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Abstract. In this paper, we study the problem of detecting near du-
plicates for high dimensional data points in an incremental manner. For
example, for an image sharing website, it would be a desirable feature
if near-duplicates can be detected whenever a user uploads a new image
into the website so that the user can take some action such as stop-
ping the upload or reporting an illegal copy. Specifically, whenever a new
point arrives, our goal is to find all points within an existing point set
that are close to the new point based on a given distance function and
a distance threshold before the new point is inserted into the data set.
Based on a well-known indexing technique, Locality Sensitive Hashing,
we propose a new approach which clearly speeds up the running time of
LSH indexing while using only a small amount of extra space. The idea
is to store a small fraction of near duplicate pairs within the existing
point set which are found when they are inserted into the data set, and
use them to prune LSH candidate sets for the newly arrived point. Ex-
tensive experiments based on three real-world data sets show that our
method consistently outperforms the original LSH approach: to reach the
same query response time, our method needs significantly less memory
than the original LSH approach. Meanwhile, the LSH theoretical guar-
antee on the quality of the search result is preserved by our approach.
Furthermore, it is easy to implement our approach based on LSH.

1 Introduction

Similarity search is an important research topic which finds applications in dif-
ferent areas. For example, finding all similar images of a query image in a large
image collection based on certain similarity measures and thresholds. Feature
vectors can be extracted from the images. Once this is done, the set of images
can be considered as a set of high dimensional points. In general, similarity search
can refer to a variety of related problems. In this paper, the problem we consider
is to answer range search queries in an incremental manner. That is, whenever a
new point arrives, find all similar/close points (based on a pre-specified similar-
ity threshold) from the set of high dimensional points arrived earlier, and then
insert the new point into the data set.

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 152–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Efficient Incremental Near Duplicate Detection Based on LSH 153

The motivating application of this work is online near duplicate detection
for multimedia content sharing websites like Flickr1 and Youtube2. Whenever a
user is uploading an image or video, it would be desirable if near-duplicates that
are very similar (content-wise) to the one being uploaded can be retrieved and
returned to the user in real-time. In this way, the user can identify redundant
copies of the object promptly and decide if he/she should continue the upload.
In addition to personal users, enterprise users may also need this type of applica-
tions. For example, media companies such as broadcasters and newspapers may
continuously upload their images or videos to a multimedia content repository.
The copy right issue is one of their main concerns. It would be a useful feature
if near-duplicate copies can be retrieved and reported to the users during the
upload period so that the user can identify pirated copies promptly. If the new
object is illegal, the user should immediately stop the upload process.

Compared to the traditional similarity search problem, fast response is more
important for this type of applications since similarity search is only part of the
online content upload process which must be completed within at most a few
seconds. In addition to the online requirement, another characteristic of the mo-
tivating applications is that the similarity search operations is executed together
with data point insertions. In other words, the data set is created incrementally
where the near neighbors of each point are known before the point is inserted
into the data set.

To speed up the searching process, in-memory indexing techniques are ideal
solutions if the help of disk-based index are not necessary since a disk access is
an order of magnitude slower than a memory operation. For a data set with 1
million points, an index storing all the point IDs once only needs 12MB memory
assuming each ID takes 12 bytes; if each point is a 162-dimensional point and each
dimension of a point takes 4 bytes, storing all the points needs 648MB, which is
tolerable even for an inexpensive PC nowadays. Although processing Web-scale
data set with billions of points may need clusters with tens or hundreds of dis-
tributed machines, indexing an enterprise-scale data set with tens or hundreds
of millions points in main-memory is feasible using a single server with a larger
memory size. Unfortunately, to give a fast query response, the index size needed
for high-dimensional points is usually larger than the size we computed, and it
can be even larger than the data set size. Thus, in this work we focus on reducing
memory consumption of in-memory index while providing fast query response.

Although decades of research have been conducted on similarity search, the
problem is still considered challenging. One important reason is the “curse of di-
mensionality”. It has been shown that exponential space in n (number of points
in the data set) is needed to speed up the similarity search process or the search-
ing time increases exponentially with the dimensionality [2,4]. It is also shown
both theoretically and empirically [24] that all partitioning and clustering based
indexing approaches degrade to a brute force linear scan approach when the
dimensionality is sufficiently high.

1 http://www.flickr.com
2 http://www.youtube.com

http://www.flickr.com
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To our knowledge, a state-of-the-art solution to the similarity search problem
in practice, which provides fast query response time, is Locality Sensitive Hashing
(LSH)[12,15] although it has been proposed for a decade. Meanwhile, LSH also
provides theoretical guarantees on the quality of the solution. However, also
suffering from the “curse of dimensionality”, LSH needs large amount of space
to achieve fast query response.

1.1 Our Contributions

– We proposed a novel approach, SimPair LSH, to speed up the original LSH
method; the main idea is to take advantage of a certain number of existing
similar point pairs, and use them to prune LSH candidate sets relevant for
a given query.

– The correctness and effectiveness of the new approach is analyzed.
– Thorough experiments conducted on 3 real-world data sets show that our

method consistently outperforms LSH in terms of query time in all cases
that we tried, with a small amount of extra memory cost. To achieve the
same query time saving, we show that LSH need significantly more space.
Meanwhile, we show that our method preserves the important theoretical
guarantee on the recall of query answers.

2 Preliminaries and Related Work

2.1 Problem Statement (Incremental Range Search)

In this paper, we focus on the incremental range search problem defined as
follows: given a point q and a set P with n d-dimensional points, efficiently find
out all points in P that are similar to q based on certain similarity/distance
function and a similarity threshold τ before q is inserted into the data set. We
call the points similar to q near neighbors of q. In this problem, before evaluating
the query q, the near neighbors of all points within the data set are retrieved
when they are inserted into the data set.

Distance measure. We focus on Euclidean distance since it has been widely
used in different applications. It is not hard to extend the technique to other dis-
tance functions such as L1 and Hamming distance, as the underlying technique,
Locality Sensitive Hashing, can be applied in those cases.

In-memory index structure. We focus on in-memory index structure since
fast real-time response is the first priority in the applications we consider. For
high dimensional similarity search, the index size can be as large as or even
larger than the data set size in order to give an efficient query response time.
Therefore, reducing the memory cost while providing fast response is the main
concern of this work.

2.2 Straightforward Solution

A straightforward solution to this problem is LinearScan: compute the distance
between q and each point p in P ; if the similarity is above the given similarity
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threshold, output this point. It is not hard to see that this approach can be very
slow for large data sets, especially when the dimensionality d is large; in the case
of Euclidean distance, LinearScan takes O(nd) time for each query.

2.3 Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH) [15,12] was proposed by Indyk and Motwani
and finds applications in different areas including multimedia near duplicate
detection (e.g. [9], [11], [17]). LSH was first applied in indexing high-dimensional
points for Hamming distance [12], and later extended to Lp distance [10] where
L2 is Euclidean distance, which we will use in this paper.

The basic idea of LSH is to use certain hash functions to map each multi-
dimensional point into a scalar; the hash functions used have the property that
similar points have higher probability to be mapped together than dissimilar
points. When LSH is used for indexing a set of points to speed up similarity
search, the procedure is as follows: first, create an index (a hash table) by hashing
all points in the data set P into different buckets based on their hash values;
select L hash functions uniformly at random from a LSH hash function family
and create L hash tables; when the query point q arrives, use the same set of
hash functions to map q into L buckets, one from each hash table; retrieve all
points from the L buckets into a candidate set C and remove duplicate points in
C; for each point in C compute its distance to q and output those points similar
to q.

An essential part of LSH is the hash function family H . For Euclidean dis-
tance, the hash function family can be constructed as follows [10]: map a multi-
dimensional point p into a scalar by using the function h(p) = �a·p+b

r � where
a is a random vector whose coordinates are picked uniformly at random from
a normal distribution, and b is a random variable uniformly distributed in the
range [0, r]. In this hash function, the dot product a · p is projecting each multi-
dimensional point p into a random line; the line is cut into multiple intervals
with length r; the hash value shows which interval p is mapped to after a ran-
dom shift of length b. Intuitively, it is clear that closer points have higher chance
being mapped into the same interval than distant points under this random
projection. Last, generate a new hash function g(p) to be used in constructing
a hash table by concatenating k hi(p) (i = 1 . . . k), each chosen uniformly at
random from H , i.e. g(p) = (h1(p), . . . , hk(p)).

The nice property of the LSH is that the probability that two points p1 and
p2 are hashed into the same bucket is proportional to their distance c, and this
probability can be explicitly computed using the following formulas:

p(c) = Pr[h(p1) = h(p2)] =
∫ r

0

(
1
c

)
f

(
t

c

) (
1 − t

r

)
dt, (1)

where f(t) is the probability density function of the absolute value of the normal
distribution. Having p(c), we can further compute the collision probability under
H :

P (c) = Pr[H(p1) = H(p2)] = 1 − (1 − p(c)k)L. (2)
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2.4 Other LSH-Based Approaches

Since proposed, LSH has been extended in different directions. Lv et al. [20]
proposed multi-probe LSH, and showed experimentally that their method sig-
nificantly reduced space cost while achieving the same search quality and similar
time efficiency compared with original LSH. The key idea of multi-probe LSH
is that the algorithm not only searches for the near neighbors in the buckets to
which the query point q is hashed, it also searches the buckets where the near
neighbors have slightly less chance to appear. The benefit of multi-probe LSH
is that each hash table can be better utilized since more than one bucket of
a hash table is checked, which decreases the number of hash tables. However,
multi-probe LSH does not provide the important search quality guarantee as
LSH does. The original LSH scheme guarantees that the true results will be
returned by the search algorithm with high probability, while multi-probe could
not. This makes multi-probe LSH not applicable in those applications where
the quality of the retrieval results are required to be guaranteed. The idea of
multi-probe LSH was inspired by earlier work investigating entropy-based LSH
[21]. The key idea is to guess which buckets the near neighbors of q are likely to
appear in by randomly generating some “probing” near neighbors and checking
their hash values. Similar to multi-probe LSH, entropy-based LSH also reduces
the number of hash tables required. In practice, though, it is difficult to generate
proper “probing” near neighbors in a data-independent way [20].

Another extension of LSH is LSH forest [5] where multiple hash tables with
different parameter settings are constructed such that different queries can be
handled with different settings. In the theory community, a near-optimal LSH
[2] has been proposed; however, currently it is mostly of theoretical interest
because the asymptotic running time improvement is achieved only for a very
large number of input points [4]. More LSH related work can be found in a
recent survey [4]. This survey also observes, that despite decades of research,
current solutions still suffer from the “the curse of dimensionality”. In fact, for
a large enough dimensionality, current solutions provide little improvement over
LinearScan, both in theory and in practice [4]. We further note that the technique
in this paper is orthogonal to the other LSH variants described above and can
be applied in those scenarios.

2.5 Tree-Based Indexing Techniques

When the dimensionality is relatively low (e.g. 10 or 20), tree-based indexing
techniques are known to be efficient. Examples include kd-trees [6], R-tree [14],
SR-tree [16], cover-trees [8] and navigating-nets [19]. These methods do not scale
well with the (intrinsic) dimensionality. Weber et al. [24] show that when the
dimensionality exceeds 10, all space partitioning and clustering based indexing
techniques degrade to LinearScan. For indexing high dimensional points, B+
tree is also used together with different techniques handling the “dimensionality
curse”, such as iDistance [25] and LDC [18]. Other tree-based approaches like
IQ-tree [7] and A-tree [22] use a smaller vector to represent the data points
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approximately which helps to reduce the complexity of the problem. Different
from the LSH based approaches where large amount of space is traded for gaining
fast response time, the tree-based approaches have less concern on index space
while they usually have faster but comparable query time as LinearScan.

Due to the intensive research within the past decades, there are a large body
of related literature which cannot be covered here. Samet’s book [23] provides a
comprehensive survey on this topic.

3 SimPair LSH

Our approach is based on the standard LSH indexing, and takes advantage of
existing similar pair information to accelerate the running time of LSH. We thus
call it SimPair LSH. Unless noted otherwise, LSH denotes the original LSH
indexing method in the rest of this paper.

3.1 Key Idea

We observe that LSH retrieves all points stored in the buckets a query point q
hashed to. Let the set of points returned by LSH be the candidate set C. Then
q is compared with all the points in C as in LinearScan, and the near neighbors
are found. To guarantee a low chance of missing a near neighbor in C, a large
number of hash tables has to be created which may lead to a large C depending
on the query q, and accordingly increase the running time especially when d is
large.

The main idea of this paper is to take advantage of a certain number of pair-
wise similar points in the data set and store them in memory; in the process
of scanning through C, the search algorithm can look up the similar pair list
on-the-fly whenever a distance computation between q and a point p in C is
done; if a similar pair (p, p′) is found in the list, it is very likely that p′ will also
appear in C; based on the known distances d(q, p) and d(p, p′) we can infer an
upper bound to d(q, p′) by using triangle inequality and may skip the distance
computation between q and p′. The reason this idea works is that LSH tends to
group similar objects into the candidate set C. Thus the points in C are very
likely to be similar to each other. Checking one point p can avoid computing
distance for the points similar to p, and therefore saving distance computations.

3.2 The SimPair LSH Algorithm

Our SimPair LSH algorithm works as follows: given a set of points P and all
point pairs (including their distances) whose pair-wise distances are smaller than
a threshold θ (let the set of all similar pairs be SP ). Also given the distance
threshold τ determining near neighbors, SimPair LSH then creates L indices as
in LSH; whenever a query point q comes, SimPair LSH retrieves all points in
the buckets to which q is hashed. Let this set of points be the candidate set C.
Instead of scanning through all the points p in C one by one and compute their
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distances to q as in LSH, SimPair LSH checks the pre-computed similar pair
set SP whenever a distance computation d(q, p) is done. Based on the distance
between p and q, SimPair LSH continues in 2 different ways:

– If d(q, p) <= τ , SimPair LSH searches in SP for all points p′ which satisfies
d(p, p′) <= τ − d(q, p); check if p′ in the candidate set C or not; if yes, then
mark p′ as a near neighbor of q without the distance computation.

– If d(q, p) > τ , SimPair LSH searches in SP for all those points p′ which
satisfies d(p, p′) < d(q, p) − τ ; check if p′ in the candidate set C or not; if
yes, then remove p′ from C without the distance computation.

The detailed description is shown in Algorithm 1:

Algorithm 1. SimPair LSH
Input: A set P with n d-dimensional points; L in-memory hash tables created

by LSH; a set SP storing all similar pairs in P whose pair-wise
distances are smaller than θ; a distance threshold τ defining near
neighbors; and a query point q

Output: all near neighbors of q in P
begin

check the L buckets q hashed to and retrieve all the points in those buckets
as in LSH;
put all the points into a candidate set C;
for each point p in C do

compute the distance between q and p, i.e. d(q, p);
if d(q, p) < τ then

output p as a near neighbor of q;
search in SP for all the points p′ which satisfies d(p, p′) < τ − d(q, p);
for each point p′ found in SP do

check if p′ in C or not;
if found then

output p′ as a near neighbor of q and remove it from C;

if d(q, p) > τ then
search in SP for all the points p′ which satisfies d(p, p′) < d(q, p)− τ ;
for each point p′ found in SP do

check if p′ in C or not;
if found then

remove p′ from C;

end

The algorithm constructing the LSH indices is the original LSH algorithm.
[10] describes how to select L and gi to guarantee the success probability.

3.3 Algorithm Correctness

Since our algorithm is based on LSH, it is important that the theoretical guar-
antee still holds for SimPair LSH.
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Theorem 1. SimPair LSH has the same theoretical guarantee as LSH has in
terms of the range search problem we study. That is, near neighbors will be
returned by SimPair LSH with a user-specified probability by adjusting the pa-
rameters (hash functions and number of hash tables) accordingly.

Proof. Since we consider points in metric space where triangle inequality holds,
SimPair LSH guarantees that the points skipped are either true near neighbors
or not near neighbors without distance computation.

3.4 Algorithm Effectiveness

The benefit of SimPair LSH compared with LSH is that points in the candidate
set returned by LSH can be pruned by checking the similar pair list SP with-
out distance computations. Therefore, it is important to analyze the number
of prunes SimPair generates. Also, to obtain the benefit, SimPair LSH has to
search in SP and C for the points to be pruned, which can take time although
hash indices can be built to speed up each search operation to O(1) time. Next,
we analyze the factors affecting the gain and cost.

Pruning analysis. To generate a prune from a point p in C, SimPair first has to
find a “close enough” point p′ of p from SP , where close enough or not depends
on |d(q, p)− τ |. If |d(q, p)− τ | is large, SimPair LSH has a higher chance to find
a p′.

Another factor that can affect the chance of finding p′ from SP is the size of
SP . Clearly, maintaining a large set of SP will increase the chance of finding p′
of p.

Finding p′ of p does not necessarily lead to a prune. The condition that a
prune occurs is that p′ appears in C. According to the property of LSH hash
functions, points close to q have higher chance appearing in C. In other words,
d(q, p′) determines the chance of generating a prune. Although d(q, p′) can not
be known precisely, a bound of this distance can be derived from d(q, p) and the
“close enough” threshold |d(q, p) − τ |.
Cost analysis. To gain the pruning, SimPair LSH has to pay certain amount of
costs including time and space costs. The time cost mainly comes from the search-
ing processes: find the points “close enough” to p in SP and check those points to
see if they are in C or not. By constructing hash indices for SP , searching for p in
SP only takes O(1) time; constructing hash indices for SP also takes O(1) time
for each object. When a candidate set C of points for the query q is retrieved, all
points in the dataset belonging to C are marked both in LSH and SimPair LSH;
this is possible since each point in the data set has a Boolean attribute showing if
the point is in C or not. The purpose of having this attribute is to remove dupli-
cate points when generating C. Duplicates can appear in C because one point can
appear in multiple LSH hash buckets. Note that when the searching is finished,
the boolean attributes need to be cleared (for both LSH and SimPair LSH) which
takes O(|C|) time when all points in C are also maintained in a linked list. For the
sake of pruning, another boolean attribute is needed for each point to indicate if
the point has been pruned or not.
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With these boolean attributes, searching for p′ in C takes O(1) time. The
time cost is mainly generated by searching p′ in C since there can be multiple
p′ for each p, and therefore multiple look-ups in C.

In addition to the time cost, SimPair LSH also has some extra space cost for
storing SP compared with LSH. This cost is limited by the available memory.
In our approach, we always limit the size of SP based on two constraints: (i)
the similarity threshold θ (for the similar point pairs stored in SP ) is restricted
to the range (0, τ ]; (ii) the size of SP must not exceed a constant fraction of the
index size (e.g. 10% ).

4 Experiments

In this section, we demonstrate the practical performance of our approach on
three real-world data sets, testing the pruning effectiveness, pruning costs, real
running time together with memory saving and quality of results from SimPair
LSH.

4.1 Data Sets

We use three real-world image data sets in our experiments: one directly down-
loaded from a public website and two generated by crawling commercial multi-
media websites.

Flickr images. We sent 26 random queries to Flickr and retrieved all the images
within the result set. After removing all the images with less than 150 pixels, we
obtained approximately 55, 000 images.

Tiny images. We downloaded a publicly available data set with 1 million tiny
images3. The images were collected from online search tools by sending words
as queries, and the first 30 returned images for each query are stored. Due
to the high memory cost of LSH for large data sets, we picked 50 thousand
images uniformly at random from this 1 million tiny image data set. This random
selection operation also reduced the chance that similar pairs appear in the data
set since the images retrieved from the result set of one query have higher chance
to be similar to each other.

The reason we used this smaller data set rather than only considering the full
set was that we could vary the number of hash tables within a larger range and
observe the behavior of the algorithms under different number of hash tables. For
example, the largest number of hash tables we used was about 1000; indexing
the 1 million data points takes 12GB memory under this setting which was
above the memory limit of our machine. (Note that this is an extreme case for
experimental purpose and may not be necessary in practice.) If we used 10 hash
tables, then the memory consumption will drop to 120MB. We also conducted
experiments on the whole 1 million data set setting the number of hash tables
3 The dataset was collected by A. Torralba and R. Fergus and W. T. Freeman at MIT

in 2007; it is available at http://dspace.mit.edu/handle/1721.1/37291

http://dspace.mit.edu/handle/1721.1/37291
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to smaller values, so as to see how the algorithms behave with a larger data set
size. Due to the space limit, the results from the 1 million data set are reported
into the complete version of this paper [1].

Video key-frames. We sent 10 random queries to Youtube and obtained around
200 video clips from each result set, approximately 2100 short videos in total.
We then extracted all the frames of the videos and their HSV histograms with
dimensionality 162. After that, we extracted key frames of the videos in the
following way: sequentially scan the HSV histogram of each frame in a video; if
the distance between the current histogram and the previous one in the video is
above 0.1 , keep this histogram; otherwise skip it. We set the distance threshold
to 0.1 because two images with this distance are similar but one can clearly
see their difference based on our observation. In the end, we obtained 165, 000
key-frame images.

For all the images data set described above, we removed duplicates and con-
verted each data set into a d-dimensional vector (d = 162, 512) by using the
standard HSV histogram methods [13]. Each entry of the vector represents the
percentage of pixels in a given HSV interval.

Pair-wise distance distribution. Since the pair-wise distance distribution of
data set may affect the result of our experiments, we plotted Figures and found
that the 3 data sets had similar curves. Specifically, we cut the distance range
into multiple intervals and count the number of points within each interval.
Due to the space limit, we put the histograms into the complete version of this
paper [1].

4.2 Experimental Setup

All experiments were ran on a machine with an Intel T2500 2GHz processor,
2GB memory under OS Fedora 9. The algorithms were all implemented in C
compiled by gcc 4.3.0.

The data points and the LSH indices are both loaded into the main memory.
Each index entry for a point takes 12 bytes memory. To test the performance
of our approach, we randomly selected a certain number of objects from the
data set as query objects, and measure metrics as discussed before. We took the
average number of pruned points of all queries, the average percentage of pruned
points, and the average number of operations spent on achieving the pruning per
point (average number of cost operations per query / average size of candidate
sets C of all queries).

4.3 Experiments Testing Pruning Effectiveness and Costs

In this set of experiments, we tested the number of distance computations saved
by our approach, the time and space cost to obtain the saving. We used the Flickr
data set, and the results from other data sets are also consistent in gerneral.
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From our experiments we can see that the algorithm performance is not sen-
sitive to the number of queries, and we fixed the number of queries to 100 in the
following experiments.

Since candidate set sizes |C| for some queries is quite small (e.g. < 50), and
there is no need to start the pruning process, we set a cut–off threshold T for
|C|. When |C| > T , SimPlair LSH start the pruning process; otherwise, SimPlair
LSH does not start the pruning process and degrades to the original LSH. From
our experiments we can see that the algorithm performance is not sensitive to
T in terms of both the percentage of pruned points and the average number of
operations cost per point. In the rest of the experiments, we fixed T to 200.

Due to the space limit, the results of testing the number of queries and T are
not shown here, but can be found in the complete version of the paper [1].

4.4 Experiments Testing the Query Response Time

In this set of experiments, we report the query response time of the original
LSH indexing and our approach. The LSH code were obtained from Andoni [3],
and we conducted the experiments for LSH without changing the original source
code.

Hash function time costs. Note that during query time, generating the hash
values of each query also takes time where the amount depends on the number
of hash functions or hash tables used. In the case that the candidate set size is
relatively small and the number of hash functions is large, the hashing process
can take as high as the time spent on scanning the candidate set. Since the time
spent on generating the hash values are exactly the same for both SimPair LSH
and the original LSH, and the percentage of this portion varies significantly with
the parameter setting of L and the size of C which depends on the queries, we
only report the time spent on finding near neighbors from C to see the difference
between our approach and LSH better. When the size of C is relatively large,
the fraction of hash function time cost is relatively small. But in the worst case
where hashing queries take the same amount of time as scanning C, the time
difference between two approach will be half of the numbers reported below.

Varying k and L. We varied the hash function parameter k and the number of
hash tables L to see how these parameters affect the query time. The threshold
τ was set to 0.1, success probability P was set to 95%. Note that once k were
fixed, the number of hash tables L was also fixed to guarantee the required suc-
cess probability. Other parameters are the same as in the previous experiments.
The results on the 3 data sets are shown in Figure 1a. Y-axis is the response
time saved by SimPair LSH computed as follows: (LSH Time - SimPair LSH
Time)/(LSH time). From the figure we can see that SimPair LSH consistently
outperforms LSH under different settings of K and L. The extra memory con-
sumptions of the full similar pair set SP when θ = 0.1 are 73.7MB, 12.5MB
and 3.7MB respectively for the video key frame, Tiny images and Flickr image
data sets. Recall that SP size is bound to the 10% of the index size, thus when L
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Fig. 1. LSH parameters (k, L) and data dimensionality vs. running time

is small, we use a smaller θ. Since LSH can also save running time by increasing
the number of hash tables (varying K and L), we tested how much additional
memory LSH needs to gain the same amount of time in the next experiments.

Extra space cost comparison showing the significance of our time gain.
To achieve the response time gain, in addition to the memory cost of the LSH
indices, the extra cost SimPair LSH takes is the memory spent on the similar
pair list that we restricted at most to a constant fraction of the LSH indices
(10% in our experiments). To achieve approximately the same running time gain,
LSH can also increase the memory consumption by increasing k and L without
resorting to our approach. Therefore, we compared the memory consumption of
the two approaches to achieve roughly the same query time improvement. In
fact, the memory cost of LSH can be computed from L: each hash table stores
the identifiers of all n points, and each identifier takes 12 bytes as implemented
by Andoni and Indyk [3]; therefore, the LSH space cost is 12nL.

Hence, to see the size of extra space LSH needs, it suffices to check the value
of L. Since the size of C dominates the time LSH scans through the candidate
set, the running time being saved can be represented by the reduction of |C|.
Recall that bigger values of L correspond to the decrease in size of C.

The Figure 2 is based on the Flickr image data set. The x-axis presents the
memory consumption of hash tables needed to index all the points in the dataset
for diverse settings of k and L; such a space cost is computed from formula 12nL
as discussed above, where n = 55, 000. Since SimPair LSH uses the indices of
LSH, this memory utilization is common for both algorithms. The y-axis shows
the percentage gain in time. The numbers on top of the bars show the extra
memory cost required to reach the gain in time reported. It is important to note
that the extra memory cost for SimPair LSH remains constant to 3.7MB, the
similar pair list size, for all the diverse setting of L, while LSH needs significantly
more extra memory, with increasing L, to achieve similar response time as our
method. We can conclude that LSH needs significantly more memory to achieve
even less response time saving as SimPair LSH does. For example, to have a
gain in running time of 17% when L = 78, LSH needs 38MB extra memory.
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In contrast, SimPair LSH only needs 3.7MB storing the similar pair set to gain
more than 17% response time; that makes our algorithm save 10 times the space
cost used from LSH. Note that when the number of hash tables is increased,
the time spent on computing the L hash values will also increase proportionally,
which means the real running time saving is actually smaller than 17% for LSH.
When L is large, even more extra memory is needed to gain the same amount
of running time. For example, when the hash table size increased by around
225MB, the time cost decreases only about 10%; in this case our method saves
roughly 60 times the space cost used from LSH.

Comparing with the figure shown in the previous experiment, by using the
same amount of extra memory (3.7MB), SimPair LSH gains slightly more per-
centage for different settings of k and L. Clearly, SimPair LSH is more space
efficient in terms of saving running time.

Varying the success probability P . We varied P from 90% to 99%, and
set k = 12 and L changes accordingly to see how P affects the real running
time. Other parameters are the same as the previous experiment. The results
are shown in Figure 3. From the figure again we can see that SimPair LSH
outperforms LSH in terms of running time consistently. For different data sets,
P has different impact on the saving time. However, the general trends seem to
indicate that the impact is not significant.

Varying the dimensionality d. We ran experiments on Flickr image data set
with different dimensionality d: 162 and 512, and set P = 95% to see how d
affects real running time saved. Other parameters are the same as the previous
experiment. The results are shown in Figure 1b. The y-axis shows the percentage
of running time saved as in the previous experiments. From this figure we can
see that for a higher dimensionality, the percentage of real time saved is higher
in general. This is because the gain in time each prune brings is relatively higher
compared with the cost of each prune when the dimensionality is higher.

In addition, we also ran experiments on the full 1 million tiny image data set
as mentioned earlier, and the results were consist with what we have shown. Due
to the space limit, please see details in the complete version of this paper [1].
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4.5 Quality of Results

In this set of experiments, we tested the recall or false negatives of both methods.
If a user set P to 90%, it means that he/she can tolerate missing at most 10%
near neighbors. The results in Fig. 4 shows that the real recall value is clearly
higher than the user specified probability.

5 Conclusions

In this paper, we study the problem of range search in an incremental manner
based on a well-known technique, Locality Sensitive Hashing. We propose a new
approach to improve the running time of LSH. The idea is take advantage of
certain number of existing similar point pairs, and checking this similar pair
set on-the-fly during query time. Since the look-up time cost is much cheaper
than the distance computation, especially when the dimensionality is high, our
SimPair LSH approach consistently outperforms the original LSH method, with
the cost of a small amount of extra space. To gain the same amount of running
time, LSH needs significantly more space than SimPair LSH (e.g. 10 to 100 times
more). The superiority of SimPair LSH over the original LSH is confirmed by our
thorough experiments conducted on 3 real-world image data sets. Furthermore,
SimPair LSH preserves the theoretical guarantee on the recall of the search
results. Last, SimPair LSH is easy to implement based on LSH.
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