction
oracle to retrieve this information. See the full version of this paper for details
on how to formalize this intuition. We can handle arbitrary complexity classes
in Theorem 4 since the lower bound of [13] holds regardless of the complexity of
the encoder.
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Abstract. A linear (q, δ, ε, m(n))-locally decodable code (LDC) C :
Fn → Fm(n) is a linear transformation from the vector space Fn to the
space Fm(n) for which each message symbol xi can be recovered with
probability at least 1

|F| + ε from C(x) by a randomized algorithm that
queries only q positions of C(x), even if up to δm(n) positions of C(x)
are corrupted. In a recent work of Dvir, the author shows that lower
bounds for linear LDCs can imply lower bounds for arithmetic circuits.
He suggests that proving lower bounds for LDCs over the complex or
real field is a good starting point for approaching one of his conjectures.

Our main result is an m(n) = Ω(n2) lower bound for linear 3-query
LDCs over any, possibly infinite, field. The constant in the Ω(·) depends
only on ε and δ. This is the first lower bound better than the trivial
m(n) = Ω(n) for arbitrary fields and more than two queries.

Keywords: Error-Correcting Codes, Complexity Theory.

1 Introduction

Classical error-correcting codes allow one to encode an n-bit message x into a
codeword C(x) such that even if a constant fraction of the bits in C(x) are
corrupted, x can still be recovered. It is known how to construct such codes
of length O(n) that can tolerate a constant fraction of errors, even in such a
way that allows decoding in linear time [1]. However, if one is only interested
in recovering a few bits of the message, then these codes have the disadvantage
that they require reading most of the codeword.

A locally decodable code (LDC) C : Fn → Fm(n) is an encoding from the
vector space Fn to the space Fm(n) such that each message symbol xi can be
recovered with probability at least 1

|F| + ε from C(x) by a randomized algorithm
that reads only q positions of C(x), even if up to δm(n) positions in C(x) are
corrupted (here 1

|F| is zero if F is infinite). If C is a linear transformation, then the
LDC is said to be linear. LDCs in their full generality were formally defined by
Katz and Trevisan [2]. Linear LDCs were first considered in work by Goldreich
et al [3]. There is a vast body of work on LDCs; we refer the reader to Trevisan’s
survey [4] or to Yekhanin’s thesis [5].

M. Serna et al. (Eds.): APPROX and RANDOM 2010, LNCS 6302, pp. 766–779, 2010.
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While in general an LDC need not be linear, there is good motivation for
studying this case. On the practical front, it is easy to encode a message and
update a codeword given the generator matrix for a linear code. In applications
of error-correcting codes to compressed sensing [6–8], the encoding is defined
to be linear because of the physics of an optical lens. In large data streams,
sketches are linear because they can be updated efficiently. On the theoretical
front, lower bounds for linear 2-query LDCs are useful for polynomial identity
testing [9]. These applications consider fields F of large or infinite size, e.g., in
compressed sensing and streaming one has F = R.

In a surprising recent development, Dvir [10] shows that lower bounds for
linear locally self-correctable codes and linear locally decodable codes imply
lower bounds on the rigidity of a matrix, which in turn imply size/depth tradeoffs
for arithmetic circuits [11]. In Section 5.1 of [10], the author suggests that proving
lower bounds on linear locally correctable or linear locally decodable codes over
the complex or real field is a good starting point for approaching one of his
conjectures.

1.1 Results

Our main result is that for any (possibly infinite) field F, any 3-query linear
LDC requires m(n) = Ω(n2), where the constant in the Ω(·) notation depends
only on ε and δ.

The first reason previous work does not give a non-trivial lower bound over
arbitrary fields is that it uses a generic reduction from an adaptive decoder to
a non-adaptive decoder, which effectively reduces ε to ε/|F|q−1. For constant q,
if F is of polynomial size, one cannot beat the trivial m(n) = Ω(n) bound this
way. We give a better reduction to a non-adaptive decoder.

Given our reduction, it then seems possible to obtain a field-independent
Ω(n3/2) bound by turning the birthday paradox argument of Katz and Trevisan
[2] into a rank argument. This is still weaker than our bound by a factor of

√
n.

Also, by using a technique of Kerenidis and de Wolf [12], it seems possible to
obtain a bound of Ω(n2/(|F|2 log2 n)). This bound becomes trivial when F = R

or F = C, or even |F| = poly(n). Note that if taking |F| = poly(n) were to imply
3-query linear LDCs of linear size, then the encoding would need only a linear
number of machine words. Our result rules out this possibility.

While the parameters of the LDCs considered by Dvir [10] over R or C are
in a different regime than those considered here, e.g., he needs a bound for
q = log2+Ω(1)(n) queries, our result provides the first progress on this problem
for LDCs for more than two queries. We note that our results are not possible
for non-linear codes, as one can encode n real numbers into a single real number.

An earlier technical report [13] by the author contains some of the ideas used
here. That version of this paper has a weaker m(n) = Ω(n2/ log log n) bound
for 3-query linear LDCs over any field. It also shows an Ω(n2/ log n) bound for
non-linear 3-query LDCs over F2 using a similar argument to that given here
in Section 3.1. It contains polylogarithmic improvements over [12] for any odd



768 D.P. Woodruff

q ≥ 3 number of queries. We do not know if for constant-sized fields, an Ω(n2)
bound holds for non-linear codes.

1.2 Techniques

In this section we give an overview of the techniques we use for our lower bound.
Let C : Fn → Fm be a linear 3-query LDC. Then each of its output coordinates

Ci(x) equals 〈vi, x〉, for a vector vi ∈ Fn. As observed by Katz and Trevisan [2] for
finite fields, since C can tolerate a large fraction of errors and is locally decodable,
for each i ∈ [n]def= {1, 2, . . . , n}, there is a large matching (i.e., collection of disjoint
sets) Mi of triples {va, vb, vc} for which ui, the i-th standard unit vector, is in
span{va, vb, vc}. We generalize this to infinite fields, which requires some care
since the matching sizes of Katz and Trevisan (and subsequent work of [3] and
[12]) degrade with the field size for general adaptive decoders. For constant ε
and δ (the setting we consider here), we show that for any field, |Mi| = Ω(m).

Given the matchings, we work in the 3-uniform multi-hypergraph G on vertex
set {v1, . . . , vm} whose 3-edgeset is ∪n

j=1Mj . The average degree of a vertex in
G is Ω(n), and by standard arguments (iteratively remove the minimum degree
vertex in the hypergraph and stop once the minimum degree is larger than the
original average degree), we can find an induced sub-multi-hypergraph G′ with
minimum degree βn for a constant β > 0. In particular, it is easy to show that
we can find a set T of αn linearly independent vertices of G′ collectively incident
to Ω(n2) distinct 3-edges, where α is a constant satisfying 0 < α < β.

We now provide a new way to project 3-query LDCs down to 2-query LDCs.
Suppose we extend T to a basis T ∪ U of Fn by greedily adding a set U of
standard unit vectors. Consider the linear projection P for which T is in the
kernel, but P restricted to U is the identity map. Suppose we apply P to every
vertex in G′. Let N(T ) denote the set of vertices incident to T via a 3-edge
{a, b, c} in G′, i.e., the neighborhood of T . Suppose {a, b, c} ∈ Mi. The key
point is that after application of P , either the projection of a, b, or c is equal
to 0, since one of these vertices is in the kernel of P . But if ui ∈ U , then
P (ui) = ui. Hence, either ui ∈ span(P (a), P (b)), ui ∈ span(P (a), P (c)), or
ui ∈ span(P (b), P (c)). We can thus obtain large matchings of edges (as opposed
to 3-edges), for which a standard unit vector is in the span of the endpoints.
Notice that since |U | ≥ n − αn, whereas the minimum degree of each vertex in
T is βn > αn, each vertex is still incident to at least (β −α)n edges for different
i ∈ U , which is already enough to prove an Ω(n2/ log n) lower bound by now
resorting to known techniques for lower bounding 2-query LDCs [9].

The next and harder part is improving the bound to a clean Ω(n2). Our
lower bound comes from bounding the cardinality of the neighborhood N(T )
of T . Suppose this cardinality really were Θ(n2/ logn). Then there are Ω(n2)
hyperedges from T to its neighborhood. This means that the average degree
of a vertex in N(T ) using the edges from T to N(T ) is Ω(log n). By stan-
dard arguments we can find a set A of α′n vertices in N(T ) incident to a
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set B of Ω(n log n) vertices in N(T ) via the edges from T to N(T ). Now if we
augment the kernel of our projection to additionally include the vertices in A,
as well as more standard unit vectors, we can put most of B into the kernel of
our projection. We could not do this a priori, since putting a set B of more than
n vertices in the kernel of a projection could make the projection equal to zero.
Here, though, it is important that a constant fraction of standard unit vectors
are preserved under projection.

We assumed that N(T ) = Θ(n2/ log n), when it could have been anywhere
from ω(n2/ log n) to o(n2). However, we can iteratively apply the above proce-
dure, gradually enlarging the kernel while preserving a large number of standard
unit vectors under projection. After O(log log n) iterations, we show that the
neighborhood of our resulting kernel has size Ω(n2 log n). We can then use lower
bound techniques developed in the 2-query setting to deduce that m = Ω(n2).

1.3 Related Work

Katz and Trevisan [2] show that 1-query LDCs do not exist.
For linear 2-query LDCs, Dvir and Shpilka [9] show that m(n) ≥ exp(n) for1

any field F, and the Hadamard code shows this is optimal (see also [3], [14], [15]).
We note that for non-linear 2-query LDCs, if the field F has constant size, then
m(n) ≥ exp(n) is also known to hold [12].

For more than 2 queries, there is a large gap between upper and lower
bounds. This may, in part, be explained by the recent connections of Dvir [10].
The upper bounds for q-query LDCs are linear and have the form m(n) =
exp(exp(logc/ log q n log1−c/ log q log n)) for an absolute constant c > 0 ([16], [17],
[18]). While the initial constructions were over finite fields, recently it was shown
that similar upper bounds hold also over the real or complex numbers ([19], [20]).

The lower bounds are the aforementioned bounds of Katz and Trevisan [2]
and of Kerenidis and de Wolf [12].

2 Preliminaries

Definition 2.1. ([2]) Let δ, ε ∈ (0, 1), q an integer, and F a field. A linear
transformation C : Fn → Fm is a linear (q, δ, ε)-locally decodable code (LDC for
short) if there is a probabilistic oracle machine A such that:

– For every x ∈ Fn, for every y ∈ Fm with Δ(y, C(x)) ≤ δm, and for every
i ∈ [n], Pr[Ay(i) = xi] ≥ 1

|F| + ε, where the probability is taken over the
internal coin tosses of A. Here Δ(C(x), y) refers to the number of positions
in C(x) and y that differ.

– In every invocation, A makes at most q queries (possibly adaptively).

In Section 4, we prove the following.

1 Here exp(n) denotes 2Θ(n).
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Theorem 2.1. Let C : Fn → Fm be a linear (3, δ, ε)-LDC. Then C is also a
linear (3, δ/9, 2/3 − 1/|F|)-LDC with a non-adaptive decoder.

This improves known reductions to non-adaptive codes since it holds for any F.
Thus, we may assume that we have a non-adaptive decoder by changing δ and
ε by constant factors.

By known results described in Appendix A, for every i ∈ [n] there is a match-
ing Mi of {v1, . . . , vm} of size Ω(m) (where the constant depends on ε, δ, and q)
such that, if e ∈ Mi, then ui ∈ span(v | v ∈ e), where ui denotes the unit vector
in direction i. Consider the multi-hypergraph G with vertex set {v1, . . . , vm}
and hyperedge set �n

i=1Mi, that is, a hyperedge e occurs in G once for each
Mi that it occurs in. For readability, we use the term hypergraph to refer to a
multi-hypergraph, that is, a hypergraph which may have repeated hyperedges
(which we sometimes just refer to as edges).

In Appendix A, we show there is a non-empty hypergraph G′ ⊆ G with
minimum degree βn, where β is such that the number of hyperedges in G is at
least βmn.

3 Lower Bounds for 3-Queries over Any Field

3.1 The Basic Projection

Assume we have a linear (3, δ, ε)-LDC C : Fn → Fm for an arbitrary (possibly
infinite) field F. Throughout this section we shall use the term edge to denote a
3-edge (i.e., there are 3 endpoints) for ease of notation.

Let G be the hypergraph on vertex set {v1, . . . , vm} and G′ the non-empty
sub-hypergraph of G with minimum degree βn defined in Section 2. Let v be an
arbitrary vertex in G′, and let T = {v} ∪ N(v), where N(v) denotes the set of
neighbors of v in G′ (i.e., the vertices in a 3-edge containing v). Remove vertices
from T so that we are left with a set T of exactly αn linearly independent vectors,
where α < β is a small enough constant specified by the analysis below. This is
always possible because {v} ∪ N(v) spans βn linearly independent vectors.

We may assume, by increasing m by a factor of at most 3, that every edge
in Mi has size exactly 3, and moreover, for every such edge {vj1 , vj2 , vj3} ∈ Mi,
we have ui = γ1vj1 + γ2vj2 + γ3vj3 , where γ1, γ2, γ3 are non-zero elements of F.
Indeed, we may append 2m constant functions which always output 0 to the end
of C. Then, if an edge in Mi either has size less than 3 or has size 3 and has the
form {vj1 , vj2 , vj3}, but satisfies ui = γ1vj1 + γ2vj2 + γ3vj3 for some γk = 0, we
can replace the γk with 1 and replace jk with an index corresponding to one of
the zero functions.

Let v1, . . . , vT denote the vectors in T . Extend {v1, . . . , vT } to a basis of Fn

by adding a set U of n − αn standard unit vectors. Define a linear projection L
as follows:

L(v) = 0 for all v ∈ T and L(v) = v for all v ∈ U.

Since L is specified on a basis, it is specified on all of Fn.
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Let M ′
i denote the collection of edges in Mi that are incident to some vertex in T .

Let e = {vj1 , vj2 , vj3} be an edge in some M ′
i . Then there are non-zero γ1, γ2, γ3 ∈

F for which γ1vj1 + γ2vj2 + γ3vj3 = ui. By linearity, L(ui) = L(γ1vj1 + γ2vj2 +
γ3vj3) = γ1L(vj1)+γ2L(vj2)+γ3L(vj3). By definition of M ′

i , |{vj1 , vj2 , vj3}∩T | >
0, so one of the following must be true: L(ui) ∈ span(L(vj1 ), L(vj2)), L(ui) ∈
span(L(vj1 ), L(vj3)), or L(ui) ∈ span(L(vj2), L(vj3)).

Thus, for each such edge e = {vj1 , vj2 , vj3}, by removing exactly one vec-
tor vj�

∈ {vj1 , vj2 , vj3} for which L(vj�
) = 0, we may define matchings Wi of

disjoint pairs {vj , vk} of {v1, . . . , vm} such that if {vj , vk} ∈ Wi, then L(ui) ∈
span(L(vj), L(vk)). Moreover,

∑n
i=1 |Wi| =

∑n
i=1 |M ′

i |.
Say an index i ∈ [n] survives if L(ui) = ui, and say an edge e survives if

e ∈ M ′
i for an i that survives. If i survives, then ui ∈ U , as otherwise we would

have ui =
∑

v∈T γvv +
∑

u∈U γuu for some coefficients γv, γu ∈ F. Applying L
to both sides we would obtain ui = L(ui) =

∑
u∈U γuL(u) =

∑
u∈U γuu, which

is impossible unless ui ∈ U .
Recall that each of the αn vertices v in T has degree at least βn in G′. For

any such v ∈ T , there are at least βn − αn edges e in the disjoint union of the
M ′

i for the i the survive. Thus, since each edge that survives can be incident to
at most 3 elements of T , and since α < β,∑

i that survive

|Wi| ≥ αn(β − α)n/3 = Ω(n2).

For i that do not survive, we set Wi = ∅. We need a theorem due to Dvir and
Shpilka [9].

Theorem 3.1. ([9]) Let F be any field, and let a1, . . . , am ∈ Fn. For every
i ∈ [n], let Mi be a set of disjoint pairs {aj1 , aj2} such that ui ∈ span(aj1 , aj2).
Then,

∑n
i=1 |Mi| ≤ m log m + m.

Applying Theorem 3.1 to our setting, we have m vectors L(vj) ∈ Fn and match-
ings Wi with

∑
i |Wi| = Ω(n2). We conclude that,

Theorem 3.2. For δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (3, δ, ε)-locally
decodable code, then m = Ωδ,ε(n2/ log n), independent of the field F.

3.2 Recursing to Get the Ω(n2) Bound

We assume that β > 2α and w.l.o.g., that (β − 2α)n is a power of 2 and αn is
an integer. For a set A ⊆ Fn, let ex(A) denote a maximal linearly independent
subset of A.

Base Case: As before, let G′ be the hypergraph on 3-edges with minimum de-
gree βn, and let T1 = T be the set of αn linearly independent vertices defined in
Section 3.1. We extend T1 to a basis of Fn by greedily adding a set U of n − αn
standard unit vectors to T1. Set B1 = U . Since each vertex in T1 has degree at
least βn, since |T1| = αn, and since each matching edge can be counted at most 3
times, the set E of 3-edges labeled by a u ∈ B1 and incident to T1 has size at least
αn(β − α)n/3.
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For each u ∈ B1, let fu denote the number of edges in E labeled by u, i.e., in
the matching Mu. Order the unit vectors so that fu1 ≥ fu2 ≥ · · · ≥ fu|B1| , and
let E1 ⊂ E be the subset of edges incident to T1 labeled by a unit vector in the
set U1 of the first (β−2α)n

2 unit vectors. Set V1 = T1.

Inductive Step: We construct sets Ti, Bi, Ui, Ei, and Vi, i ≥ 2, as follows.
The proof works provided i satisfies i ≤ min(�log2(αn/2i−1) , log2(β − 2α)n),
which holds for i = O(log n). The intuition for the sets is as follows:

- Ti is the set of vertices that are projected to zero by the i-th projection Li that
we construct.
- Bi is a maximal set of standard unit vectors that have not been projected to
zero by the projection Li that we construct.
- Ui is a subset of Bi of the most frequent standard unit vectors, that is, many
of the 3-edges incident to a vertex in Ti are labeled by a vector in Ui.
- Ei is a subset of 3-edges incident to Ti that are labeled by a vector in Ui.
- Vi is a small set of vertices that when projected to zero, project Ti to zero.

Let N(Ti−1) be the neighborhood of vertices of Ti−1, that are not themselves in
Ti−1 (so N(Ti−1) and Ti−1 are disjoint). We define a multigraph Gi−1 on vertex
set N(Ti−1) where we connect two vertices by a 2-edge if and only if they are
included in a 3-edge in Ei−1. Let r[i−1] be the number of connected components
of Gi−1. Let Ci−1,1, . . . , Ci−1,r[i−1] be the connected components of Gi−1, where
|Ci−1,1| ≥ |Ci−1,2| ≥ · · · ≥ |Ci−1,r[i−1]|. For each connected component Ci−1,j ,
arbitrarily choose a vertex vi−1,j ∈ Ci−1,j .

Let Ti = ∪�αn/2i−1�
j=1 Ci−1,j , where Ci−1,j = ∅ if j > r[i − 1], and let

Vi = Vi−1 ∪ {vi−1,1, . . . , vi−1,�αn/2i−1�} (recall that V1 = T1).

Extend ex(Vi ∪ (∪i−1
j=1Uj)) to a basis of Fn by greedily adding a subset Bi of

unit vectors in Bi−1. Let E be the set of 3-edges incident to some vertex in Ti,
labeled by a u ∈ Bi. We will inductively have that |Uj| = (β − 2α)n/2j for all
j ≤ i − 1. Notice that this holds for our above definition of U1. Notice that

|Bi| ≥ n − |Vi| − | ∪i−1
j=1 Uj | ≥ n −

i∑
j=1

⌊ αn

2j−1

⌋
−

i−1∑
j=1

(β − 2α)n
2j

≥ n − αn −
i−1∑
j=1

αn

2j
−

i−1∑
j=1

(β − 2α)n
2j

= n − αn −
i−1∑
j=1

βn − αn

2j

= n − αn − βn + αn +
(β − α)n

2i−1

= n − βn +
(β − α)n

2i−1
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Each vertex in Ti has degree at least βn, since all vertices in G′ have degree at
least βn. It follows that each vertex in Ti is incident to at least βn− (n−|Bi|) ≥
(β−α)n

2i−1 edges in E, since a vertex cannot be incident to two different edges of the
same label. Since an edge can be counted at most 3 times, |E| ≥ |Ti| · (β−α)n

3·2i−1 . For
each u ∈ Bi, let fu denote the number of edges in E labeled by u, and order the
unit vectors so fu1 ≥ · · · ≥ fu|Bi| . Let Ei ⊂ E be the subset of edges incident to

Ti labeled by a unit vector in the set Ui of the first (β−2α)n
2i unit vectors. Notice

that our earlier assumption that |Uj | = (β − 2α)n/2j for all j ≤ i − 1 holds by
this definition of Ui.

Recursive projection: |T1| = αn, and for i > 1, |Ti| =
∑�αn/2i−1�

j=1 |Ci−1,j |.
Also, for all i ≥ 1, |Ui| = (β−2α)n/2i. We turn to bounding |Ei|. Since we chose
the (β − 2α)n/2i most frequent unit vectors (in terms of the number of their
occurrences in E) to include in the set Ui, and since Ei is the set of edges in E
labeled by a unit vector in Ui, we have that |Ei| must be at least a (β − 2α)/2i

fraction of |E| (there are only n possible unit vectors). That is, we have

|Ei| ≥
(β − 2α)

2i
· |E| ≥ (β − 2α)

2i
· |Ti| ·

(β − α)n
3 · 2i−1 =

[
2(β − 2α)(β − α)

3

]
· |Ti|n

4i
.

We define a sequence of linear projections Li for i ≥ 1 as follows. We set
Li(ex(Vi ∪ (∪i−1

j=1Uj))) = 0, and Li(u) = u for all u ∈ Bi.

Claim. For any i ≥ 2, if j ≤ �αn/2i−1 , then all vertices b ∈ Ci−1,j satisfy
Li(b) = 0.

Proof. We prove this by induction on i ≥ 2. For the base case i = 2, consider
any vertex b in C1,j , and let v1,j = a0, a1, a2, . . . , ak = b be a path from v1,j to
b in C1,j . Since {a0, a1} is an edge in C1,j , we have a0, a1 ∈ N(T1) and so there
is a 3-edge e = {w, a0, a1} ∈ E1 with w ∈ T1 and labeled by a uj ∈ U1. But
then L2(w) = 0 since w ∈ T1 = V1. Moreover, L2(uj) = 0 since uj ∈ U1. But,
for non-zero γ1, γ2, γ3 ∈ F, γ1w + γ2a0 + γ3a1 = uj. These conditions imply that
γ2L2(a0) + γ3L2(a1) = 0. Now, notice that v1,j ∈ V2 since j ≤ �αn/2i−1 , and
so L2(v1,j) = L2(a0) = 0. It follows that L2(a1) = 0. By repeated application
on the path from v1,j to ak = b, we get L2(b) = 0.

Inductively, suppose it is true for all values from 2 up to i−1. We prove it for
i. Consider any vertex b in Ci−1,j and let v1,j = a0, a1, . . . , ak = b be a path from
v1,j to b in Ci−1,j . Since {a0, a1} is an edge in Ci−1,j , we have a0, a1 ∈ N(Ti−1)
and so there is a 3-edge e = {w, a0, a1} ∈ Ei−1 with w ∈ Ti−1 and labeled by
a uj ∈ Ui−1. But then Li(w) = 0 since w ∈ Ti−1 and so w ∈ Ci−2,j for some
j ≤ �αn/2i−2 , which by the inductive hypothesis means Li−1(w) = 0, and
the kernel of Li−1 is contained in the kernel of Li. Now also Li(uj) = 0 since
uj ∈ Ui−1. For non-zero γ1, γ2, γ3 ∈ F, we have γ1w + γ2a0 + γ3a1 = uj, and
so γ2Li(a0) + γ3Li(a1) = 0. Notice that v1,j ∈ Vi since j ≤ �αn/2i−1 , and so
Li(v1,j) = Li(a0) = 0. Hence, Li(a1) = 0, and by repeated application on the
path from v1,j to ak = b, we get Li(b) = 0. This completes the induction.
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For each component Ci−1,j for any i and j, let ci−1,j denote |Ci−1,j | for notational
convenience.

Lemma 3.1. For any i ≥ 2, if j ≤ �αn/2i−1 , then the number of edges in
Ci−1,j is at most ci−1,j log ci−1,j + ci−1,j.

Proof. Let {a, b} be an edge in Ci−1,j . Then there is an edge e = {a, b, c} ∈ Ei−1
with c ∈ Ti−1. Then γ1a + γ2b + γ3c = uk for some uk ∈ Ui−1, for non-zero
γ1, γ2, γ3 in F. Since e ∈ Ei−1, we have uk ∈ Ui−1 ⊆ Bi−1, and so we have
Li−1(uk) = uk. Now, c ∈ Ti−1, and by Claim 3.2, Li−1 vanishes on all of Ti−1 In
particular, Li−1(c) = 0. By linearity, γ1Li−1(a) + γ2Li−1(b) = uk. Moreover, for
each k′ ∈ [n], each vertex in Ci−1,j can occur in at most one 3-edge labeled by
uk′ (by definition of the matchings in G′), so we obtain matchings Wk′ , where
an edge {a, b} in Ci−1,j is in Wk′ iff there is an e ∈ Ei−1 labeled by uk′ . By
Theorem 3.1,

∑
k′ |Wk′ | ≤ ci−1,j log ci−1,j + ci−1,j . But the number of edges in

Ci−1,j is at most the sum of matching sizes |Wk′ | for uk′ ∈ Ui−1.

Define the constant γ = 2(β−2α)(β −α)/3. It follows that for all i, we have the
constraints

1. γ|Ti−1|n
4i−1 ≤ |Ei−1| ≤

∑r[i−1]
j=1 (ci−1,j log ci−1,j + ci−1,j)

2. |Ti| =
∑�αn/2i−1�

j=1 ci−1,j

Lemma 3.2. Suppose for i = 1, 2, . . . , Θ(log log n), we have |Ti| > 8|Ti−1|.
Then m = Ω(n2).

Proof. By induction, |Ti| > 8i−1|T1| = 8i−1αn for i = 1, 2, . . . , Θ(log log n). We
thus have,

|Ei| ≥ γ · |Ti|n
4i

≥ γα

8
· 2in2.

Hence, for i = Θ(log log n),wehave |Ei−1| = Ω(n2 log n).Using thatΩ(n2 log n) =
|Ei−1| ≤

∑r[i−1]
j=1 (ci−1,j log ci−1,j + ci−1,j), we have

m ≥
r[i−1]∑
j=1

ci−1,j = Ω(n2 log n/ logn) = Ω(n2),

where we have used that ci−1,j ≤ n2 for all i and j, as otherwise m ≥ ci−1,j = n2

for some i and j, and we would already be done. Hence, we can use log ci−1,j =
O(log n).

Lemma 3.3. Suppose for a value i = O(log log n), ci−1,1 = Ω(n2/ log n). Then
m = Ω(n2).

Proof. Notice that |Ti| ≥ ci−1,1 = Ω(n2/ logn), and also, |Ei| = Ω(|Ti|n/4i) =
Ω(n3/polylog(n)) = Ω(n2 log n). Using the constraint that m ≥

∑r[i−1]
j=1 ci−1,j =

Ω(|Ei|/ log n), it follows that m = Ω(n2). Here we have again upper bounded
log ci−1,j by O(log n), justified as in the proof of Lemma 3.2.
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Lemma 3.4. Suppose for a value i = O(log log n), |Ti| ≤ 8|Ti−1|. Then m =
Ω(n2).

Proof. Let i∗ be the smallest integer i for which |Ti| ≤ 8|Ti−1|. It follows
that |Ti∗−1| ≥ 8i∗−2|T1| = 8i∗−2αn. Note that |Ei∗−1| = Ω(|Ti∗−1|n/4i∗−1) =
Ω(n22i∗). We attempt to maximize the RHS of constraint 1 defined above,
namely

r[i∗−1]∑
j=1

(ci∗−1,j log ci∗−1,j + ci∗−1,j), (1)

subject to a fixed value of |Ti∗ |, where recall |Ti∗ | =
∑�αn/2i∗−1�

j=1 ci∗−1,j . We can
assume that

ci∗−1,1 ≥ ci∗−1,2 = ci∗−1,3 = · · · = ci∗−1,�αn/2i∗−1�,

as otherwise we could increase ci∗−1,1 while replacing the other values with
ci∗−1,�αn/2i∗−1�, which would preserve the value of |Ti∗ | and only make constraint
1 defined above easier to satisfy (notice that since |Ti∗ | is fixed, the LHS of
constraint 1 remains fixed, as well as both sides of constraint 2). Moreover,
constraint 1 is only easier to satisfy if we make

ci∗−1,�αn/2i∗−1� = ci∗−1,�αn/2i∗−1�+1 = · · · = ci∗−1,r[i∗−1].

We can assume that ci∗−1,1 = o(n2/ log n), as otherwise Lemma 3.3 immediately
shows that m = Ω(n2). In this case, though, ci∗−1,1 does not contribute asymp-
totically to sum (1) since |Ei∗−1| = Ω(n22i∗) and so sum 1 must be at least this
large. It follows that we can replace constraint 1 with

Ω(|Ti∗−1|n/4i∗) ≤ rA(log A + 1), (2)

where A is the common value ci∗−1,x, where r = r[i∗ − 1], and where x ∈
{2, . . . , r}. Using that i = O(log log n), so we can ignore the floor operation
in constraint 2, constraint 2 becomes An/2i∗ = Θ(|Ti∗ |), or equivalently, A =
Θ(|Ti∗ |2i∗/n).

Using that |Ti∗ | ≤ 8|Ti∗−1|, it follows that A = O(|Ti∗−1|2i∗/n). Combining
this with our reformulation of constraint 1 in (2), we have

r(log A + 1) = Ω(n2/8i∗),

or equivalently, r = Ω(n2/(8i∗(log A + 1))). Now,

m = Ω(Ar) = Ω

(
n|Ti∗−1|

4i∗(log(|Ti∗−1|2i∗/n) + 1)

)
.

This is minimized when |Ti∗−1| is as small as possible, but |Ti∗−1| ≥ 8i∗−2αn.
Hence, m = Ω

(
n22i∗

log 16i∗

)
, which is minimized for i∗ = Θ(1), in which case

m = Ω(n2), as desired.
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Combining Lemma 3.2 and Lemma 3.4, we conclude,

Theorem 3.3. For δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (3, δ, ε)-locally
decodable code, then m = Ωδ,ε(n2), independent of the field F.

4 From Adaptive Decoders to Non-adaptive Decoders

Theorem 4.1. For given δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (3, δ, ε)-LDC,
then C is a linear (3, δ/9, 2/3 − 1/|F|)-LDC with a non-adaptive decoder.

Proof. Since C is a linear code, each of its coordinates can be identified with a
vector vj ∈ Fn, with the function for that coordinate computing 〈vj , x〉, where
the inner product is over F. Define the ordered list of vectors B = v1, . . . , vm.

Fix some i ∈ [n], and let Ci be the collection of all non-empty sets S ⊆
{v1, . . . , vm}, with |S| ≤ 3, for which ui ∈ span(vj | vj ∈ S), where ui denotes
the unit vector in direction i. Let Di ⊆ {v1, . . . , vm} be a smallest dominating
set of Ci, that is, a set for which for all S ∈ Ci, |S ∩ Di| > 0.

Claim. |Di| > δm.

Proof. Suppose not. Consider the following adversarial strategy: given a code-
word C(x), replace all coordinates C(x)j for which vj ∈ Di with 0. Denote the
new string C̃(x). The coordinates of C̃(x) compute the functions 〈ṽj , x〉, where
ṽj = vj if vj /∈ Di, and ṽj = 0 otherwise. Let B̃ be the ordered list of vectors
ṽ1, . . . , ṽm.

Define 3-span(B̃) to be the (possibly infinite) list of all vectors in the span
of each subset of B̃ of size at most 3. We claim that ui /∈ 3-span(B̃). Indeed, if
not, then let S ⊆ {ṽ1, . . . , ṽm} be a smallest set for which ui ∈ span(S). Then
|S| ≤ 3. This is not possible if |S| = 0. It follows that S ∩ Di �= ∅. This implies
that 0 is a non-trivial linear combination of vectors in S. Indeed, there is an �
for which ṽ� ∈ S and v� ∈ Di, implying ṽ� = 0. Hence, ui ∈ span(S \ ṽ�). But
|S \ {ṽ�}| < |S|, which contradicts that S was smallest.

Let A be the decoder of C, where A computes Ay(i, r) on input index i ∈ [n]
and random string r. Here, for any x ∈ Fn, we let the string y = y(x) be defined
by the adversarial strategy given above. For any x ∈ Fn, Ay(i, r) first probes
coordinate j1 of y, learning the value 〈ṽj1 , x〉. Next, depending on the answer it
receives, it probes coordinate j2, learning the value 〈ṽj2x〉. Finally, depending
on the answer it receives, it probes coordinate j3, learning the value 〈ṽj3x〉.
Consider the affine subspace V of dimension d ≥ n− 2 of all x ∈ Fn which cause
Ay(i, r) to read positions j1, j2, and j3. Let V0 be the affine subspace of V of all
x for which Ay(i, r) outputs xi. Since the output of Ay(i, r) is fixed given that
it reads positions j1, j2, and j3, and since ui /∈ span(ṽj1 , ṽj2 , ṽj3), it follows that
the dimension of V0 is at most d − 1.

Suppose first that F is a finite field. Then for any fixed r, the above implies
Ay(i, r) is correct on at most a 1

|F| fraction of x ∈ Fn since |V0|
|V | ≤ 1

|F| for any set
of three indices j1, j2, and j3 that A can read. Thus, by averaging, there exists
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an x ∈ Fn for which Pr[Ay(i) = xi] ≤ 1
|F| , where the probability is over the

random coins r of A. This contradicts the correctness of A.
Now suppose that F is an infinite field. We will show that there exists an

x ∈ Fn for which Pr[Ay(i) = xi] = 0, contradicting the correctness of the
decoder.

For each random string r, there is a finite non-empty set Gr of linear con-
straints over F that any x ∈ Fn must satisfy in order for Ay(i, r) = xi. Consider
the union ∪rGr of all such linear constraints. Since the number of different r is
finite, this union contains a finite number of linear constraints.

Since F is infinite, we claim that we can find an x ∈ Fn which violates all
constraints in ∪rGr. We prove this by induction on n. If n = 1, then the con-
straints have the form x1 = c1, x1 = c2, . . . , x1 = cs for some finite s. Thus,
by choosing x1 /∈ {c1, c2, . . . , cs}, we are done. Suppose, inductively, that our
claim is true for n − 1. Now consider Fn. Consider all constraints in ∪rGr that
have the form x1 = c for some c ∈ F. There are a finite number of such con-
straints, and we can just choose x1 not to equal any of these values c, since F

is infinite. Now, substituting this value of x1 into the remaining constraints, we
obtain constraints (each depending on at least one variable) on n − 1 variables
x2, . . . , xn. By induction, we can choose the values to these n − 1 variables so
that all constraints are violated. Since we haven’t changed x1, the constraints of
the form x1 = c are still violated. This completes the proof.

It follows that since |Di| > δm and Di is a smallest dominating set of Ci, we
can greedily construct a matching Mi of δm/3 disjoint triples {vj1 , vj2 , vj3} of
{v1, . . . , vm} for which ui ∈ span(vj1 , vj2 , vj3).

Consider the new behavior of the decoder: on input i ∈ [n], choose a random
triple {vj1 , vj2 , vj3} ∈ Mi, and compute xi as γ1〈vj1 , x〉 + γ2〈vj2 , x〉 + γ3〈vj3 , x〉,
where ui = γ1vj1 + γ2vj2 + γ3vj3 . Since the adversary can now corrupt at most
δm/9 positions, it follows that with probability at least 2/3, the positions queried
by the decoder are not corrupt and it outputs xi. Note that the new decoder
also makes at most 3 queries.

This can be extended straightforwardly to any constant q > 3 number of queries:

Theorem 4.2. For given δ, ε ∈ (0, 1), if C : Fn → Fm is a linear (q, δ, ε)-LDC,
then C is a linear (q, δ/(3q), 2/3 − 1/|F|)-LDC with a non-adaptive decoder.
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A Basic Reductions

Intuitively, a local-decoding algorithm A cannot query any particular location
of the (corrupted) codeword too often, as otherwise an adversary could ruin the
success probability of A by corrupting only a few positions. This motivates the
definition of a smooth code.
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Definition A.1. ([2]) For fixed c, ε, and integer q, a linear transformation C :
Fn → Fm is a linear (q, c, ε)-smooth code if there exists a probabilistic oracle
machine A such that for every x ∈ Fn,

– For every i ∈ [n] and j ∈ [m], Pr[AC(x)(i) reads index j] ≤ c
m .

– For every i ∈ [n], Pr[AC(x)(i) = xi] ≥ 1
|F| + ε.

– In every invocation A makes at most q queries.

The probabilities are taken over the coin tosses of A. An algorithm A satisfying
the above is called a (q, c, ε)-smooth decoding algorithm for C (a decoder for
short).

Unlike a local-decoding algorithm, a smooth decoding algorithm is required to
work only when given access to a valid codeword, rather than a possibly corrupt
one. The following reduction from LDCs to smooth codes was observed by Katz
and Trevisan.

Theorem A.1. ([2]) Let C : Fn → Fm be a linear (q, δ, ε)-LDC that makes
non-adaptive queries. Then C is also a linear (q, q/δ, ε)-smooth code.

We use a graph-theoretic interpretation of smooth codes given in [3] and [2]. Let
C : Fn → Fm be a linear (q, c, ε)-smooth code, and let algorithm A be a (q, c, ε)-
smooth decoding algorithm for C. Since C is linear, each of the m positions of C
computes 〈vi, x〉 for a vector vi ∈ Fn. We say that a given invocation of A reads
a set e ⊆ {v1, . . . , vm} if the set of inner prodcuts that A reads in that invocation
equals {〈vi, x〉 | vi ∈ e}. Since A is restricted to read at most q entries, |e| ≤ q.

We say that e is good for i if Pr[AC(x)(i) = xi | A reads e] ≥ 1
|F| + ε

2 , where
the probability is over the internal coin tosses of A. It follows that if e is good for
i, then the i-th standard unit vector ui is in the span of the |e| vectors. Indeed,
otherwise, one can find two different inputs x which agree on the inner products
that are read but differ in coordinate i.

Definition A.2. ([2]) Fixing a smooth code C : Fn → Fm and a q-query re-
covery algorithm A, the recovery hypergraphs for i ∈ [n], denoted Gi, consist of
the vertex set {v1, . . . , vm} and the hyperedge set Ci = {e ⊆ {v1, . . . , vm} | ui ∈
span(e)}.

Lemma A.1. ([2]) Let C be a (q, c, ε)-smooth code that is good on average, and
let {Gi}n

i=1 be the set of recovery hypergraphs. Then, for every i, the hypergraph
Gi = ({v1, . . . , vm}, Ci) has a matching Mi of sets of size q with |Mi| ≥ εm

cq .

Consider the multi-hypergraph G with vertex set {v1, . . . , vm} and hyperedge
set �n

i=1Mi, that is, a hyperedge occurs in G once for each Mi that it occurs in.
For readability, we use the term hypergraph to refer to a multi-hypergraph, that
is, a hypergraph which may have repeated hyperedges (which we sometimes
just refer to as edges). We claim that we can find a non-empty induced sub-
hypergraph G′ of G with minimum degree βn for a constant β > 0. The proof
is a straightforward generalization of Proposition 1.2.2 in [21] to hypergraphs.
For a proof, see Lemma 27 in Appendix 6 of [13] (omitted here due to space
constraints).
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