
Effective Bitmap Indexing
for Non-metric Similarities

Claus A. Jensen, Ester M. Mungure, Torben Bach Pedersen,
Kenneth Sørensen, and François Deliège

Department of Computer Science, Aalborg University

Abstract. An increasing number of applications include recommender systems
that have to perform search in a non-metric similarity space, thus creating an in-
creasing demand for efficient yet flexible indexing techniques to facilitate similar-
ity search. This demand is further fueled by the growing volume of data available
to recommender systems.

This paper addresses the demand in the specific domain of music recommen-
dation. The paper presents the Music On Demand framework where music re-
trieval is performed in a continuous, stream-based fashion. Similarity measures
between songs, which are computed on high-dimensional feature spaces, often
do not obey the triangular inequality, meaning that existing indexing techniques
for high-dimensional data are infeasible.

The most prominent contribution of the paper is the proposal of an indexing
approach that is effective for non-metric similarities. This is achieved by using
a number of bitmap indexes combined with effective bitmap compression tech-
niques. Experiments show that the approach scales well.

1 Introduction

Recommender systems are becoming increasingly present in many applications. The
growing volume of data available to these recommender systems has created a increas-
ing demand for efficient yet flexible indexing techniques able to facilitate similarity
search. However, in many emerging domains, the similarity spaces are non-metric,
meaning that existing approaches are not feasible. Therefore, a major challenge is to
develop an indexing technique for non-metric similarity spaces. This paper tackles this
challenge in the specific context of music recommendation, but the approach can be
applied to a wide variety of systems.

The current tendency in music distribution is that personal music collections are be-
ing replaced by the notion of streaming music from commercial on-line music providers.
Here, the challenge is to support query functionalities on vast music collections where
only limited or no prior knowledge about the content of the music collection is avail-
able. However, similarity measures between songs are most often complex formulas
computed on high-dimensional feature spaces. These similarity measures, such as the
Earth Mover’s Distance, often behave “strangely”, as they are non-metric. In partic-
ular, the triangular inequality often does not hold. This means that existing indexing
techniques for high-dimensional data are infeasible. The aim of this paper is to pro-
pose an indexing solution that supports the “worst case”, namely non-metric similarity
measures, well.

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 137–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

138 C.A. Jensen et al.

This paper introduces the Music On Demand framework, referred to as the MOD
framework, and presents two major contributions. The first contribution is an index-
ing approach that is effective for non-metric similarity measures. The second major
contribution is effective query processing techniques to perform similarity search. Our
approach essentially relies on using bitmap indexes combined with effective bitmap
compression techniques.

This approach ensures efficient management of both metadata and content-based sim-
ilarity. Representing the entire music collection as well as subsets thereof as bitmaps,
we are able to use bit-wise operations to ensure efficient generation of multi attribute
subsets representing, e.g., all songs by Madonna released this year. These subsets may
in turn be applied as restrictions to the entire music collection. Similarly, using bitmaps
to represent groupings of similar songs with respect to a given base song, we are able
to identify and retrieve similar/dissimilar songs using bit-wise operations.

Extensive experiments show that the proposed approach scales with respect to the
data set size and the number of concurrent requests. Query performance, throughput,
and storage requirements are presented on a prototypical version of the MODframe-
work. For example, the prototype system running on a standard laptop is able to support
36,000 simultaneous users on a database of 100,000 songs. Comparing our implemen-
tation with an equivalent B-tree solution, we improve the query execution time by an
order of magnitude on a music collection containing 100,000 songs.

The paper is organized as follows. Section 2describes related work. Section 3presents
an informal description of a data and query model for dynamic playlist generation. In
Section 4, we elaborate on the application of bitmaps followed by an examination of the
associated query processing techniques in Section 5. In Section 6, we discuss and evalu-
ate the experiments conducted using bitmap indexing. Finally, in Section 7 we conclude
and present directions for future work.

2 Related Work

Within the field of Music Information Retrieval, much effort has been put into the task
of enabling music lovers to explore individual music collections [12, 14]. Within this
context, several research projects [17, 13] have been conducted in order to pursue a
suitable similarity measure for music, for which purpose a feature representation of the
musical content is required. In accordance with the different feature representations of
musical content, the current research is going in the direction of automating the task
of finding similar songs within music collections [2, 18]. However, due to the subjec-
tiveness of musical perception, the similarity measure described disobey the triangular
inequality and are thus said to be non-metric. Several non-metric similarity measures
exist [3, 11, 21].

When considering indexing of high dimensional musical feature representations, ex-
isting indexing techniques such as, e.g., the M-grid [7] and the M-tree [6] can be ap-
plied. However, as discussed above, the triangular inequality property of the metric
space typically cannot be obeyed for a similarity measure. Hence, as the M-tree and
the M-grid, and many other high-dimensional indexing techniques, rely on the use of a
metric space, they turn out to be insufficient. In contrast, the approach presented in this
paper does not require the triangular inequality to hold.

Effective Bitmap Indexing for Non-metric Similarities 139

To ensure efficient retrieval of read-mostly data, bitmap indexes are popular data
structures for use in commercial data warehouse applications [9]. In addition, bitmap
indexes are used with respect to bulky scientific data in order to represent static informa-
tion. One approach is related to High-Energy Physics [22]. However, to our knowledge,
bitmap indexing has so far not been applied within music retrieval.

Many different approaches exist to support accurate music recommendation. A first
approach uses musical content to find similar songs, where immediate user interaction
in terms of skipping behavior is used to restrict the music collection [19]. Unlike this
approach we do not rely on the actual distances when determining what song to return,
as songs are clustered into groups of similar songs. A second approach maps the task of
finding similar songs to the Traveling Salesman problem (TSP) [21]. A single circular
playlist consisting of all tracks from the entire music collection is generated, and the
ability to intervene in the construction of playlist is taken away from the listener. In
contrast, the single song approach presented in this paper, ensures that the construction
of a playlist may be influenced dynamically. Unlike the present paper, none of these
two approaches provide an indexing approach capable of handling arbitrary similarity
measures.

Finally, in most commercial media players such as WinampTM, the metadata of mu-
sic presumes a flat structure. However, to enable an enriched description of the metadata
of music, we choose explicitly to view metadata in the form of a multidimensional cube
known from the literature of multidimensional databases [20, 23]. The metadata of mu-
sic is thus considered as a number of metadata dimensions, modelled in a hierarchical
manner, which constitutes a multidimensional cube. Through this approach we are able
to select songs in accordance with the individual levels of a given hierarchy of a meta-
data dimension.

3 Data and Query Model

We briefly present the underlying music data model and the associated query function-
alities of the MOD framework. The full details can be found in another paper [8].

Initially, we introduce a metadata dimension in order to apply an abstraction to a
hierarchical representation of the music metadata. As shown in Figure 1, the hierar-
chical ordering of the metadata is described as two posets (partially ordered sets). The
first poset represents the hierarchical ordering of dimension levels and the second poset
represents the hierarchical ordering of the dimension values.

A metadata dimension consists of both dimension levels and dimension values, where
a dimension level has a number of associated dimension values. Using posets to model
hierarchies we achieve that both regular and irregular dimension hierarchies are sup-
ported. Irregular hierarchies occur when the mappings in the dimension values do not
obey the properties stating that a given hierarchy should be onto, covering and strict
[20]. Informally, a hierarchy is onto if the hierarchy is balanced, covering when no
paths skip a level and strict if a child in the hierarchy has just one parent. The metadata
of music is composed of descriptive attributes such as artist, title, etc. The metadata at-
tributes are presented as dimension values where a metadata item and the corresponding
schema are defined. To ensure that the model supports querying with respect to tradi-
tional navigational methods as well as musical similarity, a song is defined in terms of

140 C.A. Jensen et al.

Subgenre

Genre

dgenre

Tgenre

BritPop

RockPop

dgenre

T genred

HeavyRock

Fig. 1. Schema (left) and instance (right) for
the metadata dimension dgenre

sseed

e
a

b d

c

(a) Fetch similar song.

sskipped

e
a

b d

c

(b) Fetch random song.

Fig. 2. Usage of the distance store

both tangible music metadata and musical content. In this context, metadata represents
elements such as artist, genre, etc. and musical content corresponds to an arbitrary fea-
ture representation of the music. In addition, an arbitrary distance function dist may be
used to calculate the content-based similarity between two songs with respect to their
associated feature representations. The distance function is allowed to be non-metric as
long as the identity property is retained, i.e., dist(x, x) = 0.

When considering the content-based similarity between songs, we introduce the dis-
tance store as an abstraction over an arbitrary distance function. A distance store is
a complete partitioning of the distance domain, implying that no partitions are omit-
ted and that no partitions should overlap. Thus, each partition constitutes a unique and
non-overlapping distance interval.

The two retrieval operators SimilarSong and RandomSong constitute the main point
of interacting with the framework. The purpose of SimilarSong is to retrieve a song sim-
ilar to a given seed song, while in the same time avoiding that the retrieved songs re-
sembles possible skipped songs. As the name indicates, the task of RandomSong is to
retrieve a randomly chosen song from the music collection. In this connection the as-
pects of skipped songs also apply. Moreover, as the listener may choose to intervene in
the construction of the playlist at any point in time, either of the operators only return a
single song at a time. To fetch a similar song, using the SimilarSong operator, we are ini-
tially presented a specific seed song as shown in Figure 2(a). Assuming that each circle
represents a partition of the distance store associated with song sseed, we are to return
a song from the innermost partition containing valid songs. In this context, a valid song
is a song neither restricted nor skipped. As any song within the appropriate partitions
are valid candidate songs, either song b or d may be returned as a song similar to sseed.
However, say that b is more similar to an already skipped song, d is the better candidate.

The distance store shown in Figure 2(b) constitutes a composite distance store repre-
senting all skipped songs as discussed above. When fetching a randomly chosen song,
using the RandomSong operator, we initially pick a number of candidate songs among
the valid songs in the music collection. In this case songs a, c and d are picked. As the
candidate songs are chosen randomly within a vast music collection, chances are that
even a small number of songs, e.g., 10, ensures retrieval of an acceptable song. Locating
the positions of the candidate songs within the composite skip distance store we return
the song most dissimilar to any of the skipped songs. In this case either song a or c is
returned.

Effective Bitmap Indexing for Non-metric Similarities 141

s,S
S1 S2 S3

[1 – 3) [3 – 6) [6 – ∞]

0
1
0
0
0

0
0
1
1
0

1
0
0
0
1

(a) Bitmap indexed distance store.

Base song position
(24-bit integer)

Index
(8-bit integer)

Partition bitmap
(blob)

part 1 part 2 part 3

Primary key

(b) Structure of the partition record.

Fig. 3. A distance store and a partition record

ID
(integer)

Dimension value
(varchar)

Bitmap
(blob)

Primary key

(a) Top level dimension record.

ID
(integer)

Dimension value
(varchar)

SuperID
(integer)

Bitmap
(blob)

Primary key Secondary key (clustered)

(b) Sub level dimension record.

Fig. 4. Structure of the metadata records

Finally, the MOD framework apply the ability to restrict the entire music collection
in accordance with relevant music metadata such as genre, artist, etc.

4 Distance and Metadata Indexes

4.1 Distance Management

As indicated earlier, n distance stores are required for a music collection containing n
songs, and each distance store has to hold all n songs. Thus, to cope with this n2 space
complexity a compact representation of the subsets is greatly needed. Moreover, as we
deal with vast music collections that potentially may contain millions of songs, latency
may occur when querying songs. By use of bitmap indexes [5], we have obtained not
only a compact representation of the songs but moreover a very good query performance
of the implemented music data model reducing the overall latency.

Assume now that a certain known order of the songs within a music collection ex-
ists, e.g., the order of insertion. A subset of songs from the music collection can then be
represented by a bitmap, i.e., a sequence of bits, following the same order as the order
of the songs within the music collection, where 1 (set) bits are found only for the songs
contained in the subset. Thus, aside from representing the overall music collection of
available songs, bitmaps may moreover be used to represent subsets of the music col-
lection such as songs having a similar metadata attribute, the skipped songs or the songs
contained in the history of played songs. Moreover, having a known order of the songs
within the music collection a single song is uniquely identified by its position within
the music collection, indicating that the first song is located at position one. In the fol-
lowing we assume a 32 bit computer architecture, whereby a single bitwise instruction
computes 32 bits at once.

Using the equality encoding scheme for bitmap indexes, each distinct attribute value
is encoded as one bitmap having as many bits as the number of records in the relation,
i.e., the music collection [1, 5].

Selecting music in accordance with multiple attributes across several relations, bit-
wise bitmap operations may be used to replace expensive joins performed between the
involved relations [15, 16]. Suppose that a listener wishes to select all music performed

142 C.A. Jensen et al.

by the artists Madonna and U2 released in the year 2005. For this particular example,
a bit-wise OR is performed on the appropriate bitmaps of the artist relation in order to
generate the combined bitmap representing the songs performed by both Madonna and
U2. In addition, performing a bit-wise AND on the combined bitmap and the bitmap
representing all songs released in the year 2005 associated with the release relation,
the wished selection is achieved. Additionally, using bitmaps to represent the history
of played songs and the collection of skipped songs, bit-wise operations may be used
to ensure that neither songs recently played nor songs contained in the collection of
skipped songs are returned to the listener.

Even though bitmap indexes constitute a compact representation of bulky data the na-
ture of bitmaps provides the means for ensuring an even more compact representation
by applying different techniques. In this paper, we discuss the use of two well-known
bitmap compression scheme called the WAH (Word-Aligned Hybrid) [24], and an alter-
native representation technique known as AVD (Attribute Value Decomposition) [5].

In Section 3 the concept of the distance store was initially presented. To elaborate on
the technical aspects of the distance management, this section describes how a number
of distance stores constitute the handling of the distances between the songs managed
by the MOD framework.

As described in Section 3, a distance store consists of a number of partitions each
corresponding to an associated distance interval. Hence, each partition is represented
by a single bitmap indicating the songs belonging to the associated distance interval.
The collection of bitmaps required for a single distance store, constitutes a bitmap in-
dex for the distances of the songs with respect to the base song of the distance store.
In Figure 3(a) an abstraction of a bitmap index of a distance store is illustrated for a
collection of 5 songs having song s as the base song for the distance store. The music
collection S is grouped into separate subsets S1 through S3 which constitute the indi-
vidual partitions and their associated distance intervals. Considering the aspects of the
WAH compression scheme, we need to consider whether a compression of the distance
store is achievable. For that purpose we initially turn our attention to the structure of
the partition record shown in Figure 3(b). Part 1 represents the positions of a given song
and part 2 represents a numbered index indicating the position of the partition within
the distance store. Together these constitutes a composite primary key. Part 3 contains
the partition bitmap, which identifies all songs contained in the partition defined by part
1 and 2.

The space occupied by the first two parts of the partition record increases linearly as
the number of songs increases. The space occupied by the partition bitmap, i.e., the third
part in the partition record presented, constitutes the most crucial part of the total space
required for the distance management. In this worst-case analysis it is assumed that the
1 bits within a partition bitmap are located at certain places to achieve the worst possible
compression. In addition, all 1 bits are distributed equally among the given number of
partitions. To illustrate, having just a single 1 bit represented in each word to compress,
it implies that no space reduction is achievable when applying WAH compression, as
all compressed words are literal words. As the number of distance stores increases, the
bit density in each store decreases and leads to a better compression ratio.

Effective Bitmap Indexing for Non-metric Similarities 143

SubgenreID Subgenre GenreID
1
2
3
4

”Soft Pop”
”Hard Rock”

”Brit Pop”
”Modern Jazz”

1
2
1
3

Subgenre (depth 2)
Bitmap
1000
0100
0010
0001

TitleID Title
1
2
3
4

”The Fine Art”
”T.N.T.”

”Wonder Wall”
”Twentysomething”

Title (depth 1)
Bitmap
1000
0100
0010
0001

GenreID Genre
1
2
3

”Pop”
”Rock”
”Jazz”

Genre (depth 1)
Bitmap
1010
0100
0001

TitleID SubgenreID
1
2
3
4

1
2
3
4

TitleLevelDepth
1
1
1
1

GenreLevelDepth
2
2
2
2

Fig. 5. Snowflake schema having the dtitle and dgenre metadata dimensions

4.2 Metadata Management

To represent the multidimensional cube in a relational database, we adopt the snowflake
schema known from multidimensional databases [23]. The snowflake schema is com-
posed of a central fact table and a set of associated dimensions. The snowflake schema
satisfies the structure of the metadata hierarchies by allowing a metadata dimension
to be represented as a number of dimension tables. Each dimension level in the meta-
data hierarchy corresponds to a dimension table. While this saves space, it is known to
increases the number of dimension tables thus resulting in more complex queries and
reduced query performance [10]. However, as the purpose of the multidimensional cube
in the MOD framework is to find the bitmaps, no expensive join queries are to be per-
formed, as selections based on multiple attributes are performed by applying bit-wise
operations on the corresponding bitmaps.

As stated, a metadata dimension in a relational database is represented as a number
of dimension tables, where each dimension table corresponds to a level in a metadata
hierarchy. According to the snowflake schema representing the metadata within the
MOD framework, there exists two types of relations used as dimension tables. Records
of both types of relations can be seen in Figure 4. The level record in Figure 4(a) is
used for the highest level within each dimension. For efficient access, the relation is
defined as clustered having the id attribute as the primary key. The sub level record
in Figure 4(b) is clustered in accordance with the super id attribute, that is associated
with a given superordinate level. This ensures an efficient foundation for hierarchical
metadata navigation, as, e.g., the subgenres of a given genre are stored consecutively
within the relation. However, as metadata may be accessed using ids, we maintain an
index on the id attribute of the relation. The bitmap contained within each of the records,
represents the songs which are associated with the dimension value of the records.

In Figure 5 we consider the structure of the snowflake schema representing the fact
table and dimension tables discussed above with respect to the metadata dimensions
dtitle and dgenre. From the fact table it appears that the involved music collection is
represented by a bitmap with four bits. The first bit in the each bitmap corresponds to
the first song in the managed music collection, the second bit to the second song, etc.
Along with the foreign keys in the fact table, the level depths are shown. From these it
can be seen, that the most specific dimension value of all the songs corresponds to the
bottom level of the hierarchies. In addition, aggregations of the bitmaps from a sub level

144 C.A. Jensen et al.

to a superordinate level are applied within the dimension hierarchy by use of bit-wise
operations. As the bitmaps of the dimensions tables to a great extend contain only few
1 bits, these bitmaps may be highly compressed using the WAH compression scheme.

5 Query Processing

Having described the application of the bitmaps for both distance management and
metadata management, these bitmaps may be combined in a single query in order to re-
quest songs from a restricted music collection. In this section we use pseudo algorithms
to describe how to process such queries when requesting similar or random songs.

To describe the retrieval operators RandomSong and SimilarSong introduces in
Section 3, we introduce the two helper functions GenerateCompSkip and FetchRan-
domSongs. The task of GenerateCompSkip is to cache the composite distance stores
representing the distance stores of all skipped songs for each of the individual music
players interacting with the MOD framework. The composite distance store represent-
ing the distance stores of all skipped songs is denoted as the composite skip distance
store. Using a unique user id representing a specific music player, the cached com-
posite skip distance store is accessible for retrieval and manipulation. The purpose of
FetchRandomSongs is to enable the possibility to retrieve a specified number of ran-
domly chosen songs from a given music collection represented by a bitmap.

The music collection initially passed to the respective two retrieval operators is de-
noted as the search collection and constitutes either the entire music collection or a
subset of the entire collection. The search collection is a subset of the entire collection
if a metadata restriction has occurred. Once the search collection has been restricted by
the skipped songs and the songs contained in the history of played songs, the collection
of the remaining songs is denoted as the valid collection. Performing a further restric-
tion by all songs similar to the skipped songs we end up with a collection of songs
denoted as the candidate collection.

All restrictions, i.e., p \ q, are performed using the syntax p AND (p XOR q) where
p is the collection to restrict and q is the collection to restrict by. The alternative syntax,
p AND NOT q, is unusable as the size of the entire music collection can not be derived
from the individual bitmaps where consecutive 0 bits are omitted from the end of the
bitmaps as described in Section 4. The prefix notation b is used to denote a bitmap.

The task of RandomSong, is to find a subset of randomly chosen candidate songs
from which the song least similar to any of the skipped songs is to be returned. The
purpose of the selected candidate songs is to constitute a quality measure for the song
to return. The operator RandomSong described in Algorithm 1, takes as input param-
eters three bitmaps representing the current search collection, the history and the set
of skipped songs. In addition, an integer q is passed in order to specify the number of
candidate songs among which to choose the song to return. Finally, the operator takes a
parameter representing a user id indicating the music player currently interacting with
the MOD framework. The id is used to identify a cached composite skip distance store.

The task of SimilarSong, is to find and return a single song considered most similar
to a given seed song. In this context it is ensured, that no songs close to any skipped
songs is returned. As input parameters, the operator SimilarSong presented in Algo-
rithm 2 takes three bitmaps representing the search collection, the history and the set

Effective Bitmap Indexing for Non-metric Similarities 145

Algorithm 1.
Pseudo code for RandomSong.

RANDOMSONG

(b coll, b hist, b skip, q, userId)

1 filePath ← empty string
2 songPosition ← Null
3 b validColl ← b coll AND

(b coll XOR (b skip OR b hist))
4 b randomColl←

FETCHRANDOMSONGS(q, b validColl)
5 compositeSkipDS ←

GENERATECOMPSKIP(b skip, userId)
6 for each partition b p in compositeSkipDS

starting with the partition representing the least
similar songs.

7 do � Check if candidate songs are available
8 b candidateColl←

b randomColl AND b p
9 if BITCOUNT(b candidateColl) > 0

10 then � Choose a position for a random song
11 songPosition

← RANDOM(b candidateColl)
12 break
13 if songPosition <> Null
14 then � Fetch the file path for the song found
15 songRecord

← FACTTABLELOOKUP (songPosition)
16 filePath

← CUBELOOKUP(
songRecord.filenameID,
“Filename”)

17 return filePath

Algorithm 2.
Pseudo code for SimilarSong.

SIMILARSONG

(b coll, b hist,b skip,seedsongPosition, userId)

1 filePath ← empty string
2 songPosition ← Null
3 b validColl ← b coll AND

(b coll XOR (b skip OR b hist))
4 compositeSkipDS

← GENERATECOMPSKIP(b skip, userId)
5 seedsongDS

← DISTANCESTORELOOKUP

(seedsongPosition)
6 b accSkip← empty bitmap
7 for each partition b p in compositeSkipDS

and b q in seedsongDS starting with the partition
representing the most similar songs

8 do � Check if candidate songs are available
9 b accSkip← b accSkip OR b p

10 b candidateColl← validColl AND
(b q AND (b q XOR b accSkip))

11 if BITCOUNT(b candidateColl) > 0
12 then � Choose a position for a random song
13 songPosition

← RANDOM(b candidateColl)
14 break
15 if songPosition <> Null
16 then � Fetch the file path for the song found
17 songRecord

← FACTTABLELOOKUP (songPosition)
18 filePath

← CUBELOOKUP(songRecord.filenameID,
“Filename”)

19 return filePath

of skipped songs. In addition, the position of the seed song is passed to the operator,
stating the position of the song within a bitmap corresponding to all songs in the music
collection. Finally, the operator takes a parameter representing an user id indicating the
music player currently interacting with the MOD framework. The id is used to identify
a cached composite skip distance store.

After generation of the valid collection and the composite skip distance store, the dis-
tance store for the seed song is retrieved using the position of the seed song to perform a
lookup in the distance management relation (line 5). To find the collection of candidate
songs, the seed song distance store is traversed starting with the partition containing
the songs most similar to the seed song. This is done while consulting the content of
the corresponding partitions associated with the composite skip distance store (line 7
to 14). To ensure that only a song considered least similar to any skipped song is re-
turned, the composite skip distance store is accumulated (line 9). Thus, restricting the
partitions of the seed song distance store by the corresponding accumulated partitions
of the composite skip distance store, the collection of candidate songs is obtained while
only considering the songs contained in the valid collection. (line 10). In the remainder
of the algorithm, the position of a selected candidate song is used to retrieve the file
path of the associated audio file.

146 C.A. Jensen et al.

6 Experiments

In this section the MOD framework is evaluated using various configurations. The eval-
uation concerns the space consumption introduced by the framework as well as the
query performance when random and similar songs are retrieved. Moreover, we com-
pare the MOD framework to an B-tree equivalent version. In the following, the tests
are conducted using the MOD framework implemented with Java and MS SQL Server
and are performed on a 32-bit Pentium 4 @ 3.0 GHz dual core with 3.25GB of main
memory, running both the query evaluator and the SQL Server. The storage capacity
is constituted by 3 x 400GB striped SATA disks. Each disk rotates at 7200rpm. The
bitmaps within the databases can be configured as being uncompressed or WAH com-
pressed. Additionally, when concerning the distance management, the bitmaps for the
distance stores can be represented using either AVD or not, which gives a total of four
different bitmap representations.

For test purposes, synthetic music data is generated and added to the relevant music
collections. In connection to this, aspects such as artist productivity, career duration and
the number of songs on albums are considered to ensure a real-life reflection of the gen-
erated collections. Moreover, upon adding synthetic data to the music collections, entire
albums are added in continuation of one another, which resembles the most common
way of use. When creating distance stores for synthetic data we apply random distances
between the songs. The random distances are chosen such that the number of songs
within each of the partitions of the distance stores gradually increases, starting from
the partition representing the most similar songs only to decrease at the end. As we as-
sume a highly diversified music collection, only few songs are located in the partitions
representing the most similar songs.

6.1 Space Consumption

In general, a significant space reduction is obtained by applying AVD. AVD is thereby
an obvious choice within the distance management. However applying only AVD, the
bitmaps found within the metadata cube are then not reduced in size. Hence, the total
space reduction is more optimal when applying both WAH and AVD. Moreover, it is
relevant to consult the average bitmap sizes for the applied indexing. In this context,
a difference is expected when considering the bitmaps of the metadata cube and the
distance management in isolation. Intuitively, the bitmaps within the metadata cube
contains many consecutive 0 bits and are thus subject to high compression whereas the
bitmaps of the distance management are more diversified with respect to the occurrence
of 0 and 1 bits, causing the compression techniques to become ineffective.

In Figure 6(a)the average bitmap sizes are presented for bitmaps within the metadata
cube and bitmaps within the distance management, respectively. The distance manage-
ment is configured to use AVD, for which reason the 12 partitions are represented using
only seven bitmaps. In the figures the dashed horizontal lines indicate the threshold size
needed to store 50,000 bits. The WAH compression yields a slight space overhead, i.e.,
no compression is possible. The average bitmap sizes for the metadata cube is reduced
significantly when applying WAH compression. In this case, nine bytes are used for the
average bitmap for 50,000 songs. This, in turn, causes the bars representing the cube

Effective Bitmap Indexing for Non-metric Similarities 147

0

1000

2000

3000

4000

5000

6000

7000

Distance Cube

A
v
g
.
b
it
m

a
p
 s

iz
e
 [
B

y
te

s
]

50000 bits

(a) Bitmap size 50,000 songs.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Number of partitions

S
p

a
c
e

 [
M

B
]

(b) Storage variation.

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000

Number of songs

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

(c) Random query execution.

0

100

200

300

400

500

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

Time [s]

R
e

q
u

e
s
ts

 s
e

rv
e

d
 p

e
r

s
e

c
o

n
d

(d) Throughput: uncomp.

0

100

200

300

400

500

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

Time [s]

R
e
q
u
e
s
ts

 s
e
rv

e
d
 p

e
r

s
e
c
o
n
d

(e) Throughput: AVD+WAH.

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000

Number of songs

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

(f) Similar query execution.

0

100

200

300

400

500

600

700

800

0 20000 40000 60000 80000 100000

Number of songs

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

(g) B-tree comparison.

Uncompressed WAH

Legend: a

AVD Uncompressed

WAH WAH+AVD

B-tree

Legend: b, c, d, g

10,000 songs

50,000 songs

100,000 songs

Legend: e, f

Fig. 6. results for storage, query execution and throughput

to become invisible in Figure 6(a).In the case of uncompressed bitmaps the average
bitmap size within the cube is much below the threshold size 50,000 bits as the 0 bits in
the end of the bitmaps are omitted.

Figure 6(b)shows how the number of partitions used within the distance management
influences the space consumption for the four different bitmap representations. The
space consumption of uncompressed bitmaps increases linearly to the number of parti-
tions while the other three bitmap representations reach an upper bound. The growth of
the WAH compressed type becomes minimal around 62 partitions. This is explained by
the fact that on a 32-bit architecture, 31 consecutive bits have to be identical in order to
constitute a compressible word. The WAH compression becomes effectives as soon as
two consecutive compressible words are found, that is as soon as chains of 62 identi-
cal consecutive bits are present. The WAH compression occupies less space in practice
than compared to the theoretical worst-case calculations. The remaining two bitmap
representations are very close; this indicates that WAH compression on an AVD repre-
sented distance store does not gain a notable reduction. In fact, for 6 and 12 partitions
an insignificant reduction is notable whereas for 20 partitions and above an important
overhead is introduced.

6.2 Query Performance and Throughput

We conduct the query performance experiments on the four different bitmap representa-
tions. Unless stated otherwise, all tests assume that a given music collection is restricted

148 C.A. Jensen et al.

to 75% of the entire collection and that the number of partitions is fixed to 12. Moreover,
the number of skipped songs is as default set to 50 songs. Considering the properties of
the skipping behaviour of the MOD framework, 50 songs constitutes a rather large col-
lection of skipped songs as all songs resembling any of the skipped songs are restricted
from being retrieved. The test results are based on an average of 50 requests. Between
each run the cache of the SQL Server is emptied in order to ensure a fair comparison
on a cold cache.

In Figures 6(c) and (d), the average query execution time is presented for random
and similar songs, respectively. All average query execution times on a collection of
100,000 songs are found to be at most 65ms. In case of solely applying WAH compres-
sion we have obtained an average query execution time at 17ms and 22ms for querying
random and similar songs, respectively. Comparing the two types of queries the results
obtained reflect each other as the number of songs indexed increases, except that all
average query execution times for a random song are a little faster than for the corre-
sponding similar song query. The reason for this difference is due to, that a random
song is retrieved within a small subset of the entire collection. In average, the bitmap
representing this small subset has many omitted 0 bits in the end. Therefore, bit-wise
operations perform faster. Moreover, it can be seen that the two WAH compressed repre-
sentations yield faster query evaluation compared to the uncompressed representations.
The reason for this is explainable by the reduced size of the bitmaps when searching
for a candidate song in the border partitions of a distance store. The border partitions
constitute the partitions representing the most similar and the least similar songs.

As can be seen from the figure the results are nearly linear, which reflects the ex-
pected linearity of appending skipped songs to the composite skip distance store. Inde-
pendent on the chosen bitmap representation, less than 150ms is required to generate
the composite skip distance store when none or a single song is skipped. When skipping
100 songs for each bitmap representation, we initially see that the WAH representation
takes as long as 1.7s to construct the composite skip distance store. For the same amount
of skipped songs, the two AVD representations perform faster compared to the two non-
AVD representations. As we consider generation of the composite skip distance store,
distance stores for all the skipped songs should be retrieved from the database. Using
an AVD representation of the distance stores, fewer records should be fetched, which
explains the improved query performance. However, applying both AVD and WAH
compression an additional reduction is achieved. The reason for this is that the length
of the bitmaps representing the music metadata is reduced, whereby less data is the be
retrieved from the database.

Next, we conduct a throughput test to examine how many requests the MOD frame-
work is able to handle over time, when a different number of songs are indexed. To
conduct the tests we create multiple request threads, which simulates music players,
including history management, restriction and handling of skipped songs. The request
threads perform both random and similar requests, switching between performing 20
random requests and 20 requests of similar songs for a single seed song. The tests are
conducted by instantiating 50 threads, where one half starts by requesting similar songs,
and the other half random songs.

Effective Bitmap Indexing for Non-metric Similarities 149

In Figure 6(e) and (f) the results obtained by execution of the throughput test are
presented. The graphs indicates that, for all the test setups, no requests are served in
the beginning of the conducted tests. The reason for this behavior is that the compos-
ite skip distance stores are generated during the first requests. In addition, some time
elapses until the number of requests served stabilize. This is caused by the different
query execution times related to the retrieval of random and similar songs. Figure 6(e)
presents the results when applying neither AVD nor WAH. In this case we are able to
serve around 400, 200 and 100 requests per second for indexing 10,000, 50,000 and
100,000 songs, respectively. When applying both AVD and WAH we have obtained the
results presented in Figure 6(f). As expected from the previous results obtained, the
performance decreases when the number of indexed songs increases. With respect to
10,000 song we see no notable increase in the number of requests served by the MOD
framework. However, for 50,000 and 100,000 songs we are able to serve around 300
and 200 requests per second, respectively. Assuming an average request frequency for
each listener, the number of requests per second can be turned into a the number of
users that can be served simultaneously. With an average duration of three minutes per
song, the average request frequency of a listener can be set to once every three min-
utes. Hence, converted into seconds, the frequency is 5.56 · 10−3 requests per second.
Thereby, serving 200 requests per second on a database containing 100,000 songs, we
are able to serve approximately 36,000 simultaneous listeners.

Finally, we now compare our framework to a “baseline” version using B-tree indexes
for different size of the music collection. We chose a B-tree since other traditional
indexes for high-dimensional data cannot be applied as the triangular inequality cannot
be assumed to hold. The B-tree version has been indexed such as to achieve the optimal
conditions for joining the tables described above.

We compare the performance of queries based on metadata only, i.e., without con-
sidering the similarity metric. To compare the two versions we execute 50 randomly
generated restrictions in order the retrieve the filenames of the audio files associated
with these restrictions. An example of such a restriction could resemble “all songs from
the 70’s that are of the genre Rock”. The performed restrictions returns approximately
0.5% of the songs contained in the respective music collections. The outcome of this
test is presented in Figure 6(g). For a given music collection containing 100,000 songs
the B-tree version takes 709ms on average whereas the MOD framework using bitmap
indexes used only 101ms. The bitmap indexes reduces the query time by a factor 7
while the space consumptions for the two approaches are very similar. If we should
consider the similarities as well, the B-trees would have to index the distance stores for
individual songs, each consisting of many songs, that must then be merged during query
processing. B-trees are known not be an efficient way (neither time- nor space-wise) of
doing this. We also know from the previous experiments that the time for handling both
metadata and similarity in the bitmap version is not even twice of that for handling
metadata alone. Since the B-tree version is much slower, even in the case where it has
the best odds (metadata only), and the bitmap version can handle both metadata and
similarity faster than the B-tree version can handle metadata alone, we can conclude
that our bitmap approach is quite superior to using B-trees.

150 C.A. Jensen et al.

7 Conclusion and Future Work

Motivated by the proliferation of recommender systems performing similarity search
in possibly non-metric similarity spaces, this paper proposes a innovative approach to
flexible, yet effective, indexing for exactly such spaces. To illustrate this approach, the
domain of music recommendation was chosen. Using a non-metric similarity measure,
we are able to retrieve songs similar to a given seed song and avoid retrieval of songs
similar to any disliked songs.

To facilitate musical similarity search, we introduced the distance store as an ab-
straction over an arbitrary similarity measure. The distance store constitutes a complete
partitioning, where each partition represents a grouping of songs considered similar to
a given base song. Applying bitmap indexes to represent each grouping, we are able to
identify and retrieve songs similar/dissimilar to a given base song using bit-wise opera-
tions on the bitmaps associated with the individual groupings. Furthermore, in order to
ensure efficient retrieval of songs based on metadata, we have constructed a metadata
cube to which we applied bitmap indexing techniques. This multidimensional cube is
mapped to a snowflake schema in an RDBMS, thus allowing a hierarchical representa-
tion of the music metadata.

We have thus demonstrated that bitmaps can be used to represent both metadata
and non-metric distance measures. Using a single index method for the different mu-
sic information, the MOD framework remains simple and highly flexible. Moreover,
we have described how the framework applies bitmap compression using the Word-
Aligned Hybrid compression scheme and the Attribute Value Decomposition technique.
Experiments showed that the approach scaled well, both in terms of query performance,
throughput, and storage requirements.

As future work, the MOD framework will be compared to other existing frameworks
and indexes using various similarity measures, e.g., CompositeMap [4]. We will also
address the use of bitmap operations. In case that numerous bitmaps are to be combined
using regular bit-wise operations, lazy implementations of the Word-Aligned Hybrid
compressed bitmap operations could increase the overall performance of the algorithms.
Hence instead of consulting the bitmaps in a pairwise fashion, only to obtain a number
of intermediate results, which again are to be consulted, the bitmaps could be stored in
a special structure delaying the consultation until the result is required.

Acknowledgments. This work was supported by the Intelligent Sound project, founded
by the Danish Research Council for Technology and Production Sciences under grant
no. 26-04-0092.

References

[1] Silberschatz, A., Korth, H., Sudershan, S.: Database System Concepts, 4th edn. McGraw-
Hill, New York (2005)

[2] Aucouturier, J., Pachet, F.: Music Similarity Measures: What’s the Use? In: Proc. of ISMIR,
pp. 157–163 (2002)

[3] Aucouturier, J.-J., Pachet, F.: Improving Timbre Similarity: How high’s the sky? Journal of
Negative Results in Speech and Audio Sciences 1(1) (2004)

Effective Bitmap Indexing for Non-metric Similarities 151

[4] Zhang, Q.X.B., Shen, J., Wang, Y.: CompositeMap: a Novel Framework for Music Similar-
ity Measure. In: Proc. of SIGIR, pp. 403–410 (1999)

[5] Chan, C.Y., Ioannidis, Y.E.: Bitmap Index Design and Evaluation. In: Proc. of SIGMOD,
pp. 355–366 (1998)

[6] Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces. In: Proc. of VLDB, pp. 426–435 (1997)

[7] Digout, C., Nascimento, M.A.: High-Dimensional Similarity Searches Using A Metric
Pseudo-Grid. In: Proc of ICDEW, pp. 1174–1183 (2005)

[8] Jensen, C.A., Mungure, E., Pedersen, T.B., Sørensen, K.: A Data and Query Model for
Dynamic Playlist Generation. In: Proc. of MDDM (2007)

[9] Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W.: The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data Ware-
houses. Wiley, Chichester (1998)

[10] Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling, 2nd edn. Wiley, Chichester (2002)

[11] Logan, B., Salomon, A.: A Music Similarity Function based on Signal Analysis. In: Proc.
of ICME, pp. 745–748 (2001)

[12] Lübbers, D.: SoniXplorer: Combining Visualization and Auralization for Content-Based
Exploration of Music Collections. In: Proc. of ISMIR, pp. 590–593 (2005)

[13] Mandel, M., Ellis, D.: Song-Level Features and Support Vector Machines for Music Clas-
sification. In: Proc. of ISMIR, pp. 594–599 (2005)

[14] Neumayer, R., Dittenbach, M., Rauber, A.: PlaySOM and PocketSOMPlayer, Alternative
Interfaces to Large Music Collections. In: Proc. of ISMIR, pp. 618–623 (2005)

[15] O’Neil, P., Graefe, G.: Multi-table Joins Through Bitmapped Join Indices. ACM SIGMOD
Record 24(3), 8–11 (1995)

[16] O’Neil, P., Quass, D.: Improved Query Performance with Variant Indexes. In: Proc. of
SIGMOD, pp. 38–49 (1997)

[17] Pampalk, E.: Speeding up Music Similarity. In: Proc. of MIREX (2005)
[18] Pampalk, E., Flexer, A., Widmer, G.: Improvements of Audio-Based Music Similarity and

Genre Classification. In: Proc. of ISMIR, pp. 628–633 (2005)
[19] Pampalk, E., Pohle, T., Widmer, G.: Dynamic Playlist Generation Based on Skipping Be-

havior. In: Proc. of ISMIR, pp. 634–637 (2005)
[20] Pedersen, T.B., Jensen, C.S.: Multidimensional Database Technology. IEEE Com-

puter 34(12), 40–46 (2001)
[21] Pohle, T., Pampalk, E., Widmer, G.: Generating Similarity-based Playlists Using Traveling

Salesman Algorithms. In: Proc. of DAFx, pp. 220–225 (2005)
[22] Stockinger, K., Düllmann, D., Hoschek, W., Schikuta, E.: Improving the Performance of

High-Energy Physics Analysis through Bitmap Indices. In: Ibrahim, M., Küng, J., Revell,
N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 835–845. Springer, Heidelberg (2000)

[23] Thomsen, E.: OLAP Solutions: Building Multidimensional Information Systems. Wiley,
Chichester (1997)

[24] Wu, K., Otoo, E.J., Shoshani, A.: Optimizing Bitmap Indices With Efficient Compression.
ACM TODS 31(1), 1–38 (2006)

	Effective Bitmap Indexing for Non-metric Similarities
	Introduction
	Related Work
	Data and Query Model
	Distance and Metadata Indexes
	Distance Management
	Metadata Management

	Query Processing
	Experiments
	Space Consumption
	Query Performance and Throughput

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

