
Efficient K-Nearest Neighbor Search in Time-Dependent
Spatial Networks�

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi

University of Southern California
Department of Computer Science

Los Angeles, CA 90089-0781
{demiryur,banaeika,shahabi}@usc.edu

Abstract. The class of k Nearest Neighbor (kNN) queries in spatial networks
has been widely studied in the literature. All existing approaches for kNN search
in spatial networks assume that the weight (e.g., travel-time) of each edge in the
spatial network is constant. However, in real-world, edge-weights are
time-dependent and vary significantly in short durations, hence invalidating the
existing solutions. In this paper, we study the problem of kNN search in time-
dependent spatial networks where the weight of each edge is a function of time.
We propose two novel indexing schemes, namely Tight Network Index (TNI)
and Loose Network Index (LNI) to minimize the number of candidate nearest
neighbor objects and, hence, reduce the invocation of the expensive fastest-path
computation in time-dependent spatial networks. We demonstrate the efficiency
of our proposed solution via experimental evaluations with real-world data-sets,
including a variety of large spatial networks with real traffic-data.

1 Introduction

Recent advances in online map services and their wide deployment in hand-held de-
vices and car-navigation systems have led to extensive use of location-based services.
The most popular class of such services is k-nearest neighbor (kNN) queries where
users search for geographical points of interests (e.g., restaurants, hospitals) and the
corresponding directions and travel-times to these locations. Accordingly, numerous al-
gorithms have been developed (e.g., [20,15,19,2,13,16,22]) to efficiently compute the
distance and route between objects in large road networks.

The majority of these studies and existing commercial services makes the simpli-
fying assumption that the cost of traveling each edge of the road network is constant
(e.g., corresponding to the length of the edge) and rely on pre-computation of distances
in the network. However, the actual travel-time on road networks heavily depends on
the traffic congestion on the edges and hence is a function of the time of the day, i.e.,

� This research has been funded in part by NSF grant CNS-0831505 (CyberTrust) and in part
from METRANS Transportation Center, under grants from USDOT and Caltrans. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation. We
thank Professor David Kempe for helpful discussions.

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 432–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 433

travel-time is time-dependent. For example, Figure 1 shows the real-world travel-time
pattern on a segment of I-10 freeway in Los Angeles between 6AM and 8PM on a
weekday. Two main observations can be made from this figure. First, the arrival-time
to the segment entry determines the travel-time on that segment. Second, the change
in travel-time is significant and continuous (not abrupt), for example from 8:30AM to
9:00AM, the travel-time of this segment changes from 30 minutes to 18 minutes (40%
decrease). These observations have major computation implications: the fastest path
from a source to a destination may vary significantly depending on the departure-time
from the source, and hence, the result of spatial queries (including kNN) on such dy-
namic network heavily depends on the time at which the query is issued.

Figure 2 shows an example of time-dependent kNN search where an ambulance is
looking for the nearest hospital (with least travel-time) at 8:30AM and 2PM on the same
day on a particular road network. The time-dependent travel-time (in minutes) and the
arrival time for each edge are shown on the edges. Note that the travel-times on an edge
changes depending on the arrival time to the edge in Figures 2(a) and 2(b). Hence, the
query issued by the ambulance at 8:30AM and 2PM would return different results.

Fig. 1. Real-world travel-time

(a) 1-NN Query at 8:30 AM (b) 1-NN Query at 2:00 PM

Fig. 2. Time-dependent 1-NN search

Meanwhile, an increasing number of navigation companies have started releasing
their time-dependent travel-time information for road networks. For example, Navteq
[17] and TeleAtlas [21], the leading providers of navigation services, offer traffic flow
services that provide time-dependent travel-time (at the temporal granularity of as low
as five minutes) of road network edges up to one year. The time-dependent travel-times
are usually extracted from the historical traffic data and local information like weather,
school schedules, and events. Based on Navteq’s analysis, the time-dependent weight
information improves the travel-time accuracy by an average of 41% when compared
with typical speeds (time-independent) on freeways and surface streets. Considering
the availability of time-dependent travel-time information for road networks on the one
hand and the importance of time-dependency for accurate and realistic route planning
on the other hand, it is essential to extend existing literature on spatial query processing
and planning (such as kNN queries) in road networks to a new family of time-dependent
query processing solutions.

Unfortunately, once we consider time-dependent edge weights in road networks, all
the proposed kNN solutions assuming constant edge-weights and/or relying on distance
precomputation would fail. However, one can think of several new baseline solutions.

434 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

Firstly, Dreyfus [7] has studied the relevant problem of time-dependent shortest path
planning and showed that this problem can be solved by a trivially-modified variant of
any label-setting (e.g., Dijkstra) static shortest path algorithm. Consequently, we can
develop a primitive solution for the time-dependent kNN problem based on the in-
cremental network expansion (INE [19]) approach where Dreyfus’s modified Dijkstra
algorithm is used for time-dependent distance calculation. With this approach, start-
ing from a query object q all network nodes reachable from q are visited in order of
their time-dependent travel-time proximity to q until all k nearest objects are located
(i.e., blind network expansion). However, considering the prohibitively high overhead
of executing blind network expansion particularly in large networks with a sparse (but
perhaps large) set of data objects, this approach is far too slow to scale for real-time
kNN query processing. Secondly, we can use time-expanded graphs [9] to model the
time-dependent networks. With time-expanded graphs the time domain is discretized
and at each discrete time instant a snapshot of the network is used to represent the net-
work. With this model, the time-dependent kNN problem is reduced to the problem of
computing the minimum-weight paths through a series of static networks. Although this
approach allows for exploiting the existing algorithms for kNN computation on static
networks, it often fails to provide the correct results because the model misses the state
of the network between any two discrete time instants. Finally, with a third approach we
can precompute time-dependent shortest paths between all possible sources and desti-
nations in the network. However, shortest path precomputation on time-dependent road
networks is challenging. Because, the shortest path on time-dependent networks (i.e., a
network where edge weights are function of time) depends on the departure time from
the source, and therefore, one needs to precompute all possible shortest paths for all
possible departure-times. Obviously, this is not a viable solution because the storage
requirements for the precomputed paths would quickly exceed reasonable space limi-
tations. With our prior work [4], for the first time we introduced the problem of Time-
Dependent k Nearest Neighbor (TD-kNN) search to find the kNN of a query object that
is moving on a time-dependent network. With this work, we also investigated the first
two baseline approaches discussed above (the third approach is obviously inapplicable)
by extensive experiments to rigorously characterize the inefficiency and inaccuracy of
the two baseline solutions, respectively.

In this paper, we address the disadvantages of both baseline approaches by devel-
oping a novel technique that efficiently and accurately finds kNN of a query object in
time-dependent road networks. A comprehensive solution for TD-kNN query should a)
efficiently answer the queries in (near) real-time in order to support moving object kNN
search on road networks, b) be independent of density and distribution of the data ob-
jects, and c) effectively handle the database updates where nodes, links, and data objects
are added or removed. We address these challenges by developing two types of com-
plementary index structures. The main idea behind these index structures is to localize
the search space and minimize the costly time-dependent shortest path computation be-
tween the objects hence incurring low computation costs. With our first index termed
Tight Network Index (TNI), we can find the nearest objects without performing any
shortest path computation. Our experiments show that in 70% of the cases the nearest
neighbor can be found with this index. For those cases that the nearest objects cannot be

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 435

identified by TNI, our second index termed Loose Network Index (LNI) allows us to fil-
ter in only a small number of objects that are potential candidates (and filter out the rest
of the objects). Subsequently, we only need to perform the shortest path computation
only for these candidates. Our TD-kNN algorithm consists of two phases. During the
first phase (off-line), we partition the spatial network into subnetworks (cells) around
the data objects by creating two cells for each data object called Tight Cell (TC) and
Loose Cell (LC) and generate TNI and LNI on these cells, respectively. In the second
phase (online), we use TNI and LNI structures to immediately find the first nearest
neighbor and then expand the search area to find the remaining k-1 neighbors.

The remainder of this paper is organized as follows. In Section 2, we review the
related work on both kNN and time-dependent shortest path studies. In Section 3, we
formally define the TD-kNN query in spatial networks. In Section 4, we establish the
theoretical foundation of our algorithms and explain our query processing technique.
In Section 5, we present experimental results on variety of networks with actual time-
dependent travel-times generated from real-world traffic data (collected for past 1.5
years). In Section 6, we conclude and discuss our future work.

2 Related Work

In this section we review previous studies on kNN query processing in road networks
as well as time-dependent shortest path computation.

2.1 kNN Queries in Spatial Networks

In [19], Papadias et al. introduced Incremental Network Expansion (INE) and Incre-
mental Euclidean Restriction (IER) methods to support kNN queries in spatial
networks. While INE is an adaption of the Dijkstra algorithm, IER exploits the Eu-
clidean restriction principle in which the results are first computed in Euclidean space
and then refined by using the network distance. In [15], Kolahdouzan and Shahabi pro-
posed first degree network Voronoi diagrams to partition the spatial network to network
Voronoi polygons (NV P), one for each data object. They indexed the NV P s with a
spatial access method to reduce the problem to a point location problem in Euclidean
space. Cho et al. [2] presented a system UNICONS where the main idea is to integrate
the precomputed kNNs into the Dijkstra algorithm. Hu et al. [12] proposed a distance
signature approach that precomputes the network distance between each data object and
network vertex. The distance signatures are used to find a set of candidate results and
Dijkstra is employed to compute their exact network distance. Huang et al. addressed
the kNN problem using Island approach [13] where each vertex is associated to all
the data points that are in radius r (so called islands) covering the vertex. With their
approach, they utilized a restricted network expansion from the query point while us-
ing the precomputed islands. Recently Samet et al. [20] proposed a method where they
associate a label to each edge that represents all nodes to which a shortest path starts
with this particular edge. The labels are used to traverse shortest path quadtrees that
enables geometric pruning to find the network distance. With all these studies, the edge
weight functions are assumed to be constant and hence the shortest path computations

436 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

and precomputations are no longer valid with time-varying edge weights. Unlike the
previous approaches, we make a fundamentally different assumption that the weight of
the network edges are time-dependent rather than fixed.

2.2 Time-Dependent Shortest Path Studies

Cooke and Halsey [3] introduced the first time-dependent shortest path (TDSP) solu-
tion where dynamic programming is used over a discretized network. In [1], Chabini
proposed a discrete time TDSP algorithm that allows waiting at network nodes. In
[9], George and Shekhar proposed a time-aggregated graph where they aggregate the
travel-times of each edge over the time instants into a time series. All these studies as-
sume the edge weight functions are defined over a finite discrete sequence of time steps
t ∈ t0, t1, .., tn. However, discrete-time algorithms have numerous shortcomings. First,
since the entire network is replicated for every specified time step, the discrete-time
methods require an extensive amount of storage space for real-world scenarios where
the spatial network is large. Second, these approaches can only provide approximate re-
sults since the computations are done on discrete-times rather than in continuous time.
In [7], Dreyfus proposed a generalization of Dijkstra algorithm, but his algorithm is
showed (by Halpren [11]) to be true only in FIFO networks. If the FIFO property does
not hold in a time-dependent network, then the problem is NP-Hard as shown in [18].
Orda and Rom [18] proposed a Bellman-Ford based solution where edge weights are
piece-wise linear functions. In [6], Ding et al. used a variation of label-setting algo-
rithm which decouples the path-selection and time-refinement by scanning a sequence
of time steps of which the size depends on the values of the arrival time functions. In
[14], Kanoulas et al. introduced allFP algorithm in which they, instead of sorting the
priority queue by scalar values, maintain a priority queue of all the paths to be ex-
panded. Therefore, they enumerate all the paths from a source to a destination which
yields exponential run-time in the worst case.

3 Problem Definition

In this section, we formally define the problem of time-dependent kNN search in spatial
networks. We assume a road network containing a set of data objects (i.e., points of
interest such as restaurants, hospitals) as well as query objects searching for their kNN.
We model the road network as a time-dependent weighted graph where the non-negative
weights are time-dependent travel-times (i.e., positive piece-wise linear functions of
time) between the nodes. We assume both data and query objects lie on the network
edges and all relevant information about the objects is maintained by a central server.

Definition 1. A Time-dependent Graph (GT) is defined as GT (V, E) where V and E
represent set of nodes and edges, respectively. For every edge e(vi, vj), there is a cost
function c(vi,vj)(t) which specifies the cost of traveling from vi to vj at time t. ��
Figure 3 depicts a road network modeled as a time-dependent graph GT (V, E). While
Figure 3(a) shows the graph structure, Figures 3(b), 3(c), 3(d), 3(e), and 3(f) illus-
trate the time-dependent edge costs as piece-wise linear functions for the corresponding

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 437

(a) Graph GT (b) c1,2(t) (c) c2,3(t)

(d) c2,4(t) (e) c4,5(t) (f) c3,5(t) change

Fig. 3. A Time-dependent Graph GT (V, E)

edges. For each edge, we define upper-bound (max(cvi,vj)) and lower-bound
(min(cvi,vj)) time-independent costs. For example, in Figure 3(b), min(cv1,v2) and
max(cv1,v2) of edge e(v1, v2) are 10 and 20, respectively.

Definition 2. Let {s = v1, v2, ..., vk = d} represent a path which contains a sequence
of nodes where e(vi, vi+1) ∈ E and i = 1, ..., k − 1. Given a GT , a path (s � d) from
source s to destination d, and a departure-time at the source ts, the time-dependent
travel time TT (s � d, ts) is the time it takes to travel along the path. Since the travel-
time of an edge varies depending on the arrival-time to that edge (i.e., arrival depen-
dency), the travel time is computed as follows:

TT (s � d, ts) =
k−1∑

i=1

c(vi,vi+1)(ti) where t1 = ts,ti+1 = ti+c(vi,vi+1)(ti), i = 1, .., k.

The upper-bound travel-time UTT (s � d) and the lower-bound travel time
LTT (s � d) are defined as the maximum and minimum possible times to travel along
the path, respectively. The upper and lower bound travel time are computed as follows,

UTT (s � d) =
k−1∑

i=1

max(cvi,vi+1), LTT (s � d) =
k−1∑

i=1

min(cvi,vi+1), i = 1, .., k.

To illustrate the above definitions in Figure 3, consider ts = 5 and path (v1, v2, v3, v5)
where TT (v1 � v5, 5) = 45, UTT (v1 � v5) = 65, and LTT (v1 � v5) = 35.

Note that we do not need to consider arrival-dependency when computing UTT and
LTT hence; t is not included in their definitions. Given the definitions of TT , UTT
and LTT , the following property holds for any path in GT : LTT (s � d) ≤ TT (s �
d, ts) ≤ UTT (s � d). We will use this property in subsequent sections to establish
some properties of our algorithm.

Definition 3. Given a GT , s, d, and ts, the time-dependent shortest path TDSP (s, d, ts)
is a path with the minimum travel-time among all paths from s to d. Since we consider
the travel-time between nodes as the distance measure, we refer to TDSP (s, d, ts) as

438 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

time-dependent fastest path TDFP (s, d, ts) and use them interchangeably in the rest
of the paper. ��
In a GT , the fastest path from s to d is based on the departure-time from s. For in-
stance, in Figure 3, suppose a query looking for the fastest path from v1 to v5 at ts = 5.
Then, TDFP (v1, v5, 5) = {v1, v2, v3, v5}. However, the same query at ts = 10 re-
turns TDFP (v1, v5, 10) = {v1, v2, v4, v5}. Obviously, with constant edge weights
(i.e., time-independent), the query would always return the same path as a result.

Definition 4. A time-dependent k nearest neighbor query (TD-kNN) is defined as a
query that finds the k nearest neighbors of a query object which is moving on a time-
dependent network GT . Considering a set of n data objects P = {p1, p2, ..., pn}, the
TD-kNN query with respect to a query point q finds a subset P

′ ⊆ P of k objects with
minimum time-dependent travel-time to q, i.e., for any object p

′ ∈ P
′

and p ∈ P − P
′
,

TDFP (q, p
′
, t) ≤ TDFP (q, p, t). ��

In the rest of this paper, we assume that GT satisfies the First-In-First-Out (FIFO) prop-
erty. This property suggests that moving objects exit from an edge in the same order
they entered the edge. In practice many networks, particularly transportation networks,
exhibit FIFO property. We also assume that objects do not wait at a node, because, in
most real-world applications, waiting at a node is not realistic as it requires the moving
object to exit from the route and find a place to park and wait.

4 TD-KNN

In this section, we explain our proposed TD-kNN algorithm. TD-kNN involves two
phases: an off-line spatial network indexing phase and an on-line query processing
phase. During the off-line phase, the spatial network is partitioned into Tight Cells (TC)
and Loose Cells (LC) for each data object p and two complementary indexing schemes
Tight Network Index (TNI) and Loose Network Index (LNI) are constructed. The main
idea behind partitioning the network to TCs and LCs is to localize the kNN search and
minimize the costly time-dependent shortest path computation. These index structures
enable us to efficiently find the data object (i.e., generator of a tight or loose cell) that is
in shortest time-dependent distance to the query object q. During the on-line phase, TD-
kNN finds the first nearest neighbor of q by utilizing the TNI and LNI constructed in
the off-line phase. Once the first nearest neighbor is found, TD-kNN expands the search
area by including the neighbors of the nearest neighbor to find the remaining k-1 data
objects. In the following sections, we first introduce our proposed index structures and
then describe online query processing algorithm that utilizes these index structures.

4.1 Indexing Time-Dependent Network (Off-Line)

In this section, we explain the main idea behind tight and loose cells as well as the
construction of tight and loose network index structures.

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 439

Tight Network Index (TNI). The tight cell TC(pi) is a sub-network around pi in
which any query object is guaranteed to have pi as its nearest neighbor in a time-
dependent network. We compute tight cell of a data object by using parallel Dijkstra
algorithm that grows shortest path trees from each data object. Specifically, we expand
from pi (i.e., the generator of the tight cell) assuming maximum travel-time between
the nodes of the network (i.e., UTT), while in parallel we expand from each and ev-
ery other data object assuming minimum travel-time between the nodes (i.e., LTT). We
stop the expansions when the shortest path trees meet. The main rationale is that if the
upper bound travel-time between a query object q and a particular data object pi is less
than the lower bound travel-times from q to any other data object, then obviously pi

is the nearest neighbor of q in a time-dependent network. We repeat the same process
for each data object to compute its tight cell. Figure 4 depicts the network expansion
from the data objects during the tight cell construction for p1. For the sake of clarity,
we represent the tight cell of each data object with a polygon as shown in Figure 5. We
generate the edges of the polygons by connecting the adjacent border nodes (i.e., nodes
where the shortest path trees meet) of a generator to each other. Lemma 1 proves the
property of TC:

Fig. 4. Tight cell construction for P1 Fig. 5. Tight Cells

Lemma 1. Let P be a set of data objects P = {p1, p2, ..., pn} in GT and TC(pi) be
the tight cell of a data object pi. For any query point q ∈ TC(pi), the nearest neighbor
of q is pi, i.e., {∀q ∈ TC(pi), ∀pj ∈ P, pj �= pi, TDFP (q, pi, t) < TDFP (q, pj, t)}.

Proof. We prove the lemma by contradiction. Assume that pi is not the nearest neighbor
of the query object q. Then there exists a data object pj (pi �= pj) which is closer
to q; i.e., TDFP (q, pj, t) < TDFP (q, pi, t). Let us now consider a point b (where
the shortest path trees of pi and pj meet) on the boundary of the tight cell TC(pi).
We denote shortest upper-bound path from pi to b (i.e., the shortest path among all
UTT (pi � b) paths) as DUTT (pi, b), and similarly, we denote shortest lower-bound
path from pj to b (i.e., the shortest path among all LTT (pj � b) paths) as DLTT (pj , b).
Then, we have TDFP (q, pi, t) < DUTT (pi, b) = DLTT (pj , b) < TDFP (q, pj, t).
This is a contradiction; hence, TDFP (q, pi, t) < TDFP (q, pj, t). ��
As we describe in Section 4.2, if a query point q is inside a specific TC, one can imme-
diately identify the generator of that TC as the nearest neighbor for q. This stage can
be expedited by using a spatial index structure generated on the TCs. Although TCs

440 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

are constructed based on the network distance metric, each TC is actually a polygon
in Euclidean space. Therefore, TCs can be indexed using spatial index structures (e.g.,
R-tree [10]). This way a function (i.e., contain(q)) invoked on the spatial index struc-
ture would efficiently return the TC whose generator has the minimum time-dependent
network distance to q. We formally define Tight Network Index as follows.

Definition 5. Let P be the set of data objects P = {p1, p2, ..., pn}, the Tight Network
Index is a spatial index structure generated on {TC(p1), TC(p2), ..., TC(pn)}. ��
As illustrated in Figure 5, the set of tight cells often does not cover the entire network.
For the cases where q is located in an area which is not covered by any tight cell, we
utilize the Loose Network Index (LNI) to identify the candidate nearest data objects.
Next, we describe LNI .

Loose Network Index (LNI). The loose cell LC(pi) is a sub-network around pi out-
side which any point is guaranteed not to have pi as its nearest neighbor. In other words,
data object pi is guaranteed not to be the nearest neighbor of q if q is outside of the loose
cell of pi. Similar to the construction process for TC(pi), we use the parallel shortest
path tree expansion to construct LC(pi). However, this time, we use minimum travel-
time between the nodes of the network (i.e., LTT) to expand from pi (i.e., the generator
of the loose cell) and maximum travel-time (i.e., UTT) to expand from every other data
object. Lemma2 proves the property of LC:

Lemma 2. Let P be a set of data objects P = {p1, p2, ..., pn} in GT and LC(pi) be
the loose cell of a data object pi. If q is outside of LC(pi), pi is guaranteed not to be
the nearest neighbor of q, i.e., {∀q �∈ LC(pi), ∃pj ∈ P, pj �= pi, TDFP (q, pi, t) >
TDFP (q, pj, t)}.

Proof. We prove by contradiction. Assume that pi is the nearest neighbor of a q, even
though the q is outside of LC(pi); i.e., TDFP (q, pi, t) < TDFP (q, pj, t). Suppose
there exists a data object pj whose loose cell LC(pj) covers q (such a data object
must exist, because as we will next prove by Lemma 3, the set of loose cells cover
the entire network). Let b be a point on the boundary of LC(pi). Then, we have,
TDFP (q, pj, t) < DUTT (pj , b) = DLTT (pi, b) < TDFP (q, pi, t). This is a con-
tradiction; hence, pi cannot be the nearest neighbor of q. ��
As illustrated in Figure 6, loose cells, unlike TCs, collectively cover the entire network
and have some overlapping regions among each other.

Lemma 3. Loose cells may overlap, and they collectively cover the network.

Proof. As we mentioned, during loose cell construction, LTT is used for expansion
from the generator of the loose cell. Since the parallel Dijkstra algorithm traverses every
node until the priority queue is empty as described in [8], every node in the network is
visited; hence, the network is covered. Since the process of expansion with LTT is
repeated for each data object, in the overall process some nodes are visited more than
once; hence, the overlapping areas. Therefore, loose cells cover the entire network and
may have overlapping areas. Note that if the edge weights are constant, the LCs would
not overlap, and TCs cells and LCs would be the same.

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 441

Fig. 6. Loose Cells Fig. 7. LN R-tree

Based on the properties of tight and loose cells, we know that loose cells and tight cells
have common edges (i.e., all the tight cell edges are also the edges of loose cells). We
refer to data objects that share common edges as direct neighbors and remark that loose
cells of the direct neighbors always overlap. For example, consider Figure 6 where
the direct neighbors of p2 are p1, p3, and p6. This property is especially useful for
processing k-1 neighbors (see Section 4.2) after finding the first nearest neighbor. We
determine the direct neighbors during the generation of the loose cells and store the
neighborhood information in a data component. Therefore, finding the neighboring cells
does not require any complex operation.

Similar to TNI , we can use spatial index structures to access loose cells efficiently.
We formally define the Loose Network Index (LNI) as follows.

Definition 6. Let P be the set of data objects P = {p1, p2, ..., pn}, the Loose Network
Index is a spatial index structure generated on {LC(p1), LC(p2), ..., LC(pn)}. ��
Note that LNI and TNI are complementary index structures. Specifically, if a q cannot
be located with TNI (i.e., q falls outside of any TC), then we use LNI to identify the
LCs that contain q; based on Lemma 2, the generators of such LCs are the only NN
candidates for q.

Data Structures and Updates. With our approach, we use R-Tree [10] like data struc-
ture to implement TNI and LNI, termed TN R-tree and LN R-tree, respectively. Figure
7 depicts LN R-tree (TN R-tree is a similar data structure without extra pointers at the
leaf nodes, hence not discussed). As shown, LN R-tree has the basic structure of an
R-tree generated on minimum bounding rectangles of loose cells. The difference is that
we modify R-tree by linking its leaf nodes to the the pointers of additional components
that facilitate TD-kNN query processing. These components are the direct neighbors
(N(pi)) of pi and the list of nodes (V Lpi) that are inside LC(pi). While N(pi) is used
to filter the set of candidate nearest neighbors where k > 1, we use V Lpi to prune the
search space during TDSP computation (see Section 4.2).

Our proposed index structures need to be updated when the set of data objects and/or
the travel-time profiles change. Fortunately, due to local precomputation nature of TD-
kNN, the affect of the updates with both cases are local, hence requiring minimal
change in tight and loose cell index structures. Below, we explain each update type.

Data Object Updates: We consider two types of object update; insertion and deletion
(object relocation is performed by a deletion following by insertion at the new location).

442 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

With a location update of a data object pi, only the tight and loose cells of pi’s neighbors
are updated locally. In particular, when a new pi is inserted, first we find the loose cell(s)
LC(pj) containing pi. Clearly, we need to shrink LC(pj) and since the loose cells and
tight cells share common edges, the region that contains LC(pj) and LC(pj)’s direct
neighbors needs to be adjusted. Towards that end, we find the neighbors of LC(pj);
the tight and loose cells of these direct neighbors are the only ones affected by the
insertion. Finally, we compute the new TCs and LCs for pi, pj and pj’s direct neighbors
by updating our index structures. Deletion of a pi is similar and hence not discussed.

Edge Travel-time Updates: With travel-time updates, we do not need to update our
index structures. This is because the tight and loose cells are generated based on the
minimum (LTT) and maximum (UTT) travel-times of the edges in the network that
are time-independent. The only case we need to update our index structures is when
minimum and/or maximum travel-time of an edge changes, which is not that frequent.
Moreover, similar to the data object updates, the affect of the travel-time profile update
is local. When the maximum and/or minimum travel-time of an edge ei changes in
the network, we first find the loose cell(s) LC(pj) that overlaps with ei and thereafter
recompute the tight and loose cells of LC(pj) and its direct neighbors.

4.2 TD-kNN Query Processing (Online)

So far, we have defined the properties of TNI and LNI . We now explain how we
use these index structures to process kNN queries in GT . Below, we first describe our
algorithm to find the nearest neighbor (i.e., k=1), and then we extend it to address the
kNN case (i.e., k ≥ 1).

Nearest Neighbor Query. We use TNI or LNI to identify the nearest neighbor of a
query object q. Given the location of q, first we carry out a depth-first search from the
TNI root to the node that contains q (Line 5 of Algorithm 1). If a tight cell that contains
q is located, we return the generator of that tight cell as the first NN. Our experiments
show that, in most cases (7 out of 10), we can find q with TNI search (see Section 5.2).
If we cannot locate q in TNI (i.e., when q falls outside all tight cells), we proceed to
search LNI (Line 7). At this step, we may find one or more loose cells that contain q.
Based on Lemma 2, the generators of these loose cells are the only possible candidates
to be the NN for q. Therefore, we compute TDFP to find the distance between q and
each candidate in order to determine the first NN (Line 8-12). We store the candidates
in a minimum heap based on their travel-time to q (Line 10) and retrieve the nearest
neighbor from the heap in Line 12.

kNN Query. Our proposed algorithm for finding the remaining k-1 NNs is based on
the direct neighbor property discussed in Section 4.1. We argue that the second NN
must be among the direct neighbors of the first NN. Once we identify the second NN,
we continue by including the neighbors of the second NN to find the third NN and so
on. This search algorithm is based on the following Lemma which is derived from the
properties of TNI and LNI .

Lemma 4. The i-th nearest neighbor of q is always among the neighbors of the i-1
nearest neighbors of q.

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 443

(a) Algorithm 1 (b) Algorithm 2

Fig. 8. kNN query algorithm in time-dependent road networks

Proof. We prove this lemma by induction. We prove the base case (i.e., the second NN
is a direct neighbor of the first NN of q) by contradiction. Consider Figure 9 where
p2 is the first NN of q. Assume that p5 (which is not a direct neighbor of p2) is the
second NN of q. Since p2 and p5 are not direct neighbors, a point w on the time-
dependent shortest path between q and p5 can be found that is outside both LC(p2) and
LC(p5). However, p5 cannot be a candidate NN for w, because w is not in LC(p5).
Thus, there exists another object such as p1 which is closer to w as compared to p5.
Therefore, TDFP (w, p5, t) > TDFP (w, p1, t). However, as shown in Figure 9, we
have TDFP (q, p5, t) = TDFP (q, w, t) + TDFP (w, p5, t) > TDFP (q, w, t) +
TDFP (w, p1, t) = TDFP (q, p1, t). Thus, p5 is farther from q than both p2 and p1,
which contradicts the assumption that p5 is the second NN of q. The proof of inductive
step is straight forward and similar to the above proof by contradiction; hence, due to
lack of space, we omit the details. ��
The complete TD-kNN query answering process is given in Algorithm 2. Algorithm
2 calls Algorithm 1 to find the first NN and add it to N , which maintains the current
set of nearest neighbors (Lines 4-5). To find the remaining k − 1 NNs, we expand the
search area by including the neighboring loose cells of the first NN. We compute the
TDSP for each candidate and add each candidate to a minimum heap (Lines 9) based
on its time-dependent travel-time to q. Thereafter, we select the one with minimum
distance as the second NN (Line 11). Once we identify the second NN, we continue
by investigating the neighbor loose cells of the second NN to find the third NN and so
on. Our experiments show that the average number of neighbors for a data object is a
relatively small number less than 9 (see Section 5.2).

Time-dependent Fastest Path Computation. As we explained, once the nearest neigh-
bor of q is found and the candidate set is determined, the time-dependent fastest path
from q to all candidates must be computed in order to find the next NN. Before we
explain our TDFP computation, we note a very useful property of loose cells. That
is, given pi is the nearest neighbor of q, the time-dependent shortest path from q to pi

is guaranteed to be in LC(pi) (see Lemma 5). This property indicates that we only need

444 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

Fig. 9. Second NN Example Fig. 10. TDSP localization

to consider the edges contained in the loose cell of pi when computing TDFP from q
to pi. Obviously, this property allows us to localize the time-dependent shortest path
search by extensively pruning the search space. Since the localized area of a loose cell
is substantially smaller as compared to the complete graph, the computation cost of
TDFP is significantly reduced. Note that the subnetwork bounded by a loose cell is on
average 1/n of the original network where n is the total number of sites.

Lemma 5. If pi is the nearest neighbor of q, then the time-dependent shortest path from
q to pi is guaranteed to be inside the loose cell of pi

Proof. We prove by contradiction. Assume that pi is the NN of q but a portion of TDFP
from q to pi passes outside of LC(pi). Suppose a point l on that outside portion of the
path. Since l is outside LC(pi), then ∃pj ∈ P , pj �= pi that satisfies DLTT (pi, l) >
DUTT (pj , l) and hence TDFP (pi, l, t) > TDFP (pj, l, t). Then, TDFP (pi, q, t) =
TDFP (pi, l, t) + TDFP (l, q, t) > TDFP (pj, l, t) + TDFP (l, q, t) = TDFP
(pj , q, t), which contradicts the fact that pi is the NN of q. ��
We note that for TD-kNN with k > 1, the TDFP from q to the kth nearest neighbor will
lie in the combined area of neighboring cells. Figure 10 shows an example query with
k > 1 where p2 is assumed to be the nearest neighbor (and the candidate neighbors of
p2 are, p1, p6 and p3). To compute the TDFP from q to data object p1, we only need to
consider the edges contained in LC(p1)∪LC(p2). Below, we explain how we compute
the TDFP from q to each candidate.

As initially showed by Dreyfus [7], the TDFP problem (in FIFO networks) can be
solved by modifying any label-setting or label-correcting static shortest path algorithm.
The asymptotic running times of these modified algorithms are same as those of their
static counterparts. With our approach, we implement a time-dependent A* search (a
label-setting algorithm) to compute TDFP between q and the candidate set. The main
idea with A* algorithm is to employ a heuristic function h(v) (i.e., lower-bound esti-
mator between the intermediate node vi and the target t) that directs the search towards
the target and significantly reduces the number of nodes that have to be traversed. With
static road networks where the length of an edge is considered as the cost, the Euclidean
distance between vi and t is the lower-bound estimator. However, with time-dependent
road networks, we need to come up with an estimator that never overestimates the
travel-time between vi and t for all possible departure-times (from vi). One simple

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 445

Fig. 11. TDSP Algorithm

lower-bound is deuc(vi, t)/max(speed), i.e., the Euclidean distance between vi and t
divided by the maximum speed among the edges in the entire network. Although this
estimator is guaranteed to be a lower-bound between vi and t, it is a very loose bound,
hence yields insignificant pruning. Fortunately, our approach can use Lemma 5 to ob-
tain a much tighter lower-bound. Since the shortest path from q to pi is guaranteed to
be inside LC(pi), we can use the maximum speed in LC(pi) to compute the lower-
bound. We outline our time-dependent A* algorithm in Algorithm 3 where essential
modifications (as compared to [7]) are in Lines 3, 10 and 14. As mentioned, to compute
TDFP from q to candidate pi, we only consider the nodes in the loose cell that con-
tains q and LC(pi) (Line 3). To compute the labels for each node, we use arrival time
and the estimator (i.e., cost(vi)+hLC(vi) where hLC(vi) is the lower-bound estimator
calculated based on the maximum speed in the loose cell) to each node that form the
basis of the greedy algorithm (Line 10). In Lines 10 and 14, TT (vi, vj , tvi) finds the
time-dependent travel-time from vi to vj (see Section 3).

5 Experimental Evaluation

5.1 Experimental Setup

We conducted several experiments with different spatial networks and various parame-
ters (see Figure 12) to evaluate the performance of TD-kNN. We run our experiments
on a workstation with 2.7 GHz Pentium Duo Processor and 12GB RAM memory. We
continuously monitored each query for 100 timestamps. For each set of experiments,
we only vary one parameter and fix the remaining to the default values in Figure 12.
With our experiments, we measured the tight cell hit ratio and the impact of k, data
and query object cardinality as well as the distribution. As our dataset, we used Los
Angeles (LA) and San Joaquin (SJ) road networks with 304,162 and 24,123 segments,
respectively.

We evaluate our proposed techniques using a database of actual time-dependent
travel-times gathered from real-world traffic sensor data. For the past 1.5 year, we have

446 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

been collecting and archiving speed, occupancy, volume sensor data from a collection
of approximately 7000 sensors located on the road network of LA. The sampling rate of
the data is 1 reading/sensor/min. Currently, our database consists of about 900 million
sensor reading representing traffic patterns on the road network segments of LA. In
order to create the time-dependent edge weights of SJ , we developed a system [5] that
synthetically generates time-dependent edge weights for SJ .

5.2 Results

Impact of Tight Cell Hit Ratio and Direct Neighbors. As we explained, if a q is
located in a certain tight cell TC(pi), our algorithm immediately reports pi as the first
NN. Therefore, it is essential to asses the coverage area of the tight cells over the entire
network. Figure 13(a) illustrates the coverage ratio of the tight cells with varying data
object cardinality (ranging from 1K to 20K) on two data sets. As shown, the average
tight cell coverage is about %68 of the entire network for both LA and SJ . This implies
that the first NN of a query can be answered immediately with a ratio of 7/10 with no
further computation. Another important parameter affecting the TD-kNN algorithm is
the average number of direct neighbors for each data object. Figure 13(b) depicts the
average number of neighbor cells with varying data object cardinality. As shown, the
average number of neighbors is less than 9 for both LA and SJ .

Fig. 12. Experimental Parameters

(a) Coverage ratio (b) Number of neighbors

Fig. 13. Time-dependent fastest path localization

As mentioned, in [7] we developed an incremental network expansion algorithm
(based on [7]) to evaluate kNN queries in time-dependent networks. Below we com-
pare our results with this naive approach. For the rest of the experiments, since the
experimental results with both LA and SJ networks differ insignificantly and due to
space limitations, we only present the results from LA dataset.

Impact of k. In this experiment, we compare the performance of both algorithms by
varying the value of k. Figure 14(a) plots the average response time versus k ranging
from 1 to 50 while using default settings in Figure 12 for other parameters. The results
show that TD-kNN outperforms naive approach for all values of k and scales better
with the large values of k. As illustrated, when k=1, TD-kNN generates the result set
almost instantly. This is because a simple contain() function is enough to find the first
NN. As the value of k increases, the response time of TD-kNN increases at linear rate.

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 447

(a) Impact of k (b) Network node access

Fig. 14. Response time and node access versus k

(a) Object cardinality (b) Query cardinality (c) Object/Query distribution

Fig. 15. Impact of k

Because, TD-kNN, rather than expanding the search blindly, benefits from localized
computation. In addition, we compared the average number of network node access
with both algorithms. As shown in Figure 14(b), the number of nodes accessed by TD-
kNN is less than the naive approach for all values of k.

Impact of Object and Query Cardinality. Next, we compare the algorithms with
respect to cardinality of the data objects (P). Figure 15(a) shows the impact of P on
response time. The response time linearly increases with the number of data objects
in both methods where TD-kNN outperforms the naive approach for all cases. From
P=1K to 5K, the performance gap is more significant. This is because, for lower densi-
ties where data objects are possibly distributed sparsely, naive approach requires larger
portion of the network to be retrieved. Figure 15(b) shows the impact of the query
cardinality (Q) ranging from 1K to 5K on response time. As shown, TD-kNN scales
better with larger Q and the performance gap between the approaches increases as Q
grows.

Impact of Object/Query Distribution. Finally, we study the impact of object, query
distribution. Figure 15(c) shows the response time of both algorithms where the ob-
jects and queries follow either uniform or Gaussian distributions. TD-kNN outperforms
the naive approach significantly in all cases. TD-kNN yields better performance for
queries with Gaussian distribution. This is because as queries with Gaussian distribu-
tion are clustered in the network, their nearest neighbors would overlap hence allowing
TD-kNN to reuse the path computations.

448 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

6 Conclusion and Future Work

In this paper, we proposed a time-dependent k nearest neighbor search algorithm (TD-
kNN) for spatial networks. With TD-kNN, unlike the existing studies, we assume the
edge weights of the network are time varying rather than fixed. In real-world, time-
varying edge utilization is inherit in almost all networks (e.g., transportation, internet,
social networks). Hence, we believe that our approach yields a much more realistic sce-
nario and is applicable to kNN applications in other domains. We intend to pursue this
study in two directions. First, we plan to investigate new data models for effective repre-
sentation of time-dependent spatial networks. This is critical in supporting development
of efficient and accurate time-dependent algorithms, while minimizing the storage and
cost of the computation. Second, we intend to study a variety of other spatial queries
(including continuous kNN, range and skyline queries) in time-dependent networks.

References

1. Chabini, I.: The discrete-time dynamic shortest path problem: Complexity, algorithms, and
implementations. Journal of Transportation Research Record, 16–45 (1999)

2. Cho, H.-J., Chung, C.-W.: An efficient and scalable approach to cnn queries in a road net-
work. In: Proceedings of VLDB (2005)

3. Cooke, L., Halsey, E.: The shortest route through a network with timedependent internodal
transit times. Journal of Mathematical Analysis and Applications (1966)

4. Demiryurek, U., Kashani, F.B., Shahabi, C.: Towards k-nearest neighbor search in time-
dependent spatial network databases. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.)
Databases in Networked Information Systems. LNCS, vol. 5999, pp. 296–310. Springer,
Heidelberg (2010)

5. Demiryurek, U., Pan, B., Kashani, F.B., Shahabi, C.: Towards modeling the traffic data on
road networks. In: Proceedings of SIGSPATIAL-IWCTS (2009)

6. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over graphs. In: Proceed-
ings of EDBT (2008)

7. Dreyfus, P.: An appraisal of some shortest path algorithms. Journal of Operation Research
17 (1969)

8. Erwig, M., Hagen, F.: The graph voronoi diagram with applications. Journal of Networks 36
(2000)

9. George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing algorithms:
A summary of results. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 460–477. Springer, Heidelberg (2007)

10. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of
SIGMOD (1984)

11. Halpern, J.: Shortest route with time dependent length of edges and limited delay possibilities
in nodes. Journal of Mathematical Methods of Operations Research 21 (1969)

12. Hu, H., Lee, D.L., Xu, J.: Fast nearest neighbor search on road networks. In: Ioannidis, Y.,
Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T.,
Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)

13. Huang, X., Jensen, C.S., Saltenis, S.: The island approach to nearest neighbor querying in
spatial networks. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 449

14. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed
patterns. In: Proceedings of ICDE (2006)

15. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nn search in spatial networks. In: Proceed-
ings of VLDB (2004)

16. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In: Geoinformation and Mobilitat (2004)

17. Navteq, http://www.navteq.com (last visited January 2, 2010)
18. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-

dependent edge-length. Journal of the ACM 37 (1990)
19. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial networks. In:

Proceedings of VLDB (2003)
20. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial

databases. In: Proceedings of SIGMOD (2008)
21. TeleAtlas, http://www.teleatlas.com (last visited January 2, 2010)
22. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large

sparse graphs. In: Proceedings of Algorithms-ESA (2003)

http://www.navteq.com
http://www.teleatlas.com

	Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks
	Introduction
	Related Work
	kNN Queries in Spatial Networks
	Time-Dependent Shortest Path Studies

	Problem Definition
	TD-KNN
	Indexing Time-Dependent Network (Off-Line)
	TD-kNN Query Processing (Online)

	Experimental Evaluation
	Experimental Setup
	Results

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

