
Towards Efficient Concurrent Scans on Flash

Disks�

Chang Xu, Lidan Shou, Gang Chen, Wei Hu, Tianlei Hu, and Ke Chen

College of Computer Science, Zhejiang University, China
chinawraith@163.com, {should,cg,hw,htl,chenk}@zju.edu.cn

Abstract. Flash disk, also known as Solid State Disk (SSD), is widely
considered by the database community as a next-generation storage me-
dia which will completely or to a large extent replace magnetic disk
in data-intensive applications. However, the vast differences on the I/O
characteristics between SSD and magnetic disk imply that a consider-
able part of the existing database techniques need to be modified to
gain the best efficiency on flash storage. In this paper, we study the
problem of large-scale concurrent disk scans which are frequently used
in the decision support systems. We demonstrate that the conventional
sharing techniques of mutiple concurrent scans are not suitable for SSDs
as they are designed to exploit the characteristics of hard disk drivers
(HDD). To leverage the fast random reads on SSD, we propose a new
framework named Semi-Sharing Scan (S3) in this paper. S3 shares the
readings between scans of similar speeds to save the bandwidth utiliza-
tion. Meanwhile, it compensates the faster scans by executing random
I/O requests separately, in order to reduce single scan latency. By uti-
lizing techniques called group splitting and I/O scheduling, S3 aims at
achieving good performance for concurrent scans on various workloads.
We implement the S3 framework on a PostgreSQL database deployed on
an enterprise SSD drive. Experiments demonstrate that S3 outperforms
the conventional schemes in both bandwidth utilization and single scan
latency.

1 Introduction

During the past decade, flash memory has become a popular medium for stor-
age due to its fast random access, low energy consumption, shock resistance,
and silent working. In recent years, the flash disk, also known as Solid State
Disk (SSD), has gained momentum in its competition against the conventional
magnetic hard disk drive (HDD) in the market. Many software products which
previously rely on HDD storage are now being considered to adopt SSD as an al-
ternative. Among these, the database management systems are probably within

� This work was supported in part by the National Science Foundation of China (NSFC
Grant No. 60803003, 60970124) and by Chang-Jiang Scholars and Innovative Re-
search Grant (IRT0652) at Zhejiang University.

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 198–212, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Efficient Concurrent Scans on Flash Disks 199

the class which requires the most attention and efforts, due to their vast com-
plexity and numerous legacy applications. Despite the challenges, the prospect
of replacing HDD with SSD in DBMS is attractive as the current database ap-
plications are desperately confined by the bottleneck of random I/O in HDDs.
The most desirable feature of SSD in this regard is its elimination of seek and
rotational delay, and the resultant fast random accesses. Table 1 indicates that
the state-of-the-art SSD outperforms the conventional HDDs by more than two
orders of magnitude in random reads.

Table 1. Performance Comparison of Different Read Patterns

HDD † SSD‡

Random Read Latency 9.69ms 0.03ms

Sequential Read Rate 114.7MB/s up to 250MB/s
† : Western Digital 7200 rpm Digital Black
‡ : Intel X-25 Extremely

Unfortunately, previous studies have found that the performance of DBMS
could not gain the expected improvements while they are deployed on SSDs
straightforwardly [8] [14] [15]. The main reason for such results is that the storage
engines and access methods of the conventional DBMSs are designed for the
HDDs. As such, the advantages of SSDs cannot be fully exploited.

Let us consider the disk-based methods to handle concurrent disk scans, which
are often executed as table scans in many decision support systems. The problem
of concurrent table scans on HDD can be described as following: Given a limited
buffer size of C and a sufficiently large table, if a running scan operation S1

outdistances another scan operation S2, meaning that S1 is accessing a page
which is at least C + 1 blocks ahead of S2, S2 is unlikely to hit any useful
pages in the buffer with typical buffer management policies [9] [10] [11] [12]
[13]. As a result, scan S2 will not only cause disk thrashing but also compete
the buffer space with S1, leading to poor performance. In the literature, a few
methods [1] [2] [4] [6] [7] have been proposed to address the above problem on
HDDs. The main idea behind all these methods is that concurrent disk scans
can “share” their footprints on disk pages as well as their memory buffer space.
Therefore, multiple scans can share a (hopefully long) period of sequential disk-
head movements, avoiding the penalty of chaotic random reads. However, these
methods have the following drawbacks when employed on SSDs:

– First, there are almost always speed mismatches among multiple scans shar-
ing the same sequential accesses. A faster scan has to be constrained by the
slower ones in order to share the disk arm movement on the HDD. But on
SSD this constraint is trivial as it is not mechanic-driven. Therefore, the
capacity of SSD does not be fully exploited if the overall disk bandwidth is
not saturated.

200 C. Xu et al.

– Second, the existing methods focus on optimizing the disk accesses only be-
cause the queries are I/O-bounded. As SSD provides much larger bandwidth
than HDD, some complicated queries are bounded by CPU power other than
I/O bandwidth. Therefore, the strategy of the disk accesses needs to be re-
considered to exploit the system capability.

In this work, we leverage the advantage of SSD to speed up concurrent scans.
First we introduce a cost model for concurrent scans on SSD, and then we
propose a novel framework named Semi-Sharing Scans (S3). S3 consists of two
main components, namely the scan scheduler and the low-level I/O scheduler. (1)
The scan scheduler clusters multiple scans into a set of groups by the similarity
between their speeds. The scans in a same group share a stream of sequential
block read operations which we refer to as the unified I/Os. In addition, faster
scans which are not fully feed are allowed to perform complementary I/Os at
other disk addresses. (2) The I/O scheduler dispatches the I/O requests from
the scans into two separate queues, namely the unified and complementary I/O
queue. During I/O scheduling, the unified queue enjoys higher priority compared
to the complementary one.

Compared to the existing methods, S3 is more suitable for concurrent scans
on SSD as it optimizes both the bandwidth utilization and the average latency
of each single scan under various workloads. Additionally, the framework is easy
to implement, as only limited modifications are needed in a RDBMS. The con-
tributions of our work include:

– We present a new cost model of the concurrent scans on SSD and demon-
strate that the state-of-the-art scan scheduling policies do not fully exploit
the I/O capability of SSD in various workloads.

– We propose a multiple-scan scheduling framework S3 based on the cost anal-
ysis. This framework improves the bandwidth utilization via grouping and
I/O scheduling. Compared to the existing methods, S3 reduces the latency
of a faster scan by compensating it with a separate stream of disk footprints.

– We implement the S3 framework in the PostgreSQL DBMS. Our comprehen-
sive experiments based on the TPCH benchmark indicate that the proposed
approach is very effective for various workload patterns.

The rest of the paper is organized as follows. In Section 2 we define the problem
and analyze the existing strategies on SSD. Our S3 framework is described in
Section 3. The experiments in Section 4 demonstrate the efficiency of S3 and we
conclude our work in Section 5.

2 Problem Definition and Cost Analysis

2.1 Problem Definition

A formal definition to concurrent scans problem is as follows. Assume that a
table contains N pages stored in the secondary storage and a small buffer with
capacity C (C is much smaller than N) in the main memory. If there are k scans

Towards Efficient Concurrent Scans on Flash Disks 201

denoted by S1, S2..., Sk, whose speeds are v1, v2..., vk respectively, all beginning
at arbitrary times and having to access all the N pages of the table. The problem
is how to coordinate the scans to gain the optimal performance.

The performance optimization of concurrent scans relies on the definitions of
a few terms as following. The speed vi of a scan Si is defined as the number of
pages that can be consumed per second when Si is executed alone. Meanwhile,
the response time of Si, denoted by rt(Si), is the elapsed time between its start
and end. Given sufficiently large disk bandwidth and a specific CPU processing
power, the minimum response time of Si, denoted by rtmin(Si), is the response
time when Si is executed alone. Therefore we have rtmin(Si) = N/vi. As the
computational costs between queries may differ significantly, the speeds of dif-
ferent scans may also be very different. For example, in the TPCH benchmark,
Q1 generates a slow scan on the Lineitem table as it needs many arithmetic
computations, while Q6 is much faster as it only contains an aggregation.

A set of concurrent scans Si (i = 1, 2, . . . , n) may share disk I/Os if their
I/O requests are scheduled properly. In such case, the overall number of pages
being transferred per second is defined as the bandwidth consumption. However,
in real world the bandwidth consumption is always constrained by the physical
device bandwidth capacity V . Therefore, we refer to the unconstrained, ideal
bandwidth consumption as the bandwidth demand or Bdemand, while the con-
strained, actual bandwidth consumption seen on the physical disk interface as the
actual bandwidth consumption or Bactual. We denote by Bdemand(system) the
total bandwidth demand of the n scans in the system, and by Bdemand(si)
the demand of scan si. Bactual(system) and Bactual(si) are defined similarly.
We note that Bactual(system) must always be no more than Bdemand(system).
The latter must also be no more than the sum of all the speeds of the scans.
Therefore, we have

Bactual ≤ Bdemand ≤
∑

vi.

The target of our optimization is to minimize the average response time

1
n

n∑

i=1

rt(Si) (1)

while Bactual is constrained by the device bandwidth capacity. It is important
to note that the Bactual(system) is either V or Bdemand(system) whichever is
smaller.

2.2 Existing Scheduling Schemes

In this subsection, we shall look at a few existing schemes for handling concurrent
scans. A naive scheme to handle concurrent scans is to simply rely on the LRU
buffer replacement policy. The naive scheme does not allow any page reusing
when the distance between the footprints of two concurrent scans is greater
than C pages. For clearness we name it as “no share”. In such case, each scan
needs to read from the secondary storage for every I/O request. This may lead

202 C. Xu et al.

to arm “thrashing” on HDDs, causing serious performance degradation. Using
the MRU replacement policy might be slightly better than the LRU because it
could reuse some initial pages in the buffer. However, the gain is very limited as
C is usually much smaller than N .

A better scheme used by some DBMSs [1] [2] [3] [4] is to save I/O by sharing
a stream of reads among multiple scans. When a new scan arrives, the system
tries to attach it to an existing scan, which shares its reads of the rest pages with
the new one. After a shared scan reaches the end of the table, it resumes from
the beginning of the table until arriving at the original starting location. The
main problem of this shared policy is that it cannot handle the speed mismatch
between the scans. Once a scan outdistances another for more than C pages, the
situation degenerates to the no share scheme. A common solution, namely “strict
share”, is to stall the fast scans, thus guaranteeing the sequential movement of
the disk arm. In this case, the rt(Sn) is between [N/vslowest, N/vn]. To relieve
the performance loss of the fast scans, DB2 [6] [7] proposes an improved “group
shared” scheme in which the scans with similar speeds are grouped together and
sharing happens within each group. However, the faster scans still need to wait
for the slower ones in a same group.

A novel approach presented in [5] suggests to schedule the buffer by a suite of
relevance-intensive functions. However, the computation of the relevance requires
subtle dynamic statistics of the table and each scan. This would burden the CPU
when the table is large. Another drawback is that it roughens the granularity of the
buffer management, which makes it incoincident with accesses of other pattern.

2.3 Cost of Concurrent Scans on SSD

As SSD is non-mechanic driven and offers significantly higher random access
speed compared to the HDD, the seek time and rotational delay are both elim-
inated. Therefore, when the DBMS is deployed on SSDs, the cost of multiple
scans must be computed differently. In this subsection, we evaluate the schedul-
ing schemes described in subsection 2.2 using the cost model for SSD. Then we
demonstrate that none of the existing scheduling schemes for concurrent scans
can adequately exploit the capacity of SSD.

Some assumptions are necessary for introducing the cost model of SSD. (1)
We assume that we are equipped with sufficiently large number of CPUs re-
garding the I/O capacity so that the scans only sleep on I/O requests. (2) We
observe that the bandwidth of a SSD device can linearly scale-up before its
actual bandwidth consumption reaches the device capacity. Before that, the ac-
tual bandwidth being consumed should be equal to the sum of the demands
of all scans. That means Bactual(system) = Bdemand(system) =

∑
vi when

Bdemand(system) < V . (3) When the bandwidth demand of the whole system
Bdemand(system) is greater than the physical disk capacity V , indicating that
the I/O subsystem is overloaded, some requests have to wait for others to com-
plete. Such waiting causes performance degradation to a scan in terms of speed
(bandwidth) loss. Without loss of generality, we assume that such speed loss is
uniformly distributed among all scans.

Towards Efficient Concurrent Scans on Flash Disks 203

To minimize the average response time proposed in Equation 1, we look at the
response time of each scan sk (k = 1, . . . , n) under different scheduling schemes.
Based on our second assumption of SSD, we have

Bactual(system) = min(V, Bdemand(system)).

For the no share scheme, Bdemand(system) is Σvi. If Bdemand(system) is less
than V , each scan could achieve rtmin as no I/O request would be waiting.
Otherwise, the actual bandwidth of sk, Bactual(sk), is only V ∗vk/Σvi. Therefore
we have rt(sk) = N/V ∗ vk/Σvi. For the strict shared policy, Bdemand(system)
is equal to the speed of the slowest scan, denoted by vs. Therefore the response
time of each scan is N/vs if vs < V , and N/V if vs > V . For the group shared
scheme, the Bdemand of each group g, denoted by Bdemand(g), is the slowest
speed within group g (we denote it by vsg) and Bdemand(system) is the sum of
all groups in the system, namely Σvsg

i . If Σvsg
i < V , then the response time of

sk is given by the slowest scan in its group, namely rt(sk) = N/vsg
k . Otherwise,

rt(sk) = N/V ∗ vsg
k /Σvsg

i .

Table 2. Response times of scans on SSD under existing schemes. vs means the slowest
speed among all scans, while vsg means the slowest speed in its group.

rt(sk) Bactual(system)

no share N/min(vk, V ∗ vk/Σvi) min(V, Σvi)

strict share N/min(vs, V) min(vs, V)

group share N/min(vsg
k , V ∗ vsg

k /Σvsg
i) min(V, Σvsg

i)

Table 2 implies that all existing schemes have their limitations on the SSDs.
The no share scheme could achieve the minimal average response time when
Bdemand(system) < V . However, this benefit comes at the expense of large band-
width consumption when the number of the scans increases. The performance
of the no share scheme is likely to plunge when Bdemand(system) exceeds V . In
contrast, the strict shared scheme aims at minimizing Bdemand(system). How-
ever, faster scans in the system have to be confined by the slower ones. When the
disk has available bandwidth, the strict shared scheme is unable to fully exploit
it to expedite the fast scans. The group share scheme compromises between these
two schemes. But it still does not make adequate use of the available bandwidths
to expedite the faster scans within each group.

According to the analysis above, we design a new framework S3 which could
fully exploit the capacity of the SSD by combining the sharing I/O and separated
I/O. S3 shares part of the I/O reading among similar scans for reducing the
bandwidth consumption, while it compensates the faster ones in random I/Os
to improve the response time. Compare to the conventional sharing policies, S3

could gain in both query latencies and bandwidth consumption.

204 C. Xu et al.

3 The Semi-Sharing Scans Framework

3.1 Overview

The S3 framework consists of two components, depicted in Figure 1. The Scan
Scheduler coordinates the multiple scans, possibly in groups, and the I/O Sched-
uler dispatches the low-level I/O requests. Each scan consumes the pages of the
table via a common buffer. The buffer is located in the main memory and caches
part of the data pages from secondary storage. Once a new page is read in, the
buffer manager evicts a victim page according to its priority mechanism, such
as LRU, MRU, Clock Sweep etc.

I/O
Scheduler

Page Buffer

GROUP I

scan a scan b scan c

GROUP II

scan d scan e

Unified
Request
Unified
Request

……

Table on SSD

Scan Scheduler
send

signal

se
ndre
ad

Complement
ary Request

Complement
ary Request

……

Complement
ary Request

Fig. 1. An Overview of S3. Two scan groups I and II are in progress. In group I,
scan c acquires for a page via a complementary I/O request, while the group I moves
forward via a unified I/O request.

The Scan Scheduler manages a number of scan groups, each of which contains
one or several scans. To control the memory footprint, each group is allocated
a fix-sized window in the buffer, which contains a number of contiguous data
pages of the table. The scans in a same group share the reads of the pages in
the window, which moves forward on the table via the cooperation from all the
scans in the group. Specifically, the fastest scan reads the next data page and
pins it in the memory until the slowest one consumes it. This read is translated
to a unified I/O request in the low-level. We note that the scan scheduler can
be easily implemented on the buffer module of any existing DBMSs.

If the fastest scan outdistances the slowest one by the size of the window, it
cannot proceed sequentially to the next disk address. In this case we compensate
it by allowing complementary I/Os outside the shared stream of disk addresses,
by sending complementary I/O requests. For example in Figure 1, scan c is

Towards Efficient Concurrent Scans on Flash Disks 205

restricted by the slowest scan a, so c can make a complementary I/O request,
which deviates from its conventional sequence.

All I/O requests in S3 are scheduled by the I/O Scheduler. The unified I/O
requests and the complementary I/O requests are stored and manipulated in
separate queues. The unified requests are given higher priority. Therefore, if the
unified request queue is not empty, no complementary requests will be processed.
Once a request is completed, the I/O Scheduler evokes the scans which are
waiting on it.

In the rest of this section, we shall look at the detailed techniques of scan
scheduling and I/O scheduling.

3.2 Scheduling the Scans

Like the typical table scan processes in most existing DBMSs, each scan in the
S3 framework consists of three main steps, namely (1)BeginScan, (2) FetchNext,
(3) EndScan. In the BeginScan step, a new scan is initialized. Then the scan
traverses the table from the first page to the end by invoking the FetchNext step
iteratively. After all the pages are processed, the EndScan step terminates the
scan. We shall now elaborate these steps in the following.

Algorithm 1. BeginScan(S)

Open(S);
S.locbegin ← 0;
if there exists no groups then

create a new group g;
add S to g

else
g ← ChooseGroup();
S.locbegin ←MAX;
for each Si in g do

if Si.loccur < S.locbegin

then
S.locbegin ← Si.loccur

add S to g;
if CheckSplit(g) then

Split g;
S.loccur ← S.locbegin + 1

Algorithm 2. EndScan(S)

if S is the only scan in g then
delete g;
for all groups GN do

gi ←
PickSplitGroup(GN)

Split gi;
else

remove S from g;
Close(S);

Algorithm 3. FetchNext(S)

if S.loccur = S.locbegin then
return NULL

while true do
locacq ← S.loccur;
type← unified;
g ← S’s group;
for each Si in g do

if S.loccur − Si.loccur >
|g.Window| then

locacq ← S.locbegin;
type← complementary

if type = unified then
if locacq is in buffer then

S.loccur + +;
return locacq;

else
SendRequest(locacq, S);
Signal(I/OScheduler);

else
if locacq is in buffer then

S.locbegin −−;
return locacq;

else
SendRequest(locacq, S);
Signal(I/OScheduler);

Wait();

206 C. Xu et al.

The process of BeginScan in S3 is described in Algorithm 1. When a new
scan S begins, the scan scheduler creates a new group if there is no group at
all. Otherwise, S is added to an existing group according to its speed, which
is estimated by the query optimizer module. Then the scan scheduler checks
whether a splitting is necessary. The detail of choosing and splitting the group
will be described in the next subsection. Once a group is chosen, the beginning
location of S is determined. For simplicity, we choose the page being processed
by the slowest scan in the group as the beginning location of S.

The FetchNext step returns one page of the table each time. The process
of FetchNext is described in Algorithm 3. To synchronize with other scans in
the group, A scan S firstly checks its current location. If S has outdistanced
the slowest one in its group for more than the window size, it will acquire a
complementary page, starting from the beginning location of itself and extending
backward. Otherwise it moves to the next page in the forward direction. If the
page acquired is not in buffer, S has to send either a complementary or a unified
I/O request to the I/O scheduler and wait for it. More details about the circular
location computation, priority updating, and page latching etc. are omitted in
our paper due to space limit.

Once a scan S has traversed all the pages in the table, we need to use EndScan
step to complete the scan. A fast scan is ended when its current location and
its beginning location meet. If S is the last scan in its group, the scan scheduler
removes this group and checks whether the removal causes splitting of any other
groups.

3.3 Grouping the Scans

Analogous to the discussion in section 2.3, the bandwidth demand of scans in S3

can be calculated as following. As Bdemand consists of two parts: the unified band-
width (Bu) which is occupied by the unified I/O requests and the complementary
bandwidth (Bc) produced by the complementary I/O requests. Generally in each
group g, we have

Budemand(g) = vslowest, ∀vi ∈ g;

and
Bcdemand(g) = Σvi − (|g|) ∗ vslowest, ∀vi ∈ g.

Adding Budemand(g) to Bcdemand(g) gives Bdemand(g). Given a set of groups
GN = {g1, g2, · · · , gm}, Bdemand(system) can be obtained as

∑
g∈GN

Bdemand(g).
When Bdemand(system) is smaller than V , the response time of each scan Si is

rtmin as each can acquire full bandwidth. We minimize the Bdemand(system) by
grouping the scans, and splitting the groups when necessary. The central idea
of the grouping and splitting is that the Bcdemand(system) could be reduced
significantly if scans with similar speeds are clustered in a same group. As a
result, Bdemand(system) can also be reduced. We illustrate this optimization by
giving an example of splitting a group.

Towards Efficient Concurrent Scans on Flash Disks 207

Example 1. A group g containing two scans S1(v1 = 1000 p/s) and S2(v2 =
3000 p/s) is joined by a new scan S3(v3 = 4000p/s). This would cause splitting
of group g, because the bandwidth consumption after the splitting can decrease
by 1000 p/s, as indicated in Table 3.

Table 3. An Example of Splitting

Scan Groups Budemand Bcdemand Bdemand

Before Splitting < S1, S2, S3 > 1000 5000 6000

After Splitting < S1 >, < S2, S3 > 4000 1000 5000

On the other hand, when Bdemand(system) > V , some I/O requests have to
wait for the others’ completion. To improve the average response times, the uni-
fied I/O requests are always given higher priority by the I/O scheduler. There-
fore, too many splittings would impair the performance when the system is
heavily loaded in I/O, as splitting always increases Budemand(system). In Ex-
ample 1, Bu(system) increases by 3000 after splitting. To control the number of
the groups, we define two constraints in S3. First, if the Budemand(system) is
greater than a threshold T (T is usually a bit smaller than V), we do not allow
any splitting. Second, when the scan scheduler considers to attach a new scan
to a group g, the remain life span of g must be larger than a threshold Lmax.
The reason is that if g will terminate in a short while, it might release its own
bandwidth very soon. Therefore, there is no much benefit to attach the new scan
to g.

We adopt a number of greedy algorithms for maintaining the groups. Once a
scan arrives, the scan scheduler inserts it into the group which, if the new one
becomes attached to it, produces the smallest Bdemand(system). After that, the
scheduler checks if the group needs splitting via a routine called CheckSplit.

The basic idea of the CheckSplit algorithm is to find a splitting plan which
minimizes Bdemand(system) without causing Budemand(system) > V . If this
optimal splitting plan causes reduction to the current Bdemand(system), splitting
is beneficial and therefore will be truly undertaken. It can be proven that if
there are n scans in a group g, sorted by their speeds in ascending order as
g = (S1, S2, . . . , Sn), then choosing the optimal splitting will be equivalent to
finding an optimal index i ∈ [1, n − 1] such that vector g is split into two new
vectors (S1, . . . , Si) and (Si+1, . . . , Sn). Therefore, the computational complexity
of them is O(n).

When a group is eliminated, its unified bandwidth can be released. The scan
scheduler then searches among all existing groups for one which, if being split,
causes the largest reduction of Bdemand(system). This search algorithm is imple-
mented in the PickSplitGroup algorithm. The PickSplitGroup checks each existing

208 C. Xu et al.

group using the CheckSplit routine and chooses the one which could benefit
the system most. Again, groups whose remaining life spans are less than Lmax

are not considered. The chosen group is then split according to the respective
optimal plan found by the CheckSplit algorithm.

It is worthwhile to mention that a group splitting causes changes to the win-
dow sizes of all groups. We adopt a simple method which redistributes the avail-
able buffer to each group uniformly.

3.4 Scheduling the I/O Requests

The I/O scheduler in S3 manages all I/O requests in two separate queues, namely
Qunified and Qcomple. The meanings of the queue names are self-explanatory.
Once an I/O request, either a unified or complementary one, for page p is
produced by Si, it is appended to the tail of of the respective queue in the
form < p, Si >. The I/O scheduler dispatches the I/O requests as described in
Algorithm 4.

Algorithm 4. I/O Scheduler

while true do
if Qunified is not empty then

< p,S >← GetHeader(Qunified);
Read p from SSD into buffer;
for each ri in Qcomple do

if ri.S is in S’s group then
delete ri;

for each Si in S’s group do
Signal(Si);

else if Qcomple is not empty then
< p,S >← GetHeader(Qcomple);
Read p from SSD into buffer;
Signal(S);

else
Wait();

The I/O scheduler process is evoked whenever a scan needs to access a physical
page on the SSD. It first manages the requests on the header of Qunified. Once a
unified request is completed, it eliminates all the complementary requests from
the same group and evokes all the scans in the group. The requests in the Qcomple

are only scheduled if Qunified is empty. If there are no requests in both queues,
the I/O scheduler sleeps until a new request arrives.

In case of heavy workload so that Bdemand(system) > V , the unified I/O
requests are still prioritized. The faster scans could succeed in performing com-
plementary I/Os only when there are no pending unified I/O requests. When
there are too many scans being executed concurrently, then S3 degenerates to
the group share scheme as described in section 2.3.

Towards Efficient Concurrent Scans on Flash Disks 209

4 Experiments

We implement the S3 framework on the PostgreSQL DBMS and conduct the per-
formance study on a 20-scale TPCH database. The machine that we use is an
Intel Xeon PC equipped with 8 cores and an Intel X-25E SSD. Our hardware can
achieve a maximum random I/O bandwidth of 85 MB/s on Debian with kernel
2.6. Among the TPCH queries, we focus on Q1 and Q6. The former is a typi-
cal CPU-intensive query, while the latter is an I/O-intensive one. Both queries
scan the lineitem table, which consumes around 18GB space on the SSD. The de-
fault buffer size of the DBMS is set to 256MB. For more different query speeds,
we also add two new queries, named Q′

1 and Q′
6, which are slightly modified from

Q1 and Q6. The respective speeds of all four queries have the following relation:
v(Q′

1) < v(Q1) < v(Q′
6) < v(Q6). Therefore, it can be inferred that Q′

1 is the most
CPU-intensive query among the four, while Q6 is the most I/O-intensive one.

4.1 Results on Two Concurrent Query Streams

First we conduct a set of experiments on two concurrent streams of queries,
where each stream issues the same query repetitively. For comparison, we also
implement the strict share as described in Section 2.2. We do not compare with
group share, as it apparently degenerates to the strict share or no share in this
set of experiments.

Table 4. Statistics of different schemes when processing two concurrent query streams.
Each cell under “response time” contains the two average response time values of the
respective query streams.

no share strict share semi share (S3)

response I/O throughput CPU response I/O throughput CPU response I/O throughput CPU

time (s) (MB/s) usage time (s) (MB/s) usage time (s) (MB/s) usage

Q1 vs 1261
23.7

76% 2090.1
9.1

37% 1096.7
18.6

75%
Q′

1 2393.3 88% 2108.6 100% 2228.6 100%

Q6 vs 332.3
63.9

20% 906.6
20.5

4% 225
80

30%
Q1 1230.1 43% 915.3 100% 910.9 100%

Q6 vs 439.1
73.3

15% 357.3
50.7

14% 229.3
82.1

32%
Q′

6 534.8 44% 366.8 99% 330.2 82%

Table 4 shows the statistics of different schemes on various query streams.
It can be seen that, in most cases, S3 provides considerably shorter average
response time for each query. Under the no share scheme, the CPU-intensive
workload (Q1 vs. Q′

1) is completed quickly as they could fully exploit the CPU
capacity and the I/O bandwidth. However, for Q6 vs. Q′

6, the average response
times of both streams are poor as the two queries compete on I/Os. The strict
share scheme performs well when two I/O-intensive queries Q6 and Q′

6 are exe-
cuted concurrently. However, it confines the faster scan to the slower one when
they run concurrently, as the results of Q1 vs. Q6 indicate.

210 C. Xu et al.

 0

 20

 40

 60

 80

 100
C

pu
 u

sa
ge

 (%
)

no share
strict share
semi share

 0

 20

 40

 60

 80

 100

I/
O

 B
an

dw
id

th
 (M

B
/s

)

no share
strict share
semi share

 1

 1.2

 1.4

 1.6

 1.8

 2

0.01 0.05 0.10 0.15 0.20

R
es

po
ns

e
R

at
io

Buffer capacity (percentage of table size)

no share
strict share
semi share

(a) CPU-intensive workloads
(Q1 vs Q′

1)

 0

 20

 40

 60

 80

 100 no share
strict share
semi share

 0

 20

 40

 60

 80

 100

no share
strict share
semi share

 1

 1.2

 1.4

 1.6

 1.8

 2

0.01 0.05 0.10 0.15 0.20

Buffer capacity (percentage of table size)

no share
strict share
semi share

(b) I/O-intensive
workloads (Q6 vs Q′

6)

 0

 20

 40

 60

 80

 100 no share
strict share
semi share

 0

 20

 40

 60

 80

 100

no share
strict share
semi share

 1

 1.5

 2

 2.5

 3

0.01 0.05 0.10 0.15 0.20

Buffer capacity (percentage of table size)

no share
strict share
semi share

(c) Mixed workloads (Q1

vs Q6)

Fig. 2. Statistics of different strategies on varying buffer size, workloads. The average
latency of the query is normalized.

Figure 2 illustrates the results of varying the buffer size from 1% to 20%
of the full table size. We use a smaller dataset of 5-scale data, in which the
lineitem table is around 4.5GB. The response ratio of a scan Si is defined as
rt(Si)/rtmin(Si). In Figure 2, we can see several interesting results. (1) S3 always
has the highest CPU utilization compared to the other scheduling schemes. The
reasons are two-fold. The first reason is that the faster query will never be
blocked if the whole I/O bandwidth is not saturated. The second reason is that
the slower query can always benefit from the faster one, as the pages loaded from
SSD by the latter can be reused by the former. (2) Only the no share scheme is
sensitive to the buffer size. The strict share and S3 do not appear to vary much
by the buffer size as they intentionally share the buffer reading themselves. (3)
The response ratio of S3 is always better than the other two. This confirms the
semi share as an efficient scheme for concurrent scans on SSDs.

4.2 Results on Many Concurrent Queries

In this subsection we conduct more than two queries concurrently to study the
performance and behavior of S3. Specifically we execute 5 streams of queries,
consisting of two streams of Q′

1, one stream of Q1, and two streams of Q′
6. Table 5

presents the results of different scheduling schemes. The average response time of
no share is slow because the bandwidth demand exceeds V . The strict share and
group share could save the bandwidth efficiently. However, they delay the faster
scans like Q1 or Q′

6 to share the whole scan process. Our S3 scheme outperforms
the other three in average response time because it exploits the I/O bandwidth
of SSD more efficiently.

Towards Efficient Concurrent Scans on Flash Disks 211

Table 5. Statistics of different strategies when processing five concurrent query streams

no share strict share group share semi share (S3)

response I/O thr. CPU response I/O thr. CPU response I/O thr. CPU response I/O thr. CPU

time (s) (MB/s) usage time (s) (MB/s) usage time (s) (MB/s) usage time (s) (MB/s) usage

Q′
1 2459.4

82.5

80% 2153.2

7

83% 2196.7

33.5

82% 2132.4

53

94%
Q′

1 2499.4 80% 2144.6 83% 2160.5 83% 2202.8 83%
Q1 1275.6 64% 2109 45% 2079.1 42% 1064.4 65%
Q′

6 651.8 31% 2094.2 9% 629 35% 545.2 40%
Q′

6 647 26% 2099.1 9% 625.2 35% 589.2 35%

Finally, we conduct a more mircoscopic experiment, in which five queries are
started in the order of Q′

1, Q
′
1, Q1, Q

′
6, Q

′
6, each one is started 50 seconds later

than its predecessor. Figure 3 plots all disk page IDs being accessed by time. It
can be seen that after the first query Q′

1 is started, new queries Q′
1, Q1, and Q′

6

are started subsequently. All these four are attached to the same group. When
the final Q′

6 joins, the group is split into two, namely Group I including two Q′
6s,

and Group II including two Q′
1s and Q1. Since Q1 is faster than Q′

1, it performs
complementary I/Os to compensate the speed mismatch. We notice that when
Group I ends, Q1 stops the complementary I/O for a while, as indicated by the
gap in the top-most blue curve. This is because the window size of Group II is
enlarged due to the elimination of Group I. Therefore Q1 can move forward for a
certain period on the unified I/O stream, until reaching the end of the window.

Fig. 3. The process of 5 queries starting at an interval and running concurrently

To summarize, on both CPU-intensive and I/O-intensive workloads, S3 out-
performs the other conventional schemes. Generally, S3 could improve the query
efficiency for about 20% to 100%.

5 Conclusion

In this paper we propose a new framework, namely Semi-Sharing Scan, for pro-
cessing concurrent scans on SSD efficiently. S3 groups the scans and compensates

212 C. Xu et al.

the faster ones by random I/Os, if the hardware bandwidth is not saturated. Via
I/O scheduling, S3 also improves the bandwidth utilization on I/O-intensive
workloads. We implement S3 on the PostgreSQL DBMS. Experiments based on
TPCH benchmark confirm that S3 is an efficient scheme for concurrent scans on
SSD.

References

1. Colby, L.S., et al.: Redbrick vista: Aggregate computation and management. In:
Proc. ICDE (1998)

2. Cook., C., et al.: SQL Server Architecture: The Storage Engine. Microsoft Corp.,
http://msdn.microsoft.com/library

3. Jeff Davis Laika, Inc.: Synchronized Sequential Scan in PostgreSQL:
http://j-davis.com/postgresql/syncscan/syncscan.pdf

4. NCR Corp. Teradata Multi-Value Compression V2R5.0 (2002)
5. Zukowski, M., Héman, S., Nes, N., Boncz, P.A.: Cooperative Scans: Dynamic Band-

width Sharing in a DBMS. In: VLDB (2007)
6. Lang, C.A., Bhattacharjee, B., Malkemus, T., Padmanabhan, S., Wong, K.: In-

creasing buffer-locality for multiple relational table scans through grouping and
throttling. In: ICDE (2007)

7. Lang, C.A., Bhattacharjee, B., Malkemus, T., Wong, K.: Increasing Buffer-Locality
for Multiple Index Based Scans through Intelligent Placement and Index Scan
Speed Control. In: VLDB (2007)

8. Lee, S.-W., Moon, B., Park, C., Kim, J.-M., Kim, S.-W.: A Case for Flash Memory
SSD in Enterprise Database Applications. In: Sigmod (2008)

9. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The LRU-K Page Replacement Algorithm
For Database Disk Buffering. In: SIGMOD Conference (1993)

10. Johnson, T., Shasha, D.: 2Q: A Low Overhead High Performance Buffer Manage-
ment Replacement Algorithm. In: VLDB (2004)

11. Nyhcrg, Chris: Disk Scheduling and Cache Replacement for a Database Machine,
Master Report, UC Berkeley (July 1984)

12. Robinson, J., Devarakonda, M.: Data cache management using frequency-based
replacement. In: Proc. ACM SIGMETRICS Conf. (1990)

13. Lee, D., Choi, J., Kim, J.-H., Noh, S.H., Min, S.L., Cho, Y., Kim, C.-S.: LRFU: A
Spectrum of Policies that Subsumes the Least Recently Used and Least Frequently
Used Policies. IEEE Trans. Computers (2001)

14. Lee, S.W., Moon, B.: Design of flash-based dbms: an in-page logging approach. In:
SIGMOD Conference, pp. 55–66 (2007)

15. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
processing techniques for solid state drives. In: Sigmod (2009)

http://msdn.microsoft.com/library
http://j-davis.com/postgresql/syncscan/syncscan.pdf

	Towards Efficient Concurrent Scans on Flash Disks
	Introduction
	Problem Definition and Cost Analysis
	Problem Definition
	Existing Scheduling Schemes
	Cost of Concurrent Scans on SSD

	The Semi-Sharing Scans Framework
	Overview
	Scheduling the Scans
	Grouping the Scans
	Scheduling the I/O Requests

	Experiments
	Results on Two Concurrent Query Streams
	Results on Many Concurrent Queries

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

