
Descriptional Complexity of (Un)ambiguous
Finite State Machines and Pushdown Automata

Markus Holzer and Martin Kutrib

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. Unambiguity and its generalization to quantified ambiguity
are important concepts in, e.g., automata and complexity theory. Basi-
cally, an unambiguous machine has at most one accepting computation
path for each accepted word. While unambiguous pushdown automata
induce a language family strictly in between the deterministic and general
context-free languages, unambiguous finite automata capture the regular
languages, that is, they are equally powerful as deterministic and non-
deterministic finite automata. However, their descriptional capacity is
significantly different. In the present paper, we summarize and discuss
developments relevant to (un)ambiguous finite automata and pushdown
automata problems from the descriptional complexity point of view. We
do not prove these results but we merely draw attention to the big picture
and some of the main ideas involved.

1 Introduction

Finite automata are traditionally classified into deterministic (DFA), nondeter-
ministic (NFA), and unambiguous (UFA) machines, and it is well known that all
these devices are equally powerful and capture the family of regular languages.
Here an NFA is unambiguous if for every word in the language there is at most
one accepting computation. Clearly, any DFA is a UFA and every UFA is an
NFA. The more complicated part of this equality is to show that every NFA or
UFA can be simulated by a DFA without changing the accepted language. The
construction is normally given by the powerset construction [56], but this simula-
tion can also be interpreted as a reachability analysis on the configuration graph
induced by the NFA with a device without nondeterminism. Here the “search
algorithm” keeps track of all possible configurations (here states) the NFA may
reach simultaneously by reading some word (see Figure 1).

Thus, given some n-state NFA one can always construct a language equivalent
DFA with at most 2n states [56], and therefore NFAs can offer exponential
savings in space compared with DFAs. In fact, later independently in [49,51,52]
it was shown that this exponential upper bound is best possible, i.e., for every n
there is an n-state NFA which cannot be simulated by any DFA with strictly
less than 2n states. Exactly the same bound is reached when simulating UFAs

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 1–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Holzer and M. Kutrib

1 2 3

a, b

a a, b

1

2

3

4

1 1, 2

1, 3 1, 2, 3

a

b

a
b

a
b

a

b

(a) (b)

Fig. 1. Powerset construction: (a) NFA and (b) equivalent DFA with initial state {1},
visualizing the “search front” by numbers from 1 to 4 of an incremental powerset con-
struction for the sub-automaton reachable from the initial state—in the drawing the
curly brackets are omitted. The first search front 1 consist of the state {1}, the second
of the states {1, 2} and {1}, the third of {1, 2, 3} and {1, 3}, and finally the fourth of
all depicted states. Observe, that the NFA in (a) is actually also a UFA.

by DFAs [45,48], while for the simulation of NFAs by UFAs the upper bound
drops to 2n − 1, which was also shown to be tight in [47].

These results are only three examples from a vast of different simulation re-
sults of various devices from automata theory that can be found in the literature;
for some further readings we refer to, e.g., [24,25,26]. We tour a fragment of the
literature summarizing simulation results of variants of NFAs and pushdown au-
tomata. In particular we pay special attention to unambiguous finite automata
and pushdown machines, because we think that unambiguity deserves more at-
tention since it is a valuable and important concept that appears in a lot of
sub-fields of theoretical computer science such as, e.g., automata and formal
language theory, complexity theory, etc. A size lower bound on a simulation can
be interpreted as a succinctness gain, when changing from one description to
the other description. In most cases tight bounds for the simulations (in order
of magnitude) are obtained, but there are also situations, where the gain in
succinctness in a simulation cannot be bounded by any recursive function. This
latter phenomenon known as non-recursive trade-off appears when pushdown
automata become involved. This is not entirely true in general, because for cer-
tain restrictions on pushdown machines such as, e.g., deterministic pushdown
automata (DPDA) accepting regular languages only, or pushdown machines ac-
cepting unary languages, the simulation becomes recursive again. Moreover, we
also draw a picture of the relations between higher degrees of ambiguity and
nondeterminism. We do not prove these results but we merely draw attention to
the big picture and some of the main ideas involved.

Descriptional Complexity of (Un)ambiguous Finite State Machines 3

The paper is organized as follows: in the next section we introduce the neces-
sary notations. Then in Section 3 we focus on finite automata presenting simu-
lation results and complexity bounds on the minimization problem. The concept
of higher degrees of ambiguity and nondeterminism is then discussed for finite
automata in Section 4. Finally, similar questions on simulations, and the rela-
tion of ambiguity and nondeterminism are addressed for pushdown automata in
Section 5.

2 Definitions

In connection with formal languages, strings are called words. Let Σ∗ denote the
set of all words over a finite alphabet Σ. The empty word is denoted by λ, and
we set Σ+ = Σ∗ \{λ}. For the length of a word w we write |w|; in particular, the
length of the empty word is zero, i.e., |λ| = 0. A formal language L is a subset
of Σ∗. One of the easiest devices in formal language theory are finite automata,
which are defined as follows:

A nondeterministic finite automaton (NFA) is a quintuple A = (Q, Σ, δ, q0, F),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q is the
transition function, where 2Q refers to the powerset of the set Q. The language
accepted by the NFA A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ },
where the transition function δ is recursively extended to δ : Q × Σ∗ → 2Q by
δ(q, λ) = {q} and δ(q, aw) =

⋃
p∈δ(q,a) δ(p, w). A finite automaton is said to be

minimal if its number of states is minimal with respect to the accepted language.
Special kinds of NFAs are deterministic and unambiguous finite automata.

Let A = (Q, Σ, δ, q0, F) be a finite automaton. Then A is deterministic (DFA)
if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. In this case we simply
write δ(q, a) = p instead of δ(q, a) = {p} assuming that the transition function
is a mapping δ : Q × Σ → Q. Moreover the NFA A is unambiguous (UFA)
if for every word w ∈ L(A) there is at most one accepting computation path,
i.e., the sequence of states seen during the accepting computation on the given
word is unique. Clearly, every DFA is a UFA. Any DFA is complete, that is, the
transition function is total, whereas it may be a partial function for NFAs and
UFAs in the sense that the transition function of nondeterministic machines may
map to the empty set. So, a sink or dead state is counted for DFAs, since they
are always complete, whereas it is not counted for NFAs and UFAs, since these
devices are not necessarily complete. For further details we refer to [29].

A natural generalization of finite automata are pushdown machines. A nonde-
terministic pushdown automaton (NPDA) is a 7-tuple A = (Q, Σ, Γ, δ, q0, Z0, F),
where Q is the finite set of states, Σ is the finite set of input symbols, Γ is the
finite stack alphabet, q0 ∈ Q is the initial state, Z0 ∈ Γ is the bottom of stack
symbol which initially appears on the pushdown store, F ⊆ Q is the set of ac-
cepting states, and transition function δ maps Q×(Σ∪{λ})×Γ to finite subsets

4 M. Holzer and M. Kutrib

of Q × Γ ∗. An NPDA A is in configuration c = (q, w, γ) if A is in state q ∈ Q
with w ∈ Σ∗ as remaining input, and γ ∈ Γ ∗ on the pushdown store, the right-
most symbol of γ being the top symbol on the pushdown. We write

c = (q, aw, γZ) 	A (p, w, γβ),

if (p, β) ∈ δ(q, a, Z), for a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ ∗, and Z ∈ Γ . As usual,
the reflexive transitive closure of 	A is denoted by 	∗

A, and the subscript A will
be dropped from 	A and 	∗

A whenever the meaning remains clear. The language
accepted by A with empty pushdown is defined by

L(A) = {w ∈ Σ∗ | (q0, w, Z0) 	∗ (q, λ, λ), for some q ∈ Q }.

Equivalently, the language accepted by A with final state is defined by

Lf (A) = {w ∈ Σ∗ | (q0, w, Z0) 	∗ (q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.

As in the case of finite automata one can define deterministic (DPDA) and un-
ambiguous pushdown automata (UPDA) in a straightforward way (cf. [19]). By
definition every DPDA is a UPDA. NPDAs characterize the family of context-
free languages defined by context-free grammars. This characterization carries
over to UPDAs in the sense that the family of unambiguous context-free lan-
guages, generated by unambiguous context-free grammars, is equal to the family
of languages accepted by UPDAs. Finally, the family of deterministic context-
free languages are simply defined to be all languages accepted with final state
by DPDAs (or equivalently by LR(k) context-free grammars). These three types
of devices induce a strict hierarchy of language families [19].

3 (Un)ambiguous Finite Automata

Since regular languages have many representations in the world of finite au-
tomata, it is natural to investigate the succinctness of their representation by
different types of automata in order to optimize the space requirements. Here
we measure the costs of representations in terms of the states of a minimal au-
tomaton accepting a language. More precisely, the simulation problem is defined
as follows:

– Given two classes of finite automata C1 and C2, how many states are suffi-
cient and necessary in the worst case to simulate n-state automata from C1

by automata from C2?

In particular, we are interested in simulations between DFAs, UFAs, and NFAs.
In order to compare these simulations the following relation from the litera-
ture, see, e.g., [57] is of use: if the transformation from an automaton from C1

to an equivalent automaton from C2 is polynomially bounded, i.e., there is a
polynomial p such that for any n-state automaton from C1 one finds an equiv-
alent automaton from C2 with at most p(n) states, then we write C1 ≤p C2.

Descriptional Complexity of (Un)ambiguous Finite State Machines 5

In this case we consider this transformation to be cheap. In case C1 ≤p C2 but
C2 �≤p C1, we say that C1 is (polynomially) separated from C2 and abbreviate
this by C1 <p C2. In other words, while the transformation of an automaton
from C1 into an equivalent C2 automaton is cheap the converse transformation
is expensive and exceeds any polynomial bound. Note that the non-polynomial
bound for the transformation from right to left is in most cases not explicitly
specified. In what follows we will see that in most cases one obtains separation
results for most combinations of classes of finite automata.

3.1 Simulations

It is well known that to any NFA one can always construct an equivalent
DFA [56]. This so-called powerset construction, where each state of the DFA is
associated with a subset of NFA states, turned out to be optimal in general. That
is, the bound on the number of states necessary for the construction is tight in
the sense that for an arbitrary n there is always some n-state NFA which cannot
be simulated by any DFA with strictly less than 2n states [49,51,52]. So, NFAs
can offer exponential savings in the number of states compared with DFAs. This
gives rise to DFA <p NFA or more precisely to the following theorem.

Theorem 1 (NFA by DFA Simulation). Let n ≥ 1 and A be an n-state
NFA. Then 2n states are sufficient and necessary in the worst case for a DFA
to accept L(A).

The situation for UFAs is similar. A first result on UFAs was shown in [61]
proving a 2Ω(

√
n) lower bound on the trade-off between NFAs and UFAs and

between UFAs and DFAs. Hence DFA <p UFA and UFA <p NFA. Since DFAs
are also unambiguous both results led a large gap between the lower and the
upper bound of 2n − 1 (as for the case of NFAs in general, the dead state can
be saved for UFAs). Later the lower bound for the transformation of an NFA
to an equivalent UFA was improved to 2Ω(n) in [65] and finally, for every n,
an n-state NFA was exhibited in [47]—see Figure 2—whose smallest equivalent
UFA cannot do better in the number of states than the smallest equivalent DFA
besides the aforementioned saving of the dead state. Hence a 2n − 1 tight bound

1 2 3 . . . n

a

a

b

a

b

a a

b

a

Fig. 2. Leung’s NFA An with n states, for n ≥ 2, accepting a language for which any
equivalent UFA needs at least 2n − 1 states

6 M. Holzer and M. Kutrib

on the trade-off between NFAs and UFAs was established. For the remaining
UFA by DFA simulation it was mentioned in [65] that the well-known language
Ln = (a + b)∗a(a + b)n−1, that is the set of words over the alphabet {a, b}
whose nth last letter is an a, may serve as a witness for a 2n−1 lower bound (see
Figure 3). Then this transformation problem was solved in [45] in a similar vain
as the NFA to DFA transformation (providing UFAs with several initial states)
obtaining a tight bound of 2n in the exact number of states. Later this problem
was reconsidered in [48] giving UFAs with a single initial state that reach the
maximal trade-off when transformed into equivalent DFAs. Again exponential
state savings in both cases are possible. These results are summarized as follows:

Theorem 2 (NFA by UFA and UFA by DFA Simulation). Let n ≥ 1
and A be an n-state NFA. Then 2n − 1 states are sufficient and necessary in the
worst case for a UFA to accept L(A). If automaton A is a UFA, then 2n states
are sufficient and necessary in the worst case for a DFA to accept L(A).

Proving lower bounds for NFAs is complicated in general. Several authors have
introduced methods for proving such lower bounds; see, e.g., the fooling set
technique [10], the extended fooling set technique [1,31], and the biclique edge
cover technique [17]. Although the bounds provided by these techniques are not
always tight and, in fact, can be arbitrarily worse compared to the nondetermin-
istic state complexity, they give good results in many cases. For UFAs a lower
bound method was already given in [61], which is based on a rank argument
on certain matrices, which was further elaborated in, e.g., [47,48]. This method
reads as follows—note that the rank technique shares the deficit of the previously
mentioned lower bound techniques for NFAs that the provided bounds may not
be tight in general:

Theorem 3 (Rank Method for UFAs Lower Bounds). Let L ⊆ Σ∗ be a
regular language and { (xi, yi) | xi, yi ∈ Σ∗ with 1 ≤ i ≤ n } a finite set of pairs
of strings. Consider the n × n matrix M = (mij) over the field of characteris-
tic 2 defined by mij = 1, if xiyj ∈ L, and mij = 0, otherwise. Then any UFA
accepting L has at least the rank of M number of states.

For the particular case of unary regular languages the situation is significantly
different. The general problem of evaluating the costs of unary automata simula-
tions was raised in [63], and has led to emphasize some relevant differences with
the general case. For state complexity issues of unary finite automata Landau’s
function

F (n) = max{ lcm(x1, · · · , xk) | x1, . . . , xk ≥ 1 and x1 + · · · + xk = n },
which gives the maximal order of the cyclic subgroups of the symmetric group
on n elements, plays a crucial role. Here, lcm denotes the least common multiple.
Since F depends on the irregular distribution of the prime numbers, we cannot
expect to express F (n) explicitly by n. In [43,44] the asymptotic growth rate

lim
n→∞(ln F (n)/

√
n · ln n) = 1

Descriptional Complexity of (Un)ambiguous Finite State Machines 7

was determined, which for our purposes implies the (sufficient) rough estimate
F (n) ∈ eΘ(

√
n·lnn). The following asymptotic tight bound on the unary NFA

by DFA simulation was presented in [5,6]. Its proof is based on a normalform
(Chrobak normalform) for unary NFAs introduced in [5]. Each n-state unary
NFA can be replaced by an equivalent O(n2)-state NFA consisting of an initial
deterministic tail and some disjoint deterministic loops, where the automaton
makes only a single nondeterministic decision after passing through the initial
tail, which chooses one of the loops.

Theorem 4 (Unary NFA by DFA Simulation). Let n ≥ 1 and A be an
n-state NFA accepting a unary language. Then eΘ(

√
n·ln n) states are sufficient

and necessary in the worst case for a DFA to accept L(A).

Surprisingly the corresponding simulation questions on unary languages involv-
ing UFAs was investigated only recently in [53]. Based on a refined transforma-
tion, presented in [34], of UFAs into Chrobak normalform without increasing the
number of states, the precise number of states for converting a UFA accepting
a unary language into an equivalent DFA is determined by a more complicated
variant of Landau’s function, which is defined as

F̃ (n) = max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1, and x1 + · · · + xk = n and
∃f1, . . . fk with 0 ≤ fi ≤ xi − 1 such that

∀i, j with i �= j we have fi �= fj mod gcd(xi, xj) }.

Here the additional condition compared to Landau’s function is the criterion
that forces a unary NFA in Chrobak normalform to be unambiguous. By involved
calculations the function F̃ (n) is asymptotically estimated by eΘ(

3√
n·ln2 n), which

gives the following result on unary UFA by DFA simulation.

Theorem 5 (Unary UFA by DFA Simulation). Let n ≥ 1 and A be an
n-state UFA accepting a unary language. Then eΘ(

3√
n·ln2 n) states are sufficient

and necessary in the worst case for a DFA to accept L(A).

What concerns the simulation of unary NFAs by UFAs? In fact, in [53] it was
shown that one cannot do asymptotically better than in the unary NFAs to
DFAs transformation. This nicely contrasts the results on the NFA by UFA and
UFA by DFA simulation in general, given in Theorem 2, where in both cases an
exponentially tight bound is reported. Here in the unary case easy calculations
show that the UFAs to DFAs transformation is asymptotically better than the
NFAs to UFAs conversion since F̃ (n) ∈ o(F (n)), which intuitively means that
UFAs are somehow “closer” to DFAs than NFAs.

Theorem 6 (Unary NFA by UFA Simulation). Let n ≥ 1 and A be an
n-state NFA accepting a unary language. Then eΘ(

√
n·ln n) states are sufficient

and necessary in the worst case for a UFA to accept L(A).

8 M. Holzer and M. Kutrib

Very often UFAs are compared to a slight extension of DFAs, namely multiple-
entry DFAs (MDFAs), which were defined in [8,68]. Here the sole guess appears
at the beginning of the computation, that is, by choosing one out of k initial
states. So, the nondeterminism is limited in its amount and in the situation
at which it appears—it is worth mentioning that MDFAs are a special case of
ambiguous finite automata, which are discussed in Section 4 in detail. Converting
an MDFA with k initial states into a DFA by the powerset construction shows
immediately that any reachable state contains at most k states of the MDFA.
This gives an upper bound for the conversion. In [27] it has been shown that
this upper bound is tight resulting in DFA <p MDFA or more precisely:

Theorem 7 (MDFA by DFA Simulation). Let n, k ≥ 1 with k ≤ n and A

be an n-state MDFA with k entry states. Then
∑k

i=1

(
n
i

)
states are sufficient and

necessary in the worst case for a DFA to accept L(A).

So, for k = 1 we obtain DFAs while for k = n we are concerned with the special
case that needs 2n − 1 states. Interestingly, NFAs can be exponentially concise
over MDFAs. The following lower bound has been derived in [36].

Theorem 8 (NFA to MDFA Simulation). Let n ≥ 1 and A be an n-state
NFA. Then Ω(2n) states are necessary in the worst case for an MDFA to ac-
cept L(A).

For the trade-off between MDFAs and UFAs a tight bound in the exact num-
ber of states was shown in [46,48]. This nicely fits into the known upper and
lower bound results presented earlier, and shows that even very limited use of
nondeterminism can induce a dramatic increase in the number of states.

Theorem 9 (MDFA by UFA Simulation). Let n ≥ 1 and A be an n-state
MDFA. Then 2n − 1 states are sufficient and necessary in the worst case for a
UFA to accept L(A).

Recently a variant of UFAs, so called structurally unambiguous finite automata
were introduced and investigated in [46]. An NFA A = (Q, Σ, δ, q0, F) is struc-
turally unambiguous (SUFA) if for every word w ∈ Σ∗ and every state q ∈ Q
there is at most one computation from the initial state q0 to state q reading
word w. Observe, that compared to the original definition of unambiguity the
computations need not be accepting. Thus, unambiguity is a semantic concept,
while structurally unambiguity is a syntactic one, which is independent on the
choice of the set of final states. However, if there is only one final state, that
is, |F | = 1, then a SUFA is also a UFA, but in general SUFAs may differ from
UFAs. But what can be said about the relation of SUFAs to DFAs, UFAs, and
MDFAs, in general? First of all every DFA is a SUFA and it is easy to see that
this two automata classes are separated from each other, i.e, DFA <p SUFA,
since the automaton depicted in Figure 3 is structurally unambiguous, and any
equivalent DFA needs at least an exponential number of states. But we can do
slightly better as we will see below. Moreover, every MDFA can be transformed

Descriptional Complexity of (Un)ambiguous Finite State Machines 9

1 2 . . . n + 1

a, b

a a, b a, b

Fig. 3. UFA which is also a SUFA An with (n+1)-states accepting the set of all words
having a letter a at the nth position, i.e., L(An) = (a + b)∗a(a + b)n−1, which any
equivalent DFA needs at least 2n−1 states

into an equivalent O(n2)-state SUFA by simply making at most n copies of the
MDFA and introducing a new initial state that is appropriately connected to
these copies. It is easy to see that the constructed automaton is a SUFA, hence
DFA <p SUFA and MDFA ≤p SUFA; recall that DFA <p MDFA holds true.
The missing separations of MDFAs and SUFAs and of SUFAs and UFAs can
be found in [46], and were proven by a single witness language only. In fact, the
results presented there give tight bounds for the simulations in the exact number
of states, and read as follows:

Theorem 10 (SUFA by DFA, UFA, or MDFA Simulation). Let n ≥ 1
and A be an n-state SUFA. Then 2n states are sufficient and necessary in the
worst case for a DFA to accept L(A). Moreover 2n − 1 states are sufficient and
necessary in the worst case for a UFA or MDFA to accept L(A).

3.2 Minimization Problems

We continue with some comments on a problem closely related to finding good
lower bounds on the automata simulations for certain types of devices, namely
the minimization problem. The study of the minimization problem for finite
automata dates back to the early beginnings of automata theory—for further
reading we refer to [35] and references therein. The decision version of the
minimization problem, for short the NFA-to-NFA minimization problem, is de-
fined as follows: given a NFA A and a natural number k in binary, that is, an
encoding 〈A, k〉, is there an equivalent k-state NFA? This notation naturally
generalizes to other types of finite automata, for example, the DFA-to-NFA
minimization problem. It is well known that for a given n-state DFA one can
efficiently compute an equivalent minimal automaton in O(n log n) time [28].
More precisely, the DFA-to-DFA minimization problem is complete for NL, even
for DFAs without inaccessible states [4]. This is contrary to the nondeterministic
case since the minimization problem for NFAs is known to be computationally
hard [35]. The PSPACE-hardness result for NFAs was shown by a reduction from
the union universality problem to the NFA-to-NFA minimization problem. For
some further problems related to minimization we refer also to [17].

In order to better understand the very nature of nondeterminism one may ask
for minimization problems for restricted types of finite automata such as, e.g.,
UFAs. Already in [35] it was shown that for UFAs some minimization problems

10 M. Holzer and M. Kutrib

remain intractable. To be more precise, the UFA-to-UFA and the DFA-to-UFA
minimization problems are NP-complete. Later in [50] it was shown that the
minimization of finite automata equipped with a very small amount of nonde-
terminism is already computationally hard. To this end, a reduction from the
NP-complete minimal inferred DFA problem [11,35] to the the minimization
problems for MDFAs with a fixed number of initial states as well as for NFAs
with fixed finite branching has been shown. Prior to this, the MDFA-to-DFA
minimization problem in general was proven to be PSPACE-complete in [27].
Here the minimal inferred DFA problem [11] is defined as follows: given a finite
alphabet Σ, two finite subsets S, T ⊆ Σ∗, and an integer k, is there a k-state DFA
that accepts a language L such that S ⊆ L and T ⊆ Σ∗ \L? Such an automaton
can be seen as a consistent “implementation” of the sets S and T . Recently, the
picture was completed in [2] by getting much closer to the tractability frontier
for NFAs minimization. Interestingly it turned out, that unambiguity plays an
important role in this characterization. There a class of NFAs is identified, the
so called δ-nondeterministic finite automata (δNFA), such that the minimization
problem for any class of finite automata that contains δNFAs is NP-hard, even if
the input is given as a DFA. Here the class of δNFAs contains all NFAs A with
the following properties: (1) the automaton A is a UFA, (2) the maximal product
of the degrees of nondeterminism over the states in a possible computation is at
most 2, and (3) there is at most on state q and a letter a such that the degree
of nondeterminism of q and a is 2. It is worth mentioning that for every n-state
δNFA there is an equivalent DFA with at most O(n2) states.

4 Quantified Ambiguity

The concept of unambiguity implied devices whose mode of operation is somehow
in between determinism and nondeterminism. On the one hand, UFAs can be
seen as DFAs that are allowed to guess in rejecting computations. On the other
hand, UFAs are NFAs that are not allowed to guess in accepting computations. A
natural generalization is to relax the condition that forbids guessing in accepting
computations to allow a certain amount of guessing in accepting computations.
This idea and a formalization of what is a certain amount brings us to the
concept of quantified ambiguity [57].

For an NFA A, we define the ambiguity of a word w, denoted by ambA(w), to
be the number of different accepting computations of w. Note that a word w is
in the language L(A) if and only if the ambiguity of w is not zero. The ambiguity
function ambA : N → N is defined such that ambA(n) is the maximum of the
ambiguities of words that are of length n or less. Here N refers to the set of natu-
ral numbers. Observe, that ambA is nondecreasing by definition. This definition
fits that for UFAs previously given, because an NFA A is unambiguous if the
ambiguity of any word is either zero or one; in the latter case we may also say
that A is a 1-ambiguous NFA. Moreover, automaton A is called finitely (poly-
nomial, exponential, respectively) ambiguous if ambA is bounded by a constant
(polynomial, exponential, respectively) function f such that ambA(n) ≤ f(n),

Descriptional Complexity of (Un)ambiguous Finite State Machines 11

1 2

a

a
1 2

a

a

(a) (b)

1 2 3

a

a

a

a
1 2

a

a

a

a

(c) (d)

Fig. 4. NFAs A with different degrees of ambiguity: (a) UFA, (b) FNA with ambA is
constant 2, (c) PNA with ambA is even linear, and (d) ENA. These automata draw-
ings also nicely illustrate the structural characterizations of (strictly) polynomial and
(strictly) exponential ambiguity presented in Theorem 11.

for every n ∈ N—see Figure 5 for (unary) NFAs with different degrees of ambi-
guity. We abbreviate finitely (polynomial, exponential, respectively) automata
by FNA (PNA, ENA, respectively). It is easy to see for any NFA A we have
ambA(n) ≤ |Q|n, where Q is the state set of A, i.e., every NFA is exponential
ambiguous. We mention in passing that in [4] necessary and sufficient structural
conditions on NFAs were utilized to distinguish between exponential, polyno-
mial, bounded, and k-bounded ambiguity, and it was shown that these ambigu-
ity problems, i.e., determining whether the degree of ambiguity of a given NFA
is exponential, polynomial, constantly bounded, k-bounded, where k is a fixed
integer, or unambiguous are all NL-complete. These structural characterizations
read as follows [33,57,71] (cf. Figure 4) An automaton is strictly ambiguous of a
certain degree, if it is ambiguous of this degree, but not of any lower degree in
the ambiguity hierarchy induced by the classes above.

Theorem 11 (Structural Characterization of NFAs Ambiguities). Let A
be an NFA with state set Q and input alphabet Σ, in which all states are use-
ful.1 Then we have the following structural characterizations of (strictly) finitely,
polynomially, and exponentially ambiguities on finite automata:

1. Automaton A is strictly exponentially ambiguous if and only if there exists a
state q ∈ Q and a word w ∈ Σ+ such that there is more than one computation
from state q to q reading word w.

2. Automaton A is strictly polynomially ambiguous if and only if A is not
exponentially ambiguous and there exists different states p, q ∈ Q and a

1 A state q is useful if it is reachable from the initial state and one can reach at least
one final state from q.

12 M. Holzer and M. Kutrib

word w ∈ Σ+ such that there are computations from state p to itself, from
state p to q, and from state q to itself, all reading the same word w.

3. Automaton A is finitely ambiguous if and only if A is neither strictly expo-
nentially nor strictly polynomially ambiguous.

Next we consider the relation between the types of ambiguity to the relative suc-
cinctness in the number of states for NFAs. This is still a vivid area of research,
even after more than 30 years since one of the first results on UFAs simulations
appeared in [62].

4.1 Ambiguity and the Succinctness of Representation

Once quantified ambiguity has come into play it is interesting to explore how
several structural and computational parameters relate to the degree of ambi-
guity. Is a certain parameter independent of the ambiguity? If not, what are the
precise relations? This subsection is devoted to discuss the connections between
the degree of ambiguity and the succinctness of the representation, that is, the
necessary number of states.

Recall that by definition

DFA ≤p UFA ≤p FNA ≤p PNA ≤p ENA =p NFA,

where C1 =p C2 is a short hand notation for C1 ≤p C2 and C2 ≤p C1. The
following separation results are known (not listing the already reported results
on the relations between DFAs, UFAs, and NFAs): DFA <p UFA [45,48,61,65],
UFA <p FNA [48,57,61], PNA <p NFA [32,47], and the intermediate relation
between FNAs and PNAs turned out to be very complicated to separate. Several
attempts to prove it failed, see, e.g., [32,57], until recently, where this long stand-
ing open problem was solved in the affirmative, resulting in FNA <p PNA [30].
These separation results can be summarized as follows:

Theorem 12 (Simulations of NFAs with Different Ambiguities). The
following separation results on NFA with different degrees of ambiguity are known:

1. For every n ≥ 1, there is an n-state NFA A (having exponential ambiguity)
such that any PNA accepting L(A) has at least 2n − 1 states.

2. For every k, r ≥ 1, there is a k · rO(1)-state NFA with ambiguity O(nk) such
that any NFA accepting L(A) has an exponential (in k and r) number of
states, if ambiguity o(nk) or finite ambiguity is required.

3. For every n ≥ 1, there is an n-state FNA A such that any UFA accept-
ing L(A) has at least 2n−1 states. This also holds true when changing FNA
to UFA and UFA to DFA.

The given bounds in the first and last results are known to be tight.

Next we investigate the question whether there is a relation between ambiguity
and the amount of nondeterminism used during the computation.

Descriptional Complexity of (Un)ambiguous Finite State Machines 13

4.2 Ambiguity and the Amount of Nondeterminism

Nondeterminism has started to be seen as an additional limited resource at
the disposal of time or space bounded computations in [7,37]. The concept of
limited nondeterminism in finite automata is more generally studied in [12,38].
In the latter reference a bound on the number of nondeterministic steps allowed
during a computation as well as on the maximal number of choices for every
nondeterministic step is imposed. Since in a certain sense the degree of ambiguity
restricts nondeterministic computations, it is suspenseful to explore the question
whether there is a relation between the degree of ambiguity and the degree of
nondeterminism.

Here, the nondeterminism is measured dynamically by counting the number
of guesses an automaton has to make [13]. More precisely, for an NFA A =
(Q, Σ, δ, q0, F), the amount of guessing of a single move δ(q, a), for q ∈ Q and
a ∈ Σ, is defined to be log2(|δ(q, a)|). This concept is extended additively to
computations by adding the amounts of the single steps. Then for each w ∈
L(A) the amount of guessing, referred to guessA(w), is the minimum over all
accepting computations on w, and the guessing function guessA is defined such
that guessA(n) is the maximum of the amounts of guessing of words in L(A) that
are of length n or less. Note that, in general, guessA(n) is not an integer. If the
NFA branches to at most two states in every step, then guessA simply counts
the number of nondeterministic steps. Moreover, guessA counts a branch to 2k

successor states as equal to k branches to two successor states.
Concerning the relation between the amount of nondeterminism and the de-

gree of ambiguity, it is illustrated in [13] that finite automata A with constant
or linear nondeterminism, that is, guessA is a constant or linear function, can be
of all types UFA, FNA, PNA, and ENA. So, no prediction can be made about
the degree of ambiguity. Figure 4 shows the four types of ambiguity in ques-
tion for NFAs with a linear amount of nondeterminism, and Figure 5 depicts
examples for NFAs with a constant amount of nondeterminism. The surprising
result obtained in [13] revealed that the situation is different for the intermediate
level of nondeterminism. The subtle relation between the two concepts is that
an automaton with a non-constant but sublinear guessing function must have an
infinite degree of ambiguity. Furthermore, it is shown that for each k ≥ 1 there
is, in fact, an NFA A with guessA(n) ∈ Θ(n1/k). The key result of [13] is the
following trade-off lemma.

Lemma 13. If A is an n-state NFA and w ∈ L(A) is such that there is no
word v ∈ L(A) with |v| < |w| and guessA(v) ≥ guessA(w), then

nambA(w)(ambA(w) guessA(w) + 1)
|w| > 2−n.

For a given NFA A the number 2−n is a positive constant. So, the lemma can
be interpreted such that an input that requires few nondeterminism at the same
time causes a high degree of ambiguity. The next theorem [13] is an immediate
consequence of the trade-off lemma.

14 M. Holzer and M. Kutrib

1

2

3

a

a 1

2

3

a

a

(a) (b)

1 2

a

a

a

1 2 3

a

a

a

a

a

a

(c) (d)

Fig. 5. NFAs A with a constant amount of nondeterminism and different degrees of
ambiguity: (a) UFA, (b) FNA with ambA is constant 2, (c) PNA with ambA is linear,
and (d) ENA

Theorem 14. Every NFA with a non-constant but sublinear guessing function
has an infinite degree of ambiguity.

4.3 Finite Ambiguity and the Structure of Finite Automata

The characterizations of finite automata with different degrees of ambiguity al-
ready discussed in Theorem 11 are with respect to the inner structure of the
finite automata. From this point of view the relation between the number of
states and the amount of ambiguity are worth studying. Since the example given
in Figure 4(d) shows that there is 2-state NFA with exponential ambiguity, the
question for upper and lower bounds on the finite degree of ambiguity of n-state
nondeterministic finite automata is of particular interest.

In connection with the questions asking for the decidability of the finiteness of
a finitely generated monoid of matrices with entries in the natural numbers N, (or
in a larger semiring), and for an algorithm which computes the degree of an NFA,
rough upper bounds have been derived in the late seventies. In three papers it
was independently obtained that the degree of ambiguity of a finitely ambiguous

n-state NFA with input alphabet Σ is at most (1) n233n2+1

, (2) nf(n,|Σ|), where f

is a recursive function, and (3) 2nn2n24n3
. A systematic study of this problem

started in [71], where the next theorem has been shown.

Theorem 15. Let A be an n-state FNA. Then ambA is at most 5n/2nn.

By reduction, Theorem 15 can be generalized to NFAs with λ-moves. The upper
bound has slightly be improved in the context of formal power series. In [39] it
was decreased to 21+k2nnn, where k2 < 0.7956. In order to compare the results
note that 5n/2nn = 2k1n, where k1 ≈ 1.161.

Descriptional Complexity of (Un)ambiguous Finite State Machines 15

A so-called chain-NFA has a certain inner structure. Roughly speaking, the
transition graph representing a chain-NFA consists of strongly connected com-
ponents (SCC), say Q1, Q2, . . . , Qk acting as chain links, such that there is a
single initial state in Q1, a single accepting state in Qk, and exactly one transi-
tion from Qi to Qi+1, for 1 ≤ i ≤ k − 1. A chain-NFA can be seen as a sequence
of modules which have to be passed through in a one-way fashion. The upper
bound for chain-NFAs is much lower than for arbitrary NFAs [71]:

Theorem 16. Let A be an n-state chain FNA. Then ambA is at most nn.

Now we turn also to lower bounds. In order to capture classes C of NFAs defined
with respect to their inner structures more generally, let Cf ⊆ C denote the
subclass including exactly all FNAs from C, and set

ambC(n, m) = max{ ambA(m) | A ∈ Cf and A has n states }.

By Theorem 15 ambC(n, m) is at most 5n/2nn. In Table 1 we summarize the
results for several subclasses of NFAs. The proofs can be found in [70,71]. No-
tably, for several subclasses upper and lower bounds are tight (in the order of
magnitude 2Θ(n)).

5 (Un)ambiguous Pushdown Automata

In this section we consider the descriptional capacity of unambiguous as well as
finitely ambiguous pushdown automata. In particular, the relative succinctness
of those machines among each other and to finite automata are discussed. It
turned out that the situation is completely different compared to the previously
presented finite automata simulations. First, these pushdown devices induce a
strict hierarchy of languages [19], which was not the case for finite automata.
Moreover, and even more importantly, we will come across a qualitatively new

Table 1. Upper and lower bounds on the ambiguities for several subclasses of NFAs
in relation to the number of states n

Ambiguity ambA

Automata class C lower bound upper bound

NFAs 21.0221·n , for n = 0 mod 64 21.161·nnn

chain-NFAs 21.0221·n , for n = 0 mod 64 nn

chain-NFAs with 2 SCCs 2n−2, for n ≥ 2 2n−1

NFAs for finite languages
(

n
�(n+1)/2�

) (
n

�(n+1)/2�
)

NFAs for unary languages 2n−1 2n−1

16 M. Holzer and M. Kutrib

phenomenon first observed in [51], the so-called non-recursive trade-offs. That
is, there is no recursive function bounding the succinctness gap (for non-trivial
simulations). Before we report on results we briefly have to discuss some issues
on measuring the size of pushdown automata.

Measuring the size of a pushdown automaton by its number of states, as
is done for finite automata, is clearly ineligible. It is well known that every
pushdown automaton can effectively be converted into an equivalent one having
just one sole state [29]. But, in general, one has to pay with an increase in the
number of stack symbols, and determinism or unambiguity is not preserved. For
DPDAs accepting by empty pushdown, the computational capacity is known
to increase strictly with the number of states [19]. So, measuring the size of a
(deterministic) pushdown automaton by its number of stack symbols is also too
crude. In fact, it is also possible to reduce the number of stack symbols if one pays
with an increase in the number of states. The precise relations between states
and stack symbols have been shown in [15] and [16]. So, the number of states as
well as the number of stack symbols have to be considered to measure the size of
a pushdown automaton. But even their product is still insufficient. For example,
for all integers n ≥ 1 the language Ln = (an)∗ can be accepted by a pushdown
automaton with two states and two stack symbols that, in one move, is able to
push n symbols onto the stack. So, in addition, we have to take into account the
lengths of the right-hand sides of the transition rules which can get long when a
pushdown automaton pushes lots of symbols during single transitions. Therefore,
the size of a pushdown automaton A = (Q, Σ, Γ, δ, q0, Z0, F) is measured as
|Q| · |Σ| · |Γ | · h, where h is the length of the longest word pushed in a single
transition.

5.1 Simulations

Here we present some fundamental results in connection with the representation
of regular languages by pushdown automata. In [64] the decidability of regularity
for DPDAs has been shown by a deep proof. This effective procedure revealed
the following upper bound for the trade-off in descriptional complexity when
DPDAs accepting regular languages are converted into DFAs. Given a DPDA
with n > 1 states and t > 1 stack symbols that accepts a regular language. Then
the number of states which is sufficient for an equivalent DFA is bounded by an
expression of the order tn

nn

. Later this triple exponential upper bound has been
improved by one level of exponentiation in [66].

Theorem 17 (DPDA by DFA Simulation). Let A be a deterministic push-
down automaton with n states, t stack symbols, and h is the length of the longest
word pushed in a single transition. If L(A) is regular then 22O(n2 log n+log t+log h)

states are sufficient for a DFA to accept the language L(A).

In the levels of exponentiation this bound is tight, since the following double
exponential lower bound has been obtained in [51]. It is open whether the precise
lower bound or the precise upper bound can be improved in order to obtain
matching bounds.

Descriptional Complexity of (Un)ambiguous Finite State Machines 17

Theorem 18 (DPDA by DFA Simulation). Let n ≥ 1. Then there is a
language Ln accepted by a deterministic pushdown automaton of size O(n3),
and each equivalent DFA has at least 22n

states.

It is clear that these bounds on the simulation by DFAs implicitly imply also
bounds for NFAs. While we deal with finite automata simulations of NPDAs
in the next subsection, to our knowledge the remaining simulation of UPDAs
accepting regular languages by finite automata is an open problem in the sense
that (1) it is not known whether regularity for UPDAs is decidable and (2)
whether the trade-off between UPDAs and finite automata is non-recursive or
not. Note, that the succinctness result for UPDAs and finite automata corre-
sponds to the decidability result of regularity for UPDAs as follows: assume
that f(n) is an upper bound on the number of states for the simulation of an
n-size UPDA by a finite automaton. To decide whether a UPDA A accepts a
regular language, just enumerate all finite automata with fewer states than f(n)
and check equivalence with A, which is decidable by [58].

Finally let us mention that the situation on simulations involving pushdown
automata is different again, to the general case, when pushdown automata ac-
cepting unary languages are considered. This is somehow comparable to the
case of finite automata. It is well known that every unary context-free language
is regular [9]. From the viewpoint of descriptional complexity, unary DPDAs
and NPDAs have been investigated in, e.g., [54,55]. For further results concern-
ing simulations involving pushdown automata we refer to the comprehensive
survey [26].

5.2 Non-recursive Trade-Offs

Now we present some pushdown automata simulations that cause non-recursive
trade-offs. To keep the presentation simple, we introduce only the necessary
terminology, a more general and elaborately treatment is given in [26]. Assume
that we have two classes of automata C1 and C2 which induce a non-empty
intersection on the corresponding languages accepted by these types of devices.
Then a non-recursive trade-off between C1 and C2, means that there is an infinite
family of languages accepted by both device types, such that when changing from
the C1-descriptors to equivalent minimal C2-descriptors, the blow-up in size
cannot be bounded by any recursive function. A cornerstone of descriptional
complexity is the result of Meyer and Fischer [51] who showed for the first
time a non-recursive trade-off. It appears between context-free grammars or
equivalently NPDAs and finite automata. In Theorem 17 we have seen that the
trade-off between DPDAs and finite automata is recursive, where the proof relies
on the fact that regularity is decidable for DPDAs. This goes hand in hand with
the undecidability of regularity for NPDAs

Theorem 19 (NPDA by FA Simulation). The trade-off between NPDAs
and finite automata is non-recursive.

Even the computational power of DPDAs is not enough, similarly, the non-
recursive trade-off between NPDAs and DPDAs follows (cf. [61]):

18 M. Holzer and M. Kutrib

Theorem 20 (NPDA by DPDA Simulation). The trade-off between NPDAs
and DPDAs is non-recursive.

Most proofs of non-recursive trade-offs that appear in the literature basically
rely on one of two different proof schemes. One fundamental technique is due to
Hartmanis [21]. In [22] a generalization is developed that relates semi-decidability
to trade-offs and a slightly generalized and unified form of this technique can
be found in [40]. When applying these techniques very often non-semi-decidable
properties of Turing machines are utilized by encoding complex Turing machine
computations in small automata [20]. To this end encodings of (in)valid com-
putations of Turing machines and variants thereof are considered. Nevertheless,
even simpler proof schemes only using (full) TRIO-closure properties of the un-
derlying formal language families and semi-decidability of certain decision prob-
lems were recently developed and applied in [18]. Recall that a formal language
family is called a TRIO (full TRIO, respectively) if it is closed under λ-free
morphism (general morphism, respectively), inverse morphism, and intersection
with regular languages [29].

Here we are particularly interested in the remaining trade-offs caused by
the devices “in between” NPDAs and FAs, that is in the trade-offs between
NPDAs and UPDAs as well as between UPDAs and DPDAs. The next result
from [67] compares DPDAs and unambiguous context-free grammars or equiva-
lently UPDAs. It exploits the following crucial result on the size of DPDAs. If
for some DPDA A with state set Q and set of stack symbols Γ the string w is
the shortest string such that wa and wb are accepted, then there is a positive
constant k such that |Q| · |Γ | ≥ (log |w|)k. This can be used to show the next
non-recursive trade-off:

Theorem 21 (UPDA by DPDA Simulation). The trade-off between UPDAs
and DPDAs is non-recursive.

The remaining trade-off between NPDAs and UPDAs has been shown in [62].

Theorem 22 (NPDA by UPDA Simulation). The trade-off between NPDAs
and UPDAs is non-recursive.

5.3 Bounded Ambiguity and Bounded Nondeterminism

The quantitative study of nondeterminism in context-free languages originates
from [69], where two measures for the amount of nondeterminism in pushdown
automata are proposed. By bounding the number of nondeterministic steps de-
pendent on the length of the input, a hierarchy of three classes is obtained. A
modification of the measure can be found in [59]. The second measure depends
on the depth of the directed acyclic graph that represents a given pushdown
automaton. The corresponding proof of an infinite nondeterministic hierarchy of
properly included classes is completed in [60]. The so-called branching as mea-
sure of nondeterminism in connection with pushdown automata, introduced for
finite automata [12], is studied in [14,23]. In [14] lower bounds for the minimum

Descriptional Complexity of (Un)ambiguous Finite State Machines 19

amount of nondeterminism to accept certain context-free languages are estab-
lished. Pushdown automata with limited nondeterminism are investigated in [41]
from the viewpoint of context-dependent nondeterminism, and in [42] from the
viewpoint of regulated nondeterminism.

Considering a computation of a pushdown automaton we call a single step
nondeterministic if the automaton has more than one choice for its move. The
branching of the step is defined to be the number of choices. The branching of
a computation is the product of the branchings of all steps of the computation.
In order to be more precise, let A be a NPDA, then we define the branching
branchA as follows:

1. The branching of a configuration c is branchA(c) = |{ c′ | c 	 c′ }|.
2. A sequence of configurations (computation) C = c0 	 c1 	 · · · 	 ck has

branching
k−1∏

i=0

branchA(ci).

3. For words w ∈ L(A) we define the branching as

branchA(w) = min{ branchA(C) | C is an accepting computation on w }.
4. Finally, let the branching of A be branchA = sup{ branchA(w) | w ∈ L(A) }.

In an NPDA A whose branching is bounded by a constant k all computations can
be cut off when the branching exceeds k without changing the accepted language.
So, the branching of an NPDA tells us up to which width the computation
tree of some input word has to be examined until an accepting computation
is found. The branching of a word is not necessarily equal to the number of
computations on this word. Moreover, there is no relation between the ambiguity
and the branching of an NPDA, since there are NPDAs A with ambA = 1 and
branchA = ∞ as well as with ambA = ∞ and branchA = 1.

In [3] and [23] a two-dimensional infinite hierarchy dependent on the finite
degree of ambiguity and the finite branching in between the deterministic and
nondeterministic context-free languages is obtained. Denote the classes of push-
down automata with ambiguity and branching bounded by a constant k by
NPDA(amb ≤ k) and NPDA(branch ≤ k). If both resources are bounded at the
same time, we write NPDA(amb ≤ k, branch ≤ k′). Clearly, for every k, we have
the inclusions2

NPDA(amb ≤ k) ⊆ NPDA(amb ≤ k + 1)

and
NPDA(branch ≤ k) ⊆ NPDA(branch ≤ k + 1).

In [23] it is proven that NPDA(branch ≤ k) ⊆ NPDA(amb ≤ k). Moreover, it
is shown that all of these inclusions are proper. This means that every time the
2 In abuse of notation the three inclusions yet to come are meant w.r.t. the languages

generated by the corresponding pushdown automata with limited ambiguity and/or
branching.

20 M. Holzer and M. Kutrib

allowed amount of ambiguity or the allowed amount of nondeterminism in an
NPDA is increased by just one, a more powerful device is obtained. Intuitively,
the corresponding language families are close together. Nevertheless, there are
non-recursive trade-offs between levels of the hierarchy. In [3] the next theorem
has been shown.

Theorem 23 (NPDA with Bounded Ambiguity Simulation). Let k ≥ 1.
Then the trade-off between NPDA(amb ≤ k + 1) and NPDA(amb ≤ k) is non-
recursive.

The result has been generalized in [23]:

Theorem 24 (NPDA with Bounded Ambiguity and Bounded Branch-
ing by NPDA with Bounded Ambiguity Simulation). Let k ≥ 1. Then
the trade-offs between

1. NPDA(amb ≤ k + 1, branch ≤ k + 1) and NPDA(amb ≤ k), and
2. NPDA(amb ≤ 1, branch ≤ k + 1) and NPDA(branch ≤ k)

are non-recursive.

Finally, in addition to the non-recursive trade-offs a nontrivial recursive trade-off
is shown in [23].

Theorem 25 (NPDA with Bounded Branching by NPDA with Bound-
ed Ambiguity and Branching Simulation). Let k ≥ 1 and A be an n-size
NPDA belonging to NPDA(branch ≤ k). Then 2O(n) states are sufficient for an
NPDA from NPDA(amb ≤ k, branch ≤ k) to accept L(A).

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

2. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer,
Heidelberg (2008)

3. Borchardt, I.: Nonrecursive tradeoffs between context-free grammars with different
constant ambiguity. Diploma thesis, Universität Frankfurt (1992) (in German)

4. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Inform. Comput. 97, 1–22 (1992)

5. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

6. Chrobak, M.: Errata to “finite automata and unary languages”. Theoret. Comput.
Sci. 302, 497–498 (2003)

7. Fischer, P.C., Kintala, C.M.R.: Real-time computations with restricted nondeter-
minism. Math. Systems Theory 12, 219–231 (1979)

8. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9, 1–19
(1974)

Descriptional Complexity of (Un)ambiguous Finite State Machines 21

9. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J.
ACM 9(3), 350–371 (1962)

10. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

11. Gold, E.M.: Complexity of automaton identification from given data. Inform.
Control 37, 302–320 (1978)

12. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inform. Comput. 86, 179–194 (1990)

13. Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and
nondeterminism in finite automata. Inform. Comput. 100, 261–270 (1992)

14. Goldstine, J., Leung, H., Wotschke, D.: Measuring nondeterminism in pushdown
automata. J. Comput. System Sci. 71, 440–466 (2005)

15. Goldstine, J., Price, J.K., Wotschke, D.: On reducing the number of states in a
PDA. Math. Systems Theory 15, 315–321 (1982)

16. Goldstine, J., Price, J.K., Wotschke, D.: On reducing the number of stack symbols
in a PDA. Math. Systems Theory 26, 313–326 (1993)

17. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard (extended abstract). In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS,
vol. 4036, pp. 363–374. Springer, Heidelberg (2006)

18. Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. In:
Descriptional Complexity of Formal Systems (DCFS 2009), pp. 187–198. Otto-
von-Guericke-Universität Magdeburg (2009)

19. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading
(1978)

20. Hartmanis, J.: Context-free languages and Turing machine computations. In: Proc.
Symposia in Applied Mathematics, vol. 19, pp. 42–51 (1967)

21. Hartmanis, J.: On the succinctness of different representations of languages. SIAM
J. Comput. 9, 114–120 (1980)

22. Hartmanis, J.: On Gödel speed-up and succinctness of language representations.
Theoret. Comput. Sci. 26, 335–342 (1983)

23. Herzog, C.: Pushdown automata with bounded nondeterminism and bounded
ambiguity. Theoret. Comput. Sci. 181, 141–157 (1997)

24. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 23–42. Springer, Heidelberg (2009)

25. Holzer, M., Kutrib, M.: Nondeterministic finite automata - Recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20, 563–
580 (2009)

26. Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In:
Scientific Applications of Language Methods. Imperial College Press, London (to
appear, 2010)

27. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Autom., Lang. Comb. 6, 453–466 (2001)

28. Hopcroft, J.E.: An n log n algorithm for minimizing the state in a finite automaton.
In: The Theory of Machines and Computations, pp. 189–196. Academic Press,
London (1971)

29. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

30. Hromkovič, J., Schnitger, G.: Ambiguity and communication. In: Theoretical
Aspects of Computer Science (STACS 2009), Dagstuhl, Germany. LIPICS, vol. 3,
pp. 107–118 (2009)

22 M. Holzer and M. Kutrib

31. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Hei-
delberg (1997)

32. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172, 202–217 (2002)

33. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision problems
for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986.
LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1986)

34. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal
NFA’s over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)

35. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22,
1117–1141 (1993)

36. Kappes, M.: Descriptional complexity of deterministic finite automata with multi-
ple initial states. J. Autom., Lang. Comb. 5, 269–278 (2000)

37. Kintala, C.M.R.: Computations with a Restricted Number of Nondeterministic
Steps. PhD thesis, Pennsylvania State University (1977)

38. Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata.
Acta Inform. 13, 199–204 (1980)

39. Kuich, W.: Finite automata and ambiguity. Report 253 of the IIG, Technische
Universität Graz (1988)

40. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005)

41. Kutrib, M., Malcher, A.: Context-dependent nondeterminism for pushdown au-
tomata. Theoret. Comput. Sci. 376, 101–111 (2007)

42. Kutrib, M., Malcher, A., Werlein, L.: Regulated nondeterminism in pushdown
automata. Theoret. Comput. Sci. 410, 3447–3460 (2009)

43. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Math. und Phys. 3, 92–103 (1903)

44. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Teubner
(1909)

45. Leiss, E.L.: Succinct representation of regular languages by Boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981)

46. Leung, H.: Structurally unambiguous finite automata. In: Ibarra, O.H., Yen, H.-C.
(eds.) CIAA 2006. LNCS, vol. 4094, pp. 198–207. Springer, Heidelberg (2006)

47. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27, 1073–1082 (1998)

48. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16, 975–984 (2005)

49. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kyber-
netiki 9, 321–326 (1963) (in Russian); German translation: Über den Vergleich
zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)

50. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Com-
put. Sci. 327, 375–390 (2004)

51. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971),
pp. 188–191. IEEE, Los Alamitos (1971)

52. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Comput. 20, 1211–1214 (1971)

53. Okhotin, A.: A study of unambiguous finite automata over a one-letter alphabet.
TUCS Technical Report No 951, Turku Centre for Computer Science (2009)

Descriptional Complexity of (Un)ambiguous Finite State Machines 23

54. Pighizzini, G.: Deterministic pushdown automata and unary languages. In: Ibarra,
O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 232–241. Springer,
Heidelberg (2008)

55. Pighizzini, G., Shallit, J., Wang, M.W.: Unary context-free grammars and push-
down automata, descriptional complexity and auxiliary space lower bounds. J.
Comput. System Sci. 65, 393–414 (2002)

56. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

57. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)

58. Salomaa, A., Soittola, M.: Automata-theoretic Aspects of Formal Power Series.
Springer, Heidelberg (1978)

59. Salomaa, K., Yu, S.: Limited nondeterminism for pushdown automata. Bull.
EATCS 50, 186–193 (1993)

60. Salomaa, K., Yu, S.: Measures of nondeterminism for pushdown automata. J. Com-
put. System Sci. 49, 362–374 (1994)

61. Schmidt, E.M.: Succinctness of Dscriptions of Context-Free, Regular and Finite
Languages. PhD thesis, Cornell University, Ithaca, NY (1978)

62. Schmidt, E.M., Szymanski, T.G.: Succinctness of descriptions of unambiguous
context-free languages. SIAM J. Comput. 6, 547–553 (1977)

63. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System
Sci. 21, 195–202 (1980)

64. Stearns, R.E.: A regularity test for pushdown machines. Inform. Control 11, 323–
340 (1967)

65. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars, and finite automata. SIAM
J. Comput. 14, 598–611 (1985)

66. Valiant, L.G.: Regularity and related problems for deterministic pushdown au-
tomata. J. ACM 22, 1–10 (1975)

67. Valiant, L.G.: A note on the succinctness of descriptions of deterministic languages.
Inform. Control 32, 139–145 (1976)

68. Veloso, P.A.S., Gill, A.: Some remarks on multiple-entry finite automata. J. Com-
put. System Sci. 18, 304–306 (1979)

69. Vermeir, D., Savitch, W.: On the amount of nondeterminism in pushdown au-
tomata. Fund. Inform. 4, 401–418 (1981)

70. Weber, A.: Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten
und Transducern. Dissertation, Institut für Informatik, Johann Wolfgang Goethe-
Universität Frankfurt am Main (1987) (in German)

71. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret.
Comput. Sci. 88, 325–349 (1991)

	Descriptional Complexity of (Un)ambiguous Finite State Machines and Pushdown Automata
	Introduction
	Definitions
	(Un)ambiguous Finite Automata
	Simulations
	Minimization Problems

	Quantified Ambiguity
	Ambiguity and the Succinctness of Representation
	Ambiguity and the Amount of Nondeterminism
	Finite Ambiguity and the Structure of Finite Automata

	(Un)ambiguous Pushdown Automata
	Simulations
	Non-recursive Trade-Offs
	Bounded Ambiguity and Bounded Nondeterminism

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

