
Temporal Logics over Linear Time Domains Are

in PSPACE

Alexander Rabinovich

The Blavatnik School of Computer Science
Tel Aviv University, Tel Aviv, Israel 69978

rabinoa@post.tau.ac.il

Abstract. We investigate the complexity of the satisfiability problem of
temporal logics with a finite set of modalities definable in the existential
fragment of monadic second-order logic. We show that the problem is in
pspace over the class of all linear orders. The same techniques show that
the problem is in pspace over many interesting classes of linear orders.

1 Introduction

A major result concerning linear-time temporal logics is Kamp’s theorem [12,9]
which says that TL(Until, Since), the temporal logic having Until and Since as the
only modalities, is expressively complete for first-order monadic logic of order
over the class of Dedekind complete linear orders.

The order of natural numbers ω = (N, <) and the order of the real num-
bers (R, <) are both Dedekind-complete. Another important class of Dedekind-
complete orders is the class of ordinals. However, the order of the rationals is not
Dedekind-complete. Stavi introduced two modalities UntilStavi and SinceStavi and
proved that the temporal logic having the four modalities Until, Since, UntilStavi

and SinceStavi is expressively complete for first-order monadic logic of order over
the class of all linear orders [9].

Our concern in this paper will be with the complexity of the satisfiability
problem for temporal logics over various classes of linear orders.

Sistla and Clarke [21] proved that the satisfiability problem for TL(Until, Since)
overω-models is pspace-complete. In [7], it was proven that the satisfiability prob-
lem for TL(Until, Since) over the class of all ordinals is pspace-complete. Cristau
[6] provided a double exponential space algorithm for the satisfiability of the
temporal logic having the four modalities Until, Since, UntilStavi and SinceStavi

over the class of all linear orders. These proofs are based on automata theoretical
techniques.

Burgess and Gurevich [5] proved that TL(Until, Since) is decidable over the
reals. They provided two proofs. The first involves an indirect reduction to Ra-
bin’s theorem on the decidability of the monadic second-order logic over the full
binary tree [14]. The second one is based on the model-theoretical composition
method. Both proofs provide algorithms of non-elementary complexity.

Reynolds [17,16] proved that the satisfiability problem for TL(Until, Since)
over the reals is pspace-complete and that the temporal logic with only the

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 29–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 A. Rabinovich

Until modality is pspace-complete over the class of all linear orders. The proofs
in [17,16] use temporal mosaics and are very non-trivial and difficult to grasp.
Reynolds conjectured [16] that the satisfiability problem for the logic with Stavi’s
modalities over the class of all linear orders is in pspace. Our results imply this
conjecture.

Let TL be a temporal logic with a finite set of modalities definable in the ex-
istential fragment of monadic second-order logic. We prove in a uniform manner
that the satisfiability problem for TL is in pspace over the following classes of
time domains: (1) all linear orders, (2) ordinals, (3) scattered linear orders, (4)
Dedekind-complete linear orders, (5) continuous orders, (6) rationals, (7) reals.
The proofs are based both on the composition method and on automata the-
oretical techniques and are easily adapted to various classes of structures and
temporal and modal logics.

Our first reduction uses the following notion. Let ϕ(X1, . . . , Xk) be a formula
with free set variables among X1, . . . , Xk. An instance of ϕ is a formula obtained
by replacingX1, . . . , Xk by monadic predicate names. Let Φ be a set of formulas.
A Φ-conjunctive formula is a conjunction of instances of formulas from Φ.

Our first reduction shows that for every temporal logic L with a finite set of
modalities definable in the existential fragment ofmonadic second-order logic there
is a finite set Φ of first-order formulas and a linear time algorithm that reduces the
satisfiability problem for L to the satisfiability problem for Φ-conjunctive formu-
las. This algorithm is based on a simple unnesting procedure and works as it is for
a much broader class of modal logics.

Next, we introduce recursively definable classes of structures. Our second
reduction shows that for every finite set Φ of first-order formulas and every
recursively definable class of structures C the satisfiability problem for the Φ-
conjunctive formulas over C is in exptime. Like the first reduction, this reduction
is quite general; it relies on the composition method and is sound not only for
linear orders. The first two reductions give an almost free exptime algorithm
for many temporal and modal logics with finite sets of modalities.

To obtain pspace upper bound we need more subtle arguments. We assign
a rank to every structure in a recursively definable class. An algorithm similar
to the algorithm in the second reduction shows that for every polynomial p the
problem whether a Φ-conjunctive formula ϕ is satisfiable over the structures of
rank p(|ϕ|) is in pspace. The main effort to show that the satisfiability problem
for a recursively definable class is in pspace is to establish that a formula is
satisfiable if it is satisfiable over the structures of a polynomial rank in the size
of the formula. We prove such a bound for many interesting classes of linear
orders. Our proof uses an automata-theoretical characterization of the temporal
logic with Stavi’s modalities over the linear orders found by Cristau [6].

The paper is organized as follows. The next section recalls basic definitions
about monadic second-order logic, its fragments and temporal logics. Sect. 3
states a linear reduction from temporal logics to conjunctive formulas. Sect. 4
reviews basic notions about the compositional method. Sect. 5 introduces recur-
sively defined classes of structures and Sect. 6 presents an exponential algorithm

Temporal Logics over Linear Time Domains Are in PSPACE 31

for the satisfiability of conjunctive formulas over these classes. Sect. 7 presents a
pspace algorithm for the satisfiability of conjunctive formulas over the class of
all linear orders and states a key lemma needed for its complexity analysis. Sect.
8 introduces finite base automata over arbitrary linear orders. Sect. 9 proves the
main lemma about runs of automata which is needed for the proof of pspace
bound of our algorithm. Sect. 10 proves in a “plug-and-play” manner pspace
bound over several interesting classes of linear orders and discusses related works.

Detailed proofs can be found in [15].

2 Monadic Logics and Temporal Logics

2.1 Monadic Second-Order Logic

Monadic second-order logic (MSO) is the fragment of the full second-order logic
allowing quantification only over elements and monadic predicates. One way to
define the monadic second-order language for a signature Δ (notation MSO(Δ))
is to augment the first-order language for Δ by quantifiable monadic predicate
variables (set variables) and by new atomic formulasX(t), where t is a first-order
variable and X is a monadic predicate variable. The monadic predicate variables
range over all subsets of a structure for Δ.

The quantifier depth of a formula ϕ is defined as usual and is denoted by
qd(ϕ).

We will use lower case letters t, t′ for the first-order variables and upper case
letters X,Y, Z for the monadic variables.

An MSO formula is existential if it is of the form ∃X1 . . .∃Xnϕ, where ϕ does
not contain second-order quantifiers. The existential fragment of MSO consists
of existential MSO formula and is denoted by ∃-MSO.

The first-order fragment of MSO contains formulas without the second-order
quantifiers. These formulas might contain free second-order variables which play
the same role as monadic predicate names. Hence, a formula in this fragment
is interpreted over an expansion of Δ structures by predicates which provide
meaning for the monadic variables. Sometimes, these free variables will serve as
metavariables. If ϕ(X1, X2) is a formula and P,Q are monadic predicate names,
we will say that the formula obtained from ϕ by replacing X1 by P and X2 by
Q is an instance of ϕ.

2.2 Temporal Logics and Truth Tables

Temporal logics use logical constructs called “modalities” to create a language
free from quantifiers. Below is the general logical framework to define temporal
logics:

The syntax of the Temporal Logic TL(O(k1)
1 , . . . , O

(kn)
n) has in its vocab-

ulary monadic predicate variables X1, X2, . . . and a sequence of modality names
with a prescribed arity, O(k1)

1 , . . . , O
(kn)
n (the arity notation is usually omitted).

The formulas of this temporal logic are given by the grammar:

ϕ ::= X | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

32 A. Rabinovich

When particular modality names are unimportant or are clear from the context,
we omit them and write TL instead of TL(O(k1)

1 , . . . , O
(kn)
n).

Structures for TL are partial orders with monadic predicates M = 〈A,<
, P1, P2, . . . , Pn, . . . 〉, where the predicate Pi is assigned to a predicate variable
Xi. Every modality O(k) is interpreted in every structure M as an operator
O

(k)
M : [P(A)]k → P(A) which assigns “the set of points where O(k)[S1 . . . Sk]

holds” to the k-tuple 〈S1 . . . Sk〉 ∈ P(A)k. (Here, P is the power set notation,
and P(A) denotes the set of all subsets of the domain A of M.) Once every
modality corresponds to an operator, the relation “ϕ holds in M at an element
a” (notations 〈M, a〉 |= ϕ) is defined as follows:

– for atomic formulas 〈M, a〉 |= X iff a ∈ P , where the monadic predicate
P is assigned to X .

– for Boolean combinations the definition is the usual one.
– for modalities: 〈M, a〉 |= O(k)(ϕ1, · · · , ϕk) iff a ∈ O

(k)
M (Pϕ1 , · · · , Pϕk

),
where Pϕ = { b | 〈M, b〉 |= ϕ }.

Usually, we are interested in a more restricted case; for the modality to be
of interest the operator O(k) should reflect some intended connection between
the sets Aϕi of points satisfying ϕi and the set of points O[Aϕ1 , . . . , Aϕk

]. The
intended meaning is usually given by a formula in an appropriate predicate logic.

Truth Tables: A formula O(t0, X1, . . .Xk) in the predicate logic L is a Truth
Table for the modality O if for every structureM and subsets P1, . . . , Pk ofM

OM(P1, . . . , Pk) = {a : M |= O[a, P1, . . . , Pk]} .

Thus, the modality ♦X , “eventually X”, is defined by

ϕ(t0, X) ≡ ∃t > t0(t ∈ X).

The modality XUntil Y , “X strict until Y ”, is defined by

∃t1(t0 < t1 ∧ t1 ∈ Y ∧ ∀t(t0 < t < t1 → t ∈ X)).

A truth table ϕ(t, Y1, · · · , Yk) defines in every structure a function from k-tuples
of subsets. It associates with the tuple Y1, · · · , Yk of subsets of a structure M,
the set of elements t in M that satisfy ϕ(t, Y1, · · · , Yk) in M. This is a special
case of a more general way to define a function on all the structures in a given
class of structures. Here is the formal notion of a definable functional.

Definition 2.1

1. Let L be a first-order or monadic second-order logic language, and letM be a
structure. Let ϕ(X,Y1, · · · , Yk) be a formula in L with no free first-order vari-
ables, and with no set variables except for those specified. ϕ is an implicit def-
inition of the functional X = fMϕ (Y1, · · · , Yk) if for any k subsets Y1, · · · , Yk

of M, X is the only subset of M for which M |= ϕ(X,Y1, · · · , Yk).

Temporal Logics over Linear Time Domains Are in PSPACE 33

2. A modality O(Y1, · · · , Yk) of a temporal logic has a generalized truth table
ϕ(X,Y1, · · · , Yk) in a structureM if ϕ implicitly defines the operator of O;
i.e., given subsets Y1, · · · , Yk of a structure M,

〈M, a〉 |= O(Y1, · · · , Yk) iff a ∈ fMϕ (Y1, · · · , Yk).

ϕ is a generalized truth table for O in a class C of structures if ϕ is a
generalized truth table for O in every M ∈ C.

If the logic is a second-order logic, then this definition is a special case of the clas-
sical definition of a function defined by a formula. Note that if θ(t0, Y1, · · · , Yk)
is a truth table for a modality O, then ∀t[X(t) ↔ θ(t, Y1, · · · , Yk)] is a general-
ized truth table for O. Therefore, the notion of a generalized truth table is more
general than that of a truth table. It is strictly more general. For example, it
is well-known that there is no first-order formula ϕ(t,X) which defines over the
naturals the set of points preceded by an even number of points in X ; however,
it is easy to write a first-order formula ψ(Y,X) which defines this modality over
(N, <).

If a modality O has a generalized truth table ϕ(X,Y1, · · · , Yk), where ϕ is an
existential monadic second-order formula, then ∃X(

(X(t0)) ∧ ϕ
)

is an ∃-MSO
truth table for O . Hence, a modality has an ∃-MSO truth table iff it has an
∃-MSO generalized truth table and we will say that it is ∃-MSO definable.

There are ∃-MSO definable modalities which are not definable even by gen-
eralized truth tables of the first-order logic. For example, there is an ∃-MSO
formula ϕ(Y,X) that expresses “Y holds at t if ¬X(t) and t precedes by a block
of X of length 3m some m > 0”, i.e., X(t − 1), X(t − 2), . . . X(t − 3m) and
¬X(t − 3m − 1). However, there is no first-order formula equivalent to ϕ over
(N, <).

Modal logics. Temporal logics are examples of modal logics. The syntax of
modal logics is defined exactly like the syntax of temporal logics. However, modal
logics can be interpreted not only over linear or partial orders, but over structures
of a more general signature Δ. Every modality O(k) is interpreted in every Δ-
structure M as an operator O(k)

M : [P(M)]k → P(M). Generalized truth tables
are defined by formulas overΔ. We state our results for temporal logics; however,
they hold for more general modal logics as well.

3 From Temporal Logic to Conjunctive Formulas

Let ϕ(X1, . . . , Xk) be a formula with free set variables among X1, . . . , Xk. An
instance of ϕ is a formula obtained by replacingX1, . . . , Xk by monadic predicate
names or monadic variables. Let Φ be a set of formulas. A Φ-conjunctive formula
is a conjunction of instances of formulas from Φ.

Our first reduction shows that for every temporal logic L with a finite set of ∃-
MSO definable modalities there is a finite set Φ of first-order formulas and a linear
time algorithm that reduces the satisfiability problem for L to the satisfiability
problem for Φ-conjunctive formulas.

34 A. Rabinovich

Proposition 3.1. Let TL be a temporal logic with a finite set of modalities.
Assume that every modality of TL is ∃-MSO definable. Then there is a finite set
Φ of first-order formulas, and a linear time algorithm which for every formula
ϕ(P1, . . . , Pm) ∈TL computes a Φ-conjunctive formula ψ(P1, . . . , Pm, Q1, . . . , Qs)
such that for every structureM in the signature {<,P1, . . . , Pm}, ϕ is satisfiable
inM iff ψ is satisfiable in an expansion ofM by monadic predicates (which are
the interpretations of Q1, . . . , Qs).

The proof of this proposition is based on a simple unnesting procedure. A similar
proposition holds for modal logics.

4 Elements of the Composition Method

Our proofs make use of a technique known as the composition method [8,20,11,22].
To fix notations and to aid a reader unfamiliar with this technique, we briefly re-
view the required definitions and results.

4.1 Hintikka Formulas and n-Types

Let M and M′ be structures over a relational signature Σ. For n ∈ N, the
structures M and M′ are said to be ≡n-equivalent if no first-order sentence
of quantifier depth ≤ n distinguishes between M and M′; i.e., for every ϕ of
quantifier depth ≤ n:

M |= ϕ iffM′ |= ϕ.

Lemma 4.1 (Hintikka Lemma). For n ∈ N and a finite relational signature
Σ we can compute a finite set Hinn := Hinn(Σ) of sentences of quantifier depth
≤ n such that:

1. For every ≡n-equivalence class E there is a unique τ ∈ Hinn such that for
every Σ-structureM: M,∈ E if and only if M |= τ .

2. Every sentence with qd(ϕ) ≤ n is equivalent to a (finite) disjunction of sen-
tences from Hinn. There is an algorithm which for every sentence ϕ computes
a finite set Gϕ ⊆ Hinqd(ϕ) such that ϕ is equivalent to the disjunction of all
the sentences from Gϕ. Moreover, τ ∈ Gϕ iff τ → ϕ.

(Note that this general method to deal with sentences is not efficient in the sense
of complexity theory, and that the algorithm is non-elementary.)

We call any member of Hinn a n-Hintikka sentence. We use τ , τi, τ ′ to range
over the Hintikka sentences.

Definition 4.2 (n-Type). For n ∈ N and a Σ-structure M, we denote by
typen(M) the unique member of Hinn satisfied in M.

Temporal Logics over Linear Time Domains Are in PSPACE 35

4.2 The Ordered Sum of Chains and of n-Types

A (labeled) chain M is a linear order expanded by monadic predicates; if P is
a set of monadic predicate names, and the signature ofM is {<,P}, we sayM
is a P -chain. The concatenation or ordered sum of chains is defined as follows:

Definition 4.3 (Sum of Chains). Let I := (I,<I) be a linear order, l ∈
N, and S := (Mα | α ∈ I) be a sequence of chains, where Mα := (Aα, <

α

, P1
α, . . . , Pl

α). Assume that Aα∩Aβ = ∅ whenever α �= β are in I. The ordered
sum of S is the chain

∑

α∈I
Mα := (

⋃

α∈I

Aα, <
I,S,

⋃

α∈I
P1

α, . . . ,
⋃

α∈I

Pl
α),

where:
If α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <I,S a iff β <I α or β = α and b <α a.
If the domains of the Mα’s are not disjoint, replace them with isomorphic

chains that have disjoint domains, and proceed as before.
If I = ({0, 1}, <) and S = (M0,M1), we denote

∑
α∈IMα by M0 +M1.

If Mα is isomorphic to M for every α ∈ I, we denote
∑

α∈IMα by M×I.
The next proposition states that taking ordered sums preserves ≡n-equivalence.

Lemma 4.4. Let n ∈ N. Assume:

1. (I,<I) is a linear order,
2.

(M0
α | α ∈ I

)
and

(M1
α | α ∈ I

)
are sequences of chains (in the same signa-

ture), and
3. for every α ∈ I, M0

α ≡n M1
α.

Then,
∑

α∈IM0
α ≡n

∑
α∈IM1

α.

This allows us to define the sum of formulas in Hinn(<,P1, . . . Pl) with respect
to any linear order.

In particular, this theorem justifies the notation τ0 + τ1 for the n-type of a
chain which is the ordered sum of two chains of n-types τ0 and τ1, respectively.
Similarly, we write τ × ω for the n-type of a sum Σi∈ωMi where all Mi are of
n-type τ ; the n-type τ ×ω−1 is defined similarly, where ω−1 is the order type of
negative integers.

Another important operation on chains and on n-types is shuffle.
Let S := (Mα | α ∈ Q) be a sequence of chains indexed by the rationals. Let

Q1, . . . , Qk ⊆ Q be a partition of Q into k everywhere dense sets. Let N1, . . . ,Nk

be chains. If for i = 1, . . . , k and q ∈ Qi, Mq is isomorphic to Ni, we de-
note

∑
α∈QMα by shuffle(N1, . . .Nk). Note that different partitions of Q into

k everywhere dense sets are isomorphic; hence, the shuffle is well defined. The
corresponding operation on n-types will be also denoted by shuffle.

36 A. Rabinovich

5 Recursively Defined Classes of Structures

Let Δ be a signature and k ∈ N. A k-ary Δ-operator is a function F which
assigns to every k-tuple of Δ-structures a Δ structure. A finite-set Δ-operator
is a function F which assigns to every finite set of Δ-structures a Δ structure.
A Δ-operator is a k-ary (k ∈ N) or a finite-set Δ-operator.

Let C be a set of Δ-structures. C is closed under a Δ-operator F if the result
of application of F to structures from C is in C.

Let C be a set of Δ-structures and F be a family of Δ-operators. The closure of
C under F is the minimal class C′ of Δ-structure which contains C and is closed
under F. We denote this class by Cl(C,F). It is said to be recursively defined
from C by F.

Let Cl0(C,F) := C and for i ∈ N define Cl i+1(C,F) := Cl i(C,F) ∪ {M |
M = F (M1, . . . ,Mk) for k-ary F ∈ F andMj ∈ Cl i(C,F)} ∪ {M | M =
F (A) for finite-set operator F ∈ F and A ⊆ Cl i(C,F)}. Define Cl∗(C,F) :=
∪i∈NCl i(C,F). Note that Cl∗(C,F) = Cl(C,F).

Let ∼ be an equivalence on Δ-structures. The index of ∼ is the cardinality
of the set of ∼-equivalence classes; ∼ has a finite index if there are only finitely
many ∼-equivalence classes.

A k-aryΔ operator F respects ∼ if for Δ-structuresM1, . . . ,Mk,N1, . . . ,Nk

F (M1, . . . ,Mk) ∼ F (N1, . . . ,Nk)

whenever Mi ∼ Ni (i = 1, . . . , k).
If F respects ∼, then it induces a k-ary operation on the ∼-equivalence classes.

We denote this operation by F as it will always be clear from the context whether
we use an operator on Δ-structures or the corresponding operation on the ∼-
equivalence classes.

If A and B are sets of Δ-structures, we say that A is ∼-equivalent to B if
∀M ∈ A∃N ∈ B(M∼N) and ∀M ∈ B∃N ∈ A(M∼N).

A finite-set Δ-operator respects ∼ if F (A) ∼ F (B) whenever A ∼ B.
If a finite-set operator F respects∼, then it induces an operation which assigns

a ∼-equivalence class to every finite subset of ∼-equivalence classes.
A family F of Δ-operators respects ∼ if every operator in F respects ∼.

Lemma 5.1. Assume that ∼ is an equivalence of finite index l, and F respects
∼. Then for every M ∈ Cl (C,F) there is N ∈ Cl l(C,F) such that M∼ N .

Proof. Let En be the set of ∼-equivalence classes of structures from Cln(C,F).
Then, ∀nEn ⊆ En+1. Hence, there is i ≤ l such that Ei = Ei+1. This implies
that ∀jEi = Ei+j . In particular, ∀jEl ⊇ Ej , therefore, the lemma holds. ��
For every n the set of operators {+,×ω,×ω−1, shuffle} respects ≡n.

Strictly speaking, these are polymorphic operators. For every set P of monadic
predicate names, there is a corresponding binary operator + on P -labeled chains.

Recall that for a Δ-structure M and Δ′ ⊆ Δ the Δ′ reduct of M on Δ′ is a
Δ′-structure which has the same domain as M and the same interpretation of
symbols from Δ′. We denote byM|Δ′ the reduct ofM on Δ′.

The reduct distributes over the sum in the following sense:

Temporal Logics over Linear Time Domains Are in PSPACE 37

The reduct distributes over +

Let P ′ ⊆ P be sets of monadic predicate names, let M and N be P -
chains. Then (M+N)|{<,P ′} and (M|{<,P ′}) + (N|{<,P ′}) are iso-
morphic.

The reduct also distributes over {×ω,×ω−1, shuffle}.
Let P be a set of monadic predicate names, let P 1, . . . , P k ⊆ P be a sequence

of subsets of P , and let M be a P -chain. Define ptypen(M;
(
P 1, . . . , P k

)
), the

product n-type ofM with respect to P 1, . . . , P k, as

ptypen(M;
(
P 1, . . . , P k

)
) := (τ1, . . . , τk) ,

where τi = typen(M|{<,P i}) be the n-types of the reduct.
For a class C of P -chain,

ptypen(C; (P 1, . . . , P k

)
) := {ptypen(M;

(
P 1, . . . , P k

)
) | M ∈ C}.

Lemma 5.2
1. If ptypen(Mi;

(
P 1, . . . , P k

)
) =

(
τ i
1, . . . , τ

i
k

)
for i ∈ {0, 1}, then

ptypen(M0 +M1;
(
P 1, . . . , P k

)
) =

(
τ0
1 + τ1

1 , . . . , τ
0
k + τ1

k

)

2. If ptypen(M;
(
P 1, . . . , P k

)
) = (τ1, . . . , τk), then

ptypen(M× ω;
(
P 1, . . . , P k

)
) = (τ1 × ω, . . . , τk × ω)

ptypen(M× ω−1;
(
P 1, . . . , P k

)
) =

(
τ1 × ω−1, . . . , τk × ω−1

)

3. if A is a finite set of structures and for j = 1, . . . k, and
Uj = {τj | ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τj , . . . , τk) ∧M ∈ A}, then

ptypen(shuffle(A);
(
P 1, . . . , P k

)
) = (shuffle(U1), . . . , shuffle(Uk)).

6 EXPTIME Algorithm

In this section we present an exptime algorithm for the satisfiability of conjunc-
tive formulas.

Let Φ be a finite set of formulas of quantifier depth ≤ n in the first-order
monadic logic over {<} with free variables among X1, . . . , Xm.

Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be a Φ-conjunctive formula. Let F :=
{+,×ω,×ω−1, shuffle}. Let C be a set of structures over signature {<,∪k

i=1Pi}.
Recall that F respects ≡n, therefore, by Lemma 5.1, ψ is satisfiable over Cl(C,F)
if it is satisfiable over Cl l(C,F), where l := |Hinn(<,∪k

i=1Pi)| is the cardinality
of the set Hinn(<,∪k

i=1Pi) of Hintikka formulas. This l grows like the n-time
iterated exponential function exp(n, k) (exp(1, x) := 2x and exp(i + 1, x) :=
2exp(i,x)). We replace this bound by a bound exponential in k and derive an
exponential time algorithm for the satisfiability of Φ-conjunctive formulas over
Cl(C,F). Our arguments are valid not only for this recursively defined class, but
for any recursive class which is definable by a finite set of operators that respect
≡n-equivalence and satisfy an analog of Lemma 5.2.

38 A. Rabinovich

Lemma 6.1. Let Φ be a finite set of formulas of the quantifier depth ≤ n in
the first-order monadic logic over {<} with free variables among X1, . . . , Xm. A
Φ-conjunctive formula ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in M if and only if
ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τk) and τi(Pi)→ ϕi(Pi) for i = 1, . . . , k.

Define the equivalence ∼n

(P 1,...,Pk) on chains over the signature {<,∪k
i=1Pi} as

M ∼n

(P 1,...,P k) N iff ptypen(M;
(
P 1, . . . , P k

)
) = ptypen(N ;

(
P 1, . . . , P k

)
).

The number of ∼n

(P 1,...,P k) equivalence classes is ≤ |Hinn(<,P1, . . . , Pm)|k;

hence, it is at most exponential in k. F respects∼n

(P 1,...,P k). Therefore, by Lemma

5.1, we obtain:

Lemma 6.2. For every finite set Φ of first-order formulas there is cΦ such that
a Φ-conjunctive formula ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in Cl (C,F) iff
it is satisfiable in Cl cΦ

k

(C,F).

Consider the following problem.

Membership Problem for fixed n,m ∈ N; all tuples P i are of length ≤ m.

Input: τ = (τ1 . . . τk) ∈ Hinn(<,P 1) × · · · × Hinn(<,P k) and an oracle I for
membership in ptypen(C; (P 1, . . . , P k

)
).

Question: Is τ in ptypen(Cl (C,F);
(
P 1, . . . , P k

)
)?

Lemma 6.3. The membership problem is in EXPTIMEI .

Proof. Our algorithm is presented below.

Algorithm 1. Membership Problem is in EXPTIMEI

R← I { i.e., for every τ if τ ∈ I then add τ to R.}
Updated← True.
while Updated do

1. Updated← False;
2. Compute R′ = Cl1((R,+); If R′ �= R then Updated← True;
3. R← R′; Compute R′ = Cl1(R,×ω); If R′ �= R then Updated← True;
4. R← R′; Compute R′ = Cl1(R,×ω−1); If R′ �= R then Updated← True;
5. R← R′; Compute R′ = Cl1(R, shuffle); If R′ �= R then Updated← True;

end while
if τ ∈ R return True.

Let N0 = |Hinn(<,X1, . . . , Xm)|. The number of iterations of the loop is
bounded by Nk

0 .
R′ = Cl1((R,+) can be computed in time O(N2k

0) as follows. Let R′ ← R.
For each pair τ = (τ1, . . . , τk), τ ′ = (τ ′1, . . . , τ

′
k) ∈ R add (τ1 + τ ′1, . . . , τk + τ ′k) to

R′. Hence, Step 2 can be implemented in time O(N2k
0).

Steps 3 and 4 can be implemented in O(Nk
0).

Temporal Logics over Linear Time Domains Are in PSPACE 39

The computation of R′ = Cl1(R, shuffle) is more subtle. Indeed, a naive
approach can try to compute shuffle for every subset of R. However, the number
of such subsets is 2N0

k

and it is double-exponential. R′ = Cl1(R, shuffle) can be
computed in exptime as follows:

Algorithm 2. Computation of Cl1(R, shuffle)
Let Hi := P(Hinn(<,Pi)) be the set of subsets of Hinn(<,Pi).
for every U = (U1, . . . , Uk) ∈ H1 × · · · ×Hk do
{ Check if there is a sequence (τ 1

1 , . . . , τ 1
k), . . . , (τm

1 , . . . , τm
k) ∈ R such that Ui =

{τ j
i | j ≤ m} and update R′ as follows: }

1. (B1, . . . , Bk)← (U1, . . . , Uk);
2. for every τ = (τ1, . . . τk) ∈ R if ∧iτi ∈ Ui then Bi ← Bi \ {τi};
3. If ∧Bi = ∅ then {such a sequence exists, and we have to update R′}

R′ ← R′ ∪ {(shuffle(U1), . . . , shuffle(Uk))};
end for

The number of iterations of the external loop is 2N0k and the number of iter-
ations of the internal loop is bounded by Nk

0 . Hence, Step 5 can be implemented
in time O(2N0k ×Nk

0).
Since every step can be implemented in exptime and the number of iterations

is exponential, we obtain that the membership problem is in exptime with the
oracle I. ��

Let One be the class of one-element chains. It is clear that we can decide in
exptime, whether τ ∈ ptypen(One;

(
P 1, . . . , P k

)
). Hence, as a consequence of

Lemma 6.3, we obtain:

Proposition 6.4. The satisfiability problem for Φ-conjunctive formulas over the
class Cl(One,F) is in EXPTIME.

Proof. For every ϕ ∈ Φ we can pre-compute the set Hϕ := {τ ∈ Hinn(<
,X1, . . . , Xm) | τ → ϕ} (this depends only on Φ and is independent from the
input).

Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be a Φ-conjunctive formula. First compute
the set S of all τ in ptypen(Cl(One,F);

(
P 1, . . . , P k

)
). The cardinality of S is

at most exponential. By the previous lemma, S can be computed in exptime.
Then, by Lemma 6.1, it is enough to check whether there is (τ1, . . . , τk) ∈ S such
that τi(Pi) → ϕi(Pi) for i = 1, . . . , k. This can be done in exptime using the
pre-computed sets Hϕ. ��

Läuchli and Leonard [13] proved1 the following theorem:

1 Läuchli and Leonard considered the logic with the order relation only. Their proof
can be adapted easily to the first-order monadic logic over chains.

40 A. Rabinovich

Theorem 6.5 A first-order formula is satisfiable over a linear order if it is
satisfiable over Cl(One,F).

As a consequence of Theorem 6.5 and Propositions 6.4 and 3.1 we obtain:

Theorem 6.6 Let TL be a temporal logic with a finite set of ∃-MSO defin-
able modalities. The satisfiability problem for TL over the class of chains is in
exptime.

In the next section we will show that exptime upper bound can be replaced by
pspace upper bound.

Let us conclude this section by a remark on optimality of our algorithm.
The only properties of operators {+,×ω,×ω−1, shuffle} which were used in our
exptime algorithm are (1) they respect ≡n and (2) the reduct distributes over
these operators. If F is any set of operators with these properties, then the
membership problem for Cl(One,F) is in exptime.

Below we will show that for such F in general exptime bound cannot be
improved.

Let Δ2 = {<,Left ,Right} be a signature, where < is a binary predicate and
Left ,Right are unary predicates. We will interpret Δ2 over the binary trees,
where < is the ancestor relation and Left (respectively, Right) are interpreted
as the set of left (respectively, right) children. Let M1 and M2 be binary trees
expanded by unary predicates P1, . . . , Pk, and let R be a one element chain
for these predicate names. We assume that the domains of M1,M2 and R are
disjoint and define a ternary operation �(M1, R,M2) as follows. �(M1, R,M2)
is a binary tree; its domain is the union of the domains ofM1, R and M2; the
unique node r of R is the root of this tree. The left and right subtrees of r are
M1 and M2 respectively. Predicate name Pi is interpreted as the union of its
interpretations in M1, R and M2.

The operation � has properties (1) and (2). The closure of One under �
is the set of all finite binary trees. As a consequence, we can derive that the
satisfiability problem for any temporal logics with a finite set of ∃-MSO definable
modalities over the class of finite binary trees is in exptime. Note that CTL can
be described as a temporal logic with a finite set of modalities definable in ∃-
MSO and the satisfiability problem for CTL over the class of finite binary trees is
exptime hard. Hence, in general our exptime upper bound for the satisfiability
problem over recursively definable classes is optimal.

7 PSPACE Algorithm

Let F = {+,×ω,×ω−1, shuffle}. To every chain in Cl (One,F) we assign a natural
number - the rank of a chain. Define sets C≤i ⊆ Cl (One,F) as follows:

1. C≤0 is the set of finite chains.
2. C≤i+1 is the closure under + of the union of C≤i, {M × ω | M ∈ C≤i},
{M× ω−1 | M ∈ C≤i} and {shuffle(A) | A is a finite subset of C≤i}.

A chainM has rank i+ 1 ifM ∈ C≤i+1 ∧M �∈ C≤i.

Temporal Logics over Linear Time Domains Are in PSPACE 41

Every chain of a finite rank can be described by its finite construction tree.
Let P be a set of monadic predicate names. A construction tree T for P -chains
is a labeled tree which has the following properties: the leaves of T are labeled
by one-element P -chains; the internal nodes are labeled by +,×ω,×ω−1 and
shuffle; a node labeled by ×ω or by ×ω−1 has one child; a node labeled by +
has at least two children and these children are linearly ordered; a node labeled
by shuffle has at least one child.

Let T be a construction tree. A chain [|T |], assigned to T , is defined as follows:

1. if T is a one-element tree then [|T |] is the one-element chain which is the
label of its only node.

2. If the root of T is labeled by ×ω (or by ×ω−1), then [|T |] is [|T1|] × ω
(respectively, [|T1|]× ω−1)) where T1 is the subtree of T rooted at the child
of its root.

3. If the root of T is labeled by + and its children (ordered from younger to
older) are trees T1, . . . , Tm then [|T |] := [|T1|] + · · ·+ [|Tm|].

4. If the root of T is labeled by shuffle and its children are trees T1, . . . , Tm

then [|T |] := shuffle([|T1|], . . . , [|Tm|]).
Lemma 7.1. If a chainM has rank ≤ i, then there is a chain construction tree
T such that M = [|T |] and the height of T is bounded by 2i+1.

Proof. A chainM has rank ≤ i if there is a tree T such thatM = [|T |] and the
number of nodes labeled by ×ω, ×ω−1 and shuffle on any path from the root to
a leaf is bounded by i (we do not count nodes labeled by +). For every tree T
there is a tree T ′ such that [|T ′|] = [|T |] and no + node has a child labeled by
+. Indeed, if a + node v of T has as a child a + node u we can remove u and
make its children to be children of v (between the left and the right brothers of
u). Hence, if a chainM has rank ≤ i then there is a tree T such thatM = [|T |]
and the height of T is bounded by 2i+1. ��
We are going to present a pspace algorithm for the satisfiability problem for Φ-
conjunctive formulas. Its correctness and complexity analysis are based on the
following Lemma which refines Lemma 6.2 and will be proved in Sect. 9.

Lemma 7.2 (small rank property). For every finite set Φ of first-order for-
mulas there is rΦ such that every Φ-conjunctive formula ψ = ϕ1(P1)∧· · ·∧ϕk(Pk)
is satisfiable in Cl(One,F) iff it is satisfiable in a chain of rank ≤ k × rΦ.

By Theorem 6.5, Lemma 7.1, and Lemma 7.2, ϕ1(P1)∧· · ·∧ϕk(Pk) is satisfiable
iff

(A) there is a chain construction tree T of height ≤ 2k × rΦ + 1 such that
ptypen([|T |]; (P 1, . . . , P k

)
) = (τ1, . . . , τk) and

(B) τi → ϕi for i = 1, . . . , k.

Now, we are ready to improve our exptime bound of Theorem 6.6 to pspace.

Theorem 7.3 Let TL be a temporal logic with a finite set of ∃-MSO defin-
able modalities. The satisfiability problem for TL over the class of chains is in
pspace.

42 A. Rabinovich

By proposition 3.1 it is sufficient to provide a pspace algorithm for the sat-
isfiability of Φ-conjunctive formulas. Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be such a
formula. Our algorithm guesses (τ1, . . . , τk) and checks in linear time condition
(B). Then the non-deterministic algorithm SAT, defined below, checks (A). SAT
works in polynomial space in k, assuming that the last argument is polynomial
in k which is the case with N = 2k× rΦ +1. Fig. 1 contains the definition of the
algorithm SAT (some details are omitted).

Membership Problem

Input 1. (τ1, . . . , τk), where τi ∈ Hinn(<,P i) and P i ⊆ P are sets of l predi-
cate names (note that n and l are fixed and are not part of the input).

2. N ∈ N.
Output True, if there is a construction tree T of height ≤ N such that

ptypen([|T |]; (P 1, . . . , P k

)
) = (τ1, . . . , τk).

– If N = 0 and there is a one element chain M such that
ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τk) then return True;

– Go non-deterministically to 1-5.
(1.) Return SAT((τ1, . . . , τk) , N − 1).
(2.) Guess (τ ′1, . . . , τ

′
k) such that SAT((τ ′1, . . . , τ

′
k) , N − 1) returns True and

τi = τ ′i × ω for 0 < i ≤ k.
(3.) Guess (τ ′1, . . . , τ

′
k) such that SAT((τ ′1, . . . , τ

′
k) , N − 1) returns True and

τi = τ ′i × ω−1 for 0 < i ≤ k.
(4.) Guess on-the-fly a sequence

(
τ1
1 , . . . , τ

1
k

)
,
(
τ2
1 , . . . , τ

2
k

)
, . . . , (τm

1 , . . . , τ
m
k)

such that
(4.1) for 0 < i ≤ m, SAT(

(
τ i
1, . . . , τ

i
k

)
, N − 1) returns True,

(4.2) for 0 < j ≤ k, τj = τ1
j + . . .+ τm

j .
(5.) Guess (U1, . . . , Uk), where Ui ⊆ Hinn(<,Pi) such that

(5.1) for 0 < j ≤ k, τj = shuffle(Uj)
and guess on-the-fly a sequence

(
τ1
1 , . . . , τ

1
k

)
,
(
τ2
1 , . . . , τ

2
k

)
, . . . , (τm

1 , . . . , τ
m
k)

such that
(5.2) for 0 < i ≤ m, SAT(

(
τ i
1, . . . , τ

i
k

)
, N − 1) returns True,

(5.3) for 0 < j ≤ k, Uj = {τ i
j | i ≤ m}.

Fig. 1. Algorithm SAT

Since + is associative, to verify condition (4.2) we need to keep in the
memory at every stage p only two tuples: the tuple of the partial sum(∑s<p

s=1 τ
s
1 , . . . ,

∑s<p
s=1 τ

s
k

)
and the current guess (τp

1 , . . . , τ
p
k). The tuple of the

Temporal Logics over Linear Time Domains Are in PSPACE 43

partial sums can be easily updated. We can assume that all partial sums are dif-
ferent; hence, m is bounded by the number of possible ptypen(M;

(
P 1, . . . , P k

)
)

which is bounded by |Hinn(< .X1, . . . , Xl)|k and the counter for m can be saved
in space linear in k.

To verify condition (5.3) we need to keep in memory at every stage p only
two tuples: the tuple Up

i = {τs
i | s < p} (for i = 1, . . . , k) and the current guess

(τp
1 , . . . , τ

p
k). We have to verify that (τp

1 , . . . , τ
p
k) is in (U1, . . . , Uk), i.e., τp

i ∈ Ui

and update the tuple (Up
1 , . . . , U

p
k). In (5.) we can assume that no tuple occurs

twice; hence, m is bounded by the number of possible ptypen(M;
(
P 1, . . . , P k

)
)

and the counter for m can be saved in space linear in k.
The depth of recursion is bounded by N . Hence, SAT works in non-

deterministic space O(kN).
In order to check (A) we call SAT with N = 2rΦ × k+ 1. Therefore, our pro-

cedure works in non-deterministic polynomial space and by the Savitch theorem
it can be implemented by a deterministic pspace algorithm.

The next two sections are geared towards the proof of Lemma 7.2.

8 Automata on Linear Orders

Büchi used finite automata over ω-words to prove that monadic second-order
logic is decidable over ω. In order to prove the decidability of monadic second-
order logic over countable ordinals, Büchi introduced finite automata on words
of ordinal length [4]. Büchi’s model extends traditional finite automata using
limit transitions to handle positions with no predecessor. He proved that over
countable ordinals these automata are equivalent to monadic second-order logic.

These automata were extended to finite automata on linear orderings by
Bruyère and Carton [2]. This model further extends traditional finite automata
using limit transitions to handle positions with no successor or no predecessor. In
[18] it was shown that these automata can be complemented over countable scat-
tered linear orderings and are equivalent to monadic second-order logic over the
countable scattered linear orderings. However, this equivalence fails over dense
orders and over uncountable orders [1].

We first recall some basic definitions about linear orders. Then, we intro-
duce finite base automata which have the same expressive power as finite state
automata of [2], but are more appropriate for our purposes.

In order to define the runs of an automaton, we use the notion of cut. A cut of
a linear order J is a partition (L,U) of J such that a < b for any a ∈ L and b ∈ U .
A cut (L,U) is a gap if neither L has a maximal element, nor U has a minimal
element and L �= ∅ �= U . An order is Dedekind-complete if it does not have gaps.
We denote by Ĵ the set of cuts of J . This set is equipped with the order defined by
(L1, U1) < (L2, U2) if L1 � L2. This ordering on Ĵ can be extended to J∪ Ĵ . in a
natural way: (L,U) < a if a ∈ U . The order Ĵ is Dedekind-complete. Its minimal
(maximal) element is Ĵmin = (∅, J) (respectively, Ĵmax = (J, ∅)). For any element
a of J , there are two successive cuts: a− := ({b ∈ J | b < a}, {b ∈ J | b ≥ a})
and a+ := ({b ∈ J | b ≤ a}, {b ∈ J | b > a}). Note that if If a < b are consecutive
elements of J then a+ and b− denote the same cut.

44 A. Rabinovich

Given an alphabet Σ, a Σ-word of length J is a sequence (σa | a ∈ J) of
elements of Σ indexed by J .

In [7] we introduced simple ordinal automata which work over words of ordinal
length. We extend this definition to finite base automata working on words over
arbitrary linear orders.

Finite base automata have the same expressive power as finite state automata
over chains. An important parameter of a finite base automaton is the size of
its base. An advantage of finite base automata over finite state automata is that
taking the conjunction is easy and the base of an automaton for the conjunction
grows linearly in the number of conjuncts.

Definition 8.1 (finite base automata) A finite base automaton A is a tuple
of the form (B,Q,Σ, δnext , δlim, Qinit , Qfin) such that

– B is a finite set (the basis of A),
– Q ⊆ P(B) (the set of states),
– Qinit , Qfin ⊆ Q (the sets of initial states and final states),
– Σ is a finite alphabet,
– δnext ⊆ Q×Σ ×Q is the next-step transition relation,
– δlim ⊆ P(B)×Q ∪Q× P(B) is the limit transition relation.

Let f be a function from a set I into P(B). Define

always(f) := {b ∈ B | ∀c ∈ I b ∈ f(c)}.
If I is a linear order, we define the left and right base-limit sets of f at c ∈ I
as the sets of base elements that appear in every state arbitrarily close to c
(respectively, to its left and to its right). Formally, Base lim−→(c, f) is defined as

Base lim−→(c, f) := {b ∈ B | ∀a < c∃d(a < d < c) ∧ b ∈ always(f�(d, c)},

where f�(d, c) is the restriction of f to the interval (d, c).
Base lim←−(c, f) is defined similarly.
Given a finite base automaton A, a run of A on Σ-word s over a linear order

I is a function ρ : Î → Q such that

– For each c ∈ I, ρ(c−)
s(c)−−→ ρ(c+),

– if c ∈ Î \ Îmin has no predecessor, (Base lim−→(c, ρ), ρ(c)) ∈ δlim, and

– if c ∈ Î \ Îmax has no successor, (ρ(c),Base lim←−(c, ρ)) ∈ δlim.

An A-run ρ is accepting if ρ(Îmin) ∈ Qinit and ρ(Îmax) ∈ Qfin . A accepts a word
s if there is an accepting run on s .

Let A1, . . . ,Am be finite base automata. One can easily construct an automa-
ton A that accepts the intersection of the languages accepted by these automata.
The number of states in A is the product of the numbers of states of Ai and
this grows exponentially in m; however, the base size of A is the sum of the base
sizes of Ai.

Temporal Logics over Linear Time Domains Are in PSPACE 45

Lemma 8.2 (intersection of finite base automata). Let A1 and A2 be finite
base automata. Assume that the base size of A1 and A2 are n1 and n2. There is
a finite base automaton A such that the base size of A is n1 + n2 and a word s
is accepted by A iff it is accepted by A1 and by A2.

A word s := (σa | a ∈ J) indexed by J over an alphabet {0, 1}k can be identified
with a chain (J,<, P1, . . . , Pk) over J where Pi = {a ∈ J | the i-th bit of σa =
1}. This is a bijection between the {0, 1}k-words over J and the chain with k
monadic predicates over J .

An automaton is said to be equivalent to a formula ϕ(P1, . . . , Pk) over a class
C of linear orders if for every linear order J ∈ C and every word s indexed by J ,
A accepts s if and only if the corresponding chain satisfies ϕ.

Cristau [6] proved that every formula of the first-order fragment of the
monadic logic is equivalent (over the class of all linear orders) to a finite-state
automaton. Hence,

Theorem 8.3 For every first-order formula ϕ there is a finite base automaton
Aϕ equivalent to ϕ over the class of all linear orders.

9 Small Rank Property

Let A be a finite base automaton, L a chain and ρ : L̂ → Q be a run of A on L.
typeA(ρ) := (q,D, q′), where ρ(L̂min) = q, ρ(L̂max) = q′ and D := always(ρ).

If typeA(ρ) := (q,D, q′) we sometimes write ρ : q
D−→ q′; we write ρ : D−→ if

typeA(ρ) := (q,D, q′) for some q and q′.
Define an equivalence relation ∼A on A-runs:

ρ1 ∼A ρ2 if and only if typeA(ρ1) = typeA(ρ2)

Weight. Let D be a subset of the base B of A. The weight of D is defined as the
cardinality of B \D. The weight of a transition of A is defined as follows. The
weight of a successor transition is 0; the weight of limit transitions (D, q) ∈ δlim
and (q,D) ∈ δlim is the weight of D. The weight of a run ρ is defined as the
maximum of the weights of transitions that appears in ρ. We denote the weight
of ρ by weight(ρ); the weight is always between 0 and the cardinality of the base
of A.

Lemma 9.1 (Main). Assume that ρ is a run of a finite base automaton A.

1. If ρ : D−→ and weight(ρ) = weight(D) = w, then there is a run on a chain of
rank ≤ 2w + 1, which is equivalent to ρ.

2. Any run of weight ≤ w is equivalent to a run on a chain of rank ≤ 2w + 2.

As a consequence, we obtain the following small rank property:

Proposition 9.2 (small rank property). Let A be a finite base automaton
with base of size nA. Every run of A is equivalent to a run on a chain of rank
≤ 2nA + 2. In particular, if A has an accepting run, then it accepts a chain of
rank ≤ 2nA + 2.

46 A. Rabinovich

The complexity analysis of our pspace algorithm was based on Lemma 7.2. Now
we are ready to prove it.

Proof. (of Lemma 7.2.) Let Φ be a finite set of first-order formulas. By Theorem
8.3, every formula in ϕ ∈ Φ is equivalent to a finite-base automaton Aϕ. Let nΦ

be an upper bound on the base size of Aϕ for ϕ ∈ Φ.
Let ψ = ϕ1(P1)∧· · ·∧ϕk(Pk) be a Φ-conjunctive formula. By Lemma 8.2, ψ is

equivalent to a finite base automata with the base of size≤ k×nΦ. By Proposition
9.2, if ψ is satisfiable then it is satisfiable on a chain of rank ≤ k(2nΦ+2). Hence,
we can define rΦ as (2nΦ + 2). ��
It is instructive to compare small rank property of finite base automata with
short run property of simple ordinal automata from [7]. A simple ordinal au-
tomaton is a finite base automaton with δlim ⊆ P(B) × Q. Hence, the domain
of every run ρ of a simple ordinal automaton is order-isomorphic to an ordinal,
and if ρ is a run on M then M is a chain over an ordinal. An ordinal α has
rank i ≥ 1 iff α < ωi+1. Lemma 6 in [7] states that every run of a simple ordinal
automaton A is equivalent to an A-run on an ordinal < ωnA+1, where nA is the
size of the base of A.

10 Conclusion, Further and Related Results

We provided an exptime algorithm for the satisfiability problem for any tem-
poral or modal logic with a finite set of ∃-MSO definable modalities over a re-
cursively defined class of structures, and proved that exptime-bound is optimal
in the worst case.

Let TL be any temporal logic with a finite set of ∃-MSO definable modalities.
We proved that the satisfiability problem for TL over the class of all linear orders
can be solved in pspace. This improves the Cristau result [6] that the satisfia-
bility problem over this class for the temporal logic having the four modalities
Until, Since, UntilStavi and SinceStavi is in double exponential space, and implies
Reynolds’s conjecture.

In the rest of this section we explain how the pspace bound can be extended
uniformly to many interesting classes of linear orders.

Let ψ be an ∃-MSO sentence. A set C of chains is said to be definable by ψ,
if C = {M | M |= ψ}. A set C of chains is said to be definable by ψ relatively to
a class C′, if C = {M ∈ C′ | M |= ψ}.

Theorem 7.3 immediately implies

Corrollary 10.1 Let TL be a temporal logic with a finite set of ∃-MSO definable
modalities, and let ψ be an ∃-MSO sentence. If the satisfiability problem for TL
over C′ is in pspace, then the satisfiability problem for TL over the class of
chains definable by ψ relatively to C′ is in pspace. In particular, the satisfiability
problem for TL over the class of chains definable by ψ is in pspace.

A linear order is called unbounded if it has neither a minimum nor a maximum;
Note that an ∃-MSO formula ϕ is satisfiable in Q iff it is satisfiable in an un-
bounded dense order. There are first-order sentences Unbound and Dense that

Temporal Logics over Linear Time Domains Are in PSPACE 47

express that an order is unbounded, respectively, dense. Therefore, ϕ is satisfi-
able in Q iff Unbound ∧Dense ∧ϕ is satisfiable over a linear order. Hence, there
is a pspace algorithm for satisfiability in Q.

Recall that a cut (L,U) of a linear order L is a gap if neither L has a maximal
element, nor U has a minimal element and L �= ∅ �= U . A chain is Dedekind-
complete if its underlining order does not have gaps. The class of non-Dedekind
chain can be easily definable by an ∃-MSO sentence. Hence, there is a pspace
algorithm for the satisfiability over the class of non-Dedekind complete chains.
The class of Dedekind complete chains is not definable by an ∃-MSO sentence.
However, we will show (Theorem 10.7) that there is a pspace algorithm for the
satisfiability over the class of Dedekind complete chains.

Let OP be a subset of {ω, ω−1, shuffle}. Our proof can be easily modified to
show the following variant of small rank property (Lemma 7.2).

Lemma 10.2. For every finite set Φ of first-order formulas and every OP ⊆
{ω, ω−1, shuffle} there is NΦ,OP ∈ N such that every Φ-conjunctive formula ψ is
satisfiable in Cl(One, OP∪{+}) iff it is satisfiable in a chainM ∈ Cl(One, OP∪
{+}) of rank ≤ |ψ| ×NΦ,OP .

Hence, the satisfiability problem for any temporal logic with a finite set of ∃-MSO
definable modalities over Cl(One, OP ∪ {+}) is in pspace.

Recall that a linear order is scattered if it does not contain a dense suborder
(i.e., a substructure order-isomorphic to Q). An ∃-MSO formula is satisfiable in
a chain over an ordinal (respectively, over a scattered order) iff it is satisfiable in
Cl(One, {ω,+} (respectively, in Cl(One, {ω, ω−1+} [13,19]. Hence, we obtain:

Theorem 10.3 Let TL be a temporal logic with a finite set of modalities defin-
able in the existential fragment of MSO.

1. The satisfiability problem for TL in the class of chains over ordinals is in
pspace [7].

2. The satisfiability problem for TL in the class of scattered chains is in pspace.

A linear order is continuous if it is dense and Dedekind-complete; it is separable
if it has a countable dense subset. Any unbounded separable continuous order is
order-isomorphic to the reals.

Burgess and Gurevich [5] proved that TL(Until, Since) is decidable over the
reals. They introduced the following class of chains.

Definition 10.4. Let C be the minimal class of chains that contains all one-
element chains and has the following properties:

1. If M and N are in C and M has a maximum or N has a minimum, then
M+N ∈ C.

2. IfM ∈ C and M has either a minimum or a maximum, then M×ω−1 and
M× ω are in C.

3. If A ⊆ C is finite and each M ∈ A has both a minimum and a maximum,
and some N ∈ A are one-element chains, then shuffle(A) ∈ C.

48 A. Rabinovich

The next theorem was a key step in their decidability proof.

Theorem 10.5 Let ϕ be an ∃-MSO formula. The following are equivalent:

1. ϕ is satisfiable over the class of Dedekind-complete separable chains.
2. ϕ is satisfiable over the class of Dedekind-complete chains.
3. ϕ is satisfiable in C.

As a consequence, they obtained a (non-elementary) algorithm for the decidabil-
ity of TL(Until, Since) over the reals.

The definition of C is slightly more general than the definition of a recursively
defined class of structures. However, our definition is easily extended to the
(mutual) recursive definition of a finite number of classes.

One can easily rephrase Definition 10.4 as a mutual recursive definition of
three classes: C, Cmax and Cmin, where Cmax (respectively, Cmin) is the set of
chains in C with a maximal, (respectively, minimal) element. (Note that Cmax

and Cmin are ∃-MSO definable relatively to C.)
Our results are easily extended to these classes. In particular, for every finite

set Φ of first-order formulas there is rΦ such that a Φ-conjunctive formula ψ is
satisfiable in C iff it is satisfiable in M ∈ C of rank ≤ rΦ × |ψ|. Hence,

Lemma 10.6. Let TL be a temporal logic with a finite set of modalities definable
in ∃-MSO. The satisfiability problem for TL in C is in pspace.

As a consequence, we obtain:

Theorem 10.7 Let TL be a temporal logic with a finite set of modalities defin-
able in the existential fragment of MSO.

1. The satisfiability problem for TL over the class of Dedekind-complete sepa-
rable chains is in pspace.

2. The satisfiability problem for TL over the class of Dedekind-complete chains
is in pspace.

3. The satisfiability problem for TL in the class of chains over the reals is in
pspace.

4. The satisfiability problem for TL over the class of continuous chains is in
pspace.

Proof. (1) and (2) follow from Theorem 10.5 and Lemma 10.6.
Let Unbound and Dense be first-order formulas that express that an order is

unbounded and dense. By Theorem 10.5, ϕ ∈ TL is satisfiable over the reals iff
ϕ ∧Dense ∧ Unbound is satisfiable in C. Therefore, (3) follows by Lemma 10.6.
ϕ ∈ TL is satisfiable over the class of continuous chains iff ϕ ∧ Dense is

satisfiable in C. Therefore, (4) follows by Lemma 10.6. ��
Similar arguments show that the satisfiability problem for TL over the classes of
scattered Dedekind-complete chains, scattered non Dedekind-complete chains,
and over many other classes is in pspace.

Reynolds [17] proved Theorem 10.7(3) for the temporal logic with two modali-
ties Until and Since. Due to the Kamp theorem, this implies that the satisfiability

Temporal Logics over Linear Time Domains Are in PSPACE 49

problem over the reals for any temporal logic with a finite set of first-order de-
finable modalities is in pspace. His proof relies on particular properties of Until
and Since and uses temporal mosaics. The proofs in [17] are very non-trivial and
difficult to grasp, probably because they have been developed from scratch.

We do not fully understand the Reynolds proof; however, there are some ele-
ments which are similar to our proof of Theorem 10.7(3). He considers operations
on mosaics which correspond to sum, multiplication by ω and by ω−1 and shuffle
of chains. He decides whether a finite set of small pieces is sufficient to be used
to build a real-number model of a given formula. This is also equivalent to the
existence of a winning strategy for player one in a two-player game played with
mosaics. The search for a winning strategy is arranged into a search through a
tree of mosaics. By establishing limits on the depth of the tree (a polynomial in
terms of the length of the formula) he constructs a pspace algorithm. There is
an analogy between such mosaic trees and construction trees for chains of finite
rank.

Finally, let us note that the results of this paper hold for temporal logics with
modalities having generalized truth tables definable by automata. Let A be an
automaton over the alphabet {0, 1}n+1. A modality O is said to be definable by
A if for every linear order L := 〈A,<〉 and every P1, . . . , Pn ⊆ A there is a unique
P such that 〈A,<, P, P1, . . . , Pn〉 is accepted by A, moreover P = O(P1, . . . , Pn).

Theorem 10.8 Let TL be a temporal logic with a finite set of modalities such
that every modality is definable by an automaton. Then, the satisfiability problem
for TL over the class of all chains is in pspace.

References

1. Bedon, N., Bes, A., Carton, O., Rispal, C.: Logic and Rational Languages of Words
Indexed by Linear Orderings. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slis-
senko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 76–85. Springer, Heidelberg (2008)

2. Bruyère, V., Carton, O.: Automata on linear orderings. In: Sgall, J., Pultr, A.,
Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 236–247. Springer, Heidelberg
(2001)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science, pp. 1–11. Stanford University Press, Stan-
ford (1962)

4. Büchi, J.R., Siefkes, D.: The Monadic Second-order Theory of all Countable Ordi-
nals. Springer Lecture Notes, vol. 328 (1973)

5. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre
Dame J. Formal Logic 26(2), 115–128 (1985)

6. Cristau, J.: Automata and temporal logic over arbitrary linear time. In: FSTTCS
2009, pp. 133–144 (2009)

7. Demri, S., Rabinovich, A.: The Complexity of Temporal Logic with Until and Since
over Ordinals. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 531–545. Springer, Heidelberg (2007)

8. Feferman, S., Vaught, R.L.: The first-order properties of products of algebraic
systems. Fundamenta Mathematicae 47, 57–103 (1959)

50 A. Rabinovich

9. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logics, vol. 1. Clarendon
Press, Oxford (1994)

10. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Analysis of Fair-
ness. In: 7th POPL, pp. 163–173 (1980)

11. Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S. (eds.)
Model-Theoretic Logics, pp. 479–506. Springer, Heidelberg (1985)

12. Kamp, H.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University
of California L.A (1968)

13. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundamenta
Mathematicae 59, 109–116 (1966)

14. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

15. Rabinovich, A.: Temporal logics over linear time domains are in PSPACE
(manuscript) (2009)

16. Reynolds, M.: The complexity of the temporal logic with until over general linear
time. J. Comput. Syst. Sci. 66, 393–426 (2003)

17. Reynolds, M.: The Complexity of Temporal Logic over the Reals. The Annals of
Pure and Applied Logic 161(8), 1063–1096 (2010)

18. Rispal, C., Carton, O.: Complementation of rational sets on countable scattered
linear orderings. Int. J. Found. Comput. Sci. 16(4), 767–786 (2005)

19. Rosenstein, J.G.: Linear ordering. Academic Press, New York (1982)
20. Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)
21. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Log-

ics. J. ACM 32(3), 733–749 (1985)
22. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory

of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in
Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg
(1997)

	Temporal Logics over Linear Time Domains Arein PSPACE
	Introduction
	Monadic Logics and Temporal Logics
	Monadic Second-Order Logic
	Temporal Logics and Truth Tables

	From Temporal Logic to Conjunctive Formulas
	Elements of the Composition Method
	Hintikka Formulas and n-Types
	The Ordered Sum of Chains and of n-Types

	Recursively Defined Classes of Structures
	EXPTIME Algorithm
	PSPACE Algorithm
	Automata on Linear Orders
	Small Rank Property
	Conclusion, Further and Related Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

