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Abstract. Lossy counter machines (LCM’s) are a variant of Minsky counter ma-
chines based on weak (or unreliable) counters in the sense that they can decrease
nondeterministically and without notification. This model, introduced by R. Mayr
[TCS 297:337-354 (2003)], is not yet very well known, even though it has already
proven useful for establishing hardness results.

In this paper we survey the basic theory of LCM’s and their verification prob-
lems, with a focus on the decidability/undecidability divide.

1 Introduction

Lossy counter machines are a weakened version of Minsky counter machines. They
were introduced by Richard Mayr [38,39] as a simpler version of lossy channel sys-
tems, using counters holding numerical values rather than channels recording sequences
of messages in transit. Mayr proved that finiteness and uniform termination are undecid-
able for lossy counter machines and used this to derive various undecidability results,
e.g. in [11].

Lossy counter machines are hard. Since then, lossy counter machines have been used
in a variety of situations, sometimes under the guise of counter automata with incre-
mentation errors [19]. Mostly, they have been used in reductions proving hardness, i.e.,
complexity lower bounds. This relies on two kinds of results. Firstly, some problems
that are undecidable for Minsky machines remain undecidable for the weaker lossy
counter machines. This can be used for undecidability proofs in situations where it is
easier to encode lossy counters than reliable ones, e.g., as in [19,16]. Secondly, some
problems that are decidable for lossy counters machines are still Ackermann-hard, i.e.,
they require nonprimitive-recursive time and space [43,44]. This can be used to show
Ackermann-hardness of problems that are decidable but rich enough to encode lossy
counters, see [18,19,32,24,46] for examples.

A survey for lossy counter machines. In this paper, we survey the main decidability
and undecidability results on lossy counter machines. Most areas have not yet been
investigated deeply, and some have only been superficially visited. As a consequence,
our survey looks sometimes more like a road map for future research than as a record
of past achievements.
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We strove for simplicity. Most decidability results can be proven by elementary argu-
ments, relying only on generic properties like strong monotonicity of steps (Fact 2.1),
the wqo property (Fact 2.3) and basic features of semilinear sets. These proofs are sim-
pler and more versatile than the algorithms provided in, e.g., [5,28]. For undecidability,
all our proofs share a single and very simple gadget, “putting a Minsky machine on a
budget”, making them conceptually simpler.

In this “survey” we do not always point to the earliest existing reference for each
and every stated theorem. Mostly this is because these results are new, or presented in
a new and extended form, or with a new and simplified proof. In general, the results
come from [11,42,39] when they are specific to lossy counter machines. Some results
have been first shown for lossy channel systems [15,7,6] or even well-structured sys-
tems [25,26,5,28,29].

Outline of the paper. We define counter machines, both reliable and lossy, in Section 2.
We handle reachability properties in Section 3, termination and inevitability properties
in Section 4, liveness properties in Section 5, finiteness properties in Section 6. All the
decidability results given in these first sections are proven along the way, while the
proof of the undecidability results are delayed until Section 7 where they are handled
uniformly. Finally, we gather in Section 8 a few extra results on issues that are less
central, or more recent, in the theory of lossy counter machines. Finally, and for the sake
of completeness, the complexity of decidable problems is briefly discussed in Section 9.

2 Counter Machines

Counter machines are a model of computation where a finite-state control acts upon a
finite number of counters, i.e., storage locations that hold natural numbers. The com-
putation steps are usually restricted to simple tests and updates. For Minsky counter
machines, the tests are zero-tests and the updates are incrementations and decremen-
tations. Formally, a (Minsky) counter machine is a tuple M = (Loc,C,Δ) where Loc =
{�1, . . . , �m} is finite set of locations, C = {c1, . . . ,cn} is a finite set of counters, and
Δ⊆ Loc×OP(C)×Loc is a finite set of transition rules carrying operations from a set

OP(C) def= C×{++,--,=0?}.
In pictorial representations, a counter machine is usually depicted as a directed graph

where transition rules are OP(C)-labeled edges between control locations, see Fig. 1 for
a simple example. An operation of the form c++ denotes the incrementation of counter
c, while c-- denotes its decrementation. Decrementations are only firable when the
counter at hand holds a strictly positive value, as is formally stipulated in the operational
semantics. Operations of the form c=0? are tests used to restrict transition steps.

2.1 Operational Semantics

Let M = (Loc,C,Δ) be a counter machine. A configuration of M is some σ = 〈�,aaa〉 ∈
Conf

def= Loc×N
C, i.e., a current control location � and a C-indexed vector aaa of natural

numbers (one current value for each counter in C). If we assume, as we shall do from
now on, that C = {c1, . . . ,cn}, we may identify N

C with N
n and write σ under the form
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Fig. 1. M: a counter machine that enumerates all pairs (a1,a2) ∈N
2

〈�,a1, . . . ,an〉. We sometimes use counter names as positional indexes when there is a
need for disambiguation, e.g., writing 〈000,ck : 1,000〉 for the k-th unit vector.

The operational semantics of M is given under the form of transitions between its

configurations. Formally, there is a transition (also called a step) σ δ−→std σ′ if, and only
if, σ is some 〈�,a1, . . . ,an〉, σ′ is some 〈�′,a′1, . . . ,a′n〉, δ = (�,op, �′) and either:

– op is ck=0? (zero test): ak = 0, and a′i = ai for all i = 1, . . . ,n, or
– op is ck-- (decrementation): a′k = ak−1, and a′i = ai for all i 	= k, or
– op is ck++ (incrementation): a′k = ak + 1, and a′i = ai for all i 	= k.

As usual, we write σ −→std σ′ when σ δ−→std σ′ for some δ ∈ Δ. Chains σ0 −→std σ1 −→std

· · · −→std σk of consecutive steps, also called runs, are denoted σ0
∗−→std σk, and also

σ0
+−→std σk when k > 0. For example, M from Fig. 1 has a run:

〈�0,0,0〉 −→std 〈�1,0,0〉 −→std 〈�2,0,0〉 −→std 〈�0,1,0〉 −→std 〈�3,0,0〉 −→std 〈�0,0,1〉
−→std 〈�1,0,1〉 −→std 〈�4,0,0〉 −→std 〈�1,1,0〉 −→std 〈�2,1,0〉 −→std 〈�0,2,0〉 −→std 〈�3,1,0〉

For a vector aaa = (a1, . . . ,an), or a configuration σ = 〈�,aaa〉, we let |aaa| = |σ| def= ∑n
i=1 ai

denote its size. For N ∈ N, we say that a run σ0 −→std σ1 −→std · · · −→std σk is N-bounded
if |σi| ≤ N for all i = 0, . . . ,k.

The above definitions use a “std” subscript when writing steps to emphasize that
they rely on the usual, standard, operational semantics of counter machines, where the
behavior is reliable. We now introduce lossy counter machines as counter machines
with a different semantics.

2.2 Lossy Counter Machines

In lossy counter machines, the contents of the counters may decrease non-determinis-
tically (the machine can “leak”, or “lose data”). This behavior is not under the control
of the machine, i.e., it can be seen as some inherent non-determinism. Furthermore, the
lossy machine does not have any direct way of noticing if/when a loss occurs. Hence
lossy counter machines are less powerful than standard, reliable, counter machines.

Technically, it is more convenient to see lossy machines as counter machines with
a different operational semantics (and not as a special class of machines): thus it is
possible to use simultaneously the two semantics and to relate them.
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Formally, this is defined via the introduction of a partial ordering between the con-
figurations of M:

〈�,a1, ...,an〉 ≤ 〈�′,a′1, ...,a′n〉 def⇔ � = �′ ∧a1 ≤ a′1∧·· ·∧an ≤ a′n.

One way to read σ≤ σ′ is to see σ as the result of some losses (possibly none) in σ′.
Now “lossy” steps, denoted σ δ−→lossy σ′, are given by the following definition:

σ δ−→lossy σ′ def⇔ ∃θ,θ′ : (σ≥ θ ∧ θ δ−→std θ′ ∧ θ′ ≥ σ′). (†)

Note that reliable steps are a special case of lossy steps:

σ−→std σ′ implies σ−→lossy σ′. (‡)

An immediate corollary of (†) is the so-called “monotonicity of steps” property:

Fact 2.1 ((Strong) Monotonicity)
1. Assume σ−→lossy τ. Then σ′ −→lossy τ′ for all σ′ ≥ σ and all τ′ ≤ τ.

2. Assume σ +−→lossy τ. Then σ′ +−→lossy τ′ for all σ′ ≥ σ and all τ′ ≤ τ.

Remark 2.2. Here the adjective “strong” emphasizes the fact that the existence of some
step σ −→lossy τ implies the existence of σ′ −→lossy τ for all σ′ ≥ σ, (rather than some
σ′ −→lossy τ′) and, symmetrically, the existence of σ−→lossy τ′ for all τ′ ≤ τ. ��

2.3 Dickson’s Lemma

The configuration ordering enjoys the following key property:

Fact 2.3 (Wqo). (Conf ,≤) is a well-quasi-ordering.

This is otherwise known as Dickson’s Lemma. It means that any infinite sequence
σ0,σ1,σ2, . . . of configurations contains an infinite increasing subsequence σi0 ≤ σi1 ≤
σi2 ≤ ·· · . Equivalently, not only is the ordering well-founded (there is no infinite de-
creasing sequence σ0 > σ1 > σ2 > · · · ) but every linearisation is well-founded. In par-
ticular, there is no infinite set of pairwise incomparable configurations. See [34] for
more information.

It is the combination of monotonicity of steps with the wqo-property that turns lossy
counter machines into what are called well-structured transition systems [28,5].

2.4 Semilinear Sets of Configurations

A set of configurations R⊆ Conf is linear if it can be written under the form

R = {〈�,aaa+ k1.bbb1 + · · ·+ km.bbbm〉 | k1, . . . ,km ∈ N}
for some base configuration 〈�,aaa〉 and some finite set of increments bbb1, . . . ,bbbm ∈ N

n.

For example the upward-closure ↑σ def= {θ ∈ Conf | θ ≥ σ} of a single configuration is
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linear, with σ itself as the base, and n unit vectors, one per counter, as increments. A
second example is the singleton set {σ}, linear too, with same base but no increments.

A set R ⊆ Conf is semilinear if it is a finite union R = L1 ∪ ·· · ∪Lk of linear sets.
In particular, the empty set is semilinear (take k = 0) and Conf itself is semilinear as
⋃

�∈Loc ↑〈�,000〉.
It is well-known that semilinear sets are exactly the sets that can be denoted by Pres-

burger formulae (effective translations between the two representations exist) and that
they are closed under complement, intersection, projection, etc., all this in an effec-
tive way [33,37]. Slightly abusing notations, we shall use letters like X ,Y, . . . to denote
semilinear sets of configurations and, at the same time, to denote their finitary descrip-
tions (e.g., Presburger formulae, or bases cum increments) that can be given as input to
algorithms.

Not all sets of configurations are semilinear but many interesting sets can be de-
noted by Presburger formulae (e.g., the set of all configurations whose size satisfy a
Presburger constraint) and thus are semilinear.

The following is even more important for our purposes:

Fact 2.4 (Order-closed sets are semilinear). If R⊆ Conf is upward-closed or down-
ward-closed, it is semilinear.

Indeed, by the wqo-property, an upward-closed R has finitely many minimal elements,
hence can be written R = ∪σ∈min(R)↑σ which is semilinear. For a downward-closed R,
we observe that its complement is upward-closed, hence semilinear, and rely on the fact
that the complement of a semilinear set is semilinear.

3 Reachability and Safety

From now on, we omit the “lossy” subscript and write σ −→ σ′ instead of σ −→lossy σ′.
This is because the lossy steps are our main objects. We only revert to the fully explicit
notation when it is necessary to consider both reliable and lossy steps at the same time
(for example in Section 7).

3.1 Post-sets and Pre-sets

For R ⊆ Conf , we let Post(R) def= {σ′ | ∃σ ∈ R : σ −→ σ′} denote the set of immediate
successors of configurations in R. Similarly, we let Post∗(R) and Post+(R) denote the set
of configurations reachable from R through an arbitrary number (resp. strictly positive
number) of steps. Similarly, Pre(R), Pre∗(R), and Pre+(R) denote sets of predecessors
configurations, from which a configuration in R can be reached.

A consequence of monotonicity (Fact 2.1) is the following order-closure property:

Fact 3.1. For any R ⊆ Conf , Post(R) and Post+(R) are downward-closed sets, while
Pre(R) and Pre+(R) are upward-closed sets.

Corollary 3.2. For any R ⊆ Conf , Pre(R), Pre+(R), Post(R) and Post+(R) are
semilinear.

Furthermore, if R itself is semilinear, then Post∗(R) and Pre∗(R) too are semilinear.



56 P. Schnoebelen

Here the first point is just an applications of Fact 2.4 while the second point stems from
Post∗(R) = R∪Post+(R) and symmetrically for Pre∗(R).

Note that, if R is semilinear, one can compute Post(R) and Pre(R) uniformly from R
(and M). This has little to do with lossiness: counter machines is a low-level computa-
tional model with simple operational semantics for single steps. For counter machines,
the one-step relations −→std and −→lossy, seen a subsets of Conf ×Conf , are semilinear
(and easily read out of M).

3.2 Reachability Problems

The main question is the decidability of a general form of reachability questions, that
we call general reachability in order to distinguish it from its less general variants.

General_Reachability:
Given: a LCM M, two semilinear sets of configurations X and Y .
Question: does there exist σ1 ∈ X and σ2 ∈ Y such that σ1

∗−→ σ2? In such a case,

we write X
∗−→ Y .

Equivalently: Does Post∗(X)∩Y 	= ∅? Does Pre∗(Y )∩X 	= ∅?

In the literature, reachability problems often appear in other forms:

Configuration_Reachability: does σ0
∗−→ σt for given starting configuration σ0 and tar-

get configuration σt?
Location_Reachability: is there some aaa ∈ N

n such that σ0
∗−→ (�,aaa) for given σ0 and

target location � ∈ Loc?
Coverability: is there some σ≥ σt such that σ0

∗−→ σ for given σ0 and target configura-
tion to be covered σt?

Safety: does Post∗(X0) ⊆ Xs for given semilinear set of starting configurations X0 and
semilinear set of “safe” configurations Xs?

Obviously, all these problems are special cases of General_Reachability (or of its com-
plement in the case of Safety), hence are easier. We observe that location reachability is
a special case of coverability, and that coverability and single-configuration reachability
almost coincide since, thanks to Fact 2.1, one can cover σg from σ0 if, and only if, σg

is reachable from σ0 or is already covered by it (i.e., σ0 ≥ σg).

3.3 Decidability of Reachability

Theorem 3.3. General_Reachability is decidable for lossy counter machines.

First observe that general reachability is r.e. (it is enough to guess a run and check it,
which amounts to simulating M) so that there only remains to show that non-reachability
is r.e. too.

For this, we rely on semilinear invariants. An inductive invariant, or just “an invari-
ant”, is a set of configurations I such that Post(I)⊆ I or, equivalently, Pre(J)⊆ J letting

J
def= Conf � I.
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Classically, invariants are used to prove safety properties, relying on the following
fact: if R ⊆ I for some invariant I, then Post∗(R) ⊆ I. They can be used as negative
witnesses for general reachability: finding an invariant I that contains X and does not
intersect Y proves that one cannot reach Y from X , written ¬(X ∗−→ Y ) for short.

This method is complete since, if ¬(X ∗−→ Y ), this is certainly witnessed by invari-
ants, the smallest one being Post∗(X) and the largest being Conf � Pre∗(Y ) [45]. The
method can be made effective by restricting to semilinear invariants. Only considering
semilinear invariants allows enumerating candidates sets I and it allows checking that
a candidate I is indeed an invariant, that it contains X , and does not intersect Y . Re-
stricting to semilinear invariant does not hinder completeness since, e.g., Post∗(X) and
Conf � Pre∗(Y ) are semilinear (by Coro. 3.2).

Finally, general reachability is co-r.e., and being r.e. too, is decidable.

Remark 3.4. We observe that the key ingredient for the above proof is simply that the
reachability sets Post∗(X) are “regular” in some sense (for LCM’s, they are semilinear)
and that the one-step image Post(X), or the pre-image Pre(X), is semilinear too and can
be computed effectively from X . This proof technique is quite general and applies to
many different situations. For example, the same argument was used for reversible Petri
nets in [14], or for 3-dim VASS’s in [36]. ��
Corollary 3.5. Configuration_Reachability, Location_Reachability, Coverability, and
Safety are decidable for lossy counter machines.

3.4 Reachability Logic

The reachability problems we just proved decidable can all be stated in a first-order
logic of reachability, where the basic predicates are s −→ t, s

∗−→ t, and s ∈ X for X a
semilinear set.

For example, Safety is written

∀s ∈ X0 : ∀t ∈ Xs : ¬(s ∗−→ t), (ϕSaf)

while configuration reachability and coverability are written, respectively,

∃s ∈ {σ0} : ∃t ∈ {σt} : s
∗−→ t, (ϕCR)

∃s ∈ {σ0} : ∃t ∈ ↑σt : s
∗−→ t. (ϕCov)

These examples show that it is convenient to allow a simple language of terms de-
noting semilinear sets, like singletons “{σ}” or upward-closure “↑X”. Below we also
use Boolean operations, e.g., “X �Y”, and order-theoretic constructions e.g., writing
“min(X)” to denote the set of minimal configurations in X . In any case we only use
Presburger-definable operations: they always denote semilinear sets that can be com-
puted effectively from their semilinear operands.

The model-checking problem for reachability logic is a natural generalization of
the reachability problems we considered in Section 3.2. This problem is undecidable
in general but identifying the decidable fragment is certainly an interesting question



58 P. Schnoebelen

that is still very open. The question is even more interesting since there is ample room
for refining and extending the logic in meaningful ways (see Section 8.1 for related
questions).

Regarding some of the simplest non-trivial formulae, we can already provide a few
results:

∃s ∈ X : ∃t ∈Y : s
∗−→ t decidable (one-to-one)

∀s ∈ X : ∃t ∈Y : s
∗−→ t decidable (from-all)

∃s ∈ X : ∀t ∈Y : s
∗−→ t undecidable, Σ0

2-complete (one-to-all)

∀s ∈ X : ∀t ∈Y : s
∗−→ t undecidable, Π0

1-complete (all-to-all)

∀t ∈Y : ∃s ∈ X : s
∗−→ t undecidable, Π0

1-complete (to-all)

∃t ∈Y : ∀s ∈ X : s
∗−→ t decidable (all-to-same)

The undecidability results in the above list will be proven later, in Section 7. We
mention them now because they are an indication that we should find the decidability
results a bit surprising.

Regarding the decidability results, one-to-one formulae are just general reachability
and have been shown decidable above. Observe that this entails the decidability of

∃s ∈ X : ∃t ∈ Y : s
+−→ t. (one-to-one’)

Indeed this formula, also written X
+−→ Y , is equivalent to both Post(X) ∗−→ Y and X

∗−→
Pre(Y ), and Post(X) and Pre(Y ) are semilinear sets that can be computed effectively
from X and Y (and M), see Coro. 3.2.

Regarding from-all formulae, they reduce to conjunctions of simple reachability
questions with the following reasoning:

∀s ∈ X : ∃t ∈ Y : s
∗−→ t (from-all)

⇔ ∀s ∈ (X �Y ) : ∃t ∈ Y : s
+−→ t

⇔ ∀s ∈min(X �Y ) : ∃t ∈ Y : s
+−→ t

where the last step of the reduction relies on monotonicity of lossy steps (Fact 2.1).
Now, min(X �Y ) is some finite set {σ1, . . . ,σk} (Fact 2.3) that can be computed effec-
tively from X and Y . Thus we have reduced a from-all formula to a finite conjunction
of one-to-one’ formulae.

We now turn to all-to-same formulae. The main idea is easier to understand if we
consider a version where

+−→ is used:

∃t ∈ Y : ∀s ∈ X : s
+−→ t. (all-to-same’)

One can simplify this by using monotonicity on both sides of the steps:1

∃t ∈Y : ∀s ∈ X : s
+−→ t ⇔ ∃t ∈min(Y ) : ∀s ∈min(X) : s

+−→ t.

1 Here it is crucial that the source is universally quantified upon and the destination is existen-
tially quantified upon. It would not work the other way around.



Lossy Counter Machines Decidability Cheat Sheet 59

Hence, letting min(X) = {σ1, . . . ,σk} and min(Y ) = {σ′1, . . . ,σ′m}, we have reduced

all-to-same’ to
∨m

j=1
∧k

i=1 σi
+−→ σ′j, a finite disjunction of conjunctions of decidable

questions.
One can now show the decidability of all-to-same formulae by adapting the above

idea. One possible way is to rely on, e.g.,

∃t ∈ Y : ∀s ∈ X : s
∗−→ t ⇔

(
∃t ∈min(Y ) : ∀s ∈min(X) : s

+−→ t
∨ ∃t ∈min(X)∩Y : ∀s ∈min(X) : s

∗−→ t

)

.

Again, we end up with a finite combination of decidable reachability questions.

3.5 Computing Co-reachability Sets

One can go beyond Theorem 3.3 and compute the co-reachability sets.

Theorem 3.6 (PPPrrreee∗∗∗ is effective). For semilinear X ⊆ Conf , Pre∗(X) can be computed
effectively as a function of X and M.

Indeed, we know that Pre∗(X) is a semilinear set X0 that satisfies both

X0 ⊆ Pre∗(X), i.e., ∀s ∈ X0 : ∃t ∈ X : s
∗−→ t, (1)

and

X0 ⊇ Pre∗(X), i.e., ¬(∃s 	∈ X0 : ∃t ∈ X : s
∗−→ t

)
. (2)

These two formulae are decidable for given X and X0: (1) is a from-all formula while
(2) is a negated one-to-one formula. Thus we can effectively recognize when a given
X0 coincides with Pre∗(X). There only remains to enumerate all semilinear X0 until we
encounter Pre∗(X), which is bound to eventually happen.

Computing Pre∗(X) is useful in many situations where just deciding reachability
questions would be insufficient. For example, Theo. 3.6 lets us list, or count, the number
of starting configurations that do not satisfy a given safety property.

3.6 Computing Reachability Sets

Surprisingly, it is not possible to compute Post∗(X) effectively. This is captured more
precisely by the following statement:

Theorem 3.7 (On computing PPPooosssttt∗∗∗)
1. The question whether, for semilinear X and Y , Post∗(X)⊆ Y is decidable.
2. The question whether, for semilinear X and Y , Post∗(X)⊇ Y is Π0

1-complete.

Indeed, Point 1 is the decidability of Safety, and Point 2 is the undecidability of to-all
formulae (Section 3.4).

There is a troubling lack of symmetry here, between the computable Pre∗ and the
non-computable Post∗. We stress that this situation has little to do with the specifics
of counter machines. Indeed, most of the proofs above only rely on monotonicity of
steps, on Dickson’s Lemma, and basic assumptions on the operational semantics (e.g.,
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Presburger-definable one-step relation) that are fulfilled by many models. The bot-
tom line is that most decidability proofs above rely on the closure properties stated
in Coro. 3.2 where the asymmetry appears: upward-closed sets have a finite basis (on
which one can base algorithms), while downward-closed sets do not.2

4 Termination and Inevitability

In this section, we consider termination and more general inevitability properties.

4.1 Termination

Consider the following problems:

Termination:
Given: a LCM M and an initial configuration σ0,
Question: does M terminate?
Equivalently: are all runs starting from σ0 finite?

Looping:
Given: a LCM M and an initial configuration σ0,

Question: may the system loop? I.e., is there a configuration σ s.t. σ0
∗−→ σ +−→ σ?

Of course, looping is a special case of non-termination. That they coincide is less
usual!

Lemma 4.1. A lossy counter machine is looping if, and only if, it does not terminate.

Indeed, assume there is an infinite run σ0 −→ σ1 −→ σ2 −→ . . .. The wqo property entails

that there must be positions k < l along this run with σk ≤ σl . Since σk
+−→ σl , mono-

tonicity (Fact 2.1) entails σk
+−→ σk and we have a loop.

Theorem 4.2. Termination and looping are decidable for lossy counter machines.

The proof of Theorem 4.2 is much simpler than one would expect.
First, we observe that termination is r.e.: since the transition relation is finitely branch-

ing, we know (Kőnig’s Lemma) that if all runs from σ0 are finite, then the tree of all runs
is finite and an exhaustive simulation algorithm will terminate after examining finitely
many runs.

On the other hand, looping too is r.e.: one just has to guess a looping run σ0
∗−→ σk

+−→
σk, which can be represented finitely and checked in finite time.

Now since looping and non-termination coincide, the two problems are r.e. and co-
r.e., hence decidable.

2 Finite representations of upward-closed sets exist but they use some kind of “limits
points” [27]. For lossy counter machines, the limit points are extended configurations where
some counters contain ω. These behave like directed sets of configurations, not like real indi-
vidual configurations.
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Remark 4.3. The beauty of this proof is that termination and looping are r.e. very gener-
ally. That is to say, termination is r.e. for most sensible computation models, e.g., Turing
machines or Minsky counter machines, and the same is true of looping. Thus that part
of the proof is totally generic. What is specific to lossy counter machines is that non-
termination and looping coincide. Indeed, they do not usually coincide for other models
where a system may have infinite runs but no looping ones. ��

4.2 Inevitability

Inevitability means that all runs will eventually stumble into something. We consider a
slightly more general form:

Strong_Inevitability:
Given: a LCM M, an initial configuration σ0, and two semilinear sets X1,X2⊆Conf
of configurations,
Question: do all runs from σ0 stay within X1 until they eventually visit X2?
Equivalently: does the CTL formula A[X1U X2] hold in σ0?

Observe that termination is a special case of strong inevitability (by letting X2 = Halt
def=

Conf � Pre(Conf ) be the set of all “dead” configurations, from which no move is
possible).

Theorem 4.4. Strong inevitability is decidable for lossy counter machines.

The reasoning is similar to what we did for termination: First, strong inevitability is
r.e. There remains to see that it is also co-r.e., i.e. that there are finite witnesses for
non-inevitability. So assume that there is a run that violates strong inevitability, that run
is either finite or infinite. If it is finite, it is a finite witness. If it is infinite, then the
LCM has an infinite run that remains inside X1 �X2. By the wqo property, there are two
configurations σi ≤ σ j along this run. By the monotonicity property, there is a looping

run σ0
∗−→ σi

+−→ σi. This looping run remains inside X1 �X2 and is the finite witness we
need.

4.3 Undecidability

The decidability of termination and inevitability is very fragile. We only give two
examples:

Uniform_Termination:
Given: a LCM M,
Question: does M terminate from all starting configurations σ ∈ Conf ?

Repeated_Inevitability:
Given: a LCM M, an initial configuration σ0, and a semilinear set X ⊆ Conf of
configurations,
Question: do all runs from σ0 visit X infinitely many times?
Equivalently: does the ECTL formula AF∞X hold in σ0?
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Theorem 4.5. Uniform_Termination and Repeated_Inevitability are Π0
1-complete for

lossy counter machines.

For these two problems, membership in Π0
1 is a consequence of the results we already

saw. Indeed, the complement of Uniform_Termination can be written ∃σ,σ′ ∈ Conf :

σ ∗−→ σ′ +−→ σ′, or even ∃σ ∈ Conf : σ +−→ σ, which is in Σ0
1, while the complement of

Repeated_Inevitability is ∃ a run σ0
∗−→ σ +−→ σ such that X is not visited along the

σ +−→ σ loop. Π0
1-hardness is shown as Coro. 7.2 in Section 7.

Corollary 4.6. The set Halt of configurations from which M must terminate cannot be
computed.

Note that, for lossy counter machines, Halt is both downward-closed and an invariant,
and it has a decidable membership problem (Theorem 4.2).

5 Büchi and Liveness

Here we consider the following problems:

Buchi:
Given: a LCM M, a configuration σ0, and a location � ∈ Loc,
Question: is there a run starting from σ0 that visits � infinitely many times?

Looping_on_location:
Given: a LCM M, a configuration σ0, and a location � ∈ Loc,

Question: is there a looping run on �, i.e., does σ0
∗−→ 〈�,aaa〉 +−→ 〈�,aaa〉 for some aaa?

At first glance, the situation with Buchi and Looping_on_location appears very similar
to what we encountered in Section 4. Now, instead of just considering the existence of
infinite runs, we ask for infinite runs that visit a given � infinitely many times. Still, we
can adapt Lemma 4.1:

Lemma 5.1. Buchi and Looping_on_location coincide.

Proof. Obviously, Looping_on_location entails Buchi. For the reverse direction, as-
sume there exists an infinite run visiting � infinitely often:

σ0
∗−→ 〈�,aaa1〉 +−→ 〈�,aaa2〉 +−→ 〈�,aaa3〉 +−→ ·· ·

By the wqo property, there exists some aaai ≤ aaaj for some i < j. Hence 〈�,aaaj〉 +−→ 〈�,aaa j〉
by the monotonicity property. Finally, we have proven the existence of a run looping
on �. ��
From there, we cannot prove decidability by claiming that Buchi is both r.e. and co-r.e.,
as we did for non-termination, It is r.e. since looping on � is. But the absence of Büchi
runs does not have finite witnesses, as the absence of infinite runs has. (For Minsky
machines, non-termination is Σ0

1-complete while Buchi is Σ1
1-complete).
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Finally Buchi is undecidable:

Theorem 5.2. Buchi and Looping_on_location are Σ0
1-complete for lossy counter

machines.

For these two equivalent problems, membership in Σ0
1 is clear. Σ0

1-hardness is shown as
Coro. 7.4 in Section 7.

6 Finiteness of the Reachability Sets

Here we consider the following problems:

Finiteness:
Given: a LCM M and an initial configuration σ0,
Question: is the reachability set Post∗(σ0) finite?
Equivalently: (Boundedness) is there a bound B∈N such that |σ| ≤ B for all reach-
able σ?

Unbounded_Run:
Given: a LCM M and a configuration σ0,
Question: is there an infinite run from σ0 that visits ever larger configurations?
Equivalently: is there a run that visits infinitely many different configurations?

The two problems are complementary since a system is unbounded if, and only if,
it has an unbounded run. To see this, which is not specific to lossy counter machines,
assume that Post∗(σ0) is infinite. Since every reachable configuration is reachable via a
pure run, i.e., a run that does not visit any configuration twice, we conclude that there
are infinitely many pure runs. By arranging them in a tree and invoking Kőnig’s lemma,
we conclude that there exists an infinite pure run (since all its finite prefixes are pure).
Hence M has an unbounded run.

6.1 Undecidability

Finiteness is undecidable for LCM’s:

Theorem 6.1. Finiteness is Σ0
1-complete and Unbounded_Run is Π0

1-complete for lossy
counter machines.

When it first surfaced (in [39]), undecidability of Finiteness was a bit surprising in
a way that is difficult to explain in retrospect. The result is now well-known and we
give a direct proof in Section 7. Before undecidability was known, there were two lines
of reasoning pointing to a conjecture of decidability: firstly, the fact that Post∗(σ0)
is regular suggested that one could compute it, and secondly, one expected Karp and
Miller’s procedure to extend to all monotonic systems, inferring an unbounded run from

an increasing prefix σ0
∗−→ σ1

+−→ σ2 with σ1 < σ2.
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6.2 Uniform Finiteness

Uniform finiteness is to finiteness what uniform termination is to termination:

Uniform_Finiteness:
Given: a LCM M,
Question: are all the reachability sets Post∗(σ) finite?
Equivalently: does every run in M visit only finitely many different configurations?

Mayr showed that uniform finiteness is undecidable for lossy counter machines. This
result is perhaps not surprising in view of the undecidability of finiteness. However the
proof is still delicate since, in the encoding showing hardness, one cannot easily anchor
the considered behaviors on some given natural starting configuration.

Theorem 6.2. Uniform_Finiteness is Π0
2-complete for lossy counter machines.

Here, membership in Π0
2 is obvious since finiteness is in Σ0

1. For Π0
2-hardness, we refer

to Section 7.

7 Proving Undecidability

Undecidability, and more generally hardness, results are almost always established by
reductions. This means taking some hard computational problems and encoding it in
LCM’s. This encoding can be tricky since, as we noted, LCM’s are hard to control
because of the possibly adversarial losses. Early undecidability proofs for lossy systems
(e.g. [6,39,1]) are sometimes hard to understand and then to adapt to related problems.

In this section we want to explain how the idea of “putting a counter machine on a
budget” can be used as a simple, yet versatile and powerful, gadget allowing easy-to-
understand hardness proofs.

7.1 Putting Counter Machines on a Budget

With a Minsky counter machine M = (Loc,C,Δ) we associate a derived Minsky ma-
chine denoted Mon_budget, or Mb for short.

In essence, Mon_budget is obtained by adding to M an extra “budget” counter B and
by adapting the rules of Δ so that any incrementation (resp. decrementation) in the
original counters is balanced by a corresponding decrementation (resp. incrementation)
on the new counter B. Thus, the sum of the counters remains constant in Mb. This is
a classic idea in Petri nets and counter machines. The construction is described on a
schematic example (Fig. 2) that is more explicit that a formal definition. Observe that
extra intermediary locations (in gray) are used, and that a step in M that increments
some ci will be forbidden in Mb when the budget is exhausted (instead, Mb may reach
a new, terminal, bankrupt location).

This construction enjoys a few obvious properties that we now state informally (for-
mal statements are given in [44]).

MMMbbb simulate MMM: Any reliable run 〈�,aaa〉 ∗−→std 〈�′,aaa′〉 of M can be simulated as some
〈�,B,aaa〉 ∗−→std 〈�′,B′,aaa′〉 in Mb provided with some large enough budget B ∈ N.



Lossy Counter Machines Decidability Cheat Sheet 65

M
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c3=0?
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�2

�3
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c3=0?

c1--

B++

B--

B=0?

c2++

4

3

0

93

c1

c2

c3

B

Fig. 2. From M to Mb (schematically)

MMMbbb can only simulate MMM: Any reliable run in Mb can be seen as a run in M if we forget
about the extra budget counter.

Counters are bounded: A lossy run 〈�,aaa〉 ∗−→lossy 〈�′,aaa′〉 in Mb has |aaa′| ≤ |aaa|, i.e., the
total sum of the counters can not increase.

Losses are visible: A lossy run 〈�,aaa〉 ∗−→lossy 〈�′,aaa′〉 in Mb is also a reliable run if, and
only if, |aaa| = |aaa′|, i.e., if the total sum of the counters is unchanged (and the run
does not bankrupt).

7.2 Undecidability of Uniform Termination

The above properties can be put to use immediately. Let M be some Minsky machine
and σ = 〈�,aaa〉 one of its configurations.

Proposition 7.1. There is a loop 〈�,aaa〉 +−→std 〈�,aaa〉 in M if, and only if, there is a B ∈ N

and a loop 〈�,B,aaa〉 +−→lossy 〈�,B,aaa〉 in Mb.

Indeed, the loop in M is simulated in Mb by taking a large enough budget. And the loop
in Mb must be a reliable run since the total sum of the counters is unchanged, hence it
can be simulated in M.

Now recall that the question whether a Minsky machine has a loop σ +−→std σ (where
σ is existentially quantified upon) is undecidable, more precisely Σ0

1-complete3.

Corollary 7.2 (Undecidability). Uniform_Termination is Π0
1-hard for lossy counter

machines.

Indeed, Mb has an infinite run (starting from somewhere) if, and only if, it has a loop
(from somewhere). Hence Π0

1-hardness.

3 This applies even if we do not restrict to configurations that are reachable from a given starting
σ0. I do not have a reference at hand but it is an easy exercise in computability theory.
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7.3 Undecidability of Büchi Acceptance

We now show the undecidability of Buchi, or equivalently, of Looping_on_location,
for lossy counter machines. This can be obtained by elaborating on the proof used for
Coro. 7.2 above, but we find it more instructive to present another reduction that can be
adapted for the next section.

Let M be a Minsky machine with a starting location �init and an accepting location
�end. With M we associate a new machine M′ obtained as follows (see schematics in
Fig. 3): First we put M on a budget. Then we add two extra locations: �0 where B can
be given any value, and �1 from which we can start M (on a budget). Finally, from �end

it is possible to reset all counters to zero and go back to �1. This resetting uses the B
(budget) counter to store the total sum the other counters had, using perhaps a few extra
intermediary locations that are of no interest.

�0M′ : �1 Mon_budget�init �end

B++ 0

0

0

0

c1

c2

c3

B/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

Fig. 3. Reduction for undecidability of Buchi

Proposition 7.3. M has an accepting run 〈�init,000〉 ∗−→std 〈�end,aaa〉 if, and only if, M′ has
a lossy run starting from 〈�0,000〉 and visiting �1 infinitely many times.

Here, the left-to-right implication is clear: if M has an accepting run, this can be simu-
lated by M′ after it looped in �0 to start with a large enough budget. Once the accepting
run has been completely simulated, M′ can reset the counters, go back to �1 and repeat
the simulation infinitely many times.

Reciprocally, if M′ has a run that visits �1 infinitely many times, this run cannot
increase the total sum of the counters once it has left �0. Hence this total sum can
only decrease or stay constant. If the run is infinite, the total sum will eventually stay
constant. Thus, after some time, the lossy run only has reliable steps. Since it visits �1

(and thus also �init and �end) infinitely many times, after some time its reliable steps will
witness an accepting run of M.

Since the existence of an accepting run is Σ0
1-complete for Minsky machines, we

deduce:

Corollary 7.4 (Undecidability). Buchi is Σ0
1-hard for lossy counter machines.
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7.4 Undecidability of Finiteness

Our next reduction is a simple adaptation of the previous one (see schematics in Fig. 4).
The modifications are as follows: (1) the resetting of the counters is not reached from
�end but from the bankrupt location �bankrupt that Mb reaches when its budget appears to
be too small (recall Fig. 2), and (2) the initial value of B cannot be chosen as large as
one wants via a loop on �0: instead, B can only be incremented in the step from �1 to
�init.

�0M′′ : �1 Mon_budget�init

�end

�bankrupt

B++

0

0

0

0

c1

c2

c3

B/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

Fig. 4. Reduction for undecidability of Finiteness

Proposition 7.5. M has an unbounded (reliable) run starting from 〈�init,000〉 if, and only
if, M′′ has an unbounded (lossy) run starting from 〈�0,000〉.
Here again the left-to-right implication is clear. The unbounded run of M can be simu-
lated by M′′. This simulation is done in incremental stages. First M′′ reaches �init with a
low budget B = 1. The simulation proceeds until the budget is too low for continuing.
M′′ is then in the bankrupt location, resets its counters and goes back to �1. There B is
incremented and the simulation can be started from scratch, this time with B = 2. It will
now take more steps before bankrupting, resetting the counters, and starting again with a
larger budget. This simulation will reenact longer and longer prefixes of the unbounded
run of M, leading to a run of M′′ that is itself unbounded.

The right-to-left implication is more subtle. Assume M′′ has an unbounded run. Nec-
essarily, this run visits �1 infinitely many times since this is the only way to increase the
total sum of the counters. Let us write this unbounded run in the following way, isolating
the places where �1 is visited:

〈�0,000〉 +−→ 〈�1,aaa1〉 +−→ 〈�1,aaa2〉 +−→ 〈�1,aaa3〉 +−→ ·· ·
Zooming in a little bit on the part between two consecutive visits to �1, we see it must
be some subrun πi of the form

〈�1,aaai〉 ≡ 〈�1,Bi,000〉 −→ 〈�init,1 + Bi,000〉 ∗−→ 〈�bankrupt,B,ccc〉 +−→ 〈�1,Bi+1,000〉 ≡ 〈�1,aaai+1〉.
Now, Bi+1 ≤ 1+Bi since “Counters are bounded” and the sequence B1,B2, . . . can only
increase by 1 at a time. It can also decrease (by losses) but, since the run is unbounded,
it must eventually increase and for every k ∈ N, there is an index i such that Bi = k. If
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now we assume that ik is the first such index, we deduce Bik = 1 + Bik−1, hence the run
πik−1 only uses reliable steps (indeed, “Losses are visible”). Reliable steps simulate M,

hence πik−1 witnesses a run π′k ≡〈�init,000〉 +−→ 〈�,ccc〉 for some � and some ccc of size k. If we
assume that M is deterministic, these runs are longer and longer prefixes of the infinite
unbounded run of M. If M is non-deterministic, we use Kőnig’s Lemma to extract an
unbounded run from these ever larger finite runs.

Since the existence of an unbounded run is Π0
1-complete for Minsky machines, we

deduce:

Corollary 7.6 (Undecidability). Finiteness is Σ0
1-hard for lossy counter machines.

The reduction also shows undecidability for the to-all and all-to-all formulae of the
reachability logic (Section 3.4). For to-all formulae, i.e., formulae of the form ∀t ∈ Y :
∃s ∈ X : s

∗−→ t, we observe that by taking X = {σ0} and Y = {〈�1,k,000〉 | k ∈ N}, the
formula expresses the existence of an unbounded run in M′′. Since in this reduction X
is a singleton, the reduction also works for all-to-all formulae, of the form ∀s ∈ X : ∀t ∈
Y : s

∗−→ t.

7.5 Undecidability of Uniform Finiteness

We further adapt the previous reduction (see schematics in Fig. 5). Now M′′′ has an
extra counter K that is never modified and that is used to store a value with which to
reinitialize c1 when looping back to �1.

�0M′′′ :
�1

�2

Mon_budget�init

�end

�bankrupt

B++

n 0

0

0

0

K c1

c2

c3

B
/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

/* reinit c1 */

c1← K, B← B−K

Fig. 5. Reduction for undecidability of Uniform_Finiteness

Proposition 7.7. M has an unbounded (reliable) run starting from some 〈�init,c1 : n,000〉
if, and only if, M′′′ has an unbounded (lossy) run starting from some σ.

We reason as for the proof of Prop. 7.5, with very minor adaptations.
Again, the left-to-right implication is the easier one. Assume M has an unbounded

run from 〈�init,n,000〉. This can be simulated by M′′′ starting from 〈�init,B,K : n,c1 : n,000〉,
i.e., after we make sure that the extra counter K contains exactly n. As with Proposi-
tion 7.5, the simulation proceeds until the budget bankrupts. Then, M′′′ loops back to
�1, where the budget is incremented. and the simulation starts anew. This loop back to
�1 resets the counters with c1 = n, using the memory K to find the value (truly, a Minsky
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machine needs an auxiliary storage for this copy, but c2 can do the job). By visiting �1

infinitely many times, this simulation manages to produce an unbounded run of M′′′.
For the right-to-left implication, we assume that M′′′ has an unbounded run from

some arbitrary σ. Since the only way to increase the total sum of the counters is to
go through �1, the run must visit �1 infinitely many times, and increase the total sum
of the counters by at most one between such visits. Also, since K can only decrease
(by losses) it will eventually stays constant. Once K is constant (say = n), we have,
for any k ∈ N, a run like πik−1 above that increments B from k− 1 to k, going from
〈�init,B : k− 1,K : n,c1 : n,000〉 to 〈�init,k,n,n,000〉. This run only uses reliable steps and
witnesses, inside the Minsky machine, a path 〈�init,n,000〉 ∗−→ 〈�,aaa〉 for some aaa of size k.
Hence M has an unbounded run from 〈�init,n,000〉.

Since the question whether there exists some n ∈N such that a Minsky machine has
an unbounded run starting from 〈�init,n,000〉 is Σ0

2-complete, we deduce:

Corollary 7.8 (Undecidability). Uniform_Finiteness is Π0
2-hard for lossy counter

machines.

The reduction also shows Σ0
2-hardness of the one-to-all formulae of the reachability

logic. These have the form ∃s∈ X : ∀t ∈Y : s
∗−→ t. By taking X = Conf and Y = {〈�2,B :

k,000〉 | k ∈N}, the formula expresses the existence of an unbounded run in M′′′, i.e., the
negation of uniform finiteness.

8 Further Developments

We gather in this section a few results, remarks, and pointers to the literature, regarding
problems that are less central in the theory of lossy counter machines as it exists today.

8.1 Temporal Logic Model-Checking

Temporal logics [22] can express behavioral properties of systems in general, and of
lossy counter machines in particular. It has been observed in the literature on lossy sys-
tems that temporal logic model-checking is generally undecidable (e.g., [6] shows the
undecidability of both CTL model-checking and LTL model-checking for lossy chan-
nel systems). However, as with the reachability logic we considered in Section 3.4, the
picture can be more interesting if we focus on relevant fragments of general logics.

For lossy counter machines, the ∃CTL fragment of CTL has a decidable model-
checking problem. This fragment, also denoted B(EU,EX), is the branching-time logic
built on two CTL modalities EU and EX. Arbitrary nesting and Boolean combinations
are allowed, and we take all the semilinear sets as basic propositions.

Theorem 8.1 (Decidability of ∃∃∃CCCTTTLLL model-checking)
1. The problem, given a LCM M, a configuration σ, and an ∃CTL formula ϕ, whether
M,σ |= ϕ, is decidable.

2. Moreover, the set Mod(ϕ)
def
= {σ ∈ Conf | M,σ |= ϕ} is a semilinear set that can be

computed effectively from M and ϕ.
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Computing Mod(ϕ) is done by induction over the structure of ϕ. This uses standard
techniques like

Mod(¬ϕ) = Conf �Mod(ϕ),
Mod(ϕ∨ψ) = Mod(ϕ)∪Mod(ψ),
Mod(EXϕ) = Pre(Mod(ϕ)),

and relies on the fact that semilinear sets are closed under complementation, union and
the Pre operator, all this in an effective way.

For Mod(EϕUψ), semilinearity is seen after one unfolding of the Until:

Mod(EϕUψ) = Mod(ψ ∨ ϕ∧EXEϕUψ)
= Mod(ψ) ∪ Mod(ϕ)∩Pre(Mod(EϕUψ)).

The last expression denotes a semilinear set since Pre(· · · ) is always semilinear.
The computability of Mod(EϕUψ) can be shown with the same technique we used,

in Section 3.5, for the computability of Pre∗(X). Alternatively, one can use backward-
chaining algorithms whose termination is guaranteed by Dickson’s Lemma (see [9]).

Remark 8.2. The same techniques can be used to enlarge decidability from ∃CTL to
some existential fragment of the branching-time mu-calculus, where regular properties
like “there exists a run along which every even-numbered configuration is in X” can be
stated. See [11,9]. ��
Regarding other temporal modalities, we know that model checking one AϕUψ formula
is decidable when Mod(ϕ) and Mod(ψ) are effectively given semilinear sets (this is the
decidability of Strong_Inevitability from Section 4.2) but it is not possible to compute
Mod(AϕUψ), nor even (by Coro. 4.6) Mod(AF¬EX�).

As a consequence, nested AU modalities give undecidable model-checking prob-
lems (e.g., they can easily encode uniform termination).

Model-checking is also undecidable for ECTL modalities like EF∞ (this is the Buchi
problem from Section 5) and AF∞ (this is repeated inevitability from Section 4.3).

8.2 Games People Play on Lossy Counter Machines

Sections 3 to 5 focused on classical reachability, inevitability, or liveness properties,
but one is also interested in more general game-theoretical problems where several
opponents have conflicting goals. Branching-time temporal logic is only a first step
toward these new issues.

The question of checking game-theoretical properties of lossy counter machines has
barely been scratched. Obviously, one could expect that undecidability is everywhere
since the properties are more general. One could be wrong.

Let us illustrate this on an example. We consider a reachability game played in turn
by two opponents on a single LCM. Starting from σ0, Alice tries to reach �end by picking
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the odd-numbered lossy steps of a growing run, while Bob tries to frustrate her by
choosing adversarially the even-numbered lossy steps. The decision problem is:

Reachability_Game:
Given: a LCM M, an initial configuration σ0, and a goal location �end.
Question: does Alice have a winning strategy?

Surprisingly, this problem is very easy.

Theorem 8.3. Reachability_Game is PTIME-complete for lossy counter machines.

The paradox is explained when we realize that an optimal strategy for both players
can choose to always lose all the contents of the counters at every step. Indeed, losing
everything can only reduce our opponent’s options (because of strong monotonicity). It
also reduces our later options, but anyway the opponent will have the possibility to lose
everything if it hurts us.

Finally, it is possible to solve the game by restricting to the finite graph of all config-
urations 〈�,000〉 for � ∈ Loc, which is PTIME-complete.

Games on LCM’s can be more interesting. We could decide that Bob can only play
reliable steps. Or that Alice and Bob choose reliable steps while losses in the counters
are chosen probabilistically by the environment, leading to games with 2 1/2 players. Or
that the objective is more complex than just reachability. Many variations are possible,
motivated by different situations. We refer to [3,41,9,10,2,4] for results on such games.

8.3 Equivalence Checking

Comparing two systems is a classic decision problem. In the simplest situations, the
comparison criterion is an equivalence relation, sometimes a preorder.

When dealing with systems (like LCM’s) that give rise to infinite-state transition
systems, the behavioral equivalences one could use for verification purposes are often
undecidable. The main exception is strong bisimilarity that has been shown decidable
in many cases (and undecidable in many other cases) [13].

For lossy counter machines, equivalences are hard. One way to put it is to say that
all interesting relations between lossy counter machines are undecidable, even if we
only consider lossy VAS’s (i.e., lossy counter machines without zero-tests). A proof for
all relations between bisimilarity and trace containment can be obtained (see [42]) by
adapting Jančar’s classic proof for Petri nets [30]. The proof certainly extends, e.g., to
all equivalences between equality of the reachability set and trace containment modulo
invisibility of internal steps.

On the other hand, comparison between a lossy counter machine and a finite transi-
tion system is very often decidable.

This line of positive results was started by Abdulla and Kindahl [8] with the simula-
tion preorder and the bisimulation equivalence.

It turns out that there is a generic approach to these problems: the question whether
S� F or S≈ F for some finite F can often be translated as a temporal question, whether
S |= ϕ for some formula ϕ = ϕ�F or ϕ = ϕ≈F , called a characteristic formula for F, that
states exactly what is required to be� F or≈F . We refer to [12,31,35] for more details.
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In the special case of lossy counter machines, comparison with finite systems is
decidable for all the equivalences and preorders that admit characteristic formulae in
∃CTL. This is a direct corollary of Theorem 8.1. The equivalences and preorders thus
covered are numerous and include, e.g., weak bisimulation and branching bisimulation.

9 Decidable but Hard

Problems that are decidable for lossy counter machines are usually very hard.

9.1 Lower Bounds for Complexity

Reachability and termination are Ackermann-hard for LCM’s. We refer to [44] for a
recent and simplified proof that uses the same “counter machine on a budget” gadget
that we used in Section 7. Hardness extends, via obvious reductions, to most decidable
problems we listed in the previous sections (one major exception is the reachability
game from Section 8.2).

A finer analysis of the lower bounds shows that the most important parameter here is
the number of counters in a lossy counter machine. The hardness proof uses a number of
counters that cannot be bounded a priori. For a fixed number of counters, one only ob-
tains lower bounds at a finite, primitive-recursive, level in the Fast Growing Hierarchy,
see [44]. This is in accordance with what is known on upper bounds.

9.2 Upper Bounds

All along this paper, we deliberately avoided giving explicit algorithms for our decid-
ability proofs. However, algorithms exist in the literature. Their termination arguments
usually rely on the wqo property, and more precisely Dickson’s Lemma. From these,
upper bounds can be deduced, based on the length of bad sequences for the (Nn,≤)
wqo [40,17].

These upper bounds lie in the Fast Growing Hierarchy. The good news is that they
closely match the known lower bounds. In particular, an Ackermann upper bound holds
for most decidable problems on lossy counter machines, and this can be refined to
primitive-recursive upper bounds at various levels when one restricts attention to ma-
chines with a fixed number of counters. We refer to our upcoming paper for more
details [23].

10 Concluding Remarks

Lossy counter machines are a paradoxical computational model where unreliability
brings decidability. At the moment, they have mostly been used as a tool for hard-
ness results (undecidability or Ackermann-hardness). They have sometimes been used
under the symmetrical guise of counters with incrementation errors [19].
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In a leisurely way, we surveyed the main known results on both sides of the decid-
ability frontier. From this, two main conclusions emerge:

1. Most decidability results rely only superficially on specific features of lossy counter
machines. They can be obtained by a combination of very general properties enjoyed by
most models (e.g., finitely branching non-determinism, effective one-step relation, . . . )
and the combination of strong monotonicity of steps with the wqo property of configu-
rations. As a consequence, most of our decidability proofs can be easily adapted to other
classes of well-structured transition systems. For example, they hold mutatis mutandis
for lossy channel systems [7] or Reset Petri nets [20].

2. Most hardness results can be proved with the “machine on a budget” gadget. For
counter systems, this gadget is used in two different ways (pioneered by [21]). It can
bound the total sum of the counters, so that this sum must eventually stabilize along an
infinite behavior, or can only grow in controlled ways. Then, when the sum is stabilized,
the behavior must be reliable and hardness can be inherited from the Turing-powerful
Minsky machines.

Acknowledgements. We thank Pierre Chambart, Jérôme Leroux and Sylvain Schmitz
who greatly helped by proof-reading this paper at various stages.
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