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Preface

We welcome you to the proceedings of the 21st International Conference on Database 
and Expert Systems Applications held in Bilbao. With information and database sys-
tems being a central topic of computer science, it was to be expected that the integra-
tion of knowledge, information and data is today contributing to the again rapidly 
increasing attractiveness of this field for researchers and practitioners. 

Since its foundation in 1990, DEXA has been an annual international conference, 
located in Europe, which showcases state-of-the-art research activities in these areas. 
DEXA 2010 continued this tradition and provided a forum for presenting and discuss-
ing research results in the area of database and intelligent systems and advanced re-
search topics, applications and practically relevant issues related to these areas. It 
offered attendees the opportunity to extensively discuss requirements, problems, and 
solutions in the field in the pleasant atmosphere of the city of Bilbao, which is known 
for its driving industriousness, its top cultural venues and its rich and inspiring heri-
tage and lifestyle. The University of Deusto with its great educational and research 
traditions, and the hospitality which the university and the city are so famous for, set 
the stage for this year’s DEXA conference. 

This volume contains the papers selected for presentation at the DEXA conference. 
DEXA 2010 attracted 197 submissions, and from these the Program Committee, based 
on the reviews, accepted two categories of papers: 45 regular papers and 36 short 
papers. Regular papers were given a maximum of 15 pages in the proceedings to  
report their results. Short papers were given an 8-page limit. Decisions made by mem-
bers of the Program Committee were not always easy, and due to limited space a num-
ber of submissions had to be left out. 

We would like to thank all those who contributed to the success of DEXA 2010: 
the hard work of the authors, the Program Committee, the external reviewers, and all 
the institutions (University of Deusto and University of Linz/FAW) that actively sup-
ported this conference and made it possible. Our special thanks go to Gabriela Wag-
ner, manager of the DEXA organization, for her valuable help and efficiency in the 
realization of this conference. 

We thank the DEXA Association and the University of Deusto for making DEXA 
2010 a successful event. Without the continuous efforts of the General Chair, Pablo 
Garcia Bringas and his team, and the active support of José Luis del Val from Deusto 
University, this conference would not have been able to take place in the charming 
city of Bilbao. 

June 2009 Abdelkader Hameurlain 
Gerald Quirchmayr 
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RIF Centered Rule Interchange in the Semantic Web . . . . . . . . . . . . . . . . . 478
Xing Wang, Z.M. Ma, Fu Zhang, and Li Yan

f-SPARQL: A Flexible Extension of SPARQL . . . . . . . . . . . . . . . . . . . . . . . . 487
Jingwei Cheng, Z.M. Ma, and Li Yan

Geo Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Francisco J. Lopez-Pellicer, Mário J. Silva, Marcirio Chaves,
F. Javier Zarazaga-Soria, and Pedro R. Muro-Medrano



Table of Contents – Part I XXI

Approximate Instance Retrieval on Ontologies . . . . . . . . . . . . . . . . . . . . . . . 503
Tuvshintur Tserendorj, Stephan Grimm, and Pascal Hitzler

Removing the Redundancy from Distributed Semantic Web Data . . . . . . 512
Ahmad Ali Iqbal, Maximilian Ott, and Aruna Seneviratne

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521



Table of Contents – Part II

Data Mining Systems

Mining and Explaining Relationships in Wikipedia . . . . . . . . . . . . . . . . . . . 1
Xinpeng Zhang, Yasuhito Asano, and Masatoshi Yoshikawa

Publishing Time-Series Data under Preservation of Privacy and
Distance Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Yang-Sae Moon, Hea-Suk Kim, Sang-Pil Kim, and Elisa Bertino

Efficient Discovery of Generalized Sentinel Rules . . . . . . . . . . . . . . . . . . . . . 32
Morten Middelfart, Torben Bach Pedersen, and Jan Krogsgaard

Parallelism and Query Planning

Compound Treatment of Chained Declustered Replicas Using a Parallel
Btree for High Scalability and Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Min Luo, Akitsugu Watanabe, and Haruo Yokota

Query Reuse Based Query Planning for Searches over the Deep Web . . . 64
Fan Wang and Gagan Agrawal

Efficient Parallel Data Retrieval Protocols with MIMO Antennae for
Data Broadcast in 4G Wireless Communications . . . . . . . . . . . . . . . . . . . . . 80

Yan Shi, Xiaofeng Gao, Jiaofei Zhong, and Weili Wu

Data Warehousing and Decision Support Systems

Inferring Aggregation Hierarchies for Integration of Data Marts . . . . . . . . 96
Dariush Riazati, James A. Thom, and Xiuzhen Zhang

Schema Design Alternatives for Multi-granular Data Warehousing . . . . . . 111
Nadeem Iftikhar and Torben Bach Pedersen

An Agent Model of Business Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 126
John Debenham and Carles Sierra

Temporal, Spatial and High Dimensional Databases
(Short Papers)

Pivot Selection Method for Optimizing both Pruning and Balancing in
Metric Space Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Hisashi Kurasawa, Daiji Fukagawa, Atsuhiro Takasu, and
Jun Adachi



XXIV Table of Contents – Part II

Minimum Spanning Tree on Spatio-Temporal Networks . . . . . . . . . . . . . . . 149
Viswanath Gunturi, Shashi Shekhar, and Arnab Bhattacharya

Data Warehousing and Data Mining Algorithms
(Short Papers)

Real-Time Temporal Data Warehouse Cubing . . . . . . . . . . . . . . . . . . . . . . . 159
Usman Ahmed, Anne Tchounikine, Maryvonne Miquel, and
Sylvie Servigne

PAGER: Parameterless, Accurate, Generic, Efficient kNN-Based
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Himanshu Singh, Aditya Desai, and Vikram Pudi

B2R: An Algorithm for Converting Bayesian Networks to Sets of
Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
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Abstract. Nowadays, many applications are interested in detecting and

discovering changes on the web to help users to understand page up-

dates and more generally, the web dynamics. Web archiving is one of

these fields where detecting changes on web pages is important. Archiv-

ing institutes are collecting and preserving different web site versions for

future generation. A major problem encountered by archiving systems is

to understand what happened between two versions of web pages. In this

paper, we address this requirement by proposing a new change detection

approach that computes the semantic differences between two versions

of HTML web pages. Our approach, called Vi-DIFF, detects changes on

the visual representation of web pages. It detects two types of changes:

content and structural changes. Content changes include modifications

on text, hyperlinks and images. In contrast, structural changes alter the

visual appearance of the page and the structure of its blocks. Our Vi-

DIFF solution can serve for various applications such as crawl optimiza-

tion, archive maintenance, web changes browsing, etc. Experiments on

Vi-DIFF were conducted and the results are promising.

Keywords: Web dynamics, Web archiving, Change detection, Web page

versions, Visual page segmentation.

1 Introduction

The World Wide Web (or web for short) is constantly evolving over time. Web
contents like texts, images, etc. are updated frequently. As those updates reflect
the evolution of sites, many applications, nowadays, aim at discovering and de-
tecting changes on the web. For instance, there are many services [4] that track
web pages to identify what and how a page of interests has been changed and
notify concerned users. One of the recent work is proposed by Kukulenz et al.
[14]. They propose two strategies: tracking where a number of segments is traced
over time and pruning where less relevant segments are removed automatically.
A browser plug-in [20], using the page cache, has been also proposed to explic-
itly highlight changes on the current page since the last visit. The goal of such
applications is to help users to understand the meaning of page changes and
more generally, the web dynamics. Detecting changes between page versions is
also important for web archiving. As web contents provide useful knowledge,
archiving the web has become crucial to prevent pages content from disappear-
ing. Thus, many national archiving institutes [2,5,7,11] around the world are

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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collecting and preserving different web sites versions. Most of the web archiv-
ing initiatives are described at [1]. Most often, web archiving is automatically
performed using web crawlers. A crawler revisits periodically web pages and up-
dates the archive with a fresh snapshot (or version). However, it is impossible to
maintain a complete archive of the web, or even a part of it, containing all the
versions of the pages because of web sites politeness constraints and limited allo-
cated resources (bandwidth, space storage, etc.). Thus, archiving systems must
identify accurately how the page has been updated at least for three reasons: (1)
avoid archiving several times the same version, (2) model the dynamics of the
web site in order to archive “the most important versions”by crawling the site
at a “right moment”, (3) ease temporal querying the archive.

Thus, our research problem can be stated as follows: How to know and to un-
derstand what happened (and thus changed) between two versions of web page ?

To address this issue, we propose, a change detection approach to compute
the semantic differences between two versions of web pages. As we know, most
of the pages on the web are HTML documents. As HTML is semantically poor,
comparing two versions of HTML pages, based on the DOM tree does not give
a relevant information to understand the changes. Thus, our idea is to detect
changes on the visual representation of web pages. Indeed, the visual aspect gives
a good idea of the semantic structure used in the document and the relationship
between them (e.g. the most important information is in the center of the page).
Preserving the visual aspect of web pages while detecting changes gives relevant
information to understand the modifications. It simulates how a user understands
the changes based on his visual perception. The concept of analyzing the visual
aspect of web pages is not new. However, as far as we know, it had never been
exploited to detect changes on web pages.

Our proposed approach, called Vi-DIFF, compares two web pages in three
steps: (i) segmentation, (ii) change detection and (iii) delta file generation. The
segmentation step consists in partitioning web pages into visual semantic blocks.
Then, in the change detection step, the two restructured versions of web pages
are compared and, finally, a delta file describing the visual changes is produced.

The main contributions of this paper are the following:

– A novel change detection approach (Vi-DIFF) that describes the semantic
difference between “visually restructured”web pages.

– An extension of an existing visual segmentation model to build the whole
visual structure of the web page.

– A change detection algorithm to compare the two restructured versions of
web pages that takes into account the page structure with a reasonable
complexity in time.

– An implementation of Vi-DIFF approach and some experiments to demon-
strate its feasibility.

The remainder of the paper is structured as follows. Section 2 discusses some re-
lated works and presents different contexts in which our proposed approach can
be exploited. Section 3 presents the VI-DIFF and the different change operations
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we consider. Section 4 explains, in detail, the second step of Vi-DIFF that com-
putes the semantic difference between two restructured versions of web pages.
Section 5, presents the implementation of VI-DIFF and discusses experimental
results. Section 6 concludes.

2 Context and Related Works

The first step of our approach is the segmentation of the web page. Several meth-
ods have been proposed to construct the visual representation of web pages. Most
approaches discover the logical structure of a page by analyzing the rendered
document or analyzing the document code. Gu et al. [12] propose a top-down
algorithm which detects the web content structure based on the layout infor-
mation. Kovacevic et al. [10] define heuristics to recognize common page areas
(header, footer, center of the page, etc.) based on visual information. Cai et al. [6]
propose the algorithm VIPS which segments the web page into multiple semantic
blocks based on visual information retrieved from browser’s rendering. Cosulshi
et al. [9] propose an approach that calculates the block correspondence between
web pages by using positional information of DOM tree’s elements. Kukulenz
et al.’s automatic page segmentation [14] is based on the estimation of the gra-
matical structure of pages automatically. Among these visual analysis methods,
VIPS algorithm [6] seems to be the most appropriate for our approach because it
allows an adequate granularity of the page partitioning. It builds a hierarchy of
semantic blocks of the page that simulates well how a user understands the web
layout structure based on his visual perception. We extended VIPS algorithm to
complete the semantic structure of the page by extracting links, images and text
for each block. At the end of the segmentation step, an XML document, called
Vi-XML, describing the complete visual structure of the web pages, is produced.

In the change detection step, two Vi-XML files corresponding to two versions
of a web page are compared. Many existing algorithms have been specially de-
signed to detect changes between two semi structured documents. They find the
minimum set of changes (delete, insert, update), described in a delta file, that
transform one data tree to another. Cobéna et al. [8] propose the XyDiff algo-
rithm to improve time and memory management. XyDiff supports a move in ad-
dition to basic operations. It achieves a time complexity of O(n∗ log(n)). Despite
its high performance, it does not always guarantee an optimal result (i.e. minimal
edit script). Wang et al. [21] propose X-Diff which detects the optimal differences
between two unordered XML trees in quadratic time O(n2). DeltaXML [15] can
compare, merge and synchronize XML documents for ordered and unordered
trees by supporting basic operations. Both X-Diff and DeltaXML do not handle
a move operation. There are several other algorithms like Fast XML DIFF [17],
DTD-Diff [16], etc. After studying these algorithms, we decided to not use ex-
isting methods for our approach because they are generic-purpose. As we have
various specific requirements related to the visual layout structure of web pages,
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we prefer proposing our ad’hoc diff algorithm. As it is designed for one given
specific type of document, it allows for a better trade-off between complexity
and completeness of the detected operations set. Our proposed change detection
step in Vi-DIFF algorithm detects structural and content changes. Structural
changes alter the visual appearance of the page and the structure of its blocks.
In contrast, content changes modify text, hyperlinks and images inside blocks of
the page. Then, it constructs a delta file describing all these changes.

Our solution for detecting changes between two web pages versions can serve
for various applications:

– Web crawling. The detected changes between web pages versions can
be exploited to optimize web crawling by downloading the most “impor-
tant”versions [3]. An important version is the version that has important
changes since the last archived one. Based on (i) the relative importance of
changes operations (insert, delete, etc.) detected in each block and (ii) the
weight importance of those blocks [19], the importance of changes between
two versions of web pages can be evaluated.

– Indexing and storage. Web archive systems can avoid wasting time and
space for indexing and/or storing some versions with unimportant changes.
An appropriate change importance threshold can be fixed through a super-
vised machine learning to decide when should pages indexed or stored.

– Temporal querying. The proposed change detection can greatly help to
provide temporal query capabilities using structural and content changes
history. Users can temporally query the archive about the structural changes
that affects the visual appearance of web pages. For instance, what type of
changes occur in a specific block during the last month...?

– Visualization and browsing. Our changes detection algorithm can be
used to visualize the changes of web pages over time and navigate between
the different archived versions. Several applications [13,18,20] have been de-
signed to visualize changes in the browser by highlighting the content changes
on pages such as a text update, delete, etc. However, to the best of our
knowledge, no one explicitly view both the structural and content changes
occurred on page such as a block insertion, move, update, etc. Our change
detection approach can also be exploited to extend web browsers [20] that
use the page cache to help users in understanding the changes on the current
page since the last visit.

– Archive maintenance. Vi-DIFF can also be used after some maintenance
operations to verify them in the web archive. The migration from the In-
ternet Archive’s file format ARC to WARC 1 is an example of maintenance
operation. After the migration from ARC to WARC, our change detection
Vi-DIFF can be exploited to ensure that the page versions are kept “as they
are”.

1 The WARC format is a revision of ARC file format that has traditionally been used

to store Web crawls url. The WARC better support the harvesting, access, and

exchange needs of archiving organizations.



Vi-DIFF: Understanding Web Pages Changes 5

3 Vi-DIFF

In this section, we explain in detail the steps of the Vi-DIFF algorithm which
detects structural and content changes between two web page versions. It has
three main steps:

<xml>
<Page url="www.radiofrance.fr" version="V_01-10-09">
<Block Ref="B1" ID="001A" Pos="H:10-W:20">

<Links ID="012C" IDList="042C">
<link ID="1L23" Name="Culture" Adr="/news">

</Links>
<Imgs ID="g15K" IDList="g25K">

<img ID="25jL" Name="Radio" Src="/radio.jpg"/>
</Imgs>

</Block>
<Block Ref="B2" ID="150K" Pos="H:53-W:10">

<Links ID="1k2M" IDList="4k2M"> ... </Links>
</Block>
<Block Ref="B3" ...>

<Block Ref="B3.1" ...> ... </Block>
<Block Ref="B3.2" ...> ... </Block>

</Block>
</Page>

</xml>

Fig. 1. VIPS Extension

– Segmentation: Web pages are visually segmented into semantic blocks by
extending the VIPS algorithm.

– Change Detection: The structural and content changes between visually seg-
mented web pages are detected.

– Delta file: The changes detected are saved in Vi-Delta files. Those three steps
are described in detail in the next sections.

3.1 Segmentation

Based on the DOM tree and visual information of the page, VIPS detects hori-
zontal and vertical separators of the page. Then, it constructs the “visual tree”of
the page partitioned into multiple blocks. The root is the whole page. Each block



6 Z. Pehlivan, M. Ben-Saad, and S. Gançarski

Fig. 2. Operations

is represented as a node in the tree. To complete the visual structure of the page,
we extended VIPS to extract links, images and texts for each block as shown in
Figure 1.

We define, three types of nodes: a leaf block is a block which has zero child
block, a content node is a child of a leaf block like Links, Imgs, etc., and a leaf
node is the node without a child such as img, link. These three types of nodes are
uniquely identified by an ID attribute. This ID is a hash value computed using the
node’s content and it is children’s node content. Links and Imgs (content nodes)
have also an attribute called IDList which has list of all IDs of its leaf nodes. Each
block of the page is referenced by the attribute Ref which contains the block’s
Dewey Identifier. Leaf nodes have other attributes such as the name and the
address for links. The complete hierarchical structure of the web page is described
in an XML document called Vi-XML. An example of Vi-XML document is shown
in Figure 1.

3.2 Change Detection

In this section, we give the description of operations which are detected by Vi-
DIFF. As mentioned in section 2, we consider two types of changes: content
changes and structural changes. Content changes modify the content nodes of
blocks. They are detected at leaf nodes. Structural changes are detected at the
leaf blocks.

• Content change operations
As we mentioned earlier, content changes are realized in the content of blocks

for links, images and texts in Vi-XML files through the following operations:

– Insert(x(name, value),y): Inserts a leaf node x, with node name and node
value, as a child node of content node y. As shown in Figure 2, in the new
version, a new leaf node (Name = ‘XML’) is added to content node Links of
leaf block B1.1.
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– Delete(x): Deletes a leaf node x. In Figure 2, in the old version, a leaf node
(Name attribute = ‘Water’) is deleted from content node Links of leaf block
B1.1.

– Update(x,attrname,attrvalue): Updates the value of attrname with attrvalue
for a given leaf node x. In Figure 2, a leaf node’s Name attribute ‘Paris’is
updated to ‘Istanbul’in the new version.

– Move(x,y,z): Moves a leaf node x from content node y to content node z.
As shown in Figure 2, a leaf node (Name = ‘Diff’) is moved from content
node of the leaf block B1.1 to content node of the leaf block B1.2 in the
new version. Most of the existing algorithms treat the move operation as
a sequence of delete and insert operations. The use of move operation can
have a great impact on the size of the delta script and on its readability. It
reduces the file size but increments the complexity of the diff algorithm.

Delete, Update and Insert operations are considered as basic operations and
existing algorithms support those operations. Move is only supported by few
approaches.

• Structural changes operations
The structural changes are realized on leaf block nodes in Vi-XML files. De-

tecting structural changes decreases the size of the delta file and makes it easier
to query, to store and to manage. Most of all, it provides a delta much more
relevant with respect to what visually happened on the web page.

– Insert(Bx,y,Bz): Inserts a leaf block subtree Bx, which is rooted at x, to
(leaf) block node y, after (leaf) block node Bz. For example, in Figure 2, a
(leaf) block node B1.3 is inserted to block node B1, after leaf block node
B1.2.

– Delete(Bx): Deletes a leaf block rooted by x. In Figure 2, B2 is deleted from
the old version .

– Move(Bx,By): Moves sub-tree rooted by x (Bx) to the node y. After insert
and/or delete operations, the nodes are moved (shifted). As shown in Figure
2, following the structural delete of B2 in old version, B3 is moved/shifted
to B2 in new version.

3.3 Delta Files

Detected changes are stored in a delta file. We use XML to represent delta files
because we need to exchange, store and query deltas by using existing XML
tools. The delta files contain all operations (delete, insert, update, move, etc.)
that transform one version to another one. The final result after applying delta
file to the old version should be exactly the new version. As far as we know there
is no standard for delta files.

The content changes are represented by operation tags (delete, insert, update,
move) as children of their parent block’s tag. The structural change operations
such as delete and insert are added directly to the root of Vi-Delta. For move
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<xml>

<Delta FROM="V1" TO="V2">
<Delete>

<Block Ref="B3.4" />

</Delete>
<Block Ref="B2" newRef="B1" />

<Block Ref="B1" newRef="B2" />
<Block Ref="B3.1">

<Delete>
<link Name="MON UPMC"
Adr="upmc.html"/>

</Delete>
<Insert>

<link Name="ACCES DIRECT"
Adr="direct.html"/>

</Insert>

</Block>
</Delta>

</xml>

Fig. 3. Vi-Delta

operation in structural changes, a newRef attribute is added to the related block,
so that we can keep track of a block even if it moves inside the structure.

Figure 3 shows an example of Vi-Delta. It contains three move and one insert
as structural changes operations, one delete and one update as content changes
operations. We can see, in this example, how detecting structural changes makes
delta file easier to query, to manage and to store. For instance, in our example,
instead of deleting and inserting all the content of moved blocks (B1, B2, B3),
the structural move operation is used.

4 Change Detection

In this section, we give the details of Vi-DIFF’s second step. The algorithm con-
tains a main part and two sub-algorithms: one for detecting structural changes
and other one for detecting content changes.

4.1 Main Algorithm

The main algorithm is composed of two steps as shown in Figure 4:

Input: Vi-XML Tree1, Vi-XML Tree2
Output Vi-Delta
Traverse Tree1, get list of blocks B1
Traverse Tree2, get list of blocks B2
Create Delta Tree DT
If the structure is changed then

Call DetectStructuralChanges
else

Call DetectContentChanges
endif
Save DT

Name: Name of link/image
ID: Hash value of link/image
Src: Address or source of link/image
BlockRef: Reference attribute of block
who has link/image

Fig. 4. Main Vi-DIFF - Object Structure
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– Step1: Is the structure changed?
We compare the two trees to check if the structure is changed between the
two versions. If they have a different number of block nodes, the structure is
considered as changed. If they have the same number of blocks we start to
compare their Ref in one iteration. As soon as we have a different Ref, the
structure is considered as changed.

– Step2: Call change detection algorithms
If the structure is the same, we directly call the content changes detection algo-
rithm. If the structure is changed, the structural changes detection algorithm
is called. It calls the content changes algorithm if there is also a content change.
Those algorithms are explained in details in the next two sections.

4.2 Detecting Content Changes

The content changes are at the level of leaf node, for the children nodes of
Links, Imgs and Txts. As Links and Imgs have nearly the same structure, they
are treated in the same way. For Txts, we need to find text similarities, thus
they are treated separately.

◦ Links and images

1. Create two arrays (one for each version), create a delta XML file
2. Traverse two trees (XML files) in the same iteration. For each leaf block not

matching, check content nodes. If they do not match, create an object (see
Figure 4) with each leaf node and add them in its version’s array.

3. Sort both arrays by Name attribute (lexical order)
4. Define two counter variables (one for each array)
5. Advance both counters in an endless loop

At each iteration:
(a) Every time an operation is detected by comparing ID, Name, Src and

Ref (see Figure 5 for details), add the operation to delta, remove the
corresponding objects from arrays.

(b) If objects (referenced by counters) in both arrays are different - advance
the counter of the first array if it has the smallest Name and its next
element has also the smallest Name, else advance the counter of the
second array

(c) Detect operations by comparing objects
(d) if end of any array: set its counter to 0 which is necessary to compare

the rest of the array
(e) Break when both arrays’ sizes are equal to 0

◦ Texts
We need to find the distance between two texts to decide if it is an update opera-
tion or a delete+insert operations. For this, we compute the proportion of distinct
words between two versions. If this value is more than 0.5, they are considered as
different texts and we have two operations delete then insert. Otherwise, the text
is considered as updated. Each text in each block is compared separately.
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Procedure DetectContentChanges(ASource,AVersion: Array,DT:Delta Tree)
Sort both arrays with merge sort(Name attribute)
while(true)

if size of ASource and AVersion == 0 break
if ASource.ID == AVersion.ID then

if ASource.BlockRef != AVersion.BlockRef then
MOVE detected

else if (ASource.Name,ASource.BlockRef) == (AVersion.Name,AVersion.BlockRef)
&& (ASource.Adr/Src != AVersion.Adr/Src) then

UPDATE detected
else if (ASource.Adr/Src,ASource.BlockRef) == (AVersion.Adr/Src,AVersion.BlockRef)

&& (ASource.Name != AVersion.Name) then
UPDATE detected

else
If end of any array

If end of ASource && VSource.size !=0 then
INSERT detected

If end of VSource && ASource.size !=0 then
DELETE detected

else Increment counter

Fig. 5. Detect content change algorithm

4.3 Detecting Structural Changes

For detecting structural changes, we use two arrays respectively containing the
leaf block nodes of the two compared versions. Two blocks (e.g. B1 in version
1 and B2.1 in version 2) are equal if their ID attributes are equal. If IDs are
different, we compute the distance between them. To do this, we compare the
IDList attribute for Links and Imgs nodes and IDs for Txts.

The distance measure of two blocks is defined on the basis of the distance
between their content nodes. The following functions are defined to measure
distance. Given two leaf block nodes B1 and B2, we define:

Distance(B1, B2) =
Dist(′Links′, B1, B2) + Dist(′Imgs′, B1, B2) + DistT ext(B1, B2)

3

Dist(x, B1, B2) =
∑

x changed between B1 and B2∑
x in B1

, where x ∈ {′Links′,′ Imgs′}

DistT ext(B1, B2) =
{

0 if T ext ID in B1 = Text ID in B2
1 otherwise

If Distance(B1,B2) is greater than a fixed value γ (e.g. γ = 0.2), the two blocks
are considered as distinct, otherwise, they are considered as similar. If two blocks
are similar, we go down in the tree by calling the detecting content change
algorithm with the similar block nodes as arguments, here (B1, B2.1). If the two
blocks are not similar, the counter of the longest array is incremented if the end
of the both arrays is not reached.

Our algorithm has a quadratic complexity. But we should not forget that the
asymptotic complexity is only appropriate with large inputs. The web pages
are usually rather small and the cases where a page completely changes from
one version to another one are very rare. Thus the asymptotic complexity is not
relevant here. We decided to measure the actual complexity through experiments
as explained in next section.
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DetectStructuralChanges(Version1, Version2: XML, DT: Delta Tree)
Find and Add leaf blocks(b1,b2) in Version1 and Version2 to arrays A1 and A2
while(true)

if size of A1 and A2 == 0 break
If (b1.ID,b1.BlockRef) == (b2.ID,b2.BlockRef) then

IDEM detected
else if b1.ID == b2.ID && b1.BlockRef!= b2.BlockRef

MOVE detected
else

if b1 is similar to b2 then
MOVE detected
call DetectContentChanges (b1, b2, DT)

else if end of one of arrays
if( end of A1) then b2 is inserted
if( end of A2) then b1 is deleted

else Increment counter

Fig. 6. Detect structural changes algorithm

5 Experiments

Experiments are conducted to analyze the performance (execution time) and the
quality (correctness) of the Vi-DIFF algorithm.

5.1 Segmentation

Visual segmentation experiments have been conducted over HTML web pages by
using the extended VIPS method. We measured the time spent by the extended
VIPS to segment the page and to generate the Vi-XML document. We present
here results obtained over various HTML documents sized from about 20 KB up
to 600 KB. These represent only sizes of container objects (CO) of web pages
that do not include external objects like images, video, etc.

We measured the performance of the segmentation in terms of execution time
and output size. Experiments were conducted on a PC running Microsoft Win-
dows Server 2003 over a 3.19 GHz Intel Pentium 4 processor with 6.0 GB of

Fig. 7. Segmentation Time
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RAM. The execution time for the browser rendering and the visual segmen-
tation is shown in Figure 7. The horizontal axis represents the size of HTML
documents in KBytes (KB). The left vertical axis shows the execution time in
seconds for each document. The time for rendering is almost constant, about 0.1
seconds. The execution time of the visual segmentation increases according to
the size of HTML documents. The time of the segmentation is about 0.2 seconds
for documents sized about 150KB which represents the average size of CO in the
web. This execution time seems to be a little bit costly but is counterbalanced
by the expressiveness of the Vi-XML file that really simulates the visual aspect
of web pages. Nevertheless, this time cost must be optimized. The main idea for
that purpose is to avoid rebuilding the blocks structure for a page version if no
structural change has occurred since the former version. We are currently trying
to find a method that detects directly changes inside blocks based on the visual
structure of previous versions of the document.

The right vertical axis in Figure 7 shows the the size of the output Vi-XML file
with respect to the size of the original HTML document. From this experiment,
we can observe that the Vi-XML document size is usually about 30 to 50 percent
less than the size of the original HTML document (for those sized more than
100 KB). This is interesting for the comparison of two Vi-XML documents since
it can help to reduce the time cost of changes detection algorithm.

5.2 Change Detection

We have two types of test in this section: one without structural changes and an-
other with structural changes. For this section, tests are realized on PC running
Linux over a 3.33GHz Intel(R) Core(TM)2 Duo CPU E8600 with 8 GB of RAM.

Without structural changes. To analyze the performance and the quality
of the second step of Vi-DIFF algorithm, we built a simulator that generates
synthesized changes on any Vi-XML document. The simulator takes a Vi-XML
file and it generates a new one according to the change parameters given as
input. It also generates a delta file, called Vi-Sim-Delta. The two Vi-XML
files are compared with the Vi-DIFF algorithm and a Vi-Delta is generated.
To check the correctness of change detection step, we compared all Vi-Delta
et Vi-Sim-Delta files with DeltaXML trial version [15]. Vi-Delta and Vi-Sim-
Delta files are always identical which shows the correctness of this step of Vi-
DIFF. For this test, different versions are obtained from a crawled web page
(http://www.france24.com/fr/monde) by using our simulator. For each type of
operation (delete, insert, update, move) the change rate is increased by 10%
until reaching 100%. It means that the last version with 100% change rate is
completely different from the original one. As links and images are treated in
the same way, we observe that the execution time is the same on average. To
simplify the figure’s readability, we only give the results for links. As the change
detection part is measured in milliseconds, processor events may cause noise on
the test results. Thus, all the process is executed for 10000 times and the results
obtained are normalized (average). The results are given in Figure 8.
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Fig. 8. Change Detection Execution Time

As we can see, move and update operations have nearly the same execution
time because they do not change the size of Vi-XML files, but insert and delete
operations change the size. The execution time increases along with the insert
operation rate (more objects to compare), and decreases along with the delete
operation rate (less objects to compare). Also a profiler analyzer is used to see
the details of execution time. 70% of the time is used to parse Vi-XMLs and to
save Vi-Delta, 10% is used to detect if there is a structural changes, 20% is used
to detect changes.

With structural changes. In order to test the structural changes, the versions
with the structural changes are obtained by modifying the segmentation rate
(degree of coherence) in the VIPS algorithm. It can be seen as “merge and
split”of blocks which change the Vi-XML’s structure. It also allows us to test
blocks’ similarity by using hourly crawled web pages. Average file size of those
pages is 80 Kb. To give an idea about initial environment, we first compare two
identical Vi-XML files. The execution time is 7,3 ms. Then, two versions hourly
crawled (http://www.cnn.com) are segmented with different segmentation rate
into two Vi-XML files. These files are compared. The execution time is 9.5 ms
and the generated Vi-Delta size is 1.8 Kb. Vi-DIFF algorithm is modified to
not consider structural changes and the same Vi-XML files are compared. The
execution time is 48 ms and the generated Vi-Delta size is 40 Kb. Because with
structural change detection, there is no need to go down until leaf nodes for all
blocks except similar blocks so the change detection is faster. Also, a smaller
delta file is easier to store, to read and to query. As the simulator is not able
to make structural changes for the moment, the correctness of delta file for this
section is checked manually.

According to our experiments, Vi-DIFF is able to detect basic operations and
move (without structural changes) correctly between two web page versions. The
total execution is between 0,1 seconds and 0.8 seconds depending on the page
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versions’ size. The execution time for change detection step is satisfying as it
allows to process about one hundred pages per second and per processor. Thus,
we are working on reducing the segmentation time.

6 Conclusion and Future Works

We propose Vi-DIFF, a change detection method for web pages versions. Vi-DIFF
helps to understand what happened and changed between two page versions. It
detects semantic differences between two web pages based on their visual repre-
sentation. Preserving the visual structure of web pages while detecting changes
gives relevant information to understand modifications which is useful for many
applications dealing with web pages. Vi-DIFF consists of three steps: (i) segmen-
tation, (ii) change detection and (iii) generation of delta file. It detects two types
of changes; structural and content changes. Structural changes (insert, delete,
move) alter the block structure of the page and its visual appearance. Content
changes (insert, delete, update) modify links, images, texts. In addition to ba-
sic operations, it supports a move operation, if there is no structural changes.
However, it does not support yet the move on content changes when there are
structural changes. This should be handled by future versions.

The proposed Vi-DIFF algorithm generates, as output, a Vi-Delta file which
describes change operations occurred between the two versions. The structure of
the produced Vi-Delta helps to visually analyze the changes between versions. It
can serve for various applications: web crawl optimization, archive maintenance,
historical changes browsing, etc. A simulator was developed to test the perfor-
mance of the algorithm. Experiments in terms of execution time were conducted
for each step. The execution time for change detection step is very promising,
but the execution time cost for segmentation step must be optimized.

Another on-going future work is to detect splitting and merging of blocks
as structural changes. The simulator also needs new features like generating
new versions with structural changes. Also we want to exploit the produced
Vi-Delta to analyze/evaluate the importance of changes between versions. Fur-
ther work will be done to efficiently query archived Vi-XML versions and the
visual/structural changes occurred between them as described in the Vi-Delta.
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Abstract. How to construct Web ontologies that meet applications’ needs has 
become a key technology to enable the Semantic Web. Manual development of 
ontologies remains a cumbersome and time-consuming task. In real-world 
applications, however, information is often vague or ambiguous. Thus, 
developing approaches and tools for constructing fuzzy ontologies by extracting 
domain knowledge from huge amounts of existing fuzzy databases can facilitate 
fuzzy ontology development. In this paper, we propose a formal approach and 
an automated tool for constructing fuzzy ontologies from fuzzy Object-Oriented 
database (FOOD) models. Firstly, we introduce the fuzzy ontology, which 
consists of the fuzzy ontology structure and instances. Then, the FOOD models 
are investigated, and we propose a kind of formal definition of FOOD models. 
On this basis, we develop a formal approach that can translate the FOOD model 
and its corresponding database instances into the fuzzy ontology structure and 
the fuzzy ontology instances, respectively. Furthermore, following the proposed 
approach, we implement an automated learning tool, which can automatically 
construct fuzzy ontologies from FOOD models. Case studies show that the 
approach is feasible and the automated learning tool is efficient. 

Keywords: Fuzzy database; Fuzzy Object-Oriented database (FOOD) model; 
Fuzzy ontology; Ontology learning; Automated learning tool. 

1   Introduction 

How to construct Web ontologies that meet applications’ needs has become a key 
technology to enable the Semantic Web [2]. Ontology can be generated from various 
data resources such as textual data, dictionary, knowledge-based, semi-structured 
schemata, and database models [15]. Compared to the other types of data resources, 
ontology construction from database models has increasingly attracted the most 
attention because most formatted data on the Web are still stored in databases and are 
not published as an open Web of inter-referring resources [2], [15].  

On this basis, constructing Web ontologies by extracting domain knowledge from 
database models has been extensively investigated. The mappings from relational 
models to ontologies were established in [12], [23], [29]. The approach for translating 
ER models into ontologies was developed in [27]. The ontology development tools 
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[15] such as Protégé-2000 and OntoEdit can be used to build or reuse ontologies. For 
a comprehensive review of constructing Web ontologies, ones can refer to [15]. 

However, information is often vague or ambiguous. Thus, the problems that 
emerge are how to represent these uncertain data within the ontology definitions and 
database models. To fill this gap, the fuzziness has been extensively introduced into 
ontologies [4], [5], [14], [20], [21], [25], [26]. Also, many researches have already 
been made to represent and manipulate fuzzy data in various database models such as 
relational database models [11], [14], Object-Oriented database models [7], [8], [9], 
[18]. For the comprehensive reviews about fuzzy ontologies and fuzzy database 
models, please refer to [20], [13], respectively. 

In recent years, how to construct fuzzy ontologies from fuzzy database models has 
increasingly received the attention. In [21], Quan proposed a fuzzy ontology 
framework (FOGA) that can generate a fuzzy ontology from uncertainty data based 
on Formal Concept Analysis (FCA) theory. Zhang [30] developed an approach for 
constructing fuzzy ontologies from fuzzy ER models. Ma [14] presented a fuzzy 
ontology generation framework from fuzzy relational databases. Zhang [29] 
investigated how to construct fuzzy ontologies from fuzzy UML models. And the 
automated learning tools were missed in [14], [29], [30]. Blanco [4] realized the 
translation from fuzzy relational databases to fuzzy ontologies. 

In particular, it has been found that the classical database models (such as ER 
model, relational model, and UML) and their extensions of fuzziness do not satisfy 
the need of handling complex objects with imprecision and uncertainty [7], [11]. 
Fuzzy Object-Oriented database (FOOD) models are hereby developed. The FOOD 
model, which can model uncertain data and complex-valued attributes as well as 
complex relationships among objects, has been extensively applied in the data and 
knowledge intensive applications such as CAD/CAM, office automation systems, and 
so on [7], [8], [9], [11], [13], [18]. Currently, many data sources are modeled in fuzzy 
Object-Oriented databases, and abundant domain knowledge is contained in FOOD 
models [9]. Hence, it is possible and meaningful to use the FOOD models as the base 
knowledge for domain ontology constructing, which will facilitate the development of 
fuzzy ontology.  

Moreover, as mentioned in [23], to support several Semantic Web applications 
(e.g., Semantic Web sites), the existing Web data and documents must be “upgraded” 
to Semantic Web content that is semantically annotated with Web ontologies. It is 
well known that the Web-accessible databases are the main content sources on the 
current Web [27]. However, a precondition here is that ones have a Web ontology at 
hand that can capture the domain knowledge of the database. As lots of fuzzy 
databases today are modeled in FOOD models (see [7], [9], [18], etc.), it is necessary 
to develop approaches and tools for constructing fuzzy ontologies from FOOD 
models, which can also act as a gap-bridge between lots of existing database 
applications and the Semantic Web.  

To our best knowledge, there are no reports on fuzzy ontology construction from 
FOOD models. In this paper, we develop a formal approach and an automated tool for 
constructing fuzzy ontologies from FOOD models. The paper includes the details: 

 How to represent the constructed fuzzy ontology? Since the paper aims at 
constructing fuzzy ontologies from FOOD models, it is necessary for us to give 
the formal definition of target fuzzy ontologies. In Section 3, we report the fuzzy 
ontology definition presented in [30]. 
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 How to formalize the FOOD model? In Section 4, FOOD models are studied, 
and we propose a kind of formal definition of FOOD models. 

 How to construct fuzzy ontologies from FOOD models? The answer is (see 
Section 5): (i) translating the FOOD model into the fuzzy ontology structure at 
conceptual level; (ii) translating the database instances w.r.t. the FOOD model 
into the fuzzy ontology instances at instance level; (iii) proving that the 
translations are “semantics-preserving” and giving the translation examples. 

 How to develop the automated learning tool? Following the proposed approach, 
in Section 6, we implement an automated learning tool called FOOD2FOWL, 
which can automatically construct fuzzy ontologies from FOOD models. Case 
studies show that the proposed approach is feasible and the tool is efficient. 

The remainder of this paper is organized as follows. Section II introduces related 
work. Section III introduces the fuzzy ontology. Section IV proposes the formal 
definition of FOOD models. Section V proposes the learning approach. Section VI 
implements the automated learning tool. Section VII shows conclusions. 

2   Related Work 

The importance of ontologies to the Semantic Web has prompted the development of 
kinds of methods and tools to help people construct ontologies. Besides the 
approaches introduced in Section 1, the following researches are related to our work. 

There are several approaches for establishing the relationships between Description 
Logics and Object-Oriented database models. The approaches presented in [3], [6], 
[22] investigated how to reason on the Object-Oriented database model by translating 
it into a Description Logic knowledge base, whereas our work aims at constructing 
fuzzy ontologies.  

Moreover, several works investigated the relationships between Object-Oriented 
languages and ontologies, but they did not focus on constructing ontologies from 
Object-Oriented database models. Meditskos [16] used the Object-Oriented language 
COOL to model and handle ontology concepts and RDF resources. Mota [17] 
developed an Object-Oriented framework for representing ontologies. Oren [19] 
presented an Object-Oriented API for managing RDF data. Koide [10] demonstrated 
the possibility of the integration of OWL and Object-Oriented Programming. 

As mentioned in Section 1, there have been several approaches for constructing 
fuzzy ontologies from fuzzy database models. However, considering that the classical 
database models (e.g., ER model, relational model, and UML) and their extensions of 
fuzziness do not satisfy the need of modeling complex objects with imprecision and 
uncertainty, and many data sources are modeled in FOOD models in real-world 
applications [7], [8], [9], [11], [13], [18], thus the paper aims at investigating how to 
construct fuzzy ontologies from FOOD models.  

In addition, the fuzzy ontology instances presented in [14], [29] were represented 
by the fuzzy RDF models, in this paper, as with the representation form of the fuzzy 
ontology structure, the fuzzy ontology instances were also represented by the form of 
axioms, which are facilitate access to and evaluation of the fuzzy ontologies [5], [26]. 
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3   Fuzzy OWL DL Ontology 

A fuzzy ontology formulated in fuzzy OWL DL language is called fuzzy OWL DL 
ontology [30]. In this section, we first introduce the fuzzy OWL DL language based 
on the works [24], [25], [26], [30], and then report the fuzzy OWL DL ontology 
definition presented in [30]. 

3.1   Fuzzy OWL DL Language 

OWL has three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL 
Full [26]. OWL DL is the language chosen by the major ontology editors because it 
supports those users who want the maximum expressiveness without losing 
computational completeness and decidability of reasoning systems [26]. In addition, 
OWL DL has two types of syntactic form [27]: the exchange syntax, i.e., the RDF/XML 
syntax, and the frame-like style abstract syntax. The abstract syntax facilitates access to 
and evaluation of the ontologies [5], [26], [27]. However, OWL DL cannot handle the 
information represented with a not precise definition.  

The fuzzy OWL DL [5], [26] is the fuzzy extension of OWL DL, which can be 
approximately viewed as the expressive fuzzy Description Logic f-SHOIN(D) [24]. 
Based on [26], Table 1 gives the fuzzy OWL DL abstract syntax, Description Logic 
syntax, and semantics. Here, parts of OWL constructors are omitted in Table 1. 

The semantics for fuzzy OWL DL is based on the interpretation of f-SHOIN(D) 
(details refer to [24]). The interpretation is given by a pair <ΔFI, •FI> where ΔFI is the 
individual domain, •FI is a fuzzy interpretation function. In Table 1, FI

DΔ  is the data-
value domain, ∀dFI, cFI, oFI ∈ ΔFI, vFI ∈ FI

DΔ , C denotes class description, D denotes 
fuzzy data range, fuzzy ObjectProperty and DatatypeProperty identifiers are denoted 
by R and U, respectively, #S denotes the cardinality of a set S, ⋈∈{≥, >, ≤, <}.  

3.2   Fuzzy OWL DL Ontology 

A fuzzy OWL DL ontology is a couple FO = (FOS, FOI) where FOS is the fuzzy 
ontology structure and FOI is the fuzzy ontology instances associated with the  
fuzzy ontology structure. The following Definition 1 gives the formal definition of 
fuzzy OWL DL ontology [30], and we further add fuzzy individual axioms to the 
definition. 

Definition 1 (Fuzzy OWL DL Ontology). A fuzzy OWL DL ontology is a couple 
FO = (FOS, FOI) = (FID0, FAxiom0), where: 

(1) FID0 = FCID0 ∪ FIID0 ∪ FDRID0 ∪ FOPID0 ∪ FDPID0 is a fuzzy OWL DL 
identifier set (see Table 1) partitioned into:  

 a subset FCID0 of fuzzy class identifiers, include user-defined identifiers 
plus two predefined fuzzy classes owl: Thing and owl: Nothing. 

 a subset FIID0 of individual identifiers. 
 a subset FDRID0 of fuzzy data range identifiers; each fuzzy data range 

identifier is a predefined XML Schema fuzzy datatype [13], [25].  
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 a subset FOPID0 of fuzzy object property identifiers.  
 a subset FDPID0 of fuzzy datatype property identifiers. 

(2) FAxiom0 is a fuzzy OWL DL axiom set (see Table 1) partitioned into: 
 a subset of fuzzy class/property axioms.  
 a subset of fuzzy individual axioms.   

From a semantics point of view, a fuzzy OWL DL ontology FO is a set of fuzzy 
OWL DL axioms in Table 1. An interpretation FI is a model of FO iff it satisfies all 
axioms in FO. Furthermore, an FO is satisfiable iff there is a model of it.  

Table 1. Fuzzy OWL DL Abstract Syntax, Description Logic (DL) Syntax, and Semantics 

Fuzzy OWL DL Syntax DL Syntax Model-Theoretic Semantics 

Fuzzy class description (C) 

A is a URIref of a fuzzy class 
owl:Thing
owl:Nothing
unionOf ( C1…Cn ) 

restriction (R allValuesFrom(C)) 

restriction (R minCardinality(n)) 

restriction (R maxCardinality(n)) 

restriction (R cardinality(n)) 

restriction (U allValuesFrom(D)) 

A
T

C1 ...  Cn

R.C

 n R 

 n R 

= n R 

U.D 

AFI: FI  [0, 1] 
TFI(d) = 1 

FI(d) = 0 
(C1 ... Cn)FI(d) = max{C1

FI(d),…, Cn
FI(d)}

)().( dCR FI )}}'(),',(1{max{
'

dCddRfin FIFI

d FI

),()()( 1,...,1
i

FIn
icc

FI cdRpsudnR FI
n

)()( dnR FI )),(1(1
1,..., 11

i
FIn

icc
cdRfin FI

n

)()()()( dnRnRdnR FIFI

)().( dDU FI )}}(),,(1{max{ vDvdUfin FIFI

v FI
D

Fuzzy class axioms 

Class ( A partial C1…Cn ) 
SubClassOf ( C1 C2 ) 
EquivalentClasses ( C1…Cn ) 
DisjointClasses ( C1…Cn ) 

A C1 .. Cn

C1  C2
C1 ... Cn
Ci  Cj

AFI(d)  min{C1
FI(d),…, Cn

FI(d)} 
C1

FI(d)  C2
FI(d)

C1
FI(d) =…= Cn

FI(d)
min{Ci

FI(d), Cj
FI(d)} = 0  1 i < j n

Fuzzy property axioms 

DatatypeProperty ( U 
domain(C1)…domain(Cm)
range(D1)…range(Dk)
[Functional]  ) 

ObjectProperty ( R 
domain(C1)…domain(Cm)
range(C1)… range(Ck)
[inverseOf (R0)]  ) 

1U  Ci
T U.Di
T 1U

1R  Ci
T R.Ci
R = (R0)

UFI(d, v)  Ci
FI(d)        i = 1,..., m

UFI(d, v)  Di
FI(v)        i = 1,..., k

d FI #{v FI
D : UFI(d, v)  0}  1 

RFI(d1, d2)  Ci
FI(d1)      i = 1,..., m

RFI(d1, d2)  Ci
FI(d2)      i = 1,..., k

RFI(d1, d2) = R0
FI(d2, d1)

Fuzzy individual axioms 

Individual ( o type(C1) [ m1]…
value(R1, o1) [ k1]…
value(U1, v1) [ l1]… ) 

SameIndividual (o1 … on)
DifferentIndividuals (o1 …on)

o : Ci mi

(o,oi):Ri ki

(o,vi):Ui li

o1 =…= on

oi oj

Ci
FI(o) mi,      mi  [0, 1],   1 i n

Ri
FI(o, oi) ki, ki  [0, 1],    1 i n

Ui
FI(o, vi) li, li  [0, 1],    1 i n

o1
FI =…= on

FI

oi
FI oj

FI                    1 i < j n
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4   The Fuzzy Object-Oriented Database (FOOD) Model  

The fuzzy Object-Oriented database (FOOD) model is the fuzzy extension of traditional 
Object-Oriented database model (OODM) [3], [6], i.e., some major notions in OODMs 
such as objects, classes, object-class relationships, and inheritance relationship are 
extended under fuzzy information environment. In addition, similarly for the references 
[1], [3], [6], [8], [9], [13], we restrict our attention to the structural components of 
FOOD models.   

The FOOD models are based on the notions of fuzzy objects, fuzzy classes, fuzzy 
attributes, and fuzzy inheritances [9]. In the following, we propose a kind of formal 
definition of FOOD models, which is the fuzzy extension of OODM definition in [6]. 

Definition 2 (FOOD Model). A FOOD model is a finite set of class declarations, 
which is a tuple FS = (FCFS, FAFS, FDFS), where: 

 FCFS is a finite set of fuzzy class names, denoted by the letter FC; 
 FAFS is a finite set of fuzzy attribute names, denoted by the letter FA; 
 FDFS is a finite set of fuzzy class declarations. For each fuzzy class FC ∈ 

FCFS, FDFS contains exactly one such declaration: 

Class FC is-a FC1 ,…, FCn type-is FT, 

where is-a denotes the inheritance relationship between classes, type-is 
specifies the structure of class FC through a type expressive FT, which is built 
according to the following syntax: 

FT → FC | 
Union  FT1 ,…, FTk  End | 
Set-of  FT  | 
Record  FA1:FT1 ,…, FAk:FTk  End. 

Fig. 1 shows a simple FOOD model FS1 modeling part of the reality at a company.   

Class Computer type-is
Union HP-Computer, Dell-Computer  
End

Class Old-Computer is-a Computer type-is
Record  

ComID: String 
Brand: String 
UseYear: Integer 

End
Class Young-Employee is-a Employee type-is 

Record 
EmpID: String
Name: String 
FUZZY Age: Integer 
FUZZY Use: Set-of  Old-Computer 

End
 

Fig. 1. A FOOD model FS1 modeling part of the reality at a company 
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The detailed instructions about Fig. 1 are as follows: 

(1) Computer is a generalization of HP-Computer and Dell-Computer. 

(2) Inverse of attributes: in order to distinguish the subject and the object of 
attribute Use, the roles Useby and Useof are introduced (see Fig. 2). 
Therefore, the inverse of attribute Use is introduced, which will be discussed 
in Section 5.1 in detail. 

Use   Old-Computer UsebyYoung-Employee 
Useof

 

Fig. 2. The graphical representation of the inverse of attribute Use 

(3) The attributes FAi (such as Name, Age in Fig. 1), called datatype attributes, 
which associate with the basic domains such as Integer, Real, etc. 

(4) The attributes FA (such as Use in Fig. 1), called object attributes, which 
denote the relationship between two participant classes. 

The semantics of a FOOD model can be given by the fuzzy database states FJ, i.e., 
the fuzzy database instances. Fig. 3 shows the database instances w.r.t. the FOOD 
model FS1 (only part of data): 

(1) u = 0.9 denotes that the possibility which an object O1 belongs to the class 
Young-Employee is 0.9.  

(2) The value of attribute Use is a possibility distribution {0.8/O2, 0.7/O3}, where 
0.8/O2 denotes that the possibility which object O1 uses object O2 is 0.8. 

(3) The values of the other fuzzy attributes (e.g., Age) are represented by the 
possibility distributions [31], [32]. 

 

Fig. 3. The database instances w.r.t. the FOOD model FS1 in Fig. 1 
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5   Fuzzy OWL DL Ontology Learning from FOOD Model 

This section proposes a formal approach for constructing fuzzy OWL DL ontologies 
from FOOD models, including: (i) translating the FOOD model into the fuzzy 
ontology structure (see Definition 3). (ii) translating the database instances w.r.t. the 
FOOD model into the fuzzy ontology instances (see Definition 4). (iii) proving that 
the translations are “semantics-preserving” and giving the translation examples. 

5.1   Translating FOOD Model into Fuzzy OWL DL Ontology Structure 

The Definition 3 gives a formal approach for translating the FOOD model into the 
fuzzy OWL DL ontology structure. Starting with the construction of the atomic 
identifiers FID0, the approach induces a set of fuzzy class/property axioms FAxiom0 
from the FOOD model. 

Definition 3 (Structure Translation). Given a FOOD model FS = (FCFS, FAFS, 
FDFS) in Definition 2. The fuzzy OWL DL ontology structure FOS = ϕ(FS) = (FID0, 
FAxiom0) can be derived by function ϕ as shown in Table 2. 

Table 2. Translating rules from a FOOD model to a fuzzy OWL DL ontology structure 

FOOD model FS = (FCFS, FAFS, FDFS) Fuzzy ontology structure FOS = ϕ(FS) = 
(FID0, FAxiom0)  

fuzzy class FCFS, fuzzy attribute FAFS identifier set FID0 
Each fuzzy class symbol FC A fuzzy class identifier ϕ(FC) ∈ FCID0 
Each type expression  

Record  FA : Set-of  FT  End 
 

Each object attribute symbol FA A fuzzy class identifier ϕ(FA) ∈ FCID0 

Each object attribute symbol FA 
Add two additional roles FU1 and FU2 ; 
FU1 and FU2 are mapped into two fuzzy object 
property identifiers ϕ(FU1) and ϕ(FU2):  

ϕ(FU1) ∈ FOPID0   ϕ(FU2) ∈ FOPID0 ; 
In addition, we use symbols FV1 and FV2 
denote the inverse properties of ϕ(FU1) and 
ϕ(FU2), respectively: 

FV1 = invof_ϕ(FU1) ∈ FOPID0  
FV2 = invof_ϕ(FU2) ∈ FOPID0 

Each type expression  
Record FA1:FD1 ,…, FAk:FDk End 

 

Each datatype attribute symbol FAi 
A fuzzy datatype property identifier ϕ(FAi)  
∈ FDPID0 

Each domain symbol FDi 
A fuzzy XML Schema datatype identifier  
ϕ(FDi) ∈ FDRID0  

fuzzy class declarations FDFS fuzzy class/property axiom set FAxiom0 

Each fuzzy class declaration:  
Class FC is-a FC1 ,…, FCn 

Create a fuzzy class axiom: 
Class ( ϕ(FC) partial ϕ(FC1), …, ϕ(FCn) ). 
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Tabel 2. (continued) 

Each fuzzy class declaration:  
Class FC type-is  
Union FT1 ,…, FTk  End 

Create fuzzy class axioms: 
Class ( ϕ(FC) partial unionOf(ϕ(FT1),…, 

ϕ(FTk)) ); 
SubClassOf ( ϕ(FTi) ϕ(FC) ). 

Each fuzzy class declaration:  
Class FC1 type-is  
Record FA: Set-of FC2  End 

Create a fuzzy class axiom: 
Class ( ϕ(FA) partial restriction (ϕ(FU1) 

allValuesFrom (ϕ(FC1)) 
cardinality(1)) restriction (ϕ(FU2) 
allValuesFrom (ϕ(FC2)) 
cardinality(1)) ); 

FOR i = 1, 2 DO: 
The fuzzy property axioms: 
ObjectProperty ( ϕ(FUi) domain (ϕ(FA)) 

range (ϕ(FCi)) ); 
ObjectProperty ( FVi domain (ϕ(FCi))  

range (ϕ(FA)) inverseOf ϕ(FUi) ); 
The fuzzy class axioms:   
Class ( ϕ(FCi) partial restriction (FVi  

allValuesFrom (ϕ(FA))) ). 

Each fuzzy class declaration:  
Class FC type-is  
Record FA1:FD1,…, FAk:FDk End 

Create fuzzy class/property axioms: 
Class ( ϕ(FC) partial restriction (ϕ(FA1) 

allValuesFrom (ϕ(FD1)) 
cardinality(1)) … restriction 
(ϕ(FAk) allValuesFrom (ϕ(FDk)) 
cardinality(1)) ) ;  

DatatypeProperty ( ϕ(FAi) domain (ϕ(FC)) 
range (ϕ(FDi)) [Functional] ) 
where i = 1, 2,…,k . 

 
Below we discuss the effectiveness of the translation, which can be sanctioned by 

the following Theorem 1.  

Theorem 1. For every FOOD model FS = (FCFS, FAFS, FDFS), FJ is a fuzzy database 
state w.r.t. FS, and ϕ(FS) is the fuzzy OWL DL ontology structure derived from FS 
by Definition 3. There exist mappings: 

 αFS from fuzzy database state FJ to model of ϕ(FS) such that: For each legal 
fuzzy database state FJ for FS, there is αFS(FJ) which is a model of ϕ(FS); 

 βFS from model of ϕ(FS) to fuzzy database state such that: For each model FI 
of ϕ(FS), there is βFS(FI) which is a legal fuzzy database state for FS. 

Proof: The following briefly gives the proof of the first part of Theorem 1. Given a 
fuzzy database state FJ, and •FJ is a fuzzy interpretation function that can map each 
element in Fig. 1 to its corresponding value in Fig. 3, we can define a fuzzy 
interpretation αFS(FJ) of ϕ(FS) as follows: 
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 The domain elements )(FJFSαΔ  of interpretation αFS(FJ) of ϕ(FS) are constituted 
by values of FJ (e.g., Fig. 3). Since each object of FS is assigned a structured 
value, in order to explicitly represent in fuzzy ontology the type structure of 
the object, we denote with fidΔ , frecΔ , fsetΔ  the domain elements of )(FJFSαΔ  

corresponding to object identifiers, fuzzy record values, and fuzzy set values in 
FVFJ, respectively. 

 The fuzzy OWL DL identifier set FID0 of ϕ(FS) in Definition 3 are defined: 
)())(( FJFSX αϕ = XFJ, where X ∈ FT;   

)())(( FJ
i

FSFD αϕ = FDi
FJ; 

For each class declaration Class FC type-is Record FA1:FD1,…, FAk:FDk End, 
we have )())(( FJ

i
FSFA αϕ = { <c, di> ∈ )(FJFSαΔ × )(FJFSαΔ | c ∈ FCFJ ∧ di ∈ FDi

FJ }, 

where i = 1, 2,..., k; 
For class declaration Class FC1 type-is Record FA: Set-of FC2 End, we have 

)())(( FJ
j

FSFU αϕ = {<r, cj> ∈ )(FJFSαΔ × )(FJFSαΔ | r ∈ FAFJ ∧ cj ∈ FCj
FJ }, j = 1, 2. 

 

FOS = (FID0, FAxiom0). For reasons of space, FID0 and parts of axioms are omitted. 
FAxiom0 = {  
SubClassOf ( Old-Computer  Computer ) ;   
SubClassOf ( Young-Employee  Employee ) ;   
Class ( Computer  partial  unionOf ( Hp-Computer, Dell-Computer) ) ; 
SubClassOf ( Hp-Computer  Computer ) ; 
SubClassOf ( Dell-Computer  Computer ) ; 
Class ( Old-Computer partial restriction ( ComID allValuesFrom (xsd:String)  

cardinality (1) ) restriction ( Brand allValuesFrom (xsd:String)  
cardinality (1) ) restriction ( UseYear allValuesFrom (xsd:Integer)  
cardinality (1) ) ); 

Class ( Young-Employee partial restriction ( EmpID allValuesFrom (xsd:String)  
cardinality (1) ) restriction ( Name allValuesFrom (xsd:String) cardinality (1) ) 
restriction ( Age allValuesFrom (xsd:fuzzy Integer) cardinality (1) ) );  

Class ( Use partial restriction ( Useby allValuesFrom (Young-Employee) cardinality(1) )  
restriction ( Useof allValuesFrom (Old-Computer) cardinality(1) ) ) ; 

Class ( Young-Employee partial restriction ( invof_Useby allValuesFrom (Use) ) ) ; 
Class ( Old-Computer partial restriction ( invof_Useof allValuesFrom (Use) ) ) ; 
ObjectProperty ( invof_Useby domain (Young-Employee) range (Use) inverseOf 

Useby ) ; 
ObjectProperty (invof_Useof domain (Old-Computer) range (Use) inverseOf Useof) ; 
ObjectProperty ( Useby domain (Use) range (Young-Employee) ) ; 
ObjectProperty ( Useof domain (Use) range (Old-Computer) ) ;  
DatatypeProperty ( EmpID domain (Young-Employee) range (xsd:String) [Functional]) ; 
DatatypeProperty ( Name domain (Young-Employee) range (xsd:String) [Functional] ) ; 
DatatypeProperty ( Age domain (Young-Employee) range (xsd:Integer) [Functional] ) ; 
DatatypeProperty ( ComID domain (Old-Computer) range (xsd:Integer) [Functional] ); 
DatatypeProperty ( Brand domain (Old-Computer) range (xsd:String) [Functional] ) ; 
… } 

 

Fig. 4. The fuzzy OWL DL ontology structure ϕ(FS1) derived from the FOOD model FS1 
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Here, we omit the complete proof of Theorem 1 for reasons of space, and the proof of 
the second part can be done similarly, they are a mutually inverse process. 

Example 1. Given a FOOD model FS1 in Fig. 1, by Definition 3, we can obtain the 
corresponding fuzzy OWL DL ontology structure FOS = ϕ(FS1) in Fig. 4.  

5.2   Mapping Database Instances to Fuzzy OWL DL Ontology Instances 

In the previous section, we realize the translation from the FOOD model to the fuzzy 
OWL DL ontology structure. In order to build fuzzy ontologies of high completeness, 
in the following, we propose an approach for mapping the database instances w.r.t. a 
FOOD model (e.g., Fig. 3) to the fuzzy OWL DL ontology instances (i.e., a set of fuzzy 
individual axioms in Table 1).  

Firstly, let us briefly sketch the assertional formalisms used in the fuzzy Object-
Oriented databases and fuzzy OWL DL ontologies. 

The assertional formalisms of fuzzy OWL DL ontologies are represented by the 
fuzzy individual axioms, which contain the axioms (see Table 1): Individual (o 

type(C1) [⋈ m1] … value(R1, o1) [⋈ k1] … value(U1, v1) [⋈ l1]…); 
DifferentIndividuals (o1…on); SameIndividual (o1…on). 

From Section 4, a fuzzy Object-Oriented database, which describes the real world 
by means of objects, values, and their mutual relationships, can be considered as a 
finite set of assertions [1], [9], [18]. Based on [1], the assertional formalisms of the 
database instances with respect to a FOOD model specify that: A fuzzy object fo is an 
instance of fuzzy class FC with membership degree of n by means of fuzzy assertion 
fo: FC: n, where n ∈ [0, 1]; The fuzzy structured value associated with fo by means of 
fuzzy assertion fo : [FA1:FV1:n1,…,FAk:FVk:nk], where FVi is the value of attribute 
FAi, ni ∈ [0, 1] denotes the membership degree, FAi may be a fuzzy datatype attribute 
or a fuzzy object attribute, and i ∈ {1…k}. Here, since the value of an attribute FAi 
may be a possibility distribution, for simplicity, FVi : ni only denotes one element of 
the possibility distribution; In addition, since the fuzzy subclass/superclass 
relationships in FOOD models can be assessed by utilizing the inclusion membership 
degree of objects to the class [8], [13], the assertional formalism of fuzzy 
subclass/superclass relationships can be re-expressed by the above assertional 
formalism of objects to the class. 

Based on the discussion above, the mappings from the database instances w.r.t. a 
FOOD model to the fuzzy OWL DL ontology instances can be established by Definition 4. 

Definition 4 (Instance Translation). Given the database instances with respect to a 
FOOD model (i.e., a finite set of assertions), the corresponding fuzzy OWL DL 
ontology instances (i.e., a set of fuzzy individual axioms) can be derived as the 
mapping rules shown in Table 3.   

In Table 3, notice that: 
(i) In order to represent that the membership degree of an object to a class is 

equal to n (i.e., fo: FC: n), the symbol ⋈' denotes ≥ and ≤.  
For example, the axiom Individual (fo type(FC) [⋈' n]) denotes two 

axioms Individual (fo type(FC) [≥n]) and Individual (fo type(FC) [≤n]). 
(ii) When the membership degree n = 1.0, the [⋈' n] part is omitted in a fuzzy 

individual axiom. 
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Table 3. Mapping rules from database instances to fuzzy OWL DL ontology instances 

Database instances  Fuzzy OWL DL ontology instances FOI   

Each fuzzy object symbol fo A fuzzy individual identifier ϕ(fo) ∈ FIID0  

Each fuzzy class symbol FC A fuzzy class identifier ϕ(FC) ∈ FCID0 

Each fuzzy datatype attribute 
FAi 

A fuzzy datatype property identifier ϕ(FAi) 
∈ FDPID0, denoted by Ui  

Each fuzzy object attribute FA A fuzzy class identifier ϕ(FA) ∈ FCID0 ; 
In addition, adding the additional fuzzy 
object property identifiers, denoted by Ri  

See 
Table 
2 

The fuzzy assertion fo: FC: n 
The fuzzy individual axiom: 

Individual ( ϕ(fo) type(ϕ(FC)) [⋈' n] ) 

The fuzzy assertion: 

fo:[FA1:FV1:n1,…,FAk:FVk:nk] 

The fuzzy individual axiom: 

Individual ( ϕ(fo) value(Ri, oi) [⋈' ni]… 
value(Ui, vi) [⋈' ni]… ) 

where oi, vi ∈ FJ, i ∈ {1…k} 

See 

Fig. 5 

Example 2. Given the database instances in Fig. 3 (w.r.t. the FOOD model FS1 in 
Fig. 1), by Definition 4, we can obtain the corresponding fuzzy OWL DL ontology 
instances FOI in Fig. 5 (w.r.t. the fuzzy OWL DL ontology structure FOS in Fig. 4). 

Given the database instances in Fig. 3, the fuzzy OWL DL ontology instances FOI can 
be derived as follows:  
Notice that, since each object attribute FA is mapped to a fuzzy class identifier (FA)
FCID0, we need to add an additional object symbol o' such that o' belongs to class 

(FA). FIID0 = { o1, o2, o3, o' } ;  
FAxiom0 = { 
DifferentIndividuals (o1, o2, o3, o') ; 
Individual ( o1  type(Young-Employee) [ ' 0.9] ) ;  
Individual ( o2  type(Old-Computer) [ ' 0.85] ) ; 
Individual ( o3  type(Old-Computer) [ ' 0.8] ) ; 
Individual ( o'  type(Use) ) ; 
Individual ( o'  value(Useby, o1)  value(Useof, o2) [ ' 0.8]   

value(Useof, o3) [ ' 0.7] ) ; 
Individual ( o1  value(EmpID, o1)  value(Name, Chris)  value(Age, 27) [ ' 0.8]  

value(Age, 30) [ ' 0.9]  value(invof_Useby, o') ) ;    
Individual ( o2  value(ComID, o2)  value(Brand, Dell)  value(UseYear, 4)  

value(invof_Useof, o') [ ' 0.8] ) ; 
Individual ( o3  value(ComID, o3)  value(Brand, Hp)  value(UseYear, 3) 

value(invof_Useof, o') [ ' 0.7] ) . 
}

 
Fig. 5. The fuzzy OWL DL ontology instances derived from database instances in Fig. 3 
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6   Automated Learning Tool and Case Study 

Based on the proposed approach in Section 5, we developed an automated learning 
tool called FOOD2FOWL, which can automatically construct fuzzy OWL DL 
ontologies from FOOD models and the corresponding database instances. For reasons 
of space, the following briefly introduces the implementation of FOOD2FOWL. 

6.1   Design and Implementation of FOOD2FOWL 

The tool FOOD2FOWL includes three main modules: parsing module that parses the 
FOOD model file, translation module that translates the parsed file into the fuzzy 
OWL DL ontology, and output module that produces the constructed fuzzy OWL DL 
ontology as a text file. 

The implementation of FOOD2FOWL is based on Java 2 JDK 1.5 platform. The 
parsing module uses the regular expression to parse the FOOD model file and stores 
the parsed results as Java ArrayList classes; translation module uses Java class 
methods to translate the FOOD model and database instances into the fuzzy OWL DL 
ontology structure and instances based on the proposed approach in Section 5; output 
module produces the resulting fuzzy OWL DL ontology which is saved as a text file 
and displayed on the tool screen (see Fig. 6). 

6.2   Case Study 

We have carried out lots of case studies using FOOD2FOWL. For saving space, here 
we give an example which can show that the proposed approach is feasible and the 
implemented tool is efficient. Fig. 6 shows the screen snapshot of FOOD2FOWL, 
which displays the translations from the FOOD model (Fig. 1) and the corresponding 
database instances (Fig. 3) to the fuzzy OWL DL ontology structure (Fig. 4) and the 
fuzzy OWL DL ontology instances (Fig. 5).       

 

Fig. 6. Screen snapshot of FOOD2FOWL 
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7   Conclusions and Future Work 

The real power of the Semantic Web will be realized only when people create much 
machine-readable content, and ontologies play a key role in this effort. In this paper, 
we developed a formal approach and an automated tool for constructing fuzzy 
Semantic Web ontologies from fuzzy Object-Oriented database (FOOD) models. The 
fuzzy ontology was introduced. A kind of formal definition of FOOD models were 
proposed. Furthermore, we realized the translations from the FOOD model and its 
corresponding database instances to the fuzzy ontology structure and fuzzy ontology 
instances. Following the proposed approach, an automated learning tool called 
FOOD2FOWL was implemented, which can automatically construct fuzzy ontologies 
from FOOD models. All of these will facilitate the development of Web ontologies 
and the realization of semantic interoperations between lots of existing database 
applications and the Semantic Web. 

In the future, we aim at developing the other approaches of constructing (fuzzy) 
ontology. Moreover, it should be noted that many databases have not been designed 
following the disciplined methodologies, thus we will experiment with other FOOD 
models to enrich our construction approach.   
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Abstract. Mobile Internet is rapidly growing and an enormous quantity of re-
sources are currently available. Thus, the common mechanisms used up to now
to locate resources, such as browsing and searching, do not look anymore to be
effective in helping users in mobility. Indeed, the user’s personal information
space can be very large, with respect to the limited interaction capabilities of
mobile devices. This paper proposes a situation-aware framework for providing
personalized resources in a proactive manner. Current situations of the user are
inferred by exploiting domain knowledge expressed in terms of ontologies and se-
mantic rules, which are represented in the well-known Web Ontology Language
(OWL) and Semantic Web Rule Language (SWRL), respectively. Uncertainty in
some contextual rule conditions is handled by defining appropriate linguistic vari-
ables through the Fuzzy Control Language (FCL), a standard representation of
fuzzy systems for data exchange among different implementations, and adopting
a purposely-adapted coding of ontologies and rules. Uncertain conditions bring
to infer more than one situation with different certainty degrees: these degrees are
used to assign a rank to concurrent situations. Finally, situations are connected to
a set of related resources to be recommended to the user.

Keywords: Context-awareness; Fuzzy Inference System; Mobile Service Rec-
ommender; Web Ontology; Semantic Rules.

1 Introduction

Nowadays, the number of mobile users is rapidly growing and more and more services
and documents are available on marketplaces. Categorizing such resources is a very
difficult task: there exists no standardized taxonomy, and the user preferences can vary
from an individual to another [9]. Hence, finding the best-fitting service by browsing
and searching in resource repositories is very time expensive for the common user.

Moreover, mobile devices are becoming more and more capable to accommodate
many types of resources such as services, documents and links to external sources,
enlarging incredibly the personal information space of a mobile user. On the contrary,
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the interaction features of the devices are very poor, due mainly to user interfaces less
comfortable and manageable than in a personal computer. Furthermore, often services
have to be configured with a set of proper parameters in order to be executed effectively.
These parameters can vary in dependence of specific circumstances, and users have
often to provide textual inputs on small keypads [6].

Hence, a significant cognitive effort is required to users in mobility to find and con-
figure the most appropriate resources among the many available [8,15]. A tool able to
automatically searching for the most suitable resources for the specific situation and
configuring them would be strongly desirable. To this aim, in this paper we propose a
situation-aware framework for providing personalized resources in a proactive manner.
Situation awareness is enabled by a specific engine based on semantic web technologies
and fuzzy logic.

More specifically, contextual information is maintained in the system by domain
ontology [23] and is enriched with a truth degree depending on a level of certainty. Sit-
uations are inferred by means of semantic rules [25], which take the fuzziness of the
contextual antecedents into account, and are ranked depending on their fuzzy values.
Unlike in our previous work [1], here fuzziness is directly managed within the semantic
rules and the semantic inference engine rather than by a specific fuzzy inference engine.
These situations allow the identification of specific tasks, on the basis of domain knowl-
edge expressed in terms of task ontology, which represents common sense knowledge
about user usual activities. Finally, the specific current task together with contextual
information is used to recommend a set of resources, in a task-navigation paradigm [7],
where the user is supported to find appropriate services and documents by relying on
the task ontology.

2 Background

A large amount of research in recommendation systems has focused on providing per-
sonalized services [10]. In our approach, the current user situation is exploited to narrow
down the set of recommendable resources, thus showing to the user only those resources
that are relevant in the specific situation. In [26], the term situation refers to a business
level concept that allows targeting precisely and at different levels of granularity the
demand of the user at a certain time. More precisely, a situation can be defined as a
collection of context information that is invariant as long as the situation occurs [26].
According to Dey and Abowd [4], context refers to any relevant information that can
be used to characterize a user. Hence, a situation can be inferred as a consequence of
rules that verify whether a set of contextual conditions hold in the system. For instance,
the situation meeting can be inferred when the contextual conditions user is stationary,
user is located in the scheduled place at the scheduled time, and user is close to the
meeting organizer are verified in the system.

Several projects consider the use of ontology as a promising means to develop
context-aware systems. In the framework of semantic web, an ontology is a knowl-
edge model that describes a domain of interest using semantic aspects and structure. An
ontology consists of: (i) facts representing explicit knowledge, consisting of concepts,
their properties, and instances that represent entities described by concepts; (ii) axioms
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and predicates representing implicit knowledge, by means of rules used to add seman-
tics and to derive knowledge from facts [26]. In [21], a comparative analysis shows that
the most promising assets for context modeling in ubiquitous computing environments
can be found in the use of ontology.

To reflect the varying nature of context and to ensure a universal applicability of
context-aware systems, context is typically represented at different levels of abstrac-
tion [15]. At the first level of raw context sources there are context data coming from
sensor devices, or user applications. At this level, logic embodied in semantic languages
does not allow a treatment of uncertainty and imprecision existent in real world [17].
For instance, a typical smartphone GPS receiver provides a device position with dy-
namic accuracy ranging from some meters to hundreds of meters, depending on many
environmental variables. Thus, the situation recognition from the environment should
rely on a vague characterization. Furthermore, these situations are often connected to
specific user requirements, and then the system should offer a specification mechanism
that is intuitive, for instance in terms of standardized natural language, as guaranteed
by employing linguistic terms [27].

3 Overall Architecture

In our implementation, the situation-aware resource recommender is running on the mo-
bile device as an advanced menu, whose elements are dynamically updated, according
to the different situations in which the user is involved. The overall system architecture
is shown in Fig. 1.

In the server side, the main module is represented by the situation engine, which is
in charge of interpreting contextual conditions and assessing the user situations. Con-
textual conditions that are inherently vague, such as mobility and proximity state of
users, are evaluated by means of fuzzy logic, i.e., enriched with a truth degree main-
tained in the ontology. Such degrees represent the extent to which the conditions hold
in the system. For instance the user is close to a place is a contextual condition that
can be characterized with a truth degree representing the level of closeness of the user
to the place. Semantic rules enhanced with the ability of managing the uncertainty al-
low inferring multiple situations with an appropriate ranking. This allows the system to
recommend the related resources with different priorities.

The control flow of the application is steered by the application controller module,
which manages the activities of each module, granting access to different functions and
data sources. The contextual data sources package comprises a set of interfacing mod-
ules for different data sources, such as geographical maps, users’ personal calendars
and positions. In particular, numerical data concerning users positions are fed by the lo-
cation detector module. This module provides outdoor/indoor location estimation, also
on the basis of several possible technologies, such as GPS, GSM, WiFi [22]. Regardless
of the available technologies, the location detector provides a generalized interface in
terms of position and accuracy.

The Rule Translator is an off-line module that translates the rules, expressed in a
high-level language, into a well-established standard for semantic rules, the Semantic
Web Rule Language (SWRL, [25]). Thus, designers can express how the system should
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Fig. 1. Overall architecture of the situation-aware resource recommender

interpret contextual conditions in order to assess the most appropriate situations in a
natural language close to their language. Further, the Rule Translator module allows
the representation of the fuzzy logic within the SWRL, mapping directly the fuzzy
information into the crisp ontology.

On the client side, the Rule Editor module allows a designer to configure and express
the semantic rules for situation assessment. Finally, the Resource Launcher module
shows the recommended resources to the user and allows the launch of these resources.
In the following, the paper is focused on the design of the situation engine module.

4 Semantic Domain Knowldege

In the system, domain and general knowledge is represented by the situation ontology
and related semantic rules. The ontology has been developed by using the Web Ontol-
ogy Language (OWL [23]), a W3C standard well-supported in most semantic engines.
In the upper situation ontology, general context information is represented by basic
concepts such as User, Calendar, Device, Time and Place.
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In order to manage fuzzy information in an OWL compliant ontology, we estab-
lished a representation pattern. The pattern is applicable to properties that are related
to the same base variable and to the same pair of concepts. For instance, let us con-
sider the base variable distance, and the concepts User and Place. Depending on the
actual value of the distance, and considering a prefixed set of distance intervals, we can
establish properties like User is-close-to a Place or User is-far-from a Place. The pres-
ence of each property depends on the membership of the distance value to a prefixed
interval. For example, considering the first interval as LowDistance = 0-10 meters, it
can be said that User is-close-to depends on LowDistance, more formally is− close−
to|LowDistance . Fig. 2-a shows an abstract representation of this mechanism, for a se-
ries of n properties and related n intervals. Here, concepts have been enclosed in oval
shapes, whereas properties are represented by arrows. In order to capture vagueness in
this representation, we propose the extension shown in Fig. 2-b. Here, an OWL group
of properties is transformed into a concept, which includes a specification of the degree
for each property. In other words, we assert that there is a property with a certain degree.
Each degree is the membership level of the base variable to a specific fuzzy set.

Fig. 2. An OWL-compliant fuzzy extension of a property

It is worth noting that this scheme can be used also in case of a property related to a
single concept. In such case, the concept property corresponds to the concept itself.

In Fig. 3, the complete upper situation ontology is presented. This ontology is made
of 10 general concepts and 25 properties, together with 5 concepts and 14 properties
for the fuzzy representation. In particular, general concepts such as Time and Place
are inherited from publicly available ontologies [24,5], according to the best practices
of reusing domain ontologies. In the figure, such external ontologies are enclosed in
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dashed rectangular shapes. Concepts are connected by properties, represented with di-
rected black edges in the figure. Edges with white arrowhead show classical inheritance
(i.e., an is-a relation).

Fig. 3. The upper situation ontology

The model comprises a set of rules to infer the current situations on the basis of the
situation ontology. Rules are expressed in the Semantic Web Rule Language SWRL, an
emerging standard that extends OWL with additional rule-based knowledge represen-
tation. In terms of expressiveness, this reasoning standard corresponds to description
logics, a particular decidable fragment of first order logic, and is named OWL DL [5].
Fig. 4 shows an example of rule in human readable syntax (a), commonly used in the lit-
erature, and in natural language (b). We point out that there are two types of antecedent
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conditions, i.e., crisp (binary) and fuzzy, represented in Fig. 4 in bold and italic bold,
respectively. The conditions is a participant and has type are derived from the user’s cal-
endar, and are inherently crisp, whereas the other conditions can be assessed only with
vagueness. This implies that also the conclusion inferred from the rule is characterized
by vagueness. This vagueness can be represented directly in SWRL (see next sections),
which implements some mechanisms to express truth degrees and related membership
functions.

Fig. 4. A rule example

Once some situations have been inferred, with a certainty degree, a task ontology
allows connecting a situation to specific tasks, and then specific tasks to specific re-
sources to be recommended. Furthermore, such resources are tailored by proper con-
textual information, selected according to the identified user task. In Fig. 5 the upper
task ontology is represented.

5 Managing the Uncertainty

There is some uncertainty in many contextual conditions related to real-world events.
For instance, the condition user1 is before the scheduled event start-time, in Fig. 4.b,
can be assessed only with a certainty degree. This uncertainty can arise, for instance,
from lack of precision in the information stored in the users calendar. Furthermore, it
is possible that noise affects sensed data. For instance, the condition user1 is moving
requires an estimation of the user’s speed, often known only with a limited accuracy.

Fuzzy set theory and fuzzy logic have proved to be a promising approach to man-
age the natural uncertainty that affects such contextual data [16]. In order to evaluate
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Fig. 5. The upper task ontology

the certainty degree of the contextual conditions, a number of linguistic variables have
been defined. The universe of definition of such variables is partitioned with trapezoidal
membership functions. An appropriate tuning of these functions has been carried out by
means of experimental data.

Linguistic variables have been described using the Fuzzy Control Language
(FCL, [2]), a standard representation of fuzzy systems for data exchange among dif-
ferent implementations. An example of the linguistic variable speed, used to decide
about the user mobility, is shown in Fig. 6.

6 A Simple Integration of Fuzzy Logic into SWRL

In our implementation, we expressed fuzzy rules, such as the one described in Fig. 4-b,
within SWRL, which however does not directly support fuzzy rules. While we refer the
interested reader on fuzzy extensions of the logics behind Semantic Web Languages
to [14,19,20], here we show that there is a simple way to encode the fuzzy rules into a
crisp rule language supporting arithmetic built-in functions and, thus, in SWRL, mak-
ing them directly available in current reasoners and in the Protégé editor1. In fact, we
followed the below mentioned method to correctly deal with our fuzzy rule base.

In our setting, a fuzzy rule is of the form (which closely resembles [13])

R(x)[s] ← ∃y.R1(z1)[s1], . . . , Rl(zl)[sl], s = f(s1, . . . , sl)

where

1. R is an n-ary relation, every Ri is an ni-ary relation;
2. x are the distinguished variables.
3. y are existentially quantified variables called the non-distinguished variables. We

omit to write ∃y when y is clear from the context;

1 http://protege.stanford.edu/

http://protege.stanford.edu/
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Fig. 6. Definition of linguistic labels in FCL

4. zi, z′j are tuples of constants or variables in x or y;
5. s, s1, . . . , sl are distinct variables and different from those in x and y, called scores

or truth degrees;
6. f is a scoring total function f : [0, 1]l → [0, 1], which combines the scores of the

l relations Ri(c′i) into an overall score to be assigned to the rule head R(c). We
assume that f can be computed in finite time.

We call R(x)[s] the head,∃y.R1(z1)[s1], . . . , Rl(zl)[sl] the body and s = f(s1, . . . , sl)
the scoring atom. We also allow the scores [s], [s1], . . . , [sl] and the scoring atom to be
omitted. In this case we assume the value 1 for si and s instead. The informal meaning
of such a rule is: if zi is an instance of Ri to degree at least or equal to si, then x is an
instance of R to degree at least or equal to s, where s has been determined by the scoring
atom, i.e. s = f(s1, . . . , sl).

As an example, in the following we show the high-level encoding of the fuzzy rule
in Fig. 4-b:

is−in−a−situation(?user1, ?aSituation)[s]← owns(?user1, ?aCalendar),
contains−as−next(?aCalendar, ?nextEvent),
is−located−in(?nextEvent, ?aPlace),
is−scheduled−at(?nextEvent, ?anInterval),
is−started−at(?anInterval, ?aTime),
mobility(?user1, ‘moving‘)[s1],
has−current−time(?user1, ?userTime),
is−before−of(?userTime, ?aTime)[s2],
type(?nextEvent, ‘business‘),
Pre−Meeting−on−Movement(?aSituation),
s = min(s1, s2)

(1)
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Note that the final degree s of being in a “pre-meeting-on-movement” situation is de-
termined by the minimum of the users’ degree of being moving (s1) and being before
a meeting (s2) (here, “moving” and “before” are considered fuzzy concepts). So, here
the scoring combination function f is the minimum, which is also the function used
in all the rules we have developed in our specific application. Of course, other func-
tions can be used as well such as any so-called t-norm (used to combine conjunctive
information) [12].

A rule baseR is a finite set of fuzzy rules, which we assume to be acyclic. This latter
notion is defined as follows: we say that a relation R directly uses a relation R′ if there
is a rule in R having R as head and R′ occurring in its body. Let uses be the transitive
closure of the relation “directly uses”. Then we say thatR is acyclic iff for any relation
R it is not the case that R uses R. Please note that acyclicity is required to guarantee
decidability. Note that cyclic rules bases can be allowed if specific conditions are meet
on the score combination functions (see e.g.,[18], for more on this issue), but we do not
address them here.

We point out that we may represent a fuzzy rule in a succinct way as

R(x)[s]←∃y.φ(x,y)[s] ,

where φ(x,y)[s] is

R1(z1)[s1], . . . , Rl(zl)[sl], s = f(s1, . . . , sl) .

We also impose that a rule base R is such that there are no two rules in it with the same
head. Note that this restriction is harmless. Indeed, in case we would like to have n rules
with same head 2, i.e.

R(x)[s] ← ∃y1.φ1(x,y1)[s1]
R(x)[s] ← ∃y2.φ2(x,y2)[s2]

...
...

...

R(x)[s] ← ∃yn.φn(x,yn)[sn]

then we may replace them with the n + 1 rules

R1(x)[s] ← ∃y1.φ1(x,y1)[s1]
R2(x)[s] ← ∃y2.φ2(x,y2)[s2]

...
...

...

Rn(x)[s] ← ∃yn.φn(x,yn)[sn]
R(x)[s] ← R1(x)[s1], . . . , Rn(x)[sn], s = g(s1, . . . , sn)

where R1, . . . , Rn are new relation symbols, and g specifies how to combine the scores
of the individual rules into one overal score to be assigned to R. Usually, g(s1, . . . , sn)
= max(s1, . . . , sn), but in general, any so-called s-norm [12] (used to combine

2 In our specific fuzzy rule base, we do not have this scenario, though we present how to deal
with it as it works generally.
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disjunctive information) may be appropriate as well. This transformation guarantees
then that R remains acyclic and that there are no two rules in it with same head.

It remains to show how to represent fuzzy rules in a crisp rule language, which
however supports arithmetic built-in predicates to perform arithmetic operations. To
this end we proceed as follows.

1. Any n-ary relation R becomes an n + 1-ary relation. The additional slot is used
to store the score s. So, in any rule, an expression R(z)[s] is replaced with the
predicate R(z, s). For instance,

is−before−of(?userTime, ?aTime)[s2]

becomes
is−before−of(?userTime, ?aTime, s2) .

2. As our crisp rule language supports arithmetic built-in predicates, there is a way to
express a rule

Pf (s1, . . . , sl, s) ← built-in(s = f(s1, . . . , sl))

which defines a predicate Pf (s1, . . . , sl, s) such that s = f(s1, . . . , sl), using the
built-in arithmetic operations of the rule language.

3. Now, we replace each rule

R(x)[s]←∃y.R1(z1)[s1], . . . , Rl(zl)[sl], s = f(s1, . . . , sl)

with the crisp rule

R(x, s)←∃y.R1(z1, s1), . . . , Rl(zl, sl), Pf (s1, . . . , sl, s)

which concludes the case in which the rule language supports n-ary predicates. For
instance, fuzzy rule (1) becomes

min(s1, s2, s3) ← built-in(s3 = min(s1, s2))

is−in−a−situation(?user1, ?aSituation, s)← owns(?user1, ?aCalendar),
contains−as−next(?aCalendar, ?nextEvent),
is−located−in(?nextEvent, ?aPlace),
is−scheduled−at(?nextEvent, ?anInterval),
is−started−at(?anInterval, ?aTime),
mobility(?user1, ‘moving‘, s1),
has−current−time(?user1, ?userTime),
is−before−of(?userTime, ?aTime, s2),
type(?nextEvent, ‘business‘),
Pre−Meeting−on−Movement(?aSituation),
min(s1, s2, s)
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However, SWRL is a rule language supporting unary and binary predicates only. This
is not a particular problem, as to this end, we may rely on a well-known procedure,
called reification3 (see also [3]), which allows to represent an n-ary relation via unary
and binary relations. So, for instance, for the relation

is−before−of(?userTime, ?aTime, s2)

we create a new class

is−before−ofRelation(?aTimeReification)

with two additional properties

is−before−ofValue(?aTimeReification, ?aTime)
is−before−ofDegree(?aTimeReification, s2)

and, thus, is−before−of(?userTime, ?aTime, s2) will be replaced with

is−before−of(?userTime, ?aTimeReification),
is−before−ofValue(?aTimeReification, ?aTime),
is−before−ofDegree(?aTimeReification, s2) .

This allows removing n-ary (n � 3) relations from the rules bodies.
Concerning a n-ary (n � 3) relation in the rule head, such as

is−in−a−situation(?user1, ?aSituation, s)

as before, we create a new class

is−in−a−situationRelation(?aSituationReification)

with two additional properties

is−in−a−situationValue(?aSituationReification, ?aSituation)
is−in−a−situationDegree(?aSituationReification, s)

then add

is−in−a−situation(?user1, ?aSituationReification),
is−in−a−situationValue(?aSituationReification, ?aSituation)

to the rule body and replace the head with

is−in−a−situationDegree(?aSituationReification, s)

For instance, our fuzzy rule about pre-meeting becomes in SWRL (here, the minimum
is implemented as min(a, b) = (a + b− |a− b|)/2), see [11]):

3 http://www.w3.org/TR/swbp-n-aryRelations/

http://www.w3.org/TR/swbp-n-aryRelations/
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min(s1, s2, s3) ← sum(sm, s1, s2)
substract(diff, s1, s2),
abs(absdiff, diff),
substract(sd, sm, absdiff),
divide(s3, sd, 2),

is−in−a−situationDegree(?aSituationReification, s) ← owns(?user1, ?aCalendar),
contains−as−next(?aCalendar, ?nextEvent),
is−located−in(?nextEvent, ?aPlace),
is−scheduled−at(?nextEvent, ?anInterval),
is−started−at(?anInterval, ?aTime),
mobility(?user1, ?mobilityReification),
mobilityValue(?mobilityReification, ‘moving‘),
mobilityDegree(?mobilityReification, s1),
has−current−time(?user1, ?userTime),
is−before−of(?userTime, ?aTimeReification),
is−before−ofValue(?aTimeReification, ?aTime),
is−before−ofDegree(?aTimeReification, s2),
type(?nextEvent, ‘business‘),
Pre−Meeting−on−Movement(?aSituation),
is−in−a−situation(?user1, ?aSituationReification),
is−in−a−situationValue(?aSituationReification, ?aSituation),
min(s1, s2, s)

which concludes.We don’t go further into the reification procedure as it is pretty com-
mon and well-known in the Semantic Web literature.

7 Conclusions and Future Work

In this paper, a framework for providing personalized resources based on situation
awareness has been proposed, showing situation awareness as a key asset to enable
proactive behavior in the system. In particular, the study focuses on combining semantic
web standards with fuzzy logic. Domain knowledge is maintained by means of proper
ontologies and exploited to infer the current user situations. Inference is carried out by
semantic rules which embody fuzzy logic to take the assessment of real-world inaccu-
rate information into account.

We applied the system in two real business cases, in order to assess the effectiveness
of our approach. The first evaluation case study concerns a pharmaceutical consultant
in typical business situations. In particular, the situations of interest are: (i) Meeting-
Planning, (ii) Pre-Meeting, (iii) Ongoing-Meeting, (iv) Post-Meeting, (v) Hospital-
Conference, (vi) Call-for-Tenders, and (vii) Meal. The second evaluation case study
concerns an off-site student, who performs a daily travel to go to university and re-
turn. In this case, the identified situations are the following: (i) Pre-University-Day,
(ii) Preparing-for-Transportations, (iii) Traveling, (iv) Studying, (v) Attending-Courses,
and (vi) Meal. For each case study, by means of a series of interviews, a domain-specific
ontology has been added to the upper ontology and the fuzzy linguistic variables have
been tuned properly. Hence, a set of 13 rules has been designed for the above busi-
ness cases. Finally, the system has been tested by considering the events concerning
one overall working week of two different consultants and three different students, with
53 and 82 different test events, respectively. The system has been able to recognize
the right situations related to all the test events under the different conditions. Further,
the differences between the time at which actually the situation occurred and the time
at which the system recognized the situation was in the range of few seconds to few
minutes. This proves the usefulness of our service recommender which exploits data
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collected by different sensors to determine the situations of interest with respect to a
recommender based only on the scheduled events stored in the users calendar.

A weakness of the system concerns the design of the linguistic variables, which is
domain-specific and does not take into account actual differences among users. We
are currently working on improving the possibility of adaptation of the system to the
specific user. We are focusing on the exploitation of the user’s profile, expressed in terms
of user’s preferences. Further, we are considering the application of machine learning
paradigms for the tuning of the linguistic variables.
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Abstract. This paper presents OptiSource, a novel approach of source
selection that reduces the number of data sources accessed during query
evaluation in large scale distributed data contexts. These contexts are
typical of large scale Virtual Organizations (VO) where autonomous or-
ganizations share data about a group of domain concepts (e.g. patient,
gene). The instances of such concepts are constructed from non-disjointed
fragments provided by several local data sources. Such sources overlap
in a non mastered way making data location uncertain. This fact, in
addition to the absence of reliable statistics on source contents and the
large number of sources, make current proposals unsuitable in terms of
response quality and/or response time. OptiSource optimizes source se-
lection by taking advantage of organizational aspects of VOs to predict
the benefit of using a source. It uses an optimization model to distinguish
the sets of sources that maximize benefits and minimize the number of
sources to contact to while satisfying resource constraints. The precision
and recall of source selection is highly improved as demonstrated by the
tests performed with the OptiSource prototype.

Keywords: Large Scale Data Mediation, Source Selection, Combinato-
rial Optimization.

1 Introduction

A Virtual Organization (VO) is a set of autonomous collaborating organizations,
called VO units, working towards a common goal. It enables disparate groups to
share competencies and resources such as data and computing resources [1]. VOs
have evolved to a national and world-wide magnitude [2,3], introducing complex
business processes and data sharing contexts.

This work deals with large scale VOs following co-alliance and value-alliance
models, where participants provide data related to a group of agreed domain
concepts (e.g. patient, client, gene). The VO data context involves a large num-
ber of autonomous and distributed sources (tens to thousands), provided by
VO units. Sources contain structured data, typically fragmented horizontally
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and vertically w.r.t. the domain concepts of the VO. Therefore sources may be
incomplete intentionally (schema) and extensionally (contents). Moreover, par-
ticipant interactions produce logical relationships between sources generating
uncontrolled situations of data overlapping and data replication. In most cases,
query processing becomes difficult and heavily resource dependent because the
mediation level does not have precise knowledge of the contents of each source.
Considering the large scale context, a tradeoff between the number of answers
to obtain and the number of sources (potential contributors) to access becomes
crucial, especially while not compromising the accuracy of query processing.

Current source selection approaches are unsuited for this kind of contexts
because they do not significantly reduce the number of sources to access when
their schemas are similar [4,5,6,7,8] like is the case in VOs. Others do not take
into account source overlapping leading to redundant answers when used in VOs
[9,10,11,12]. Proposals such as [13,8] do consider overlapping, but assume the
existence of some metadata that is difficult to obtain and maintain in large VOs.
Contribution. This paper presents OptiSource, a new approach that addresses
the source selection problem1 as a decision making problem within a complex
environment. OptiSource predicts the benefit of using a source during query eval-
uation, and optimizes the assignment of query predicate evaluation to sources.
It uses a combinatorial optimization model to distinguish the sources that max-
imize the benefit and minimize the number of sources to contact to while sat-
isfying processing resource constraints. OptiSource is well suited when sources
are numerous, when the instances that match the query are fragmented and dis-
tributed in several sources, and when not exhaustive2 answers are acceptable.
A prototype of OptiSource is operational. This paper reports test results, which
demonstrate the improvement of the precision and recall of source selection.
Outline. In the following, Section 2 presents the context of the problem and
related works. Section 3 presents OptiSource. Section 4 presents the combinato-
rial optimization model used in OptiSource. Section 5 presents the OptiSource
prototype and its evaluation. Finally, Section 6 concludes this paper.

2 Data Source Selection: Context and Related Works

The selection of the right set of data sources to evaluate a query is one of the
crucial steps to assure an efficient query evaluation on large scale distributed
systems. Considering all the available sources is of course unsuitable because the
number of possible query plans grows rapidly as the complexity of the query and
the number of sources increase. This section first points out the main character-
istics of VO’s data context and then discusses related works.

2.1 Data Context in Large Scale Virtual Organizations

In large scale VOs, VO units (participants) are distributed in a wide area network.
They share preexisting heterogeneous sources following a federated approach and
1 Henceforth, source and data source are going to be used interchangeably.
2 In these contexts a sub set of the available answers is enough.



48 A. Pomares et al.

Fig. 1. VDO Patient Fig. 2. OptiSource Components

according predefined cooperation agreements [14]. Shared data are related to these
concepts (e.g. patient, client, gen), henceforth to be referred to as Virtual Data Ob-
jects (VDO). An instance of a VDO may not exist completely in one single source,
but may be distributed across several sources. The creation of such an instance
requires the integration of data issued by several sources.

A VDO is defined by a set of classes and related properties. Figure 1 presents
the definition of the VDO Patient. It inherits from the class Person, and is linked
to classes Medical Act and Affiliation. Person is linked to the class Demographic
Data. VDO Queries specify the set of required conditions of the instances.

Data characteristics. Business processes involving the VO units have a signifi-
cant impact on VDO instances distribution. They introduce data source fragmen-
tation and overlapping without providing a global description of this situation to
the system. The following are the most important of these aspects, which affect
source selection:

-Non disjoint vertical fragmentation. VDO properties are fragmented be-
tween different sources. However, fragments are not disjointed which means that
a VDO’s property may be provided by several sources.

-Non disjoint horizontal fragmentation. Several sources may provide the
same fragment or instance of a VDO, but may also provide different groups of
properties and values related to the same VDO.

-Uncertainty on data location. Instances of VDOs follow uncertain pat-
tern distribution. Indeed, two instances may be fragmented and distributed in
completely different ways. Such fragmentation is not intentionally designed, but
results from preexisting data sources and various business processes.

-Fuzzy copies. A phenomenon of inaccurate copies3 may even appear, partic-
ularly if there are integration efforts of VO unit’s subgroups. In a health VO,
instances of Patient may be replicated due to the mobility of people whereas
batch replication may be introduced by reporting governmental politics.

Data distribution scenario. Figure 3 illustrates a typical scenario of data
distribution in a health VO. Six sources (represented by ovals) provide instances
of VDO Patient (represented by rectangles). None of the sources includes all the
properties of the class Patient (vertical fragmentation) and no source contains
all the instances of Patient (horizontal fragmentation). Additionally, vertical

3 Fuzzy copies are copies that do not have an explicit protocol of consistency.
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Fig. 3. Health VO Data Context

fragments are not disjointed because multiple sources (DS1 to DS4) provide the
properties of the class Demographic Data (e.g. gender, age) and of the class
Medical Act (e.g. diagnosis), and multiple sources (DS5 and DS6) provide the
properties of the Affiliation class. Horizontal fragments are not disjointed nei-
ther. Instances 1 and 2 and instances 6 to 8 are contained in two sources that
provide the same properties. Although instances 1 and 2 provided by DS1 and
DS3 have the same id, it is not possible to establish in advance whether or not
they are replicas due to the autonomy of sources. This occurs in a similar way
for instances 6,7 and 8 in DS2 and DS4.

Equation (1) presents the logical query plan that provides a complete answer
for a query Q asking for instances of Patient that match a predicate p with
three conditions p1 , p2 and p3. These conditions are related to the proper-
ties of classes Demographic Data, Medical Act, and Affiliation respectively (e.g
hasGender=F and hasDiagnosis=Cancer and isAffiliatedtoSS=true). This plan
does not discard any data source because the query planner does not know how
the distribution of instances that match the query is.

P lan(V DOpatient, Q(p1, p2, p3)) = DS1 �� DS5 � DS2 �� DS5 � DS3 �� DS5�
DS4 �� DS5 � DS1 �� DS6 � DS2 �� DS6 � DS3 �� DS6 � DS4 �� DS6

(1)

However, assuming instances that match these conditions are 1,2,3,4,5,9,10 and
11, it can be noticed that DS1 �� DS5 provides more than 60% of the answers
(instances 1 to 5). If a complete answer is required, adding DS2 �� DS5 will be
enough. The problem is how to identify during query planning the sources that
best answer the query without knowing exactly which instances are contained
by each source. This is the main issue addressed by this paper.

2.2 Related Works

Even though multi-sources querying has been intensively studied for more than
15 years, none of the available strategies for query planning are well suited for
large scale VO data contexts. In the first generation of integration systems for
structured sources like Information Manifold [4], TSIMMIS [5], DISCO[6] and
Minicon [7], source selection is performed according to the capabilities of sources
(e.g. the number of required conditions, the attributes that can be restricted).
Although such proposals are efficient in several contexts, they have little effect
on VOs where the processing capabilities of sources are alike.
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Another group of algorithms like iDrips and Streamer [8] could be used in
VO contexts. They propose to put in order query plans according to an utility
function. The coverage plan is an example of this function that measures the
number of instances provided by each query plan. Even though the coverage
considers the extensional overlapping between sources, the algorithms do not
specify how this information is obtained before the query execution; hence, the
utility function directly affects the behavior of the algorithms (see Section 5).

Other proposals like QPIAD [15] and Quality Oriented [16] use detailed statis-
tics on data source quality to reduce the number of possible query plans and
therefore sources. Unfortunately, such statistics are difficult to obtain in VOs
due to the large number of sources and the high volume of contents. Similarly,
the proposal to improve the selection of navigational paths between sources pre-
sented in [13] assumes a previous knowledge of the instances in each source and
how they are linked together. These detailed metadata is not available in VOs.
The proposal of Balancing Providers [17] is well suited for environments where
finding one possible query plan is enough to obtain the required set of answers.
Nevertheless, it is not appropriate for VO where data sources are incomplete,
and several query plans are therefore necessary to obtain a complete answer.

Proposals using a P2P approach (PIER [9], PIAZZA [10], EDUTEL-LA [11],
SomeWhere [12]) manage numerous sources. However, as their rewriting and
source selection strategies do not take into account source overlapping, they
would lead to high redundancy in the answers when used in large scale VOs.

3 OptiSource: A Decision System for Source Selection

This section presents OptiSource, our proposal to handle source selection in large
scale VOs. OptiSource reduces the queried sources to the most profitable w.r.t.
the query. It takes advantage of the organizational notion of VOs to reduce the
uncertainty on data location, and to differentiate sources, even if they overlap.

3.1 Queries and Joining Sets

The source selection process must decide which sources will evaluate each pred-
icate condition (or simply condition) and which source answers are going to be
integrated for creating the required instances. Knowing that sources can have
common instances, the process must decide for each condition the minimal set
of sources required to obtain the maximum number of instances that match the
condition, while avoiding the contact of unnecessary sources. VO query proces-
sors require an appropriate source selection strategy able to identify joining sets
(see Definition 1) that will provide higher benefits to the query.

Definition 1. Joining Set. Given a set of data sources and a query, a joining
set is a group of data sources able to evaluate all the conditions of the query
predicate and whose join operation between the data sources it comprises will
not produce an empty set of instances.
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The input of the source selection process are n available data sources DSi, their
mapping (or view) Mi to the VDO (e.g. Person, MedicalAct) and the conditions
pj involved in the query predicate:

Input = [(DS1, M1), (DS2, M2), ..., (DSn, Mn)], [p1, p2, ..., pm].

The output is the collection of joining sets: Output = (JS1, JS2, ..., JSp),
where JSi = (DSk, p1), ..., (DSl, pm), 1 � k, l � n. A couple (DSk, pl) means

that the data source DSk will evaluate the condition pl. A source can evaluate
several conditions pj and a condition pj can be evaluated by several sources.

OptiSource will produce the appropriate joining sets and optimize query pro-
cessing by using a dynamically updated knowledge base to predict the benefit of
using particular sources. This knowledge will act as another input for the source
selection process.

3.2 Components of OptiSource

The main components of OptiSource (Figure 2) are the VO knowledge base, the
benefit predictor, the source selection optimizer, and the adaptability manager.
The VO knowledge base maintains knowledge facts and events related to the
data context of the VO. This includes intentional (schema) and extensional in-
formation (contents) of sources. The knowledge is represented as an ontology in
OWL [18] with three initial classes: VOUnit, VOResource and VODomainCon-
cept. These classes are specialized and related to better reflect the evolution of
the VO data context. VOUnit class represents the participants of the VO. An
instance of VOUnit can be atomic or composite. In the latter case, it represents
a temporal or a permanent group of atomic VO units working together around
a specific collaboration process. VOResource class represents the physical or
logical resources (like data sources) provided by VO units. Finally, VODomain-
Concept includes the subclasses that describe the domain of the VO. For a
health VO for instance, initial classes are Patient, Medical Act, and so on.

The Benefit Predictor uses VO knowledge base to predict the benefit of using
a source to evaluate the conditions of a query predicate. The Source Selection
Optimizer determines the best assignment of data sources for each condition and
produces the joining set that maximizes the benefit, in terms of the number of
resulting instances. The Adaptability Manager is in charge of updating the VO
knowledge base according to the findings after the execution of a query.

3.3 Benefit Prediction Using Data Source Roles

OptiSource estimates the benefit (see Definition 2) of using a source in the eval-
uation of a query to identify the level of relevance it will have in the query. DSa
is more relevant than DSb if it provides more instances that match the query
predicate, even if both of them have the same schema. In order to predict the
benefit we use the available knowledge about the extension (contents) of sources.
To obtain this knowledge we work under the assumption that the organizational
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dimension of VOs allows to relate the role that VO units play in the VO with
the contents of the sources they provide. The more complete and reliable the
extensional knowledge, the more accurate the measurement of the benefit.

Definition 2. Data Source Benefit. Given a Query Q with a query predicate
P with conditions [p1, p2, ..., pm] the benefit of using a data source DSi to evaluate
Q is a variable that measures the degree of contribution of DSi in terms of
instances that match one or more pj ∈ P, 1 � j � m.

Data source’s roles. In a health VO, for instance, two data sources DSa and
DSb provide information about procedures performed on patients. Let’s assume
that DSa is provided by a VO unit specialized on cancer whereas DSb is pro-
vided by a hospital specialized on pediatric procedures. In this case, the DSa
may be considered specialist of patients with cancer (vo:Patient, hasDiagnosis
vo:Cancer) whereas the DSb is children specialist (vo:Patient, hasAge ≤ 15). A
source can therefore play different roles as a contributor of instances of a VDO
(e.g, vo:Patient) verifying some predicate conditions (e.g, hasAge ≤ 15). Roles
reflect the ability of sources to resolve conditions. Given the analysis of the roles
played by VO units in the business processes of the VO, we propose the following
three roles for their data sources: authority, specialist and container.

The definition of each source role is described in Definition 3, 4 and 5. In
these definitions all the instances of VDOj stored in data source DSi are noted
ext(DSi, V DOj)4. U designates the data sources participating in the VO. All
the instances of VDOj available in the VO are noted ext(U, V DOj). The subset
of ext(DSk, V DOj) corresponding to the instance that verifies a condition p is
denoted ext(DSk, V DOj)p and card() is the cardinality function.

Definition 3. Authority Role. A data source DSi plays an authority role
w.r.t. a condition p in a query on VDOj iff it stores all the instances of VDOj
available in U that match p. IsAuthority(DSi, V DOj, p) =⇒ ext(U, V DOj)p ⊂
ext(DSi, V DOj)

Definition 4. Specialist Role. A data source DSi plays a specialist role
w.r.t. a condition p in a query on VDOj iff most instances of VDOj stored
in DSi match p. IsSpecialist(DSi, V DOj, p) =⇒ card(ext(DSi, V DOj)p) ≥
card(ext(DSi, V DOj)¬p)

Definition 5. Container Role. A data source DSi plays a container role
w.r.t. a condition p in a query on VDOj iff DSi contains at least one instance
of VDOj that matches p. IsContainer(DSi, V DOj, p) =⇒ ext(U, V DOj)p ∩
ext(DSi, V DOj)p �= ∅

Data source roles are registered as extensional facts in the VO knowledge base
and can be acquired using three approaches: (a) Manually (e.g. expert’s or DBA’s
definition of knowledge), (b) Interpreting the execution of processes, (c) Auto-
matically extracting it from sources of knowledge. In [19] we present strategies
for the last two approaches.
4 This extension contains the object identifiers.
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Benefit model. In order to predict the benefit of a source DSi w.r.t. a predi-
cate condition p the model uses Formula 2. This formula relates the role of the
data source and the relative cardinality of the data source. The intention is to
take into account the expected relevance of the source, given by the role factor,
with the maximum number of instances that a data source may provide (in the
best case). This combination of knowledge was necessary because sources that
play a specialist role could be less important than sources that play container
role if the number of instances that the first group may provide is considerably
lesser.

The RoleFactor() (Formula 3), returns a value between [0,1] indicating the
most important role that a source may play in the query. ContainerFactor,
SpecialistFactor and AuthorityFactor are constants reflecting the importance of
the role.

Benefit(DSi, V DOj, p) = RoleFactor(DSi, V DOj, p)∗
card(ext(DSi, V DOj))

max{card(ext(Dk, V DOj)), ∀ Dk in U where RoleFactor(DSk, V DOj, p) > 0}
(2)

RoleFactor(DSi, V DOj, p)=max((IsContainer(DSi, V DOj, p) ∗ ContainerFactor),

(IsSpecialist(DSi, V DOj, p) ∗ SpecialistFactor),

(IsAuthority(DSi, V DOj, p) ∗ AuthorityFactor))

(3)
Although Formula 2 would be more accurate if it uses the cardinality taking
into account the query predicate -card(ext(DSi, V DOj)p)-, the exact number
of instances that satisfy a predicate is not available in VOs.

Creating joining sets. To predict the set of sources that will not produce empty
joins, the VO knowledge base is queried for obtaining the individuals of the
composite VO units. This decision was made under the assumption that atomic
VO units belonging to the same composite VO unit have more probability of
containing the same group of instances. However, the creation of joining sets can
use other type of rules to identify when two or more sources may share instances.
For example, if two VO units are located in the same region, the probability that
their data sources share instances may increase. Similarly, the fact that two VO
units participate in the same VO process increases this probability.

Algorithm 1 uses the rule of composite units to create joining sets. The ob-
jective is to group together sources whose join will not produce an empty set
and that are able to evaluate all the conditions of the query. It first [1] obtains
the data sources of the composite units and creates one set for each of them. If
there are redundant sets, the algorithm removes the set with fewer atomic units.
Then, in [2], it validates the completeness of a set. A set is complete if the data
sources it contains are able to evaluate all the conditions of the query. In [3] it
extracts data sources from complete sets and [4] removes those incomplete sets
whose data sources exist in the complete sets. If it is not the case, the algorithm
gets the query conditions that are not already evaluated on each incomplete set
[5] and completes these sets finding [6] the data source with higher role able
to evaluate the missing conditions, from the complete sets.
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Algorithm 1. Joining Sets Creation
Input: Q, CompositeUnits{ID1(DSi,..,DSj),...,IDm(DSk,...DSm)},

QRoles(DSl:role,...,DSn:role)
Output: JoiningSets{JS1(DSp,...,DSq),...,JSn(DSt,...,DSv)}
Begin
[1]initalSets{} = CreateInitialSets(CompositeUnits,QRoles)

incompleteSets{} = {} completeSets{} = {}
ForAll (set in initialSets)

[2] If (isComplete(set,Q)){ add(completSets,set)}
Else{ add(incompleteSets,set)}

If (size(incompleteSets) > 0){
[3] com{} = getDataSources(completeSets)//The data sources of complete sets

ForAll (set in incompleteSets){
inc{} = getDataSources(set)//The data sources of one incomplete set
If ( contains(com, inc)) // com contains inc

[4] remove(set, incompleteSets)
[5] Else{ conditions{} = getMissingEvaluation(set, Q)

ForAll (cond in Conditions){
[6] dataSource = getHighestRole(com,cond)

addDataSource(set,dataSource)}
add(completeSets,set)}

}}
Return(completeSets)

End

The output of the benefit predictor is the set of joining sets. According to
Definition 1 a joining set must contain at least one data source to evaluate each
condition of the query predicate. However, if more than one data source may eval-
uate the same condition, should this condition be evaluated at all data sources
or it would be possible to choose only one of them. The optimizer component,
described in the next section, helps to make the right decision.

4 Optimizing Source Selection

A joining set may have several sources able to evaluate a query condition with
different values of benefit w.r.t. the condition. Querying all of them is neither
necessary nor convenient, considering the cost of querying a source. The pro-
posal is to see the problem of deciding which conditions are evaluated by which
sources as an assignment problem [20] subject to resource constraints that as-
signs a condition to a source to maximize the general benefit. We propose a
mathematical model that receives the results of the benefit predictor component
and the processing capacities of sources, if they are known, and determines the
best assignment. Although this model has been created for source selection in
VOs, it can be used in any distributed query processing system.

4.1 Source Selection as an Assignment Problem

In the source selection problem, there are a number of conditions to assign to a
number of sources. Each assignment brings some benefits, in terms of response
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quality, and consumes some resources of the sources. The objective is to maximize
the benefits using the minimum number of sources while satisfying the resource
constraints. From the query point of view, one condition is assigned to one
main source as main asignment, but this condition could also be evaluated as
secondary assignment in parallel on other sources which have been selected by
other conditions. The reason is that once a source is queried, it is better to
evaluate there a maximum possible number of conditions, expecting to reduce the
number of sources and the cost of transmitting instances that are not completely
evaluated. Indeed, we have to deal with a bi-objective combinatorial optimization
problem subject to semi-assignment and resource contraints. In practice, we
choose to control the objective of minimizing the number of selected sources by
converting it into a constraint. By default, the number of selected sources is
limited to the number of conditions.

4.2 Mathematical Model

Given the set of sources I = {1, ..., m} and the set of predicate conditions P =
{1, ..., n} of a query over a VDO, the input data are as follows :
-Beni,p : benefit of assigning condition p to source i, ∀i ∈ I ,∀p ∈ P , as explained
in formula 2 in Section 3.3, Beni,p = Benefit(DSi, V DOj, p) for a given V DOj;
-MaxResi : processing resource capacity of source i, ∀i ∈ I;
-Resi,p : processing resources consumed in assigning condition p to source i,
∀i ∈ I ,∀p ∈ P ;
-MaxAssigi : maximal number of condition assignments for source i, ∀i ∈ I.

The decision variables are:
-xi,p are 0-1 variables that determine whether source i has (=1) or not (=0) been
selected as a main source to evaluate the condition p, ∀i ∈ I ,∀p ∈ P .
-yi are 0-1 variables that turn to 1 when the source i is selected, ∀i ∈ I.
-assigi,p are 0-1 variables that determine whether a condition p is assigned to
source i (=1) or not (=0), ∀i ∈ I. These variables represent the final assignment
of conditions to sources. The xi,p variables indicate the main assignments while
the assigi,p variables indicate all the main and secondary assignments.

The mathematical program can be formulated as follows :

max

n∑
p=1

m∑
i=1

Beni,p ∗ (xi,p + assigi,p), (4)

subject to:

m∑
i=1

xi,p = 1,∀p ∈ P ; (5)
m∑

i=1

yi ≤ k ; (6)
n∑

p=1

xi,p ≥ yi,∀i ∈ I ; (7)

n∑
p=1

Resi,p ∗assigi,p ≤ MaxResi, ∀i ∈ I ; (8)
n∑

p=1

assigi,p ≤ MaxAssigi,∀i ∈ I ; (9)

xi,p ≤ assigi,p,∀i ∈ I,∀p ∈ P ; (10) assigi,p ≤ yi, ∀i ∈ I,∀p ∈ P. (11)
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Constraint (5) ensures that any condition p is assigned to one main source.
Constraint (6) limits the total amount of queried sources to k, we take k=n by
default to start the optimization process. This constraint is somehow redundant
with constraint (7) which prevents to select a source if no condition is assigned to
it, but in practice one could reduce k in constraint (6) to control the minimization
of the number of selected sources. Constraints (8) and (9) ensure that all the main
and secondary assignments of conditions do not exceed neither the processing
resource capacities nor the maximum number of possible assignments per source.
Finally, coupling constraints (10) and (11) indicate respectively that the main
assignments should be in all main and secondary assignments as well, and that
a source i is selected when at least one condition p is assigned to it.

The resolution of this model provides the selected sources in the variables yi

and all the main and secondary condition assignments in the variables assigi,p.
The joining of the results provided by each source are the instances required
by the user. If the number of instances obtained are not enough to satisfy user
requirements, the query planner will use the model to generate a new assignment
with the remaining sources (i.e. those that were not in yi).

5 Implementation and Validation

The objective is to measure the recall and precision provided by OptiSource.
Section 5.1 presents the evaluation using different data contexts and levels of
knowledge about sources. Section 5.2 compares OptiSource to related works.

5.1 OptiSource Experiments

Our prototype of OptiSource is written in Java. The knowledge base was im-
plemented in OWL [18]. The optimization model was written in GNU Math-
Prog modeling language and is processed by the GNU Linear Programming Kit
(GLPK) [21]. We also validated our optimization model performance in CPLEX
10.2. Queries of VDOs are accepted in SPARQL [22].

We define the knowledge base of a VO in the health sector. Metadata are
generated at different levels of the knowledge base using a developed generator
of metadata. This generator describes the intentional knowledge of sources, the
known roles of each source and possible replication of instances.

Experiment scenarios vary in five dimensions: the number of sources, the level
of knowledge of sources, the number of composite VO units, the relationships
between sources and the query. The experiments are focused on measuring three
metrics: Extensional Precision, Extensional Recall, and Extensional Fall-Out. To
obtain these metrics, we measure the following variables:

S: set of sources available on the VO R: set of relevant sources for Q
-R: set of not relevant sources for Q A: set of sources selected by OptiSource.
Extensional Precision: |A ∩ R|/A Extensional Recall: |A ∩ R|/R
Extensional Fall-Out: |A ∩ −R|/ − R
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Fig. 4. Precision evaluation changing the
data context and the level of knowledge

Fig. 5. Recall evaluation changing the data
context and the level of knowledge

Fig. 6. Fall-Out evaluation changing the
data context and the level of knowledge

Fig. 7. OptiSource vs. iDrips

Experiment results. Figures 4, 5, 6 present respectively the precision, recall
and fall-out, varying the level of knowledge (K) and the number of sources.
Low level means the knowledge base only contains the intentional knowledge of
sources (e.g. can evaluate the diagnosis). The medium level means it also knows
a group of roles of sources, but they are related to higher classes of the knowledge
base. For instance, sources have related roles to cancer and queries ask for kidney
cancer. High level indicates that roles are related to more specific classes (e.g.
roles related to kidney cancer).

The experiments show that even if a high level of knowledge is desired, Opti-
Source precision and recall have a good behavior with a medium level. This is
probably due to the fact that a medium level is enough to discard a large group
of sources and to direct the queries to sources with higher probabilities of having
matching instances. In contrast, the fall-out metric improves (i.e. is lower) when
the level of knowledge increases. However, as it can be noticed in Figure 6 even
with a lower level of knowledge the fall-out can be low due to the existence of
sources that have a considerably higher benefit in comparison with the majority
of sources, as is the case in the group of 301 and 500 sources. Tests also show
that for contexts with fewer sources, the improvement in precision according to
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the level of knowledge is not significant. This validates our assumption that in
small data contexts great efforts in query planning for reducing queried sources
are not necessary. On the other hand, the improvement observed when there is
a large number of sources led us to conclude that OptiSource is especially useful
under these circumstances. Finally, the experiments show that in the worst case
OptiSource selects the same set of sources that traditional strategies of query
rewriting select because it only considers the intentional views.

5.2 Comparison with Related Works

Although OptiSource can not be directly compared with any of the proposals
in the literature because they worked under different assumptions, we evaluated
the implications of using three available strategies (QPIAD [15] and Navigational
Paths [13], iDrips [8]) in VOs contexts.

The strategy of rewriting of QPIAD [15] allows the query processor to return
certain and “possible” certain answers from autonomous databases. The first type
are answers that match all the query predicate; the second type are the answers
that probably match the query, but have one condition that can not be evaluated
because the required value is null. QPIAD generates and uses detailed statistics
on source’s quality to reformulate a query according to the characteristics of each
source that is able to evaluate the predicate. Even though the principle of QPIAD
will be very attractive for use in VOs whose sources have quality problems, the
strategy could not scale up when the number of sources is large. To prove this
we will consider a VO with 20 sources, which are able to evaluate a query Q
in terms of the schema. We supposed that in average each source provides 500
certain answers. For each source 50 query reformulations are required to obtain
the possible answers. This means that 1020 queries are executed including the
original Q to obtain certain answers from each source.

Another related strategy is the proposal to improve the selection of navi-
gational paths between biological sources [13]. It assumes the availability of a
graph describing the objects contained in the sources and their relationships.
The objective is to find the path with best benefit and lower cost given an ini-
tial and a final object class. Applying this proposal to VOs we found that it is
possible to organize sources in a graph. Each node could contain sources with
equivalent intentional fragments of VDO, and the relationships between sources
that contain complementary fragments could be the links between nodes. Using
this graph it will be possible to select the most “profitable” sources for a query;
however, it is not clear how the benefit of each path is obtained and how the
overlapping between each path can be calculated. This lack could be combined
with our strategy using the roles of sources to compute the potential benefit of
a path. Thus, the prediction model of OptiSource can be used to compute the
ratios between paths used in this proposal.

Finally, we compared OptiSource with the iDrips algorithm. iDrips works
under the assumption of source similarity that allows the query processor to
retrieve the most relevant plans efficiently. It proceeds in two phases. The first
phase groups similar sources and creates abstract plans that are able to solve
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all the predicates. Each abstract plan represents a set of concrete plans with an
utility. This utility is an interval that contains the utility of the concrete plans
of the set. The second phase obtains query plans in decreasing order of utility
selecting only the dominant plan in each iteration. A dominant abstract plan has
at least one concrete plan whose utility is not less than the utility of all concrete
plans in other abstract plans.

The comparison with iDrips is focused on measuring the recall in terms of
relevant instances obtained vs. the number of sources queried. We did not mea-
sure precision because iDrips and OptiSource always return correct instances. In
order to make comparable the measurements of recall in OptiSource and iDrips,
we evaluate in each iteration of iDrips the number of relevant instances until
it finds the complete set of relevant instances. We also measure the number of
queried sources in each iteration. In the case of OptiSource, we measure the
relevant instances obtained after the execution of subqueries of the joining sets.

We used the plan coverage as the utility measure for iDrips. Given a query
Q{p(p1, ..., pm)} with m conditions, and a plan P{DS1, ..., DSn} where DSi are
the sources that will be queried on the plan, the formulas used to compute plan
coverage are the following:

Cov(P ) = min(ext(DSi, V DOj)) where DSi ∈ P, (12)

Cov(P ) = min(overlap(DSi, DSk)) where DSi andDSk ∈ P, (13)

Cov(P ) =
ext(DSi, V DOj)p − (ext(DSk, V DOj)p...ext(DSl, V DOj)p)

ext(U,V DOj)p
(14)

where DSi, DSk and DSl ∈ P and DSk...DSl have been previously queried.
The first group of experiments are run in a context where sources are exten-

sionally and intentionally overlapped, and a few number of sources contain a
large number of relevant instances; even though instances are distributed largely
along the VO sources. In other words, there are sources specialized in one or
more of the conditions. Consequently, querying them is enough to obtain almost
all the relevant instances. Using the aforementioned utility measures for iDrips.
Figure 7 illustrates the differences on recall between iDrips and OptiSource. The
y axis shows the % of queried sources from the total number of relevant data
sources. On the other hand, the x axis illustrates the % of instances obtained.

The results demonstrate the effectiveness of OptiSource in this type of con-
texts where it only queried 13% of relevant sources to obtain 100% of relevant
instances. On the contrary, iDrips required to query 25% of relevant sources to
obtain the 100% of relevant instances in the best case (using (14)). Figure 7
shows that the number of sources queried by OptiSource is considerable lower
than those queried using (12) and (13) of the plan coverage. Although this could
be inferred considering the difference on the level of knowledge, it allows us to
conclude that solutions for ranking queries cannot be applied to VOs without
using an utility function able to represent source relationships and source prob-
ability of having query relevant instances. Nonetheless, even with strong utility
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functions, the absence of replication knowledge prevents discarding sources that
do not contribute with new instances. This lack affects iDrips when we use (14).

6 Conclusions and Future Work

Source selection in large scale VO data contexts is a complex decision problem.
It requires finding the minimal sets of sources for each condition and performing
a final intersection operation to avoid empty joins. Current strategies of query
planning are not focused on producing query plans under these circumstances,
generating redundant and unnecessary plans when they are applied to VOs.
Our proposal to solve this problem is a decision system called OptiSource. It
uses extensional characteristics of sources to predict the benefit of using them
during query evaluation. OptiSource produces joining sets using a combinatorial
optimization model that establishes which sources will evaluate each condition
of the query. Although OptiSource was created for VOs, it can be used in any
distributed query processing system during the planning phase. A prototype
of OptiSource has been developed to evaluate its precision. Experiments have
demonstrated that OptiSource is effective to reduce the contact of unnecessary
sources when data contexts involve extensional and intentional overlapping. They
have also showed that OptiSource is an evolving system whose precision grows
according to the degree of knowledge of sources, but does not require a high level
of knowledge to have good levels of precision and recall.

Future work will be focused on performance evaluation of the approach. We
are also interested on applying data mining techniques on logs of query execu-
tions to identify the role of sources. Additionally, we are going to improve the
prediction of the benefit using live statistics of sources that have a higher role.
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Abstract. Current research in domains such as the Life Sciences de-

pends heavily on the integration of information coming from diverse

sources, which are typically highly complex and heterogeneous, and usu-

ally require exploratory access. Web services are increasingly used as the

preferred method for accessing and processing these sources. Due to the

large number of available web services, the sheer complexity of the data

and the frequent lack of documentation, discovering the most appropriate

web service for a given task is a challenge for the user.

In this paper we propose a semi-automatic approach to assist the user

in the discovery of which web services are the most appropriate to achieve

her requirements. We describe the overall framework of our approach and

we provide a detailed description of the techniques used in each phase

of our approach. Finally, the usefulness of our approach is demonstrated

through a Bioinformatics case study.

1 Introduction

In recent years, emergent fields such as the Life Sciences have experimented
an exponential growth in the production of data and, consequently, a surge in
the need for the creation of new techniques and technologies to analyze these
data. This has caused an intense research effort in information integration tech-
niques [9], which have to deal with a number of technical challenges. The first
major challenge is the large number of available data sources (the latest refer-
ence on publicly available data sets in the Life Sciences [5] lists more than 1200
databases). A second problem is that these data sources have been developed
by different institutions and, since there are few standards for data representa-
tion, there is a high level of data heterogeneity which causes serious impedance
mismatch problems. Finally, the data sources are distributed, and typically avail-
able by using Web Services, which provide a limited API for data retrieval and
exploration when compared with a full-fledged query language.

This situation creates challenging issues, given the typical process of research
in Bioinformatics, which involves integrating data obtained by in-house experi-
ments (for instance, DNA sequencing) with reference databases available on the
Internet and queriable using a web page or a web service, and then performing
analysis tasks using specific algorithms which may also be already available as
web services [2]. To help researchers to find out publicly available services, some
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repositories such as BioCatalogue [1] have been developed; however, searches are
hampered by poor documentation and the lack for a standard way of creating
annotations. As a consequence, finding data collections and web services which
are appropriate for a given research task usually becomes a costly trial-and-error
process [11].

Currently, to the best of our knowledge, there is no guide to assist users in
the discovery process. There are approaches that focus on the development of
interfaces to assist in the location of web services; [10] presents a client engine
for the automatic and dynamic development of service interfaces built on top of
BioMOBY standard. Other approaches focus on the the discovery of web services
that are annotated with a specific vocabulary. This is the case of the myGrid
project1, whose aim is to provide a controlled vocabulary to make annotations.
They have implemented BioCatalogue [1], a Life Sciences web service registry
with 1180 registered web services that are meant to be annotated using their Life
Sciences ontology, the myGrid ontology, which should provide in principle a high
precision in search. However, most available annotations are just free text, and
many web services are not annotated at all. Another issue to be taken into ac-
count is that, in many cases, multiple services provide very similar functionality
(a particularly insidious example is the multitude of services providing variants
of alignments of genes and proteins). In this case, the user has to decide which
one is the most appropriate based on diverse quality criteria (availability, cover-
age of the domain of interest, and so on). To address this problem, assessment
techniques must be applied to provide the user with some information about the
quality and the functionality of each service [3].

In the literature, web service discovery has been deeply studied, but mainly for
traditional business-oriented applications [13]. In scientific domains, such as the
Life Sciences, there are very significant differences in skills and expectations with
respect to those in business domains. The user in the Life Sciences is a scientist
that is assumed to be expert in a highly complex and specific domain, and can be
assumed to know exactly what she wants, but may not be an expert in informa-
tion processing technology – even though she is capable (and usually willing) to
deal directly with the integration of the necessary web services. This explains the
emergence of specific applications aimed at allowing scientists to design in-silico
experiments by combining discovered web services into workflows [4]. Moreover,
as [13] remarked, web services in traditional business-oriented applications are
usually annotated with a signature (inputs, outputs and exceptions), web service
states (preconditions and postconditions) and non-functional values (attributes
used in the evaluation of the service), information that facilitates the discovery
of web services and their composition. In contrast to these domains, as we have
mentioned above, Life Science web services are poorly documented and therefore,
it is not possible to apply traditional discovery and composition techniques.

In this paper, we contribute a semi-automatic approach to assist the user in
web service discovery, looking for web services that are appropriate to fulfill the
information requirements of researchers in the Life Sciences domain. Our aim

1 http://www.mygrid.org.uk

http://www.mygrid.org.uk


64 M. Pérez et al.

is to make the whole process driven by well-captured requirements, in order to
avoid the high costs associated with non-disciplined, non-reusable, ad-hoc devel-
opment of integration applications. It is important to note that the approach is
semi-automatic by design; as we have said before, the user is a scientific expert
on the domain which knows the analysis objectives and the steps to attain them.

The remainder of this paper is structured as follows. First, Section 2 presents
an overview of the proposed approach. Next, Section 3 focuses on the require-
ments elicitation and specification phase. Section 4 describes the normalization
phase and in Section 5 the web service discovery phase is explained. Then, in
Section 6 we present a Bioinformatics case study that showcases the usefulness
of our approach, and finally in Section 7, some conclusions and future research
lines are summarized.

2 Approach Overview
The overall approach we propose to assist the discovery of web-services based
on the users requirements is shown in Figure 1. It consists of three main phases:
1. Requirements elicitation and specification. Scientists have information

requirements that must be fulfilled by information that is stored in any of
the multiple available data sources or even information that is the result of
processing data stored in those data sources.

The main purpose of this phase is to gather the user information re-
quirements and to specify them in a formal way. The user determines her
information needs and moreover, gives extra information about her expe-
rience and some knowledge describing the steps necessary to do it herself
manually. The description of these steps is also included in the formal spec-
ification. Section 3 describes the techniques used in this phase.

2. Normalization. In the Requirements model, task descriptions are expressed
in natural language, and therefore they must be normalized in order to be
automatically processed. The normalization consists of a semantic annota-
tion process in which the information of the requirements model, concretely
the description of the tasks, is processed and annotated with semantic data.
The normalization is carried out in two phases: (i) domain specific annota-
tions, and (ii) application specific annotations. Section 4 provides a more
detailed description of the normalization process.

3. Web services discovery. The aim of this step is to discover suitable web
services that provide the functionality specified by the user-defined tasks in
order to fulfill the user requirements. The discovery is based on the anno-
tations made in the previous phase, so it depends largely on the quality of
these annotations. In this paper, we focus only on the discovery of web ser-
vices, but in the future we aim to discover other types of resources such as
“naked” databases. Frequently, there is more than one web service providing
the same functionality, and therefore the result of this phase is a set of web
services per each user-defined task. Section 5 explains the discovery process.
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Fig. 1. The phases of the proposed guide

At the end of the process, the user receives as output some sets of web services,
one per each specified task, that provide the functionality required by the tasks.
The user will then have to select the ones that are the most appropriate for
her requirements. In order to be able to decide which are the best ones, which
is a complex process outside the scope of this paper, the user may need some
assessment techniques. In case the results are not those expected by the user,
she can refine the process at the three phases of the guide: (i) Requirements
phase: the requirements model is refined by modifying the goals or the tasks,
(ii) Normalization phase: another category can be selected to annotate a specific
task, or (iii) Web Services discovery phase: a different web service can be selected
in the list of discovered services. This process is iterative and it can be executed
as many times as required to refine the selection.

3 Requirements Specification

The requirements elicitation and specification process plays a crucial role in the
discovery of web services, since the selection is basically driven by the user’s
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information requirements. These requirements must be gathered and formally
specified to be the input of the discovery process. The requirements elicita-
tion task is made by the system designer by having personal interviews with
the end user. The user determines which information she needs and, moreover,
gives extra information about her experience and knowledge describing the steps
necessary to do it herself manually. All the provided information is completely
independent of the characteristics of web services or other resources. The elicited
requirements are analyzed by the system designer in order to detect inconsisten-
cies or missing information. This analysis is made by querying domain ontologies
and by interacting with the user.

Once the requirements have been elicited and analyzed, the system designer
creates a formal specification of them, called the Requirements model, in order
to be used in an automatic way in the subsequent phases. This specification
is made using the i* formalism [16,17], which is both a goal-oriented and an
agent-oriented language. We use this framework because it provides the func-
tionality required to obtain a formal specification of the user’s requirements
without taking into account the characteristics of the system. The goals and the
tasks of the Strategic Rationale (SR) model of the i* framework capture the
user’s information requirements and the steps, specified by the user, to achieve
those requirements. Here, we generalize the techniques used in [12] to specify the
user’s requirements in the context of finding appropriate similarity measures for
complex information.

4 Normalization

At this stage, the system designer has already gathered the user’s information
needs and she has specified them in the Requirements model. In this model the
information about the tasks is described in natural language, which is hard to
process in an automatic way. Therefore, the purpose of this phase is to annotate
the tasks descriptions with domain and application ontologies to allow the rec-
onciliation of the requirements of the user with the sources of information (web
services) in a process that can be considered as a normalization of knowledge. In
our case, it is only necessary to normalize the task descriptions, since they will
be used to guide the discovery of web services. Among the different techniques
to normalize natural language sentences we have chosen to use semantic anno-
tations. Our aim is to select the most relevant terms in the task descriptions
and use these terms to search for web services. We have divided the semantic
annotation process in two steps:

1. Domain specific annotations. This step consists of identifying the terms
of the task descriptions that are related to the domain in which we are work-
ing. For each task, the most relevant terms are retrieved by querying domain
ontologies. In our domain, the Life Sciences domain, there are several domain
ontologies that can be used to annotate semantically. One example of domain
ontology is the UMLS, a metathesaurus that comprises the main biomedical
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linguistic resources widely used in health care applications. Another exam-
ple of Life Sciences ontology is myGrid ontology [15], which describes the
Life Sciences research domain and data related to web services. myGrid on-
tology has been implemented in myGrid project and is aimed to provide a
formal vocabulary to describe the web services. In some cases, the user can
also decide that she prefers not to use any domain ontology, that is, to use
the whole task descriptions expressed in free-text in the next step for tasks
classification.

2. Application specific annotations. Once the terms related to the domain
have been detected, the next step is to use them to query the application
ontology in order to determine the type of each task. As we are searching
for Life Sciences web services, we apply the taxonomy of categories used by
BioCatalogue in order to classify the user-defined tasks. BioCatalogue is a
registry of curated Life Science Web Services, whose aim is to provide an
easy way for scientists to discover web services of interest. BioCatalogue has
a shallow taxonomy of web services categories, and most of the registered
web services have at least one category. So, we use this taxonomy to classify
the user-defined tasks with the aim of using these categories in the discovery
of the web services that are suitable to fulfill the user’s requirements. Figure
2 illustrates a fragment of the categories taxonomy of BioCatalogue.

The final result of this process is a ranked list of annotations for each task.
By default, each task is annotated with the category that has the highest
similarity score. These annotations have to be validated by the user.

5 Web Service Discovery

Web services in BioCatalogue have four main different types of annotations:
descriptions, operations, tags and categories. As a first approximation, we have
decided to use categories as the criterion for the discovery process, since they
are formally described by a taxonomy and, moreover, they express very well
the functionality of the services. For the future, we are planning to generalize
this approach by applying techniques for the combination of several types of
annotations as criterion for the discovery process, which would result in a more
flexible approach [6].

In the Normalization phase, the tasks defined by the user have been annotated
with the categories used in BioCatalogue in order to determine the functionality
described by the tasks. The discovery process consists in querying BioCatalogue,
using its recent launched API, as many times as tasks in the requirements model
are. Each query searches for a specific category and retrieves a set of web services
that are annotated with this category, that is, web services that are supposed to
execute the functionality required by the task. In most cases, the search retrieves
more than one service, since there are many services annotated with the same
category. In this set of services, maybe some of them do not provide exactly the
required functionality and this may be because some categories are too general
to describe a specific functionality. So, it is the responsibility of the user to know
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Fig. 2. Fragment of the BioCatalogue Taxonomy

which services are suitable for the tasks and which are not. We are currently
working on assessment techniques that could assist the user in the web services
selection.

6 Case Study

To prove the usefulness of our approach, a prototype web services discovery
guide has been implemented by using the Eclipse EMF modelling framework2.
The necessary transformations between models have been defined in the ATL[7]
language. In this section, we use this prototype to develop a bioinformatics case
study extracted from [8]. In this way, we can illustrate how to use our approach
to guide the user in a real web service discovery task.

The case study concerns biological research that analyzes the presence of
specific genes involved in the genesis of Parkinson’s Disease, called LRRK2 genes,
in different organisms, in order to know more about the biochemical and cellular
functions of these genes. The author studies the presence of the LRRK2 genes in
2 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/
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the organism N. vectensis, since previous studies have shown that this organism
is a key organism to trace the origin of these genes. The author describes the
process step-by-step.We have selected this case study because it describes with
detail the techniques used in every step, and it could be useful to validate our
guide. However, our intention is not to model a concrete case study, but to offer
a guide for more general cases.

Next, there is a short description of each one of the steps of our approach in
order to discover the web services that provide the functionality required by the
scientist.

1. Requirements elicitation and specification. In this first phase the pur-
pose is to gather the user’s requirements through a personal interview. The
system designer obtains as much information as possible, gathering the user’s
information requirements and the steps the user would make if she had to
make the search herself manually. In this case study the user information re-
quirement is to obtain a comparison of the LRRK2 genes in different organ-
isms. The steps the user would make herself manually are: (i) to retrieve the
protein sequences of the different domains of the gene in different databases;
(ii) to predict the gene structure automatically combining the sequences re-
trieved in (i); (iii) to align protein sequences to build phylogenetic trees;
(iv) to build the phylogenetic trees; and (v) to analyze the structure of the
proteins.

Figure 3 shows the requirements model obtained as a result of this step
and includes all the information elicited by the system designer.

2. Normalization. Once the system designer has elaborated the requirements
model, the next step is to normalize the description of the user-defined tasks.
Next we describe each one of the two steps of the normalization.

2.1. Domain specific annotations. This step consists in selecting the terms
relevant to the domain. In this case study, we present both the results of
annotating with the myGrid ontology (OWL ontology) and the results
of not using any domain ontology.
The experiments we have made until now suggest that extracting the
most relevant terms is only required when the task descriptions are too
verbose, and not when the descriptions are short and simple sentences.
Table 1 shows a ranked list of concepts of myGrid ontology similar to
the task description terms, in this case Retrieve protein sequences. The
matching has been made with ISub [14], a string metric for the compar-
ison of names used on the process of ontology alignment and on other
matching problems. Each matching has a score that indicates the simi-
larity between the description and the concepts of the ontology.

In this example the task description is clear and simple, but the match-
ing with myGrid ontology does not obtain good results. For instance, the
top ranked concept has a very low score, 0.114, and it corresponds to
the ontology concept protein sequence id, which is not very similar to
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Fig. 3. Requirements model of the case study

Retrieve protein sequences. The scores are low because the sentences of
this case do not contain meaningless words and, due to them, the user
has decided to classify the tasks without using any domain ontology, that
is, using all the words in the task description.

Table 1. Matching between the Retrieve Protein Sequences and myGrid ontology

Concepts Score

protein sequence id 0.11428571428571432

protein sequence record 0.08706390861376972

protein sequence database 0.07459572248304647

2.2. Application specific annotations. In this step the tasks are classified
based on their functionality. This classification is based on the BioCat-
alogue taxonomy of categories. The matching is not exact, so a ranked
list of categories per each task is provided to the system designer. Figure
2 shows a fragment of the web services categories taxonomy of BioCat-
alogue used to annotate the task descriptions. Table 2 shows the ranked
list of the task Retrieve protein sequences ; this matching has been made
also using the ISub metric and, all the terms of the task description have
participated in the matching. The category Sequence retrieval, which is



Semi-automatic Discovery of Web Services Driven by User Requirements 71

the one with the highest similarity score, is automatically selected. In
case the user does not agree with the selected category, she could select
any other category in the ranked list.

Figure 4 shows a screenshot of a fragment of the model produced by
our prototype that contains all the tasks annotated with BioCatalogue
categories. This fragment shows the details of the annotated task Re-
trieve protein sequences. The task Retrieve protein sequences has been
annotated with the taxonomy concept Sequence retrieval extracted from
the source BioCatalogue with a score of 0.53652 and the terms used to
query the application taxonomy have been Retrieve protein sequences.

3. Web Service discovery. The web service discovery process is carried out
by searching in the BioCatalogue registry services that are annotated with
the same category as the user-defined tasks. This search retrieves a set of
web services per each user-defined task, and there is no way to know in
advance which one is the most appropriate for the user-defined task. So, at
this step, the information of each retrieved web service is stored in a model,
called Service model, which contains a component for each retrieved web
service. Each component stores information about the categories, tags, type
and WSDL location of the web service.This component is extensible to other
required attributes of Web services.

Table 2. Ranked list of categories for the task Retrieve Protein Sequences

Categories Score

Sequence Retrieval 0.536231884057971

Sequence Similarity 0.4285714285714286

Sequence Analysis 0.39468690702087295

Sequence Alignment 0.3758921490880254

Fig. 4. Normalization of the task Retrieve protein sequences
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Fig. 5. WSDBFetchServerLegacyServer service component. Candidate for the task Re-

trieve protein sequence.

Fig. 6. WSMaxsproutService service component. Candidate for the task Predict gene

structure.
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Figure 5 shows a fragment of the Service model produced by our proto-
type. In this fragment it can be seen that each user-defined task has a set
of discovered web services. In the figure it is shown the information of the
web service WSDBFetchServerLegacyServer that is a SOAP service whose
location is http://www.ebi.ac.uk/ws/services/urn:Dbfetch?wsdl and it is an-
notated with the tags: biology, data retrieval, EBI, interpro, uniprot, and its
categories in BioCatalogue are Data Retrieval and Sequence Retrieval.

Figure 6 shows the information of the web service WSMaxsproutService
whose category, Tertiary Structure, is not the category of the user-defined
task, but it is a specialization of it.

This model is provided to the user who has to decide which web service
is the most appropriate for her information requirements.

7 Conclusions and Future Work

The approach presented in this paper is focused on domains where applications
have to deal with distributed and highly heterogeneous data sources, in which
there are few standards for data representation and usually they require an
exploratory access. In these domains many web services have been implemented,
but due to their distribution and the frequent lack of documentation, they are
not easily discovered by potential users. Life Sciences is an example of this type
of domain, since many biological data have been released in recent years and,
in consequence, many techniques and applications have been implemented to
manage that data.

In this paper we have presented a semi-automatic approach to guide the user
in the discovery of the appropriate techniques required to fulfill their information
needs. We have mainly focused on web services, due to their wide acceptance
and popularity within the Life Sciences domain. So, the aim of our approach is
to assist the user in the discovery of the web services that provide the necessary
functionality to fulfill her information requirements.

Considering the type of end-user the approach is addressed to, an expert on
the domain with knowledge and experience to recognise which web services are
the most appropriate, one of the main benefits of the approach is that it is
a semi-automatic process. In this way, the user is able to change parameters,
annotations or automatic selections in each one of the phases in the way she
thinks is better, based on her own knowledge and experience or previous results.
Thus, we aim to design a process of exploratory search, advising the user in each
step, and taking advantage of her previous knowledge.

Currently, we are working on web service assessment techniques. The purpose
of this assessment is to assist the user in the web service selection providing
her with a set of measures to select the most appropriate among all the dis-
covered services. We are working not only on general QoWS measures, but also
on measures that analyze the quality of web services with respect to the user’s
requirements, for example, measures that analyze the type and the semantics
of the results retrieved by a web service, the relevance of the web service with
respect to the other user-defined tasks, etc.
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Another important issue is the data sources discovery. Nowadays, we are only
focusing on web services but in a near future, we also aim to search for data
sources that may contain the required information. Their discovery will be based
on techniques similar to the ones used for web services discovery and we expect
that the main differences will appear in the types of measures necessary to assess
the data sources.

Finally, we aim to develop an end-user tool to assist the user during all the
process, since her requirements specification to the validation of the results, in
order to avoid the presence of a system designer expert.
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Bancaixa (grant P11B2008-43). Maŕıa Pérez has been supported by Universitat
Jaume I predoctoral grant PREDOC/2007/41.

References

1. Belhajjame, K., Goble, C., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R.,

Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: A Cu-

rated Web Service Registry for the Life Science Community. In: Microsoft eScience

Conference (2008)

2. Burgun, A., Bodenreider, O.: Accessing and integrating data and knowledge for

biomedical research. Med. Inform. Yearb. 2008, 91–101 (2008)

3. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service

for workflows and web service processes. Web Sem. 1(3), 281–308 (2004)

4. Stevens, R., Goble, C., Pocock, M., Li, P., Hull, D., Wolstencroft, K., Oinn, T.:

Taverna: a tool for building and running workflows of services. Nucleic Acids Re-

search 34(Web Server issue), 729–732 (2006)

5. Cochrane, G.R., Galperin, M.Y.: The 2010 Nucleic Acids Research Database Issue

and online Database Collection: a community of data resources. Nucleic Acids

Research 38, 1–4 (2010)

6. Prez, M., Sanz, I., Berlanga, R.: Measure selection in multi-similarity xml ap-

plications. In: 3rd International Workshop on Flexible Database and Information

System Technology, FlexDBIST-08 (2008)

7. Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.) MoD-

ELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
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Abstract. In this paper we present the BPAL platform that includes a logic-
based language for business process (BP) modeling and a reasoning mechanism 
providing support for several tasks. Firstly, the definition of a BP meta-model 
(MM) consisting of a set of rules that guide the BP designers in their work. 
Secondly, given a BP, the BPAL platform allows for the automatic verification 
of the compliance (well-formedness) of a given BP w.r.t. the defined MM. 
Finally, the execution semantics of a BP is given in term of its instances 
(referred to as traces) to provide services for i) checking if the actual execution 
of a BP has been carried out in accordance with the corresponding definition, ii) 
simulating executions by trace generation. The proposed platform is open since 
it can easily be enhanced by adding other logic-based modeling, reasoning, and 
querying functionalities. 

Keywords: business process, modeling language, Horn logic, BPAL. 

1  Introduction 

Business Process (BP) management is constantly gaining popularity in various 
industrial sectors, especially in medium to large enterprises, and in the public 
administration. BP modeling is a complex human activity, requiring a special 
competence and, typically, the use of a BP design tool. Several tools  are today 
available on the market, open source or free of charge. Many of these tools are able to 
provide, besides a graphical editor, additional services, such as some forms of 
verification, simulation of the designed processes, execution or (semi) automatic 
generation of executable code (e.g., in the form of BPEL  code). The availability of 
the mentioned tools has further pushed the diffusion of several languages (e.g., 
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BPMN [7], EPC [15]) used both in the academic and in the industrial realities. But, 
despite the growing academic interest and the penetration in the business domain, 
heterogeneous and ad-hoc solutions that often lack a formal semantics have been so 
far proposed to deal with the different perspectives that are of interest for an effective 
BP management: workflow modeling, business rules representation, integration of 
organizational and data models, data flow, query and retrieval of BP fragments, 
enactment, reengineering, log analysis, process mining.   

This paper mainly intends to lay the formal foundations of a platform for BP 
modeling and verification. The proposed platform is centered around BPAL (Business 
Process Abstract Language) [8], a logic-based language for modeling the dynamic 
behavior of a business process from a workflow perspective. BPAL relies on a 
formalism, Horn clause logic, that is particularly well-suited for its use within a wider 
knowledge representation framework (for instance in conjunction with rule based 
ontology languages [19,20]) with an uniform semantics. The use of a logic-based 
uniform approach makes the BPAL platform open to further extensions and to the 
easy integration of more advanced functionalities, such as reasoning services for 
verifying consistency properties and methods for querying BP repositories, which can 
be supported by tools already developed in the area of logic programming. 

BPAL is a rule-based formalism that provides an integrated support to the 
following three levels: (i) the BP meta-model, where we define the meta-model, 
establishing the rules for building well-formed BPs; (ii) the schema level, where we 
define the BP schemas, in accordance with the given meta-model; (iii) the ground 
level, where we represent the BP instances, i.e., the traces that are produced by the 
execution of a BP. The reasoning support provided by the BPAL platform allows the 
BP designer to: (i) verify business process schema well-formedness with respect to 
the given meta-model; (ii) verify if a given process trace, i.e., the actual execution of a 
BP, is compliant with a well-formed BP schema; (iii) simulate a BP execution by 
generating all possible traces (which are finitely many, whenever the BP schema is 
well-formed). 

The BPAL platform is characterized by both a solid formal foundation and a high 
level of practical usability. The formal foundation is rooted in the logic-based 
approach of the BPAL language. The practical usability is guaranteed by the fact that 
BPAL platform has not been conceived as an alternative to existing BP tools but, 
conversely, it intends to be associated to the existing BP modeling tools enhancing 
their functionalities.  

The rest of this paper is organized as follows. In Section 2 some relevant related 
works are presented. The BPAL language for business process modeling and 
verification is described in Section 3. Section 4 presents the BPAL meta-model and in 
Section 5 the execution semantics (in term of execution traces) of a BPAL BP schema 
is described. In Section 6 an overview of the BPAL platform, consisting of the well-
formedness verification service, the trace analysis, and traces generation service, is 
presented. Finally, conclusions in Section 7 end the paper.  
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2 Related Works 

In the literature, much attention is given to BP modeling, as its application to the 

management of complex processes and systems [10] is an important issue in business 

organizations. It appears increasingly evident that a good support to BP management 

requires reliable BP modeling methods and tools. Such reliability can be achieved 

only if the adopted method is based on formal foundations. In this perspective, our 

work is related to the formal BP languages for the specification, the verification, and 

analysis of business processes. The BPAL framework is positioned among the logic-

based languages but, with respect to existing proposals, it is characterized by 

enhanced adaptability, since we propose a progressive approach where a business 

expert can start with the (commercial) tool and notation of his/her choice and then 

enrich its functionalities with BPAL. 

Formal semantics of process modeling languages (e.g., the BPMN case is 
discussed in [1]) is usually defined in terms of a mapping to Petri nets [2]. Petri nets 
represent a powerful formal paradigm to support automatic analysis and verification 
of BPs within a procedural approach. A different approach is represented by the logic-
based formalisms. A logical approach appears more suited to manipulate, query, 
retrieve, compose BP diagrams. Furthermore, by using Petri Nets, it is difficult to 
provide a “meta-level” that can be used to guide and constrain business process 
modeling, verifying properties at the intensional level. 

As already mentioned, a different approach to formal BP specification is 
represented by a logic-based declarative approach [3,4]. Here a process is modeled by 
a set of constraints (business rules) that must be satisfied during execution: these 
proposals provide a partial representation of a BP that overlooks the procedural view, 
i.e., the control flow among activities. [3] proposes ConDec, a declarative flow 
language to define process models that can be represented as conjunction of Linear 
Temporal Logic formulas. This approach allows the BP designer to verify properties 
by using model checking techniques. [4] proposes a verification method based on 
Abductive Logic Programming (ALP) and, in particular, the SCIFF framework [5], 
that is an ALP rule-based language and a family of proof procedures for specification 
and verification of event-based systems. [3,4], are based on rigorous mathematical 
foundations but they propose a paradigm shift from traditional process modeling 
approaches that is difficult to be understood and, consequently, to be accepted by 
business people. Such approaches are mostly intended to complement and extend 
fully procedural languages rather than replace them, as in the case of Declare , which 
is implemented within the YAWL  workflow management system. 

PSL (Process Specification Language) [6], defines a logic-based neutral 
representation for manufacturing processes. A PSL ontology is organized into PSL-
CORE and a partially ordered set of extensions. The PSL-CORE axiomatizes a set of 
intuitive semantic primitives (e.g., activities, activity occurrences, time points, and 
objects) enabling the description of the fundamental concepts of processes, while a set 
of extensions introduce new terminology and its logical formalization. Although PSL 
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is defined in first order logic, which in principle makes behavioral specifications in 
PSL amenable to automated reasoning, we are not aware of PSL implementations for 
the modeling, verification or enactment of BPs, since it is intended mostly as a 
language to support the exchange of process information among systems. 

Concurrent Transaction Logic (CTR) [17] is a formalism for declarative 
specification, analysis, and execution of transactional processes, that has been also 
applied to modeling and reasoning about workflows and services [18]. CTR formulas 
extend Horn clauses by introducing three new connectives: serial conjunction, which 
denotes sequential executions, concurrent conjunction, which denotes concurrent 
execution, and isolation, which denotes transactional executions. The model-theoretic 
semantics of CTR formulas is defined over paths, i.e., sequences of states. These 
formulas can be compiled for the execution  in a Prolog environment. Unlike a CTR 
formula, a BPAL process specification (i.e., the Horn clauses specifying the meta-
model, the process schema, and the trace semantics) can be directly viewed as an 
executable logic program and, hence: (i) a BPAL specification can be queried by any 
Prolog system without need of a special purpose compiler, (ii) BPAL traces are 
explicitly represented and can be directly analyzed and manipulated, and (iii) other 
knowledge representation applications (e.g., ontology management systems) can 
easily be integrated by providing a suitable translation to logic programming.   

5

3 The BPAL Language 

BPAL is a logic-based language that has been conceived to provide a declarative 
modeling method capable of fully capturing the procedural knowledge in a business 
process. BPAL constructs are common to the most used and widely accepted BP 
modeling languages (e.g., BPMN, UML activity diagrams, EPC) and, in particular, its 
core is based on BPMN 2.0 specification [7]. Furthermore, the design principles of 
the language follow the MOF paradigm6 with the four levels briefly reported below:  

M3: Meta-metalevel. The top level is represented by the logical formalism that is 
applied to describe the lower levels. In particular we adopted Horn logic, due to 
its widespread popularity and the mature technological support provided by the 
numerous Prolog systems which are available. 

M2: Metalevel. Here it is defined the meta-model, establishing the rules for 
building well-formed BPs. 

M1: Schema level. This is the modeling level where it is defined the BP schema, in 
accordance with the given meta-model, that represents the business logic of the 
process.  

M0: Trace level. This is the ground level, used to model the executions of a 
business process, in accordance with the corresponding BP schema.  

                                                           
 http://flora.sourceforge.net/ 5

OMG, (2006), Meta Object Facility (MOF) Core Specification V2.0,  

http://www.omg.org/docs/formal/06-01-01.pdf. 

6
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 From a formal point of view, the BPAL language consists of two syntactic 

categories: (i) a set Entities of constants denoting entities to be used in the 

specification of a business process schema (e.g., business activities, events, and 

gateways) and (ii) a set Pred of predicates denoting relationships among BPAL 

entities. Finally, a BPAL business process schema (BPS) is specified by a set of 

ground facts (i.e., atomic formulas) of the form           , where p Pred and 

         Entities.  

     The entities occurring in a BPS are represented by the following set of predicates: 

flow_el(el): el is a flow element, that is, any atomic component appearing in the 
control flow. A flow element is either an activity or an event or a gateway;  

activity(act): act is a business activity, the key element of the business process; 
event(ev): ev is an event that occurs during the process execution. An event is of one 

of the following three types: (i) a start event, which starts the business process, (ii) 
an intermediate event, and (iii) an end event, which ends the business process. 
These three types of events are specified by the three predicates start_ev(start), 
end_ev(end), and int_ev(int); 

gateway(gat): gat is a gateway. A gateway is either a branch or a merge point, whose 
types are specified by the predicates branch_pt(gat) and mrg_pt(gat), respectively. 
A branch (or merge) point can be either a parallel, or an inclusive, or an exclusive 
branch (or merge) point. Each type of branch or merge point is specified by a 
corresponding unary predicate. 

Furthermore BPAL provides a set of relational predicates to model primarily the 

sequencing of activities. Then, in case of branching flows, BPAL provides parallel 

(i.e., AND), exclusive (i.e., XOR), and inclusive (i.e., OR) branching/merging of the 

control flow. Here we adopted the standard semantics for branching and merging 

points: 

seq(el1,el2): the flow element el1 is immediately followed by el2.  
par_branch(gat,el1,el2) : gat is a parallel branch point from which the business 

process branches to two sub-processes started by el1 and el2 executed in parallel; 

7

par_mrg(el1,el2,gat): gat is a parallel merge point where the two sub-processes 
ended by el1 and el2 are synchronized; 

inc_branch (gat,el1,el2) : gat is an inclusive branch point from which the business 
process branches to two sub-processes started by el1 and el2. At least one of the 
sub-processes started by el1 and el2 is executed; 

8

inc_mrg(el1,el2,gat): gat is an inclusive merge point. At least one of the two sub-
processes ended by el1 and el2 must be completed in order to proceed; 

                                                           
 We represent only binary branches, while they are n-ary in the general case. This limitation is 
made for presentation purposes and can be easily removed.  

7

 Inclusive and exclusive gateways, in their general formulation, are associated with a condition. 
For instance, exc_dec tests a condition to select the path where the process flow will 
continue. 

8
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exc_branch(gat,el1,el2): gat is an exclusive branch point from which the business 
process branches to two sub-processes started by el1 and el2 executed in mutual 
exclusion; 

exc_mrg(el1,el2,gat): gat is an exclusive merge point. Exactly one of the two sub-
processes ended by el1 and el2 must be completed in order to proceed; 

To better present the BPAL approach, we briefly introduce as a running example a 
fragment of an eProcurement. An ACME supplier company receives a purchase order 
from a buyer and sends back an invoice. The buyer receives the invoice and makes 
the payment to the bank. In the meanwhile, the supplier prepares a gift for the buyer if 
she/he is classified as golden client, otherwise he prepares a brochure. After receiving 
the payment clearance from the bank, the supplier sends the goods to the buyer. 

The Figure 1 reports a BPMN diagram that illustrates the fragment of the 
eProcurement process from the supplier perspective. The same process is reported in 
Table 1 encoded as a BPAL BPS. 

Fig. 1. BPMN specification of a fragment of an eProcurement example 

Table 1. BPAL BPS of the eProcurement example 

start_ev(Start) 
activity(ReceivingPO) 
activity(Invoicing) 
activity(WaitingPaymentClearence) 
activity(PreparingGift) 
activity(PreparingBrochure) 
activity(SendingGoods) 
par_branch_pt(Gat1) 
par_mrg_pt(Gat2) 
exc_branch_pt(Gat3) 
exc_mrg_pt(Gat4) 

end_ev(End) 
seq(Start,ReceivingPO) 
seq(ReceivingPO,Gat1) 
seq(Invoicing,WaitingPaymentClearence) 
seq(Gat2,SendingGoods) 
seq(SendingGoods,End) 
par_branch(Gat1,Invoicing,Gat3) 
par_mrg(WaitingPaymentClearence,Gat4,Gat2) 
exc_branch(Gat3,PreparingBrochure,PreparingGift) 
exc_mrg(PreparingBrochure,PreparingGift,Gat4) 
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4 BPAL Meta- odel  m

The first service provided by BPAL enables the BP designer to check the 
compliance of a BPS with the BP meta-model, i.e., with a set of rules that constitute a 
guidance for the construction of the BP.  

In this paper the main assumption imposed by the BPAL meta-model is the 
structuredness. According to [11], a strictly structured BP can be defined as follows: 
it consists of m sequential blocks, T1 …Tm. Each block Ti is either elementary, i.e., it is 
an activity, or complex. A complex block i) starts with a branch node (a parallel, 
inclusive or exclusive gateway) that is associated with exactly one merge node of the 
same kind that ends the block, ii) each path in the workflow graph originating in a 
branch node leads to its corresponding merge node and consists of n sequential blocks 
(simple or complex). It is worth noting that removing the structured assumption leads 
to several weaknesses [12]. Among them, error patterns [13] such as deadlocks, 
livelocks and dead activities cannot manifest in a structured BPS.  

The presence of a meta-model allows us to automatically prove the first 
fundamental property: the fact that a BPAL process schema has been built in the 
respect of the meta-model. We will refer to such a property as well-formedness.  

In the rest of this section we describe the core of the meta-model of BPAL by 
means of a set of rules (i.e., a first order logic theory) MM, which specifies when a 
BP is well-formed, i.e., it is syntactically correct. MM consists of three sets of meta-
rules : (1) a set I of inclusion axioms among the BPAL entities, (2) a set K of schema 
constraints (in the form of first order formulas), and (3) a set F of process 
composition rules (in the form of Horn clauses). 

9

The set I of inclusion axioms defines a taxonomy among the BPAL entities, as 
informally described in Section 3. They are reported in Table 2.  

Table 2. BPAL inclusion axioms 

event(x)   flow_el(x) 
activity(x)   flow_el(x) 
gateway(x)   flow_el(x) 
start_ev(x)  event(x)  
int_ev(x)  event(x) 
end_ev(x)  event(x) 
branch_pt(x)  gateway(x) 

mrg_pt(x)  gateway(x) 
par_branch_pt(x)  branch_pt(x) 
exc_branch_pt(x)  branch_pt(x) 
inc_branch_pt(x)  branch_pt(x) 
par_mrg_pt(x)  mrg_pt(x) 
exc_mrg_pt(x)  mrg_pt(x) 
inc_mrg_pt(x)  mrg_pt(x) 

 

The set K of schema constrains (Table 3) consists of three subsets: (i) the domain 
constraints, (ii) the type constraints, and (iii) the uniqueness constraints.  

  

                                                           
 All formulas in MM are universally quantified in front and, for sake of simplicity, we will 
omit to write those quantifiers explicitly. 

9
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Table 3. BPAL schema constraints and supporting examples 

Schema constraint Example 

Domain constraints are formulas expressing 

the relationships among BPAL unary 

predicates. 

A flow element cannot be an activity and an 

event at the same time. 

activity(x)   event(x) 

Type constraints are rules specifying the 

types of the arguments of relational 

predicates. 

A parallel branch is defined among a parallel 

branch point and two flow elements. 

 

par_branch(x,l,r)  par_branch_pt(x)  

flow_el(l)  flow_el(r) 

Uniqueness Constraints are rules expressing 

that the precedence relations between flow 

elements are specified in an unambiguous 

way: 

branching uniqueness constraints asserting 

that every (parallel, inclusive, exclusive) 

branching point has exactly one pair of 

successors. 

merging uniqueness constraints asserting that 

every merge point has exactly one pair of 

predecessors. 

sequence uniqueness constraints asserting 

that, by the seq predicate, we can specify at 

most one successor and at most one 

predecessor of any flow element. 

Example of sequence uniqueness constraint: 

 

seq(x,y)  seq(x,z)  y=z 

seq(x,z)  seq(y,z)  x=y 

 

The set F of process composition rules provides the guidelines for building a well-

formed BPS. Then, in formal terms, it is possible to verify if a process respects such 

rules by means of a predicate wf_proc(s,e) which holds if the business process started 

by the event s and ended by the event e is well-formed. In Table 4, some rules are 

reported that inductively define what is a well-formed process (wf_proc) by means of 

the notion of sub-process and its well-formedness (wf_sub_proc). 

We are now ready to give a definition of the well-formedness of a BP schema B. 
We say that B is well-formed if: 

(i) every schema constraint C in K can be inferred from BFI, and 
(ii) for every start event S and end event E, wf_process(S,E) can be inferred from 

BFI. 
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Table 4. BPAL process composition rules and supporting diagrammatic description 

Process composition rule Intuitive Diagram 

F1. A business process schema is well-
formed if (i) it is started by a start event s, (ii) 
it is ended by an end event e, and (iii) the 
sub-process from s to e is a well-formed sub-
process constructed according to rules F2-F6: 
(start_ev(s)  wf_sub_proc(s,e) end_ev(e)) 

 wf_proc(s,e) 

A well-formed process: 

 

 

F2. Any activity/event or sequence of two 
activities/events is a well-formed sub-
process: 
activity(x)   wf_sub_proc(x,x) 
int_ev(x)   wf_sub_proc(x,x) 
seq(x,y)   wf_sub_proc(x,y) 

So, the simplest well-formed process is 
graphically represented as: 

 

F3. A sub-process is well-formed if it can be 
decomposed into a concatenation of two well-
formed sub-processes: 

wf_sub_proc(x,y)  wf_sub_proc(y,z)   
wf_sub_proc(x,z) 

A well-formed sub-process: 

 

F4. A sub-process started by a branch point  x 
and ended by a merge point y is well-formed 
if (i) x and y are of the same type, and (ii) 
both branches contain two well-formed sub-
processes10:  

par_branch(x,l,r)  wf_sub_proc(l,m)  
wf_sub_proc(r,s)  par_mrg(m,s,y)  

wf_sub_proc(x,y) 

A well-formed sub-process including merge 
and branch points: 

 

 

5 BPAL Execution Traces 

An execution of a business process is a sequence of instances of activities called 
steps; the latter may also represent instances of events. Steps are denoted by constants 
taken from a set Step disjoint from Entities. Thus, a possible execution of a business 
process is a sequence [  ,   ,…,   ], where   ,   ,…,     Step, called a trace. The 
instance relation between steps and activities (or events) is specified by a binary 

                                                           
10 The rules F5 and F6 defining the predicate wf_sub_process(x,y) in the cases where x is an 

inclusive or an exclusive decision gateway are similar and are omitted. 
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predicate inst(step,activity). For example, inst(RPO1, ReceivingPO) states that the 
step RPO1 is an activity instance of ReceivingPO.  

Table 2. BPAL Trace rules 

T1. A sequence [s1,…,e1] of steps is a correct trace if: (i) s1 is an instance of a start event, (ii) 
e1 is an instance of an end event, and (iii) [s1,…,e1] is a correct sub-trace from s1 to e1 
constructed according to the sets of rules T2-T6: 

start_ev(s)  inst(s1,s)  sub_trace(s1,t,e1)  end_ev(e)  inst(e1,e)  trace(t) 
 

T2. Any instance of an activity/event or a sequence of instances of activities/events is a correct 
sub-trace.  

inst(x1,x)  activity(x)  sub_trace(x1,[x1],x1) 
inst(x1,x)  int_ev(x)  sub_trace(x1,[x1],x1) 
inst(x1,x)  inst(y1,y)  seq(x,y)  act_or_ev_seq([x1,y1],t)  sub_trace(x1,t,y1) 
where the predicate act_or_ev_seq([x1,y1],t) holds iff t is the sequence obtained from [x1,y1] 
by deleting the steps which are not instances of activities or events. 
 
T3. A trace is correct if it can be decomposed into a concatenation of two correct sub-traces: 

sub_trace(x1,t1,y1)  sub_trace(y1,t2,z1)  concatenation(t1,t2,t)  sub_trace(x1,t,z1) 
where the concatenation of [x1,…,xm] and [y1,y2,..,yn] is [x1,..,xm,y2,…,yn] if xm =y1 and 
[x1,..,xm,y1,y2,…,yn] otherwise. 
 
T4. In the case where x1 is an instance of a parallel branch point, the correctness of a sub-trace 
t from x1 to z1 is defined by the following rule11: 

inst(x1,x)  inst(l1,l)  inst(r1,r)  par_branch(x,l,r) inst(m1,m)  sub_trace(l1,t1,m1) 
inst(s1,s)   sub_trace(r1,t2,s1)  inst(y1,y),par_mrg(m,s,y),interleaving(t1,t2,t) 

  sub_trace(x1,t,y1) 
where the predicate interleaving(t1,t2,t) holds iff t is a sequence such that: (i) the elements of t 
are the elements of t2 together with the elements of t2 and (ii) for i=(1,2) x precedes y in ti iff 
x precedes y in t.  
 

 
A trace is correct w.r.t. a well-formed business process schema B if it is 

conformant to B according to the intended semantics of the BPAL relational 
predicates (as informally described in Section 3). Below we present a formal 
definition of the notion of a correct trace. Let us first give some examples by referring 
to the example in Figure 1. Below we list two correct traces of the business process 
schema corresponding to the above BPMN specification: 

[s,r,i,pG,w,sG,e] 
[s,r,i,w,pB,sG,e]  

                                                           
1  For sake of concision we omit the sets T5, T6 for the inclusive and exclusive branch points. 1
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where inst(s,Start), inst(r,ReceivingPO), inst(i,Invoicing), inst(w,WaitingPayment 
Clearence), inst(pG,PreparingGift), inst(pB,PreparingBrochure), inst(sG,Sending 
Goods), inst(e,End). 

 Note that the sub-traces [I,pG,w] of the first trace and [i,w,pB] of the second trace 
are the interleaving of the sub-trace [i,w] with the two branches going out from the 
exclusive branch point. 

We now introduce a predicate trace(t), which holds if t is a correct trace, with 
respect to a BP, of the form [  ,   ,…,   ], where    is an instance of a start event and 
   is an instance of an end event. The predicate trace(t) is defined by a set T of rules 
(in the form of Horn clauses), called trace rules. These rules have a double nature, 
since they can be used to check correctness but also for generating correct traces. 
Each trace rule corresponds to a process composition rule and, for lack of space, in 
Table 5 we list only the trace rules corresponding to the composition rules presented 
in Section 4. The trace axioms are defined by induction on the length of the trace t. 

We say that a trace t is correct w.r.t. a BPAL BP schema B if trace(t) can be 
inferred from BT. 

6 The BPAL Platform 

In this section we briefly present the logical architecture of the BPAL platform with 
the key implemented reasoning services: (1) verification of the well-formedness of a 
BPS, (2) trace analysis, and (3) trace generation.  

In the BPAL platform the verification of well-formedness of a BPS is performed as 
depicted in Figure 2. The BPMN graphical specification of a given BP-1 business 
process is exported as XPDL1  (XML Process Definition Language) and translated 
into a set of BPAL ground facts by means of the service XPDL2BPAL, thereby 
producing the BPS B. Then B is passed to the reasoning engine together with the 
meta-model MM, i.e., the set F of composition rules, the set K of constraints, and the 
set I of inclusion axioms. Thus, the union of B, F, I, and K makes up a knowledge 
base from which we want to infer that B is well-formed. This inference task is 
performed by the BPAL reasoning engine which is implemented by using the XSB 
logic programming and deductive database system [16]. XSB extends the 
conventional Prolog systems with an operational semantics based on tabling, i.e., a 
mechanism for storing intermediate results and avoiding to prove sub-goals more than 
once. XSB has several advantages over conventional Prolog systems based on 
SLDNF-resolution (such as, SWI-Prolog and SICStus Prolog): (i) in many cases XSB 
is more efficient than conventional systems, (ii) it guarantees the termination of 
queries to DATALOG programs (i.e., Prolog programs without function symbols), 
and (iii) it often avoids to return several times the same answer to a given query. 

2

BFI is a set of Horn clauses and, therefore, it is translated to a Prolog program 
in a straightforward way. The schema constraints in K are translated to Prolog queries. 
For instance, the domain constraint activity(x)   event(x) is translated to the query: 

                                                           
1  http://www.wfmc.org/xpdl.html 2
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?- activity(X), event(X). 

 
For the eProcurement example of Figure. 1, XSB answers to this query, 

meaning that there is no X which is an activity and an event at the same time. Hence, 
this domain constraint is inferred from BFI.  

Moreover, for any given start event start and end event end, we can check whether 
or not  wf_proc (start,end) is inferred from BFI, by running the query: 

 
  ?- wf_proc(start,end). 
 

For the eProcurement example of Figure. 1, XSB answers  to this query, 
meaning that wf_proc (start,end) is inferred from BFI and, thus, the well-
foundedness of B is verified. 

 

Fig. 2. Architecture of the well-formedness service 

The trace analysis and trace generation services are performed by translating the 
theory TB to a Prolog program in the reasoning engine. As above, this translation is 
straightforward, as TB is a set of Horn clauses. The trace analysis service consists in 
checking whether or not a given trace t is correct w.r.t. the well-formed BPS B. This 
task is performed by the reasoning engine by running a query of the type trace(t), 
where t is the trace to be checked (Figure 3.a). For instance, in the eProcurement 
example, XSB behaves as follows: 

 
?- trace([s,r,i,pG,w,sG,e]). 

yes 

?- trace([s,r,i,pG,pB,w,sG,e]). 

no 

 

Indeed, the first sequence is a correct trace and the second is not. 
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The trace generation service consists in generating all correct traces (Figure. 3.b). 
This task is performed by running a query of the type trace(T), where T is a free 
variable (Figure 3.a). In the eProcurement example, XSB behaves as follows:  

 
?- trace(T). 

T = [s,r,pG,i,w,sG,e]; 

T = [s,r,i,w,pG,sG,e]; 

T = [s,r,i,w,pB,sG,e]; 

T = [s,r,i,pG,w,sG,e]; 

T = [s,r,i,pB,w,sG,e]; 

T = [s,r,pB,i,w,sG,e]; 

no 

 

meaning that the above sequences are all and only the correct execution traces of the 
given BPS. 

 

 

Fig. 3. a) Architecture of the trace analysis and b) traces generation service 

7 Conclusions and uture orks F W

In this paper we presented a platform to complement existing business modeling tools 
by providing advanced reasoning services: the well-formedness verification service, 
the trace analysis and the trace generation service. The platform is centered around 
the logic-based BPAL language. A first evaluation of the services in the eProcurement 
domain shows the viability of the approach.  

We intend to expand the BPAL platform in several directions. A first direction will 
be the tight integration of business ontologies (i.e., structural knowledge) represented 
by OPAL, and the behavioral knowledge, represented by BPAL. OPAL is an ontology 
representation framework supporting business experts in building a structural 

88 A. De Nicola et al. 



ontology, i.e., where concepts are defined in terms of their information structure and 
static relationships. In building an OPAL ontology, knowledge engineers typically 
start from a set of upper level concepts, and proceed according to a paradigm that 
highlights the active entities (actors), passive entities (objects), and transformations 
(processes). The latter are represented only in their structural components, without 
modeling the behavioral issues, delegated to BPAL. As shown in [14], a significant 
core of an OPAL ontology can be formalized by a fragment of OWL, relying within 
the OWL-RL profile [19,20] an OWL subset designed for practical implementations 
using rule-based technologies such as logic programming. 

Another direction concerns the modeling and the verification of Business Rules 
(BRs). This is motivated by the fact that in real world applications the operation of an 
enterprise is regulated by a set of BPs that are often complemented by specific 
business rules. We intend to enhance the BPAL platform so as to support the 
integrated modeling of BPs and BRs. New reasoning services will also be needed  for 
analyzing those integrated models to check if, for instance, there are possible 
executions of processes that violate any given business rule. 

Since BPs play a growing role in business realities, we foresee a scenario where 
huge repositories of process models developed by different designers have to be 
managed. In such a scenario there will be the need for advanced reasoning systems 
aimed at query processing, for the retrieval of process fragments to be used in the 
design of new BP models, and at verifying that some desired properties hold. We 
intend to enhance the BPAL platform in such a way that we can issue several types of 
queries, both at intensional and extensional level. In particular, we are interested in 
the following three types of queries and combinations thereof. (1) Queries over BP 
schemas. Querying the BPS allows the search for certain patterns adopted in the 
design phase and the verification of constrains that descend from structural 
requirements to be done. (2) Queries over BP traces. Here the behavior at execution 
time is of interest, and the properties to be verified regard the temporal sequencing of 
activities in the set of correct traces. (3) Queries over the Business Ontology. Here the 
focus is on the domain entities (processes, actors, objects) and their relationships. 

Finally, on an engineering ground, we intend to investigate the problem of 
Business Process Reengineering, and explore the possibility of manipulating a set of 
business processes to produce a new, optimized (e.g., in terms of process length or 
aggregating sub-processes that are shared by different BPs) set of reengineered BPs. 
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Abstract. How to select interesting feature sets from data streams is a

new and important research topic in which there are three major chal-

lenges. First of all, instead of discovering features individually and in-

dependently, we are interested in comprehensively selecting a subset of

features whose joint importance or weight is the highest. Secondly, we

are concerned with the problem of selecting feature sets over dynamic,

large and online data streams which are only partly available when we

are selecting the features. This problem distinguishes itself over the data

streams from the ones on the static data which is completely available

before the feature selection. Finally, data streams may evolve over time,

requiring an online feature selection technique which can capture and

adapt to such changes. We introduce the problem of online feature se-

lection over data streams and we provide a heuristic solution. We also

demonstrate the effectiveness and efficiency of our method through ex-

periments on real-world mobile web usage data.

1 Introduction

Feature selection is the task of selecting interesting or important features, and
removing irrelevant or redundant ones. There are a lot of existing works on
feature selection [7]. However, feature selection is usually task and application
relevant, especially for the unlabeled data. And depending on different interests
and applications, we may have different interestingness measures to assess the
significance of the features or feature sets [8]. For instance, for utility based
measures, given a utility function, we select features or feature sets with high
utility scores; the measure could also be coverage-based in which we select the
most frequent features or feature sets with the highest frequency. Unfortunately,
existing feature selection algorithms were designed towards static data, and are
not adaptable to data streams.

A Data stream is an infinite sequence of data which flows dynamically and
rapidly. Moreover, data streams are usually of large volumes, making it difficult
to extract expected patterns or summaries. Online feature set selection over data
streams is a new and important research issue but it has received little attention.
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Nevertheless, it is significant and meaningful because it can help us select the
most important features from huge data streams. To tackle the problem, we have
to overcome several difficulties. Firstly, we must provide an incremental feature
selection algorithm which fits to data streams; secondly, data streams could
contain so many features with changing weights over time that we should take
the evolving weighted values of features (and feature sets) into account when we
are selecting the feature sets. Furthermore, in data streams, new features may
appear and some features could become obsolete. As a result, the attributes of
related feature sets, which we are analyzing, will be influenced. In other words,
not only the weights of an feature set, but also its attributes may vary with time.
In short, it is very challenging to develop an intelligent algorithm which can self-
adaptively discover the important feature sets as the data flows and evolves. In
this paper, we are interested in information theory based measure and we will
select the most informative feature sets from data streams. This method could
possibly be used in various applications such as classification and information
retrieval. Example 1 addresses the problem of feature selection for document
retrieval.

Example 1. In this application, we would like to retrieve documents from table
1, in which the columns of O1, O10 are 10 documents, and the attributes of
A, B, C, D, E are some features (key words) in the documents, where the value
“1” means the the feature is contained in the document, and “0” not. It is easy to
find that (D, E) is a frequent featureset, because features D and E occur together
in nearly every document. However, it provides little help for document retrieval.
By contrast, (A, B, C) is an infrequent featureset, as its member features rarely
or never appear together in the data. And it is troublesome to summarize the
value patterns of featureset (A, B, C). Providing it with the values < 1, 0, 0 > we
could find the corresponding document O3; similarly, given the values < 0, 1, 1 >
we will have the according document O6. Although (A, B, C) is infrequent, it
contains lots of useful information which is hard to summarize. We call it an
informative feature set.

Table 1. Features in the documents

Features Documents

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

A 1 1 1 1 1 0 0 0 0 0

B 0 1 0 0 1 1 0 1 0 1

C 1 0 0 1 0 1 1 0 1 0

D 1 0 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1

From the above example, we can see that it is useful and helpful to discover
informative feature sets. Information theory provides strong supports to mea-
sure the informativeness of the feature sets. Unfortunately, it requires us to
compute the probabilities of all the features and possible feature subsets. Thus,
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it is extremely time consuming and exhaustive, and the case is much worse for
streaming data, because the probabilities of the features and feature sets are
always changing. To solve this problem, we introduce the heuristic StreamHI.
It is based on a candidate generation principle and a pruning principle. The
former will keep and monitor as many candidates as possible, while the latter will
remove the redundant and hopeless ones. Our contributions are i) a definition of
the problem of online informative feature set selection from the data streams ii)
StreamHI, a heuristic method for mining the informative feature sets in real time.
We also run StreamHI against naive methods through a series of experiments
which demonstrate the superiority and effectiveness of our proposal.

We will first give a formal definition of informative feature sets in section 2.
Section 3 is an overview of the related works. Afterwards, data management
techniques, and two heuristic algorithms for informative feature set mining are
presented in section 4. They will be evaluated in section 5.

2 Definitions

This section aims at proposing formal definitions of transaction data streams
and the problem of mining informative featuresets.

2.1 Preliminary Definitions

Definition 1. A transaction is a tuple < oid, time, feature > where oid is
a user with unique identifier, time is a timestamp and feature is the feature
associated to oid at that timestamp. A transaction data stream is a stream
of transactions. Be noted that, several tuples would share the same identifier
although they arrive in different time. Thus, one identifier’s complete profile
(item set) may be spread across several related tuples. Namely, to summarize
each user’s itemset, we will have to search all the tuples for those sharing the
same identifiers.

Definition 2. A featureset is a set composed of one or more features. The size
of a featureset is the number of unique features in the featureset.

Example 2. Let T1 < o1, d1, f1 > be a transaction, which associates feature f1

to object o1 at time d1. Let DS1 = {T1 < o1, d1, f1 >, T2 < o2, d1, f1 >, T3 <
o1, d2, f2 >, T4 < o3, d2, f4 >, T5 < o1, d3, f6 >, T6 < o2, d4, f2 >} be a subset
of DS, a data stream. DS1 is a transaction data stream and (f1, f2, f6) is the
featureset of size 3 corresponding to o1. If we let both the size of featuresets and
the support be 2, then (f1, f2) is a frequent featureset, as both objects o1 and
o2 selected f1 and f2.

Definition 3. The entropy of a feature, in the data stream, is a measure of
the expected amount of information needed to specify the state of uncertainty or
disorder for this feature. Let X be a feature, P (X = n) is the probability that
X has value n in the data (we consider categorical data, where the value will be
’1’ if the object has the feature and ’0’ otherwise). The entropy of feature X is
given by H(x) = −(P (X = 0)ln(P (X = 0)) + P (X = 1)ln(P (X = 1)))
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Definition 4. The joint entropy of a couple/pair of features (X, Y ).
Let X and Y be two features and let x and y be the two possible values respec-
tively. Let P (x, y) the probability that (X, Y ) has values (x, y) in the stream. The
joint entropy for (X, Y ) is given by H(X, Y ) = −∑

x,y∈{0,1}2 P (x, y)ln(P (x, y))
Where {0, 1}2 is the set of possible couples of 0 and 1.

MAX(H(X), H(Y )) ≤ H(X, Y ) ≤ H(X) + H(Y ) (1)

Formula 1 illustrates the monotonicity of joint entropy: the more features in-
volved, the larger the joint entropy. The difference is that with some features
we can have much more information gain, while with other features we can have
just a little or no increase.

Definition 5. H(I), the joint entropy of a featureset I in the stream (or
entropy of I), measures the amount of information given by this featureset.
Let {0, 1}|I| be the set of all possible combinations of values for featureset I. The
entropy of I is calculated thanks to P (I = C) for each combination C in {0, 1}|I|
where (I = C) is the instantiation of I with the values of C. H(I) is given by
formula 2.

H(I) = −
∑

C∈{0,1}|I|
P (I = C)ln(P (I = C)) (2)

By definition, 0 ≤ H(X) ≤ 1 with X a feature and H(I) ≥ 0 with I a featureset.
The higher H(I), the more information we gain from it.

2.2 Problem Definition

Definition 6. An Informative Featureset in the data stream is a featureset
which is informative, according to its joint entropy. The larger the joint entropy
of a featureset, the more informative it is.

Definition 7. A Highly Informative Featureset (HI) is the k-featureset that
has the largest entropy value, as expressed by formula 3.

H(HI) = MAX{H(ISk), ISk ∈ SSk} (3)

Where IS = {I1, I2, ..., In} is the set of all n possible features, ISk = {Im1 , Im2 ,
..., Imk

} is a k-featureset (with k < n), SSk = {ISk} is the set of all possible
featuresets of size k.

To discover the highly informative itemset over data streams, the first chal-
lenging problem is how to discover and summarize the patterns on the fly over the
data streams although the records of each identifier arrive separately. The sec-
ond challenge is, in a transaction data stream, how to online extract the Highly
Informative featureset (HI ) and dynamically update them when the data stream
evolves. To the best of our knowledge, this is the first proposal for this interesting
problem.
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3 Related Works

Featureset mining is a very important topic that has received much attention
for static data [1,3,6,5] and for data streams [9,2].

3.1 Featureset Mining and Entropy in Static Data

The authors of [5] propose two algorithms designed to extract the sets of both
low entropy and high entropy featuresets from static databases. They provide a
strong theoretical background and an analysis of joint entropy properties that
allow fast computation of featuresets i) in a level-wise approach for low entropy
sets (based on monotonicity of entropy) and ii) by means of Bayes networks for
high entropy sets. However, as the authors point out, the size of the output can
be very large. Even with a tree structure, designed to lower this size, the number
of extracted trees varies from 532 to 44156, in a dataset of 2405 observations
and 5021 features. It is thus very important to filter out that result. [6] proposes
a heuristic algorithm designed to extract only one featureset of size k with the
highest possible entropy. Such featuresets are called miki. The ForwardSelection
algorithm performs multiple scans over the dataset. Within each scan, miki ’s size
increments by 1, by adding a new feature f with which the new miki achieves
the highest entropy. The authors show the advantage of ForwardSelection over
the brute force algorithms that evaluate the entropies of all the possible subsets
of size k.

3.2 Mining Frequent Featuresets in Data Streams

Let T be a batch of transactions and σ be a user threshold. A frequent featureset
(or frequent itemset in the literature) is a set of features that occurs in at least
σ × |T | transactions in T . In [2], the authors propose FPStream, an algorithm
based on a FP-Tree data structure where FPGrowth [3] is applied to each batch
of transactions in a data stream. After the frequent patterns in each batch have
been extracted, they are stored into the FP-Tree and their history is kept with
a decaying factor (recent events are stored with a finer granularity). In [9] the
authors devised FTP-DS, a regression-based algorithm to mine frequent tem-
poral patterns over data streams. Primarily, the data is managed in a sliding
window model and the variations of support of each pattern are transformed
into numerical time series. Thereafter, in order to meet the space constraint, the
time series for each pattern is compacted into a representative synopsis and a
temporal regression is adopted to approximately model the relation between the
support of the pattern and time.

4 Mining Highly Informative Featuresets from Data
Streams

In this section, we will present how to extract the HI s from the transaction data
streams. We will first give NaiveHI, a heuristic algorithm relying on
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ForwardSelection [6] in a batch environment. After the analysis of the drawbacks
of NaiveHI, an improved heuristic algorithm, StreamHI, will be introduced.

4.1 Naive Mining Algorithm NaiveHI

NaiveHI (Figure 1) is based on the following principle: the transaction data
stream is divided into batches and for each batch, we perform ForwardSelection
[6]. The idea of ForwardSelection is, with the initial size starting from 1, to
iteratively scan the data and enlarge the HI until its size reaches k; At each step
i, ForwardSelection selects the featureset having the largest entropy among all
the candidates. At step i+1, the HI of step i will be used as the base featureset
in order to generate the new candidates. The generating principle is to add one
more feature to the current HI. For instance, let {A, B, C, D, E, F, G} be the
feature set and let the current HI be (A, B), then the set of candidates will be
{(A, B, C), (A, B, D), (A, B, E), (A, B, F ), (A, B, G)}.

Heuristic algorithm: NaiveHI

Input: DS, a transaction data stream, k, the desired length of HI and M , the batch

size

Output: For each batch of size M , the corresponding HI having length k.

For each batch in DS Do
HI ← ForwardSelection(batch,k).

Done
End NaiveHI

Fig. 1. Heuristic algorithm NaiveHI

We can see that for NaiveHI, we have to determine a batch size, worse still,
as it is transaction data streams, the patterns of objects could be truncated by
batches and the connections between batches are cut. Accordingly, the informa-
tive featureset selected by NaiveHI may not be the real one. In the following
section, we will first introduce a data structure which can help us manage the
transaction data streams.

4.2 Transaction Data Stream Management

Our data structure allows observing the stream by accumulating transactions
in the largest possible time period. ASW (Accumulating Sliding Window), our
structure, is based on a FIFO (First In First Out) principle to manage the ob-
jects. The data structure of ASW is described in Figure 2. ASW has two main
components: an Objects List(Window) and a hash table with user ID as the key.
Object list maintains the objects in a FIFO way, and each object carries the
data for the corresponding user. In order to quickly check whether the identifier
already existed in the current list/window, we keep a hash table, whose key is
the identifier, and the value is the according object in the list, thus the hash
table will take on the responsibility of searching for the according object in the
list through its user ID in the hash table. Each object oi in ASW is represented
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Fig. 2. Data Structure of ASW
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Fig. 3. A transaction data stream and its representation in ASW

by a node containing a hash table that indexes the features associated to oi.
Notice that, for the objects list, once an object is updated, it will be moved
from its current position to the end of the list. When a new transaction Ti =<
objecto, dated, featuref > arrives, there are two options. If objecto already exists
in ASW, then it is updated with featuref and it is moved to the beginning (head)
of ASW. Otherwise, objecto is created at the beginning of ASW and its hash
table only indexes featuref . When the size of ASW is exceeded, the last object
(tail of ASW ) is removed. Example 3 explains how ASW manages the data in
transaction data streams.

Example 3. Let us consider the data in the upper table of figure 3. Other tables
in the figure correspond to the sequential status of the objects’ patterns in ASW
after the orderly arrivals of transactions from T1 to T6. For instance, the last
table represents the status of objects in ASW after having read transaction T6.

Clearly, the patterns (item sets) for the objects/users (o1,o2 and o3) are changing
as new transaction comes, but ASW can help capture and add the new features
to the patterns of the objects. Next we will describe how StreamHI discovers
highly informative featuresets in ASW.

4.3 Streaming Algorithm StreamHI

The goal of StreamHI (Figure 4) is to maintain the HI on the fly in ASW, with
the precondition that we manage one or several data structures which record:

1. the entropy of each feature.
2. the joint entropy of each pair of features.
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Heuristic algorithm: StreamHI

Input: DS, a transaction data stream, k, the desired length of HI
M , the size of ASW and F , the set of features

Output: HI , the Highly Informative Featureset having length k.

1. Initialize HI of length k using certain algorithm such as ForwardSelection
2. TopF ← k+1 features that have the highest entropies and that do not occur in HI
3. CI ← GenerateCand(HI,TopF )

4. While not end of the stream Do
(a) Read the next transaction < cid, time, f >
(b) Update or create cid in ASW with f
(c) Maintain the entropy statistics of f and (f, g)∀g ∈ F
(d) If ASW is full Then

i. remove the last object of ASW
ii. update the entropy of each f ∈ F and each (f, g) ∈ F × F

(e) TopF ← top k+1 features having the highest entropies (and not in HI)

(f) If TopF has changed Then
i. HI ← featureset having the highest entropy in CI
ii. CI ← GenerateCand(HI,TopF )

iii. CandPruning(CI)

iv. Scan ASW and evaluate the entropy of each featureset in CI
5. Done

End StreamHI

Fig. 4. Heuristic algorithm StreamHI

Initially, we will use certain algorithm such as ForwardSelection to have a first
HI. Based on this initial HI, we will generate the candidates. As described in
subsection 4.2, each time we read a new transaction < cid, time, f >, we have
to check whether cid already exists in ASW. After that we will maintain the
entropy of each feature and each pair of features.

The most time consuming part of StreamHI is the evaluation of candidates
entropy. Therefore, it is desirable to reduce their number and the frequency of
their evaluations over ASW. To that end, we rely on two principles:

1. New Candidates are evaluated only if there is a change in the top-k features
(sorted by entropy). That step corresponds to line (e) in StreamHI.

2. Candidates that cannot be the new HI, because of the bounds on their
entropy, are filtered out thanks to our pruning strategy.

Unlike NaiveHI, which relies on the batch environment, StreamHI allows, at any
time, incremental updates of the candidate featuresets in order to extract the
one having the highest entropy (i.e. HI).

The method for generating HI candidates is important, for both the efficiency
and the effectiveness. Actually, if there are not enough candidates, we may miss
the real HI. However, if we have too many candidates, we have to spend too much
time and computation for maintaining their entropy statistics and evaluating
their values. Our candidate generation algorithm, GenerateCand is described
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Algorithm: GenerateCand

Input: HI , a featureset and TopF , a set of features.

Output: CI , a set of candidate featuresets.

CI ← {HI}
Foreach f in TopF Do

For i=1 to |HI | Do
Cand ← HI
Cand[i] = f
CI ← CI ∪ {Cand}

End for
End foreach
End GenerateCand

Fig. 5. Algorithm GenerateCand

by Figure 5. The generating principle is based on TopF , the top-k (or top-mk,
m ≤ k) features which are not included in the current HI. Iteratively, each
feature of HI will be replaced by a feature of TopF . By using the top features
(sorted by decreasing entropy) we aim at proposing candidates that will have
the highest possible entropy.

The time complexity for generating the candidates is O(m ∗ k ∗ |HI|), |HI| is
the number of features in HI. The hypothesis under GenerateCand is that, HI
will be gradually replaced, and the individual features with higher entropies are
more likely to have greater contributions to the overall entropy of the featureset
it resides in. However, this is not always the case. As an example, let features
A and B have the same (large) entropy, but let them always appear together,
such that the entropy for the pair of (A, B) is almost the same as that of A,
therefore, although B has high entropy, it does not contribute to the entropy of
(A, B). To include as many important features as possible, and to lower the risk
of missing the real HI, when we are generating the HI candidates, we also take
into account the features in the top-k (or top-mk) featuresets of size 2 (a pair of
features). Even though this remedy still can not guarantee the accurate result, it
can greatly reduce the risk. That is why we keep extra data structures to monitor
and compute the entropies of pair features. We would like to mention that it is
heuristic to generate the candidates, but once the candidates are determined, we
will monitor and compute their exact entropy values.

Another hypothesis is, assuming that the information shared among features
remains the same if the top-k features do not change, and the rank of entropies
for the featuresets will not change consequently, the HI will be the same one.
To strengthen it, we can add a second condition that the top-k (or top-mk)
featureset of size 2 do not change. In the end, this hypothesis can help us decrease
the computation costs for discovering HI.

4.4 Pruning Strategy

One possible problem with candidate generation is that, we would have too many
candidates to evaluate, which is costly. Therefore, we need a strategy to detect
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and prune irrelevant candidates. We introduce a pruning technique, based on
the mutual information between two features.

Definition 8. The Mutual Information (MI) measures the mutual depen-
dence of two features, X and Y . It is given by formula 4.

MI(X, Y ) =
∑
y∈Y

∑
x∈X

P (x, y)ln
P (x, y)

P (x)P (y)
(4)

where P (x, y) is the joint probability distribution function of X and Y , and P (x)
and P (y) are the probability distribution functions of X and Y respectively. The
mutual information between two discrete variables can be equivalently given by
MI(XY ) = H(X)+H(Y )−H(X, Y ). In order to estimate the lower and upper
bounds on the joint entropy of a feature set, we use the following inequality
based on the proofs of [10,4]:

n∑
i=1

H(Xi)−H(X1, X2, . . . , Xn) ≥ 1
n− 1

∑
i<j

MI(Xi, Xj) (5)

Based on formula 5, we can infer the upper (formula 6) and lower (formula 7)
bounds for H(X1, X2, . . . , Xn).

H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi)− 1
n− 1

n∑
i=1

∑
j>i

MI(Xi, Xj) (6)

H(X1, X2, . . . , Xn) ≥ MAX(H(Xi, Xj)) (7)

Once we are provided with the lower and upper bounds on the entropies of
the candidate featuresets, we can use the following lemma to reduce the set of
candidates.

Lemma 1. If the upper bound of a candidate C is lower than the maximum
lower bound of all the candidates, then C cannot be the new HI.

Lemma 1 is based on the comparison of candidates with each others. Let Upper(I)
and Lower(I) be the upper and lower bounds of a featureset I. Let W ∈ CI be
the candidate having the highest lower bound. Let C ∈ CI be a candidate such
that Upper(C) < Lower(W ). Then, W will always have a higher entropy than C.
Therefore, C can be removed from the set of candidates. According to Lemma 1,
we can reduce the number of candidates as described in algorithm CandPruning
in Figure 6.

4.5 Discussion

Candidate Generation. Because of the combination curse when the feature
number is large, ForwardSelection is introduced to select the highly informa-
tive featuresets and it has been validated through experiments [6]. However, it
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Algorithm: CandPruning

Input: CI , a set of featuresets.

Output: CI , where the irrelevant candidates have been removed.

MaxLow ← the maximum lower bound of a featureset in CI .

Foreach C in CI Do
If UpperBound(C) < MaxLow Then

CI ← CI\{C}
End CandPruning

Fig. 6. Algorithm CandPruning

could not adapt to the streaming data. StreamHI generates and evaluates sev-
eral HI candidates, and maintains the according statistics for the computation
of entropy, in order to avoid the multiple scans which ForwardSelection suffered
from. In order to be efficient, StreamHI adopts another heuristic strategy: if
the set of features having the highest entropies do not change, we believe that
the previous HI does not change; otherwise, we will generate new candidates.
Moreover, our pruning strategy allows for weak candidates detection and avoids
unnecessary evaluations.

Obtaining the Entropy of a Featureset. For both NaiveHI and StreamHI,
we need an optimal scan of ASW in order to evaluate the entropy of each can-
didate. Since 0 log 0 = 0, it is not compulsory to compute the probability of
all the possible combinations (i.e. C ∈ {0, 1}|I|) for a featureset I, as proposed
by formula 2. Actually, we just have to count the probabilities of existing com-
binations for featureset I in ASW. At the end of the scan, we can compute
H(I) = −∑

C∈{0,1}|I| P (I = C)ln(P (I = C)) by accumulating the probabili-
ties of existing combinations, thus avoiding the enumeration of all the possible
combinations.

5 Experiments

In this section we discuss the experimental evaluations for the algorithms, with
efficiency and effectiveness as the evaluation criteria. All the programs were
implemented in C++ and ran on a PC with Fedora7 operating system, an Intel
2.35 GHz CPU and a 3 GB main memory.

5.1 Data

We have a 24 GB real usage data from Orange (European mobile service provider).
The data is a log of 3 months portal visits by the clients through their mobile de-
vices, from May 2008 to July 2008. As the raw data contains 3 integer and 4 string
features, by removing 4 uninteresting features and replacing datetime string fea-
tures with integer feature, we finally have a 1.2 GB data, with each line a trans-
action record < cid, time, page >, where cid is the unique client number, time is
the transaction time and page is the page requested by the client. All these three
attributes are in integer formats, and the feature values are in range of [1, 23]. The
1.2 GB data is the final dataset we will use for experimental evaluations.
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(a) nf = 23, M = 10, 000 (b) k = 6, nf = 10 to 23

Fig. 7. Execution times for NaiveHI and StreamHI depending on the size of the dis-

covered featureset (a) and on the number of features in the dataset (d)

5.2 Evaluation Results

As there exists no algorithm we could refer to, we will compare the two heuristic
algorithms. We will use the running time as the measure of efficiency, and effec-
tiveness is measured by precision based on NaiveHI. Meanwhile, parameters will
be taken into account when we are evaluating the methods. We have two user
input parameters: k is the size of the HI and M stands for the size of the batch
(in NaiveHI ) or the size of ASW (in StreamHI ). We will also consider nf , the
number of features in the data stream, and observe its impact on the response
time.

Efficiency. The diagrams of Figure 7 give the difference of efficiency between
NaiveHI and StreamHI from two points of view. On the one hand, Figure 7
(a) gives the time response of both algorithms with a varying size of k, the
size of the featureset to be discovered. We can observe that a larger value of k
implies higher response times and, under the same value of k, StreamHI is one
order of magnitude more efficient than NaiveHI. The results are very similar with
M = 1000 and M = 100, 000. The main reason is NaiveHI is an iterative method
and it will scan the batch many times to discover HI, whereas our algorithm
usually scan the data once, also, the dynamic maintaining of the entropies for the
candidates, and the pruning of irrelevant candidates can save lots of computation
time. On the other hand, Figure 7 (b) shows the compared response times of
NaiveHI and StreamHI with k = 6 when nf , the number of features in the
dataset, varies from 10 to 23. The size of the search space depends on the number
of features in the data.

Effectiveness. The tables of figure 8 describe the effectiveness difference be-
tween NaiveHI and StreamHI, when M varies. For each batch, we measure the
actual entropy of the featuresets discovered by both algorithms. The column
“Same” gives the number of featuresets that are the same for NaiveHI and
StreamHI. The column “Worse” gives the number of batches where the fea-
tureset discovered by StreamHI has lower entropy than the one of NaiveHI. The
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nf=23, M=1000 nf=23, M=10,000 nf=23, M=100,000

k Same Worse Better

3 11865 19 80

4 11837 42 85

5 11827 30 107

6 11709 24 231

7 11477 38 449

8 11300 63 601

9 11321 52 591

10 11455 32 477

15 11029 18 917

k Same Worse Better

3 1167 9 20

4 1044 89 63

5 1083 87 26

6 1154 14 28

7 1180 3 13

8 1180 3 13

9 1186 1 9

10 1175 0 21

15 1178 1 17

k Same Worse Better

3 103 6 10

4 90 5 24

5 94 19 6

6 114 5 0

7 119 0 0

8 119 0 0

9 119 0 0

10 113 0 6

15 118 0 1

Fig. 8. Comparison of effectiveness

column “Better” gives the number of featuresets discovered by StreamHI that
have higher entropy. Under the same parameters of nf , k and M , we find that
StreamHI shares more than 95% results with NaiveHI. Moreover, compared
with NaiveHI, we can find that there are more better results than worse ones
in StreamHI. Therefore, we can achieve approximately the same or even better
results than NaiveHI, but with much less time.

6 Conclusion

We studied the new problem of mining highly informative featuresets from trans-
action data streams where the result may evolve over the stream. This prob-
lem is important because it allows building classifiers or retrieving information
from data streams. We proposed a heuristic algorithm, StreamHI, which showed
through experiments on real data sets i) effective as experimental results are
approximately the same as the existing algorithm on static data, and ii) efficient
and suitable for data streams.
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1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of

items in large databases. In: SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, pp. 207–216 (1993)

2. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining Frequent Patterns in Data

Streams at Multiple Time Granularities. In: Kargupta, H., Joshi, A., Sivakumar,

K., Yesha, Y. (eds.) Next Generation Data Mining. AAAI/MIT (2003)

3. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.

In: SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data, pp. 1–12 (2000)

4. Han, T.S.: Nonnegative entropy measures of multivariate symmetric correlations.

Information and Control 36(2), 133–156 (1978)



104 C. Zhang and F. Masseglia

5. Heikinheimo, H., Hinkkanen, E., Mannila, H., Mielikäinen, T., Seppänen, J.K.:
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Abstract. Recently, some approaches of finding probabilistic skylines on 
uncertain data have been proposed. In these approaches, a data object is 
composed of instances, each associated with a probability. The probabilistic 
skyline is then defined as a set of non-dominated objects with probabilities 
exceeding or equaling a given threshold. In many applications, data are generated 
as a form of continuous data streams. Accordingly, we make the first attempt to 
study a problem of continuously returning probabilistic skylines over uncertain 
data streams in this paper. Moreover, the sliding window model over data 
streams is considered here. To avoid recomputing the probability of being not 
dominated for each uncertain object according to the instances contained in the 
current window, our main idea is to estimate the bounds of these probabilities for 
early determining which objects can be pruned or returned as results. We first 
propose a basic algorithm adapted from an existing approach of answering 
skyline queries on static and certain data, which updates these bounds by 
repeatedly processing instances of each object. Then, we design a novel data 
structure to keep dominance relation between some instances for rapidly 
tightening these bounds, and propose a progressive algorithm based on this new 
structure. Moreover, these two algorithms are also adapted to solve the problem 
of continuously maintaining top-k probabilistic skylines. Finally, a set of 
experiments are performed to evaluate these algorithms, and the experiment 
results reveal that the progressive algorithm much outperforms the basic one, 
directly demonstrating the effectiveness of our newly designed structure. 

Keywords: Uncertain data, Data stream, Continuous query, Probabilistic 
skyline. 

1   Introduction 

Recently, the skyline query processing has attracted much research attention due to its 
wide applications such as multi-criteria decision making. Given a set of data objects in 
a d-dimensional space, the skyline operator returns the data objects not dominated by 
any other data objects in the set. The retuned objects are named skyline objects. A data 
object a = (a[1], a[2], …, a[d]) is defined to dominate the other data object b = (b[1], 
b[2], .., b[d]), if a[i] is no worse than b[i], ∀ i, and at least in one dimension j, a[j] is 
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better than b[j]. In reality, the objects can be uncertain in some applications. Referring 
to the NBA player dataset as shown in Figure 1, a player regarded as an object may 
have different performances in different games. The performance record in a certain 
game of a player can be regarded as an instance of an object. Accordingly, in the NBA 
player dataset, an object is composed of a set of instances. Such objects are called 
uncertain objects in [10]. In [10], Pei et al. first define the dominance relation between 
uncertain objects and also define the probability of an uncertain object to be a skyline 
object, called skyline probability. Then, the probabilistic skyline query is defined in 
[10] as follows: given a user-defined threshold δ with a range of (0, 1], the uncertain 
objects with skyline probabilities no less than δ are returned to users. Two approaches 
are proposed in [10] to answer the probabilistic skyline query. However, these 
approaches are only designed for static data rather than data streams. 

 

Fig. 1. An NBA player dataset 

Intuitively, the instances of uncertain objects may continuously be generated as time 
goes by, such as the performance records of the NBA players, thus forming the 
environment of an uncertain data stream. Moreover, compared with the newly 
generated instances, the earlier instances may not be as significant as the new ones and 
therefore can be ignored. Accordingly, we make the first attempt to consider a new 
problem on continuously returning the probabilistic skylines over uncertain data 
streams using a sliding window model in this paper, which means that we continuously 
return the uncertain objects with skyline probabilities no less than a given threshold, 
regarding the up-to-date instances contained in the current window. In addition, 
referring to the NBA player dataset, since more than one performance record are 
generated after playing a game due to multiple players, the time-based sliding window 
is taken into account here. That is, we only concern the instances arriving at the last w 
time units, where w is the size of the sliding window, and moreover, a non-fixed 
number of instances are generated at a time unit. We define the survival time of an 
instance as in the time interval between its incoming time unit i to the time unit i+w, i.e. 
its expiring time unit. 

Whenever the window slides, the incoming and expiring instances may influence the 
skyline probabilities of the uncertain objects including the objects with no instances 
contained in the incoming and expiring time units. A straightforward solution to this 
problem can therefore be designed as follows: whenever the window slides, the skyline 
probability of each uncertain object is recomputed according to the instances contained 
in the current window and then checked on whether the corresponding object needs to 
be returned. Obviously, this solution is very costly. Instead of accurately recomputing 
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the skyline probabilities for all uncertain objects, the kernel idea of our proposed 
solutions is to quickly estimate the upper and lower bounds of the skyline probabilities 
of the uncertain objects to early determine which objects need to be returned as results 
and which objects can be directly pruned. 

In this paper, we first propose a basic algorithm rooted in the SFS approach [3] to 
repeatedly tighten these bounds by sequentially processing instances of each uncertain 
object. Notice that, other sort-based approaches such as LESS [15] or SaLSa [16], can 
also be adapted in place of SFS. The SFS approach proposed in [3] is a fundamental 
method for finding skylines from static and certain data, in which the data objects are 
sorted according to a special function for reducing the times of dominance checking. 
We then propose a progressive algorithm adopting a new data structure extended from 
the dominant graph proposed in [12] for continuously maintaining the dominance 
relation between some instances. Through the dominance relation maintained, we can 
obtain more tightened bounds of the skyline probabilities, thus efficiently determining 
a huge number of uncertain objects to be retuned or pruned without needing the 
computation of the accurate skyline probabilities. The dominant graph proposed in [12] 
keeps the dominance relation between the data objects in the whole dataset for 
answering the top-k queries, while our newly designed structure keeps only the 
dominance relation between a few instances. 

Our contributions are summarized as follows. 1) We make the first attempt to ad-
dress a new problem on continuously returning probabilistic skylines over uncertain 
data streams; 2) we design a new data structure to continuously maintain the dominance 
relation between instances and propose a progressive algorithm based on the novel 
structure, resulting in a performance much better than that of our basic algorithm also 
proposed in this paper; and 3) we adapt our two algorithms to solve the problem of 
continuously maintaining top-k probabilistic skylines over uncertain data streams, 
which continuously maintains k uncertain objects with the highest skyline probabilities. 

The remainder of this paper is organized as follows. The related works are reviewed 
in Section 2. Section 3 introduces the preliminaries and formalizes the problem on 
continuously returning probabilistic skylines over uncertain data streams. After that, a 
basic algorithm and a progressive algorithm for solving this problem are respectively 
presented in Sections 4 and 5. Moreover, we adapt these two algorithms to solve the 
problem on continuously maintaining top-k probabilistic skylines in Section 6. The 
experiment results on evaluating these two algorithms are presented and analyzed in 
Section 7. Finally, Section 8 concludes this whole work. 

2   Related Works 

After Börzsönyi et al. [2] first propose the skyline operator in the database field, many 
approaches have been developed for efficiently computing skylines from two points of 
view: 1) using pre-computed indexes, such as NN [6], ZSearch [9], and OSP [14], and 
2) without using indexing, such as D&C [2], BNL [2], SFS [3], and LESS [5]. Then, 
since many applications may need to face the environment of data streams, the problem 
of finding skylines over data streams are addressed in [8] and [11], which adopt the 
sliding window model. To avoid recomputing the whole skyline regarding the data  
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objects contained in the current window whenever the window slides, a common idea 
used in [8] and [11] for reducing computation costs is to keep a buffer which only stores 
the data objects that either are skyline objects or have chances of being skyline objects 
in the future. More specifically, if a data object is dominated by the other data object 
arriving later, the object is discarded from the buffer, since it will be always dominated 
during its survival time, having no chances at all of being a skyline object. 

The above approaches focus on certain data. However, data can be uncertain in some 
applications as mentioned in Section 1. Accordingly, Pei et al. [10] first define the 
skyline probabilities of uncertain objects, and then develop two approaches to find the 
probabilistic skylines. Different from Pei et al. [10] assuming that the probability of 
each instance of an uncertain object is identical, Atallah and Qi [1] assume that the 
probability of each instance of an uncertain object may not be identical and moreover, 
the sum of the probabilities of all instances of an uncertain object is at most equal to 1. 
The existing works focusing on finding probabilistic skylines over uncertain data 
streams are proposed in Li et al. [7] and Zhang et al. [13]. Far from the problem to be 
solved in this paper that follows the definition of the uncertain objects proposed in [10], 
i.e. an uncertain object is composed of a set of instances, [7] and [13] both assume that 
each data object arrives in the system with a probability, therefore with uncertainty. To 
the best of our knowledge, we make the first attempt to solve the problem on 
continuously returning probabilistic skylines over uncertain data streams under the 
environment that an uncertain data stream is a sequence of instances belonging to some 
uncertain objects. 

3   Preliminaries 

In this section, we first introduce the notations and terms to be used, and then formally 
define the problem to be solved in this paper. Moreover, the kernel idea of our solutions 
to the problem is also illustrated here. 

3.1   Problem Definition 

Following the definition described in [10], an uncertain object O is modeled using a 
collection of its instances, i.e. O = {o1, o2 , … ,ok}, where oi is an instance of O, i = 1 to 
k. The number of instances of O is denoted as |O|, i.e. |O| = k. Similar to [10], uncertain 
objects are assumed to be independent. That is, the occurrence of an instance of an 
uncertain object does not affect the occurrences of the instances of the other uncertain 
objects. Moreover, each instance of an uncertain object is associated with a probability, 
and the sum of the probabilities of all the instances of an uncertain object is 1. For 
simplicity, we assume that each of the instances of an uncertain object O has an 
identical probability 1/|O|. An uncertain data stream US in this paper is then defined as 
an unbounded sequence of instances belonging to some uncertain objects. In each time 
unit ti, i = 1, 2, 3…, a non-fixed number of instances will arrive in US. If an instance oi 
∈ O arrives at tx, then it is denoted as oi

x. In this paper, we only concern the data arriving 
at the most recent w time units. We therefore use a sliding window Sc keeping all 
instances that arrive between tc−w+1 and tc, where tc is the current time unit. 
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Table 1. An example of an 
uncertain data stream 

time unit Instances 
t1 a1, b1, c1 
t2 a2, c2 
t3 b2 

t4 
d1, a3, b3, 

c3  

 
 

(a)                                         (b) 

Fig. 2. The instances in S3 and those in S4 

Example 1: An uncertain data stream defined in this paper is illustrated in Table 1. As 
can be seen, a non-fixed number of instances may arrive at each time unit. Suppose that 
the window size w is equal to 3. The sliding window of S3 includes the instances 
arriving between t1 and t3, as shown in Figure 2a. As the current time unit is t4 the 
window slides, leading to the expiry of the instances at t1. The current sliding window 
S4 therefore includes the instances arriving between t2 and t4, as shown in Figure 2b. 
Referring to Figure 2a, since A has two instances including a1 and a2, the probability of 
being a1 and that of being a2 are both equal to 1/|A|, i.e. 1/2 .                                        ■ 

Definition 1 (Domination): Let oi(k) be the value of the kth dimension of an instance oi. 
Given two instances oi ∈ O and pj ∈ P in a d-dimensional space, where O and P are 
uncertain objects, if oi(k) ≤ pj(k), ∀ k = 1, …, d, and at least in one dimension m, oi(m) 
< pj(m), we say that oi dominates pj, denoted i jo pp .                                                  ■ 

Definition 2 (Skyline Probability of an Instance): The skyline probability of an instance 
oi ∈ O, representing the probability that oi is not dominated by any other uncertain 
objects, is defined as 

| { | } |
( ) (1 )

| |
j j j i

i
P O

p p P p o
Psky o

P∀ ≠

∈ ∧
= −∏

p
 (1)

where O and P are uncertain objects.                                                                            ■ 

Definition 3 (Skyline Probability of an Uncertain Object): The skyline probability of an 
uncertain object O, representing the probability that O is not dominated by any other 
uncertain objects, is defined as  

1
( ) ( )

| | i

i
o O

Psky O Psky o
O ∀ ∈

= ∑ .                                                     (2) 

                                                                                                                                        ■ 

Example 2: Refer to the sliding window S3, shown in Figure 2a. To a1, since no other 
instances of B or C dominate a1 except b2 of B, Psky(a1) = (1 − 1/2) × (1 − 0/2) = 0.5. To 
a2, since all instances of B and all instances of C dominate a2, Psky(a2) = (1 − 2/2) × (1 
− 2/2) = 0. To b1, since no instances of A or C dominate b1, Psky(b1) = (1 − 0/2) × (1 − 
0/2) = 1. Since Psky(a1) = 0.5 and Psky(a2) = 0, the skyline probability of A, i.e. 
Psky(A), is equal to 1/2 × (Psky(a1) + Psky(a2)) = 0.25.                                                 ■ 

The problem to be solved in this paper is then defined as follows. Given a threshold δ 
and a sliding window with a size of w, we issue a continuous probabilistic skyline query 
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that continuously returns the uncertain objects with skyline probabilities no less than δ, 
regarding the most recent w time units. 

Example 3: Refer to S3 and S4, shown in Figure 2. Let δ = 0.5. Since Psky(A) = 0.25, 
Psky(B) = 1, and Psky(C) = 0.75 in S3, the query results in S3 are B and C. On the other 
hand, since Psky(A) = 0.5, Psky(B) = 0.75, Psky(C) = 0.5, and Psky(D) = 0 in S4, the 
query results in S4 are A, B, and C.                                                                                 ■ 

3.2   The Kernel Idea of Our Solutions 

A straightforward solution to solve the continuous probabilistic skyline query is as 
follows: whenever the window slides, the skyline probability of each uncertain object is 
recomputed and then, the query results can be obtained. To avoid repeatedly computing 
the accurate skyline probability of each uncertain objet, which is very costly, our kernel 
idea in this paper is to estimate the upper and lower bounds of the skyline probability 
for each uncertain object. The bounds of the skyline probability of an uncertain object 
help to quickly determine whether the object should be or should not be returned as one 
of the results. The decision rule is described as follows. 

Decision Rule: Given a threshold δ, 1) if the upper bound of the skyline probability of 
an uncertain object O, denoted as Pskyub(O), is less than δ, O can be pruned. 2) If the 
lower bound of the skyline probability of O, denoted as Pskylb(O), is larger than or 
equal to δ, O is sure to be one of the results. 3) If both of the above two statements 
cannot be satisfied, the refinements of Pskyub(O) and Pskylb(O) are needed.                 ■ 

Eventually, the refinements of Pskyub(O) and Pskylb(O) lead to the accurate skyline 
probability of O, i.e. Pskylb(O) = Psky(O) = Pskyub(O). 

Similar to Equation 2, Pskyub(O) and Pskylb(O) are respectively computed using the 
upper and lower bounds of the skyline probability of each instance of O as follows: 

1
( ) ( )

| | i

ub ub i
o O

Psky O Psky o
O ∀ ∈
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             (3),  
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              (4) 

where Pskylb(oi) ≤ Psky(oi) ≤ Pskyub(oi). Accordingly, the following solutions 
proposed in Sections 4 and 5 focus on the issue of efficiently computing the bounds of 
the skyline probability of an instance. 

4   A Basic Algorithm 

The Basic algorithm derived from the SFS approach [3] is presented in this section. In 
SFS, data objects are sorted by a monotonic function as Equation 5, where t is a data 
object in a d-dimensional space and t(k) is the value of the kth dimension of t. 

                                                          1
( ) ln( ( ) 1)

d

k
E t t k

=
= +∑

   

                                           (5) 

This sorting guarantees that the data objects with higher values cannot dominate those 
with lower values, thus reducing the times of dominance checking. In the following, we 
first introduce a data structure used to keep all the instances in the sliding window and 
then describe the Basic algorithm. 
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4.1   A Data Structure for Keeping All Instances in the Sliding Window 

 

Fig. 3. An example of using heaps to keep all instances in Sc 

We maintain a heap (min-heap) to store all instances of an uncertain object in the current 
window Sc, as shown in Figure 3. Accordingly, the number of heaps is equal to the 
number of uncertain objects contained in the current window. Each instance oi has a key 
E(oi), calculated using Equation 5, e.g., the key of a1 (1, 2) = 1.79. Heaps are constructed 
according to the keys of instances. Similar to SFS [3], the instances with high key values 
cannot dominate those with low key values. Moreover, we use a linked list to link 
together the instances arriving at the same time unit for identifying the expiring instances. 
Whenever the window slides, the instances arriving at the current time unit and those 
arriving at the expiring time unit need to be respectively inserted in and deleted from the 
corresponding heaps. These updates follow the standard operations of heaps. 

4.2   The Basic Algorithm 

The Basic algorithm 
1: Whenever the window slides 
2:    Update the corresponding heaps of the instances in the current and  
       expiring time units 
3:    For each instance uk in the current window 
4:          Set Pskyub(uk) = 1 and Pskylb(uk) = 0 
5:    For each uncertain object O in the current window 
6:          Count = 0  // counting the number of popped instances of O 
7:          While (O is not yet pruned\returned ) 
8:                 oi = pop(O 's heap) 
9:                Count = Count + 1 
10:              Psky(oi) = 1 
11:              For each object P, where P ≠ O 
12:                     While (P 's heap is not empty and pj's key ≤ oi's key) 
13:                             pj = pop (P 's heap) 
14:                            Check whether j ip op  

15:                   Psky(oi) = Psky(oi) ×
| { | } |

| |
j j j ip p P p o

P

∈ ∧ p
 

16:           Pskyub(O) = popped instances of 
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18:           Check whether O can be pruned/returned  
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Initially, the upper and lower bounds of the skyline probability of each instance in the 
current window are respectively set to 1 and 0. For each uncertain object O in the 
current window, to check whether it is one of the results, the instances of O are 
sequentially popped from its corresponding heap and then compared with the instances 
of the other objects. While the popped instance of O, e.g., oi, is compared with the 
instances of the other object, e.g., P, the comparing order also follows the popping 
sequence of P. Let the popped instance of P be pi. If the key of pi is less than or equal to 
the key of oi, we need to check whether pi can dominate oi, and also pop the next 
instance of P, say pj from P’s heap until the key of pj is larger than the key of oi. After oi 
is compared with all the other objects, we obtain the accurate skyline probability of oi, 
and then update the upper and lower bounds of the skyline probability of O to decide 
whether O can be pruned/returned using the decision rule. If the status of O is uncertain, 
we repeatedly pop the next instance from O’s heap to refine these bounds until we are 
sure that O can be pruned/returned. Notice that, if we traverse all instances of O, the 
accurate skyline probability of O can be obtained. 

Example 4: Let δ be 0.5 and consider the example shown in Figure 3, we discuss 
whether A is one of the results in the following. Initially, Pskyub(ai) and Pskylb(ai) are 
respectively set to 1 and 0, ∀ ai ∈ A. Then, one instance is popped from the heap of A 
(i.e. a1) and compared with the instances of B. Notice that the comparing order follows 
the popping sequence of B. Since the key of b2 (first popped) is larger than the key of a1, 
all instances of B cannot dominate a1. Similarly, a1 is compared with the instances of C. 
Since no instances dominate a1, Psky(a1) = 1. Moreover, as a2 and a3 are not yet 
processed in this moment Pskyub(a2) = Pskyub(a3) = 1 and Pskylb(a2) = Pskylb(a3) = 0. 
Hence, Pskyub(A) = (1 1 1) /3 1+ + = and Pskylb(A) = (1 0 0) /3 1 3+ + = . However, since we 
are not sure whether A is one of the results, the refinement of the bounds keeps going. 
That is, another instance (i.e. a2) is popped for calculating its accurate skyline 
probability. We obtain that Psky(a2) = 4/5. Then, Pskyub(A) is updated as 14/15 and 
Pskylb(A) is updated as 3/5. Consequently, A is returned as one of the results since 
Pskylb(A) = 3/5 ≥ 0.5.  

5   A Progressive Algorithm 

An instance not dominated by any other instances is defined as a skyline instance. For 
example, given that a1 = (1, 1), a2 = (1, 2), and b1 = (2, 3) in the current window, only a1 
is a skyline instance, since a1 dominates a2 and b1. Keeping skyline instances  
with respect to the current window can help to quickly obtain the rough bounds of 
skyline probabilities of instances/objects. For example, if oi is the only skyline instance 
and |O| = 2 in the current window, Psky(pj) is at most equal to 0.5, where pj is an 
instance of the uncertain object P, P ≠ O, and moreover, Psky(O) is at least equal to 0.5. 
In this section, we propose a progressive algorithm that keeps the skyline instances with 
respect to the current window for efficiently computing the bounds of the skyline 
probabilities of instances/objects. 
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5.1   Time Dominant Graph 

 

Fig. 4. An example of the time dominant graph in Sc 

The skyline instances in the current window Sc may change as time goes by. Some 
skyline instances expire, making the non-skyline instances dominated by the expiring 
skyline instances to have chances of becoming skyline instances. Accordingly, to 
efficiently maintain the skyline instances with respect to Sc, we need to further take into 
account the non-skyline instances with respect to Sc, which have chances of becoming 
skyline instances in the future. An intuitive observation is as follows: to an instance oi 
arriving at the time unit tx, i.e. x

io , if an instance y
jp exists such that y x

j ip op and y ≥ x, 
x
io has no chances at all of becoming a skyline instance during its survival time. We 

therefore keep all instances in Sc except such instances as x
io  mentioned above using an 

efficient data structure named time dominant graph (TDG) in which the dominance 
relation between the kept instances can be indicated. 

The time dominant graph used in this paper is adapted from dominant graph (DG) 
proposed in [12], composed of (instance) nodes. The original DG in [12] is designed for 
keeping the whole dataset, different from our use of TDG. Each node in TDG keeps 1) 
the identifier/values of an instance, 2) the arriving time of the corresponding instance, 
and 3) the number of instances that dominate the corresponding instance, i.e. the 
number of dominating instances, with respect to each uncertain object. Moreover, each 
node belongs to a layer, and the skyline instances are contained in the nodes at Layer 1. 
For each instance oi contained in a node at Layer K, there must be at least one instances 
dominating oi, contained in the nodes at layer (K − 1), and with arriving time earlier 
than that of oi. Moreover, the instances in the identical layer cannot dominate each 
other. The instances contained in the nodes not at Layer 1 can be regarded as being kept 
in a buffer for continuously maintaining the skyline instances. We call this conceptual 
buffer as skybuffer. An example of the time dominant graph is shown in Figure 4. 
Notice that, the node containing an instance oi is directly identified by oi in the 
following discussion. 

5.2   Maintenance of TDG 

Observation 1: Let the current time unit be tc. To a newly arrived instance c
io , if we have 

the other newly arrived instance c
jp such that c c

j ip op , c
io need not be inserted into 

TDG.                                                                                                                               ■ 

Obviously, c
io has no chances at all of becoming a skyline instance, since it is dominated 

by c
jp during its survival time, thus it need not be inserted into TDG. 
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Observation 2: Whenever an instance oi is inserted into TDG, the other instances kept 
in TDG, which can be dominated by oi, are deleted from TDG.                                    ■ 

The arriving time of all instances in TDG is earlier than or equal to that of oi, since oi is 
newly inserted. Accordingly, the instances kept in TDG, which can be dominated by oi, 
have no chances at all of becoming skyline instances during their survival time due to 
oi, thus being deleted from TDG. 

The insertion procedure and deletion procedure of TDG are described as follows. 

Insertion. While an instance oi is inserted to TDG, we need to find out the lowest layer, 
e.g., Layer K, at which no instances dominate oi by comparing oi to each instance at 
each layer, staring from Layer 1. Then oi is inserted at Layer K and moreover, all the 
instances at Layer K to the last layer, which can be dominated by oi, are deleted from 
TDG. Notice that, while finding out the corresponding lowest layer for a newly arrived 
instance, some dominance checking is performed. The number of dominating instances 
of oi, with respect to each uncertain object can therefore be obtained. 

Deletion. While an instance oi at Layer K is deleted, we need to find out the instances at 
Layer (K + 1), which are only dominated by oi, and then, make these instances to go 
forward to Layer K. Moreover, we need to construct the dominance relation between 
the dominating instances of oi at Layer (K − 1) and the newly moved instances at Layer 
K. Obviously, moving the instances originally at Layer (K + 1) forward to Layer K can 
be regarded as deleting these instances from Layer (K + 1). The deletion operation is 
thus recursively performed until the whole TDG is completely updated. 

Whenever the window slides, TDG in Sc is updated as follows. First, the newly 
arrived instances that are not dominated by any other newly arrived instances are 
inserted into TDG by performing the insertion algorithm. Then, the expiring skyline 
instances are deleted from TDG by performing the deletion algorithm. 

The time dominant graph has some interesting properties as follows. 

Property 1: Given a TDG in Sc, once an instance is deleted from TDG, it cannot be 
inserted into TDG again during its survival time.                                                          ■ 

If an instance x
io is deleted from TDG, either x

io expires or the other instance y
jp  

dominating x
io is inserted into TDG, where x < y. Accordingly, x

io cannot become a 
skyline instance during its survival time due to y

jp , thus not being inserted again. 

Property 2: Given a TDG in Sc, to any two instances x
io at Layer K and y

jp at Layer L, K 

< L and x < y, if x y
i jo pp .                                                                                                ■ 

Property 3: Given a TDG in Sc, for any instance oi not kept in TDG and not expiring, we 
can find out at least one instance pj kept in TDG such that j ip op .                              ■ 

If an instance oi is not kept in TDG, either oi was not inserted into TDG or oi had been 
deleted from TDG. If the first condition holds, at least one instances dominating oi and 
arriving at the same time with oi must exist. If the second condition holds, at least one 
instances dominating oi and arriving later than oi must exist. 
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5.3   The TDG Algorithm 

The TDG algorithm using the time dominant graph for efficiently computing the 
bounds of the skyline probabilities of instances/objects is presented in this subsection. 
Similar to the Basic algorithm, all the instances of each uncertain object in the current 
window are kept using a heap in the TDG algorithm. Moreover, we additionally 
maintain a TDG for the current window in this algorithm. The main concept of the 
algorithm is described as follows. When the window slides, a linked list is constructed 
to link together all instances just arriving at the current time unit. Then, TDG in Sc is 
updated according to the expiring and incoming instances. Moreover, the 
corresponding heaps are also updated using the standard heap operations. After that, the 
upper and lower bounds of the skyline probability of each uncertain object are 
calculated. 

Step 1: For each uncertain object O, if its instance oi, ∀ i, is not kept in TDG, Pskyub(oi) 
and Pskylb(oi) are respectively set to 1 and 0. Otherwise, we can use the information 
contained in the corresponding node of oi in TDG to calculate Pskyub(oi) and Pskylb(oi). 
For example, to an instance a1, if 3 instances of B (|B| = 5) and 2 instances of C (|C| = 4) 
dominate a1 from the corresponding node of a1 kept in TDG, Pskyub(a1) = (1 − 3/5)(1 − 
2/4) = 0.2. Moreover, let the number of instances of B, not kept in TDG, and the number 
of instances of C, not kept in TDG, be respectively equal to 1 and 2. Then, Pskylb(a1) = 
(1 − (3 + 1)/5)(1 − (2 + 2)/4) = 0. While oi is kept in TDG, Pskyub(oi) is computed by 
assuming that oi is only dominated by the instances being recognized as dominating oi 
in TDG. On the other hand, Pskylb(oi) is computed by assuming that in addition to the 
instances being recognized as dominating oi in TDG, all the instances not kept in TDG 
also dominate oi. After obtaining Pskyub(oi) and Pskylb(oi) for each instance oi∈O, 
Pskyub(O) and Pskylb(O) can be resp- ectively calculated using Equations 3 and 4 to 
decide whether O is pruned/returned. 

Step 2: For each uncertain object O not pruned/returned after executing Step 1, 
Pskyub(O) and Pskylb(O) need to be further refined by considering the instances of O, 
not kept in TDG, since the skyline probabilities of these instances have very rough 
bounds, either 1 or 0 (for the upper or lower bounds). For each instance oi ∈ O, not kept 
in TDG, we compare oi with all the instances kept in TDG, starting from Layer 1 and 
layer by layer, to find out a suitable layer for oi, i.e. the lowest layer at which no 
instances dominate oi. This procedure is very similar to the insertion procedure of TDG 
except really inserting oi in TDG. Accordingly, similar to computing the bounds for the 
instances kept in TDG, we can obtain the tighter Pskyub(oi) and Pskylb(oi) instead of 1 
and 0, and then obtain the tighter Pskyub(O) and Pskylb(O). 

Step 3: For each uncertain object O not pruned/returned after executing Step 2, we have 
to calculate the accurate skyline probability for each instance of O as done in the Basic 
algorithm. 
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The TDG algorithm 
1: Whenever the window slides 
2:         Update TDG and the corresponding heaps of the instances in the current and expiring time  
             units 
3:          For each instance uk in the current window 
4:                 Set Pskyub(uk) = 1 and Pskylb(uk) = 0 
5:          For each uncertain object O in the current window 
6:                 Step 1: For each instance oi kept in TDG 

7:                      Pskyub(oi) =
|{ | } |
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9:                    Compute Pskyub(O) and Pskylb(O) using Equations 3 and 4  
10:                  If (O is not pruned/returned) 
11:                       Step 2: While (O is not yet pruned\returned and O 's heap is not empty ) 
12:                              oi = pop (O 's heap) 
13:                              If(oi is not kept in TDG) 
14:                                   Count the instances dominating oi in TDG using an adaption of the 
                                         insertion procedure of TDG 

15:                                   Pskyub(oi) =
|{ | } |

1
| |
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16:                                  Pskylb(oi) =
|{ | } | | | | { | }
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17:                           Compute Pskyub(O) and Pskylb(O) using Equations 3 and 4 
18:                     Step 3: If (O is not pruned/returned) 
19:                          Apply the Basic algorithm to O 

6   An Extension 

The proposed algorithms can be adapted to find the top-k probabilistic skylines over 
uncertain data streams. That is, given a number of k and a sliding window with a size of 
w, we issue a continuous top-k probabilistic skyline query that continuously returns k 
uncertain objects having the highest skyline probabilities, regarding the most recent w 
time units. To adapt the Basic and the TDG algorithms to deal with this problem, we 
only need to modify the decision rule mentioned in Subsection 3.2 as follows. 

Decision Rule: Given a number of k, find out the kth highest upper bound and the kth 
highest lower bound among the upper and lower bounds of the skyline probabilities of 
all uncertain objects and name these two values as Pskyub

k and Pskylb
k, respectively. 1) 

If Pskyub(O) is smaller than Pskylb
k, O can be pruned. 2) If Pskylb(O) is larger than or 

equal to Pskyub
k, O is sure to be one of the results. 3) If the above two statements cannot 

be satisfied, the refinements of Pskyub(O) and Pskylb(O) are needed. Moreover, k is 
continuously updated by subtracting the number of obtained results from the original k. 

7   Performance Evaluation 

To the best of our knowledge, there are no existing approaches. Therefore, solving the 
same problem defined in this paper, we perform a set of experiments to evaluate only 
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the two proposed algorithms in this section. We use a NBA dataset downloaded from 
databaseSports.com [4] to be the test dataset. The number of players regarded as 
uncertain objects in the test dataset is 3,573, including 19,112 records regarded as 
instances. Moreover, both of these two algorithms are implemented in JAVA, and all of 
the experiments are performed on a PC with the Intel Core 2 Quad 2.4GHz CPU, 2GB 
of main memory, and under the Windows XP operating system. The parameters used in 
the experiments are summarized in Table 2. 

Table2. The parameters used in the experiments 

Factor Default Range 

w 10 
10 ~ 

100 
# 

instances 
10 

5 ~ 
100 

# 
dimensions 

5 2 ~ 10 

δ 0.2\0.5\0.8 - 

w: the number of 
time units in the
sliding window 
# instances: the 
number of 
instances arriving
at a time unit 
# dimensions: the 
number of dimen-
sions of an 
instance 
δ: a given 
threshold   

 

Fig. 5. The processing time w.r.t. # 
instances 

     

Fig. 6. The confirmed objects using TDG     Fig. 7. The instacnes kept in TDG w.r.t. #  
w.r.t. # instances, δ = 0.5.                                       instances 

First, we focus on the processing time of the algorithms on the varying number of 
instances at a time unit, shown in Figure 5. To obtain the processing time in the 
experiments, we let the window slide 100 times and then, compute the average 
processing time. Obviously, the larger the number of instances in a time unit is, the 
longer the processing time of the two algorithms will be. From Figure 5, we also find 
that the TDG algorithm much outperforms the Basic algorithm in terms of the 
processing time under being given different thresholds as 0.2, 0.5, and 0.8. Figure 6 
shows the effectiveness of the time dominant graph used in the TDG algorithm. After 
executing Step 1 in the TDG algorithm, only a few uncertain objects are confirmed 
(either pruned or returned), since most of the instances are not kept in the time 
dominant graph. Although Step 1 only confirms a small number of uncertain objects, 
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TDG is useful in that over 90% of uncertain objects can be confirmed after executing 
Step 2. That is, we only need to perform the Basic algorithm on a very few uncertain 
objects. Moreover, as shown in Figure 7, only a small number of instances, i.e. around 
2% of the instances in the current window are kept in TDG, which is very 
space-efficient. 

     

Fig. 8. The processing time w.r.t. w, using a    Fig. 9. The processing time w.r.t. w, using a  
fixed number of instances                                      non-fixed number of instances 

    

Fig. 10. The confirmed objects using TDG w.   Fig. 11. The instacnes kept in TDG w.r.t. w,  
r.t. w, using a fixed number of instances, δ = 0.5   using a fixed number of instances 

Second, we focus on the processing time of the algorithms on a varying w, which is 
shown in Figures 8-9. In Figure 8, the number of instances arriving at a time unit is 
fixed and set to the default value, i.e. 10. On the other hand, to simulate the condition 
that a non-fixed number of instances may arrive at a time unit, the instances arriving at 
a time unit are randomly generated with a number from 0 to 10 in Figure 9. Either in 
Figure 8 or in Figure 9, the larger the window size w is, the longer the processing time 
of the two algorithms will be. As w increases, the ratio of expiring/incoming time unit 
to w decreases. Since the instances of the expiring/incoming time unit may have 
chances of influencing the skyline probabilities of the instances in the other time units, 
the processing time of the TDG algorithm slowly increases. On the other hand, the 
processing time of the Basic algorithm increases quickly with the rising w. Figures 10 
and 11 respectively show the effectiveness and space-efficiency of the time dominant 
graph used in the TDG algorithm on a varying w. 

In the following, we focus on the processing time of the algorithms on a varying 
number of dimensions, which is shown in Figures 12-13. Similarly, the number of 
instances arriving at a time unit is fixed with respect to Figure 12, and the instances 
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arriving at a time unit are randomly generated with a number from 0 to 10 with respect 
to Figure 13. Intuitively, the processing time of the algorithms increases with the 
increasing of the number of dimensions, even that, the TDG algorithm still much 
outperforms the Basic algorithm. Figures 14 and 15 respectively show the effectiveness 
and space-efficiency of the time dominant graph used in the TDG algorithm on a 
varying number of dimensions. 

    

Fig. 12. The processing time w.r.t. # dimen-  Fig. 13. The processing time w.r.t. # dimen- 
sions, using a fixed number of instances              sions, using a non-fixed number of instances 

   

Fig. 14. The confirmed objects using TDG  Fig. 15. The instacnes kept in TDG w.r.t. #   
w.r.t. # dimensions, using a fixed number of   dimensions, using a fixed number of instances 
instances, δ = 0.5 

 

                        (a)                                             (b)                                               (c) 

Fig. 16. The processing time on continuous top-k probabilistic skyline query w.r.t. # instac- nes, 
w, # dimensions 

Finally, we also implement the adaption of the two algorithms for solving the 
continuous top-k probabilistic skyline query. In the experiments, k is respectively set to 
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1, 5, and 10. As shown in Figure 16, the TDG algorithm outperforms the Basic 
algorithm in most of the cases. It is worth mentioning that as k becomes large, e.g., 10, 
the slope of the line indicating the processing time of the TDG algorithm in Figures 
16(a) and 16(b) becomes large too. This is because when k is large, Pskyub

k and Pskylb
k 

become small, thus reducing the decision power of the time dominant graph used in the 
TDG algorithm. Moreover, the decision power of TDG may also be a bit low under the 
condition that the accurate skyline probability of each uncertain object is almost 
identical. Overall, the TDG algorithm is more efficient than the Basic algorithm in the 
experiments. Moreover, the time dominant graph used in the TDG algorithm is very 
space-efficient and effective. It is worth exchanging a little maintenance cost of TDG 
for reducing a lot of processing time in dealing with the problem on continuously 
returning probabilistic skylines. 

8   Conclusion 

In this paper, we make the first attempt to solve the problem on continuously returning 
probabilistic skylines over uncertain data streams. Given a user-defined threshold, the 
uncertain objects with skyline probabilities no less than the threshold are continuously 
returned, regarding the current sliding window. Without directly calculating the accu-
rate skyline probability for each uncertain object whenever the window slides, which is 
very costly, the bounds of skyline probabilities of instances/objects are estimated in our 
proposed two algorithms to quickly identify which uncertain objects need to be 
pruned/returned. For efficiently computing the upper and lower bounds of skyline 
probabilities, we design a novel data structure named TDG extended from a published 
data structure named DG to continuously maintain the skyline instances with respect to 
the current sliding window. By the information kept in TDG and comparing the 
instances not kept to those kept in TDG, the useful bounds of skyline probabilities can 
be estimated, thus substantially reducing the processing time as shown in the experi-
ments. Moreover, we also adapt our approaches to deal with the problem on continu-
ously maintaining the top-k probabilistic skylines over uncertain data streams. Simi-
larly, the TDG algorithm outperforms the Basic algorithm in most of the cases. 
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Abstract. Data stream is a newly emerging data model for applications like 
environment monitoring, Web click stream, network traffic monitoring, etc. It 
consists of an infinite sequence of data points accompanied with timestamp 
coming from external data source. Typically data sources are located onsite and 
very vulnerable to external attacks and natural calamities, thus outliers are very 
common in the datasets. Existing techniques for outlier detection are inadequate 
for data streams because of its metamorphic data distribution and uncertainty. 
In this paper we propose an outlier detection technique, called Distance-Based 
Outline Detection for Data Streams (DBOD-DS) based on a novel continuously 
adaptive probability density function that addresses all the new issues of data 
streams. Extensive experiments on a real dataset for meteorology applications 
show the supremacy of DBOD-DS over existing techniques in terms of 
accuracy. 

Keywords: Data stream, outlier detection, probability density function. 

1   Introduction 

Applications like environment monitoring, Web click stream, and network traffic 
monitoring use a new data model to represent their never ending series of data called 
data streams. Data stream has received a great deal of attention in the research 
community in recent years due to its novel characteristics. On the other hand every 
real life dataset has outliers in it [6]; therefore outlier detection is a very important 
part of data acquisition. In most of the cases the work done on outlier detection for 
data streams [1], [3], [8] is adopted from outlier detection techniques for regular data 
with ad-hoc modifications and do not address all the novel characteristics of data 
streams. In this paper we propose a novel outlier detection technique to fill the gap. 
Before going further we briefly discuss the novel characteristics of data streams and 
data stream processing requirements.  

Applications for data streams are significantly different from those for regular data 
in many facets. In data stream applications, data have the essence of time, are mostly 
append only and, in many cases, are transient [2], [5]; therefore offline store and 
process approaches are not very suitable for online data stream; consequently data 
processing has to be online and incremental [25]. Data are continuously coming in a 
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streaming environment in a very fast rate with changing data distribution [17], and 
thus any fixed data distribution is not adequate enough to capture the knowledge.  On 
top of this, in many cases uncertainty in data streams makes processing more 
complicated. The novel characteristics of data streams bring the outlier detection 
problem out on the open again. The next paragraph introduces the problem of outlier 
detection in a real life dataset. 

An outlier refers to a data point which does not conform well to the pattern of the 
other data points or normal behaviors or conform well to the outlying behavior [4], 
[6]. Pragmatically, normal behaviors are easy to identify and every possible outlying 
behavior are difficult to compile; nonetheless the outlying behaviors are changing 
over time. Almost all real datasets have outliers [6]. The major reasons behind the 
outliers are malicious activity or intrusion, instrumental error or setup error, change in 
environment, human error, etc. Evidently, outlier detection is not a new topic at all. It 
has been in the literature since the eighteenth century [4]. Even though the problem 
has been in the literature for so many years it is still very popular; this is because 
nobody knows the real outliers and the detection of outliers is very subjective to the 
application. The outlier detection with perfect confidence in regular data is still not an 
easy problem. This is because of the inherent vagueness in the definition of outlier, 
like how to define regular behavior, to what extend an outlier needs to be not 
conforming to the regular behavior, etc. The problem of outlier detection becomes 
more complicated when considering new characteristics of data streams, such as 
unbounded data, varying data distribution, data uncertainty, and temporal dimension.  
None of the existing outlier detection techniques addresses all of these characteristics.  
In this paper, we present a novel outlier detection technique for data streams based on 
the concept of probability density function, called Distance-Based Outlier Detection 
for Data Streams (DBOD-DS), that addresses all the characteristics of data streams.  
We then present the results of the experiments that we have conducted on a real 
dataset obtained from a meteorological data stream application [7] to compare the 
accuracy and execution time of DBOD-DS with the two outlier detection techniques 
existing in the literature: ART [8] and ODTS [3].  

The rest of the paper is organized as follows: Section 2 discusses the work related 
to outlier detection in data stream; Section 3 describes our approach and its 
implementation; Section 4 presents the experimental results we have obtained, and 
finally Section 5 provides our conclusions and future research. 

2   Related Work 

Most of the outlier detection techniques for data streams use a sliding window to 
capture the recent data values and detect the outliers inside the window [1], [3], [26] 
with multi-pass algorithms. Data streams change over time and an outlier for a 
particular window may appear as an inlier in another window; hence the notion of 
outlier in a data stream window is not very concrete. Nevertheless, an inlier can be 
shown as an outlier by changing the window size [3]; thus the outlier detection 
techniques that use a sliding window work well if the window size is chosen 
carefully. However, different techniques interpret window size differently; in most 
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situations, it is difficult for the domain expert to choose the window size correctly 
without knowing the interpretation of a particular technique. 

Auto-regression based techniques for outlier detection are very popular for time 
series outlier detection [4]. Some outlier detection techniques for data streams adopt 
auto-regression [8], [22]. Most of the auto-regression based techniques work similarly 
in which a data point is compared with an estimated model and a metric is computed 
based on the comparison. If the metric is beyond a certain limit (called cut-off limit), 
the data point is identified as an outlier. The advantages of auto-regression based 
models are that they are computationally inexpensive and they provide an estimated 
value for the outlier.  However, the success of this method depends on the quality of 
the auto-regression model and the efficacy of the cut-off limit. Different data streams 
show different natures in their changing patterns; therefore it is very difficult to select 
an appropriate auto-regression model for data streams [8]. The selection of a magic 
cut-off point not only depends upon the data but also the auto-regression model 
chosen.  

Outlier detection techniques for multiple data streams have been proposed in the 
literature [16], [10], [11], [26]. The underlying assumptions are the availability of 
multiple homogeneous data streams and their synchronous behavior. These may not 
be the case as multiple homogeneous data streams may not be available or one data 
stream may behave very differently from the others. In the later case comparing two 
heterogeneous data streams does not help to point out the outliers.  

Statistical [4] and machine learning [9] based techniques assume a fixed 
distribution for the data and if the probability of a data point is very low it is identified 
as an outlier by statistical and machine learning based techniques. Data streams are 
highly dynamic in nature and their distribution changes over time. No fixed data 
distribution is good enough for the entire data stream; hence summarizing a dynamic 
data stream with a static data distribution produces questionable results.  

Data clustering algorithms produce outliers as a bi-product [21], [24]; but as outlier 
detection is not the focus of clustering algorithms, they are not optimized for outlier 
detection. Keogh et al argued that most of the clustering algorithms for time 
series/data stream produce meaningless results [18]; hence their efficacy and 
correctness are still in question.  

However none of the existing outlier detection technique considers the uncertainty, 
concept drift and the transient property of the data stream. Moreover, not all the 
outlier detection algorithms are truly incremental rather they store a subset of the data 
points and use multi-pass algorithms to detect the outliers in the subset. While 
designing a technique of outlier detection for data streams, one needs to consider the 
uncertainty, the drift of concepts, the transient property, the temporal characteristic of 
the data points, etc. On top of this, every computation has to be online and 
incremental. To fill the gap, we have designed our technique addressing the fact that 
data points in a data stream are very uncertain. We also address temporal 
characteristics of the data points. Moreover we do not assume any type of fixed data 
distribution to address the fact that the concept drift occurs in data stream. Next 
section (3) portrays the details of our algorithm with the implementation issues. 
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3   Proposed Technique: Distance-Based Outlier Detection for Data 
Streams (DBOD-DS) 

In this section, we first provide an overall description of our proposed technique, 
DBOD-DS.  We then discuss our novel probability density function, which is the 
basis of our technique, and algorithms to implement it. 

3.1   Overall Approach 

Our approach is motivated by distance-based outlier [26], [19] and based on a 
probability density function ) which resembles data distribution where  is a 
random variable. As each data point  with the value  comes in we compute the 
probability of occurrence of the values , ) within user defined radius  from the 
data value  ( , )) by integrating the probability density function ) from  

to , , ) ) . The probability of occurrence resembles the 
neighbor density around the data value [19]; if the neighbor density is very low the 
data point is more likely to be an outlier. According to our approach, if the probability 
of occurrence , ) is less than the user defined minimum probability of occurrence 
( ) i.e., , )    the data point  is identified as an outlier. 

As we receive each data point , we update the probability density function ) 
by increasing the probability of occurrence of data value . To address the data 
uncertainty characteristic of data stream, when we receive the data point  we not 
only increase the probability of the data value ( ) by  but also increase the 
probability of other values by a fraction of 1 ) where  is the probability of 
occurring the data value  while there is a data uncertainty. 

To address the temporal characteristic of the data streams, when we compute the 
probability density function ) the data points ( , , … , ) are  weighted based 
on their freshness. The most recent one receives the highest weight and the oldest one 
receives the lowest weight. If the respective values are , , … , ) where the  is 
the most recent one and  is the oldest one, we weight them by , , … , 1), 
respectively; therefore for the value ( ) we update the probability density function ) by increasing the probability of occurrence of  by  and the probability 
of others values by a fraction of 1 ) . 

To address the varying data distribution characteristic of data streams, our 
probability density function ) does not assume any particular fixed data 
distribution; rather we adjust our probability density function on-the-fly; therefore our 
probability density function ( )) never becomes obsolete due to a change in data 
distribution (concept drift [17]), rather our probability density function ( )) always 
provide the most recent data distribution.  

Now at any particular time if we integrate our probability density function from 
 to  we obtain the probability of occurrence , ) of a data value  

within  to . If , ) is large, then the data value  has a very high 
probability of occurrence or neighbor density in recent time. Therefore our approach 
requires two user defined parameters, radius  and minimum probability of 
occurrence . However if the probability function density function ) is 
continuous, the same result can be produced by a different set of , ), thus by fixing 
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the value of  and changing the value of  we can obtain  the optimal result, which 
reduces the curse of having two parameters to one. We fix the value of  and change 
the value of   to receive the optimal performance. The next section (3.2) presents the 
detail of our proposed probability density function. 

3.2   Proposed Probability Density Function 

Our proposed probability density function is based on a kernel probability density 
estimator. Several techniques exist in literature to estimate probability density 
function like histogram [15], wavelet [14], kernel estimation [26], etc. Among those 
techniques we choose kernel probability density estimator (in short kernel estimator) 
for our approach. We will justify our choice in the next paragraph. 

The kernel estimator estimates the probability density function based on the data 
values. For each data value  the kernel estimator increases the probability of 
occurrence of  by  and increases the probability of occurrence of other values by a 
fraction of 1  which fits our requirements excellently. Due to data uncertainty 
when we receive a data point  with value ,  we cannot assert the data value with full 
confidence; therefore we cannot increase the probability of occurrence of  by 1. 
Since the value  is uncertain, it might be induced by other data values other than . 
Thus to address the uncertainty of data streams, we do not increase the probability of 
occurrence of  by 1. Kernel estimator increases the probability of occurrence of   
by  and distributes the rest of the probability of occurrence (1 ) into the other 
data values which are close to the value . Formally, if , , … , ) are  sample 
data points, their respective values are , , … , ) and the probability density 
function ) is defined by equation (1) where ) is called the kernel function.  
can be a scalar or vector. 

(1) 

 
The kernel function is responsible for distributing the probability of occurrence 
induced by the data value . Various researchers have proposed various kernel 
functions (e.g., Uniform kernel function, Triangle kernel function. Epanechnikov 
kernel function, Normal kernel function etc. [23]). Different kernel function 
distributes the probability of occurrence differently. Interestingly, the choice of a 
kernel function does not affect the probability density function very much [23], [26]. 
Typically the kernel function distributes the probability of occurrence into the 
neighbor data values which reside within a range called bandwidth ( ) (Normal kernel 
function distributes the probability of occurrence from ∞ to ∞ [23]). A kernel 
function along with the bandwith ( ) (is denoted by ) where )   ). 
Although the choice of the kernel function is not very significant, the choice of the 
bandwidth is very important for probability density function estimation. A detailed 
discussion about the choice of kernel function and bandwidth selection can be found 
in [23]. In our approach we choose a data-based approach for bandwidth selection. 

Scott’s rule provides a data-based bandwidth selection where √5  where  
is the standard deviation and  is the number of data points used for density 
estimation [26]. 

) 1 ) 
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In a kernel estimator the probability of occurrence is distributed into the equal 
number of neighbor values for each data point, but in a variable kernel estimator the 
probability of occurrence is distributed into different number of neighbor values for 
each data point. Hence at any specific point of time, if data values are close to each 
other (in terms of value) the bandwidth becomes small and if the data points are far 
(in terms of value) from each other the bandwidth becomes large. Let , , … , ) 
be our data points with values , , … , ) at times , 1, … , ), and 
our corresponding bandwidths be , … , ). The probability density function 
( )) at time  becomes equation (2) where ) is the probability distribution 
function at time . In our approach we use variable kernel estimator. 

 
 

(2)  
 
 

The use of variable kernel estimator is twofold: the variable kernel estimator offers 
variable bandwidth for each data points, therefore the bandwidth can be computed on-
the-fly using Scott’s rule for each data point and the variable kernel selects the 
bandwidth based on recent data values only.  

We modify the variable kernel estimator to address the temporal characteristic of 
data streams. Recent data points are more interesting than old data points; therefore, 
when we estimate the probability density function we need to consider the freshness 
of data points. Heuristically, the recent data items should have more weight than the 
old data points [22], [20], [27]. Here weight is defined as how a data point contributes 
to the probability density function; thus, in our probability density function, instead of 
giving all data points the same weight we weight them according to their freshness. 
The most recent data point receives the highest weight while the oldest one receives 
the lowest weight. Exponential forgetting is a weight assigning scheme which gives 
more weight to the recent data points and less weight to the old data points and the 
weight is decreasing exponentially from present to past [28]. According to 
exponential forgetting the relative weight among two consecutive data points is 
constant, called forgetting factor ( ) where 0 1. Among the two consecutive 
data points, the recent data point receives weight 1 and the old one receives weight . 
In case of a series of data points, at any particular time the most recent data point 
receives the weight 1 and all other data points receive the weights according to their 
relative positions to the most recent data point. If , , … , ) are the data points 
with data values , , … , ), at time , 1, … , ) respectively, the 
corresponding weights are , , … ,1). We weight the kernel function with an 
exponential forgetting factor. Adding the exponential forgetting factor  to the 
equation (2), the probability density function becomes equation (3) where ∑  is 
the total weight. 

 
 (3)  

 
One advantage of using exponential forgetting factor is that it can be computed 
incrementally, which eases one-the-fly implementation for data streams [28]. The λ is 
the parameter which decides how many data points contribute to the probability 

) 1 ) 

) ∑ )∑  
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estimation; the value 0 implies no history, only the previous data point, while value 1 
implies all previous data points. Brailsford et al [28] proposed a  selection scheme 
based on a bootstrap method; we adopt this approach for  selection. The details 
about and λ selection are omitted due to page limitation, the detail can be found in 
[28]. The next section (3.3) discusses the online implementation of our proposed 
probability density function. 

3.3   Implementation of Proposed Probability Density Function 

The kernel estimator requires a large amount of computation. Binned implementation 
is a popular, fast implementation for the kernel estimator [13]. In this approach the 
entire range of data points is divided into some equally spaced bins and data are 
distributed into bins. Each bin has a representing value and all the data point in a bin 
are represented by the representing value. The key idea is that lots of values are 
practically close to each other and binned implementation reduces the number of 
evaluations; but this popular binned implementation still requires multiple passes and 
cannot be computed incrementally.  

 

Fig. 1. Binned implementation of kernel estimator 

In our approach we also divide the entire range of data values into equally spaced 
bins. A representing value is selected for each bin ( , , , … in the Figure 1). 
Instead of binning the data points, for each bin, we store the value of probability 
density function of the representing value , ) and the derivative of the 
probability density function ). ) and )  are stored for each representing 
value . ) and ) are the sum of the value of the kernel function and the sum 
of the derivative of the kernel function at representing value , respectively. The 
kernel function and the derivative of the kernel function for each representing value 
are computed on-the-fly and added to the previous sum; hence this is an online 
incremental implementation. 

Fig 1 shows the binned implementation of our proposed probability density 
function. By carefully selecting the bin width we can assume each bin is a trapezoid 
as shown in Figure 1 and we can approximate the probability of any value within a  
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1 procedure update(dataItem d, timestamp t) 
2      ; // s1 is the sum of data value and λ is our forgetting 

factor 
3      ; // s2 is the sum of the square of the data value  
4       1; // ω is the total data weight 
5    μ / ; // µ1  the first moment 
6    μ / ; // µ2 the second moment 
7    μ   μ ; // σ is the standard deviation 
8    √5 ; // h is the bandwidth 
9    / ; // c is the cell count 

10    ); // b is the middle cell 
11    for    –   to , // i is the index of the cell, where   0 

and   . 
      //  is the representing value of the bin/cell( ) and αi and βi are 

the starting value and the end value of the bin. 
      // distance between two consecutive time stamp is 1. 

12       )   ) ) );  
13       if (   ) is not discontinuous at  
14          )  – )  ); 
15       else 
16           ) – ) –  )  ))/ ;
17       ; 
18    end for 
19 end procedure 
20 procedure indexLookup(dataItem d) 
21    return  –  )/ ; 
22 end procedure 
23 procedure probability(x) 
24    ); 
25    ) ) ) ))/ ; 
26     return ); 

Fig. 2. Update and probability of occurrence lookup algorithm  

bin. The top of the trapezoid is a straight line (shown in Figure 1 as the dotted line 
touching the probability density function) and we store the passing point as well as 
the derivative; hence using the straight line equation of the line we can estimate the 
probability of occurrence of any data value within a bin. The bin width should be such 
that the average error is minimum. Fan and Marron [13] stated  that four hundred bins 
is often optimal, fewer than four hundred bins often deteriorates the quality of the 
results and more than four hundred bins offer very little improvement. In our 
approach we use the optimal four hundred bins. Due to page limitation we omit the 
detail discussion about bin width selection. 
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The data structure for binned implementation of probability density function is 
composed of grid cells. As each time a data point comes in, we update the necessary 
grid cells on-the-fly. Each cell corresponds to a bin. Each cell contains the value of 
probability density function at , ), derivative of the probability density function ) at  and the timestamp ( ) when the cell is last updated. The next section 
(3.3.1) describes the algorithms for updating the probability density function using 
our data structure and computing the probability of occurrence of a data value. 

3.3.1   Algorithms 
Figure 2 shows the online incremental update and probability of occurrence lookup 
algorithms for our proposed probability density function and outlier detection 
technique. The update algorithm updates the data structure as each data point comes 
in and the probability computation algorithm computes the probability of occurrence 
of a given value ( ). The update algorithm takes a data point and its timestamp as 
input. It starts with the updating of the weighted summation (lines 2 & 3), where  is 
the weighted summation of the data values and  is the weighted summation of the 
square of the data values. The  in line 4 is the total weight of the data.  and  are 
required to calculate the current standard deviation ( ) and hence the bandwidth ( ). 
In line 9 we calculate the number of cells we need to update. Some kernel function 
updates the values in the range from ∞ to  ∞ (e.g., Normal kernel function [23]); in 
that case we restrict it to  and , which represent the minimum 
and maximum allowable values for a data point, respectively. Now for each bin we 
update the sum of the kernel function and the latest timestamp when the bin is 
updated. If the kernel function is continuous at the representing point ( ) then we 
store the derivative of the kernel function at  else we store the gradient from the 
starting point ( ) to the end point ( ) of the bin. The probability lookup algorithm is 
fairly simple; it finds the appropriate bin which contains the sum of the kernel 
function values. Finally the probability is achieved by dividing the sum of the kernel 
function values by the total weights. 

4   Performance Analysis 

We conducted experiments using a real dataset collected from California Irrigation 
Management to compare the performance of our algorithm in terms of detection 
accuracy and execution time with that of the two existing algorithms: We compare 
our algorithms (DBOD-DS) with two other algorithms ART [8] and ODTS [3] from 
the literature. ART is an auto-regression based outlier detection technique for wireless 
sensor network which estimates the value using an auto-regression model and 
compare the estimated value with the data value received; if the distance is greater 
than a user defined threshold the data point is identified as outlier., The ODTS is an 
outlier detection technique for time series. It uses a sliding window to store the recent 
subset of the data and compare each data point with median value, if the distance is 
greater than user defined threshold the point is identified as outlier. Since ODTS uses 
a sliding window, we run the experiments with the window sizes 10, 15, 20, … , 100 
and report the average performances. In this section, we first describe the dataset and 
simulation model, and then present the experimental results.  
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4.1   Dataset 

The California Irrigation Management Information System (CIMIS) manages a 
network of over 120 automated weather stations in California [7]. Each weather 
station collects data in every minute and calculates hourly and daily values. The data 
are analyzed and stored in the CIMIS database and publicly available. The measured 
attributes are solar radiation, air temperature, relative humidity, wind speed, soil 
temperature, etc. For our experiments, we use the daily soil temperature data collected 
from 1998 to 2009, and implanted the random synthesized outliers in them along with 
inherent outliers. We use fifty stations in random and report the average results. On 
average each station has 4000 rounds of data (total 200,000 data rounds).The first 500 
data points are used for bootstrapping from each data stream. This dataset has 
consecutive rounds of inherent outliers. We use 7% outliers for all of our experiments, 
except for those experiments in which we vary the percentage of outliers to study its 
impacts on the algorithms’ performance.   

4.2   Simulation Model 

In our simulation model we mimic the typical data streams architecture. Each data 
source produces one data stream. We create the virtual data sources and the virtual 
base station. Each virtual data source obtains a data value at a fixed interval and sends 
it to the virtual base station. The virtual base station receives one data point from one 
data stream at a time and processes it. We execute DBOD-DS, ART and ODTS, one 
technique at a time, at the base virtual base station to detect the outliers. The entire 
simulation model is built on the Java platform and we ran the simulation using GNU 
Compiler for the Java version 1.4.2. The GNU was running on Red Hat Linux 
Enterprise 5 [29]. We use the Cluster Supercomputer at the University of Oklahoma 
to run our simulation experiments. The comparison is fair since each technique is run 
on the same machine. 

4.3   Accuracy 

We measure the accuracy in terms of Jaccard Coefficient (JC) and Area Under the 
receiver operator characteristic Curve (AUC). A good outlier detection technique is 
the one which maximizes true positive (TP) and minimizes false negative (FN) and 
false positive (FP). Basu and Meckesheimer [3] proposed the use of Jaccard 
Coefficient (JC) as a performance metric for outlier detection. Mathematically JC 

defined as . The metric (JC) consider the true positive, false negative 

and false positive.  JC is inversely proportional to the wrong classification and 
directly proportional to the correct classification, and assigns equal weight to the 
correct classification and the wrong classification [3].  So, the better JC an outlier 
detection algorithm yields the more accurate results the algorithm provides. However, 
JC is not independent of the distribution of inliers and outliers. We use the receiver 
operator characteristic (ROC) curve to establish a distribution independent 
performance metric. On top of this, ROC curve has two other fascinating properties: 
1) the ROC curve is not sensitive to a particular choice of the cut-off value and 2) the 
Area Under the ROC curve (AUC) provides a single scalar value which represents the 
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performance of the classifier [12]. The ROC curve is a two dimensional graph in 

which the true positive rate (TPR, ) goes along the y-axis and the false 

positive rate (FPR, , TN is true negative) goes along the x-axis. TPR is 

the rate of correct classification (called benefit) and FPR is the wrong classification 
(called cost); hence the ROC curve is the graph of cost vs. benefit [12]. The algorithm 
which has higher AUC is considered as a better algorithm. The optimal algorithm will 
increase the TPR without increasing the FPR; if we push it further it will increase the 
FPR only because there is no room for improvement of TPR; hence the graph will be 
two line segments joining 0, 0) to 0, 1) which is called conservative region and 0, 1) to 1, 1) which is called flexible region. So the better algorithm will follow the 
curve of the optimal algorithm.  The results for ART, ODTS and DBOD-DS are 
reported for the optimal cut-off value which maximizes the Jaccard Coefficient of the 
respective algorithms. The next two sections (4.3.1 and 4.3.2) compare the three 
algorithms in terms of JC and ROC, respectively. 

4.3.1   Jaccard Coefficient (JC) 

 
Fig. 3. JC of each algorithm   

Figure 3 shows the Jaccard Coefficient with respect to different percentages of 
outliers for our dataset. DBOD-DS outperforms all other algorithms regardless of the 
percentage of outliers.  The JC for DBOD-DS is almost twice of the JC of the other 
two algorithms. DBOD-DS, ART and ODTS show constant JC with respect to change 
of the percentage of outliers. If the percentage of outlier increases, the true positive 
increases along with false negative and false positive; hence the increment of the 
numerator and denumerator in the JC formula makes JC constant with respect to the 
percentage of outliers. 

4.3.2   Receiver Operator Characteristic Curve  
Mostly the performance of the ART, ODTS and DBOD-DS depends on the 
correctness of their respective thresholds. Hence, we compare DBOD-DS with those 
two algorithms to establish a parameter less comparison metric. Figure 4 shows the  
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Fig. 4. Receiver operator characteristic curve 

ROC curve for DBOD-DS, ART and ODTS for the dataset.  DBOD-DS performs 
very well in the conservative region [12]; it correctly identifies the outliers without 
increasing the false positive ratio after the true positive ratio reaches 0.8, which is 
very close to the optimal performance. The optimal performance in the conservative 
region resembles the fact that DBOD-DS is capable of identifying true positives 
without increasing false positives (the sharp transition from the conservative region to 
the flexible region in Figure 4 confirms this fact). The most important plus point for 
the ROC curve is that the area under the curve (AUC) resembles a single metric for 
performance comparison among two classifiers. The AUC for DBOD-DS is 0.94 and 
the AUC for ART and ODTS are 0.82 and 0.88, respectively.. Interestingly, the 
performance of ODTS is better than that of ART in terms of AUC. This is because 
ODTS produces fewer false negatives than ART. The most appealing characteristic of 
AUC is that it resembles the probability of correct classification regardless of the 
percentage of outliers; therefore, in terms of AUC, DBOD-DS is much more superior 
to ART and ODTS.  

4.4   Execution Time 

The DBOD-DS performs much better than the other two algorithms in terms of JC 
and AUC, but this performance benefit does not come without cost. The DBOD-DS 
takes more execution time compared to ART and ODTS. Figure 5 shows the 
execution time for the algorithms with respect to the change of the percentage of 
outliers. The time is recorded for each round from receiving a data point to identifying 
its outlier-ness. On an average DBOD-DS takes twice more time than ART and 20 
times more time than ODTS but the execution time for DBOD-DS is less than 1.5 
milliseconds. The outlier detection takes place within two rounds and this time is 
practically enough for any type of data stream. In a typical data stream application the 
data source is kept onsite and the data values travel from the data source to the base 
station. Sending frequency lower than 1 millisecond is impractical for most of the 
current data stream applications. The execution time increases a little bit with the 
increase of the percentage of outlier; this is because if the percentage of outliers 
increases, the dispersion of the probability density function increases, hence more bin  
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needs update for each data point. In our opinion the extra time is worthy for DBOD-
DS because it offers a significant performance improvement over ART and ODTS in 
terms accuracy.  

 
Fig. 5. Execution time for each algorithm with respect to percentage of outliers  

5   Conclusions and Future Research 

We have developed an outlier detection algorithm for data stream applications based 
on our novel probability density estimation function. The performance of our 
algorithm compared with that of the existing algorithms in the literature is shown by 
extensive empirical studies on a real dataset. Our algorithm outperforms the existing 
algorithms in terms of accuracy, but requires more time to execute.  However, the 
time our algorithm needs is less than 1.5 milliseconds, which is much smaller than the 
time required sending and receiving data in many data stream applications.  From our 
empirical studies it is clear that our algorithm can perform excellently for a reasonable 
percentage of outliers. Even though we designed the algorithm considering both 
single dimensional data and multi dimensional data, our experiments so far have 
focused on the former case. In our future experiments we want to cover multi 
dimensional data. In addition, we want to extend our novel probability density 
function to estimate the data values and to detect concept drifts. In our technique we 
require user-defined parameters to identify outliers; it would be interesting to make 
our approach completely intelligent so that it would not expect any parameter from 
the user. 
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Abstract. An increasing number of applications include recommender systems
that have to perform search in a non-metric similarity space, thus creating an in-
creasing demand for efficient yet flexible indexing techniques to facilitate similar-
ity search. This demand is further fueled by the growing volume of data available
to recommender systems.

This paper addresses the demand in the specific domain of music recommen-
dation. The paper presents the Music On Demand framework where music re-
trieval is performed in a continuous, stream-based fashion. Similarity measures
between songs, which are computed on high-dimensional feature spaces, often
do not obey the triangular inequality, meaning that existing indexing techniques
for high-dimensional data are infeasible.

The most prominent contribution of the paper is the proposal of an indexing
approach that is effective for non-metric similarities. This is achieved by using
a number of bitmap indexes combined with effective bitmap compression tech-
niques. Experiments show that the approach scales well.

1 Introduction

Recommender systems are becoming increasingly present in many applications. The
growing volume of data available to these recommender systems has created a increas-
ing demand for efficient yet flexible indexing techniques able to facilitate similarity
search. However, in many emerging domains, the similarity spaces are non-metric,
meaning that existing approaches are not feasible. Therefore, a major challenge is to
develop an indexing technique for non-metric similarity spaces. This paper tackles this
challenge in the specific context of music recommendation, but the approach can be
applied to a wide variety of systems.

The current tendency in music distribution is that personal music collections are be-
ing replaced by the notion of streaming music from commercial on-line music providers.
Here, the challenge is to support query functionalities on vast music collections where
only limited or no prior knowledge about the content of the music collection is avail-
able. However, similarity measures between songs are most often complex formulas
computed on high-dimensional feature spaces. These similarity measures, such as the
Earth Mover’s Distance, often behave “strangely”, as they are non-metric. In partic-
ular, the triangular inequality often does not hold. This means that existing indexing
techniques for high-dimensional data are infeasible. The aim of this paper is to pro-
pose an indexing solution that supports the “worst case”, namely non-metric similarity
measures, well.
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This paper introduces the Music On Demand framework, referred to as the MOD
framework, and presents two major contributions. The first contribution is an index-
ing approach that is effective for non-metric similarity measures. The second major
contribution is effective query processing techniques to perform similarity search. Our
approach essentially relies on using bitmap indexes combined with effective bitmap
compression techniques.

This approach ensures efficient management of both metadata and content-based sim-
ilarity. Representing the entire music collection as well as subsets thereof as bitmaps,
we are able to use bit-wise operations to ensure efficient generation of multi attribute
subsets representing, e.g., all songs by Madonna released this year. These subsets may
in turn be applied as restrictions to the entire music collection. Similarly, using bitmaps
to represent groupings of similar songs with respect to a given base song, we are able
to identify and retrieve similar/dissimilar songs using bit-wise operations.

Extensive experiments show that the proposed approach scales with respect to the
data set size and the number of concurrent requests. Query performance, throughput,
and storage requirements are presented on a prototypical version of the MODframe-
work. For example, the prototype system running on a standard laptop is able to support
36,000 simultaneous users on a database of 100,000 songs. Comparing our implemen-
tation with an equivalent B-tree solution, we improve the query execution time by an
order of magnitude on a music collection containing 100,000 songs.

The paper is organized as follows. Section 2describes related work. Section 3presents
an informal description of a data and query model for dynamic playlist generation. In
Section 4, we elaborate on the application of bitmaps followed by an examination of the
associated query processing techniques in Section 5. In Section 6, we discuss and evalu-
ate the experiments conducted using bitmap indexing. Finally, in Section 7 we conclude
and present directions for future work.

2 Related Work

Within the field of Music Information Retrieval, much effort has been put into the task
of enabling music lovers to explore individual music collections [12, 14]. Within this
context, several research projects [17, 13] have been conducted in order to pursue a
suitable similarity measure for music, for which purpose a feature representation of the
musical content is required. In accordance with the different feature representations of
musical content, the current research is going in the direction of automating the task
of finding similar songs within music collections [2, 18]. However, due to the subjec-
tiveness of musical perception, the similarity measure described disobey the triangular
inequality and are thus said to be non-metric. Several non-metric similarity measures
exist [3, 11, 21].

When considering indexing of high dimensional musical feature representations, ex-
isting indexing techniques such as, e.g., the M-grid [7] and the M-tree [6] can be ap-
plied. However, as discussed above, the triangular inequality property of the metric
space typically cannot be obeyed for a similarity measure. Hence, as the M-tree and
the M-grid, and many other high-dimensional indexing techniques, rely on the use of a
metric space, they turn out to be insufficient. In contrast, the approach presented in this
paper does not require the triangular inequality to hold.
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To ensure efficient retrieval of read-mostly data, bitmap indexes are popular data
structures for use in commercial data warehouse applications [9]. In addition, bitmap
indexes are used with respect to bulky scientific data in order to represent static informa-
tion. One approach is related to High-Energy Physics [22]. However, to our knowledge,
bitmap indexing has so far not been applied within music retrieval.

Many different approaches exist to support accurate music recommendation. A first
approach uses musical content to find similar songs, where immediate user interaction
in terms of skipping behavior is used to restrict the music collection [19]. Unlike this
approach we do not rely on the actual distances when determining what song to return,
as songs are clustered into groups of similar songs. A second approach maps the task of
finding similar songs to the Traveling Salesman problem (TSP) [21]. A single circular
playlist consisting of all tracks from the entire music collection is generated, and the
ability to intervene in the construction of playlist is taken away from the listener. In
contrast, the single song approach presented in this paper, ensures that the construction
of a playlist may be influenced dynamically. Unlike the present paper, none of these
two approaches provide an indexing approach capable of handling arbitrary similarity
measures.

Finally, in most commercial media players such as WinampTM, the metadata of mu-
sic presumes a flat structure. However, to enable an enriched description of the metadata
of music, we choose explicitly to view metadata in the form of a multidimensional cube
known from the literature of multidimensional databases [20, 23]. The metadata of mu-
sic is thus considered as a number of metadata dimensions, modelled in a hierarchical
manner, which constitutes a multidimensional cube. Through this approach we are able
to select songs in accordance with the individual levels of a given hierarchy of a meta-
data dimension.

3 Data and Query Model

We briefly present the underlying music data model and the associated query function-
alities of the MOD framework. The full details can be found in another paper [8].

Initially, we introduce a metadata dimension in order to apply an abstraction to a
hierarchical representation of the music metadata. As shown in Figure 1, the hierar-
chical ordering of the metadata is described as two posets (partially ordered sets). The
first poset represents the hierarchical ordering of dimension levels and the second poset
represents the hierarchical ordering of the dimension values.

A metadata dimension consists of both dimension levels and dimension values, where
a dimension level has a number of associated dimension values. Using posets to model
hierarchies we achieve that both regular and irregular dimension hierarchies are sup-
ported. Irregular hierarchies occur when the mappings in the dimension values do not
obey the properties stating that a given hierarchy should be onto, covering and strict
[20]. Informally, a hierarchy is onto if the hierarchy is balanced, covering when no
paths skip a level and strict if a child in the hierarchy has just one parent. The metadata
of music is composed of descriptive attributes such as artist, title, etc. The metadata at-
tributes are presented as dimension values where a metadata item and the corresponding
schema are defined. To ensure that the model supports querying with respect to tradi-
tional navigational methods as well as musical similarity, a song is defined in terms of
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Fig. 1. Schema (left) and instance (right) for
the metadata dimension dgenre
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Fig. 2. Usage of the distance store

both tangible music metadata and musical content. In this context, metadata represents
elements such as artist, genre, etc. and musical content corresponds to an arbitrary fea-
ture representation of the music. In addition, an arbitrary distance function dist may be
used to calculate the content-based similarity between two songs with respect to their
associated feature representations. The distance function is allowed to be non-metric as
long as the identity property is retained, i.e., dist(x, x) = 0.

When considering the content-based similarity between songs, we introduce the dis-
tance store as an abstraction over an arbitrary distance function. A distance store is
a complete partitioning of the distance domain, implying that no partitions are omit-
ted and that no partitions should overlap. Thus, each partition constitutes a unique and
non-overlapping distance interval.

The two retrieval operators SimilarSong and RandomSong constitute the main point
of interacting with the framework. The purpose of SimilarSong is to retrieve a song sim-
ilar to a given seed song, while in the same time avoiding that the retrieved songs re-
sembles possible skipped songs. As the name indicates, the task of RandomSong is to
retrieve a randomly chosen song from the music collection. In this connection the as-
pects of skipped songs also apply. Moreover, as the listener may choose to intervene in
the construction of the playlist at any point in time, either of the operators only return a
single song at a time. To fetch a similar song, using the SimilarSong operator, we are ini-
tially presented a specific seed song as shown in Figure 2(a). Assuming that each circle
represents a partition of the distance store associated with song sseed, we are to return
a song from the innermost partition containing valid songs. In this context, a valid song
is a song neither restricted nor skipped. As any song within the appropriate partitions
are valid candidate songs, either song b or d may be returned as a song similar to sseed.
However, say that b is more similar to an already skipped song, d is the better candidate.

The distance store shown in Figure 2(b) constitutes a composite distance store repre-
senting all skipped songs as discussed above. When fetching a randomly chosen song,
using the RandomSong operator, we initially pick a number of candidate songs among
the valid songs in the music collection. In this case songs a, c and d are picked. As the
candidate songs are chosen randomly within a vast music collection, chances are that
even a small number of songs, e.g., 10, ensures retrieval of an acceptable song. Locating
the positions of the candidate songs within the composite skip distance store we return
the song most dissimilar to any of the skipped songs. In this case either song a or c is
returned.
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Fig. 4. Structure of the metadata records

Finally, the MOD framework apply the ability to restrict the entire music collection
in accordance with relevant music metadata such as genre, artist, etc.

4 Distance and Metadata Indexes

4.1 Distance Management

As indicated earlier, n distance stores are required for a music collection containing n
songs, and each distance store has to hold all n songs. Thus, to cope with this n2 space
complexity a compact representation of the subsets is greatly needed. Moreover, as we
deal with vast music collections that potentially may contain millions of songs, latency
may occur when querying songs. By use of bitmap indexes [5], we have obtained not
only a compact representation of the songs but moreover a very good query performance
of the implemented music data model reducing the overall latency.

Assume now that a certain known order of the songs within a music collection ex-
ists, e.g., the order of insertion. A subset of songs from the music collection can then be
represented by a bitmap, i.e., a sequence of bits, following the same order as the order
of the songs within the music collection, where 1 (set) bits are found only for the songs
contained in the subset. Thus, aside from representing the overall music collection of
available songs, bitmaps may moreover be used to represent subsets of the music col-
lection such as songs having a similar metadata attribute, the skipped songs or the songs
contained in the history of played songs. Moreover, having a known order of the songs
within the music collection a single song is uniquely identified by its position within
the music collection, indicating that the first song is located at position one. In the fol-
lowing we assume a 32 bit computer architecture, whereby a single bitwise instruction
computes 32 bits at once.

Using the equality encoding scheme for bitmap indexes, each distinct attribute value
is encoded as one bitmap having as many bits as the number of records in the relation,
i.e., the music collection [1, 5].

Selecting music in accordance with multiple attributes across several relations, bit-
wise bitmap operations may be used to replace expensive joins performed between the
involved relations [15, 16]. Suppose that a listener wishes to select all music performed
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by the artists Madonna and U2 released in the year 2005. For this particular example,
a bit-wise OR is performed on the appropriate bitmaps of the artist relation in order to
generate the combined bitmap representing the songs performed by both Madonna and
U2. In addition, performing a bit-wise AND on the combined bitmap and the bitmap
representing all songs released in the year 2005 associated with the release relation,
the wished selection is achieved. Additionally, using bitmaps to represent the history
of played songs and the collection of skipped songs, bit-wise operations may be used
to ensure that neither songs recently played nor songs contained in the collection of
skipped songs are returned to the listener.

Even though bitmap indexes constitute a compact representation of bulky data the na-
ture of bitmaps provides the means for ensuring an even more compact representation
by applying different techniques. In this paper, we discuss the use of two well-known
bitmap compression scheme called the WAH (Word-Aligned Hybrid) [24], and an alter-
native representation technique known as AVD (Attribute Value Decomposition) [5].

In Section 3 the concept of the distance store was initially presented. To elaborate on
the technical aspects of the distance management, this section describes how a number
of distance stores constitute the handling of the distances between the songs managed
by the MOD framework.

As described in Section 3, a distance store consists of a number of partitions each
corresponding to an associated distance interval. Hence, each partition is represented
by a single bitmap indicating the songs belonging to the associated distance interval.
The collection of bitmaps required for a single distance store, constitutes a bitmap in-
dex for the distances of the songs with respect to the base song of the distance store.
In Figure 3(a) an abstraction of a bitmap index of a distance store is illustrated for a
collection of 5 songs having song s as the base song for the distance store. The music
collection S is grouped into separate subsets S1 through S3 which constitute the indi-
vidual partitions and their associated distance intervals. Considering the aspects of the
WAH compression scheme, we need to consider whether a compression of the distance
store is achievable. For that purpose we initially turn our attention to the structure of
the partition record shown in Figure 3(b). Part 1 represents the positions of a given song
and part 2 represents a numbered index indicating the position of the partition within
the distance store. Together these constitutes a composite primary key. Part 3 contains
the partition bitmap, which identifies all songs contained in the partition defined by part
1 and 2.

The space occupied by the first two parts of the partition record increases linearly as
the number of songs increases. The space occupied by the partition bitmap, i.e., the third
part in the partition record presented, constitutes the most crucial part of the total space
required for the distance management. In this worst-case analysis it is assumed that the
1 bits within a partition bitmap are located at certain places to achieve the worst possible
compression. In addition, all 1 bits are distributed equally among the given number of
partitions. To illustrate, having just a single 1 bit represented in each word to compress,
it implies that no space reduction is achievable when applying WAH compression, as
all compressed words are literal words. As the number of distance stores increases, the
bit density in each store decreases and leads to a better compression ratio.



Effective Bitmap Indexing for Non-metric Similarities 143

SubgenreID Subgenre GenreID
1
2
3
4

”Soft Pop”
”Hard Rock”

”Brit Pop”
”Modern Jazz”

1
2
1
3

Subgenre (depth 2)
Bitmap
1000
0100
0010
0001

TitleID Title
1
2
3
4

”The Fine Art”
”T.N.T.”

”Wonder Wall”
”Twentysomething”

Title (depth 1)
Bitmap
1000
0100
0010
0001

GenreID Genre
1
2
3

”Pop”
”Rock”
”Jazz”

Genre (depth 1)
Bitmap
1010
0100
0001

TitleID SubgenreID
1
2
3
4

1
2
3
4

TitleLevelDepth
1
1
1
1

GenreLevelDepth
2
2
2
2

Fig. 5. Snowflake schema having the dtitle and dgenre metadata dimensions

4.2 Metadata Management

To represent the multidimensional cube in a relational database, we adopt the snowflake
schema known from multidimensional databases [23]. The snowflake schema is com-
posed of a central fact table and a set of associated dimensions. The snowflake schema
satisfies the structure of the metadata hierarchies by allowing a metadata dimension
to be represented as a number of dimension tables. Each dimension level in the meta-
data hierarchy corresponds to a dimension table. While this saves space, it is known to
increases the number of dimension tables thus resulting in more complex queries and
reduced query performance [10]. However, as the purpose of the multidimensional cube
in the MOD framework is to find the bitmaps, no expensive join queries are to be per-
formed, as selections based on multiple attributes are performed by applying bit-wise
operations on the corresponding bitmaps.

As stated, a metadata dimension in a relational database is represented as a number
of dimension tables, where each dimension table corresponds to a level in a metadata
hierarchy. According to the snowflake schema representing the metadata within the
MOD framework, there exists two types of relations used as dimension tables. Records
of both types of relations can be seen in Figure 4. The level record in Figure 4(a) is
used for the highest level within each dimension. For efficient access, the relation is
defined as clustered having the id attribute as the primary key. The sub level record
in Figure 4(b) is clustered in accordance with the super id attribute, that is associated
with a given superordinate level. This ensures an efficient foundation for hierarchical
metadata navigation, as, e.g., the subgenres of a given genre are stored consecutively
within the relation. However, as metadata may be accessed using ids, we maintain an
index on the id attribute of the relation. The bitmap contained within each of the records,
represents the songs which are associated with the dimension value of the records.

In Figure 5 we consider the structure of the snowflake schema representing the fact
table and dimension tables discussed above with respect to the metadata dimensions
dtitle and dgenre. From the fact table it appears that the involved music collection is
represented by a bitmap with four bits. The first bit in the each bitmap corresponds to
the first song in the managed music collection, the second bit to the second song, etc.
Along with the foreign keys in the fact table, the level depths are shown. From these it
can be seen, that the most specific dimension value of all the songs corresponds to the
bottom level of the hierarchies. In addition, aggregations of the bitmaps from a sub level
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to a superordinate level are applied within the dimension hierarchy by use of bit-wise
operations. As the bitmaps of the dimensions tables to a great extend contain only few
1 bits, these bitmaps may be highly compressed using the WAH compression scheme.

5 Query Processing

Having described the application of the bitmaps for both distance management and
metadata management, these bitmaps may be combined in a single query in order to re-
quest songs from a restricted music collection. In this section we use pseudo algorithms
to describe how to process such queries when requesting similar or random songs.

To describe the retrieval operators RandomSong and SimilarSong introduces in
Section 3, we introduce the two helper functions GenerateCompSkip and FetchRan-
domSongs. The task of GenerateCompSkip is to cache the composite distance stores
representing the distance stores of all skipped songs for each of the individual music
players interacting with the MOD framework. The composite distance store represent-
ing the distance stores of all skipped songs is denoted as the composite skip distance
store. Using a unique user id representing a specific music player, the cached com-
posite skip distance store is accessible for retrieval and manipulation. The purpose of
FetchRandomSongs is to enable the possibility to retrieve a specified number of ran-
domly chosen songs from a given music collection represented by a bitmap.

The music collection initially passed to the respective two retrieval operators is de-
noted as the search collection and constitutes either the entire music collection or a
subset of the entire collection. The search collection is a subset of the entire collection
if a metadata restriction has occurred. Once the search collection has been restricted by
the skipped songs and the songs contained in the history of played songs, the collection
of the remaining songs is denoted as the valid collection. Performing a further restric-
tion by all songs similar to the skipped songs we end up with a collection of songs
denoted as the candidate collection.

All restrictions, i.e., p \ q, are performed using the syntax p AND (p XOR q) where
p is the collection to restrict and q is the collection to restrict by. The alternative syntax,
p AND NOT q, is unusable as the size of the entire music collection can not be derived
from the individual bitmaps where consecutive 0 bits are omitted from the end of the
bitmaps as described in Section 4. The prefix notation b is used to denote a bitmap.

The task of RandomSong, is to find a subset of randomly chosen candidate songs
from which the song least similar to any of the skipped songs is to be returned. The
purpose of the selected candidate songs is to constitute a quality measure for the song
to return. The operator RandomSong described in Algorithm 1, takes as input param-
eters three bitmaps representing the current search collection, the history and the set
of skipped songs. In addition, an integer q is passed in order to specify the number of
candidate songs among which to choose the song to return. Finally, the operator takes a
parameter representing a user id indicating the music player currently interacting with
the MOD framework. The id is used to identify a cached composite skip distance store.

The task of SimilarSong, is to find and return a single song considered most similar
to a given seed song. In this context it is ensured, that no songs close to any skipped
songs is returned. As input parameters, the operator SimilarSong presented in Algo-
rithm 2 takes three bitmaps representing the search collection, the history and the set
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Algorithm 1.
Pseudo code for RandomSong.

RANDOMSONG

(b coll, b hist, b skip, q, userId)

1 filePath ← empty string
2 songPosition ← Null
3 b validColl ← b coll AND

(b coll XOR (b skip OR b hist))
4 b randomColl ←

FETCHRANDOMSONGS(q, b validColl)
5 compositeSkipDS ←

GENERATECOMPSKIP(b skip, userId)
6 for each partition b p in compositeSkipDS

starting with the partition representing the least
similar songs.

7 do � Check if candidate songs are available
8 b candidateColl ←

b randomColl AND b p
9 if BITCOUNT(b candidateColl) > 0

10 then � Choose a position for a random song
11 songPosition

← RANDOM(b candidateColl)
12 break
13 if songPosition <> Null
14 then � Fetch the file path for the song found
15 songRecord

← FACTTABLELOOKUP (songPosition)
16 filePath

← CUBELOOKUP(
songRecord.filenameID,
“Filename”)

17 return filePath

Algorithm 2.
Pseudo code for SimilarSong.

SIMILARSONG

(b coll, b hist,b skip,seedsongPosition, userId)

1 filePath ← empty string
2 songPosition ← Null
3 b validColl ← b coll AND

(b coll XOR (b skip OR b hist))
4 compositeSkipDS

← GENERATECOMPSKIP(b skip, userId)
5 seedsongDS

← DISTANCESTORELOOKUP

(seedsongPosition)
6 b accSkip ← empty bitmap
7 for each partition b p in compositeSkipDS

and b q in seedsongDS starting with the partition
representing the most similar songs

8 do � Check if candidate songs are available
9 b accSkip ← b accSkip OR b p

10 b candidateColl ← validColl AND
(b q AND (b q XOR b accSkip))

11 if BITCOUNT(b candidateColl) > 0
12 then � Choose a position for a random song
13 songPosition

← RANDOM(b candidateColl)
14 break
15 if songPosition <> Null
16 then � Fetch the file path for the song found
17 songRecord

← FACTTABLELOOKUP (songPosition)
18 filePath

← CUBELOOKUP(songRecord.filenameID,
“Filename”)

19 return filePath

of skipped songs. In addition, the position of the seed song is passed to the operator,
stating the position of the song within a bitmap corresponding to all songs in the music
collection. Finally, the operator takes a parameter representing an user id indicating the
music player currently interacting with the MOD framework. The id is used to identify
a cached composite skip distance store.

After generation of the valid collection and the composite skip distance store, the dis-
tance store for the seed song is retrieved using the position of the seed song to perform a
lookup in the distance management relation (line 5). To find the collection of candidate
songs, the seed song distance store is traversed starting with the partition containing
the songs most similar to the seed song. This is done while consulting the content of
the corresponding partitions associated with the composite skip distance store (line 7
to 14). To ensure that only a song considered least similar to any skipped song is re-
turned, the composite skip distance store is accumulated (line 9). Thus, restricting the
partitions of the seed song distance store by the corresponding accumulated partitions
of the composite skip distance store, the collection of candidate songs is obtained while
only considering the songs contained in the valid collection. (line 10). In the remainder
of the algorithm, the position of a selected candidate song is used to retrieve the file
path of the associated audio file.
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6 Experiments

In this section the MOD framework is evaluated using various configurations. The eval-
uation concerns the space consumption introduced by the framework as well as the
query performance when random and similar songs are retrieved. Moreover, we com-
pare the MOD framework to an B-tree equivalent version. In the following, the tests
are conducted using the MOD framework implemented with Java and MS SQL Server
and are performed on a 32-bit Pentium 4 @ 3.0 GHz dual core with 3.25GB of main
memory, running both the query evaluator and the SQL Server. The storage capacity
is constituted by 3 x 400GB striped SATA disks. Each disk rotates at 7200rpm. The
bitmaps within the databases can be configured as being uncompressed or WAH com-
pressed. Additionally, when concerning the distance management, the bitmaps for the
distance stores can be represented using either AVD or not, which gives a total of four
different bitmap representations.

For test purposes, synthetic music data is generated and added to the relevant music
collections. In connection to this, aspects such as artist productivity, career duration and
the number of songs on albums are considered to ensure a real-life reflection of the gen-
erated collections. Moreover, upon adding synthetic data to the music collections, entire
albums are added in continuation of one another, which resembles the most common
way of use. When creating distance stores for synthetic data we apply random distances
between the songs. The random distances are chosen such that the number of songs
within each of the partitions of the distance stores gradually increases, starting from
the partition representing the most similar songs only to decrease at the end. As we as-
sume a highly diversified music collection, only few songs are located in the partitions
representing the most similar songs.

6.1 Space Consumption

In general, a significant space reduction is obtained by applying AVD. AVD is thereby
an obvious choice within the distance management. However applying only AVD, the
bitmaps found within the metadata cube are then not reduced in size. Hence, the total
space reduction is more optimal when applying both WAH and AVD. Moreover, it is
relevant to consult the average bitmap sizes for the applied indexing. In this context,
a difference is expected when considering the bitmaps of the metadata cube and the
distance management in isolation. Intuitively, the bitmaps within the metadata cube
contains many consecutive 0 bits and are thus subject to high compression whereas the
bitmaps of the distance management are more diversified with respect to the occurrence
of 0 and 1 bits, causing the compression techniques to become ineffective.

In Figure 6(a)the average bitmap sizes are presented for bitmaps within the metadata
cube and bitmaps within the distance management, respectively. The distance manage-
ment is configured to use AVD, for which reason the 12 partitions are represented using
only seven bitmaps. In the figures the dashed horizontal lines indicate the threshold size
needed to store 50,000 bits. The WAH compression yields a slight space overhead, i.e.,
no compression is possible. The average bitmap sizes for the metadata cube is reduced
significantly when applying WAH compression. In this case, nine bytes are used for the
average bitmap for 50,000 songs. This, in turn, causes the bars representing the cube
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(c) Random query execution.
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(d) Throughput: uncomp.
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(e) Throughput: AVD+WAH.
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(f) Similar query execution.
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(g) B-tree comparison.
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Fig. 6. results for storage, query execution and throughput

to become invisible in Figure 6(a).In the case of uncompressed bitmaps the average
bitmap size within the cube is much below the threshold size 50,000 bits as the 0 bits in
the end of the bitmaps are omitted.

Figure 6(b)shows how the number of partitions used within the distance management
influences the space consumption for the four different bitmap representations. The
space consumption of uncompressed bitmaps increases linearly to the number of parti-
tions while the other three bitmap representations reach an upper bound. The growth of
the WAH compressed type becomes minimal around 62 partitions. This is explained by
the fact that on a 32-bit architecture, 31 consecutive bits have to be identical in order to
constitute a compressible word. The WAH compression becomes effectives as soon as
two consecutive compressible words are found, that is as soon as chains of 62 identi-
cal consecutive bits are present. The WAH compression occupies less space in practice
than compared to the theoretical worst-case calculations. The remaining two bitmap
representations are very close; this indicates that WAH compression on an AVD repre-
sented distance store does not gain a notable reduction. In fact, for 6 and 12 partitions
an insignificant reduction is notable whereas for 20 partitions and above an important
overhead is introduced.

6.2 Query Performance and Throughput

We conduct the query performance experiments on the four different bitmap representa-
tions. Unless stated otherwise, all tests assume that a given music collection is restricted
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to 75% of the entire collection and that the number of partitions is fixed to 12. Moreover,
the number of skipped songs is as default set to 50 songs. Considering the properties of
the skipping behaviour of the MOD framework, 50 songs constitutes a rather large col-
lection of skipped songs as all songs resembling any of the skipped songs are restricted
from being retrieved. The test results are based on an average of 50 requests. Between
each run the cache of the SQL Server is emptied in order to ensure a fair comparison
on a cold cache.

In Figures 6(c) and (d), the average query execution time is presented for random
and similar songs, respectively. All average query execution times on a collection of
100,000 songs are found to be at most 65ms. In case of solely applying WAH compres-
sion we have obtained an average query execution time at 17ms and 22ms for querying
random and similar songs, respectively. Comparing the two types of queries the results
obtained reflect each other as the number of songs indexed increases, except that all
average query execution times for a random song are a little faster than for the corre-
sponding similar song query. The reason for this difference is due to, that a random
song is retrieved within a small subset of the entire collection. In average, the bitmap
representing this small subset has many omitted 0 bits in the end. Therefore, bit-wise
operations perform faster. Moreover, it can be seen that the two WAH compressed repre-
sentations yield faster query evaluation compared to the uncompressed representations.
The reason for this is explainable by the reduced size of the bitmaps when searching
for a candidate song in the border partitions of a distance store. The border partitions
constitute the partitions representing the most similar and the least similar songs.

As can be seen from the figure the results are nearly linear, which reflects the ex-
pected linearity of appending skipped songs to the composite skip distance store. Inde-
pendent on the chosen bitmap representation, less than 150ms is required to generate
the composite skip distance store when none or a single song is skipped. When skipping
100 songs for each bitmap representation, we initially see that the WAH representation
takes as long as 1.7s to construct the composite skip distance store. For the same amount
of skipped songs, the two AVD representations perform faster compared to the two non-
AVD representations. As we consider generation of the composite skip distance store,
distance stores for all the skipped songs should be retrieved from the database. Using
an AVD representation of the distance stores, fewer records should be fetched, which
explains the improved query performance. However, applying both AVD and WAH
compression an additional reduction is achieved. The reason for this is that the length
of the bitmaps representing the music metadata is reduced, whereby less data is the be
retrieved from the database.

Next, we conduct a throughput test to examine how many requests the MOD frame-
work is able to handle over time, when a different number of songs are indexed. To
conduct the tests we create multiple request threads, which simulates music players,
including history management, restriction and handling of skipped songs. The request
threads perform both random and similar requests, switching between performing 20
random requests and 20 requests of similar songs for a single seed song. The tests are
conducted by instantiating 50 threads, where one half starts by requesting similar songs,
and the other half random songs.
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In Figure 6(e) and (f) the results obtained by execution of the throughput test are
presented. The graphs indicates that, for all the test setups, no requests are served in
the beginning of the conducted tests. The reason for this behavior is that the compos-
ite skip distance stores are generated during the first requests. In addition, some time
elapses until the number of requests served stabilize. This is caused by the different
query execution times related to the retrieval of random and similar songs. Figure 6(e)
presents the results when applying neither AVD nor WAH. In this case we are able to
serve around 400, 200 and 100 requests per second for indexing 10,000, 50,000 and
100,000 songs, respectively. When applying both AVD and WAH we have obtained the
results presented in Figure 6(f). As expected from the previous results obtained, the
performance decreases when the number of indexed songs increases. With respect to
10,000 song we see no notable increase in the number of requests served by the MOD
framework. However, for 50,000 and 100,000 songs we are able to serve around 300
and 200 requests per second, respectively. Assuming an average request frequency for
each listener, the number of requests per second can be turned into a the number of
users that can be served simultaneously. With an average duration of three minutes per
song, the average request frequency of a listener can be set to once every three min-
utes. Hence, converted into seconds, the frequency is 5.56 · 10−3 requests per second.
Thereby, serving 200 requests per second on a database containing 100,000 songs, we
are able to serve approximately 36,000 simultaneous listeners.

Finally, we now compare our framework to a “baseline” version using B-tree indexes
for different size of the music collection. We chose a B-tree since other traditional
indexes for high-dimensional data cannot be applied as the triangular inequality cannot
be assumed to hold. The B-tree version has been indexed such as to achieve the optimal
conditions for joining the tables described above.

We compare the performance of queries based on metadata only, i.e., without con-
sidering the similarity metric. To compare the two versions we execute 50 randomly
generated restrictions in order the retrieve the filenames of the audio files associated
with these restrictions. An example of such a restriction could resemble “all songs from
the 70’s that are of the genre Rock”. The performed restrictions returns approximately
0.5% of the songs contained in the respective music collections. The outcome of this
test is presented in Figure 6(g). For a given music collection containing 100,000 songs
the B-tree version takes 709ms on average whereas the MOD framework using bitmap
indexes used only 101ms. The bitmap indexes reduces the query time by a factor 7
while the space consumptions for the two approaches are very similar. If we should
consider the similarities as well, the B-trees would have to index the distance stores for
individual songs, each consisting of many songs, that must then be merged during query
processing. B-trees are known not be an efficient way (neither time- nor space-wise) of
doing this. We also know from the previous experiments that the time for handling both
metadata and similarity in the bitmap version is not even twice of that for handling
metadata alone. Since the B-tree version is much slower, even in the case where it has
the best odds (metadata only), and the bitmap version can handle both metadata and
similarity faster than the B-tree version can handle metadata alone, we can conclude
that our bitmap approach is quite superior to using B-trees.
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7 Conclusion and Future Work

Motivated by the proliferation of recommender systems performing similarity search
in possibly non-metric similarity spaces, this paper proposes a innovative approach to
flexible, yet effective, indexing for exactly such spaces. To illustrate this approach, the
domain of music recommendation was chosen. Using a non-metric similarity measure,
we are able to retrieve songs similar to a given seed song and avoid retrieval of songs
similar to any disliked songs.

To facilitate musical similarity search, we introduced the distance store as an ab-
straction over an arbitrary similarity measure. The distance store constitutes a complete
partitioning, where each partition represents a grouping of songs considered similar to
a given base song. Applying bitmap indexes to represent each grouping, we are able to
identify and retrieve songs similar/dissimilar to a given base song using bit-wise opera-
tions on the bitmaps associated with the individual groupings. Furthermore, in order to
ensure efficient retrieval of songs based on metadata, we have constructed a metadata
cube to which we applied bitmap indexing techniques. This multidimensional cube is
mapped to a snowflake schema in an RDBMS, thus allowing a hierarchical representa-
tion of the music metadata.

We have thus demonstrated that bitmaps can be used to represent both metadata
and non-metric distance measures. Using a single index method for the different mu-
sic information, the MOD framework remains simple and highly flexible. Moreover,
we have described how the framework applies bitmap compression using the Word-
Aligned Hybrid compression scheme and the Attribute Value Decomposition technique.
Experiments showed that the approach scaled well, both in terms of query performance,
throughput, and storage requirements.

As future work, the MOD framework will be compared to other existing frameworks
and indexes using various similarity measures, e.g., CompositeMap [4]. We will also
address the use of bitmap operations. In case that numerous bitmaps are to be combined
using regular bit-wise operations, lazy implementations of the Word-Aligned Hybrid
compressed bitmap operations could increase the overall performance of the algorithms.
Hence instead of consulting the bitmaps in a pairwise fashion, only to obtain a number
of intermediate results, which again are to be consulted, the bitmaps could be stored in
a special structure delaying the consultation until the result is required.

Acknowledgments. This work was supported by the Intelligent Sound project, founded
by the Danish Research Council for Technology and Production Sciences under grant
no. 26-04-0092.

References

[1] Silberschatz, A., Korth, H., Sudershan, S.: Database System Concepts, 4th edn. McGraw-
Hill, New York (2005)

[2] Aucouturier, J., Pachet, F.: Music Similarity Measures: What’s the Use? In: Proc. of ISMIR,
pp. 157–163 (2002)

[3] Aucouturier, J.-J., Pachet, F.: Improving Timbre Similarity: How high’s the sky? Journal of
Negative Results in Speech and Audio Sciences 1(1) (2004)



Effective Bitmap Indexing for Non-metric Similarities 151

[4] Zhang, Q.X.B., Shen, J., Wang, Y.: CompositeMap: a Novel Framework for Music Similar-
ity Measure. In: Proc. of SIGIR, pp. 403–410 (1999)

[5] Chan, C.Y., Ioannidis, Y.E.: Bitmap Index Design and Evaluation. In: Proc. of SIGMOD,
pp. 355–366 (1998)

[6] Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Similarity
Search in Metric Spaces. In: Proc. of VLDB, pp. 426–435 (1997)

[7] Digout, C., Nascimento, M.A.: High-Dimensional Similarity Searches Using A Metric
Pseudo-Grid. In: Proc of ICDEW, pp. 1174–1183 (2005)

[8] Jensen, C.A., Mungure, E., Pedersen, T.B., Sørensen, K.: A Data and Query Model for
Dynamic Playlist Generation. In: Proc. of MDDM (2007)

[9] Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W.: The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data Ware-
houses. Wiley, Chichester (1998)

[10] Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling, 2nd edn. Wiley, Chichester (2002)

[11] Logan, B., Salomon, A.: A Music Similarity Function based on Signal Analysis. In: Proc.
of ICME, pp. 745–748 (2001)
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Abstract. In this paper, we study the problem of detecting near du-

plicates for high dimensional data points in an incremental manner. For

example, for an image sharing website, it would be a desirable feature

if near-duplicates can be detected whenever a user uploads a new image

into the website so that the user can take some action such as stop-

ping the upload or reporting an illegal copy. Specifically, whenever a new

point arrives, our goal is to find all points within an existing point set

that are close to the new point based on a given distance function and

a distance threshold before the new point is inserted into the data set.

Based on a well-known indexing technique, Locality Sensitive Hashing,

we propose a new approach which clearly speeds up the running time of

LSH indexing while using only a small amount of extra space. The idea

is to store a small fraction of near duplicate pairs within the existing

point set which are found when they are inserted into the data set, and

use them to prune LSH candidate sets for the newly arrived point. Ex-

tensive experiments based on three real-world data sets show that our

method consistently outperforms the original LSH approach: to reach the

same query response time, our method needs significantly less memory

than the original LSH approach. Meanwhile, the LSH theoretical guar-

antee on the quality of the search result is preserved by our approach.

Furthermore, it is easy to implement our approach based on LSH.

1 Introduction

Similarity search is an important research topic which finds applications in dif-
ferent areas. For example, finding all similar images of a query image in a large
image collection based on certain similarity measures and thresholds. Feature
vectors can be extracted from the images. Once this is done, the set of images
can be considered as a set of high dimensional points. In general, similarity search
can refer to a variety of related problems. In this paper, the problem we consider
is to answer range search queries in an incremental manner. That is, whenever a
new point arrives, find all similar/close points (based on a pre-specified similar-
ity threshold) from the set of high dimensional points arrived earlier, and then
insert the new point into the data set.
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The motivating application of this work is online near duplicate detection
for multimedia content sharing websites like Flickr1 and Youtube2. Whenever a
user is uploading an image or video, it would be desirable if near-duplicates that
are very similar (content-wise) to the one being uploaded can be retrieved and
returned to the user in real-time. In this way, the user can identify redundant
copies of the object promptly and decide if he/she should continue the upload.
In addition to personal users, enterprise users may also need this type of applica-
tions. For example, media companies such as broadcasters and newspapers may
continuously upload their images or videos to a multimedia content repository.
The copy right issue is one of their main concerns. It would be a useful feature
if near-duplicate copies can be retrieved and reported to the users during the
upload period so that the user can identify pirated copies promptly. If the new
object is illegal, the user should immediately stop the upload process.

Compared to the traditional similarity search problem, fast response is more
important for this type of applications since similarity search is only part of the
online content upload process which must be completed within at most a few
seconds. In addition to the online requirement, another characteristic of the mo-
tivating applications is that the similarity search operations is executed together
with data point insertions. In other words, the data set is created incrementally
where the near neighbors of each point are known before the point is inserted
into the data set.

To speed up the searching process, in-memory indexing techniques are ideal
solutions if the help of disk-based index are not necessary since a disk access is
an order of magnitude slower than a memory operation. For a data set with 1
million points, an index storing all the point IDs once only needs 12MB memory
assuming each ID takes 12 bytes; if each point is a 162-dimensional point and each
dimension of a point takes 4 bytes, storing all the points needs 648MB, which is
tolerable even for an inexpensive PC nowadays. Although processing Web-scale
data set with billions of points may need clusters with tens or hundreds of dis-
tributed machines, indexing an enterprise-scale data set with tens or hundreds
of millions points in main-memory is feasible using a single server with a larger
memory size. Unfortunately, to give a fast query response, the index size needed
for high-dimensional points is usually larger than the size we computed, and it
can be even larger than the data set size. Thus, in this work we focus on reducing
memory consumption of in-memory index while providing fast query response.

Although decades of research have been conducted on similarity search, the
problem is still considered challenging. One important reason is the “curse of di-
mensionality”. It has been shown that exponential space in n (number of points
in the data set) is needed to speed up the similarity search process or the search-
ing time increases exponentially with the dimensionality [2,4]. It is also shown
both theoretically and empirically [24] that all partitioning and clustering based
indexing approaches degrade to a brute force linear scan approach when the
dimensionality is sufficiently high.

1 http://www.flickr.com
2 http://www.youtube.com

http://www.flickr.com
http://www.youtube.com
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To our knowledge, a state-of-the-art solution to the similarity search problem
in practice, which provides fast query response time, is Locality Sensitive Hashing
(LSH)[12,15] although it has been proposed for a decade. Meanwhile, LSH also
provides theoretical guarantees on the quality of the solution. However, also
suffering from the “curse of dimensionality”, LSH needs large amount of space
to achieve fast query response.

1.1 Our Contributions

– We proposed a novel approach, SimPair LSH, to speed up the original LSH
method; the main idea is to take advantage of a certain number of existing
similar point pairs, and use them to prune LSH candidate sets relevant for
a given query.

– The correctness and effectiveness of the new approach is analyzed.
– Thorough experiments conducted on 3 real-world data sets show that our

method consistently outperforms LSH in terms of query time in all cases
that we tried, with a small amount of extra memory cost. To achieve the
same query time saving, we show that LSH need significantly more space.
Meanwhile, we show that our method preserves the important theoretical
guarantee on the recall of query answers.

2 Preliminaries and Related Work

2.1 Problem Statement (Incremental Range Search)

In this paper, we focus on the incremental range search problem defined as
follows: given a point q and a set P with n d-dimensional points, efficiently find
out all points in P that are similar to q based on certain similarity/distance
function and a similarity threshold τ before q is inserted into the data set. We
call the points similar to q near neighbors of q. In this problem, before evaluating
the query q, the near neighbors of all points within the data set are retrieved
when they are inserted into the data set.

Distance measure. We focus on Euclidean distance since it has been widely
used in different applications. It is not hard to extend the technique to other dis-
tance functions such as L1 and Hamming distance, as the underlying technique,
Locality Sensitive Hashing, can be applied in those cases.

In-memory index structure. We focus on in-memory index structure since
fast real-time response is the first priority in the applications we consider. For
high dimensional similarity search, the index size can be as large as or even
larger than the data set size in order to give an efficient query response time.
Therefore, reducing the memory cost while providing fast response is the main
concern of this work.

2.2 Straightforward Solution

A straightforward solution to this problem is LinearScan: compute the distance
between q and each point p in P ; if the similarity is above the given similarity
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threshold, output this point. It is not hard to see that this approach can be very
slow for large data sets, especially when the dimensionality d is large; in the case
of Euclidean distance, LinearScan takes O(nd) time for each query.

2.3 Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH) [15,12] was proposed by Indyk and Motwani
and finds applications in different areas including multimedia near duplicate
detection (e.g. [9], [11], [17]). LSH was first applied in indexing high-dimensional
points for Hamming distance [12], and later extended to Lp distance [10] where
L2 is Euclidean distance, which we will use in this paper.

The basic idea of LSH is to use certain hash functions to map each multi-
dimensional point into a scalar; the hash functions used have the property that
similar points have higher probability to be mapped together than dissimilar
points. When LSH is used for indexing a set of points to speed up similarity
search, the procedure is as follows: first, create an index (a hash table) by hashing
all points in the data set P into different buckets based on their hash values;
select L hash functions uniformly at random from a LSH hash function family
and create L hash tables; when the query point q arrives, use the same set of
hash functions to map q into L buckets, one from each hash table; retrieve all
points from the L buckets into a candidate set C and remove duplicate points in
C; for each point in C compute its distance to q and output those points similar
to q.

An essential part of LSH is the hash function family H . For Euclidean dis-
tance, the hash function family can be constructed as follows [10]: map a multi-
dimensional point p into a scalar by using the function h(p) = �a·p+b

r � where
a is a random vector whose coordinates are picked uniformly at random from
a normal distribution, and b is a random variable uniformly distributed in the
range [0, r]. In this hash function, the dot product a · p is projecting each multi-
dimensional point p into a random line; the line is cut into multiple intervals
with length r; the hash value shows which interval p is mapped to after a ran-
dom shift of length b. Intuitively, it is clear that closer points have higher chance
being mapped into the same interval than distant points under this random
projection. Last, generate a new hash function g(p) to be used in constructing
a hash table by concatenating k hi(p) (i = 1 . . . k), each chosen uniformly at
random from H , i.e. g(p) = (h1(p), . . . , hk(p)).

The nice property of the LSH is that the probability that two points p1 and
p2 are hashed into the same bucket is proportional to their distance c, and this
probability can be explicitly computed using the following formulas:

p(c) = Pr[h(p1) = h(p2)] =
∫ r

0

(
1
c

)
f

(
t

c

) (
1− t

r

)
dt, (1)

where f(t) is the probability density function of the absolute value of the normal
distribution. Having p(c), we can further compute the collision probability under
H :

P (c) = Pr[H(p1) = H(p2)] = 1− (1− p(c)k)L. (2)
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2.4 Other LSH-Based Approaches

Since proposed, LSH has been extended in different directions. Lv et al. [20]
proposed multi-probe LSH, and showed experimentally that their method sig-
nificantly reduced space cost while achieving the same search quality and similar
time efficiency compared with original LSH. The key idea of multi-probe LSH
is that the algorithm not only searches for the near neighbors in the buckets to
which the query point q is hashed, it also searches the buckets where the near
neighbors have slightly less chance to appear. The benefit of multi-probe LSH
is that each hash table can be better utilized since more than one bucket of
a hash table is checked, which decreases the number of hash tables. However,
multi-probe LSH does not provide the important search quality guarantee as
LSH does. The original LSH scheme guarantees that the true results will be
returned by the search algorithm with high probability, while multi-probe could
not. This makes multi-probe LSH not applicable in those applications where
the quality of the retrieval results are required to be guaranteed. The idea of
multi-probe LSH was inspired by earlier work investigating entropy-based LSH
[21]. The key idea is to guess which buckets the near neighbors of q are likely to
appear in by randomly generating some “probing” near neighbors and checking
their hash values. Similar to multi-probe LSH, entropy-based LSH also reduces
the number of hash tables required. In practice, though, it is difficult to generate
proper “probing” near neighbors in a data-independent way [20].

Another extension of LSH is LSH forest [5] where multiple hash tables with
different parameter settings are constructed such that different queries can be
handled with different settings. In the theory community, a near-optimal LSH
[2] has been proposed; however, currently it is mostly of theoretical interest
because the asymptotic running time improvement is achieved only for a very
large number of input points [4]. More LSH related work can be found in a
recent survey [4]. This survey also observes, that despite decades of research,
current solutions still suffer from the “the curse of dimensionality”. In fact, for
a large enough dimensionality, current solutions provide little improvement over
LinearScan, both in theory and in practice [4]. We further note that the technique
in this paper is orthogonal to the other LSH variants described above and can
be applied in those scenarios.

2.5 Tree-Based Indexing Techniques

When the dimensionality is relatively low (e.g. 10 or 20), tree-based indexing
techniques are known to be efficient. Examples include kd-trees [6], R-tree [14],
SR-tree [16], cover-trees [8] and navigating-nets [19]. These methods do not scale
well with the (intrinsic) dimensionality. Weber et al. [24] show that when the
dimensionality exceeds 10, all space partitioning and clustering based indexing
techniques degrade to LinearScan. For indexing high dimensional points, B+
tree is also used together with different techniques handling the “dimensionality
curse”, such as iDistance [25] and LDC [18]. Other tree-based approaches like
IQ-tree [7] and A-tree [22] use a smaller vector to represent the data points
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approximately which helps to reduce the complexity of the problem. Different
from the LSH based approaches where large amount of space is traded for gaining
fast response time, the tree-based approaches have less concern on index space
while they usually have faster but comparable query time as LinearScan.

Due to the intensive research within the past decades, there are a large body
of related literature which cannot be covered here. Samet’s book [23] provides a
comprehensive survey on this topic.

3 SimPair LSH

Our approach is based on the standard LSH indexing, and takes advantage of
existing similar pair information to accelerate the running time of LSH. We thus
call it SimPair LSH. Unless noted otherwise, LSH denotes the original LSH
indexing method in the rest of this paper.

3.1 Key Idea

We observe that LSH retrieves all points stored in the buckets a query point q
hashed to. Let the set of points returned by LSH be the candidate set C. Then
q is compared with all the points in C as in LinearScan, and the near neighbors
are found. To guarantee a low chance of missing a near neighbor in C, a large
number of hash tables has to be created which may lead to a large C depending
on the query q, and accordingly increase the running time especially when d is
large.

The main idea of this paper is to take advantage of a certain number of pair-
wise similar points in the data set and store them in memory; in the process
of scanning through C, the search algorithm can look up the similar pair list
on-the-fly whenever a distance computation between q and a point p in C is
done; if a similar pair (p, p′) is found in the list, it is very likely that p′ will also
appear in C; based on the known distances d(q, p) and d(p, p′) we can infer an
upper bound to d(q, p′) by using triangle inequality and may skip the distance
computation between q and p′. The reason this idea works is that LSH tends to
group similar objects into the candidate set C. Thus the points in C are very
likely to be similar to each other. Checking one point p can avoid computing
distance for the points similar to p, and therefore saving distance computations.

3.2 The SimPair LSH Algorithm

Our SimPair LSH algorithm works as follows: given a set of points P and all
point pairs (including their distances) whose pair-wise distances are smaller than
a threshold θ (let the set of all similar pairs be SP ). Also given the distance
threshold τ determining near neighbors, SimPair LSH then creates L indices as
in LSH; whenever a query point q comes, SimPair LSH retrieves all points in
the buckets to which q is hashed. Let this set of points be the candidate set C.
Instead of scanning through all the points p in C one by one and compute their
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distances to q as in LSH, SimPair LSH checks the pre-computed similar pair
set SP whenever a distance computation d(q, p) is done. Based on the distance
between p and q, SimPair LSH continues in 2 different ways:

– If d(q, p) <= τ , SimPair LSH searches in SP for all points p′ which satisfies
d(p, p′) <= τ − d(q, p); check if p′ in the candidate set C or not; if yes, then
mark p′ as a near neighbor of q without the distance computation.

– If d(q, p) > τ , SimPair LSH searches in SP for all those points p′ which
satisfies d(p, p′) < d(q, p) − τ ; check if p′ in the candidate set C or not; if
yes, then remove p′ from C without the distance computation.

The detailed description is shown in Algorithm 1:

Algorithm 1. SimPair LSH
Input: A set P with n d-dimensional points; L in-memory hash tables created

by LSH; a set SP storing all similar pairs in P whose pair-wise

distances are smaller than θ; a distance threshold τ defining near

neighbors; and a query point q
Output: all near neighbors of q in P
begin

check the L buckets q hashed to and retrieve all the points in those buckets

as in LSH;

put all the points into a candidate set C;

for each point p in C do
compute the distance between q and p, i.e. d(q, p);

if d(q, p) < τ then
output p as a near neighbor of q;
search in SP for all the points p′ which satisfies d(p, p′) < τ − d(q, p);

for each point p′ found in SP do
check if p′ in C or not;

if found then
output p′ as a near neighbor of q and remove it from C;

if d(q, p) > τ then
search in SP for all the points p′ which satisfies d(p, p′) < d(q, p)− τ ;

for each point p′ found in SP do
check if p′ in C or not;

if found then
remove p′ from C;

end

The algorithm constructing the LSH indices is the original LSH algorithm.
[10] describes how to select L and gi to guarantee the success probability.

3.3 Algorithm Correctness

Since our algorithm is based on LSH, it is important that the theoretical guar-
antee still holds for SimPair LSH.
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Theorem 1. SimPair LSH has the same theoretical guarantee as LSH has in
terms of the range search problem we study. That is, near neighbors will be
returned by SimPair LSH with a user-specified probability by adjusting the pa-
rameters (hash functions and number of hash tables) accordingly.

Proof. Since we consider points in metric space where triangle inequality holds,
SimPair LSH guarantees that the points skipped are either true near neighbors
or not near neighbors without distance computation.

3.4 Algorithm Effectiveness

The benefit of SimPair LSH compared with LSH is that points in the candidate
set returned by LSH can be pruned by checking the similar pair list SP with-
out distance computations. Therefore, it is important to analyze the number
of prunes SimPair generates. Also, to obtain the benefit, SimPair LSH has to
search in SP and C for the points to be pruned, which can take time although
hash indices can be built to speed up each search operation to O(1) time. Next,
we analyze the factors affecting the gain and cost.

Pruning analysis. To generate a prune from a point p in C, SimPair first has to
find a “close enough” point p′ of p from SP , where close enough or not depends
on |d(q, p)− τ |. If |d(q, p)− τ | is large, SimPair LSH has a higher chance to find
a p′.

Another factor that can affect the chance of finding p′ from SP is the size of
SP . Clearly, maintaining a large set of SP will increase the chance of finding p′
of p.

Finding p′ of p does not necessarily lead to a prune. The condition that a
prune occurs is that p′ appears in C. According to the property of LSH hash
functions, points close to q have higher chance appearing in C. In other words,
d(q, p′) determines the chance of generating a prune. Although d(q, p′) can not
be known precisely, a bound of this distance can be derived from d(q, p) and the
“close enough” threshold |d(q, p)− τ |.
Cost analysis. To gain the pruning, SimPair LSH has to pay certain amount of
costs including time and space costs. The time cost mainly comes from the search-
ing processes: find the points “close enough” to p in SP and check those points to
see if they are in C or not. By constructing hash indices for SP , searching for p in
SP only takes O(1) time; constructing hash indices for SP also takes O(1) time
for each object. When a candidate set C of points for the query q is retrieved, all
points in the dataset belonging to C are marked both in LSH and SimPair LSH;
this is possible since each point in the data set has a Boolean attribute showing if
the point is in C or not. The purpose of having this attribute is to remove dupli-
cate points when generating C. Duplicates can appear in C because one point can
appear in multiple LSH hash buckets. Note that when the searching is finished,
the boolean attributes need to be cleared (for both LSH and SimPair LSH) which
takes O(|C|) time when all points in C are also maintained in a linked list. For the
sake of pruning, another boolean attribute is needed for each point to indicate if
the point has been pruned or not.



160 M. Fisichella, F. Deng, and W. Nejdl

With these boolean attributes, searching for p′ in C takes O(1) time. The
time cost is mainly generated by searching p′ in C since there can be multiple
p′ for each p, and therefore multiple look-ups in C.

In addition to the time cost, SimPair LSH also has some extra space cost for
storing SP compared with LSH. This cost is limited by the available memory.
In our approach, we always limit the size of SP based on two constraints: (i)
the similarity threshold θ (for the similar point pairs stored in SP ) is restricted
to the range (0, τ ]; (ii) the size of SP must not exceed a constant fraction of the
index size (e.g. 10% ).

4 Experiments

In this section, we demonstrate the practical performance of our approach on
three real-world data sets, testing the pruning effectiveness, pruning costs, real
running time together with memory saving and quality of results from SimPair
LSH.

4.1 Data Sets

We use three real-world image data sets in our experiments: one directly down-
loaded from a public website and two generated by crawling commercial multi-
media websites.

Flickr images. We sent 26 random queries to Flickr and retrieved all the images
within the result set. After removing all the images with less than 150 pixels, we
obtained approximately 55, 000 images.

Tiny images. We downloaded a publicly available data set with 1 million tiny
images3. The images were collected from online search tools by sending words
as queries, and the first 30 returned images for each query are stored. Due
to the high memory cost of LSH for large data sets, we picked 50 thousand
images uniformly at random from this 1 million tiny image data set. This random
selection operation also reduced the chance that similar pairs appear in the data
set since the images retrieved from the result set of one query have higher chance
to be similar to each other.

The reason we used this smaller data set rather than only considering the full
set was that we could vary the number of hash tables within a larger range and
observe the behavior of the algorithms under different number of hash tables. For
example, the largest number of hash tables we used was about 1000; indexing
the 1 million data points takes 12GB memory under this setting which was
above the memory limit of our machine. (Note that this is an extreme case for
experimental purpose and may not be necessary in practice.) If we used 10 hash
tables, then the memory consumption will drop to 120MB. We also conducted
experiments on the whole 1 million data set setting the number of hash tables
3 The dataset was collected by A. Torralba and R. Fergus and W. T. Freeman at MIT

in 2007; it is available at http://dspace.mit.edu/handle/1721.1/37291

http://dspace.mit.edu/handle/1721.1/37291
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to smaller values, so as to see how the algorithms behave with a larger data set
size. Due to the space limit, the results from the 1 million data set are reported
into the complete version of this paper [1].

Video key-frames. We sent 10 random queries to Youtube and obtained around
200 video clips from each result set, approximately 2100 short videos in total.
We then extracted all the frames of the videos and their HSV histograms with
dimensionality 162. After that, we extracted key frames of the videos in the
following way: sequentially scan the HSV histogram of each frame in a video; if
the distance between the current histogram and the previous one in the video is
above 0.1 , keep this histogram; otherwise skip it. We set the distance threshold
to 0.1 because two images with this distance are similar but one can clearly
see their difference based on our observation. In the end, we obtained 165, 000
key-frame images.

For all the images data set described above, we removed duplicates and con-
verted each data set into a d-dimensional vector (d = 162, 512) by using the
standard HSV histogram methods [13]. Each entry of the vector represents the
percentage of pixels in a given HSV interval.

Pair-wise distance distribution. Since the pair-wise distance distribution of
data set may affect the result of our experiments, we plotted Figures and found
that the 3 data sets had similar curves. Specifically, we cut the distance range
into multiple intervals and count the number of points within each interval.
Due to the space limit, we put the histograms into the complete version of this
paper [1].

4.2 Experimental Setup

All experiments were ran on a machine with an Intel T2500 2GHz processor,
2GB memory under OS Fedora 9. The algorithms were all implemented in C
compiled by gcc 4.3.0.

The data points and the LSH indices are both loaded into the main memory.
Each index entry for a point takes 12 bytes memory. To test the performance
of our approach, we randomly selected a certain number of objects from the
data set as query objects, and measure metrics as discussed before. We took the
average number of pruned points of all queries, the average percentage of pruned
points, and the average number of operations spent on achieving the pruning per
point (average number of cost operations per query / average size of candidate
sets C of all queries).

4.3 Experiments Testing Pruning Effectiveness and Costs

In this set of experiments, we tested the number of distance computations saved
by our approach, the time and space cost to obtain the saving. We used the Flickr
data set, and the results from other data sets are also consistent in gerneral.
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From our experiments we can see that the algorithm performance is not sen-
sitive to the number of queries, and we fixed the number of queries to 100 in the
following experiments.

Since candidate set sizes |C| for some queries is quite small (e.g. < 50), and
there is no need to start the pruning process, we set a cut–off threshold T for
|C|. When |C| > T , SimPlair LSH start the pruning process; otherwise, SimPlair
LSH does not start the pruning process and degrades to the original LSH. From
our experiments we can see that the algorithm performance is not sensitive to
T in terms of both the percentage of pruned points and the average number of
operations cost per point. In the rest of the experiments, we fixed T to 200.

Due to the space limit, the results of testing the number of queries and T are
not shown here, but can be found in the complete version of the paper [1].

4.4 Experiments Testing the Query Response Time

In this set of experiments, we report the query response time of the original
LSH indexing and our approach. The LSH code were obtained from Andoni [3],
and we conducted the experiments for LSH without changing the original source
code.

Hash function time costs. Note that during query time, generating the hash
values of each query also takes time where the amount depends on the number
of hash functions or hash tables used. In the case that the candidate set size is
relatively small and the number of hash functions is large, the hashing process
can take as high as the time spent on scanning the candidate set. Since the time
spent on generating the hash values are exactly the same for both SimPair LSH
and the original LSH, and the percentage of this portion varies significantly with
the parameter setting of L and the size of C which depends on the queries, we
only report the time spent on finding near neighbors from C to see the difference
between our approach and LSH better. When the size of C is relatively large,
the fraction of hash function time cost is relatively small. But in the worst case
where hashing queries take the same amount of time as scanning C, the time
difference between two approach will be half of the numbers reported below.

Varying k and L. We varied the hash function parameter k and the number of
hash tables L to see how these parameters affect the query time. The threshold
τ was set to 0.1, success probability P was set to 95%. Note that once k were
fixed, the number of hash tables L was also fixed to guarantee the required suc-
cess probability. Other parameters are the same as in the previous experiments.
The results on the 3 data sets are shown in Figure 1a. Y-axis is the response
time saved by SimPair LSH computed as follows: (LSH Time - SimPair LSH
Time)/(LSH time). From the figure we can see that SimPair LSH consistently
outperforms LSH under different settings of K and L. The extra memory con-
sumptions of the full similar pair set SP when θ = 0.1 are 73.7MB, 12.5MB
and 3.7MB respectively for the video key frame, Tiny images and Flickr image
data sets. Recall that SP size is bound to the 10% of the index size, thus when L
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Fig. 1. LSH parameters (k, L) and data dimensionality vs. running time

is small, we use a smaller θ. Since LSH can also save running time by increasing
the number of hash tables (varying K and L), we tested how much additional
memory LSH needs to gain the same amount of time in the next experiments.

Extra space cost comparison showing the significance of our time gain.
To achieve the response time gain, in addition to the memory cost of the LSH
indices, the extra cost SimPair LSH takes is the memory spent on the similar
pair list that we restricted at most to a constant fraction of the LSH indices
(10% in our experiments). To achieve approximately the same running time gain,
LSH can also increase the memory consumption by increasing k and L without
resorting to our approach. Therefore, we compared the memory consumption of
the two approaches to achieve roughly the same query time improvement. In
fact, the memory cost of LSH can be computed from L: each hash table stores
the identifiers of all n points, and each identifier takes 12 bytes as implemented
by Andoni and Indyk [3]; therefore, the LSH space cost is 12nL.

Hence, to see the size of extra space LSH needs, it suffices to check the value
of L. Since the size of C dominates the time LSH scans through the candidate
set, the running time being saved can be represented by the reduction of |C|.
Recall that bigger values of L correspond to the decrease in size of C.

The Figure 2 is based on the Flickr image data set. The x-axis presents the
memory consumption of hash tables needed to index all the points in the dataset
for diverse settings of k and L; such a space cost is computed from formula 12nL
as discussed above, where n = 55, 000. Since SimPair LSH uses the indices of
LSH, this memory utilization is common for both algorithms. The y-axis shows
the percentage gain in time. The numbers on top of the bars show the extra
memory cost required to reach the gain in time reported. It is important to note
that the extra memory cost for SimPair LSH remains constant to 3.7MB, the
similar pair list size, for all the diverse setting of L, while LSH needs significantly
more extra memory, with increasing L, to achieve similar response time as our
method. We can conclude that LSH needs significantly more memory to achieve
even less response time saving as SimPair LSH does. For example, to have a
gain in running time of 17% when L = 78, LSH needs 38MB extra memory.
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In contrast, SimPair LSH only needs 3.7MB storing the similar pair set to gain
more than 17% response time; that makes our algorithm save 10 times the space
cost used from LSH. Note that when the number of hash tables is increased,
the time spent on computing the L hash values will also increase proportionally,
which means the real running time saving is actually smaller than 17% for LSH.
When L is large, even more extra memory is needed to gain the same amount
of running time. For example, when the hash table size increased by around
225MB, the time cost decreases only about 10%; in this case our method saves
roughly 60 times the space cost used from LSH.

Comparing with the figure shown in the previous experiment, by using the
same amount of extra memory (3.7MB), SimPair LSH gains slightly more per-
centage for different settings of k and L. Clearly, SimPair LSH is more space
efficient in terms of saving running time.

Varying the success probability P . We varied P from 90% to 99%, and
set k = 12 and L changes accordingly to see how P affects the real running
time. Other parameters are the same as the previous experiment. The results
are shown in Figure 3. From the figure again we can see that SimPair LSH
outperforms LSH in terms of running time consistently. For different data sets,
P has different impact on the saving time. However, the general trends seem to
indicate that the impact is not significant.

Varying the dimensionality d. We ran experiments on Flickr image data set
with different dimensionality d: 162 and 512, and set P = 95% to see how d
affects real running time saved. Other parameters are the same as the previous
experiment. The results are shown in Figure 1b. The y-axis shows the percentage
of running time saved as in the previous experiments. From this figure we can
see that for a higher dimensionality, the percentage of real time saved is higher
in general. This is because the gain in time each prune brings is relatively higher
compared with the cost of each prune when the dimensionality is higher.

In addition, we also ran experiments on the full 1 million tiny image data set
as mentioned earlier, and the results were consist with what we have shown. Due
to the space limit, please see details in the complete version of this paper [1].
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4.5 Quality of Results

In this set of experiments, we tested the recall or false negatives of both methods.
If a user set P to 90%, it means that he/she can tolerate missing at most 10%
near neighbors. The results in Fig. 4 shows that the real recall value is clearly
higher than the user specified probability.

5 Conclusions

In this paper, we study the problem of range search in an incremental manner
based on a well-known technique, Locality Sensitive Hashing. We propose a new
approach to improve the running time of LSH. The idea is take advantage of
certain number of existing similar point pairs, and checking this similar pair
set on-the-fly during query time. Since the look-up time cost is much cheaper
than the distance computation, especially when the dimensionality is high, our
SimPair LSH approach consistently outperforms the original LSH method, with
the cost of a small amount of extra space. To gain the same amount of running
time, LSH needs significantly more space than SimPair LSH (e.g. 10 to 100 times
more). The superiority of SimPair LSH over the original LSH is confirmed by our
thorough experiments conducted on 3 real-world image data sets. Furthermore,
SimPair LSH preserves the theoretical guarantee on the recall of the search
results. Last, SimPair LSH is easy to implement based on LSH.
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Abstract. Recently, many application domains, such as sensor network

monitoring and Location-Based Service, raise the issue of uncertain data

management. Uncertain objects, a kind of uncertain data, have some un-

certain attributes whose values are ranges instead of points. In this paper,

we study a new kind of top-k queries, Probabilistic Fuzzy Top-k queries
(PF-Topk queries) which can return k results from uncertain objects for

fuzzy query conditions. We formally define the problem of PF-Topk query
and present a framework for answering this kind of queries. We propose

an exact algorithm, Envelope Planes of Membership Function (EPMF)

algorithm based on the upper and lower bounding functions, which an-

swers fuzzy top-k queries over uncertain objects in high-dimensional

query space efficiently. We also propose an approximate algorithm which

improves efficiency while ensuring high precision by setting a proper value

of parameter. To reduce the search space, a pruning method is proposed

to safely prune some objects before querying. The effectiveness and effi-

ciency of our algorithms is demonstrated by the theoretical analysis and

experiments with synthetic and real datasets.

1 Introduction

Recently, uncertain data management has gained dramatic attention due to the
inherent uncertainty of data in many application domains, such as sensor network
monitoring [1], moving object search [2], medical management [3], and so on.
For instance, due to the imperfection of sensing devices, the data obtained are
often contaminated with noises [1]. In Location-Based Service systems, it is not
always possible to acquire the accurate locations of moving objects because of
some measurement error [2] in positioning technologies (e.g., GPS and RFID).
In biometric databases, the attribute values (e.g., blood pressure and heartbeat)
of the feature vectors stored are also not exact [3] for the purpose of privacy
protection. We assume that all uncertain attribute values of an uncertain object
locate within a closed region, called the uncertainty region [4]. In this region,
a non-zero probability density function (pdf) of the value is defined, where the
integration of pdf inside the region is equal to one.
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Top-k queries over uncertain data play a very significant role in uncertain data
management. Many existing works [5,6] of top-k queries over uncertain objects
which are modeled by pdfs in uncertainty regions. Moreover, due to some ambigu-
ous conditions, the submitted queries are often fuzzy [7] so that the traditional
top-k query methods fail to query under these conditions. There are some fuzzy
query methods [8] which can answer fuzzy queries but are not suitable for uncer-
tain data. In light of the above circumstances, we extend the traditional notion
of top-k queries and then define a new kind of queries, Probabilistic Fuzzy Top-k
queries (PF-Topk queries). In this kind of queries, users only desire the fixed num-
ber (e.g., k) results which satisfy the fuzzy query conditions and whose scores
are the highest among all the uncertain objects. PF-Topk queries are important
to a wide range of applications, as illustrated by an example.

Example 1 : Diagnosising H1N1 influenza is related to the feature vector, (Body
Temperature, Whloe-cell chroma, Platelet Connts). ”Body Temperature, Whloe-
cell chroma, Platelet Connts” are three indicators of patients. All feature vectors
obey 3-dimensional Gaussian distribution [5] in order to protect the privacy of
patients. Eq.(1) shows pdf of feature vector of a patient as follows:

p(u) =
1

(2π)3/2|Σ|1/2
exp[−1

2
(u − μ)tΣ−1(u− μ)], (1)

where μ is the average of the distribution, Σ is a 3∗3 covariance matrix, and |Σ|
represents its determinant. Doctors want to return the patients who have the
highest k ranking probabilities having H1N1 influenza.

Example 1 illustrates the case of uncertain objects in high-dimensional uncer-
tain space. Because there is no accurate condition which can conclude somebody
surely has H1N1 influenza, the query results are unable to be obtained by the
existing methods. Besides, lots of other applications such as uncertain object
identification and some expert systems require this kind of queries. These appli-
cations have two common issues: one is that data uncertainty is inherent in the
applications; the other is that the objects are retrieved under fuzzy conditions.

PF-Topk queries defined by us aim at the above issues. To our knowledge,
this is the first paper that processes fuzzy queries over uncertain objects. Our
contributions are as follows.

– We formalize a novel kind of queries, Probabilistic Fuzzy Top-k query (PF-
Topk query) which can effectively return k results from uncertain objects for
fuzzy query conditions.

– We devise a query framework for answering PF-Topk query, and present
a pruning method to improve query efficiency by reducing the number of
uncertain objects safely.

– We propose an iterative algorithm, Envelope Planes of Membership Function
(EPMF) algorithm based on the upper and lower bounding functions, which
can exactly answer PF-Topk queries in high-dimensional space.

– We also propose an approximate algorithm, Middle Planes of Membership
Function (MPMF) algorithm, which improves the efficiency while ensuring
high precision by setting a proper value of parameter.
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– We evaluate the efficiency and precision of our methods through the theo-
retical analysis and extensive experiments.

The rest of the paper is organized as follows. Section 2 gives the related work.
Section 3 formally defines the problem of Probabilistic Fuzzy Top-k query. Section
4 describes the process of our query. Section 5 provides the theoretical analysis.
Section 6 gives the experimental results and we conclude in Section 7.

2 Related Work

Range query over uncertain data has received increasing attention in recent
years. Tao et al. [9] propose the probabilistic range query method for the objects
with imprecisely known locations; a pdf is associated with each object to repre-
sent the existence range of the object in the target space in which the location
of the object is represented and a query region is specified by a rectangle. Yoshi-
haru et al. [10] present range query processing methods for spatial databases in
which the location of the query object is imprecisely specified by a pdf based on
a Gaussian distribution. Even if above work can query over uncertain objects,
they do not have the top-k semantics so that they cannot answer the top-k query.

Nowadays, much research focuses on top-k query over uncertain data. Many
top-k queries have been proposed according to different semantics, such as U-
topk[11], U-kRanks[12], and PT-k/GT-k[13]. These top-k query methods are
base on possible world model which is not suitable for modeling pdf. Besides,
PkNN queries [6] are a special kind of top-k queries, which can return k objects
which are closest to the query point among all the uncertain objects. However,
both top-k queries and PkNN queries require the precise query conditions, so
that they are difficult to answer fuzzy queries. The fuzzy theory has obtained
wide attentions since it was proposed by Zadeh in 1965. Because the traditional
methods cannot directly handle fuzzy queries, the solution is defining member-
ship function according to the fuzzy query, then calculating the α-intersect set
[8] and acquiring the precise query conditions. However, current fuzzy query
methods usually aim at certain data so that they cannot support the query over
uncertain objects. This paper proposes Probabilistic Fuzzy Top-k query methods,
which can effectively answer fuzzy top-k queries in the high-dimensional uncer-
tain space.

3 Problem Formulation

In this section, we first define a function expressing the probabilities of uncertain
objects satisfying a fuzzy query q, which is the score function in a PF-Topk query.
Assume that uncertain object set O is in a d-dimensional uncertain space Ud,
in which each object is located within its own d-dimensional uncertainty region
that is denoted by a d-dimensional rectangle called probabilistically constrained
rectangle (PCR). The probabilities of the objects located in PCR are greater than
the specified threshold value [9]. The fuzzy query q is defined as a membership
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function A(u) which shows the extent of arbitrary point u in Ud satisfying
query q. We extend d-dimensional uncertain space Ud to (d + 1)-dimensional
fuzzy query space Q which is added in membership grade dimension (z axis)
and set a point whose membership grade is one to origin point o. We also assume
that A(u) is a monotonic non-augmented function from o along with arbitrary
direction. In fact, there are many kinds of membership functions satisfying this
assumption such as Cauchy distribution, Mountain distribution and so on. In
this query space Q, the score function is defined as follows.

Definition 1. (Fuzzy Probability Function) The fuzzy probability of object O,
Pr(O) expresses the probability satisfying fuzzy query q in query space Q.

Pr(O) =
∫

PCR

A(u)p(u)du, (2)

where p(u) is the pdf of O, Pr(.) denotes fuzzy probability function which is the
score function in a PF-Topk query.

After defining fuzzy probability function, we formally define PF-Topk query with
fuzzy probabilities.

Definition 2. (Probabilistic Fuzzy Top-k Query, PF-Topk Query) A Probabilis-
tic Fuzzy Top-k query PFTQ(q, k,O) returns the objects such that they have the
highest k ranking fuzzy probabilities among all the uncertain objects. It is for-
mally defined as follows:

P F T Q(q, k,O) = {Oi|∀i, j, Oi, Oj ∈ O, P r(Oi) > Pr(Oj), 1 ≤ i ≤ k < j ≤ N}, (3)

where k is the number of uncertain objects to retrieve in the PF-Topk query, N
is the size of uncertain object set O.

Definition 3. (Partitioning Uncertain Object) Partitioning is defined that PCR
of an uncertain object O is partitioned into r partitions which satisfy Pi

⋂
Pj = ∅

and
r⋃

t=1
Pt = PCR, where Pt is t-th partition of PCR. It is denoted by O =

r⋃
t=1

ot

where ot is t-th sub-object of O and located within Pt.

Figure 1 illustrates some uncertain objects and their sub-objects in a query space
Q. All the object are in uncertain space Ud, where xi and xj are dimensions

of this space. O2 =
4⋃

t=1
ot, where ot is a sub-object of O2 located within Pt. O2

is partitioned based on some hyper surfaces S (e.g. St) and Pt is generated by
St−1, St and the boundary of PCR of O2.

Lemma 1. Fuzzy probability of an uncertain object or a sub-object is equal to
the expectation of membership function within its uncertainty region. Moreover,
if the value of membership function in a PCR of object O is not less than that
in the other PCR of O’, the fuzzy probability of O is not less than that of O’.
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Proof. According to Definition 1, for an arbitrary uncertain object O and its sub-
object oi, Pr(O) =

∫
PCR

A(u)p(u)du(u ∈ PCR), Pr(oi)=
∫

Pi
A(u)p(u)du(u ∈

Pi). The expectation of the membership function within its uncertainty region
E(A(u)) =

∫
PCR

A(u)dp=
∫

PCR
A(u)p(u)du (u ∈ PCR), E(A(u))=

∫
Pi

A(u)dp

=
∫

Pi
A(u)p(u)du(u ∈ Pi). Thus,

Pr(O) = E(A(u))(u ∈ PCR), (4)

Pr(Oi) = E(A(u))(u ∈ Pi). (5)

Suppose A = A(u)(u ∈ PCR), A′ = A(u)(u ∈ PCR′) and O′ is an object
located in PCR′, A ≥ A′ ⇒ E(A) ≥ E(A′) ⇒ Pr(O) ≥ Pr(O′).

1

PCRs

Fig. 1. PF-Topk query space

From Lemma 1, it can be seen that the results of PF-Topk query are the
highest k ranking average membership grade to satisfy the fuzzy query.

4 Probabilistic Fuzzy Top-k Query Processing

In this section, we first present a query framework for answering PF-Topk queries.
And then a pruning method is discussed. Moreover, we propose an effective query
algorithm, Envelope Planes of Membership Function (EPMF) algorithm. Finally,
we present a high-performance approximate algorithm for PF-Topk queries.

4.1 The Query Framework and Pruning Method

Figure 2 illustrates the query framework for answering PF-Topk queries. In par-
ticular, the framework is composed of two phases: filtering and querying. In the
filtering phase, uncertain object set O is filtered by our pruning method to re-
duce the costs of computation and I/O, and the unpruned objects consist of
candidate set O′. From Eq.(2), the fuzzy function of an object O is bounded by a
interval [lo(O), up(O)], where up(O) and lo(O) are the upper and lower bounds
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of membership grade of O respectively. Actually, if there are more than k objects
whose fuzzy probabilities are higher than that of O, it is certainly not the query
result and should be pruned by the pruning method. Our pruning method is
summarized in Theorem 1.

Pruning

EPMF algorithm

Return result set

candidate set 

MPMF algorithm

uncertain object set 

Filtering

Querying

U-List and 
L-List

approximate
fuzzy

probabilities

Fig. 2. The Query Framework for PF-Topk queries

Theorem 1. An uncertain object can be safely pruned, if the upper bound of
its membership grade is not more than the highest k-th ranking lower bound
membership grade.

Proof. According to the condition of Theorem 1, there are at least k objects
whose lower bounds membership grades are not less than the upper bound of
membership grade of an uncertain object O, up(O). Due to up(O) ≥ Pr(O),
fuzzy probabilities of more than k objects are not less than Pr(O). Thus, O is
definitely not the query result and can be pruned.

4.2 Envelope Planes of Membership Function Algorithm

As mentioned previously, we can answer Probabilistic Fuzzy Top-k queries (PF-
Topk queries) by Eq.(3). Basic algorithm computes fuzzy probability for each
uncertain object by Eq.(2) and compare the values in order to find the highest
first k ranking fuzzy probabilities. Since Eq.(2) can be hardly calculated exactly
when d ≥ 2, it would be approximately calculated with Monte Carlo method
which is popular with computation of high-dimensional numerical integrations.
However, their costs are so high that we cannot get query results rapidly. In most
cases, computing the bounds of fuzzy probability is much easier than computing
the value of fuzzy probability. Thus, we propose an iterative algorithm, Enve-
lope Planes of Membership Function (EPMF) algorithm based on the bounding
functions, to answer PF-Topk queries in the querying phase.

Figure 3 illustrates an example of the upper and lower bounding lists (U-
List and L-List) which store upper and lower bounds of fuzzy probabilities of
all unpruned uncertain objects in the descending order respectively. Pr�j is the
highest j-th ranking upper bound in U-List and Pr⊥i is the highest i-th ranking
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lower bound in L-List. We summarize a theorem of the upper and lower bounds
of fuzzy probabilities as follows.

Theorem 2. If Pr⊥k ≥ Pr�k+1, the uncertain objects whose lower bound of fuzzy
probabilities row first k in L-List are results of the PF-Topk query.

Proof. As shown in Figure 3, if any uncertain object O whose lower bound
of fuzzy probability is at i-th position in L-List(∀i ≤ k), Pr⊥i ≥ Pr⊥k . In U-
List, Pr�k+1 ≥ Pr�j (∀j ≥ k + 1). According to the condition of Theorem 2,
Pr�i ≥ Pr�j . Due to i ≤ k, there are no more than k objects whose upper bounds
of fuzzy probability are not less than that of O. Therefore, fuzzy probabilities of
those objects (at most k) are not less than that of O. That is to say, o is a result
of PF-Topk query.

L-List 

U-List 

Fig. 3. The upper and lower bounding lists

According to Theorem 2, if we can find the proper bounds of fuzzy probabili-
ties, the results of PF-Topk query can be obtained by U-List and L-List. Before
searching the proper bounds, we need to explain the definition of envelope planes
of membership function, which is summarized as follows.

Definition 4. (Envelope Planes of Membership Function) In query space Q,
if (d+1)-dimensional plane Z�(Z⊥) is not less (more) than the membership
function located within a region and it includes origin point o, it is known as the
upper (lower) envelope plane of membership function of this region.

(a)

x1

QQQc

A(uuu)

z

ooo

Z>i Zi

Z?i

L

s0 si¡1 si sr

Pi

oi

xj
o

Fig. 4. Envelope Planes of Membership Function
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Figure 4 illustrates the upper and lower envelope planes of a sub-region Pi.

Uncertain object O =
r⋃

i=1

oi, and O’s PCR =
r⋃

i=1

Pi based on (r − 1) surfaces

x1 = si ( s0 ≤ si−1 ≤ si ≤ si+1 ≤ sr and 1 ≤ i ≤ r− 1). Due to our assumption
for membership function in Section 3, it is monotone non-augment from origin
point o to other point along with the positive direction of x1 axis. Therefore, the
(d+1)-dimensional plane Z�

i which includes o and intersection Lsi−1 generated
by x1 = si−1 and membership function is not less than membership function
located in Pi. From Definition 4, Z�

i is the upper envelope plane of Pi. Similarly,
Z⊥

i is the lower envelope plane of Pi. According to point equation of (d + 1)-
dimensional plane, the envelope plane equation can be deduced by Eq.(6).∣∣∣∣∣∣∣∣

x1 x2 . . . xj . . . xd z
si−1 c22 . . . c2j . . . c2d c2(d+1)

. . . . . . . . . . . . . . . . . . . . .
si−1 c(d+1)2 . . . c(d+1)j . . . c(d+1)d c(d+1)(d+1)

∣∣∣∣∣∣∣∣ = 0, (6)

where d arbitrary points c2 = (si−1, c22, . . ., c2j , . . ., c2d, c2(d+1)),. . .,cd+1 =
(si−1,c(d+1)2,. . ., c(d+1)j ,. . .,c(d+1)d, c(d+1)(d+1)) (e.g., c in Figure 4(a)) are lo-
cated in the corresponding intersection. In general, the costs of obtaining enve-
lope plane equations are much less than those of computing integrations so they
can be ignored. To compute the bounds of fuzzy probabilities of arbitrary object,
a kind of bounding functions is defined with envelope plane equations, which is
explained in Theorem 3.

Theorem 3. The upper and lower envelope plane equations of a sub-region Pi

is denoted by Z⊥
i :

d∑
j=1

aijxj and Z�
i :

d∑
j=1

bijxj in query space Q. The upper and

lower bounding functions are equal to
r∑

i=1

ai1

∫ Si

Si−1
x1p1(x1)dx1+

r∑
i=1

d∑
j=2

aijE(Xj)

and
r∑

i=1

bi1

∫ Si

Si−1
x1p1(x1)dx1 +

r∑
i=1

d∑
j=2

bijE(Xj) , where Xj is a random variable

with marginal distribution pj(xj) of O in dimension xj.

Proof. According to Definition 4, Z�
i is not less than the membership function

A(u)(u ∈ Pi), so E(Z�
i ) ≥ E(A(u))(u ∈ Pi). Due to Lemma 1, E(Z�

i ) ≥
Pr(oi). Since the expectation of linear function equals to its expectation func-

tion, E(Z�
i ) = E(

d∑
j=1

aijxj) =
d∑

j=1

aij

∫
Pi

xjp(u)du = ai1

∫ Si

Si−1
x1p1(x1)dx1 +

d∑
j=2

aijE(Xj). For all the other sub-objects of O,
r∑

i=1

ai1

∫ Si

Si−1
x1p1(x1)dx1 +

r∑
i=1

d∑
j=2

aijE(Xj) ≥
r∑

i=1

Pr(oi) = Pr(O). Therefore, the upper bounding func-

tion of fuzzy probability is as follows:

Pr�(O) =

r∑
i=1

ai1

∫ Si

Si−1

x1p1(x1)dx1 +

r∑
i=1

d∑
j=2

aijE(Xj). (7)
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Likewise, the lower bounding function of fuzzy probability is as follows:

Pr⊥(O) =

r∑
i=1

bi1

∫ Si

Si−1

x1p1(x1)dx1 +

r∑
i=1

d∑
j=2

bijE(Xj). (8)

As indicated by Theorem 3, the bounds of fuzzy probabilities of uncertain ob-
jects can be computed by the bounding functions. And the cost of computation of
some 1-dimensional integrations and expectations in Eqs. (7) and (8) is much less
than that of high-dimensional numerical integration in Basic algorithm. More-
over, Eqs. (7) and (8) can be exactly calculated without Monte Carlo method.
Thus, we propose Envelope Planes of Membership Function (EPMF) algorithm
based on these bounding functions. This algorithm continuously increases the
number r of partitioned sub-regions and iteratively calculates the bounds of
fuzzy probabilities until satisfying Pr⊥k ≥ Pr�k+1 in the bounding lists. The key
steps of EPMF algorithm are illustrated in Algorithm 1.

Algorithm 1. Envelope Planes of Membership Function Algorithm
Input : P F T Q(q, k,O′)
Output: U-List and L-List, k objects in result set �
initialize r, i ← 21

if M ≤ k then2

take all object in O′ into �, break3

for each object O in O′ do4

while i ≤ r do5

si−1 ← 1/r ∗ ((i − 1) ∗ sr + (r − i + 1) ∗ s0)6

si ← 1/r ∗ (i ∗ sr + (r − i) ∗ s0)7

i ← i + 18

end9

obtain envelope plane equations by Eq. (6)10

compute the bounds of fuzzy probability of O by Eqs.(7) and (8)11

end12

take the values of upper (lower) bounds into U-List (L-List) in descending order13

if Pr⊥k ≥ Pr�k+1 then14

take objects whose lower bounds row first k in L-List into �, break15

for each object O do16

if Pr⊥k ≥ Pr�(O) then17

delete them from O′
18

end19

r ← 2r, i ← 2, goto step 220

The EPMF algorithm first measures the size of candidate set O′ which must
be not more than k, otherwise all the objects in O′ are results (lines 2-3). Then,
we do r equip-partition the range ([s0, sr], s0∗sr ≥ 0) along with x1 axis direction
for each object and evaluate si−1 and si (lines 6-8). If an object is located at two
sides of some axis (e.g. O1 in Figure 1), it is partitioned based on this axis into
two partitions before evaluating. After that, if it is not content with Theorem 2,
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we delete unnecessary objects from O′ and iteratively execute the procedure
with double r (lines 16-20).

4.3 Middle Planes of Membership Function Algorithm

In the previous subsection, we have discussed an exact and iterative EPMF
algorithm for PF-Topk queries. However, the efficiency of this algorithm decreases
when the iterations become extremely large. Aiming at this problem, we propose
an approximate algorithm, Middle Planes of Membership Function (MPMF)
algorithm to improve the efficiency.

As shown in Figure 4, a middle plane Zi is generated by origin point o and an
intersection generated by x1 = (si−1 + si)/2 and membership function. Similar
to the envelope plane equations, the middle plane equation can be obtained by
Eq.(7). MPMF algorithm is proposed based on middle plane equations of all
sub-regions of an uncertain object. Its main idea is that the sum of expectations
of middle plane equations of all sub-regions replaces the value of fuzzy probability
and then k objects whose sum values are highest ranked are returned. Assume
that Zi is middle plane of sub-region Pi, whose equation is denoted by Zi : z =

d∑
j=1

eijxj , where eij is the j-th coefficient of Zi. The expectations sum of middle

plane equations of all sub-regions

r∑
i=1

E(Zi) =
r∑

i=1

ei1

∫ Si

Si−1

x1p1(x1)dx1 +
r∑

i=1

d∑
j=2

eijE(Xj). (9)

We set the approximate value Pr(O) of fuzzy probability as the value computed
by Eq.(9). The key steps of MPMF algorithm are illustrated in Algorithm 2.

Algorithm 2. Middle Planes of Membership Function Algorithm
Input : P F T Q(q, k,O′)
Output: k objects in result set �
initialize r, i ← 21

if M ≤ k then2

take all object in O′ into �, break3

for each object O ∈ O′ do4

while i ≤ r do5

si−1 ← 1/r ∗ ((i − 1) ∗ sr + (r − i + 1) ∗ s0)6

si ← 1/r ∗ (i ∗ sr + (r − i) ∗ s0)7

i ← i + 18

end9

obtain middle plane equations by Eq. (6)10

compute Pr(O) by Eq. (9)11

end12

take the highest values computed by step 11 first k ranking objects into �13
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The procedure of MPMF algorithm is the same as that of EPMF algorithm ex-
cept computing the approximate values of fuzzy probabilities (lines 10-11) instead
of the bounds of fuzzy probabilities. Its efficiency is higher than that of EPMF
algorithm because it needs not iterative computation. The error produced by
MPMF algorithm is estimated in the next two sections.

5 Theoretical Analysis

Up to now, we have explained some algorithms to answering PF-Topk queries. In
this section, we quantitatively estimate these algorithms with time complexity
and error. In d-dimensional uncertain space Ud, assume that the size of can-
didate set O′ is M , the average integration complexity of integrating marginal
distribution function in a dimension is |C1|, and that of membership function in
a dimension is |C2|. The complexities of the three algorithms proposed by us are
shown in Table 1.

Obviously, the time complexity of Basic algorithm follows exponential growth
with the dimensionality increasing and its complexity is much higher than oth-
ers. For EPMF algorithm, the number of partitioned sub-regions is r in the first
iteration, but 2r in the next time. Since some objects is deleted from O′ (line 16
in Algorithm 1) each time, the number of rest objects in O′ is in a interval [0,M ].
If m expresses the iterations of EPMF algorithm, the number of 1-dimensional
integrations in Eq.(8) or (9) is equal to 2mdr in the m-th iteration. Therefore,
the complexity of EPMF algorithm is variable and the upper bound obeys expo-
nential growth along with the iterations m increasing. The complexity of MPMF
algorithm is best and stable since it need not to iteratively calculate.

Table 1. Time complexities of algorithms

Algorithm The Lower Bound The Upper Bound

Basic algorithm O(M(|C1||C2|)d) O(M(|C1||C2|)d)

EPMF algorithm O(2Mdr|C1|) O(2m+1Mdr|C1|)
MPMF algorithm O(Mdr|C1|) O(Mdr|C1|)

Next, we conduct error analysis for our algorithms. As mentioned earlier,
Basic algorithm calculates Eq. (2) with Monte Carlo method. According to Kol-
mogorov’s theorem, |Y −Yn| is bounded above by 1.36/

√
n with probability 95%,

where Y is the truth value of the function and Yn is the estimated value which
is calculated by n random numbers. Hence, the upper bound reduces to 1/

√
2

times by doubling n, which results in doubling cost. From Eq. (9), the error ε

in MPMF algorithm is |
r∑

i=1

E(Zi)−Pr(O)| =
r∑

i=1

max{E(Zi)−A(u), (u ∈ Pi)}.
Therefore, the upper bounds of error can be expressed as follows:

ε� =
r∑

i=1

max{E(Zi)−A(u), (u ∈ Pi)}. (10)
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As shown in Fig.4(b), max{E(Zi)−A(u)(u ∈ Pi)} is equal to max{A1C1, A3C3}.
Each sub-region is equip-partitioned into two new partitions, which results in
generating two new middle planes of the two partitions. The upper bound of
error is calculated in the new partitions as follows.

ε�=
r∑

i=1

(max{E(Zi1)−A(u), (u∈Pi1)}+ max{E(Zi2)−A(u), (u∈Pi2)}), (11)

max {E(Zi1) − A(u), (u ∈ Pi1)} + max {E(Zi2) − A(u)(u ∈ Pi2)} is equal
to max{A1B1, A2B2}+ max{B2C2, B3C3} (AiBi is the difference of the two
points), which is almost half of max{A1C1, A3C3} when r is large enough. Note
that, the upper bound of error ε� almost reduces by half with the cost dou-
bled(due to doubling r) in MPMF algorithm. Thus, MPMF algorithm can ensure
high precision by increasing the value of r, and ε� decreasing ratio of MPMF
algorithm is more than that of Monte Carlo method with the cost doubled.

6 Experiments

6.1 Experiment Settings

All the experiments were conducted on a PC with 2.5GHz Pentium proces-
sor and 1G main memory. We used B-tree to index bounds of membership
grade of uncertain objects. We used ”Los Angeles” dataset, a 2-dimensional real
dataset(D4) available in [15], with 60K geographical objects described by ranges
of longitudes and latitudes, and used Gaussian distribution as the objects’ pdfs.
For synthetic data, we generated uncertain objects in d-dimensional uncertain
space Ud. Specifically, we randomly produced the range for all uncertain objects
whose ranges are PCRs. We varied the value of some parameters to generate three
kinds of synthetic datasets (D1, D2, D3) in which uncertain objects respectively
obey 3-dimensional Gaussian distribution, 3-dimensional Uniform distribution,
and 4-dimensional Gaussian distribution. The membership function A(u) obeys
Cauchy distribution and we set it as follows:

A(u) =
1

1 +
d∑

j=1

αj(xj)
βj

, (12)

where αj is more than zero and βj is a positive even.

6.2 Experimental Results

In this subsection, we evaluate the performance of our proposed algorithm
(Basic algorithm without pruning, Basic algorithm, EPMF algorithm, and MPMF
algorithm) to answer PF-Topk queries through experiments. For two Basic algo-
rithms, we used RANDLIB [14] for generating n random numbers obeying of
pdfs uncertain objects, and computed integrations with Monte Carlo method.
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Fig. 5. Effect of the number of objects to retrieve on processing time

First, we examine the effect of objects number k to retieve on the processing
time in D1, D2, D3 and D4. We set the size of dataset N=60K and vary k from
1 to 20. Figure 5 shows the experimental results. For any dataset, the processing
time of Basic algorithm without pruning is the highest and constant regardless
of the varied value of k. Along with k increasing, the processing time of other
algorithms raise because our pruning method is sensitive to k and more effective
when k is lower. Moreover, from the speed-up ratio of the processing time, we
can find MPMF algorithm performs better than Basic and EPMF algorithm.

We also investigate the effect of the dataset size N on the processing time.
Figure 6 illustrates the results by varying N . It can be obviously seen that the
processing time of the three algorithms increases along with N increasing. Fur-
thermore, Basic algorithm is inefficient because of considerable large computing
costs. The processing time of EPMF algorithm grows rapidly when N becomes
large. The reason is that the density of objects augments with increasing N ,
which results in fuzzy probabilities of some objects are near so it needs iteration
many times. But the cost of MPMF algorithm is least and most steady. It can be
explained that MPMF algorithm does not need computing iteratively and the
cost of computation is quite low.

In the next experiment, we analyze the relationship between the dimension-
ality d of uncertain space and the processing time. We randomly generate 10000
uncertain objects with Gaussian distribution in d-dimensional space and vary d
from 2 to 8. Figure 7(a) illustrates the processing time of different algorithms
returning first 4 objects. The processing time of Basic algorithm is exponential
growth and much higher than that of two other algorithms which is almost linear
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Fig. 6. Effect of the size of dataset on processing time of different algorithms

growth along with d increasing. Due to calculating without high-dimensional
integrations, EPMF algorithm and MPMF algorithm show good performance in
high-dimensional space. Then we examine the effect of the number r of parti-
tioned sub-regions on the processing time by comparing the processing time of
EPMF algorithm in different datasets. Figure 7(b) shows the results of varying
r from 20 to 100. We can see that the processing time is higher when r is too
larger or too smaller for any dataset. Note that, since oversized r has higher cost
of each iteration and undersized r causes the increasing of iterations.

Fig. 7. Effect of d and r on processing time

Final, we evaluate the precision of Basic algorithm and MPMF algorithm. We
test incorrect rate e of the two algorithms which is the mean ratio of incorrect
results number to return ones number in 50 times of PF-Topk queries with dif-
ferent datasets. The results are given in Figure 8. When r=40 and N=20000,
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Fig. 8. Incorrect rate e with different datasets

it is seen that e of MPMF algorithm is near to that of Monte Carlo method.
However, it is easier to satisfy the precision of requirement than that of Monte
Carlo method with the cost increasing.

7 Conclusions

In this paper, we have described a novel kind of queries, PF-Topk queries which
retrieve k objects having the highest k ranking fuzzy probabilities among all un-
certain objects. The query process consists of two phases: filtering and querying.
In the first phase, a pruning method has effectively pruned the objects which
are definitely not query results. In the next phase, we have proposed an exact
algorithm, EPMF algorithm, and an approximate algorithm, MPMF algorithm,
to answer PF-Topk queries in d-dimensional uncertain space efficiently. Moreover,
MPMF algorithm can improve efficiency while ensuring high precision by setting
a proper value of the number of partitioned sub-regions. Finally, we have identi-
fied the efficiency and precision of the proposed methods through the theoretical
analysis and extensive experiments.
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Abstract. With flash disks being an important alternative to conven-

tional magnetic disks, various design aspects of DBMSs, whose I/O

behavior is performance-critical, and especially their I/O architecture

should be reconsidered. Taking the distinguished characteristics of flash

disks into account, several flash-aware buffer algorithms have been

proposed with focus on flash-specific performance optimizations. We in-

troduce several basic principles of flash-aware buffer management and

evaluate performance and energy consumption of related algorithms in

a DBMS environment using both flash disks and magnetic disks. Our

experiments reveal the importance of those principles and the potential

of flash disks both in performance improvement and in energy saving.

1 Introduction

In recent years, green computing gained a lot of attention and visibility by
public discussion concerning energy waste and, in turn, global warming. As a
consequence, thermal management is seriously addressed in IT to reduce power
usage, heat transmission, and, in turn, cooling needs. Here, we consider the role
DBMSs can play for green IT.

So far, flash disks were primarily considered ideal for storing permanent data
in embedded devices such as personal digital assistants (PDAs) or digital cam-
eras, because they have no mechanical parts and are energy efficient, small,
light-weight, noiseless, and shock resistant. Furthermore, they provide the great
advantage of zero-energy needs in idle or turned-off modes. Because of break-
throughs in bandwidth (IOps), energy saving, reliability, and volumetric capacity
[1], flash disks will also play an increasingly important role in DB servers. How-
ever, to optimize their performance and, at the same time, energy efficiency,
especially their I/O architecture must be reconsidered.

The most important building blocks of flash disks are flash memory and flash
translation layer (FTL). Logical block addresses are mapped by the FTL to
varying locations on the physical medium. This mapping is required due to the
intrinsic limitations of flash memory [2]. The implementation of FTL is device-
related and supplied by the disk manufacturer. Several efforts were recently
made to systematically benchmark the performance of flash disks [1,3,4]. The
most important conclusions of these benchmarks are:

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 183–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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– For sequential read-or-write workloads, flash disks often achieve a perfor-
mance comparable to high-end magnetic disks.

– For random workloads, the performance asymmetry of flash disks and their
difference to magnetic disks is significant: random reads are typically two
orders of magnitude faster than those on magnetic disks, while random writes
on flash disks are often even slower than those on magnetic disks.

As an example, one of our middle-class flash disk achieves 12,000 IOPS for
random reads and only 130 IOPS for random writes of 4 KB blocks, while high-
end magnetic disks typically have more than 200 IOPS for random I/O [1].
Interestingly, due to the employment of device caches and other optimizations
in the FTL, page-level writes with strong spatial locality can be served by flash
disks more efficiently than write requests without locality. In particular, many
benchmarks show that flash disks can handle random writes with larger request
sizes more efficiently. For example, the bandwidth of random writes using units
of 128 KB can be more than an order of magnitude higher than writing at units
of 8 KB. In fact, a write request of, say 128 KB, is internally mapped to 64
sequential writes of 2-KB flash pages inside a flash block. Note that sequential
access is an extreme case of high spatial locality.

1.1 Basic Principles

In DBMS buffer management, the fact “whether a page is read only or mod-
ified” is an important criterion for the replacement decision [5]. To guarantee
data consistency, a modified buffer page has to be written back to disk (called
physical write or page flush), before the memory area can be reused. Hence,
if the replacement victim is dirty, the process or thread requesting an empty
buffer frame must wait until page flush completion—potentially a performance
bottleneck.

This criterion is now much more important in our context, because, for flash
disks, the average cost of a page write (including block erasure) may be two
orders of magnitude higher than that of a page read. At a point in time running
a given workload, if a clean page p is to be re-read n times and a dirty page q to
be re-modified m times (n ∼ m), the buffer manager should replace p in favor
of q, because the benefit of serving m write requests directly from the buffer is
much higher than the cost of n repeated flash reads.

Yet the total cost of page flushing is not linear to the number of page flushes.
As introduced above, write patterns strongly impact the efficiency of flash writ-
ing; hence, they have to be addressed as well. An intuitive idea is to increase the
DB page size so that we can write more efficiently. In most systems, the page size
is the unit of data transfer between the buffer layer and the file system (or the
raw device directly). It would be an attractive solution if the overall performance
could be improved this way, because only a simple adjustment of a single pa-
rameter would be required. However, a naive increase of the page size generally
leads to more unnecessary I/O (using the same buffer size), especially for OLTP
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workloads, where random accesses dominate. Furthermore, in multi-user envi-
ronments, large page sizes favor thread contentions. Hence, a more sophisticated
solution is needed.

Even with flash disks, maintaining a high hit ratio—the primary goal of con-
ventional buffer algorithms—is still important, because the bandwidth of main
memory is at least an order of magnitude higher than the interface bandwidth of
storage devices. Based on the flash disk characteristics and our discussion so far,
we summarize the basic principles of flash-aware buffer management as follows:

P1 Minimize the number of physical writes.
P2 Address write patterns to improve the write efficiency.
P3 Keep a relatively high hit ratio.

1.2 Contributions

Previous research on flash-aware buffer management focused on flash-specific
performance optimizations. However, an important question remains open: how
well do the flash-aware algorithms perform on conventional magnetic disks? This
question is important because, due to the lower $/GB cost, magnetic disks will
certainly remain dominant in the near future, therefore enterprises have to deal
with the situations where both kinds of devices co-exist. Another interesting
aspect ignored in all previous works is the energy consumption of related algo-
rithms, which calls more and more attention in server environments and is often
critical in environments where flash devices are deployed in the first place, e.g.,
mobile data management. The major contributions of this paper are:

– We accomplish an extensive performance study of related algorithms in a
DBMS-based environment using a variety of flash disks and magnetic disks.
This device-sensitivity study is missing in all previous works, where evalu-
ation was often performed on a single simulated flash device. Furthermore,
the performance study emphasizes the basic principles introduced in Sect. 1.

– We examine the energy consumption of the system running these algorithms
using a tailor-made energy measurement device. Our experiments reveal a
strong correlation between system performance and energy consumption and
demonstrated the great energy-saving potential of flash disks.

The remainder of the paper is organized as follows. Sect. 2 sketches related
work. Sect. 3 discusses one of the flash-aware buffer algorithms in detail. Our
experiments are presented in Sect. 4. The concluding remarks are given in Sect. 5.

2 Related Work

LRU and CLOCK [6] are among the most widely-used replacement policies. The
latter is functionally identical to Second Chance [7]: both of them often achieve
hit ratios close to those of LRU.

CFLRU [8] is a flash-aware replacement policy for operating systems based on
LRU. It addresses the asymmetry of flash I/O by allowing dirty pages to stay in
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the buffer longer than clean pages. The LRU list of CFLRU is divided into two
regions: the working region at the MRU (most recently used) end of the list, and
the clean-first region at the LRU end, where clean pages are always selected as
victims over dirty pages. In this way, the buffer area for dirty pages is effectively
increased—thus, the number of flash writes can be reduced.

LRU-WSR [9] is a flash-aware algorithm based on LRU and Second Chance,
using only a single list as auxiliary data structure. The idea is to evict clean and
cold-dirty pages and keep the hot-dirty pages in buffer as long as possible.

REF [10] is also a flash-aware replacement policy based on LRU. It maintains
an LRU list and has a victim window at the MRU end of the list, similar to
the clean-first region of CFLRU. Victim pages are only selected from the victim
blocks, which are blocks with the largest numbers of pages in the victim window.

CFLRU and LRU-WSR do not address the problem of write patterns, while
REF does not distinguish between the clean and dirty states of pages. To the best
of our knowledge, CFDC [11] is the only flash-aware algorithm that applied all
the three basic principles P1 to P3 introduced in Sect. 1. The study of the energy
behavior of related buffer management algorithms distinguishes our work from
that of [4], where the impact of the device type (flash disk or magnetic disk) on
the energy efficiency of a complete database system is examined and discussed.

3 The CFDC Algorithm

For comprehension, we repeat the essential properties of the CFDC (Clean-First
Dirty-Clustered) algorithm.

3.1 The Two-Region Scheme

CFDC manages the buffer in two regions: the working region W for keeping
hot pages that are frequently and recently revisited, and the priority region P
responsible for optimizing replacement costs by assigning varying priorities to
page clusters. A parameter λ, called priority window, determines the size ratio
of P relative to the total buffer. Therefore, if the buffer has B pages, then P
contains λ pages and the remaining (1−λ)·B pages are managed in W . Note, W
does not have to be bound to a specific replacement policy. Various conventional
replacement policies can be used to maintain high hit ratios in W and, therefore,
prevent hot pages from entering P .

The parameter λ of CFDC is similar to the parameter window size (w) of
CFLRU. The algorithm REF has a similar configurable victim window as well.
For simplicity, we refer to them uniformly with the name “window size”. If a
page in P is hit, the page is moved (promoted) to W . If the page hit is in W ,
the base algorithm of W should adjust its data and structures accordingly. For
example, if LRU is the base algorithm, it should move the page that was hit to
the MRU end of its list structure. In case of a buffer fault, the victim is always
first selected from P . Only when all pages in P are fixed1, we select the victim
from W . Considering recency, the newly fetched page is first promoted to W .
1 The classical pin-use-unpin (or fix-use-unfix) protocol [12] is used for page requests.
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3.2 Priority Region

Priority region P maintains three structures: an LRU list of clean pages, a pri-
ority queue of clusters where dirty pages are accommodated, and a hash table
with cluster numbers as keys for efficient cluster lookup. The cluster number is
derived by dividing page numbers by a constant cluster size.

In our context, spatial locality refers to the property of contiguously accessed
DB pages being physically stored close to each other. A cluster is a set of pages
located in proximity, i.e., whose page numbers are close to each other. Though
page numbers are logical addresses, because of the space allocation in most
DBMSs and file systems, the pages in the same cluster have a high probability
of being physically neighbored, too. The size of a cluster should correspond, but
does not have to be strictly equal to the size of a flash block, thus information
about exact flash block boundaries are not required.

CDFC’s principles of victim selection are:

– Inside P , clean pages are always selected over dirty pages. If there is no clean
page available, a victim cluster having the lowest priority is selected from
the priority queue.

– The oldest page in the victim cluster will be evicted first, if it is not re-
referenced there. Otherwise, it would have been already promoted to W .

– The priority of the victim cluster is set to minimum and will not be updated
anymore, so that the next victim pages will still be evicted from this cluster,
resulting in strong spatial locality of page evictions.

For a cluster c with n (in-memory) pages, its priority P (c) is computed according
to Formula 1:

P (c) =

n−1∑
i=1

|pi − pi−1|

n2 × (globaltime− timestamp(c))
(1)

where p0, ..., pn−1 are the page numbers ordered by their time of entering the
cluster. The algorithm tends to assign large clusters a lower priority for two
reasons: 1. Flash disks are efficient in writing such clustered pages. 2. The pages
in a large cluster have a higher probability of being sequentially accessed.

The sum in the dividend in Formula 1, called inter-page distance (IPD), is
used to distinguish between randomly accessed clusters and sequentially accessed
clusters (clusters with only one page are set to 1). We prefer to keep a randomly
accessed cluster in the buffer for a longer time than a sequentially accessed
cluster. For example, a cluster with pages {0, 1, 2, 3} has an IPD of 3, while a
cluster with pages {7, 5, 4, 6} has an IPD of 5.

The purpose of the time component in Formula 1 is to prevent randomly,
but rarely accessed small clusters from staying in the buffer forever. The cluster
timestamp timestamp(c) is the value of globaltime at the time of its creation.
Each time a dirty page is inserted into the priority queue (min(W ) is dirty),
globaltime is incremented by 1.

If a page in P is hit, it will be promoted to W . A newly fetched page in P
will also be promoted to W . In both cases, page min(W ) is determined by W ’s
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victim selection policy and demoted to P . It does not have to be unfixed, because
it is just moved inside the buffer. If min(W ) is clean, it is simply appended to
the LRU list of clean pages. If it is dirty, the globaltime is incremented and we
derive its cluster number and perform a hash lookup using this cluster number.
If the cluster does not exist, a new cluster containing this page is created with
the current globaltime and inserted to the priority queue. Furthermore, it is
registered in the hash table. Otherwise, the page is added to the existing cluster
tail and the cluster position in the priority queue is adjusted.

After demoting min(W ), the page to be promoted, say p, will be removed
from P and inserted to W . If p is dirty and its containing cluster c is not a
victim cluster, we know that p is promoted due to a buffer hit. We update the
cluster IPD including the timestamp. This will generally increase the cluster
priority according to Formula 1 and cause c to stay in the buffer for a longer
time. This effect is desirable, because the remaining pages in the cluster will
probably be revisited soon due to locality. In contrast, the cluster timestamp is
not updated, when pages are added to a cluster, because they are demoted from
W .

The time complexity of CFDC depends on the complexity of the base algo-
rithm in W and the complexity of the priority queue. The latter is O(log m),
where m is the number of clusters. This should be acceptable due to m � λ ·B,
where λ · B is the number of pages in P . Furthermore, with the priority queue
and its priority function, both temporal and spatial locality of the dirty pages
are taken into account, thus potentially high hit ratios and improved runtime
performance can be expected.

The CFDC approach implies the NoForce and Steal strategies for the log-
ging&recovery component [13], which, however, is the standard solution in most
DBMSs. In practice, page flushes are normally not coupled with the victim
replacement process—most of them are performed by background threads. Ob-
viously, these threads can benefit from CFDC’s dirty queue, where the dirty
pages are already collected and ordered. The two-region scheme makes it easy
to integrate CFDC with conventional replacement policies in existing systems.

4 Experiments

4.1 Hardware Environment

The system under test (SUT) has an Intel Core2 Duo processor and 2 GB of
main memory. Both the OS (Ubuntu Linux with kernel version 2.6.31) and the
DB engine are installed on an IDE magnetic disk (system disk). The test data
(as a DB file) resides on a separate magnetic/flash disk (data disk). The data
disks, listed in Tab. 1, are connected to the system one at a time.

A tailor-made power measurement device, consisting of ten voltage and cur-
rent meters, connects the power supply and the system’s hardware components,
as depicted in Fig. 1. The device does not tamper the voltages at the power lines,
because the hardware components are sensitive to voltage variations. Instead, it
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Table 1. Disk drives used in the test

name device type idle (W) peak (W) interface

HDD1 WD WD800AAJS 7200 RPM 5.3 6.3 SATA

HDD2 WD WD1500HLFS 10000 RPM 4.5 5.7 SATA

HDD3 Fujitsu MBA3147RC 15000 RPM 8.4 10.0 SAS

SSD1 SuperTalent FSD32GC35M 1.3 2.1 SATA

SSD2 MTRON MSP-SATA-7525-032 1.2 2.0 SATA

SSD3 Intel SSDSA2MH160G1GN 0.1 1.2 SATA

measures the current using current transformers with inductive measurement,
and the voltage using voltage dividers on a shunt circuit. Both measurements
are forwarded over a data bus to the A/D-Converter, which allows the signals
being processed by a monitoring PC in real-time.

Fig. 1. Power measurement setup

Using this setup, we are able to precisely measure the energy consumption of
the SUT’s major parts of interest: the data disk (denoted as SATA, although
HDD3 is measured over the SAS power lines), the system disk (denoted as IDE),
and the remaining components on the mainboard (denoted as ATX) includ-
ing CPU and RAM. For a time period T , the average power P̄ is given by
Formula 2:

P̄ =
1
T

∫ T

0

(v(t) · i(t))dt (2)

where v(t) and i(t) are the voltage and current as functions of time, and
∫ T

0 (v(t)·
i(t))dt is the work, which is equal to the energy consumption E.

Tab. 2 lists the power profile of the major components of SUT. The idle col-
umn refers to the power values when the components are idle (0% utilization)
but ready for serving requests, i.e., not in a service-unavailable state such as
stand-by or hibernate, while the peak column refers to the power values when
the components are under 100% utilization. An interesting observation can be
made from this profile: ignoring the data disk, the idle power of the system
is 57% of the peak power (25.9 W / 45.7 W). In other words, a lion’s share
of the power is consumed only to keep the system in a ready-to-service state.
Note this “idle share” is even larger in practice, because the peak power can only
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Table 2. Power profile of SUT

power line components idle (W) peak (W)

SATA/SAS data disk (see Tab. 1)

IDE system disk (Maxtor 6Y080P0) 6.3 12.2

ATX CPU, RAM, and mainboard chips 19.6 33.5

be reached in some extreme conditions, where all the hardware components are
fully-stressed at the same time. With the data disk, this observation still holds,
because similar ratios exist between the idle and peak power of HDDs, while
SSDs had too low power values to have a large impact on the idle/peak power
ratio of the overall system. Furthermore, this observation is not specific to the
test machine discussed here, because most state-of-the-art servers and desktop
computers have similar idle/peak power ratios.

4.2 Software Settings

In all experiments, we use a native XML DBMS designed according to the clas-
sical five-layer reference architecture. For clarity and simplicity, we only focus
on its bottom-most two layers, i.e., the file manager supporting page-oriented
access to the data files, and the buffer manager serving page requests. Although
designed for XML data management, the processing behavior of these layers is
very close to that of a relational DBMS.

We deactivated the file-system prefetching and used direct I/O to access the
DB file, so that the influences of file system and OS were minimized. The log-
ging&recovery component is deactivated so that no extra I/Os for logging will
influence our measurements. Our experiments are driven by two real-life OLTP
page reference traces and only the two layers introduced were involved in the
processing, thus the workload is I/O intensive. All experiments started with a
cold DB buffer. Except for the native code responsible for direct I/O, the DB
engine and the algorithms are completely implemented in Java. CFDC and com-
petitor algorithms are fully integrated into the XML DBMS and work with other
components of the DB engine.

We cross-compared five buffer algorithms, including the flash-aware algo-
rithms CFLRU, LRU-WSR, REF, CFDC and the classical algorithms repre-
sented by LRU. The block size parameter of REF, which should correspond to
the size of a flash block, was set to 16 pages (DB page size = 8 KB, flash block
size = 128 KB). To be comparable, the cluster size of CFDC was set to 16 as
well. The |V B| parameter of REF (the number of allowed victim blocks) was
set to 4, based on the empirical studies of its authors. Furthermore, we used
an improved version of CFLRU which is is much more efficient at runtime yet
functionally identical to the original algorithm.
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4.3 Measuring Spatial Locality

Both CFDC and REF improves the spatial locality of page flushes. We define
the metric cluster-switch count (CSC) to quantify the spatial locality of page
flushes. Let S := {q0, q1, . . . , qm−1} be the sequence of page flushes, the metric
CSC(S) reflects the spatial locality of S:

CSC(S) =
m−1∑
i=0

{
0, if qi−1 exists and in the same cluster as qi

1, otherwise (3)

The clustered writes of CFDC are write patterns with high spatial locality and
thus minimized cluster-switch counts. Sequential writes are a special case of
clustered writes, where pages are updated in a forward or reverse order according
to their locations on the storage device. If d(S) is the set of distinct clusters
addressed by S and S is a sequential access pattern, we have CSC(S) = |d(S)|.
In the context of magnetic disks, if we set the cluster size equal to the track size,
then CSC(S) approximates the number of disk seeks necessary to serve S.

Compared to CFDC, the sequence of dirty pages evicted by the algorithm REF
generally has a much higher CSC, because it selects victim pages from a set of
victim blocks and the victim blocks can be addressed in any order. However,
this kind of write requests can also be efficiently handled by flash disks, if the
parameter V B is properly set. Because the sequence of dirty pages evicted can
be viewed as multiple sequences of clustered writes that are interleaved with one
another, we call the approach of REF semi-clustered writes.

Let R := {p0, p1, . . . , pn−1} be the sequence of page requests fed to the buffer
manager, we further define the metric cluster-switch factor (CSF ) as:

CSF (R, S) = CSC(S)/CSC(R) (4)

CSF reflects the efficiency to perform clustering for the given input R. To com-
pare identical input sequences, it is sufficient to consider the CSC metric alone.

4.4 The TPC-C Trace

The first OLTP trace was obtained using the PostgreSQL DBMS. Our code
integrated into its buffer manager recorded the buffer reference string of a 20-
minutes TPC-C workload with a scaling factor of 50 warehouses.

We ran the trace for each of the five algorithms and repeat this on each of the
devices listed in Tab. 1. The recorded execution times and energy consumptions
are shown in Fig. 2. Since our workload is I/O-intensive, the device performance
has a strong impact on the overall system performance, e.g., SSD3 reduced the
average runtime (average over the algorithms) by a factor of 21 compared with
HDD1 and by a factor of 19 compared with SSD1, while the corresponding
energy-saving factors are 25 and 19 respectively. The CFDC algorithm had the
best performance on all of the devices, with a maximum performance gain of
22% over CFLRU on SSD1. Interestingly, even on the magnetic disks, CFDC
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(a) execution times (ms) (b) energy consumption (J)

Fig. 2. Performance and energy consumption running the TPC-C trace

and CFLRU had a better performance than LRU, which, in turn, outperformed
LRU-WSR even on the flash disks. In most configurations, REF had the longest
execution times due to its lower hit ratio and higher number of page flushes,
with the exception on SSD2, where its semi-clustered writes seems to be best
accommodated by that specific device.

Similar to magnetic disks, it is common for flash disks to be equipped with
a device cache. Very often, it can not be deactivated or re-sized by the user or
the OS, and its size is often undocumented. Obviously, the DB buffer in our
experiment should be larger than the device caches. Otherwise, the effect of
the DB buffer would be hidden by them. On the other hand, if the DB buffer
is too large, the difference between our algorithms would be hidden as well,
since with a large-enough buffer, there would be hardly any I/O. Based on these
considerations, we used a buffer size of 8000 pages (64 MB) for this experiment,
because the largest known device cache size is 16 MB of HDD3. The difference
between the execution times of the algorithms becomes smaller on SSD3 (see
Fig. 2) due to two reasons: 1. The I/O cost on SSD3 is much smaller than
on other devices, yielding the buffer layer optimization less significant; 2. This
device has supposedly the largest device cache, since it is the newest product
among the devices tested.

Fig. 3 shows the performance metrics that were constant across all the devices
(device-independent): number of buffer faults (physical reads), number of page
flushes (physical writes), and cluster-switch count (CSC). As shown in Fig. 3a
and Fig. 3b, the clean-first algorithms (CFLRU and LRU-WSR) traded some of
their hit ratios for a reduced page flush count, while REF suffered both from
a higher number of buffer faults and a higher number of page flushes. Among
all algorithms compared, the page flushes generated by CFDC had the highest
spatial locality (Fig. 3c).
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(a) buffer faults (b) page flushes (c) CSC

Fig. 3. Device-independent performance metrics

Comparing Fig. 2a with Fig. 2b, we can see a strong correlation between the
execution times and the energy consumption. In particular, the best-performing
algorithm was also the most energy-saving algorithm. For example, CFDC re-
duced energy consumption by 32% on HDD1 and by 71% on SSD3 compared
with REF. This effect is further explained by Fig. 4, which contains a break-
down of the average working power of major hardware components of interest,
compared with their idle power values. The figures shown for the configurations
HDD1 and SSD1 are indicative2. Ideally, the power consumption of a component
(and the system) should be determined by its utilization. But for both config-
urations, there is no significant power variation when the system state changes
from idle to working. Furthermore, no clear difference can be observed between
the various algorithms, although they have different complexities and, in fact,
also generate different I/O patterns. This is due to the fact that, independent of
the workload, the processor and the other units of the mainboard consume most
of the power (the ATX part in the figure) and these components are not energy-
proportional, i.e., their power is not proportional to the system utilization caused
by the workload. However, due to the missing energy-proportional behavior of
most system components, the elapsed time T of the workload (algorithm) almost
completely determines its energy consumption E (note, E = P̄ · T ).

4.5 The Bank Trace

The second trace used here is a one-hour page reference trace of the production
OLTP system of a Bank. It was also used in the experiments of [14] and [15].
This trace contains 607,390 references to 8-KB pages in a DB having a size of
22 GB, addressing 51,870 distinct page numbers. About 23% of the references
update the page requested, i.e., the workload is read-intensive. Even for the
update references, the pages must be first present in the buffer, thus more reads
are required. Moreover, this trace exhibits an extremely high access skew, e.g.,
40% of the references access only 3% of the DB pages that were accessed in
2 They are similar for the other device types (IDE and ATX remain constant). For

this reason, we have omitted the other configurations due to space limitations.
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(a) HDD1 (b) SSD1

Fig. 4. Break-down of average power (W)

the trace [14]. We use this trace to examine the impact of buffer size on the
performance and energy consumption of our algorithms. Hence, the buffer size
varied from 500 to 16000 pages (factor 32).

(a) execution times (ms) on HDD2 (b) execution times (ms) on SSD2

Fig. 5. Impact of window size

In the experiments discussed in Sect. 4.4, the parameter “window size” was not
tuned—it was set to 0.5 for all related algorithms. To examine its impact, for each
of the algorithms CFDC, CFLRU, and REF, we always ran the trace three times
with the window size parameter set to 0.25, 0.50, and 0.75 respectively, denoted
as REF-25, REF-50, REF-75, etc. As an indicative example, the execution times
measured on the middle-class devices HDD2 and SSD2 are shown in Fig. 5. We
found that the optimal window size depends on both the buffer size and the
device characteristics, for all the three related algorithms.
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(a) execution times (ms) (b) page faults

(c) page flushes (d) CSC

(e) energy (J) (f) power (W)

Fig. 6. Performance and power running the bank trace on SSD2
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Due to the space limitation, we only discuss the performance and power figures
measured on SSD2 in more detail. For the same reason, we choose one best-
performing window-size configuration for each of the related algorithms and
compare them with LRU and LRU-WSR in Fig. 6. For CFDC and CFLRU it
was 0.75, and for REF it was 0.25. The performance figures shown in Fig. 6a
are explained by the device-independent metrics shown in Fig. 6b to Fig. 6d.
For example, CFDC and CFLRU had comparable numbers of buffer faults and
page flushes, but the latter suffered from a lower spatial locality of page flushes
(Fig. 6d). The access skew is reflected in Fig. 6b: the difference in number of
page faults becomes insignificant beyond 4000 pages.

The linear complexity of REF resulted in a higher CPU load compared with
other algorithms having constant complexity. This is captured by Fig. 6f, where
the working power of the system is illustrated. The power value of REF goes
up with an increasing buffer size, while the power values caused by the other
algorithms slightly decrease, because the larger the buffer sizes the more physical
I/Os were saved. Note, handling a logical I/O from the buffer is more energy-
efficient than doing a physical I/O, because fewer CPU cycles are required and
device operations are not involved.

The algorithms’ complexity did have an impact on the power of the system,
but the time factor had a stronger impact on the overall system energy consump-
tion. For example, enlarging the buffer from 500 to 16000 pages augmented the
power value of REF by 2.1% (from 28.04 W to 28.63 W), while the corresponding
execution time (Fig. 6a) decreased by 46.3%. In fact, the effect of the increased
CPU load was hidden by the “idle share” of the working power (27.08 W, not
shown in the figure). Therefore, the energy consumption curves in Fig. 6e largely
mirror the performance curves of Fig. 6a. In particular, at a buffer size of 16000
pages, the relative performance gain of CFDC over CFLRU is 54%, while the
corresponding energy saving is 55%.

5 Conclusions

Our experiments reveal a great performance potential of flash disks. The use
of flash-aware buffer algorithms can further significantly improve system perfor-
mance on these devices. The CFDC algorithm clearly outperformed the other
algorithms in most settings. According to our device sensitivity study, its flash-
specific optimizations do not exclude its application in systems based on mag-
netic disks.

The performance gain can be translated into a significant energy-saving po-
tential due to the strong correlation between performance and system energy
consumption. Furthermore, faster I/O reduces the overall system runtime and
leaves more opportunities for the system to go into deeper energy-saving states,
e.g., stand-by or even off-line.

As an important future task of hardware designers and device manufactur-
ers, all system components other than flash disks should be developed towards
stronger energy-proportional behavior. Then, the speed or runtime reduction
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gained by flash use for I/O-intensive applications could be directly translated
into further substantial energy saving. As a consequence, energy efficiency due
to flash disk use would be greatly enhanced as compared to magnetic disks.
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Abstract. Flash disk, also known as Solid State Disk (SSD), is widely

considered by the database community as a next-generation storage me-

dia which will completely or to a large extent replace magnetic disk

in data-intensive applications. However, the vast differences on the I/O

characteristics between SSD and magnetic disk imply that a consider-

able part of the existing database techniques need to be modified to

gain the best efficiency on flash storage. In this paper, we study the

problem of large-scale concurrent disk scans which are frequently used

in the decision support systems. We demonstrate that the conventional

sharing techniques of mutiple concurrent scans are not suitable for SSDs

as they are designed to exploit the characteristics of hard disk drivers

(HDD). To leverage the fast random reads on SSD, we propose a new

framework named Semi-Sharing Scan (S3) in this paper. S3 shares the

readings between scans of similar speeds to save the bandwidth utiliza-

tion. Meanwhile, it compensates the faster scans by executing random

I/O requests separately, in order to reduce single scan latency. By uti-

lizing techniques called group splitting and I/O scheduling, S3 aims at

achieving good performance for concurrent scans on various workloads.

We implement the S3 framework on a PostgreSQL database deployed on

an enterprise SSD drive. Experiments demonstrate that S3 outperforms

the conventional schemes in both bandwidth utilization and single scan

latency.

1 Introduction

During the past decade, flash memory has become a popular medium for stor-
age due to its fast random access, low energy consumption, shock resistance,
and silent working. In recent years, the flash disk, also known as Solid State
Disk (SSD), has gained momentum in its competition against the conventional
magnetic hard disk drive (HDD) in the market. Many software products which
previously rely on HDD storage are now being considered to adopt SSD as an al-
ternative. Among these, the database management systems are probably within
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the class which requires the most attention and efforts, due to their vast com-
plexity and numerous legacy applications. Despite the challenges, the prospect
of replacing HDD with SSD in DBMS is attractive as the current database ap-
plications are desperately confined by the bottleneck of random I/O in HDDs.
The most desirable feature of SSD in this regard is its elimination of seek and
rotational delay, and the resultant fast random accesses. Table 1 indicates that
the state-of-the-art SSD outperforms the conventional HDDs by more than two
orders of magnitude in random reads.

Table 1. Performance Comparison of Different Read Patterns

HDD † SSD‡

Random Read Latency 9.69ms 0.03ms

Sequential Read Rate 114.7MB/s up to 250MB/s
† : Western Digital 7200 rpm Digital Black
‡ : Intel X-25 Extremely

Unfortunately, previous studies have found that the performance of DBMS
could not gain the expected improvements while they are deployed on SSDs
straightforwardly [8] [14] [15]. The main reason for such results is that the storage
engines and access methods of the conventional DBMSs are designed for the
HDDs. As such, the advantages of SSDs cannot be fully exploited.

Let us consider the disk-based methods to handle concurrent disk scans, which
are often executed as table scans in many decision support systems. The problem
of concurrent table scans on HDD can be described as following: Given a limited
buffer size of C and a sufficiently large table, if a running scan operation S1

outdistances another scan operation S2, meaning that S1 is accessing a page
which is at least C + 1 blocks ahead of S2, S2 is unlikely to hit any useful
pages in the buffer with typical buffer management policies [9] [10] [11] [12]
[13]. As a result, scan S2 will not only cause disk thrashing but also compete
the buffer space with S1, leading to poor performance. In the literature, a few
methods [1] [2] [4] [6] [7] have been proposed to address the above problem on
HDDs. The main idea behind all these methods is that concurrent disk scans
can “share” their footprints on disk pages as well as their memory buffer space.
Therefore, multiple scans can share a (hopefully long) period of sequential disk-
head movements, avoiding the penalty of chaotic random reads. However, these
methods have the following drawbacks when employed on SSDs:

– First, there are almost always speed mismatches among multiple scans shar-
ing the same sequential accesses. A faster scan has to be constrained by the
slower ones in order to share the disk arm movement on the HDD. But on
SSD this constraint is trivial as it is not mechanic-driven. Therefore, the
capacity of SSD does not be fully exploited if the overall disk bandwidth is
not saturated.
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– Second, the existing methods focus on optimizing the disk accesses only be-
cause the queries are I/O-bounded. As SSD provides much larger bandwidth
than HDD, some complicated queries are bounded by CPU power other than
I/O bandwidth. Therefore, the strategy of the disk accesses needs to be re-
considered to exploit the system capability.

In this work, we leverage the advantage of SSD to speed up concurrent scans.
First we introduce a cost model for concurrent scans on SSD, and then we
propose a novel framework named Semi-Sharing Scans (S3). S3 consists of two
main components, namely the scan scheduler and the low-level I/O scheduler. (1)
The scan scheduler clusters multiple scans into a set of groups by the similarity
between their speeds. The scans in a same group share a stream of sequential
block read operations which we refer to as the unified I/Os. In addition, faster
scans which are not fully feed are allowed to perform complementary I/Os at
other disk addresses. (2) The I/O scheduler dispatches the I/O requests from
the scans into two separate queues, namely the unified and complementary I/O
queue. During I/O scheduling, the unified queue enjoys higher priority compared
to the complementary one.

Compared to the existing methods, S3 is more suitable for concurrent scans
on SSD as it optimizes both the bandwidth utilization and the average latency
of each single scan under various workloads. Additionally, the framework is easy
to implement, as only limited modifications are needed in a RDBMS. The con-
tributions of our work include:

– We present a new cost model of the concurrent scans on SSD and demon-
strate that the state-of-the-art scan scheduling policies do not fully exploit
the I/O capability of SSD in various workloads.

– We propose a multiple-scan scheduling framework S3 based on the cost anal-
ysis. This framework improves the bandwidth utilization via grouping and
I/O scheduling. Compared to the existing methods, S3 reduces the latency
of a faster scan by compensating it with a separate stream of disk footprints.

– We implement the S3 framework in the PostgreSQL DBMS. Our comprehen-
sive experiments based on the TPCH benchmark indicate that the proposed
approach is very effective for various workload patterns.

The rest of the paper is organized as follows. In Section 2 we define the problem
and analyze the existing strategies on SSD. Our S3 framework is described in
Section 3. The experiments in Section 4 demonstrate the efficiency of S3 and we
conclude our work in Section 5.

2 Problem Definition and Cost Analysis

2.1 Problem Definition

A formal definition to concurrent scans problem is as follows. Assume that a
table contains N pages stored in the secondary storage and a small buffer with
capacity C (C is much smaller than N) in the main memory. If there are k scans
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denoted by S1, S2..., Sk, whose speeds are v1, v2..., vk respectively, all beginning
at arbitrary times and having to access all the N pages of the table. The problem
is how to coordinate the scans to gain the optimal performance.

The performance optimization of concurrent scans relies on the definitions of
a few terms as following. The speed vi of a scan Si is defined as the number of
pages that can be consumed per second when Si is executed alone. Meanwhile,
the response time of Si, denoted by rt(Si), is the elapsed time between its start
and end. Given sufficiently large disk bandwidth and a specific CPU processing
power, the minimum response time of Si, denoted by rtmin(Si), is the response
time when Si is executed alone. Therefore we have rtmin(Si) = N/vi. As the
computational costs between queries may differ significantly, the speeds of dif-
ferent scans may also be very different. For example, in the TPCH benchmark,
Q1 generates a slow scan on the Lineitem table as it needs many arithmetic
computations, while Q6 is much faster as it only contains an aggregation.

A set of concurrent scans Si (i = 1, 2, . . . , n) may share disk I/Os if their
I/O requests are scheduled properly. In such case, the overall number of pages
being transferred per second is defined as the bandwidth consumption. However,
in real world the bandwidth consumption is always constrained by the physical
device bandwidth capacity V . Therefore, we refer to the unconstrained, ideal
bandwidth consumption as the bandwidth demand or Bdemand, while the con-
strained, actual bandwidth consumption seen on the physical disk interface as the
actual bandwidth consumption or Bactual. We denote by Bdemand(system) the
total bandwidth demand of the n scans in the system, and by Bdemand(si)
the demand of scan si. Bactual(system) and Bactual(si) are defined similarly.
We note that Bactual(system) must always be no more than Bdemand(system).
The latter must also be no more than the sum of all the speeds of the scans.
Therefore, we have

Bactual ≤ Bdemand ≤
∑

vi.

The target of our optimization is to minimize the average response time

1
n

n∑
i=1

rt(Si) (1)

while Bactual is constrained by the device bandwidth capacity. It is important
to note that the Bactual(system) is either V or Bdemand(system) whichever is
smaller.

2.2 Existing Scheduling Schemes

In this subsection, we shall look at a few existing schemes for handling concurrent
scans. A naive scheme to handle concurrent scans is to simply rely on the LRU
buffer replacement policy. The naive scheme does not allow any page reusing
when the distance between the footprints of two concurrent scans is greater
than C pages. For clearness we name it as “no share”. In such case, each scan
needs to read from the secondary storage for every I/O request. This may lead
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to arm “thrashing” on HDDs, causing serious performance degradation. Using
the MRU replacement policy might be slightly better than the LRU because it
could reuse some initial pages in the buffer. However, the gain is very limited as
C is usually much smaller than N .

A better scheme used by some DBMSs [1] [2] [3] [4] is to save I/O by sharing
a stream of reads among multiple scans. When a new scan arrives, the system
tries to attach it to an existing scan, which shares its reads of the rest pages with
the new one. After a shared scan reaches the end of the table, it resumes from
the beginning of the table until arriving at the original starting location. The
main problem of this shared policy is that it cannot handle the speed mismatch
between the scans. Once a scan outdistances another for more than C pages, the
situation degenerates to the no share scheme. A common solution, namely “strict
share”, is to stall the fast scans, thus guaranteeing the sequential movement of
the disk arm. In this case, the rt(Sn) is between [N/vslowest, N/vn]. To relieve
the performance loss of the fast scans, DB2 [6] [7] proposes an improved “group
shared” scheme in which the scans with similar speeds are grouped together and
sharing happens within each group. However, the faster scans still need to wait
for the slower ones in a same group.

A novel approach presented in [5] suggests to schedule the buffer by a suite of
relevance-intensive functions. However, the computation of the relevance requires
subtle dynamic statistics of the table and each scan. This would burden the CPU
when the table is large. Another drawback is that it roughens the granularity of the
buffer management, which makes it incoincident with accesses of other pattern.

2.3 Cost of Concurrent Scans on SSD

As SSD is non-mechanic driven and offers significantly higher random access
speed compared to the HDD, the seek time and rotational delay are both elim-
inated. Therefore, when the DBMS is deployed on SSDs, the cost of multiple
scans must be computed differently. In this subsection, we evaluate the schedul-
ing schemes described in subsection 2.2 using the cost model for SSD. Then we
demonstrate that none of the existing scheduling schemes for concurrent scans
can adequately exploit the capacity of SSD.

Some assumptions are necessary for introducing the cost model of SSD. (1)
We assume that we are equipped with sufficiently large number of CPUs re-
garding the I/O capacity so that the scans only sleep on I/O requests. (2) We
observe that the bandwidth of a SSD device can linearly scale-up before its
actual bandwidth consumption reaches the device capacity. Before that, the ac-
tual bandwidth being consumed should be equal to the sum of the demands
of all scans. That means Bactual(system) = Bdemand(system) =

∑
vi when

Bdemand(system) < V . (3) When the bandwidth demand of the whole system
Bdemand(system) is greater than the physical disk capacity V , indicating that
the I/O subsystem is overloaded, some requests have to wait for others to com-
plete. Such waiting causes performance degradation to a scan in terms of speed
(bandwidth) loss. Without loss of generality, we assume that such speed loss is
uniformly distributed among all scans.
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To minimize the average response time proposed in Equation 1, we look at the
response time of each scan sk (k = 1, . . . , n) under different scheduling schemes.
Based on our second assumption of SSD, we have

Bactual(system) = min(V, Bdemand(system)).

For the no share scheme, Bdemand(system) is Σvi. If Bdemand(system) is less
than V , each scan could achieve rtmin as no I/O request would be waiting.
Otherwise, the actual bandwidth of sk, Bactual(sk), is only V ∗vk/Σvi. Therefore
we have rt(sk) = N/V ∗ vk/Σvi. For the strict shared policy, Bdemand(system)
is equal to the speed of the slowest scan, denoted by vs. Therefore the response
time of each scan is N/vs if vs < V , and N/V if vs > V . For the group shared
scheme, the Bdemand of each group g, denoted by Bdemand(g), is the slowest
speed within group g (we denote it by vsg) and Bdemand(system) is the sum of
all groups in the system, namely Σvsg

i . If Σvsg
i < V , then the response time of

sk is given by the slowest scan in its group, namely rt(sk) = N/vsg
k . Otherwise,

rt(sk) = N/V ∗ vsg
k /Σvsg

i .

Table 2. Response times of scans on SSD under existing schemes. vs means the slowest

speed among all scans, while vsg means the slowest speed in its group.

rt(sk) Bactual(system)

no share N/min(vk, V ∗ vk/Σvi) min(V, Σvi)

strict share N/min(vs, V ) min(vs, V )

group share N/min(vsg
k , V ∗ vsg

k /Σvsg
i ) min(V, Σvsg

i )

Table 2 implies that all existing schemes have their limitations on the SSDs.
The no share scheme could achieve the minimal average response time when
Bdemand(system) < V . However, this benefit comes at the expense of large band-
width consumption when the number of the scans increases. The performance
of the no share scheme is likely to plunge when Bdemand(system) exceeds V . In
contrast, the strict shared scheme aims at minimizing Bdemand(system). How-
ever, faster scans in the system have to be confined by the slower ones. When the
disk has available bandwidth, the strict shared scheme is unable to fully exploit
it to expedite the fast scans. The group share scheme compromises between these
two schemes. But it still does not make adequate use of the available bandwidths
to expedite the faster scans within each group.

According to the analysis above, we design a new framework S3 which could
fully exploit the capacity of the SSD by combining the sharing I/O and separated
I/O. S3 shares part of the I/O reading among similar scans for reducing the
bandwidth consumption, while it compensates the faster ones in random I/Os
to improve the response time. Compare to the conventional sharing policies, S3

could gain in both query latencies and bandwidth consumption.
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3 The Semi-Sharing Scans Framework

3.1 Overview

The S3 framework consists of two components, depicted in Figure 1. The Scan
Scheduler coordinates the multiple scans, possibly in groups, and the I/O Sched-
uler dispatches the low-level I/O requests. Each scan consumes the pages of the
table via a common buffer. The buffer is located in the main memory and caches
part of the data pages from secondary storage. Once a new page is read in, the
buffer manager evicts a victim page according to its priority mechanism, such
as LRU, MRU, Clock Sweep etc.

I/O 
Scheduler

Page Buffer

GROUP     I

scan a scan b scan c

GROUP     II

scan d scan e

Unified 
Request
Unified 
Request

……

Table on SSD

Scan Scheduler
send

signal

se
ndre
ad

Complement
ary Request

Complement
ary Request

……

Complement
ary Request

Fig. 1. An Overview of S3. Two scan groups I and II are in progress. In group I,
scan c acquires for a page via a complementary I/O request, while the group I moves

forward via a unified I/O request.

The Scan Scheduler manages a number of scan groups, each of which contains
one or several scans. To control the memory footprint, each group is allocated
a fix-sized window in the buffer, which contains a number of contiguous data
pages of the table. The scans in a same group share the reads of the pages in
the window, which moves forward on the table via the cooperation from all the
scans in the group. Specifically, the fastest scan reads the next data page and
pins it in the memory until the slowest one consumes it. This read is translated
to a unified I/O request in the low-level. We note that the scan scheduler can
be easily implemented on the buffer module of any existing DBMSs.

If the fastest scan outdistances the slowest one by the size of the window, it
cannot proceed sequentially to the next disk address. In this case we compensate
it by allowing complementary I/Os outside the shared stream of disk addresses,
by sending complementary I/O requests. For example in Figure 1, scan c is
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restricted by the slowest scan a, so c can make a complementary I/O request,
which deviates from its conventional sequence.

All I/O requests in S3 are scheduled by the I/O Scheduler. The unified I/O
requests and the complementary I/O requests are stored and manipulated in
separate queues. The unified requests are given higher priority. Therefore, if the
unified request queue is not empty, no complementary requests will be processed.
Once a request is completed, the I/O Scheduler evokes the scans which are
waiting on it.

In the rest of this section, we shall look at the detailed techniques of scan
scheduling and I/O scheduling.

3.2 Scheduling the Scans

Like the typical table scan processes in most existing DBMSs, each scan in the
S3 framework consists of three main steps, namely (1)BeginScan, (2) FetchNext,
(3) EndScan. In the BeginScan step, a new scan is initialized. Then the scan
traverses the table from the first page to the end by invoking the FetchNext step
iteratively. After all the pages are processed, the EndScan step terminates the
scan. We shall now elaborate these steps in the following.

Algorithm 1. BeginScan(S)

Open(S);

S.locbegin ← 0;

if there exists no groups then
create a new group g;

add S to g
else

g ← ChooseGroup();

S.locbegin ← MAX;

for each Si in g do
if Si.loccur < S.locbegin

then
S.locbegin ← Si.loccur

add S to g;

if CheckSplit(g) then
Split g;

S.loccur ← S.locbegin + 1

Algorithm 2. EndScan(S)

if S is the only scan in g then
delete g;

for all groups GN do
gi ←
PickSplitGroup(GN )

Split gi;

else
remove S from g;

Close(S);

Algorithm 3. FetchNext(S)

if S.loccur = S.locbegin then
return NULL

while true do
locacq ← S.loccur;

type ← unified;

g ← S’s group;

for each Si in g do
if S.loccur − Si.loccur >
|g.Window| then

locacq ← S.locbegin;

type ← complementary
if type = unified then

if locacq is in buffer then
S.loccur + +;

return locacq;

else
SendRequest(locacq, S);

Signal(I/OScheduler);
else

if locacq is in buffer then
S.locbegin −−;

return locacq;

else
SendRequest(locacq, S);

Signal(I/OScheduler);
Wait();
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The process of BeginScan in S3 is described in Algorithm 1. When a new
scan S begins, the scan scheduler creates a new group if there is no group at
all. Otherwise, S is added to an existing group according to its speed, which
is estimated by the query optimizer module. Then the scan scheduler checks
whether a splitting is necessary. The detail of choosing and splitting the group
will be described in the next subsection. Once a group is chosen, the beginning
location of S is determined. For simplicity, we choose the page being processed
by the slowest scan in the group as the beginning location of S.

The FetchNext step returns one page of the table each time. The process
of FetchNext is described in Algorithm 3. To synchronize with other scans in
the group, A scan S firstly checks its current location. If S has outdistanced
the slowest one in its group for more than the window size, it will acquire a
complementary page, starting from the beginning location of itself and extending
backward. Otherwise it moves to the next page in the forward direction. If the
page acquired is not in buffer, S has to send either a complementary or a unified
I/O request to the I/O scheduler and wait for it. More details about the circular
location computation, priority updating, and page latching etc. are omitted in
our paper due to space limit.

Once a scan S has traversed all the pages in the table, we need to use EndScan
step to complete the scan. A fast scan is ended when its current location and
its beginning location meet. If S is the last scan in its group, the scan scheduler
removes this group and checks whether the removal causes splitting of any other
groups.

3.3 Grouping the Scans

Analogous to the discussion in section 2.3, the bandwidth demand of scans in S3

can be calculated as following. As Bdemand consists of two parts: the unified band-
width (Bu) which is occupied by the unified I/O requests and the complementary
bandwidth (Bc) produced by the complementary I/O requests. Generally in each
group g, we have

Budemand(g) = vslowest, ∀vi ∈ g;

and
Bcdemand(g) = Σvi − (|g|) ∗ vslowest, ∀vi ∈ g.

Adding Budemand(g) to Bcdemand(g) gives Bdemand(g). Given a set of groups
GN = {g1, g2, · · · , gm}, Bdemand(system) can be obtained as

∑
g∈GN

Bdemand(g).
When Bdemand(system) is smaller than V , the response time of each scan Si is

rtmin as each can acquire full bandwidth. We minimize the Bdemand(system) by
grouping the scans, and splitting the groups when necessary. The central idea
of the grouping and splitting is that the Bcdemand(system) could be reduced
significantly if scans with similar speeds are clustered in a same group. As a
result, Bdemand(system) can also be reduced. We illustrate this optimization by
giving an example of splitting a group.
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Example 1. A group g containing two scans S1(v1 = 1000 p/s) and S2(v2 =
3000 p/s) is joined by a new scan S3(v3 = 4000p/s). This would cause splitting
of group g, because the bandwidth consumption after the splitting can decrease
by 1000 p/s, as indicated in Table 3.

Table 3. An Example of Splitting

Scan Groups Budemand Bcdemand Bdemand

Before Splitting < S1, S2, S3 > 1000 5000 6000

After Splitting < S1 >, < S2, S3 > 4000 1000 5000

On the other hand, when Bdemand(system) > V , some I/O requests have to
wait for the others’ completion. To improve the average response times, the uni-
fied I/O requests are always given higher priority by the I/O scheduler. There-
fore, too many splittings would impair the performance when the system is
heavily loaded in I/O, as splitting always increases Budemand(system). In Ex-
ample 1, Bu(system) increases by 3000 after splitting. To control the number of
the groups, we define two constraints in S3. First, if the Budemand(system) is
greater than a threshold T (T is usually a bit smaller than V ), we do not allow
any splitting. Second, when the scan scheduler considers to attach a new scan
to a group g, the remain life span of g must be larger than a threshold Lmax.
The reason is that if g will terminate in a short while, it might release its own
bandwidth very soon. Therefore, there is no much benefit to attach the new scan
to g.

We adopt a number of greedy algorithms for maintaining the groups. Once a
scan arrives, the scan scheduler inserts it into the group which, if the new one
becomes attached to it, produces the smallest Bdemand(system). After that, the
scheduler checks if the group needs splitting via a routine called CheckSplit.

The basic idea of the CheckSplit algorithm is to find a splitting plan which
minimizes Bdemand(system) without causing Budemand(system) > V . If this
optimal splitting plan causes reduction to the current Bdemand(system), splitting
is beneficial and therefore will be truly undertaken. It can be proven that if
there are n scans in a group g, sorted by their speeds in ascending order as
g = (S1, S2, . . . , Sn), then choosing the optimal splitting will be equivalent to
finding an optimal index i ∈ [1, n − 1] such that vector g is split into two new
vectors (S1, . . . , Si) and (Si+1, . . . , Sn). Therefore, the computational complexity
of them is O(n).

When a group is eliminated, its unified bandwidth can be released. The scan
scheduler then searches among all existing groups for one which, if being split,
causes the largest reduction of Bdemand(system). This search algorithm is imple-
mented in the PickSplitGroup algorithm. The PickSplitGroup checks each existing
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group using the CheckSplit routine and chooses the one which could benefit
the system most. Again, groups whose remaining life spans are less than Lmax

are not considered. The chosen group is then split according to the respective
optimal plan found by the CheckSplit algorithm.

It is worthwhile to mention that a group splitting causes changes to the win-
dow sizes of all groups. We adopt a simple method which redistributes the avail-
able buffer to each group uniformly.

3.4 Scheduling the I/O Requests

The I/O scheduler in S3 manages all I/O requests in two separate queues, namely
Qunified and Qcomple. The meanings of the queue names are self-explanatory.
Once an I/O request, either a unified or complementary one, for page p is
produced by Si, it is appended to the tail of of the respective queue in the
form < p, Si >. The I/O scheduler dispatches the I/O requests as described in
Algorithm 4.

Algorithm 4. I/O Scheduler

while true do
if Qunified is not empty then

< p,S >← GetHeader(Qunified);

Read p from SSD into buffer;

for each ri in Qcomple do
if ri.S is in S’s group then

delete ri;

for each Si in S’s group do
Signal(Si);

else if Qcomple is not empty then
< p,S >← GetHeader(Qcomple);

Read p from SSD into buffer;

Signal(S);

else
Wait();

The I/O scheduler process is evoked whenever a scan needs to access a physical
page on the SSD. It first manages the requests on the header of Qunified. Once a
unified request is completed, it eliminates all the complementary requests from
the same group and evokes all the scans in the group. The requests in the Qcomple

are only scheduled if Qunified is empty. If there are no requests in both queues,
the I/O scheduler sleeps until a new request arrives.

In case of heavy workload so that Bdemand(system) > V , the unified I/O
requests are still prioritized. The faster scans could succeed in performing com-
plementary I/Os only when there are no pending unified I/O requests. When
there are too many scans being executed concurrently, then S3 degenerates to
the group share scheme as described in section 2.3.
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4 Experiments

We implement the S3 framework on the PostgreSQL DBMS and conduct the per-
formance study on a 20-scale TPCH database. The machine that we use is an
Intel Xeon PC equipped with 8 cores and an Intel X-25E SSD. Our hardware can
achieve a maximum random I/O bandwidth of 85 MB/s on Debian with kernel
2.6. Among the TPCH queries, we focus on Q1 and Q6. The former is a typi-
cal CPU-intensive query, while the latter is an I/O-intensive one. Both queries
scan the lineitem table, which consumes around 18GB space on the SSD. The de-
fault buffer size of the DBMS is set to 256MB. For more different query speeds,
we also add two new queries, named Q′

1 and Q′
6, which are slightly modified from

Q1 and Q6. The respective speeds of all four queries have the following relation:
v(Q′

1) < v(Q1) < v(Q′
6) < v(Q6). Therefore, it can be inferred that Q′

1 is the most
CPU-intensive query among the four, while Q6 is the most I/O-intensive one.

4.1 Results on Two Concurrent Query Streams

First we conduct a set of experiments on two concurrent streams of queries,
where each stream issues the same query repetitively. For comparison, we also
implement the strict share as described in Section 2.2. We do not compare with
group share, as it apparently degenerates to the strict share or no share in this
set of experiments.

Table 4. Statistics of different schemes when processing two concurrent query streams.

Each cell under “response time” contains the two average response time values of the

respective query streams.

no share strict share semi share (S3)

response I/O throughput CPU response I/O throughput CPU response I/O throughput CPU

time (s) (MB/s) usage time (s) (MB/s) usage time (s) (MB/s) usage

Q1 vs 1261
23.7

76% 2090.1
9.1

37% 1096.7
18.6

75%

Q′
1 2393.3 88% 2108.6 100% 2228.6 100%

Q6 vs 332.3
63.9

20% 906.6
20.5

4% 225
80

30%

Q1 1230.1 43% 915.3 100% 910.9 100%

Q6 vs 439.1
73.3

15% 357.3
50.7

14% 229.3
82.1

32%

Q′
6 534.8 44% 366.8 99% 330.2 82%

Table 4 shows the statistics of different schemes on various query streams.
It can be seen that, in most cases, S3 provides considerably shorter average
response time for each query. Under the no share scheme, the CPU-intensive
workload (Q1 vs. Q′

1) is completed quickly as they could fully exploit the CPU
capacity and the I/O bandwidth. However, for Q6 vs. Q′

6, the average response
times of both streams are poor as the two queries compete on I/Os. The strict
share scheme performs well when two I/O-intensive queries Q6 and Q′

6 are exe-
cuted concurrently. However, it confines the faster scan to the slower one when
they run concurrently, as the results of Q1 vs. Q6 indicate.
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Fig. 2. Statistics of different strategies on varying buffer size, workloads. The average
latency of the query is normalized.

Figure 2 illustrates the results of varying the buffer size from 1% to 20%
of the full table size. We use a smaller dataset of 5-scale data, in which the
lineitem table is around 4.5GB. The response ratio of a scan Si is defined as
rt(Si)/rtmin(Si). In Figure 2, we can see several interesting results. (1) S3 always
has the highest CPU utilization compared to the other scheduling schemes. The
reasons are two-fold. The first reason is that the faster query will never be
blocked if the whole I/O bandwidth is not saturated. The second reason is that
the slower query can always benefit from the faster one, as the pages loaded from
SSD by the latter can be reused by the former. (2) Only the no share scheme is
sensitive to the buffer size. The strict share and S3 do not appear to vary much
by the buffer size as they intentionally share the buffer reading themselves. (3)
The response ratio of S3 is always better than the other two. This confirms the
semi share as an efficient scheme for concurrent scans on SSDs.

4.2 Results on Many Concurrent Queries

In this subsection we conduct more than two queries concurrently to study the
performance and behavior of S3. Specifically we execute 5 streams of queries,
consisting of two streams of Q′

1, one stream of Q1, and two streams of Q′
6. Table 5

presents the results of different scheduling schemes. The average response time of
no share is slow because the bandwidth demand exceeds V . The strict share and
group share could save the bandwidth efficiently. However, they delay the faster
scans like Q1 or Q′

6 to share the whole scan process. Our S3 scheme outperforms
the other three in average response time because it exploits the I/O bandwidth
of SSD more efficiently.
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Table 5. Statistics of different strategies when processing five concurrent query streams

no share strict share group share semi share (S3)

response I/O thr. CPU response I/O thr. CPU response I/O thr. CPU response I/O thr. CPU

time (s) (MB/s) usage time (s) (MB/s) usage time (s) (MB/s) usage time (s) (MB/s) usage

Q′
1 2459.4

82.5

80% 2153.2

7

83% 2196.7

33.5

82% 2132.4

53

94%

Q′
1 2499.4 80% 2144.6 83% 2160.5 83% 2202.8 83%

Q1 1275.6 64% 2109 45% 2079.1 42% 1064.4 65%

Q′
6 651.8 31% 2094.2 9% 629 35% 545.2 40%

Q′
6 647 26% 2099.1 9% 625.2 35% 589.2 35%

Finally, we conduct a more mircoscopic experiment, in which five queries are
started in the order of Q′

1, Q
′
1, Q1, Q

′
6, Q

′
6, each one is started 50 seconds later

than its predecessor. Figure 3 plots all disk page IDs being accessed by time. It
can be seen that after the first query Q′

1 is started, new queries Q′
1, Q1, and Q′

6

are started subsequently. All these four are attached to the same group. When
the final Q′

6 joins, the group is split into two, namely Group I including two Q′
6s,

and Group II including two Q′
1s and Q1. Since Q1 is faster than Q′

1, it performs
complementary I/Os to compensate the speed mismatch. We notice that when
Group I ends, Q1 stops the complementary I/O for a while, as indicated by the
gap in the top-most blue curve. This is because the window size of Group II is
enlarged due to the elimination of Group I. Therefore Q1 can move forward for a
certain period on the unified I/O stream, until reaching the end of the window.

Fig. 3. The process of 5 queries starting at an interval and running concurrently

To summarize, on both CPU-intensive and I/O-intensive workloads, S3 out-
performs the other conventional schemes. Generally, S3 could improve the query
efficiency for about 20% to 100%.

5 Conclusion

In this paper we propose a new framework, namely Semi-Sharing Scan, for pro-
cessing concurrent scans on SSD efficiently. S3 groups the scans and compensates
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the faster ones by random I/Os, if the hardware bandwidth is not saturated. Via
I/O scheduling, S3 also improves the bandwidth utilization on I/O-intensive
workloads. We implement S3 on the PostgreSQL DBMS. Experiments based on
TPCH benchmark confirm that S3 is an efficient scheme for concurrent scans on
SSD.
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Abstract. Mechanical properties are the attributes that measure the

faculty of a metal to withstand several loads and tensions. Specifically,

ultimate tensile strength is the force a material can resist until it breaks

and, thus, it is one of the variables to control in the foundry process. The

only way to examine this feature is the use of destructive inspections that

renders the casting invalid with the subsequent cost increment. Neverthe-

less, the foundry process can be modelled as an expert knowledge cloud

upon which we may apply several machine learnings techniques that al-

low foreseeing the probability for a certain value of a variable to happen.

In this paper, we extend previous research on foundry production con-

trol by adapting and testing support vector machines and decision trees

for the prediction in beforehand of the mechanical properties of castings.

Finally, we compare the obtained results and show that decision trees
are more suitable than the rest of the counterparts for the prediction of

ultimate tensile strength.

Keywords: fault prediction, machine-learning, industrial processes

optimization.

1 Introduction

Foundry is one of the axis of current economy: thousands of castings are created
in foundries around the world to be part of more complex systems, say for
instance, brake of a car, propeller of a boat, wing of an aircraft or the trigger
in a weapon. As one may think, the tiniest error may have fatal consequences
and, therefore, if one of the pieces is found faulty, this fact can be detrimental
to both individuals and for businesses activities.

Moreover, current trends encourage the production of smaller and more accu-
rate components. It is really easy to produce castings and suddenly discover that
every single one is faulty. Unfortunately, although there are many standards and
methods to check the obtained parts, these are carried out once the production
has been completed. In this way, the most used techniques for the assurance of
failure-free foundry processes, are exhaustive production control and diverse sim-
ulation techniques [1] but they are extremely expensive and only achieve good

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 213–220, 2010.
� Springer-Verlag Berlin Heidelberg 2010



214 J. Nieves et al.

results in an a posteriori fashion. Hence, providing effective ex-ante methods
can help to increase the quality standards and to save resources in the process
(i.e. saving money).

In this paper, we focus on the so-called ultimate tensile strength that is the
force which a casting can withstand until it breaks, or in other words, it is
the maximum stress any material can withstand when subjected to tension.
Therefore, manufactured iron castings have to reach a certain value (threshold)
of ultimate tensile strength in order to pass the strict quality tests.

As shown in [2,3], a machine-learning-based tool could help avoid these prob-
lems. In both approaches we presented a prediction system based on Bayesian
networks. After a training period, the Bayesian network learnt the behaviour of
the model and, thereafter, it was able to foresee its outcome illustrating how
computer science can improve foundry production techniques.

Still, similar machine-learning classifiers have been applied in domains alike
with outstanding results, for instance, neural networks [4] or the K-nearest neigh-
bour algorithm [5]. In this way, successful applications of artificial neural net-
works include for instance spam filtering [6] or industrial fault diagnosis [7].
Similarly, K-nearest neighbour algorithm, despite its simplicity, has been ap-
plied for instance to automated transporter prediction [8] or malware detection
[9]. These good results boosted us to test other machine learning models. Carry-
ing out these experiments [10,11], we discovered that for each defect or property,
the most accurate classifier was not always the same and, therefore, we decided
to find out which classifier suited better to each domain.

Finally, some other machine learning models (as support vector machines
[12] and decision trees [13]) have been used in less similar domains, such as,
identification of gas turbine faults [14], fault diagnosis [15] and prediction [16].

Against this background, this paper advances the state of the art in two main
ways. First, we address here a methodology to adapt machine learning classi-
fiers, specifically support vector machines and decision trees, to the prediction of
ultimate tensile strength and we describe the method for training them. Second,
we evaluate the classifiers with an historical dataset from a real foundry process
in order to compare the accuracy and suitability of each method.

The remainder of this paper is organised as follows. Section 2 details mechan-
ical properties of iron castings, focusing on the ultimate tensile strength and
how the foundry processes can affect them. Section 3 describes the experiments
performed and section 4 examines the obtained results and explains feasible
enhancements. Finally, section 5 concludes and outlines the avenues of future
work.

2 Foundry Processes and Mechanical Properties

Several factors, for instance the extreme conditions in which it is carried out,
contribute to render the foundry process very complex. Thereby, starting from
the raw material to the final piece, this process has to go through numerous
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phases, some of which may be performed in parallel way. More accurately, when
it refers to iron ductile castings, a simplification of this process presents the
following phases.

First, the melting and pouring phase in which the raw metals are melt, mixed
and poured onto the sand shapes . Second, the moulding phase in which the
moulding machine forms and prepares the sand moulds. And last but not the
least, the cooling phase where the solidification of the castings is controlled in
the cooling lines until this process is finished.

When these aforementioned phases are accomplished, foundry materials are
subject to forces (loads). Engineers calculate these forces and how the mate-
rial deforms or breaks as a function of applied load, time or other conditions.
Therefore, it is important to recognise how mechanical properties influence iron
castings [17]. Specifically, the most important mechanical properties of foundry
materials[18] such us strength (there are many kinds of strength as the ultimate
tensile strength), hardness, resilience and elasticity.

Furthermore, there are common or standard procedures (i.e. ASTM standards
[19]) for testing the value of mechanical properties of the materials in a labora-
tory. Unfortunately, in order to learn about these properties, scientists have to
employ destructive inspections as the only possible method. Moreover, the pro-
cess requires suitable devices, specialised staff and quite a long time to analyse
the materials.

Regarding the ultimate tensile strength, on which we focus here on, its check-
ing method is performed as follows. First, a scientist prepares a testing specimen
from the original casting (see (1) in Figure 1). Second, the specimen is placed on
the tensile testing machine (2). And finally, it pulls the sample from both ends
and measures the force required to pull the specimen apart and how much the
sample stretches before breaking.

Fig. 1. Ultimate Tensile Strength Test
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Moreover, the main variables to control in order to predict the mechanical
properties of metals are the composition [20], the size of the casting, the cooling
speed and thermal treatment [17,21]. In this way, the system should take into
account all these variables in order to issue a prediction on those mechanical
properties. Hence, the machine-learning models used in our experiments are
composed of about 25 variables.

3 Experiments

We have collected data from a foundry specialised in safety and precision com-
ponents for the automotive industry, principally in disk-brake support with a
production over 45000 tons a year. These experiments are focused exclusively in
the ultimate tensile strength prediction.

Moreover, the acceptance/rejection criterion of the studied models resembles
the one applied by the final requirements of the customer. Pieces flawed with
an invalid ultimate tensile strength must be rejected due to the very restrictive
quality standards (which is an imposed practice by the automotive industry).
To this extent, we have defined two risk levels: Risk 0 (more than 370 MPa) and
Risk 1 (less than 370 MPa).

In these experiments, the machine-learning models have been built with the
aforementioned 25 variables. We have worked with 11 different references (i.e.
type of pieces) and, in order to test the accuracy of the predictions we have
used as input data the results of the destructive inspection from 889 castings
(note that each reference may involve several castings or pieces) performed in
beforehand.

Specifically, we have conducted the next methodology in order to evaluate
properly the machine-learning classifiers:

– Cross validation: We have performed a k-fold cross validation [22] with
k = 10. In this way, our dataset is 10 times split into 10 different sets of
learning.

– Learning the model: We have made the learning phase of each algorithm
with each training dataset, applying different parameters or learning algo-
rithms depending on the model. More accurately, we have use this three
different models:

• Support Vector Machines: In order to train Support Vector Machines we
have used different kernels: a polynomial kernel, a normalised polynomial
kernel, a Pearson VII function-based universal kernel and a radial basis
function (RBF) based kernel.

• Decision Trees: We have performed experiments with random forest, an
ensemble of randomly constructed decision trees using different amount
of trees (n): n = 10, n = 50, n = 100, n = 150, n = 200, n = 250 and
n = 300. And we have also used J48.

• Artificial neural networks: We have used a three-layer Multilayer Per-
ceptron (MLP) learnt with backpropagation algorithm. We include this
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model for comparison purposes because, as it is showed in previous work
[10], it appears to be the best machine-learning model to foresee the
ultimate tensile strength.

– Testing the model: For each classifier, we evaluated the percent of cor-
rectly classified instances and the area under the Receiver Operating Char-
acteristic (ROC) that establishes the relation between false negatives and
false positives [23].

4 Results

As we mentioned before, we have evaluated the classifiers in terms of prediction
accuracy and the area under the ROC curve. In this way, Table 1 illustrates the
obtained results in terms of prediction accuracy. Using the full original dataset
of 889 evidences we can achieve an 86.84% of accuracy level. Random forest with
250 trees outperformed the rest of classifiers. On one hand, each of the random
forest are better classifiers than the J48. Although both of them are based in
decision trees, the first one is the best classifier and the second one is nearly the
worst classifier. On the other hand, the deviation between all random forest is
really small, but we can consider that the random forest with 250 trees like a
local maximum.

Table 1. Results in terms of accuracy

Machine-learning Model Accuracy (%)

Decision Tree: RandomForest with 250 trees 86.84

Decision Tree: RandomForest with 200 trees 86.77

Decision Tree: RandomForest with 300 trees 86.76

Decision Tree: RandomForest with 150 trees 86.68

Decision Tree: RandomForest with 100 trees 86.55

Decision Tree: RandomForest with 50 trees 86.53

Decision Tree: RandomForest with 10 trees 85.40

Artificial Neural Network: Multilayer Perceptron 84.23

SVM with Normalised Polynomial Kernel 83.78

SVM with Polynomial Kernel 82.07

SVM with Radial Basis Function Kernel 81.71

Decision Tree: J48 81.66

SVM with Pearson VII universal kernel 80.75

Notwithstanding, despite random forests have achieved better accuracy levels
than the ANN, SVM-based classifiers could not overcome the ANN. Surprisingly,
SVM s did not achieve as good results as we thought in beforehand because of
their impressive results in information retrieval [24]. Hence, we can leave aside
the SVM and J48 because they do not bring any improvement in the prediction
of the ultimate tensile strength.

Furthermore, Table 2 shows the area under the ROC curve (AUC). In this
way, the obtained results in terms of AUC are similar to the ones of prediction
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Table 2. Results in terms of area under the ROC curve

Machine-Learning Model Area under ROC curve

Decision Tree: RandomForest with 250 trees 0.9206

Decision Tree: RandomForest with 300 trees 0.9206

Decision Tree: RandomForest with 200 trees 0.9202

Decision Tree: RandomForest with 150 trees 0.9197

Decision Tree: RandomForest with 100 trees 0.9182

Decision Tree: RandomForest with 50 trees 0.9155

Decision Tree: RandomForest with 10 trees 0.8936

Artificial Neural Network: Multilayer Perceptron 0.8594

Decision Tree: J48 0.7626

SVM with Normalised Polynomial Kernel 0.7524

SVM with Polynomial Kernel 0.7445

SVM with Radial Basis Function Kernel 0.7151

SVM with Pearson VII universal kernel 0.6570

accuracy and the random forest with 250 trees also outperformed the rest of
algorithms. Although all of them accomplish acceptable values (they exceed the
line of no-discrimination), random forests outshine the other classifiers.

Actually, even the system has not achieved a 100% accuracy level, it has
interesting results for being used in a high-precision foundry (more than 86%).
In this way, we reduce in a significant manner the cost and the duration of the
actual testing methods. Remarkably, the outstanding results achieved by the
random forest with 250 trees show that it can be used in a similar way as we
have used the Bayesian networks or artificial neural networks in previous works.

In addition, using this kind of predictive tool, the behaviour of the foundry
workers can be the following one: when the system detects that the apparition’s
probability of an inadequate value of the ultimate tensile strength is very high,
the operator may change the factors to produce this casting within the reference
or change the whole reference (skipping the cost of having to re-manufacture
it one more time). Also, the foundry workers and engineers can test the new
configuration of a casting before they make it at foundry.

5 Conclusions

The ultimate tensile strength is the capacity of a metal to resist deformation
when subject to a certain load. When a manufactured piece does not resist a
certain threshold, it must be discarded in order to avoid breaking afterwards.
Foreseeing the value of ultimate tensile strength renders as one of the hardest
issues in foundry production, due to many different circumstances and variables
that are involved in the casting process.

Our previous research [2,11] pioneers the application of Artificial Intelligence
to the prediction of microshrinkages. Here, we have extended that model to the
prediction of mechanical properties [3]. Later, we have focused on comparing
machine-learning classifiers used for the prediction of ultimate tensile strength
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[10]. Specifically in this research, we have included and adapted to our particular
problem domain two classifiers that have been used widely in similar issues. All of
them behave well, but random forests outperform the rest of the classifiers. Still,
the ability of Bayesian theory and specifically, the sensitivity module (developed
in [3]) cannot be ignored since it is an effective method that adds a decision
support system for the operators in the foundry plant.

In addition, as we noticed in previous works [3,10,11], there are some irregu-
larities in the data that may alter the outcome rendering it not as effective as it
should. More accurately, these inconsistencies appear because the data acquisi-
tion is performed in a manual fashion.

Accordingly, the future development of this predictive tool will be oriented in
five main directions. First, we plan to extend our analysis to the prediction of
other defects in order to develop a global system of incident analysis. Second, we
will compare more supervised and semi-supervised machine learning algorithms
in order to prove their effectiveness to predict foundry defects. Third, we plan to
integrate the best classifiers in a meta-classifier which will work as a black box
combining all partial results to predict any defect. Fourth, we plan to employ
some techniques (e.g. Bayesian compression) to give more relevance to the newer
evidences than to the older ones. And, finally, we plan to test a preprocessing
step to reduce the irregularities in the data.
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de Metalurǵıa 35(5), 279–291 (1999)

21. Hecht, M., Condet, F.: Shape of graphite and usual tensile properties of sg cast

iron: Part 1. Fonderie, Fondeur d’aujourd’hui 212, 14–28 (2002)

22. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation

and model selection. In: International Joint Conference on Artificial Intelligence,

vol. 14, pp. 1137–1145 (1995)

23. Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine

learning methods for predicting fault proneness models. International Journal of

Computer Applications in Technology 35(2), 183–193 (2009)

24. Peng, T., Zuo, W., He, F.: SVM based adaptive learning method for text classi-

fication from positive and unlabeled documents. Knowledge and Information Sys-

tems 16(3), 281–301 (2008)



The Profile Distance Method: Towards More
Intuitive Multiple Criteria Decision Making in

Information Systems

Edward Bernroider1, Nikolaus Obwegeser2, and Volker Stix2

1 Royal Holloway, University of London, School of Management,

Egham TW20 0EX, United Kingdom

edward.bernroider@rhul.ac.uk
2 Vienna University of Business and Economics, Institute for Information Business,

Augasse 2-6, 1090 Wien, Austria

{nikolaus.obwegeser,volker.stix}@wu.ac.at

Abstract. This paper seeks to improve usability and semantics of com-

plex decision support based on multiple criteria and data envelopment

analysis using the profile distance method. We recognize the need of de-

cision making practice for more intuitive and understandable decision

support in complex and comprehensive settings by proposing three areas

for improvement. We suggest a more meaningful indicator of organiza-

tional fit, an advanced and dynamic multi-dimensional visualization, and

embed support for weight estimation with pairwise comparisons into the

method. The methodological advancements are shortly illustrated for an

Information System selection problem.

1 Introduction

This paper proposes an augmentation of the profile distance method (PDM) orig-
inally proposed by Bernroider and Stix [1] to allow a more intuitive application
of the method to increase its appeal to decision makers in practice. While deci-
sion making and investment appraisal techniques have received a lot of attention
in the last decade, research reports an inability of management to holistically
evaluate the implications of adopting a new technology in particular referring
to Information Systems [2]. The absence of intuitive approaches and suitable
implementations thereof to help the decision maker (DM) fully understand the
underlying decision problem in all dimensions remains an open problem. De-
cision support systems (DSS) are often constructed and therefore understood
as black box machines that calculate an output (e.g. a ranking or an efficiency
score) based on some input information given by the DM. The methods and
techniques used are often mathematically challenging in particular in selection
problems based on multiple criteria. Thus, “the average DM” is not anywhere
near fully understanding or comprehending the methods applied to adequately
interpret results. This results in common mistakes and an underutilisation of
potential benefits in applying methods. The Profile Distance Method (PDM)
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itself constitutes one of the possible optimization based methods that a DSS
can adopt. In contrary to many other optimization models the PDM actively
encourages the DM to acquire a deeper understanding of the multi-dimensional
structure of the decision problem, comparing the optimal individual profiles of
each considered alternative (calculated by means of DEA based optimization)
with a given desired weight profile (gained by using a utility model). The DM is
thereby given a way not only to engage comparative analysis of alternatives but
also to better understand the organizational fit considering all given dimensions.
As the original authors mention, one essential issue is how well the method is em-
bedded in a decision support system and what kind of access level in particular
in terms of visualization is offered to the DM [1].

This paper intends to advance the PDM and its application in three ways,
by (i) introducing a more intuitive understanding of the profile distance indica-
tor, (ii) enabling the DM to graphically design the decision problem instead of
formulating it on a text-based entry only and (iii) complementing left out parts
of the decision process with a pairwise-comparison based desired weight profile
(DWP) definition process.

Referring to (i), in order to implement a more intuitive indicator reflecting the
information held as profile distance, we take a detailed look at the composition
of the profile distance value and its interpretation. By focusing on user-oriented
aspects, we translate the profile distance from a mathematical term to a mean-
ingful indicator for the DM. This is achieved by defining an upper boundary for
the profile distance value (a worst performing alternative) and normalizing all
other alternatives thereby. We compare the possible alternatives, demonstrate
the improved model using showcases and validate the increase in intuitivity and
usability.

With regard to (ii), a second major improvement in practicability is proposed
by implementing an interactive graphical interface. Based on a prototype imple-
mentation [3], a more advanced concept lets the user model the decision problem
interactively with support of the tool. We argue that thereby the user can get
into more direct contact with the problem and can test different scenarios to
explore organizational fit of the alternatives. Additionally, the DM gets a deeper
understanding of the indicators provided by the PDM to support the decision
making process.

Thirdly (iii), we augment the existing PDM process by adding support for
the definition of the desired weight profile (DWP) by making use of pairwise
comparison concepts from the Analytical Hierarchy Process [4]. We thereby fol-
low a three staged process including identification, analysis and implementation.
Attention of many existing models and methods was placed on the analysis stage
in particular regarding the PDM. We add functionality by using a pairwise tech-
nique for the definition of the desired state. In addition, the net of transitive
dependencies created by the aforementioned technique is integrated in the anal-
ysis part, where the PDM model is augmented to react properly on input changes
in advanced phases of the process.
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The remainder of this article is outlined as follows. In the course of the next
section we briefly present the Profile Distance Method and its foundations. Sub-
sequently, we elaborate on the meaning of the profile distance and introduce the
new indicator. In Sect. 4 an interactive graphical tool for decision modeling is
introduced. Section 5 covers the pairwise-comparison process for tool-supported
weight profile definition. Section 6 discusses and summarizes the findings and
concludes with further research issues to be addressed.

2 The Profile Distance Method

The profile distance method (PDM) is a multiple attributive decision making
method proposed by Bernroider and Stix [1] based on a linear optimization
model. While the method was successfully implemented and tested for Informa-
tion Systems (IS) selection problems, usability and visualization were identified
as main targets for further development [3]. The linear optimization model of
the PDM is grounded on the original Data Envelopment Model (DEA) model
referred to as CCR-model proposed by Charnes, Cooper and Rhodes [5] map-
ping a fractional linear measure of efficiency into a linear programming (LP)
format. It reflects a non-parametric approach optimizing a linear programme
per decision making unit (DMU) yielding weights for both the chosen input and
outputs, and a relative efficiency rating given by the sum of its weighted output
levels to the sum of its weighted input levels. For a complete introduction into
DEA see e.g. [6].

A review paper due to the recent 30 year anniversary of the popular method
by Cook and Seiford [7] suggests connections into general multiple criteria deci-
sion models (MCDM) as an area for future DEA developments [7], which is in
essence what the PDM seeks to achieve. The PDM links into a general MCDM
framework termed utility ranking models (URMs), i.e., into an additive value
model, which is concerned with selecting the best alternative among a finite
set of possible choices based on multiple attributes reflected by partial utility
functions [8]. Viewed in isolation, both, the DEA and URM approaches, have
a number of problems in decision making practice. For example, the pure DEA
approach achieves no clear cut ranking naturally evident in settings with many
attributes and a few alternatives. On the other side, the URM creates super
utility values based on biased estimations of weights that cannot easily be inter-
preted or justified. The idea of the PDM is to mitigate those and other problems
by combining merits of both approaches. The mathematical representation of
the PDM is an optimisation model and can be given as follows:

hk = max
u,v

s∑
r=1

uryrk − α

s∑
i=1

di(ui − wiu1) (1)

subject to:
m∑

i=1

vixij −
s∑

r=1

uryrj ≥ 0 for j = 1, . . . , n
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m∑
i=1

vixik = 1

αdi(ui − wiu1) ≥ 0 for i = 1, . . . , s

ui, vj ≥ 0 for all i, j

According to DEA, we have n alternatives each with m benefit attributes rep-
resented through the m× n matrix X and s cost attributes stored in the s× n
matrix Y . The vectors v and u are the DEA multipliers or weight vectors for
benefit- and cost-attributes, respectively. We have for each DMU a different LP
which can lead to a different optimal solution. The parameter k selects the al-
ternative for which the optimization should be performed. In contrast to DEA,
the objective function (1) of PDM includes a penalty function, which measures
the distance from a given desired weight profile given by the URM. It therefore
accepts that the given weight profile is just an approximation of the true and
ideal profile but seeks to penalise system alternatives depending on the distance
of their DEA multipliers to the approximation. The function f measures the
absolute distances between the weight vector u and the desired profile w. The
fade-factor α controls the tradeoff level of DEA (α = 0) and URM (α → ∞),
which allows the user to fade between both techniques, thereby exploring the
organizational fit of the current alternative under evaluation. For more details
on the metric used to measure distances and its implementation we refer to the
original publication [1].

3 Improving the Profile Distance Indicator

The profile distance is one of the main benefits of the PDM and allows insights
into the structure of the decision problem. It helps comparing the alternatives
with each other and the desired profile. In the course of our research, we expand
the benefits of the profile distance by normalizing its value within a lower and
upper bound. We can thereby raise the intuitive understanding of the indicator
and the PDM as a whole.

3.1 Mathematical Interpretation

As follows from Sect. 2, the profile distance f represents the sum of all distances
between the relative weights of a given profile (desired weight vector) and the
relative optimized weight vector of an alternative, calculated by means of DEA-
like optimization. Using the fade factor α to force the optimized weights of an
alternative closer to the desired profile, the profile distance decreases monotone
with increasing α. The fade factor α is bound by the DEA optimization of
each alternative in the case α = 0. Its upper boundary is dependent on the
underlying alternative, being reached at the point the profile distance f reaches
zero. Moreover, the profile distance f boundaries are defined by zero as the lower
bound and a data dependent upper bound given by DEA optimization.
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3.2 Semantic Improvements

From the decision makers perspective the profile distance may be hard to inter-
pret in its original composure. Furthermore, while the profile distance reflects
suitability for a single option only, the DM is likely to be interested in relative
performances between competing alternatives. We are therefore augmenting the
model with problem specific boundaries for the profile distance, enhancing the
meaning with an overlap rate of the alternatives’ profile with the desired profile.
This is achieved by defining an upper boundary for the profile distance, viz. a
worst competing alternative. In the following we will present a case that demon-
strates a way of creating such a boundary, using the worst competing alternative
as upper bound.

We are using empirical data drawn from an enterprise resource planning selec-
tion problem comprising 3 possible alternatives (DMUs) with 8 output criteria
each. The desired weight profile (DWP) has been assessed by the responsible de-
cision makers and domain experts. Table 1 shows weights per alternative for each
of the eight criteria resulting from a PDM optimization with an initial setting of
α = 0, thereby gaining full DEA compliance. The table contains the optimized
weights for each DMU (rows) for each criterion (columns). The leftmost column
(depicting the values for criterion 1) is always 1 since all values are normalized
with the first value according to the recommendations of the PDM. The rightmost
column shows the numerical value of the profile distance indicator.

Table 1. Relative weight vectors and profile distance

Crit. 1 Crit. 2 Crit. 3 Crit. 4 Crit. 5 Crit. 6 Crit. 7 Crit. 8 Profile
distance

DWP 1 1,619 0,523 0,619 0,714 1,047 1,523 1 0

DMU 1 1 1 10 1 1 1 1 1 0,384

DMU 2 1 1 1 1 1 1 1 10 0,356

DMU 3 1 1 7,551 1 1 8,967 10 1 0,464

In order to define an upper bound for a normalization of the profile distance
value, the worst competing real DMU is taken into account. That is, the alter-
native with the highest profile distance value when optimizing under pure DEA
conditions (α = 0). As Table 1 shows, the highest profile distance is reached
by DMU3 with a value of 0.464. Due to the monotone decrease of the profile
distance with increasing α, this value can be considered as the largest under all
possible circumstances. We argue that it is more intuitive for the DM to be pre-
sented an overlap rate rather than a distance measure, so we are transforming
the profile distance values according to the following procedure. The division
by the largest existent number (0.464) results in relative deviations, denoting
DMU3 as the worst performer with a value of 1. Flipping the results by calcu-
lating (1 - deviation) allows us to interpret the outcome as overlap rate with
the desired profile, thus stating that DMU3 has a relative overlap rate of 0 per
cent, whereas DMU2 has a rate of 23 per cent and so forth. The results of this
transformation are shown in Table 2.
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Table 2. Transforming the profile distance into a structural overlap measure

Profile distance Deviation Overlap rate
DMU 1 0,384 0,827 0,173

DMU 2 0,356 0,767 0,233

DMU 3 0,464 1 0

4 Interactive Visualizations with Radar Plots

Multiple research efforts have shown that visual approaches are particularly
helpful in the area of MCDM, to communicate a clear picture of the likely com-
plex decision problem [9,10]. With regard to PDM a previous implementation
and empirical test of the method showed that satisfaction and acceptability can
be substantially improved when providing graphical representations of the de-
cision problem [3]. Although only static visualizations were used in this test, a
significant number of respondents valued those features “very high” in terms
of usefulness and practical convenience. Consequently, we were aiming at fur-
ther improving visual support by adding an active visual decision modelling
component to a PDM software tool and explored different techniques therefore.
Choosing an effective graphical depiction for a decision problem is, however, not
an easy task. That is particularly true in the area of MCDM, where multiple
interdependent criteria and weights form a complex net of influences.

In a previous attempt to visualize the decision process using the PDM a bar
chart was used to outline the weights of the desired profile in comparison with
all DMUs. While this type of diagram gives a good overview of the weights for
the alternatives for a specific attribute, it lacks the ability to integrate both
the profile distance indicator as well as overall efficiency into the visualization.
Consequently, it is not possible to include insights into the structural overlap
with the desired profile. For this reason we decided to use a radar plot diagram to
visualize the performance of the alternatives, additionally allowing the decision
maker to interact with the graphical representation.

The radar plot chart is an integrated visualization of the criteria of the de-
cision problem, showing not only weights and structural composition but also
depicting the efficiency by means of surface area. The DM can easily change the
desired profile by interacting with the radar plot in a drag and drop manner.
The connected attribute weights are calculated accordingly in time so the user
can actually get in touch with the decision problem more intuitively.

In the following we present an example scenario for the usage of radar plot
within the PDM. Figure 1 displays settings drawn from the same data used in
Sect. 3, comprising 3 DMUs with 8 output variables each. The desired weight
profile is drawn in a bold water mark style, enabling the decision maker to easily
compare the structure of the alternatives against it. While both DMU 2 and
DMU 3 comply with the weight structure defined by the DM (full structural
overlap), the larger surface area of DMU 2 indicates its better performance in
overall efficiency. When forcing both affected alternatives into this condition,
DMU 2 objectively outperforms DMU 3.
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Fig. 1. Radar plot visualization (α = 0.42)

5 Incorporation of Pairwise Comparisons

Using pairwise comparisons as an instrument of comparative judgement has been
addressed by scientific research in various fields in particular by psychology and
decision making theory. Pairwise comparisons have been applied to multitudi-
nous scientific fields (e.g. voting systems, social choice or MCDM [11]). The
underlying problem of estimating a weight vector has been an active area of
research for a long time(e.g. [12]). A prominent application in decision support
embodying pairwise comparisons and the eigenvector has been developed by T.
Saaty, called the Analytic Hierachical Process (AHP) [13]. Pairwise comparisons
ultimately lead to a structure of the problem situation and a clear ranking of
the decision makers preferences [14].

Referring back to phase one of PDM, the DM has to define a desired weight
profile (DWP) that is to be compared to the performance of the alternatives.
Since the issue of having a sound desired weight profile is of critical importance
to the whole decision making process we are addressing this problem by pre-
concatenating a pairwise comparison methodology to the PDM. In many utility
ranking based decision making approaches, it is left to the decision makers’ dis-
cretion how to estimate the weighting vector needed for value aggregation. We
suggest to estimate the desired weights from pairwise comparison matrices and
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refer to the standard approach in the AHP based on the eigenvector method.
The DM is requested to define n influencing criteria in the beginning of the
process to allow the construction of a n × n square matrix A. A is defined to
be a positive reciprocal matrix and has to follow the rules of transivity (2) and
reciprocity (3) to be consistent, for i, j and k being alternatives of the matrix:

aij = aik · akj (2)

aij =
1

aji
(3)

As discussed in previous research the generation of a completely consistent pair-
wise comparison matrix is only realistic in very small matrices and does not
necessarily reflect the real choice of the DM [15]. Many weight derivation meth-
ods account for this problem using one of the concepts of pertubation theory or
distance minimization. Saaty proposes the principal eigenvector (EV) to be used
for weight derivation to allow for slight inconsistences in matrices to be reflected
in the weight vector (see [16] for detailed information).

Here after establishing the n×n square matrix A the principal diagonal holds
the comparisons for the criteria with itself (all elements equal 1). All entries
under the principal diagonal are subject to reciprocity. A fully consistent matrix
allows n− 1 elements to be chosen by the DM, whereas all others are calculated
by means of transivity. Since we do not force the DM into having a fully consis-
tent matrix we allow comparisons for each pair of criteria, simultaneously filling
the rest of the matrix according to transivity rules. The DM can change this
elements at any time, possibly generating inconsistencies. The matrix is needed
to have a consistency rate lower than 0.1 in order to function properly with the
eigenvector [13]. Using a multiplicative matrix with a 1 to 9 range value results
very likely in an inconsistent matrix.

The EV is then derived using a heuristic approach, namely squaring the matrix
with itself and then calculating and normalizing row sums. This procedure is
repeated until the difference between the calculations no longer excesses a given
criterion. The result is the EV, which represents the input for the PDM to be
used as a desired weight profile.

6 Conclusions and Future Work

This research paper extends existing research into multiple criteria decision mak-
ing and data envelopment analysis referring to the profile distance method [1]
and to its initial implementation [3]. We recognized the problem of decision
making practice with meaningful applications of rather complex decision mak-
ing methods and suggest three potential improvements of the PDM which were
shortly illustrated for an Information System selection problem.

With the ambition in mind to provide a more complete approach to MCDM
we augmented the original PDM methodology by giving support for estimating
a sound desired weight profile. The idea of pairwise comparisons was extensively
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exploited in AHP based evaluations not only in the area of Information Systems.
For practicability, our implementation of PDM with computer software accounts
for the quality of comparison matrices to support the decision maker in creating
comparison matrices with inconsistences that remain in certain boundaries.

Our second area of improvement demonstrated an interactive graphical inter-
face based on a radar chart, which can include an additional dimension reflecting
distances or overlap measures. We argue that thereby the users conceive addi-
tional information and get in more direct contact with the underlying model and
its optimization results. A main feature is that the user can explore the problem
and test different scenarios to explore organizational fit of the alternatives intu-
itively and directly. Thereby, the DM is expected to get a deeper understanding
of the indicators provided by the PDM to support the decision making process.

We also proposed to replace or complement the main indicator of distance
with a new overlap measure, that seems to be more intuitive and meaningful
in its semantic representation. As possible drawback we see that a real worst
upper bound to normalize the profile distance value could tempt the DM to
prematurely dismiss this DMU from further analysis. To abate this setting a
virtual worst DMU can be used instead. We can thus retain the benefits of
setting the profile distance indicator of the alternatives into relation with each
other, thereby making the measure better understandable while at the same time
mitigating pre-mature exclusion of alternatives. The concept of adding artificial
DMUs to a set of real DMUs is a common technique in the area of DEA research.
Various different approaches make use of artificial DMUs, mostly due to the lack
of discrimination power in the original DEA approach [17]. The investigation on
how to generate a virtual DMU that represents the greatest profile distance for
the PDM is a matter of ongoing research.

References

1. Bernroider, E., Stix, V.: Profile distance method: a multi-attribute decision making

approach for information system investments. Decis. Support Syst. 42(2), 988–998

(2006)

2. Gunasekaran, A., Ngai, E., McGaughey, R.: Information technology and systems

justification: A review for research and applications. European Journal of Opera-

tional Research (173), 957–983 (2006)

3. Bernroider, E., Obwegeser, N., Stix, V.: Introducing complex decision models to

the decision maker with computer software - the profile distance method. In: Pro-

ceedings of the Knowledge Generation, Communication and Management (KGCM

2009), pp. 68–72 (2009)

4. Saaty, T., Air Force Office Of Scientific Researchbolling AFB DC: Optimization

by the Analytic Hierarchy Process (1979)

5. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision mak-

ing units. European Journal of Operational Research 2, 429–444 (1978)

6. Cooper, W., Seiford, L., Tone, K.: Data envelopment analysis. Springer, Heidelberg

(2000)

7. Cook, W.D., Seiford, L.M.: Data envelopment analysis (dea)–thirty years on. Eu-

ropean Journal of Operational Research 192, 1–17 (2008)



230 E. Bernroider, N. Obwegeser, and V. Stix

8. Yoon, K.P., Hwang, C.L.: Multiple Attribute Decision Making: An Introduction.

Sage University Paper series on Quantitative Applications in, CA. the Social Sci-

ences. Sage Publications, Thousand Oaks (1995)

9. Belton, V., Vickers, S.P.: Demystifying DEA-a visual interactive approach based

on multiple criteria analysis. Journal of the Operational research Society, 883–896

(1993)

10. Korhonen, P., Laakso, J.: A visual interactive method for solving the multiple

criteria problem. European Journal of Operational Research 24(2), 277–287 (1986)

11. Deng, H.: Multicriteria analysis with fuzzy pairwise comparison. International

Journal of Approximate Reasoning 21(3), 215–231 (1999)

12. Barzilai, J.: Deriving weights from pairwise comparison matrices. Journal of the

operational research society 48(12), 1226–1232 (1997)

13. Saaty, T.: Decision making with the analytic hierarchy process. International Jour-

nal of Services Sciences 1(1), 83–98 (2008)

14. Saaty, T., Bennett, J.: A theory of analytical hierarchies applied to political can-

didacy. Behavioral Science 22(4) (1977)

15. Barzilai, J., Cook, W., Golany, B.: Consistent weights for judgements matrices of

the relative importance of alternatives. Operations Research Letters 6(3), 131–134

(1987)

16. Saaty, T.: Decision-making with the AHP: Why is the principal eigenvector neces-

sary. European Journal of Operational Research 145(1), 85–91 (2003)

17. Allen, R., Athanassopoulos, A., Dyson, R., Thanassoulis, E.: Weights restrictions

and value judgements in data envelopment analysis: evolution, development and

future directions. Annals of Operations Research 73, 13–34 (1997)



Hybrid In-Memory and On-Disk Tables for
Speeding-Up Table Accesses
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Abstract. Main memory database management systems have become

essential for response-time-bounded applications, such as those in

telecommunications systems or Internet, where users frequently access

a table in order to get information or check whether an element exists,

and require the response to be as fast as possible. Continuous data growth

is making it unaffordable to keep entire relations in memory and some

commercial applications provide two different engines to handle data in-

memory and on-disk separately. However, these systems assign each table

to one of these engines, forcing large relations to be kept on secondary

storage.

In this paper we present TwinS — a hybrid database management

system that allows managing hybrid tables, i.e. tables partially managed

by both engines. We show that we can reduce response time when ac-

cessing a large table in the database. All our experiments have been run

on a dual-engine DBMS: IBMR©SolidDBR©.

Keywords: Hybrid tables, Main memory databases, DBMS performance.

1 Introduction

As a result of cyberinfrastructure advances, the vast amount of data collected on
human beings and organizations and the need for fast massive access by a large
amount of users to these data pose a serious performance challenge for database
management systems. For example, large Domain Name Systems (DNSs), that
are used for translating domain names to IPs, may be constantly queried by
a large amount of users per second that require the response to be as fast as
possible even in peak situations where the amount of users increases. Efficiently
detecting whether a domain exists or not must meet real-time requirements since
this does not only speed up this query answer, but it also reduces the load of
the system, accelerating other concurrent queries.
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Queries in this type of applications are usually characterized for accessing data
depending on a certain value of one of its attributes which are typically unique,
such as the string containing the domain name in our examples. Also, it is very
usual to find queries on data which do not exist in the database. For instance,
domains that are not associated to any existent IP are very common. Looking
for data which are not present in the database affects the overall capacity of the
system to respond as fast as possible. In this situation, fast database management
solutions such as main-memory database management systems (MMDBMSs)
become essential.

Although MMDBMSs are efficient in terms of accessing or modifying data,
they limit the total amount of data to the available memory. Some commercial
MMDBMSs like IBM R©SolidDB R© or Altibase

TM
resort to a hybrid solution im-

plementing a second storage based on disk. This requirement causes large tables
to be necessarily classified as on-disk, not allowing them to benefit from main
memory techniques. This restriction directly collides with the fact that the size
of large databases is in the petabytes nowadays and, therefore, it is very com-
mon to find massive tables that do not fit in memory entirely. This situation
demands for a coupled solution where tables that do not entirely fit in memory
may partially benefit from MMDBMS advantages.

It is important to take into account that classifying a table as on-disk does not
strictly mean that the whole table is on disk, since buffer pool techniques may
be used to keep the most frequently accessed information in memory. However,
using efficient memory structures as those in MMDBMSs is preferable to the use
of buffer pool techniques in disk-resident DBMSs, as discussed in [1], since the
latter might not take full advantage of the memory.

In this paper, we propose TwinS — a hybrid in-memory/on-disk database
management system that allows managing hybrid tables, i.e. the same table is
split into two parts kept on disk and in memory, respectively. This poses a chal-
lenge when it comes to decide the existence and location of a specific row, when
performing an access by using the value of a unique attribute. Our main con-
tributions are: (i) proposing a new architecture that allows for hybrid tables,
(ii) providing an efficient data structure for avoiding useless accesses to both
memory and disk, specially when the queried information is not in the database,
(iii) comparing our approach to a real commercial MMDBMS, IBM R©SolidDB R©,
that provides both an in-memory and a disk-resident engine. Our results show
that, thanks to our approach, we are able to speed up the overall execution when
accessing rows in the table intensively. This provides us with experimental evi-
dence that allows us to state that using in-memory data structures outperforms
classical buffer pool techniques for on-disk DBMS.

The remainder of this document is organized as follows. Section 2 describes
the architecture proposed for our hybrid database and our proposal in order to
reduce unnecessary accesses to both memory and disk. In Section 3, we present
our results. Section 4 presents some related work. Finally, in Section 5, we draw
the conclusions and present some future work.
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Fig. 1. TwinS architecture

2 TwinS

TwinS is a hybrid database management system that aims at improving the
performance of disk resident databases by enabling hybrid tables which store
part of their rows in memory. This architecture naturally requires the coexistence
of two modules that separately manage the accesses to each of the storages. Let
R = {r1, r2, ..., rn} be a hybrid table of n rows. In TwinS, we assume that a
hybrid table R is divided into two parts, RM and RD, such that R = RM ∪RD

and RM ∩RD = ∅, where RM is the part of the table managed by the in-memory
engine, and RD is the disk-resident part.

Figure 1 shows the architecture of our system with the modules involved in
the execution of a query in TwinS, which is basically divided into two parts: the
engine and the access path mediator (APM). The APM is in charge of solving
data access paths and it takes into account that the location of data in TwinS
may be distributed among two storage devices. Depending on the data location
information in the APM, it redirects the query to the in-memory or on-disk
data access modules used to access the rows stored in main memory or on disk,
respectively. One of the main contributions of this paper is to design the APM
such that it keeps information in a compact way and maximizes the efficiency of
the system by avoiding unnecessary accesses to both memory and disk.

The APM has to have information of data location at row level. We do not dis-
cuss in this paper about sequential accesses because using hybrid tables instead
of in-memory or on-disk tables does not add any complexity in this operation,
since it would imply traversing data in both memory and disk sequentially and,
therefore, the APM would not be strictly necessary.

2.1 A First Naive Approach: Latency Priority (LP)

In order to start the discussion, we present a first approach that takes the latency
of each storage device as the only information to decide the storage to be accessed,
prioritizing the one with the lowest latency, i.e. memory. We call this approach La-
tency Priority (LP). Thus, a naive solution to solve value-based queries on a hybrid
tableR wouldbe trying to finddata in the in-memory storage first and, if not found,
trying to find it on disk. This solution forces us to access memory at least once for
each value and, if the value is not found, it also requires accessing disk.
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Fig. 2. Access Path Mediator design

The LP APM has a data structure called Relation Location Solver (RLS),
which classifies each table in the system as in-memory, on-disk or hybrid.

2.2 Prediction Based Approach (PB)

Now, we propose a refined design of the APM which is depicted in Fig. 2. This
version has two components: the Relation Location Solver (RLS)(left side of
Fig. 2), and the Tuple Location Solver (TLS)(right side of Fig. 2), which is used
to avoid useless accesses.

The main difference between LP and PB is that the latter incorporates a
new type of structure that allows the system to know whether a row is in a
specific storage or not. We call this new data structure predictor. The TLS
is a structure in the form of a vector where each position points to a list of
predictors. Predictors allow to know whether a row can be in memory or on disk
depending on the values of its attributes. Thus, each hybrid table may have as
many predictors as attributes in the table. Note that in Fig. 2, R3, identified as
a hybrid table by the RLS, has one predictor for attribute A and another one
for attribute B, and R5, also identified as a hybrid table, has only one predictor
for attribute C. This way, for each queried value on a given attribute, the APM
checks in the corresponding predictor (if the attribute has one associated) the
location of the matching row.

Algorithm 1 describes the procedure to access a unique attribute. First PB
gets the category of table R through the RLS (lines 2-3). If R is classified as
a disk-resident or an in-memory table the system scans the table in order to
find a certain value (line 2). If R is a hybrid table, the system checks in the
TLS if there are rows of R fulfilling the condition related to that value in RM

(line 4), RD (line 6) or in both of them (line 7), and then proceeds scanning
the corresponding part. Note that scan() is not a sequential operation, but it
consists in looking up the data through in-memory or on-disk indexes.

Using Count Filters for Prediction

This section discusses on the implementation of the predictors depicted in Fig. 2.
From previous sections, we may infer several aspects that are crucial for predictors:

The access time to the predictor has to be as fast as possible. Therefore, a
predictor has to be in memory. This also implies that it has to be as compact
as possible in order not to reduce significantly the amount of memory needed to
execute the access operation. However, the accuracy of the predictor is crucial
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Algorithm 1. Access by value
Input : Value ’value’ of the attribute ’Attribute’, Relation ’R’
Output: L::List of rows of R that R.Atr = val

1 switch APM.checkRLS(R) do
2 case DISK or MEMORY: L ←Scan(R,Attribute,value);
3 case HYBRID:
4 switch APM.checkTLS(R,Attribute,value) do
5 case MEMORY: L ←Scan(R M ,Attribute,value);
6 case DISK: L ←Scan(R D,Attribute,value);
7 case BOTH: L ←Scan(R M ∪ R D,Attribute,value);

8 endsw

9

10 endsw

in order to be able to reduce the number of accesses to both memory and disk.
Predictors may return false hits, i.e. predict that a row is in a certain storage
when it is not true. This will result in an unnecessary access, but will preserve the
correctness of results. However, they can never return a false negative [2], since
that would imply not accessing the storage containing a row with the requested
value. Although it is out of the scope of this paper to analyze the performance
aspects regarding insertions, deletions and updates in the database, we need this
structure to be ready to be updated if this happens.

The first two requirements are contradictory, since the first requires to keep
predictors as small as possible, while the second needs keeping as much infor-
mation as possible in order to make accurate predictions about the location of
rows. A way to reduce the number of useless accesses is by implementing the
predictor using two presence bitmaps in order to mark which values have been
inserted in memory and on disk, respectively. A bit set to 1 in one of the bitmaps
indicates that the value represented by that unique bit exists in the associated
storage device. Using two bitmaps with as many positions as the size of the
domain of the attribute that is linked to that predictor would allow us to have
an exact predictor. With this structure we guarantee the four conditions stated
above. However, in the presence of non-contiguous values or when the databases
are updated very frequently, they would be very inefficient. The use of Bloom
Filters [2] instead of bitmaps saves memory by means of applying hash functions
at the cost of losing exact answers. The precision of a Bloom Filter depends on
two different variables: the number of hash functions that are applied for each
key and the size of the Bloom Filter. However, we would still have a problem
when removing a value: we could not be sure that setting its corresponding bit
to zero is correct, since other values could be mapped to the same bit. This is
solved by using count filters. In order to implement the predictor we use Par-
titioned Dynamic Count Filters (PDCF) [3], a compact data structure that is
able to keep approximate counters for large sets of values. As we see later, this
structure requires little memory since it dynamically allocates and deallocates
memory for the counters that need it. In our case, each predictor is composed by
two PDCF, one for memory and another one for disk. Counters in the PDCF are
assigned to values using a hash function. Therefore, each time a value is inserted
in memory the corresponding counter (or counters) in the PDCF assigned to
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memory is increased. When a value is removed the counter is decreased. Note
that only when the counter is equal to zero, we are sure that the corresponding
value is not in memory. Of course, the PDCF might return a false positive when
more than one value is mapped on the same counter, but it will never return a
false negative. It is also possible to allocate a single PDCF. For instance, if we
wanted to avoid useless disk accesses, but we were not worried about memory
accesses because it was the case that memory is very much faster than disk, we
could consider creating a single PDCF. In general, it is worth to create both,
since the space needed by these structures is not significant compared to the size
of the database.

3 Experimental Results

This section analyses the effect of using hybrid tables. First, we start with the
performance achieved by TwinS when accessing a table randomly by its primary
key, using LP and PB with one or two predictors. Second, we analyze the impact
of querying values which are not in the database.

Data have been generated with DBGEN, the TPC-H database generator. We
run the experiments on the TPC-H table orders. The size of the table after
loading 106 rows into memory using IBM SolidDB is 550 MB. We test TwinS
varying the amount of available memory, the percentage of the memory used
for the in-memory engine and the TLS probability of false hit. Unless explicitly
stated, we consider for all the experiments three different values for the amount
of available memory: 100, 200 and 400 MB. For each of these three cases, we
vary the portion of memory used by the in-memory engine (20%, 40%, 80% and
100%). Note that the remainder of the memory (80%, 60%, 20% and 0%) is used
for the buffer pool. This will allow us to understand whether it is more useful
to use memory to keep part of a table using in-memory data structures, or it is
better to use it as a classical buffer pool. Also, we test several configurations of
the TLS, with a probability of yielding a false hit of 0.001, 0.01 and 0.1.

Each experiment is run three times, all the values shown in this section are
the average of the results of these executions. When stated, the buffer pool is
warmed up. The experiments are run using an Intel R© Core

TM
2 Duo at 3.16GHz.

The memory available by the computer is 3.5 GB. However, taking into account
that during the execution of a query the scan operation may coexist with other
operations in the QEP or even with concurrent queries from other users, we
assign a maximum of 400 MB to table orders.

We test our architecture when accessing data at random using a unique at-
tribute. Figure 3 shows the access time in seconds when using LP and PB with
both one predictor and two predictors. With this experiment, we first aim at
understanding the effect of the accuracy of predictors on the overall access time.
Because of this, we have reserved an extra space of memory for predictors which
is not competing with the memory pool reserved for keeping data. The percent-
age of tuples that fit in the in-memory engine appears in brackets next to the
percentage of memory used for the in-memory engine. It also shows the access
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Fig. 3. Access time when random access by primary key is done

time when the system has very little memory and almost the whole table is on
disk, the time when the table is on disk, but we have previously warmed-up the
buffer pool, and the access time when the whole table fits in memory.

As we can see from these results, LP is able to achieve better results, when
the amount of memory available is large and allows to keep a large percentage
of the table in memory, as opposed to the case where the table is completely
on disk and even to the case where the table is on disk but we have previously
warmed up the buffer pool. Note that warming up the buffer pool might not be
realistic in several scenarios, but we have included it to stress our proposals and
show that even in this situation, we can benefit from hybrid tables. However,
as expected, when the amount of memory is limited, and a large part of the
table is on disk, since LP requires accessing memory for any access by value,
performance degrades, making it better to use an on-disk DBMS. Regarding PB,
we can observe that using one predictor will not save time with respect to LP,
since LP saves accessing disk whenever the value is on memory and, therefore,
the predictor is useless. Taking this into account, LP is desirable to PB with one
predictor. On the contrary, with two predictors, we save unnecessary accesses to
disk when the value we are looking for is on disk, and the overall time is reduced
with respect to all the other approaches. Another important result is that it
is more beneficial to keep data in the in-memory data structures, than using
classical buffer pool techniques, agreeing with the ideas presented in [1]. This
can be seen clearly in the 200 MB scenario of Fig. 3: when 80% of the memory
available is used by the in-memory engine, any configuration with two predictors
is able to reduce significantly the access time compared to the reduction that
the buffer pool is able to achieve. Finally, we can see that the accuracy of the
predictor results in very similar time responses. The proper configuration of
the TLS which, as it is shown in Fig. 3, consists in using two predictor with
probability of false hit under 0.1, only requires 6-7 MB, which represents 1.3%
of the total amount of memory needed to store table (550 MB).
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Fig. 4. Left: access time when 5% of the queried values are missing. Right: access time

when when 40% of values are missing.

Following, we repeat the same experiments adding a certain number of queries
to values that are missing in the database. We run the experiments taking into
account two different situations: a) 5% of the queried values are missing (leftmost
side in Fig. 4) and b) 40% of the queried values are missing (rightmost side in
Fig. 4). Results focus exclusively on the case where predictors have a probability
of false hit equal to 0.1 which has been shown to be the best case taking into
account both response time and memory requirements.

Fig. 5. Analysis of useless disk accesses

Again, we show three baseline scenarios: the whole table fits in memory, the
whole table is stored on disk, and the table is on disk and the buffer pool has
been warmed up. LP is in general better than having the whole table on disk,
except when the amount of memory available is not very large. If the buffer
pool is warmed up, then buffer pool based tables obtain similar results to those
obtained by LP, except if almost the whole table fits in memory in which LP
achieves better response times. Regarding PB, it achieves response times that
are in general shorter than those obtained by on-disk DBMSs. This difference
is increased as the number of queried values which are not in the database
increases. The difference between using one or two PDCFs is again significant,
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and saving useless accesses to memory reduces the response time, as expected.
The reasons for this are explained in Fig. 5, where we show the number of
unnecessary accesses to both memory and disk, in logarithmic scale, when the
percentage of queried values which are not in the database is 5%. Thanks to the
first PDCF, we save most of the unnecessary disk accesses made by LP. The clear
benefit of using the second PDCF is that the number of accesses to memory is
reduced.

4 Related Work

Since the 1980s, with the availability of very large, relatively inexpensive, main
memory, it became possible to keep large databases resident in main memory [4],
and concepts such as main memory database management systems (MMDBMS)
became usual. As described by Hector Garcia-Molina in [1], MMDBMSs store
their data in main physical memory providing very high speed access. MMDBMSs
use optimizations to structure and organize data. Because of the volatile char-
acteristics of the main memory, reliability on MMDBMS has been one of the
main concerns in the area and a lot of work has been done concerning the recov-
ery, logging and checkpointing of such systems [5]. The interest on MMDBMS
has increased [6] and many commercial MMDBMSs have been developed. Mon-
etDB [7], Altibase [8], IBM-SolidDB [9] or Oracle-TimesTen [10] are just some
examples. SolidDB and Altibase allow MMDBMS and conventional DBMS to
coexist although they do not allow for hybrid tables in the way that we propose.

The use of structures such as PDCF is usual for several purposes such as an-
alyzing data streams [11], summarizing the content of peer-to-peer systems [12],
reducing file name lookups in scale ditributed systems [13], etc. In databases,
these structures have been used to answer queries regarding the multiplicity of
individual items such as in [14].

5 Conclusions and Future Work

The results in this work show that using hybrid tables is a good solution when the
whole table does not fit in memory. To our knowledge this is the first approach
towards a hybrid in-memory and on-disk table allowing to reduce reading time
by splitting the table into two parts. The use of predictors is essential in order
to reduce useless accesses to both memory and disk. In the case of accessing
values which are not in the database, foreseeing their non-presence and completly
avoiding the access to data improves the overall performance of the system,
making our proposal important for real-time applications, where a large number
of users might be querying the same table.

The experiments have been done following a random pattern for accessing
rows. However, it is still necessary to test the benefits of a hybrid table when
the access pattern is skewed and a few rows are accessed very frequently, while
the remaining rows are seldom accessed. Taking this into account, future work
includes, among other possibilities, considering reallocation of data between de-
vices in order to favor the system response time reduction.
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Abstract. A power-saving management for OLTP applications has be-

come an important task for user budgets and datacenter operations. This

paper presents a novel power-saving method for multiple disk drives

based on knowledge of OLTP application behaviors. We report detail

analysis of power consumption of disk drives and I/O characteristics of

OLTP application. We then show experimental and simulation results

of our power-saving methods. Our method provides substantially lower

power consumption of disk drives compared to that of a conventional

OLTP environment.

Keywords: Database, Online Transaction Processing (OLTP), Disk

Drive, Power-Saving.

1 Introduction

Server and storage aggregation at datacenters has increased datacenters’ power
consumption. The power consumption of servers and datacenters in the United
States is expected to double during 2006-2011 [1]. Storage is a high power con-
suming unit at large datacenters from a database-application workload perspec-
tive. Consequently, disk storage power-savings have become a major problem for
database systems at datacenters [2,3].

A Database Management System (DBMS) is reportedly a major storage ap-
plication [4]. A storage capacity shipment for DBMS is more than 60% of the
total shipment of high-end class storage installations, and shipments for online
transaction processing (OLTP) such as ERP and CRM constitute more than
half of the shipments of storage installations for DBMS. Therefore, storage for
OLTP is expected to be major power consumption unit at datacenters. Reducing
power consumption of storage devices for OLTP is an important task that must
be undertaken to decrease power consumption of datacenters.

Regarding power consumption of a storage unit such as RAID, power con-
sumption of disk drives occupies about 70% of the total storage power consump-
tion [5]. Today’s disk drives have a power-saving function such as stopping the
spindle motor or parking a head. These functions are useful for power-saving of
disk drives; however, several hundred joules of energy and more than 10 s are

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 241–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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required to spin up the disk drives [6]. An inappropriate usage of the power-
saving function therefore the increment of power consumption of disk drives
and slows down applications. Consequently, it is important to select appropriate
opportunities for using power-saving functions to reduce the disk-drive power
consumption.

In the past few years, several studies have addressed these problems. The
features of these studies are estimation of I/O-issued timing by analyzing ap-
plication behavior. The length of the estimated period of time is limited by the
length (latency) of the transaction. These approaches are, therefore, suitable for
long-term transactions and not for short-term transactions. Consequently, it is
difficult to apply these approaches to OLTP applications for which the transac-
tion latency time is less than a few seconds.

Workloads of applications at a large datacenters are mainly short-term trans-
actions such as banking or stock-market applications: OLTP applications. Power-
saving methods using characteristics of I/O behavior of OLTP, however, have
never been examined. In this paper, we focus on the most challenging problem
of power saving of disk drives under the unfavorable OLTP environment that all
disk drives are likely to be accessed constantly and equally.

Our contribution is to propose of a new power-saving method without OLTP
performance degradation by considering OLPT I/O behaviors. The feature of
our approach is to extend idle periods of disk drives using the comprehensive
behavior of OLTP DBMS. Our approach uses I/O behavior knowledge of OLTP
applications and background processes of DBMS. The other contribution is that
we measured actual power consumption of OLTP applications on multiple disk
drives using a power meter in detail. Few reports describe actual measurements
of power consumption.

Our power-saving method enables reduction of disk drive power consumption
of more than 38% in the best case in our experimental results. We also intend to
use our proposed method to apply large RAID storage systems in future works.

2 Related Works

In this section, we describe related works of storage power-saving methods. These
methods are classified into disk drive rotation control methods, I/O interval
control methods, data placement control methods.

Disk drive control method controls a disk drive rotation speed or power status.
Proposed approaches of disk drive control are categorized into two groups: i)
changing the length of wait time to change the status of disk drive to standby or
sleep [7,8]; ii) rotating a disk drive at multiple speeds [9,10]. These approaches
typically use a long period of idle time such as 30 s. Moreover, application-aware
power saving methods are also proposed to control disk drives precisely by using
knowledge of applications [18]. However, the OLTP application executes multiple
transactions in a few seconds and its idle lengths of I/O becomes less than one
second, so it is difficult to apply these approaches independently.

I/O interval control method controls the I/O timing of an application to
increase the chance that a disk drive is in a power-saving mode. A feature of this
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approach is to increase the idle period using hierarchical memory architecture
such as cache memory [11,12,13], and changing the application codes in order
to control I/O timing [19,20]. These approaches are useful for applications with
a small data footprint size or low I/O frequency, or a long-term transaction.
Therefore, it is difficult to apply these methods to OLTP directly.

Data placement control method is intended to reduce the power consumption
of disk drives by controlling data placement on disk drives. The idea of this
approach is to concentrate frequently accessed data into a few disk drives, then
to move the status of other disk drives to standby or sleep [14,15,16,17]. These
approaches are also useful with applications for which the I/O frequency is low.
It is not easy to apply these approaches to OLTP applications since there are
many short transactions issued within few seconds. Consequently, it is necessary
to combine other approaches that find less frequently accessed data at block
level.

3 Characteristics of Disk Drive Power Consumption

This section explains characteristics of power consumption of disk drives based
on actual measurement results.

3.1 Measurement Environment

A load-generating PC provides power to a measured disk drive using 4-pin power
cables. We connected a digital power meter (WT1600; Yokogawa Electric Corp.)
to the power cables in order to measure the electric current and voltages of
the disk drive. The load-generating PC CPUs are two Athlon 64 FX-74 3 GHz,
1MB cache, 4-core processors (Advanced Micro Devices, Inc.). Main memory
sizes of the load generating PCs are 8 GB. Measured disk drive is Barracuda
ES ST3750640NS (750 GB, 7200 rpm; Seagate Technology LLC). The disk drive
write caches are turned off to protect reliability of the database because DBMS
uses no write cache.

3.2 Power Consumption at Active/Idle States

Fig. 1 depicts a relation between the disk drive power consumption and I/Os
per second (IOPS). The I/O size is 16 KB, which indicates that the power
consumption of random I/O increases in accordance with an increase of IOPS,
but saturates the increase of power where IOPS is larger than 70-80 IOPS. The
power consumption of a sequential write is much less than that of random I/O
because the disk drive head movements are far fewer than those of random I/O.

3.3 Power Consumption of Standby Status and Break Even Time

We also measured the power consumption of a standby state disk drive, along
with the transition from active/idle status to standby status, migration from
standby status to active/idle status, and break-even time of the disk drive.
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Fig. 1. Relationship between the disk drive power consumption and I/Os per second

(IOPS). The power consumption of random I/O increases in accordance with an in-

crease of IOPS. The power consumption of a sequential write is much less than that of

random I/O.

The power consumption of a standby state was 1.5 VA. The transition status
from a standby to an active/idle, however, requires 8 s and more than an average
of 23.3 VA. The transition status from an active/idle to a standby requires 3.5 VA
with 0.2 s. The break-even time calculated from these values is 15.8 s. Therefore,
idle time of more than 24 s (15.8 s + 8.0 s) is necessary to use this disk drive
power-saving function. Hereafter, we call this idle time as ”required idle time”.

4 I/O Behavior of OLTP Application

For investigating a power-saving method using characteristics of I/O behavior
of OLTP application, we measured I/O behavior of tpcc-mysql [22] on our test
bed environment. Here, tpcc-mysql is a simple implementation of the TPC-C
benchmark.

4.1 Experimental Environment

The hardware is the same configuration described in 3.1. The software con-
figuration is the following: the OS is 32-bit version of CentOS; the DBMS is
MySQL Communication Server 5.1.40 for Linux; and the OLTP application is
tpcc-mysql. The file system cache and the disk drive are disabled. The size of
the DBMS buffer is 2 GBytes. Our first target is high transaction throughput
OLTP applications served at large datacenters. Therefore, we configured the size
of DBMS buffer as larger than the size of the database.

The database is approximately 1 GByte (number of Warehouse is 10), in which
the Log data size is not included. We partition a disk into 10 volumes and format
these volumes using the Ext2 file system. Log data and each file of the tables
and indexes are placed separately into each volume. This file placement eases
the receipt of I/O performance data of each database data: we simply measure
the OS level performance.
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4.2 Behavior Characteristics of TPC-C

Fig. 2(a) shows the number of reads and writes per second and the average I/O
intervals of each datum. As presented there, the characteristics of TPC-C I/Os
were the following: i) write I/O to Log data were dominant, ii) I/Os to tables
and indexes were fewer than two I/Os per second, and iii) more than half these
I/Os were writes. No I/O was measured to District, Item, or Warehouse data.
The I/O intervals of these data (Log, tables and indexes) were shorter than the
required idle length (24 s) except for NewOrder data.

Fig. 2(b) portrays the intervals of I/Os of data. This figure reveals that the
idle lengths of OrderLine, Orders, and Stock data were skewed; some idle period
was longer than the required idle time. Therefore, a power-saving method using
I/O behavior characteristics enables stoppage of disk drives for a long time.

(a) IOPS and Average Idle Length of TPC-C (b) Distribution of Idle Length of TPC-C
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Fig. 2. IOPS, average idle length, and distribution of idle length of TPC-C. The average

I/O intervals of data is shorter than the required idle length, some idle period was,

however, longer than the required idle time.

5 Power-Saving Method Using I/O Behavior
Characteristics of OLTP Application

We propose a power-saving method using characteristics of the I/O behaviors
of TPC-C application. The features of the proposed method are: i) to generate
non-busy disk drives by gathering data of a few I/Os, ii) to delay writing I/Os
to database data until the database data are read on the same disk drives.

5.1 Power Saving Method Using Data Placement

This method gathers frequently accessed data into a few disk drives, and generate
chance to spin down other disk drives which store infrequently accessed data.
As shown in Fig. 2(b), we can observe long I/O intervals for Orders, History,
Customer, and Stock data. We expect that this long I/O interval will enable us
to use of the power-saving function of disk drives aggressively. This prediction
of long I/O intervals cannot be achieved solely considering the I/O disk drive
frequency of storage-level knowledge.
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5.2 Power-Saving Method Using Delayed Write I/Os

We propose a delayed write I/O method to use long I/O intervals for power-
saving of disk drives. This method is based on the DBMS behavior of writing
operations.

Fig. 3 presents our proposed method. The main idea of our approach is to
produce a long idle period by delaying deferred write I/O of database data until
the DBMS reads database data on the same disk drive or a checkpoint. As
shown there, our approach causes no delay of query processing threads. We can
spin down the disk drive at this long idle period without degradation of OLTP
throughput. The delay period should be defined based on the dirty page rate of
DBMS buffer, the number of pages updated per second, and the interval length
of a DBMS checkpoint. This subject warrants future study.

Delay deferred

write I/Os until

read I/O is issued

Make long idle period

⇒Spin down disk drive

read

(miss)

write

read write

time

read

(miss)

Query

Processing

Thread

DBMS Buffer

Disk Drive

(DB Data)

Checkpoint write

with traditional 

mechanism

write

Fig. 3. Mechanism of delayed write I/O. Write I/Os to a disk drive are delayed until

the DBMS reads database data on the same disk or a checkpoint.

6 Evaluation

6.1 Evaluation of Data Placement Method Based on Access
Frequency

For evaluation of two disk drives, we add a SATA disk drive to the configuration
described section 3 and 4 and put database data and Log data into two SATA
disk drives. The added disk drive is the same model as those described in sections
3 and 4. We connected a digital power meter to the added drive and measured
the disk drive power consumption. The configurations of DBMS and DB are as
described in section 3 and 4. Disk drives are configured to transition to standby
status when the idle period is longer than 5 s, and move to active state when an
I/O arrives.

Data Placement Variation. We evaluated four data placements of two disk drives
listed in Table 1. The disk drives are of two types: active and inactive. In this
approach, disk drive #1 is active and disk drive #2 is inactive.
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Table 1. Data Placement (Two Disk Drives)

Case Data on Disk Drive #1 (Active) Data on Disk Drive #2 (Inactive)

Case #1 Log Customer, District, History, Item, NewOrders,

OrderLine, Orders, Stock, Warehouse

Case #2 Log, OrderLine Customer, District, History, Item,

NewOrders, Orders, Stock, Warehouse

Case #3 Log, NewOrders, OrderLine, Orders, Customer, District, History, Item,

Stock Warehouse

Case #4 Log, Customer, NewOrders, District, History, Item,

OrderLine, Orders, Stock Warehouse

Evaluation Results of Data Placement Method. Fig. 4 shows the actual measured
power consumption and transaction throughput of the two disk drives using the
data placement, that is, data are distributed into two disk drives in Table 1. Here,
we call the results using a spin down function of disk drive as ”with power-saving”,
the results which the spin down function are turned off as “without power-saving”.

As shown Fig. 4(a), the power consumption without power-saving is nearly
equal to 18 VA for all cases. On the other hand, the power consumption with
power-saving method is quite different among four cases. In case #1, the value is
equal to the value without power-saving method. This means that in case #1, the
data placement method does not reduce the power consumption of disk drives.
In case #2, the power consumption is increased to 20.2 VA. In case #3 and
#4, on the other hand, the power consumption values of disk drives are smaller
than those without power-saving method. In most efficient case, case #4, the
power consumption of the disk drives is approximately 23.1% smaller than those
without the power-saving method. In Fig. 4(b), the transaction throughput with
power-saving of case #1 is 196.3 transactions per second, and is nearly equal to
the transaction throughput without power-saving. In case #2, the transaction
throughput with power-saving is 144.6 transactions per second, and is shown
to drop more than 22% compared with case #2 without power-saving. On the
other hand, in cases #3 and #4 with power-saving, reduction of the transaction
throughput keeps approximately 10% degradation.

From Fig. 4, we can find that the considerable data placement can achieve
large power saving. In case #1, the power-saving function does not reduce the
power consumption. This is because the all of idle length of the disk drives #1
and #2 are less than the standby timeout (5 s). In case #2, the power consump-
tion is increased and transaction throughput is decreased because the length of
the idle period of disk drive #2 is longer than the standby timeout but shorter
than the required idle time (24 s). This causes an energy loss to spin up disk
drive #2 and a transactions delay until the disk drive is spin up. Furthermore,
this transaction delay stops I/Os to disk drive #1, causing another energy loss.
In cases #3 and #4, the disk drive power consumption is reduced when using
our proposed method because the idle periods are longer than the total length of
required idle time (24 s). The degradation of transaction throughput was caused
by waiting for disk drive #2 to spin up.
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Fig. 5. Power consumption and transaction throughput under two disk drives for

DBMS with the delayed write I/O method. The power consumption of disk drives

is reduced by 37.9% with little transaction throughput degradation.

6.2 Evaluation of Delayed Write I/O

We evaluated our proposed method with a delayed write I/O function. There
is no implementation of a delayed write I/O function on commercial DBMS.
Therefore, we simulate the I/O behavior of the delayed write I/O function using
I/O trace information obtained from the experiments of data placement method.
Then, we calculated power consumption and transaction throughput based on
these I/O results.

Fig. 5 portrays the results of the disk drive power consumption and trans-
action throughput for each case. This result is normalized by the power con-
sumption without power-saving. Here, the power-saving method contains both
the data placement method and the delayed write I/O method.

As shown in Fig. 5(a), the disk drive power consumption is decreased except
in case #1. The maximum reduction of power consumption was 37.9% for cases
#3 and #4. Transaction throughput was reduced by 6% in case #1, 5.3% in case
#2, and less than 1% in cases #3 and #4(Fig. 5(b)). The power consumption
was increased and transaction throughput was decreased in case #1 for the
reason described in the preceding subsection.
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7 Conclusion and Future Works

As described in this paper, we measured the actual power consumption values
of disk drives and considered the behavior of the TPC-C application in detail.
We then proposed a novel power-saving method that enables reduction of power
consumption of disk drives for TPC-C applications. The salient feature of our ap-
proach is to extend idle periods of disk drives using a data placement method and
delayed write I/O method based on a comprehensive behavior of OLTP DBMS
executing multiple transactions. We demonstrated that our method achieves an
approximately 38% reduction of the disk drive power consumption for a TPC-C
application without decreasing its throughput.
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Abstract. We consider the problem of processing exact results for sliding win-
dow joins over data streams with limited memory. Existing approaches either, (a)
deal with memory limitations by shedding loads, and therefore can not provide
exact or even highly accurate results for sliding window joins over data streams
showing time varying rate of data arrivals, or (b) suffer from large IO-overhead
due to random disk flushes and disk-to-disk stages with a stream join, making the
approaches inefficient to handle sliding window joins. We provide an Adaptive,
Hash-partitioned Exact Window Join (AH-EWJ) algorithm incorporating disk
storage as an archive. Our algorithm spills window data onto the disk on a pe-
riodic basis, and refines the output result by properly retrieving the disk resident
data, and maximizes output rate by employing techniques to manage the mem-
ory blocks and by continuously adjusting the allocated memory within the stream
windows. The problem of managing the window blocks in memory—similar in
nature to the caching issue—captures both the temporal and frequency related
properties of the stream arrivals. The algorithm adapts memory allocation both
at a window level and a partition level. We provide experimental results demon-
strating the performance and effectiveness of the proposed algorithm.

1 Introduction

With the advances in technology, various data sources (sensors, RFID Readers, web
servers, etc.) generate data as high speed data streams. Traditional DBMSs stores data
on a disk and processes streams of queries over the persistent data. Contrary to such a
’store first, query next’ model, a data stream processing system should process results
for long running, continuous queries incrementally as new data arrive in the system.
So, continuous queries over bursty, high volume online data streams need to be pro-
cessed in online fashion to generate results in real time. The new requirements unique
to the data stream processing systems pose new challenges providing the motivation
to develop efficient techniques for data stream processing systems. Examples of appli-
cations relevant to data stream processing systems include network traffic monitoring,
fraud detection, financial monitoring, sensor data processing, etc. Considering the mis-
match between the traditional DBMS and the requirements of data stream processing,
a number of Data Stream Management Systems (DSMS) have emerged [1–3]. In this
paper we investigate the problems that arise when processing joins over data streams.

Computing the approximate results based on load shedding [4–6] is not feasible for
queries with large states (e.g., join with large window size). It is formally shown in
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reference [5] that given a limited memory for a sliding window join, no online strat-
egy based on load-shedding can be k-competitive for any k that is independent of the
sequence of tuples within the streams. Thus, for a system with QoS-based [1] query
output, secondary storage is necessary even to guarantee QoS above a certain limit.
Pushing the operator states or stream tuples to the disk has already been adopted in sev-
eral research works [7–10] that process finite data sets, carries out clean-up phase at the
end of the streams. Contrary to this scenario, a sliding window stream join should prop-
erly interleave the in-memory execution and disk clean-up phases. Also, Algorithms for
processing joins over finite streams [7, 8, 11] are not I/O-efficient and do not consider
disk I/O-amortization over large number of input tuples. Moreover, these algorithms
result in a low memory utilization and a high overhead of eliminating duplicate tuples
in join output. Thus exact processing of sliding window stream joins within a mem-
ory limited environment is a significant and non-trivial research issue as promulgated
in [5, 6, 10].

In this paper, we propose an Adaptive, Hash Partitioned Exact Window Join (AH-
EWJ) algorithm that endeavors to smooth the load by spilling a portion of both the win-
dow blocks onto the disk. The proposed algorithm amortizes a disk-access over a large
number of input tuples, and renders the disk access pattern largely sequential, elimi-
nating small, random disk I/Os; it improves memory utilization by employing passive
removal of the blocks from the stream window and by dynamically adjusting memory
allocation across the windows. To increase the output generation rate, AH-EWJ algo-
rithm employs a generalized framework to manage the memory blocks forgoing any
assumption about the models (unlike previous works e.g. [5]) of stream arrival.

2 Related Works

Existing join algorithms on streaming data can be classified into two categories: the first
one considers bounded or finite size relations, whereas the second category considers
the streams of infinite size.

Join over Bounded Stream. Symmetric Hash Join [12], that extends the traditional
hash join algorithm, is the first non-blocking algorithm to support pipelining. The XJoin
algorithm [7] rectifies the situation by incorporating disk storage in processing joins:
when memory gets filled, the largest hash buckets among A and B is flushed into disk.
When any of the sources is blocked, XJoin uses the disk resident buckets in processing
join. In reference [9], the authors present multi-way join (MJoin) operators, and claims
performance gain while compared with any tree of binary join operators. Progressive-
Merge Join (PMJ) algorithm [13] is the non-blocking version of the traditional sort-
merge join. The Hash-Merge-Join (HMJ) [8] algorithm combines advantages of XJoin
and PMJ. Rate-based progressive join (RPJ) [11] focuses on binary joins, and extends
the existing techniques (i.e., those in XJioin, HMJ or MJoin) for progressively joining
stream relations. Algorithm proposed in [14] is based on a state manager that switches
between in-memory and disk-to-disk phases. In order to maximize overall throughout.
RIDER [15] algorithm maximizes output rate and enables the system quickly switch
between the in-memory stage and disk-to-disk stage.
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These algorithms invokes reactive stages (i.e., phases involving disk-resident data)
when the CPU is idle or there lies no more tuple to process. However, in case of the
sliding window based joins, the clean up or invalidation is a continuous process and
should be interleaved with the stream join processing.

Join over Unbounded Data Stream. Joins over infinite stream assumes application of
window operators (time- or tuple-based) to limit the memory requirements of continu-
ous queries, thus unblocking query operators. The work presented in [16] introduces a
unit-time-basis cost model to analyze the performance of the sliding window joins over
two streams. Reference [6] examines the MAX-subset measure and presents optimal,
approximate offline algorithms for sliding window joins. Golab et al. [17] presented and
evaluated various algorithms for processing multi-joins over sliding windows residing
in main memory. Srivastava et al. [5] propose (age- and frequency-based) models that
conserves memory by keeping an incoming tuple in a window up to the point in time
until the average rate of output tuples generated using this tuple reaches its maximum
value. In [4], the authors propose an adaptive CPU load shedding approach for multi-
way windowed stream joins. All of the algorithms shed load and thus does not produce
exact join results.

3 Exact Join

The basic join operator considered in this paper is a sliding window equi-join between
two streams S1 and S2 over a common attribute A, denoted as S1[W1] � S2[W2]. The
output of the join consists of all pairs of tuples s1 ∈ S1, s2 ∈ S2 such that s1.A = s2.A,
and s1 ∈ S1[W1] at time s2.t (i.e., s1.t ∈ [s2.t − W1, s2.t]) or s2 ∈ S2[W2] at time
s1.t (i.e., s2.t ∈ [s1.t − W2, s1.t]. Here, si.t denotes the arrival time of a tuple si.
The proposed algorithm (AH-EWJ) is based on the hashing methodology. Tuples in the
stream windows are mapped to one of the npart partitions, using a hash functionH that
generates an integer in the range of [1, npart].

Segment
Invalidation 

tuples
Expired 

tuples
new

Premature Dump Bypass disk dump

Frequency SegmentRecent Segment

Buffer

Fig. 1. Organization of incoming tuples within a
window
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Fig. 2. Data structure of a Recent Seg-
ment of a Stream Window

The algorithm consists of four major sub-tasks: maintaining blocks in generative
segments, adapting the memory allocation both within and across the stream windows,
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probing the disk periodically to join the disk resident data with the incoming data, and
invalidating the tuples. The algorithm is based on the framework given in Figure 1. The
memory portion of each window Wi has three segments in total: invalidation segment
(W inv

i ), Recent segment (W rec
i ), and Frequent segment (W freq

i ). Each of the segments
is maintained as a hashtable with npart partitions or buckets. We denote the j-th parti-
tion of a segment W seg

i as W seg
i [j], where seg ∈ {rec, freq, inv, mem}. Due to the

lack of space, we omit detailed description of various sub-tasks and refer the readers
to [18].

3.1 Memory Stage

The incoming tuples in stream Si are mapped to the respective partitions using a hash
functionH and added to the head block of the partition in the recent segment W rec

i [p][H ].
Each newly added block within a stream is given a unique number denoted as block num-
ber. Each block maintains a productivity value that records the number of output tuples
generated by the tuples in that block. The arriving tuples are joined with the respective
partition in the memory segment of the opposite window Wmem

ī
[p]. Blocks (in stream

Si) are added to the recent segment at one end (i.e., head), while the blocks from the
other end (i.e., tail) are stored to the disk sequentially during a disk dump. In our join
algorithm, we maintain the following constraint:

Constraint a: At a particular time, the blocks from recent segment of stream Si

should join with all the blocks in the disk portion of window Wī (i.e., W disk
ī

)
before being dumped to the disk

Blocks in the recent segment are categorized into three types: flushed blocks, stale
blocks and fresh blocks. The fresh blocks are newly arrived blocks that have not yet
participated in the disk probing. The stale blocks have already participated in the disk
probing, but have not been flushed onto the disk. The flushed blocks have already been
dumped onto the disk, and, therefore, can be deallocated to accommodate newly arrived
blocks. During the disk probing phase as described in subsection 3.2, blocks retrieved
from the disk segment (of the opposite stream) are joined with the fresh blocks in the re-
cent segment. After the disk probing, the fresh blocks are marked as stale ones. Blocks
from the recent segment are evicted upon the arrival of new tuples.

3.2 Tasks Related to Disk Probing

Frequent Segment Update. The decision about placement or replacement of a block
in Frequent segment, that is made periodically, is based on its productivity value. The
productivity values are decayed, using a factor α (0 < α < 1), during this update stage.
This update stage is carried out during the disk probing. During the update stage, an
incoming disk block is brought into the Frequent segment if its productivity exceeds that
of a block already in Frequent segment at least by a fraction (ρ). The block having the
minimum productivity value among the blocks in the Frequent segment is replaced. To
allow efficient decay of the productivity values of the disk resident blocks, we maintain
a productivity table that stores the productivity values of all the disk resident blocks in
memory as a list of tuples <block number, productivity>.



A Disk-Based, Adaptive Approach to Memory-Limited Computation 255

Algorithm 1. EVICTRECENT-
BLOCK(int k)

Data: k = stream index, global variables:
Wi; i = 0, 1

Result: a freed block b

i ← k;1
if CANSUPPLY( k̄ ) then2

i ← k̄ ;3

if flushi = 0 then4
if5
W disk

i =φ and free(W inv
i )>0

then
p ← partition having the block6
with the lowest BN ;
remove tailing block b in7
W rec

i [p];
copy b to W inv

i [p] ;8
decrement stalep

i9
else10

n ←11

min(Bmin
rec ,

∑ npart−1
p=0 stalep

i );
DISKDUMP(i,n) ;12

if flushi 	= 0 and free(W rec
i ) ≤ 013

then
p ← arg min

x | stalex
i

>0
(prodx

i );
14

remove tailing block b in W rec
i [p];15

decrement flushp
i ;16

UPDATEFREQSEGMENT(W freq
i , b)17

return b18

Algorithm 2. AH-EWJ

// set to 0; i=0,1; 0 ≤ p < npart

initialize variables prematurei , freshNi, UIi ,1
flushp

i , stalep
i , BNi;

repeat2
retrieve a tuple si from input buffer of Si in FIFO3
order ;
p ← H(si) ;4
W rec

i [p][H] ← {W rec
i [p][H] ∪ si};5

if W rec
i [p][H] is full then6
compute W rec

i [p][H] �
{

W mem
ī

[p]
}

;7
Wrec(i)[p][H].BN ← BNi ;8
increment BNi ;9
increment freshNi;10
if W rec

i is full then11
W rec

i [p] ← EVICTRECENTBLOCK(i) ;12
else13

add a free block to the head of W rec
i [p] ;14

if freshNi ≥ rNmin
rec then15

UIi ← UIi + freshNi × |bm
i |;16

freshNi ← 0 ; // reset freshNi17
if UIi ≥ Epochi then18

DISKPROBE(W rec
i , W disk

ī , W freq

ī
,19

1);
UIi ← 0; // reset the count20

else21
DISKPROBE(W rec

i , W disk
ī , W freq

ī
, 0)22

for p ← 0 to npart − 1 do23
stalep

i ← |W rec
i [p]| − flushp

i24

until Streams ends ;25

Eliminating Redundant Tuples. A block bp
i evicted from the Frequent segment of

window Wi is already joined with the fresh blocks in the Recent segment of the stream
Wī. If the evicted block is not already scanned on the disk, it will be read and be joined
with the fresh blocks in the Recent segment of window Wī. To prevent this duplicate
processing, we maintain a list Ei containing the block numbers of evicted blocks. If an
incoming block from the disk is contained in Ei, we omit processing that block. List
Ei is reset to null at the end of the update stage.

As described earlier, blocks from the Recent segment are removed on demand. Such
passive removals of the blocks might lead to duplicate output generation. Let us con-
sider a block bj

i in partitionH(bi
j) of the recent segment W rec

i . The block bj
i joins with

a block bk
ī
∈ W rec

ī
[H(bi

j)]. Later bj
i participates in a disk dump and is stored on the

disk. However, due to the passive removal of the blocks from the Recent segment, the
same block (bj

i ) remains in memory as a stale block. Now, when a block bk
ī

of the op-

posite window participates in disk probe, it finds on the disk the block bj
i already joined

in previous step. We use the sequence number of a block, denoted as block number, in
solving this issue: every incoming block is assigned an unique number from an increas-
ing sequence. Every block bk

i in partition H(bk
i ) of the Recent segment W rec

i stores
the minimum block number (minBN) among the blocks, from the same partition of the
Recent segment of the opposite window, that bk

i joins with. When bk
i participates in a
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disk probe, it joins with a block bp
ī
∈ W rec

ī
[H(bi

k)] if the block number of the block
bp
ī

is less than the minBN value of the block bk
i , i.e., bp

ī
.BN < bk

i .minBN . As bk
i is

already in Wmem
i , any block in Wī arriving after bk

i .minBN is already joined with bk
i .

So, during disk probing any block bp
ī
∈ W disk

i having bp
ī
.BN ≥ bk

i .minBN can be
omitted.

3.3 Adapting Window and Bucket Sizes

In the join scheme, sizes of the invalidation and the frequent segments are kept con-
stant; the remnant join memory (Mfree) is allocated between the recent segments. The
recent segments adapts their sizes depending on stream arrival rates [19]. We capture
the instantaneous arrival rate of a stream using a metric termed as arrival frequency
(Ci; i = 1, 2), that is maintained using a decaying scheme [18]. Within a recent seg-
ment, a partition with the lowest value of the productivity metric (prodx

i ) is selected as a
viction partition, that yields a taling, flushed block. Algorithm 1 presents the algorithm
for evicting a block from a recent segment.

3.4 Join Algorithm Table 1. Notations and the system parameters

Notations Description

Si, Sī stream i and opposite to i, respectively
Wi, Wī Window of stream Si and Sī, respec-

tively
W disk

i Disk portion of window Wi

W rec
i recent segment of window Wi

W freq
i Frequent segment of window Wi

W inv
i invalidation segment of window Wi

W mem
i memory portion of window Wi ,

(W rec
i + W freq

i + W inv
i )

W seg
i [p] partition p of seg ∈

{rec, freq, inv}
W rec

i [p][H] block at the head of W rec
i [p]

bp
i block p in window Wi

bp
i .minBN minimum block number from W disk

ī &
W rec

ī
that bp

i ∈ W rec
i joins with

bp
i .prod Productivity of block bp

i

We now present the join algorithm AH-
EWJ in Algorithm 2. Within the join al-
gorithm an infinite loop fetches, in each
iteration, tuples from an input buffer and
joins the fetched tuples with the opposite
stream. At each step, the stream having a
pending tuple/block with lower timestamp
(i.e., the oldest one) is scheduled. A tu-
ple fetched from the buffer is stored in the
block at the head of the respective parti-
tion within the Recent segment. If the head-
block of a partition p becomes full, it is
joined with the memory portion of the par-
tition (Wmem

i [p]). The partition p is al-
located a new head block (line 2–2).The
variable freshNi tracks the number of fresh blocks in W rec

i . Whenever a recent seg-
ment is filled with at least Nmin

rec fresh blocks, the disk probe phase in invoked (line 2).
Frequent-segment-update phase, that occurs at a interval no less than Epochi, is merged
with a disk-probe (described in 3.2). At the end of the disk-probe, parameter stalep

i for
each partition p is changed, converting the fresh blocks within the partition to stale ones
(line 2–2).

4 Experiments

This section describes our methodologies for evaluating the performance of the AH-
EWJ algorithm and presents experimental results demonstrating the effectiveness of the
proposed algorithm. We begin with an overview of the experimental setup.
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4.1 Simulation Environment

All the experiments are performed on an Intel 3.4 GHz machine with 1GB of mem-
ory. We implemented the prototype in Java. The main focus of our experimentation is
to observe the effectiveness of the join processing algorithm. The buffer is virtually
unbounded and plays no role in the experiments. We generate the time varying data
streams using two existing algorithms: PQRS [20] and b-model [21]. PQRS algorithm
models the spatiotemporal correlation in accessing disk blocks whereas the b-model
captures the burstiness in time sequence data [19].

To model the access time for the disk segment, we divide a disk segment (W disk
i )

into ni basic windows Bwin
ij (j = 1 . . . ni) [4]. We assume that disk blocks within a

basic window are physically contiguous, and the delay in accessing the blocks in a
basic window is estimated only by the disk bandwidth (i.e., no seek or latency). How-
ever, accessing blocks beyond the boundary of a basic window imparts an extra delay
equivalent to the seek time and rotational latency (i.e., an access time). As a base de-
vice, we consider IBM 9LZX. We fix the memory page and also the disk block size
to 1KB. Each record has a length of 64 bytes. We set the size of the basic window to
1MB. We allocate 70% of memory to the recent segments. The remaining memory is
equally distributed among the invalidation and frequent segments. Minimum size of a
recent segment (Bmin

rec ) is set to the fraction 0.3 of the total memory reserved for the
recent segments. We set the minimum delay between successive reactive stages ( for
RPWJ) as 15sec. The domain of the join attribute A is taken as integers within the
range [0 . . . 10 × 106]. In addition to the total pending or buffered tuples, we measure
average production delay, total CPU time, total disk time and maximum total window
size. Unless otherwise stated, the default values used in the experiments are as given in
Table 2.

4.2 Experimental Results

Table 2. Default values used in experiments

Parameter Defaults Comment

Wi(i = 1, 2) 10 Window length(min)
τ 1 slide interval for a Window

(min)
λ 1200 Avg. arrival rate(tuples/sec)
α 0.4 Decay parameter for the pro-

ductivity value
b 0.6 burstiness in traces (captured

by b-model)
ρ 0.4 block eviction threshold
r 0.9 disk probe threshold
M 20 join memory (MB)

Nflush 0.4M flush size for RPWJ
npart 60 hash partitions or buckets

In this section, we present a series of ex-
perimental results for assessing the effec-
tiveness of the proposed join algorithm.
As a baseline algorithm, we use an algo-
rithm termed as RPWJ (Rate-based Progres-
sive Window Join) [19], which extends an
existing algorithm RPJ [11]—a variant of
XJoin [7]—to process the sliding window
joins. The extension is imperative, as RPJ is
an algorithm to join only the finite streams.
For each set of the experimentations, we
run the simulator for 1.6 simulation hours.
We start to gather performance data after an
startup interval of 12 minutes is elapsed.

We, now, present the experimental results with varying stream arrival rates. With
the increase in the arrival rates, more and more tuples can not be processed within the
time limit of the stream window; thus, The percent of idelayed tuples, that can not be
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processed within the time limit of the stream window, increases with the increase in the
arrival rates as shown in Figure 3. These delayed tuples get expired at a time later than
the usual after they get joined with the respective window. For RPWJ, the percentage
of the delayed tuples increases sharply with the increase in arrival rates beyond 1000
tuples/sec; however, in case of AH-EWJ, this percent of delayed tuples remains low
even for an arrival rate of 1800 tuples/sec/stream (i.e., 3600 tuples/sec in the system).
Here it should be noted that, only arrival rates do not provide the complete indication
about the load applied to the system; the load of the join module is also determined by
the window size.

Figure 4 shows, for both the algorithms, the average delay in producing output tuples
with the increase in arrival rates. Figure 5 shows the maximum window size during the
system activity. Though the allocated memory per stream window is 20MB, spilling the
extra blocks onto the disk does not impart significant increase in average output delay of
the AH-EWJ even for arrival rates up to 1600 tuples/sec/stream, at a point where max-
imum total window size is around 190MB (i.e., 9 times the join memory size). Tech-
niques based on load-shedding would have discarded the extra blocks beyond 20MB
losing a significant amount of output tuples that would never have been generated. The
RPWJ algorithm becomes saturated for an arrival rate 1400 tuples/sec/stream at a point
where the average delay attains a very high value. Hence, for a large window, the pro-
posed technique attains a low average delay of output generation; at the same time, the
percentage of the tuples missing the time frame set by the window is very low (0.05%
for an arrival rate 1400 tuples/sec/stream). This demonstrates the effectiveness of the
AH-EWJ algorithm.
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Figure 6 shows the total system time (disk I/O and CPU time) with varying per
stream arrival rates. We notice that with the RPWJ algorithm the system is saturated
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at the rate of 1400 tuples/sec/stream. On the other hand, with the same arrival rate, the
AH-EWJ algorithms achieves around 40% reduction in total execution time.

Figure 7 shows the effect of increasing hash partitions on the performance of the two
algorithms. Algorithms based on sort-merge joins can not be applied in processing slid-
ing window joins due to temporal order of the tuples [19]. So, increasing the number of
hash partitions is a simple approach to lower the processing overhead. But, the perfor-
mance of the RPWJ algorithm deteriorates with the increase in the hash partitions; this
phenomenon renders the RPWJ unfit for the sliding window joins. On the other hand,
AH-EWJ attains lower average delay with an increase in the hash partitions. Figure 8
shows the average delay in generating output tuples with varying bias or burstiness of
the data stream. As shown in the figure, with the increase in the bias, AH-EWJ performs
significantly better than the RPWJ.

5 Conclusion

In this paper, we address the issue of processing exact, sliding window join between
data streams. We provide a framework for processing the exact results of an stream
join, and propose an algorithm to process the join in a memory limited environment
having burstiness in stream arrivals. Storing the stream windows entirely in memory
is infeasible in such an environment. Like any online processing, maximizing output
rate is a major design issue in processing exact join. Hence, we propose a generalized
framework to keep highly productive blocks in memory and to maintain the blocks in
memory during systems activity, forgoing any specific model of stream arrivals (e.g.,
age based or frequency based model [5]). The algorithm reduces disk dumps by adapt-
ing the sizes of both the windows and the partitions based on, respectively, the stream
arrival rates and the productivity of blocks within the partitions. The experimental re-
sults demonstrate the effectiveness of the algorithm.
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Abstract. Modern datastream management system (DSMS) assume sensor mea-
surements to be constant valued until an update is measured. They do not consider
continuously changing measurement values, although a lot of real world scenar-
ios exist that need this essential property. For instance, modern cars use sensors,
like radar, to periodically detect dynamic objects like other vehicles. The state of
these objects (position and bearing) changes continuously, so that it must be pre-
dicted between two measurements. Therefore, in our work we develop a new bi-
temporal stream algebra for processing continuously changing stream data. One
temporal dimension covers correct order of stream elements and the other cov-
ers continuously changing measurements. Our approach guarantees deterministic
query results and correct optimizability. Our implementation shows that predic-
tion functions can be processed very efficiently.

Keywords: Datastream Management, Query Processing, Prediction.

1 Introduction and Related Work

Datastream management systems (DSMS) continuously process queries over streaming
data. To prove determinism and correctness of query results and to provide optimizabil-
ity, a DSMS needs a formally defined algebra. However, most existing DSMS proto-
types [1–3] have no formally defined algebra. They are used to investigate processing
mechanisms for datastreams, but cannot guarantee a deterministic and correct execu-
tion of continuous queries. Only PIPES [4] provides a formally defined stream algebra
that guarantees deterministic results and correct behavior for query optimization. How-
ever, PIPES’ relational stream algebra does not support prediction of measurements.
This does not fit real world requirements. E. g. in advanced driver assistance systems
(ADAS) continuously moving objects have to be tracked. To compare object detections
of the last scan period with object detections of the current scan period in these systems
the continuously changing states, e. g., position and bearing, have to be predicted to
the same point in time. In other scenarios, such as wireless sensor networks or patient
monitoring prediction of values is also useful, e. g., for energy saving or earlier hazard
detection.

To support prediction functions, on the one hand specialized predictions functions
must be devolped as done in [5–7]. On the other hand, these prediction functions must
be used for processing streams of detected continuously changing values. On this note,
especially [8] is related to our work. Here, prediction functions are attached to stream
elements to reduce the communication overhead in a wireless sensor network. However,
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a clear integration into a query algebra that is necessary for provable correct query pro-
cessing is missing. Furthermore, this work is restricted to linear or linearized prediction
functions. This is not adequate for some scenarios: for example, processing dynamic
models with covariance matrices leads to quadratic functions. Therefore, in our work
we integrate arbritrary prediction functions into the algebra of a DSMS. For this, we
use a bi-temporal model based on [9]. The first temporal dimension in our model is the
stream time to cover the correct temporal processing order of elements (cf. [4]). The
second dimension is the prediction time to cover continuously changing values. Our
contribution is twofold:

– We formally define the semantics of our query algebra. We also show that our
algebra can benefit from optimization rules.

– We present an efficient implementation of our query algebra in a DSMS.

The rest of this paper is structured as follows: We present an example scenario to il-
lustrate prediction enabled query algebra requirements in Section 2. This algebra is
formally defined in Section 3. We show the evaluation of our approach in Section 4 and
give a conclusion in Section 5.

2 Stream Processing with Prediction Functions

This section illustrates the requirements and concepts for query processing over streams
with prediction functions. For this, see the example query shown in Listing 1 that con-
tinuously compares the distance between the own vehicle (ego-car) and vehicles ahead
to avoid a rear end collision.

1 SELECT ego.pos FROM ego RANGE 10 seconds, s2 RANGE 15 seconds
2 WHERE ego.speed > 30 AND s2.pos - ego.pos < 15
3 SET PREDFCT ego.pos:=ego.pos+ego.speed*t WHERE true
4 s2.pos:=s2.pos+s2.speed*t WHERE s2.type == "vehicle"

Listing 1. Example Query

Measurements from two sensors are processed. Sensor ego provides measurements
about the ego-car and sensor s2 detects objects ahead of the ego-car. This query com-
pares the position of the ego-car with the positions of detected objects ahead. SET
PREDFCT defines prediction functions to predict the continuously changing positions.
All measurements fromego are predicted with the same prediction function while mea-
surements from s2 are only predicted, if they represent a moving vehicle (expressed by
WHERE in the SET PREDFCT clause). Figure 1 illustrates prediction function eval-
uation. Measurement values a and b are not compared directly, but the outcomes of
their prediction functions are. So, the points in time are determined when the difference
between their predicted values gets under a specified threshold (e. g., 15 meters).

The straight forward approach to process the example query (probably used in [8])
would attach matching prediction functions to each stream element and solve them for
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prediction 
time

pos

Fig. 1. Predicting specific situations

each query predicate evaluated over the element. However, in this case, multiple solv-
ing of prediction functions is necessary. To avoid this, we use prediction functions to
redefine query predicates before query processing starts. The prediction functions
ego.pos:=ego.pos+ego.speed*t and s2.pos:=s2.pos+s2.speed*t
redefine the query predicate s2.pos - ego.pos < 15 from our example query into
s2.pos+s2.speed*t - (ego.pos+ego.speed*t)< 15. This inequality is then
solved for time (denoted by variable t), which in our example leads to the following
four solutions for t with mutually exclusive guards:

s2.pos + s2.speed ∗ t − (ego.pos + ego.speed ∗ t) < 15 ⇔⎧⎪⎪⎪⎨⎪⎪⎪⎩
t < 15−s2.pos+ego.pos

s2.speed−ego.speed if s2.speed − ego.speed > 0

t > 15−s2.pos+ego.pos
s2.speed−ego.speed if s2.speed − ego.speed < 0

t if s2.speed − ego.speed = 0 ∧ 15 − s2.pos + ego.pos > 0

∅ if s2.speed − ego.speed = 0 ∧ 15 − s2.pos + ego.pos ≤ 0

If there is more than one prediction function, query predicates will be redefined for each
of these prediction functions. To decide which redefined predicate to use, in our solution
a key is attached to each stream element that points to the corresponding prediction
function.

To evaluate a redefined predicate each guard is checked for each input element. If the
guard is true, the expression for t will be evaluated and used to determine the interval in
which the query predicate is true. If multiple predicates are combined by AND/OR, the
resulting intervals must be combined by pairwise intersection (AND) and union (OR) of
the resulting intervals. Sorting the guards according to their frequency to be true can be
used for performance optimization (see Section 4).

The intervals returned by redefined query predicates represent the prediction time
that describes when a query predicate will be true according to the defined prediction
functions. The order of stream elements and by this the windows over which the query
is evaluated (cf. [4]) are not affected by these intervals. This is another temporal dimen-
sion we denote with stream time. To cover both prediction time and stream time, we use
a bi-temporal model similar to [9]. In this model, the two dimensions are orthogonal.
This is necessary, since stream time and prediction time do not necessarily correlate,
e. g., due to network delays or system overload. If we had only one temporal dimension,
predictions would cause a reorder of stream elements. Newer elements would eventu-
ally be processed before older ones and therefore deterministic results could not be
guaranteed any more (e. g., a join cannot decide to prune elements). Figure 2 illustrates
this 2-dimensional time domain.
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Fig. 2. Our discrete bi-temporal datastream model

Each element in the result of the query in Listing 1 describes when the situation ex-
pressed by the predicates will be valid. An element with stream time tS and prediction
time tP for example tells us that we already know at time tS that something will happen
at time tP . This information reaches the application before all elements with start times-
tamps (stream time) greater than tS . Maybe, later elements (stream time) will give other
information. However, this problem exists in each prediction scenario and is therefore
not specific to our system.

3 Bi-temporal Stream Algebra

To guarantee deterministic results of prediction enabled queries and to take benefits
of well-known relational optimization heuristics, the underlying query algebra must be
formally defined. We first define our datastream model on which our algebra is based
(Section 3.1) and then describe the semantics of the operators of our algebra (Section
3.2).

3.1 Datastream Model

The semantics of our operators are defined on logical datastreams similar to [4]. By this
we can show the reducibility of our algebra to the well-defined relational algebra due to
snapshop-reducibility.

Logical Datastream. A logical stream SL is a set of elements rL = (e, tS , tP , i),
where e is a relational tuple containing payload data. tS (stream time) and tP (prediction
time) are timestamps of the finest granularity in a discrete time domain T [10]. The
circles in Figure 2 illustrate the points in time in our bi-temporal datastream model. i
is an identifier describing the measurement from which the values in e are taken. If a
sensor measurement is valid for n time instants in stream time, their exist n elements in
a logical stream with different values for tS , but the same value for i.

3.2 Operators

We first define a new prediction assignment operator. Then standard operators with
predicates are adapted to prediction functions. Operators with no predicates like map-
ping, projection and set operators can also be defined over our bitemporal datamodel.
However, due to space reasons we omit details here.
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Prediction Assignment. To process prediction functions, we need to assign predicted
values to logical stream elements. Our prediction assignment operator  is parameter-
ized by a function fs that decides which prediction function fp to use for each ele-
ment (WHERE clause in SET PREDFCT clause). The semantics is defined by (SL) =
{(ê, tS , tP , i)|∃(e, tS, tP , i) = r ∈ SL ∧ fs(r) = fp ∧ fp(tP , i) = ê}.

For each point in prediction time and each logical stream element this operator calcu-
lates the prediction function and sets the corresponding value for that element. Without
prediction functions the values would be constant over prediction time. With prediction
functions at each point in prediction time other values can be valid. We can integrate
arbitrary prediction functions into .

Selection. A selection operator σ decides for each element, whether it should be in the
output stream of the operator or not. Our selection operator behaves slightly different.
It finds out for each element when the selection predicate p will be true according to the
prediction function used for the element. So, the result of a selection predicate is not a
boolean value, but a set of time intervals in which the selection predicate is true. This
is shown in Figure 3. Each logical stream element is evaluated separately as defined by
σ(SL, p) = {(e, m, tS, tP , i)|(e, m, tS , tP , i) = r ∈ SL ∧ p(r)}.

i

discrete prediction time

i i
i i

i i

before selection a > x
x

value of a

discrete prediction time

i i
after selection a > x

x
value of a

interval

Fig. 3. Semantics of selection

Join. A join �� evaluates elements that are valid at the same stream time tS. Similar to the
selection predicate a join predicate p returns a set of intervals in which the join predicate is
fulfilled. The formal definition of our join operator again shows that each logical element
is evaluated separately: �� (SL,0, SL,1, p) = {(�e(e0, e1), tS , tP , �i(i0, i1))|∃(ek, tS ,
tP , ik) ∈ SL,k, k ∈ {0, 1} ∧ p((�e(e0, e1))}. The result contains the merge �e of the
payload data and the merge �i of the identifiers.

3.3 Algebraic Optimization

Algebraic optimization allows switching operators in a query plan without changing
the result of the query. Many equivalence rules, on which algebraic optimization is
based, exist for the relational algebra. In this section, we show that our algebra can
benefit from relational equivalence rules. For this, we define a bi-temporal snapshot at
point time t = (tS , tP ) of a logical datastream by the snapshot operator τ (cf. [4, 9]):
τt(SL) := {(e, m, i)|(e, m, tS, tP , i) ∈ SL}

A snapshot of logical stream SL is the nontemporal set of all elements being valid
at the 2-dimensional point in time t = (tS , tP ). Since our operators selection, join,
projection and set-operators evaluate each logical stream element separately, they are
snapshopt-reducible. Thus, relational equivalence rules are valid in our algebra. Due to
space limitations detailed proofs are omitted here.
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Fig. 4. Performance of Prediction Assignment and Selection

4 Evaluation

That prediction functions can increase accuracy of query results has already been shown
in [5, 8, 11]. Furthermore, the results of algebraic optimization heuristics are also well-
known. Thus, due to space limitations in our evaluation we concentrate on the perfor-
mance of our algebraic approach. We show that our algebra is suitable for high-volume
stream processing.

We implemented our algebra in our DSMS Odysseus [12] and used the predicate
preprocessing step shown in Section 2. We ran our evaluation on an Intel Core 2 DUO
at 2.6 GHz with 3 GB RAM. The performance of our operators depends on the guard
expressions to evaluate. We used combinations of +,−, ·,÷ and √, which is a suitable
set of operations for many application scenarios.

The perfomance of the selection operator is shown in Figure 4. Here, you can see the
number of evaluations possible in a selection operator. By evaluation we mean the eval-
uation of a selection predicate (with multiple guards, see section 2). Since different pre-
diction functions with different polynomial degrees lead to different numbers of guards
to be evaluated in a selection predicate, we tested the performance of our selection op-
erator with up to 20 guards (a quadratic function has 12 guards). Figure 4 shows that
performance depends linearly on the number of guards in a selection predicate. Here
you can also see three cases. The worst case means that the guard that is true is always
evaluated last. With linear prediction functions (4 guards), we then have a performance
of about 105000 evaluations/sec (for comparison a selection with the predicate a.id
≥ 40 can be evaluated approx. 300000 times per second). The best case means that the
guard that is true is always evaluated first. In this case we have performance of about
130000 evaluations/sec. This enough in most scenarios, especially for advanced driver
assistance systems where sensors usually sample at 25 Hz. Furthermore, this is for in-
stance orders of magnitude faster than the processing in [8], due to our redefinition of
predicates.

The prediction assignment operator has the same behavior as the selection operator.
Here, for each possible prediction function there exists a guard that must be evaluated
before the prediction function can be assigned to a stream element.

The performance of our join operator also depends linearly on the number of guards
to check. However, the join operator is a little bit slower than the selection. This is,
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because the expressions to evaluate are larger, since they contain the prediction func-
tions of at least two streams (or more in the case of a multiway-join). However, in the
worst case and at 20 guards, we still reach a performance of 20000 evaluations/sec.

The performance can be improved by guard reorder. Here, we determine the fre-
quency of the guards to be to be true and evaluate the most frequent guards first. Using
this, we theoretically can achieve best case performance, however this depends on the
stream elements.

Conclusion of Evaluation Results. The above evaluation shows that our approach is
suitable for stream processing. Although not presented in this paper, using the moving
objects data generator [13] we also found out that prediction functions are useful for
identifying specific future traffic situations.

5 Conclusion

To the best of our knowledge, no work exists that integrates prediction functions into
the query algebra of a datastream management system. Therefore, in this paper, we
present a novel bi-temporal relational stream algebra that can process prediction func-
tions. Our approach uses two dimensions of time, stream time for efficient processing
of unbounded streams and prediction time for representing continuously changing mea-
surement values. Our logical definition of datastreams and the corresponding algebra
operators allow to reduce our algebra to the nontemporal relational algebra. Therefore,
our algebra has the same characteristics as the relational algebra, especially optimiza-
tion heuristics known from the relational algebra can be used in our algebra, too.

Our evaluation shows that a high throughput can be achieved, if prediction functions
are embedded into the predicates (redefinition).

Future work concentrates on the integration of non-snapshot-reducible object track-
ing operators and their interaction with relational operators.
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Abstract. Joining data streams using various types of windows is an established 
method of stream processing. The limitation of window size due to memory 
constraint takes a heavy toll on the accuracy of the query result. Through this 
paper, we propose a unique windowing technique based on innovative cost 
functions for join query processing under memory constraints. The logical 
window construction is controlled through unique data structure and maintained 
using load shedding technique with least overhead. We applied our technique 
on XML streams domain and proved the effectiveness of our strategy through 
measuring the accuracy of the result from joining two XML streams using 
standard XQuery. With assumption of acceptability of an approximate solution 
with acceptable error bound in the face of unbounded, complex XML stream, 
we have tried to come up with a low overhead architecture for load shedding 
and tested its usefulness through a set of cost functions.  

General Terms: Management, Measurement, Performance. 

Keywords: Data Streams, XML Streams, Load Shedding, Stream Joining, 
Synopsis, Approximate Query Processing, Quality of Service. 

1   Introduction 

XML stream joins have been widely used in various systems such as Publish/Subscribe 
systems [7, 10], message brokers in Web service based architectures etc. With rapid 
growth of xml stream sources such as RSS feeds etc. and ubiquitous handheld devices, 
there is a need to merge these stream sources at the client end rather on the server end 
to produce customized results. Thus the xml streams are need to be join processed with 
limited resources such as memory or CPU [3].  

Usually the memory limitation is addressed through maintaining continuous slide 
windows for various streams and applying join between them. The windows can be 
either time based or tuple based [8]. Also limitations on memory and CPU  can be 
addressed through various data stream summarization algorithms such as quantiles, 
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histograms, sketches, wavelets etc. Due to limitation on size of the window, the result 
is approximate and solution paradigms such as max subset or random samplings etc 
are resorted to.  

In this paper we focus on problem of load shedding for continuous queries that 
contain equi-joins on multiple XML streams. We strive to optimize the accuracy of 
query result through innovative method of maintaining windows that is built on the 
concept of relevance rather than time or frequency and applying join between them. 
We attempt to propose a framework that is built on the basis of both frequency based 
and age based model [6]. It draws its strength from both models through using a cost 
function that addresses the best of both families. 

1.1   Related Work 

As we have not found any work that addresses the load shedding for XML stream 
joins, we have limited our study on load shedding on relational streams. The problem 
of joining streams under resource constraints has been addressed for relational 
streams [4, 5, 6, 12] using windowed joins. Solution through Load shedding in 
relational stream joins has been addressed by [4, 6] whereas through randomized 
sketch in [5]. But ours is the first paper in XML streams that tries to address the 
resource constraint through load shedding.  

Multi-join algorithms with join order heuristics has been proposed by [9] based on 
processing cost per unit time. The concept of load shedding in case of multiple pair 
wise joins is discussed in [5]. It uses a light sketching technique to estimate the 
productivity of each incoming tuple and thereby taking decisions to shed or keep on 
the basis of it. Their methods of MSketch, MSketch-RS and MSketch*Age have 
substantial productivity gain over other loadshedding methods such as Random and 
Aging methods. The problem of memory-limited approximation of sliding-window 
joins for relational streams has been discussed in [6]. They have proposed a age-based 
model that addresses the max-subset problem and a random sample method on join 
results for aggregate queries. 

Joining XML streams for a pub/sub systems is proposed through Massively Multi-
Query Join Processing technique [7]. It covers the problem of processing a large 
number of XML stream queries involving value joins over multiple XML streams and 
documents. 

In our previous paper [1] we dealt with problem of XML stream shedding for 
single source suggesting two approaches, one syntactic and another semantic 
approach. We have implemented a simple random load shedder and a structured 
predicate load shedder. The earlier one simple in its implementation keeps the 
structural integrity of the data while the later is based on structural synopsis of the 
stream data. We also extended the solution to predicate queries by constructing and 
maintaining value synopsis of elements. 

1.2   Paper Main Result and Outline 

The present paper tries to find a solution framework for join queries on multiple XML 
streams using both structural and value synopsis. It extends concept of sliding 
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window to a window of fixed size that sheds tuples based on relevance rather than 
time or frequency.  

In this paper, we formulate a strategy for load shedding in XML streams for Join 
Queries. We propose a novel cost based element expiration. We limit our discussions 
to binary joins using a fixed window that employs the shedding on arriving at steady 
state. The cost based victim selection will be our main process to maintain the 
window and thereby ensuring fixed memory utilization.  

Section 2 provides an overview for our XML join query processing model. Section 
3 discusses various ways to maintain structural and value synopses for XML data 
stream. Section 4 gives an in-depth view of our proposed load shedding techniques 
for binary sources of XML data stream. In Section, 5 we provide experimental results 
that show the effectiveness of our proposed load shedding schemes. Finally we 
conclude in Section 6. 

2   The XML Join Query Processing Model 

XML stream Si is a stream of events like SAX events or document fragments arriving 
at the system with varying rate. Unlike the relational stream having well defined data 
units such as tuples, the XML stream system does a small preprocessing to convert 
these streams or fragments into regular xml nodes before running queries on them. 
There are standing queries that run in the system on these tokenized regular XML 
elements as they become available in the system. 

Stream-2Stream-1

Output

Priority Queue Storing 
Element References 

and cost

Similar data 
structure for 

Stream-1

 
Fig. 1. Overall XML Stream Join Query Processing Architecture 

Due to continuous nature of stream our system depends on a logical window Si[Wi] 
that provides the necessary basis to run join queries. We limit our discussions to two 
streams i = 1,2. The size of the window Si[Wi] is determined by the size of the 
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memory from resource limitation point of view. As the window is not a time based or 
a tuple based one, it determines its content through relevance. The join query result is 
denoted as T = S1[W1] X S2[W2]. 

2.1   Frequency, Age and Relevance Based Stream Model 

As mentioned in [6] the frequency based model does not work for all kinds of 
streams. It fails for streams where the relevance distribution is skew over the life of 
the tuple as in the case of online auction scenario where more bids come towards 
closing of an item.  

Similarly age based models do require more monitoring and frequent adjustment to 
window mechanism to yield max sub set result [6]. Depending on the age curve shape 
different strategies to be followed to optimize the result. On the other hand if time 
based window model is followed, it will result in decreased productivity due to 
discard of relevance tuples when the resource is limited.  

Hence the solution to optimize the productivity in a resource crunched situation is 
to collect all relevant tuples while discarding the irrelevant ones. The relevance is 
decided based on its participation in a join process.  

2.2   Limiting Resources - Relevance Based Window 

To address all these deficiencies in existing stream models and to achieve the max sub 
set result or optimize the productivity we have resorted to a new window model. The 
model ensures the high usefulness of all stored tuples while making a judicious 
decision on load shedding. We have come up with a framework to measure relative 
relevance of various elements and there by making the shedding decisions wisely. We 
have formulated a unique cost function that is central to this model and an innovative 
data structure that is very efficient in implementing the framework. The effectiveness 
of the approach is measured objectively as described in section 5.  

2.3   Limiting Resources – Innovative Data Structure 

The window construction though a part of the overall system, yet an overhead eats out 
valuable resources such as memory and CPU. We have tried to make this extra layer 
as lean as possible with least possible processing effort or CPU cycle churning. 

Besides, we have implemented the symmetric hash join as the join mechanism to 
make the system more efficient from both time and space point of view. 

3   Synopsis for Limited Resource 

The main idea of this paper is to make best utilization of limited resources such as 
memory and CPU by making best judgment to prepare an intelligent synopsis for each 
stream that guides the load shedding decision. The synopsis construction is light and 
has least overhead for its maintenance. The heart of the synopsis is the construction 
and maintenance of the heap based priority queue with relevance measure of elements 
of the stream. The relevance measure of each element is calculated using the cost 
function that is described in the following section. Each time an element comes in any 
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stream the cost of it is calculated and updated or inserted into the heap based on its 
pre-existence in the heap. So also the cost of all nodes gets updated at this instance. 
The heap is kept updated with the node with least value at the root, ready to be sheded 
if need arises.   

3.1   Cost Function 

The calculation of weight for each element in the logical queue is done using the 
following cost function [Equation 1]. This has two significant parts (a) Age factor and 
(b) Utility factor. The age component is derived from forward decay based model [11] 
which is in turn based on the philosophy that old data is less important. The utility 
part is derived from the intuition that any tuple or element that takes part successfully 
in a join is useful. The degree of usefulness or relevance is based on the context of the 
stream. A stream that has time sensitive data might have lower utility for future joins 
even if it has taken part in the join at present. So depending on the type of stream 
these factors contribute differently towards the over all relevance. The cost of 
relevance for an element ei of stream Si that has arrived at time ti and measured at time 
t such that t ≥ ti and ti > L is 

C = C1 f(ti, t) + C2 f(ui) (1)

Where  
f(ti, t) = g(ti-L)/g(t-L) a decay function for an element with a timestamp t and land 

mark time stamp L 
f(ui) = Count of times that this element has been part of the join 
C1, C2 are arbitrary constants whose values can be tuned based on data type of 

XML stream. 

3.1.1   Age Based Relevance 
This part influences the overall relevance through age based load shedding model. 
Based on the stream context we are using the following three decay functions that 
varies between 0 and 1. 

Linear Decay. This follows a linear distribution for the weight with any element that 
arrives at the time of measuring is having a weight of 1 and that has arrived at the 
beginning of the system start (Landmark time L) with a weight of 0. The function is 
as follows. 

f(ti, t) = (ti-L)/(t-L) (2)

At t = ti, the weight is 1 and as t increases it decreases linearly. 
Most of the normal streams follow this decay pattern. 

Polynomial Decay 

f(ti, t) = (ti-L)2/(t-L)2 (3)

Exponential Decay. We have found out much of resource (both space and time) can 
be freed up using the exponential decay with reasonable impact on the recall. 
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f(ti, t) = exp(ti-t) (4)

3.1.2   Utility Based Relevance 
The second part of the cost function comes from the utility of each element from their 
participation in join operation. If the element is a subset of the join result it bumps the 
count. We have implemented this part as a simple count in our experiment. This part 
represents a simple form of the output history. More accurate weights can be 
calculated based on the timestamps of its appearance in the result stream. 

3.2   Relevance Based Window 

The priority queue that is implemented as a heap acts as a logical window for  
the input stream. Its size determined by the memory availability decides when to start 
the shedding. The victim selection is facilitated through the heap structure to shed the 
lowest weight element at the root. As the relative weight of each element node driven 
by the choice of cost functions discussed in section 3.1.1 and 3.1.2, the age of the 
element and number of times its appearance in the result stream play a crucial role in 
determining which element to be kept in the window irrespective of their arrival. 

4   Our Shedding Mechanism 

Our basic algorithm for executing join S1[W1] X S2[W2] is shown in Figure 2. If 
memory is limited, we need to modify the algorithm in two ways. First, in Line 2, we 
update S1[W1] in addition to S2[W2] to free up memory occupied by expired tuples. 
More importantly, in Line 4, memory may be insufficient to add s to S1[W1]. In this 
case, we need to decide whether s is to be discarded or admitted into S1[W1], and if it 
is to be admitted, which of the existing tuples is to be discarded. An algorithm that 
makes this decision is called a load-shedding strategy [1, 2, 4]. Due to load-shedding, 
only a fraction of the true result will actually be produced. We denote the fraction of 
the result tuples produced as recall. 

We adopt a window based approach to process the join query. The window in our 
case is a fixed size buffer for each source stream. The data is kept in the form of a 
heap data structure of elements sorted by the cost of each element. The least cost 
element remains at the top ready to be shed. The shedding action is triggered as a 
complete element arrives at the source. Upon arrival, the cost is updated for the new 
element if it matches with an existing element in the heap, else the new element is 
added to the heap. If the action is update, the heap is re-sorted through heapify 
operation. On insert, the shedding decision is taken if the buffer is already full. If the 
buffer is not full, the element is added to the heap and heapified. The shedding is 
decided if the cost of the new element is more than the cost of the element at the top 
of heap. Else the new element is dropped without any shedding. The shedding enacts 
the deleting of the element at the top and adding of new element to the heap. Once 
again the heap gets heapified after the operation completes.   
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4.1   Join Processing 

For simplicity, we have processed the join between two data stream sources. We 
implemented our join query processing as a symmetric hash join between our two 
window buffers. The reference of these elements has been maintained in respective 
hash tables for faster access.  

 
--------------------------------------------- 
Ni: Max size of logical buffer Si [Wi] 
Qi: Associated relevance queue of stream Si 
Bi: Associated hash based buffer of stream Si 
fi: Hash functions for streams Si. For simplicity we kept f1 = f2 
attri: join attribute of stream Si 
 
1. When a new element e arrives in any stream S1�

 
Phase I: Symmetric Hash Join 
2. Calculate hash value of e by applying f1 on attr1 and insert in B1. 
3. Calculate hash value of e by applying f2 on attr2 
4. Probe B2 using the value from step 3. 
5. Emit the result 
 
Phase II: Synopsis Construction 
6. If size of Q1 < Ni, Insert into Qi 
7. Else  a. calculate cost of e Ce 
 b. If Ce < cost of element at head of Q1, throw e and remove the 

corresponding element from B1 
 c. Else shed head of Qi, Insert Ce into Q1 
              
8. Similarly repeat the steps for any element that reaches in stream S2 

symmetrically with converse data structures. 
--------------------------------------------- 

Fig. 2. Algorithm XJOIN - Join Execution Steps 

5   Experiments 

In this section we present the results that we get from the system that we implemented 
based on the framework that we presented in this paper. We compare the results with 
that from two other systems that deal with non-stream data. They are Stylus Studio 
[13] and SQL Server 2005 [14]. Our comparison is mostly based on three factors. 
One, the over all quality of the result, known as recall or productivity. Second, the 
overall memory consumption by system. Third, the time of processing.  

Our implementation is in Java and we ran the systems in 2-GHz Intel Core 2 Duo 
machine with 2.0 GB of main memory running windows XP. We tested three 
different implementations of our cost function (linear, polynomial and exponential) 
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for the test. Furthermore, our experimental results reveal several other properties and 
characteristics of our embedding scheme with interesting implications for its potential 
use in practice.  

We tested our framework on representative datasets derived from synthetic and 
real-life datasets. The size of the dataset is controlled to avoid the memory limitations 
of the systems used [13, 14]. 

5.1   Synthetic Data Sets 

We used the synthetic data from XMark [17] XML data benchmark that is modeled 
on the activities of an on-line auction site (www.xml-benchmark.org/). We controlled 
the size of the XMark data to 50 MB using the scaling factor input to the data 
generator. The ceiling of 50 MB is considered due to the Java heap space for Stylus 
Studio. We ran a set of join queries similar to the following one on all three 
implementations (ours, Stylus Studio and SQL Server 2005). The queries have been 
modified to suit the implementation [14]. 

 
Sample XQuery 
let $auction := doc("auction.xml") return 
for $p in $auction/site/people/person 
let $a := 
  for $t in $auction/site/closed_auctions/closed_auction 
  where $t/buyer/@person = $p/@id 
  return $t 
return <item person="{$p/name/text()}">{count($a)}</item> 

5.1.1   Effect of Decay 
Our first set of experiment is to see the effect of decay algorithm on the productivity. 
We calculated the number of output tuples for each of the three algorithms and 
compared it with the exact query recall to compute the accuracy. They are measured 
for each of the memory size. The 100% of memory size refers to no load shedding 
having buffer equal to the size of the stream; in our case of 50 MB for each stream. 
The other memory sizes are reduced according to the ratio. Figure 3 shows the 
relative quality of the result for different implementations of the load shedding 
mechanisms. The Exponential Decay based cost function produces better result for 
almost all memory sizes. The stream characteristic best suits the decay function. 
Figure 4 indicates the better processing time for Linear Decay based cost function 
relative to other two implementations due to less maintenance overhead of cost 
calculation for shedding. As the amount of shedding decreases for higher memory 
sizes the gap narrows down. 

5.2   Real Life Data Sets 

We use the real life XML data sets, DBLP [16] for the following queries. We 
fragment it into two parts DBLP1 and DBLP2 based on journal and conference series 
[18]. We adjusted the file size to 50 MB each to make the joining load even. Once 
again we ran it through all five systems; three of our own implementation, Stylus  
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Fig. 3. Effect of Cost Function on Productivity for synthetic XMark data 

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

Memory Size (in percentage of Stream Size)

P
ro

ce
ss

in
g

 T
im

e 
(S

ec
o

n
d

s)

Exponential

Polynomial

Linear

 

Fig. 4. Effect of Cost Function on Processing Time for synthetic XMark data 

Studio and SQL Server 2005. On this dataset, we use the following XQuery template 
that asks for authors that have published in at least 2 different journals and/or 
conference series: 

 
for  $a1 in doc(‘‘dblp1.xml’’)//author, 

$a2 in doc(‘‘dblp2.xml’’)//author 
where  $a1/text() = $a2/text() 
return  $a1 
 



278 R. Dash and L. Fegaras 

Similar to synthetic data we plotted the results for accuracy for all of our three 
implementations. The recall percentage is calculated with respect to the output that is 
acquired from SQL Server 2005. The result is presented in Figure 5. However as the 
data is no more dependent on the time or not temporal in nature, the type of decay 
cost function has relatively less effect on the recall. Rather the linear function has 
better effect compared to other two implementations due to its simpler 
implementation. The high fan out characteristic of DBLP might have contributed to 
this implementation. 
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Fig. 5. Effect of Cost Function on Productivity for real life DBLP data 
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Fig. 6. Effect of Cost Function on Processing Time for real life DBLP data 
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The processing time is calculated for various cost function implementations for all 
ten memory sizes and plotted in Figure 6. It is quite clear that the linear 
implementation provides better timing relative to other two implementations. 
Combining both the recall study and the processing time, it is evident that the linear 
costing function based load shedding strategy is the best one out of the three for dblp 
dataset. 

6   Conclusion and Future Work 

The major focus of this paper is to assure the quality of service in the face of limited 
resources and query complexity such as joining. We tried to prove the effectiveness of 
our approach by implementation of a logical window that extends over the whole 
stream by shedding low cost nodes. We have shown the efficiency of our approach by 
using various cost functions that gave us tools to attenuate the data characteristics of 
the input stream. Though we have explained the framework using two streams, but 
this framework could also be extended to commutative joins between multiple 
streams.  

We could have compared our experimental result with a simple system that 
implements a fixed element based or time based sliding window. But intuitively, it 
would have been similar to a simple shedding implementation of first in first out 
without any relevance to element’s probable effectiveness in join state and would 
have resulted in less productivity. 

We have excluded the several other types of joining queries from our framework, 
such as predicate based joins, aggregation queries and quantiles. We are in the process 
of implementing this framework for aggregation join queries. The load shedding in 
case of predicate based join queries can be best addressed through combination of our 
previous work on semantic synopsis construction [15] and this relevance synopsis that 
is covered in this paper. Also we have not studied the effect of time on utility based 
relevance factor that is included in all of our cost functions. Similar to age based 
relevance factor the costing of this part could have been changed based on its time 
stamp of participation in the result. We are also planning to expand the cost functions 
to include this output history and other parameters such as element size and inter-
arrival characteristics etc. 
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Abstract. Multi-criteria result extraction is crucial in many real-time stream pro-
cessing applications, such as habitat and disaster monitoring. The ease in express-
ing user preferences makes skyline queries a popular class of queries. Skyline
evaluation is computationally intensive especially over continuous time-interval
streams where each object has its own individual expiration time. In this work, we
propose TI-Sky – a continuous skyline evaluation framework. TI-Sky strikes a per-
fect balance between the costs of continuously maintaining the result space upon
the arrival of new objects or the expiration of old objects, and the costs of com-
puting the final skyline result from this space whenever a pull-based user query
is received. This is achieved by incrementally maintaining a precomputed skyline
result space at a higher level of abstraction and digging into the more expensive
object-level processing only upon demand. Our experimental study demonstrates
the superiority of TI-Sky over existing techniques.

1 Introduction

A wide array of applications including outpatient health care research and sensor mon-
itoring need to provide real-time support for complex multi-criteria decision support
(MCDS) queries. The intuitive nature of specifying a set of user preferences has made
skyline queries a popular class of MCDS queries [1, 2]. Skyline result enable analysts
to specify preferences along several different criteria and to learn about the trade offs
between the different criteria.

The increased usage of sensors and RFID networks in various real-world scenarios
has increased the availability of data streams [3]. Stream query processing typically
deals with incoming data that are unbounded and time-variant (each with its own life
span). Time-sensitive applications, such as sensor monitoring require query execution
to keep up with incoming objects to produce real-time results.

State-of-the-Art Techniques. Skyline algorithms [1] over static databases are not vi-
able for computing continuous skylines over time-interval data streams as they tend to
assume that the data is static and rely on having all data a priori organized into indices to
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facilitate query evaluation. In addition, they do not consider time-variant data as found
in time-interval data streams.

Existing continuous skyline algorithms [3, 4] use a sliding window model that fixes
the expiration times for all data objects to be the end of the window period. A new object
onew always expires after all objects in the current window and therefore can forever
eliminate all existing objects that it dominates. In contrast, for time-interval streams an
older object with a longer life span than onew could revert back to becoming a skyline
point in the future. This complicates the object dominance reasoning and worst yet may
cause in some cases all objects to have to be retained. Thus a time-interval model is
more general and complex than the sliding window model. Methods proposed for the
time-interval model could also be used for the sliding window model, but not vice versa.

While [5] also handles skylines over time-interval streams, it suffers from the draw-
back of re-evaluating the skyline for each update and for each pull-based query. [3–5]
work exclusively at the object granularity level - which is much more computation in-
tensive for high volume data streams than our proposed higher-level abstraction.

Our Proposed Approach. We propose the TI-Sky a framework to evaluate continu-
ous skylines over time-interval streams. Fully maintaining the skyline result space for
each time instance makes answering user queries cheap. However, for high volume
data streams the CPU resources needed to maintain this moving skyline result space
are too prohibitive to be practical. Conversely, if we do not maintain this space, the
results would need to be computed from scratch for each user pull request thereby neg-
atively affecting performance. Therefore, our optimization mantra is “to strike the
perfect balance between the cost of maintaining the moving skyline result space and
the cost of computing the final skyline result.” This is achieved by incrementally main-
taining the partially precomputed skyline result space – however doing so efficiently
by working at a higher level of abstraction. We introduce the notions of Macro and
Micro-TDominance to model the time-based dominance relationships at the individual
object- as well as at the abstract-granularity. We then design algorithms for insertion,
deletion, purging and result retrieval that effectively exploit both layers of granularity.
Our contributions include:

– We propose TI-Sky – an efficient execution framework to process multi-criteria
decision support queries over time-interval data streams.

– We take the idea of time-based dominance to a new level by designing a two-layered
model of time-based dominance, namely, macro- and micro- time-dominance.

– We propose efficient algorithms to handle real-time insertion, deletion, purging and
result retrieval that effectively exploit both layers of our dominance model.

– Our experimental study demonstrates TI-Sky’s superiority over existing techniques.

2 Skylines over Time-Interval Streams

Let oi.tarr and oi.texp denote the arrival and expiration time of an object oi. A strict
partial order oi �P oj exists if for all attribute dimensions k, oi[k] ≤ oj [k] and there
exist at least one dimension k such that oi[k] < oj [k]. Below we extend the concept of
value-based dominance proposed in [4] to incorporate the notion of time-intervals.
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Fig. 1. Motivating Example

Definition 1. Time-Interval Dominance. Given a preference P, the time-interval
stream S, and oi, oj ∈ S s.t. oi �P oj and oj .texp > oi.texp. Then oi TDominates

oj (oi
T−→ oj) iff �ok ∈ S s.t. (ok �P oj) ∧ (oi.texp < ok.texp < oj .texp).

In Figure 1 we observe that object o4
T−→ o7 and o5

T−→ o3. This means objects o3 and
o7 become part of the skyline when the objects o5 and o4 expire respectively.

Definition 2 (Skyline Over Time-Interval Stream). Given a time-interval stream S
and a preference P, the skyline over S at time ti (denoted as SP(S, ti)) is the set of all
non TDominated objects ok ∈ S with ok.tarr ≤ ti and ok.texp > ti.

In Figure 1 at t = 9, o1 and o3 are the skyline objects. At t = 10, the new object
o5 (2, 5) that dominates the older object o3 (6, 6) arrives. However, the newer o5 is
valid for a shorter time frame (o5.texp = 24) than the older object o3 which is valid
even after o5 expires (o3.texp = 33). This is reflected in Figure 1.b where the older
object o3 contributes to the result between the time frame 24 to 33 when o5 expires.

3 TI-Sky: Our Proposed Approach

In this work, we partition the input space composed of incoming streaming objects (see
Definition 3). Similar in spirit to the principle of TDominance between two objects,
henceforth referred to as Micro-TDominace. We propose to elevate the notion of time-
based dominance to the granularity of abstractions called Macro-TDominance.

Definition 3. A partition cell1 abstracts the set of objects that map into a the d-
dimensional bounding box (Pk.RBoundary) defined by its lower and upper bounds.
Pk.SkyHeap(t) is a list of objects not dominated by other objects in Pk at time in-
stance t. Pk.RestHeap(t) maintains the objects in Pk currently dominated by objects

1 Henceforth, a partition cell Pi is termed for short as a partition Pi.
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Fig. 2. Level of TDominance: (a) Object-Level (Micro) (b) Partition-Level (Macro)

in Pk.SkyHeap. Pk.VBoundary denotes a vector of the min and max attribute values
across all objects in Pk. Pk.TBoundary defines the minimum and maximum expiration
time among objects in Pk.

The concept of Macro-TDominance enables us to capture the time-based dominance
relationship between partitions. The intuition is that non-empty root partitions of the
Macro-TDominance tree are guaranteed to have skyline results and therefore should be
investigated during the skyline data maintenance and result determination steps.

Definition 4. Partition Pf Macro-TDominates partition Pg , denoted as Pf
T−→ Pg , if

and only if ∃ oi ∈ Pf ∧ ∃oj ∈ Pg such that oi
T−→ oj .

Example 1. In Figure 2 the Macro-TDominance relationships P1
T−→ P4 and P1

T−→ P2

exist since o1 ∈ P1 such that o1
T−→ o3, and o1

T−→ o6, where o3 ∈ P4 and o6 ∈ P2

respectively. Also, Pvirtual
T−→ P1 is the virtual Macro-TDominance relationship.

In the Macro-TDominance tree, a partition Pi that is not Macro-TDominated by any
other partition Pj is termed as a root partition and is guaranteed to at-least contain
one skyline result. The arrival of new object onew to one such root partition and the
expiration of an older object from any root partition can affect the result space and
therefore need to be processed immediately. In contrast operations in non-root partitions
can be performed more lazily without affecting correctness.

During skyline result generation the Macro-TDominance tree aids us to identify par-
titions that have a higher likiehood of delivering results - without having to examine
object-level dominance. To find the precise result set upon request, we begin by look-
ing at objects within such root partitions and then iterate over partitions whose boundary
values are not being dominated by the current skyline points. This approach of travers-
ing the space avoids unnecessary object-level comparisons.

Definition 5. Given a time-interval stream S and partition Pk , the Micro-TDominance
relationship for the objects in Pk is simply the TDominance relationship among the
objects in Pk rather than between all objects in S.
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Fig. 3. Value-Based Categorization w.r.t. Pcurr Fig. 4. Inserting onew in Pcurr and Traversing

4 Skyline Data Maintenance

We now describe the process of inserting a newly arriving object onew into the abstract
output skyline space. This is accomplished at two levels of granularity, namely both at
the level of partitions as well as at the level of individual objects. For each new object
onew, we first map it to its corresponding partition. In Figure 4, onew is mapped to
the partition Pcurr. Next, we perform local partition-level updates which encompass:
(a) performing pairwise object-level comparisons against objects mapped to Pcurr to
determine whether onew belongs to either SkyHeap or RestHeap of Pcurr, and (b) up-
dating the value- and temporal- bounds of Pcurr (See Definition 3).

After local partition level operations, we determine the effects of onew on the cur-
rent and future skyline results. To avoid traversing the entire space as done in existing
techniques [3–5], we propose first traverse the space at the higher abstraction of parti-
tions and dig into the pairwise object comparisons as and when need. This is achieved
by performing a breadth first search of Macro-TDominance tree starting with the root
partitions. The goal of this exercise is to identify new Macro-TDominance relation-

ships of the form Pi
T−→ Pcurr and Pcurr

T−→ Pi where Pi is a non-empty partition in
the abstract output skyline space. To aid abstract-level decision making, we classify the
visited partition Pi into four categories with respect to the partition Pcurr as follows:

1. Dominating Partition: Partition Pi value-dominates Pcurr.
2. Dominated Partition: Partition Pi is value-dominated by Pcurr.
3. May-Dominating Partition: Objects mapped to the partition Pi can potentially

value-dominate the new object onew ∈ Pcurr. But this cannot be determined with
out performing pairwise object-level comparisons.

4. May-Dominated Partitions: Objects mapped to the partition Pi can potentially be
value-dominated by the new object onew ∈ Pcurr. Similar to category 3 this can
only be determined by performing pairwise comparisons.

Based on the above classification (as depicted in Figure 3) only partitions that are either
in Pcurr’s Dominating Partition or May-Dominating lists can Macro-TDominate Pcurr.
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Let us now consider the scenario where the currently visited partition Pi is in the May-

Dominating list of Pcurr. If the relationship Pi
T−→ Pcurr already exists we merely

update the time-stamp information of Pi
T−→ Pcurr. In contrast if the relationship Pi

T−→
Pcurr does not exist - we first compare the VBoundary values of Pi and onew . If upper

bound of Pi’s VBoundary dominates onew then Pi
T−→ Pcurr, else there may still exist

an object in Pi that dominated onew . Next, we perform object-level comparisons to
identify the object, say ok , that dominated onew that is last to expire. We then proceed
to traverse the Macro-TDominance tree to check if there exist other partitions that can
potentially Macro-TDominate Pcurr.

Example 2. In Figure 4 initially, Pa
T−→ Pb, Pa

T−→ Pc, Pb
T−→ Pd and Pd

T−→ Pe are the
Macro-TDominance relationships before the arrival of onew. When Pcurr is populated
with onew , we traverse the Marco-TDominance tree starting with Pa. Since Pa value
dominates Pcurr and there does not exist another partition in Pcurr’s “Dominating” or

“May-Dominating” list we add the Macro-TDominance Pa
T−→ Pcurr.

Next, we consider the relationship between Pcurr and all partitions belonging to the

May-Dominated and Dominated lists of Pcurr. That is, we investigate if any Pcurr
T−→

Pi relationships exist. Decisions can be made at the abstract level for Dominated lists
and object-level comparisons are needed for partitions in the May-Dominating list.

Example 3. In Figure 4, onew .texp > Pa.TBoundary. Thus we can delete the rela-

tionship Pa
T−→ Pc and insert the new Macro-TDominance relationship Pcurr

T−→ Pc

When building these Macro-TDominance relationships we want to avoid traversing
the entire Macro-TDominance tree by exploiting the temporal properties of Macro-
TDominance as in Theorem 1.

Theorem 1. For the new object onew ∈ Pcurr and a Macro-TDominance Pi
T−→ Pj . If

∃ok ∈ Pi �om, on ∈ Pj s.t. (ok
T−→ om)∧ (onew

T−→ on)∧ (ok.texp < onew .texp), then
we do not need to investigate the Macro-TDomination sub-tree with Pj as its root.

Example 4. In Figure 4, the Macro-TDominance Pb
T−→ Pd holds even after the arrival

of the new object onew ∈ Pcurr. In such cases by Theorem 1 checking onew against
objects mapped to partitions with Pd as its root is unneccessary.

Detailed descriptions of the algorithms used to maintain the skyline result space due
to object expiration and reducing memory usage by effective purging techniques are
presented in the our technical report [6].

5 Skyline Result Determination

The skyline result determination phase piggybacks on the Macro-TDominance relation-
ships gathered in the previous phase to determine the skyline results at any given time
ti. The root nodes (partitions) of the Macro-TDominance tree are guaranteed to have at
least one query result. This translates into querying the Macro-TDominance tree [6].
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Fig. 5. Performance Evaluation of TI-Sky: (a) Effects of Dimensionality

6 Performance Study

State-of-the-Art Techniques Compared. We compare TI-Sky against LookOut [5] and
the extension of the technique proposed in [4] here called Stabbing-the-Sky+.

Experimental Platform. All algorithms were implemented in C++. All measurements
were obtained on a Windows machine with Intel 2.2GHz Dual Core and 2GB memory.

Data Sets. Generated by the de-facto standard in literature for stress testing skyline
algorithms [1] contain three extreme attribute correlations: independent, correlated, or
anti-correlated. We vary skyline dimensions d [2–6]. Since data sets generated by [1]
have no associated time-stamps we add these time stamps. The validity period of each
object is normally distributed with 100K as the mean (objects expire after 100K new ob-
jects have been processed) and a standard deviation of αK objects (denoted as 100K+/-
αK). The cardinality of the data stream is 1 million data objects.

Experimental Analysis of TI-Sky. We study the robustness of TI-Sky by varying: (1)
the number of partitions on each dimension, and (2) number of dimensions.

• Number of Skyline Dimensions (d). Figure 5.a varies d= 2 to 6 for all three distribu-
tions. As d increases more partitions are created to maintain and query the data.
• Number of Partitions (k). The number of partitions on each dimension affects how
many objects will map to each partition. As k decreases more objects map to a partition
cell increasing the partition-level memory and CPU usages. An increase in k will reduce
local partition-level processing but increase abstract-level processing as the number of
Macro-TDominance relations increases. Figures 5.b shows avg. per object processing
time of TI-Sky when the number of partitions is varied from 10 to 25 across three dis-
tributions. In Figure 5.b the cross-over point for all distributions is k = 20.

Comparison of Alternative Techniques. In Figure 6, for correlated data TI-Sky is 1
and ≈ 2 fold faster than Stabbing-the-Sky+ and LookOut. For independent data TI-Sky
is 29% and 60% faster than Stabbing-the-Sky+ and LookOut respectively. Lastly, for
anti-correlated data TI-Sky has a performance benefit of being on an average of 38% and
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Fig. 6. Performance Comparison Against State-of-the-Art Algorithms (d = 4)

69% faster than Stabbing-the-Sky+ [4] and LookOut [5] respectively. As the standard
deviation increases the average per-object processing cost for both TI-Sky and Stabbing-
the-Sky+ decreases. This is because each object has a higher likelihood of remaining
valid longer and can be effective in purging more dominated objects. However LookOut
maintains all objects without purging and therefore requiring more time and space.
These performances are consistent with those for other dimensions d[2–6].

7 Conclusion

Existing techniques that support skyline queries over streams either focus on the simpler
model of continuous sliding window, or require to re-compute the skyline by perform-
ing multiple index scans for insertion and expiration of objects to handle time-interval
streams. We present TI-Sky an efficient framework to evaluate skylines over time-interval
streams. We propose a novel technique called Macro-TDominance to model the output
dependencies between abstractions of the skyline result space. By analyzing the Macro-
TDominance relationships, TI-Sky efficiently maintains the output space as well as de-
liver real-time results for user requests. Our experimental study confirms that TI-Sky has
a superior performance compared to existing techniques.
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Abstract. Keyword search is a friendly mechanism for the end user to

identify interesting nodes in XML databases, and the SLCA (smallest

lowest common ancestor)-based keyword search is a popular concept for

locating the desirable subtrees corresponding to the given query key-

words. However, it does not evaluate the importance of each node under

those subtrees. Liu and Chen proposed a new concept contributor to out-

put the relevant matches instead of all the keyword nodes. In this paper,

we propose two methods, MinMap and SingleProbe, that improve the

efficiency of searching the relevant matches by avoiding unnecessary in-

dex accesses. We analytically and empirically demonstrate the efficiency

of our approaches. According to our experiments, both approaches work

better than the existing one. Moreover, SingleProbe is generally better

than MinMap if the minimum frequency and the maximum frequency of

the query keywords are close.

Keywords: keyword search, XML, smallest LCA, contributor.

1 Introduction

Keyword search provides a convenient interface to quickly obtain desired informa-
tion from XML documents. In general, an XML document could be viewed as a
rooted tree. The conventional keyword search approach returns all the LCA nodes
in the XML tree if they contain every keyword in their own subtrees. However,
this often gets too many nodes since some of them have low relationship with the
query keywords.Xu and Papakonstantinou [6] thus proposed the concept of SLCA.
A node is said to be an SLCA if (i) it contains all the keywords under its subtree,
and (ii) it has no descendant node that also contains all the keywords.

The advantage of the SLCA-based keyword search algorithm is that the ob-
tained SLCA nodes are semantically closer to the query keywords, but all the
nodes under the subtrees rooted at the SLCAs are considered equally important.
Therefore, Liu and Chen [5] defined a new concept contributor to determine the
important keyword nodes. They also gave an efficient algorithm MaxMatch to
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locate all the contributors. Furthermore, MaxMatch is the first algorithm that
satisfies the monotonicity and consistency properties, which capture a reasonable
connection between the new query result and the original query result after an
update to the query or to the data. Briefly, the monotonicity property indicates
the change to the number of SLCA nodes, and the consistency property describes
the change to the content of query result. These properties are advisable and
worthwhile, yet none of the existing LCA-based approaches [1][2][3][4][6] satisfy
both properties.

In this paper, we propose two algorithms MinMap and SingleProbe to improve
the efficiency of MaxMatch. The main contributions are as follows:

– We first introduce the MinMap algorithm. Similar to the MaxMatch algo-
rithm, it first finds all the SLCAs, and then constructs the essential in-
formation of the subtrees rooted at the SLCAs. It substantially improves
MaxMatch by avoiding unnecessary index accesses.

– The second algorithm, SingleProbe, directly constructs the full tree with-
out first finding the SLCAs, and then locates the SLCAs and the relevant
matches by traversing the full tree. Specifically, when the total size of the
subtrees rooted at the SLCAs is close to the size of the full tree, SingleProbe
may save the time for locating the SLCA nodes.

– We empirically evaluate algorithms MinMap and SingleProbe. The experi-
ments show that our new approaches outperform the previous work. More-
over, SingleProbe works better than MinMap when the minimum frequency
and the maximum frequency of the query keywords are close.

The rest of this paper is organized as follow. In Section 2, we introduce the
MaxMatch algorithm. Section 3 and Section 4 present our approaches that im-
prove the execution time of searching the relevant matches. We discuss some
experimental studies in Section 5. Conclusions are discussed in Section 6.

2 Preliminaries

We use the labeled ordered tree model to represent XML trees. Every node in
the tree has a tag name or the content and a unique Dewey number. In the
following, we deliver the definitions given in MaxMatch [5].

A node is a match if its tag name or the content corresponds to a given
query keyword. The descendant matches of a node n, denoted as dMatch(n) or
n.dMatch, are a set of query keywords, each of which has at least one match in
the subree rooted at n. dMatch(n) could also be seen as a bit array of size w for
simplicity, where w is the number of keywords. Besides, a node n is a contributor
if (i) n is the descendant of a given SLCA or n itself is one of the SLCAs, and
(ii) n does not have a sibling n2 such that dMatch(n2) ⊃ dMatch(n).

The dMatchSet value of a node is a bit array of size 2w to record the dMatch
values of its children. All the bits are initialized as 0 at the beginning. The jth

bit, j ≤ 2w−1, is set to 1 if it has at least one child nc such that dMatch(nc) = j.
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Fig. 1. A sample XML tree

At last, a node n is considered relevant if (i) n has an ancestor-or-self t such that
t is one of the SLCAs, and (ii) each node on the path from n to t is a contributor.

For example, consider query Q1 (team, pitcher, Tom) over Figure 1. Suppose
the keywords (from left to right) correspond to the first (right-most), the second,
and the third bits of dMatch. We have dMatch(1.1) = 010binary, dMatch(1.2) =
100binary, and dMatch(1.4) = 110binary. Nodes 1.1 and 1.2 are not the contribu-
tors since both dMatch(1.1) and dMatch(1.2) are the proper subsets of
dMatch(1.4). We directly skip node 1.3 because it has no descendant match. In
addition, the second, the fourth, and the sixth bits of dMatchSet(1) are set to 1.

The MaxMatch algorithm could be decomposed into four steps as follows1:

1. Retrieve the matches of each query keyword.
2. Compute the SLCAs by the algorithm given in [6].
3. Group all keyword matches according to their SLCA ancestors.
4. For each SLCA, construct the correct value of dMatch and dMatchSet for

each node from the matches up to the SLCA. Then determine the contrib-
utors in the preorder traversal sequence.

3 MinMap

We explain the MinMap algorithm in this section. Recall that the tree con-
structed in Step 4 of MaxMatch is composed of the matches up to the SLCA.
Note that every match has its corresponding query keyword, and the nodes
without matching any query keyword are called non-keyword nodes. MaxMatch
retrieves the tag names of all the non-keyword nodes from the Dewey index2

during the construction of the tree. However, some of the non-keyword nodes
are eventually pruned. In this proposed approach, we do not retrieve the tag
names for those pruned non-keyword nodes, which therefore saves a lot of disk
I/O time. In the following, we first deliver the definitions of our approach and
then describe the MinMap algorithm and its time complexity.

The match tree of a node t, denoted as mTree(t), consists of the nodes along
the path from each match up to t. Besides, a node n is a hit node if (i) n
is contained in the match tree rooted at a given SLCA, (ii) n is a non-keyword

1 Interested readers please refer to the original paper for more details.
2 The Dewey index is based on the B-tree structure, where the key is the Dewey

number of a node, and the associated value is the tag name.
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MinMap(keyword[w])
1: kwMatch FindMatch(keyword[w])
2: SLCA FindSLCA(kwMatch)
3: group GroupMatches(kwMatch, SLCA)
4: for each group[j] = (t, M) do
5: ConstructTree(t, M)
6:   PreorderTrav(t)

ConstructTree(t, M)
1: i M.size – 1 
2: while i  0 do 
/* suppose M[i] corresponds to the jth keyword */
3:   for each node n on the path from M[i] to t do 
4:      nc n.child on this path
5:      if nc null then
6:         n.dMatchSet[nc.dMatch] true 
7:      else  
8:         n.keywordFlag j
9:      if the jth bit of n.dMatch is 1 then
10:         break the for loop 
11:      else 
12:         set the jth bit of n.dMatch to 1 
13:   i i – 1 

PreorderTrav(n)
1: np n.parent
2: if np = null or IsContributor(n) = true then 
3:   if n.keywordFlag = 0 then 
4:      retrieve n’s tag name 
5:   output n  /*including the tag name*/ 
6:   for each child nc of n do 
7: PreorderTrav(nc)

IsContributor(n)
1: np n.parent
2: i = n.dMatch
3: for j i+1 to 2w-1 do
4:   if np.dMatchSet[j] = true and

AND(i, j) = i then
5:      return false 
6: return true

Fig. 2. The MinMap algorithm

node, and (iii) n is eventually a relevant match. On the contrary, if n is eventually
being pruned, it is called a miss node. Furthermore, miss rate is defined as: Σ
miss nodes /(Σ hit nodes + Σ miss nodes) for all match trees of the SLCAs.
We give an example in the following.

Consider query Q1 again. Recall that nodes 1.1 and node 1.2 are pruned by
node 1.4. According to the definitions, the nodes in mTree(1.1) and mTree(1.2)
are miss nodes. Specifically, the hit node list is [1.4, 1.4.1, 1.4.2], and the miss
node list is [1.1, 1.1.2, 1.2, 1.2.1]. Therefore, the miss rate is 4/(3+4) = 57%.

The pseudocode of MinMap is shown in Figure 2. This algorithm could be
decomposed into four steps, too. The first three steps (lines 1 to 3 of procedure
MinMap) are the same as MaxMatch, but we improve the fourth step of Max-
Match by avoiding unnecessary index accesses. Specifically, the ConstructT ree
procedure and the PreorderT rav procedure are introduced in the MinMap al-
gorithm. The former constructs the match tree for each SLCA, and the latter
prunes the irrelevant matches in the preorder traversal sequence. In the following,
we explicitly illustrate these two procedures.

For each iteration of the while loop (lines 2 to 13 of ConstructT ree), we set
the values of dMatch, dMatchSet, and keywordF lag for each node along the
path from M [i] up to t. The additional variable keywordF lag, which is initialized
as 0, is designed to determine whether n is a match or not. In line 6, we record
the dMatch(nc) value in n.dMatchSet if nc is not null, where nc is the child of
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Fig. 3. The match tree of query Q1

n on this path. Otherwise, we set the n.keywordF lag as j if M [i] ∈ kwMatch[j].
Actually, the setting of keywordF lag (line 8) is active only when we first enter
the for loop, so node n is a match if n.keywordF lag = j, 1 ≤ j ≤ w. After
constructing the match tree, we can directly output keyword[j] as the tag name
of node n if n is eventually a relevant match. However, if n.keywordF lag is zero
after constructing the match tree, it means that n is a non-keyword node. We
have to retrieve n’s tag name by the Dewey index. In addition, in line 9, we
check if the jth bit of n.dMatch is 1. If so, we can break the for loop because
the jth bits of all the m.dMatch values are also 1, where m are the nodes along
the path from n up to the SLCA. We set the jth bit of n.dMatch to be 1 in line
12 if line 10 is not active.

Procedure PreorderT rav takes a node n as the input, and outputs the Dewey
number and the tag name of n if n is a contributor3. In line 4, we retrieve the
tag name of node n only when it is a hit node. In addition, n’s children are
iteratively checked in lines 6 to 7.

The complete state of the match tree of query Q1 is shown in Figure 3.
Variable kF represents the keywordF lag value and variable dM represents the
dMatch value in the binary mode. Variables keywordF lag of the nodes in the
non-keyword node list [1.1, 1.1.2, 1.2, 1.2.1, 1.4, 1.4.1, 1.4.2] are all zero. Since
only the last three nodes are relevant matches, we look up the Dewey index ex-
actly three times. Note that we suppose the tag name is the essential information
of the query result. However, the Dewey index would be no longer needed if the
query result contains the Dewey number only. This will make our approaches
perform even better since every non-keyword node skips index accesses.

We then give the time complexity of MinMap. Let |M1|, |M2|, ..., and |Mw|
denote the frequencies of the query keywords, and d is the maximum depth of
the XML tree. The main memory complexity of MinMap is O(d|M |·2w), where
|M | = Σw

i=1|Mi|. Besides, since B-tree implementations usually keep upper-level
nodes in memory, we assume the number of disk accesses for retrieving the tag
name of a given node is O(1). Hence, the total number of disk accesses is bounded
in O(|M |+ C), where C is the number of hit nodes.

3 Note that procedure IsContributor is a part of MaxMatch which runs in O(2w) for

each checking.
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SingleProbe(keyword[w])
1: kwMatch FindMatch(keyword[w])
2: M MergeMatches(kwMatch)
3: ConstructTree(root, M)

4: LocateSLCA(root)

LocateSLCA(n)
1: result  0 
2: if n.dMatch  2w – 1 then
3:   return 0 
4: for each child nc of n do 
5: result result + LocateSLCA (nc)
6: if result = 0 then 
7:   PreorderTrav(n) /* n is an SLCA */ 

8: return 1

Fig. 4. The SingleProbe algorithm

4 SingleProbe

In the MinMap algorithm, the keyword matches are first used to find the SLCAs
(Step 2), and then form groups (Step 3). These groups will be again accessed
to build individual trees. In this section, we present the SingleProbe algorithm,
where the keyword matches are directly merged to construct a single tree. We
first illustrate SingleProbe and then give an example in the following.

The pseudocode of the SingleProbe algorithm is shown in Figure 4. In this al-
gorithm, we first retrieve all the kwMatch arrays, and then merge the match ar-
rays according to their Dewey numbers by procedure MergeMatches (line 2). The
MergeMatches procedure is actually a part of the GroupMatches procedure. In-
stead of constructing the match tree for each SLCA, SingleProbe constructs only
one match tree mTree(root) by procedure ConstructT ree (line 3), where root is
the root of the XML tree. We skip the FindSLCA procedure required in Max-
Match because we can easily locate the SLCAs after constructing mTree(root).

Procedure LocateSLCA is a recursive function. It takes a given node n as
the input, and returns 1 if n.dMatch equals to 2w - 1, which implies that the
subtree rooted at n contains at least one match for each of the query keywords.
We quit the procedure in line 3 if line 2 is active, because all the nodes under
the subtree rooted at n are impossible to be the SLCA. If the result variable is
zero in line 7, it indicates that none of n’s children is an SLCA. As a result, n is
confirmed to be an SLCA. Next, we call the PreorderT rav procedure to prune
the irrelevant matches of mTree(n).

Take query Q2 (pitcher, name) as an example. Since dMatch(1) = 2w - 1, it
iteratively checks its children as shown in lines 4 to 5 of LocateSLCA. Eventually,
nodes 1.1 and 1.4 return 1, and nodes 1.2 and 1.3 return 0. Hence, we know that
node 1 (team) is not an SLCA. On the other hand, nodes 1.1 and 1.4 are SLCA
nodes and output the relevant matches of mTree(1.1) and mTree(1.4) before
they return 1 to their parent.

Note that in query Q2, nodes 1, 1.2, 1.2.1, 1.3, and 1.3.1 are redundantly
processed since they do not belong to any mTree(t) where t is the SLCA node.
Let SizeOf(n) denote the number of nodes of mTree(n). Clearly, SizeOf(root)
is always no less than Σt∈SLCASizeOf(t). It seems that it is better to use the
SingleProbe algorithm to search the relevant matches when Σt∈SLCASizeOf(t)
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Fig. 6. Keeping the minimum frequency and the maximum frequency to be close

and SizeOf(root) are about the same size. In addition, the time complexity of
SingleProbe is also O(d|M |·2w).

5 Experimental Studies

In this section, we discuss the implementation issues and compare the perfor-
mance of our two algorithms with MaxMatch. The MinMap, SingleProbe, and
MaxMatch algorithms are implemented in C++ with the environment of Win-
dows XP and Visual Studio 6.0. Recall that the Dewey index is used to retrieve
the tag name for a given Dewey number. Here we construct another B-tree in-
dex to efficiently retrieve all the matches of a given keyword (for Step 1). In this
index, the data associated with each keyword k is a sorted list of Dewey num-
bers of all the nodes which contain keyword k. Thus we can retrieve the match
array of the keyword in a single query instruction. The indices are created and
accessed based on the Oracle Berkeley DB [7].

We applied dblp.xml4 to evaluate the processing time. The experiments were
performed on a 1.67GHz dual-core CPU with 1.5GB RAM, and the cache size
of Oracle Berkeley DB was set as 1.0GB. We adopted the hot cache policy for
the processing time testing. That is, for each query we executed three times and
calculated the average processing time of the last two times. In Figure 5, we fixed
the number of keywords as three, and varied the ratio of the minimum frequency
to the maximum frequency. The experiments showed that the three algorithms
4 http://www.cs.washington.edu/research/xmldatasets/

http://www.cs.washington.edu/research/xmldatasets/


Faster Algorithms for Searching Relevant Matches 297

have similar performance in the low miss-rate cases, but our two approaches are
substantially more efficient than MaxMatch in the high miss-rate cases. However,
in the case of “1k-100k” of Figure 5 (a), the SingleProbe algorithm is worse than
the others, because SizeOf(root) is much larger than Σt∈SLCASizeOf(t) in this
case. In Figure 6, we kept the minimum frequency and the maximum frequency
of the keywords to be close, and varied the frequencies simultaneously. It is
obvious that the SingleProbe algorithm performs better than the others. The
reason is that SizeOf(root) is close to Σt∈SLCASizeOf(t) in most cases, and
SingleProbe benefits from saving the time of searching the SLCA nodes.

The scalability was tested with different data sizes. We chose the baseball.xml5

(1.01MB) as the data source and duplicated the content 100, 200, 300, and 400
times respectively. The experimental results show that the processing time is
roughly in linear proportion with the data size for all the three algorithms. The
figures are omitted due to space limitation.

6 Conclusions

In this paper, we propose two algorithms, MinMap and SingleProbe, that improve
the efficiency of searching the relevant matches. Given a set of query keywords, the
approaches return all the relevant matches including the Dewey number and the
tag name. The MinMap algorithm improves the MaxMatch algorithm by elimi-
nating unnecessary index accesses during the construction of the match tree. The
SingleProbe algorithm combines Step 2, Step 3, and Step 4 of MaxMatch by con-
structing the full XML tree. The experimental results show that the two proposed
approaches outperform MaxMatch when the miss rate is high. The SingleProbe
algorithm works particularly well when the frequencies of keywords are close.
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Abstract. Keyword search is a popular way to discover information

from XML data. To return meaningful results, SLCA (smallest lowest

common ancestor) has been proposed to identify interesting data nodes.

Since the SLCAs are obtained from a series of intermediate LCAs, it can

often incur many unnecessary LCA computations even when the size

of final results is small. In this paper, we propose an Iterative-Skip ap-

proach to address this challenge. We first study the relation between

SLCA candidates and propose a series of properties. Then based on

these properties, we design a novel skip strategy to skip more SLCA

computations. Experimental results show the effectiveness of our

approach.

1 Introduction

Keyword search on XML data has been recently received an increasing interest
in database community. Lots of research has been conducted on the semantics
and techniques to keyword search over XML databases.

In this paper we concentrated on query processing for SLCA-based keyword
search on XML data. To the best of our knowledge, the state-of-art algorithm
for SLCA-based keyword search is Incremental Multiway-SLCA (IMS )[10]. IMS
algorithm computes each potential SLCA by taking one data node from each
keyword list Si in a single step. It picks an anchor node among the keyword
lists to drive the SLCA computation. By doing so, IMS skips a lot of redundant
nodes. However, some meaningless SLCA candidates for final results are still
involved in computations as the following example illustrates.

Example 1. Consider the XML tree T1 in Figure 1(a). The SLCA for the keywords
{a, b} in T1 is {b2}. According to IMS algorithm, anchor nodes are {b1,b2,b3}. Here,
anchor nodes b1 and b2 are meaningless for final results.

Another drawback of IMS algorithm is that it costs a lot in computing the
corresponding match from anchor node. The process of obtaining the closest
nodes costs O(dlog(|Si|)) time using Dewey labels (d is the depth of the XML
document and |Si| is the set’s size), since it involves a binary search on keyword
node set which corresponds to each input keywords.

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 298–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Example XML Trees T1 and T2

We make the following technical contributions in this paper:

1. We study the relationship between LCA nodes and matches, then present
effective rules to iteratively skip more redundant computations.

2. We propose the MMPS algorithm to answer SLCA-based queries and imple-
ment IMS and MMPS with Dewy and Region encoding schemes respectively.
The experimental results demonstrate that our approach outperforms former
work.

The rest of this paper is organized as follows: Section 2 introduces the notations
used in this paper. Section 3 propose the iterative skip rules and SLCA finding
methods, and analyzes the complexity of our approach. In Section 4, we discuss
the implement of our approach and experimental results. We introduce related
work briefly in Section 5 and give a conclusion in Section 6.

2 Notations

An XML document is viewed as a directed, rooted, ordered, and node-labeled
tree. We assign to each node of the tree a numerical id pre(v) which is compatible
with pre-order numbering. Given two nodes u and v , u ≺p v donates pre(u) <
pre(v), and u �p v donates u ≺p v or u = v. Similarly, u ≺a v donates node u
is an ancestor of v, and u �a v donates u ≺a v or u = v.

Let K = (k1, k2 . . . kn) donates a set of input keywords, where each ki asso-
ciated with Si (set of XML data nodes, sorted in pre-order). V (v1, v2 . . . vn) is
called a match, where vi ∈ Si and vl is the leftmost node in match while vr
is the rightmost node (with the property that vl � vi � vr). Function lca(V )
(also represented as lca(v1, v2, . . . , vn) ) returns the LCA of nodes v1, v2 . . . vn.
Function vl(V ) (also vl(v1, v2 . . . vn)) returns the leftmost node of V . vr(V ) (also
vr(v1, v2 . . . vn)) returns the rightmost node of V .

For matches W (w1, w2 . . . wn) and V (v1, v2 . . . vn). We say match W precedes
match V (or V behind/succeds W ) donated as W ≺p V , if and only if W and
V satisfy (1) wi ≺p vi, (1 ≤ i ≤ k), and (2) W �= V .We say matches W and V
share the same node, if there exists i, satisfied wi = vi.

3 Our Approach

In this section, we introduce properties and rules to skip matches and present
key concepts SMatch and SNMatch. Then, we propose our MMPS(Multi-way
Match Progress SLCA) algorithm in detail and give a complexity analyze on it.
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3.1 Properties and Skipping Rules

Lemma 1. Given a match V (v1, v2 . . . vn). lca(V ) = lca(vl(V ), vr(V ))

Lemma 2. Given matches V (v1, v2 . . . vi . . . vn) and V ′(v1, v2 . . . vi′ . . . vn). If
vi ≺a vi′ , then lca(V ) �a lca(V ′)

Lemma 3. Given matches V1 and V2. If they share the same node v and lca(V1)
is an SLCA, then there must be lca(V2) �a lca(V1)

Lemma 4. Given matches V and W (V ≺p W ), if lca(V ) �a lca(W ), then for
any match X that W �p X there must be lca(V ) �a lca(X)

Lemma 5. Given matches V and W that V ≺p W , if lca(W ) �a lca(V ), then
for any match X that X ≺p V there must be lca(W ) �a lca(X).

Rule 1. For two nodes u and v in a keywords list Si, if u ≺a v node u can be
skipped in SLCA computations.

Rule 2. Let vr be the rightmost node in match V , for other node vi, if there
exists vi′ ( vi ≺p vi′ ≺p vr ), then node vi can be skipped.

Definition 1 (SMatch). Given a match V (v1, v2, . . . , vn), it is a SMatch if
and only if rule 1 and rule 2 can not skip any node of it

Definition 2 (NMatch). Given matches V and W ( V ≺p W ). If there exists
no match X satisfied V ≺p X ≺p W , then we say W is match V ’s NMatch.

Definition 3 (SNMatch). Let vl′ be the next node after vl in the keywords set
Si. We call the match V ′(v1, v2, . . . vl′, . . . , vn) the SNMatch of SMatch V .

Example 2. Consider the keyword search {a, b} on tree T2 in Figure 1(b). The
keyword sets are S1 = {a1, a2 . . . a15}, S2 = {b1, b2, . . . b6}, respectively. The
very beginning match is {a1, b1} and matches {a1, b1}, {a2, b1}, and {a3, b1} can
be safely skipped according to rule 2. And node b1 can be skipped as it has a
descendant b2 in S2 according to rule 1. By repeatedly using rule 1 and rule 2,
we finally get SMatch(smallest match) {a5, b2} and NMatches(next matches) of
it are {a6, b2} and {a5, b3} in which {a6, b2} is SNMatch(special next matches).

Since each SLCA corresponds to one SMatch, other matches are not considered
in SLCA computation.However because not all SMatches contribute to the final
results, two methods are used to prune unnecessary SMatches.

First, the LCA of SNMatch of the SMatch must be a non-descendant node
of the LCA of SMatch, or progress to the next SMatch. We call such LCA
node candidate SLCA node. This method guarantees that candidate SLCA node
does not have a descendant LCA node of matches behind it. NMatches (ex-
ceptSNMatch) have LCAs that are not descendant nodes of the LCA of SMatch,
because NMatches (exceptSNMatch) share the same vl node with SMatch but
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have a big pre-order numbering vr node. So if the LCA of SNMatch is not a
descendant node of the LCA of SMatch, none of the LCAs behind are descendants
of the LCA of this SMatch according to lemma 4 with the fact that matches
behind SMatch either succeed NMatch or are NMatch themselves.

Second, the LCA of this SMatch should not be an ancestor of (nor the same
node with) the previous SLCA node. This guarantees that the LCA of this
SMatch will not have any descendant LCA previously according to lemma 5.

Using this two methods, all unnecessary SMatches are pruned and is sure to
generate an SLCA node.

3.2 MMPS Algorithm

We use a cursor array C to maintain the current matches of which each C[i]
(1 ≤ i ≤ k, k is the number of input keywords) points to a node in S[i]. The
SMatch is computed by repeatedly using rule 1 and 2 to skip nodes until no match
can be skipped. The SNMatch is computed from an SMatch by progressing the
vl node to the next node in the keyword set according to its definition.

Algorithm 1. SMatch && SNMatch
1: procedure SMatch(C[1], C[2] . . . C[k])

2: repeat � use some variables to detect any match been skipped

3: for each C[i] in C do
4: repeat
5: tmp = C[i];C[i] = tmp++; � tmp is a cursor

6: until C[i] ⊀a tmp && tmp ⊀p vr(C) � Using rule 1 and 2 to skip

7: end for � ↪→ unnecessary matches

8: until no match can be skipped

9: return C
10: end procedure

11: procedure SNMatch(C[1], C[2] . . . C[k])

12: Let C[l] be the vl node of C
13: C[l]++;

14: return C
15: end procedure

The general idea of our approach is showed in algorithm 2 MMPS. First, we
get an initial match (at the very begin is {S[1][1], S[2][1] . . .S[k][1]}). Then we
use SMatch and SNMatch to get a candidate SLCA node in line 3-6 and validate
the candidate on line 7, and update the final result in line 8 if true. From line 10
to 14, we calculate the next initial match, in which each node is a non-descendant
of αa. By doing this repeatedly, we generate final results. This loop stops when
any C[i] points to the end of S[i] which is caught by try/catch structure.
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Algorithm 2. MMPS (S[1], S[2] . . . S[k])
Require: each S[i] is the nodes list that responds to a input keywords ki

1: establish a cursor array C; n=0; α=null � each C[i] points to the first node of

2: repeat � ↪→ S[i], α maintains the final result

3: repeat
4: αa=lca(SMatch(C[1], C[2] . . . C[k]))

5: αb=lca(SNMatch(C[1], C[2] . . . C[k]))

6: until αa �a αb

7: if n==0 or αa �a α[n] then
8: α[n++] = αa;

9: end if
10: for each C[i] do � calculate the next initial match

11: repeat
12: C[i]++

13: until αa �p C[i]
14: end for
15: until some C[i] points to the end of S[i] � try/catch structure should be used

16: return α � ↪→to avoid boundary exceeded error

3.3 Analysis

Our approach is suitable for both Dewey and Region scheme but costs differ-
ently. For Dewey scheme, it costs O(d) time to compute the relationships (an-
cestor/descendant and precede/succeed) of two nodes as well as the LCA of
two nodes(d is the average depth of the XML tree), while it costs O(1) time
on Region scheme[1]. The vl and vr functions cost O(kd) time to compute the
leftmost(rightmost) node of a match on Dewey, which only costs O(k) time on
Region code(k is the keywords number). In MMPS, we do not enumerate all the
cases but only consider the matches which are liable to be an SLCA candidate.
Let Smax be the largest keyword node set and Smin be the size of the small-
est set, then at most O(|Smax|) matches are visited which costs O(kd|Smax|)
time on Dewey and O(k|Smax|) time on Region, and the whole candidate SLCA
match number is no larger than |Smin|. So the time complexity of our approach
is O(kd|Smax| + d|Smin|) on Dewey code and O(k|Smax| + |Smin|) on Region
code. In comparison, the time complexity of IMS are O(k|Smin|log(|Smax|)) on
Region code and O(kd|Smin|log(|Smax|)) on Dewey code, respectively.

4 Experimental Results

To verify the effectiveness of our approach, we implement both MMPS and IMS
algorithm on Dewey and Region scheme and compare the results.

4.1 Experiment Setup

All Experiments are implemented in C++ language.We run experiments on the
data sets of DBLP[8] with 8.8 million data nodes and XMark[6] with 3.6 million
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data nodes. These two data sets are encoded with Dewey scheme and Region
scheme, respectively. Similar to other SLCA-based algorithms, all the data nodes
are organized as a B+-tree where keys are the keywords of the data nodes and
data associated with each key is a list of Dewey codes ( or Region codes) of the
data node contained that keyword. Our implementation use Berkeley DB (v4.8
C++ Edition)[5] to store the keyword data list. Berkeley DB is configured using
4KB size page and 1 GB size cache . All the experiments are done on a 2GHz
dual-core laptop PC with 2 GB of RAM.

In particular, we pre-process the XML data and built an index to accelerate
the LCA computation[2]. It costs 6.602 seconds to build the index for XMark
data and 14.202 seconds for DBLP data. Before keyword search, index is loaded
into memory first. It costs 4.218 seconds to load index of XMark and 9.839
seconds for DBLP. These extra works can be done off-line, and will not affect
I/O time and query performance.

Similar to [9], experiments are carried out by using different classes of queries.
Each class is written as data kN L H , where data denotes the XML data and N ,
L and H are three positive integer values: N shows the number of the keywords,
L and H with L ≤ H represent two keyword frequency that one of the N
keywords has the low frequency L while each of the remaining N − 1 keywords
has the high frequency H .

Fig. 2. I/O costs on DBLP

Fig. 3. I/O costs on XMark
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4.2 Result Analysis

Figure 2 and 3 show the I/O cost of the two encoding schemes on DBLP and
XMark. Generally speaking, MMPS on Dewey scheme costs more time than
Region for the length of keywords indexed by Dewey scheme is not fixed and
more time is needed when reading data from index. But there are exceptions in
cold I/O for the initial position of the disk head is random. On the other hand,
Region scheme has advantage in warm I/O because the initial position of the
disk head is beside the data.

Figure 4 and 5 show the performances of two algorithms on both encoding
schemes. First,it is clear that the SLCA calculation based on Dewey costs more
time for in each comparison operation of data node or LCA computation, Dewey
scheme costs d times than Region. Second, we can see that algorithm MMPS
performs better than IMS in general. Though exceptions exist few, such as Q5
in figure 4(d) and Q10 in figure 5(e). However, in such cases, the time cost is
few and IMS does not perform much better. Figure 4 shows the performances
on DBLP and Figure 5 shows the performances on XMark. When the L value
decreases, both algorithms trends to reduce the calculating time and MMPS
performs better. In any cases, MMPS outperforms IMS.

Fig. 4. Processing Time on DBLP

Fig. 5. Processing Time on XMark
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5 Related Work

Recently, lots of research has been concentrated on semantics and techniques for
keyword search over XML data, such as XRank[3], SLCA [10], VLCA [4], XSeek
[7]. In these research, LCA computation is a common problem. Lots of research
has been concentrated on the techniques for this problem [1,2].

Our work is closely related to two research work [10,9]. [10] proposes two
efficient algorithms: the Scan Eager (SE) algorithm and the Index Lookup Eager
(ILE) algorithm. [9] proposes a more efficient algorithm named IMS than the
ILE and SE algorithms by using several optimization strategies to reduce the
number of LCA computation. Moreover, [9] extendeds its algorithm to support
more general search queries involving AND and OR semantics. In particular, the
IMS algorithm is compared with in this paper.

6 Conclusions

In this paper, we propose a novel SLCA-based keyword search approach MMPS.
Since MMPS utilize iterative skip to reduce redundant SLCA computations, it
outperforms the state-of-the-art algorithm IMS. We also compare results of our
method with Dewey and Region encoding schemes. Experimental results show
that Region code is effective to compute SLCAs over XML data.
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Abstract. SFL (pronounced as Sea-Flow) is an analytics system that supports a 
declarative language that extends SQL for specifying the dataflow of data-
intensive analytics. The extended SQL language is motivated by providing a 
top-level representation of the converged platform for analytics and data 
management. Due to fast data access and reduced data transfer, such 
convergence has become the key to speed up and scale up data intensive BI 
applications. 

A SFL query is constructed from conventional queries in terms of Function 
Forms (FFs). While a conventional SQL query represents a dataflow tree, a SFL 
query represents a more general dataflow graph. We support SFL query 
execution by tightly integrating it with the evaluation of its component queries 
to minimize the overhead of data retrieval, copying, moving and buffering, 
which actually turns a query engine to a generalized dataflow engine. The 
experimental results based on a prototype built by extending the PostgreSQL 
engine are discussed. 

1   Introduction 

A Business Intelligence (BI) application often form a dataflow process from collected 
data to derived information and decision. With the current technology, BI system 
software architecture generally separates the BI analytics layer (BI applications and 
tools) from the data management layer (DBMS or Data Warehouses), where 
applications are coded as database client programs in C, Java, T-SQL, P/L-SQL, etc, 
which invoke SQL statement for data retrieval. As the steep increase in the amount, 
the data transferred between the analytics platform and the database platform has 
become the scalability and performance bottleneck of BI applications.  

Converging data-intensive analytics computation into the DB engine is the key to 
address these problems [2,4].  One option for the next generation BI system is to have 
the data intensive part of analytics executed inside the DB engine, which implies that 
the application dataflow and database access should be specified by a single, 
integrated declarative language. It is argued  that SQL is a reasonable candidate for 
such a language.  

In order to express analytics operations which are beyond the standard relational 
database operations, we rely on User Defined Functions (UDFs) [3]. However, a SQL 
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query is limited to express, and the existing query engine is limited to orchestrate the 
tree-structured dataflow; to handle complex, graph-structured inter-query dataflow 
inside the database system, extending the query language as well as the query engine 
is required.  

To declaratively express complex dataflow graph, we introduce certain 
construction primitives and Function Forms (FFs) from the functional programming 
language FP [1] into the SQL framework. The extended SQL language uses these 
primitives and FFs to glue queries and UDFs based on a calculus of queries.  We use 
this extended language as the top-level representation of a converged platform for 
analytics and data management called SFL (pronounced as Sea-Flow) platform. While 
a conventional SQL query represents a dataflow tree, a SFL query represents a more 
general dataflow graph declaratively. This extension has two important features: first, 
the extended language specifies complex application data flows using queries 
invoking functions declaratively rather than imperatively, thus isolates much of the 
complexity of data streaming into a well-understood system abstraction; second the 
same data object can “flow” to multiple operations without copying, repeated retrieval 
from database or duplicated query evaluations, which supports the justification of 
pushing analytics down to the query engine rather than at the client level.  

The SFL query is supported in the SFL platform with an query engine with the 
functionalities that orchestrate actions (queries) interactively with the underlying 
query processing. Our experience shows the value of the proposed approach in 
multiple dimensions: modeling capability, efficiency, as well as usability; all these 
represent a paradigm shift from traditional BI in converging data-intensive analytics 
and data management.  

2   SFL Language Framework  

A SFL system is used to combine queries and user defined functions  for representing 
application dataflow graphs. In the following we introduce  the operators – functional 
forms, and operands – query functions and user-defined relational operator functions 
(RVFs), of the SFL language framework.  

First, we rely on UDFs to extend the action capability of the database engine. In 
order to handle operations applied to a set of tuples (a relation) rather than a single 
tuple, we have introduced the kind of UDFs with input as a list of relations and with 
return value as a relation, called Relation Valued Functions (RVFs) [3]. RVFs can be 
integrated to SQL queries and treated as relational operators or relational data objects. 

Next, we distinguish the notion of Query Function from the notion of Query 
Variable. A query variable is just a query such as  

      SELECT * FROM Orders, Customers WHERE Orders.customer_id = Customers.id; 

that is bound to actual relations such as the above Orders and Customers. A query 
variable can be viewed as a relation data object, say Qv, denoting the query result.  

A query function is a function applied to a sequence of parameter relations. For 
instance, the query function corresponding to the above query can be expressed as 

    Qf := SELECT * FROM $1, $2 WHERE $1.customer_id = $2.id; 

Then applying Qf to a sequence of relations < Orders, Customers> with matched 
schemas, is expressed by   

    Qf : < Orders, Customers>  Qv 
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The major constraint of query functions is schema-preservation, i.e. the schemas of 
the parameter relations must match the query function. It is obvious that the above 
query function is not applicable to arbitrary relations. 

Further, we introduce the notions of constructive-primitive and functional form. A 
constructive-primitive expresses the path of function application, or the path of 
dataflow. For example, applying a Selector Function $i to a sequence of objects <r1, 
…, rn> returns ri; applying the  Identity Function id to object r returns r itself.  

A functional form (or function combining form), FF, is an expression denoting a 
function; that function depends on the functions which are the parameters of the 
expression. Thus, for example, if f and g are RVFs, then f•g is a functional form 
denoting a new function such that, for a relation r, (f•g):r = f:(g:r) provided that r 
matches the input schema of g, and g:r matches the input schema of f. 

The dataflow shown in Fig. 1(a), where Qf  is a query function  “SELECT * FROM 
$1, $2”, f1 and f2 are RVFs with inputs r1 and r2, can be expressed with the use of the 
constructive function combining form denoted as [ ], which constructs a list from the 
content in the bracket: 

Qf • [f1 • $1,  f2 • $2] : <r1, r2> 

that denotes Qf (f1(r1), f2(r2)). Note that this statement could be expanded to  

    “SELECT * FROM f1(r1), f2(r2)”. 

For the dataflow in Fig.1 (b) where r2 needs to feed into both f1 and f2, the dataflow is 
forked. This dataflow is written as:  

Qf • [f1 • id,  f2 • $2] : <r1, r2> 

where id and $2 are primitive constructors applied to the argument list. In this case, id 
applied to <r1, r2> returns <r1, r2> itself, while $2 applied to <r1, r2> returns r2, and 
thus Qf applies to (or composes with) results of f1 and f2, and f1 applies to both <r1, 
r2>, while f2 applies to second argument of <r1, r2>.  We see that forking cannot be 
accomplished without extension to SQL. 

Further, suppose we need to express the dataflow shown in Fig 1(c) where Qf has 
three input objects, and r1 needs to feed into both f1 and Qf. Then the query statement 
would be 

    Qf • [$1, ,f1 • id,  f2 • $2] : <r1, r2> 

 

 

Qf 
 f2 

 f1 

r2 

r1 

f2

f1 

r2

r1 

 f2 

 f1 

r2

r1 
Qf Qf 

 

Fig. 1. (a) dataflow without fork    (b) dataflow with fork      (c) dataflow with fork & crossover 

In general. a SFL system is founded on the use of a fixed set of FFs for combining 
query functions (a query can invoke RVFs). These, plus simple definitions, provide 
the simple means of building new functions from existing ones; they use no variables 
or substitution rules, and they become the operations of an associated algebra of 
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queries. All the functions of a SFL system are of one type: they map relations into 
relations; and they are the operands of FFs. Applying an FF to functions denotes a 
new function; and applying that function to relations denotes a SFL query. A SFL 
query has the expressive power for specifying a dataflow graph, in a way not possible 
by a regular query. Specifically, a regular SQL query represents a tree-structured 
dataflow, while a SFL query can further represent graph structured dataflow. A more 
formal description can be found in [2]. 

3   An Example  

In this section we shall illustrate how to express the dataflow scheme of K-Means 
clustering using a single SFL statement and discuss our experimental results. The k-
means algorithm illustrated in Fig 2 is an algorithm to cluster n objects based on 
attributes into k partitions, k < n. It is similar to the expectation-maximization 
algorithm for mixtures of Gaussians in that they both attempt to find the centers of 
natural clusters in the data. It assumes that the object attributes form a vector space.  

The K-Means computation used in this example has two original input relations, 
Points and Centers, and two relational operations, cluster and check. The cluster 
operation generates a new set of centers to be compared with the existing centers by 
the check operation; if they have not converged enough, the cluster will be re-run 
iteratively with the same Points data and the new centers. Note that SQL is unable to 
express the iteration.  

Points

Centers
final centers 

new centers 

cluster check

Next iteration 

 

Fig. 2. K-Means clustering 

Let us consider the K-Means calculation on two dimensional geographic points. 
The original Points data are stored in relation Points [x, y, …], and the Centers data 
are stored in relation  Centers [cid, x, y, …]). Two RVFs are involved. The RVF  

     cluster_rvf : <Points, Centers>  Centers’ 

is used to derive a new set of centers, i.e. a new instance of relation Centers, from 
relations Points and Centers in a single iteration, in the following two steps:  

− the first step is for each point in relation Points to compute its distances to all 
centers in relation Centers and assign its membership to the closest one, resulting 
an intermediate relation for new centers [x, y, cid]; 

− the second step is to re-compute the set of new centers based on the average 
location of member points.  

 

After an iteration, the newly derived centers (in relation Centers’) are compared to the 
old ones (in relation Centers) by another RVF  

     check_rvf : <Centers’, Centers>  {T; F} 
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for checking the convergence of the sets of new and old centers to determine whether 
to terminate the K-Means computation or to launch the next iteration using the current 
centers, as well as the original points as the input data. 

Our goal is to define a SFL query kmeans : <Points, Centers>  

that derives, in multiple iterations, the Centers of the clusters with minimal total intra-
cluster variance, from the initial Points and Centers relations, towards the final 
instance of relation Centers. During the kmeans computation, the relation Centers is 
updated in each iteration, but the relation Points remains the same. A key requirement 
is to avoid repeated retrieval of either the Centers relation or the Points relation from 
the database, which should be explicitly expressible at the language presentation 
level.   

    The function kmeans is defined by the following  

    clustering := [$1, $2, cluster_rvf];  
    iterating :=  (check_rvf •[$2, $3] $3; iterating • clustering • [$1, $3]) ; 
   kmeans := iterating • clustering; 

Applying function kmeans to the points and the initial centers for generating the 
converged center positions is expressed by the SFL query  

     kmeans : <Points, Centers>    

The execution of SFL query kmeans : <Points, Centers> is depicted in Fig 6. As 
described later, the different versions of the instances of relation Centers output from 
cluster_rvf in multiple iterations, actually occupy the same memory space.   

4   Implementation Issues 

Introducing SFL system aims to support general graph structured dataflow. From the 
implementation perspective, the key point consists in controlling the sharing and the 
buffering of data with desired life-span, in order to ensure that data is “piped” in  
the data flow rather than unnecessarily copied, repeatedly retrieved or duplicated 
evaluated.  

We extended the PostgreSQL engine to support RVFs for integrating applications 
into queries, and to support SFL queries for expressing application data flows. We 
have extended the query engine by providing the RVF Manager and the SFL 
Manager. As we have reported the support to RVF in [3], in this paper we focus on 
the implementation of SFL Manager. 

4.1   SFL Query Memory Context  

A SFL query invokes queries during its execution. The memory context of a SFL 
query execution is accessible to the invoked queries. Such memory sharing allows the 
data passed in or returned from an invoked query to be referenced without copying, 
and carried across multiple queries without repeated derivation.   

When a SFL query, say, Qff, is to be executed, an instance of it is created with a 
memory context for holding the relation data retrieved from the database or generated 
by the component queries. Based on PostgreSQL internal, the common data structure 
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for holding these relation data is called tuple-store. A tuple-store is an in-memory 
data structure with memory overflow handled automatically by the underlying query 
executor (e.g. expanded to temporal files). The system internal query facility, such as 
PostgreSQL SPI (Server Program Interface), is extended with tuple-store access-
method, and the handles of multiple related queries are made sharable at the SFL 
layer.  

During the execution of Qff, all the component query results are kept in tuple-
stores. A query invoked by Qff, say q, does not copy input data into its own memory 
context; instead the data is passed in by reference. More concretely, the memory 
context of Qff, say MC and that of q, say, MCq have the following relationship. 

− The life-span of MC covers that of MCq. 
− The tuple-stores in MC are used by q as required; that is, the input relations of q are 

directly obtained from MC with pass-by-reference; the output relation of q is 
returned to MC. 

Specifically, associated with a SFL query instance is a handle structure for its 
execution environment, henv, with a pointer to its memory context handle, say hmc. 
Associated with a component query is also a handle for holding its own execution 
information, and that handle has a pointer to hmc for accessing and updating the data 
flowing through the SFL query process. 

The mechanisms for PostgreSQL memory management, including the mechanism for 
managing shared buffer pool, are leveraged. The cached data are kept in the memory 
resided tuple-stores. An overflow tuple-store can be backed up by a file automatically and 
transparently with the same access APIs. This ensure our system survive with large initial 
data. In fact, different from data warehousing, the basic principle in dealing with dataflow 
applications is to keep data “moving” rather than “staying”, therefore most dataflow 
applications are designed to fit in moderate on-the-flow buffer size.  

4.2   SFL Query Data Flows  

The functionality difference of a query/RVF and a constructive primitive has been 
explained above. Here we examine it from the dataflow point of view.  

− A data object R flowing through a query or RVF means that the query or RVF 
produces an output relation out of R;  

− R flowing through a constructive primitive G such as id or $1 means that R is to 
remain referenced, and thus active; what actually passed through G is the reference, 
or pointer if handled in a single query engine, of R; such reference-flow mechanism 
ensures that R is not to be copied; and based on the reference-counting mechanism, 
garbage-collected when not being referenced anymore (following a common rule, 
we do not distinguish the value and the reference of a primitive typed object such 
as an integer used as a function argument).  

To be concrete, let us refer to Fig 3 and consider two data buffer pools POOL1 and 
POOL2, i.e. the memory closures for clustering and iterating.  The original relations 
Points (P) and Centers (C) retrieved from the database are buffered at POOL1, the 
intermediate relation new centers derived by RVF luster_rvf in each iteration is 
buffered at POOL2. The data flows of P and C can be described as below.  
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− The flow of Points data P:  

o at POOL1, P is referenced by functions cluster_rvf and clustering thus active; 
o at POOL2, P is still referenced by function iterating thus active; 
o if a new iteration is launched, P is not reproduced since it is then referenced 

by clustering again as its $1 argument, thus kept active rather than re-
produced; 

o therefore, P is buffered only once after retrieved from the database, with its 
reference “flows”. 

− The flow of Centers data C: 

o at POOL1, C is referenced by functions cluster_rvf and check_rvf, thus active; 
o a new version of C, C’, is generated by cluster_rvf at POOL2; 
o after check_rvf is executed, C is not referenced by anyone so will be garbage 

collected or refreshed; 
o if a new iteration is launched, the data of C’ flow to POOL1 to refresh the 

buffer.  
 

cluster
_rvf 

Points Centers 

$1 $2 $3

check
_rvf 

F

DoneNext iteration 

clustering := [$1, $2, cluster_rvf]

T $3$3$1

iterating clustering  [$1, $3]

$1 $2 

Database access layer 

Dataflow layer 

POOL1

 $3 

iterating :=  (check_rvf  [$2, $3]  $3; 
iterating clustering  [$1, $3]

POOL2

 

Fig. 3. K-Means dataflow without repeated querying and database retrieval 

4.3   SFL Query Execution  

To support SFL, we have plugged a preliminary Structured Dataflow Manager (SFM) 
in the PostgreSQL query engine, with two major components: 

− FH – i.e. Flow Handler for creating and managing SFL instances, and for 
scheduling operations; 

− QH – i.e. Query Handler for launching queries (possibly involving RVFs) using the 
PostgreSQL internal SPI query facility extended with tuple-store access.  
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With the FH and QH, a SFL query is scheduled in the following way. 

− Based on the template of a SFL query, the FH creates an SFL query process 
instance and derives one control-sequence of its operations, resulting in an 
execution plan.  

− The FH creates the start operation instances based on the control-sequence.  
− For running every operation, the FH identifies the incoming tuple-stores, identifies 

or creates the outgoing ones, generates a corresponding operation-item, and puts it 
to the operation queue. At the minimum, an operation item includes the ID of the 
containing query-instance (i.e. the SFL query instance), the operation-instance-ID, 
the query (may involve RVFs) of this operation, and the references to incoming 
and outgoing tuple-stores (a reference is a key name, not a physical pointer).  

− The operation items, once put in the operation queue, can be executed in any order, 
and in fact they are de-queued in pipeline and executed by individual, time-
overlapping threads.  

− The QH runs as a separate thread of the FH, it de-queues the operation items one 
by one; for each item, it launches a thread to execute the query associated with that 
item, using the high-efficient PostgreSQL internal SPI facility (extended with 
tuple-store access), then puts the returned query result into the outgoing tuple-
stores, and sends a return value, rv, to the FH. The return value is a message that 
contains, at the minimum, the process-instance-ID, the operation-instance-ID, the 
query execution status returned from SPI, and the references to outgoing tuple-
stores. 

− Upon receipt of an rv, the FH updates the corresponding operation instance and 
process instance, checks the control-sequence and triggering condition or timer, 
then selects the next eligible operation or operations to run, rolling forward the 
process instance, towards the end of it. 

The SFM is actually a “middleware inside the query engine” for handling multiple 
SFL queries with interleaved operation executions. Its scheduling mechanism is 
similar to that of a BPM; however, the running environments of a business process 
and its tasks are in general isolated, but the running environments of a SFL query and 
a component query is joined.  

5   Conclusions 

To effectively handle the scale of analytical tasks in an era of information explosion,  
pushing data-intensive analytics down to the database engine is the key. In this work 
we tackled two problems for converging analytics and data management: first, 
integrating general analytic operations into SQL queries, and second, extend SQL 
framework to express general graph structured dataflow.  

We support SFL by building a super-query processing container inside the 
database engine that deals with data buffering, dataflow, control-flow and function 
orchestration. During execution, the memory context of a SFL query is tightly 
integrated with that of the queries it invokes, which effectively eliminates the 
overhead for data copying and duplicated retrieval or derivation. 



314 Q. Chen and M. Hsu 

The advantages of SFL lies in its expressive power for specifying complex 
dataflow, as well as in its simplicity, as it uses only the most elementary fixed naming 
system (naming a query) with a simple fixed rule of substituting a query for its name. 
Most importantly, they treat names as functions that can be combined with other 
functions without special treatment.  
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Abstract. Medical research is a highly collaborative process in an in-

terdisciplinary environment that may be effectively supported by a Com-

puter Supported Cooperative Work (CSCW) system. Research activities

should be traceable in order to allow verification of results, repeatability

of experiments and documentation as learning processes. Therefore, by

recording the provenance of data together with the collaborative con-

text it is embedded into, novel types of provenance queries may be an-

swered. We designed and implemented a next-generation CSCW system

providing both the collaborative functionalities as well as the definition

and execution of structured processes. We integrated a data provenance

model recording process- and collaboration-related operations automati-

cally and demonstrate the capabilities of the model by answering specific

data provenance queries from the biomedical domain.1

1 Introduction

Scientific research projects are complex processes. Researchers from different do-
mains (e.g. medical, biological, technical) collaborate by providing their personal
expertise, methods and skills. In this highly interdisciplinary environment, the
quality of results strongly depends on various factors. On the one hand, data,
intermediate results, hypotheses, and conclusions must be shared efficiently. On
the other hand, all participants require a basic understanding on the objec-
tives and methodology of the other partners. The former may be accomplished
by deploying traditional cooperative systems, which allow data sharing for a
project team and tracing data changes. The latter one requires a comprehensi-
ble representation of the working processes, which is typically offered by scientific
workflow management systems. However, workflow management systems do not
cover all aspects necessary for collaborative projects. For instance, medical stud-
ies require flexible integration of patient and experiment data and its cooperative
annotation. The research methodology of studies must be documented in detail
in order to allow verification of results and repeatability of experiments. There-
fore, data provenance recording may provide an essential support. Provenance
1 This work was partially supported by the Austrian Ministry of Science and Research;
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may be defined as the background knowledge that enables a piece of data to be
interpreted and used correctly within context [9]. It allows to protocol the origin
of the data, the way of accessing it, and finally the transformation process of
the data. We call this sequence of processing steps a “construction plan” of the
data object. These processes may be restarted with slightly modified parameters,
and, if intermediate results are preserved, re-executions may be optimized [1]. In
Stevens et al. [8] Organizational provenance is pointed out as an additional type
of provenance. Organizational provenance comprises information about who has
transformed which data in which context. This kind of provenance is closely
related to collaborative work.

With respect to the particular demands of medical research projects, we de-
signed and implemented a next-generation Computer Supported Cooperative
work (CSCW) system providing both the collaborative functionalities as well
as the definition and execution of structured processes. We integrated a data
provenance model recording process- and collaboration-related operations auto-
matically. Project participants are able to trace from a certain result back to the
original data that was used to produce it. By combining transformation and ver-
sioning paths of data with collaborative information and semantic annotations,
new types of data provenance queries can be formulated. Moreover, inter-project
collaboration is encouraged by transparently sharing data, results and processes
with other research projects and mutually benefiting from expertise.

This paper is organized as follows: in section 2 we give an overview of the
main functionality of our CSCW system and systematically elaborate the main
requirements for our data provenance model, which is presented in section 3.
We entail use cases for data provenance queries in section 4 and show how the
queries are answered. Before we investigate similar approaches in section 5 and
conclude our results in section 6.

2 GAMECS CSCW System

The GAMECS CSCW [15,12] system was developed in the context of the biobank
initiative GATiB (Genome Austria Tissue Bank), which is part of the Austrian
Genome Program (http://www.gen-au.at). The main idea was to establish an
information system that is capable of supporting the medical research activi-
ties in the environment of the biobank. GAMECS bases on the WasabiBeans
framework (http://www.wasabibeans.de), a flexible service-oriented architec-
ture developed at the university of Paderborn [11,10]. WasabiBeans is widely
used in research projects to share data in distributed heterogenous system in-
frastructures. An example field of application of WasabiBeans is the integration
of a high-tech laboratory and a digital library to provide up to date measurement
results of thermal stress test within an university-wide IT infrastructure [14]. It
implements the concept of virtual knowledge spaces for a flexible structuring of
data and supports users to aware each other for a better cooperative work pro-
cess. In our project we use WasabiBeans as a middleware integrating distributed
data sources and biomedical services. GAMECS facilitates flexible structuring

http://www.wasabibeans.de
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of data and services in knowlede spaces that are used for cooperations. During
the work of medical researches with the system, a set of additional requirements
have arisen. Integrating process patterns into the CSCW system and the trace-
ability and reproduceability of research results were requested. Therefore, we
developed a semantic model that enhances the capabilities of the CSCW system
by integrating data provenance and process definition and enactment. Thus, we
were able to cover the following aspects in our CSCW system:

1. Semantic Annotation: We encourage collaboration by creating virtual knowl-
edge spaces that are filled with data resources and services. A knowledge
space can be created for a particular project or study. We support various
ways of annotating contexts semantically. First, a categorized tag repository
allows the assignment of categories (and subcategories) that characterize
contexts. Second, free text annotations containing textual descriptions. Fi-
nally, the content of contexts is searchable. Thus, it is possible to look for
all contexts, where the same set (or subset) of data resources or services is
used.

2. Process Definition: Processes are assigned to collaborative knowledge spaces
and can be executed by members of the corresponding knowledge space.
Well established procedures can be implemented as standardized processes.
Dedicated processes may be provided to untrained persons for improving
the learning process. A sandbox like testing environment enables to trace,
re-execute and modify processes and immediately view the created results.

3. Process Traceability: We designed appropriate data structures for logging
the execution of web service and store input parameters and generated data,
allowing a detailed view on how data resources were created.

4. Process Repeatability: Since the execution sequence of services is stored as
well as the parameter settings, it is possible to repeat the execution of pro-
cesses or even subprocesses. Verification of analysis results may be accom-
plished as well as process re-execution with slightly modified parameters.

3 Data Provenance Model

The data provenance model includes meta data about data resources, web ser-
vices, processes and collaboration contexts. We designed the provenance model
by using OWL-DL [2]. On the one hand OWL-DL is a powerful knowledge rep-
resentation language that may be used to capture domain expertise, which is
particularly complex in the field of medical research. Although various medi-
cal classification such as the ICD-O-3 (International classification of diseases for
oncology) [7] exist, not all medical terms may be covered by standards. Some
elements of the medical terminology require the ability to define and test for re-
strictions and relationships. OWL-DL allows to model detailed and restrictable
relationships and facilitates verification of instance data as well as classifying
data by subsumption. On the other hand, our model includes several transitive
relationships that may be efficiently handled by reasoners. Moreover, we wanted
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Table 1. Context Perspective Properties

context label:{string} Name of study or project

context description:{string} Detailed context description

has user(User) Assigned user

has service(Service) Assigned web service

has resource(Resource) Assigned resource

is subcontext(Context) Context is embedded into another context. Trans.

related context(Context) Context is related to other context(s). Trans.

to benefit from the powerful query languages that may be applied to ontologies
(e.g. SPARQL). In the following section we present the details of the model
structured by its main perspectives.

3.1 Context Perspective

As a context we understand virtual knowledge space that are created for sharing
data, knowledge and services for a group of cooperating persons. Furthermore,
knowledge spaces may be nested into each other to form context hierarchies.
Following we notate class names in italic letters, data properties are specified as
data property name: {type}, object properties are notated as
property name(Class name), and transitive properties are marked as Trans.

3.2 Resource Perspective

Various kinds of resources are integrated into knowledge spaces. External data
repositories may be included by describing the structure of data and by defining
appropriate access patterns. Data may be extracted from semi- or unstructured
documents and stored in novel data structures. The type of a resource may
be one of the primitive types Integer, Float, Bool, Date, DateTime or String,
a file type or a complex data repository type. Primitive types are typically
used in order to store the input/output parameter values for web services. File
types are assigned to documents that are shared in virtual knowledge spaces,
whereas an internal version control management keeps track of all document
versions. Complex resources are structured documents (XML or CSV files) or
external database tables. The structure of complex types is defined by mapping
(database) attributes to resources.

3.3 Web Service Perspective

Web services are ideal to facilitate application to application communication.
They are highly standardized interfaces enhancing interoperability of applica-
tions and overcoming barriers of data exchange format, programming languages
and operating systems. Although web services allow the flexible deployment of
applications in a distributed environment, they raise novel challenges in the ar-
eas of traceability and reproducibility. For instance, an external web service may
use a new version of an algorithm delivering slightly different results.
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Table 2. Web Service Perspective Properties

webservice id:{string} Unique URI for identification

webservice name:{string} Label used for web service composition

webservice description:{string} Description of the functionality of the service

state:{stateless,stateful} Different or identical results at each run.

runtime:{immediate,short,medium,long} Runtime categories for web service execution.

record provenance:{yes,no} Enable or disable provenance recording.

endpoint references:{string} References to physical web service instances
has input parameter(Type) Web service input parameters

has output parameter(Type) Web service output parameters

has web service call(Web Service Call) Service execution entry

A web service may be described conceptually by a separate class Web Service,
defining its input and output parameters as well as a short textual description
of its task (see table 2). Similar to the provence model of Taverna [6], we de-
scribe services as stateless or stateful. Stateless services are assumed to produce
the same result for the same input parameters, while stateful services may re-
turn different results. The annotation is reasonable for both data quality and
optimization aspects. On the one hand, the execution of a process that solely
consists of stateless web service calls, is guaranteed to produce identical results
in each run. On the other hand, the runtime of a service is an important char-
acteristic. Provenance data of stateless steps may be recorded or re-materialized
on demand and thus the the results may be recorded or not depending on the
storage requirements and the computational complexity. We suggest to assign
runtime annotations to services in order to support optimized process execu-
tions. A web service may have several physical instances which are stored in the
collection of endpoint references. Each execution of a web service is recorded in
a Web Service Call instance by using predefined properties. The execution time
of a service call may be easily calculated as the difference of end timestamp and
start timestamp. The actual parameter values are mapped by the correspond-
ing has input and has output properties.

4 Querying Provenance Data

Querying transformation paths is a complex task that involves graph traversal
and filter operations. Therefore, we can utilize the expressiveness of ontologies
and the capabilities of ontology reasoners (e.g. Pellet). An ontology reasoner
may infer relationships by combining the structural knowledge of an ontology
(T-Box) with the information of actual instances (A-Box). If, for a certain re-
source (resourceB) all services and resources should be detected that have been
involved in producing the resource the query should return its detailed transfor-
mation path. As the sequence of web service calls is defined by transitive defined
m : has predecessor object properties, a reasoner is able to the deduce the entire
set of predecessors of a certain web service call. Afterwards, all web services and
associated input resources may be extracted by the following query:
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SELECT ?web_service ?resource WHERE {

?web_service_call0 rdf:type m:Web_Service_Call ;

?web_service_call m:has_output m:resourceB.

?web_service_call1 rdf:type m:Web_Service_Call ;

m:webservice_call_timestamp ?datetime .

m:service_call0 m:has_predecessor ?web_service_call1 .

?web_service rdf:type m:Web_Service;

m:has_call ?web_service_call.

?resource rdf:type m:Resource .

?web_service_call1 m:has_input ?resource .

}

ORDER BY ASC(?datetime)

The query returns a list of web service - resource pairs ordered by the execution
time of web service calls. Starting with the web service call ?web service call0
that produced the resource resourceB, all preceding web service calls are ex-
tracted as well as its associated input resources.

In the next example query, all contexts, in which a certain resource document 1
is shared, should be returned. However, we are only interested in contexts which
have an associated annotation text containing “liver cancer” or which have sub-
contexts with this annotation. SPARQL offers path-oriented filter patterns for
graphs allowing to select elements along predefined traversal paths Since con-
texts may be nested into each other up to an arbitrary depth, all sub-contexts
of a context may be identified by the inverted ˆm : is subcontext∗ property
pattern. No explicate reasoning step is executed in this case, as only the tran-
sitive closure of a single property is required, which may be determined by the
lightweight internal reasoner of Jena. Alternatively, an external reasoner can be
applied to infer all is subcontext relationships.

SELECT ?context ?annotation_text WHERE {

?context ^m:is_subcontext*/m:has_resource m:document_1 .

?context m:has_annotation/m:annotation_text ?annotation_text .

FILTER regex(?annotation_text, "liver cancer", "i")

}

5 Related Work

Much research has been done in the area of data provenance in recent years.
Foster et al. [3] proposed the Chimera virtual data system that is capable of
storing and tracing the transformations of scientific data. In contrast to the
Chimera approach we enhance our model with aspects of collaborative work
and support reasoning on meta data. Another provenance recording component
was developed for the Kepler system [1]. Kepler allows the definition of scien-
tific workflows by arranging tasks in sequences. Provenance data is collected for
workflow instances. The Kepler system allows to switch on and off the record-
ing of intermediate result. In our model, we distinguish between services that
are guaranteed to deliver the same results for given input parameters, and ser-
vices that can deliver divergent results. The scientific workflow system Taverna
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incorporated a data provenance model recently [6]. Two variants of the prove-
nance model are presented: firstly a baseline model that may be used to answer
typical data provenance queries. And secondly, an enhanced model that assigns
lightweight annotations to the processing steps. The former model represents the
data-flow along the executed workflow steps. Data dependencies are collected by
recording the input and output data in relations. In the enhanced provenance
model, the capabilities of the model are extended by semantic information.

In the work of [4] OWL-DL based meta data is used for the execution of
scientific workflows. This approach mainly concentrates on defining constraints
for workflow steps. Each step has input and output data types that may be
described by semantic annotations. In contrast, our model includes even more
fine-grained modeling of data, e.g. structured files or database records. While our
efforts are in the areas of process traceability and re-execution, their work enables
to validate processes. Rajbhandari et al. [13] presented how data provenance
can be captured in service-oriented architectures. The execution of services is
accomplished by a workflow engine, whereas each service call is protocoled by a
provenance capturing service. Though, the details of the model are not presented.
An interesting integration of provenance in workflows was proposed in [5]. The
presented architectures provides enhancement of workflows which are based on
semantic web services. Since this work was influenced by SOA/Grid research,
emphasis is put on definition and execution of workflows on service-oriented
architectures. There is an overlap with our data provenance model, since we also
capture service execution sequences as well as metadata about the input and
output parameters and support queries over both kind data. However, we have
integrated information about collaboration acts in the model. Thus, we are able
to answer queries that are beyond typical process-oriented views. Further, similar
contexts may be detected by taking into account collaboration information.

6 Conclusion

Research on data provenance has gained in importance in recent years. Par-
ticularly, in IT systems supporting research in natural sciences, the necessity
of tracing back data to its origins was recognized. We presented a semantic
data provenance model enhancing the capabilities of the medical CSCW sys-
tem GAMECS. We demonstrated, how the OWL-DL based model may answer
complex queries with the support of reasoners and path-traversal query patterns.
When combining process-related data with semantic, context-related data, novel
types of data provenance queries may be formulated that are beyond the typical
generation of data derivation paths. Semantic annotations allow to categorize
collaboration contexts, data, processes and services, making them comparable
to each other and enabling inference of tacit relationships between them. Using
data provenance information during process enactment is a promising approach
that may be handled in more detail in future work. For instance, strategies
are required determining which kind of intermediate results should be stored in
which locations in order to have an optimal execution performance.
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Abstract. A new static optimization method for object-oriented queries is 
presented. We deal with a special class of subqueries of a given query called 
“compound weakly dependent subqueries”. The dependency is considered in 
the context of SBQL non-algebraic query operators like selection, projection, 
join, etc. A subquery is weakly dependent from its nearest non-algebraic 
operator if it depends only on expressions that can be entirely evaluated on 
small collections. The subquery is considered compound if the dependency 
concerns at least two such expressions. The research follows the stack-based 
approach (SBA) to query languages and its query language SBQL (Stack-Based 
Query Language). Our optimization method is based on analyzing scoping and 
binding rules for names occurring in queries. 

Keywords: query optimization, weakly dependent subqueries, object-oriented 
database, stack-based approach, SBQL. 

1   Introduction 

Efficient query evaluation is a very desirable and frequently critical feature of 
database management systems. The performance can be supported by various 
methods (indices, parallel execution, etc.). In this paper we consider query 
optimization based on query rewriting. Rewriting means transforming a query q1 into 
a semantically equivalent query q2 ensuring much better performance. It consists in 
locating parts of a query matching some pattern. Such optimization is a compile time-
action performed before a query is executed. It requires performing a special phase 
called static analysis [10]. 

Our optimization method is based on the Stack-Based Approach (SBA) ([11], [12], 
[13]). SBA and its query language SBQL are the result of investigation into a uniform 
                                                           
1  The author is a scholarship holder of project entitled “Innovative education ...” supported by 

European Social Fund. 
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conceptual platform for an integrated query and programming language for object-
oriented databases. Currently a similar approach is developed in the Microsoft LINQ 
project [8] that integrates a query language with .Net programming languages (and 
recently with Java). One of the most important concepts of SBA is an environment 
stack (ENVS), known also as call stack. The approach respects the naming-scoping-
binding paradigm, what means that each name in a query or program code is bound to 
a suitable run-time entity (e.g. object, attribute, variable, procedure, view etc.) 
depending on the scope for the name. 

Analyzing query processing in the Stack-Based Approach it can be noticed that 
some subqueries are evaluated many times in loops implied by non-algebraic 
operators despite their results are the same in each loop iteration. This observation is 
the basis for an important query rewriting technique called the method of independent 
subqueries ([9]). It is also known from relational systems ([5], [6]) in a less general 
variant. In SBA this method is generalized for any kind of non-algebraic query 
operators and for very general object-oriented database model. 

In [3] we present the generalization of the independent subqueries method to 
cases in which the subquery is dependent from its nearest non-algebraic operator, 
but the dependency is specifically constrained. The dependency concerns only an 
expression that can be entirely evaluated on a small collection. The rewriting rule 
in [3] is relevant regardless of whether the values of a small collection are 
available or unavailable during the compilation time. The values can be also 
changed after the compilation. If the dependency concerns a name that is typed by 
enumeration then a simpler rewriting rule may be used (see [2]). This rule is based 
on a conditional statement using all enumerators that have to be known during the 
compilation time. 

In general, the dependency of a subquery from its nearest non-algebraic operator 
can concern two or more expressions dependent on small collections. The number of 
evaluations of such a subquery called “compound weakly dependent subquery” can be 
limited to the product of the sizes of these collections. The sizes of these collections 
should be significantly smaller in comparison to the collection size returned by the 
left subquery of the non-algebraic operator on which the subquery depends on. 
Comparing the sizes of collections enables the optimizer to check whether rewriting 
the query would guarantee better evaluation time. It implies introducing an efficient 
query evaluations cost model. 

The rest of the paper is organized as follows. Section 2 describes the general idea 
of the compound weakly dependent subqueries method. Section 3 presents the 
corresponding algorithm that we have developed for the system ODRA [1]. Section 4 
concludes. 

2   The Optimization Method 

To present SBA examples, we assume the class diagram (schema) presented in Fig.1. 
The classes Student, Project, Emp and Dept model projects implemented by students 
and supervised by employees working in departments. Names of classes (attributes, 
links, etc.) are followed by cardinality numbers (cardinality [1..1] is dropped). 
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Attributes sex of Person and job of Emp are of enumerated types. The first one takes 
values (“male”, “female”), the second one takes values (“analyst”, “programmer”, 
“tester”). 

 

Fig. 1. A schema of an example database 

2.1   Static Analysis of Queries 

In this subsection we briefly present the mechanism of static analysis [10] used in our 
optimization method. It is a compile-time mechanism that performs static type 
checking ([4], [7]) on the basis of abstract syntax trees (ASTs) of queries. The static 
analysis uses special data structures: a metabase, a static environment stack S_ENVS 
and a static query result stack S_QRES. These structures are compile-time equivalents 
of run-time structures: an object store, an environment stack ENVS and a query result 
stack QRES, correspondingly. S_ENVS models bindings (in particular opening new 
scopes and binding names) that are performed on ENVS. The process of accumulating 
intermediate and final query result on QRES is modeled by S_QRES. 

The main component of the metabase is a schema graph that is generated from a 
database schema. It contains nodes representing database entities (objects, attributes, 
classes, links, etc.) and interfaces of methods. The edges represent relationships 
between nodes. The graph nodes are identified by internal identifiers that are 
processed on static stacks. In our model the metabase stores also some statistical data. 
A node of the schema graph is associated with the estimated number of objects in the 
collection that is represented by the node. We designate it by NE(Entity), where Entity 
is a unique node identifier. For clarity, Entity will be represented by an object name 
instead of a node identifier (in general, however, this assumption is not adequate, as 
node names need not be unique). For instance, NE(Emp) = 1000, NE(Dept) = 10, 
NE(Student)=2000, NE(Project)=100, NE(Person) = 3000. 
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2.2   General Idea of the Optimization Method Involving Compound Weakly 
Dependent Subqueries 

The following example in SBQL illustrates the general idea of our method. The query 
gets employees having salary greater than the average salary calculated for employees 
working in their departments and having the same job. For the query below we 
determine binding levels for all the names and the numbers of stack sections opened 
by non-algebraic operators. 

Emp as e where e . sal > 
  1                2   2 3  3 

                 avg(e . worksIn . Dept . employs . (Emp where job=e . job) . sal) 
                          2 3      3     3    3  3     3       3     3           4      4  2 5  5   3  3 

(1) 

Consider the following subquery of query (1) 

avg(e.worksIn.Dept.employs.(Emp where job=e.job).sal) (2) 

The subquery (2) contains two names e that are bound in the 2nd stack section opened 
by the first where operator : in expression e.worksIn.Dept and in expression e.job. 
Hence the method of independent subqueries [9] cannot be applied. The method of 
queries involving large and small collections [3] cannot be applied too because it 
resolves dependency of subqueries concerning only one small collection. However the 
subquery (2) can be evaluated only 30 times instead of 1000 times. Therefore we have 
to develop a more general rewriting rule. After optimizing (1) it should take the 
following form: 

(((Dept as n1 join bag(“analyst”, “programmer”, “tester”) as n2) 
         join avg(n1.employs.(Emp where job=n2).sal) as n3) group as aux). 
(Emp as e where e.sal > (aux where e.worksIn.Dept=n1 and e.job=n2).n3) 

(3) 

Names n1, n2, n3 and aux are automatically chosen by the optimizer. In the two 
first lines of (3) before the last dot the query returns a bag named aux consisting of 30 
structures. Each structure has three fields: an identifier (of a Dept object) named n1, a 
name of the job named n2 and the average salary (named n3) calculated for 
employees having such job and working in this Dept. The last dot in the second line 
puts on top of ENVS a binder aux containing these structures. It is then used to 
calculate the query in the 3rd line. In this way average salaries are calculated three 
times for each department and they are used in the final query, as required. 

Detecting subqueries such as (2) consists in verifying in which ENVS sections the 
names occurring in a subquery are to be bound. The binding levels for names are 
compared to the scope numbers of non-algebraic operators. We take into 
consideration only subqueries (referred to as ”compound weakly dependent 
subqueries”) of a given query that depend from their direct non-algebraic operator 
only on expressions returning small collections. If the number being the product of 
sizes of these collections is quite a lot smaller than the collection size returned by the 
left subquery of this non-algebraic operator, then we decide to rewrite such a query. 
Comparing the sizes of collections is necessary to check whether rewriting the query 
would ensure better performance. The query (1) involves two subqueries connected 
by the where operator. The left subquery Emp as e returns 1000 elements (according 
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to the statistical data) and the right subquery (2) depends on the where operator on 
two expressions returning 10 and 3 elements, correspondingly. Hence it makes sense 
to rewrite (1) to the form (3). In this way the number of evaluations of the query (2) 
has been reduced to NE(Dept)*sizeof(enum_job)=30. 

An essential difficulty of the algorithm consists in detecting specific parts of a 
compound weakly dependent subquery like e.worksIn.Dept and e.job for (2). We have 
chosen these parts because they contain the name e that is bound in the scope opened 
by the where operator. Besides these parts depend on small collections only. Other 
names in a subquery like (2) cannot be bound in the scope of its left-side direct non-
algebraic operator. When the expression is typed by an enumeration (as in case of 
e.job) we use an explicit bag containing values of the enumerated type. 

To limit the number of evaluations of a subquery like (2) to the number of 
collection elements returned by the subquery (4) 

Dept as n1 join bag(“analyst”, “programmer”, “tester”) as n2 (4) 

we factor a subquery like (5) 

(Dept as n1 join bag(”analyst”,”programmer”, ”tester”) as n2) 
                                  join avg(n1.employs.(Emp where job=n2).sal) as n3 

(5) 

out of the first where operator in (1). Query (5) is named with the auxiliary name aux. 
Then this name, as well as previously introduced names, are used to rewrite the 
subquery (2) to the form: 

(aux where e.worksIn.Dept=n1 and e.job=n2).n3 (6) 

The query (6) returns for each employee the average salary calculated for employees 
working in his/her department and having the same job. 

The method is experimentally tested within the ODRA system [1]. In the case of 
the query (1), the gain for a collection of 1000 employee objects is 10 times faster 
execution and the gain for 10000 employee objects is 118 times faster execution. 

2.3   More General Case 

The presented optimization method makes it possible to rewrite arbitrary compound 
weakly dependent subqueries. After rewriting such a subquery can be factored out of 
any non-algebraic operator. Besides, in general a query can contain several weakly 
dependent subqueries. Recursive application of our method enables rewriting all 
weakly dependent subqueries. At first, subqueries which are under the scope of the 
most nested non-algebraic operators are rewritten. The following example illustrates 
the generality of our method. 

∃ Student as s (count(s .implements.Project.supervisedBy.(Emp where age> 
2      1                        2  3       3       3    3     3        3           3    3        4      4 
              avg(worksIn.Dept.employs.(Emp where sex=s .sex).age)))>0) 

                      4   5   5  5     5    5    5           6       6  2 7 7  5  5 

(7) 

The above query returns true if at least one student implemented a project that was 
supervised by an employee satisfying the following criterion: the age of this employee 
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must be greater than the average age calculated for employees working in his/her 
department and having the same sex as the given student. 

Note that entire right-hand subquery of the quantifier is weakly dependent from it. 
Both expressions (s.implements.Project and s.sex) contain the name s that is bound in 
the 2nd stack section opened by the quantifier and depend on small collections. 
However the right-hand subquery of the quantifier also contains the subquery: 

avg(worksIn.Dept.employs.(Emp where sex=s .sex).age) (8) 

that is weakly dependent from the first where operator. The name worksIn in (8) is 
bound in the scope opened by this operator and denotes a pointer link to an element of 
a small collection of Dept objects. After rewriting the nested weakly dependent query 
(8) the query (7) takes the following form: 

∃ Student as s (count(s.implements.Project.supervisedBy.(((Dept as n1 join   
          avg(n1.employs.(Emp where sex=s.sex).age) as n2)  group as aux1). 
(Emp where age>(aux1 where worksIn.Dept=n1).n2)))>0) 

(9) 

Now the query (9) contains only one weakly dependent subquery: it is the entire right 
subquery of the quantifier. Applying the transformation to (9) we obtain the following 
query: 

(((bag("male","female") as n3 join Project as n4) join     
      (count(n4.supervisedBy.(((Dept as n1 join avg(n1.employs.( Emp where   
                     sex=n3).age) as n2) group as aux1).(Emp where age> 
     (aux1 where worksIn.Dept=n1).n2)))>0) as n5) group as aux2).(forsome   
         (Student as s) ((aux2 where s.implements.Project=n4 and s.sex=n3).n5)) 

(10) 

The form (10) terminates the optimization action – no further optimization by means 
of our method is possible. 

2.4   General Rewriting Rule 

The general rewriting rule for queries involving compound weakly dependent 
subqueries can be formulated as follows. Let q1 θ q2 be a query connecting two 
subqueries by a non-algebraic operator θ. Let q2 has the form: 
q2 = α1 ◦ cwds(β1(C1), β2(C2),…, βk(Ck)) ◦ α2; k≥1, α1 and α2 are some parts of q2 
(maybe empty), ◦ is a concatenation of strings, cwds(β1(C1), β2(C2),…, βk(Ck)) is a 
compound weakly dependent subquery where each part βi (i=1..k) depends on θ only 
and contains a name Ci that is bound to an element of a small collection. Each βi(Ci) 
must be of the same type as the type of the collection of Ci elements. Then the query: 

q1 θ α1 ◦ cwds(β1(C1), β2(C2),…, βk(Ck)) ◦ α2 (11) 

can be rewritten to: 

(((C1 as sc1 join C2 as sc2 join…join Ck as sck) 
                      join cwds(sc1, sc2,…, sck) as aux1) group as aux2). 
                          (q1 θ α1 ◦ ((aux2 where sc1 = β1(C1) and sc2 = β2(C2) and… 
                               and sck = βk(Ck)).aux1) ◦ α2)               

(12) 
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The general idea consists in limiting the number of processings of a compound 
weakly dependent subquery cwds(β1(C1), β2(C2),…, βk(Ck)) to the number that is the 
product of the sizes of collections Ci (i=1..k) occurring in βi. It is aimed by 
introducing an additional query with the join operator that is independent of θ. The 
entire result of this query is named aux2. It is a bag of structures struct{(sc1(c1), 
sc2(c2),..., sck(ck)), aux2(cw)}, where ci (i=1..k) is an element of a bag returned by the 
name Ci and cw is an element returned by cwds(sc1, sc2,…, sck). The bag is then used 
(after the dot) to construct the query (aux2 where sc1 = β1(C1) and sc2 = β2(C2) 
and…and sck = βk(Ck)).aux1. It replaces the compound weakly dependent 
cwds(β1(C1), β2(C2),…, βk(Ck)) of (11). If some expression βi(Ci) is typed by an 
enumeration then instead of the collection name Ci the bag that consists of all the 
values of an enumerated type is used in (12). 

3   The Rewriting Algorithm 

The rewriting based on the rules (11) and (12) is accomplished by five recursive 
procedures. For the paper space limit we present only their signatures: 

• optimizeQuery(q:ASTtype) – it applies the queriesInvolvingCWDSMethod 
procedure to AST node q as long as q contains subqueries depending on their non-
algebraic operators only on expressions returning small collections. 

• queriesInvolvingCWDSMethod(q:ASTtype) – it recursively traverses AST starting 
from node q and applies the applyQueriesInvolvingCWDSMethod procedure. If the 
procedure meets a non-algebraic operator then its right and left queries are visited 
by the same procedure. At first compound weakly dependent subqueries which are 
under the scope of the most nested non-algebraic operators will be rewritten. 

• applyQueriesInvolvingCWDSMethod(θ:ASTtype) – it transforms according to 
rewriting rule (12) all right-hand subqueries of non-algebraic operator θ that 
depend on it only on expressions returning collections for which the number being 
the product of their sizes is small than the collection size returned by the left-hand 
subquery of the θ operator. 

• findCWDS(θ:ASTtype,q:ASTtype): (ASTtype, ASTtype) – it applies the getCWDS 
function as long as the function returns a subquery of q (maybe the whole q) that is 
compound weakly dependent from θ. 

• getCWDS(θ:ASTtype,q:ASTtype): (ASTtype, ASTtype) – it detects parts of query q 
that are dependent from θ operator on single names. Other names in the query 
cannot be in the scope of θ. If the dependency concerns expressions returning small 
collections or typed by enumerations then the function returns the query q and its 
dependent parts. 

4   Conclusions and Future Work 

We have presented a query optimization method which was aimed at minimizing the 
number of evaluations of compound weakly dependent subqueries. Our rewriting rule 
is very general, it works for any non-algebraic operator and for any data model 
(assuming that its semantics would be expressed in terms of SBA). The rule makes 
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also no assumptions concerning what the compound weakly dependent subquery 
returns: it may return a reference to an object, a single value, a structure, a collection 
of references, a collection of values, a collection of structures, etc. Finally the rule 
makes rewrites for arbitrarily complex nested subqueries regardless of their left and 
right contexts. 

The algorithm applied repeatedly detects and resolves all the possible compound 
weakly dependent subqueries in a query. Besides some subquery can be dependent 
from several non-algebraic operators, hence in each iteration of the algorithm the 
subquery is transformed and factored out of a next one. The prototype rewriting 
algorithm has been implemented by us in the ODRA system. We have to perform 
many experimental tests to confirm the efficiency of this algorithm. We also plan to 
implement another optimization variant that does not depend on a cost model. 
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Abstract. A predicate in an XPath query expresses a condition to be fulfilled in 
addition to the structural constraint imposed by the path itself. The condition is 
a Boolean expression. It may involve comparisons between elements and 
values, path expressions denoting elements to be compared as well as further 
path expressions. In this paper, we are concerned with the semantic 
transformation of such predicates in the presence of a schema for the XML 
data.  The goal of this semantic transformation is to eliminate the predicates 
from the XPath query if possible in order to avoid the early, unnecessary query 
processing. Otherwise, if predicates are retained, we show how they can be 
semantically transformed to boost efficiency and reduce resource utilization. An 
algorithm is proposed to determine whether predicates should be eliminated or 
retained. We implement the proposed transformations and empirically evaluate 
their efficiency and effectiveness as semantic query optimization devices. 

Keywords: Semantic Transformation, XML Query Processing, XPath. 

1   Introduction and Motivation 

A predicate in an XPath query expresses a condition to be fulfilled in addition to the 
structural constraint imposed by the path itself. The condition is a Boolean 
expression. It may involve comparisons between elements and values, path 
expressions denoting elements to be compared as well as further path expressions.  
Let us consider the following XPath query:  

 
//contract[supervisor = /company//perm/@id and age <=52] 

 
Assuming self-explanatory XML data with a clear intended meaning of the 

element names and structure, this XPath query lists “all contract details where each 
contract has a supervisor who is also a permanent employee and contract age is not 
more than 52”. The elementary predicate involves a comparison of an element 
‘supervisor’ and an absolute path ‘/company//perm/@id’ as well as a comparison of 
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an element ‘age’ with a constant value range 52.  The multiple conditions are 
connected with a conjunction ‘AND’.  

The XPath query in the example above can be transformed, under the knowledge 
of different constraints, for example structure, cardinality, foreign key and inclusion, 
in the XML schema.  Semantic query transformation precisely takes advantage of 
such structural and explicit constraints defined in the XML schema to transform the 
query.  

One of the benefits of semantic transformation is to detect and remove any 
redundancy in the query that may impact upon performance.  Assume that the 
constraints in the schema allow us to eliminate the predicate [supervisor = 

‘company//perm/@id’ and age < =52] from the XPath query, which now is 
simplified to ‘//contract’.  The actual performance improvement between this 
query ‘//contract’ and the original query //contract[supervisor = 

/company//perm/@id and age <=52] is demonstrated later in this paper. 
In the above example, the predicate has been completely removed. This is known 

as predicate elimination, which is a common and practical semantic query 
optimization for relational databases. However, in XML an query, the structure of the 
data must be taken into account: the semantic transformation involves decisions about 
both the tree pattern structure and the values of the data. 

Our motivation is to leverage the schema of XML data to propose a semantic 
transformation typology to deal with complex Boolean predicates in the XPath query. 
The fragment of XPath query studied in this work includes (“/”, “//”, “[]” or “*”).  
The semantic transformation takes into consideration of that the two XPath queries 
are equivalent if and only if they yield the same result set.   

The semantic transformation aims to improve the performance of query evaluation, 
which can be achieved by either removing the predicate if verification of constraints 
used by the predicate is qualified or by eliminating some redundancies in the 
predicate. We then evaluate the effectiveness and efficiency of the resulting semantic 
transformation framework for XPath queries using five XML data sets of different 
sizes and associated schema.  We adopt a representative XML-enabled (we use the 
vendor extension) off-the-shelf commercial relational database management system to 
perform our experimentation.  

Roadmap. Following the motivation and introduction, in Section 2, we provide an 
overview of related works. Our semantic transformation including a status 
determination function and its algorithm and rules is presented in Section 3.  We 
discuss the implementation setting and analyze the result in Section 4.  We conclude 
this paper in Section 5. 

2   Related Work 

We are clearly concerned with semantic query optimization [1, 5, 10, 12] and the 
satisfiability problem [2, 3, 11, 7, 8]. The authors of [9] consider a predicate that covers 
mostly simple elements with values. The ‘Raindrop’ project [13, 14] demonstrated the 
concept of rewriting XQuery, but it overlooked semantic rewriting, as binding 
variables in XQuery must be handled properly prior to detecting the path for writing. 
This contributes to the delay of the rewriting time. As far as predicate rewriting 
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is concerned, this paper proposes conditional elements with a single value, while the 
conjunctive or disjunctive merging of multiple conditions is not addressed. Previous 
work, such as [2, 17], is limited to inclusion, exclusion and enumeration of XML 
schema constraints. We now explore opportunities to work on a complex type of 
predicate, such as merging conditions. 

In relation to a schema-based approach, the schema information is also used to 
study satisfiability problems. The work in [6, 7, 8, 17]  uses the information in the 
schema to eliminate the wildcard in the XPath query. These approaches focused on 
the replacement of the wildcard by a specific nodes test and by eliminating the 
recursive axis. This can be done when the path can be easily mapped to a schema 
path, and the set of schema paths is computed through the XSchema-XPath evaluator.  

Although these proposed techniques do not directly discuss XML query semantic 
transformation, they have a direction similar to that of our work. The difference 
between our technique and the existing work is that while we pre-process the XML 
schema and derive all available schema paths, the existing work [2, 6, 7, 8, 16] 
processed schema paths only when a user XPath query is given for constraint 
checking. This means that there is potentially a long delay, as the schema needs to be 
processed as a whole each time there is a new query requirement. Our technique may 
initially take longer; however, the schema pre-processing is done only once, and 
hence, the transformation process for any XML query will be much quicker. 

The introduction of schema constraints utilization [4, 15] provides a set of rules 
for transforming the structural types of queries to the equivalent ones with the aim 
of achieving a better performance. ‘Structural’ query type means a query tree such 
as an XPath query that allows no predicate; hence, no predicate was addressed in 
this work [4].  

The paper first explored a typology of structural transformations that utilize a 
structural constraint such as unique path [4]. This constraint is commonly seen and 
expressed in any given XML schema. Our work leverages the task of transformation 
so that semantic transformation can be achieved with highly effective results. We 
focus on the semantic transformation work for transforming predicates in an XPath 
query. 

3   Semantic Transformations 

Semantic transformation for XPath predicates requires multiple constraints including 
structure and various leaf-node element constraints. It is imperative that the awarding 
of status (e.g. ‘full-qualifier’ or ‘partial-qualified’) is accurate.   

3.1   Status Determination for a Predicate 

We propose a function, see Algorithm 1 for full details, to determine the status of a 
predicate in XPath before it is transformed. 
 

 
 ε(lR)→ Rs 

S → (Q, C)
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The function ε ,  accepts the input lR and transforms it to Rs by using information 
S(Q, C). R is a predicate, and R = [r1 (⊥) r2 (⊥) ... (⊥)rn], where r1, r2, 
r3,…,rn is a series of restriction and ⊥ is the logical operator AND/OR; l is an 
outer-focus1 of a predicate; Q is a list of unique paths, each of which is a structural 
constraint; C is a list of schema constraints that contains a set of elements and their 
associated constraints. Both Q and C are derived from schema S. They are the global 
data structured lists, which are constructed by a function called 
pre_processing_schema[4]. This function processes all constraints/semantics defined 
in the given schemas and stores them in Q and C. 

The function ε returns a status such as conflict-qualifier, full-qualifier or partial-
qualifier.  

 
  
 

1, ∝ 

perm 

1, ∝ 

company

dname 

staffList

depart

name

address

age city
status

1, ∝ 
contract

email

1,5 
1,5 

1, ∝ 

n,m 

Attribute Note 
 
Type Node 
 
Leaf Node 
 
Occurrence 
 
 

name 

location

1, 2 

@id
1,3

lastname 
firstname

1,2  

phone

address1,2 

edate

duration

fcontact 

pcontact 

supervisor

 

Fig. 1. An outline of  XML Schema Fragment for a Company Structure in a Graphical View 

Example 1. Below, we demonstrate an XPath query (refer to Figure 1) p = 
//contract[supervisor = ‘/company//perm/@id’]/name. In this example, we 
demonstrate the predicate R = [supervisor = ‘/company//perm/@id’] where its 
status needs to be identified as a partial-qualifier or a full-qualifier predicate.   

As shown, predicate R contains a restriction r which is a comparison of the value of 
the “supervisor” element with an absolute path ‘/company//perm/@id’. By 
applying the function ε , it first verifies if ‘//contract/supervisor’ is a subset of a 
unique path in list Q. Second, the function also verifies whether ‘supervisor’ is 
referenced to ‘permkey’ in constraint list C. As the result, function ε  finds that 
‘//contract/supervisor’ is a subset of the unique path 
‘company/depart/staffList/contract/supervisor’ in list Q and ‘supervisor’ 
refers to ‘permkey’, an ID of a permanent employee. The algorithm also evaluates 
‘/company//perm/@id’ to ensure the correctness of the path expression.  As a result, 
it awards the restriction ‘FQ’ status, hence R is a ‘full-qualifier’. 
                                                           
1 An outer-focus is an element which externally associates with the predicate. 
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Algorithm 1. Status Determination for a Predicate 

01: INPUT: lR, C, Q         
02: OUTPUT: sR  
03: BEGIN 
04:  Let CF be ‘conflict’, FQ be ‘full-qualifier’, PQ be ‘partial-qualifier’,  
       λ be a comparison operator (<,>,=, ≥), q be a unique path in Q list, tempv is a temp variable. 
05:  For each lr not yet being evaluated in lR   
06:   IF semantic_path_match(lr) ⊄ q  exists in Q THEN  
07:         lr:=’CF’ 
08:   ELSE  
09:      CASE lr contains no v ; set lr:=‘FQ’  
10:      CASE lr contain v  
11:        Match v of e in lr to v of e in C  
12:        IF v of e in lr do not match ∀v of e in C THEN set r:=‘CF ’ 
13:         ELSE IF v of e in lr matches ∀v of same e in C  THEN set r:=‘FQ ’  
14:         ELSE IF v of e in lr matches ∃v of same e in C THEN lr:=‘PQ’;lr:=’checked’;   
            tempv:=v 
15:             For lr not yet processed in lR                         
16:                IF found lr has the same partial-path as tempr has THEN  
17:                       tempv:=v ∪ tempv; lr:=’checked’  
18:                 IF tempv of e matches ∀v of same e in C   AND exist λ = 'OR'  THEN  
19:                    Replace all ’checked’ with ‘FQ’ 
20:              ELSE IF tempv of e matches ∃v of same e in C AND (exist λ ='OR' or no λ)   THEN  
21:                     Replace all ’checked’ with ‘PQ’ 
22:              ELSE Replace all ’checked’ with ‘CF’ 
23:       CASE lr contain v AND v is a path expression 
24:         IF(v ⊆ q  in Q ) AND v of e in lr matches ∀v  of same e in C  THEN 
25:            r:=‘FQ’ 
26:         ELSE lr:=‘CF’ 
27:  IF exist only ’PQ’AND exist ⊥ or not exist ⊥  in R THEN sR:=‘PQ’ 
28:  ELSE IF exist only ‘FQ’ AND exist ⊥ or not exist ⊥ in R  THEN sR:=‘FQ’ 
29:  ELSE IF exist ’PQ’,‘FQ’,‘CF’ AND exist ⊥ in R  THEN            
30:     DO WHILE exist next_status in R 
31:       result_status:= ‘FQ’ IF status is ‘FQ’ AND next_status is ‘CF’ AND ⊥ is ‘OR’  
32:       result_status := ‘PQ’ IF status is ‘PQ’ AND next_status is ‘CF’ AND ⊥ is ‘OR’  
33:        result_status := ‘CQ’ IF status is ‘FQ’ or ‘PQ’AND next_status is ‘CF’ AND ⊥ is ‘AND’ 
34:       status is = result_status; next_status is the status after next_status 
35:     LOOP 
36:     sR := result_status  

3.2   Semantic Transformation Rule After Status Determination 

A predicate with ‘FQ’ status may be retained in the XPath query if it does not satisfy 
certain rules (presented below). A predicate with ‘PQ’ status cannot be removed; 
however, we can semantically transform it to another expression [4] where possible, 
to boost the query processing efficiency. We propose a rule to finalize the predicate, 
based on the status below. 

Rule 1. Semantic transformation for predicate. Let R be a predicate in XPath query 
P,  

1. Predicate elimination: If a predicate R is awarded FQ status and the 
comparison element in each restriction also exists in the schema constraint 
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list C. and the comparison element has a minimal occurrence value of at 
least1, then R is removed from P. 

2. Predicate transformation: If R is awarded either PQ or FQ status where a 
comparison element of each restriction in R has a minimal cardinality at least 
0, R cannot be removed but can be further transformed [4] 

4   Implementation Overview and Empirical Evaluation 

This section describes the implementation and empirical evaluation.  

4.1   Implementation 

We describe the implementation in terms of hardware and sofware: (1) the hardware  
includes a machine that has a configuration of AMD Athlon 64 3200+, 2300 MHz and 
3.0 GB of RAM; and (2) the software includes Windows XP Professional OS and 
Java VM 1.6. We use a commercial relational database system that is XML-enabled 
and use their provided database connection driver to connect to our algorithm 
modules. We use five synthetic datasets (compliant with the schema shown in Figure 
1) of varying sizes: 20, 40, 60, 80 and 100 megabytes.  We run a series of queries for 
each data set.    

Our actual workload is composed of XPath queries.  For each category, we select 
one or two queries to illustrate the result.  We show the original query and the result 
of query rewriting after our semantic transformation algorithms transform the query. 
 
Original Query 1 //depart/staffList[perm/phone or perm/age < 53]  
Transformed Query 1 //depart/staffList 
Original Query 2 //contract[supervisor = ‘/company//perm/@id’]/name 
Transformed Query 2 //contract/name  
Original Query 3 company/depart[//perm/age = 35]/name  
Transformed Query 3 company/depart[staffList/perm/age = 35]/name') 
Original Query 4 company/depart/staffList/contract[duration = 2 and age> 
18]/name 
Transformed Query 4 /company/depart/staffList/contract/name 

 
As mentioned in the previous section, the schema has been pre-processed prior to 

the queries being issued. The first four XPath proved valid, therefore, there are 
semantic XPath queries produced. The fifth query is an invalid type, which results in 
no semantic query being produced and hence, there is no need to access the database. 

4.2   Empirical Evaluation 

The results of the queries above are graphed in Figure 2. Each graph shows the results 
of two queries: the first result is the time that is taken to access the database by the 
original query and the second result is the total of the transformation time and 
accessing the database time by its associated semantic XPath.  

In the comparison of partial Path with constant & connective (Query 1) we 
demonstrate the multiple conditions joined by a ‘or’ connective. The predicate is 
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completely eliminated from the XPath query. The semantic query performance is 
slightly improved between 7 and 10%, compared to the performance of the original 
XPath. We also note that the gain increases as data size increases.  

In Query 4 we demonstrate the connective for this XPath query is ‘and’.  The 
semantic query performance is not significantly improved but does not indicate a 
downgrade of performance.  

In the comparison of partial path with absolute path (Query 2), we demonstrate 
the predicate that has a restricted element ‘supervisor’ of contract employees, who 
must be a permanent employee. The verification confirms the predicate has full-
qualifier status. The predicate has been completely removed due to the minimal 
cardinality of ‘supervisor’ being 1. The performance is improved by between 45 and 
79%, compared to the performance of the original XPath. We also note that the gain 
increases significantly as data size increases.  

In the comparison of partial path with constant & no connective (Query 3), 
unlike query 1 and 2, we demonstrate the descendant-or-self ‘//’ hierarchical 
relationship with no connectives in the predicate. In the predicate, only employees 
who are 35 years old are needed. This means that a value of 35 is only part of the 
restricted values. 
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Fig. 2. Query Performance 

The semantic query performance is significantly improved by between 40 and 78% 
(the gain significantly increases as the size increases), compared to the performance 
of the original XPath.  

5   Conclusion and Future Work  

In this paper, we propose a semantic query transformation for predicates. We focus on 
predicates that not only have multiple conditions but also are such that each condition 
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has path and values combined. We show empirically that the proposed transformations 
provide effective and promising opportunities to improve the performance of XPath 
query evaluation. Our objective is to ultimately offer a comprehensive semantic query 
optimization framework for XML databases. This is necessary since vendors are 
proposing versatile and opaque solutions that do not allow intrusive or even fine-grain 
optimization techniques. Our vision is one of the loosely-coupled semantic 
optimizations that respect vendors’ autonomy while bringing significant benefits to the 
user. 
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Abstract. Query rewrite (QRW) optimizations apply algebraic transformations 
to a SQL query Q producing another SQL query Q’ such that Q and Q’ are se-
mantically equivalent (i.e. produce the same result) but Q’ can be executed 
more efficiently than Q. Merging views (as well as derived tables) to their par-
ent SQL block is an important part of QRW which creates more opportunities 
for numerous other query optimizations like optimal join order and enabling 
other rewrites like redundant join elimination. This paper presents novel and 
practical techniques of view merging in the presence of outer joins which are 
implemented in the Teradata 12.0 DBMS. We also present experimental results 
that demonstrate performance improvements achieved using these techniques. 

1   Introduction 

The growing sophistication of business intelligence applications developed on top of 
relational DBMSs is tremendously increasing the complexity of automatically gener-
ated queries submitted to the DBMS.  Nowadays, it is not unusual to see SQL queries 
that span hundreds of lines. A common feature of these SQL queries is that they are 
inefficiently composed as compared to, for example, a semantically equivalent query 
that may be produced by a knowledgeable SQL programmer. This is partly the result 
of multiple layers of abstraction that are required by applications.  For example, in 
data warehousing, numerous views and derived tables can be used for security rea-
sons, for implementing business rules and semantic layers or for capturing complex 
intermediate results.  

Merging views and derived tables, which we will henceforth simply call views, to 
their referencing SQL blocks is an important query rewrite (QRW) optimization. 
View merging reduces query complexity and enables more efficient global join order-
ing of the relations within the view and the referencing query; view merging allows 
the query optimizer to pick a join order that does not have to first join the relations 
inside the view, if doing so turned out to be non-optimal. There are numerous other 
benefits of view merging such as enabling other rewrites, such as redundant join 
elimination, and reducing the number of query blocks thereby eliminating the need for 
predicate move around and associated overhead of inter-block optimizations.  

The basic philosophy in Teradata is that view merging rewrite should be rule based 
and must be exploited whenever semantically possible.  This approach is based on the 
observation that, from the overall query optimization perspective, the search space 
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that includes spooled views is a subset of the search space where views are merged. In 
the Teradata DBMS, views with no aggregation, statistical window functions or sam-
pling are always merged regardless of the structure of the view referencing block. In 
some cases, views with aggregations, statistical window functions or sampling are 
also merged. The Teradata DBMS also merges majority of views containing outer 
joins in either their own definition or in their referencing query. This is an interesting 
capability because merging views involving outer joins poses a number of challenges 
including how to correctly merge the WHERE clause of a view. This requires deter-
mining whether to merge the WHERE clause of a view to the containing block’s 
WHERE clause or one of its ON clauses. Such issues are particularly intricate when a 
view is on the null-supplying side of an outer join, and the challenges are further 
compounded when such a view contains one or more null-sensitive expressions 
(NSE’s), which will be defined below. In this paper, we focus on merging such views 
by identifying the semantic requirements that may force view materialization and 
devising SQL rewrites to merge them without violating these requirements. 

2   Problem Definition 

As mentioned in the previous section, the focus of this paper is on view merging in 
the presence of outer joins where the null supplying side is a view with NSE’s. 
Before addressing this case, we describe how view merging is performed in the 
presence of outer joins using a simple example illustrated by query Q1 below. This 
query is based on the TPC-H data model which we will be using throughout the 
paper. The TPC-H data model consists of 8 tables covering eight years of data from 
a retail application (see [11] for full description). The main tables are orders and 
its child table lineitem. The orders table has the column o_custkey referenc-
ing the customer table and although o_custkey is not nullable, some customers 
do not have orders. 

 
Q1: SELECT DT.y  
    FROM customer LEFT JOIN 
         ( SELECT o_custkey, o_orderkey  
           FROM ordertbl 
         ) DT(x,y) 
         ON c_custkey=DT.x; 
 

Q1 is a very simple query where the view is the null supplying side of the outer join 
and it consists of a single table. Merging DT to the main query produces Q1’ below:  

 
Q1’: SELECT o_orderkey as y 
     FROM customer LEFT JOIN ordertbl  
     ON c_custkey=o_custkey; 

 
Q1’ is produced by “gluing” the definition of the view to the main query. In this 

case the view is a retrieve from a single table and the view reference is replaced by 
the table reference. Q2 below illustrates a more complex case of view folding where 
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the view has outer joins and a WHERE clause. Q2’ is the rewritten Q2 after applying 
view folding. 

 
Q2: SELECT DT.y  
    FROM customer LEFT JOIN 
        ( SELECT o_custkey, o_orderkey  
          FROM ordertbl LEFT JOIN lineitem ON l_orderkey = o_orderkey  
          WHERE o_comment like ‘%urgent%’ 
        ) DT(x,y) 
        ON c_custkey=DT.x; 
 
 
Q2’: SELECT o_orderkey as y 
     FROM customer LEFT JOIN  
          (ordertbl  LEFT JOIN lineitem ON l_orderkey = o_orderkey)  
           ON c_custkey=o_custkey AND o_comment like ‘%urgent%’; 
 

In Q2’, DT’s definition is also glued to the main query by merging the join clause of 
the view to the join clause of the referencing query. Note that the WHERE clause of 
DT is merged to the ON clause of the referencing query. The reason is that, semanti-
cally, a predicate from an ON clause can be applied on the null supplying side of the 
outer join before executing the outer join. Hence, the result in Q2’ is semantically 
equivalent to executing the WHERE clause before the outer join between DT and 
customer, as specified in Q2. Note that if DT was not on the null supplying side, 
then the WHERE clause of DT would merge with the WHERE clause of the referenc-
ing query instead of the ON clause of the referencing query.  

Although the above examples we used to illustrate the semantics of view merging in 
the presence of outer joins only included simple views, note that view merging in 
Teradata covers more complex cases where the view and/or query have aggregations, 
window statistical functions, and so on. The detail of such cases is outside the scope 
of this paper.  

Next we show that if the view has NSE’s and the view is on the null supplying side 
of an outer join, the aforementioned merging logic may not work correctly. Consider 
Q3 and Q4 below which illustrate this semantic problem:  

 
Q3: SELECT DT.y  
    FROM customer LEFT JOIN 
         ( SELECT o_custkey, 'const' FROM ordertbl 
         ) DT(x,y) 
         ON c_custkey=DT.x; 
 
Q4: SELECT DT.y  
    FROM nation LEFT JOIN 
        ( SELECT c_nationkey, COALESCE(o_clerk,'AAA')  
          FROM customer LEFT JOIN ordertbl ON c_custkey=o_custkey 
        ) DT(x,y) 
        ON n_nationkey=DT.x; 
 

The straightforward merging of the view DT in Q3 and Q4 produces Q3’ and Q4’ 
below: 

 
Q3’:SELECT ‘const’AS y  
    FROM customer LEFT JOIN ordertbl ON c_custkey = o_custkey; 
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Q4’:SELECT COALESCE (o_clerk,'AAA') AS y  
    FROM (customer LEFT JOIN ordertbl ON c_custkey= o_custkey)  
          LEFT JOIN nation ON n_nationkey =c_nationkey; 

Q3’ is an incorrect rewrite since it may produce different results than Q3 for the 
constant expression; Q3 requires the constant expression to have nulls in the final 
result for un-matching rows of ordertbbl but Q3’ will produce constants for such 
rows. Likewise in Q4, the rewrite in Q4’ is an incorrect rewrite since it may produce 
different results than Q4 for the coalesce expression. We refer to constant expressions 
and expressions like coalesce as null sensitive expressions (NSE’s).  

One may consider avoiding the semantic problem caused by the NSE in queries like 
Q4’ by disallowing the join order that first joins nation and customer and force the 
join planner to evaluate NSEs at specific points and materialize the results. However, 
this solution is not transparent to the join planner and it also defeats the purpose of 
merging DT.   

3   Teradata’s Solution 

The solution involves picking a base relation among the relations in the view that 
represents the view, which will disappear after merging, and associating the NSE’s to 
this relation. Specifically, we encapsulate NSE’s by a CASE expression in the merged 
query that returns nulls for the view’s non-matching rows and returns the NSE itself 
for the matching rows. For example, Q3 can be rewritten as:  

 
 Q3’’: SELECT CASE WHEN ordertbl.rowid IS NULL 
              THEN NULL ELSE 'const' END as y 
       FROM customer LEFT JOIN ordertbl ON c_custkey=o_custkey; 
 

Similarly, Q4 can be rewritten as: 
 
Q4’’: SELECT CASE WHEN customer.rowid IS NULL THEN NULL 
             ELSE COALESCE(o_clerk,'AAA') END AS y 
       FROM nation LEFT JOIN  
            (customer LEFT JOIN ordertbl ON c_custkey=o_custkey) 
            ON n_nationkey=c_nationkey; 
 

In general, the case expressions is rewritten as CASE WHEN <,relation>.non-
nullable-field IS NULL) THEN (NULL) ELSE (NSE) END). The rewrite basically 
checks whether a non-nullable field (a field that is defined to not have nulls before the 
outer join) is null after the outer join. If it is null for a row, then it means the row is 
part of the non-matching result and the NULL result is produced in that case. Other-
wise, it is a matching row and the original NSE is used for the result. We used rowid 
(the relation row identifier) as the non-nullable field since it is always not null.  

Next we briefly discuss the basic strategy for picking the relation that represents the 
view in the CASE expression once the view is merged. In Q3, ordertbl table  
is used to represent the view and it is obvious that the join between customer and 
ordertbl is non-matching if and only if the join between customer and DT is  
non-matching. For Q4, customer table is picked to represent DT since it is not a null 
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supplying relation of any join in the view and therefore can represent the view. If the 
view has a full outer join (at the highest level) then both relations of the full outer join 
need to be used in the case expression. For example, consider Q5, a variant of Q4 
with a full outer join instead of the left outer join in DT. The merging of DT in Q5 
below results in Q5’ where both customer and ordertbl are considered outer 
most relations.  

 
Q5: SELECT DT.y FROM nation LEFT JOIN 
   (SELECT c_nationkey, COALESCE(o_clerk,'AAA') FROM customer 
    FULL JOIN ordertbl ON c_custkey=o_custkey) DT(x,y) 
    ON n_nationkey=DT.x; 
 
Q5’: SELECT CASE  
              WHEN customer.rowid IS NULL AND ordertbl.rowid IS NULL  
              THEN NULL  
              ELSE COALESCE(o_clerk,'AAA')  
            END AS y 
     FROM  nation LEFT JOIN  
          (customer FULL JOIN ordertbl ON c_custkey=o_custkey) 
           ON n_nationkey=c_nationkey; 
 

If the outermost join in the view is an inner join, then either side can be used to rep-
resent the view in the CASE expression. We use Q6 and Q6’ below to show such 
cases. Q6 is similar to Q4 and Q5 but with an inner join in the view definition. Either 
ordertbl or customer table can be used as the outer most table in DT; we picked 
the ordertbl table in Q6’: 

 
Q6: SELECT DT.y  
    FROM nation LEFT JOIN 
         ( SELECT c_nationkey, COALESCE(o_clerk,'AAA')  
    FROM customer INNER JOIN  
         ordertbl ON c_custkey=o_custkey 
    ) DT(x,y) 
    ON n_nationkey=DT.x; 
 
Q6’: SELECT CASE  
               WHEN ordertbl.rowid IS NULL THEN NULL 
            ELSE COALESCE(o_clerk,'AAA')  
            END AS y 
     FROM nation LEFT JOIN  
          (customer INNER JOIN ordertbl ON c_custkey=o_custkey) 
           ON n_nationkey=c_nationkey; 

4   Related Work 

The research literature on view merging is limited to relatively straightforward cases 
[1,2,3] where neither the views nor the referencing queries contain outer joins. Also, a 
large class of mergeable views in general, and views containing outer joins and NSEs 
in particular, are currently materialized in many commercial DBMS products [4,5,6]. 
To the best of our knowledge, ours is the first work to present techniques to fold 
views containing NSEs. Note that rewrites involving materialized view with outer 
joins like those in [10] are different issue than ours.  
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There are a few papers that showed how to exploit view merging to enable further 
optimization. In [7], a technique is presented to leverage view merging to eliminate 
redundant joins including inner joins involving views that are defined on the same set 
of base tables, between views and their underlying base tables or self-joins of same 
relations. In all these cases, redundant joins that would have to be executed if the 
views were materialized were avoided by merging the views. The join elimination is 
based on the functional dependencies of the base relations that become visible to the 
query optimizer after view merging. In [8], the technique from [7] is extended for a 
nested relational data model which is composed of tuples, sets and lists. In our previ-
ous work [9], we have addressed how view merging interacts with other query rewrite 
rules. 

5   Experimental Validation 

To illustrate the effect of view merging we performed a set of experiments using the 
TPC-H data model simulating a situation often encountered in customer situations 
with inconsistent data. These experiments were conducted on a Teradata appliance 
system at volume points 10GB, 100GB, 300GB and 1 TB. In real-life the most com-
mon issue are missing values in fields or records missing which manifest in the data 
as NULL values. In order to simulate this phenomenon, we modified the orders 
table so that approximately 1% of the records end up with a customer field equal to 
NULL.  

To conduct our experiments, we defined a view left joining orders with cus-
tomers and replacing the status of the order with ‘UNKNOWN’ for the orders 
which have no corresponding customer. The view definition is shown below. Note 
that ostatus is an NSE in the view orderstatus which requires our solution to 
merge the view when referenced in queries: 

 
CREATE VIEW orderstatus(orderkey, ordstatus, customer_name,  
                        mktsegment) AS  
SELECT o_orderkey, COALESCE(o_orderstatus,'UNKNOWN') AS ostatus,  
       c_name, c_mktsegment  
FROM ordertbl LEFT OUTER JOIN customer ON o_custkey = c_custkey; 
 

We then ran two queries using the view and the lineitem table. The queries per-
form a left outer join between lineitem and the view and they project the order 
key, the status of the order and the revenue associated with the line items shipped 
within a particular time period.  The first query (R1) generated a report for a period of 
one month:  

 
R1:SELECT l_orderkey, ordstatus,  
          SUM(l_extendedprice*(1-l_discount)) AS revenue  
   FROM lineitem LEFT OUTER JOIN orderstatus  
          ON l_orderkey = orderkey  
   WHERE l_shipdate BETWEEN DATE '1993-01-01' AND  
            DATE'1993-01-01' + INTERVAL '1' YEAR  
   GROUP BY l_orderkey, ordstatus;  
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The second query (R2) generated a report for a period of 5 years and for the market 
segment “HOUSEHOLD”: 

R2: SELECT l_orderkey, ordstatus,  
           SUM(l_extendedprice*(1-l_discount)) AS revenue  
     FROM lineitem LEFT OUTER JOIN orderstatus  
           on l_orderkey = orderkey  
     WHERE l_shipdate BETWEEN DATE '1993-01-01' AND  
            DATE'1993-01-01' + INTERVAL '5' YEAR  
            AND mktsegment = 'HOUSEHOLD'  
     GROUP BY l_orderkey, ordstatus; 
 

The results for the elapsed times in seconds are presented in the graphs below. In 
R1, view merging allowed the join of lineitem to a one-month constraint to be 
done first. This caused early elimination of most of the rows yielding a very low 
elapsed time as compared to the case where the view is spooled. In the latter case the 
join between customer and orders occurred first and the subsequent join to  
lineitem last. For R2, while merging the view resulted in the same join order as 
the case where the view is spooled (optimal plan involves joining orders and cus-
tomer tables first), as the result shows, there was little overhead incurred by our 
CASE expression re-write. 

These results show an excellent consistency across all data sizes. For the first report 
R1, view merging provides an improvement between 6X and 10X. For R2 the view 
merging overhead is less then 1% of the execution time which suggests that our solu-
tion works for all cases regardless of the final join order.  

 

 

Fig. 1. R1's Execution time for view merging versus view spooling 



 Merging Views Containing Outer Joins in the Teradata DBMS 347 

 

Fig. 2. R2's Execution time for view merging versus view spooling 

6   Conclusion 

This paper provides the first view merging algorithm for views containing null-
sensitive expressions (NSEs) that are involved in outer joins. Such queries arise 
naturally in many business intelligence applications and merging the views plays a 
critical role in executing such queries efficiently. The challenge in merging views 
containing NSEs is that outer joins make it impossible to distinguish null values from 
NSEs from null values produced by outer joins once the views are merged. The 
algorithm proposed in this paper associates a non-nullable field to the view and 
ensures that rows from the view remain distinguishable in the merged view. 
Experimental results on a few queries show substantial improvements in query 
performance where view merging is useful. Another set of experiments were also 
conducted on queries for which view merging did not improve their execution time 
and the results show that very little overhead is incurred by our re-write.  
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Abstract. The use of set-valued objects is becoming increasingly com-

monplace in modern application domains, multimedia, genetics, the stock

market, etc. Recent research on set indexing has focused mainly on

containment joins and data mining without considering basic set op-

erations on set-valued attributes. In this paper, we propose a novel in-

dexing scheme for processing superset, subset and equality queries on

set-valued attributes. The proposed index structure is a hybrid of itemset-

transaction set tree of “frequent items” and an inverted list of “infrequent

items” that take advantage of the developments in itemset research in

data mining. In this hybrid scheme, the expectation is that basic set

operations with frequent low cardinality sets will yield superior retrieval

performance and avoid the high costs of construction and maintenance

of item-set tree for infrequent large item-sets. We demonstrate, through

extensive experiments, that the proposed method performs as expected,

and yields superior overall performance compared to the state of the art

indexing scheme for set-valued attributes, i.e., inverted lists.

1 Introduction

The need for containment queries involving set-valued attributes is found in a va-
riety of application areas, ranging from scientific databases to XML documents,
annotation databases, market basket analysis, production models, multimedia
[4,6], bio-molecular databases [1], etc. Containment queries span a wide range
of query families, from simple existence queries to composite similarity, pattern
matching, or graph isomorphism queries. For example, against a movie annota-
tion database we could ask “find all the movies where Tom Hanks and Meryl
Streep both performed”, or “find all users who visited sports or finance pages but
nothing else” in a database of internet usage.

To evaluate containment queries, namely, subset, superset and equality effi-
ciently, we need targeted access to data using index structures. The state of the
art method for indexing set-valued databases is inverted list [12]. The problem
with inverted lists, however, is that for frequent items, they grow quite large. As
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frequent items are queried frequently and regularly, the performance for query
evaluation will degrade for very large databases with items of skewed distribu-
tion. In order to avoid the intersection of large inverted lists, we can actually
devise an index structure where some such intersections are pre-computed and
stored in memory or secondary storage. The idea of pre-computation is borrowed
from existing research in spatial databases [11], and data mining [10].

Our contribution is summarized in the following way:

– We propose an index structure for set-valued attributes, called Mixed In-
verted List Itemset-Tidset index or MixIIT. This is a hybrid of concept
lattice and inverted lists which is kept in secondary storage. However, in
MixIIT, we augment the concept lattice with itemset-tidset lists.

– We develop novel and efficient algorithms for computing basic set operations
such as subset, superset and equality that leverages the proposed MixIIT
structure. The details of the algorithms may be found in [13].

– We experimentally compare the performance of MixIIT with inverted list
and show that not only does MixIIT perform superior to inverted lists, the
low memory requirement of MixIIT makes it possible to exploit this structure
for practical applications today.

The rest of the paper is organized as follows. We briefly discuss recent and rele-
vant research in section 1.1. In Section 2, we present the MixIIT index structure
and in section 3, we describe the query evaluation algorithms. An extensive ex-
perimental evaluation is discussed in section 4 that compares MixIIT with the
inverted lists index. Finally, section 5 summarizes our research.

1.1 Related Research

Reported research on the evaluation of basic containment queries with set-valued
predicates are few and far between. So far, database research has mostly focused
on similarity [17] and join queries [16]. The research on set containment queries
can be divided into three major categories. First, we have signature based ap-
proaches where the transactions of varying lengths are converted into signature
bit-strings of fixed length [7]. The greatest advantage of signature based methods
is that set comparison operations such as subset, superset checking get reduced
to simple bitwise operation. Signatures can be organized into various indexing
structures such as Sequential Signature Files [15], Bit-Slice Signature file (BSSF),
Multilevel Signature file, Compressed Multi Framed Signature file, S-Tree and
its variants, Signature Graph and Signature tree [5] The common problem with
any signature based index is that signatures can only generate the candidate set
of transactions which covers the query result. As a result, there will always be
some false positives.

The second approach in indexing set-valued databases originated from infor-
mation retrieval research. Inverted files or list consist of a directory containing
all distinct items that can be searched for, and a list for each distinct item which
contains the transactions where the item appeared [3]. As shown in [12], inverted
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list based indexing techniques perform better than signature file based ones for
different database, set, vocabulary and query cardinality. But, transaction lists
for frequent items may grow quite large which may eventually slow down the
query evaluation process.

In [11], Hellerstein et. al. proposed a R-tree [9] based indexing method for set-
valued databases. Computing bounding box for itemsets is not as simple as that
for spatial data points. Also, storing bounding box of unequal lengths creates
maintainability issues. In [19], Terrovitis et al proposed an indexing technique
which combines the advantages of inverted lists with the power of in-memory
index for frequent itemset. However, it is not possible to update the FP-tree [10]
based access tree online.

2 Index Structure

In this section, we introduce a hybrid index that combines a main memory
itemset-tidset representation of concept lattice with an inverted list residing in
secondary storage. First, we give background information for inverted lists and
itemset-tidsets and explain their benefits and drawbacks. Then, we show how
these indexing schemes are combined in the set indexing system.

Table 1. Example Database

(a) Vocabulary

Items A C D T W

(b) Transaction Database

Transaction 1 2 3 4 5 6

Items ACTW CDW ACTW ACDW ACDTW CDT

2.1 Inverted File Index

The inverted file index is essentially a two dimensional list. The first dimension
is a list of all the distinct items appearing in the database. Each node in the
vocabulary list points to a list of transactions where the item appeared. For
containment query evaluation, one needs to store the length of every transaction
along with the transaction id.

The evaluation of set based queries on inverted file index may be trivial but
maintaining an inverted list is complicated. The lists may be huge for large
databases as the id of a transaction is inserted as many times as the number
of items it contains. As a result, theoretically, the size of the inverted file could
be similar to the size of the transaction collection or even larger. Due to their
size, the inverted lists are stored in secondary storage. Therefore, the larger these
inverted lists are, the more pages have to be retrieved from the disk for evaluating
a query. Moreover, the most frequent items will have the longest inverted lists.
This is particularly damaging for the evaluation of set-valued queried, as the
topmost frequent items are usually the ones most frequently queried.
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2.2 Itemset-tidset Index

Concept lattices are used in many application areas to represent conceptual hi-
erarchies among objects in the underlying data. The field of Formal Concept
Analysis [8] has grown to a powerful theory for data analysis, information re-
trieval and knowledge discovery. There is an increasing interest in the application
of concept lattices for data mining, especially for mining association rules [14]
and generating frequent itemset [20,23]. Despite their numerous applications,
concept lattices have never been employed for indexing set valued databases. In
this section, we will present the conceptual model of lattice based index struc-
ture. We begin the discussion by defining some of the topics for formal concept
analysis from [21] in the light of set valued databases.

Definition 1. A formal concept is a pair (A, B) with A ⊆ G, B ⊆ M , A′ = B
and B′ = A. (This is equivalent to A ⊆ G and B ⊆ M being maximal with
A×B ⊆ I.) A is called extent and B is called intent of the concept.

It is easy to see that even for a small vocabulary the number of concepts can
grow very large. One possible way of combating this growth is to store only the
most frequently occurring elements as in closed itemsets [22]. In the context of
concept lattices, and for real-life databases, an iceberg [18] type solution seems
appropriate where only the frequent items are stored in the lattice and less fre-
quent items are still kept in an inverted list like structure so that the membership
of the items in these two structures can be adjusted (following database updates)
when the items become less or more frequent. The index structure discussed next
based on concept lattice and inverted list captures this spirit.

2.3 Mixed Inverted List Itemset-Tidset (MixIIT) Index

In MixIIT index structure we store the frequent items in the database in the
Itemset-Tidset search tree built essentially using the algorithm in [22]. However,
we deviate from the algorithm in the following principal ways:

– To facilitate subset queries, all the edges are considered bidirectional.
– We avoid strict support based pruning of the itemset-tidset as proposed in

[22]. For example, let item A and B passes the support threshold but, itemset
AB falls below the cutoff. If we remove itemset AB as proposed in [22], then
we will not be able to evaluate queries containing AB correctly. So, in the
lattice structure, we store all the concepts which can be constructed with
the frequent items, not just the ones which pass the support threshold.

– Finally, we define a special concept, called sink, which contains all the fre-
quent items in its intent. The sink concept is connected with all the leaf
nodes of the concept tree. This arrangement is necessary for the evaluation
of the subset queries where we need to start from the most general intent
and subsequently look for the specific one.
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As the extent of every concept can grow quite large, we store them in a sec-
ondary storage, which can serve as the file system or an SQL database. Itemset-
tidset tree of only frequent items will generate incorrect answers for subset and
superset queries with infrequent items in the query set. We get around this issue
by maintaining the inverted list of transactions for the infrequent items in the
secondary storage. In Figure 1(a), we show the MixIIT index for the example
database in Table 1. We create an itemset-tidset tree for the top three frequent
items. The three items, namely A, D and T equally deserve the position for
third frequent item. We made a random choice A. Also, ACW is the closure
of A and AC. So, using the closure properties described in [22], we can replace
A and AC from the tree with their closure. Finally, we added links from the
sink concept ACW to all the leaves of the tree which, in this example, is only
CW . The inverted lists of infrequent items D and T are stored in the secondary
storage.

The intents are stored in bit string format as shown in Figure 1(b). This
representation is different from signature as the transformation between itemset
and its corresponding bit string is one to one. With bitstring representation,
we can compute subset or superset with a bitwise comparison instead of set
manipulation. For example, if a and b are the bit string representation of itemset
A and B, respectively and if, A ⊆ B then a ∧ b = a.

3 Query Processing Using MixIIT

In this section, we present the generic approach taken for evaluating the three
types of queries we are interested in: subset, equality and superset. In [13], we
present a more detailed discussion on the evaluation process.

(a)

(b)

Fig. 1. (a) MixIIT index for the database in

Table 1. (b) Bit String representation of the

itemset CW .

The evaluation algorithms for all
three types of queries have two main
stages: (a) evaluation in the itemset-
tidset tree, and (b) evaluation in
the inverted file. The frequent items
from the query set are used to tra-
verse the concepts in the itemset-
tidset tree. A set of candidate
transaction ids is created in the pro-
cess. Next, the infrequent items are
used to extract transactions ids from
the inverted list. In the final stage,
two lists of transaction ids are com-
bined based on the nature of the
query. The basic idea is that we use
the intent of the concepts in the
itemset-tidset tree to quickly trace
a candidate answer to the query. The benefit is quite significant since we can
avoid costly union and intersection operations between large transaction sets.
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4 Experimental Evaluation

We decided to compare the performance of MixIIT with inverted list based
indices because in [12], the authors have shown that inverted lists perform better
than signature based index structures for low cardinality set valued attributes,
and even outperforms B-trees for containment queries in RDBMS [24].

4.1 Data Sets and Performance Evaluation

For evaluation purposes, we use two real data sets from UCI KDD archive [2].
The first data set is a one-week log tracing the virtual areas that users visited in
the web portal www.microsoft.com. Each record corresponds to a user session
and the set value comprises the areas visited. There are 32k records and the
vocabulary of the data set contains 294 distinct items (areas). The distribution
of the items in the records is skewed and the average size of the record is 3 items.
on the web portal of msnbc.com taken from the UCI KDD archive as well. The
vocabulary here is very limited, comprising only 17 distinct items and unlike the
previous one, the distribution of the items is relatively uniform. The average size
of the record is 5.7 items. The total number of transactions for this data set is
989818. As a result, we end up with long inverted lists.

Query Evaluation with microsoft data. We created 15 queries with lengths
varying from 5 to 20. The items from query were selected randomly from the
vocabulary. In figure 2(a) through 2(c), we present the performance graph for
subset, superset and equality query evaluation for microsoft data set. The data
points in the plot depict average time required for queries of different lengths. For
equality and superset queries, MixIIT outperforms inverted lists by a significant
factor. The performance gain increases with the increase of |Q|. MixIIT structure
performs better with the increase of frequent items in the Itemset-Tidset tree, as
expected. We have mixed results for subset queries (figure 2(b)). For small query
sets, MixIIT is not as efficient as inverted list and with the increase of frequent
items, k, the performance degrades. As we discuss in [13], smaller query sets
result in more choices for the recursive call. More frequent items in the lattice
increases the number of leaf nodes and consequently, the number of upward links
from the sink node increases. Hence, the performance degrades in both the cases.
an increase in the number of frequent items stored, k from 16 to 32 there is an
increase in the number of concepts in the itemset-tidset tree. There is also an
increase in the number of leaves in the itemset-tidset tree from 1698 to 5678. So,
there are more choices going upwards from the sink concept ACDTW and more
paths to traverse for any given subset query. As a result, with the increase in k,
the performance will most likely degrade.

Query Evaluation with msnbc data. We created 10 random queries with
lengths varying from 2 to 12. The threshold value for the memory resident lattice
was varied from 2 to 8 and 17, which covers all the items in the vocabulary.
The main contribution of this experiment is that we could evaluate the MixIIT
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structure against a small yet real life data set which can be indexed solely with in-
memory lattice. The findings are presented in figure 2(d) through 2(f). One of the
notable difference from the microsoft data is the behavior of k = 2 threshold.
At such a low threshold, the combination of itemset-tidset tree and inverted
list is dominated by the performance of the inverted list. Another interesting
observation is that the performance graphs of the inverted list as well as top 2
and 8 item MixIIT structures show an upward trend for large queries. This data
set contains longer inverted lists for infrequent items compared to microsoft
data set as there are more transactions for smaller vocabulary. As a result, the
performance of the index structures, which depends on the inverted list begins
to deteriorate with increasing query size.

(a) Superset (microsoft) (b) Subset (microsoft) (c) Equality (microsoft)

(d) Superset (msnbc) (e) Subset (msnbc) (f) Equality (msnbc)

Fig. 2. Performance comparison of MixIIT index with inverted list. (a-c): for microsoft
data. (d-e): for msnbc data. Inverted list performance is shown as the top most curve

in each graph.

5 Summary

In this paper, we have proposed a novel indexing scheme, MixIIT, which
combines a main memory resident itemset-tidset tree with an inverted file for
infrequent items, kept in secondary storage. We also introduced novel evalua-
tion algorithms for subset, superset and equality queries using the MixIIT in-
dex. Finally, we performed an experimental study comparing MixIIT with in-
verted lists for these queries. We found that in the case of superset and equality
queries, MixIIT clearly outperforms the inverted lists with reasonable main-
memory overhead. Although much lower than inverted lists, the costs for subset
queries in MixIIT appears to be a bit higher for smaller k, and showed trends of
improvement as k grew larger. The primary goal of subset query is to find the
minimal coverage of the frequent items in the query set. As a future work, we
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wish to use a hash or B+-tree based secondary structure which will help us find
the minimal coverage without traversing the tree. We will also investigate how
other forms of queries such as set intersection, union, join etc. can be computed
with MixIIT structure. Finally based on the experimental results, it is apparent
that relaxing the threshold for items in the lattice will not always guarantee bet-
ter performance. It may even get worse, as we discovered for the subset queries.
We plan to establish the relationship among the size of the possible set elements,
number of records in the database, and the size of the sets allowed in a record
so that an optimum threshold can be selected for best performance.
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Abstract. Multidimensional data structures have become very popu-

lar in recent years. Their importance lies in efficient indexing of data,

which have naturally multidimensional characteristics like navigation

data, drawing specifications etc. The R-tree is a well-known structure

based on the bounding of spatial near points by rectangles. Although ef-

ficient query processing of multidimensional data is requested, the R-tree

has been shown to be inefficient in many cases. From the disk access cost

point of view, the main issue of range query processing is the expensive

cost of random accesses during the tree traversal. In the case of queries

with low selectivity, the sequential scan of all tuples may be more effi-

cient than the range query processing. We focus on efficiency of the disk

access cost and we present an optimization of the disk access cost during

range query processing. Our method focuses on a leaf node retrieval and

it can be simply adopted by any tree. We put forward our tests using

the R-tree since it is the most common multidimensional data structure.

Keywords: R-tree, multidimensional data structures, multidimensional

range query, disk random accesses, skip-sequential prefetch.

1 Introduction

Spatial data can be commonly found in various application areas including
medicine, cartography, computer vision, molecular biology and many others.
Query processing in high-dimensional spaces has therefore been a very promi-
nent research area over the last few years. A number of new index structures
and algorithms have been proposed [18].

There are two major approaches to multi-dimensional indexing [21]: data
structures for indexing metric spaces and data structures for indexing vector
spaces. The first approach includes, for example, n-dimensional B-tree [8], R-
tree [9], R*-tree [2], Signature R-tree [11], X-tree [3], UB-tree [1], and BUB-
tree [7]. The second one includes M-tree [6], for example. A multi-dimensional
data structure supports the following query types [21]: range/window queries, k-
NN queries and so on. The range query retrieves all tuples of a multidimensional
space matched by a query rectangle.
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As far as the tree-based multidimensional data structures are concerned, ran-
dom disk accesses are one of their major weaknesses during the range query
processing. Some optimization techniques for disk accesses have been primarily
developed for the B-tree and other indices used in relational DBMS. In [16], a
B-tree with multi-page disk reads was introduced. This structure introduced
a support of multi-page disk read/write access for long sequential range re-
trievals. Another storage technique is tree-structured placement [4], that ex-
plicitly accounts for the mismatch between tree-structured data and disk drive
characteristics. This technique uses the recently proposed idea of semi-sequential
disk access to place the tree structure. In [5], an index clustering technique called
the segment-page clustering (SP-clustering) was introduced. The SP-clustering
avoids the scattering by storing the relevant nodes contiguously in a segment
that contains a sequence of contiguous disk pages and improves the query per-
formance by offering sequential disk access within a segment.

A modified storage layout of tree-based indices has been proposed in [20]. This
method is based on efficient access to repeatedly read nodes at the top levels of
the tree by storing tree nodes of the same level together. After an object has been
inserted such that node splits occur, the swap of nodes is executed. This approach
improves the query processing; however, the node swapping significantly affects
the build time (up to 40%). The Multiresolution File Scan (MFS) technique has
been presented in [17] as another manner to optimize random reads. MFS is
based on a selection of flat files, so-called views, that represent the data set at
multiple resolutions. It is a simple structure with around 5% of the data size
storage overhead. Each of the files is accessed using a pseudo-optimal schedule
which takes the transfer and positioning time of the disk into account.

In this work, we introduce an optimization of disk accesses for a multidi-
mensional range query and we show that it is often possible to replace random
accesses by the sequential read during query processing. Instead of developing
another sophisticated data structure, our goal is to optimize disk accesses using
the simplest possible way, which is applicable for any tree data structure. Since
the R-tree is the most popular multidimensional data structure, we present the
optimization of the R-tree.

R-tree [9] can be thought of as an extension of B-trees in a multi-dimensional
space. It corresponds to a hierarchy of nested n-dimensional MBRs (see [9] for
detail). R-tree performance is usually measured with respect to the retrieval cost
(in terms of DAC) of queries. Variants of R-trees differ in the way they perform
the split algorithm. The well-known R-tree variants include R∗-trees and R+-
trees. In [15], we can find a more detailed description as well as a depiction of
other R-tree variants. Bulk-load techniques for the R-tree [13] try to minimize
the number of pages and speed up the inserts of many records. Bulk-load is often
based on a preordering of inserted items.

The R-tree is appropriate for our method since it contains overlapping minimal
bounding boxes and many leaf node accesses can occur during the range query.
We adopt a method called skip-sequential prefetch often used in RDBMS [12,14]
and our approach is enhanced by the read buffer. The outline of the paper is
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as follows: In Section 2, we introduce index organization and disk access opti-
mization used in RDBMS. Section 4 presents our improved approach for efficient
query processing in the R-tree. In Section 5, we put forward experimental results.
Finally, we outline possible areas of our future work and conclude the paper.

2 Index Organization in Relational DBMS

2.1 DBMS Structures and I/O Activity

An index row is a useful concept for fast access to the table according to a key.
Each index record contains a key and a pointer to the corresponding row in the
table. The index records and the table rows are grouped into pages, where their
size is usually 2kB, 4kB or 8kB [12]. The most common index structure used in
DBMS is a B-tree and it variants (usually a B+-tree or a redundant B-tree).

DBMS usually defines the so-called clustering factor of an index which speci-
fies how much the order of the records in the index corresponds to the order of
the rows in the table. A smaller clustering factor is more efficient. If the clus-
tering factor is high and we process a range query using the index, then we
randomly access the table rows as we sequentially read the records from the
index. Those random accesses to table rows have a very negative impact on the
query processing efficiency.

Every RDBMS contains the area in the memory into which the index and
the table pages are read from the secondary storage. This area is known as the
buffer pool (or the data cache). The I/O activity is a transfer of a page from
the secondary storage into a buffer pool; the page is read into the buffer pool.
Every database has one or more buffer pools used to minimize a disk activity
and avoid the necessity of frequent accesses to the secondary storage [19,12].

Secondary

   storage

Page

Time estimation (~10 ms)

Buffer pool in main memory

Queuing (Q) 

Seek

Half a rotation

Transfer

Total I/O time

  3 ms

  4 ms

  2 ms

  1 ms

10 ms

Fig. 1. Random reads from disk drive

Figure 1 shows the example of the enormous time cost involved with random
page reading from the secondary storage into the buffer pool. The time to read
one page from the disk takes roughly 10ms, which means 100 disk accesses
per second. Let us consider pages of 2 kB in size. We obtain 200kB/s instead of
approximately 40MB/s in the case of sequential accesses. The Solid-State Drives
(SSD) provides the low read time and latency. The main advantage of SSD disks
is a fast random access due to the fact there is no read/write head. In Section 4,
we show that our method is applicable even in the case of SSD.
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2.2 Skip-Sequential Prefetch

Reading more pages together means that read time is reduced. The read time
of one page may be as low as 0.1ms. Because RDBMSs know in advance which
pages will be required, the reads can be performed before the pages are required.
This process is called skip sequential prefetch (or sequential prefetch) [12], it
reads the rows in one direction even when the clustering factor is high.

Fig. 2. Conventional random reads

Fig. 3. Skip sequential prefetch reads

Figure 2 shows the conven-
tional random reads from the
secondary storage. Pages of the
table are accessed randomly as
they are found in the index.

In contrast, skip sequential
prefetch sorts pages before they
are accessed in the table (see
Figure 3). Reading the pages in
their physical order reduces seek-
ing and consequently increases
the efficiency of the range query
processing.

3 Disk Access Optimization for Range Query

3.1 Range Query Processing

The range query algorithm traverses the tree from the root node and it follows
only relevant records in each node. The record is relevant if its MBR is intersected
by the query rectangle. The algorithm searches all subtrees recursively and it is
finished after all relevant subtrees are processed. The R-tree has some features
which can significantly slow down the range query processing. MBR of nodes
often overlap and cover the dead space (the space without tuples). It can lead
to the retrieval of leaf nodes with zero or few relevant items during the query
processing. Similar false hits occur in inner nodes as well. Therefore, we often
read more nodes than necessary. This problem escalates when the dimension of
the data increases and it is known as the curse of dimensionality [21].

3.2 Disk Access Optimization

The creation of new nodes during the split operation over a node results in nodes
not being sorted in the file according to the order in which they are retrieved by
the range query algorithm. This issue leads to random accesses to the secondary
storage during the query processing. An example of a small subtree is presented
in Figure 4. Obviously, nodes are not sorted according to the pre-order traversal.

Let us take a range query defined by two points Ql and Qh. Regions R3, R4,
and R5 are intersected by the query box and they are searched.
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Fig. 4. Range query in the R-tree

They are read as they are
found by the algorithm. The or-
der in which the pages are read is
173, 24, and 122. These random
accesses significantly increase the
query processing time.

In this paper, we solve this
problem by adopting a well
known technique called skip se-

quential prefetch and we extend this method using a read buffer. The new
method is called buffered prefetch. The basic idea of the skip sequential prefetch
method can be seen in Algorithm 1. Relevant leaf nodes are not immediately read
and searched, but their indices (pointers) are stored in a LeafIndices array un-
til all relevant leaf nodes are found. We do not invoke the BufferedPrefetch
method here (Line 16). We only sort the LeafIndices array, read the leaf nodes
from the secondary storage, and find the result set records satisfying the range
query.

The smaller skips between the read pages decrease the seek time and results
in a more efficient read time. Moreover, current disks include their own cache
(for example 8MB) which enables more efficient reading of the sorted pages.

Algorithm 1. Range query algorithm using prefetch techniques

Input : Range query QB

output: Result set ResultSet

LeafIndices = empty array of leaf node indices1

Z = stack of tree nodes2

N = the root node3

while ¬Z.IsEmpty() do4

if there is the next record (MBR, Pchild) in N where the MBR overlap QB then5

if Pchild node is a leaf node then6

LeafIndices = LeafIndices ∪ Pchild;7

else8

Z.Push(N);9

N = Pchild node;10

end11

else12

N = Z.Pop();13

end14

end15

ResultSet = BufferedPrefetch(LeafIndices, QB);16

The buffered prefetch method uses the read buffer to further optimize the
node retrieval. We use the following technique (see Algorithm 2):

1. We find a group of leaf nodes which are close to each other in the file (the
nodes have close indexes).
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Algorithm 2. BufferedPrefetch method

Input : Array of leaf node indices LeafIndices, Range query QB

output: Result set ResultSet

LeafIndices.Sort;1

StartIndex = 0;2

Start = LeafIndices[StartIndex ];3

for i ← 0 to LeafIndices.Count do4

End = LeafIndices[i+1];5

if End − Start > Treshold then6

LargeBlock = read a block from Start to LeafIndices[i];7

for j ← StartIndex to i do8

LN = read the node LeafIndices[j] from LargeBlock and store9

it in the buffer pool;

if LN contains points in QB then10

Add such points into ResultSet;11

end12

end13

StartIndex = i+1;14

Start = LeafIndices[StartIndex ];15

end16

end17

return ResultSet;18

2. We read the large block from the secondary storage containing this group of
leaf nodes (Line 7).

3. We pick these leaf nodes from the read block in the buffer pool and the rest
of the block is discarded (Line 9).

We work with a heuristic that the sequential disk accesses are up-to 200× more
efficient than the random accesses. Nodes within a specific distance (so-called
Threshold) are read together. The threshold value depends on several parame-
ters like density of data set, selectivity of queries and so on. However, it is mainly
influenced by a difference between the sequential and random search. The thresh-
old can be easily estimated experimentally. We use a greedy approach to select
the groups of nodes, which are sequentially read in one block. This makes the
group selection very fast and we are able to do that in one scan through the
array of the leaf node indices (Lines 4–17).

We only focus on leaf nodes, since they represent 90% of the tree size and they
can rarely fit into the buffer pool [14]. The technique can also be successfully
used in other levels of the tree; however, it is usually not necessary and the
improvement is not so sigificant. It is clear that the buffered prefetch technique
is simply extensible in a concurrent environment; concurrent threads of query
processing can share the buffer including node indices.
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4 Experimental Results

In our tests1, we compare query processing in the R∗-tree, an R∗-tree with skip
sequential prefetch, and an R∗-tree with buffered prefetch. Two real collections
have been chosen for these tests. The first collection, titled as XML, represents a
set of paths in an XML document [10]. We selected a subset generated from the
XMark collection2 including 10-dimensional tuples. The second collection, titled
as TIGER3, is a standard spatial data set. We choose the type 2 of the Wyoming
data set from 2006, which includes 2D points without topological information.
In Table 1, we see basic characteristics of created R-trees. In all experiments, we
turn off the OS’s disk read cache to prevent the OS from file caching.

Table 1. Basic characteristics of created R-trees

Data Collections XML TIGER
Inserted items 1,031,080 5,889,786
Page size [B] 2,048 512

Build insert Bulkload Build insert Bulk-load
Height 4 4 5 4
Inner nodes 2,292 1,022 15,381 6,101
Leaf nodes 32,780 22,416 228,168 140,234
Index size [MB] 71.83 48 124.70 74.93

Efficiency of the range query processing was measured by Disk Access Cost
(DAC), read time, and complete query processing time. We have used 15 various
range queries from the result size 1 to the selectivity 52%, each query was
processed 10× and the results were averaged. Disk access cost is measured by
the volume of data read (DAC ) and the number of disk accesses (Disk accesses).

Table 2 presents the average results of the range query processing with several
threshold values. Read pages means the average number of pages read by one disk
access. It seems that the threshold value 64 is the most efficient for queries on the
XML collection. In this case, we get the maximum performance of the combination
of sequential and random reading. The major issue of magnetic hard drives, as was
mentioned above, is the high seek time in the case of random accesses. This fact
can bee seen in comparison of the R-tree and the bulk-loaded R-tree. Nodes with
similar items are stored close to each other in the bulk-loaded index file. Therefore,
the read time is significantly lower, although more than the twice number of disk
accesses has been performed in the case of the bulk-loaded index.

The higher efficiency of Solid-State drives4 is shown in Table 3. SSD provides
up-to 80× more efficient random accesses compared to the magnetic hard drives.
Therefore, the query processing time for the R-tree and SSD is approximately
3.2× more efficient than in the case of the conventional HDD.
1 The experiments were executed on an AMD Opteron 865 1.8Ghz, 2.0 MB L2 cache;

2GB of DDR333; Windows 2008 Server.
2 http://monetdb.cwi.nl/xml/
3 http://www.census.gov/geo/www/tiger/
4 The experiments were executed with Imation S-Class Solid State Drive, 32 GB ca-

pacity, Sequential Read: 130MB/s, Sequential Read: IOPS: 83,000.
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Table 2. XML Collection: Summary table

Technique/Index Average Results
DAC [MB] Disk accesses Read pages Time [s] Read time [s]

R-tree 8.12 2,256 1 3.75 3.15
Bulk-loaded R-tree 9.62 4,694 1 1.99 1.40
Sequential prefetch 8.12 2,256 1 2.03 1.51
Buf. prefetch (T = 32) 12.61 230 26 1.59 1.15
Buf. prefetch (T = 64) 13.85 133 50 1.49 1.03
Buf. prefetch (T = 128) 15.29 77 97 1.53 1.06
Buf. prefetch (T = 256) 17.48 45 190 1.63 1.17

Table 3. XML Collection: Summary table for SSD disk

Technique/Index Average Results
DAC [MB] Disk accesses Read pages Time [s] Read time [s]

R-tree 8.12 2,256 1 1.17 0.77
Bulk-loaded R-tree 9.62 4,694 1 1.33 0.81
Sequential prefetch 8.12 2,256 1 0.89 0.49
Buf. prefetch (T = 32) 12.61 230 26 0.65 0.27
Buf. prefetch (T = 64) 13.85 133 50 0.66 0.27
Buf. prefetch (T = 128) 15.29 77 97 0.66 0.28
Buf. prefetch (T = 256) 17.48 45 190 0.77 0.31

Our experiments support the proposed assumptions. Sequential prefetch is
approximately 1.9× more efficient than the standard R-tree. Moreover, buffered
prefetch is approximately 2.5× more efficient than the standard R-tree. The
bulk-loaded R-tree provides more efficient query processing since it sorts pages
during the tree building. It means that a query in the bulk-loaded R-tree is
basically processed by sequential prefetch. Although SSD provides more efficient
random accesses than conventional disks, we see that our techniques improve
the query processing time up-to 1.8×.

Table 4 presents average results of the range query processing for the TIGER
collection. The result sets are significantly bigger than in the case of the XML
collection. Therefore, buffered prefetch with higher Threshold turned out as the
best one. We can see that our approach is approximately 3.8× more efficient
than the R-tree, 2.3× more efficient than the bulk-loaded R-tree and it saves up
to 42% of query processing time in comparison with skip sequential prefetch.

In the case of queries with a large result set, a large number of leaf nodes
is searched. It means the array with node indices may take a lot of memory.
Consequently, we can not consider unlimited memory. In Table 5, it is possible
to see the influence of the memory limitation on the efficiency of our approach.
The average number of pages read by one disk access decreases when the buffer
size increases. Therefore, the number of disk accesses and read times are higher.
We can see, even if a very small buffer (16 kB) is utilized, our approach saves up
to 64% of the query processing time.

Another technique to optimize random accesses has been presented in [20].
Authors propose that their method improves the query processing time up to 2×;
however, they introduced a modification of the tree build algorithm which affects
the build time up to 40%. Our method is more efficient since we apply buffered
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Table 4. Collection TIGER: Summary table

Technique/Index Average Results
DAC [MB] Disk accesses Read pages Time [s] Read time [s]

R-tree 19.71 27,424 1 42.07 36.64
Bulkloaded R-tree 28.19 55,260 1 25.03 18.20
Sequential prefetch 19.71 27,424 1 20.02 15.34
Buf. prefetch (T = 32) 39.67 2,705 29 14.87 10.92
Buf. prefetch (T = 64) 42.39 1,484 57 12.82 8.99
Buf. prefetch (T = 128) 45.39 815 111 11.79 8.11
Buf. prefetch (T = 256) 48.75 449 216 13.16 9.27

Table 5. Collection TIGER: Memory Limitations

Threshold/Memory Average Results
Disk accesses Read pages Number of sorting Time [s] Read time [s]

128/Unlimited 815 111 1 11.79 8.11
32/16 kB 5,035 21 10 15.00 11.19
128/64 kB 1,368 100 3 12.91 9.06

prefetch on leaf nodes which occupy 90% of the tree size, whereas the method
proposed in [20] is pointed to the top level nodes.

5 Conclusion

In this article, we presented an improvement of range query processing in the R∗-
tree by an optimization of disk accesses. Our approach avoids frequent random
disk accesses. We adopt skip sequential prefetch used in RDBMS. Leaf node
indices are sorted before the leaf nodes are read from the secondary storage.
Moreover, we enhanced this approach by the read buffer used for the transfer
of several nodes into the main memory. In our experiments, we tested range
queries and compare the efficiency of the R∗-tree, an R∗-tree with sequential
prefetch, and an R∗-tree with buffered prefetch. From DAC point of view, costs
are significantly higher in the case of buffered prefetch. However, the query
processing time of the R∗-tree with buffered prefetch is up to 3.8× more efficient
than in the case of the R∗-tree and it saves approximately 30% of the query
processing time compared to sequential prefetch.
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Abstract. Users of content-based publish/subscribe systems (CBPS) are 
interested in receiving data items with values that satisfy certain conditions. 
Each user submits a list of subscription specifications to a broker, which routes 
data items from publishers to users. When a broker receives a notification that 
contains a value from a publisher, it forwards it only to the subscribers whose 
requests match the value. However, in many applications, the data published are 
confidential, and their contents must not be revealed to brokers. Furthermore, a 
user’s subscription may contain sensitive information that must be protected 
from brokers. Therefore, a difficult challenge arises: how to route publisher data 
to the appropriate subscribers without the intermediate brokers learning the 
plain text values of the notifications and subscriptions. To that extent, brokers 
must be able to perform operations on top of the encrypted contents of 
subscriptions and notifications. Such operations may be as simple as equality 
match, but often require more complex operations such as determining 
inclusion of data in a value interval. Previous work attempted to solve this 
problem by using one-way data mappings or specialized encryption functions 
that allow evaluation of conditions on ciphertexts. However, such operations 
are computationally expensive, and the resulting CBPS lack scalability. As fast 
dissemination is an important requirement in many applications, we focus on a 
new data transformation method called Asymmetric Scalar-product Preserving 
Encryption (ASPE) [1]. We devise methods that build upon ASPE to support 
private evaluation of several types of conditions. We also suggest techniques 
for secure aggregation of notifications, supporting functions such as sum, 
minimum, maximum and count. Our experimental evaluation shows that ASPE-
based CBPS incurs 65% less overhead for exact-match filtering and 50% less 
overhead for range filtering compared to the state-of-the-art. 

Keywords: Publish/Subscribe Systems, Privacy, Confidentiality, Security. 

1   Introduction 

In Content-based Publish/Subscribe Systems (CBPS), data sources (or publishers) 
disseminate contents to users (or subscribers) using an infrastructure of intermediate 
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routing entities called brokers. Each user creates a subscription that specifies 
constraints on the data items that s/he is interested to receive. Users register 
subscriptions with brokers. When a broker receives a notification from a data source, 
it examines which subscriptions satisfy the notification, and routes the data item to the 
appropriate users. 

A typical application of CBPS is the dissemination of stock market quotes. Several 
large stock market exchanges act as data publishers, and generate high-rate data 
streams with prices of individual stocks. Each stock price update, e.g., “Google, 
$600” represents a notification. Users interested in an individual stock may formulate 
subscriptions with conditions such as “Google, ≥ $550”, stating that only updates on 
the stock price of Google that are above $550 should be sent to the user. Figure 1 
illustrates this scenario. When a broker receives a notification, it should be able to 
determine which subscriptions satisfy the notification and forward it accordingly. In 
order to do so, a broker has to support various evaluation functions, such as exact 
match (or equality) filtering, inequality filtering (e.g., “>” or “≤”), range filtering,  
etc.  

On the other hand, it is not always feasible to deploy a trusted, secure broker 
infrastructure dedicated to each CBPS application. Instead, an existing content 
distribution network such as Akamai [6], or an ad-hoc P2P/Grid computing 
environment may be used, in order to reduce operation and maintenance costs. In this 
scenario, brokers can no longer be trusted. Therefore, the contents of subscriptions 
and notifications should no longer be revealed in plaintext to the brokers.  

 
Fig. 1. Content-Based Publish/Subscribe System  

A non-trusted broker that has access to plaintext subscriptions and notifications 
may cause significant damage to the CBPS participants. For instance, stock quotes 
dissemination is typically an expensive service to maintain, and users must pay a 
subscription fee. If the brokers do not route the data properly, unauthorized users may 
gain data access, causing financial losses to the publishers. On the other hand, 
subscription data may also be sensitive. Brokers may collect data subscriptions and 
infer certain sensitive information: for instance, untrustworthy brokers who notice that 
a large number of users are interested in a given stock at a particular price may use 
this knowledge to place unfair market orders at the disadvantage of other participants. 
In other application areas, subscription contents may disclose private details about 
users, such as shopping habits, political or religious affiliations, etc. 

The conventional method for preventing unauthorized disclosures in a context like 
CBPS is to apply encryption on the plaintext data and to allow only authorized parties  
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to perform decryption. Unauthorized parties, such as the provider of the routing 
infrastructure, are unable to gain access to the plaintext data even though they have 
access to the ciphertext. However, encryption greatly complicates the process of data 
filtering. A naïve solution, based on encryption, would require broadcasting all the 
encrypted data from publishers to all subscribers. But, such a solution is not scalable, 
as the amount of transferred data is huge, and would quickly congest communication 
networks. Moreover, a user must have access only to the part of the data s/he has 
subscribed for. To this end, data items must be encrypted with different keys, and an 
alternate channel used to send appropriate encryption keys to each user is required. 
This way, each subscriber can only decrypt the data items s/he is authorized to. Still, 
managing such a large number of keys may also pose serious scalability concerns.  

In order to achieve notification and subscription confidentiality in CBPS, a broker 
should be allowed to access only encrypted data. Several techniques that address this 
problem have been proposed previously. For instance, the method in [5] uses a 
partitioning method and builds an index of encrypted subscriptions. Certain types of 
conditions can be evaluated on values encrypted in this fashion. However, the method 
incurs false positives. The solution in [14] uses properties similar to those of 
homomorphic encryption [21] to evaluate conditions on encrypted data. However, the 
cost incurred may be large.  

In this paper we propose a novel approach to encryption-based access control for 
CBPS. Our methods support efficient and precise evaluation of conditions based on 
the ciphertexts of subscriptions and notifications. Our solution relies on Asymmetric 
Scalar-Product Preserving Encryption (ASPE) [1], a geometric transformation that 
supports comparisons between pairs of data items. ASPE has been proposed in [1] in 
the context of evaluating nearest-neighbor queries. We adapt ASPE to support a broad 
range of conditions evaluations, such as exact match, inequality, range, as well as 
conjunction of single-attribute conditions. Our specific contributions are: 

(i) We propose a novel secure CBPS method for condition evaluations using 
encrypted values. Our solution has a reduced computational overhead and does not 
incur false positives. 

(ii) We outline a mechanism for secure CBPS aggregation under functions such as 
sum, minimum, maximum and count. 

(iii) We developed a prototype of the proposed method on top of the well-
established CBPS system SIENA [4], and we performed an extensive experimental 
evaluation in comparison with the state-of-the–art in secure CBPS [5]. The 
experimental results show that our proposed method clearly outperforms existing 
work in terms of overhead, while offering similar security features. 

The remainder of the paper is organized as follows: Section 2 presents background 
information and surveys related work. Section 3 presents our solution for secure 
CBPS, whereas Section 4 discusses the case of attacker collusion. In Section 5, we 
outline a method for secure aggregation in CBPS. Section 6 presents experimental 
results, and Section 7 concludes with directions for future work. 
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2   Background 

2.1   CBPS Overview  

The main characteristic of CBPS is the loose coupling between publishers and 
subscribers, which allows for high scalability. The participants in a CBPS system are 
publishers (or data producers), subscribers (or data consumers), and an infrastructure 
of brokers that route the data from publishers to subscribers. 

Publishers continuously generate data items and forward them to data brokers. A 
data item, also called a notification, is a set of attributes, where an attribute is a triple: 
(type, name, value) [4]. After the publisher sends a notification to a broker, it is no 
longer concerned with the process through which notifications reach subscribers.  

A subscriber has an ability to express its interest in a particular data item by 
generating a subscription. Sometimes subscriptions are also referred to as filters. A 
subscription is a set of constraints, where a constraint is as follows: (type, name, 
operator1, value1, operator2, value2). The operators include all the common equality 
and ordering relations ( , , , , etc). In order to express its interest, a subscriber 
creates a subscription and registers it with a broker. Subsequently, the subscriber does 
not need to be concerned about how messages will be routed.  

Brokers route notification and subscription messages, and match notifications  
against subscriptions. An attribute α=(typesα,nameα,valueα) matches an attribute 
constraint ϕ=(typesϕ,nameϕ,,operator1ϕ,value1ϕ,operator2ϕ,value2ϕ) iff. typesα=typesϕ 

nameα=nameϕ operator1ϕ(valueα,value1ϕ) operator2ϕ(valueα,value2ϕ). We 
denote the fact that an attribute α matches an attribute constraint ϕ by α≺ϕ. All such 
constraints must be matched. Then, we say that a notification n matches a filter f. (n≺f for short) if: 

n≺f ∈f : α ∈ n : α≺ϕ 
A subscription s1 is said to cover another subscription s2 when the set of notifications 
matched by s2 is a subset of the set of notifications matched by s1. Deciding whether a 
subscription covers another can reduce the amount of match operations performed by 
brokers, as well as the network traffic overhead. 

s2≺s1  : ≺s2  ≺s1 
There are several kinds of subscriptions. For instance, an equality filter specifies that 
an exact value must be matched (e.g., “price = 150”). The inequality filter requires a 
notification to have a value that is greater (conversely, less) than the value of the 
subscription (e.g., “amount < 300”). Similarly, a range filter specifies a value range 
(e.g., “100 < price < 200”). In addition, a subscriber may want to receive a notification 
that satisfies simultaneously several conditions on distinct attributes (e.g., “price < 100 
and amount > 300”). We refer to such a subscription as conjunction filter. 

We assume that brokers are curious but honest. In the worst case, a malicious 
broker could simply refuse to forward notifications, staging a denial-of-service attack. 
Protection against such threats can be achieved if several alternate paths between each 
publisher and subscriber pair are enforced in the routing infrastructure. However, this  
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Table 1. Examples of ≺ 

Notification Match Subscription 

integer price = 150 ≺ integer price = 150 

integer amount = 500  integer amount < 300 

integer price = 150 ≺ integer price > 100
integer price < 200 

integer price = 100 
integer amount = 500  

integer price < 100
integer amount > 300 

 
is outside our scope: we focus on protecting against disclosure of notification and 
subscription information to brokers. The problem of malicious brokers has been 
addressed in previous work under some restricted scenarios [10, 12].  

2.2   Related Work  

Our research is related to previous work on outsourced databases (ODB) [8]. In ODB, 
a data owner (or publisher) stores a database at a service provider (SP) site. Users 
(i.e., data consumers) send their queries to the SP which processes queries and returns 
the results to the user. However, the SP is not trusted, therefore the data owner must 
upload an encrypted version of the database to the service provider. Processing 
queries on top of encrypted data poses similar challenges to our problem of matching 
notifications to subscriptions without accessing the plaintext versions of either. In 
addition, ODB are also concerned with ensuring the completeness (i.e., integrity) of 
query results. We do not address integrity; however, previous results that address 
integrity in data streams [20] can be adapted to our scenario. 

The Order Preserving Encryption Scheme (OPES) applies an encryption function 
to an ordinal domain, such that ) ) if  [2]. Thus, OPES converts a 
distribution of values to another distribution of values, possibly in a distinct domain. 
So, we can use OPES for inequality filtering and range filtering. However, OPES 
requires the distribution of the data in advance, whereas data are dynamically 
generated in CBPS. 

On the other hand, we can encrypt a database by splitting the data domain into 
several partitions and assigning indices to these partitions [5, 7, 19]. In this case, since 
a service provider may return a superset of the query result, the data owner should 
perform a post-processing to filter false positives. This can be a problem in CBPS 
because a subscriber should not be able to receive data that s/he does not have 
authorization for. Such approaches violate the confidentiality of notifications. The 
work in [19] assumes that subscribers know the secure index. However, this can give 
users extra information which may result in compromising confidentiality. 

The work in [15] discusses security requirements in CBPS. However, no specific 
methods for notification and subscription confidentiality are given. Similar to our 
work, in [16] the brokers are also not trusted. However, it is required that the part of 
notifications used for routing is not encrypted. Hence, confidentiality is compromised. 
The work in [18] assumes that the brokers are trusted and are allowed to decrypt a 
notification for routing. Such an assumption is not reasonable in our model.  
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The work of Raiciu et al. [5] provides notification and subscription confidentiality 
for equality, inequality, and range filtering. However, it incurs false positives in 
inequality filtering and range filtering. Moreover, in order to reduce the ratio of false 
positives, it has to use more partitions in a domain. Hence, it will take more time for a 
broker to match a notification against subscriptions. In addition, since a notification 
should have information about all partitions for range filtering, it will not be practical 
in a real application. The work in [14] achieves privacy-preserving filtering and 
covering in CBPS, but it relies on cryptographic elements that incur high 
computational overhead. 

The work in [11] used an additively homomorphic public-key cryptosystem to 
protect confidential data from intermediate aggregation nodes. The work in [10] 
verified the integrity of the sum by leveraging a homomorphic MAC scheme based on 
the discrete logarithm property. However, only secure additive aggregation is 
considered. We consider in addition methods for sum, min, max and count functions 
for secure aggregation supporting equality, inequality and range filtering. 

2.3   Asymmetric Scalar-Product Preserving Encryption (ASPE)  

Distance-preserving-transformations (DPT) [13] are an appealing construction to hide 
the data while allowing at the same time to perform certain operations on top of the 
ciphertexts. DPT are a subset of the more general Distance Recoverable Encryption 
(DRE). However, as shown in [1], DRE-based techniques are vulnerable to attacks 
when the adversary knows some of the plaintext data, or the mapping between some 
plaintexts and ciphertexts [1, 9]. In our work, we employ a superior transformation, 
ASPE, which is not distance-recoverable [1]. 

The weakness of DRE comes from the fact that the attacker is able to recover 
distance information from the encrypted data [1]. In contrast, ASPE does not reveal 
distance information. Instead, it only provides means for distance comparison. Given 
two points p1 and p2, it decides which of the two points is nearer to a query point q.  , ) , )  2 ·   2 ·     2 ) · 0 

The inequality is decomposed to a number of scalar product computations. There are 
three types of scalar products: (type-1) scalar product of a data point with itself, (type-
2) scalar product of a data point with the query point, and (type-3) scalar product of 
two different data points p1 and p2. If an encryption preserves only type-1 and type-2 
products but not type-3 products, which is essential in DRE, then we can compare the 
distances , ) and , ) by the above equation without the vulnerabilities of 
DRE. 

The scalar product of p and q can be represented as pTIq. I is the unit matrix, and 
can be decomposed to MM-1 for any invertible matrix M. If we set  
and , it is not computationally feasible for an adversary to determine the 
value of p and q from  and  without knowing M. Also, 

, i.e., type-2 scalar product is preserved. But,  is not equal to 
 in general. The Asymmetric Scalar-product Preserving Encryption (ASPE) uses 

 and  as the transformations for data points and queries respectively. 
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If the type-1 product  is revealed to the attacker, he knows that  lies on a 
hypersphere that is centered at the origin with a radius . It can partially 
compromise security. We need to hide this information by hiding the value of . 
That is, the value of 0.5   is treated as the (d+1)-st dimension of the point p 
since it will be used to get the distance difference. Given a d-dimensional data point p, 
a (d+1)-dimensional point p* is created. Similarly, we need to extend a query  to a 
(d+1)-dimensional point q*. The simplest way is to set the (d+1)-st dimension of q* 
to 1. For security, we generate a random number r>0 and scale q* by r. 

Let , , and  be the encrypted points of the data points ,  and the query 
point . We can determine whether  is closer to  than  by evaluating whether ) · 0. Note that  ) · ) ) )  ) ) 0.5 0.5 )  0.5  2 ) ) 0.5 , ) , )) 

So, the condition is equivalent to  0.5 , ) , )) 0 , ) , ). 

3   Secure CBPS Using ASPE 

By using ASPE, we can compare the distance between a data point  and a query 
point  with the distance between another data point  and the same query point . 
In this paper, we propose a CBPS framework for matching subscriptions and 
notifications encrypted with an ASPE-like technique. In the CBPS setting, the data 
point p corresponds to a notification, and the query point q to a subscription. 
Specifically, for each subscription the users generate a set of reference values 
encrypted according to transformation M, whereas the publishers transform 
notifications according to transformation . 

There are several kinds of subscription conditions in CBPS. 1) In the equality 
filtering, a subscriber wants to receive a notification which is equal in value to its 
subscription. 2) In the inequality filtering, a subscriber wants to receive a notification 
which is larger or less than its subscription. 3) In the range filtering, a subscriber 
wants to get a notification which is in a certain range. 4) In the conjunction filtering, a 
subscription consists of several conditions expressed as multiple attribute constraints 
and a subscriber wants to receive a notification which satisfies all the conditions.  

In addition, the covering operation allows a broker to determine if, given two 
subscriptions, one of them will always match a strict subset of the notifications 
matched by the other. Next, we show how ASPE can be used to support all the above 
operations while maintaining confidentiality of subscriptions and notifications. 

3.1   Equality Filtering 

Consider for example that a subscriber wants to receive a notification which is equal to 
some value . The subscriber sends to a broker the encrypted subscription ) ′. 
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When a publisher wants to disseminate a data item with value , it sends to a broker 
an encrypted notification ) ′. When a broker receives ′ and ′, it must be 
able to determine whether  is equal to . But, the broker should not learn what are 
the values of  and .  

Our secure matching method works as shown in Fig 2. The subscriber selects  
and  where  and , i.e., a is the middle of the interval [c,d] 
( 0  is a random number) and sends , 0.5 )  and , 0.5 )  as a subscription to the broker. On the other hand, 
the publisher sends a notification , 1) . 

As explained in Section 2.3, a broker can evaluate based on the encrypted values 
which one of distance(c,x) and distance(d,x) is larger.  

   ) ·
 

) )  )  ) ) 0.5 0.5 )  0.5 2 ) ) 0.5 , ) , )) 

(1)

If the difference is equal to 0, the broker can determine that x is equal to a. Otherwise, 
the values must be different. However, since the broker receives , , and  
instead of  and , it can not know what  and  are. 

Theorem 1. The equality matching using ASPE is secure. 

Proof. Suppose that a broker wants to compute a using , , and  when x is equal 
to a. If the broker can get ) 2 , since  is equal to 2a, the 
equality filtering is not secure. We show that the broker cannot obtain )  
from ) . )  

              
 

)  )  ) ) 0.5 0.5 )  0.5 2 ) ) c d) x (2) 

Since the (d+1)-st dimensions of  and  are 0.5 c  and 0.5  
respectively, and there is a random number , the broker can’t get )  by 
computing )  when x is equal to a. Therefore, the equality test using ASPE 
is secure. 

3.2   Inequality Filtering 

In the inequality filtering, the broker should be able to determine whether the 
notification value x is greater than subscription value a. As in the case of equality 
filtering using ASPE, the subscriber selects  and  where  and 

 ( 0  is a random number) and sends ′ , 0.5 )  and 
′  , 0.5 ) as a subscription to the broker. The publisher sends 

a notification ′ , 1) . At that time, the broker can compute a  
 



376 S. Choi, G. Ghinita, and E. Bertino 

 
Fig. 2. Equality Filtering using ASPE          Fig. 3. Range Filtering using ASPE  

 
difference between distance(c,x) and distance(d,x). If the difference is greater than 0, 
the broker can know that x is greater than a. But, the broker can’t know what the 
values of x and a are. The security proof is similar to the proof of Theorem 1. , ) , ) 0 ′ ′) · ′ 0  (3)

3.3   Range Filtering 

When a subscriber wants to receive a value x between a and b, s/he sends to the 
broker two pairs of values. The first pair , 0.5 )  and , 0.5 )  encodes the value of , whereas the second pair , 0.5 )  and , 0.5 )  encodes the 
value of , where  and  ( 0 is a random number), as shown 
in Figure 3. By using , , , , , the broker can compute a difference p between 
distance(c,x) and distance(d,x) and a difference q between distance(e,x) and 
distance(f,x). If p is greater than 0, x is greater than a and if q is less than 0, x is less 
than b. Therefore, the broker can determine whether x is between a and b as follows:  , ) , ) 0 && , ) , ) 0 ) · 0 && ) · 0 

(4)

In [2], it is suggested that the Order Preserving Encryption Scheme (OPES) can be 
used for inequality filtering and range filtering on encrypted data. However, OPES 
requires to know the data distribution in advance. But, in CBPS, since data are 
dynamically generated, it may be difficult to know the data distribution, especially 
when there can be several publishers. So, OPES is not suitable for CBPS. In [3], the 
ciphertext size of range filtering is √ ). The value n is the number of data points in 
a domain. Such an approach would not scale well. Note that, the space complexity of 
range filtering using ASPE is 1). 

3.4   Covering 

Suppose that there are two subscribers. When the first subscriber wants to get a value 
greater than a and the second subscriber wants to receive a value greater than b, the 
broker should be able to determine that the set of notifications matched by one of the 
subscriptions will always be a subset of the notifications matched by the other. For 
instance, if a is less than b, the broker can send only (the encrypted) a to a parent 
broker. Also, when a parent broker evaluates the matching condition, it may only 
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need to evaluate a single condition rather than two, saving computation cost. 
Therefore, the covering operation helps to achieve scalability in CBPS.  

Our idea is illustrated in Figure 4. Each subscriber selects a random number. Thus, 
the first subscriber chooses a random number y (y>>a+s=d) and the second subscriber 
picks up a random number z (z>>b+t=f). The first subscriber sends to the broker the 
triplet , 0.5 ) , , 0.5 ) , , 1)  (where u is also a random number) to encode the value of  
and the second subscriber sends , 0.5 ) , , 0.5 ) , , 1)  (where v is a random number) to 
encode the value of . 

By computing the difference between distance(e,y) and distance(f,y), if the 
difference is greater than 0, the broker can determine whether y is greater than b. If y 
is less than b, the broker can know that b is greater than a since y is greater than 
a+s(=d).  

If y is greater than b and condition (5) is satisfied, the broker can determine that b 
is greater than a. However, the broker can’t know what a and b are. On the other 
hand, in condition (5), we can use  instead of . , )  , ) , ) , ) , ) , ) , ) , )) , ) , ))  0 ) · ) · 0 

(5)

For simplicity, the condition (5) and Figure 4 show covering for the inequality 
filtering. We can extend this easily to covering for range filtering. In this case, a 
subscriber sends , , , ,  in order to get the values between a and g and the 
other subscriber sends , , , ,  in order to get the values between b and h. If  
condition (6) is satisfied, we can say that the first subscription covers the second 
subscription. Thus, if x is between b and h, then x is between a and g (e.g.,  b < x < h  
→ a < x < g). , )  , ) && , ) , ) , ) , ) , ) , ) && , ) , ) , ) , ) , ) , )) , ) , ))  0 && , ) , ) , ) , ))  0 ) · ) · 0  && ) · ) · 0 

(6)

3.5   Conjunction Filtering 

Suppose that a publisher sends a value m and a value n for two distinct attributes in a 
single notification. In this case, the publisher sends a column vector , 1)  to the broker(s). The column vector X contains the original values m  
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Fig. 4. Covering for Range Query using ASPE        Fig. 5. Conjunctive Query using ASPE 

and n. Suppose that a subscriber wants to receive a notification in which the value of 
the first attribute is greater than a and the value of the second attribute is greater than 
b. Then, the subscriber sends , 0.5 ) ,, 0.5 ) ,   , 0.5 ) ,  , 0.5 ) as a subscription instead of , 0.5 ) . 
A is a column vector which contains the values a and b. As shown in Figure 5, C and 
D have the same distance from the line L1. E and F have the same distance from the 
line L2. If a condition (7) is satisfied, the broker can determine whether m is greater 
than a and n is greater than b. Thus, the broker can know that X is inside the rectangle 
specified by coordinates L1 and L2. But, the broker can’t know what a, b, m, and n 
are. We can extend this method to a hyper-rectangle which has multiple attributes to 
handle multi-dimensional spaces. , ) , ) && , ) , ) ) · 0 && ) · 0 

(7)

In [3,17], the complexity of conjunctive condition evaluations is ). The value n 
is the number of the data points and the value d is the number of dimensions. In 
contrast, the complexity of conjunctive conditions using ASPE is only ). 

4   Preventing Collusion Attacks 

In ASPE, a subscriber knows the matrix . So, if the subscriber is malicious, the 
system may not be secure since the broker can decode the notification using the 
matrix learnt from the subscriber. In order to solve this problem, we can employ a 
trusted security manager component. Instead of creating their own encrypted 
subscriptions, users send plaintext subscriptions to the security manager. For example, 
the subscriber sends an original subscription  to the security manager, and the latter 
assembles the encrypted subscription.  , 0.5 ) , , 0.5 )  which can be then sent to a broker. This way, the 
subscriber does not learn the transformation matrix. The security manager architecture 
is depicted in Figure 6. 

Since the subscriber does not know the matrix, it can’t collude with a broker. Also, 
the subscriber can’t get the matrix from the original subscription  and the encrypted 
subscription  and  by Theorem 1. Even if the subscriber can get the value  
from the notification  by decoding it using a secret key, since the value  is not a 
column vector but an integer value, the subscriber can’t learn the matrix. 
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Moreover, if subscribers want to send too many subscriptions, it can make the 
CBPS system insecure. If a subscriber or a broker knows all the subscriptions, it may 
attempt to guess the matrix used for ASPE. In this case, the security manager may 
restrict the rate of subscriptions in order to protect against this sort of attacks. 

In addition, we can use an access control method at the security manager. A 
subscriber should send a plaintext subscription to the security manager through a 
secure channel. If the subscriber has an access right, it can receive the encrypted 
subscription from the security manager and receive a notification from a broker by 
forwarding the encrypted subscription.  

When a subscriber leaves its subscribing group, the security manager makes a 
publisher change the matrix which is used for notification encryption or sends a new 
matrix to the publisher such that the subscriber can’t receive notifications any more. 
The notification made by the new matrix can’t be filtered by the prior subscription. 
So, a subscriber which lost an access right can’t receive a notification.  

Also, the broker can manage the subscriptions using a soft-state method. Thus, it 
enables access control by deleting a subscription which expired. In order to prevent 
the subscription from expiring, a subscriber should contact the security manager to 
renew an access right and forward a new encrypted subscription to a broker.  

Changing the matrix whenever a subscriber leaves the system can be a burden to a 
secure CBPS. If subscribers do not leave frequently, changing the matrix is 
reasonable. Also, using soft-state in the brokers can reduce the frequency of changing 
the matrix.  

 

     Fig. 6. Preventing collusion                  Fig. 7. Secure Aggregation using ASPE 

5   Secure Aggregation Using ASPE 

In this section, we suggest a method for secure aggregation in CBPS using ASPE in 
conjunction with homomorphic encryption. Specifically, we employ an additively 
homomorphic public-key cryptosystem for sum, such as the one in [21]. When there 
is a notification whose value is  and another notification whose value is , two 
publishers can send the encrypted notification )  and )  by using the 
homomorphic encryption function. Then a broker computes the sum of the two values 
as follows: ) ) ) 

Note that, this encryption is applied to the notification content. The part of the 
notification that is used for routing will also be encrypted with the ASPE function, 
and this section of the notification is used by the brokers to make forwarding 
decisions. The format of the notification is the following:  

Notification = <min, max, count, sum> 

In order to do range filtering, a notification has an encrypted minimum value and an 
encrypted maximum value by using ASPE. For additive aggregation, it has a sum by 
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using homomorphic function. For example, a notification whose value is x is 
represented as , , 1), ) . Since we used ASPE,   is equal to , 1) . Because the notification is a sum of only one notification, its count value 
is equal to 1). Figure 7 illustrates this process. 

When a broker receives two notifications  and , if a subscriber wants to get a 
sum of notifications whose values are greater than , the broker should check 
whether x and y are greater than a. As we mentioned in Section 3.2, we can use the 
inequality filtering method based on ASPE. The following condition should be 
examined where  and . (  is a random number.) First, if the 
following condition (8) is satisfied, we can verify whether x and y are greater than a. 
Then, the sum of the two notifications is computed as ) ) ). , ) , ) 0 && , ) , ) 0 ) · 0 && ) · 0 

(8)

Second, we have to determine which one is greater between the two values in order to 
get the minimum value and the maximum value. If the condition (9) is satisfied, we 
can know that x is less than y. Because x and y are greater than a in the first step, x 
and y are also greater than c. , )  , ) ) · 0 (9)

If we assume that x is less than y, the minimum value is x and the maximum value is 
y. So, the broker produces a new notification which has the following values. 

<min, max, count, sum> = < , , 2), )  

6   Experimental Evaluation 

We implemented the proposed secure CBPS methods using ASPE in SIENA[4], a 
wide-area event notification service. SIENA is a content-based publish/subscribe 
infrastructure where brokers are vertices in a connected overlay acyclic graph. 
However, SIENA does not provide any security features. We evaluate the 
performance of our method in comparison with the C-CBPS solution proposed in [5]. 

As discussed in Section 2.2, C-CBPS supports secure equality filtering and range 
filtering using a re-mapping of subscriptions and notifications. It adapts a scheme 
from Song et al. [22] to support equality filtering and defines two schemes for 
inequality filtering and range filtering.  

For equality filtering, C-CBPS computes the hidden value of an attribute by 
passing its plaintext value to a pseudorandom function with the secret key. The 
encrypted subscription is the hidden value of the plaintext. The encrypted notification 
has a random nonce r and the result of feeding the nonce r to a pseudorandom 
function. When the broker computes the value of feeding the nonce r to a 
pseudorandom function with the encrypted subscription, if the value is the same with 
the result contained in the notification, the notification satisfies the subscription. 

For inequality filtering, C-CBPS chooses l points, p1, … , pl as reference points and 
considers the following dictionary: {“>p1”, “>p2”, … , “>pl”, “<p1”, “<p2”, … , 
“<pl”}. Subscriptions will be approximated with one of these constraints. Each 
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notification is considered to be a document containing the words in the dictionary. For 
range filtering, in order to support lb < N < ub subscriptions, C-CBPS has the 
publishers and subscribers agree on a partitioning P = {p1, … pl}. The publisher 
encrypts the index of the subset which N belongs to by using equality filtering. The 
subscribers include as subscriptions encrypted versions of the indexes of the subsets 
in the partition they are interested in (i.e. all pi ∈ P such that pi ∩ (lb,ub) ≠ Ø). 

The security features of our method and C-CBPS are similar. However, our results 
show that the overhead incurred at the brokers by our method is clearly superior to the 
work in [5]. 

6.1   Evaluation Methodology 

All the data used for testing are generated uniformly at random. In all the tests, a 
single instance of the enhanced SIENA matching engine was evaluated. All 
experiments were run on a 2.1Ghz Intel Core2 Duo CPU with 3GB of RAM running 
Windows Vista and Sun’s JDK 1.6. Time is measured by using the function 
System.nanoTime().  

Matching time is measured as the time that the broker spends to identify the set of 
matching subscribers, when a notification is given. We measure the average matching 
time required to match a notification against 1000 subscriptions. Subscription and 
notification sizes are measured by total network bytes sent including SIENA’s 
protocol overhead. We consider types of subscriptions which filter numeric attributes 
using arithmetic operators (i.e., =, <, >). We use the schemes with subscription 
covering enabled. 

6.2   Matching Time Measurements 

Notifications are integers generated uniformly at random from [0,10000]. To test 
equality filtering, we select subscriptions uniformly at random from [0,10000]. Figure 
8(a) shows the results for equality filtering time. Our method using ASPE shows the 
similar performance with SIENA which uses the plaintext subscriptions and 
notifications. On the other hand, ASPE takes about 65% less time than C-CBPS for 
equality filtering. ASPE has a reference matching time of 2.7ms.  

 

Fig. 8. (a) Equality filtering time (b) Range filtering time 
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Figure 8(b) shows the result for range filtering. ASPE takes about 50% less time 
than C-CBPS and shows similar performance with SIENA. C-CBPS uses subsets for 
range filtering. For example, each subset can have a range as follows: (0,50), (10,60), 
(20,70), etc. It used overlapped partitions for subscription confidentiality. Originally 
C-CBPS used 890 subsets which have values from [0,1000]. So, it had a false 
matching rate of 5%. There are about 1000000 subsets which have values from 
[0,1000]. A partitioning scheme with zero false matches for any range subscription 
has |D|2 points, being quite expensive. So, it is not reasonable to use only 890 subsets. 
In order to compare the performance of C-CBPS with ASPE more precisely, we made 
C-CBPS use about 15000 subsets which have values from [0,10000]. However, it still 
has false positives.  

Also, in C-CBPS, as there are more subsets, the size of a subscription is larger 
because the subscription should contain the information about the subsets when 
covering is enabled. When there are 890 subsets, the size of a subscription is 775 
bytes. When we use about 15000 subsets, the size is 10728 bytes. So, when there are 
more than 500 subscribers in C-CBPS, the system runs out of memory. ASPE is 
scalable and does not incur false positives. 

 

Fig. 9. (a) Conjunction filtering time (b) Single vs conjunctive condition filtering 

Since SIENA and the C-CBPS do not support the conjunction filtering, we 
compared ASPE with plaintext filtering. Figure 9(a) shows the performance of ASPE 
which runs the conjunction filtering having two attributes. ASPE is about 2.5 times as 
expensive compared to plaintext filtering. But, since the reference matching time of 
ASPE for the conjunctive query is 0.25ms, it is still reasonable in practice.  

Finally, Figure 9(b) gives the performance of the single condition filtering and 
conjunctive condition filtering using ASPE. Note that, the conjunctive condition 
filtering takes only about 10% more time than the single condition filtering. It shows 
that the conjunction filtering using ASPE is practical and scalable. 

7   Conclusion 

In this paper, we proposed a secure CBPS system based on Asymmetric Scalar-
product Preserving Encryption in order to provide notification and subscription 
confidentiality and to reduce matching complexity. Our methods support equality 
filtering, inequality filtering, range filtering, covering, and conjunction filtering which 
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are essential in CBPS. In addition, our solution does not incur false positives, in 
contrast to existing work such as C-CBPS. Moreover, we suggested a new method for 
secure aggregation using ASPE and homomorphic functions. We can support sum, 
min, max and count functions for equality, inequality, and range filtering. 

The experiment results show that our methods take about 65% less time in equality 
filtering and about 50% less time in range filtering than C-CBPS. Moreover, our 
secure conjunction filtering method incurs reasonable overhead when compared to 
plaintext conjunction filtering and single condition filtering. In future work, we intend 
to develop secure mechanisms for other types of subscriptions with more complex 
conditions.  
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Abstract. Although there are a number of anonymization techniques in

the microdata publication, two problems remain: (1) the privacy breaches

with auxiliary knowledge; (2) the large information losses during the

anonymization. We establish the requirement of presence anonymity and

propose the two-step process of synthesizing, consisting of learning a

model from the original data, and then sampling a published version

with it, which has the similar statistical characteristics and includes fake

records. The advantage is that it prevents the auxiliary knowledge at-

tacks as well as enables researchers get correct or approximately correct

conclusions. Furthermore, its effectiveness is proved through extensive

experiments.

Keywords: privacy, anonymization, synthesizing.

1 Introduction

The privacy preserving has received considerable attentions from the database,
statistics and cryptograph communities in the past few years. Specifically, the
microdata T is a table containing useful information about a group of individ-
uals. Each record in the table corresponds to a unique individual and contains
both some sensitive attributes(e.g., disease, salary) and non-sensitive ones(e.g.,
address, gender, age). The objective of microdata publication is to release a
sanitized version T∗ of T such that forbids potential adversaries from inferring
the sensitive values of any individuals from it; at the same time allows legal
researchers to reach useful conclusions.

The identifying attributes such as name and social security number are re-
moved before publication. This simple method, however, is insufficient due to
the possibility of linking attacks[1]. It is easy to implement the complete pri-
vacy by not publishing both quasi-identifier attributes and sensitive attributes.
This trivial sanitization provides the maximum privacy, while merely leaves any
utility to the legal researchers. Conclusions such as “people who smokes a lot
are easy to get the lung cancer” are impossible to be deduced from the triv-
ial sanitized table. Some research in database community applies the domain-
specific generalization and suppression to quasi-identifier attributes. These meth-
ods are guided by the anonymization principle of k -anonymity[1], which de-
fines constrains on the quasi-identifier attributes. Another permutation-based
method called anatomy[2] clusters records into buckets and publishes quasi-
identifiers and sensitive attributes separately. This method follows the privacy
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schema of �-diversity[3]. Koudas etc. propose the “distribution-based microdata
anonymization”[4]. The authors combine sensitive attribute permutation and
generalization with the addition of fake sensitive attribute values. In this ap-
proach, the requirement that groups of sensitive attribute values follow specified
distributions, is defined in t -closeness[5]

1.1 Background

The challenge of microdata publication is how to enable researchers reach correct
conclusions without corrupting the privacy of any individuals in the data.

Attack with auxiliary knowledge. In 2002, Sweeney reports that 87% of the
population of the United States could be uniquely identified by the seemingly in-
nocuous attributes: gender, date of birth and 5-digit zip code[1]. Such attributes
are called the quasi-identifier(QI) attributes. It is called the linking attack that
linking the published records with individuals by QI values. Since k -anonymity,
it has always been the focus of research on privacy to resist such linking attacks.

Apart from QI values, more information can be linked with published records,
which makes the problem more complicated. Now the greatest threat to micro-
data is the auxiliary information(also called background knowledge) that users
collect from other sources. Although several stringent anonymization schemas are
proposed, none of them succeeds in protecting the data privacy when considering
the arbitrary auxiliary knowledge. For example, the composition attack proposed
by Ganta etc. makes use of the auxiliary information from other anonymized
data[6]. Their experiments show that almost all the partitioning-based schemas
including k -anonymity, �-diversity and t -closeness are vulnerable to the com-
position attack. Other schemas such as m-invariance[7], (c,k)-safety[8], skyline
privacy[9] plan to make some assumptions about adversaries’ auxiliary knowl-
edge and then provide the corresponding protection strategies. Their problem is
that the auxiliary knowledge comes from various sources, such as the common
sense, adversaries’ personal knowledge and information from other published
data. It is difficult to define the auxiliary knowledge of all adversaries; therefore
the completeness of privacy is impossible to be guaranteed.

Information Loss. Some anonymization schemas may cause large information
losses; and thus the query or mining results from the anonymized data may
be quite different from the original data. For example, the result of Brickell’s
experiment shows that in most cases, the trivial sanitization provides equivalent
utility and better privacy than k -anonymity and other similar methods based
on QI generalization and suppression[10]. The bucket-based methods such as
anatomy, are excellent if we are just interested in the distributions of attributes
or correlations among QI attributes. However, they also show their weakness
in some workloads. These methods changes the one-to-one mapping between QI
and sensitive values to the multiple-to-multiple mapping. If the query conditions
contain both QI and sensitive attributes, the results are usually uncorrect.
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1.2 Contribution

In this paper, we propose a novel methodology in the microdata publication,
which is able to resist the attacks with auxiliary knowledge as well as provide
considerable data utility.

First of all, we establish the schema of presence anonymity as the guideline
of privacy preserving. We propose the idea of incorporating the authenticity
uncertainty into the published data to reach the goal of auxiliary independant
anonymization.

Additionally, we use synthesizing as the implementation of presence anonymity.
The method retains the statistical features of the original data as well as add
acceptable amount of noise into the published data.

Finally, we conduct comprehensive experiments on real data to verify the
advantages of the proposed technique. The experimental results show that the
resulting data of synthesizing can be used in common analysis tasks with rea-
sonable correctness.

The rest of the paper is organized as follows. Section 2 discusses the basic ideas
of privacy and utility. Section 3 introduces the auxiliary independant anonymiza-
tion by an example. Section 4 gives the algorithm of synthesizing. Experimental
results are reported in Section 5. Section 6 concludes the paper.

2 Basic Idea

2.1 Presence Privacy

Most schemas in the microdata publication are partitioning-based, which divide
records in the data sets into disjoint groups satisfying certain criteria. Their
resulting data is easy to be attacked because of: (1) exact sensitive value disclo-
sure: the sensitive value in each group is published exactly; (2) locatability: by
comparing the QI values one can locate the group in which the target record has
been put in[6]. Based on these properties, an adversary can narrow down the
set of possible sensitive values for an individual by the sets of sensitive values
present in the corresponding groups and his/her auxiliary knowledge.

It is the basic requirement of microdata publication to guarantee the cor-
rectness of sensitive values, so the anonymization can only be accomplished by
limiting the locatability. A simple way to realize that is to incorporate the au-
thenticity uncertainty into the procedure of publication. If an adversary is un-
certainty about whether records in the published data are also included in the
original data, his/her confidence of locating the groups of target records in the
published data shall be reduced. Based on the assumption, the conclusions in-
ferred through combining the auxiliary knowledge with sensitive values in the
corresponding groups will be un-creditable.

We call it the presence anonymity that no records in the published data exists
in the original data with high probability. The definition is as follows:
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Definition 1. T* is a published version of T, and t∈T* is an record in T*. T*
is said to be privacy preserving, iff for ∀t∈T*:

p(t ∈ T |t ∈ T ∗) � α (1)

As the privacy threshold, α defines the maximum probability that records in
the published data exist in the original data. Under the constrain of presence
anonymity, even if the adversary learns the exact sensitive values of individuals
through the anonymized data and his/her auxiliary knowledge, their credibility
will be influenced by the authenticity of published records. It is worth men-
tioning that the presence anonymity is not a partitioning-based schema, but
randomization-based schema. The success of differential privacy[11] indicates
that randomization is a reliable way to resist attacks with auxiliary knowledge.

2.2 Utility Measurement

One important reason why some anonymization schemas cause large information
losses is that their utility measurements hardly reflect the effects of data usage.
In most partitioning-based schemas such as k -anonymity and �-diversity, the
utility of anonymized data is measured by the steps of generalization or sizes of
bucket[3][12]. Such syntactic utility measurements seem unreasonable, since it
often happens that the anonymized data with high syntactic utility is useless in
the data mining tasks[10].

Two aspects should be considered to carry out a complete assessment of data
utility: (1) the information loss measurement from the data publisher’s perspec-
tive. One of the main goals of data mining and statistics is to make statements
about probability distribution of data - this is certainly true of classification,
parameter estimation, hypothesis testing and regression[13]. In this spirit, we
recommend to measure the information losses by the statistical divergence be-
tween the original data and anonymized data. The more similar their probability
distributions are, the more same conclusions we may draw from them in most
data mining tasks. (2) The usage of published data from the data user’s per-
spective is measured by the difference between the mining results of the original
data and anonymized data. Especially, the correlations between QI values and
sensitive values should be verified, as it is the main reason why sensitive values
are released.

3 Auxiliary Independent Anonymization

To consider the worst case, we usually make two assumptions: (1) the adversary
knows that his/her target’s record is included in the original data; (2) the ad-
versary knows his/her target’s QI values well. The anonymized data is supposed
to guarantee the privacy of individuals in the presence of arbitrary auxiliary
information. However, such auxiliary independent anonymization is merely met
in most microdata publications.
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We show the advantages of presence anonymity by a simple example. Table
1 includes some medical records that a hospital intends to release, in which the
attribute of disease is sensitive. The adversary Alice attempts to locate Dave’s
record in the published data, and from other sources she gets to know that Dave
is a 55-year old man, lives in zip code 100080 and recently visited that hospital.

Under the direction of k -anonymity, the hospital performs some pre-treatments
on these records, and table 2 is the 2 -anonymizations result. Just from the pub-
lished data, Alice could hardly find out whether Dave has the lung cancer or
ovarian cancer, as both tuple 7 and 8 satisfy his QI values well. However, based
on the common sense that men are impossible to have the ovarian cancer, Alice
could infer Dave’s disease is the lung cancer easily.

Table 1. Original Table

Name Zip Age Sex Disease

Bob 100084 23 M Flu

Charlie 100080 44 M Flu

Dave 100080 55 M Lung Cancer

Mark 100084 67 M Lung Cancer

Frank 100084 31 M Mumps

Gloria 100080 21 F Flu

Angela 100080 42 F Flu

Andy 100084 64 F Breast Cancer

Jessica 100080 56 F Ovarian Cancer

Karen 100084 38 F Heart Disease

Table 2. 2 -anonymity Table

Zip Age Sex Disease

1 100084 20-29 - Flu

2 100080 20-29 - Flu

3 100084 30-39 - Mumps

4 100084 30-39 - Heart Disease

5 100080 40-49 - Flu

6 100080 40-49 - Flu

7 100080 50-59 - Lung Cancer

8 100080 50-59 - Ovarian Cancer

9 100084 60-69 - Lung Cancer

10 100084 60-69 - Breast Cancer

Table 3 shows the 3 -diversity version of table 1. By comparing QI values,
Alice locates Dave’s record in the second group. Supported by the information
mentioned before, she excludes the possibility of ovarian cancer. If she believes
that Dave’s disease is serious, then the candidate of flu will be eliminated and
Dave’s privacy shall be breached.

Partitioning-based schemas are impossible to achieve the auxiliary indepen-
dent anonymization, as they keep all the genuine records(records existing in the
original data) in the published data. With QI values and other auxiliary knowl-
edge, the adversary may eliminate most of candidate records in the published
data and locate their target with high confidence.

According to the definition of presence anonymity, we replace 60% of the
original records with fake records randomly, and get a published version which
satisfies the 0.4-presence anonymity. In table 4, Alice finds Dave’s possible record
easily, but she will not believe Dave has the lung cancer. As most of the genuine
records have been replaced, the record which she locates is more likely to be a
fake record. Therefore, no matter how much auxiliary knowledge she has, Alice
could learn little about Dave from the published data. The presence anonymity
cuts the relationships between the published data and auxiliary knowledge, and
reach the goal of auxiliary independent anonymization.
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Table 3. Bucketized Table

Zip Age Sex Disease

100084 64 F Lung Cancer

100084 23 M Breast Cancer

100084 67 M Flu

100084 31 M Heart Disease

100084 38 F Mumps

100080 55 M Ovarian Cancer

100080 44 M Flu

100080 21 F Flu

100080 42 F Flu

100080 56 F Lung Cancer

Table 4. Randomly Replaced Table

Zip Age Sex Disease

1 100074 27 M Flu

2 100080 40 M Flu

3 100080 55 M Lung Cancer

4 100074 69 M Heart Disease

5 100074 51 M Mumps

6 100080 21 F Flu

7 100080 42 F Flu

8 100084 74 M Breast Cancer

9 100080 46 F Ovarian Cancer

10 100074 38 F Heart Disease

However, data in table 4 is unrepresentative to the original data; and it is
impossible for researchers to obtain the correct conclusions from it. If the process
of replacing genuine records with fake records is out of constrains, the statistical
characteristics of the original data may be changed a lot. To guarantee the utility
and privacy of data, the implementation of presence anonymity should meet the
following requirements:

1. The number of fake records in anonymized data should be large enough, so
that adversaries’ confidence of learning information from the published data
is reduced.

2. The process of replacing genuine records with fake records should be full of
randomness to prevent adversaries from inferring the authenticity of pub-
lished records.

3. The anonymized data must be representative to the original data, which
means their statistical divergence isn’t large.

We find the method of synthesizing meets the requirements above well. The idea
of synthesizing is to learn a model from the original data and then to sample
records with it. These new records will be published instead of the original data.
We choose it, as the utility of synthesizing has been proved during the past
work. [14] and [15] show significant work on performing statistical analysis of
and drawing inferences from synthetic data.

4 Synthesizing

4.1 Notations

As in most works on microdata publication, we assume a microdata table consists
of two parts: several quasi-identifier attributes and a sensitive attribute.

Let T = {t1, . . . tn} be an original data table; and T* is the published
version of T. A = {A1, . . . Am} is the set of attributes. t [Ai] denotes the value
of attribute Ai for tuple t, and D [Ai](1≤i≤d) denotes the domain of Ai.
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S is the sensitive attribute in T. The two tuples t i and t j are S-equivalent
if t i[S ] = t j[S ]. This equivalence relation partitions T into several sensitive
attribute equivalence classes EC(s), s∈D [S ]; where t ∈ EC(s) iff t [S ]=s. Let Q
={Q1,...Qd} ⊆ A-S be the set of quasi-identifier(QI) attributes. The domain of
Q is D[Q]=

∏
1≤i≤d D[Qi].

U s(q)={t ∈ EC(s) | t [Q] = q} represents the set of tuples in EC(s) whose
quasi-identifier values equal q. p(q|s) is the corresponding percentage of U s(q)
in EC(s), which is computed by |Us(q)|

|EC(s)| . The probability distribution of the
equivalence class EC(s) can be represented by the set of p(q|s)(q∈D[Q ]); while
the distribution of the whole table is described by the distributions of all EC(s).

One requirement of data utility is to retain the correlations among arbitrary
attributes, therefore the synthesizing should be performed in the domain of D [Q]
in order to describe the distribution of records in the multi-dimensional space.

Definition 2. The sampling space R = M1 ×M2 × ...Md, where Mi(1 ≤ i ≤ d)
corresponds to the attribute Qi and D[Mi] = D[Qi]. For any t ∈ EC(s), if r∈R
and r = t[Q], then r is t’s mapping point of Q in the sampling space. Once the
sampling granularity is fixed, the amount of sampling points in R is donated by
|R|.
Definition 3. t∗ ∈ T ∗ is a record in the anonymized table; and r is the mapping
points of t∗. If there is no t ∈ T satisfying r = t[Q], then t∗ is a fake record and
r is a noise point; otherwise t∗ is a genuine record. The set of fake records in
EC(s) is denoted by ECF (s), while the set of genuine records is ECR(s).

4.2 Learning

The synthesizing will be performed in each equivalence class separately; other-
wise bias will be added into the distribution of sensitive values.

The objective of learning is to find the model for each EC(s) of the original
data, which represents the distribution of mapping points. We choose smoothing
as the learning mechanism. To smooth a data set means to create an approxi-
mating function that attempts to capture important patterns in the data, while
leaving out noise or other fine-scale structures/rapid phenomena. Its benefits
include:

– Smoothing is to give a general idea of changes of values. The statistical
characteristics of original data are retained.

– Smoothing helps to hide the peaks and isolated points(individuals whose QI
values are quite different from others, thus can be identified easily) in the
original data.

– Smoothing estimates the expectations of any points in the space. Fake records
will be added through expectations of noise points.

In the smoothing family, the kernel regression estimation has been extensively
studied in the statistics, machine learning and data mining. Given a sensitive
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attribute value s∈S, using Nadaraya-Watson kernel weighted average[16], the
probability expectation of qm in EC(s) is,

p̂(qm | s) =

∑
qk∈D[Q] p(qk | s)

∏
1≤i≤d Ki(Dis(qm[Ai], qk[Ai]))∑

qk∈D[Q]

∏
1≤i≤d Ki(Dis(qm[Ai], qk[Ai]))

(2)

If we don’t find any qk with s in the original data, then p(qk | s)=0. K i is the
kernel function for the i-th attribute Ai.

Generally the closer a point is to the estimated point, the greater its influence
on the target will be. The fact can be described by the Epanechnikov kernel
function[17]:

Ki(xi) =

{
3

4Bi
(1− ( xi

Bi
)2), if | xi

Bi
|� 1,

0, otherwise.
(3)

The bandwidth parameter B i indicates the regression interval on the dimension
of attribute Ai. The larger B i is, the smoother the resulting distribution will
be. The function Dis(qm[Ai],qk[Ai]) in Equation 2 stands for the distance of
attribute Ai from qm to qk. Both B i and Dis(qm[Ai],qk[Ai]) are advised to use
the relative distance, as if Ai is a categorical attribute we can hardly calculate
the absolute distance.

4.3 Sampling

The sampling is the procedure of generating the synthetic records by performing
the multinomial sampling[18] with the smoothed distribution. To explain the
details clearly, we’d like introduce some necessary definitions first.

Definition 4. In a multinomial distribution, each trial results in exactly one of
some fixed finite number k of possible outcomes, with probabilities p1,...,pk (so
that for i=1,...,k and

∑k
i=1 = 1), and there are n independent trials. Then let the

random variable Xi indicate the number of times outcome number i was observed
over the n trials. The vector X=(X1,...,Xk) follow a multinomial distribution
with parameters n and p, where p=(p1,...,pk). The probability mass function of
the multinomial distribution is:

f(x1, xk; n, p) = p(X1 = x1 ∧ ... ∧Xk = xk)

=

{
n!

x1!...xk!p
x1
1 ...pxk

k , when
∑k

i=1 xi = n,

0, otherwise.

(4)

for non-negative integers x1...xk.

The procedure of generating a synthetic record for the equivalence class EC(s)
can be treated as one trial; while points in the sampling space R represent the
set of all possible outcomes with the probability of p̂(rk |s)(rk ∈R). To generate n
records for EC(s), a sum of independent repetitions of this experiment should be
executed, and the final result will be a sample from the multinomial distribution.
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The typical procedure of multinomial sampling is as follow. First, reorder the
smoothed distributions of EC(s) descendingly; and the result is p̂(r1 |s), p̂(r2 |s),
..., p̂(r|R| |s)(this is only to speed up computation and not strictly necessary).
For each trial, draw an auxiliary variable X from a uniform (0,1) distribution.
The outcome will be:

j =
k

min
j′=1

(
j′∑

i=1

pi ≥ X) (5)

The Q value of rj is then combined with the sensitive value s to generate a
synthetic record. To finish the sampling of EC(s), the experiment above will be
repeated independently for n times.

4.4 Privacy in Synthesizing

Basically, the synthesizing is the process of recoding the QI attributes of the
original data. The smoothing introduces noises into the original distributions,
which causes some fake records in the synthetic data. Adversaries could hardly
determine which of them are genuine records as they know nothing about the
distribution of original data. Their judgements about the authenticity of records
mainly depend on the percentage of genuine records in synthetic data. If the
percentage of genuine records in the resulting data is high, they may believe
that their target is released with high confidence; and then execute the attack
with auxiliary knowledge. Therefore the percentage of genuine records in the
synthetic data affects the privacy of microdata seriously.

Suppose the smoothed distribution of EC(s) in learning is p̂(r1 |s), p̂(r2 |s), ...,
p̂(r|R| |s), which describes the probabilities of points in the sampling space. In
the multinomial sampling with n, their times of occurrences are expected to be
p̂(r1 |s)×n, p̂(r2 |s)×n, ..., p̂(r|R| |s)×n. Therefore, the total number of genuine
records in EC(s) is ∑

r∈R∧r=t[Q]∧t∈ECR(s)

p̂(r|s)× n.

To satisfy the definition of presence anonymity, the percentage of genuine records
in the anonymized data is ought to be smaller than α.

Theorem 1. The equivalence class EC(s) satisfies α-presence anonymity, iff:∑
r∈R∧r=t[Q]∧t∈ECR(s)

p̂(r|s) × n ≤ α (6)

Theorem 2. The synthetic table T ∗ satisfies α-presence anonymity iff each
EC(s) in T ∗ satisfies α-presence anonymity.

From Equation 6, we find how the privacy of synthetic data is depends on two
properties: (1) the sampling granularity in the space; (2) the bandwidth param-
eter B i of each attribute. The smoothing bandwidths which can be determined
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by the accuracy requirements of research should be confirmed first, as they influ-
ence the utility of data obviously. The sampling granularity relies on the privacy
threshold α, and is determined recursively. We initialize it with the granular-
ity of original data, and then calculate Equation 6 to see whether the presence
anonymity is satisfied. If not, choose a finer-granularity sampling space. The
procedure is repeated until Equation 6 is met.

4.5 Algorithm for Synthesizing

The algorithm of synthesizing is consisted of three parts: (1) model learning by
smoothing; (2) checking whether current sampling granularity meets the presence
anonymity; (3) sampling with the model learned before to generate the published
data. The detail is as follows:

Algorithm 1. Synthesizing Algorithm

Set the regression intervals of attributes based on the accuracy requirements;1

forall si ∈ D[S] do2

Count the size of EC(si) from the original data, and marked as |EC(si)|;3

forall qj in the original data do4

Compute p(qj | si) =
|Usi

(qj )|
|EC(si)| ;5

forall si ∈ D[S] do6

Initialize the sampling granularity with the granularity of the original data ;7

forall rj∈R in the sampling space do8

Compute p̂(rj |si) use Equation 2;9

while Equation 6 is not satisfied do10

select a finer-granularity space;11

forall rj∈R in the sampling space do12

Compute p̂(rj |si) use Equation 2;13

forall si ∈ D[S] do14

Sort the probability distributions in EC(si)’s smoothed model descendingly;15

for i=1 to |EC(si)| do16

Draw a variable X from a uniform (0, 1) distribution;17

Find the sampling point rj of X by Equation 5;18

Combine the Q value of rj with si to generate a published record.19

The time cost of learning is o(|D[S]| × |R|2×
∏

1≤i≤d Bi

D[Q] ), where |D[S]| is the
number of different sensitive values. The values of |D[S]|, Bi and |D[Q]| are fixed
beforehand; so the time cost of learning depends on |R|. The time complexity of
sampling is o(N×|R|), where N is the number of records we tend to sample. The
time cost of the whole algorithm is mainly influenced by the number of points
in the space, which actually is determined by the threshold α. More privacy
the published data is required, more time it will cost to generate the synthetic
data.
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5 Experiments

The main goals of the experiments includes: (1) to show the efficiency of the
algorithm when we select different private thresholds; (2) to verify the small
utility losses of synthesizing by the statistical divergences; (3) to check whether
researchers can draw correct conclusions from synthetic data in the mining tasks.

The data set used in the experiment is a part of the 2006 American census
survey collected from the US census(http://www.census.gov/). We select five
attributes as shown in Table 5, and the sensitive attribute is Occupation. Tuples
with missing values are eliminated and finally there are 44112 valid ones in total.
The values of category attributes have been converted into numerics according
to the code book. All algorithms are implemented in JAVA and the experiments
are done on a 3.00 GHz Pertium (R) machine with 3.0GB of RAM.

In the experiment, we compare the synthesizing with the algorithm μ-argus[19],
which is an approximation algorithm of k -anonymity. To ensure the fairness, the
parameters α and k are fixed as table 6, so that the two algorithms provide the
similar level of privacy.

Table 5. Attributes Summary

Attribute Type Domain Step

AGE Numeric 20-70 1

WORHOUR Category 10-80 1

SEX Enumerate N/A N/A

SALARY Numeric 5000-60000 1000

OCCUPATION Category N/A N/A

Table 6. Algorithm Parameters

α of Synthesizing k of μ−argus

1 0.33 3

2 0.25 4

3 0.20 5

4 0.15 7

5 0.10 10

5.1 Computing Efficiency

The efficiency experiment concerns about the time costs of both algorithms when
different parameters are selected. The results are shown in Fig. 1. When the pri-
vacy preserving demands little(for example, α=1/k=0.33), the efficiency of syn-
thesizing is better than μ-argus. However, its time cost increases rapidly as soon
as a smaller α is set. A small value of α requires that the percentage of genuine
records in the published data should be reduced. Thus, a finer-granularity space
is needed to ensure that points in the regression area are enough to reduce the
posterior probabilities of genuine records. As the finer-granularity space leads
to: (1) more points to be smoothed in learning; (2) more points in the regression
area; (3) more points in the sampling space; the time cost increases seriously.

Significantly, μ-argus is an approximation algorithm of k -anonymity. The ex-
act implementation of k -anonymity has been proved to be the NP-hard problem
[20], so its time cost may be much higher than our experimental results. Even
so, the efficiency of synthesizing is unendurable sometimes. There are three mea-
surements to reduce its cost:

1. Generalize the QI attributes to acceptable levels before synthesizing, if the
mining tasks demand little about the accuracy.
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2. Select larger smoothing bandwidths, so that a coarser-granularity may also
meet the value of α.

3. Reduce the number of sampling points of each EC(s) in proportion.

In Fig. 1, as α become smaller, the time cost of learning increases more rapidly
than sampling. This is because the learning is executed for more than one times
to find an appropriate granularity.

Fig. 1. Time Cost of Algorithms

5.2 Information Losses Measurement

The measurements of the statistical distance main contain the information the-
oretic approaches and probability measure based approaches. We choose the lat-
ter, as it cares the change of distributions more. The Bhattacharyya coefficient[21]
can be used to determine the relative closeness of the two samples based on the
partitions. When the domain space is split into a chosen number of partitions,
the Bhattacharyya coefficient shall be:

Bhattacharyya(a, b) =
n∑

i=1

√
ai ∗ bi (7)

where considering the samples a and b, n is the number of partitions, and ai,
bi are the number of members a and b have in the i-th partition. The Bhat-
tacharyya coefficient will be 0 if there is completely no overlap in every partition.
The maximum is the number of sampling number, if a and b have the same num-
ber of members in each partition. Based on the Bhattacharyya coefficient, the
measurement of information losses in our experiment is defined as:

Information Loss = 1− Bhattacharyya coefficient

Size of T
(8)

Fig. 2 shows the experimental results. Obviously, information losses caused by
the synthesizing are much smaller than μ-argus, which is less than 3%.
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Fig. 2. Information Loss

5.3 Utility in Queries

The methods of synthesizing can not guarantee the correctness of all query
results. For example, in the workloads requiring for the accurate values of a
single record, the synthetic data may provide bad results. Here we’d like to
verify the utility of synthetic data in aggregate queries, as their results depends
on the statistical features more.

(a) α=1/k=0.33 (b) α=1/k=0.10

Fig. 3. Relative Error of Queries

In the experiment, we executed 3000 SQL queries on the original data and
anonymized data. The data utility is measured by the relative error of query
results. All the SQL sentences are generated randomly, which contain the ag-
gregate functions(e.g.,count, sum and avg). The query conditions may involve
one, two or three attributes, which are also selected randomly. The results of
α=1/k=0.33 and α=1/k=0.10 are shown in Fig. 3. The relative errors of the
synthetic data are smaller than 10%, which is better than the k -anonymity data.

5.4 Utility in Data Mining Tasks

The utility of synthetic data in data mining is verified by the Apriori algorithm
[22], which is a classic rule mining algorithm. In the experiment, the minimum
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support of rules is set as 0.05. We order all the rules mined from the original data
descendingly by their confidence, and select the top 100 ones as the strong asso-
ciation rules. Then we check whether they can be mined from the anonymized
data, and compare the confidence with the original data. The results are shown
in Fig. 4, from which we find more than 70% of these rules can be mined from
the synthetic data, while only 30% from the k -anonymity data.

(a) α=1/k=0.33 (b) α=1/k=0.10

Fig. 4. Confidence of Rule Mining

6 Conclusion

Although existing microdata publication techniques promote the privacy obvi-
ously, the utility of published data still needs to be improved. We tried the way
of synthesizing to protect personal information. The synthesizing overcomes the
threat from the attack with auxiliary knowledge. Extensive experiments prove
that the approach enables researchers to reach, from the resulting data, correct
or approximately correct conclusions in most query and mining tasks.

During the research, we find some problems remain. First, the time complexity
of the algorithm is too high. We are looking for some approximate methods
to reduce the time cost. Second, smoothing has not been proved as the most
suitable learning method. We may try some other learning algorithms. Third,
the synthetic data must be used in more applications to verify the utility.
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Abstract. Publishing transaction data containing individuals’ activi-

ties may risk privacy breaches, so the need for anonymizing such data

before their release is increasingly recognized by organizations. Several

approaches have been proposed recently to deal with this issue, but they

are still inadequate for preserving both data utility and privacy. Some

incur unnecessary information loss in order to protect data, while others

allow sensitive inferences to be made on anonymized data. In this paper,

we propose a novel approach that enhances both data utility and privacy

protection in transaction data anonymization. We model potential infer-

ences of individuals’ identities and their associated sensitive transaction

information as a set of implications, and we design an effective algorithm

that is capable of anonymizing data to prevent these sensitive inferences

with minimal data utility loss. Experiments using real-world data show

that our approach outperforms the state-of-the-art method in terms of

preserving both privacy and data utility.

1 Introduction

Transaction data are comprised of records, called transactions, that contain in-
formation relating to individuals’ behaviors or activities, for example, search
engine query terms used by an individual or goods purchased from a vendor
by a consumer. Transaction data can play a central role in applications such
as personalized web search and marketing analysis, but need to be anonymized
before release because they contain private information about individuals. Unfor-
tunately, simply de-identifying transactions (i.e., removing personal identifiers
such as names), is insufficient to protect privacy. This became evident when
a New York Times journalist managed to re-identify an individual from a de-
identified search keywords dataset released by AOL Research [2].
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1.1 Motivation

Publishing transaction data safely requires the elimination of two types of infer-
ence that pose privacy threats. The first type is identity disclosure, which occurs
when an individual is identified to be associated with a particular transaction
in the published data. Consider the release of de-identified data of Fig. 1(a),
for example, where items purchased by several individuals are recorded. Some
items are considered to be sensitive (denoted by bold letters), e.g. medicine,
and individuals will not want their purchase of such items to be made public.
Other items are considered to be public, and individuals would not mind reveal-
ing their purchase. Knowing that Mary has purchased a, b and c, an attacker
can link her to the first transaction of Fig. 1(a), since this is the only transac-
tion that contains a, b and c. The second type of inference is sensitive itemset
disclosure, which occurs when an individual is identified to be associated with
a set of sensitive items (or an itemset). For example, suppose that an attacker
knows that Tom has purchased c and d. Although the attacker cannot associate
Tom to a specific transaction, since there are two transactions in Fig. 1(a) that
contain c and d, the attacker can still infer that Tom has purchased a sensitive
item g, as both transactions contain g.

Name Purchased items

Mary a b c d g
Bob a c e f h i
Tom b c d g j
Anne e f g h
Brad a b d e j
Jim c f i

(a)

Purchased items

a b (c, d) g

a (c, d) (e, f) h i

b (c, d) g j

(e, f) g h

a b (c, d) (e, f) j

(c, d) (e, f) i
(b) (c)

Fig. 1. An example of: (a) Original dataset, (b) Anonymized dataset, and (c) Set-based

generalization

So, releasing transaction data involves a risk of identity and/or sensitive item-
set disclosure. To manage such risks, techniques that help control the probability
of disclosure may be employed. These techniques work typically by modifying
public items [9,10,7], as it is often more important to keep sensitive items intact
in applications [10]. We argue that a good method should produce anonymized
data that satisfies two important requirements:

– privacy is preserved against both identity and sensitive itemset disclosure,
since both types of disclosure can happen in practice, and

– data is protected no more than necessary, because over-protection can sig-
nificantly reduce data utility.

To the best of our knowledge, none of the existing approaches for anonymizing
transaction data [9, 10, 7, 4, 6] is capable of meeting both of these requirements.
These methods deal with one type of disclosure [4, 9, 7, 6] and make restrictive
assumptions about privacy requirements [9,10,6], which tend to harm data utility
unnecessarily [7].
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1.2 Contributions

In this work, we propose a novel approach to anonymizing transaction data.
The main idea behind our method is to allow data owners to specify detailed
privacy requirements, so that protection for both identity and sensitive itemset
disclosure is only exercised where necessary, and to incorporate these require-
ments into an effective anonymization algorithm. Our work makes the following
contributions.

First, we propose a rule-based model that allows data owners to formulate
detailed privacy protection requirements. Our model is founded on a notion of
implication between public and sensitive items, called PS-rule. For example,
ac → hi is a PS-rule which specifies that linking an individual to a specific
transaction through public items ac (identity disclosure) and inferring hi using
ac (sensitive itemset disclosure) are to be prevented. Our rule model offers two
important benefits: (i) it is the only one that does not place any restrictions on
which public and sensitive items are to be protected, which allows a much wider
class of privacy protection requirements to be specified than those considered
in [9,10,6], and (ii) it captures requirements for protection against both identity
and sensitive itemset disclosure.

Second, to anonymize transactions based on our privacy model, we design
a new, effective method called Rule-Based Anonymization of Transactions
(RBAT). RBAT uses item generalization [9, 7], a technique that modifies trans-
actions by replacing public items with more general but semantically consistent
generalized items. This algorithm operates in a top-down fashion, starting with
the most generalized transaction dataset and then gradually replacing gener-
alized items with less general ones, as long as data remains protected. When
applied to the data of Fig. 1(a), for example, RBAT constructs the dataset
shown in Fig. 1(b). In this dataset items c and d are replaced by a general-
ized item (c, d), which means that the actual transaction can contain c or d or
c and d. Our algorithm has three notable strengths: (i) it is the first to em-
ploy generalization to prevent both identity and sensitive itemset disclosure,
which is important in applications where alternative techniques (e.g. item elim-
ination [10]) are not desirable, (ii) it exploits a pruning strategy that signifi-
cantly speeds up the process of data anonymization, and (iii) it operates in a
way that is independent of how data is generalized, which allows flexible gen-
eralization models (e.g., that of [7]) to be employed to enhance data utility.
Our extensive experiments show that RBAT is able to achieve a result that
is several orders of magnitude better than the state-of-the-art algorithm [9] in
terms of data utility, while guaranteeing protection against sensitive itemset
disclosure.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. In Section 3, we formally define our privacy specification model and
the problem we consider. RBAT is presented in Section 4. Finally, Section 5
reports experimental results and Section 6 concludes the paper.
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2 Related Work

There are several principles and algorithms for anonymizing relational data (see
[3] for a survey), but, as shown in [10], they are inadequate for anonymizing
transactions without incurring an excessive amount of information loss. This is
because they have rather different semantics, e.g. transactions have a varying
and typically large number of items.

Anonymizing transaction data to guard against identity disclosure has been
considered in [9, 6, 7]. Terrovitis et al. [9] proposed km-anonymity, a principle
that aims to prevent attackers from linking an individual to less than k transac-
tions, assuming that they know at most m items of any transaction. Contrary to
the approach we propose, km-anonymity can only guarantee protection against
identity disclosure, and it does not permit flexible privacy requirements to be
specified, as it assumes that all combinations of m public items require protec-
tion. The authors of [9] also designed Apriori Anonymization (AA), an algorithm
that enforces km-anonymity using item generalization. AA operates in a bottom-
up fashion; it begins with (single) items and iteratively replaces them with less
specific generalized items, as long as km-anonymity is not satisfied. Another
generalization-based algorithm was proposed by He and Naughton [6]. While
this algorithm has been shown to achieve better data utility than AA does, it
still considers a single privacy requirement only [8]. Moreover, it generates data
that may be of limited utility in practice because the same item may be replaced
by different generalized items in different transactions. This can cause problems
for data mining algorithms to work effectively on anonymized transactions [3].
An approach to anonymizing transactions that allows data owners to protect
specific itemsets from identity disclosure was proposed in our recent work [7],
but it does not account for protection against sensitive itemset disclosure.

A few works focus on preventing sensitive itemset disclosure in publishing
transaction data, but none of them allow detailed privacy requirements to be
specified. Ghinita et al. [4] developed a novel approach that releases transac-
tions in groups, each of which contains public items in their original form and a
summary of the frequencies of the sensitive items. Since public items are released
intact, [4] provides no protection against identity disclosure. Xu et al. [10] pro-
posed (h, k, p)-coherence, a privacy principle that addresses both identity and
sensitive itemset disclosure, and a suppression-based algorithm to enforce it. This
principle treats public items similarly to km-anonymity (the function of param-
eter p is the same as m in km-anonymity) and additionally limits the probability
of inferring any sensitive item using a parameter h. Since [4] effectively assumes
that all items require protection against either identity or sensitive itemset dis-
closure, it limits the type of privacy requirement that can be specified and may
overprotect data against specific privacy requirements.

3 Background and Problem Formulation

After presenting some preliminary definitions, we describe the generalization
model and utility metric employed in this paper in Section 3.2. Subsequently,
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we define our rule-based privacy protection model and formulate the problem
we study in Sections 3.3 and 3.4, respectively.

3.1 Preliminaries

Let I = {i1, ..., iM} be a finite set of literals, called items, where M denotes
the cardinality of the set. Any subset I ⊆ I is called an itemset over I, and we
represent I as a concatenation of the items it contains. An itemset that has m
items or equivalently a size of m, is called an m-itemset. Let P and S be sets of
items that contain public and sensitive items respectively. We have P ∪ S = I
and P ∩ S = ∅.

A transaction T over I is a pair T = (tid , I), where I is an itemset and
tid its unique identifier. A transaction dataset D = {T1, ..., TN} is a set of N
transactions over I, each having a different tid. A transaction T = (tid , J)
supports an itemset I over I, if I ⊆ J . Given an itemset I over I in D, we use
sup(I,D) to represent the number of transactions in D that support I. These
transactions are called supporting transactions of I in D. Moreover, we assume
that D contains all items of I.

Given two itemsets I ∈ P and J ∈ S, we define a PS-rule as an implication
of the form I → J , where I is the antecedent and J the consequent. A PS-rule
models an association between public and sensitive items and, as we will discuss
later, it can be used to capture both identity disclosure based on I and sensitive
itemset disclosure of J . In this work, we assume that PS-rules are specified by
data owners based on their privacy requirements [5].

3.2 Generalization Methodology

We use item generalization [9,7], a technique which maps individual public items
to generalized ones. We denote a generalized item by listing its item(s) in brack-
ets, e.g. (c, d) or (e, f) in Fig. 1(b)1. Generalization can help prevent identity
disclosure as it increases the number of transactions that may be linked to an
individual through public items, i.e. the support of a generalized item in the
anonymized data is greater than or equal to the support of any item mapped to
it in the original data [7]. As an example, consider the mapping of items c and
d in Fig. 1(a), to a generalized item (c, d) in Fig. 1(b). (c, d) is supported by 6
transactions in Fig. 1(b), whereas c and d are supported by 4 and 3 transactions
in Fig. 1(a), respectively.

In this work, we use set-based generalization [7] which offers a larger space
of possible generalizations than other models do [9, 10] and has been shown to
enhance data utility. This model uses a function Φ to map each item i in P to a
non-empty subset of P that contains i, and then uses this non-empty subset as
a generalization of i. This is formally defined below.

Definition 1 (Set-Based Generalization). A set-based generalization is a
partition P̃ of P in which each item i in P is mapped to a generalized item ĩ in
P̃ using a generalization function Φ : P → P̃.
1 For clarity, we will drop () when a generalized item contains only one item.
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Example 1. Consider the set-based generalization of public items {a, b, c, d, e, f}
in Fig. 1(a) that is constructed using the partition illustrated in Fig. 1(c). Items
a and b are mapped to themselves (i.e., Φ(a) = ĩ1 = a and Φ(b) = ĩ2 = b), while
c and d are mapped to a generalized item ĩ3 (i.e., Φ(c) = Φ(d) = ĩ3 = (c, d))
which is interpreted as representing c or d or c and d.

There may exist several generalizations of a dataset, and the one that harms data
utility least, as quantified by information loss measures [9, 4, 10, 7], is typically
preferred. In this work, we use the Utility Loss (UL) measure [7].

Definition 2 (Utility Loss). The Utility Loss (UL) for a generalized item ˜im
is defined as UL( ˜im) = 2| ˜im|−1

2|P|−1
× w( ˜im) × sup( ˜im,D̃)

N , where | ˜im| denotes the
number of items in P that are mapped to ˜im using Φ, and w : P̃ → [0, 1] is a
function assigning a weight according to the perceived importance of ˜im. Based
on this definition, the Utility Loss (UL) for a generalized dataset D̃ is defined
as UL(D̃) =

∑
∀ ˜im∈P̃ UL( ˜im).

UL quantifies information loss based on the size, weight and support of general-
ized items, imposing a “large” penalty on generalized items that are comprised of
a large number of “important” items that appear in many transactions. The de-
nominators 2|P| − 1 and N in Definition 2 are used for normalization purposes.
For example, to compute the UL score for ĩ3 = (c, d) in Fig. 1(b) assuming
w(ĩ3) = 1, we have UL(ĩ3) = 22

26−1 × 1× 5
6 ≈ 0.053.

3.3 Protecting PS-Rules

We now give sufficient and necessary conditions to guarantee protection against
identity and sensitive itemset disclosure based on the antecedent and consequent
of a PS-rule in Definition 3.

Definition 3 (PS-rule protection). Given a generalized version D̃ of D and
parameters k and c, a PS-rule I → J is protected in D̃ if and only if (1)
sup(Ĩ, D̃) ≥ k, and (2) conf(Ĩ → J, D̃) ≤ c, where Ĩ =

⋃
∀i∈I Φ(i) is an item-

set of D̃ constructed from I, conf is a function, called confidence, defined by
sup(Ĩ∪J,D̃)

sup(Ĩ,D̃)
, k is an integer in [2, N ], and c is a real number in [0, 1].

The protection of a PS-rule is achieved when (1) D̃ contains at least k transac-
tions that support the itemset Ĩ, which is comprised of the generalized items to
which the items of the antecedent of the PS-rule are mapped, and (2) at most
c× 100% of the transactions that support Ĩ in D̃, also support Ĩ ∪ J . Satisfying
the first condition ensures that an attacker with the knowledge of the antecedent
of a PS-rule cannot link an individual to less than k transactions in the released
data. This effectively limits the probability of identity disclosure based on the
antecedent of the PS-rule to no more than 1

k . Satisfying the second condition
thwarts sensitive itemset disclosure, because, knowing that an individual is as-
sociated with the antecedent of the PS-rule, an attacker cannot infer that this
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individual is associated with the consequent of the rule, or with any superset of
it (due to the monotonicity of support [1]), with a probability that exceeds c.
Note that since our intention is to satisfy specified privacy requirements only,
we do not attempt to limit the probability of linking an individual to subsets of
sensitive itemsets appeared in the consequents of protected PS-rules.

Example 2. Consider the data of Fig. 1(b) and assume that a PS-rule ac →
hi is to be protected. Suppose that we have k = 2 and c = 0.5. It is easy
to see that ac → hi is protected, as there are 3 transactions supporting the
itemset

⋃
∀i∈{a,c} Φ(i) = a(c, d), and only one of which supports a(c, d) ∪ hi.

This implies that an attacker who knows that Mary has purchased a and c,
needs to distinguish among three transactions in Fig. 1(b) to find out Mary’s
real transaction. Furthermore, knowing that Mary has purchased a and c, an
attacker cannot infer whether she purchased the sensitive itemset hi with a
probability higher than 1

3 .

It should be noted that detailed privacy requirements against both identity and
sensitive itemset disclosure can be modeled using PS-rules, as there are no re-
strictions on the itemsets that can be used as antecedents or consequents of
rules. To illustrate the expressive power of our model, we show how it can be
used to specify the privacy requirements of km-anonymity [9] and of (h, k, p)-
coherence [10]. To support km-anonymity, it suffices to construct one PS-rule
I → J for each m-itemset I in P (J can be any item in S, since km-anonymity
does not account for sensitive itemset disclosure). Then, a transaction dataset
in which these PS-rules are protected, for a given k and any c, will also satisfy
km-anonymity for the same k. To support (h, k, p)-coherence, we need to con-
struct one PS-rule I → J for each p-itemset I in P and for each 1-itemset (item)
J in S. By doing so, we ensure that a transaction dataset in which the specified
PS-rules are protected, for a given k and c, will also satisfy (h, k, p)-coherence
for the same k and h = c× 100%.

3.4 Problem Statement

Problem. Given a transaction dataset D, a set of PS-rules Θ, and parameters
k, c, construct a generalized version D̃ of D using the set-based generalization
model such that: (1) each PS-rule in Θ is protected in D̃, and (2) the amount of
utility loss UL(D̃) is minimal.

This a challenging problem because (i) it is NP-hard (the proof is by reduction
to the problem considered in [10]), and (ii) it may not have a solution, even
when any amount of utility loss is allowed, as Theorem 1 shows (the proof of
this theorem is omitted due to space constraints).

Theorem 1. Given D, a set of PS-rules Θ = {I1 → J1, ..., Ij → Jj}, and
parameters k and c, a generalized dataset D̃ in which each PS-rule in Θ is
protected, can be constructed using set-based generalization if and only if (1)
N ≥ k, and (2) sup(Jr,D) ≤ N × c, for each Ir → Jr, r ∈ [1, j] in Θ.
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4 Anonymization Algorithm

In this section, we introduce RBAT (Rule-Based Anonymization of Transac-
tions), an effective heuristic to solve the aforementioned problem. Given that
the most generalized version D̃ of D (i.e. all public items of D are mapped to a
single generalized item ĩ) protects all PS-rules in Θ2, RBAT operates in a top-
down fashion, starting with D̃ and then progressively refining it (i.e., replacing
generalized items in D̃ with more specific ones), for as long as all PS-rules in Θ
remain protected in D̃. The pseudocode of RBAT is given in Algorithm 1.

Algorithm 1. RBAT(̃i, D̃,D, Θ, k, c)

input: Generalized item ĩ, generalized dataset D̃, original dataset D, Θ, k, c

output: Dataset D̃ such that all PS-rules in Θ are protected

1. {ĩl, ĩr} ← Split (̃i)

2. D′ ← Update(D̃, D)

3. if Check(ĩl, ĩr,D′, Θ, k, c)=true

4. D̃ ← D′

5. return RBAT(ĩl,D′, Θ, k, c)
⋃

RBAT(ĩr,D′, Θ, k, c)
6. else

7. return D̃

In step 1, RBAT splits ĩ into two generalized items ĩl and ĩr with the help
of a function Split. Then RBAT creates a temporary dataset D′ by scanning D̃
and mapping each item of D contained in ĩ to ĩl or ĩr (step 2). Next, in step 3,
RBAT uses a function Check to test whether D′ can be safely released. If this
check succeeds, D′ is assigned to D̃ and RBAT is recursively executed twice for
ĩl and ĩr respectively (steps 4− 5). Otherwise, D̃ is returned (steps 6− 7).

4.1 Split Function

Split divides a generalized item ĩ into two disjoint subsets in a way that attempts
to minimize information loss. This heuristic was selected because it outperformed
a number of other heuristics we tested in terms of their ability to achieve a small
amount of information loss and efficiency. Algorithm 2 describes the operation
of Split. In step 1, we find two items ij and im contained in ĩ that will incur
a maximum amount of information loss when generalized together, and g is a
function that, given an itemset I, generates a generalized item comprised of all
items of I and no other item (e.g., g(ab) = (a, b)). Then, in steps 2 − 3, we use
ij and im as “seeds” to start two new itemsets I1 and I2. Following that, Split
examines each item iq, q /∈ {j, m} in ĩ (step 4) and assigns iq to either I1 or I2,
depending on which one results in less utility loss when it is generalized with iq
(steps 5− 8). Last, two new (less) generalized items are created from the items
in I1 and I2 and returned to RBAT (step 9).
2 This is necessary for our problem to be solvable for the given parameters.



408 G. Loukides, A. Gkoulalas-Divanis, and J. Shao

Algorithm 2. Split (̃i)

input: Generalized item ĩ

output: Generalized items ĩl and ĩr
1. find {ij , im} ∈ ĩ such that UL(g(ijim)) is maximum

2. I1 ← ij
3. I2 ← im
4. for each iq ∈ ĩ and q /∈ {j, m}
5. if UL(g(I1 ∪ iq)) ≤ UL(g(I2 ∪ iq))
6. I1 ← I1 ∪ iq
7. else
8. I2 ← I2 ∪ iq
9. return ĩl = g(I1) and ĩr = g(I2)

4.2 Check Function

A naive implementation of Check would examine all the PS-rules in Θ to test
whether they are protected or not according to Definition 3. To avoid the sig-
nificant computational overhead that this would require, we propose a pruning
strategy that reduces the number of PS-rules that need to be examined. This
strategy allows RBAT to find the same solution, but improves its efficiency by
orders of magnitude (see Section 5.4). The following three theorems provide the
basis for our pruning strategy (the proofs are omitted due to space limitations).

Theorem 2. Given D̃ and PS-rules I → J, I → J ′ such that (1) I → J is
protected in D̃, and (2) J ⊆ J ′, it holds that I → J ′ is protected in D̃.

Theorem 2 implies that we can prune all PS-rules whose antecedent is I and
consequents are supersets of the consequent of a protected PS-rule I → J in D̃.

Theorem 3. Given D̃ and PS-rules I → J, I → J ′ such that (1) I → J is
protected in D̃, and (2) sup(J, T ) ≥ sup(J ′, T ), where T is the set of supporting
transactions in D̃ for the itemset Ĩ =

⋃
∀i∈I Φ(i) of D̃ constructed from I, it

holds that I → J ′ is protected in D̃.

Consider a protected PS-rule I → J in D̃, an itemset Ĩ =
⋃

∀i∈I Φ(i) constructed
from I, and the set T of transactions supporting Ĩ. Theorem 3 implies that we
can prune all PS-rules I → J ′ whose consequents are equally or less supported
than J in T .

Theorem 4. Given D̃, a PS-rule I → J , and a generalized item ĩ in D̃ such
that (1) sup(̃i, D̃) ≥ k, (2) sup(̃i∪J,D̃)

sup(̃i,D̃)
≤ c, and (3)

⋃
∀i∈I Φ(i) ⊆ ĩ, it holds that

I → J is protected in D̃.

Theorem 4 implies that we can prune all rules whose antecedent is comprised
only of items that are mapped to subsets of a generalized item ĩ in D̃, when ĩ is
supported by at least k transactions in D̃, at most c × 100% of which support
ĩ∪J . To see the effectiveness of Theorems 3 and 4, assume that all public items
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of a dataset D are mapped to a single generalized item ĩ when D is generalized
to D̃. In this case, we can prune all PS-rules in Θ if we know that a single PS-
rule whose antecedent is comprised of all items in ĩ and consequent is the most
supported sensitive item in D̃ is protected.

The function Check (see Algorithm 3) is employed by RBAT to reduce the
number of PS-rules to be checked based on Theorems 2, 3 and 4. In step 1, we
check whether the support of either of the generalized items ĩl and ĩr in D′ is
less than k. If one of them is, then there is at least one PS-rule in Θ that will not
be protected and thus false is returned (step 2). Otherwise, after constructing
an initially empty set of protected PS-rules R and initializing T to the set of
transactions of D′ that support ĩl (steps 4− 5), we use Theorems 2, 3, and 4 to
identify PS-rules that do not need to be checked (steps 6−11). More specifically,
we initialize I to the set of all items that are mapped to ĩl and J to the most
supported sensitive item in T (steps 6− 7) and check whether conf(ĩl → J,D′)
is at most c (step 8). If this is the case, I → J is protected in D′, as we already
know that sup(ĩl,D′) ≥ k from step 1. According to Theorem 2, all PS-rules
having I as an antecedent and a superset of J as a consequent are also protected
in D′, and according to Theorem 4, all PS-rules whose antecedent is a subset of
I and consequent is J are also protected. Furthermore, according to Theorem 3,
PS-rules whose antecedent is I and consequent has a support that is less than
or equal to that of J in T are also protected. We add these rules to R (steps
9 − 11). After that, we apply the same procedure described in steps 4 − 11 to
ĩr (steps 12− 18). At this point, R contains all PS-rules that can be pruned, so
we only need to examine if each PS-rule in Θ\R is protected (steps 19 − 21).
If there is a PS-rule that is not protected in D′, Check returns false (step 21),
otherwise, it returns true (step 22).

4.3 An Example of RBAT

Consider applying RBAT to the data of Fig. 1(a). Given the most generalized
item ĩ = (a, b, c, d, e, f), Θ = {a → j, cd → g, e → h, ac → hi}, k = 2, and
c = 0.5, RBAT first applies Split to ĩ. This function finds the most “distant”
items a, f and assigns them to I1 and I2 respectively. Then, Split assigns each
of the remaining items to either I1 or I2 in a way that reduces information loss3.
This results in ĩl = (a, b) and ĩr = (c, d, e, f), as shown with (1) in Fig. 2, which
are returned to RBAT. Next, RBAT creates the temporary dataset D′ of Fig. 3,
in which public items are generalized to (a, b) and (c, d, e, f), and calls Check.

Check computes the supports of (a, b) and (c, d, e, f) in D′ and, since both
are at least 2, it constructs a PS-rule ab → j and finds conf((a, b) → j,D′)
to be 0.5. Check then iterates over PS-rules in Θ and adds a → j to R. This
is because a → j is the only PS-rule in Θ whose antecedent is a subset of ab.
Then, as g is the most supported sensitive item in the supporting transactions of
(c, d, e, f), Check constructs cdef → g. Again, the confidence of (c, d, e, f) → g
is 0.5, so Check iterates over Θ and adds cd → g and e → h to R. Next, Check
considers ac → hi, which is the only PS-rule not contained in R, and returns
3 This is performed by computing UL, having weights set as in [7].
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Algorithm 3. Check(ĩl, ĩr,D′, Θ, k, c)

input: Generalized items ĩl, ĩr, temporary dataset D′, set of PS-rules Θ, k, c

output: true if each PS-rule in Θ is protected in D̃, otherwise false

1. if sup(ĩl,D′) < k or sup(ĩr,D′) < k
2. return false
3. else
4. R ← {} � R is used to store the protected PS-rules

5. T ← the set of supporting transactions of ĩl in D′

6. I ←
⋃

∀i∈ĩl
i � I contains all items that are mapped in ĩl

7. J ← argmax
∀i∈S

sup(i, T )

8. if conf (ĩl → J,D′)≤ c
9. foreach I ′ → J ′ in Θ
10. if I ′ ⊆ I and (J ⊆ J ′ or sup(J ′, T ) ≤ sup(J,T ))

11. R ← R∪ {I ′ → J ′}
12. T ← the set of supporting transactions of ĩr in D′

13. I ←
⋃

∀i∈ĩr
i

14. J ← argmax
∀i∈S

sup(i, T )

15. if conf (ĩr → J,D′)≤ c
16. foreach I ′ → J ′ in Θ
17. if I ′ ⊆ I and (J ⊆ J ′ or sup(J ′, T ) ≤ sup(J,T ))

18. R ← R∪ {I ′ → J ′}
19. foreach I ′ → J ′ in Θ\R
20. if sup(

⋃
∀i∈I′ Φ(i),D′) < k or conf(

⋃
∀i∈I′ Φ(i) → J ′,D′) > c

21. return false
22. return true

Fig. 2. Split of ĩ by RBAT

Purchased items

(a, b) (c, d, e, f) g

(a, b) (c, d, e, f) h i

(a, b) (c, d, e, f) g j

(c, d, e, f) g h

(a, b) (c, d, e, f) j

(c, d, e, f) i

Fig. 3. Temporary dataset D′

true, because the support of Φ(a) ∪ Φ(c) = (a, b)(c, d, e, f) in Fig. 3 is at least 2
and conf(ac → hi,D′) does not exceed 0.5.

At this point, RBAT assigns D′ to D̃ and is executed again using each of the
(a, b) and (c, d, e, f). When RBAT runs with (a, b), it performs split (2) in Fig. 2,
and Check prunes a → j. Similarly, RBAT performs split (3) and prunes cd → g
and e → h. Finally, RBAT returns the anonymized data of Fig. 1(b), because
the PS-rules do not remain protected in the next recursion.
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5 Experimental Evaluation

In this section, we present experimental results to confirm the effectiveness and
efficiency of RBAT, including the performance of our pruning strategy.

5.1 Experimental Setup

For our experiments, we used BMS-WebView-1 (referred to as BMS1), a real-
world dataset containing click-stream data [11] that has been used in evaluating
previous work [9, 4, 10]. BMS1 is comprised of 59602 transactions, whose maxi-
mum and average size are 267 and 2.5, and it has a domain size of 497.

We evaluated the effectiveness and efficiency of RBAT by comparing it to the
Apriori Anonymization (AA) algorithm [9]. Both algorithms were implemented
in C++ and executed on an Intel 2.8GHz machine with 4GB of RAM. AA
was applied to public items with m = 2 using hierarchies described in [9]. The
default value for parameter k is 5, the weights w( ˜im) used to compute UL in
RBAT are set as in [7], and, unless otherwise stated, the set of sensitive items
S is comprised of 10% of the most frequent items in I. Furthermore, Θ used
in RBAT contains 50K PS-rules that are not protected in BMS1 and whose
antecedent is a 2-itemset in P and consequent an item in S. Antecedents and
consequents of PS-rules are selected uniformly at random. Note that this is a
demanding scenario due to the large number of PS-rules because, intuitively,
both the amount of information loss and the computational overhead incurred
are expected to increase with the number of PS-rules.

Information loss is measured using both UL and Average Relative Error
(ARE ). The latter is a widely-used measure [4, 7], which quantifies the error
in answering a workload of queries on anonymized data and is independent of
the way RBAT and AA work. We constructed workloads of 1000 COUNT()
queries that retrieve a random 2-itemset in P as in [7]. To capture protection
against sensitive itemset disclosure, we measure the percentage of generalized
items for which there is at least one sensitive item ij such that sup(̃i∪ij ,D̃)

sup(̃i,D̃)
> c

in D̃. These items are called unsafe generalized items. We use these items to
quantify protection, because their number does not depend on the number
of specified PS-rules, i.e. there may be many PS-rules whose antecedent is
the same unsafe generalized item, but they all suggest the same “unsafeness”
in D̃.

We designed three sets of experiments. The first set evaluates the algorithms
in terms of their ability to provide protection against both identity and sensi-
tive itemset disclosure, while the second one evaluates the effectiveness of the
algorithms in terms of retaining data utility. In the third set, we examine the
runtime efficiency of the algorithms and the effectiveness of our pruning strat-
egy. Due to space limitations we only report a small subset of the conducted
experiments.
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5.2 Privacy Protection Evaluation

As shown in Section 4, RBAT is able to produce anonymized data that prevents
both identity and sensitive itemset disclosure. This is in contrast to AA, which,
as we experimentally verify in this section, is unable to protect data against
sensitive itemset disclosure. To ensure that RBAT provides the same protec-
tion against identity disclosure as AA does and, additionally, strong protection
against sensitive itemset disclosure, we created one PS-rule I → J for each
2-itemset I in P and for each 1-itemset (item) J in S, and we set c = 0.2.

In our first experiment, we varied the number of sensitive items used. Fig. 4
reports the result with respect to protection, where the percentage of sensitive
items varies from 5 to 25. By construction, RBAT produced anonymizations that
contain no unsafe generalized items, while AA failed to offer sufficient protection
in all tested cases. Specifically, the percentage of unsafe generalized items for AA
was at least 38%, increasing to 58% when the percentage of sensitive items was
25%. This implies that the sensitive information of a large number of individuals
represented in the data is susceptible to disclosure, particularly when a large
fraction of items are sensitive.

Next, we investigated the amount of privacy protection offered by the algo-
rithms under test using various k values in [2, 100]. As can be seen in Fig. 5,
contrary to RBAT that created no unsafe generalized items, AA constructed gen-
eralized items at least 50% of which were unsafe, even when it ran with k = 50.
In fact, a large k value of 100 had to be used in AA to prevent the construction of
unsafe generalized items. This confirms that, guarding against sensitive itemset
disclosure by applying AA with a large k value is a subpar strategy, because k
needs to be enlarged to a point that it significantly harms data utility.

Last, we measured protection by varying c in [0.1, 1]. The result shown in Fig.
6 demonstrates again the superiority of RBAT - AA does not guarantee protec-
tion against sensitive itemset disclosure, as it created anonymizations in which
up to 78% of generalized items are unsafe. As expected, the percentage of unsafe
generalized items decreases as c increases, since a large c implies that less pro-
tection against sensitive itemset disclosure is required. However, the percentage
of unsafe generalized items remains non-zero for c < 0.8, which indicates that
AA is unable to generate data that prevents sensitive itemset disclosure.
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5.3 Data Utility Evaluation

We examined the effectiveness of RBAT in terms of data utility by comparing two
configurations, which use c = 0.7 and c = 0.1 respectively, to AA with respect
to UL and ARE. RBAT with c = 1 is similar to AA in that it guards against
identity disclosure only. The configuration with c = 0.7 is used to show the
amount of data utility that RBAT needs to trade in order to thwart sensitive
itemset disclosure. The unnormalized UL scores and ARE scores for various
k values in [2, 100] are shown in Figs. 7 and 8 respectively. As can be seen,
RBAT with c = 1 retained more data utility than both AA and RBAT with
c = 0.7, which verifies that RBAT is more effective than AA in minimizing
information loss. Interestingly, RBAT with c = 0.7 outperformed AA across
all k values, which suggests that RBAT is able to eliminate sensitive itemset
disclosure without incurring a large amount of information loss.

We then studied the effect of specifying detailed privacy requirements on data
utility by considering increasingly larger sets of PS-rules. To be consistent, we
required all PS-rules used in one set to be contained in all other, but larger sets
used in the experiments. In this set of experiments, we used k = 5 and set all
other parameters as in the previous experiment. The results for UL and ARE
shown in Figs. 9 and 10 respectively suggest that, due to its ability to take
PS-rules into consideration when generating anonymizations, RBAT is able to
retain significantly more data utility than AA. It is also interesting to observe
that both UL and ARE scores for RBAT increase with the number of PS-rules.
This is because a larger number of PS-rules model stronger privacy requirements,
which then forces RBAT to trade off some utility for privacy in order to satisfy
them. On the other hand, AA does not consider the specified PS-rules and thus
the UL and ARE scores for AA remained constant.

5.4 Efficiency

We first compared the runtime of RBAT to that of AA by configuring RBAT
using c = 0.7 and varying k in [2, 100]. As shown in Fig. 11, RBAT is less efficient
than AA. This is because RBAT additionally checks for the risk of sensitive
itemset disclosure, which is a computationally demanding task involving support
computations for a large number of itemsets [10].

Next, we studied how varying c in [0.1, 0.9] affects the runtime performance
of RBAT. The result reported in Fig. 12 shows that RBAT requires less time to
execute for smaller values of c, as it performs fewer recursions. We also note that
RBAT runs up to 92% faster with c = 1, since Check only needs to compute the
support of the antecedents of the rules4.

Last, we evaluated the effectiveness of our pruning strategy by examining
the number of calls to the function Check() when RBAT runs with the pruning
strategy and without it. As can be seen in Fig. 13, applying the proposed pruning
strategy reduces the number of checks by several orders of magnitude, since most

4 In this experiment, we excluded steps 3 − 21 from Algorithm 3.
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rules are pruned in each recursion of RBAT. Furthermore, our pruning strategy
improved the runtime of RBAT by at least 210%.

6 Conclusions

This paper proposes a novel approach to anonymizing transaction data accord-
ing to detailed privacy requirements against identity and sensitive itemset dis-
closure. We design a privacy model that allows data owners to express a wide
range of privacy requirements and incorporate it into an effective anonymiza-
tion algorithm. As verified by extensive experiments, our algorithm incurs sig-
nificantly less information loss than the state-of-the-art method [9] due to the
flexible generalization model it employs, while guaranteeing protection against
sensitive itemset disclosure. Furthermore, it addresses the computationally de-
manding problem of checking whether the specified requirements are satisfied in
the anonymized data in an efficient way through the use of a pruning strategy.
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Abstract. In this paper, we present a framework to discover a spatio-temporal re-
lationship patterns. In contrast to previous work in this area, features are modeled
as durative rather than instantaneous. Our method takes into account feature’s du-
ration to capture the temporal influence of a feature on other features in spatial
neighborhood. We have developed an algorithm to discover a temporal-spatial
feature interaction patterns, called the Interval-Orientation Patterns. Interval-
Orientation pattern is a frequent sequence of features with annotation of temporal
and directional relationships between every pairs of features. The proposed algo-
rithm employs Hash-based joining technique to improve the efficiency. We also
extend our approach to accommodate an incremental mining as updates in real
world spatio-temporal databases are common. The incremental algorithm em-
ploys an optimization that is based on previously generated patterns to prune the
non-promising candidates early. We evaluate our algorithms on synthetic dataset
to demonstrate its efficiency and scalability. We also present the patterns iden-
tified from real world drought, vegetation and video action databases. We also
show that the patterns discovered from video dataset can improve the classifica-
tion accuracy of activity recognition.

1 Introduction

Pattern mining in spatio-temporal databases aims to discover useful spatio-temporal re-
lationships that are hidden among features. Existing algorithms[14,16,17,18,6,10] have
focused on discovering patterns from instantaneous features, that is, features with no du-
ration. This assumption allows the discovered pattern to be simplified to a set of features
such as {NormalTemp, HighPrecepitation, NoDrought} or an ordered sequence of fea-
tures such as {NormalTemp→HighPrecepitation→NoDrought}. However, features in
many real world spatio-temporal databases are durative. For example, spatio-temporal
features extracted from video, climate or image dataset such as STIP descriptors[8],
SaTScan descriptors[7,9], Cuboid descriptors[4] and etc. have location and duration
information. Using location and duration information of features, we can mine useful
spatio-temporal relationships.

For example, consider a spatio-temporal pattern, <{88 → 304},{Overlap},
{North} >, shown in Fig 1. This pattern, obtained from KTH video dataset[4], in-
dicates that feature 88 overlaps feature 304 in time and feature 88 is in the nearby
“North” region of feature 304. A detailed investigation revealed that this pattern occurs
in 6 videos having walking activity, 1 video having running activity and 1 video having

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 416–431, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Interval-Orientation Patterns in Spatio-temporal Databases 417

North

La
tit
ud
e

Longitude

South

EastWest

Time

Temporal View Spatial View

88

304

304

88

Fig. 1. Spatio-temporal relationship between STIP features in video dataset

jogging activity. In short, this pattern help to discriminate a walking activity with run-
ning or jogging activities. Moreover, our experiments reveal that such patterns leads to
increase in the classification accuracy of activity recognition. Similarly, we observe that
earthquake occurs “during” high atmospheric pressure occurring in the nearby “North”
region 1. This insight is useful in the development of effective earthquake prediction.

In this paper, we define a new class of pattern called Interval-Orientation Pattern, in
short IO pattern, to capture the important spatio-temporal relationship among features.
IO pattern is an ordering of features having annotation of temporal and directional rela-
tionships among all pairs of features in the sequence. As our dataset is non-transactional,
we use prevalence index[13] to calculate the support of IO pattern. Moreover, updates
in real world databases are common. For example, remote sensing images are captured
daily in multitemporal satellite image dataset(http://www.sat.dundee.ac.uk), monthly mean
temperature and precipitation are captured at each weather stations in National Climatic
Data Center(www.ncdc.noaa.gov). Such update may introduce new patterns or invalid
some existing patterns. Recomputing frequent IO patterns from scratch is time consum-
ing process. Thus, we suggest an efficient incremental method to maintain the discovered
patterns. The key contributions of this work are summarized as follow:

1. We define a new class of pattern to capture the invariant ordering among features
with annotation of temporal and spatial relationship between each pair of features.
An efficient algorithm called IOMiner is designed to mine complete set of fre-
quent IO patterns. IOMiner is two-stage algorithm. The first stage adapts disjoint
cubes based hashing[15] and efficiently discovers length 2 IO patterns. In the sec-
ond stage, we use Hash-based join to find the longer length IO patterns.

2. Our incremental approach, called as IncIOMiner(Incremental IOMiner), is con-
structed under the framework defined by IOMiner. IncIOMiner prunes the search
space by estimating the upper bound of prevalence index using previous computa-
tions. A Pattern Tree is used to maintain all previous computations.

3. We evaluate our framework on synthetic and real-world dataset. Experiments on
synthetic dataset show scalability and efficiency of the proposed approach. We

1 http://www.usatoday.com/weather/research/2009-11-12-hquakeweather12

ST N.htm

http://www.usatoday.com/weather/research/2009-11-12-hquakeweather12_ST_N.htm
http://www.usatoday.com/weather/research/2009-11-12-hquakeweather12_ST_N.htm
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discover IO patterns from drought, vegetation and video dataset. Further, we show
that the patterns discovered from video dataset can improve the classification accu-
racy of activity recognition.

2 Preliminaries

Let F is a set of k features; F = { f1, f2, · · · , fk}. Let D be a set of feature instances,
where each feature instance is given by a tuple <identifier, feature, {latitude, longi-
tude}, {start time, end time}>. We use identifier, di, to refer a feature instance and
di.start time to refer the start time of di. Figure 2(a) lists the features instances used as
working example in this paper. We use D0,t to denote a set of feature instances having
star time ≥ 0 and end time < t. This dataset is updated with a set of feature instances
having start time ≥ t and end time < (t +�t) denoted as Dt,t+�t .

(a) Original Dataset D0,t

<1, f1,{1,5},{1,3}>, <6, f1,{1,2},{2,4}>
<11, f1,{4,7},{1.1,3.1}>
<2, f2,{2,5},{2.9,4}>, <7, f2,{2,2},{3.9,5}>
<12, f2,{5,7},{3,4.1}>
<3, f3,{3.1,5},{3.9,6}>, <8, f3,{3.1,2},{4.9,7}>
<13, f3,{6.1,7},{4,9}>, <17, f3,{11,9},{2,5}>
<18, f3,{0,3},{5,7}>
<4, f4,{4.1,6},{7,8}>, <9, f4,{4.1,3},{8,9}>
<5, f5,{4.1,5},{7,9}>

(b) Incremental Dataset Dt,t+�t

<14, f4,{7.1,8},{10,11}>
<10, f5,{5.2,2},{10,11}>, <15, f5,{8.1,7},{12,13}>
<16, f6,{9.2,6},{13,14}>

(a) Dataset
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Fig. 2. Working Dataset

Two feature instances di and d j are neighbor in time domain if (min{di.end time,
d j.end time} - max{di.start time, d j.start time}≥ 0 or min{|di.end time - d j.start time|,
|di.start time-d j.end time|} ≤ Tδ ), where Tδ is a time threshold. For example, when Tδ
= 1, instances 1 and 2 are neighbor in time but instances 1 and 18 are not.

Two feature instances di and d j are neighbor in space domain if Dist(di,d j) ≤ Rδ ,
where Rδ is a distance threshold. In this paper, Dist(di,d j)2=(di.latitude−d j.latitude)2 +
(di.longitude−d j .longitude)2. For example, when Rδ = 2, instances 1 and 2 are neighbor
in space but instances 1 and 13 are not.

The temporal relationship of feature instance di with respect to feature instance d j,
denoted as T R(di,d j), is one of the eight values : Equal, Meet, Overlap, Contain,
Before, Start, Start By, Finish By. For example, TR(1,2) = O and TR(1,13) = B.

The directional relationship of feature instance di with respect to feature instance
d j, denoted as DR(di,d j), is one of the nine values : North, South, East, West,
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Fig. 3. Temporal and Directional Relationships of instance di w.r.t. instance d j

NorthEast, NorthWest, SouthEast, SouthWest and ND. ND represent a situation when
both instances are from same location. For example, DR(1,2) = N and DR(1,18) = SE .
Fig. 3 shows the temporal and directional information of di with respect to d j.

The temporal relationship between two features fi and f j(denoted as T R( fi, f j)) also
takes one of the eight values as described earlier. However, T R( fi, f j) is just an abstract
specification. Similarly, DR( fi, f j) is an abstract directional relationship specification
between features fi and f j and also takes one of the nine directional values.

We define an interval-orientation pattern as a sequence of features with abstract
temporal and directional relationship specifications between every pairs of features. It
is given as P = <{ f1 → f2 → ... → fn}, {TR( f1, f2), ..., T R( f1, fn),T R( f2, f3), ...,
T R( f2, fn),..., T R( fn−1, fn) }, {DR( f1, f2), ..., DR( f1, fn),DR( f2, f3), ..., DR( f2, fn),...,
DR( fn−1, fn) }>. The length of IO pattern P, in short |P|, is the number of features in
the sequence. For example, P = <{ f1 → f2}, {O}, {N} > is a length 2 pattern.

A pattern instance of length n IO pattern P is a sequence of n feature instances from
D, denoted as I = {i1 → i2 → i3 → ...→ in}, such that I satisfies following conditions

– feature of jth instance in I is equal to jth feature in P
– start time of jth instance in I ≥ start time of all ith instances in I, where i < j
– adjacent instances in I must be neighbor in time and space
– the temporal and directional relationship between every pairs of instances in I con-

form to those specified in P
– instances in I are unique

For example, I = {1 → 2} is a pattern instance of P = <{ f1 → f2}, {O}, {N} > as
feature of instance 1(instance 2) is f1( f2), the start time of instance 1 is earlier than start
time of instance 2, instance 1 and 2 are neighbor in time and space, T R(1,2) = O and
DR(1,2) = N. Similarly, {6 → 7} and {11 → 12} are two other pattern instances of P.

Given an IO pattern P, let ISet is a set of all pattern instances of P. We use ISeti
to refer ith pattern instance in ISet and ISeti, j to refer jth feature instance from pattern
instance ISeti. Also, ISet∗, j is a set of jth feature instances from all pattern instances in
ISet. The participation ratio of jth feature f j in IO pattern P, denoted as p ratio( f j,P),
is defined as:

p ratio( f j,P) =
# unique instances of f j in ISet∗, j

# instances of f j in D
(1)

The prevalence index of P, denoted as pi(P), is the minimum participation ratio of the
features present in pattern P. Formally, pi(P) = minimum{p ratio( fi,P) where fi ∈ P}.
A pattern P is frequent if pi(P) ≥ min pi.
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For example, consider a pattern P = <{ f1 → f2}, {O}, {N} >. ISet = {{1→ 2}, {6
→ 7}, {11 → 12}} is a set of all pattern instances of P. ISet1 refers to {1 → 2}. ISet1,2

= 2, ISet∗,1 = {1,6,11} and ISet∗,2 = {2,7,12}. p ratio( f1,P) = 3
3 and p ratio( f2,P) = 3

3 .
Hence, pi(P) = minimum{1, 1} = 1.

Problem Statement: Given a set of spatio-temporal features D0,t , a distance threshold
Rδ , a time threshold Tδ and minimum prevalence index threshold min pi, we aim to
find all frequent IO patterns efficiently. Further, given an incremental database Dt,t+�t

to the existing database D0,t , find all frequent IO patterns in D0,t+�t = {D0,t ∪ Dt,t+�t},
with minimum possible recomputations.

3 Algorithm IOMiner

Algorithm IOMiner is two-stage algorithm; the first stage discovers length 2 IO patterns
and second stage uses length 2 IO patterns to extend the length l(≥ 2) pattern into length
l + 1 pattern. Algorithm 1 outline IOMiner. In Line 1, we generate all length 2 IO
patterns from given database D. The generated frequent patterns are stored in f re 2 Set
and exp PatSet. Next, each frequent pattern from ext PatSet is extended into longer
length patterns(Lines 3-8). Now, we explain how length 2 patterns are discovered and
extended further. The input parameter is D = D0,t , Tδ = 1, Rδ = 2 and min pi = 0.50.

Algorithm 1. IOMiner(D, min pi, Tδ , Rδ )
Output: patSet = frequent IO patterns
f re 2 Set = {Discover length 2 IO patterns from D}1

patSet = f re 2 Set, ext PatSet = f re 2 Set2

while ext PatSet �= φ do3

Select pattern P from ext PatSet and remove P from ext PatSet4

ext Set = {Extend P}5

ext PatSet = ext Set ∪ ext PatSet6

Add P to patSet7

end8

return patSet9

3.1 Discover Length 2 Patterns

The naive method to generate length 2 patterns is candidate set generation and test
approach. However, this approach generates total N2 ∗ 8 ∗ 8 length 2 candidate patterns
when number of features are N. Clearly, this is not a feasible solution.

Our method first hashes all feature instances from D into disjoint cubes. We use lat-
itude, longitude and start time information of instance for hashing. In particular, space-
time dimensions(i.e., {latitude× longitude× start time}) are divided into set of disjoint
cubes {< x1,y1,t1 >, < x2,y2,t2 >, ... ,< xp,yp,tp >, ... , < xq,yq,tq >}. A disjoint window

of width Rδ
2 is used to divide each space dimension and disjoint window of width Tδ is

used to divide the time dimension. Figure 4(a) represents hashing of instances given in
Fig. 2(a)(a).
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Instances Cube
< 1, f1,{1,5},{1,3}> <1,5,1>

< 6, f1,{1,2},{2,4}> <1,2,2>

< 11, f1,{4,7},{1.1,3.1}> <4,7,1>

< 2, f2,{2,5},{2.9,4}> <2,5,2>

< 7, f2,{2,2},{3.9,5}> <2,2,3>

< 12, f2,{5,7},{3,4.1}> <5,7,3>

< 3, f3,{3.1,5},{3.9,6}> <3,5,3>

< 8, f3,{3.1,2},{4.9,7}> <3,2,4>

< 13, f3,{6.1,7},{4,9}> <6,7,4>

< 17, f3,{11,9},{2,5}> <11,9,2>

< 18, f3,{0,3},{5,7}> <0,3,5>

< 4, f4,{4.1,6},{7,8}> <4,6,7>

< 9, f4,{4.1,3},{8,9}> <4,3,8>

< 5, f5,{4.1,5},{7,9}> <4,5,7>

(a) Hashing instances into cube

(a) Processing f1
<{ f1 → f2},{O},{N}>

{1 → 2}
{6 → 7}

{11 → 12}

(b) Processing f2
<{ f2 → f3},{O},{N}>

{2 → 3}
{7 → 8}
{12 → 13}

(c) Processing f3
<{ f3 → f4},{B},{NW}> <{ f3 → f5},{B},{N}>

{3 → 4} {3 → 5}
{8 → 9}

(d) fre 2 Set : Subset of frequent length 2 patterns with their
pattern instances

<{ f1 → f2},{O},{N}> <{ f2 → f3},{O},{N}>
{1 → 2} {2 → 3}
{6 → 7} {7 → 8}
{11→ 12} {12 → 13}

(b) Processing features and generated
frequent patterns

Fig. 4. Discovering length 2 IO patterns

Given a feature instance di ∈ D, we use hashing to discover all other instances d j

from D such that di and d j are neighbor in time and space as well as di.start time ≤
d j.start time. Let di is in cube < xm,ym,tn >. All instances satisfying above conditions
with di must be in one of the cubes < xi,yi,ts > in the set N<xm,ym,tn> = {< xi,yi, ts >
|(|xi− xm| ≤ 2)∧ (|yi− ym| ≤ 2)∧ (tn ≤ ts)∧ (di.end time + Tδ ≥ (ts ∗Tδ ))}. We refer
N<xm,ym,tn> as neighbor-set of the cube < xm,ym,tn >. For example, consider an feature
instance 4. It belongs to cube < 4,6,7 >. Hence, other feature satisfying above condi-
tions must be in cubes < 4,6,7 > and < 4,5,7 > w.r.t. our working example. Note that,
cube < 4,7,1 > is not selected as start time of instances in < 4,7,1 > are earlier than
the start times of instances in cube < 4,6,7 >.

Now, we discuss the basic steps to find length 2 IO patterns. We process each feature
separately. In our example, we have total five features F = { f1, f2, f3, f4, f5}. Consider
a feature f1 ∈ F . It’s instances are 1, 6 and 11 in D. We process each of these instances
one by one.

– While processing instance 1, we obtain that it belongs to cube < 1,5,1 > and it’s
N<1,5,1> = {< 1,5,1 >,< 2,5,2 >,< 3,5,3 >}. We form pattern instances between
instance 1 and instances from cube in N<1,5,1>. Here, cubes < 1,5,1 >, < 2,5,2 >
and < 3,5,3 > contain instances 1, 2 and 3 respectively. Thus, the resultant pat-
tern instances are {1→1}, {1→2} and {1→3}. we use these pattern instances to
generate candidate length 2 patterns. Using {1→2}, we generate P = <{ f1 →
f2},{O},{N}>. We also maintain {1→2} as a pattern instance of P. Next, {1→
3} is not valid pattern instance since Dist(1,3) > Rδ . Also, {1→1} is not valid
pattern instance as it contains instance 1 more than one time. As a result, we do not
generate any candidate pattern for {1→1} and {1→3}.

– Next, we process instance 6. Instance 6 belongs to cube < 1,2,2 > and it’s N<1,2,2>

= {< 1,2,2 >,< 2,2,3 >,< 3,2,4 >,< 0,3,5 >}. This cubes contain feature in-
stances 6, 7, 8 and 18. Hence, we generate candidate patterns using pattern in-
stances {6→6}, {6→7}, {6→8} and {6→18}. Pattern instance {6→7} generates
<{ f1→ f2},{O},{N}>. As, this pattern is already generated, we append {6→7} as
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it’s pattern instance. We do not process {6→6} as explained previously. Remaining
pattern instances are not neighbor in space.

– Instance 11 belongs to cube < 4,7,1 > and it’s N<4,7,1> = {< 4,7,1 >, < 5,7,3 >,
< 6,7,4 >, < 2,5,2 >}. We follow similar process as explained previously.

Once all instances of feature f1 are processed, we calculate pi of each generated pat-
terns. Those patterns satisfying min pi threshold are stored in f re 2 Set with their pat-
tern instances. In similar manner, we process other features from F . Figure 4(b) lists
generated candidate patterns using features f1, f2 and f3.

3.2 Extend IO Pattern

We extend IO pattern P(∈ ext PatSet) by length 2 pattern Q(∈ f re 2 Set) if last feature
of P is same as the first feature of Q. The extension process generates candidate patterns
and it’s pattern instances. This method goes as follow: a pattern instance pi of P is
joined with pattern instance qi of Q, if last feature instance in pi matches with the first
feature instance in qi. Joining pi with qi generates one candidate pattern and it’s pattern
instance.

For example, consider extension of IO pattern P = <{ f1 → f2}{O},{N} >(See
Figure 4(b)(d)). This pattern will be extended by Q = <{ f2 → f3},{O},{N}>. During
extension, a pattern instance {1 → 2} from P is joined with pattern instance {2 →
3} from Q and generate pattern instance {1 → 2 → 3}. Using {1 → 2 → 3}, we
generate a pattern <{ f1 → f2 → f3},{O,B,O},{N,N,N}> with pattern instance {1 →
2 → 3}. Similarly, other possible pattern instances are {6 → 7 → 8} and {11 → 12
→ 13}. Both pattern instances suggest to generate candidate pattern <{ f1 → f2 →
f3},{O,B,O},{N,N,N}>. Once all possible joining are done between pattern instances
of P and Q, pi is calculated for each generated patterns. For the current case, only one
pattern in generated and it is also frequent pattern. We follow similar process if P can
be extended by any other pattern from f re 2 Set. All generated frequent patterns are
stored in ext PatSet for further extension.

Note that, when we extend a pattern P by length 2 pattern Q, we join pattern instances
of P with pattern instances of Q. In this paper, we use Hash-based joining method
to improve the efficiency. In particular, we build a hash table for each pattern Q, Q
∈ f re 2 Set after finishing the first stage. Hash table of pattern Q hashes the pattern
instance of Q using it’s first feature instance as a key.

4 Algorithm IncIOMiner

We have applied IOMiner to database D0,t . Now, D0,t is updated by Dt,t+�t . The main
motivation of IncIOMiner is to improve the time complexity by avoiding unnecessary
computations. To achieve this goal, all generated patterns from D0,t are maintained in
pattern tree PT (See Figure 5). The pattern with solid rectangle are frequent patterns.
The negative border pattern, represented as dotted rectangle, is infrequent pattern but
its prefix is frequent. Observe that, each pattern P in PT stores information derived
from it’s pattern instances. For example, consider a pattern P = <{ f1 → f2},{O},{N}>
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<{f1 f2 f3},{O,B,O},{N,N,N}>

C1 = 3, C2 = 3, C3 = 3
Te = 9

<{f1 f2},{O},{N}>

C1 = 3, C2 = 3
Te = 5

<{f2 f3},{O},{N}>

C1 = 3, C2 = 3
Te = 9

<{f4 f5},{S},{E}>

C1 = 1, C2 = 1
Te = 9

<{f4 f5 f4},{S,M,FB},{E,E,E}>

C1 = 1, C2 = 1, C3 = 1
Te = 9

<{f5 f4},{FB},{E}>

C1 = 1, C2 = 1
Te = 9

<{f5 f4},{SB},{W}>

C1 = 1, C2 = 1
Te = 8

<{f3 f4},{B},{NW}>

C1 = 2, C2 = 2
Te = 9

<{f3 f5},{B},{N}>

C1 = 1, C2 = 1
Te = 9

f1
C1 = 3
Te = 4

f2
C1 = 3
Te = 5

f4
C1 = 2
Te = 8

f3
C1 = 5
Te = 9

f5
C1 = 1
Te = 9

Fig. 5. PT: Pattern Tree

in PT and it’s set of pattern instances ISet in Figure 4(b). Ci denotes the number of
unique feature instances in ISet∗, j. Hence, C1 = 3 and C2 = 3. Te is the end time of
feature instance di ∈ ISet∗,|P| such that di.end time is greater than end time of any other
instances from ISet∗,|P|. Recall, |P| is the length of P.

Algorithm 2. IncIOMiner(D0,t, Dt,t+�t , min pi, Tδ , Rδ , PT )

Output: patSet = frequent temporal patterns
[ f re 2 Set, ext Set] = GetExtendExtensionPattern(D0,t , Dt,t+�t , PT , min pi, Tδ , Rδ )1

patSet = f re 2 Set2

while ext Set �= do3

Select pattern P from ext Set and remove P from ext Set4

new Set = {Extend P}5

ext Set = ext Set ∪ new Set6

Add P to patSet7

end8

canSet = {patterns P | P ∈ PT ∧ no new pattern instance of P is generated}9

f reSet = {calculate pi of each pattern in canSet and find frequent patterns}10

return {patSet ∪ f reSet}11

Algorithm 2 outline the details. In Line 1, we obtain f re 2 Set and ext Set. Here,
f re 2 Set is set of those frequent length 2 patterns for which new pattern instance is
generated after the database update. The pattern from f re 2 Set is used for extension.
Also, ext Set is a set of those frequent patterns for which new instance are created
or there is a chance that new instance will be created on extension. A pattern P from
ext Set will be extended using patterns from f re 2 Set(Similar to Section 3.2). Also
generated patterns are stored in ext Set for further extension(Lines 3-7). Finally, Lines
9-10 process those patterns from PT for which no new pattern instance is generated
after the update. For such pattern, PT contains all information to calculate it’s pi value.
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4.1 Obtain f re 2 Set

Proposition 41 explains how frequent patterns used for extension are obtained.

Proposition 41. Let D′ represents a set of all feature instances from D0,t having
end time ≥ t - Tδ . Let E ′ and E denote the set of all features having instances in D′
and Dt,t+�t respectively. Let P = <{ f1 → f2}, {TR( f1, f2)}, {DR( f1, f2)}> is length
2 pattern. When database D0,t is updated to D0,t+�t , new pattern instance of P may be
generated if one of the following condition is satisfied:

(i) both features f1 and f2 are present in E.
(ii) feature f1 is present in E ′ and feature f2 is present in E.

Proof. Any pair of feature instances from incremental data Dt,t+�t generates new pat-
tern instance. As E is a set of features that has instance in Dt,t+�t , a new pattern instance
of P = <{ f1 → f2},{TR( f1, f2)},{DR( f1, f2)}> may be generated if E contains both
f1 and f2. Next, a pair of instances where first instance is from D0,t and second instance
if from Dt,t+�t might generate new pattern instance for P. As instances in Dt,t+�t have
start time ≥ t, only those instances from D0,t having end time ≥ (t - Tδ ) are close in
time with any instance from Dt,t+�t . In other word, a pattern P having first feature from
E ′ and second feature from E might generate new pattern instance. �

Following proposition 41, we use feature instances from {D′ ∪Dt,t+�t} and obtain a set
of those length 2 patterns for which new pattern instance is generated after the database
update. In our case, D′ = {4,5,9,13}. The generated patterns are stored in can 2 Set(See
second column in Table 1). Our next step is to obtain frequent patterns from can 2 Set.
In short, we have to obtain pattern instances of each pattern in can 2 Set using complete
data D0,t+�t . As we have already generated pattern instances using {D′ ∪ Dt,t+�t}, we
generate pattern instances of each pattern in can 2 Set using D0,t .(i.e., original dataset).
However, not all patterns in can 2 Set require to regenerate it’s pattern instances from
D0,t . Now, we present a technique for estimating upper bound of pi(P), P ∈ can 2 Set.

Table 1. Analysis of length 2 patterns obtained using proposition 41

Sr. P ∈ can 2 Set Instances using Info. of P in PT estimated UB pi(P)
No. proposition 41 {C1,C2} p ratio( fi,P)
1 <{ f4 → f5},{B},{NE}> {9 →10}, - { 2

3 , 2
3} 0.50

{14 → 15}
2 <{ f5 → f6},{M},{NE}> {15 → 16} - { 1

3 , 1
1} 0.33

3 <{ f3 → f4},{B},{NW}> {13 → 14} {2,2} { 3
5 , 3

3} 0.60
4 <{ f3 → f5},{B},{N} > {13 → 15} {1,1} { 2

5 , 2
3} 0.40

Given a length 2 pattern P from can 2 Set and it’s pattern instances set I generated
using {D′ ∪ Dt,t+�t}, one of the following two cases is possible:

Case : P �∈ PT . There is no pattern instance of P in D0,t . In short, we already have true
p ratio of each feature in P. For this case, we put P in f re 2 Set if pi(P)≥ min pi.
We also record information about P in PT and remove it from can 2 Set.
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Case : P ∈ PT . We estimate upper bound of p ratio for each feature in P(See Equation
2) and then finally obtain pi(P)(See Equation 3). If UB pi(P) < min pi, we update
Ci and Te of P in PT and remove P from can 2 Set. However, if UB pi(P)≥min pi,
we have to obtain it’s pattern instances from D0,t .

p ratio( fi,P) =
Ci +{# of unique instance in I∗,i}

# of instance of ei in D0,t+�t
(2)

UB pi(P) = minimum{p ratio( fi,P)} (3)

Table 1 present an analysis of proposed technique on our working example. Note that,
first two patterns satisfy first case (they are not generated in previous round) and last
two patterns satisfy second case. Clearly, pattern 1 qualify min pi threshold and is kept
in f re 2 Set. pattern 2 and 4 do not qualify min pi threshold and thus removed from
new 2 Set. We generate valid instances for the remaining patterns in new 2 Set by scan-
ning database D0,t and those patterns satisfy min pi threshold requirement are later
transferred to f re 2 Set.

4.2 Obtain ext Set

Proposition 42 explain how we obtain IO patterns which will be extended further.

Proposition 42. Let frequent pattern R is generated by extending pattern P with length
2 pattern Q. A new pattern instance of pattern R is generated after the database update
if at least one of the following condition is satisfied:

(i) The value of P.Te in PT ≥ (t-Tδ )
(ii) at least one pattern instance is generated for pattern P after the database update

Proof. Let appending Dt,t+�t to D0,t generate at least one pattern instance v for pattern
R. Careful observation suggest that, at least one feature instance in v must be from
incremental part Dt,t+�t . Otherwise, v must be generated in previous iteration.

If only last feature instance in v is from Dt,t+�t , then immediate prefix of R (i.e.,
P) must be from previous database D0,t . However, The value of P.Te must be ≥ (t-Tδ )
to qualify Tδ . If more than one feature instances of v are from updated dataset Dt,t+�t

then immediate prefix of R(i.e., P) has at least one pattern instance generated after the
database update. �

To obtain the patterns satisfying condition 1, we traverse PT and obtain those patterns
having (t−Te)≤ tδ and put them in ext Set. Further, f re 2 Set contains prefix of those
patterns which satisfy the second condition. Finally, ext Set = ext Set ∪ f re 2 Set. Ta-
ble 2 presents f re 2 Set and ext Set obtained for our working example.

Algorithm 3 summarize the details. We generate length 2 patterns using Proposition
41(Line 2). Next, we refine can 2 Set to remove non frequent candidate without gen-
erating their pattern instances. In Line 4, we traverse PT and obtain a set of patterns
satisfying condition 1 discussed in Proposition 42. Note that, we only consider those
patterns satisfying min pi threshold while traversal. In Line 5, we generate pattern in-
stances of pattern present in can 2 Set and ext Set. To derive pattern instances of given
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Table 2. f re 2 Set and ext Set

f re 2 Set ext Set
<{ f4 → f5},{B},{NE}> <{ f4 → f5},{B},{NE}>
<{ f3 → f4},{B},{NW}> <{ f3 → f4},{B},{NW}>

<{ f1 → f2 → f3},{O,B,O},{N,N,N}>
<{ f2 → f3},{O},{N}>

pattern P, use similar process explained in section 3. For example, consider a pattern P
= <{ f1 → f2 → f3},{O,B,O},{N,N,N}>. We first derive pattern instances of <{ f1 →
f2}{O},{N} > and <{ f2 → f3},{O},{N}> and then join them to derive it’s pattern
instances. Finally, f re 2 Set and ext Set is returned. Note that, ext Set does not contain
P = <{ f4 → f5},{S},{E}> and it’s extended patterns as P is not frequent. We omit
proof of completeness of IncIOMiner for brevity.

Algorithm 3. GetExtendExtensionSet(D0,t, Dt,t+�t , PT , min pi, Tδ , Rδ )

Output: f re 2 Set, ext Set
Obtain D′ from D0,t1

can 2 Set = {length 2 patterns using {D′ ∪ Dt,t+�t}}2

can 2 Set = Refine can 2 Set using upperbound estimation (Eq. 2 and 3)3

ext Set = {P | (P ∈ PT) ∧ (|P|> 1) ∧ (P.Te ≥ (t-Tδ )) ∧ (UB pi(P) ≥ min pi)}4

Generate pattern instances of patterns from (ext Set and can 2 Set) using D0,t+�t5

f re 2 Set = f re 2 Set ∪ {frequent patterns from can 2 Set}6

f re ext Set = f re 2 Set ∪ {frequent patterns from ext Set}7

return { f re 2 Set, f re ext Set}8

5 Experimental Results

We conduct detailed performance study. All algorithms are implemented in C and com-
piled with -O2 option. We use a Pentium 4 machine with 3GB RAM running windows.
No other user processes were running at that time. We also implement an algorithm
called NaiveMiner that use only cube based hashing to obtain the longer length pattern.
Actually, NaiveMiner is motivated from [19,12].

5.1 Efficiency Experiments

We first implement a synthetic data generator to obtain spatio-temporal features. Table
3 summarizes the experimental parameters used to generate the dataset. Essentially, we
generate features so that the generated data has total Nmax maximal patterns of average
length len and each pattern has |ISet| number of average pattern instances. While gen-
erating features, we also use parameters Rδ , Tδ and min pi. With using generator and
user defined input parameters, we create an initial dataset D0 and it’s four increments.
The size of increment (i.e., inc size) is 10% of original data size.
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Table 3. Experimental Parameter

Parameter Definition Default value
Nmax Number of maximal IO patterns 100
len Average length of maximal IO patterns 10
|ISet| Average number of pattern instances for each IO patterns 100
dur Average duration of features 10
N Number of features type 100
Rδ Distance threshold for spatial proximity 10
Tδ Distance threshold for temporal proximity 10
min pi Prevalence index threshold 0.1
inc size Size of incremental database 10%
map Latitude-Longitude extent of the map 1000 x 1000
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Fig. 6. Effects of varying min pi, Tδ and Rδ , N Max, |ISet| and len

In our first set of experiments, we use default value of parameters given in Table 3 to
generate spatio-temporal features and vary user defined parameters especially, min pi,
Rδ or Tδ . Note that, the data generated using default parameters has around 70K number
of instances in the original data and subsequent increment has around 5K, 7K, 8K and
7K instances. In our experiment, we capture runtime of NaiveMiner, IOMiner and In-
cIOMiner for mining each datasets(Original dataset and it’s 4 increment) and report the
average running time[11]. We first vary min pi from 0.01% to 5%. Figure 6(a) reports
the obtained result. As we reduce min pi, running time increased. However, IncIOMiner
runs very fast as min pi reduce. Similarly, we vary Tδ from 10 to 50(See Figure 6(b))
and Rδ from 10 to 50 (See Figure 6(c)). For both cases, run time of NaiveMiner and
IOMiner increase rapidly. The reason is, increasing Rδ or Tδ generates many patterns.

In next set of experiments, we vary Nmax, len or |ISet|. Note that, increasing any of
these parameters indirectly increases the size of database and also required to increase
the number of features(i.e., N) while generating dataset. More specifically, these set of
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Fig. 7. Effects of varying size of increment

experiments also capture effects of increasing size of database and number of features
on average running time. We vary Nmax from 10 to 200 (size of original database linearly
increases from 7K to 142K). Figure 6(d) present the results. Clearly, as size of data
increase, the performance gap between IOMiner and IncIOMiner also increase. Similar
apply when we vary |ISet| from 10 to 200(See Figure 6(e)). Similarly, we vary average
length of maximal patterns from 6 to 14 and observed that algorithm IncIOMiner is
efficient(See Figure 6(f)). Note that, we use default value of increment size(10%) for
these set of experiments.

We vary inc size from 1% to 20% (See Figure 7). Note that, as we increase the
size of increment, total database size also increase. It is obvious that keeping min pi
constant and increasing total database size will generate less number of patters. We can
observe that when size of increments is less, IncIOMiner is very efficient algorithm.
Also, NaiveMiner is outperformed by IOMiner in all the experiments.

5.2 Effectiveness Experiments

We conduct qualitative experimental study on three real-world public datasets named
drought, vegetation and human activity videos.

Drought Dataset. This dataset, obtained from National Climatic Data Center, includes
monthly average of three variables named temperature(AvgTemp), precipitation
(AvgPcp) and palmer drought severity index(PDSI). Climate divisions at various spa-
tial locations record value of above variables. Current dataset has total 334 climatic
divisions and we use 10 year data captured from 1999 to 2008. In short, we have
real valued time series of each variable at each climate division. We use discretization
process[2] to extract spatio-temporal features such as episode of high or low temper-
ature(precipitation), episode of cold or wet drought at particular location. Finally, our
working dataset has around 85K features. From such dataset, we discover key spatio-
temporal relationships to link the drought condition to high/low events. We run IOMiner
with Rδ = 30, Tδ = 5 and min pi = 5%. It has been noted that high temperature and low
precipitation creates many problems and one of the problem is period of dry spell(i.e.,
Low PDSI)(http://www.sciencedaily.com/releases/2007/08/070820144517.htm)(SeePat-
tern P3 in Table 4).

Vegetation Dataset. This dataset, obtained from ISLSCP II Data Archive, includes
seven variables named precipitation(Pcp), temperature(Temp), cloud cover(CloudCover),
diurnal temperature range(DiurnalTemp), wet dry frequency(WDFre), vapor pressure
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(VPressure) and normalized difference vegetation index(NDVI). This dataset has global
mean monthly value for each variable from 1991-1995. We use discretization process[2]
to extract spatio-temporal features where a feature represent an episode of high or low
value for each attribute at certain location. Finally, our working dataset has around 45K
features. From this dataset, we discover key spatio-temporal relationships that links
high/low vegetation condition to high/low episode of any variables. We run IOMiner
with Rδ = 20, Tδ = 3 months and min pi = 5%.

Human Activity Video Dataset. We use two different datasets named KTH dataset
(http://www.nada.kth.se/cvap/actions/) and ICPR 2010 Challenge Dataset. KTH dataset
has 25 persons engaged in the following activities: running, walking, jogging, boxing,
clapping and waving. We use subset of dataset that includes 10 persons where each per-
son repeats each activity 4 times for about 4 seconds each, wearing different clothing.
Thus we have total 240 video clips. First, we extract spatio temporal word, a kind of
STIP descriptor, described in [4] from each video clip. Finally, our working dataset has
around 60K features. From this dataset, we discover key spatio-temporal relationships
that help to discriminate human activities. Patterns P8-P10 in Table 4 are the patterns
discovered from KTH dataset.

To further validate the usefulness of IO patterns, we extend a bag of spatio-temporal
words classification technique[4] for human action recognition. Our approach extends
the bag of words dataset with discovered IO patterns as suggested in [1]. Next, we per-
form 10 fold cross validation using SVM classifier on initial bag of words dataset, de-
noted as Bag of Words, and extended bag of word dataset, denoted as Bag of Word+IO.
Instead of IO patterns, we also consider other patterns such as temporal pattern(TP) and
interval Pattern(IP). Temporal pattern does not consider the space dimension[12] and
interval pattern is an IO pattern without the direction relationship. We observe that when
we use IO pattern with bag of words representation, the classification accuracy is im-
proved by 2.5%. We also use ICPR 2010 challenge dataset. This dataset contains videos

Table 4. Subset of IO patterns obtained from real world dataset

Drought Dataset
P1. <{High PDSI → High AvgPcp},{C}{NO}>
P2. <{(Normal AvgTemp → High AvgPcp → Normal PDSI},{M,B,B},{NW,NW,NW}>
P3. <{Low PDSI → High AvgTemp → Low AvgPcp}{C,C,B},{N,N,N}>
Vegetation Dataset
P4. <{Low CloudCover → Low NDVI},{M},{NO}>
P5. <{High Temp → Low NDVI},{S},{N}>
P6. <{High Pcp → High CloudCover → Low DiurnalTemp},{S,S,E},{N,N,N}
P7. <{High Pcp → High VPressure → High NDVI},{S,S,E}{N,N,NO}
Human Activity Video Dataset
P8. <{88 → 304},{O},{N}> [6:Walking, 1:Running and 1:Jogging]
P9. <{109 → 259},{C},{N}> [1: Walking, 3:Running]
P10. <{302 → 322},{C},{S}> [1:Running, 3:Jogging]

Table 5. Comparing classification results of human activity detection

Datasets Bag of Words Bag of Words+TP Bag of Words+SP Bag of Words+IO
KHT Dataset 79.43 76.45 79.85 81.93
ICPR 2010 Challenge Dataset 39.00 40.00 46.53 55.00
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of executions of 6 classes of human-human interactions: shake-hands, point, hug, push,
kick and punch. We use video from set 1(total 60 videos) and obtain spatio temporal
words for each execution(i.e., video). We repeat 10 fold cross validation using SVM
classifier on initial bag of words dataset and extended dataset. Table 5 lists the results.

6 Related Work

Existing studies have proposed various spatio-temporal patterns from instantaneous fea-
tures. A co-location pattern is a set of features whose instances are frequently located
together in space[13]. A topological pattern [15] is extension of co-location pattern with
additional consideration of temporal constraints. Table 6 summarize various ordered
patterns proposed for spatio-temporal databases. Each pattern in Table 6 is a sequence
of features with constraints in space and time dimensions. All these proposals consider
non-transactional database.

Table 6. Spatio-Temporal Patterns

Patterns Space Dimension Time Dimension
Directional Spatial Proximity Temporal Distance Allen’s Temporal

Relation Relationship
Generalized flow pattern[16,10]

√
All features in the sequence are All features in the sequence are
neighbor of each other neighbor of each other Before

Flow pattern[17]
√

Adjacent features in the sequence
Sequential pattern[6] × are neighbor of each other Adjacent features in the sequence
Interval-Orientation pattern

√
are neighbor of each other All

Interval patterns ×

Dealing with non-transactional database is an issue. [16,17] discretize the space and
obtain the transactions. Later, they extend the prefix based pattern growth algorithm
for mining desired patterns. Adapting transactional approach to discover IO patterns
requires every feature instance must be present in each transaction. Majority of papers
that does not discretize the space uses the prevalence index [13,15,5,10] as an interesting
measure. The work in [6] use non-antimonote density ratio as an interesting measure for
sequential pattern. Further, the proposed algorithm is candidate set generation-and-test
approach(i.e., NaiveMiner). Our work use prevalence index as an interesting measure
and hash-based joining [11] to generate the IO patterns. The works in [14] deals with
moving object databases.

Recently, many algorithms consider incremental mining of traditional transactional
database, such as [11,3]. However, these algorithms are not applicable directly for in-
cremental mining. Reason is our underlying database is non-transactional and we use
prevalence index measure as an interesting measure for IO patterns. To the best of our
knowledge, there is no existing method which can be adapted to discover IO patterns
efficiently and incrementally from spatio-temporal databases.

7 Conclusion

In this paper, we discuss an algorithm for mining IO patterns from spatio-temporal
databases. We extended the proposed algorithm to work in incremental fashion. The
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incremental algorithm reuse already known knowledge to reduce the search space. Ex-
periments on synthetic data indicates efficiency and scalability of the proposed algo-
rithm. Experiments on real world data suggest that we mine useful knowledge. In future,
we like to extend our framework such that it allow an interactive analysis.
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Abstract. The class of k Nearest Neighbor (kNN) queries in spatial networks
has been widely studied in the literature. All existing approaches for kNN search
in spatial networks assume that the weight (e.g., travel-time) of each edge in the
spatial network is constant. However, in real-world, edge-weights are
time-dependent and vary significantly in short durations, hence invalidating the
existing solutions. In this paper, we study the problem of kNN search in time-
dependent spatial networks where the weight of each edge is a function of time.
We propose two novel indexing schemes, namely Tight Network Index (TNI)
and Loose Network Index (LNI) to minimize the number of candidate nearest
neighbor objects and, hence, reduce the invocation of the expensive fastest-path
computation in time-dependent spatial networks. We demonstrate the efficiency
of our proposed solution via experimental evaluations with real-world data-sets,
including a variety of large spatial networks with real traffic-data.

1 Introduction

Recent advances in online map services and their wide deployment in hand-held de-
vices and car-navigation systems have led to extensive use of location-based services.
The most popular class of such services is k-nearest neighbor (kNN) queries where
users search for geographical points of interests (e.g., restaurants, hospitals) and the
corresponding directions and travel-times to these locations. Accordingly, numerous al-
gorithms have been developed (e.g., [20,15,19,2,13,16,22]) to efficiently compute the
distance and route between objects in large road networks.

The majority of these studies and existing commercial services makes the simpli-
fying assumption that the cost of traveling each edge of the road network is constant
(e.g., corresponding to the length of the edge) and rely on pre-computation of distances
in the network. However, the actual travel-time on road networks heavily depends on
the traffic congestion on the edges and hence is a function of the time of the day, i.e.,
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travel-time is time-dependent. For example, Figure 1 shows the real-world travel-time
pattern on a segment of I-10 freeway in Los Angeles between 6AM and 8PM on a
weekday. Two main observations can be made from this figure. First, the arrival-time
to the segment entry determines the travel-time on that segment. Second, the change
in travel-time is significant and continuous (not abrupt), for example from 8:30AM to
9:00AM, the travel-time of this segment changes from 30 minutes to 18 minutes (40%
decrease). These observations have major computation implications: the fastest path
from a source to a destination may vary significantly depending on the departure-time
from the source, and hence, the result of spatial queries (including kNN) on such dy-
namic network heavily depends on the time at which the query is issued.

Figure 2 shows an example of time-dependent kNN search where an ambulance is
looking for the nearest hospital (with least travel-time) at 8:30AM and 2PM on the same
day on a particular road network. The time-dependent travel-time (in minutes) and the
arrival time for each edge are shown on the edges. Note that the travel-times on an edge
changes depending on the arrival time to the edge in Figures 2(a) and 2(b). Hence, the
query issued by the ambulance at 8:30AM and 2PM would return different results.

Fig. 1. Real-world travel-time

(a) 1-NN Query at 8:30 AM (b) 1-NN Query at 2:00 PM

Fig. 2. Time-dependent 1-NN search

Meanwhile, an increasing number of navigation companies have started releasing
their time-dependent travel-time information for road networks. For example, Navteq
[17] and TeleAtlas [21], the leading providers of navigation services, offer traffic flow
services that provide time-dependent travel-time (at the temporal granularity of as low
as five minutes) of road network edges up to one year. The time-dependent travel-times
are usually extracted from the historical traffic data and local information like weather,
school schedules, and events. Based on Navteq’s analysis, the time-dependent weight
information improves the travel-time accuracy by an average of 41% when compared
with typical speeds (time-independent) on freeways and surface streets. Considering
the availability of time-dependent travel-time information for road networks on the one
hand and the importance of time-dependency for accurate and realistic route planning
on the other hand, it is essential to extend existing literature on spatial query processing
and planning (such as kNN queries) in road networks to a new family of time-dependent
query processing solutions.

Unfortunately, once we consider time-dependent edge weights in road networks, all
the proposed kNN solutions assuming constant edge-weights and/or relying on distance
precomputation would fail. However, one can think of several new baseline solutions.
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Firstly, Dreyfus [7] has studied the relevant problem of time-dependent shortest path
planning and showed that this problem can be solved by a trivially-modified variant of
any label-setting (e.g., Dijkstra) static shortest path algorithm. Consequently, we can
develop a primitive solution for the time-dependent kNN problem based on the in-
cremental network expansion (INE [19]) approach where Dreyfus’s modified Dijkstra
algorithm is used for time-dependent distance calculation. With this approach, start-
ing from a query object q all network nodes reachable from q are visited in order of
their time-dependent travel-time proximity to q until all k nearest objects are located
(i.e., blind network expansion). However, considering the prohibitively high overhead
of executing blind network expansion particularly in large networks with a sparse (but
perhaps large) set of data objects, this approach is far too slow to scale for real-time
kNN query processing. Secondly, we can use time-expanded graphs [9] to model the
time-dependent networks. With time-expanded graphs the time domain is discretized
and at each discrete time instant a snapshot of the network is used to represent the net-
work. With this model, the time-dependent kNN problem is reduced to the problem of
computing the minimum-weight paths through a series of static networks. Although this
approach allows for exploiting the existing algorithms for kNN computation on static
networks, it often fails to provide the correct results because the model misses the state
of the network between any two discrete time instants. Finally, with a third approach we
can precompute time-dependent shortest paths between all possible sources and desti-
nations in the network. However, shortest path precomputation on time-dependent road
networks is challenging. Because, the shortest path on time-dependent networks (i.e., a
network where edge weights are function of time) depends on the departure time from
the source, and therefore, one needs to precompute all possible shortest paths for all
possible departure-times. Obviously, this is not a viable solution because the storage
requirements for the precomputed paths would quickly exceed reasonable space limi-
tations. With our prior work [4], for the first time we introduced the problem of Time-
Dependent k Nearest Neighbor (TD-kNN) search to find the kNN of a query object that
is moving on a time-dependent network. With this work, we also investigated the first
two baseline approaches discussed above (the third approach is obviously inapplicable)
by extensive experiments to rigorously characterize the inefficiency and inaccuracy of
the two baseline solutions, respectively.

In this paper, we address the disadvantages of both baseline approaches by devel-
oping a novel technique that efficiently and accurately finds kNN of a query object in
time-dependent road networks. A comprehensive solution for TD-kNN query should a)
efficiently answer the queries in (near) real-time in order to support moving object kNN
search on road networks, b) be independent of density and distribution of the data ob-
jects, and c) effectively handle the database updates where nodes, links, and data objects
are added or removed. We address these challenges by developing two types of com-
plementary index structures. The main idea behind these index structures is to localize
the search space and minimize the costly time-dependent shortest path computation be-
tween the objects hence incurring low computation costs. With our first index termed
Tight Network Index (TNI), we can find the nearest objects without performing any
shortest path computation. Our experiments show that in 70% of the cases the nearest
neighbor can be found with this index. For those cases that the nearest objects cannot be
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identified by TNI, our second index termed Loose Network Index (LNI) allows us to fil-
ter in only a small number of objects that are potential candidates (and filter out the rest
of the objects). Subsequently, we only need to perform the shortest path computation
only for these candidates. Our TD-kNN algorithm consists of two phases. During the
first phase (off-line), we partition the spatial network into subnetworks (cells) around
the data objects by creating two cells for each data object called Tight Cell (TC) and
Loose Cell (LC) and generate TNI and LNI on these cells, respectively. In the second
phase (online), we use TNI and LNI structures to immediately find the first nearest
neighbor and then expand the search area to find the remaining k-1 neighbors.

The remainder of this paper is organized as follows. In Section 2, we review the
related work on both kNN and time-dependent shortest path studies. In Section 3, we
formally define the TD-kNN query in spatial networks. In Section 4, we establish the
theoretical foundation of our algorithms and explain our query processing technique.
In Section 5, we present experimental results on variety of networks with actual time-
dependent travel-times generated from real-world traffic data (collected for past 1.5
years). In Section 6, we conclude and discuss our future work.

2 Related Work

In this section we review previous studies on kNN query processing in road networks
as well as time-dependent shortest path computation.

2.1 kNN Queries in Spatial Networks

In [19], Papadias et al. introduced Incremental Network Expansion (INE) and Incre-
mental Euclidean Restriction (IER) methods to support kNN queries in spatial
networks. While INE is an adaption of the Dijkstra algorithm, IER exploits the Eu-
clidean restriction principle in which the results are first computed in Euclidean space
and then refined by using the network distance. In [15], Kolahdouzan and Shahabi pro-
posed first degree network Voronoi diagrams to partition the spatial network to network
Voronoi polygons (NV P ), one for each data object. They indexed the NV P s with a
spatial access method to reduce the problem to a point location problem in Euclidean
space. Cho et al. [2] presented a system UNICONS where the main idea is to integrate
the precomputed kNNs into the Dijkstra algorithm. Hu et al. [12] proposed a distance
signature approach that precomputes the network distance between each data object and
network vertex. The distance signatures are used to find a set of candidate results and
Dijkstra is employed to compute their exact network distance. Huang et al. addressed
the kNN problem using Island approach [13] where each vertex is associated to all
the data points that are in radius r (so called islands) covering the vertex. With their
approach, they utilized a restricted network expansion from the query point while us-
ing the precomputed islands. Recently Samet et al. [20] proposed a method where they
associate a label to each edge that represents all nodes to which a shortest path starts
with this particular edge. The labels are used to traverse shortest path quadtrees that
enables geometric pruning to find the network distance. With all these studies, the edge
weight functions are assumed to be constant and hence the shortest path computations
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and precomputations are no longer valid with time-varying edge weights. Unlike the
previous approaches, we make a fundamentally different assumption that the weight of
the network edges are time-dependent rather than fixed.

2.2 Time-Dependent Shortest Path Studies

Cooke and Halsey [3] introduced the first time-dependent shortest path (TDSP) solu-
tion where dynamic programming is used over a discretized network. In [1], Chabini
proposed a discrete time TDSP algorithm that allows waiting at network nodes. In
[9], George and Shekhar proposed a time-aggregated graph where they aggregate the
travel-times of each edge over the time instants into a time series. All these studies as-
sume the edge weight functions are defined over a finite discrete sequence of time steps
t ∈ t0, t1, .., tn. However, discrete-time algorithms have numerous shortcomings. First,
since the entire network is replicated for every specified time step, the discrete-time
methods require an extensive amount of storage space for real-world scenarios where
the spatial network is large. Second, these approaches can only provide approximate re-
sults since the computations are done on discrete-times rather than in continuous time.
In [7], Dreyfus proposed a generalization of Dijkstra algorithm, but his algorithm is
showed (by Halpren [11]) to be true only in FIFO networks. If the FIFO property does
not hold in a time-dependent network, then the problem is NP-Hard as shown in [18].
Orda and Rom [18] proposed a Bellman-Ford based solution where edge weights are
piece-wise linear functions. In [6], Ding et al. used a variation of label-setting algo-
rithm which decouples the path-selection and time-refinement by scanning a sequence
of time steps of which the size depends on the values of the arrival time functions. In
[14], Kanoulas et al. introduced allFP algorithm in which they, instead of sorting the
priority queue by scalar values, maintain a priority queue of all the paths to be ex-
panded. Therefore, they enumerate all the paths from a source to a destination which
yields exponential run-time in the worst case.

3 Problem Definition

In this section, we formally define the problem of time-dependent kNN search in spatial
networks. We assume a road network containing a set of data objects (i.e., points of
interest such as restaurants, hospitals) as well as query objects searching for their kNN.
We model the road network as a time-dependent weighted graph where the non-negative
weights are time-dependent travel-times (i.e., positive piece-wise linear functions of
time) between the nodes. We assume both data and query objects lie on the network
edges and all relevant information about the objects is maintained by a central server.

Definition 1. A Time-dependent Graph (GT ) is defined as GT (V, E) where V and E
represent set of nodes and edges, respectively. For every edge e(vi, vj), there is a cost
function c(vi,vj)(t) which specifies the cost of traveling from vi to vj at time t. � 
Figure 3 depicts a road network modeled as a time-dependent graph GT (V, E). While
Figure 3(a) shows the graph structure, Figures 3(b), 3(c), 3(d), 3(e), and 3(f) illus-
trate the time-dependent edge costs as piece-wise linear functions for the corresponding
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(a) Graph GT (b) c1,2(t) (c) c2,3(t)

(d) c2,4(t) (e) c4,5(t) (f) c3,5(t) change

Fig. 3. A Time-dependent Graph GT (V, E)

edges. For each edge, we define upper-bound (max(cvi,vj )) and lower-bound
(min(cvi,vj )) time-independent costs. For example, in Figure 3(b), min(cv1,v2) and
max(cv1,v2) of edge e(v1, v2) are 10 and 20, respectively.

Definition 2. Let {s = v1, v2, ..., vk = d} represent a path which contains a sequence
of nodes where e(vi, vi+1) ∈ E and i = 1, ..., k − 1. Given a GT , a path (s � d) from
source s to destination d, and a departure-time at the source ts, the time-dependent
travel time TT (s � d, ts) is the time it takes to travel along the path. Since the travel-
time of an edge varies depending on the arrival-time to that edge (i.e., arrival depen-
dency), the travel time is computed as follows:

TT (s � d, ts) =
k−1∑
i=1

c(vi,vi+1)(ti) where t1 = ts,ti+1 = ti+c(vi,vi+1)(ti), i = 1, .., k.

The upper-bound travel-time UTT (s � d) and the lower-bound travel time
LTT (s � d) are defined as the maximum and minimum possible times to travel along
the path, respectively. The upper and lower bound travel time are computed as follows,

UTT (s � d) =
k−1∑
i=1

max(cvi,vi+1), LTT (s � d) =
k−1∑
i=1

min(cvi,vi+1), i = 1, .., k.

To illustrate the above definitions in Figure 3, consider ts = 5 and path (v1, v2, v3, v5)
where TT (v1 � v5, 5) = 45, UTT (v1 � v5) = 65, and LTT (v1 � v5) = 35.

Note that we do not need to consider arrival-dependency when computing UTT and
LTT hence; t is not included in their definitions. Given the definitions of TT , UTT
and LTT , the following property holds for any path in GT : LTT (s � d) ≤ TT (s �
d, ts) ≤ UTT (s � d). We will use this property in subsequent sections to establish
some properties of our algorithm.

Definition 3. Given a GT , s, d, and ts, the time-dependent shortest path TDSP (s, d, ts)
is a path with the minimum travel-time among all paths from s to d. Since we consider
the travel-time between nodes as the distance measure, we refer to TDSP (s, d, ts) as
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time-dependent fastest path TDFP (s, d, ts) and use them interchangeably in the rest
of the paper. � 
In a GT , the fastest path from s to d is based on the departure-time from s. For in-
stance, in Figure 3, suppose a query looking for the fastest path from v1 to v5 at ts = 5.
Then, TDFP (v1, v5, 5) = {v1, v2, v3, v5}. However, the same query at ts = 10 re-
turns TDFP (v1, v5, 10) = {v1, v2, v4, v5}. Obviously, with constant edge weights
(i.e., time-independent), the query would always return the same path as a result.

Definition 4. A time-dependent k nearest neighbor query (TD-kNN) is defined as a
query that finds the k nearest neighbors of a query object which is moving on a time-
dependent network GT . Considering a set of n data objects P = {p1, p2, ..., pn}, the
TD-kNN query with respect to a query point q finds a subset P

′ ⊆ P of k objects with
minimum time-dependent travel-time to q, i.e., for any object p

′ ∈ P
′

and p ∈ P − P
′
,

TDFP (q, p
′
, t) ≤ TDFP (q, p, t). � 

In the rest of this paper, we assume that GT satisfies the First-In-First-Out (FIFO) prop-
erty. This property suggests that moving objects exit from an edge in the same order
they entered the edge. In practice many networks, particularly transportation networks,
exhibit FIFO property. We also assume that objects do not wait at a node, because, in
most real-world applications, waiting at a node is not realistic as it requires the moving
object to exit from the route and find a place to park and wait.

4 TD-KNN

In this section, we explain our proposed TD-kNN algorithm. TD-kNN involves two
phases: an off-line spatial network indexing phase and an on-line query processing
phase. During the off-line phase, the spatial network is partitioned into Tight Cells (TC)
and Loose Cells (LC) for each data object p and two complementary indexing schemes
Tight Network Index (TNI) and Loose Network Index (LNI) are constructed. The main
idea behind partitioning the network to TCs and LCs is to localize the kNN search and
minimize the costly time-dependent shortest path computation. These index structures
enable us to efficiently find the data object (i.e., generator of a tight or loose cell) that is
in shortest time-dependent distance to the query object q. During the on-line phase, TD-
kNN finds the first nearest neighbor of q by utilizing the TNI and LNI constructed in
the off-line phase. Once the first nearest neighbor is found, TD-kNN expands the search
area by including the neighbors of the nearest neighbor to find the remaining k-1 data
objects. In the following sections, we first introduce our proposed index structures and
then describe online query processing algorithm that utilizes these index structures.

4.1 Indexing Time-Dependent Network (Off-Line)

In this section, we explain the main idea behind tight and loose cells as well as the
construction of tight and loose network index structures.
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Tight Network Index (TNI). The tight cell TC(pi) is a sub-network around pi in
which any query object is guaranteed to have pi as its nearest neighbor in a time-
dependent network. We compute tight cell of a data object by using parallel Dijkstra
algorithm that grows shortest path trees from each data object. Specifically, we expand
from pi (i.e., the generator of the tight cell) assuming maximum travel-time between
the nodes of the network (i.e., UTT), while in parallel we expand from each and ev-
ery other data object assuming minimum travel-time between the nodes (i.e., LTT). We
stop the expansions when the shortest path trees meet. The main rationale is that if the
upper bound travel-time between a query object q and a particular data object pi is less
than the lower bound travel-times from q to any other data object, then obviously pi

is the nearest neighbor of q in a time-dependent network. We repeat the same process
for each data object to compute its tight cell. Figure 4 depicts the network expansion
from the data objects during the tight cell construction for p1. For the sake of clarity,
we represent the tight cell of each data object with a polygon as shown in Figure 5. We
generate the edges of the polygons by connecting the adjacent border nodes (i.e., nodes
where the shortest path trees meet) of a generator to each other. Lemma 1 proves the
property of TC:

Fig. 4. Tight cell construction for P1 Fig. 5. Tight Cells

Lemma 1. Let P be a set of data objects P = {p1, p2, ..., pn} in GT and TC(pi) be
the tight cell of a data object pi. For any query point q ∈ TC(pi), the nearest neighbor
of q is pi, i.e., {∀q ∈ TC(pi), ∀pj ∈ P, pj �= pi, TDFP (q, pi, t) < TDFP (q, pj, t)}.

Proof. We prove the lemma by contradiction. Assume that pi is not the nearest neighbor
of the query object q. Then there exists a data object pj (pi �= pj) which is closer
to q; i.e., TDFP (q, pj, t) < TDFP (q, pi, t). Let us now consider a point b (where
the shortest path trees of pi and pj meet) on the boundary of the tight cell TC(pi).
We denote shortest upper-bound path from pi to b (i.e., the shortest path among all
UTT (pi � b) paths) as DUTT (pi, b), and similarly, we denote shortest lower-bound
path from pj to b (i.e., the shortest path among all LTT (pj � b) paths) as DLTT (pj , b).
Then, we have TDFP (q, pi, t) < DUTT (pi, b) = DLTT (pj , b) < TDFP (q, pj, t).
This is a contradiction; hence, TDFP (q, pi, t) < TDFP (q, pj, t). � 
As we describe in Section 4.2, if a query point q is inside a specific TC, one can imme-
diately identify the generator of that TC as the nearest neighbor for q. This stage can
be expedited by using a spatial index structure generated on the TCs. Although TCs
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are constructed based on the network distance metric, each TC is actually a polygon
in Euclidean space. Therefore, TCs can be indexed using spatial index structures (e.g.,
R-tree [10]). This way a function (i.e., contain(q)) invoked on the spatial index struc-
ture would efficiently return the TC whose generator has the minimum time-dependent
network distance to q. We formally define Tight Network Index as follows.

Definition 5. Let P be the set of data objects P = {p1, p2, ..., pn}, the Tight Network
Index is a spatial index structure generated on {TC(p1), TC(p2), ..., TC(pn)}. � 
As illustrated in Figure 5, the set of tight cells often does not cover the entire network.
For the cases where q is located in an area which is not covered by any tight cell, we
utilize the Loose Network Index (LNI) to identify the candidate nearest data objects.
Next, we describe LNI .

Loose Network Index (LNI). The loose cell LC(pi) is a sub-network around pi out-
side which any point is guaranteed not to have pi as its nearest neighbor. In other words,
data object pi is guaranteed not to be the nearest neighbor of q if q is outside of the loose
cell of pi. Similar to the construction process for TC(pi), we use the parallel shortest
path tree expansion to construct LC(pi). However, this time, we use minimum travel-
time between the nodes of the network (i.e., LTT ) to expand from pi (i.e., the generator
of the loose cell) and maximum travel-time (i.e., UTT ) to expand from every other data
object. Lemma2 proves the property of LC:

Lemma 2. Let P be a set of data objects P = {p1, p2, ..., pn} in GT and LC(pi) be
the loose cell of a data object pi. If q is outside of LC(pi), pi is guaranteed not to be
the nearest neighbor of q, i.e., {∀q �∈ LC(pi), ∃pj ∈ P, pj �= pi, TDFP (q, pi, t) >
TDFP (q, pj, t)}.

Proof. We prove by contradiction. Assume that pi is the nearest neighbor of a q, even
though the q is outside of LC(pi); i.e., TDFP (q, pi, t) < TDFP (q, pj, t). Suppose
there exists a data object pj whose loose cell LC(pj) covers q (such a data object
must exist, because as we will next prove by Lemma 3, the set of loose cells cover
the entire network). Let b be a point on the boundary of LC(pi). Then, we have,
TDFP (q, pj, t) < DUTT (pj , b) = DLTT (pi, b) < TDFP (q, pi, t). This is a con-
tradiction; hence, pi cannot be the nearest neighbor of q. � 
As illustrated in Figure 6, loose cells, unlike TCs, collectively cover the entire network
and have some overlapping regions among each other.

Lemma 3. Loose cells may overlap, and they collectively cover the network.

Proof. As we mentioned, during loose cell construction, LTT is used for expansion
from the generator of the loose cell. Since the parallel Dijkstra algorithm traverses every
node until the priority queue is empty as described in [8], every node in the network is
visited; hence, the network is covered. Since the process of expansion with LTT is
repeated for each data object, in the overall process some nodes are visited more than
once; hence, the overlapping areas. Therefore, loose cells cover the entire network and
may have overlapping areas. Note that if the edge weights are constant, the LCs would
not overlap, and TCs cells and LCs would be the same.



Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks 441

Fig. 6. Loose Cells Fig. 7. LN R-tree

Based on the properties of tight and loose cells, we know that loose cells and tight cells
have common edges (i.e., all the tight cell edges are also the edges of loose cells). We
refer to data objects that share common edges as direct neighbors and remark that loose
cells of the direct neighbors always overlap. For example, consider Figure 6 where
the direct neighbors of p2 are p1, p3, and p6. This property is especially useful for
processing k-1 neighbors (see Section 4.2) after finding the first nearest neighbor. We
determine the direct neighbors during the generation of the loose cells and store the
neighborhood information in a data component. Therefore, finding the neighboring cells
does not require any complex operation.

Similar to TNI , we can use spatial index structures to access loose cells efficiently.
We formally define the Loose Network Index (LNI) as follows.

Definition 6. Let P be the set of data objects P = {p1, p2, ..., pn}, the Loose Network
Index is a spatial index structure generated on {LC(p1), LC(p2), ..., LC(pn)}. � 
Note that LNI and TNI are complementary index structures. Specifically, if a q cannot
be located with TNI (i.e., q falls outside of any TC), then we use LNI to identify the
LCs that contain q; based on Lemma 2, the generators of such LCs are the only NN
candidates for q.

Data Structures and Updates. With our approach, we use R-Tree [10] like data struc-
ture to implement TNI and LNI, termed TN R-tree and LN R-tree, respectively. Figure
7 depicts LN R-tree (TN R-tree is a similar data structure without extra pointers at the
leaf nodes, hence not discussed). As shown, LN R-tree has the basic structure of an
R-tree generated on minimum bounding rectangles of loose cells. The difference is that
we modify R-tree by linking its leaf nodes to the the pointers of additional components
that facilitate TD-kNN query processing. These components are the direct neighbors
(N(pi)) of pi and the list of nodes (V Lpi) that are inside LC(pi). While N(pi) is used
to filter the set of candidate nearest neighbors where k > 1, we use V Lpi to prune the
search space during TDSP computation (see Section 4.2).

Our proposed index structures need to be updated when the set of data objects and/or
the travel-time profiles change. Fortunately, due to local precomputation nature of TD-
kNN, the affect of the updates with both cases are local, hence requiring minimal
change in tight and loose cell index structures. Below, we explain each update type.

Data Object Updates: We consider two types of object update; insertion and deletion
(object relocation is performed by a deletion following by insertion at the new location).
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With a location update of a data object pi, only the tight and loose cells of pi’s neighbors
are updated locally. In particular, when a new pi is inserted, first we find the loose cell(s)
LC(pj) containing pi. Clearly, we need to shrink LC(pj) and since the loose cells and
tight cells share common edges, the region that contains LC(pj) and LC(pj)’s direct
neighbors needs to be adjusted. Towards that end, we find the neighbors of LC(pj);
the tight and loose cells of these direct neighbors are the only ones affected by the
insertion. Finally, we compute the new TCs and LCs for pi, pj and pj’s direct neighbors
by updating our index structures. Deletion of a pi is similar and hence not discussed.

Edge Travel-time Updates: With travel-time updates, we do not need to update our
index structures. This is because the tight and loose cells are generated based on the
minimum (LTT) and maximum (UTT) travel-times of the edges in the network that
are time-independent. The only case we need to update our index structures is when
minimum and/or maximum travel-time of an edge changes, which is not that frequent.
Moreover, similar to the data object updates, the affect of the travel-time profile update
is local. When the maximum and/or minimum travel-time of an edge ei changes in
the network, we first find the loose cell(s) LC(pj) that overlaps with ei and thereafter
recompute the tight and loose cells of LC(pj) and its direct neighbors.

4.2 TD-kNN Query Processing (Online)

So far, we have defined the properties of TNI and LNI . We now explain how we
use these index structures to process kNN queries in GT . Below, we first describe our
algorithm to find the nearest neighbor (i.e., k=1), and then we extend it to address the
kNN case (i.e., k ≥ 1).

Nearest Neighbor Query. We use TNI or LNI to identify the nearest neighbor of a
query object q. Given the location of q, first we carry out a depth-first search from the
TNI root to the node that contains q (Line 5 of Algorithm 1). If a tight cell that contains
q is located, we return the generator of that tight cell as the first NN. Our experiments
show that, in most cases (7 out of 10), we can find q with TNI search (see Section 5.2).
If we cannot locate q in TNI (i.e., when q falls outside all tight cells), we proceed to
search LNI (Line 7). At this step, we may find one or more loose cells that contain q.
Based on Lemma 2, the generators of these loose cells are the only possible candidates
to be the NN for q. Therefore, we compute TDFP to find the distance between q and
each candidate in order to determine the first NN (Line 8-12). We store the candidates
in a minimum heap based on their travel-time to q (Line 10) and retrieve the nearest
neighbor from the heap in Line 12.

kNN Query. Our proposed algorithm for finding the remaining k-1 NNs is based on
the direct neighbor property discussed in Section 4.1. We argue that the second NN
must be among the direct neighbors of the first NN. Once we identify the second NN,
we continue by including the neighbors of the second NN to find the third NN and so
on. This search algorithm is based on the following Lemma which is derived from the
properties of TNI and LNI .

Lemma 4. The i-th nearest neighbor of q is always among the neighbors of the i-1
nearest neighbors of q.
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(a) Algorithm 1 (b) Algorithm 2

Fig. 8. kNN query algorithm in time-dependent road networks

Proof. We prove this lemma by induction. We prove the base case (i.e., the second NN
is a direct neighbor of the first NN of q) by contradiction. Consider Figure 9 where
p2 is the first NN of q. Assume that p5 (which is not a direct neighbor of p2) is the
second NN of q. Since p2 and p5 are not direct neighbors, a point w on the time-
dependent shortest path between q and p5 can be found that is outside both LC(p2) and
LC(p5). However, p5 cannot be a candidate NN for w, because w is not in LC(p5).
Thus, there exists another object such as p1 which is closer to w as compared to p5.
Therefore, TDFP (w, p5, t) > TDFP (w, p1, t). However, as shown in Figure 9, we
have TDFP (q, p5, t) = TDFP (q, w, t) + TDFP (w, p5, t) > TDFP (q, w, t) +
TDFP (w, p1, t) = TDFP (q, p1, t). Thus, p5 is farther from q than both p2 and p1,
which contradicts the assumption that p5 is the second NN of q. The proof of inductive
step is straight forward and similar to the above proof by contradiction; hence, due to
lack of space, we omit the details. � 
The complete TD-kNN query answering process is given in Algorithm 2. Algorithm
2 calls Algorithm 1 to find the first NN and add it to N , which maintains the current
set of nearest neighbors (Lines 4-5). To find the remaining k − 1 NNs, we expand the
search area by including the neighboring loose cells of the first NN. We compute the
TDSP for each candidate and add each candidate to a minimum heap (Lines 9 ) based
on its time-dependent travel-time to q. Thereafter, we select the one with minimum
distance as the second NN (Line 11). Once we identify the second NN, we continue
by investigating the neighbor loose cells of the second NN to find the third NN and so
on. Our experiments show that the average number of neighbors for a data object is a
relatively small number less than 9 (see Section 5.2).

Time-dependent Fastest Path Computation. As we explained, once the nearest neigh-
bor of q is found and the candidate set is determined, the time-dependent fastest path
from q to all candidates must be computed in order to find the next NN. Before we
explain our TDFP computation, we note a very useful property of loose cells. That
is, given pi is the nearest neighbor of q, the time-dependent shortest path from q to pi

is guaranteed to be in LC(pi) (see Lemma 5). This property indicates that we only need
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Fig. 9. Second NN Example Fig. 10. TDSP localization

to consider the edges contained in the loose cell of pi when computing TDFP from q
to pi. Obviously, this property allows us to localize the time-dependent shortest path
search by extensively pruning the search space. Since the localized area of a loose cell
is substantially smaller as compared to the complete graph, the computation cost of
TDFP is significantly reduced. Note that the subnetwork bounded by a loose cell is on
average 1/n of the original network where n is the total number of sites.

Lemma 5. If pi is the nearest neighbor of q, then the time-dependent shortest path from
q to pi is guaranteed to be inside the loose cell of pi

Proof. We prove by contradiction. Assume that pi is the NN of q but a portion of TDFP
from q to pi passes outside of LC(pi). Suppose a point l on that outside portion of the
path. Since l is outside LC(pi), then ∃pj ∈ P , pj �= pi that satisfies DLTT (pi, l) >
DUTT (pj , l) and hence TDFP (pi, l, t) > TDFP (pj, l, t). Then, TDFP (pi, q, t) =
TDFP (pi, l, t) + TDFP (l, q, t) > TDFP (pj, l, t) + TDFP (l, q, t) = TDFP
(pj , q, t), which contradicts the fact that pi is the NN of q. � 
We note that for TD-kNN with k > 1, the TDFP from q to the kth nearest neighbor will
lie in the combined area of neighboring cells. Figure 10 shows an example query with
k > 1 where p2 is assumed to be the nearest neighbor (and the candidate neighbors of
p2 are, p1, p6 and p3). To compute the TDFP from q to data object p1, we only need to
consider the edges contained in LC(p1)∪LC(p2). Below, we explain how we compute
the TDFP from q to each candidate.

As initially showed by Dreyfus [7], the TDFP problem (in FIFO networks) can be
solved by modifying any label-setting or label-correcting static shortest path algorithm.
The asymptotic running times of these modified algorithms are same as those of their
static counterparts. With our approach, we implement a time-dependent A* search (a
label-setting algorithm) to compute TDFP between q and the candidate set. The main
idea with A* algorithm is to employ a heuristic function h(v) (i.e., lower-bound esti-
mator between the intermediate node vi and the target t) that directs the search towards
the target and significantly reduces the number of nodes that have to be traversed. With
static road networks where the length of an edge is considered as the cost, the Euclidean
distance between vi and t is the lower-bound estimator. However, with time-dependent
road networks, we need to come up with an estimator that never overestimates the
travel-time between vi and t for all possible departure-times (from vi). One simple
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Fig. 11. TDSP Algorithm

lower-bound is deuc(vi, t)/max(speed), i.e., the Euclidean distance between vi and t
divided by the maximum speed among the edges in the entire network. Although this
estimator is guaranteed to be a lower-bound between vi and t, it is a very loose bound,
hence yields insignificant pruning. Fortunately, our approach can use Lemma 5 to ob-
tain a much tighter lower-bound. Since the shortest path from q to pi is guaranteed to
be inside LC(pi), we can use the maximum speed in LC(pi) to compute the lower-
bound. We outline our time-dependent A* algorithm in Algorithm 3 where essential
modifications (as compared to [7]) are in Lines 3, 10 and 14. As mentioned, to compute
TDFP from q to candidate pi, we only consider the nodes in the loose cell that con-
tains q and LC(pi) (Line 3). To compute the labels for each node, we use arrival time
and the estimator (i.e., cost(vi)+hLC(vi) where hLC(vi) is the lower-bound estimator
calculated based on the maximum speed in the loose cell) to each node that form the
basis of the greedy algorithm (Line 10). In Lines 10 and 14, TT (vi, vj , tvi) finds the
time-dependent travel-time from vi to vj (see Section 3).

5 Experimental Evaluation

5.1 Experimental Setup

We conducted several experiments with different spatial networks and various parame-
ters (see Figure 12) to evaluate the performance of TD-kNN. We run our experiments
on a workstation with 2.7 GHz Pentium Duo Processor and 12GB RAM memory. We
continuously monitored each query for 100 timestamps. For each set of experiments,
we only vary one parameter and fix the remaining to the default values in Figure 12.
With our experiments, we measured the tight cell hit ratio and the impact of k, data
and query object cardinality as well as the distribution. As our dataset, we used Los
Angeles (LA) and San Joaquin (SJ) road networks with 304,162 and 24,123 segments,
respectively.

We evaluate our proposed techniques using a database of actual time-dependent
travel-times gathered from real-world traffic sensor data. For the past 1.5 year, we have
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been collecting and archiving speed, occupancy, volume sensor data from a collection
of approximately 7000 sensors located on the road network of LA. The sampling rate of
the data is 1 reading/sensor/min. Currently, our database consists of about 900 million
sensor reading representing traffic patterns on the road network segments of LA. In
order to create the time-dependent edge weights of SJ , we developed a system [5] that
synthetically generates time-dependent edge weights for SJ .

5.2 Results

Impact of Tight Cell Hit Ratio and Direct Neighbors. As we explained, if a q is
located in a certain tight cell TC(pi), our algorithm immediately reports pi as the first
NN. Therefore, it is essential to asses the coverage area of the tight cells over the entire
network. Figure 13(a) illustrates the coverage ratio of the tight cells with varying data
object cardinality (ranging from 1K to 20K) on two data sets. As shown, the average
tight cell coverage is about %68 of the entire network for both LA and SJ . This implies
that the first NN of a query can be answered immediately with a ratio of 7/10 with no
further computation. Another important parameter affecting the TD-kNN algorithm is
the average number of direct neighbors for each data object. Figure 13(b) depicts the
average number of neighbor cells with varying data object cardinality. As shown, the
average number of neighbors is less than 9 for both LA and SJ .

Fig. 12. Experimental Parameters

(a) Coverage ratio (b) Number of neighbors

Fig. 13. Time-dependent fastest path localization

As mentioned, in [7] we developed an incremental network expansion algorithm
(based on [7]) to evaluate kNN queries in time-dependent networks. Below we com-
pare our results with this naive approach. For the rest of the experiments, since the
experimental results with both LA and SJ networks differ insignificantly and due to
space limitations, we only present the results from LA dataset.

Impact of k. In this experiment, we compare the performance of both algorithms by
varying the value of k. Figure 14(a) plots the average response time versus k ranging
from 1 to 50 while using default settings in Figure 12 for other parameters. The results
show that TD-kNN outperforms naive approach for all values of k and scales better
with the large values of k. As illustrated, when k=1, TD-kNN generates the result set
almost instantly. This is because a simple contain() function is enough to find the first
NN. As the value of k increases, the response time of TD-kNN increases at linear rate.
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(a) Impact of k (b) Network node access

Fig. 14. Response time and node access versus k

(a) Object cardinality (b) Query cardinality (c) Object/Query distribution

Fig. 15. Impact of k

Because, TD-kNN, rather than expanding the search blindly, benefits from localized
computation. In addition, we compared the average number of network node access
with both algorithms. As shown in Figure 14(b), the number of nodes accessed by TD-
kNN is less than the naive approach for all values of k.

Impact of Object and Query Cardinality. Next, we compare the algorithms with
respect to cardinality of the data objects (P). Figure 15(a) shows the impact of P on
response time. The response time linearly increases with the number of data objects
in both methods where TD-kNN outperforms the naive approach for all cases. From
P=1K to 5K, the performance gap is more significant. This is because, for lower densi-
ties where data objects are possibly distributed sparsely, naive approach requires larger
portion of the network to be retrieved. Figure 15(b) shows the impact of the query
cardinality (Q) ranging from 1K to 5K on response time. As shown, TD-kNN scales
better with larger Q and the performance gap between the approaches increases as Q
grows.

Impact of Object/Query Distribution. Finally, we study the impact of object, query
distribution. Figure 15(c) shows the response time of both algorithms where the ob-
jects and queries follow either uniform or Gaussian distributions. TD-kNN outperforms
the naive approach significantly in all cases. TD-kNN yields better performance for
queries with Gaussian distribution. This is because as queries with Gaussian distribu-
tion are clustered in the network, their nearest neighbors would overlap hence allowing
TD-kNN to reuse the path computations.
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6 Conclusion and Future Work

In this paper, we proposed a time-dependent k nearest neighbor search algorithm (TD-
kNN) for spatial networks. With TD-kNN, unlike the existing studies, we assume the
edge weights of the network are time varying rather than fixed. In real-world, time-
varying edge utilization is inherit in almost all networks (e.g., transportation, internet,
social networks). Hence, we believe that our approach yields a much more realistic sce-
nario and is applicable to kNN applications in other domains. We intend to pursue this
study in two directions. First, we plan to investigate new data models for effective repre-
sentation of time-dependent spatial networks. This is critical in supporting development
of efficient and accurate time-dependent algorithms, while minimizing the storage and
cost of the computation. Second, we intend to study a variety of other spatial queries
(including continuous kNN, range and skyline queries) in time-dependent networks.
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Abstract. There is a significant commercial and research interest in location-
based web search engines. Given a number of search keywords and one or more
locations that a user is interested in, a location-based web search retrieves and
ranks the most textually and spatially relevant web pages. In this type of search,
both the spatial and textual information should be indexed. Currently, no effi-
cient index structure exists that can handle both the spatial and textual aspects
of data simultaneously and accurately. Existing approaches either index space
and text separately or use inefficient hybrid index structures with poor perfor-
mance. Moreover, most of these approaches cannot accurately rank web-pages
based on a combination of space and text and are not easy to integrate into ex-
isting search engines. In this paper, we propose a new index structure called
Spatial-Keyword Inverted File to handle location-based web searches in an in-
tegrated/efficient manner. To seamlessly find and rank relevant documents, we
develop a new distance measure called spatial tf-idf. We propose four variants of
spatial-keyword relevance scores and two algorithms to perform top-k searches.
As verified by experiments, our proposed techniques outperform existing index
structures in terms of search performance and accuracy.

1 Introduction

There is a large amount of location-based information generated and used by many
applications. The Internet is the most popular source of data with location-specific in-
formation, such as documents describing schools at certain regions, Wikipedia pages
containing spatial information and images with annotations and information about the
places they were taken. Users of such a web-based application often need to query the
system by providing requirements on a location as well as keywords in order to find
relevant documents, as illustrated by the following example.

Suppose we have a collection of web pages, and each page describes objects for a
specific location, such as a district, a city, or a county. Objects can be schools, real-state
agencies, golf courses, and sports teams. We want to build a system to allow users to
search on these documents. Consider a user, Mike, who moves to the central part of Los
Angeles. He likes to play soccer, and wants to find soccer leagues in this area so that he
can choose one to join. He submits a query to the system with two keywords “soccer
league” and specifies “Central Los Angeles” as the location restriction. Fig-
ure 1 shows the location of his query represented as a shaded region. Our goal is to find
the best documents that are of interest to Mike.

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 450–466, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A spatial-keyword query on documents with location information

Suppose there are six documents in the repository with locations close to the Central
Los Angeles. Figure 1(a) shows these locations represented as rectangles. In addition,
each document has text keywords in its content. Figure 1(b) shows the frequencies of
the two query keywords in these documents. We want to find the most relevant re-
sults (documents) to the query. The result cannot be found with a simple keyword-only
query since none of the documents may have the actual keywords “Central Los
Angeles” or even “Los Angeles” in them.

One way to answer the query is to find the documents with a location contained in
the query region and with the two query keywords, as suggested in several studies in
the literature [2,6,10]. Using this approach, we can only find document d3 as an answer,
since it satisfies both conditions. Document d5 is not an answer since even though it has
both query keywords, its region is not totally contained in the query region. One major
limitation of this approach is that many documents with partial spatial and/or textual
matching will not be considered, even though they include information that could be
interesting to the user.

In this paper we show how to support spatial-keyword queries on documents with
spatial information. We demonstrate how to rank documents by seamlessly combining
spatial and textual features, in order to find highly relevant answers to user queries.
In our running example, an interesting question is how to measure the relevance of a
document to the query. Intuitively, a document could be of interest to the user if it has
at least one of the query keywords, and its location is close to the region mentioned in
the query. Document d6 is not very relevant to the query, since its region is far from
the query region. The other five documents are all overlapping with the query region,
and thus could be potentially of interest to the user. Hence, we need to rank them since
the user may be only interested in the most relevant documents. However, it is not clear
how to measure the relevance of the documents to user query. For example, it is clear
that document d3 should have a high relevance since its region is contained in the query
region, and both query keywords appear in the document. However, it is not clear how
relevant d2 is to the query, since even though its region is contained in the query region,
it does not have the keyword “league.” The other documents, d1, d4, and d5, all have
the two query keywords, but with different frequencies, and they have different amounts
of overlapping areas with the query region.

In this paper, we present a ranking method that considers both the spatial overlap of
a document with a query and the frequencies of the query keywords in the document
in order to compute a relevance score of the document to the query. We present a new
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scoring mechanism to calculate the spatial relevance of a document with respect to a
query, and propose a method to combine the spatial relevance and the textual relevance.

Given a good ranking method for documents, a natural question to ask is how to
efficiently index and search the location-specific documents. There are several chal-
lenges. First, space and text are two totally different data types requiring different index
structures. For instance, conventional text engines are set-oriented while location in-
dexes are usually based on two-dimensional and Euclidean spaces. Second, the ranking
and search processes should not be separated. Otherwise, the ranking process will rank
all the candidate documents (instead of only the relevant documents), making the query
processing inefficient. Third, the meaning of spatial relevance and textual relevance and
a way to combine them using the proposed index structure have to be defined accurately.
Finally, it should be easy to integrate the index structure into existing search engines.

To solve the above problems, we propose a new hybrid index structure called Spatial-
Keyword Inverted File (“SKIF” for short), which can handle the spatial and textual fea-
tures of data simultaneously and in a similar manner. SKIF is an inverted file capable of
indexing and searching on both textual and spatial data in a similar, integrated manner.
Towards this end, the space is partitioned into a number of grid cells and each cell is
treated similar to a textual keyword. We describe the structure of SKIF, and present two
efficient algorithms for answering a ranking query using SKIF.

To summarize, we have the following contributions in this paper:

– We define the problem of ranking queries on documents with spatial and textual
information.

– We develop a new scoring method called spatial tf-idf to compute the spatial rel-
evance of a document to a query, and combine both spatial relevance and textual
relevance for a query.

– We develop an efficient hybrid index structure for indexing both the spatial and tex-
tual aspects of the documents. We present two algorithms for answering a ranking
query using the structure.

– We have conducted an experimental evaluation on real and synthetic datasets to
show that our techniques can answer ranking queries efficiently and accurately.

2 Related Work

Existing index structures for handling the spatial-keyword queries can be categorized
into two broad groups: 1) individual index structures, and 2) hybrid index structures.
Individual index structures use one index for each set of features of the data (space or
text). The index structures of choice for the spatial data are usually grid, R*-tree or
quadtree. For text, inverted files are often used. Using separate index structures, docu-
ments satisfying the textual part of the query and documents satisfying the spatial part
of the query are retrieved separately using the textual and spatial indexes, respectively.

Hybrid index structures combine the textual and spatial indexes into one index struc-
ture. Two basic designs introduced in [1] are inverted file-R*-tree and R*-tree-inverted
file. Inverted file-R*-tree is essentially an inverted file on top of R*-trees. For a given
spatial-keyword query, the query keywords are filtered using the inverted file and then
R*-trees corresponding to those keywords are traversed to search/filter based on the
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spatial features of the data. This structure performs well only when the number of key-
words is very small. R*-tree-inverted file is an R*-tree on top of inverted files. For a
given spatial-keyword query, R*-tree’s leaf nodes intersecting the query location are re-
trieved first and then all the inverted lists corresponding to those keywords are traversed.
The main disadvantage of this method is in its spatial filtering step, which usually gen-
erates many candidate objects. Two other structures are those presented in [6] and [10].
Both index structures use grid as a spatial index and inverted file as a textual index.
With both approaches, spatial and textual search processes are separated and query
processing require two stages. Neither of the approaches can support spatial- keyword
relevance ranking.

Several improved hybrid index structures are introduced more recently. In [2] a hy-
brid index structure called KR*-tree is proposed. KR*-tree extends R*-tree-inverted file
structure by augmenting each node of R-tree with the list of all the keywords appearing
in the objects of that subtree. At the query time, KR*-tree is traversed and for each
node, not only the spatial intersection with the query region is checked but the node is
also checked for the presence of the query keywords. The result to the query are the ob-
jects contained in the query region that have all the query keywords (AND semantics).
KR*-tree is only good for spatial objects with a small number of keywords. Another
hybrid index structure called IR2-tree is presented in [3], which combines R-tree with
signature files. With this method, each node in R-tree is augmented with a signature
representing the union of the keywords (text) of the objects in the subtree rooted at that
node. Similar to KR*-tree, IR2-tree can identify the subtrees that do not contain the
query keywords and eliminate them from the search process early on. Using IR2-tree,
the final result set is a ranked list of objects containing all the query keywords in order
of their distances to the query point. IR2-tree performs better than index structures in
[1] and [2] but still has its own shortcomings. At times, the signature files are not able
to eliminate the objects not satisfying the query keywords (false hits). This results in
loading and reading more objects, which is costly. Furthermore, the performance gets
worse when the number of query keywords increases or when the final result is very far
from the query point.

Very recently another hybrid index structure called IR-tree is presented, which also
combines R-tree with the inverted files [9]. With this index structure, each node of the
R-tree is augmented with an inverted file for the objects contained in the sub-tree rooted
at that node. IR-tree is the most similar approach to our work since it considers space
and text together.

Nevertheless, there are some major problems with IR-tree. First, one inverted file
needs to be stored and possibly accessed for each node in the tree. For web, the total
number of documents and the total number of keywords are very large, resulting in huge
number of nodes in the tree and also large inverted files for each node. Another problem
with IR-tree is that during the search process, it often needs to visit few nodes in the
tree containing no relevant results. Finally, it is not clear that whether ranking proposed
in [9] is an accurate spatial-keyword relevance ranking (see Section 6).

There are many other relevant topics such as extraction of geographical information
[7,12], geo-coding of documents’ locations [11], and geographic crawling[13]. In this
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paper, we only focus on index structures, relevance ranking, and search algorithms for
spatial-keyword queries.

3 Preliminaries

3.1 Problem Definition

We assume a collection D = {d0,d1,...dn} of n documents (web pages). Each document
d is composed of a set of keywords Kd and a set of locations Ld. Each location is rep-
resented by a minimum bounding rectangle (MBR) although any other arbitrary shape
can be used.

Spatial-keyword query: A spatial-keyword query is defined as Q = 〈Kq, Lq〉, where
Lq is the spatial part of query specified as one or more minimum bounding rectangles
and Kq is a set of keywords in the query.

Spatial relevance: Spatial relevance between a document d and the query q is defined
based on the type of the spatial relationship that exists between Ld and Lq. We focus
only on the overlap relationship, although our approach can easily be extended to cover
other spatial relationships. Subsequently, we define spatial relevance as follows: A doc-
ument d and the query q are spatially relevant if at least one of the query’s MBRs has
a non-empty intersection with one of the document’s MBRs, i.e., Lq ∩ Ld �= ∅. The
larger the area of the intersection is, the more spatially relevant d and q are. We denote
spatial relevance of document d to query q by sRelq(d).

Textual relevance: A document d is textually relevant to the query q if there exists at
least one keyword belonging to both d and q, i.e., Kq ∩Kd �= ∅. The more keywords
q and d has in common, the more they are textually relevant. We represent textual rele-
vance of document d to query q by kRelq(d).

Spatial-keyword relevance: A document d is spatial-keyword relevant to the query q
if it is both spatially and textually relevant to the query q. Spatial-keyword relevance
can be defined by a monotonic scoring function F of textual and spatial relevances.
For example, F can be the weighted sum of the spatial and textual relevances: Fq(d) =

α.sRelq(d) + (1 − α).kRelq(d) . α is a parameter assigning relative weights to spatial
and textual relevances. The output of function Fq(d) is the spatial-keyword relevance
score of document d and query q, and is denoted by skRelq(d). In Section 4 we show
in details how to calculate spatial-keyword relevance using our proposed index.

Spatial-keyword search: A spatial-keyword search identifies all the documents (web
pages) that are spatial-keyword relevant to q. The result is the top-k most spatial-
keyword relevant ranked documents sorted based on documents’ spatial-keyword rele-
vance scores. The parameter k is determined by the user.

3.2 Textual Relevance

tf-idf Score. All current textual (keyword) search engines use a similarity measure to
rank and identify potential (textual) relevant documents. In most keyword queries, a
similarity measure is determined by using the following important parameters:
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– fd,k: the frequency of keyword k in document d
– max(fd,k): maximum value of fd,k over all the keywords in document d

– fd,k: normalized fd,k, which is fd,k

max(fd,k)

– fk: the number of documents containing one or more occurrences of keyword k

Using these values, three monotonicity observations are enforced [4]: (1) less weight is
given to the terms that appear in many documents; (2) more weight is given to the terms
that appear many times in a document; and (3) less weight is given to the documents
that contain many terms. The first property is quantified by measuring the inverse of
frequency of keyword k among the documents in the collection. This factor is called
inverse document frequency or the idf score. The second property is quantified by the
raw frequency of keyword k inside a document d. This is called term frequency or tf
score, and it describes how well that keyword describes the contents of the document
[5,8]. The third property is quantified by measuring the total number of keywords in the
document. This factor is called document length.

A simple and very common formula to calculate the similarity between a document
d and the query q is shown in Equation 1.

wq,k = ln(1 +
n

fk

); wd,k = ln(1 + fd,k);

Wd =

√∑
k

w2
d,k; Wq =

√∑
k

w2
q,k; Sq,d =

∑
k wd,k.wq,k

Wd.Wq
.

(1)

Variable wd,k captures the tf score while variable wq,k captures the idf score. Wd rep-
resents document length and Wq is query length (which can be neglected since it is a
constant for a given query). Finally, Sq,d is the similarity measure showing how relevant
document d and query q are. In this case (textual context) it is the same as tRelq(d).

keyword k fk Inverted list for k
soccer 5 〈1, 1〉〈2, 1〉〈3, 1〉〈4, 1〉〈5, 1〉
league 5 〈1, 0.8〉〈3, 1〉〈4, 1〉〈5, 1〉〈6, 1〉

Fig. 2. Inverted file for Example 1

Inverted Files. Inverted file is the most popular and very efficient data structure for tex-
tual query evaluation. Inverted file is a collection of lists, one per keyword, recording
the identifiers of the documents containing that keyword [4]. An inverted file consists
of two major parts: vocabulary and inverted lists. The vocabulary stores for each key-
word k: a count fk showing number of documents containing k, and a pointer to the
corresponding inverted list. The second part of inverted file is a set of inverted lists,
each corresponding to a keyword. Each list stores for the corresponding keyword k:
identifiers d of documents containing k, and normalized frequencies fd,k of term k in
document d [4]. A complete inverted file for Example 1 is shown in Figure 2.

4 Seamless Spatial-Keyword Ranking

In this section, we define new scoring mechanism to calculate the spatial relevance
and spatial-keyword relevance scores. Following the same intuitions and concepts used



456 A. Khodaei, C. Shahabi, and C. Li

in regular (textual) searches, we define new concepts and parameters for spatial data.
Most notably, inspired by tf-idf in textual context, we define a new scoring mechanism
called spatial tf-idf for the spatial context. Using (textual) tf-idf scores and spatial tf-idf
scores, the spatial-keyword relevance is defined and can be used to rank the documents
based on both the spatial and textual aspects of the data, simultaneously and efficiently.
We discuss two different approaches to calculate the spatial-keyword relevance using
the spatial tf-idf score. Several variants of the final similarity measure is also presented.

4.1 Spatial tf-idf

In order to be able to use the analogous ideas used in the regular tf-idf score, we need to
treat spatial data similar to textual data. Most importantly, we need to represent space
which is coherent and continuous in nature, as disjunct and set-oriented units of data -
similar to the textual keywords. Hence, we partition the space into grid cells and assign
unique identifiers to each cell. Therefore, each location in document can be associated
with a set of cell identifiers. Since we are using overlap as our main spatial query type,
these cells are defined as the cells which overlap with the document location. With spa-
tial tf-idf, the overlap of a cell with the document is analogous to the existence of a key-
word in document with tf-idf. However, knowing the overlapping cells is not enough.
We need to know how well a cell describes the spatial content of the document. We
use the overlap area between each cell and the document to provide a measure of how
well that cell describes the document. Analogous to frequency of term t in document d,
we define frequency of cell c in document d as follows: fd,c = Ld∩c

c which is the area
of overlap between the document location Ld and cell c divided by the area of cell c.
Similar to the frequency of a keyword which describes how well the keyword describes
the documents textual contents (Kd), the frequency of a cell describes how well the cell
describes the documents spatial contents (Ld). The more the overlap, the better this cell
describes the document location and viceversa.

Now we can define the following parameters analogous to those of Section 3.2:

– fd,c: the frequency of cell c in document d
– max(fd,c): maximum value of fd,c over all the cells in document d

– fd,c: normalized fd,c, which is fd,c

max(fd,c)

– fc: the number of documents containing one or more occurrences of cell c

Using the above parameters, we revisit three monotonicity properties discussed in Sec-
tion 3.2, this time in spatial context: (1) less weight is given to cells that appear in many
documents; (2) more weight is given to cells that overlap largely with a document; and
(3) less weight is given to documents that contain many cells.
The first property is quantified by measuring the inverse of frequency of a cell c among
the documents in the collection. We call this spatial inverse document frequency or idfs

score. The second property is quantified by the frequency of cell c in document d (as
defined earlier). This is called spatial term frequency or tfs score and describes how
well that cell describes the document spatial contents (i.e. Ld). The third property is
quantified by measuring the total number of cells in the document. This factor is called
document spatial length.
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Fig. 4. Example 1 on the grid

Among the above properties, properties (2) and (3) are more intuitive. Property (2)
states that more weight should be given to the cells having a large overlap area with the
document. The larger the overlap, the better that cell describes the document location.
For example, in Figure 3, cell c8 better describes the document d2 than cell c9. Property
(3) states that less wight should be given to those documents whose locations cover
more cells. Assuming all the other parameters are equal, a document with a smaller
coverage (fewer number of cells) should get a higher weight than a document with
a larger coverage. To illustrate, consider Figure 3, where both documents d1 and d2
contain the query location and its corresponding cell (i.e. c5). In other words, they
have equal spatial tf scores for cell c5 . Cell c5 also have identical spatial idf for all
documents. Under these conditions (equal tf scores and equal idf scores), the smaller
document (d1) should be ranked higher. This is analogous to the fact that in textual
context, more weight is given to the documents that contain fewer keywords.

Contrary to properties (2) and (3), property (1) is not very intuitive. It states that less
weight is given to the cells appearing in more documents. In the textual context, the idf
score is a weighting factor determining the importance of each keyword independent
of the query. It assigns more weight to keywords appearing in fewer documents, since
those are more meaningful keywords . However, the definition of meaningful cell is not
very clear in the spatial context. A popular cell (location) -a cell overlapping with many
documents - is a very meaningful cell for some users/applications, while for some oth-
ers, a distinctive cell (location) - cell appearing in few documents - is more meaningful.
(in Example 1, one user may look for more popular locations for soccer leagues while
another user may be interested in a less crowded,more private location) . To cover both
cases, we define spatial idf of cell c in two different ways: inverse of frequency of a
cell c among the documents (inverted idfs) and direct frequency of a cell c among the
documents (direct idfs).

4.2 Spatial-Keyword Relevance

In this section, we introduce two novel approaches for calculating spatial-keyword rel-
evance between a document d and a query q. With the single-score approach, one sim-
ilarity measure and one document length is used to combine the spatial relevance and
textual relevance into one equation. With the double-score approach, spatial and textual
relevance are calculated separately, using two document lengths, one for each relevance.
Thus a new spatial similarity measure analogous to the textual similarity measure is de-
fined. Both approaches can use the parameter α to assign relative weights.
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Single-Score Approach. After partitioning each document location to a set of cells,
defining the spatial tf-idf score and creating one document spatial length for each doc-
ument location, the cells are ready to be treated in a similar manner to the keywords.
We define term as the smallest unit of data describing each document which is either
a keyword or a cell. If we represent keywords associated with the document d by Kd

and the cells associated with the same document by Cd, then the set of terms associated
with document d is represented by Td and defined as follows:

Td = Kd ∪ Cd.
Simply stated, the document’s terms are the union of the document’s keywords and

cells. For Instance, in Example 1: Td1 = {soccer, league, c1, c2} (see Figures 1(b)
and 4). In order to be able to define a single similarity measure capturing both the textual
and spatial relevances, we define the following parameters:

– fd,t: the frequency of term t in document d
– ft: the number of documents containing occurrences of term t

where each parameter gets its value from the corresponding parameter in the space or
text domain (based on term type). For instance, value of fd,t is equal to fd,k when term
is keyword and to fd,c when term is cell. Having defined these new parameters, we can
now easily redefine Equation 1, this time with terms instead of keywords. This is a new
formulation capturing the keywords (textual relevance) and the cells (spatial relevance)
in a unified manner.

wq,t =

{
(1 − α). ln(1 + n

ft
) if t is keyword

α.wq,c if t is a cell
; wd,t =

{
(1 − α). ln(1 + fd,t) if t is keyword
α. ln(1 + fd,t) if t is cell

;

Ŵd =

√∑
t

w2
d,t; Ŵq =

√∑
t

w2
q,t;

Ŝq,d =

∑
t wd,t.wq,t

Ŵd.Ŵq

.

(2)

The variable wd,t captures the spatial-keyword term frequency score (tfsk). The vari-
able wq,t captures the spatial-keyword inverted document frequency (idfsk). Param-
eter α is integrated into the weighting scheme to capture the weighted relevance of
space versus text. Ŵd represents spatial-keyword document length and Ŵq is (spatial-
keyword) query length. Finally, Ŝq,d is the similarity measure showing how spatial-
keyword relevant document d is to query q.

Double-Score Approach. In the single-score approach, keywords and cells are treated
in exactly the same manner. Keywords and cells tf and idf scores are used in one equa-
tion and one similarity measure (Ŝq,d) using one document length (Ŵd) is used to cal-
culate the final relevance score. There might be cases when most of the documents in
the collection contain very large document location but very few keywords (or the op-
posite). In this situation, it is better to calculate the textual and spatial relevance scores
separately. Hence, we discuss another approach to calculate the similarity measure be-
tween document d and query q in the spatial-keyword context. One can first calculate
the spatial relevance and the textual relevance of document d and query q independently
and then use an aggregation function to compute the overall spatial-keyword relevance
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score. Using the spatial tf-idf parameters and the definitions, we calculate the spatial
similarity measure between document d and query q analogous to the textual similarity
measure as follows:

wq,c =

{
ln(1 + n

fc
) if inverted document frequency

ln(1 + fc
n ) if direct document frequency

; wd,c = ln(1 + fd,c);

W
′
d =

√∑
c

w2
d,c; W

′
q =

√∑
c

w2
q,c; S

′
q,d =

∑
c wd,c.wq,c

W ′
d.W ′

q

.

(3)

where S′
q,d is the spatial similarity measure between document d and query q. This

value captures the spatial relevance sRelq(d) defined in Section 3.1.
After calculating the spatial relevance using the above equation and computing the

textual relevance using Equation 1, the aggregation function F can be used to calculate
the final spatial-keyword relevance. More formally: skRelq(d) = α.S′

q,d+(1−α).Sq,d.

Variants. We conclude this section by summarizing possible variants of the spatial-
keyword relevance score. We defined two different approaches to calculate the spatial-
keyword relevance scores. We also introduced two different ways to define the
spatial idf factor score. Combining our two main approaches with the two definitions
of the spatial idf score yields four different variants for our final similarity measure:

1. Single-Score with Inverted document frequency (SSI)
Where skRelq(d) = Ŝq,d and wq,c = ln(1 + n

fc
)

2. Single-Score with Direct document frequency (SSD)
Where skRelq(d) = Ŝq,d and wq,c = ln(1 + fc

n )
3. Double-Score with Inverted document frequency (DSI)

Where skRelq(d) = α.sRelq(d) + (1 − α).kRelq(d) and wq,c = ln(1 + n
fc

)
4. Double-Score with Direct document frequency (DSD)

Where skRelq(d) = α.sRelq(d) + (1 − α).kRelq(d) and wq,c = ln(1 + fc

n )

5 Spatial-Keyword Inverted File

Spatial-Keyword Inverted File (SKIF) is an inverted file capable of indexing and search-
ing both the textual and spatial data in a similar, integrated manner using a single data
structure. In this section, we first describe the structure of SKIF and the information it
stores. Next, we show how spatial-keyword query evaluation is performed using SKIF.
Two algorithms corresponding to our two approaches are presented. Finally, we discuss
briefly how SKIF can be extended to more general cases.

5.1 SKIF Structure

Since SKIF is an inverted file, its structure is very similar to the structure of the regular
inverted files. SKIF consists of two parts: vocabulary and inverted lists. The vocabulary
contains all the terms in the system which includes all the (textual) keywords and cells
(cell identifiers). For each distinct term, three values are stored in the vocabulary: 1)
ft representing the number of the documents containing the term t, 2) a pointer to
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term t ft type Spatial-Keyword Inverted List for t
soccer 5 1 〈1, 1〉〈2, 1〉〈3, 1〉〈4, 1〉〈5, 1〉
league 5 1 〈1, 0.8〉〈3, 1〉〈4, 1〉〈5, 1〉〈6, 1〉
c1 1 0 〈1, 1〉
c2 2 0 〈1, 0.55〉〈2, 1〉
c4 1 0 〈4, 0.25〉
c5 3 0 〈3, 1〉〈4, 0.06〉〈5, 1〉
c6 1 0 〈5, 0.35〉
c7 1 0 〈4, 1〉
c8 2 0 〈4, 0.3〉〈5, 0.65〉
c9 2 0 〈5, 0.25〉〈6, 1〉

Fig. 5. Spatial-keyword inverted file for Example 1

the corresponding inverted list and 3) the type of term which is used to help calculate
the tf and idf scores. The second component of SKIF is a set of inverted lists each
corresponding to a term. For the corresponding term t, each list stores the following
values: identifiers of the documents containing term t and the normalized frequencies
of term t for each document d. The latter is represented by fd,t. Figure 4 redraws the
Example 1 on the grid and Figure 5 shows the complete SKIF for Example 1.

5.2 Query Processing

As discussed in Section 3.1, the spatial-keyword query consists of two parts: the query
keywords Kq and the query location Lq. To process spatial-keyword queries, we first
need to convert Lq to a set of cells Cq . Cq is the set of cells overlapping with the
document location Lq . After calculating Cq , we define the set of terms associated with
each query by Tq as follows: Tq = Kq ∪ Cq .

Figures 1 and 2 show the algorithms to perform top-k spatial-keyword search using
SKIF for the single-score and the double-score approaches respectively. Both the al-
gorithms are very similar. Accumulators are used to store the partial similarity scores.
The main difference is that Algorithm 1 uses one accumulator Ad while the Algorithm
2 uses two accumulators Ad and A′

d. After all the query terms are processed, similarity
scores Ŝq,d, Sq,d and S′

q,d are derived by dividing each accumulator value by the cor-

responding value Ŵd, Wd and W ′
d respectively . Finally, the k largest documents are

identified and will be returned to the user.

5.3 Generalization

In this section we briefly show how we can extend SKIF into more general cases.

Multiple Locations: One of the advantages of our technique is that there is no limit-
ing constraint on the representation of the document location. Instead of treating the
document location as one large and sparse MBR, we can use several sperate, disjoint
locations using SKIF. This is feasible because our final spatial relevance score can be
computed by separately computing the spatial score of each cell intersecting with the
various document locations. Another advantage of SKIF is its capability to represent
the document location as any arbitrary shape and not necessarily as MBR or rectangle.
The only information we need to calculate for spatial tf-idf score is the area of overlap
between each cell and each document location.
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Algorithm 1. single-score approach
1: Allocate an accumulator Ad for each document d
2: Set Ad ← 0
3: for each query term t in q do
4: Calculate wq,t and fetch the inverted list for t

5: for each pair < d, fd,t > in the inverted list do
6: Calculate wd,t

7: Set Ad ← Ad + wq,t × wd,t

8: Read the array of Ŵd values
9: for each Ad > 0 do
10: Set Ŝd ← Ad ÷ Ŵd

11: Identify the k greatest Ŝd values

Algorithm 2. double-score approach
1: Allocate two accumulators Ad and A′

d for each document d

2: Set Ad ← 0
3: Set A′

d ← 0

4: for each query term t in q do
5: Calculate wq,t and fetch the inverted list for t

6: for each pair < d, fd,t > in the inverted list do
7: Calculate wd,t

8: if type of t is a keyword then
9: Set Ad ← Ad + wq,t × wd,t

10: else
11: Set A′

d ← A′
d + wq,t × wd,t

12: Read the array of Wd values
13: for each Ad > 0 do
14: Set Sd ← Ad ÷ Wd

15: Read the array of W ′
d values

16: for each A′
d > 0 do

17: Set S′
d ← A′

d ÷ W ′
d

18: if Ad > 0 then
19: Ŝd = α.S′

d + (1 − α).Sd

20: Identify the k greatest Ŝd values

Points: We assumed that each document location is a region. In the context of the web,
this is a reasonable assumption, still in the rare cases when the document location is
one geographical point (point p) we can generalize our approach as follows. A circle
centered at p with radius r is constructed. The MBR covering the circle is our new
document location. Radius r is a parameter determined by user and also the context of
the web-page (if available).

Weights: When querying the system, there are two types of weight users may want
to manipulate 1) setting different weights to the spatial and textual relevance, and 2)
setting different weights to different terms in the query. For the first scenario, we have
used the parameter α in this paper. SKIF can also support setting different weights for
different terms. There are several existing methods to solve this problem for textual
keywords. Since we are treating cells similar to keywords, those methods can also be
applied to the spatial cells. As one possible solution, we define query term weights αq,k

and αq,c as the weight of keyword k in query q and the weight of cell c in query q,
respectively. By multiplying wd,k and wd,c values by αq,k and αq,c, respectively, query
term weights are integrated into the relevance scores. This opens a wide possibility of
complicated queries to the users.

Leveraging Existing Search Engines: One of the most practical advantages of the
proposed approach is the fact that it can be integrated into the existing search engines
easily and seamlessly. Since the structure of SKIF is very similar to the structure of the
regular inverted files, same techniques used in regular search engines (built on inverted
files) can be applied for our location-based search engine (built on SKIF).

The easy integration of our approach into the existing search engines is not only
very beneficial for current search engines but also enables us to optimize SKIF using a
body of work exists in this field. For example, compression techniques are very popular
for inverted files [4,14]. Since the structure of the inverted lists are identical with both
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SKIF and regular inverted files, no change is needed to apply the same compression
techniques on SKIF. More interestingly, some of the optimization techniques seem to
work better on SKIF. For instance, caching is another technique used in existing search
engines. It is easy to see that with SKIF, by caching the inverted lists for the cells nearby
the current query cell, we can improve the query performance significantly. It is very
likely that nearby cells queried together or very close to each other.

6 Experiments

In this section, we experimentally evaluate the performance and accuracy of SKIF.
Comparison is done with the most efficient proposed solutions: MIR2-tree [3] and
CDIR-tree [9] which are optimized versions of IR2-tree and IR-tree, respectively. Since
both of MIR2-tree and CDIR-tree use query points instead of query regions, we apply
the following adjustment: Each query is executed using MIR2-tree and CDIR-tree sep-
arately for random query point q and for total number of results k. Subsequently, the
farthest document in the union of the result sets is identified. Let r be the distance be-
tween q and this farthest document. We construct a circle centered at q with radius r,
the MBR covering the circle is considered as the query location (Lq).

Table 1. Dataset Details

Dataset Total # of documents Average # of unique keywords per document Total # of unique keywords Total # of keywords
DATASET1 19,841 64 31,721 1,269,824
DATASET2 250,000 230 50,000 57,500,000

Our experiments use two datasets which their properties are summarized in Table 1.
DATASET1 is generated from a real world online web application called Shoah Foun-
dation Visual History Archive (http://college.usc.edu/vhi/). Each document (testimony)
is tagged with a set of textual and spatial keywords describing the content of the testi-
mony. In preparing DATASET1, we extracted location names (spatial keywords) from
all the testimonies and geo-coded the location names into spatial regions using Yahoo!
Placemaker (http://developer.yahoo.com/geo/placemaker/). We run our experiments on
all the documents in US. For DATASET1, we partition the space into 100km× 100km
cells. DATASET2 is generated synthetically. A set of keywords (from 1 to 500) and one
location are assigned randomly to each document. Space is partitioned into 225× 225
cells. The documents’ keywords and locations are uniformly distributed.

Each query contains 1 to 4 randomly generated keywords and one rectangle. Each
query round consists of 100 queries. All three structures are disk-resident and the page
size is fixed at 4KB. MIR2-tree and CDIR-Tree implementations are the same as in [3]
and [9], respectively (e.g. signature length = 189 bytes, β = 0.1, number of clusters = 5,
etc.) . Experiments were run on a machine with an Intel Core2 Duo 3.16 GHz CPU and
with 4GB main memory. Due to space limitation and since the results for DATASET1
and DATASET2 were very similar, we only report the results for DATASET2.

Performance. With the first set of experiments, we evaluate the impact of the number
of keywords in each query |Kq| on query cost. In this set of experiments, we vary |Kq|
from 1 to 4 while fixing k at 10 and α at 0.5. For each method, we report the average
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query cost in processing each round. The results are shown in Figures 6(a) and 6(b). For
almost all the cases, SKIF significantly outperforms both MIR2-tree and CDIR-tree.
While for all the approaches, the query cost increases as |Kq| grows, the growth rate
for SKIF is very marginal. While the I/O costs of CDIR-tree and MIR2-tre increase by
a factor of 15 and 8 respectively, SKIF’s query cost barely doubles when the number of
keywords grows from 1 to 4. Both CDIR-tree and MIR2-tree will perform even worse
if |Kq| increase further. This is because with IR2-tree, by increasing the number of
keywords, fewer documents will contain all the keywords and hence more documents
need to be searched (this also increases the number of false hits). With CDIR-tree,
when query contains more keywords, the textual relevance of the query with each node
of CDIR-tree is very similar, which makes the textual relevance pruning less effective.
Therefore, both approaches need to search larger and larger number of documents as
|Kq| increases. On the other hand, SKIF only searches for those documents containing
the query keywords and therefore required to be scored.
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Fig. 6. Impact of |Kq | on query cost

With the second set of experiments, we evaluate the impact of the number of re-
quested result k on the query performance. Again, we report the average query cost
for each round. |Kq| is fixed at two and α is fixed at 0.5 and k varies from 1 to 50.
Figures 7(a) and 7(b) show the results for search time and number of page accesses,
respectively. The first observation is that for SKIF, the query cost changes slightly as k
increases. Since the average number of terms in the query as well as k are small, only
few disk pages in the inverted lists of the few query terms are retrieved and processed.
On the other hand, CIDR-Tree and MIR2-tree perform worse as k grows since they have
to access and process more entities in their corresponding trees.

In the third set of experiments, we study the impact of the parameter α on the per-
formance of SKIF and CDIR-tree. As mentioned earlier, α is the parameter that assigns
relative weights to the textual and spatial relevances. We fix |Kq| at two and k at 10.
Figures 8(a) and 8(b) show the results. The important observation is that the query cost
for SKIF is weight independent while CDIR-tree performs very poorly when the spatial
relevance is more important (large α). Since CDIR-tree takes into account document
similarity, it performs well when the textual relevance is given higher importance and
performs poorly when the spatial relevance is given higher importance. On the contrary,
SKIF performs well for all the cases, since the query processing is the same for both
keywords and space and is not affected by the relative weights.
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Accuracy. Our final set of experiments was conducted to evaluate the accuracy of our
four proposed scoring approaches. Since spatial-keyword relevance ranking is new and
no ground truth exists for our work, we conducted a user study to evaluate the effec-
tiveness of our ranking methods. To conduct the user study, we utilized the user study
in [15] (well-known paper in information retrieval) as our model and followed a similar
procedure. We randomly selected 10 queries from our query set and found 10 volun-
teers. For each query, each volunteer was shown 6 result rankings, each one consisted
of the top 10 results satisfying the query when the results were ranked with one of these
approaches: DSI , DSD, SSD, SSI , CDIR-tree and MIR2-tree. Each volunteer was
asked to select all documents which were ”relevant” to the query, in their opinion. They
were not told how any of the rankings were produced. We used R-precision [16] to eval-
uate the result s of various rankings. R-precision is defined as follows. Let a document
be considered as relevant if at leat 6 of the 10 volunteers choose it as relevant for the
query. Let Rel be a set that contains all such relevant documents and let |Rel| be the
size of that set. Then, the R-precision of each list is the fraction of the top |Rel| doc-
uments that are deemed relevant. Hence, the higher the value of R-precision the more
relevant the corresponding ranking. The R-precision of the six ranking approaches for
each test query is shown in Table 2. We have also included the average R-precision for
each ranking method. The first important observation is that for the majority of cases,
our four proposed approaches generate results with R-precision equals to one, i.e., lists
in which all the top |Rel| documents are relevant. The second observation is that the av-
erage R-precision for the rankings generated by our approaches is substantially higher
than that of the other two rankings.
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Table 2. R-precision of various rankings

Query DSI DSD SSD SSI MIR2-tree CDIR
1 1 1 1 1 1.00 0.67
2 1 1 1 1 1.00 1.00
3 1 1 1 0.95 1.00 1.00
4 1 1 0.8 0.8 0.00 0.10
5 0.9 0.7 0.9 0.8 0.00 0.20
6 1 1 1 1 0.88 0.88
7 1 1 1 1 0.00 0.38
8 1 1 1 1 1.00 1.00
9 1 1 1 1 1.00 0.80

10 1 1 1 1 1.00 1.00
Average 0.99 0.97 0.97 0.96 0.69 0.70

Table 3. Ranking preferred by users

Query Preferred by Majority
1 DSI
2 DSI
3 DSI
4 DSD
5 DSI
6 DSD
7 SSD
8 MIR2-tree
9 MIR2-tree

10 DSI

Finally, Table 3 shows the rankings (actual order) preferred by the majority of the
users. For nearly all the queries, a majority of the users preferred one of our proposed
scoring methods. These results, further confirms the effectiveness of our proposed ap-
proaches.

7 Conclusions

In this paper we introduced the problem of ranking the spatial and textual features
of web documents. We proposed new scoring methods to rank documents by seam-
lessly combining their spatial and textual features. We also proposed an efficient index
structure which handles the spatial and textual features of data simultaneously and also
supports the spatial-keyword relevance ranking. In particular we introduced SKIF and
showed how it is used to search and rank the documents efficiently. We experimentally
studied our methods, which proved its superior performance and accuracy.

Acknowledgments. This research has been funded in part by NSF grant CNS-0831505
(CyberTrust), the NSF Center for Embedded Networked Sensing (CCR-0120778) and
in part from the METRANS Transportation Center, under grants from USDOT and
Caltrans. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

1. Zhou, Y., et al.: Hybrid index structures for location-based web search. In: CIKM (2005)
2. Hariharan, R., et al.: Processing spatial-Keyword (SK) queries in geographic information

retrieval (GIR) systems. In: SSDBM (2007)
3. De Felipe, I., et al.: Keyword search on spatial databases. In: ICDE (2008)
4. Zobel, J., et al.: Inverted files for text search engines. ACM Comput. (2006)



466 A. Khodaei, C. Shahabi, and C. Li

5. Baeza-Yates, R., et al.: Modern information retrieval. Addison-Wesley, Reading (1999)
6. Chen, Y.: Efficient query processing in geographic web search engines. In: SIGMOD (2006)
7. McCurley, K.S., et al.: Geospatial mapping and Navigation of the Web. In: WWW (2001)
8. Salton, G., et al.: Term-Weighting approaches in automatic text retrieval (1988)
9. Cong, G.: Efficient retrieval of the top-k most relevant spatial web objects. In: PVLDB (2009)

10. Vaid, S., et al.: Spatio-textual indexing for geographical search on the web. In: Bauzer
Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp.
218–235. Springer, Heidelberg (2005)

11. Amitay, E., et al.: Web-a-where: geotagging web content. In: SIGIR (2004)
12. Ding, J., et al.: Computing geographical scopes of web resources. In: VLDB (2000)
13. Gao, W., et al.: Geographically focused collaborative crawling. In: WWW (2006)
14. Zobel, J., et al.: Adding compression to a full-text retrieval system. Sof. Prac. Exp. (1995)
15. Haveliwala, T., et al.: Topic-sensitive PageRank. In: WWW (2002)
16. Manning, C., et al.: Introduction to information retrieval. Cambridge University Press, Cam-

bridge (2008)



P. García Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 467–469, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Understanding the Human Genome: A Conceptual 
Modeling-Based Approach  

(Extended Abstract) 

Oscar Pastor 

Centro de I+D en Métodos de Producción de Software (PROS) 
Universidad Politécnica de Valencia 

Camino de Vera s/n, 46022 Valencia, Spain 
opastor@dsic.upv.es 

Nowadays, wide consensus exists about the importance of conceptual modelling in 
the definition of software systems that correctly fit the user’s needs. In the middle of 
the MDD (Model-Driven Development) or MDA (Model-Driven Architecture) era, 
we can find a relevant set of widely spread modelling-based software production 
techniques, always based on well-founded concepts and methods that show that only 
having a precise system description, its corresponding software product can be prop-
erly understood. But it is interesting to see how these principles are not so commonly 
applied in current, challenging domains as Bioinformatics, where the management of 
tons of data is an increasing problematic issue, and where too often we can find seri-
ous problems in their manipulation that remember the data quality problems worked 
out for years within the Information Systems and Software Engineering communities.  

This problem is often referred to as the chaos of genomic data, the main problem 
being that more and more are generated continuously, what makes the situation more 
and more complicated if we want to manage it adequately. With more than 1300 bio-
logical data sources reported to exist currently, an effective and efficient data search-
ing strategy is a need for any activity related with the manipulation of genomic data. 
But the current situation makes very difficult –when not just impossible- to perform 
the data analysis that is required when all this huge amount of information has to be 
exploited. Even traditional database models that have been working successfully in 
the last decades are questioned when massive data analysis is needed and the volume 
of manipulated data is beyond the working capacity of the existing DBMS systems, 
normally relational-based. 

In this scenario, where unstructured, low-quality data plays a prominent role, the 
goal of this keynote is to show how conceptual modeling techniques applied to human 
genome concepts can provide a working solution, by i) helping to understand and rep-
resent correctly the relevant concepts in a conceptual schema, and ii) facilitating a both 
rational and effective data exploitation strategy by assuring that the relevant informa-
tion is properly understood from a conceptual perspective. The intention is to show that 
this it is the only way to enable effective management of the involved data. Only  
Conceptual Modeling techniques allow for providing a precise definition of relevant 
genomic concepts as basic as the concepts of Gene, Allele, Mutation, Splicing,  
Transcription Units, SNPs, Proteins... Unfortunately this view of the problem is  
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not –yet!- the normal practice in current Genomic based research, where relevant con-
cepts are managed with a high dose of conceptual uncertainty, what generates serious 
problems in terms of having the required data quality to manipulate it correctly. 

The keynote will develop the idea that current Bioinformatics practice should be 
much more Information Systems (IS)-based. It is obviously true that many so-called 
biological ontologies, data banks and very diverse sources of genomic information 
exist (just as an example we could cite HUGO, Gene Ontology, Entrez Gene, Human 
Gene Mutation Database, VEGA, DBSnp,..), but it is also dramatically true that all 
these data have not a precise conceptual schema behind them, and that the data are 
provided in numerous, disconnected databases, that conform a set of data silos where 
the lack of uniformly structured data affects many basic areas, especially in the bio-
medical research domain. In this domain, data rely heavily on integrating and inter-
preting data sets produced by different experimental methods at different levels of 
granularity, what makes conceptual models really needed to facilitate a systematic 
development of biological systems. 

Under this generic perspective, the benefits of a Conceptual Modeling-Oriented 
Genome Systems Management will be introduced, explaining how to define and ex-
ploit a Conceptual Model of the Human Genome. What problems are to be solved will 
be discussed, together with the main procedural steps that must conform such a CM-
based process: schema definition, data loading and maintenance from different bio-
logical data sources, and data exploitation in terms of linking adequately genotype 
and phenotype to better understand a very old question: why we are as we are.  

Instead of using a bag of information, a Conceptual Schema will introduce a kind 
of well-structured “cupboard”, intended to assure that each piece of genomic informa-
tion will be at the right place, what will make possible an efficient data exploitation, 
the right answers will be provided for the required questions through the achieved 
data integration, and the evolving nature of the genomic data will be dealt with at the 
right level: the conceptual one. The potential benefits of this approach will be also 
discussed, especially in the area of elaborating genomic reports, that is expected to 
open a new era in the domain of the personalized medicine.  

After presenting a concrete proposal of a Conceptual Schema version for the Hu-
man Genome, the final keynote goal will be to justify its necessity, that will be based 
on the fact that its existence is strictly required…:  

1 to enable and facilitate global research among the big set of various, distinct re-
search groups that manipulate heterogeneous data, by fixing a conceptual gamut from 
which researchers can draw, in order to ensure that a 'standard dictionary of concepts’ 
exists. This is to be achieved by: 

• fixing the relevant concepts, their properties, behavior and relations, in the 
same way that a conceptualizing ontology would do. 

• disambiguating existing biological concepts 

2 to facilitate means of explicitly representing information so that: 

• knowledge does not 'disappear' with it's creator 
• it is clear what knowledge is present, and what is not 

3 to enhance the pursued understanding of the human genome. Related to the previous 
comments, by looking at the selected genomic domain in terms of concepts, their 
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properties and relations, one disposes of a very powerful reasoning tool, useful at 
uncovering new relations, concepts and eventually fully understanding the given do-
main. 

4 to drive an efficient and effective storage and processing policies for genomic 
data, conceptual-schema centric to assure that the well-known IS principles that en-
forces a data design of quality are properly considered. In that way the current manual 
methods applied in Bioinformatics that include tedious and repetitive tasks, with no 
explicit methods, prone to human errors and with a lot of required navigation through 
complex hyperlinks sequences, will be drastically improved. 

The final objective of this work should be clear at the end of the keynote: if with 
Conceptual Models targeted at digital elements we have been able to improve Infor-
mation Systems Development, with Conceptual Models targeted at life –as the Hu-
man Genome domain analysis makes possible- we could directly improve our living.  



Learning Semantic N-Ary Relations from
Wikipedia

Marko Banek, Damir Jurić, and Zoran Skočir
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Abstract. Automated construction of ontologies from text corpora,

which saves both time and human effort, is a principal condition for

realizing the idea of the Semantic Web. However, the recently proposed

automated techniques are still limited in the scope of context that can

be captured. Moreover, the source corpora generally lack the consensus

of ontology users regarding the understanding and interpretation of on-

tology concepts. In this paper we introduce an unsupervised method for

learning domain n-ary relations from Wikipedia articles, thus harvesting

the consensus reached by the largest world community engaged in collect-

ing and classifying knowledge. Providing ontologies with n-ary relations

instead of the standard binary relations built on the subject-verb-object

paradigm results in preserving the initial context of time, space, cause,

reason or quantity that otherwise would be lost irreversibly. Our prelimi-

nary experiments with a prototype software tool show highly satisfactory

results when extracting ternary and quaternary relations, as well as the

traditional binary ones.

1 Introduction

Ontologies have been designed as the core of the Semantic web. Early ontologies,
constructed manually by domain experts, were of low usability due to their lim-
ited scope and to disagreements in understanding and interpreting their content,
which arose between the ontology creators and the majority of potential users
(who were not involved in the process of ontology creation or were not even able
to propose some extensions). In the recent years, with a huge amount of available
digital content, methodologies have been developed for automatically creating
and populating ontologies from text sources. Most of them focus on class hi-
erarchies and identifying instances, capturing only a minimum of class-to-class
relations, such as is-a, part-whole or some relations with generic names such
as associated-with or related-to, which do not represent a satisfactory semantic
meaning.

Several existing ontology population techniques able to extract arbitrary se-
mantic relations from text corpora [3,4,8,12] are focused exclusively on binary
relations. Being noun-oriented in general, ontologies present binary relations
(called properties in OWL [15]) as associations of the pivot domain class with
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other classes. On the contrary, when humans express their thoughts by means of
a natural language, they focus on verbs (at least, this is true for Indo-European
languages, including English). Consider the following sentence: John invited his
friends to dinner on Friday. The verb, invite, connects four nouns: John, friends,
dinner and Friday. Certainly, the presented fourfold relation (as seen from the
verb as the pivot) can be dissolved into many binary relations to populate ontolo-
gies in the standard manner. Recently, extensions to OWL have been proposed to
include n-ary relations [14]. We believe that learning the original n-ary relations
from the domain can lead to a significant improvement of ontology quality.

While the automatic construction of ontologies from text corpora provides a
significant improvement in comparison to manual creation, there still remains an
unsolved problem of selecting relevant sources, where there will be no problems
with understanding and interpreting concepts. According to [7], ontologies are
not just formal representations of a domain, but rather community contracts
about such formal representations. Therefore, in order to be able to reflect the
community consensus, the vast amount of Wikipedia entries should be reused as
ontology components [7]. A Wikipedia entry (i.e. a titled article) may correspond
to a class, an instance or a property.

In this paper we introduce an unsupervised method for learning domain n-
ary relations from Wikipedia articles. By populating the ontologies with n-ary
relations we achieve their higher expressivity and preserve the initial context
that otherwise would be lost irreversibly. Another novelty of our approach is
the fact that we extract only relations where the participating nouns correspond
to Wikipedia titles. Hence, instead of having first to determine which nouns
are relevant for the future ontology, which is necessary when relations are ex-
tracted from text corpora, we exploit the consensus of Wikipedia article authors
regarding term relevance.

The paper is structured as follows. Related work is outlined in Sec. 2. The
use of n-ary relations for discovering richer semantic context is explained in Sec.
3. The relation extraction process is elaborated in Sec. 4. The evaluation of the
approach is illustrated in Sec. 5. In Sec. 6 conclusions are drawn and a list of
future work tasks is presented.

2 Related Work

The initial efforts to extract relations from text, based on pattern matching [11],
have worked well for a limited scope of relations which are known to hold in
advance (such as is-a or part-of ). The need of the ontology learning community
to extract arbitrary relations has produced various methods that first discover
verbs in text and then exploit syntactic dependencies between those verbs and
other sentence constituents containing nouns [3,4]. In the next step the domain
and the range of the relations must be generalized since the nouns in the text
are mostly proper nouns or concepts at a level lower than the highest possible
domain and/or range concept [4].

An unsupervised method for learning arbitrary semantic binary relations be-
tween ontological concepts in the molecular biology domain is presented in [3].
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Sentences are parsed using a constituent syntactic parser and then searched in
order to find the occurrences of the six relevant syntactic structures. A null hy-
pothesis is stated implying that a particular pair of nouns and a particular verb
forming the given syntactic structure do not occur together more frequently than
expected at chance. Rejection of the null hypothesis by the subsequently applied
chi-square test implies a new relation.

The unsupervised methodology presented in [12] assumes an incremental pro-
cess, starting with the user’s specification of the domain with a single term,
and then extracting the relations containing the term, its hyponyms and hyper-
nyms. Heuristic measures related to the occurrence of verbs in the source text
are applied to single out the relations that are indeed relevant for the domain.

Meanwhile, the information extraction (IE) community has developed un-
supervised methods to extract binary [1] or even n-ary relations [5] from web
documents. However, those approaches use documents collected by search en-
gines and apply a less restrictive approach to exploring syntactic dependencies
(in comparison with the ontology learning community), which results in a very
large portion of ”dirty” relations unusable for ontology population.

3 N-Ary Relations in Text

Ontologies can be reused for multiple purposes and by a variety of users if
they are able to capture precisely the context of the domain i.e. the context
of the sentences that serve as their source. In English, the two main parts of
a sentence are the subject and the predicate. The predicate must contain a
verb, and, depending on the verb, may also contain objects (direct, indirect and
prepositional), predicatives and/or adverbials. Relations capture the association
between the verb and the nouns in the sentence, which are either classes or
individuals (class instances). Binary relations describe an association between
the subject noun, the verb and a noun in the predicate. On the other hand, n-ary
relations give much richer and subtler definition of the context: in the majority
of cases they include subject, object and prepositional phrases containing nouns
that describe the context of time, space, etc.

We will show the plenty of context that can be inferred from a single sentence
(taken from the Wikipedia article about Alexander the Great): Born in Pella
in 356 BC, Alexander succeeded his father Philip II of Macedon to the throne in
336 BC, after the King was assassinated, and died thirteen years later at the age
of 32. The main verb, succeeded, describes an event of succession (WordNet [6]
enables finding derivationally related nouns of input verbs). A ternary relation
(Fig. 1) associates the event to Alexander (subject), Philip (object) and year
336 BC (prepositional phrase). Particular associations obtain their names from
the verb by adding suffices corresponding to the part of the sentence (subject:
is successor, object: succeeded by). Possible inverse associations (e.g. precede-
succeed) can be named by retrieving verb antonyms from WordNet [6].
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Fig. 1. Ontology structure extracted from Wikipedia article

4 Processing Wikipedia

As mentioned in Sec. 1, we create ontologies with classes and instances corre-
sponding to Wikipedia titles. Hence, when we extract relations from sentences,
all nouns declared as relation participants must be annotated as Wikipedia titles.

The source for the entire process are text files formatted in a special kind
of markup. We shortly outline its features that are relevant for the relation
extraction process. Each article has a title that exactly corresponds to its URL. A
sentence from the article titled Napoleon I of France is given in Fig. 2. Links

Six weeks later, on the first anniversary of his coronation, Napoleon

defeated Austria and [[Russia]] at [[Battle of Austerlitz | Austerlitz]],

ending the third coalition.

Fig. 2. A portion of Wikipedia article Napoleon I of France

to other articles are given in double square brackets. The displayed text seeding
the link may be different from the link title, which is denoted by a vertical bar
within the double square brackets ([[Battle of Austerlitz |Austerlitz]]
in Fig. 2 means a link to the article Battle of Austerlitz, which is simply
displayed as Austerlitz). The lack of a vertical bar means that the displayed
text is identical to the title of the linked article (e.g. [[Russia]] in Fig. 2). It
is also very important to note that links to other articles appear only once or
several times within the text, although the denoted term itself may appear many
times (there is a link to Russia, but no link to Austria, since the latter already
appears earlier in the text).

4.1 Processing Algorithm

Our algorithm for learning n-ary relations from Wikipedia articles consists of
several activities (Fig. 3), which will be described in this subsection.

Title Propagation. In order to extract relations from Wikipedia text, we have
to identify all occurrences of word tokens that are unambiguously related to the
title of a Wikipedia article. Certainly, each link (i.e. double square brackets)
points to a title. However, one of the conventions on writing Wikipedia articles
is to create a link only for the first occurrence of titled term, while giving no
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Text parsing

pure text
Converting to
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Sintactically
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Fig. 3. The relation extraction algorithm

markup emphasis for any further appearances. Hence, for each title, which is
either a link indicated by double square brackets or the title of the article itself,
we try to find its other occurrences within the article. We call this procedure
title propagation. The output of title propagation for the sentence in Fig. 2 is the
following (capped text denotes titles): Six weeks later, on the first anniversary
of his coronation, Napoleon I of France defeated Austria and Russia at
Battle of Austerlitz, ending the third coalition.

For each title consisting of N multiple words we produce all possible subsets
sized from 1 to N − 1 where each word is allowed to follow only its immediate
predecessor in the original title. Subsets that do not contain at least one noun or
those that start or end with a preposition or a conjunction are eliminated (Fig.
4). Some subsets may be derived from more than one title present in the article.
For instance, titles Louis XVI of France and Louis XVIII of France both
produce the subset {Louis}. Consequently, we will not associate {Louis} with any
title. The shorter the subset, the more ambiguity is to be expected. Therefore,
we start the process of relating text tokens to titles with the longest subsets (all
examples of {Louis, XVI} will be associated to Louis XVI of France before
even starting with the ambiguous subset {Louis}).

{Napoleon}, {I}, {of}, {France}

{Napoleon, I}, {I, of}, {of, France}

{Napoleon, I, of}, {I, of, France}

Napoleon I of France

Fig. 4. Creating subsets during the title propagation process

We do perform title association if the ambiguous subset corresponds to the titular
of the article. All occurrences of {Napoleon} in the Napoleon I of France
article are associated with Napoleon I, although one actually refers to his nephew,
Napoleon III of France. Hence, there may be false title associations, but we
argue that producing several false associations is a reasonable price in comparison
with losing many relations having the article titular as participant.
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A related problem, linking portions of unstructured text to Wikipedia arti-
cles, is described in [10]. However, the approaches cannot be compared since
their goals require substantially different behavior in case of term ambiguity.

Parsing Sentences. For each input sentence the Stanford dependency parser [9]
produces its typed dependency graph, which describes all sentence relationships
uniformly as typed relations. Parsing the sentence in Fig. 2 produces the output
shown in Fig. 5. There are 55 relation types in total, but we ignore all clause
relations (e.g. clausal complement, xcomp) and general dependencies (dep). The
most important relations of our interest are active and passive subject (nsubj,
nsubjpass), passive verb agent (agent), direct, indirect or prepositional object
(dobj, iobj, pobj ) and prepositional modifier (prep). Graphs containing conjunc-
tion (conj ) may be split into several independent subgraphs.

prep
_on

dobj

weeks later,Six on the

num amod

first anniversary of his coronation,

Napoleon defeated Austria and Russia

nsubj dobj conj_and

at Austerlitz, ending third coalition.

dep

det
the

prep_at

xcomp

dep

prep_ofposs
det

amod

Fig. 5. The typed dependency graph produced by the Stanford dependency parser

Identifying Relations and Relevance Test. An n-ary relation stemming from a
verb v is a set of triples {(C, v, r)}, where C is an ontology concept (in our case
a Wikipedia title), and r is a relation type. All triples share the same verb v and
none of them share the same relation type. Considering the output of title prop-
agation parsing, the sentence shown in Fig. 5, produces two ternary relations:
{ (Napoleon I of France, defeat, nsubj ), (Austria, defeat, dobj ), (Battle
of Austerlitz, defeat, prep at) } and { (Napoleon I of France, defeat,
nsubj ), (Russia, defeat, dobj ), (Battle of Austerlitz, defeat, prep at) }.
We use two different methods to identify relevant relations among a much larger
number of the automatically identified ones: the chi-square test and a heuristic
probabilistic formula. Wikipedia titles within the relevant relations can further
be turned into WordNet concepts by following the approach explained in [13].

5 Evaluation

We processed 171 Wikipedia articles describing rulers or military commanders
(46 articles), writers (71), philosophers (32) and battles (22). In total, this corpus
contained 32809 sentences with 521334 words, which also included 24124 links
(4,6% of the total word count). After title propagation, the number of title
references increased to 65526 (12,5% of the total word count). They pointed to
15311 different titles, meaning that each of the references appeared 4.3 times
in average. We automatically identified binary, ternary and quaternary relations
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Table 1. Results of the relevance test

CHI-SQUARE AE
N II RR ST RR/II P RR ST RR/II P

2 1587 99 77 0,062 0,778 981 546 0,618 0,556

3 142 0 0 0 - 100 78 0,704 0,780

4 4 0 0 0 - 3 3 0,75 1

and tested their relevance by using two different approaches: the chi-square test
and a heuristic probabilistic formula.

The chi-square test is applied in a fashion similar to [3]. Let A be an ordered
tuple of Wikipedia titles participating in the n-ary relation. Let B be a pair,
consisting of the verb and an ordered tuple of relation types (the order of relation
types corresponds to the order of titles in A). The null hypothesis states that
A and B do not co-occur more frequently than by chance. We perform the test
using the log-likelihood formula (G2). Relevant relations produced as the output
of the algorithm are those for which the null hypothesis is rejected.

The other test applies the heuristic above expectation formula originally de-
vised in [8]. The formula presented in Eq. 1 measures the conditional frequency
of all relation concepts (given the verb and the relation types) compared to the
conditional frequencies expected when each concept (Wikipedia title in our case)
is related to the verb independently of other concepts:

AE(C1 ∧ . . . ∧Cn | v ∧ r1 ∧ . . . ∧ rn) =
P (C1 ∧ . . . ∧ Cn | v ∧ r1 ∧ . . . ∧ rn)
P (C1 | v ∧ r1) · . . . · P (Cn | v ∧ rn)

(1)

The presented equation is our extension of the original formula [8], which could
not distinguish between relation types.

The results of the evaluation are shown in Table 1 (II - no. of initially iden-
tified relations; RR - no. of relevant relations; ST - no. of semantically true i.e.
correct relations; P - precision i.e. ST/RR). Due to data sparseness, the chi-
square test cannot confirm the relevance of any ternary or quaternary relation.
However, the AE measure (with a threshold empirically set to 5) filters about
70% of the automatically identified relations with a satisfactory precision of 78%.
Although the number of relevant binary relations obtained by the chi-square test
is smaller than expected (6.2%), we still prefer chi-square to the AE measure due
to higher precision (77,8% in comparison with 55,6%). Thus, we suggest using
chi-square test to determine the relevant relations, while the AE measure can
serve as its replacement in case of sparse data (n-ary relations with N > 2).

6 Conclusion

In this paper we presented an unsupervised approach for learning semantic n-
ary relations from Wikipedia. We restrict the nouns participating in relations
to those corresponding to Wikipedia article titles, thus harvesting the consensus
reached by the authors of Wikipedia - the largest world community engaged in
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collecting and classifying knowledge. The process of discovering all occurrences
of article titles within Wikipedia text, called title propagation, is a key step in
identifying the relations. Due to data sparseness, the relevance of the identified
relations with more than two members cannot be determined by the chi-square
test, otherwise used for binary relations. Instead, satisfactory results are achieved
by applying our extension of the ”above expectation” formula.

Our future work will address the process of naming the extracted relations.
Particular focus will be given to discovering verb-preposition patterns that imply
the class of the noun in a prepositional phrase: place, time, etc. We will also ex-
ploit Wikipedia structures such as infoboxes for acquiring additional semantics.
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Abstract. In the Semantic Web, rule interchange has gained considerable 
attention. To be a general rule interchange format, RIF (Rule Interchange 
Format) should first support rule interchange with three important evolving rule 
languages SWRL (Semantic Web Rule Language), RuleML (Rule Markup 
Language) and R2ML (REWERSE Rule Markup Language). In the paper, we 
propose a rule metamodel. Based on the metamodel, we construct RIA (Rule 
Interchange Architecture), which supports bidirectional rule interchange 
between RIF and SWRL, RuleML and R2ML, and also between these four 
languages’ metamodels and XML syntaxes. Based on RIA, we design and 
implement a rule interchange system RIA 1.0. 

Keywords: Semantic Web; rule interchange; RIF; metamodel; RIA; RIA 1.0. 

1   Introduction 

The Semantic Web [1] has gained considerable attention in recent years. One of the 
declared goals of the Semantic Web is to represent knowledge which is pervaded on 
the Web. As an important representation, rules become a mainstream topic of the 
Semantic Web. With the development of rules, Semantic Web rule languages 
including SWRL (Semantic Web Rule Language) [2] and rule systems based on these 
languages come into being. It is unavoidable that these systems communicate with 
each other (i.e., interchange rules). And thus problems in sharing rules arise. Because 
of heterogeneity of different languages, creating a generally accepted interchange 
format is by no means a trivial task [3]. RuleML (Rule Markup Language) [4], R2ML 
(REWERSE Rule Markup Language) [5] and RIF (Rule Interchange Format) [6] are 
proposed to markup and interchange different rules. Among others, RIF has become a 
candidate recommendation of the W3C (WWW Consortium), whose goal is to 
construct a Web standard for interchanging rules between different rule languages. 

Rule interchange based on metamodels and centered on a language (called central 
language) becomes an important trend. Metamodels can represent implicit relations 
between information. Rule interchange based on metamodels guarantees the 
correctness of syntaxes. Rule interchange centered on a central language reduces the 
number of mappings, and leads to a high transformation efficiency. A model 
transformation to share rules between SWRL and R2ML is proposed in [7], and a 
transformation based on metamodels between SWRL and OCL is discussed in [8]. G. 
Wagner implements a translator [9], which supports transformations between R2ML 
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and some others languages. The transformations above are all based on R2ML, and 
R2ML is the de facto central language. 

So far, there is no published literature to investigate RIF metamodels and 
metamodel mappings between RIF and other rule languages. And there are no rule 
interchange structures and interchange systems centered on RIF. Rule interchange 
centered on RIF is the mainstream direction of rule interchange. Before completely 
fulfilling rule interchange with other rule languages, it is necessary for RIF to support 
rule interchange with the common languages SWRL, RuleML, and R2ML. In the 
paper, we visually model RIF, and propose a rule metamodel. Furthermore, we 
propose RIA (Rule Interchange Architecture), a rule interchange architecture centered 
on RIF, which supports abstract-concrete and abstract-abstract transformations. In 
addition, we design and implement RIA 1.0, a prototype system of RIA. 

2   RIF Rule Metamodel 

RIF aims at developing a Web standard for exchanging rules between different rule 
languages. It is an extensible framework for rule-based languages, called RIF dialects, 
which include specifications of the syntax, semantics and XML serialization. RIF-
BLD (RIF Basic Logic Dialect) [10] is the first dialect of RIF dialects. It 
corresponds to the languages of definite Horn rules with equality and standard 
first-order semantics, and it also has a number of extensions to support features 
including objects and frames as in F-logic, IRIs (Internationalized Resource 
Identifiers), and XML Schema datatypes. In the rest of the paper, RIF stands for 
RIF-BLD, unless stated otherwise. 

RIF is defined through a presentation syntax which is defined in “mathematical 
English” (a special form of English for communicating mathematical definitions, 
examples, etc) and XML syntax, and most care is spent on the formal semantics. 
From the respective of modelling, RIF does not have metamodel to describe 
features of rules. Metamodels can simplify conceptual modelling, decrease 
syntactic and semantic errors, and increase readability. Therefore, it’s necessary 
for RIF to define its own rule metamodel. 

In RIF, there are two important terms, i.e., term and formula, which are the most 
fundamental elements of RIF dialects. Term includes constants, variables, positional 
terms, terms with named arguments, equality, membership, frame, and external terms, 
where constants and variables are called simple terms, and simple terms, positional 
terms, terms with named arguments and external terms are called base terms. 
Formula consists of atomic formulas, condition formulas, rule implications, universal 
facts, groups and documents. In all the above concepts (for a full account of them, the 
readers may refer to the literature [10]), rule implication is the core element. 

A rule implication (as shown in Fig. 1) consists of two parts: antecedent and 
consequent, which are also called rule body and rule head, respectively. The relations 
between rule and its two parts, between antecedent and its atoms, and between 
consequent and its atoms can be represented by aggregation link. The reason is that 
the same antecedent or consequent may appear in several rules, and the same atom is 
allowed in different antecedents or consequents. An antecedent is a combination of 
disjunction, existentials and atoms, while a consequent is a combination of 
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conjunction and atoms, i.e., an antecedent is a set of conjunction, disjunction and 
existentials of atoms, while a consequent is an atomic formula or a conjunction of 
atoms. Both antecedent and consequent can possibly be empty. A rule means that if 
all atoms of the antecedent hold, then the consequent holds. An empty antecedent is 
treated as trivially true, whereas an empty consequent is treated as trivially false. 

Here, atoms mean atomic formulas and simple terms. Atomic formulas consist of 
positional terms, named-argument terms, frames and external terms. In essence, these 
atomic formulas are classes, properties, datatypes and builtIns (built-in predicates and 
built-in functions), where properties can be n-ary, and datatypes and builtIns are 
introduced from the RIF-DTB (RIF Datatypes and Built-Ins) [11] document. 
Simple terms are variables and constants. Variables have two types, i.e., individual 
variables and data variables (RIF does not explicitly distinguish the types of 
variables), while constants are individuals or data values. Data variables and data 
values are also imported from the RIF-DTB document. 

 

Fig. 1. RIF rule metamodel 

3   RIA 

As can be seen from Fig. 2, rule interchange architecture RIA is centered on RIF. It 
supports rule transformations between RIF and SWRL, R2ML and RuleML. Pairwise 
transformations among the four languages can also be supported. RIA also supports 
rule interchange between languages which are centered or based on SWRL, R2ML 
and RuleML. Among others, all the transformations are bidirectional and they are 
based on metamodels of the languages to be transformed, rather than based on their 
XML syntaxes. Another advantage of using metamodels is that metamodels are 
context-sensitive, and they can represent implicit information between elements, 
whereas XML syntax cannot. Because of the extensibility of RIF dialects, our 
architecture is also extensible. With the enhancement of expressiveness of RIF, RIA 
will be capable of transforming more rule languages, and its goal, implementing rule 
interchange with other rule languages, will come true at last. 
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Fig. 2. The structure of RIA 

RIA is composed of two parts. The first part depicts mappings between the four 
languages’ abstract syntaxes and concrete syntaxes, while the second part describes 
three pairs of transformations based on abstract syntaxes, i.e., transformations 
between RIF and SWRL, between RIF and R2ML, and between RIF and RuleML. 

3.1   Bridging Metamodels and XML Syntaxes of RIF, SWRL, R2ML and 
RuleML 

The rule metamodel of RIF has been constructed in Section 2, and metamodels of 
SWRL, R2ML and RuleML [12] [5] [13] already exist, both of which are in the MOF 
(Meta Object Facility) technical space, but there is a gap between abstract syntaxes 
and concrete syntaxes. Therefore, it is necessary to connect MOF technical space and 
XML technical space, i.e., constructing the bridge between metamodels and XML 
syntaxes of RIF, SWRL, RuleML and R2ML. 

The core of RIA is model transformation. Fortunately, the OMG (Object Manage- 
ment Group) has adopted MOF2 QVT (Query View Transformation) specification to 
address this issue. We employ ATL (ATLAS Transformation Language) as the main 
language for model transformations. One of the advantages of ATL is that it has tools 
to inject or extract XML rules into/from the MOF representation. ATL can play an 
important role of bridging between one language’s abstract syntax and concrete 
syntax, and between abstract syntaxes of different languages (in the next subsection). 
Let us take RIF as an example to bridge XML and MOF technical spaces. 

 

Fig. 3. Transformation between RIF concrete syntax and abstract syntax 

As shown in Fig. 3, our transformation is bidirectional. The steps of the 
transformation are as follows. Firstly, we use XML injector, an important part of ATL 
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and also an important feature of ATL, to transform RIF XML document into models 
which conform to MOF-based XML metamodel that is used to define XML. After 
injecting RIF XML rules into RuleBase_XML, the transformed models can be dealt 
with like other MOF compliant models. And then, such XML models can be 
represented in the form of XML XMI (i.e., XML Metadata Interchange, which is a 
standard of the OMG to define mappings of MOF compliant models onto XML 
documents). Based on the above, we begin the transformation between Rules_XML 
(i.e., XML models) and Rules_RIF (i.e., RIF models). The most important thing is to 
construct two ATL transformation documents, i.e., XML2RIF.atl and RIF2XML.atl 
(because of the unidirectivity of ATL language, we have to construct two inverted 
ATL documents to implement the mappings between models of RIF and XML). 
These two ATL documents are the bridge between the RIF XML-style concrete 
syntax and RIF MOF compliant abstract syntax. Fig. 3 is a three-layer structure 
(generally, the M0 layer is omitted), and the transformations are all located in the 
model layer (i.e., M1 layer in the MOF architecture). All the input and output models 
should be compliant to their respective metamodels in the middle layer. In this way, 
we can guarantee the validity of all RIF XML-style rules through the RIF metamodel. 
Because of the two-way feature of our transformations, we can transform RIF models 
into XML models, that later can be exported into RIF XML-style concrete syntax, 
which is important when exchanging the other three languages (SWRL, R2ML and 
RuleML) into the RIF XML-style concrete syntax. Once we have transformed RIF 
rules into its model representation, we can also export RIF rules in the XMI format, 
and thus we can share RIF rules with any MOF compliant structure. This way, RIF 
extends its range of influence, and this further establishes the central position of RIF 
in rule interchange. 

We have introduced the transformations between the abstract syntax and concrete 
syntax of RIF above. For the mappings between abstract syntaxes and concrete 
syntaxes of SWRL, R2ML and RuleML, the key point is to construct ATL 
transformation documents, i.e., XML2RDM.atl, RDM2XML.atl, XML2R2ML.atl, 
R2ML2XML.atl, XML2RuleML.atl and RuleML2XML.atl (here, RuleML means the 
metamodel of RuleML), which are also constructed via ATL language. Because of 
similarity of transformation processes, we omit the abstract-to-concrete and concrete-
to-abstract bidirectional transformations of SWRL, R2ML and RuleML. 

3.2   Metamodel Transformations between RIF and SWRL, R2ML and RuleML 

Through analyzing rule definition metamodel RDM [12] (which is the metamodel of 
SWRL), R2ML metamodel [5] and RuleML metamodel [13], we can see that the 
common character these three languages possess is that their abstract syntaxes (i.e., 
metamodels) are all MOF compliant, which is exactly the reason that all the four 
languages can exchange rules through our architecture. It is these MOF-based 
metamodels that constitute the core of the transformations in RIA. This common 
character also does good to validity checking of the four languages’ concrete syntaxes. 

In the following, let’s take the transformation between RIF and SWRL as an 
example to show abstract-abstract transformations. This kind of transformation is 
based on the conceptual mappings between RIF metamodel and metamodels of the 
other three languages. The transformations between these two types of metamodels 
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are defined as a sequence of rules in ATL, where ATL constructors, such as matched 
rules, lazy rules and others are frequently used. 

The transformation of the abstract syntaxes between RIF and SWRL is shown in 
Fig. 4. The RIF metamodel defined in Section 2 is the foundation of this 
transformation. RIF models will be transformed into RDM models. And the 
transformations are all located in the model layer. All the input and output models 
should be compliant to their respective metamodels in the middle layer. As with the 
transformation in Fig. 3, we also use ATL as the primary language for model 
transformation. Because unidirectivity of ATL, two ATL transformation documents, 
RIF2RDM.atl and RDM2RIF.atl, should be constructed. Because of the two-way 
feature of our transformations, we can also transform RDM models into RIF models. 
And taking advantage of the transformation in Fig. 3, we can obtain the XML models 
of RIF models or RDM models, and then obtain XML-style concrete syntaxes of RIF 
or SWRL. The validity of XML syntaxes can be guaranteed by the abstract syntaxes. 

 

Fig. 4. Metamodel transformation between RIF and SWRL 

In order to share rules between SWRL and RIF, we define mappings between 
constructors and axioms of SWRL and RIF on the level of their abstract syntaxes. 
Every SWRL rule is mapped to a RIF universal rule, and there will be a rule 
implication in it. In Table 1, we show the mappings between SWRL and RIF atoms 
and axioms in detail. In all mappings shown in the table, C represents classes, P 
denotes properties, an expression χRIF is a transformation function (i.e., χRIF(SWRL 
atoms)=RIF terms, where RIF terms include positional terms, arguments-named terms 
and frame), and t is a variable. The semantics of SWRL rules which can be 
transformed into RIF rules in these mappings is preserved. 

We have described metamodel transformations and mappings of atoms and axioms 
between SWRL and RIF. For transformations between R2ML and RIF, and between 
RuleML and RIF, the mapping processes can be obtained analogously. The most 
important thing is still to accurately construct ATL transformation documents, i.e., 
R2ML2RIF.atl and RIF2R2ML.atl, and RuleML2RIF and RIF2RuleML. For saving 
space, we omit these two transformations. 
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Table 1. Mappings of atoms and axioms between SWRL and RIF 

SWRL expression RIF expression 
ClassAtom(classID,t) t##classID(*membership axioms*) 

ClassAtom(Unionof(C1,C2),t) Or(χRIF(ClassAtom(C1,t)),χRIF(ClassAtom(C2, t))) 
ClassAtom(Intersectionof(C1,C2),t) And(χRIF(ClassAtom(C1,t)),χRIF(ClassAtom(C2,t))) 
ClassAtom(ObjectRestriction(objPropID, 
allValuesFrom(C)),t) 

UniversalRule(x,Implication(χRIF(ObjectRestriction(obj
PropID,t,x),χRIF(ClassAtom(C,t))) 

ClassAtom(ObjectRestriction(objPropID, 
someValuesFrom(C)),t) 

ExistentialRule(x,And(χRIF(ObjectRestriction(        objP
ropID,t,x),χRIF(ClassAtom(C,t))) 

DatarangAtom(DatatypeID,t) t##DatatypeID(membershipaxioms) 

DatarangeAtom(DataRestriction(dataPropID, 
allValuesFrom(DatatypeID)),t) 

UniversalRule(x,Implication(χRIF(DataRestriction(    dat
aPropID,t,x),χRIF(DatarangeAtom(datatypeID,t)) 

DatarangeAtom(DataRestriction(dataPropID, 
someValuesFrom (DatatypeID)),t) 

UniversalRule(x,And(χRIF(DataRestriction(dataPropID, 
t,x),χRIF(DatarangeAtom(datatypeID,t))) 

IndividualvaluedPropertyAtom(objectID1, 
objectID2) 

χRIF(IndividualvaluedPropertyAtom(Individualvalued- 
PropertyID,objectID1,objectID2)) 

DatavaluedPropertyAtom(objectID1,objectID2) χRIF(DatavaluedPropertyAtom(DatavaluedPropertyID, 
objectID,datavalue)) 

SubClassof(C1,C2) C1#C2 (*Subclass axiom*) 
EquivalentClasses(C1,C2),i.e.,Conjunction(   S
ubClassOf(C1,C2),SubClassOf(C2,C1)) 

C1=C2 (*Equality axiom*) 

SubPropertyof(P1,P2) P1#P2 (*Subclass axiom*) 
EquivalentProperties(P1,P2),i.e.,Conjunction(  
SubPropertyof(P1,P2),SubPropertyof(P2,P1)) 

P1=P2 (*Equality axiom*) 

 

Fig. 5. Functions of RIA 1.0 

4   RIA 1.0 

RIA 1.0 has implemented two parts of RIA and a bidirectional transformation 
between RIF presentation syntax and RIF XML syntax. The implementation system 
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of RIA 1.0 is based on Java programming language and implemented on the Eclipse 
platform. All the functions of RIA 1.0 are shown in Fig. 5. There are five parts in this 
system: (1) RIF transformations: between presentation syntax and XML syntax, and 
between XML syntax and metamodel; (2) SWRL transformations: between 
metamodel and XML syntax; (3) R2ML transformations: between metamodel and 
XML syntax; (4) RuleML transformations: between metamodel and XML syntax; (5) 
metamodel transformations: between RIF and SWRL, R2ML and RuleML. The fifth 
part is the core of the whole system. It bridges the other four parts. 

5   Conclusions 

We propose a rule metamodel of RIF, and deeply analyze the structure of RIF rules. 
And we construct a rule interchange architecture RIA, which supports bidirectional 
rule interchange between RIF and SWRL, R2ML and RuleML. Based on RIA, we 
design a rule interchange system RIA 1.0, which implements a bidirectional 
transformation between RIF’s presentation syntax and XML syntax, besides the 
functions of RIA. 

In future, we will extend RIA to support production rules and nonmonotonic rules. 
In order that fuzzy rules representing imprecise and uncertain knowledge in the 
Semantic Web can be interchanged in RIA, we will fuzzify RIA. 
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Abstract. We propose an flexible extension of SPARQL by introduc-

ing fuzzy set theory and the α-cut operation of fuzzy numbers into

SPARQL. We show how to efficiently compute the top-k answers of flexi-

ble SPARQL queries with regard to membership degrees and user-defined

weights. Based on our method, a flexible query service is implemented

and evaluated on the LUBM platform. Results of a preliminary user

study demonstrate that the method for construction and translation of

flexible queries and results ranking can capture the users’s intension ef-

fectively.

1 Introduction

RDF is a directed, labeled graph data format for representing information in the
Web. The RDF abstract syntax is a set of triples, called the RDF graph. SPARQL
[1] can be used to express queries over RDF data sets. SPARQL FILTERs restrict
solutions to those for which the FILTER expression evaluates to TRUE. Until now,
however, standard SPARQL processes information only in a crisp way. Therefore,
existing SPARQL implementations, such as ARQ1 and Sesame2, do not allow
users to form queries with preferences or vagueness, which could be desirable for
the following reasons [2]: (i) to express soft query conditions; (ii) to control the
size of the answers; (iii) to produce a discriminated answer.

Example 1. An advertisement company requires 30 models which are close to
175cm and not very young and not very old.

Apparently, SPARQL can not efficiently express and answer such a request.
To address this problem, we propose a flexible extension of SPARQL, called
f-SPARQL. It allows, in FILTER constraint, the occurrence of fuzzy terms, e.g.
young or tall, and fuzzy operators, e.g. close to or at most. The fuzzy terms
and fuzzy operators along with the query variables form the so-called fuzzy
constraints. Furthermore, we need to take into account the membership degree
threshold for every fuzzy constraint. The reason for this is the fact that each tuple
satisfies a fuzzy constraint to a certain degree and hence if no threshold specified,
all tuples are retrieved always. To avoid reinvent the wheel, we develop a set of
translation rules for converting flexible queries formalized with f-SPARQL into
1 http://jena.sourceforge.net/ARQ/
2 http://www.openrdf.org/
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traditional crisp SPARQL queries, and thus we can still make use of existing
SPARQL implementations. However, there is still a sweet nuisance if more than
30 models satisfied the fuzzy constraint user specified. This poses a new challenge
in case we must rank these candidates according to a certain standard and select
the top 30. The introduction of weights allows different fuzzy constraints to have
different importance. We show how to efficiently compute the top-k answers of
f-SPARQL queries.

2 Fuzzy Set Theory

In fuzzy set theory [3], an element belongs to a set with certain degree, which is
described with the aid of a membership function valued in the real unit interval
[0,1]. A fuzzy set A with regard to a universe U is characterized by a membership
function μA : U → [0, 1] (or simply A(x)), which assigns a membership degree
to each element u in U , denoted by μA(u). μA(u) gives us an assessment of the
degree that u belongs to A. Typically, if μA(u) = 1 then u definitely belongs
to A, whereas μA(u) ≥ 0.8 means that u is “likely” to be an element of A. In
addition, when using Gödel T-norm, T-conorm and Lukasiewicz negation for
interpreting conjunctions, disjunctions and complements respectively, we have:
for all u ∈ U and for all fuzzy sets A1, A2 with respect to U , μA1∩A2(u) =
min{μA1(u), μA2(u)}, μA1∪A2(u) = max{μA1(u), μA2(u)}, μĀ(u) = 1 − μA(u),
where Ā is the complement of A in U .

A fuzzy set A w.r.t U is called convex, iff for all u1, u2 ∈ U , μA(λu1 + (1 −
λ)u2) ≥ min(μA(u1), μA(u2)), where λ ∈ [0, 1]. A fuzzy set A w.r.t U is called
normal, if ∃u ∈ U , s.t. μA(u) = 1. A fuzzy number is a convex, normal fuzzy set.
The set of elements whose membership degrees in A are greater than (greater
than or equal to) α, where 0 ≤ α < 1 (0 < α ≤ 1), is called the strong (weak) α-
cut of A, denoted by Aα+ = {u ∈ U |μA(u) > α} and Aα = {u ∈ U |μA(u) ≥ α}.
The α-cut of a fuzzy number corresponds to an interval of U . Let A and B be
two fuzzy numbers of U , and Aα = [x1, y1] and Bα = [x2, y2] the α-cuts of A and
B, respectively. Then we have (A ∪B)α = Aα∪Bα, (A ∩B)α = Aα∩Bα, where
∪ and ∩ denote the union and the intersection operators between two intervals,
respectively. They are defined as follows,

Aα∪Bα =
{

[x1, y1]∪[x2, y2], ifAα ∩Bα = ∅
[min(x1, x2), max(y1, y2)], ifAα ∩Bα �= ∅ (1)

Aα∩Bα =
{ ∅, ifAα ∩Bα = ∅

[max(x1, x2), min(y1, y2)], ifAα ∩Bα �= ∅ (2)

3 f-SPARQL

In this section, we define a flexible extension of SPARQL. As in the case with
databases [2][4], the extension mainly takes place in the FILTER constraint part.
For each such a flexible query, we declare with #FQ# before a SELECT query
indicating that this is the case. In the FILTER part, the original expression of the
form FILTER (?X op Y) is extended by allowing fuzzy terms and fuzzy operators.



f-SPARQL: A Flexible Extension of SPARQL 489

3.1 Fuzzy Terms Extension

The basic form of FILTER constraint allowing fuzzy terms is FILTER (?X θ

FT) [WITH α], where FT denotes a fuzzy term, e.g. “tall” or “young”, which
corresponds to a fuzzy number, and θ is one of the operators including >, <, =
, >=, <=, ! =, between, and not between. Note that if the operator θ is between or
not between, then the syntax of FILTER constraint is a little different, i.e., FILTER
(?X between/not between FT1 and FT2) [WITH α], where FT1 and FT2 are
fuzzy numbers. The optional parameter [WITH α] indicates the condition that
must be satisfied as the minimum membership degree threshold in [0,1]. Users
choose an appropriate value of α to express his/her requirement. If not speci-
fied, then use 1 as default. There are three kinds of fuzzy terms : simple (atomic)
fuzzy term, modified (composite) fuzzy term, and compound fuzzy term.
Simple fuzzy terms. A simple fuzzy term such as “young” or “tall” is defined
in terms of a fuzzy number with a membership function.
Modified fuzzy terms. A modified fuzzy term, e.g. “very young” or “more or
less tall”, is described by a simple fuzzy term and a fuzzy modifier. Let A be a
simple fuzzy term represented by a fuzzy number in the universe of discourse U
and its membership function is μA : U → [0, 1], then we have the following rules.

– Concentration rule: μvery A(u)=(μA(u))2. More generally, μvery . . . very A(u)=
(μA(u))2×(times of very)

– Dilation rule: μmore or less A(u) = (μA(u))1/2

Compound fuzzy terms. A compound fuzzy term is represented by simple
fuzzy terms or modified fuzzy terms connected by or (union), and (intersection),
or not (complement) connectors, such as “young or very young”.

3.2 Fuzzy Operators

Now consider fuzzy relations as operators within FILTER constraint, formalized
as FILTER (?X θ̃ Y) [with α], where θ̃ denotes a fuzzy operator, Y a string, a
integer or any other data types allowed in RDF. The fuzzy operator θ̃ and the
crisp value Y constitute a fuzzy number θ̃Y.

We, in this paper, mainly discuss three types of fuzzy relations, which are
“close to (around)”, “at least”, and “at most”.
Close to. According to [5], the membership function of the fuzzy number “close
to Y (around Y)” on the universe of discourse U is defined as

μclose to Y(u) =
1

1 + (u−Y
b )2

. (3)

It is worth noting that the fuzzy number above is a simple fuzzy term. Based
on it, we may have modified fuzzy terms, e.g. “very close to Y”, “very very . . .
very close to Y”, and “more or less close to Y”.
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At least. The membership function of the fuzzy number “at least Y” on the
universe of discourse is defined by

μat least Y(u) =

⎧⎨⎩
0, if u ≤ ω
u−ω
Y −ω , if ω < u < Y

1, if u ≥ Y
(4)

At most. The membership function of the fuzzy number “at most Y” on the
universe of discourse is defined by

μat most Y(u) =

⎧⎨⎩
1, if u ≤ Y
δ−u
δ−Y , if Y < u < δ

0, if u ≥ δ

(5)

Note that, parameters of b, ω, and δ in membership functions of “close to Y”,
“at least Y ”, and “at most Y” are chosen according to the concrete value of Y
and vary over different use cases.

3.3 User-Defined Weights

In the context of SPARQL, a user may have different preferences for different
triple patterns, e.g. ?X ex:hasAge ?Age and ?X ex:hasHeight ?Height. In or-
der to provide users with a query language of adequate expressibility, we addi-
tionally allow users to specify, for each triple pattern, the weight of importance.
The query criteria user specified can reflect the users’s preferences on the triple.
For each such a flexible query, we declare with #top-k FQ# with k before a
SELECT query to indicate the query type.

Example 2. Given the query in Example 1, the manager of the advertisement
company believes models with similar heights (close to 175cm) is the most im-
portant factor in the advertisement, so he/she specify a weight of 0.8 for the
triple ?X ex:hasHeight ?Height, and therefore 0.2 for ?X ex:hasAge ?Age.
The f-SPARQL query is formed as follows.

#top-k FQ# with 30
SELECT ?X ?Age ?Height WHERE {

?X rdf:type Model
?X ex:hasAge ?Age with 0.2.
FILTER (?Age=not very young && ?Age=not very old) with 0.9.
?X ex:hasHeight ?Height with 0.8 .
FILTER (?Height close to 175cm) with 0.8.

}

3.4 Syntax of f-SPARQL

Table 1 presents the syntax of f-SPARQL. f-SPARQL extends two elements of
SPARQL, i.e. the “Query” and the “Constrain”. Each SELECT query is ex-
tended with the element QueryType, which can be further divide into #FQ#
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(flexible queries) and #top-k FQ# with k (top-k flexible queries). The “Con-
straint” element is extended with an additional “FlexibleExpression” element,
as illustrated in the above subsections.

Table 1. f-SPARQL modifications to the SPARQL standard grammar

Query ::= Prologue ( QueryType SelectQuery | ConstructQuery |
DescribeQuery| AskQuery )

QueryType ::= ‘#FQ#’ | #top-k FQ# with k
Constraint ::= BrackettedExpression | BuiltInCall | FunctionCall

| FlexibleExpression
FlexibleExpression ::= FuzzyTermExpression | FuzzyOperatorExpression
FuzzyTermExpression ::= (Var [‘=’,‘!=’,‘>’‘>=’,‘<’,‘<=’] FuzzyTerm)? [with threshold]
FuzzyOperatorExpression ::= Var FuzzyOperator NumericLiteral
FuzzyOperator ::= (Modifier)*FuzzyOperator
FuzzyTerm ::= FuzzyTerm and FuzzyTerm | FuzzyTerm or FuzzyTerm

| not FuzzyTerm | ModifiedFuzzyTerm
ModifiedFuzzyTerm ::=(Modifier)* ModifiedFuzzyTerm | (Modifier)* SimpleFuzzyTerm

4 Query Translation

In order to still make use of existing SPARQL implementations for coping with
fuzzy queries, a set of translation rules is needed.

4.1 Translation of Fuzzy Terms

We make a case study for different types of fuzzy terms.

Case 1: FT is a simple fuzzy term or a modified fuzzy term
Recall the query form FILTER (?X θ FT [WITH α]) introduced in Section 3.1.
Let α be a given threshold, FTα the α-cut of FT. It is clear that FTα is an
interval, written as FTα = [a, b]. Fuzzy queries are then translated into crisp
ones according to the rules given in Table 2.

Table 2. Translation rules for fuzzy term FT with FTα = [a, b]

Flexible queries Queries translated

FILTER (?X = FT WITH α ) FILTER ( ?X >= a && ?X <= b )

FILTER (?X > FT WITH α ) FILTER ( ?X > b )

FILTER (?X >= FT WITH α ) FILTER ( ?X >= b )

FILTER (?X < FT WITH α ) FILTER ( ?X < a )

FILTER (?X <= FT WITH α ) FILTER ( ?X <= a )

FILTER (?X != FT WITH α ) FILTER ( ?X < a || ?X > b )

Case 2: FT is a compound fuzzy terms
Firstly, we consider compound fuzzy terms FT of the form “FT1 and FT2”, where
FT1 and FT2 are simple or modified fuzzy terms. As is shown in Equation (1),
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the α-cut of FT is of the form [a, b]∪[c, d]. Queries of this kind can be translated
into crisp SPARQL according to the rules shown in Table 3. Then, consider
compound fuzzy terms FT of the form “FT1 or FT2”, where FT1 and FT2 are
simple or modified fuzzy terms. Since the α-cut of FT is of the form [a, b] when
A ∩B �= ∅ (see Equation (2)), queries of this kind can be translated using rules
in Table 2. For FILTER constraints of the form ?X θ not FT, they can firstly be
translated into the form of ?X not θ FT. The not θ is defined as, e.g. not >
= <=, and not = = !=. Compound queries in more complex forms can be
translated by iteratively using the aforementioned translation rules.

Table 3. Translation rules for fuzzy term FT with FTα = [a, b]∪[c, d]

Flexible queries Queries translated

FILTER (?X = FT WITH α ) FILTER (?X >= a && ?X <= b || ?X >= c && ?X <= d)

FILTER (?X > FT WITH α ) FILTER (?X > max(b, d) )

FILTER (?X >= FT WITH α ) FILTER (?X >= max(b, d) )

FILTER (?X < FT WITH α ) FILTER (?X < min(a, c) )

FILTER (?X <= FT WITH α ) FILTER (?X <= min(a, c) )

FILTER (?X != FT WITH α ) FILTER (?X < a || ?X > b || ?X < c || ?X > d)

4.2 Translation of Fuzzy Operators

Given the syntax of FILTER constraint with fuzzy relations as fuzzy operators,
i.e., FILTER (?X θ̃ Y), the fuzzy operator along with the crisp value Y is actually
a fuzzy term, so the expression can be translated into an equivalent one of the
form FILTER (?X = FT), where FT denotes θ̃ Y.

5 Ranking

A naive solution to the top-k retrieval problem is illustrated with the query
in Example 1 as follows: (i) A flexible query is firstly translated into a crisp
SPARQL query, then the latter is sent to a SPARQL implementation, e.g. ARQ.
(ii) ARQ returns answers for the translated crisp query. (iii) The answers are
ranked according to a scoring function.

Given an f-SPARQL query Q, the FILTER constraint conditions is F =
(F1, . . . , Fn), where Fi denotes the i-th constraint condition. We use A = (A1, . . . ,
An) to denote one of the answers for F , then the score of A can be calculated
with the following scoring function.

Score(A) = Σn
i=1memDegree(Ai)× weight(Fi). (6)

where memDegree(Ai) denotes the membership degree of the answer for Fi, and
weight(Fi) denotes the user-defined weight for Fi.
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6 Experiment

We generate, from the Lehigh University Benchmark LBUM [6], the data set
which contains 6,000k triples. The data is stored in and managed by Mysql
5.0.11. The translation and ranking algorithms are implemented using JAVA.
Jena ARQ and SDB (which provides for large scale storage and query of RDF
data sets using conventional SQL databases) are used for crisp queries processing.
The applications run on a windows XP professional system with P4 3G CPU
and with 1G RAM.

We develope four queries which are shown in Table 4, and request the top-100
results. The constraint with italic font denotes the first constraint, while the
constraint with bold font denotes the second constraint.

Table 4. Experimental queries

F1: Find the not famous and busy teachers

F2: Find the famous and busy teachers

F3: Find the not famous and busy students

F4: Find the famous and busy students

We use the membership function of “busy” and “famous” in [7].

Busy(n) =
2

1 + exp(−0.4n)
− 1 (7)

Famous(n) =
2

1 + exp(−0.1n)
− 1 (8)

where n in Busy(n) represents the number of courses taken by a student or
taught by a teacher, and n in Famous(n) represents the number of papers
published by a teacher or a student.

We employ five users to specify for every constraint the threshold and the
weight. The response time of queries are listed in the Table 5 . We invite the
five testers to evaluate how closely the results satisfied their initial intentions.
We define scores of 2, 1, and 0 for “very satisfying”, “satisfying ”, and “dissatis-
fying”, respectively. Table 6 shows the evaluation scores for top-100 results. The
preliminary user study demonstrate that our flexible queries and answer ranking
methods can capture the user intension effectively.

7 Conclusions

In order to provide users with a easy-to-grasp yet powerful way for querying the
RDF data sets, we have presented, in this paper, a flexible extension of SPARQL,
called f-SPARQL. f-SPARQL extends SPARQL by allowing the occurrence of
fuzzy terms and fuzzy relations. Queries formulated in f-SPARQL differ from
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Table 5. Response time of queries

F1 F2 F3 F4

user1 176 202 195 217

user2 199 231 189 272

user3 353 243 215 271

user4 256 277 316 317

user5 376 272 295 257

Table 6. Evaluation results

F1 F2 F3 F4

user1 166 173 185 147

user2 176 155 195 177

user3 176 200 193 177

user4 156 182 168 198

user5 190 187 186 200

both crisp SPARQL queries against crisp RDF data sources, and fuzzy extended
SPARQL against fuzzy RDF/OWLs, e.g. in [7]. On the basis of fuzzy set theory
and α-cut of fuzzy number, a set of translation rules is developed, converting
f-SPARQL into crisp ones, so as to take advantage of existing implementations
of SPARQL. We also have proposed a scoring method for calculating the order
of query results. The experiments on real data sets identified that flexible queries
can express user intentions efficiently. Rather, the top-k ranked answers can be
returned fast and achieve high accuracy as well. It would be interesting to inves-
tigate how to minimize the updating cost when the data sets and membership
functions are varied.
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Abstract. Semantic Web applications that include map visualization
clients are becoming common. When the description of an entity contains
coordinate pairs, semantic applications often lay them as pins on maps
provided by Web mapping service applications, such as Google Maps.
Nowadays, semantic applications cannot guarantee that those maps pro-
vide spatial information related to the entities pinned to them. To address
this issue, this paper proposes a refinement of Linked Data practices,
named Geo Linked Data, which defines a lightweight semantic infras-
tructure to relate URIs that identify real world entities with geospatial
Web resources, such as maps.

1 Introduction

Location pins on maps are a powerful way to convey spatial information, but
they are just presentation tools in Semantic Web applications. Today, we can
dereference a URI, such as http://dbpedia.org/resource/Lisbon, to obtain
machine-processable data about the city of Lisbon, and use a location pin to
show the user where Lisbon is. However, the use of such maps in Semantic Web
applications can produce undesired situations, such as representing data about
Lisbon over a map provided by Google Maps that shows the exception message:
“We are sorry, but we don’t have imagery at this zoom level for this region”. We
believe that the juxtaposition of data and maps in Semantic Web applications
should not be justified by the location. The juxtaposition of data and maps could
only be justified when the location and the semantics are compatible.

The research question behind this issue is how to relate semantic and geospa-
tial depictions of a real world entity in the Semantic Web. In other words, we are
looking for a feasible approach for using maps as data in Semantic Web appli-
cations. This paper proposes a solution that intertwines formal and geospatial
depictions based on the Linked Data principles. Linked Data is an initiative for
interconnecting data on the Web using the Semantic Web standards, so that
users and machines can explore data on the Web. Linked Data [15] promotes (1)
the use of HTTP URIs for identifying concepts and real world entities, and (2)

P. García Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 495–502, 2010.
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a sound use of the HTTP protocol to assert that a given entity identified by a
URI has a Web resource as description.

The proposed solution refines Linked Data practices to use descriptions avail-
able as geospatial Web resources, such as a map from a Web mapping service.
Web mapping services are part of the Geospatial Web or Geoweb [16], a set
of specifications and applications which adopts the Internet and Web services
to publish, access and transform geospatial content related to real world en-
tities. Our contribution involves (1) the characterization of geospatial proxies,
that is, geospatial Web resources that could complement Semantic Web descrip-
tions about entities in some scenarios, (2) the identification of the roles of these
proxies in semantic applications, (3) the recipe for extending Linked Data with
geospatial proxies, and (4) the advertisement of presence, role and location of
geospatial proxies using RDF graphs. We use the term Geo Linked Data, as it
specializes the practice followed by the Linked Data community.

This paper is organized as follows: Section 2 describes related work, Section 3
details Geo Linked Data concepts, Section 4 illustrates the role of Geo Linked
Data in a scenario, and, finally, we present conclusions and future work.

2 Related Work

Tabulator [3] and DBPedia Mobile [2] represent the mainstream approach for
the visualization of geographic properties in Semantic Web applications: the ex-
traction of geographic points from a description in RDF, and then, its conversion
into a marker added to a map viewer client that shows the location of the en-
tity. That is, the geospatial meaning of an entity as complex as Lisbon is often
(1) simplified to (x, y) pairs, and then (2) overlaid on a geospatial description
generated in a remote Geoweb server.

The Geoweb emerged in 2000 with the service specification Web Map Server
1.0 [5] published by Open Geospatial Consortium (OGC). OGC has also pub-
lished service specifications for data access and catalogues [12], and geographic
markup languages, such as GML [13]. Nevertheless, the release in 2005 of Google
Maps, which enabled an easy integration of maps to existing Web applications,
made the Geoweb part of the mainstream Web.

The Geoweb is perceived from the Semantic Web community as a provider
of datasets rich in geographic descriptions that need to be extracted from their
silos. This is the approach of the publication as RDF of OpenStreetMap [1].
On the other side, the Semantic Web is perceived from the Geoweb community
as the provider of formal infrastructure (i.e. Semantic Web standards, such as
OWL). The application of Semantic Web technologies includes from enabling
meaningful geospatial information retrieval using geospatial ontologies [6] to the
development of profiles of Geoweb services with RDF and OWL support [7]. With
Geo Linked Data, we propose an alternative approach: the use of Semantic Web
best practices to publish Geoweb resources alongside their metadata in RDF.



Geo Linked Data 497

3 Geo Linked Data

In the Linked Data approach, when a URI acts as identifier for an entity, which
may exist outside the Web, the URI can be dereferenced to a Web resource that
provides useful information about the entity [15]. The user agent works under
the following assumption: when the URI gives access to a Web resource with a
different URI at a given time, the Web resource could be interpreted as a proxy
for an entity, at least in that given time. The concept proxy for is part of the
identity of resources and entities on the Web (IRE) model proposed by Presutti
and Gangemi [14], a framework for reasoning when a Web URI can be associated
to an entity. The proxy for association between a Web resource (e.g. a semantic
description) and an entity (e.g. Lisbon) means that the representation of the
Web resource (e.g. a RDF document) materializes information (e.g. a pair of
geographic coordinates) about the entity.

The IRE model classifies the proxy for relations as exact or approximate, and
as formal or informal. An exact proxy for relation means that the Web resource
only describes one entity, and otherwise it is approximate. Nevertheless, an exact
proxy may contain references to related entities. For example, satellite images
about Portugal may contain parts of the Atlantic Ocean and Spain. However,
satellite images are meant to be exact proxies for Portugal. A formal proxy for
relation means that the Web resource is represented in a formal language. If not,
it is an informal proxy for relation.

The proxy for concept is independent of the technology and the information
about the entity. Hence, the definition of proxy for is applicable when the Web
resource is a Geoweb resource conveying spatial characteristics of other entities.
We designate as a geospatial proxy any Web resource conveying spatial infor-
mation about other entities using Geoweb standards (e.g. a GML document de-
scribing the location of Lisbon, a satellite image in JPEG describing the Earth).
A geospatial proxy is an exact geospatial proxy if it only describes one entity.

Linked Data principles require that the information must be available in RDF
and, for humans, should be available in HTML. We can characterize RDF and
HTML representations as having exact formal proxy for and exact informal proxy
for relations with an entity, respectively. For humans, an exact geospatial proxy
and a HTML representation describing the same entity could contain equivalent
spatial information. From a machine-processable point of view, an exact geospa-
tial proxy could be considered as an alternative representation of the spatial
information of an RDF representation when it is possible to map the content
of the geospatial proxy to a formal model. The mapping is possible because the
information in Geoweb representations is specified by standardized data mod-
els [9], and we can find in the literature mappings to formal models, such as the
proposed in the Geospatial Semantic Web Interoperability Experiment [10]. We
can conclude that exact geospatial proxies conform to Linked Data rules. That
is, when a semantic application requires spatial information, they could be an
alternative for HTML and RDF representations.
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Fig. 1. Different examples of maps that may act as geospatial proxy for the official
boundary of Lisbon, capital of Portugal: close is a sketch of the boundary, related shows
the area where the boundary of Lisbon is, broad shows the boundary of Portugal, and
narrow shows the Praça do Comércio (Commerce Square), a landmark of Lisbon.

3.1 Roles of a Geoweb Description

We identify four roles that could be useful to understand how to use Geoweb
descriptions in Semantic Web applications (Figure 1):

close A close proxy is a proxy that some information systems can use as source
for an alternative identifier of the entity. For example, a marker that identifies
an entity in a map provided by a GML document is a close proxy.

related A related proxy provides an indirect description of the resource through
the spatial characteristics of the proxy. For example, a satellite image of an
area is a related proxy of the entities of the area.

broad A broad proxy is a kind of related proxy that realizes essential charac-
teristics of an entity that is a parent of the described entity. For example, a
large regional map is a broad geospatial proxy for capital cities.

narrow A narrow proxy is similar to a broad proxy but realizes essential char-
acteristics of an entity part of the described entity. An example is a map
that shows a landmark of a city when the described entity is the city.

3.2 Geo Linked Data Recipe

We can summarize the Geo Linked Data recipe as follows (see Figure 2b and
Figure 2a):

1. Entity URIs are dereferenced following the Linked Data principles (see Bizer
et al. [4]).

2. If such a URI is dereferenced accepting a Geoweb MIME-type (e.g. appli-
cation/vnd.ogc.gml), the server must return a geospatial description of the
entity that matches the MIME-type (e.g. GML) when available.

3. RDF descriptions may contain properties that advertise the presence and
role of Geoweb descriptions; clients can use these clues to discover their
MIME-type and the best use of these representations.

4. RDF descriptions may contain RDF links to navigate to geospatial descrip-
tions provided by Geoweb services.
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(a) Simple setup with a Geoweb data access service which serves geospatial
resources in GML.

(b) The content negotiation model of Linked Data is
extended with support to Geoweb MIME-types.

Fig. 2. Schematic representation of the relations in a simple setup. With a URI that
identifies a real world resource (e.g. Lisbon), the user client can access a RDF or HTML
representation through the Geo Linked Data Server in the same server, or a geospatial
representation (GML) in a Geoweb service.

3.3 Making Proxies Visible

We can use RDF to advertise the presence, the role and the location of a geospa-
tial proxy. We can relate a URI to a geospatial proxy adding the following
statement to the RDF description of the entity:

<entity URI> p <MIME-type> .

The semantics of the property p should entail that there is a dereferenceable
geospatial proxy for the entity identified by the URI. The property p could also
describe the role of the proxy. Figure 3a shows how this assertion should be
interpreted. The URI can be dereferenced again, but this time requesting the
MIME-type asserted in the statement, to retrieve the geospatial representation.
The server that owns the URI is responsible for redirecting the user to the
effective location of the geospatial proxy. This way of advertising presence is
limited to only one proxy for each content type. If the server cannot be properly
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(a) The document asserts presence and role of the proxy.

(b) The document asserts explicit location and role of the proxy.

Fig. 3. Advertisement of geospatial proxies in RDF documents.

configured, or the entity has several geospatial proxies with the same MIME-
type, we could make an explicit advertisement of the location of each geospatial
proxy. The advertisement requires the assertion of statements like:

<entity URI> q <Geoweb document URI> .

The semantics of the property q should assert that the Geoweb resource is a
geospatial proxy, and, additionally, describe its role (see Figure 3b).

4 A Geo Linked Data Scenario

Geo-Net-PT 02 [11] is an authoritative RDF dataset about named places of
Portugal available in the XLDB Node of Linguateca1. Geo-Net-PT 02 defines
701,209 instances, most of them named places. Postal codes, streets and settle-
ments are the most common types. Geo-Net-PT 02 has 21 different sources. The
Instituto Geográfico Português provides the Official Administrative Boundaries
Map (CAOP) of Portugal. The CAOP dataset is available through a Geoweb
data access service application [8], which makes accessible up-to-date GML doc-
uments that are exact geospatial proxies of the footprints of the administrative
units. Figure 4 describes an example of the advertisement of presence, role and
location of geospatial proxies in the Geo-Net-PT 02 dataset. The exact link is
possible for administrative units. Each administrative unit in Portugal has a
unique official identifier as attribute, which exists in the CAOP server and in
Geo-Net-PT 02. The setup of the Geo Linked Data endpoint follows the recipe
1 http://xldb.di.fc.ul.pt/wiki/Geo-Net-PT_02

http://xldb.di.fc.ul.pt/wiki/Geo-Net-PT_02
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Fig. 4. Use case scenario: geospatial proxies for Geo-Net-PT 02; the prefix gn: identifies
the terms added to the vocabulary for advertising Geo Linked Data.

presented in Subsection 3.2. It allows clients to dereference a Geo-Net-PT 02
URI, such as :LisboaFootprint, and discover that a representation in GML is
also available. Then, the client can dereference again but asking for the MIME-
type of GML, and then, for example, display the result on a map.

5 Conclusions

This paper introduced Geo Linked Data, an approach for incorporating refer-
ences to Geoweb data and services in the Semantic Web. The references, named
geospatial proxies, were characterized, and the example based on Geo-Net-PT 02
showed how to use this approach in a real scenario. Geo Linked Data requires
the update of RDF datasets with assertions of presence of spatial descriptions,
which may include information about their role and location. The roles ease
the use of Geo Linked Data by Semantic Web applications. The locations al-
low users to navigate between Linked Data and Geoweb datasets. Future work
will include the formalization of the categorization of geospatial proxies, and the
automatic generation and classification of bindings between RDF datasets and
Geoweb resources.
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Abstract. With the development of more expressive description logics

(DLs) for the Web Ontology Language OWL the question arises how

we can properly deal with the high computational complexity for effi-

cient reasoning. In application cases that require scalable reasoning with

expressive ontologies, non-standard reasoning solutions such as approx-

imate reasoning are necessary to tackle the intractability of reasoning

in expressive DLs. In this paper, we are concerned with the approxima-

tion of the reasoning task of instance retrieval on DL knowledge bases,

trading correctness of retrieval results for gain of speed. We introduce

our notion of an approximate concept extension and we provide imple-

mentations to compute an approximate answer for a concept query by

a suitable mapping to efficient database operations. Furthermore, we re-

port on experiments of our approach on instance retrieval with the Wine

ontology and discuss first results in terms of error rate and speed-up.

1 Introduction

For description logics, there are two main approaches to reasoning. Tableaux-
based methods [1] implemented in tools such as Pellet [2] and Racer [3] have been
shown to be efficient for complex TBox reasoning tasks with expressive DLs. In
contrast, the reasoning techniques based on reduction to disjunctive datalog as
implemented in KAON2 [4] scale well for large ABoxes, with support for the DL
SHIQ. Besides these two directions, other approaches such as rule engines and
database-based techniques scale very well for large ABoxes, but are in principle
limited to lightweight language fragments [5].

Observing the application domain of these approaches, an issue which remains
to be investigated is the problem of scalable reasoning over expressive ontologies
with large ABoxes as well as complex or large TBoxes. From a theoretical point
of view we know that it is impossible to find any tractable algorithm for reasoning
over expressive ontologies due to the underlying high computational complexities
[6]. Thus, non-standard reasoning solutions like approximate reasoning [7,8] are
helpful in time-critical applications when it is acceptable to sacrifice soundness
or completeness for increased efficiency. Approximate reasoning algorithms can
be tractable although the underlying language is not, in contrast to limiting
attention only to inexpressive tractable fragments as e.g. [9].
� Research reported in this paper was supported by the German Federal Ministry

Economics (BMWi) under the Theseus project, http://theseus-programm.de and

EU project SEALS (FP7-ICT-238975), http://www.seals-project.eu/
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Investigations into approximate reasoning usually start from a sound and com-
plete algorithm and system and directly addresses performance bottlenecks in
order to improve efficiency, i.e. the algorithms are altered, leading to approxi-
mate outputs, while improving speed and keeping the introduced error ratio as
low as possible.

In previous work [10,11] we have shown how to approximate instance re-
trieval for named classes within the KAON2 approach. In this paper we show
how instance retrieval for complex classes can be approximated by reducing it
to instance retrieval for named classes. For this, we compute what we call ap-
proximate extensions of complex classes by means of combining extensions of
named classes, e.g. by using standard database operations. The approach leads
to a speedup of about factor 10, while the number of introduced errors varies
depending on the query, but is within reasonable bounds.

The present paper is structured as follows. After recalling necessary prelimi-
naries, we will present our approach to approximate instance retrieval, and then
describe our approximate algorithms. We conclude by reporting on correspond-
ing evaluation results and with ideas for further work. For a more elaborate
version of this paper we refer to our technical report [16].

2 Preliminaries

Description Logics. Description logics (DLs) are a family of knowledge repre-
sentation formalisms. The basic constituents to represent knowledge in DLs are
concepts C, roles r and individuals a. They are used to form axioms collected in
a knowledge base KB to make statements about a domain of interest. We primar-
ily consider the DL SHIQ with concept and role assertion axioms of the form
C(a), r(a, b) that assign an individual to a concept or relate two individuals via
a role, and concept inclusion axioms of the form C # D that state subclass rela-
tionships. For a detailed presentation of DLs we refer to [12]. The signature of a
knowledge base KB, denoted by σ(KB), is the set of all individual, concept and
role names that occur in the axioms within KB. In particular, σ(KB) comprises
all individuals occurring in KB.

Instance retrieval with DL knowledge bases builds on the standard reasoning
task of instance checking. An individual a ∈ σ(KB) is an instance of a concept C
with respect to a knowledge base KB if the axiom C(a) is a logical consequence
of KB, which is denoted by KB |= C(a). Instance retrieval can be interpreted
as the repeated application of instance checking for all known individuals of KB
and a given concept. We call the result of retrieving all instances of concept C
from KB the (conventional) extension of C with respect to KB, denoted by |C|,
and define it as follows.1

|C| := {x ∈ σ(KB) | KB |= C(x)}
In the context of instance retrieval, the concept C is often also called the query.
1 Notice that this notion of extension refers to a particular knowledge base and is

different from the model-theoretic notion of extension defined for an interpretation.
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Relational Algebra. Relational Algebra is the formal underpinning of modern
relational database systems and is used to formalise database operations on the
relational model originally introduced by Codd [13]. The main construct for
representing data in the relational model is a relation, denoted by R(a1, . . . , an),
that represents a database table with column attributes a1 to an and rows that
instantiate the columns as tuples of values. Relational algebra expressions are
used to formulate queries on the thus represented database tables and result
themselves in relations, such that expressions can be nested. Attributes in a
relation can be referred to by means of path expressions of the form R . ai, e.g.
within conditions.

We briefly recall the relational operators that are used in this paper. A pro-
jection π[a1,...,am](R(a1, . . . , an)) restricts the columns of the resulting relation
to the attributes a1, . . . , am for m < n. A selection σ[condition](R(a1, . . . , an))
selects those rows for which condition holds. A cross product R1(a1, . . . , an)×
R2(b1, . . . , bm) generates a combined relation R(a1, . . . , an, b1, . . . bm) in the sense
of the Cartesian product by multiplying rows, which is used for join operations.
Other set operations are used for relations as usual, namely union R1 ∪R2, in-
tersection R1 ∩ R2 and difference R1 \ R2, operating on relation tuples in the
usual way. For a detailed description of relational algebra see e.g. [14].

3 Approximation of Instance Retrieval

Our approach for the approximation of instance retrieval queries is based on the
notion of the approximate extension 〈C〉 of a concept C with respect to a knowl-
edge base KB. Intuitively, 〈C〉 is the set of instances that are obtained through
interpreting complex concepts in C as simple set operations on the individuals
known to KB, starting from the atomic extensions of concepts and roles that oc-
cur in C. In this way, the model-theoretic semantics of DLs is approximated by a
straightforward combination of results for atomic queries that requires less effort
to compute than the reasoning process for complex instance retrieval queries in
DLs does. The exact definition of an approximate extension is given in Table 1
recursively for all language constructs. For an example, consider the knowledge
base KB = {C # A  B, A(a1), C(a2)} and the instance retrieval query A  B.
The conventional extension of the concept A  B contains both individuals a1

and a2, i.e. |A  B| = {a1, a2}. However, the approximate extension of A  B
contains only a1, i.e. 〈A  B〉 = {a1}.

The more complex the query concept C is, the more the approximate extension
deviates from the conventional extension. For the simplest queries, such as atomic
concepts, the two types of extensions coincide and no errors are made in instance
retrieval. This characteristics is captured by the following proposition.

Proposition 1 (soundness and completeness of simple approximate
extensions). For a knowledge base KB and a concept C of the form C =
A1 � · · · � Am � ¬B1 � . . .¬Bn, with all Ai and Bj atomic, the approximate
extension of C is equivalent to its conventional extension, i.e. 〈C〉 = |C|.
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Table 1. Definition of an approximate extension. A stands for atomic classes and C,D
for complex (non-atomic) classes. R stands for roles and n for a natural number.

Approximate Extensions

〈�〉 = |�|
〈⊥〉 = ∅
〈A〉 = |A|

〈¬A〉 = |¬A|
〈R〉 = {(x, y) | KB |= r(x, y)}

〈R−〉 = {(x, y) | KB |= r(y, x)}
〈C � D〉 = 〈C〉 ∩ 〈D〉
〈C � D〉 = 〈C〉 ∪ 〈D〉

〈¬C〉 = 〈�〉 \ 〈C〉
〈∃R.C〉 = {x ∈ 〈�〉 | ∃y : (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉}
〈∀R.C〉 = {x ∈ 〈�〉 | ∀y : (x, y) ∈ 〈r〉 → y ∈ 〈C〉}

〈≤ n R.C〉 = {x ∈ 〈�〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≤ n}
〈≥ n R.C〉 = {x ∈ 〈�〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≥ n}

Proposition 1 states that, for queries that have the form of conjunctions of
possibly negated named concepts, the approximate and conventional extensions
have exactly the same instances. In other words, computing the approximate
extension is sound and complete with respect to the conventional extension.

For more complex queries, however, the approximation might deviate signif-
icantly from the correct answer in both that it might miss instances as well as
show improper instances. In particular the approximation of the complement
constructor is supposed to cause significant deviation as it interprets negation
in a closed-world sense, potentially including improper instances in an answer.
Hence, we aim at eliminating general complements by means of normalisation,
avoiding this source of error.

For standard reasoning in DLs a query concept can be expressed in various
normal forms and semantics-preserving transformations do not affect the result
of instance retrieval. For the calculation of approximate extensions, however, the
result depends on the form of the concept, and different semantically equivalent
concept expressions can have different approximate extensions. We can exploit
this characteristics by choosing a normal form for query concepts that fits best
the process of approximation in terms of both error rate and ease of computation.
In this light, we consider the negation normal form [15] of concept expressions
for queries, denoted by NNF(C) for a concept C, in which negation symbols are
pushed inside to occur only in front of atomic concepts. This eliminates the case
of considering the approximation for general complements with its rather drastic
closed-world interpretation. Besides the lower expected error rate this also avoids
the computationally costly handling of large sets of individuals in case of large
ABoxes by an algorithm that computes approximate extensions. The positive
effect that elimination of complement approximation has on the error rate in
instance retrieval can be expressed by the following property, which ensures that
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approximation of concepts in negation formal form only gives up completeness
but preserves soundness at least for a certain class of queries.

Proposition 2 (soundness of limited approximate instance retrieval).
Let KB be a knowledge base and C be a concept such that NNF(C) contains
no ∀- and no ≤- and ≥-constructs. The approximate extension of NNF(C) only
contains instances that are also contained in the conventional extension of C
with respect to KB, i.e. 〈NNF(C)〉 ⊆ |C|.
Proposition 2 states that, for queries that do not make use of the ∀, ≥ and
≤ constructs (after normalisation), the approach of approximating concepts in
their negation normal form yields an extension that might miss some instances
but has no improper instances in it. In other words, computing the approximate
extension is sound with respect to the conventional extension.

4 Computing Approximate Extensions

In this section, we will present algorithms for computing the approximate ex-
tension of a query concept. We will lay out the architecture of a system for
approximate instance retrieval and elaborate on two implementations of the al-
gorithms, one in a database and one in memory.

4.1 System Architecture

Our system for approximate instance retrieval takes as input a SHIQ2 knowl-
edge base KB and a complex query concept Q to compute the approximate
extension of Q with respect to KB as a set of individuals. This is depicted on
the right-hand side of Figure 1. The principle behind computing 〈Q〉 is always to
start from the individuals in the conventional extensions of (possibly negated)
atomic concepts and (possibly inverse) roles that occur in Q and to recursively
combine these according to the structure of concepts in Q, reflecting the set
operations from Table 1. According to Propositions 1 and 2, this results in an
answer that is sound and complete for some cases, only sound for others, or
neither sound nor complete, depending on the language constructs used in the
query.

We have implemented the approximate instance retrieval method in two differ-
ent ways and distinguish between database and in-memory computation: in the
first case computation is delegated to underlying database operations, whereas in
the second case it is performed in main memory. While for the database variant
the atomic extensions are pre-computed prior to query-time and materialised
in the database using a sound and complete reasoner, the in-memory variant
allows for two possibilities to access the atomic extensions: in online processing
a sound and complete DL reasoner is invoked at query-time to compute atomic
2 We use SHIQ since we build on KAON2 for our experimental results. However, our

approximation approach can easily be extended to nominals, the missing feature for

handling OWL ontologies.
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Fig. 1. An overview of the system architecture

extensions, while in offline processing they are again pre-computed and materi-
alised either in a database or in memory if possible. Database computation and
offline processing are very useful when dealing with large amounts of data in
scenarios with frequent querying on rather static ontologies, for which material-
isation can be done in advance. Online processing is intended to be used in such
cases where a materialisation is hardly manageable as ontologies are subject to
frequent changes.

For online processing we utilise the KAON2 reasoner, as illustrated in Figure
1. The reason for this choice is that KAON2 was designed to be an efficient
ABox reasoner on knowledge bases with large ABoxes and simple TBoxes in
comparison to other state-of-art DL reasoners, which typically perform better on
knowledge bases with large (or complex) TBoxes and small ABoxes. As depicted
on the left-hand side of Figure 1, KAON2 transforms the TBox together with
complex queries into a disjunctive datalog program in a first step, to perform
ABox reasoning in a second step based on the result of this transformation.
Hence, for every complex ABox query KAON2 needs to repeatedly perform the
TBox transformation, which is computationally costly. For ABox queries that
have the form of atomic concepts, however, this transformation is not necessary
and can be bypassed. For the variant with in-memory and online processing
we can take advantage of this because for computing atomic extensions with
KAON2 the costly TBox translation is saved.

4.2 Delegation of Computation to Database

The variant that performs database computation is a presumably efficient im-
plementation of approximate instance retrieval as the pre-computed atomic ex-
tensions are materialised and approximate extensions are computed by making
use of highly optimised database operations. This variant is essential in practice
for handling ontologies with large ABoxes that cannot be processed efficiently
in memory. Here, the recursive combination of atomic extensions in terms of
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Table 2. Mapping of DL concept expression to Relational Algebra Expression

Concept Expression Relational Algebra Expression

τdb(A) π[ind](σ[class=A](ExtC))

τdb(¬A) π[ind](σ[class=¬A](ExtC))

τdb(∃r.C) EC := τdb(C)

Er := σ[role=r](Extr)

π[ind1](σ[ind=ind2](EC × Er))

τdb(∀r.C) EC := τdb(C)

Er := σ[role=r](Extr)

E := π[ind1](σ[ind�=ind2](EC × Er))

π[ind1](ExtC) \ E

τdb(≤ n R.C) EC := τdb(C)

Er := σ[role=r](Extr)

π[ind](σ[count(ind1)≤n ∧ ind=ind2](EC × Er))

τdb(≥ n R.C) EC := τdb(C)

Er := σ[role=r](Extr)

π[ind](σ[count(ind1)≥n ∧ ind=ind2](EC × Er))

τdb(C0 � C1 � · · · � Cn) τdb(C0) ∩ τdb(C1) ∩ · · · ∩ τdb(Cn)

τdb(C0 � C1 � · · · � Cn) τdb(C0) ∪ τdb(C1) ∪ · · · ∪ τdb(Cn)

set operations as defined in Table 1 is completely delegated to the underlying
database, which benefits performance. As a basis for this form of computation we
use a database schema that consists of two Relations, namely ExtC(ind, class)
for storing concept extensions and Extr(ind1, role, ind2) for storing role exten-
sions. In their schema, the attribute ind(i) stands for individual names, class for
names of possibly negated concepts and role for names of possibly inverse roles.
Starting from a knowledge base KB, these two relations are initialised as follows.

ExtC(ind, class) = {(a, C) | KB |= C(a)}, for C = A | ¬A with A ∈ σ(KB)
Extr(ind1, role, ind2) = {(a, r, b) | KB |= r(a, b)}, for r = p | p− with p ∈ σ(KB)

Notice that, for the purpose of approximate instance retrieval, ExtC and Extr

form a complete representation of the original knowledge base KB.
A complex query concept Q is answered by transforming its negation normal

form NNF(Q) into a relational algebra expression according to a mapping τdb

and posed as a query to the underlying database system. The complete map-
ping definition for τdb is given in Table 2. The left-hand side shows the concept
constructors that can occur in NNF(Q) and the right-hand side shows their re-
spective relational algebra expression. Recursive application of τdb ultimately
produces a single database query τdb(NNF(Q)) that is used for computing 〈Q〉.

For an example consider the query Q = A�∃r.¬B. The mapping τdb produces
the following nested relational algebra expression.

τdb(Q) = π[ind](σ[class=A](ExtC))∩
π[ind1](σ[ind=ind2](σ[role=r](Extr)× π[ind](σ[class=¬B](ExtC)))) .
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When posed to the underlying database, this rather large expression is subject
to efficient internal query optimisation strategies as they are typically employed
by database systems.

4.3 In-Memory Computation

Both the variants with online and offline processing share the same implemen-
tation of the approximate algorithm. The difference is the handling of atomic
extensions which is presented by an additional function. This function takes as
parameters a knowledge base and an atomic concept or atomic role for which
the atomic extension is to be computed while the actual algorithm accepts the
knowledge base and a complex concept query for which the approximate exten-
sion is to be computed. For the computation of the atomic extension, depending
on the chosen variant, the introduced function invokes either a complete and
sound reasoner or retrieves the atomic extension from the database. For the
exact details of this algorithm, the interested reader may refer to [16].

5 Conclusion

In our experiments, using the WINE ontology, which has been designed as a
showcase for the expressivity of OWL, we compared our algorithms with KAON2
as a sound and complete DL reasoner. Running the approximation algorithm in
the database variant, we obtained a significant performance improvement for
each ∃-query3 about 90%. Running the algorithm in offline processing where
the approximation is computed in memory, we obtained another significant per-
formance gain, indeed about 99% compared to KAON2. For the details of our
experiments including complex queries, the interested reader may refer to [16].

We have presented an approach to approximate instance retrieval based on
approximate extensions. Compared with a complete and sound DL reasoner, our
approach can significantly improve the performance of reasoning over expressive
ontologies with large ABoxes and TBoxes. We presented several instantiations
of our approach resulting online and offline in-memory and database variants.
We evaluated the approaches and showed that a significant speed-up of around
90% can be obtained while the number of introduced errors remains relatively
small.

Future work includes improvements on the online variant using logic program-
ming engines, further experiments for complex queries, combinations with other
approximate reasoning methods, extension to more expressive language features
and applications of our approach in suitable use case scenarios.
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Abstract. Peer-to-peer databases have proven to be an effective way

for sharing data. However, distributed knowledge management in P2P

databases brings a variety of non-trivial challenges along with its benefits.

Such challenges include determining the right content provider(s) and

removing the duplicate data transfer if a relatively larger portion of data

is redundant and is made available in distributed providers. The aim

of this paper is to address data redundancy removal problem such that

excessive bandwidth usage due to in-network duplicate data transfer can

be minimized. We provide analytical and experimental evaluation of our

schemes in terms of the number and size of the packets that flow in the

network while keeping confidence level of results high.

1 Introduction

As the tremendous growth of peer-to-peer networks for file sharing continues to
strain, research community continues to focus on its use for knowledge sharing
[4] in order to exploit its further benefits. P2P databases like Xpeer [7] and
AmbientDB [3] emerge as a way for retrieving data from an unstructured and
decentralized P2P network and overcome the limitations posed in distributed
databases by eliminating constraints like static topology and heavy administra-
tion requirements. Such databases have diverse information stores to serve the
individual clients and thus, these stores are often not well integrated with each
other and they collect the data in uncooperative environment. Due to having
no control over information stores, duplicate data storage across multiple stores
becomes a serious problem for the clients who search through these stores and
costs for redundant data transfer.

These systems demand the following two core operations (i) discovery of in-
formation stores for a given query also known as resource selection and (ii)
redundancy removal in order to minimize bandwidth usage while transferring
the data between peers. Resource selection algorithm determines the most suit-
able information stores for a query provided as an input and gives the ranked
list of the candidates. Resource selection [4][5][8] has been under the focus in
database community since last decade and is out of scope of this paper. The
aim of this paper is to study data redundancy removal problem when it is made
available from distributed Resource Description Framework (RDF) based infor-
mation stores. In order to achieve this, we present summary exchange algorithms

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part I, LNCS 6261, pp. 512–519, 2010.
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for coordination between peers that employ bloom filter. They are widely used
in variety of database and networking applications [1] to minimize the size of
message exchange at the cost of compromising confidence level. Due to the space
limitation, we omit the operation of bloom filter and refer [1][2] to the interested
readers.

Next, we define confidence level (CL) as accuracy of results from distributed
stores. Formally, it is defined as a function of 1 − FP avg where FP avg is the
average of false positive results from the distributed information systems for
a given query. We define average response time (ART) as the delay between
the query generation and final result preparation by the information receiver
after merging the results received from distributed information stores. Selection
Set (SS) is a special type of message used by information receiver to inform the
information stores about the selection of element that receiver expects to receive.

Rest of this paper is structured as follows; Redundancy removal schemes
are presented in section 2. In section 3, we compare the performance of these
schemes. Finally, we conclude this paper in section 4.

2 Duplication Removal

In order to reduce the duplicate data transmission on the network, we present
3 flavors of summary exchange algorithms and discuss their improvement in
comparison with brute-force approach. The prerequisite of these algorithms is a
resource selection algorithm [5] that gives the ranked list of potential information
stores.

Fig. 1. Flow of Messages in ISE, PSE and RSE algorithms

2.1 Iterative Summary Exchange (ISE) Algorithm

This is an evolutionary algorithm where information receiver (R) monotonically
receives the set of RDF statements from multiple information stores. In this
algorithm, information receiver iteratively approaches the information stores and
gets part of relevant results to a query as follows;

1. Information receiver sends the query (q) to the information store that was
ranked highest in the list of information stores for q.
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2. Information store executes the query onto its repository and send the match-
ing RDF statements (r) to information receiver.

3. Information receiver creates m bit bloom filter on the results it has received
for query q using k hash functions such that k hashes are created on each
statement of the result set and relevant bits are marked in the bloom filter.

4. Information receiver sends the query, bloom filter (q + fn refers to both)
and configuration parameters (CP) to information store ranked next in the
ranking list for a query q. CP defines all those parameters which are used to
create the bloom filter like size, number and type of hash functions.

5. Information store executes the query to retrieve the results.
6. Despite transmitting all matching RDF statements like highest ranked in-

formation store did, this store filters out the results indicated by the bloom
filter and sends only the set of those statements which were not marked in the
received bloom filter. For testing the membership of statements, information
store uses CP received from information receiver (see step 4).

7. Step 3 to 6 repeat for the rest of the information stores within the list of
potential candidates for a given q.

8. Finally, information receiver combines all the received RDF statements in
order to prepare final result for q.

The message flow between information receiver and distributed stores is shown
in figure 1a. Suppose that there are l information stores that contain the data
matching a query q and ni is the number of RDF statements received by R after
iteration i, each iteration is a combination of querying and receiving the results
from exactly one information store and the number of bloom filters created by
ISE algorithm is l − 1. Then confidence level for a given query q when ISE
algorithm is used can be calculated by

CLq := 1−
∑l−1

i=0

[
1− (

1− 1
m

)k·ni
]k

l − 1
. (1)

2.2 Parallel Summary Exchange (PSE) Algorithm

In PSE algorithms, individual information stores evolve independently of their
repositories from their peers thus query execution for creating and membership
testing of RDF statements is straightforward and thus decreases the waiting
time. In this algorithm, receiver’s query is executed in parallel on selected infor-
mation stores as follows;

1. Information receiver multicast the query to all information stores selected
by a resource selection algorithm.

2. Those stores create bloom filter on the matching RDF statements to the
receivers query.

3. Information stores send those filters to the receiver.
4. Information receiver distinguishes between corresponding set bits of the all

received bloom filters for unique RDF statements and duplicate RDF state-
ments by performing AND operation and chooses the candidate information
store for each duplicate RDF statement.
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5. Selection of RDF statements that each information store will provide is in-
formed by information receiver.

6. Each information store provides the RDF statements according to the selec-
tion notified by information receiver

Explanation. PSE algorithm needs more message passing and processing from
bloom filter as compared to ISE algorithm as shown in figure 1b. It is because the
receiver has to decide the information store(s) for overlapping RDF statements
based upon their corresponding bloom filters. In order to inform the selection of
contents, IR transmits SS message to the ISs where SS ≤ bloomfiltersize.

Suppose that there are l information stores that contain RDF statements
matching a query q and unlike in equation 1, ni is the number of RDF statements
matching a query q in ith information store and total bloom filters created in
PSE algorithm are l. Then CLq for a q can be calculated by

CLq := 1−
∑l−1

i=0

[
1− (

1− 1
m

)k·ni
]k

+ Ci

l
. (2)

where Ci is the constant boosting the false positive probability due to multiple
hashing algorithms used to create the bloom filter. The ground truth about the
bloom filter is that it uses more than one hashing algorithms and they are not
perfect thus generate false positives. The problem with PSE when more than
one hashing algorithms are used is that the bit set by one hashing algorithm
for one element in one IS may overlap with the corresponding bit of another
hashing algorithm for another element in another IS. This problem is known as
bit conflict that further supplements false positive probability. In order to deal
with this issue, we partitioned the total bloom filter space into k subspaces such
that each hashing algorithm uses only its assigned subspace. This way the scope
for each hashing algorithm in a bloom filter becomes independent from others.

2.3 Recursive Summary Exchange (RSE) Algorithm

The basic idea of RSE algorithm is that ISs gossip (negotiate) among themselves
in order to coordinate and reduce the redundant data transfer cost. Flow of
messages between information stores and receiver is shown in figure 1c. The
algorithm works as follows;

1. Information receivers unicast a query (q) along with configuration parame-
ters (CP) to IS that has the highest priority for a given query q. As mentioned
earlier priority list of IS for a specific query q is the output of resource se-
lection algorithm that runs in advance for each query. CP contains the size
of bloom filter (m), number (k) and selection of hashing algorithms.

2. The information store with the highest priority executes the query q and
retrieve the matching RDF statements from its repository.

3. Information store creates the bloom filter on the retrieved RDF statements
using CP.
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4. Information store removes itself from the priority list and sends those state-
ments to the receiver and bloom filter along with CP to the next information
store in the priority list.

5. Despite sending all RDF statements as the highest ranked information stores
do, this store filters out the results indicated by the bloom filter and send
only the set of those statements which were not marked by the information
receiver. For testing the membership of statements with the bloom filter,
information store uses CP received from information receiver (see step 1).

6. This information store updates the previously received bloom filter by adding
the entries for RDF statements retrieved from its local repository. For this
sake, it uses the CP received from information receiver.

7. Step 4 to 6 repeat until all the IS are removed from the priority list.

In order to formalize confidence level of the system, assume that there are l
information stores that contain RDF statements matching a query q and like
equation 2, ni is the number of RDF statements matching a query q in ith
information store then CLq can be calculated by

CLq := 1−
∑l−1

i=0

[
1− (

1− 1
m

)k·ni
]k

l − 1
. (3)

2.4 Discussion

These algorithms have their own pros and cons. ISE algorithm is more sim-
plistic while it is suitable for applications where ART is a trivial factor. On
the other hand, in PSE and RSE algorithms, participating information stores
process queries faster thus reduces latency for end users. In PSE algorithm, par-
ticipatory information stores process the query in parallel and receiver decides
the portion of information it receives from but in RSE algorithm, information
stores negotiate with each other thus they have more control on the information
that they provide than receiver. In view point of false positive probability, RSE
algorithm outperforms ISE and PSE algorithms because each RDF statement
distributed across l information stores for a query q is used only once for creating
a bloom filter (see equation 3) and there is no additional probability. In contrast,
PSE algorithm generates higher false positive probability in comparison to ISE
and RSE because of the additional false positive (see equation 2).

3 Evaluation

Although, there is no other published work on distributed ontology based redun-
dancy removal to be compared with ours, packet and message level redundancy
removal for pub/sub system has been discussed for years. We use the following
performance metrics: ART, message exchanges, data transfer cost and confidence
level of results. This experiment is setup on native simulator 1 developed in Java
1 http://ee.unsw.edu.au/~z3197878/simulator/

http://ee.unsw.edu.au/~z3197878/simulator/
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Fig. 2. Data transfer in distributed information retrieval when varying the data redun-

dancy in ISs

and the simulation is developed using a grid topology of 20x20=400 nodes. We
transfer n times 104858 elements of size 128 bits each where n is the number of
ISs that varies from 5 to 35 with the increment of 5. We used 9 hash functions
(i.e. k=9) using [6] for the bloom filter and kept bloom filter size (m) 2 ∗ n ∗ k.
The reason for choosing this m is to achieve upto 99% confidence level of results
as stated in [2]. We kept the size of SS message equal to m for the sake of sim-
plicity, however, it can be compressed further for further reduction in overhead
traffic. Furthermore, we set 20% data redundancy between IS contents where it
is not explicitly stated otherwise.

Figure 2 compares our redundancy removal algorithms in comparison with
brute-force approach in the presence of 20, 40, 60 and 80 % data redundancy in
ISs. In order to answer receiver’s query, total data transfer by varying the num-
ber of ISs is shown in figure 2. It is clear that after a certain threshold percentage
(reasonably small value) in data redundancy, summary exchange algorithms out-
performs over brute-force and once this threshold is achieved, improvement in
terms of data transfer becomes proportional to the percentage of redundant data
in distributed ISs as shown in figure 3(a). Please note that our experiments are
based on 20% data redundancy except the ones shown in figure 2 and 3(a).

ART for ISE as shown in figure 3(b), is more that other algorithms because
IR queries ISs one after the other and waits for the response from one before
sending it to another. In contrast, PSE algorithm outperforms others in terms
of ART because query in a set of ISs is executed in parallel and receiver si-
multaneously gets the redundancy removed RDF statements. The reason that
PSE gets better response time over brute-force is due to (i) lesser data transfer
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Fig. 3. (a) Summary of improvement in terms of data transfer reduction with redun-

dancy removal algorithms in comparison to brute-force approach, (b) Effect on ART

by varying the number of distributed ISs

and (ii) no redundancy removal by the receiver during merging time after re-
ceiving from distributed ISs. On the other hand, ART for RSE is slightly less
than ISE because ISs in ISE are contacted sequentially by the IR while in RSE
ISs directly communicate with each other. This certainly saves waiting time for
message exchange between ISs and IR for RSE.

Figure 4 shows the total data transfer trend in order to achieve confidence
level from 95% to 100%. False positive in this setting yields in missing the data
which should actually be delievered due to matching the receiver’s query. Thus,
in order to get higher confidence level as depicted in figure 4, larger size of the
bloom filters are required to transfer, causing more data transfer in terms of
overhead traffic. In case of PSE, overhead traffic exponentially increases because
in addition to regular false positive generated by the bloom filter, it is further
supplimented during partioning mechanism.

Fig. 4. To achieve higher confidence level, more overhead data have to transfer and it

makes significant increase on total data transfer

4 Conclusion

This paper develops and analyzes three redundancy removal algorithms from dis-
tributed semantic information stores. In contrast to brute-force, these schemes
are not focused on finding the perfect solutions but rather on finding good enough
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solutions. The algorithms reduce upto 80% data transfer cost in the presence of
duplicate data in distributed information stores. Furthermore, these algorithms
have different characteristics and can achieve higher confidence level of results
at the cost of overhead traffic. In comparison to brute-force, reduction in data
transfer cost in the presence of redundant data in distributed information stores
is proportional to redundancy among the data in these stores and if data re-
dundancy crosses the threshold (approx. 15%) percentage, cut in cost for data
transfer can be achieved.
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Bača, Radim I-358

Ben-Saad, Myriam I-1

Berlanga, Rafael I-62

Bernroider, Edward I-221

Bertino, Elisa I-368, II-17

Bhattacharya, Arnab II-149

Bleja, Micha�l I-323

Bolles, André I-261
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