

Lecture Notes in Computer Science 6227
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Antonín Kučera Igor Potapov (Eds.)

Reachability Problems

4th International Workshop, RP 2010
Brno, Czech Republic, August 28-29, 2010
Proceedings

13

Volume Editors

Antonín Kučera
Masaryk University, Faculty of Informatics
Botanická 68a, 60200 Brno, Czech Republic
E-mail: tony@fi.muni.cz

Igor Potapov
University of Liverpool, Department of Computer Science
Ashton Building, Liverpool L69 3BX, England
E-mail: potapov@liverpool.ac.uk

Library of Congress Control Number: 2010932672

CR Subject Classification (1998): F.3, D.2, D.3, F.4, F.4.1, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15348-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15348-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the papers presented at the 4th International Workshop
on Reachability Problems, RP 2010 held during August 28–29, 2010 in the Fac-
ulty of Informatics, Masaryk University, Brno, Czech Republic and co-located
with Joint MFCS and CSL 2010 (35th International Symposiums on Mathemat-
ical Foundations of Computer Science and 19th EACSL Annual Conferences on
Computer Science Logic). RP 2010 was the fourth in the series of workshops
following three successful meetings at Ecole Polytechnique, France in 2009 at
University of Liverpool, UK in 2008 and at Turku University, Finland in 2007.

The Reachability Problems workshops series aims at gathering together schol-
ars from diverse disciplines and backgrounds interested in reachability problems
that appear in algebraic structures, computational models, hybrid systems, logic
and verification, etc. Reachability is a fundamental problem in the context of
many models and abstractions which describe various computational processes.
Analysis of the computational traces and predictability questions for such models
can be formalized as a set of different reachability problems. In general, reacha-
bility can be formulated as follows: Given a computational system with a set of
allowed transformations (functions), decide whether a certain state of a system
is reachable from a given initial state by a set of allowed transformations. The
same questions can be asked not only about reachability of exact states of the
system but also about a set of states expressed in terms of some property as a
parameterized reachability problem. Another set of predictability questions can
be seen in terms of reachability of eligible traces of computations, unavoidability
of some dynamics and a possibility to avoid undesirable dynamics using a limited
control.

The purpose of the conference is to promote exploration of new approaches
for the predictability of computational processes by merging mathematical, al-
gorithmic and computational techniques. Topics of interest include (but are not
limited to): reachability problems in infinite state systems, rewriting systems,
dynamical and hybrid systems; reachability problems in logic and verification;
reachability analysis in different computational models, counter/ timed/ cellu-
lar/ communicating automata; Petri nets; computational aspects of algebraic
structures (semigroups, groups and rings); frontiers between decidable and un-
decidable reachability problems; predictability in iterative maps and new com-
putational paradigms.

The first venue of Reachability Problems was Turku, Finland in 2007, as
a satellite event of Developments in Language Theory DLT 2007. The second
was held at Liverpool University in 2008 and the third at Ecole Polytechnique,
France in 2009.

VI Preface

The proceedings of the previous RP workshops appeared as follows:

– Mika Hirvensalo, Vesa Halava, Igor Potapov, Jarkko Kari (Eds.): Proceedings
of the Satellite Workshops of DLT 2007. TUCS General Publication No 45,
June 2007. ISBN: 978-952-12-1921-4.

– Vesa Halava and Igor Potapov (Eds.): Proceedings of the Second Work-
shop on Reachability Problems in Computational Models (RP 2008). Elec-
tronic Notes in Theoretical Computer Science. Volume 223, Pages 1-264
(26 December 2008).

– Olivier Bournez and Igor Potapov (Eds.): Reachability Problems, Third In-
ternational Workshop, RP 2009, Palaiseau, France, September 23–25, 2009,
Lecture Notes in Computer Science, 5797, Springer 2009.

The four keynote speakers at the 2010 conference were:

– Markus Holzer, “Descriptional Complexity of (Un)ambiguous Finite-State
Machines and Pushdown Automata”

– Kim Guldstrand Larsen, “Symbolic and Compositional Reachability for
Timed Automata”

– Alexander Rabinovich, “Temporal Logics over Linear Time Domains Are in
PSPACE”

– Philippe Schnoebelen, “Lossy Counter Machines Decidability Cheat Sheet”

Each of the submitted papers received at least three reviews by members of
the Program Committee, with the help of external reviewers. The full list of the
23 members of the Program Committee and the list of external reviewers can be
found on the next two pages. The Program Committee is grateful for the highly
appreciated and high-quality work produced by these external reviewers. Based
on these reviews, the Program Committee decided finally to accept nine papers,
in addition to the four invited talks.

We also gratefully acknowledge the support from the Czech National Research
Center Institute for Theoretical Computer Science (ITI).

It is also a great pleasure to acknowledge the team of the EasyChair system,
and the fine cooperation with the Lecture Notes in Computer Science team of
Springer which made possible the production of this volume in time for the
conference.

Finally, we thank all the authors for the high quality of their contributions,
and the participants for making this edition of RP 2010 a success.

June 2010 Antońın Kučera
Igor Potapov

Conference Organization

Program Chairs

Antońın Kučera
Igor Potapov

Program Committee

Parosh Aziz Abdulla Uppsala, Sweden
Eugene Asarin Paris, France
Christel Baier Bonn, Germany
Bernard Boigelot Liege, Belgium
Olivier Bournez Palaiseau, France
Cristian S. Calude Auckland, New Zealand
Stephane Demri Cachan, France
Javier Esparza München, Germany
Laurent Fribourg Cachan, France
Vesa Halava Turku, Finland
Oscar Ibarra Santa Barbara, USA
Franjo Ivancic Princeton, USA
Juhani Karhumäki Turku, Finland
Joost-Pieter Katoen Aachen, Germany
Antonin Kucera Brno, Czech Republic
Michal Kunc Brno, Czech Republic
Alexander Kurz Leicester, UK
Slawomir Lasota Warsaw, Poland
Alexei Lisitsa Liverpool, UK
Luke Ong Oxford, UK
Igor Potapov Liverpool, UK
Wolfgang Thomas Aachen, Germany
Hsu-Chun Yen Taipei, Taiwan, China

Local Organization

Antońın Kučera
Igor Potapov

with the help offered by the Faculty of Informatics, Masaryk University
for the organization of the Reachability Workshop.

VIII Conference Organization

External Reviewers

Laurent Doyen
Ingo Felscher
Florent Jacquemard
Arnaud Sangnier
Pawel Parys
David Pichardie
Roman Rabinovich

Table of Contents

Descriptional Complexity of (Un)ambiguous Finite State Machines and
Pushdown Automata (Invited Talk) . 1

Markus Holzer and Martin Kutrib

Symbolic and Compositional Reachability for Timed Automata
(Invited Talk) . 24

Kim Guldstrand Larsen

Temporal Logics over Linear Time Domains Are in PSPACE
(Invited Talk) . 29

Alexander Rabinovich

Lossy Counter Machines Decidability Cheat Sheet (Invited Talk) 51
Philippe Schnoebelen

Behavioral Cartography of Timed Automata . 76
Étienne André and Laurent Fribourg

On the Joint Spectral Radius for Bounded Matrix Languages 91
Paul C. Bell, Vesa Halava, and Mika Hirvensalo

Z-Reachability Problem for Games on 2-Dimensional Vector Addition
Systems with States Is in P . 104

Jakub Chaloupka

Towards the Frontier between Decidability and Undecidability for
Hyperbolic Cellular Automata . 120

Maurice Margenstern

Rewriting Systems for Reachability in Vector Addition Systems with
Pairs . 133

Paulin Jacobé de Naurois and Virgile Mogbil

The Complexity of Model Checking for Intuitionistic Logics and Their
Modal Companions . 146

Martin Mundhenk and Felix Weiß

Depth Boundedness in Multiset Rewriting Systems with Name
Binding . 161

Fernando Rosa-Velardo

X Table of Contents

Efficient Construction of Semilinear Representations of Languages
Accepted by Unary NFA . 176

Zdeněk Sawa

Efficient Graph Reachability Query Answering Using Tree
Decomposition . 183

Fang Wei

Author Index . 199

Descriptional Complexity of (Un)ambiguous
Finite State Machines and Pushdown Automata

Markus Holzer and Martin Kutrib

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. Unambiguity and its generalization to quantified ambiguity
are important concepts in, e.g., automata and complexity theory. Basi-
cally, an unambiguous machine has at most one accepting computation
path for each accepted word. While unambiguous pushdown automata
induce a language family strictly in between the deterministic and general
context-free languages, unambiguous finite automata capture the regular
languages, that is, they are equally powerful as deterministic and non-
deterministic finite automata. However, their descriptional capacity is
significantly different. In the present paper, we summarize and discuss
developments relevant to (un)ambiguous finite automata and pushdown
automata problems from the descriptional complexity point of view. We
do not prove these results but we merely draw attention to the big picture
and some of the main ideas involved.

1 Introduction

Finite automata are traditionally classified into deterministic (DFA), nondeter-
ministic (NFA), and unambiguous (UFA) machines, and it is well known that all
these devices are equally powerful and capture the family of regular languages.
Here an NFA is unambiguous if for every word in the language there is at most
one accepting computation. Clearly, any DFA is a UFA and every UFA is an
NFA. The more complicated part of this equality is to show that every NFA or
UFA can be simulated by a DFA without changing the accepted language. The
construction is normally given by the powerset construction [56], but this simula-
tion can also be interpreted as a reachability analysis on the configuration graph
induced by the NFA with a device without nondeterminism. Here the “search
algorithm” keeps track of all possible configurations (here states) the NFA may
reach simultaneously by reading some word (see Figure 1).

Thus, given some n-state NFA one can always construct a language equivalent
DFA with at most 2n states [56], and therefore NFAs can offer exponential
savings in space compared with DFAs. In fact, later independently in [49,51,52]
it was shown that this exponential upper bound is best possible, i.e., for every n
there is an n-state NFA which cannot be simulated by any DFA with strictly
less than 2n states. Exactly the same bound is reached when simulating UFAs

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 1–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Holzer and M. Kutrib

1 2 3

a, b

a a, b

1

2

3

4

1 1, 2

1, 3 1, 2, 3

a

b

a
b

a
b

a

b

(a) (b)

Fig. 1. Powerset construction: (a) NFA and (b) equivalent DFA with initial state {1},
visualizing the “search front” by numbers from 1 to 4 of an incremental powerset con-
struction for the sub-automaton reachable from the initial state—in the drawing the
curly brackets are omitted. The first search front 1 consist of the state {1}, the second
of the states {1, 2} and {1}, the third of {1, 2, 3} and {1, 3}, and finally the fourth of
all depicted states. Observe, that the NFA in (a) is actually also a UFA.

by DFAs [45,48], while for the simulation of NFAs by UFAs the upper bound
drops to 2n − 1, which was also shown to be tight in [47].

These results are only three examples from a vast of different simulation re-
sults of various devices from automata theory that can be found in the literature;
for some further readings we refer to, e.g., [24,25,26]. We tour a fragment of the
literature summarizing simulation results of variants of NFAs and pushdown au-
tomata. In particular we pay special attention to unambiguous finite automata
and pushdown machines, because we think that unambiguity deserves more at-
tention since it is a valuable and important concept that appears in a lot of
sub-fields of theoretical computer science such as, e.g., automata and formal
language theory, complexity theory, etc. A size lower bound on a simulation can
be interpreted as a succinctness gain, when changing from one description to
the other description. In most cases tight bounds for the simulations (in order
of magnitude) are obtained, but there are also situations, where the gain in
succinctness in a simulation cannot be bounded by any recursive function. This
latter phenomenon known as non-recursive trade-off appears when pushdown
automata become involved. This is not entirely true in general, because for cer-
tain restrictions on pushdown machines such as, e.g., deterministic pushdown
automata (DPDA) accepting regular languages only, or pushdown machines ac-
cepting unary languages, the simulation becomes recursive again. Moreover, we
also draw a picture of the relations between higher degrees of ambiguity and
nondeterminism. We do not prove these results but we merely draw attention to
the big picture and some of the main ideas involved.

Descriptional Complexity of (Un)ambiguous Finite State Machines 3

The paper is organized as follows: in the next section we introduce the neces-
sary notations. Then in Section 3 we focus on finite automata presenting simu-
lation results and complexity bounds on the minimization problem. The concept
of higher degrees of ambiguity and nondeterminism is then discussed for finite
automata in Section 4. Finally, similar questions on simulations, and the rela-
tion of ambiguity and nondeterminism are addressed for pushdown automata in
Section 5.

2 Definitions

In connection with formal languages, strings are called words. Let Σ∗ denote the
set of all words over a finite alphabet Σ. The empty word is denoted by λ, and
we set Σ+ = Σ∗ \{λ}. For the length of a word w we write |w|; in particular, the
length of the empty word is zero, i.e., |λ| = 0. A formal language L is a subset
of Σ∗. One of the easiest devices in formal language theory are finite automata,
which are defined as follows:

A nondeterministic finite automaton (NFA) is a quintuple A = (Q, Σ, δ, q0, F),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → 2Q is the
transition function, where 2Q refers to the powerset of the set Q. The language
accepted by the NFA A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ },

where the transition function δ is recursively extended to δ : Q × Σ∗ → 2Q by
δ(q, λ) = {q} and δ(q, aw) =

⋃
p∈δ(q,a) δ(p, w). A finite automaton is said to be

minimal if its number of states is minimal with respect to the accepted language.
Special kinds of NFAs are deterministic and unambiguous finite automata.

Let A = (Q, Σ, δ, q0, F) be a finite automaton. Then A is deterministic (DFA)
if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. In this case we simply
write δ(q, a) = p instead of δ(q, a) = {p} assuming that the transition function
is a mapping δ : Q × Σ → Q. Moreover the NFA A is unambiguous (UFA)
if for every word w ∈ L(A) there is at most one accepting computation path,
i.e., the sequence of states seen during the accepting computation on the given
word is unique. Clearly, every DFA is a UFA. Any DFA is complete, that is, the
transition function is total, whereas it may be a partial function for NFAs and
UFAs in the sense that the transition function of nondeterministic machines may
map to the empty set. So, a sink or dead state is counted for DFAs, since they
are always complete, whereas it is not counted for NFAs and UFAs, since these
devices are not necessarily complete. For further details we refer to [29].

A natural generalization of finite automata are pushdown machines. A nonde-
terministic pushdown automaton (NPDA) is a 7-tuple A = (Q, Σ, Γ, δ, q0, Z0, F),
where Q is the finite set of states, Σ is the finite set of input symbols, Γ is the
finite stack alphabet, q0 ∈ Q is the initial state, Z0 ∈ Γ is the bottom of stack
symbol which initially appears on the pushdown store, F ⊆ Q is the set of ac-
cepting states, and transition function δ maps Q×(Σ∪{λ})×Γ to finite subsets

4 M. Holzer and M. Kutrib

of Q × Γ ∗. An NPDA A is in configuration c = (q, w, γ) if A is in state q ∈ Q
with w ∈ Σ∗ as remaining input, and γ ∈ Γ ∗ on the pushdown store, the right-
most symbol of γ being the top symbol on the pushdown. We write

c = (q, aw, γZ) 	A (p, w, γβ),

if (p, β) ∈ δ(q, a, Z), for a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ ∗, and Z ∈ Γ . As usual,
the reflexive transitive closure of 	A is denoted by 	∗A, and the subscript A will
be dropped from 	A and 	∗A whenever the meaning remains clear. The language
accepted by A with empty pushdown is defined by

L(A) = {w ∈ Σ∗ | (q0, w, Z0) 	∗ (q, λ, λ), for some q ∈ Q }.

Equivalently, the language accepted by A with final state is defined by

Lf (A) = {w ∈ Σ∗ | (q0, w, Z0) 	∗ (q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.

As in the case of finite automata one can define deterministic (DPDA) and un-
ambiguous pushdown automata (UPDA) in a straightforward way (cf. [19]). By
definition every DPDA is a UPDA. NPDAs characterize the family of context-
free languages defined by context-free grammars. This characterization carries
over to UPDAs in the sense that the family of unambiguous context-free lan-
guages, generated by unambiguous context-free grammars, is equal to the family
of languages accepted by UPDAs. Finally, the family of deterministic context-
free languages are simply defined to be all languages accepted with final state
by DPDAs (or equivalently by LR(k) context-free grammars). These three types
of devices induce a strict hierarchy of language families [19].

3 (Un)ambiguous Finite Automata

Since regular languages have many representations in the world of finite au-
tomata, it is natural to investigate the succinctness of their representation by
different types of automata in order to optimize the space requirements. Here
we measure the costs of representations in terms of the states of a minimal au-
tomaton accepting a language. More precisely, the simulation problem is defined
as follows:

– Given two classes of finite automata C1 and C2, how many states are suffi-
cient and necessary in the worst case to simulate n-state automata from C1
by automata from C2?

In particular, we are interested in simulations between DFAs, UFAs, and NFAs.
In order to compare these simulations the following relation from the litera-
ture, see, e.g., [57] is of use: if the transformation from an automaton from C1
to an equivalent automaton from C2 is polynomially bounded, i.e., there is a
polynomial p such that for any n-state automaton from C1 one finds an equiv-
alent automaton from C2 with at most p(n) states, then we write C1 ≤p C2.

Descriptional Complexity of (Un)ambiguous Finite State Machines 5

In this case we consider this transformation to be cheap. In case C1 ≤p C2 but
C2 �≤p C1, we say that C1 is (polynomially) separated from C2 and abbreviate
this by C1 <p C2. In other words, while the transformation of an automaton
from C1 into an equivalent C2 automaton is cheap the converse transformation
is expensive and exceeds any polynomial bound. Note that the non-polynomial
bound for the transformation from right to left is in most cases not explicitly
specified. In what follows we will see that in most cases one obtains separation
results for most combinations of classes of finite automata.

3.1 Simulations

It is well known that to any NFA one can always construct an equivalent
DFA [56]. This so-called powerset construction, where each state of the DFA is
associated with a subset of NFA states, turned out to be optimal in general. That
is, the bound on the number of states necessary for the construction is tight in
the sense that for an arbitrary n there is always some n-state NFA which cannot
be simulated by any DFA with strictly less than 2n states [49,51,52]. So, NFAs
can offer exponential savings in the number of states compared with DFAs. This
gives rise to DFA <p NFA or more precisely to the following theorem.

Theorem 1 (NFA by DFA Simulation). Let n ≥ 1 and A be an n-state
NFA. Then 2n states are sufficient and necessary in the worst case for a DFA
to accept L(A).

The situation for UFAs is similar. A first result on UFAs was shown in [61]
proving a 2Ω(

√
n) lower bound on the trade-off between NFAs and UFAs and

between UFAs and DFAs. Hence DFA <p UFA and UFA <p NFA. Since DFAs
are also unambiguous both results led a large gap between the lower and the
upper bound of 2n − 1 (as for the case of NFAs in general, the dead state can
be saved for UFAs). Later the lower bound for the transformation of an NFA
to an equivalent UFA was improved to 2Ω(n) in [65] and finally, for every n,
an n-state NFA was exhibited in [47]—see Figure 2—whose smallest equivalent
UFA cannot do better in the number of states than the smallest equivalent DFA
besides the aforementioned saving of the dead state. Hence a 2n− 1 tight bound

1 2 3 . . . n

a

a

b

a

b

a a

b

a

Fig. 2. Leung’s NFA An with n states, for n ≥ 2, accepting a language for which any
equivalent UFA needs at least 2n − 1 states

6 M. Holzer and M. Kutrib

on the trade-off between NFAs and UFAs was established. For the remaining
UFA by DFA simulation it was mentioned in [65] that the well-known language
Ln = (a + b)∗a(a + b)n−1, that is the set of words over the alphabet {a, b}
whose nth last letter is an a, may serve as a witness for a 2n−1 lower bound (see
Figure 3). Then this transformation problem was solved in [45] in a similar vain
as the NFA to DFA transformation (providing UFAs with several initial states)
obtaining a tight bound of 2n in the exact number of states. Later this problem
was reconsidered in [48] giving UFAs with a single initial state that reach the
maximal trade-off when transformed into equivalent DFAs. Again exponential
state savings in both cases are possible. These results are summarized as follows:

Theorem 2 (NFA by UFA and UFA by DFA Simulation). Let n ≥ 1
and A be an n-state NFA. Then 2n− 1 states are sufficient and necessary in the
worst case for a UFA to accept L(A). If automaton A is a UFA, then 2n states
are sufficient and necessary in the worst case for a DFA to accept L(A).

Proving lower bounds for NFAs is complicated in general. Several authors have
introduced methods for proving such lower bounds; see, e.g., the fooling set
technique [10], the extended fooling set technique [1,31], and the biclique edge
cover technique [17]. Although the bounds provided by these techniques are not
always tight and, in fact, can be arbitrarily worse compared to the nondetermin-
istic state complexity, they give good results in many cases. For UFAs a lower
bound method was already given in [61], which is based on a rank argument
on certain matrices, which was further elaborated in, e.g., [47,48]. This method
reads as follows—note that the rank technique shares the deficit of the previously
mentioned lower bound techniques for NFAs that the provided bounds may not
be tight in general:

Theorem 3 (Rank Method for UFAs Lower Bounds). Let L ⊆ Σ∗ be a
regular language and { (xi, yi) | xi, yi ∈ Σ∗ with 1 ≤ i ≤ n } a finite set of pairs
of strings. Consider the n × n matrix M = (mij) over the field of characteris-
tic 2 defined by mij = 1, if xiyj ∈ L, and mij = 0, otherwise. Then any UFA
accepting L has at least the rank of M number of states.

For the particular case of unary regular languages the situation is significantly
different. The general problem of evaluating the costs of unary automata simula-
tions was raised in [63], and has led to emphasize some relevant differences with
the general case. For state complexity issues of unary finite automata Landau’s
function

F (n) = max{ lcm(x1, · · · , xk) | x1, . . . , xk ≥ 1 and x1 + · · ·+ xk = n },

which gives the maximal order of the cyclic subgroups of the symmetric group
on n elements, plays a crucial role. Here, lcm denotes the least common multiple.
Since F depends on the irregular distribution of the prime numbers, we cannot
expect to express F (n) explicitly by n. In [43,44] the asymptotic growth rate

lim
n→∞(ln F (n)/

√
n · ln n) = 1

Descriptional Complexity of (Un)ambiguous Finite State Machines 7

was determined, which for our purposes implies the (sufficient) rough estimate
F (n) ∈ eΘ(

√
n·lnn). The following asymptotic tight bound on the unary NFA

by DFA simulation was presented in [5,6]. Its proof is based on a normalform
(Chrobak normalform) for unary NFAs introduced in [5]. Each n-state unary
NFA can be replaced by an equivalent O(n2)-state NFA consisting of an initial
deterministic tail and some disjoint deterministic loops, where the automaton
makes only a single nondeterministic decision after passing through the initial
tail, which chooses one of the loops.

Theorem 4 (Unary NFA by DFA Simulation). Let n ≥ 1 and A be an
n-state NFA accepting a unary language. Then eΘ(

√
n·ln n) states are sufficient

and necessary in the worst case for a DFA to accept L(A).

Surprisingly the corresponding simulation questions on unary languages involv-
ing UFAs was investigated only recently in [53]. Based on a refined transforma-
tion, presented in [34], of UFAs into Chrobak normalform without increasing the
number of states, the precise number of states for converting a UFA accepting
a unary language into an equivalent DFA is determined by a more complicated
variant of Landau’s function, which is defined as

F̃ (n) = max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1, and x1 + · · ·+ xk = n and
∃f1, . . . fk with 0 ≤ fi ≤ xi − 1 such that

∀i, j with i �= j we have fi �= fj mod gcd(xi, xj) }.

Here the additional condition compared to Landau’s function is the criterion
that forces a unary NFA in Chrobak normalform to be unambiguous. By involved
calculations the function F̃ (n) is asymptotically estimated by eΘ(3√

n·ln2 n), which
gives the following result on unary UFA by DFA simulation.

Theorem 5 (Unary UFA by DFA Simulation). Let n ≥ 1 and A be an
n-state UFA accepting a unary language. Then eΘ(3√

n·ln2 n) states are sufficient
and necessary in the worst case for a DFA to accept L(A).

What concerns the simulation of unary NFAs by UFAs? In fact, in [53] it was
shown that one cannot do asymptotically better than in the unary NFAs to
DFAs transformation. This nicely contrasts the results on the NFA by UFA and
UFA by DFA simulation in general, given in Theorem 2, where in both cases an
exponentially tight bound is reported. Here in the unary case easy calculations
show that the UFAs to DFAs transformation is asymptotically better than the
NFAs to UFAs conversion since F̃ (n) ∈ o(F (n)), which intuitively means that
UFAs are somehow “closer” to DFAs than NFAs.

Theorem 6 (Unary NFA by UFA Simulation). Let n ≥ 1 and A be an
n-state NFA accepting a unary language. Then eΘ(

√
n·ln n) states are sufficient

and necessary in the worst case for a UFA to accept L(A).

8 M. Holzer and M. Kutrib

Very often UFAs are compared to a slight extension of DFAs, namely multiple-
entry DFAs (MDFAs), which were defined in [8,68]. Here the sole guess appears
at the beginning of the computation, that is, by choosing one out of k initial
states. So, the nondeterminism is limited in its amount and in the situation
at which it appears—it is worth mentioning that MDFAs are a special case of
ambiguous finite automata, which are discussed in Section 4 in detail. Converting
an MDFA with k initial states into a DFA by the powerset construction shows
immediately that any reachable state contains at most k states of the MDFA.
This gives an upper bound for the conversion. In [27] it has been shown that
this upper bound is tight resulting in DFA <p MDFA or more precisely:

Theorem 7 (MDFA by DFA Simulation). Let n, k ≥ 1 with k ≤ n and A

be an n-state MDFA with k entry states. Then
∑k

i=1

(
n
i

)
states are sufficient and

necessary in the worst case for a DFA to accept L(A).

So, for k = 1 we obtain DFAs while for k = n we are concerned with the special
case that needs 2n − 1 states. Interestingly, NFAs can be exponentially concise
over MDFAs. The following lower bound has been derived in [36].

Theorem 8 (NFA to MDFA Simulation). Let n ≥ 1 and A be an n-state
NFA. Then Ω(2n) states are necessary in the worst case for an MDFA to ac-
cept L(A).

For the trade-off between MDFAs and UFAs a tight bound in the exact num-
ber of states was shown in [46,48]. This nicely fits into the known upper and
lower bound results presented earlier, and shows that even very limited use of
nondeterminism can induce a dramatic increase in the number of states.

Theorem 9 (MDFA by UFA Simulation). Let n ≥ 1 and A be an n-state
MDFA. Then 2n − 1 states are sufficient and necessary in the worst case for a
UFA to accept L(A).

Recently a variant of UFAs, so called structurally unambiguous finite automata
were introduced and investigated in [46]. An NFA A = (Q, Σ, δ, q0, F) is struc-
turally unambiguous (SUFA) if for every word w ∈ Σ∗ and every state q ∈ Q
there is at most one computation from the initial state q0 to state q reading
word w. Observe, that compared to the original definition of unambiguity the
computations need not be accepting. Thus, unambiguity is a semantic concept,
while structurally unambiguity is a syntactic one, which is independent on the
choice of the set of final states. However, if there is only one final state, that
is, |F | = 1, then a SUFA is also a UFA, but in general SUFAs may differ from
UFAs. But what can be said about the relation of SUFAs to DFAs, UFAs, and
MDFAs, in general? First of all every DFA is a SUFA and it is easy to see that
this two automata classes are separated from each other, i.e, DFA <p SUFA,
since the automaton depicted in Figure 3 is structurally unambiguous, and any
equivalent DFA needs at least an exponential number of states. But we can do
slightly better as we will see below. Moreover, every MDFA can be transformed

Descriptional Complexity of (Un)ambiguous Finite State Machines 9

1 2 . . . n + 1

a, b

a a, b a, b

Fig. 3. UFA which is also a SUFA An with (n+1)-states accepting the set of all words
having a letter a at the nth position, i.e., L(An) = (a + b)∗a(a + b)n−1, which any
equivalent DFA needs at least 2n−1 states

into an equivalent O(n2)-state SUFA by simply making at most n copies of the
MDFA and introducing a new initial state that is appropriately connected to
these copies. It is easy to see that the constructed automaton is a SUFA, hence
DFA <p SUFA and MDFA ≤p SUFA; recall that DFA <p MDFA holds true.
The missing separations of MDFAs and SUFAs and of SUFAs and UFAs can
be found in [46], and were proven by a single witness language only. In fact, the
results presented there give tight bounds for the simulations in the exact number
of states, and read as follows:

Theorem 10 (SUFA by DFA, UFA, or MDFA Simulation). Let n ≥ 1
and A be an n-state SUFA. Then 2n states are sufficient and necessary in the
worst case for a DFA to accept L(A). Moreover 2n − 1 states are sufficient and
necessary in the worst case for a UFA or MDFA to accept L(A).

3.2 Minimization Problems

We continue with some comments on a problem closely related to finding good
lower bounds on the automata simulations for certain types of devices, namely
the minimization problem. The study of the minimization problem for finite
automata dates back to the early beginnings of automata theory—for further
reading we refer to [35] and references therein. The decision version of the
minimization problem, for short the NFA-to-NFA minimization problem, is de-
fined as follows: given a NFA A and a natural number k in binary, that is, an
encoding 〈A, k〉, is there an equivalent k-state NFA? This notation naturally
generalizes to other types of finite automata, for example, the DFA-to-NFA
minimization problem. It is well known that for a given n-state DFA one can
efficiently compute an equivalent minimal automaton in O(n log n) time [28].
More precisely, the DFA-to-DFA minimization problem is complete for NL, even
for DFAs without inaccessible states [4]. This is contrary to the nondeterministic
case since the minimization problem for NFAs is known to be computationally
hard [35]. The PSPACE-hardness result for NFAs was shown by a reduction from
the union universality problem to the NFA-to-NFA minimization problem. For
some further problems related to minimization we refer also to [17].

In order to better understand the very nature of nondeterminism one may ask
for minimization problems for restricted types of finite automata such as, e.g.,
UFAs. Already in [35] it was shown that for UFAs some minimization problems

10 M. Holzer and M. Kutrib

remain intractable. To be more precise, the UFA-to-UFA and the DFA-to-UFA
minimization problems are NP-complete. Later in [50] it was shown that the
minimization of finite automata equipped with a very small amount of nonde-
terminism is already computationally hard. To this end, a reduction from the
NP-complete minimal inferred DFA problem [11,35] to the the minimization
problems for MDFAs with a fixed number of initial states as well as for NFAs
with fixed finite branching has been shown. Prior to this, the MDFA-to-DFA
minimization problem in general was proven to be PSPACE-complete in [27].
Here the minimal inferred DFA problem [11] is defined as follows: given a finite
alphabet Σ, two finite subsets S, T ⊆ Σ∗, and an integer k, is there a k-state DFA
that accepts a language L such that S ⊆ L and T ⊆ Σ∗ \L? Such an automaton
can be seen as a consistent “implementation” of the sets S and T . Recently, the
picture was completed in [2] by getting much closer to the tractability frontier
for NFAs minimization. Interestingly it turned out, that unambiguity plays an
important role in this characterization. There a class of NFAs is identified, the
so called δ-nondeterministic finite automata (δNFA), such that the minimization
problem for any class of finite automata that contains δNFAs is NP-hard, even if
the input is given as a DFA. Here the class of δNFAs contains all NFAs A with
the following properties: (1) the automaton A is a UFA, (2) the maximal product
of the degrees of nondeterminism over the states in a possible computation is at
most 2, and (3) there is at most on state q and a letter a such that the degree
of nondeterminism of q and a is 2. It is worth mentioning that for every n-state
δNFA there is an equivalent DFA with at most O(n2) states.

4 Quantified Ambiguity

The concept of unambiguity implied devices whose mode of operation is somehow
in between determinism and nondeterminism. On the one hand, UFAs can be
seen as DFAs that are allowed to guess in rejecting computations. On the other
hand, UFAs are NFAs that are not allowed to guess in accepting computations. A
natural generalization is to relax the condition that forbids guessing in accepting
computations to allow a certain amount of guessing in accepting computations.
This idea and a formalization of what is a certain amount brings us to the
concept of quantified ambiguity [57].

For an NFA A, we define the ambiguity of a word w, denoted by ambA(w), to
be the number of different accepting computations of w. Note that a word w is
in the language L(A) if and only if the ambiguity of w is not zero. The ambiguity
function ambA : N → N is defined such that ambA(n) is the maximum of the
ambiguities of words that are of length n or less. Here N refers to the set of natu-
ral numbers. Observe, that ambA is nondecreasing by definition. This definition
fits that for UFAs previously given, because an NFA A is unambiguous if the
ambiguity of any word is either zero or one; in the latter case we may also say
that A is a 1-ambiguous NFA. Moreover, automaton A is called finitely (poly-
nomial, exponential, respectively) ambiguous if ambA is bounded by a constant
(polynomial, exponential, respectively) function f such that ambA(n) ≤ f(n),

Descriptional Complexity of (Un)ambiguous Finite State Machines 11

1 2

a

a
1 2

a

a

(a) (b)

1 2 3

a

a

a

a
1 2

a

a

a

a

(c) (d)

Fig. 4. NFAs A with different degrees of ambiguity: (a) UFA, (b) FNA with ambA is
constant 2, (c) PNA with ambA is even linear, and (d) ENA. These automata draw-
ings also nicely illustrate the structural characterizations of (strictly) polynomial and
(strictly) exponential ambiguity presented in Theorem 11.

for every n ∈ N—see Figure 5 for (unary) NFAs with different degrees of ambi-
guity. We abbreviate finitely (polynomial, exponential, respectively) automata
by FNA (PNA, ENA, respectively). It is easy to see for any NFA A we have
ambA(n) ≤ |Q|n, where Q is the state set of A, i.e., every NFA is exponential
ambiguous. We mention in passing that in [4] necessary and sufficient structural
conditions on NFAs were utilized to distinguish between exponential, polyno-
mial, bounded, and k-bounded ambiguity, and it was shown that these ambigu-
ity problems, i.e., determining whether the degree of ambiguity of a given NFA
is exponential, polynomial, constantly bounded, k-bounded, where k is a fixed
integer, or unambiguous are all NL-complete. These structural characterizations
read as follows [33,57,71] (cf. Figure 4) An automaton is strictly ambiguous of a
certain degree, if it is ambiguous of this degree, but not of any lower degree in
the ambiguity hierarchy induced by the classes above.

Theorem 11 (Structural Characterization of NFAs Ambiguities). Let A
be an NFA with state set Q and input alphabet Σ, in which all states are use-
ful.1 Then we have the following structural characterizations of (strictly) finitely,
polynomially, and exponentially ambiguities on finite automata:

1. Automaton A is strictly exponentially ambiguous if and only if there exists a
state q ∈ Q and a word w ∈ Σ+ such that there is more than one computation
from state q to q reading word w.

2. Automaton A is strictly polynomially ambiguous if and only if A is not
exponentially ambiguous and there exists different states p, q ∈ Q and a

1 A state q is useful if it is reachable from the initial state and one can reach at least
one final state from q.

12 M. Holzer and M. Kutrib

word w ∈ Σ+ such that there are computations from state p to itself, from
state p to q, and from state q to itself, all reading the same word w.

3. Automaton A is finitely ambiguous if and only if A is neither strictly expo-
nentially nor strictly polynomially ambiguous.

Next we consider the relation between the types of ambiguity to the relative suc-
cinctness in the number of states for NFAs. This is still a vivid area of research,
even after more than 30 years since one of the first results on UFAs simulations
appeared in [62].

4.1 Ambiguity and the Succinctness of Representation

Once quantified ambiguity has come into play it is interesting to explore how
several structural and computational parameters relate to the degree of ambi-
guity. Is a certain parameter independent of the ambiguity? If not, what are the
precise relations? This subsection is devoted to discuss the connections between
the degree of ambiguity and the succinctness of the representation, that is, the
necessary number of states.

Recall that by definition

DFA ≤p UFA ≤p FNA ≤p PNA ≤p ENA =p NFA,

where C1 =p C2 is a short hand notation for C1 ≤p C2 and C2 ≤p C1. The
following separation results are known (not listing the already reported results
on the relations between DFAs, UFAs, and NFAs): DFA <p UFA [45,48,61,65],
UFA <p FNA [48,57,61], PNA <p NFA [32,47], and the intermediate relation
between FNAs and PNAs turned out to be very complicated to separate. Several
attempts to prove it failed, see, e.g., [32,57], until recently, where this long stand-
ing open problem was solved in the affirmative, resulting in FNA <p PNA [30].
These separation results can be summarized as follows:

Theorem 12 (Simulations of NFAs with Different Ambiguities). The
following separation results on NFA with different degrees of ambiguity are known:

1. For every n ≥ 1, there is an n-state NFA A (having exponential ambiguity)
such that any PNA accepting L(A) has at least 2n − 1 states.

2. For every k, r ≥ 1, there is a k · rO(1)-state NFA with ambiguity O(nk) such
that any NFA accepting L(A) has an exponential (in k and r) number of
states, if ambiguity o(nk) or finite ambiguity is required.

3. For every n ≥ 1, there is an n-state FNA A such that any UFA accept-
ing L(A) has at least 2n−1 states. This also holds true when changing FNA
to UFA and UFA to DFA.

The given bounds in the first and last results are known to be tight.

Next we investigate the question whether there is a relation between ambiguity
and the amount of nondeterminism used during the computation.

Descriptional Complexity of (Un)ambiguous Finite State Machines 13

4.2 Ambiguity and the Amount of Nondeterminism

Nondeterminism has started to be seen as an additional limited resource at
the disposal of time or space bounded computations in [7,37]. The concept of
limited nondeterminism in finite automata is more generally studied in [12,38].
In the latter reference a bound on the number of nondeterministic steps allowed
during a computation as well as on the maximal number of choices for every
nondeterministic step is imposed. Since in a certain sense the degree of ambiguity
restricts nondeterministic computations, it is suspenseful to explore the question
whether there is a relation between the degree of ambiguity and the degree of
nondeterminism.

Here, the nondeterminism is measured dynamically by counting the number
of guesses an automaton has to make [13]. More precisely, for an NFA A =
(Q, Σ, δ, q0, F), the amount of guessing of a single move δ(q, a), for q ∈ Q and
a ∈ Σ, is defined to be log2(|δ(q, a)|). This concept is extended additively to
computations by adding the amounts of the single steps. Then for each w ∈
L(A) the amount of guessing, referred to guessA(w), is the minimum over all
accepting computations on w, and the guessing function guessA is defined such
that guessA(n) is the maximum of the amounts of guessing of words in L(A) that
are of length n or less. Note that, in general, guessA(n) is not an integer. If the
NFA branches to at most two states in every step, then guessA simply counts
the number of nondeterministic steps. Moreover, guessA counts a branch to 2k

successor states as equal to k branches to two successor states.
Concerning the relation between the amount of nondeterminism and the de-

gree of ambiguity, it is illustrated in [13] that finite automata A with constant
or linear nondeterminism, that is, guessA is a constant or linear function, can be
of all types UFA, FNA, PNA, and ENA. So, no prediction can be made about
the degree of ambiguity. Figure 4 shows the four types of ambiguity in ques-
tion for NFAs with a linear amount of nondeterminism, and Figure 5 depicts
examples for NFAs with a constant amount of nondeterminism. The surprising
result obtained in [13] revealed that the situation is different for the intermediate
level of nondeterminism. The subtle relation between the two concepts is that
an automaton with a non-constant but sublinear guessing function must have an
infinite degree of ambiguity. Furthermore, it is shown that for each k ≥ 1 there
is, in fact, an NFA A with guessA(n) ∈ Θ(n1/k). The key result of [13] is the
following trade-off lemma.

Lemma 13. If A is an n-state NFA and w ∈ L(A) is such that there is no
word v ∈ L(A) with |v| < |w| and guessA(v) ≥ guessA(w), then

nambA(w)(ambA(w) guessA(w) + 1)
|w| > 2−n.

For a given NFA A the number 2−n is a positive constant. So, the lemma can
be interpreted such that an input that requires few nondeterminism at the same
time causes a high degree of ambiguity. The next theorem [13] is an immediate
consequence of the trade-off lemma.

14 M. Holzer and M. Kutrib

1

2

3

a

a 1

2

3

a

a

(a) (b)

1 2

a

a

a

1 2 3

a

a

a

a

a

a

(c) (d)

Fig. 5. NFAs A with a constant amount of nondeterminism and different degrees of
ambiguity: (a) UFA, (b) FNA with ambA is constant 2, (c) PNA with ambA is linear,
and (d) ENA

Theorem 14. Every NFA with a non-constant but sublinear guessing function
has an infinite degree of ambiguity.

4.3 Finite Ambiguity and the Structure of Finite Automata

The characterizations of finite automata with different degrees of ambiguity al-
ready discussed in Theorem 11 are with respect to the inner structure of the
finite automata. From this point of view the relation between the number of
states and the amount of ambiguity are worth studying. Since the example given
in Figure 4(d) shows that there is 2-state NFA with exponential ambiguity, the
question for upper and lower bounds on the finite degree of ambiguity of n-state
nondeterministic finite automata is of particular interest.

In connection with the questions asking for the decidability of the finiteness of
a finitely generated monoid of matrices with entries in the natural numbers N, (or
in a larger semiring), and for an algorithm which computes the degree of an NFA,
rough upper bounds have been derived in the late seventies. In three papers it
was independently obtained that the degree of ambiguity of a finitely ambiguous

n-state NFA with input alphabet Σ is at most (1) n233n2+1

, (2) nf(n,|Σ|), where f

is a recursive function, and (3) 2nn2n24n3
. A systematic study of this problem

started in [71], where the next theorem has been shown.

Theorem 15. Let A be an n-state FNA. Then ambA is at most 5n/2nn.

By reduction, Theorem 15 can be generalized to NFAs with λ-moves. The upper
bound has slightly be improved in the context of formal power series. In [39] it
was decreased to 21+k2nnn, where k2 < 0.7956. In order to compare the results
note that 5n/2nn = 2k1n, where k1 ≈ 1.161.

Descriptional Complexity of (Un)ambiguous Finite State Machines 15

A so-called chain-NFA has a certain inner structure. Roughly speaking, the
transition graph representing a chain-NFA consists of strongly connected com-
ponents (SCC), say Q1, Q2, . . . , Qk acting as chain links, such that there is a
single initial state in Q1, a single accepting state in Qk, and exactly one transi-
tion from Qi to Qi+1, for 1 ≤ i ≤ k− 1. A chain-NFA can be seen as a sequence
of modules which have to be passed through in a one-way fashion. The upper
bound for chain-NFAs is much lower than for arbitrary NFAs [71]:

Theorem 16. Let A be an n-state chain FNA. Then ambA is at most nn.

Now we turn also to lower bounds. In order to capture classes C of NFAs defined
with respect to their inner structures more generally, let Cf ⊆ C denote the
subclass including exactly all FNAs from C, and set

ambC(n, m) = max{ ambA(m) | A ∈ Cf and A has n states }.

By Theorem 15 ambC(n, m) is at most 5n/2nn. In Table 1 we summarize the
results for several subclasses of NFAs. The proofs can be found in [70,71]. No-
tably, for several subclasses upper and lower bounds are tight (in the order of
magnitude 2Θ(n)).

5 (Un)ambiguous Pushdown Automata

In this section we consider the descriptional capacity of unambiguous as well as
finitely ambiguous pushdown automata. In particular, the relative succinctness
of those machines among each other and to finite automata are discussed. It
turned out that the situation is completely different compared to the previously
presented finite automata simulations. First, these pushdown devices induce a
strict hierarchy of languages [19], which was not the case for finite automata.
Moreover, and even more importantly, we will come across a qualitatively new

Table 1. Upper and lower bounds on the ambiguities for several subclasses of NFAs
in relation to the number of states n

Ambiguity ambA

Automata class C lower bound upper bound

NFAs 21.0221·n , for n = 0 mod 64 21.161·nnn

chain-NFAs 21.0221·n , for n = 0 mod 64 nn

chain-NFAs with 2 SCCs 2n−2, for n ≥ 2 2n−1

NFAs for finite languages
(

n
�(n+1)/2�

) (
n

�(n+1)/2�
)

NFAs for unary languages 2n−1 2n−1

16 M. Holzer and M. Kutrib

phenomenon first observed in [51], the so-called non-recursive trade-offs. That
is, there is no recursive function bounding the succinctness gap (for non-trivial
simulations). Before we report on results we briefly have to discuss some issues
on measuring the size of pushdown automata.

Measuring the size of a pushdown automaton by its number of states, as
is done for finite automata, is clearly ineligible. It is well known that every
pushdown automaton can effectively be converted into an equivalent one having
just one sole state [29]. But, in general, one has to pay with an increase in the
number of stack symbols, and determinism or unambiguity is not preserved. For
DPDAs accepting by empty pushdown, the computational capacity is known
to increase strictly with the number of states [19]. So, measuring the size of a
(deterministic) pushdown automaton by its number of stack symbols is also too
crude. In fact, it is also possible to reduce the number of stack symbols if one pays
with an increase in the number of states. The precise relations between states
and stack symbols have been shown in [15] and [16]. So, the number of states as
well as the number of stack symbols have to be considered to measure the size of
a pushdown automaton. But even their product is still insufficient. For example,
for all integers n ≥ 1 the language Ln = (an)∗ can be accepted by a pushdown
automaton with two states and two stack symbols that, in one move, is able to
push n symbols onto the stack. So, in addition, we have to take into account the
lengths of the right-hand sides of the transition rules which can get long when a
pushdown automaton pushes lots of symbols during single transitions. Therefore,
the size of a pushdown automaton A = (Q, Σ, Γ, δ, q0, Z0, F) is measured as
|Q| · |Σ| · |Γ | · h, where h is the length of the longest word pushed in a single
transition.

5.1 Simulations

Here we present some fundamental results in connection with the representation
of regular languages by pushdown automata. In [64] the decidability of regularity
for DPDAs has been shown by a deep proof. This effective procedure revealed
the following upper bound for the trade-off in descriptional complexity when
DPDAs accepting regular languages are converted into DFAs. Given a DPDA
with n > 1 states and t > 1 stack symbols that accepts a regular language. Then
the number of states which is sufficient for an equivalent DFA is bounded by an
expression of the order tn

nn

. Later this triple exponential upper bound has been
improved by one level of exponentiation in [66].

Theorem 17 (DPDA by DFA Simulation). Let A be a deterministic push-
down automaton with n states, t stack symbols, and h is the length of the longest
word pushed in a single transition. If L(A) is regular then 22O(n2 log n+log t+log h)

states are sufficient for a DFA to accept the language L(A).

In the levels of exponentiation this bound is tight, since the following double
exponential lower bound has been obtained in [51]. It is open whether the precise
lower bound or the precise upper bound can be improved in order to obtain
matching bounds.

Descriptional Complexity of (Un)ambiguous Finite State Machines 17

Theorem 18 (DPDA by DFA Simulation). Let n ≥ 1. Then there is a
language Ln accepted by a deterministic pushdown automaton of size O(n3),
and each equivalent DFA has at least 22n

states.

It is clear that these bounds on the simulation by DFAs implicitly imply also
bounds for NFAs. While we deal with finite automata simulations of NPDAs
in the next subsection, to our knowledge the remaining simulation of UPDAs
accepting regular languages by finite automata is an open problem in the sense
that (1) it is not known whether regularity for UPDAs is decidable and (2)
whether the trade-off between UPDAs and finite automata is non-recursive or
not. Note, that the succinctness result for UPDAs and finite automata corre-
sponds to the decidability result of regularity for UPDAs as follows: assume
that f(n) is an upper bound on the number of states for the simulation of an
n-size UPDA by a finite automaton. To decide whether a UPDA A accepts a
regular language, just enumerate all finite automata with fewer states than f(n)
and check equivalence with A, which is decidable by [58].

Finally let us mention that the situation on simulations involving pushdown
automata is different again, to the general case, when pushdown automata ac-
cepting unary languages are considered. This is somehow comparable to the
case of finite automata. It is well known that every unary context-free language
is regular [9]. From the viewpoint of descriptional complexity, unary DPDAs
and NPDAs have been investigated in, e.g., [54,55]. For further results concern-
ing simulations involving pushdown automata we refer to the comprehensive
survey [26].

5.2 Non-recursive Trade-Offs

Now we present some pushdown automata simulations that cause non-recursive
trade-offs. To keep the presentation simple, we introduce only the necessary
terminology, a more general and elaborately treatment is given in [26]. Assume
that we have two classes of automata C1 and C2 which induce a non-empty
intersection on the corresponding languages accepted by these types of devices.
Then a non-recursive trade-off between C1 and C2, means that there is an infinite
family of languages accepted by both device types, such that when changing from
the C1-descriptors to equivalent minimal C2-descriptors, the blow-up in size
cannot be bounded by any recursive function. A cornerstone of descriptional
complexity is the result of Meyer and Fischer [51] who showed for the first
time a non-recursive trade-off. It appears between context-free grammars or
equivalently NPDAs and finite automata. In Theorem 17 we have seen that the
trade-off between DPDAs and finite automata is recursive, where the proof relies
on the fact that regularity is decidable for DPDAs. This goes hand in hand with
the undecidability of regularity for NPDAs

Theorem 19 (NPDA by FA Simulation). The trade-off between NPDAs
and finite automata is non-recursive.

Even the computational power of DPDAs is not enough, similarly, the non-
recursive trade-off between NPDAs and DPDAs follows (cf. [61]):

18 M. Holzer and M. Kutrib

Theorem 20 (NPDA by DPDA Simulation). The trade-off between NPDAs
and DPDAs is non-recursive.

Most proofs of non-recursive trade-offs that appear in the literature basically
rely on one of two different proof schemes. One fundamental technique is due to
Hartmanis [21]. In [22] a generalization is developed that relates semi-decidability
to trade-offs and a slightly generalized and unified form of this technique can
be found in [40]. When applying these techniques very often non-semi-decidable
properties of Turing machines are utilized by encoding complex Turing machine
computations in small automata [20]. To this end encodings of (in)valid com-
putations of Turing machines and variants thereof are considered. Nevertheless,
even simpler proof schemes only using (full) TRIO-closure properties of the un-
derlying formal language families and semi-decidability of certain decision prob-
lems were recently developed and applied in [18]. Recall that a formal language
family is called a TRIO (full TRIO, respectively) if it is closed under λ-free
morphism (general morphism, respectively), inverse morphism, and intersection
with regular languages [29].

Here we are particularly interested in the remaining trade-offs caused by
the devices “in between” NPDAs and FAs, that is in the trade-offs between
NPDAs and UPDAs as well as between UPDAs and DPDAs. The next result
from [67] compares DPDAs and unambiguous context-free grammars or equiva-
lently UPDAs. It exploits the following crucial result on the size of DPDAs. If
for some DPDA A with state set Q and set of stack symbols Γ the string w is
the shortest string such that wa and wb are accepted, then there is a positive
constant k such that |Q| · |Γ | ≥ (log |w|)k. This can be used to show the next
non-recursive trade-off:

Theorem 21 (UPDA by DPDA Simulation). The trade-off between UPDAs
and DPDAs is non-recursive.

The remaining trade-off between NPDAs and UPDAs has been shown in [62].

Theorem 22 (NPDA by UPDA Simulation). The trade-off between NPDAs
and UPDAs is non-recursive.

5.3 Bounded Ambiguity and Bounded Nondeterminism

The quantitative study of nondeterminism in context-free languages originates
from [69], where two measures for the amount of nondeterminism in pushdown
automata are proposed. By bounding the number of nondeterministic steps de-
pendent on the length of the input, a hierarchy of three classes is obtained. A
modification of the measure can be found in [59]. The second measure depends
on the depth of the directed acyclic graph that represents a given pushdown
automaton. The corresponding proof of an infinite nondeterministic hierarchy of
properly included classes is completed in [60]. The so-called branching as mea-
sure of nondeterminism in connection with pushdown automata, introduced for
finite automata [12], is studied in [14,23]. In [14] lower bounds for the minimum

Descriptional Complexity of (Un)ambiguous Finite State Machines 19

amount of nondeterminism to accept certain context-free languages are estab-
lished. Pushdown automata with limited nondeterminism are investigated in [41]
from the viewpoint of context-dependent nondeterminism, and in [42] from the
viewpoint of regulated nondeterminism.

Considering a computation of a pushdown automaton we call a single step
nondeterministic if the automaton has more than one choice for its move. The
branching of the step is defined to be the number of choices. The branching of
a computation is the product of the branchings of all steps of the computation.
In order to be more precise, let A be a NPDA, then we define the branching
branchA as follows:

1. The branching of a configuration c is branchA(c) = |{ c′ | c 	 c′ }|.
2. A sequence of configurations (computation) C = c0 	 c1 	 · · · 	 ck has

branching
k−1∏
i=0

branchA(ci).

3. For words w ∈ L(A) we define the branching as

branchA(w) = min{ branchA(C) | C is an accepting computation on w }.

4. Finally, let the branching of A be branchA = sup{ branchA(w) | w ∈ L(A) }.

In an NPDA A whose branching is bounded by a constant k all computations can
be cut off when the branching exceeds k without changing the accepted language.
So, the branching of an NPDA tells us up to which width the computation
tree of some input word has to be examined until an accepting computation
is found. The branching of a word is not necessarily equal to the number of
computations on this word. Moreover, there is no relation between the ambiguity
and the branching of an NPDA, since there are NPDAs A with ambA = 1 and
branchA =∞ as well as with ambA =∞ and branchA = 1.

In [3] and [23] a two-dimensional infinite hierarchy dependent on the finite
degree of ambiguity and the finite branching in between the deterministic and
nondeterministic context-free languages is obtained. Denote the classes of push-
down automata with ambiguity and branching bounded by a constant k by
NPDA(amb ≤ k) and NPDA(branch ≤ k). If both resources are bounded at the
same time, we write NPDA(amb ≤ k, branch ≤ k′). Clearly, for every k, we have
the inclusions2

NPDA(amb ≤ k) ⊆ NPDA(amb ≤ k + 1)

and
NPDA(branch ≤ k) ⊆ NPDA(branch ≤ k + 1).

In [23] it is proven that NPDA(branch ≤ k) ⊆ NPDA(amb ≤ k). Moreover, it
is shown that all of these inclusions are proper. This means that every time the
2 In abuse of notation the three inclusions yet to come are meant w.r.t. the languages

generated by the corresponding pushdown automata with limited ambiguity and/or
branching.

20 M. Holzer and M. Kutrib

allowed amount of ambiguity or the allowed amount of nondeterminism in an
NPDA is increased by just one, a more powerful device is obtained. Intuitively,
the corresponding language families are close together. Nevertheless, there are
non-recursive trade-offs between levels of the hierarchy. In [3] the next theorem
has been shown.

Theorem 23 (NPDA with Bounded Ambiguity Simulation). Let k ≥ 1.
Then the trade-off between NPDA(amb ≤ k + 1) and NPDA(amb ≤ k) is non-
recursive.

The result has been generalized in [23]:

Theorem 24 (NPDA with Bounded Ambiguity and Bounded Branch-
ing by NPDA with Bounded Ambiguity Simulation). Let k ≥ 1. Then
the trade-offs between

1. NPDA(amb ≤ k + 1, branch ≤ k + 1) and NPDA(amb ≤ k), and
2. NPDA(amb ≤ 1, branch ≤ k + 1) and NPDA(branch ≤ k)

are non-recursive.

Finally, in addition to the non-recursive trade-offs a nontrivial recursive trade-off
is shown in [23].

Theorem 25 (NPDA with Bounded Branching by NPDA with Bound-
ed Ambiguity and Branching Simulation). Let k ≥ 1 and A be an n-size
NPDA belonging to NPDA(branch ≤ k). Then 2O(n) states are sufficient for an
NPDA from NPDA(amb ≤ k, branch ≤ k) to accept L(A).

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

2. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. In:
Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer,
Heidelberg (2008)

3. Borchardt, I.: Nonrecursive tradeoffs between context-free grammars with different
constant ambiguity. Diploma thesis, Universität Frankfurt (1992) (in German)

4. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems.
Inform. Comput. 97, 1–22 (1992)

5. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

6. Chrobak, M.: Errata to “finite automata and unary languages”. Theoret. Comput.
Sci. 302, 497–498 (2003)

7. Fischer, P.C., Kintala, C.M.R.: Real-time computations with restricted nondeter-
minism. Math. Systems Theory 12, 219–231 (1979)

8. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9, 1–19
(1974)

Descriptional Complexity of (Un)ambiguous Finite State Machines 21

9. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J.
ACM 9(3), 350–371 (1962)

10. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

11. Gold, E.M.: Complexity of automaton identification from given data. Inform.
Control 37, 302–320 (1978)

12. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inform. Comput. 86, 179–194 (1990)

13. Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and
nondeterminism in finite automata. Inform. Comput. 100, 261–270 (1992)

14. Goldstine, J., Leung, H., Wotschke, D.: Measuring nondeterminism in pushdown
automata. J. Comput. System Sci. 71, 440–466 (2005)

15. Goldstine, J., Price, J.K., Wotschke, D.: On reducing the number of states in a
PDA. Math. Systems Theory 15, 315–321 (1982)

16. Goldstine, J., Price, J.K., Wotschke, D.: On reducing the number of stack symbols
in a PDA. Math. Systems Theory 26, 313–326 (1993)

17. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard (extended abstract). In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS,
vol. 4036, pp. 363–374. Springer, Heidelberg (2006)

18. Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. In:
Descriptional Complexity of Formal Systems (DCFS 2009), pp. 187–198. Otto-
von-Guericke-Universität Magdeburg (2009)

19. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading
(1978)

20. Hartmanis, J.: Context-free languages and Turing machine computations. In: Proc.
Symposia in Applied Mathematics, vol. 19, pp. 42–51 (1967)

21. Hartmanis, J.: On the succinctness of different representations of languages. SIAM
J. Comput. 9, 114–120 (1980)

22. Hartmanis, J.: On Gödel speed-up and succinctness of language representations.
Theoret. Comput. Sci. 26, 335–342 (1983)

23. Herzog, C.: Pushdown automata with bounded nondeterminism and bounded
ambiguity. Theoret. Comput. Sci. 181, 141–157 (1997)

24. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite au-
tomata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS,
vol. 5457, pp. 23–42. Springer, Heidelberg (2009)

25. Holzer, M., Kutrib, M.: Nondeterministic finite automata - Recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20, 563–
580 (2009)

26. Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In:
Scientific Applications of Language Methods. Imperial College Press, London (to
appear, 2010)

27. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Autom., Lang. Comb. 6, 453–466 (2001)

28. Hopcroft, J.E.: An n log n algorithm for minimizing the state in a finite automaton.
In: The Theory of Machines and Computations, pp. 189–196. Academic Press,
London (1971)

29. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

30. Hromkovič, J., Schnitger, G.: Ambiguity and communication. In: Theoretical
Aspects of Computer Science (STACS 2009), Dagstuhl, Germany. LIPICS, vol. 3,
pp. 107–118 (2009)

22 M. Holzer and M. Kutrib

31. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Hei-
delberg (1997)

32. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172, 202–217 (2002)

33. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision problems
for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986.
LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1986)

34. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal
NFA’s over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)

35. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22,
1117–1141 (1993)

36. Kappes, M.: Descriptional complexity of deterministic finite automata with multi-
ple initial states. J. Autom., Lang. Comb. 5, 269–278 (2000)

37. Kintala, C.M.R.: Computations with a Restricted Number of Nondeterministic
Steps. PhD thesis, Pennsylvania State University (1977)

38. Kintala, C.M.R., Wotschke, D.: Amounts of nondeterminism in finite automata.
Acta Inform. 13, 199–204 (1980)

39. Kuich, W.: Finite automata and ambiguity. Report 253 of the IIG, Technische
Universität Graz (1988)

40. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005)

41. Kutrib, M., Malcher, A.: Context-dependent nondeterminism for pushdown au-
tomata. Theoret. Comput. Sci. 376, 101–111 (2007)

42. Kutrib, M., Malcher, A., Werlein, L.: Regulated nondeterminism in pushdown
automata. Theoret. Comput. Sci. 410, 3447–3460 (2009)

43. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Math. und Phys. 3, 92–103 (1903)

44. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Teubner
(1909)

45. Leiss, E.L.: Succinct representation of regular languages by Boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981)

46. Leung, H.: Structurally unambiguous finite automata. In: Ibarra, O.H., Yen, H.-C.
(eds.) CIAA 2006. LNCS, vol. 4094, pp. 198–207. Springer, Heidelberg (2006)

47. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27, 1073–1082 (1998)

48. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16, 975–984 (2005)

49. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kyber-
netiki 9, 321–326 (1963) (in Russian); German translation: Über den Vergleich
zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)

50. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Com-
put. Sci. 327, 375–390 (2004)

51. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971),
pp. 188–191. IEEE, Los Alamitos (1971)

52. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Comput. 20, 1211–1214 (1971)

53. Okhotin, A.: A study of unambiguous finite automata over a one-letter alphabet.
TUCS Technical Report No 951, Turku Centre for Computer Science (2009)

Descriptional Complexity of (Un)ambiguous Finite State Machines 23

54. Pighizzini, G.: Deterministic pushdown automata and unary languages. In: Ibarra,
O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 232–241. Springer,
Heidelberg (2008)

55. Pighizzini, G., Shallit, J., Wang, M.W.: Unary context-free grammars and push-
down automata, descriptional complexity and auxiliary space lower bounds. J.
Comput. System Sci. 65, 393–414 (2002)

56. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

57. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)

58. Salomaa, A., Soittola, M.: Automata-theoretic Aspects of Formal Power Series.
Springer, Heidelberg (1978)

59. Salomaa, K., Yu, S.: Limited nondeterminism for pushdown automata. Bull.
EATCS 50, 186–193 (1993)

60. Salomaa, K., Yu, S.: Measures of nondeterminism for pushdown automata. J. Com-
put. System Sci. 49, 362–374 (1994)

61. Schmidt, E.M.: Succinctness of Dscriptions of Context-Free, Regular and Finite
Languages. PhD thesis, Cornell University, Ithaca, NY (1978)

62. Schmidt, E.M., Szymanski, T.G.: Succinctness of descriptions of unambiguous
context-free languages. SIAM J. Comput. 6, 547–553 (1977)

63. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System
Sci. 21, 195–202 (1980)

64. Stearns, R.E.: A regularity test for pushdown machines. Inform. Control 11, 323–
340 (1967)

65. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars, and finite automata. SIAM
J. Comput. 14, 598–611 (1985)

66. Valiant, L.G.: Regularity and related problems for deterministic pushdown au-
tomata. J. ACM 22, 1–10 (1975)

67. Valiant, L.G.: A note on the succinctness of descriptions of deterministic languages.
Inform. Control 32, 139–145 (1976)

68. Veloso, P.A.S., Gill, A.: Some remarks on multiple-entry finite automata. J. Com-
put. System Sci. 18, 304–306 (1979)

69. Vermeir, D., Savitch, W.: On the amount of nondeterminism in pushdown au-
tomata. Fund. Inform. 4, 401–418 (1981)

70. Weber, A.: Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten
und Transducern. Dissertation, Institut für Informatik, Johann Wolfgang Goethe-
Universität Frankfurt am Main (1987) (in German)

71. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret.
Comput. Sci. 88, 325–349 (1991)

Symbolic and Compositional Reachability
for Timed Automata

Kim Guldstrand Larsen

Department of Computer Science, Aalborg University, Denmark
kgl@cs.aau.dk

Extended Abstract

The model-checker UPPAAL [LPY97] is based on the theory of timed automata [AD90]
and its modeling languague offers additional features such as networks of timed au-
tomata, clocks and stop-watches, synchronizing over synchronous and broadcast chan-
nels, discrete variables ranging over bounded integers or structured types (arrays and
records) as well as user-defined types and functions.

The first version of UPPAAL was released in 1995 and since then there has been a
continuous and still on-going development of datastructures and algorithms for its veri-
fication engine with particular emphasis on efficient methods for reachability and nested
reachability problems [BDL+10]. Over the years, the tool has consistently gained in
performance and has by now been applied to the verification of numerous industrial
case-studies1. More recently the branch CORA [ALTP01, BFH+01] has emerged sup-
porting cost-minimal reachability for priced timed automata, thus allowing for the opti-
mization of several planning and scheduling problems to be solving using reachability
checking [IKY+08, HvdNV06, AM01].

In the following we give an overview of the development of the datastuctures and
algorithms underlying the verification engines of UPPAAL and CORA as well as indicate
on-going research directions.

Symbolic Exploration of Timed Automata. In UPPAAL the basic reachability algorithm
is based on a forward, on-the-fly symbolic exploration of the state-space of the given
timed automaton. In constrast to a classical (backwards) fixpoint computation, the prin-
ciple of on-the-fly exploration allows to settle (nested) reachability properties without
considering unreachable states, and – depending on the search order – possibly to ter-
minate after having only explored a small portion of the reachable state-space.

Various datastructures are used for the symbolic exploration including Difference
Bounded Matrices [Dil89, Bel58], Minimal Constraint Representation [LLPY97] and
Clock Difference Diagrams [BLP+99]. These datastructures allow a tradeoff between
the compactness in the representation of state-spaces and the efficiency by which sym-
bolic successors may be computed during exploration. For (early) termination of ex-
ploration it is crucial that the chosen datastructure allow for the efficient checking of
inclusion between state-sets.

1 See www.uppaal.com for a detailed list.

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 24–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Symbolic and Compositional Reachability for Timed Automata 25

Most recently the above datastructures have been used to implement the over approx-
imate analysis of [CL00] for so-called stop-watch automata – i.e. timed automata where
each location may stop a given sub-set of the clocks. Given its over-approximate nature,
reachability problems may only be partially (negatively) answered by the method. How-
ever, several applications of this recent feature of UPPAAL to the schedulability analysis
of preemptive tasks executing on a single CPU under a given scheduling principle – e.g.
Fixed-Priority or Earliest-Deadline-First – indicate that the over-approximation is suf-
ficiently accurate in practice [DKJS09, BHM08, HMB07].

Symbolic Exploration of Priced Timed Automata. The cost-optimal reachability algo-
rithm of CORA is similarly based on an on-the-fly algorithm, but applies suitable ex-
tensions of the datastructures used in UPPAAL in order to represent not only state-sets,
but also the cost by which states may be reached. Such cost-information may be rep-
resented in a finitary manner by an affine function describing the cost of all the states
in a given state-set, and may be dealt with by extended versions of the computation of
symbolic successors as well as inclusion between state-sets with cost-functions.

Abstractions. Crucial for the termination of the f orward symbolic exploration of UP-
PAAL is the extrapolation of computed symbolic successors. In extrapolation a state-set
is widened taking into account the maximum constants that clocks are compared to: for
a given timed automaton, two states only differing with respect to the value of clocks
exceeding the corresponding maximum constant are indistinguishable with respect to
(location) reachability (in fact the two states are time-abstracted bisimilar [TY96]).

In [BBFL03] a notion of location-based extrapolation is introduced allowing the
maximum constants used for the widening to be dependent on the location of the timed
automaton. This notion is shown to generalize the so-called active-clock reduction and
has a potential exponential speedup compared with the classical extrapolation.

In [BBLP06, BBLP04] an even coarser extrapolation is introduced and implemented
in UPPAAL by distinguishing the maximum constants used in lower and upper bounds.
In fact this extrapolation – though exact with respect to (location) reachability – demon-
strate performance comparable with the over-approximate convex-hull abstraction
[TY96].

The modeling formalism of UPPAAL allows a very rich set of expressions – involv-
ing variables and function-calls – all allowed in comparisons with clocks. In obtaining
(location-dependent, lower/upper bound) maximum constants for clocks the possible
values of these expressions must be determined. Currently this is done on the basis of
the declared type (hence value-range) of the involved variables. However, more exact
estimates of maximum constants – and hence coarser extrapolation yielding better per-
formance – could be obtained from a static value-analysis of expressions in the UPPAAL

models.

Compositional Reachability Analysis. As all model-checking, timed automata model-
checking suffer the so-called state-space-explosion problem, which refers to the fact
that the size of the (symbolic) state-spaces may grow exponentially in the number of
components (and clocks) of the (timed automaton) model to be analysed. Several heuris-
tics have been proposed to overcome this problem for timed automaton, including par-
tial order reduction, symmetry reduction, sweep-line method, bounded model-checking

26 K.G. Larsen

and distributed model-checking, several of which are implemented in UPPAAL. An al-
ternative approach for overcoming the problem of state-space explosion is to apply
compositional model checking.

One such approach is based on the notion of quotienting for parallel composition:
given a property φ and a parallel system A |B, the quotient property φ\A (if it exists)
should satsify the following equivalence:

A |B |= φ if and only if B |= φ\A

Now consider the following typical model checking problem (P1 | . . . |Pn) |= φ, in-
volving a network of n timed automata components. This problem may be settled with-
out having to construct or explore the state-space of the network (P1 | . . . |Pn) simply
by quotienting the components Pi one by one into φ. To make sure that the interme-
diate quotient formula are not much larger than the original formula, it is crucial that
each quotienting is followed by a minimization of the formula. The timed extension of
the modal μ-calculus Lν [LLW95] has been shown to be closed under quotienting with
timed automata and the quotient construction and minimization rules been implemented
in the tool CMC [LL98a, LL98b], which allows for compositional model checking of
network of timed automata.

Another compositional model checking approach is that of compositional backwards
reachability [LNAB+98, BLA+99]. Again a network (P1 | . . . |Pn) of components (fi-
nite state automata, timed automata, etc.) is assumed given. However, here the property
to be settled is restricted to that of reachability of a given set of goal states g. The
compositional backwards reachability method now consist in computing an increasing
sequence of state-sets

BI0(g) ⊆ BI1(g) ⊆ · · · ⊆ BIi(g) ⊆ · · · ⊆ B(g),

until either eventually the full set of states backwards reachable from g is obtained
(B(g)) or the initial state is found to be included. In the approximations, Ii is a (grow-
ing sequence of) subsets of {1 . . .n} and BIi(g) is the set of states backwards reachable
from g only using transitions available from the components {Pj where j ∈ Ii. Two
factor make this approach efficient. Firstly, the set BIi(g) only constraints the state of
the components in Ii and may thus (symbolically) be efficiently represented. Secondly,
the set BIi(g) may be obtained as BIi(BIi−1 (g)), thus reusing the previously computed
approximation. For finite state systems the method is applied in the commercial tool VI-
SUALSTATE, and for timed systems [Nym02] has made a first promissing investigation
to be completed.

Discrete Semantics & Concrete Traces. Though the symbolic approaches to verification
of timed automata has proven successful on several realistic examples, the computation
time for manipulating the corresponding datastructures (e.g. DBMs) may sometimes
appear exorbitant. We are currently looking into new ways of performing an explicit
state-space exploration of timed automata under discrete-time semantics, which for
reachability questions gives identical answers to that of a dens-time semantics for timed
automata models with only non-strict bounds on clocks.

Also, the diagnostic (cyclic) traces provided by UPPAAL for (nested) reachability
questions are symbolic, and thus requires deep understanding of the symbolic successor

Symbolic and Compositional Reachability for Timed Automata 27

computation. To be of better use for the average user in debugging it would be useful
to provide concrete traces. A thorough experimental investigation of this has recently
been made in [PvV10].

References

[AD90] Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

[ALTP01] Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

[AM01] Abdeddaı̈m, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492.
Springer, Heidelberg (2001)

[BBFL03] Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–277. Springer, Heidelberg (2003)

[BBLP04] Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)

[BBLP06] Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)

[BDL+10] Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing uppaal
over 15 years. Software – Practice and Experience (to appear, 2010)

[Bel58] Bellman, R.: Dynamic programming and stochastic control processes. Information
and Control 1(3), 228–239 (1958)

[BFH+01] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

[BHM08] Brekling, A.W., Hansen, M.R., Madsen, J.: Models and formal verification of mul-
tiprocessor system-on-chips. J. Log. Algebr. Program. 77(1-2), 1–19 (2008)

[BLA+99] Behrmann, G., Larsen, K.G., Andersen, H.R., Hulgaard, H., Lind-Nielsen, J.:
Verification of hierarchical state/event systems using reusability and composition-
ality. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 163–177.
Springer, Heidelberg (1999)

[BLP+99] Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

[CL00] Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

[Dil89] Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

[DKJS09] David, A., Larsen, K.G., Illum, J., Skou, A.: Model-Based Framework for Schedu-
lability Analysis Using UPPAAL 4.1. In: Model-Based Design for Embedded Sys-
tems. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC
Press, Boca Raton (2009)

28 K.G. Larsen

[HMB07] Hansen, M.R., Madsen, J., Brekling, A.W.: Semantics and verification of a lan-
guage for modelling hardware architectures. In: Jones, C.B., Liu, Z., Woodcock,
J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp.
300–319. Springer, Heidelberg (2007)

[HvdNV06] Hendriks, M., van den Nieuwelaar, B., Vaandrager, F.W.: Model checker aided de-
sign of a controller for a wafer scanner. STTT 8(6), 633–647 (2006)

[IKY+08] Igna, G., Kannan, V., Yang, Y., Basten, T., Geilen, M., Vaandrager, F.W., Voorho-
eve, M., de Smet, S., Somers, L.J.: Formal modeling and scheduling of datapaths of
digital document printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS,
vol. 5215, pp. 170–187. Springer, Heidelberg (2008)

[LL98a] Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking of
real-time systems. In: Proc. IFIP Joint Int. Conf. on Formal Description Techniques
& Protocol Specification, Testing, and Verification (FORTE-PSTV’98), pp. 439–
456. Kluwer Academic Publishers, Dordrecht (1998)

[LL98b] Laroussinie, F., Larsen, K.G.: Cmc: A tool for compositional model-checking of
real-time systems. In: Budkowski, S., Cavalli, A.R., Najm, E. (eds.) FORTE, IFIP
Conference Proceedings, vol. 135, pp. 439–456. Kluwer, Dordrecht (1998)

[LLPY97] Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: IEEE Real-Time
Systems Symposium, pp. 14–24. IEEE Computer Society, Los Alamitos (1997)

[LLW95] Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic – and back.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539.
Springer, Heidelberg (1995)

[LNAB+98] Lind-Nielsen, J., Andersen, H.R., Behrmann, G., Hulgaard, H., Kristoffersen, K.
J., Larsen, K.G.: Verification of large state/event systems using compositionality
and dependency analysis. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp.
201–216. Springer, Heidelberg (1998)

[LPY97] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152
(1997)

[Nym02] Nyman, U.: Compositional bachwards reachability of timed automata. Master’s
thesis, Department of Computer Science, Aalborg University (2002)

[PvV10] Poulsen, D.B., van Vliet, J.W.B.P.T.: Concrete traces for uppaal. Master’s thesis,
Department of Computer Science. Aalborg University (2010)

[TY96] Tripakis, S., Yovine, S.: Analysis of timed systems based on time-abstracting bisim-
ulation. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 232–
243. Springer, Heidelberg (1996)

Temporal Logics over Linear Time Domains Are
in PSPACE

Alexander Rabinovich

The Blavatnik School of Computer Science
Tel Aviv University, Tel Aviv, Israel 69978

rabinoa@post.tau.ac.il

Abstract. We investigate the complexity of the satisfiability problem of
temporal logics with a finite set of modalities definable in the existential
fragment of monadic second-order logic. We show that the problem is in
pspace over the class of all linear orders. The same techniques show that
the problem is in pspace over many interesting classes of linear orders.

1 Introduction

A major result concerning linear-time temporal logics is Kamp’s theorem [12,9]
which says that TL(Until, Since), the temporal logic having Until and Since as the
only modalities, is expressively complete for first-order monadic logic of order
over the class of Dedekind complete linear orders.

The order of natural numbers ω = (N, <) and the order of the real num-
bers (R, <) are both Dedekind-complete. Another important class of Dedekind-
complete orders is the class of ordinals. However, the order of the rationals is not
Dedekind-complete. Stavi introduced two modalities UntilStavi and SinceStavi and
proved that the temporal logic having the four modalities Until, Since, UntilStavi

and SinceStavi is expressively complete for first-order monadic logic of order over
the class of all linear orders [9].

Our concern in this paper will be with the complexity of the satisfiability
problem for temporal logics over various classes of linear orders.

Sistla and Clarke [21] proved that the satisfiability problem for TL(Until, Since)
overω-models is pspace-complete. In [7], it was proven that the satisfiability prob-
lem for TL(Until, Since) over the class of all ordinals is pspace-complete. Cristau
[6] provided a double exponential space algorithm for the satisfiability of the
temporal logic having the four modalities Until, Since, UntilStavi and SinceStavi

over the class of all linear orders. These proofs are based on automata theoretical
techniques.

Burgess and Gurevich [5] proved that TL(Until, Since) is decidable over the
reals. They provided two proofs. The first involves an indirect reduction to Ra-
bin’s theorem on the decidability of the monadic second-order logic over the full
binary tree [14]. The second one is based on the model-theoretical composition
method. Both proofs provide algorithms of non-elementary complexity.

Reynolds [17,16] proved that the satisfiability problem for TL(Until, Since)
over the reals is pspace-complete and that the temporal logic with only the

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 29–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 A. Rabinovich

Until modality is pspace-complete over the class of all linear orders. The proofs
in [17,16] use temporal mosaics and are very non-trivial and difficult to grasp.
Reynolds conjectured [16] that the satisfiability problem for the logic with Stavi’s
modalities over the class of all linear orders is in pspace. Our results imply this
conjecture.

Let TL be a temporal logic with a finite set of modalities definable in the ex-
istential fragment of monadic second-order logic. We prove in a uniform manner
that the satisfiability problem for TL is in pspace over the following classes of
time domains: (1) all linear orders, (2) ordinals, (3) scattered linear orders, (4)
Dedekind-complete linear orders, (5) continuous orders, (6) rationals, (7) reals.
The proofs are based both on the composition method and on automata the-
oretical techniques and are easily adapted to various classes of structures and
temporal and modal logics.

Our first reduction uses the following notion. Let ϕ(X1, . . . , Xk) be a formula
with free set variables among X1, . . . , Xk. An instance of ϕ is a formula obtained
by replacing X1, . . . , Xk by monadic predicate names. Let Φ be a set of formulas.
A Φ-conjunctive formula is a conjunction of instances of formulas from Φ.

Our first reduction shows that for every temporal logic L with a finite set of
modalities definable in the existential fragment ofmonadic second-order logic there
is a finite set Φ of first-order formulas and a linear time algorithm that reduces the
satisfiability problem for L to the satisfiability problem for Φ-conjunctive formu-
las. This algorithm is based on a simple unnesting procedure and works as it is for
a much broader class of modal logics.

Next, we introduce recursively definable classes of structures. Our second
reduction shows that for every finite set Φ of first-order formulas and every
recursively definable class of structures C the satisfiability problem for the Φ-
conjunctive formulas over C is in exptime. Like the first reduction, this reduction
is quite general; it relies on the composition method and is sound not only for
linear orders. The first two reductions give an almost free exptime algorithm
for many temporal and modal logics with finite sets of modalities.

To obtain pspace upper bound we need more subtle arguments. We assign
a rank to every structure in a recursively definable class. An algorithm similar
to the algorithm in the second reduction shows that for every polynomial p the
problem whether a Φ-conjunctive formula ϕ is satisfiable over the structures of
rank p(|ϕ|) is in pspace. The main effort to show that the satisfiability problem
for a recursively definable class is in pspace is to establish that a formula is
satisfiable if it is satisfiable over the structures of a polynomial rank in the size
of the formula. We prove such a bound for many interesting classes of linear
orders. Our proof uses an automata-theoretical characterization of the temporal
logic with Stavi’s modalities over the linear orders found by Cristau [6].

The paper is organized as follows. The next section recalls basic definitions
about monadic second-order logic, its fragments and temporal logics. Sect. 3
states a linear reduction from temporal logics to conjunctive formulas. Sect. 4
reviews basic notions about the compositional method. Sect. 5 introduces recur-
sively defined classes of structures and Sect. 6 presents an exponential algorithm

Temporal Logics over Linear Time Domains Are in PSPACE 31

for the satisfiability of conjunctive formulas over these classes. Sect. 7 presents a
pspace algorithm for the satisfiability of conjunctive formulas over the class of
all linear orders and states a key lemma needed for its complexity analysis. Sect.
8 introduces finite base automata over arbitrary linear orders. Sect. 9 proves the
main lemma about runs of automata which is needed for the proof of pspace
bound of our algorithm. Sect. 10 proves in a “plug-and-play” manner pspace
bound over several interesting classes of linear orders and discusses related works.

Detailed proofs can be found in [15].

2 Monadic Logics and Temporal Logics

2.1 Monadic Second-Order Logic

Monadic second-order logic (MSO) is the fragment of the full second-order logic
allowing quantification only over elements and monadic predicates. One way to
define the monadic second-order language for a signature Δ (notation MSO(Δ))
is to augment the first-order language for Δ by quantifiable monadic predicate
variables (set variables) and by new atomic formulas X(t), where t is a first-order
variable and X is a monadic predicate variable. The monadic predicate variables
range over all subsets of a structure for Δ.

The quantifier depth of a formula ϕ is defined as usual and is denoted by
qd(ϕ).

We will use lower case letters t, t′ for the first-order variables and upper case
letters X, Y, Z for the monadic variables.

An MSO formula is existential if it is of the form ∃X1 . . .∃Xnϕ, where ϕ does
not contain second-order quantifiers. The existential fragment of MSO consists
of existential MSO formula and is denoted by ∃-MSO.

The first-order fragment of MSO contains formulas without the second-order
quantifiers. These formulas might contain free second-order variables which play
the same role as monadic predicate names. Hence, a formula in this fragment
is interpreted over an expansion of Δ structures by predicates which provide
meaning for the monadic variables. Sometimes, these free variables will serve as
metavariables. If ϕ(X1, X2) is a formula and P, Q are monadic predicate names,
we will say that the formula obtained from ϕ by replacing X1 by P and X2 by
Q is an instance of ϕ.

2.2 Temporal Logics and Truth Tables

Temporal logics use logical constructs called “modalities” to create a language
free from quantifiers. Below is the general logical framework to define temporal
logics:

The syntax of the Temporal Logic TL(O(k1)
1 , . . . , O

(kn)
n) has in its vocab-

ulary monadic predicate variables X1, X2, . . . and a sequence of modality names
with a prescribed arity, O

(k1)
1 , . . . , O

(kn)
n (the arity notation is usually omitted).

The formulas of this temporal logic are given by the grammar:

ϕ ::= X | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

32 A. Rabinovich

When particular modality names are unimportant or are clear from the context,
we omit them and write TL instead of TL(O(k1)

1 , . . . , O
(kn)
n).

Structures for TL are partial orders with monadic predicates M = 〈A, <
, P1, P2, . . . , Pn, . . . 〉, where the predicate Pi is assigned to a predicate variable
Xi. Every modality O(k) is interpreted in every structure M as an operator
O

(k)
M : [P(A)]k → P(A) which assigns “the set of points where O(k)[S1 . . . Sk]

holds” to the k-tuple 〈S1 . . . Sk〉 ∈ P(A)k. (Here, P is the power set notation,
and P(A) denotes the set of all subsets of the domain A of M.) Once every
modality corresponds to an operator, the relation “ϕ holds in M at an element
a” (notations 〈M, a〉 |= ϕ) is defined as follows:

– for atomic formulas 〈M, a〉 |= X iff a ∈ P , where the monadic predicate
P is assigned to X .

– for Boolean combinations the definition is the usual one.
– for modalities: 〈M, a〉 |= O(k)(ϕ1, · · · , ϕk) iff a ∈ O

(k)
M (Pϕ1 , · · · , Pϕk

),
where Pϕ = { b | 〈M, b〉 |= ϕ }.

Usually, we are interested in a more restricted case; for the modality to be
of interest the operator O(k) should reflect some intended connection between
the sets Aϕi of points satisfying ϕi and the set of points O[Aϕ1 , . . . , Aϕk

]. The
intended meaning is usually given by a formula in an appropriate predicate logic.

Truth Tables: A formula O(t0, X1, . . .Xk) in the predicate logic L is a Truth
Table for the modality O if for every structureM and subsets P1, . . . , Pk ofM

OM(P1, . . . , Pk) = {a : M |= O[a, P1, . . . , Pk]} .

Thus, the modality ♦X , “eventually X”, is defined by

ϕ(t0, X) ≡ ∃t > t0(t ∈ X).

The modality XUntil Y , “X strict until Y ”, is defined by

∃t1(t0 < t1 ∧ t1 ∈ Y ∧ ∀t(t0 < t < t1 → t ∈ X)).

A truth table ϕ(t, Y1, · · · , Yk) defines in every structure a function from k-tuples
of subsets. It associates with the tuple Y1, · · · , Yk of subsets of a structure M,
the set of elements t in M that satisfy ϕ(t, Y1, · · · , Yk) in M. This is a special
case of a more general way to define a function on all the structures in a given
class of structures. Here is the formal notion of a definable functional.

Definition 2.1

1. Let L be a first-order or monadic second-order logic language, and letM be a
structure. Let ϕ(X, Y1, · · · , Yk) be a formula in L with no free first-order vari-
ables, and with no set variables except for those specified. ϕ is an implicit def-
inition of the functional X = fM

ϕ (Y1, · · · , Yk) if for any k subsets Y1, · · · , Yk

of M, X is the only subset of M for which M |= ϕ(X, Y1, · · · , Yk).

Temporal Logics over Linear Time Domains Are in PSPACE 33

2. A modality O(Y1, · · · , Yk) of a temporal logic has a generalized truth table
ϕ(X, Y1, · · · , Yk) in a structureM if ϕ implicitly defines the operator of O;
i.e., given subsets Y1, · · · , Yk of a structure M,

〈M, a〉 |= O(Y1, · · · , Yk) iff a ∈ fM
ϕ (Y1, · · · , Yk).

ϕ is a generalized truth table for O in a class C of structures if ϕ is a
generalized truth table for O in every M ∈ C.

If the logic is a second-order logic, then this definition is a special case of the clas-
sical definition of a function defined by a formula. Note that if θ(t0, Y1, · · · , Yk)
is a truth table for a modality O, then ∀t[X(t) ↔ θ(t, Y1, · · · , Yk)] is a general-
ized truth table for O. Therefore, the notion of a generalized truth table is more
general than that of a truth table. It is strictly more general. For example, it
is well-known that there is no first-order formula ϕ(t, X) which defines over the
naturals the set of points preceded by an even number of points in X ; however,
it is easy to write a first-order formula ψ(Y, X) which defines this modality over
(N, <).

If a modality O has a generalized truth table ϕ(X, Y1, · · · , Yk), where ϕ is an
existential monadic second-order formula, then ∃X

(
(X(t0)) ∧ ϕ

)
is an ∃-MSO

truth table for O . Hence, a modality has an ∃-MSO truth table iff it has an
∃-MSO generalized truth table and we will say that it is ∃-MSO definable.

There are ∃-MSO definable modalities which are not definable even by gen-
eralized truth tables of the first-order logic. For example, there is an ∃-MSO
formula ϕ(Y, X) that expresses “Y holds at t if ¬X(t) and t precedes by a block
of X of length 3m some m > 0”, i.e., X(t − 1), X(t − 2), . . . X(t − 3m) and
¬X(t − 3m − 1). However, there is no first-order formula equivalent to ϕ over
(N, <).

Modal logics. Temporal logics are examples of modal logics. The syntax of
modal logics is defined exactly like the syntax of temporal logics. However, modal
logics can be interpreted not only over linear or partial orders, but over structures
of a more general signature Δ. Every modality O(k) is interpreted in every Δ-
structure M as an operator O

(k)
M : [P(M)]k → P(M). Generalized truth tables

are defined by formulas over Δ. We state our results for temporal logics; however,
they hold for more general modal logics as well.

3 From Temporal Logic to Conjunctive Formulas

Let ϕ(X1, . . . , Xk) be a formula with free set variables among X1, . . . , Xk. An
instance of ϕ is a formula obtained by replacing X1, . . . , Xk by monadic predicate
names or monadic variables. Let Φ be a set of formulas. A Φ-conjunctive formula
is a conjunction of instances of formulas from Φ.

Our first reduction shows that for every temporal logic L with a finite set of ∃-
MSO definable modalities there is a finite set Φ of first-order formulas and a linear
time algorithm that reduces the satisfiability problem for L to the satisfiability
problem for Φ-conjunctive formulas.

34 A. Rabinovich

Proposition 3.1. Let TL be a temporal logic with a finite set of modalities.
Assume that every modality of TL is ∃-MSO definable. Then there is a finite set
Φ of first-order formulas, and a linear time algorithm which for every formula
ϕ(P1, . . . , Pm) ∈TL computes a Φ-conjunctive formula ψ(P1, . . . , Pm, Q1, . . . , Qs)
such that for every structureM in the signature {<, P1, . . . , Pm}, ϕ is satisfiable
inM iff ψ is satisfiable in an expansion ofM by monadic predicates (which are
the interpretations of Q1, . . . , Qs).

The proof of this proposition is based on a simple unnesting procedure. A similar
proposition holds for modal logics.

4 Elements of the Composition Method

Our proofs make use of a technique known as the composition method [8,20,11,22].
To fix notations and to aid a reader unfamiliar with this technique, we briefly re-
view the required definitions and results.

4.1 Hintikka Formulas and n-Types

Let M and M′ be structures over a relational signature Σ. For n ∈ N, the
structures M and M′ are said to be ≡n-equivalent if no first-order sentence
of quantifier depth ≤ n distinguishes between M and M′; i.e., for every ϕ of
quantifier depth ≤ n:

M |= ϕ iffM′ |= ϕ.

Lemma 4.1 (Hintikka Lemma). For n ∈ N and a finite relational signature
Σ we can compute a finite set Hinn := Hinn(Σ) of sentences of quantifier depth
≤ n such that:

1. For every ≡n-equivalence class E there is a unique τ ∈ Hinn such that for
every Σ-structureM: M,∈ E if and only if M |= τ .

2. Every sentence with qd(ϕ) ≤ n is equivalent to a (finite) disjunction of sen-
tences from Hinn. There is an algorithm which for every sentence ϕ computes
a finite set Gϕ ⊆ Hinqd(ϕ) such that ϕ is equivalent to the disjunction of all
the sentences from Gϕ. Moreover, τ ∈ Gϕ iff τ → ϕ.

(Note that this general method to deal with sentences is not efficient in the sense
of complexity theory, and that the algorithm is non-elementary.)

We call any member of Hinn a n-Hintikka sentence. We use τ , τi, τ ′ to range
over the Hintikka sentences.

Definition 4.2 (n-Type). For n ∈ N and a Σ-structure M, we denote by
typen(M) the unique member of Hinn satisfied in M.

Temporal Logics over Linear Time Domains Are in PSPACE 35

4.2 The Ordered Sum of Chains and of n-Types

A (labeled) chain M is a linear order expanded by monadic predicates; if P is
a set of monadic predicate names, and the signature ofM is {<, P}, we sayM
is a P -chain. The concatenation or ordered sum of chains is defined as follows:

Definition 4.3 (Sum of Chains). Let I := (I, <I) be a linear order, l ∈
N, and S := (Mα | α ∈ I) be a sequence of chains, where Mα := (Aα, <α

, P1
α, . . . , Pl

α). Assume that Aα∩Aβ = ∅ whenever α �= β are in I. The ordered
sum of S is the chain∑

α∈I
Mα := (

⋃
α∈I

Aα, <I,S,
⋃

α∈I
P1

α, . . . ,
⋃
α∈I

Pl
α),

where:
If α, β ∈ I, a ∈ Aα, b ∈ Aβ, then b <I,S a iff β <I α or β = α and b <α a.
If the domains of the Mα’s are not disjoint, replace them with isomorphic

chains that have disjoint domains, and proceed as before.
If I = ({0, 1}, <) and S = (M0,M1), we denote

∑
α∈IMα by M0 +M1.

If Mα is isomorphic to M for every α ∈ I, we denote
∑

α∈IMα by M×I.

The next proposition states that taking ordered sums preserves ≡n-equivalence.

Lemma 4.4. Let n ∈ N. Assume:

1. (I, <I) is a linear order,
2.

(
M0

α | α ∈ I
)

and
(
M1

α | α ∈ I
)

are sequences of chains (in the same signa-
ture), and

3. for every α ∈ I, M0
α ≡n M1

α.

Then,
∑

α∈IM0
α ≡n

∑
α∈IM1

α.

This allows us to define the sum of formulas in Hinn(<, P1, . . . Pl) with respect
to any linear order.

In particular, this theorem justifies the notation τ0 + τ1 for the n-type of a
chain which is the ordered sum of two chains of n-types τ0 and τ1, respectively.
Similarly, we write τ × ω for the n-type of a sum Σi∈ωMi where all Mi are of
n-type τ ; the n-type τ ×ω−1 is defined similarly, where ω−1 is the order type of
negative integers.

Another important operation on chains and on n-types is shuffle.
Let S := (Mα | α ∈ Q) be a sequence of chains indexed by the rationals. Let

Q1, . . . , Qk ⊆ Q be a partition of Q into k everywhere dense sets. Let N1, . . . ,Nk

be chains. If for i = 1, . . . , k and q ∈ Qi, Mq is isomorphic to Ni, we de-
note

∑
α∈QMα by shuffle(N1, . . .Nk). Note that different partitions of Q into

k everywhere dense sets are isomorphic; hence, the shuffle is well defined. The
corresponding operation on n-types will be also denoted by shuffle.

36 A. Rabinovich

5 Recursively Defined Classes of Structures

Let Δ be a signature and k ∈ N. A k-ary Δ-operator is a function F which
assigns to every k-tuple of Δ-structures a Δ structure. A finite-set Δ-operator
is a function F which assigns to every finite set of Δ-structures a Δ structure.
A Δ-operator is a k-ary (k ∈ N) or a finite-set Δ-operator.

Let C be a set of Δ-structures. C is closed under a Δ-operator F if the result
of application of F to structures from C is in C.

Let C be a set of Δ-structures and F be a family of Δ-operators. The closure of
C under F is the minimal class C′ of Δ-structure which contains C and is closed
under F. We denote this class by Cl(C, F). It is said to be recursively defined
from C by F.

Let Cl0(C, F) := C and for i ∈ N define Cl i+1(C, F) := Cl i(C, F) ∪ {M |
M = F (M1, . . . ,Mk) for k-ary F ∈ F andMj ∈ Cl i(C, F)} ∪ {M | M =
F (A) for finite-set operator F ∈ F and A ⊆ Cl i(C, F)}. Define Cl∗(C, F) :=
∪i∈NCl i(C, F). Note that Cl∗(C, F) = Cl(C, F).

Let ∼ be an equivalence on Δ-structures. The index of ∼ is the cardinality
of the set of ∼-equivalence classes; ∼ has a finite index if there are only finitely
many ∼-equivalence classes.

A k-ary Δ operator F respects ∼ if for Δ-structuresM1, . . . ,Mk,N1, . . . ,Nk

F (M1, . . . ,Mk) ∼ F (N1, . . . ,Nk)

whenever Mi ∼ Ni (i = 1, . . . , k).
If F respects ∼, then it induces a k-ary operation on the ∼-equivalence classes.

We denote this operation by F as it will always be clear from the context whether
we use an operator on Δ-structures or the corresponding operation on the ∼-
equivalence classes.

If A and B are sets of Δ-structures, we say that A is ∼-equivalent to B if
∀M ∈ A∃N ∈ B(M∼N) and ∀M ∈ B∃N ∈ A(M∼N).

A finite-set Δ-operator respects ∼ if F (A) ∼ F (B) whenever A ∼ B.
If a finite-set operator F respects∼, then it induces an operation which assigns

a ∼-equivalence class to every finite subset of ∼-equivalence classes.
A family F of Δ-operators respects ∼ if every operator in F respects ∼.

Lemma 5.1. Assume that ∼ is an equivalence of finite index l, and F respects
∼. Then for every M ∈ Cl (C, F) there is N ∈ Cl l(C, F) such that M∼ N .

Proof. Let En be the set of ∼-equivalence classes of structures from Cln(C, F).
Then, ∀nEn ⊆ En+1. Hence, there is i ≤ l such that Ei = Ei+1. This implies
that ∀jEi = Ei+j . In particular, ∀jEl ⊇ Ej , therefore, the lemma holds. ��
For every n the set of operators {+,×ω,×ω−1, shuffle} respects ≡n.

Strictly speaking, these are polymorphic operators. For every set P of monadic
predicate names, there is a corresponding binary operator + on P -labeled chains.

Recall that for a Δ-structure M and Δ′ ⊆ Δ the Δ′ reduct of M on Δ′ is a
Δ′-structure which has the same domain as M and the same interpretation of
symbols from Δ′. We denote byM|Δ′ the reduct ofM on Δ′.

The reduct distributes over the sum in the following sense:

Temporal Logics over Linear Time Domains Are in PSPACE 37

The reduct distributes over +

Let P ′ ⊆ P be sets of monadic predicate names, let M and N be P -
chains. Then (M+N)|{<, P ′} and (M|{<, P ′}) + (N|{<, P ′}) are iso-
morphic.

The reduct also distributes over {×ω,×ω−1, shuffle}.
Let P be a set of monadic predicate names, let P 1, . . . , P k ⊆ P be a sequence

of subsets of P , and let M be a P -chain. Define ptypen(M;
(
P 1, . . . , P k

)
), the

product n-type ofM with respect to P 1, . . . , P k, as

ptypen(M;
(
P 1, . . . , P k

)
) := (τ1, . . . , τk) ,

where τi = typen(M|{<, P i}) be the n-types of the reduct.
For a class C of P -chain,

ptypen(C;
(
P 1, . . . , P k

)
) := {ptypen(M;

(
P 1, . . . , P k

)
) | M ∈ C}.

Lemma 5.2
1. If ptypen(Mi;

(
P 1, . . . , P k

)
) =

(
τ i
1, . . . , τ

i
k

)
for i ∈ {0, 1}, then

ptypen(M0 +M1;
(
P 1, . . . , P k

)
) =

(
τ0
1 + τ1

1 , . . . , τ0
k + τ1

k

)
2. If ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τk), then

ptypen(M× ω;
(
P 1, . . . , P k

)
) = (τ1 × ω, . . . , τk × ω)

ptypen(M× ω−1;
(
P 1, . . . , P k

)
) =

(
τ1 × ω−1, . . . , τk × ω−1)

3. if A is a finite set of structures and for j = 1, . . .k, and
Uj = {τj | ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τj , . . . , τk) ∧M ∈ A}, then

ptypen(shuffle(A);
(
P 1, . . . , P k

)
) = (shuffle(U1), . . . , shuffle(Uk)).

6 EXPTIME Algorithm

In this section we present an exptime algorithm for the satisfiability of conjunc-
tive formulas.

Let Φ be a finite set of formulas of quantifier depth ≤ n in the first-order
monadic logic over {<} with free variables among X1, . . . , Xm.

Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be a Φ-conjunctive formula. Let F :=
{+,×ω,×ω−1, shuffle}. Let C be a set of structures over signature {<,∪k

i=1Pi}.
Recall that F respects ≡n, therefore, by Lemma 5.1, ψ is satisfiable over Cl(C, F)
if it is satisfiable over Cl l(C, F), where l := |Hinn(<,∪k

i=1Pi)| is the cardinality
of the set Hinn(<,∪k

i=1Pi) of Hintikka formulas. This l grows like the n-time
iterated exponential function exp(n, k) (exp(1, x) := 2x and exp(i + 1, x) :=
2exp(i,x)). We replace this bound by a bound exponential in k and derive an
exponential time algorithm for the satisfiability of Φ-conjunctive formulas over
Cl(C, F). Our arguments are valid not only for this recursively defined class, but
for any recursive class which is definable by a finite set of operators that respect
≡n-equivalence and satisfy an analog of Lemma 5.2.

38 A. Rabinovich

Lemma 6.1. Let Φ be a finite set of formulas of the quantifier depth ≤ n in
the first-order monadic logic over {<} with free variables among X1, . . . , Xm. A
Φ-conjunctive formula ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in M if and only if
ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τk) and τi(Pi)→ ϕi(Pi) for i = 1, . . . , k.

Define the equivalence ∼n

(P 1,...,Pk) on chains over the signature {<,∪k
i=1Pi} as

M ∼n

(P 1,...,P k) N iff ptypen(M;
(
P 1, . . . , P k

)
) = ptypen(N ;

(
P 1, . . . , P k

)
).

The number of ∼n

(P 1,...,P k) equivalence classes is ≤ |Hinn(<, P1, . . . , Pm)|k;

hence, it is at most exponential in k. F respects∼n

(P 1,...,P k). Therefore, by Lemma

5.1, we obtain:

Lemma 6.2. For every finite set Φ of first-order formulas there is cΦ such that
a Φ-conjunctive formula ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) is satisfiable in Cl (C, F) iff
it is satisfiable in Cl cΦ

k

(C, F).

Consider the following problem.

Membership Problem for fixed n, m ∈ N; all tuples P i are of length ≤ m.

Input: τ = (τ1 . . . τk) ∈ Hinn(<, P 1) × · · · × Hinn(<, P k) and an oracle I for
membership in ptypen(C;

(
P 1, . . . , P k

)
).

Question: Is τ in ptypen(Cl (C, F);
(
P 1, . . . , P k

)
)?

Lemma 6.3. The membership problem is in EXPTIMEI .

Proof. Our algorithm is presented below.

Algorithm 1. Membership Problem is in EXPTIMEI

R ← I { i.e., for every τ if τ ∈ I then add τ to R.}
Updated ← True.
while Updated do

1. Updated ← False;
2. Compute R′ = Cl1((R,+); If R′ �= R then Updated ← True;
3. R ← R′; Compute R′ = Cl1(R,×ω); If R′ �= R then Updated ← True;
4. R ← R′; Compute R′ = Cl1(R,×ω−1); If R′ �= R then Updated ← True;
5. R ← R′; Compute R′ = Cl1(R, shuffle); If R′ �= R then Updated ← True;

end while
if τ ∈ R return True.

Let N0 = |Hinn(<, X1, . . . , Xm)|. The number of iterations of the loop is
bounded by Nk

0 .
R′ = Cl1((R, +) can be computed in time O(N2k

0) as follows. Let R′ ← R.
For each pair τ = (τ1, . . . , τk), τ ′ = (τ ′

1, . . . , τ
′
k) ∈ R add (τ1 + τ ′

1, . . . , τk + τ ′
k) to

R′. Hence, Step 2 can be implemented in time O(N2k
0).

Steps 3 and 4 can be implemented in O(Nk
0).

Temporal Logics over Linear Time Domains Are in PSPACE 39

The computation of R′ = Cl1(R, shuffle) is more subtle. Indeed, a naive
approach can try to compute shuffle for every subset of R. However, the number
of such subsets is 2N0

k

and it is double-exponential. R′ = Cl1(R, shuffle) can be
computed in exptime as follows:

Algorithm 2. Computation of Cl1(R, shuffle)
Let Hi := P(Hinn(<,Pi)) be the set of subsets of Hinn(<,Pi).
for every U = (U1, . . . , Uk) ∈ H1 × · · · × Hk do

{ Check if there is a sequence (τ 1
1 , . . . , τ 1

k), . . . , (τm
1 , . . . , τm

k) ∈ R such that Ui =
{τ j

i | j ≤ m} and update R′ as follows: }
1. (B1, . . . , Bk) ← (U1, . . . , Uk);
2. for every τ = (τ1, . . . τk) ∈ R if ∧iτi ∈ Ui then Bi ← Bi \ {τi};
3. If ∧Bi = ∅ then {such a sequence exists, and we have to update R′}

R′ ← R′ ∪ {(shuffle(U1), . . . , shuffle(Uk))};
end for

The number of iterations of the external loop is 2N0k and the number of iter-
ations of the internal loop is bounded by Nk

0 . Hence, Step 5 can be implemented
in time O(2N0k ×Nk

0).
Since every step can be implemented in exptime and the number of iterations

is exponential, we obtain that the membership problem is in exptime with the
oracle I. ��

Let One be the class of one-element chains. It is clear that we can decide in
exptime, whether τ ∈ ptypen(One;

(
P 1, . . . , P k

)
). Hence, as a consequence of

Lemma 6.3, we obtain:

Proposition 6.4. The satisfiability problem for Φ-conjunctive formulas over the
class Cl(One, F) is in EXPTIME.

Proof. For every ϕ ∈ Φ we can pre-compute the set Hϕ := {τ ∈ Hinn(<
, X1, . . . , Xm) | τ → ϕ} (this depends only on Φ and is independent from the
input).

Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be a Φ-conjunctive formula. First compute
the set S of all τ in ptypen(Cl(One, F);

(
P 1, . . . , P k

)
). The cardinality of S is

at most exponential. By the previous lemma, S can be computed in exptime.
Then, by Lemma 6.1, it is enough to check whether there is (τ1, . . . , τk) ∈ S such
that τi(Pi) → ϕi(Pi) for i = 1, . . . , k. This can be done in exptime using the
pre-computed sets Hϕ. ��

Läuchli and Leonard [13] proved1 the following theorem:

1 Läuchli and Leonard considered the logic with the order relation only. Their proof
can be adapted easily to the first-order monadic logic over chains.

40 A. Rabinovich

Theorem 6.5 A first-order formula is satisfiable over a linear order if it is
satisfiable over Cl(One, F).

As a consequence of Theorem 6.5 and Propositions 6.4 and 3.1 we obtain:

Theorem 6.6 Let TL be a temporal logic with a finite set of ∃-MSO defin-
able modalities. The satisfiability problem for TL over the class of chains is in
exptime.

In the next section we will show that exptime upper bound can be replaced by
pspace upper bound.

Let us conclude this section by a remark on optimality of our algorithm.
The only properties of operators {+,×ω,×ω−1, shuffle} which were used in our
exptime algorithm are (1) they respect ≡n and (2) the reduct distributes over
these operators. If F is any set of operators with these properties, then the
membership problem for Cl(One, F) is in exptime.

Below we will show that for such F in general exptime bound cannot be
improved.

Let Δ2 = {<,Left ,Right} be a signature, where < is a binary predicate and
Left ,Right are unary predicates. We will interpret Δ2 over the binary trees,
where < is the ancestor relation and Left (respectively, Right) are interpreted
as the set of left (respectively, right) children. Let M1 and M2 be binary trees
expanded by unary predicates P1, . . . , Pk, and let R be a one element chain
for these predicate names. We assume that the domains of M1,M2 and R are
disjoint and define a ternary operation �(M1, R,M2) as follows. �(M1, R,M2)
is a binary tree; its domain is the union of the domains ofM1, R and M2; the
unique node r of R is the root of this tree. The left and right subtrees of r are
M1 and M2 respectively. Predicate name Pi is interpreted as the union of its
interpretations in M1, R and M2.

The operation � has properties (1) and (2). The closure of One under �
is the set of all finite binary trees. As a consequence, we can derive that the
satisfiability problem for any temporal logics with a finite set of ∃-MSO definable
modalities over the class of finite binary trees is in exptime. Note that CTL can
be described as a temporal logic with a finite set of modalities definable in ∃-
MSO and the satisfiability problem for CTL over the class of finite binary trees is
exptime hard. Hence, in general our exptime upper bound for the satisfiability
problem over recursively definable classes is optimal.

7 PSPACE Algorithm

Let F = {+,×ω,×ω−1, shuffle}. To every chain in Cl (One, F) we assign a natural
number - the rank of a chain. Define sets C≤i ⊆ Cl (One, F) as follows:

1. C≤0 is the set of finite chains.
2. C≤i+1 is the closure under + of the union of C≤i, {M × ω | M ∈ C≤i},
{M× ω−1 | M ∈ C≤i} and {shuffle(A) | A is a finite subset of C≤i}.

A chainM has rank i + 1 ifM ∈ C≤i+1 ∧M �∈ C≤i.

Temporal Logics over Linear Time Domains Are in PSPACE 41

Every chain of a finite rank can be described by its finite construction tree.
Let P be a set of monadic predicate names. A construction tree T for P -chains
is a labeled tree which has the following properties: the leaves of T are labeled
by one-element P -chains; the internal nodes are labeled by +,×ω,×ω−1 and
shuffle; a node labeled by ×ω or by ×ω−1 has one child; a node labeled by +
has at least two children and these children are linearly ordered; a node labeled
by shuffle has at least one child.

Let T be a construction tree. A chain [|T |], assigned to T , is defined as follows:

1. if T is a one-element tree then [|T |] is the one-element chain which is the
label of its only node.

2. If the root of T is labeled by ×ω (or by ×ω−1), then [|T |] is [|T1|] × ω
(respectively, [|T1|]× ω−1)) where T1 is the subtree of T rooted at the child
of its root.

3. If the root of T is labeled by + and its children (ordered from younger to
older) are trees T1, . . . , Tm then [|T |] := [|T1|] + · · ·+ [|Tm|].

4. If the root of T is labeled by shuffle and its children are trees T1, . . . , Tm

then [|T |] := shuffle([|T1|], . . . , [|Tm|]).

Lemma 7.1. If a chainM has rank ≤ i, then there is a chain construction tree
T such that M = [|T |] and the height of T is bounded by 2i+1.

Proof. A chainM has rank ≤ i if there is a tree T such thatM = [|T |] and the
number of nodes labeled by ×ω, ×ω−1 and shuffle on any path from the root to
a leaf is bounded by i (we do not count nodes labeled by +). For every tree T
there is a tree T ′ such that [|T ′|] = [|T |] and no + node has a child labeled by
+. Indeed, if a + node v of T has as a child a + node u we can remove u and
make its children to be children of v (between the left and the right brothers of
u). Hence, if a chainM has rank ≤ i then there is a tree T such thatM = [|T |]
and the height of T is bounded by 2i+1. ��

We are going to present a pspace algorithm for the satisfiability problem for Φ-
conjunctive formulas. Its correctness and complexity analysis are based on the
following Lemma which refines Lemma 6.2 and will be proved in Sect. 9.

Lemma 7.2 (small rank property). For every finite set Φ of first-order for-
mulas there is rΦ such that every Φ-conjunctive formula ψ = ϕ1(P1)∧· · ·∧ϕk(Pk)
is satisfiable in Cl(One, F) iff it is satisfiable in a chain of rank ≤ k × rΦ.

By Theorem 6.5, Lemma 7.1, and Lemma 7.2, ϕ1(P1)∧· · ·∧ϕk(Pk) is satisfiable
iff

(A) there is a chain construction tree T of height ≤ 2k × rΦ + 1 such that
ptypen([|T |];

(
P 1, . . . , P k

)
) = (τ1, . . . , τk) and

(B) τi → ϕi for i = 1, . . . , k.

Now, we are ready to improve our exptime bound of Theorem 6.6 to pspace.

Theorem 7.3 Let TL be a temporal logic with a finite set of ∃-MSO defin-
able modalities. The satisfiability problem for TL over the class of chains is in
pspace.

42 A. Rabinovich

By proposition 3.1 it is sufficient to provide a pspace algorithm for the sat-
isfiability of Φ-conjunctive formulas. Let ψ = ϕ1(P1) ∧ · · · ∧ ϕk(Pk) be such a
formula. Our algorithm guesses (τ1, . . . , τk) and checks in linear time condition
(B). Then the non-deterministic algorithm SAT, defined below, checks (A). SAT
works in polynomial space in k, assuming that the last argument is polynomial
in k which is the case with N = 2k× rΦ +1. Fig. 1 contains the definition of the
algorithm SAT (some details are omitted).

Membership Problem

Input 1. (τ1, . . . , τk), where τi ∈ Hinn(<, P i) and P i ⊆ P are sets of l predi-
cate names (note that n and l are fixed and are not part of the input).

2. N ∈ N.
Output True, if there is a construction tree T of height ≤ N such that

ptypen([|T |];
(
P 1, . . . , P k

)
) = (τ1, . . . , τk).

– If N = 0 and there is a one element chain M such that
ptypen(M;

(
P 1, . . . , P k

)
) = (τ1, . . . , τk) then return True;

– Go non-deterministically to 1-5.
(1.) Return SAT((τ1, . . . , τk) , N − 1).
(2.) Guess (τ ′

1, . . . , τ
′
k) such that SAT((τ ′

1, . . . , τ
′
k) , N − 1) returns True and

τi = τ ′
i × ω for 0 < i ≤ k.

(3.) Guess (τ ′
1, . . . , τ

′
k) such that SAT((τ ′

1, . . . , τ
′
k) , N − 1) returns True and

τi = τ ′
i × ω−1 for 0 < i ≤ k.

(4.) Guess on-the-fly a sequence(
τ1
1 , . . . , τ1

k

)
,
(
τ2
1 , . . . , τ2

k

)
, . . . , (τm

1 , . . . , τm
k)

such that
(4.1) for 0 < i ≤ m, SAT(

(
τ i
1, . . . , τ

i
k

)
, N − 1) returns True,

(4.2) for 0 < j ≤ k, τj = τ1
j + . . . + τm

j .
(5.) Guess (U1, . . . , Uk), where Ui ⊆ Hinn(<, Pi) such that

(5.1) for 0 < j ≤ k, τj = shuffle(Uj)
and guess on-the-fly a sequence(

τ1
1 , . . . , τ1

k

)
,
(
τ2
1 , . . . , τ2

k

)
, . . . , (τm

1 , . . . , τm
k)

such that
(5.2) for 0 < i ≤ m, SAT(

(
τ i
1, . . . , τ

i
k

)
, N − 1) returns True,

(5.3) for 0 < j ≤ k, Uj = {τ i
j | i ≤ m}.

Fig. 1. Algorithm SAT

Since + is associative, to verify condition (4.2) we need to keep in the
memory at every stage p only two tuples: the tuple of the partial sum(∑s<p

s=1 τs
1 , . . . ,

∑s<p
s=1 τs

k

)
and the current guess (τp

1 , . . . , τp
k). The tuple of the

Temporal Logics over Linear Time Domains Are in PSPACE 43

partial sums can be easily updated. We can assume that all partial sums are dif-
ferent; hence, m is bounded by the number of possible ptypen(M;

(
P 1, . . . , P k

)
)

which is bounded by |Hinn(< .X1, . . . , Xl)|k and the counter for m can be saved
in space linear in k.

To verify condition (5.3) we need to keep in memory at every stage p only
two tuples: the tuple Up

i = {τs
i | s < p} (for i = 1, . . . , k) and the current guess

(τp
1 , . . . , τp

k). We have to verify that (τp
1 , . . . , τp

k) is in (U1, . . . , Uk), i.e., τp
i ∈ Ui

and update the tuple (Up
1 , . . . , Up

k). In (5.) we can assume that no tuple occurs
twice; hence, m is bounded by the number of possible ptypen(M;

(
P 1, . . . , P k

)
)

and the counter for m can be saved in space linear in k.
The depth of recursion is bounded by N . Hence, SAT works in non-

deterministic space O(kN).
In order to check (A) we call SAT with N = 2rΦ × k + 1. Therefore, our pro-

cedure works in non-deterministic polynomial space and by the Savitch theorem
it can be implemented by a deterministic pspace algorithm.

The next two sections are geared towards the proof of Lemma 7.2.

8 Automata on Linear Orders

Büchi used finite automata over ω-words to prove that monadic second-order
logic is decidable over ω. In order to prove the decidability of monadic second-
order logic over countable ordinals, Büchi introduced finite automata on words
of ordinal length [4]. Büchi’s model extends traditional finite automata using
limit transitions to handle positions with no predecessor. He proved that over
countable ordinals these automata are equivalent to monadic second-order logic.

These automata were extended to finite automata on linear orderings by
Bruyère and Carton [2]. This model further extends traditional finite automata
using limit transitions to handle positions with no successor or no predecessor. In
[18] it was shown that these automata can be complemented over countable scat-
tered linear orderings and are equivalent to monadic second-order logic over the
countable scattered linear orderings. However, this equivalence fails over dense
orders and over uncountable orders [1].

We first recall some basic definitions about linear orders. Then, we intro-
duce finite base automata which have the same expressive power as finite state
automata of [2], but are more appropriate for our purposes.

In order to define the runs of an automaton, we use the notion of cut. A cut of
a linear order J is a partition (L, U) of J such that a < b for any a ∈ L and b ∈ U .
A cut (L, U) is a gap if neither L has a maximal element, nor U has a minimal
element and L �= ∅ �= U . An order is Dedekind-complete if it does not have gaps.
We denote by Ĵ the set of cuts of J . This set is equipped with the order defined by
(L1, U1) < (L2, U2) if L1 � L2. This ordering on Ĵ can be extended to J∪ Ĵ . in a
natural way: (L, U) < a if a ∈ U . The order Ĵ is Dedekind-complete. Its minimal
(maximal) element is Ĵmin = (∅, J) (respectively, Ĵmax = (J, ∅)). For any element
a of J , there are two successive cuts: a− := ({b ∈ J | b < a}, {b ∈ J | b ≥ a})
and a+ := ({b ∈ J | b ≤ a}, {b ∈ J | b > a}). Note that if If a < b are consecutive
elements of J then a+ and b− denote the same cut.

44 A. Rabinovich

Given an alphabet Σ, a Σ-word of length J is a sequence (σa | a ∈ J) of
elements of Σ indexed by J .

In [7] we introduced simple ordinal automata which work over words of ordinal
length. We extend this definition to finite base automata working on words over
arbitrary linear orders.

Finite base automata have the same expressive power as finite state automata
over chains. An important parameter of a finite base automaton is the size of
its base. An advantage of finite base automata over finite state automata is that
taking the conjunction is easy and the base of an automaton for the conjunction
grows linearly in the number of conjuncts.

Definition 8.1 (finite base automata) A finite base automaton A is a tuple
of the form (B, Q, Σ, δnext , δlim, Qinit , Qfin) such that

– B is a finite set (the basis of A),
– Q ⊆ P(B) (the set of states),
– Qinit , Qfin ⊆ Q (the sets of initial states and final states),
– Σ is a finite alphabet,
– δnext ⊆ Q×Σ ×Q is the next-step transition relation,
– δlim ⊆ P(B)×Q ∪Q× P(B) is the limit transition relation.

Let f be a function from a set I into P(B). Define

always(f) := {b ∈ B | ∀c ∈ I b ∈ f(c)}.

If I is a linear order, we define the left and right base-limit sets of f at c ∈ I
as the sets of base elements that appear in every state arbitrarily close to c
(respectively, to its left and to its right). Formally, Base lim−→(c, f) is defined as

Base lim−→(c, f) := {b ∈ B | ∀a < c∃d(a < d < c) ∧ b ∈ always(f�(d, c)},

where f�(d, c) is the restriction of f to the interval (d, c).
Base lim←−(c, f) is defined similarly.
Given a finite base automaton A, a run of A on Σ-word s over a linear order

I is a function ρ : Î → Q such that

– For each c ∈ I, ρ(c−)
s(c)−−→ ρ(c+),

– if c ∈ Î \ Îmin has no predecessor, (Base lim−→(c, ρ), ρ(c)) ∈ δlim, and

– if c ∈ Î \ Îmax has no successor, (ρ(c),Base lim←−(c, ρ)) ∈ δlim.

An A-run ρ is accepting if ρ(Îmin) ∈ Qinit and ρ(Îmax) ∈ Qfin . A accepts a word
s if there is an accepting run on s .

Let A1, . . . , Am be finite base automata. One can easily construct an automa-
ton A that accepts the intersection of the languages accepted by these automata.
The number of states in A is the product of the numbers of states of Ai and
this grows exponentially in m; however, the base size of A is the sum of the base
sizes of Ai.

Temporal Logics over Linear Time Domains Are in PSPACE 45

Lemma 8.2 (intersection of finite base automata). Let A1 and A2 be finite
base automata. Assume that the base size of A1 and A2 are n1 and n2. There is
a finite base automaton A such that the base size of A is n1 + n2 and a word s
is accepted by A iff it is accepted by A1 and by A2.

A word s := (σa | a ∈ J) indexed by J over an alphabet {0, 1}k can be identified
with a chain (J, <, P1, . . . , Pk) over J where Pi = {a ∈ J | the i-th bit of σa =
1}. This is a bijection between the {0, 1}k-words over J and the chain with k
monadic predicates over J .

An automaton is said to be equivalent to a formula ϕ(P1, . . . , Pk) over a class
C of linear orders if for every linear order J ∈ C and every word s indexed by J ,
A accepts s if and only if the corresponding chain satisfies ϕ.

Cristau [6] proved that every formula of the first-order fragment of the
monadic logic is equivalent (over the class of all linear orders) to a finite-state
automaton. Hence,

Theorem 8.3 For every first-order formula ϕ there is a finite base automaton
Aϕ equivalent to ϕ over the class of all linear orders.

9 Small Rank Property

Let A be a finite base automaton, L a chain and ρ : L̂ → Q be a run of A on L.
typeA(ρ) := (q, D, q′), where ρ(L̂min) = q, ρ(L̂max) = q′ and D := always(ρ).

If typeA(ρ) := (q, D, q′) we sometimes write ρ : q
D−→ q′; we write ρ : D−→ if

typeA(ρ) := (q, D, q′) for some q and q′.
Define an equivalence relation ∼A on A-runs:

ρ1 ∼A ρ2 if and only if typeA(ρ1) = typeA(ρ2)

Weight. Let D be a subset of the base B of A. The weight of D is defined as the
cardinality of B \D. The weight of a transition of A is defined as follows. The
weight of a successor transition is 0; the weight of limit transitions (D, q) ∈ δlim
and (q, D) ∈ δlim is the weight of D. The weight of a run ρ is defined as the
maximum of the weights of transitions that appears in ρ. We denote the weight
of ρ by weight(ρ); the weight is always between 0 and the cardinality of the base
of A.

Lemma 9.1 (Main). Assume that ρ is a run of a finite base automaton A.

1. If ρ : D−→ and weight(ρ) = weight(D) = w, then there is a run on a chain of
rank ≤ 2w + 1, which is equivalent to ρ.

2. Any run of weight ≤ w is equivalent to a run on a chain of rank ≤ 2w + 2.

As a consequence, we obtain the following small rank property:

Proposition 9.2 (small rank property). Let A be a finite base automaton
with base of size nA. Every run of A is equivalent to a run on a chain of rank
≤ 2nA + 2. In particular, if A has an accepting run, then it accepts a chain of
rank ≤ 2nA + 2.

46 A. Rabinovich

The complexity analysis of our pspace algorithm was based on Lemma 7.2. Now
we are ready to prove it.

Proof. (of Lemma 7.2.) Let Φ be a finite set of first-order formulas. By Theorem
8.3, every formula in ϕ ∈ Φ is equivalent to a finite-base automaton Aϕ. Let nΦ

be an upper bound on the base size of Aϕ for ϕ ∈ Φ.
Let ψ = ϕ1(P1)∧· · ·∧ϕk(Pk) be a Φ-conjunctive formula. By Lemma 8.2, ψ is

equivalent to a finite base automata with the base of size≤ k×nΦ. By Proposition
9.2, if ψ is satisfiable then it is satisfiable on a chain of rank ≤ k(2nΦ+2). Hence,
we can define rΦ as (2nΦ + 2). ��
It is instructive to compare small rank property of finite base automata with
short run property of simple ordinal automata from [7]. A simple ordinal au-
tomaton is a finite base automaton with δlim ⊆ P(B) × Q. Hence, the domain
of every run ρ of a simple ordinal automaton is order-isomorphic to an ordinal,
and if ρ is a run on M then M is a chain over an ordinal. An ordinal α has
rank i ≥ 1 iff α < ωi+1. Lemma 6 in [7] states that every run of a simple ordinal
automaton A is equivalent to an A-run on an ordinal < ωnA+1, where nA is the
size of the base of A.

10 Conclusion, Further and Related Results

We provided an exptime algorithm for the satisfiability problem for any tem-
poral or modal logic with a finite set of ∃-MSO definable modalities over a re-
cursively defined class of structures, and proved that exptime-bound is optimal
in the worst case.

Let TL be any temporal logic with a finite set of ∃-MSO definable modalities.
We proved that the satisfiability problem for TL over the class of all linear orders
can be solved in pspace. This improves the Cristau result [6] that the satisfia-
bility problem over this class for the temporal logic having the four modalities
Until, Since, UntilStavi and SinceStavi is in double exponential space, and implies
Reynolds’s conjecture.

In the rest of this section we explain how the pspace bound can be extended
uniformly to many interesting classes of linear orders.

Let ψ be an ∃-MSO sentence. A set C of chains is said to be definable by ψ,
if C = {M | M |= ψ}. A set C of chains is said to be definable by ψ relatively to
a class C′, if C = {M ∈ C′ | M |= ψ}.

Theorem 7.3 immediately implies

Corrollary 10.1 Let TL be a temporal logic with a finite set of ∃-MSO definable
modalities, and let ψ be an ∃-MSO sentence. If the satisfiability problem for TL
over C′ is in pspace, then the satisfiability problem for TL over the class of
chains definable by ψ relatively to C′ is in pspace. In particular, the satisfiability
problem for TL over the class of chains definable by ψ is in pspace.

A linear order is called unbounded if it has neither a minimum nor a maximum;
Note that an ∃-MSO formula ϕ is satisfiable in Q iff it is satisfiable in an un-
bounded dense order. There are first-order sentences Unbound and Dense that

Temporal Logics over Linear Time Domains Are in PSPACE 47

express that an order is unbounded, respectively, dense. Therefore, ϕ is satisfi-
able in Q iff Unbound ∧Dense ∧ϕ is satisfiable over a linear order. Hence, there
is a pspace algorithm for satisfiability in Q.

Recall that a cut (L, U) of a linear order L is a gap if neither L has a maximal
element, nor U has a minimal element and L �= ∅ �= U . A chain is Dedekind-
complete if its underlining order does not have gaps. The class of non-Dedekind
chain can be easily definable by an ∃-MSO sentence. Hence, there is a pspace
algorithm for the satisfiability over the class of non-Dedekind complete chains.
The class of Dedekind complete chains is not definable by an ∃-MSO sentence.
However, we will show (Theorem 10.7) that there is a pspace algorithm for the
satisfiability over the class of Dedekind complete chains.

Let OP be a subset of {ω, ω−1, shuffle}. Our proof can be easily modified to
show the following variant of small rank property (Lemma 7.2).

Lemma 10.2. For every finite set Φ of first-order formulas and every OP ⊆
{ω, ω−1, shuffle} there is NΦ,OP ∈ N such that every Φ-conjunctive formula ψ is
satisfiable in Cl(One, OP∪{+}) iff it is satisfiable in a chainM ∈ Cl(One, OP∪
{+}) of rank ≤ |ψ| ×NΦ,OP .

Hence, the satisfiability problem for any temporal logic with a finite set of ∃-MSO
definable modalities over Cl(One, OP ∪ {+}) is in pspace.

Recall that a linear order is scattered if it does not contain a dense suborder
(i.e., a substructure order-isomorphic to Q). An ∃-MSO formula is satisfiable in
a chain over an ordinal (respectively, over a scattered order) iff it is satisfiable in
Cl(One, {ω, +} (respectively, in Cl(One, {ω, ω−1+} [13,19]. Hence, we obtain:

Theorem 10.3 Let TL be a temporal logic with a finite set of modalities defin-
able in the existential fragment of MSO.

1. The satisfiability problem for TL in the class of chains over ordinals is in
pspace [7].

2. The satisfiability problem for TL in the class of scattered chains is in pspace.

A linear order is continuous if it is dense and Dedekind-complete; it is separable
if it has a countable dense subset. Any unbounded separable continuous order is
order-isomorphic to the reals.

Burgess and Gurevich [5] proved that TL(Until, Since) is decidable over the
reals. They introduced the following class of chains.

Definition 10.4. Let C be the minimal class of chains that contains all one-
element chains and has the following properties:

1. If M and N are in C and M has a maximum or N has a minimum, then
M+N ∈ C.

2. IfM ∈ C and M has either a minimum or a maximum, then M×ω−1 and
M× ω are in C.

3. If A ⊆ C is finite and each M ∈ A has both a minimum and a maximum,
and some N ∈ A are one-element chains, then shuffle(A) ∈ C.

48 A. Rabinovich

The next theorem was a key step in their decidability proof.

Theorem 10.5 Let ϕ be an ∃-MSO formula. The following are equivalent:

1. ϕ is satisfiable over the class of Dedekind-complete separable chains.
2. ϕ is satisfiable over the class of Dedekind-complete chains.
3. ϕ is satisfiable in C.

As a consequence, they obtained a (non-elementary) algorithm for the decidabil-
ity of TL(Until, Since) over the reals.

The definition of C is slightly more general than the definition of a recursively
defined class of structures. However, our definition is easily extended to the
(mutual) recursive definition of a finite number of classes.

One can easily rephrase Definition 10.4 as a mutual recursive definition of
three classes: C, Cmax and Cmin, where Cmax (respectively, Cmin) is the set of
chains in C with a maximal, (respectively, minimal) element. (Note that Cmax
and Cmin are ∃-MSO definable relatively to C.)

Our results are easily extended to these classes. In particular, for every finite
set Φ of first-order formulas there is rΦ such that a Φ-conjunctive formula ψ is
satisfiable in C iff it is satisfiable in M ∈ C of rank ≤ rΦ × |ψ|. Hence,

Lemma 10.6. Let TL be a temporal logic with a finite set of modalities definable
in ∃-MSO. The satisfiability problem for TL in C is in pspace.

As a consequence, we obtain:

Theorem 10.7 Let TL be a temporal logic with a finite set of modalities defin-
able in the existential fragment of MSO.

1. The satisfiability problem for TL over the class of Dedekind-complete sepa-
rable chains is in pspace.

2. The satisfiability problem for TL over the class of Dedekind-complete chains
is in pspace.

3. The satisfiability problem for TL in the class of chains over the reals is in
pspace.

4. The satisfiability problem for TL over the class of continuous chains is in
pspace.

Proof. (1) and (2) follow from Theorem 10.5 and Lemma 10.6.
Let Unbound and Dense be first-order formulas that express that an order is

unbounded and dense. By Theorem 10.5, ϕ ∈ TL is satisfiable over the reals iff
ϕ ∧Dense ∧ Unbound is satisfiable in C. Therefore, (3) follows by Lemma 10.6.

ϕ ∈ TL is satisfiable over the class of continuous chains iff ϕ ∧ Dense is
satisfiable in C. Therefore, (4) follows by Lemma 10.6. ��

Similar arguments show that the satisfiability problem for TL over the classes of
scattered Dedekind-complete chains, scattered non Dedekind-complete chains,
and over many other classes is in pspace.

Reynolds [17] proved Theorem 10.7(3) for the temporal logic with two modali-
ties Until and Since. Due to the Kamp theorem, this implies that the satisfiability

Temporal Logics over Linear Time Domains Are in PSPACE 49

problem over the reals for any temporal logic with a finite set of first-order de-
finable modalities is in pspace. His proof relies on particular properties of Until
and Since and uses temporal mosaics. The proofs in [17] are very non-trivial and
difficult to grasp, probably because they have been developed from scratch.

We do not fully understand the Reynolds proof; however, there are some ele-
ments which are similar to our proof of Theorem 10.7(3). He considers operations
on mosaics which correspond to sum, multiplication by ω and by ω−1 and shuffle
of chains. He decides whether a finite set of small pieces is sufficient to be used
to build a real-number model of a given formula. This is also equivalent to the
existence of a winning strategy for player one in a two-player game played with
mosaics. The search for a winning strategy is arranged into a search through a
tree of mosaics. By establishing limits on the depth of the tree (a polynomial in
terms of the length of the formula) he constructs a pspace algorithm. There is
an analogy between such mosaic trees and construction trees for chains of finite
rank.

Finally, let us note that the results of this paper hold for temporal logics with
modalities having generalized truth tables definable by automata. Let A be an
automaton over the alphabet {0, 1}n+1. A modality O is said to be definable by
A if for every linear order L := 〈A, <〉 and every P1, . . . , Pn ⊆ A there is a unique
P such that 〈A, <, P, P1, . . . , Pn〉 is accepted by A, moreover P = O(P1, . . . , Pn).

Theorem 10.8 Let TL be a temporal logic with a finite set of modalities such
that every modality is definable by an automaton. Then, the satisfiability problem
for TL over the class of all chains is in pspace.

References

1. Bedon, N., Bes, A., Carton, O., Rispal, C.: Logic and Rational Languages of Words
Indexed by Linear Orderings. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slis-
senko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 76–85. Springer, Heidelberg (2008)

2. Bruyère, V., Carton, O.: Automata on linear orderings. In: Sgall, J., Pultr, A.,
Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 236–247. Springer, Heidelberg
(2001)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science, pp. 1–11. Stanford University Press, Stan-
ford (1962)

4. Büchi, J.R., Siefkes, D.: The Monadic Second-order Theory of all Countable Ordi-
nals. Springer Lecture Notes, vol. 328 (1973)

5. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre
Dame J. Formal Logic 26(2), 115–128 (1985)

6. Cristau, J.: Automata and temporal logic over arbitrary linear time. In: FSTTCS
2009, pp. 133–144 (2009)

7. Demri, S., Rabinovich, A.: The Complexity of Temporal Logic with Until and Since
over Ordinals. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 531–545. Springer, Heidelberg (2007)

8. Feferman, S., Vaught, R.L.: The first-order properties of products of algebraic
systems. Fundamenta Mathematicae 47, 57–103 (1959)

50 A. Rabinovich

9. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logics, vol. 1. Clarendon
Press, Oxford (1994)

10. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Analysis of Fair-
ness. In: 7th POPL, pp. 163–173 (1980)

11. Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S. (eds.)
Model-Theoretic Logics, pp. 479–506. Springer, Heidelberg (1985)

12. Kamp, H.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University
of California L.A (1968)

13. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundamenta
Mathematicae 59, 109–116 (1966)

14. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

15. Rabinovich, A.: Temporal logics over linear time domains are in PSPACE
(manuscript) (2009)

16. Reynolds, M.: The complexity of the temporal logic with until over general linear
time. J. Comput. Syst. Sci. 66, 393–426 (2003)

17. Reynolds, M.: The Complexity of Temporal Logic over the Reals. The Annals of
Pure and Applied Logic 161(8), 1063–1096 (2010)

18. Rispal, C., Carton, O.: Complementation of rational sets on countable scattered
linear orderings. Int. J. Found. Comput. Sci. 16(4), 767–786 (2005)

19. Rosenstein, J.G.: Linear ordering. Academic Press, New York (1982)
20. Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)
21. Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Log-

ics. J. ACM 32(3), 733–749 (1985)
22. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory

of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in
Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg
(1997)

Lossy Counter Machines Decidability Cheat Sheet�

Philippe Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

www.lsv.ens-cachan.fr/~phs

Abstract. Lossy counter machines (LCM’s) are a variant of Minsky counter ma-
chines based on weak (or unreliable) counters in the sense that they can decrease
nondeterministically and without notification. This model, introduced by R. Mayr
[TCS 297:337-354 (2003)], is not yet very well known, even though it has already
proven useful for establishing hardness results.

In this paper we survey the basic theory of LCM’s and their verification prob-
lems, with a focus on the decidability/undecidability divide.

1 Introduction

Lossy counter machines are a weakened version of Minsky counter machines. They
were introduced by Richard Mayr [38,39] as a simpler version of lossy channel sys-
tems, using counters holding numerical values rather than channels recording sequences
of messages in transit. Mayr proved that finiteness and uniform termination are undecid-
able for lossy counter machines and used this to derive various undecidability results,
e.g. in [11].

Lossy counter machines are hard. Since then, lossy counter machines have been used
in a variety of situations, sometimes under the guise of counter automata with incre-
mentation errors [19]. Mostly, they have been used in reductions proving hardness, i.e.,
complexity lower bounds. This relies on two kinds of results. Firstly, some problems
that are undecidable for Minsky machines remain undecidable for the weaker lossy
counter machines. This can be used for undecidability proofs in situations where it is
easier to encode lossy counters than reliable ones, e.g., as in [19,16]. Secondly, some
problems that are decidable for lossy counters machines are still Ackermann-hard, i.e.,
they require nonprimitive-recursive time and space [43,44]. This can be used to show
Ackermann-hardness of problems that are decidable but rich enough to encode lossy
counters, see [18,19,32,24,46] for examples.

A survey for lossy counter machines. In this paper, we survey the main decidability
and undecidability results on lossy counter machines. Most areas have not yet been
investigated deeply, and some have only been superficially visited. As a consequence,
our survey looks sometimes more like a road map for future research than as a record
of past achievements.

� Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 51–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.lsv.ens-cachan.fr/~phs

52 P. Schnoebelen

We strove for simplicity. Most decidability results can be proven by elementary argu-
ments, relying only on generic properties like strong monotonicity of steps (Fact 2.1),
the wqo property (Fact 2.3) and basic features of semilinear sets. These proofs are sim-
pler and more versatile than the algorithms provided in, e.g., [5,28]. For undecidability,
all our proofs share a single and very simple gadget, “putting a Minsky machine on a
budget”, making them conceptually simpler.

In this “survey” we do not always point to the earliest existing reference for each
and every stated theorem. Mostly this is because these results are new, or presented in
a new and extended form, or with a new and simplified proof. In general, the results
come from [11,42,39] when they are specific to lossy counter machines. Some results
have been first shown for lossy channel systems [15,7,6] or even well-structured sys-
tems [25,26,5,28,29].

Outline of the paper. We define counter machines, both reliable and lossy, in Section 2.
We handle reachability properties in Section 3, termination and inevitability properties
in Section 4, liveness properties in Section 5, finiteness properties in Section 6. All the
decidability results given in these first sections are proven along the way, while the
proof of the undecidability results are delayed until Section 7 where they are handled
uniformly. Finally, we gather in Section 8 a few extra results on issues that are less
central, or more recent, in the theory of lossy counter machines. Finally, and for the sake
of completeness, the complexity of decidable problems is briefly discussed in Section 9.

2 Counter Machines

Counter machines are a model of computation where a finite-state control acts upon a
finite number of counters, i.e., storage locations that hold natural numbers. The com-
putation steps are usually restricted to simple tests and updates. For Minsky counter
machines, the tests are zero-tests and the updates are incrementations and decremen-
tations. Formally, a (Minsky) counter machine is a tuple M = (Loc,C,Δ) where Loc =
{�1, . . . , �m} is finite set of locations, C = {c1, . . . ,cn} is a finite set of counters, and
Δ⊆ Loc×OP(C)×Loc is a finite set of transition rules carrying operations from a set

OP(C) def= C×{++,--,=0?}.
In pictorial representations, a counter machine is usually depicted as a directed graph

where transition rules are OP(C)-labeled edges between control locations, see Fig. 1 for
a simple example. An operation of the form c++ denotes the incrementation of counter
c, while c-- denotes its decrementation. Decrementations are only firable when the
counter at hand holds a strictly positive value, as is formally stipulated in the operational
semantics. Operations of the form c=0? are tests used to restrict transition steps.

2.1 Operational Semantics

Let M = (Loc,C,Δ) be a counter machine. A configuration of M is some σ = 〈�,aaa〉 ∈
Conf

def= Loc×NC, i.e., a current control location � and a C-indexed vector aaa of natural
numbers (one current value for each counter in C). If we assume, as we shall do from
now on, that C = {c1, . . . ,cn}, we may identify NC with Nn and write σ under the form

Lossy Counter Machines Decidability Cheat Sheet 53

M
�0 �1

�2

�3 �4
c1=0?

c2=0?c1++
c1--

c2++ c2--

c1++

0

0

c1

c2

Fig. 1. M: a counter machine that enumerates all pairs (a1,a2) ∈N2

〈�,a1, . . . ,an〉. We sometimes use counter names as positional indexes when there is a
need for disambiguation, e.g., writing 〈000,ck : 1,000〉 for the k-th unit vector.

The operational semantics of M is given under the form of transitions between its

configurations. Formally, there is a transition (also called a step) σ δ−→std σ′ if, and only
if, σ is some 〈�,a1, . . . ,an〉, σ′ is some 〈�′,a′1, . . . ,a′n〉, δ = (�,op, �′) and either:

– op is ck=0? (zero test): ak = 0, and a′i = ai for all i = 1, . . . ,n, or
– op is ck-- (decrementation): a′k = ak−1, and a′i = ai for all i �= k, or
– op is ck++ (incrementation): a′k = ak + 1, and a′i = ai for all i �= k.

As usual, we write σ −→std σ′ when σ δ−→std σ′ for some δ ∈ Δ. Chains σ0 −→std σ1 −→std

· · · −→std σk of consecutive steps, also called runs, are denoted σ0
∗−→std σk, and also

σ0
+−→std σk when k > 0. For example, M from Fig. 1 has a run:

〈�0,0,0〉 −→std 〈�1,0,0〉 −→std 〈�2,0,0〉 −→std 〈�0,1,0〉 −→std 〈�3,0,0〉 −→std 〈�0,0,1〉
−→std 〈�1,0,1〉 −→std 〈�4,0,0〉 −→std 〈�1,1,0〉 −→std 〈�2,1,0〉 −→std 〈�0,2,0〉 −→std 〈�3,1,0〉

For a vector aaa = (a1, . . . ,an), or a configuration σ = 〈�,aaa〉, we let |aaa| = |σ| def= ∑n
i=1 ai

denote its size. For N ∈ N, we say that a run σ0 −→std σ1 −→std · · · −→std σk is N-bounded
if |σi| ≤ N for all i = 0, . . . ,k.

The above definitions use a “std” subscript when writing steps to emphasize that
they rely on the usual, standard, operational semantics of counter machines, where the
behavior is reliable. We now introduce lossy counter machines as counter machines
with a different semantics.

2.2 Lossy Counter Machines

In lossy counter machines, the contents of the counters may decrease non-determinis-
tically (the machine can “leak”, or “lose data”). This behavior is not under the control
of the machine, i.e., it can be seen as some inherent non-determinism. Furthermore, the
lossy machine does not have any direct way of noticing if/when a loss occurs. Hence
lossy counter machines are less powerful than standard, reliable, counter machines.

Technically, it is more convenient to see lossy machines as counter machines with
a different operational semantics (and not as a special class of machines): thus it is
possible to use simultaneously the two semantics and to relate them.

54 P. Schnoebelen

Formally, this is defined via the introduction of a partial ordering between the con-
figurations of M:

〈�,a1, ...,an〉 ≤ 〈�′,a′1, ...,a′n〉
def⇔ � = �′ ∧a1 ≤ a′1∧·· ·∧an ≤ a′n.

One way to read σ≤ σ′ is to see σ as the result of some losses (possibly none) in σ′.
Now “lossy” steps, denoted σ δ−→lossy σ′, are given by the following definition:

σ δ−→lossy σ′ def⇔ ∃θ,θ′ : (σ≥ θ ∧ θ δ−→std θ′ ∧ θ′ ≥ σ′). (†)

Note that reliable steps are a special case of lossy steps:

σ−→std σ′ implies σ−→lossy σ′. (‡)

An immediate corollary of (†) is the so-called “monotonicity of steps” property:

Fact 2.1 ((Strong) Monotonicity)
1. Assume σ−→lossy τ. Then σ′ −→lossy τ′ for all σ′ ≥ σ and all τ′ ≤ τ.

2. Assume σ +−→lossy τ. Then σ′ +−→lossy τ′ for all σ′ ≥ σ and all τ′ ≤ τ.

Remark 2.2. Here the adjective “strong” emphasizes the fact that the existence of some
step σ −→lossy τ implies the existence of σ′ −→lossy τ for all σ′ ≥ σ, (rather than some
σ′ −→lossy τ′) and, symmetrically, the existence of σ−→lossy τ′ for all τ′ ≤ τ. ��

2.3 Dickson’s Lemma

The configuration ordering enjoys the following key property:

Fact 2.3 (Wqo). (Conf ,≤) is a well-quasi-ordering.

This is otherwise known as Dickson’s Lemma. It means that any infinite sequence
σ0,σ1,σ2, . . . of configurations contains an infinite increasing subsequence σi0 ≤ σi1 ≤
σi2 ≤ ·· · . Equivalently, not only is the ordering well-founded (there is no infinite de-
creasing sequence σ0 > σ1 > σ2 > · · ·) but every linearisation is well-founded. In par-
ticular, there is no infinite set of pairwise incomparable configurations. See [34] for
more information.

It is the combination of monotonicity of steps with the wqo-property that turns lossy
counter machines into what are called well-structured transition systems [28,5].

2.4 Semilinear Sets of Configurations

A set of configurations R⊆ Conf is linear if it can be written under the form

R = {〈�,aaa+ k1.bbb1 + · · ·+ km.bbbm〉 | k1, . . . ,km ∈ N}

for some base configuration 〈�,aaa〉 and some finite set of increments bbb1, . . . ,bbbm ∈ Nn.

For example the upward-closure ↑σ def= {θ ∈ Conf | θ ≥ σ} of a single configuration is

Lossy Counter Machines Decidability Cheat Sheet 55

linear, with σ itself as the base, and n unit vectors, one per counter, as increments. A
second example is the singleton set {σ}, linear too, with same base but no increments.

A set R ⊆ Conf is semilinear if it is a finite union R = L1 ∪ ·· · ∪Lk of linear sets.
In particular, the empty set is semilinear (take k = 0) and Conf itself is semilinear as⋃

�∈Loc ↑〈�,000〉.
It is well-known that semilinear sets are exactly the sets that can be denoted by Pres-

burger formulae (effective translations between the two representations exist) and that
they are closed under complement, intersection, projection, etc., all this in an effec-
tive way [33,37]. Slightly abusing notations, we shall use letters like X ,Y, . . . to denote
semilinear sets of configurations and, at the same time, to denote their finitary descrip-
tions (e.g., Presburger formulae, or bases cum increments) that can be given as input to
algorithms.

Not all sets of configurations are semilinear but many interesting sets can be de-
noted by Presburger formulae (e.g., the set of all configurations whose size satisfy a
Presburger constraint) and thus are semilinear.

The following is even more important for our purposes:

Fact 2.4 (Order-closed sets are semilinear). If R⊆ Conf is upward-closed or down-
ward-closed, it is semilinear.

Indeed, by the wqo-property, an upward-closed R has finitely many minimal elements,
hence can be written R = ∪σ∈min(R)↑σ which is semilinear. For a downward-closed R,
we observe that its complement is upward-closed, hence semilinear, and rely on the fact
that the complement of a semilinear set is semilinear.

3 Reachability and Safety

From now on, we omit the “lossy” subscript and write σ −→ σ′ instead of σ −→lossy σ′.
This is because the lossy steps are our main objects. We only revert to the fully explicit
notation when it is necessary to consider both reliable and lossy steps at the same time
(for example in Section 7).

3.1 Post-sets and Pre-sets

For R ⊆ Conf , we let Post(R) def= {σ′ | ∃σ ∈ R : σ −→ σ′} denote the set of immediate
successors of configurations in R. Similarly, we let Post∗(R) and Post+(R) denote the set
of configurations reachable from R through an arbitrary number (resp. strictly positive
number) of steps. Similarly, Pre(R), Pre∗(R), and Pre+(R) denote sets of predecessors
configurations, from which a configuration in R can be reached.

A consequence of monotonicity (Fact 2.1) is the following order-closure property:

Fact 3.1. For any R ⊆ Conf , Post(R) and Post+(R) are downward-closed sets, while
Pre(R) and Pre+(R) are upward-closed sets.

Corollary 3.2. For any R ⊆ Conf , Pre(R), Pre+(R), Post(R) and Post+(R) are
semilinear.

Furthermore, if R itself is semilinear, then Post∗(R) and Pre∗(R) too are semilinear.

56 P. Schnoebelen

Here the first point is just an applications of Fact 2.4 while the second point stems from
Post∗(R) = R∪Post+(R) and symmetrically for Pre∗(R).

Note that, if R is semilinear, one can compute Post(R) and Pre(R) uniformly from R
(and M). This has little to do with lossiness: counter machines is a low-level computa-
tional model with simple operational semantics for single steps. For counter machines,
the one-step relations −→std and −→lossy, seen a subsets of Conf ×Conf , are semilinear
(and easily read out of M).

3.2 Reachability Problems

The main question is the decidability of a general form of reachability questions, that
we call general reachability in order to distinguish it from its less general variants.

General_Reachability:
Given: a LCM M, two semilinear sets of configurations X and Y .
Question: does there exist σ1 ∈ X and σ2 ∈ Y such that σ1

∗−→ σ2? In such a case,

we write X
∗−→ Y .

Equivalently: Does Post∗(X)∩Y �= ∅? Does Pre∗(Y)∩X �= ∅?

In the literature, reachability problems often appear in other forms:

Configuration_Reachability: does σ0
∗−→ σt for given starting configuration σ0 and tar-

get configuration σt?
Location_Reachability: is there some aaa ∈ Nn such that σ0

∗−→ (�,aaa) for given σ0 and
target location � ∈ Loc?

Coverability: is there some σ≥ σt such that σ0
∗−→ σ for given σ0 and target configura-

tion to be covered σt?
Safety: does Post∗(X0) ⊆ Xs for given semilinear set of starting configurations X0 and

semilinear set of “safe” configurations Xs?

Obviously, all these problems are special cases of General_Reachability (or of its com-
plement in the case of Safety), hence are easier. We observe that location reachability is
a special case of coverability, and that coverability and single-configuration reachability
almost coincide since, thanks to Fact 2.1, one can cover σg from σ0 if, and only if, σg

is reachable from σ0 or is already covered by it (i.e., σ0 ≥ σg).

3.3 Decidability of Reachability

Theorem 3.3. General_Reachability is decidable for lossy counter machines.

First observe that general reachability is r.e. (it is enough to guess a run and check it,
which amounts to simulating M) so that there only remains to show that non-reachability
is r.e. too.

For this, we rely on semilinear invariants. An inductive invariant, or just “an invari-
ant”, is a set of configurations I such that Post(I)⊆ I or, equivalently, Pre(J)⊆ J letting

J
def= Conf � I.

Lossy Counter Machines Decidability Cheat Sheet 57

Classically, invariants are used to prove safety properties, relying on the following
fact: if R ⊆ I for some invariant I, then Post∗(R) ⊆ I. They can be used as negative
witnesses for general reachability: finding an invariant I that contains X and does not
intersect Y proves that one cannot reach Y from X , written ¬(X ∗−→ Y) for short.

This method is complete since, if ¬(X ∗−→ Y), this is certainly witnessed by invari-
ants, the smallest one being Post∗(X) and the largest being Conf � Pre∗(Y) [45]. The
method can be made effective by restricting to semilinear invariants. Only considering
semilinear invariants allows enumerating candidates sets I and it allows checking that
a candidate I is indeed an invariant, that it contains X , and does not intersect Y . Re-
stricting to semilinear invariant does not hinder completeness since, e.g., Post∗(X) and
Conf � Pre∗(Y) are semilinear (by Coro. 3.2).

Finally, general reachability is co-r.e., and being r.e. too, is decidable.

Remark 3.4. We observe that the key ingredient for the above proof is simply that the
reachability sets Post∗(X) are “regular” in some sense (for LCM’s, they are semilinear)
and that the one-step image Post(X), or the pre-image Pre(X), is semilinear too and can
be computed effectively from X . This proof technique is quite general and applies to
many different situations. For example, the same argument was used for reversible Petri
nets in [14], or for 3-dim VASS’s in [36]. ��

Corollary 3.5. Configuration_Reachability, Location_Reachability, Coverability, and
Safety are decidable for lossy counter machines.

3.4 Reachability Logic

The reachability problems we just proved decidable can all be stated in a first-order
logic of reachability, where the basic predicates are s −→ t, s

∗−→ t, and s ∈ X for X a
semilinear set.

For example, Safety is written

∀s ∈ X0 : ∀t ∈ Xs : ¬(s ∗−→ t), (ϕSaf)

while configuration reachability and coverability are written, respectively,

∃s ∈ {σ0} : ∃t ∈ {σt} : s
∗−→ t, (ϕCR)

∃s ∈ {σ0} : ∃t ∈ ↑σt : s
∗−→ t. (ϕCov)

These examples show that it is convenient to allow a simple language of terms de-
noting semilinear sets, like singletons “{σ}” or upward-closure “↑X”. Below we also
use Boolean operations, e.g., “X �Y”, and order-theoretic constructions e.g., writing
“min(X)” to denote the set of minimal configurations in X . In any case we only use
Presburger-definable operations: they always denote semilinear sets that can be com-
puted effectively from their semilinear operands.

The model-checking problem for reachability logic is a natural generalization of
the reachability problems we considered in Section 3.2. This problem is undecidable
in general but identifying the decidable fragment is certainly an interesting question

58 P. Schnoebelen

that is still very open. The question is even more interesting since there is ample room
for refining and extending the logic in meaningful ways (see Section 8.1 for related
questions).

Regarding some of the simplest non-trivial formulae, we can already provide a few
results:

∃s ∈ X : ∃t ∈Y : s
∗−→ t decidable (one-to-one)

∀s ∈ X : ∃t ∈Y : s
∗−→ t decidable (from-all)

∃s ∈ X : ∀t ∈Y : s
∗−→ t undecidable, Σ0

2-complete (one-to-all)

∀s ∈ X : ∀t ∈Y : s
∗−→ t undecidable, Π0

1-complete (all-to-all)

∀t ∈Y : ∃s ∈ X : s
∗−→ t undecidable, Π0

1-complete (to-all)

∃t ∈Y : ∀s ∈ X : s
∗−→ t decidable (all-to-same)

The undecidability results in the above list will be proven later, in Section 7. We
mention them now because they are an indication that we should find the decidability
results a bit surprising.

Regarding the decidability results, one-to-one formulae are just general reachability
and have been shown decidable above. Observe that this entails the decidability of

∃s ∈ X : ∃t ∈ Y : s
+−→ t. (one-to-one’)

Indeed this formula, also written X
+−→ Y , is equivalent to both Post(X) ∗−→ Y and X

∗−→
Pre(Y), and Post(X) and Pre(Y) are semilinear sets that can be computed effectively
from X and Y (and M), see Coro. 3.2.

Regarding from-all formulae, they reduce to conjunctions of simple reachability
questions with the following reasoning:

∀s ∈ X : ∃t ∈ Y : s
∗−→ t (from-all)

⇔ ∀s ∈ (X �Y) : ∃t ∈ Y : s
+−→ t

⇔ ∀s ∈min(X �Y) : ∃t ∈ Y : s
+−→ t

where the last step of the reduction relies on monotonicity of lossy steps (Fact 2.1).
Now, min(X �Y) is some finite set {σ1, . . . ,σk} (Fact 2.3) that can be computed effec-
tively from X and Y . Thus we have reduced a from-all formula to a finite conjunction
of one-to-one’ formulae.

We now turn to all-to-same formulae. The main idea is easier to understand if we
consider a version where

+−→ is used:

∃t ∈ Y : ∀s ∈ X : s
+−→ t. (all-to-same’)

One can simplify this by using monotonicity on both sides of the steps:1

∃t ∈Y : ∀s ∈ X : s
+−→ t ⇔ ∃t ∈min(Y) : ∀s ∈min(X) : s

+−→ t.

1 Here it is crucial that the source is universally quantified upon and the destination is existen-
tially quantified upon. It would not work the other way around.

Lossy Counter Machines Decidability Cheat Sheet 59

Hence, letting min(X) = {σ1, . . . ,σk} and min(Y) = {σ′1, . . . ,σ′m}, we have reduced

all-to-same’ to
∨m

j=1
∧k

i=1 σi
+−→ σ′j, a finite disjunction of conjunctions of decidable

questions.
One can now show the decidability of all-to-same formulae by adapting the above

idea. One possible way is to rely on, e.g.,

∃t ∈ Y : ∀s ∈ X : s
∗−→ t ⇔

(
∃t ∈min(Y) : ∀s ∈min(X) : s

+−→ t
∨ ∃t ∈min(X)∩Y : ∀s ∈min(X) : s

∗−→ t

)
.

Again, we end up with a finite combination of decidable reachability questions.

3.5 Computing Co-reachability Sets

One can go beyond Theorem 3.3 and compute the co-reachability sets.

Theorem 3.6 (PPPrrreee∗∗∗ is effective). For semilinear X ⊆ Conf , Pre∗(X) can be computed
effectively as a function of X and M.

Indeed, we know that Pre∗(X) is a semilinear set X0 that satisfies both

X0 ⊆ Pre∗(X), i.e., ∀s ∈ X0 : ∃t ∈ X : s
∗−→ t, (1)

and

X0 ⊇ Pre∗(X), i.e., ¬
(
∃s �∈ X0 : ∃t ∈ X : s

∗−→ t
)
. (2)

These two formulae are decidable for given X and X0: (1) is a from-all formula while
(2) is a negated one-to-one formula. Thus we can effectively recognize when a given
X0 coincides with Pre∗(X). There only remains to enumerate all semilinear X0 until we
encounter Pre∗(X), which is bound to eventually happen.

Computing Pre∗(X) is useful in many situations where just deciding reachability
questions would be insufficient. For example, Theo. 3.6 lets us list, or count, the number
of starting configurations that do not satisfy a given safety property.

3.6 Computing Reachability Sets

Surprisingly, it is not possible to compute Post∗(X) effectively. This is captured more
precisely by the following statement:

Theorem 3.7 (On computing PPPooosssttt∗∗∗)
1. The question whether, for semilinear X and Y , Post∗(X)⊆ Y is decidable.
2. The question whether, for semilinear X and Y , Post∗(X)⊇ Y is Π0

1-complete.

Indeed, Point 1 is the decidability of Safety, and Point 2 is the undecidability of to-all
formulae (Section 3.4).

There is a troubling lack of symmetry here, between the computable Pre∗ and the
non-computable Post∗. We stress that this situation has little to do with the specifics
of counter machines. Indeed, most of the proofs above only rely on monotonicity of
steps, on Dickson’s Lemma, and basic assumptions on the operational semantics (e.g.,

60 P. Schnoebelen

Presburger-definable one-step relation) that are fulfilled by many models. The bot-
tom line is that most decidability proofs above rely on the closure properties stated
in Coro. 3.2 where the asymmetry appears: upward-closed sets have a finite basis (on
which one can base algorithms), while downward-closed sets do not.2

4 Termination and Inevitability

In this section, we consider termination and more general inevitability properties.

4.1 Termination

Consider the following problems:

Termination:
Given: a LCM M and an initial configuration σ0,
Question: does M terminate?
Equivalently: are all runs starting from σ0 finite?

Looping:
Given: a LCM M and an initial configuration σ0,

Question: may the system loop? I.e., is there a configuration σ s.t. σ0
∗−→ σ +−→ σ?

Of course, looping is a special case of non-termination. That they coincide is less
usual!

Lemma 4.1. A lossy counter machine is looping if, and only if, it does not terminate.

Indeed, assume there is an infinite run σ0 −→ σ1 −→ σ2 −→ The wqo property entails

that there must be positions k < l along this run with σk ≤ σl . Since σk
+−→ σl , mono-

tonicity (Fact 2.1) entails σk
+−→ σk and we have a loop.

Theorem 4.2. Termination and looping are decidable for lossy counter machines.

The proof of Theorem 4.2 is much simpler than one would expect.
First, we observe that termination is r.e.: since the transition relation is finitely branch-

ing, we know (Kőnig’s Lemma) that if all runs from σ0 are finite, then the tree of all runs
is finite and an exhaustive simulation algorithm will terminate after examining finitely
many runs.

On the other hand, looping too is r.e.: one just has to guess a looping run σ0
∗−→ σk

+−→
σk, which can be represented finitely and checked in finite time.

Now since looping and non-termination coincide, the two problems are r.e. and co-
r.e., hence decidable.

2 Finite representations of upward-closed sets exist but they use some kind of “limits
points” [27]. For lossy counter machines, the limit points are extended configurations where
some counters contain ω. These behave like directed sets of configurations, not like real indi-
vidual configurations.

Lossy Counter Machines Decidability Cheat Sheet 61

Remark 4.3. The beauty of this proof is that termination and looping are r.e. very gener-
ally. That is to say, termination is r.e. for most sensible computation models, e.g., Turing
machines or Minsky counter machines, and the same is true of looping. Thus that part
of the proof is totally generic. What is specific to lossy counter machines is that non-
termination and looping coincide. Indeed, they do not usually coincide for other models
where a system may have infinite runs but no looping ones. ��

4.2 Inevitability

Inevitability means that all runs will eventually stumble into something. We consider a
slightly more general form:

Strong_Inevitability:
Given: a LCM M, an initial configuration σ0, and two semilinear sets X1,X2⊆Conf
of configurations,
Question: do all runs from σ0 stay within X1 until they eventually visit X2?
Equivalently: does the CTL formula A[X1U X2] hold in σ0?

Observe that termination is a special case of strong inevitability (by letting X2 = Halt
def=

Conf � Pre(Conf) be the set of all “dead” configurations, from which no move is
possible).

Theorem 4.4. Strong inevitability is decidable for lossy counter machines.

The reasoning is similar to what we did for termination: First, strong inevitability is
r.e. There remains to see that it is also co-r.e., i.e. that there are finite witnesses for
non-inevitability. So assume that there is a run that violates strong inevitability, that run
is either finite or infinite. If it is finite, it is a finite witness. If it is infinite, then the
LCM has an infinite run that remains inside X1 �X2. By the wqo property, there are two
configurations σi ≤ σ j along this run. By the monotonicity property, there is a looping

run σ0
∗−→ σi

+−→ σi. This looping run remains inside X1 � X2 and is the finite witness we
need.

4.3 Undecidability

The decidability of termination and inevitability is very fragile. We only give two
examples:

Uniform_Termination:
Given: a LCM M,
Question: does M terminate from all starting configurations σ ∈ Conf ?

Repeated_Inevitability:
Given: a LCM M, an initial configuration σ0, and a semilinear set X ⊆ Conf of
configurations,
Question: do all runs from σ0 visit X infinitely many times?
Equivalently: does the ECTL formula AF∞X hold in σ0?

62 P. Schnoebelen

Theorem 4.5. Uniform_Termination and Repeated_Inevitability are Π0
1-complete for

lossy counter machines.

For these two problems, membership in Π0
1 is a consequence of the results we already

saw. Indeed, the complement of Uniform_Termination can be written ∃σ,σ′ ∈ Conf :

σ ∗−→ σ′ +−→ σ′, or even ∃σ ∈ Conf : σ +−→ σ, which is in Σ0
1, while the complement of

Repeated_Inevitability is ∃ a run σ0
∗−→ σ +−→ σ such that X is not visited along the

σ +−→ σ loop. Π0
1-hardness is shown as Coro. 7.2 in Section 7.

Corollary 4.6. The set Halt of configurations from which M must terminate cannot be
computed.

Note that, for lossy counter machines, Halt is both downward-closed and an invariant,
and it has a decidable membership problem (Theorem 4.2).

5 Büchi and Liveness

Here we consider the following problems:

Buchi:
Given: a LCM M, a configuration σ0, and a location � ∈ Loc,
Question: is there a run starting from σ0 that visits � infinitely many times?

Looping_on_location:
Given: a LCM M, a configuration σ0, and a location � ∈ Loc,

Question: is there a looping run on �, i.e., does σ0
∗−→ 〈�,aaa〉 +−→ 〈�,aaa〉 for some aaa?

At first glance, the situation with Buchi and Looping_on_location appears very similar
to what we encountered in Section 4. Now, instead of just considering the existence of
infinite runs, we ask for infinite runs that visit a given � infinitely many times. Still, we
can adapt Lemma 4.1:

Lemma 5.1. Buchi and Looping_on_location coincide.

Proof. Obviously, Looping_on_location entails Buchi. For the reverse direction, as-
sume there exists an infinite run visiting � infinitely often:

σ0
∗−→ 〈�,aaa1〉 +−→ 〈�,aaa2〉 +−→ 〈�,aaa3〉 +−→ ·· ·

By the wqo property, there exists some aaai ≤ aaaj for some i < j. Hence 〈�,aaaj〉 +−→ 〈�,aaa j〉
by the monotonicity property. Finally, we have proven the existence of a run looping
on �. ��

From there, we cannot prove decidability by claiming that Buchi is both r.e. and co-r.e.,
as we did for non-termination, It is r.e. since looping on � is. But the absence of Büchi
runs does not have finite witnesses, as the absence of infinite runs has. (For Minsky
machines, non-termination is Σ0

1-complete while Buchi is Σ1
1-complete).

Lossy Counter Machines Decidability Cheat Sheet 63

Finally Buchi is undecidable:

Theorem 5.2. Buchi and Looping_on_location are Σ0
1-complete for lossy counter

machines.

For these two equivalent problems, membership in Σ0
1 is clear. Σ0

1-hardness is shown as
Coro. 7.4 in Section 7.

6 Finiteness of the Reachability Sets

Here we consider the following problems:

Finiteness:
Given: a LCM M and an initial configuration σ0,
Question: is the reachability set Post∗(σ0) finite?
Equivalently: (Boundedness) is there a bound B∈N such that |σ| ≤ B for all reach-
able σ?

Unbounded_Run:
Given: a LCM M and a configuration σ0,
Question: is there an infinite run from σ0 that visits ever larger configurations?
Equivalently: is there a run that visits infinitely many different configurations?

The two problems are complementary since a system is unbounded if, and only if,
it has an unbounded run. To see this, which is not specific to lossy counter machines,
assume that Post∗(σ0) is infinite. Since every reachable configuration is reachable via a
pure run, i.e., a run that does not visit any configuration twice, we conclude that there
are infinitely many pure runs. By arranging them in a tree and invoking Kőnig’s lemma,
we conclude that there exists an infinite pure run (since all its finite prefixes are pure).
Hence M has an unbounded run.

6.1 Undecidability

Finiteness is undecidable for LCM’s:

Theorem 6.1. Finiteness is Σ0
1-complete and Unbounded_Run is Π0

1-complete for lossy
counter machines.

When it first surfaced (in [39]), undecidability of Finiteness was a bit surprising in
a way that is difficult to explain in retrospect. The result is now well-known and we
give a direct proof in Section 7. Before undecidability was known, there were two lines
of reasoning pointing to a conjecture of decidability: firstly, the fact that Post∗(σ0)
is regular suggested that one could compute it, and secondly, one expected Karp and
Miller’s procedure to extend to all monotonic systems, inferring an unbounded run from

an increasing prefix σ0
∗−→ σ1

+−→ σ2 with σ1 < σ2.

64 P. Schnoebelen

6.2 Uniform Finiteness

Uniform finiteness is to finiteness what uniform termination is to termination:

Uniform_Finiteness:
Given: a LCM M,
Question: are all the reachability sets Post∗(σ) finite?
Equivalently: does every run in M visit only finitely many different configurations?

Mayr showed that uniform finiteness is undecidable for lossy counter machines. This
result is perhaps not surprising in view of the undecidability of finiteness. However the
proof is still delicate since, in the encoding showing hardness, one cannot easily anchor
the considered behaviors on some given natural starting configuration.

Theorem 6.2. Uniform_Finiteness is Π0
2-complete for lossy counter machines.

Here, membership in Π0
2 is obvious since finiteness is in Σ0

1. For Π0
2-hardness, we refer

to Section 7.

7 Proving Undecidability

Undecidability, and more generally hardness, results are almost always established by
reductions. This means taking some hard computational problems and encoding it in
LCM’s. This encoding can be tricky since, as we noted, LCM’s are hard to control
because of the possibly adversarial losses. Early undecidability proofs for lossy systems
(e.g. [6,39,1]) are sometimes hard to understand and then to adapt to related problems.

In this section we want to explain how the idea of “putting a counter machine on a
budget” can be used as a simple, yet versatile and powerful, gadget allowing easy-to-
understand hardness proofs.

7.1 Putting Counter Machines on a Budget

With a Minsky counter machine M = (Loc,C,Δ) we associate a derived Minsky ma-
chine denoted Mon_budget, or Mb for short.

In essence, Mon_budget is obtained by adding to M an extra “budget” counter B and
by adapting the rules of Δ so that any incrementation (resp. decrementation) in the
original counters is balanced by a corresponding decrementation (resp. incrementation)
on the new counter B. Thus, the sum of the counters remains constant in Mb. This is
a classic idea in Petri nets and counter machines. The construction is described on a
schematic example (Fig. 2) that is more explicit that a formal definition. Observe that
extra intermediary locations (in gray) are used, and that a step in M that increments
some ci will be forbidden in Mb when the budget is exhausted (instead, Mb may reach
a new, terminal, bankrupt location).

This construction enjoys a few obvious properties that we now state informally (for-
mal statements are given in [44]).

MMMbbb simulate MMM: Any reliable run 〈�,aaa〉 ∗−→std 〈�′,aaa′〉 of M can be simulated as some
〈�,B,aaa〉 ∗−→std 〈�′,B′,aaa′〉 in Mb provided with some large enough budget B ∈ N.

Lossy Counter Machines Decidability Cheat Sheet 65

M

�0

�1

�2

�3

c3=0?

c1--

c2++

4

3

0

c1

c2

c3

⇒

Mon_budget, aka Mb

�0

�1

�2

�3

�bankrupt

c3=0?

c1--

B++

B--

B=0?

c2++

4

3

0

93

c1

c2

c3

B

Fig. 2. From M to Mb (schematically)

MMMbbb can only simulate MMM: Any reliable run in Mb can be seen as a run in M if we forget
about the extra budget counter.

Counters are bounded: A lossy run 〈�,aaa〉 ∗−→lossy 〈�′,aaa′〉 in Mb has |aaa′| ≤ |aaa|, i.e., the
total sum of the counters can not increase.

Losses are visible: A lossy run 〈�,aaa〉 ∗−→lossy 〈�′,aaa′〉 in Mb is also a reliable run if, and
only if, |aaa| = |aaa′|, i.e., if the total sum of the counters is unchanged (and the run
does not bankrupt).

7.2 Undecidability of Uniform Termination

The above properties can be put to use immediately. Let M be some Minsky machine
and σ = 〈�,aaa〉 one of its configurations.

Proposition 7.1. There is a loop 〈�,aaa〉 +−→std 〈�,aaa〉 in M if, and only if, there is a B ∈ N

and a loop 〈�,B,aaa〉 +−→lossy 〈�,B,aaa〉 in Mb.

Indeed, the loop in M is simulated in Mb by taking a large enough budget. And the loop
in Mb must be a reliable run since the total sum of the counters is unchanged, hence it
can be simulated in M.

Now recall that the question whether a Minsky machine has a loop σ +−→std σ (where
σ is existentially quantified upon) is undecidable, more precisely Σ0

1-complete3.

Corollary 7.2 (Undecidability). Uniform_Termination is Π0
1-hard for lossy counter

machines.

Indeed, Mb has an infinite run (starting from somewhere) if, and only if, it has a loop
(from somewhere). Hence Π0

1-hardness.

3 This applies even if we do not restrict to configurations that are reachable from a given starting
σ0. I do not have a reference at hand but it is an easy exercise in computability theory.

66 P. Schnoebelen

7.3 Undecidability of Büchi Acceptance

We now show the undecidability of Buchi, or equivalently, of Looping_on_location,
for lossy counter machines. This can be obtained by elaborating on the proof used for
Coro. 7.2 above, but we find it more instructive to present another reduction that can be
adapted for the next section.

Let M be a Minsky machine with a starting location �init and an accepting location
�end. With M we associate a new machine M′ obtained as follows (see schematics in
Fig. 3): First we put M on a budget. Then we add two extra locations: �0 where B can
be given any value, and �1 from which we can start M (on a budget). Finally, from �end

it is possible to reset all counters to zero and go back to �1. This resetting uses the B
(budget) counter to store the total sum the other counters had, using perhaps a few extra
intermediary locations that are of no interest.

�0M′ : �1 Mon_budget�init �end

B++ 0

0

0

0

c1

c2

c3

B/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

Fig. 3. Reduction for undecidability of Buchi

Proposition 7.3. M has an accepting run 〈�init,000〉 ∗−→std 〈�end,aaa〉 if, and only if, M′ has
a lossy run starting from 〈�0,000〉 and visiting �1 infinitely many times.

Here, the left-to-right implication is clear: if M has an accepting run, this can be simu-
lated by M′ after it looped in �0 to start with a large enough budget. Once the accepting
run has been completely simulated, M′ can reset the counters, go back to �1 and repeat
the simulation infinitely many times.

Reciprocally, if M′ has a run that visits �1 infinitely many times, this run cannot
increase the total sum of the counters once it has left �0. Hence this total sum can
only decrease or stay constant. If the run is infinite, the total sum will eventually stay
constant. Thus, after some time, the lossy run only has reliable steps. Since it visits �1

(and thus also �init and �end) infinitely many times, after some time its reliable steps will
witness an accepting run of M.

Since the existence of an accepting run is Σ0
1-complete for Minsky machines, we

deduce:

Corollary 7.4 (Undecidability). Buchi is Σ0
1-hard for lossy counter machines.

Lossy Counter Machines Decidability Cheat Sheet 67

7.4 Undecidability of Finiteness

Our next reduction is a simple adaptation of the previous one (see schematics in Fig. 4).
The modifications are as follows: (1) the resetting of the counters is not reached from
�end but from the bankrupt location �bankrupt that Mb reaches when its budget appears to
be too small (recall Fig. 2), and (2) the initial value of B cannot be chosen as large as
one wants via a loop on �0: instead, B can only be incremented in the step from �1 to
�init.

�0M′′ : �1 Mon_budget�init

�end

�bankrupt

B++

0

0

0

0

c1

c2

c3

B/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

Fig. 4. Reduction for undecidability of Finiteness

Proposition 7.5. M has an unbounded (reliable) run starting from 〈�init,000〉 if, and only
if, M′′ has an unbounded (lossy) run starting from 〈�0,000〉.

Here again the left-to-right implication is clear. The unbounded run of M can be simu-
lated by M′′. This simulation is done in incremental stages. First M′′ reaches �init with a
low budget B = 1. The simulation proceeds until the budget is too low for continuing.
M′′ is then in the bankrupt location, resets its counters and goes back to �1. There B is
incremented and the simulation can be started from scratch, this time with B = 2. It will
now take more steps before bankrupting, resetting the counters, and starting again with a
larger budget. This simulation will reenact longer and longer prefixes of the unbounded
run of M, leading to a run of M′′ that is itself unbounded.

The right-to-left implication is more subtle. Assume M′′ has an unbounded run. Nec-
essarily, this run visits �1 infinitely many times since this is the only way to increase the
total sum of the counters. Let us write this unbounded run in the following way, isolating
the places where �1 is visited:

〈�0,000〉 +−→ 〈�1,aaa1〉 +−→ 〈�1,aaa2〉 +−→ 〈�1,aaa3〉 +−→ ·· ·

Zooming in a little bit on the part between two consecutive visits to �1, we see it must
be some subrun πi of the form

〈�1,aaai〉 ≡ 〈�1,Bi,000〉 −→ 〈�init,1 + Bi,000〉 ∗−→ 〈�bankrupt,B,ccc〉 +−→ 〈�1,Bi+1,000〉 ≡ 〈�1,aaai+1〉.

Now, Bi+1 ≤ 1+Bi since “Counters are bounded” and the sequence B1,B2, . . . can only
increase by 1 at a time. It can also decrease (by losses) but, since the run is unbounded,
it must eventually increase and for every k ∈ N, there is an index i such that Bi = k. If

68 P. Schnoebelen

now we assume that ik is the first such index, we deduce Bik = 1 + Bik−1, hence the run
πik−1 only uses reliable steps (indeed, “Losses are visible”). Reliable steps simulate M,

hence πik−1 witnesses a run π′k ≡〈�init,000〉
+−→ 〈�,ccc〉 for some � and some ccc of size k. If we

assume that M is deterministic, these runs are longer and longer prefixes of the infinite
unbounded run of M. If M is non-deterministic, we use Kőnig’s Lemma to extract an
unbounded run from these ever larger finite runs.

Since the existence of an unbounded run is Π0
1-complete for Minsky machines, we

deduce:

Corollary 7.6 (Undecidability). Finiteness is Σ0
1-hard for lossy counter machines.

The reduction also shows undecidability for the to-all and all-to-all formulae of the
reachability logic (Section 3.4). For to-all formulae, i.e., formulae of the form ∀t ∈ Y :
∃s ∈ X : s

∗−→ t, we observe that by taking X = {σ0} and Y = {〈�1,k,000〉 | k ∈ N}, the
formula expresses the existence of an unbounded run in M′′. Since in this reduction X
is a singleton, the reduction also works for all-to-all formulae, of the form ∀s ∈ X : ∀t ∈
Y : s

∗−→ t.

7.5 Undecidability of Uniform Finiteness

We further adapt the previous reduction (see schematics in Fig. 5). Now M′′′ has an
extra counter K that is never modified and that is used to store a value with which to
reinitialize c1 when looping back to �1.

�0M′′′ :
�1

�2

Mon_budget�init

�end

�bankrupt

B++

n 0

0

0

0

K c1

c2

c3

B
/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

/* reinit c1 */

c1← K, B← B−K

Fig. 5. Reduction for undecidability of Uniform_Finiteness

Proposition 7.7. M has an unbounded (reliable) run starting from some 〈�init,c1 : n,000〉
if, and only if, M′′′ has an unbounded (lossy) run starting from some σ.

We reason as for the proof of Prop. 7.5, with very minor adaptations.
Again, the left-to-right implication is the easier one. Assume M has an unbounded

run from 〈�init,n,000〉. This can be simulated by M′′′ starting from 〈�init,B,K : n,c1 : n,000〉,
i.e., after we make sure that the extra counter K contains exactly n. As with Proposi-
tion 7.5, the simulation proceeds until the budget bankrupts. Then, M′′′ loops back to
�1, where the budget is incremented. and the simulation starts anew. This loop back to
�1 resets the counters with c1 = n, using the memory K to find the value (truly, a Minsky

Lossy Counter Machines Decidability Cheat Sheet 69

machine needs an auxiliary storage for this copy, but c2 can do the job). By visiting �1

infinitely many times, this simulation manages to produce an unbounded run of M′′′.
For the right-to-left implication, we assume that M′′′ has an unbounded run from

some arbitrary σ. Since the only way to increase the total sum of the counters is to
go through �1, the run must visit �1 infinitely many times, and increase the total sum
of the counters by at most one between such visits. Also, since K can only decrease
(by losses) it will eventually stays constant. Once K is constant (say = n), we have,
for any k ∈ N, a run like πik−1 above that increments B from k− 1 to k, going from
〈�init,B : k− 1,K : n,c1 : n,000〉 to 〈�init,k,n,n,000〉. This run only uses reliable steps and
witnesses, inside the Minsky machine, a path 〈�init,n,000〉 ∗−→ 〈�,aaa〉 for some aaa of size k.
Hence M has an unbounded run from 〈�init,n,000〉.

Since the question whether there exists some n ∈N such that a Minsky machine has
an unbounded run starting from 〈�init,n,000〉 is Σ0

2-complete, we deduce:

Corollary 7.8 (Undecidability). Uniform_Finiteness is Π0
2-hard for lossy counter

machines.

The reduction also shows Σ0
2-hardness of the one-to-all formulae of the reachability

logic. These have the form ∃s∈ X : ∀t ∈Y : s
∗−→ t. By taking X = Conf and Y = {〈�2,B :

k,000〉 | k ∈N}, the formula expresses the existence of an unbounded run in M′′′, i.e., the
negation of uniform finiteness.

8 Further Developments

We gather in this section a few results, remarks, and pointers to the literature, regarding
problems that are less central in the theory of lossy counter machines as it exists today.

8.1 Temporal Logic Model-Checking

Temporal logics [22] can express behavioral properties of systems in general, and of
lossy counter machines in particular. It has been observed in the literature on lossy sys-
tems that temporal logic model-checking is generally undecidable (e.g., [6] shows the
undecidability of both CTL model-checking and LTL model-checking for lossy chan-
nel systems). However, as with the reachability logic we considered in Section 3.4, the
picture can be more interesting if we focus on relevant fragments of general logics.

For lossy counter machines, the ∃CTL fragment of CTL has a decidable model-
checking problem. This fragment, also denoted B(EU,EX), is the branching-time logic
built on two CTL modalities EU and EX. Arbitrary nesting and Boolean combinations
are allowed, and we take all the semilinear sets as basic propositions.

Theorem 8.1 (Decidability of ∃∃∃CCCTTTLLL model-checking)
1. The problem, given a LCM M, a configuration σ, and an ∃CTL formula ϕ, whether
M,σ |= ϕ, is decidable.

2. Moreover, the set Mod(ϕ)
def
= {σ ∈ Conf | M,σ |= ϕ} is a semilinear set that can be

computed effectively from M and ϕ.

70 P. Schnoebelen

Computing Mod(ϕ) is done by induction over the structure of ϕ. This uses standard
techniques like

Mod(¬ϕ) = Conf �Mod(ϕ),
Mod(ϕ∨ψ) = Mod(ϕ)∪Mod(ψ),
Mod(EXϕ) = Pre(Mod(ϕ)),

and relies on the fact that semilinear sets are closed under complementation, union and
the Pre operator, all this in an effective way.

For Mod(EϕUψ), semilinearity is seen after one unfolding of the Until:

Mod(EϕUψ) = Mod(ψ ∨ ϕ∧EXEϕUψ)
= Mod(ψ) ∪ Mod(ϕ)∩Pre(Mod(EϕUψ)).

The last expression denotes a semilinear set since Pre(· · ·) is always semilinear.
The computability of Mod(EϕUψ) can be shown with the same technique we used,

in Section 3.5, for the computability of Pre∗(X). Alternatively, one can use backward-
chaining algorithms whose termination is guaranteed by Dickson’s Lemma (see [9]).

Remark 8.2. The same techniques can be used to enlarge decidability from ∃CTL to
some existential fragment of the branching-time mu-calculus, where regular properties
like “there exists a run along which every even-numbered configuration is in X” can be
stated. See [11,9]. ��

Regarding other temporal modalities, we know that model checking one AϕUψ formula
is decidable when Mod(ϕ) and Mod(ψ) are effectively given semilinear sets (this is the
decidability of Strong_Inevitability from Section 4.2) but it is not possible to compute
Mod(AϕUψ), nor even (by Coro. 4.6) Mod(AF¬EX$).

As a consequence, nested AU modalities give undecidable model-checking prob-
lems (e.g., they can easily encode uniform termination).

Model-checking is also undecidable for ECTL modalities like EF∞ (this is the Buchi
problem from Section 5) and AF∞ (this is repeated inevitability from Section 4.3).

8.2 Games People Play on Lossy Counter Machines

Sections 3 to 5 focused on classical reachability, inevitability, or liveness properties,
but one is also interested in more general game-theoretical problems where several
opponents have conflicting goals. Branching-time temporal logic is only a first step
toward these new issues.

The question of checking game-theoretical properties of lossy counter machines has
barely been scratched. Obviously, one could expect that undecidability is everywhere
since the properties are more general. One could be wrong.

Let us illustrate this on an example. We consider a reachability game played in turn
by two opponents on a single LCM. Starting from σ0, Alice tries to reach �end by picking

Lossy Counter Machines Decidability Cheat Sheet 71

the odd-numbered lossy steps of a growing run, while Bob tries to frustrate her by
choosing adversarially the even-numbered lossy steps. The decision problem is:

Reachability_Game:
Given: a LCM M, an initial configuration σ0, and a goal location �end.
Question: does Alice have a winning strategy?

Surprisingly, this problem is very easy.

Theorem 8.3. Reachability_Game is PTIME-complete for lossy counter machines.

The paradox is explained when we realize that an optimal strategy for both players
can choose to always lose all the contents of the counters at every step. Indeed, losing
everything can only reduce our opponent’s options (because of strong monotonicity). It
also reduces our later options, but anyway the opponent will have the possibility to lose
everything if it hurts us.

Finally, it is possible to solve the game by restricting to the finite graph of all config-
urations 〈�,000〉 for � ∈ Loc, which is PTIME-complete.

Games on LCM’s can be more interesting. We could decide that Bob can only play
reliable steps. Or that Alice and Bob choose reliable steps while losses in the counters
are chosen probabilistically by the environment, leading to games with 2 1/2 players. Or
that the objective is more complex than just reachability. Many variations are possible,
motivated by different situations. We refer to [3,41,9,10,2,4] for results on such games.

8.3 Equivalence Checking

Comparing two systems is a classic decision problem. In the simplest situations, the
comparison criterion is an equivalence relation, sometimes a preorder.

When dealing with systems (like LCM’s) that give rise to infinite-state transition
systems, the behavioral equivalences one could use for verification purposes are often
undecidable. The main exception is strong bisimilarity that has been shown decidable
in many cases (and undecidable in many other cases) [13].

For lossy counter machines, equivalences are hard. One way to put it is to say that
all interesting relations between lossy counter machines are undecidable, even if we
only consider lossy VAS’s (i.e., lossy counter machines without zero-tests). A proof for
all relations between bisimilarity and trace containment can be obtained (see [42]) by
adapting Jančar’s classic proof for Petri nets [30]. The proof certainly extends, e.g., to
all equivalences between equality of the reachability set and trace containment modulo
invisibility of internal steps.

On the other hand, comparison between a lossy counter machine and a finite transi-
tion system is very often decidable.

This line of positive results was started by Abdulla and Kindahl [8] with the simula-
tion preorder and the bisimulation equivalence.

It turns out that there is a generic approach to these problems: the question whether
S% F or S≈ F for some finite F can often be translated as a temporal question, whether
S |= ϕ for some formula ϕ = ϕ%F or ϕ = ϕ≈F , called a characteristic formula for F, that
states exactly what is required to be% F or≈F . We refer to [12,31,35] for more details.

72 P. Schnoebelen

In the special case of lossy counter machines, comparison with finite systems is
decidable for all the equivalences and preorders that admit characteristic formulae in
∃CTL. This is a direct corollary of Theorem 8.1. The equivalences and preorders thus
covered are numerous and include, e.g., weak bisimulation and branching bisimulation.

9 Decidable but Hard

Problems that are decidable for lossy counter machines are usually very hard.

9.1 Lower Bounds for Complexity

Reachability and termination are Ackermann-hard for LCM’s. We refer to [44] for a
recent and simplified proof that uses the same “counter machine on a budget” gadget
that we used in Section 7. Hardness extends, via obvious reductions, to most decidable
problems we listed in the previous sections (one major exception is the reachability
game from Section 8.2).

A finer analysis of the lower bounds shows that the most important parameter here is
the number of counters in a lossy counter machine. The hardness proof uses a number of
counters that cannot be bounded a priori. For a fixed number of counters, one only ob-
tains lower bounds at a finite, primitive-recursive, level in the Fast Growing Hierarchy,
see [44]. This is in accordance with what is known on upper bounds.

9.2 Upper Bounds

All along this paper, we deliberately avoided giving explicit algorithms for our decid-
ability proofs. However, algorithms exist in the literature. Their termination arguments
usually rely on the wqo property, and more precisely Dickson’s Lemma. From these,
upper bounds can be deduced, based on the length of bad sequences for the (Nn,≤)
wqo [40,17].

These upper bounds lie in the Fast Growing Hierarchy. The good news is that they
closely match the known lower bounds. In particular, an Ackermann upper bound holds
for most decidable problems on lossy counter machines, and this can be refined to
primitive-recursive upper bounds at various levels when one restricts attention to ma-
chines with a fixed number of counters. We refer to our upcoming paper for more
details [23].

10 Concluding Remarks

Lossy counter machines are a paradoxical computational model where unreliability
brings decidability. At the moment, they have mostly been used as a tool for hard-
ness results (undecidability or Ackermann-hardness). They have sometimes been used
under the symmetrical guise of counters with incrementation errors [19].

Lossy Counter Machines Decidability Cheat Sheet 73

In a leisurely way, we surveyed the main known results on both sides of the decid-
ability frontier. From this, two main conclusions emerge:

1. Most decidability results rely only superficially on specific features of lossy counter
machines. They can be obtained by a combination of very general properties enjoyed by
most models (e.g., finitely branching non-determinism, effective one-step relation, . . .)
and the combination of strong monotonicity of steps with the wqo property of configu-
rations. As a consequence, most of our decidability proofs can be easily adapted to other
classes of well-structured transition systems. For example, they hold mutatis mutandis
for lossy channel systems [7] or Reset Petri nets [20].

2. Most hardness results can be proved with the “machine on a budget” gadget. For
counter systems, this gadget is used in two different ways (pioneered by [21]). It can
bound the total sum of the counters, so that this sum must eventually stabilize along an
infinite behavior, or can only grow in controlled ways. Then, when the sum is stabilized,
the behavior must be reliable and hardness can be inherited from the Turing-powerful
Minsky machines.

Acknowledgements. We thank Pierre Chambart, Jérôme Leroux and Sylvain Schmitz
who greatly helped by proof-reading this paper at various stages.

References

1. Abdulla, P.A., Baier, C., Purushothaman Iyer, S., Jonsson, B.: Simulating perfect channels
with probabilistic lossy channels. Information and Computation 197(1–2), 22–40 (2005)

2. Abdulla, P.A., Ben Henda, N., de Alfaro, L., Mayr, R., Sandberg, S.: Stochastic games
with lossy channels. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 35–49.
Springer, Heidelberg (2008)

3. Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of probabilistic
systems with faulty communication. Information and Computation 202(2), 141–165 (2005)

4. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games. Journal of
Logic and Computation 18(1), 153–169 (2008)

5. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with
well quasi-ordered domains. Information and Computation 160(1/2), 109–127 (2000)

6. Abdulla, P.A., Jonsson, B.: Undecidable verification problems for programs with unreliable
channels. Information and Computation 130(1), 71–90 (1996)

7. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and
Computation 127(2), 91–101 (1996)

8. Abdulla, P.A., Kindahl, M.: Decidability of simulation and bisimulation between lossy chan-
nel systems and finite state systems. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS,
vol. 962, pp. 333–347. Springer, Heidelberg (1995)

9. Baier, C., Bertrand, N., Schnoebelen, P.: On computing fixpoints in well-structured regular
model checking, with applications to lossy channel systems. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361. Springer, Heidelberg (2006)

10. Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic channel
systems against ω-regular linear-time properties. ACM Trans. Computational Logic 9(1)
(2007)

11. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 323–333. Springer, Heidelberg (1999)

74 P. Schnoebelen

12. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. Theoretical Computer Science 59(1–2), 115–131 (1988)

13. Bukart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 9, pp. 545–623.
Elsevier, Amsterdam (2001)

14. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for Petri nets
and commutative subgroups. In: Proc. STOC ’76, pp. 50–54. ACM Press, New York (1976)

15. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than
perfect channels. Information and Computation 124(1), 20–31 (1996)

16. Chambart, P., Schnoebelen, P.: Computing blocker sets for the Regular Post Embedding
Problem. In: Proc. DLT 2010. LNCS. Springer, Heidelberg (to appear, 2010)

17. Clote, P.: On the finite containment problem for Petri nets. Theoretical Computer Sci-
ence 43(1), 99–105 (1986)

18. Demri, S.: Linear-time temporal logics with Presburger constraints: An overview. J. Applied
Non-Classical Logics 16(3-4), 311–347 (2006)

19. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In: Proc. LICS
2006, pp. 17–26. IEEE Computer Society Press, Los Alamitos (2006)

20. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability.
In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115.
Springer, Heidelberg (1998)

21. Dufourd, C., Jančar, P., Schnoebelen, P.: Boundedness of reset P/T nets. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 301–310.
Springer, Heidelberg (1999)

22. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoreti-
cal Computer Science, ch. 16, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)

23. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermann and primitive-recursive
upper bounds with Dickson’s lemma (2010) (in preparation)

24. Figueira, D., Segoufin, L.: Future-looking logics on data words and trees. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 331–343. Springer, Heidelberg (2009)

25. Finkel, A.: A generalization of the procedure of Karp and Miller to well structured transi-
tion systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499–508. Springer,
Heidelberg (1987)

26. Finkel, A.: Reduction and covering of infinite reachability trees. Information and Computa-
tion 89(2), 144–179 (1990)

27. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions. In: Proc.
STACS 2009. Leibniz International Proceedings in Informatics, vol. 3, pp. 433–444. Leibniz-
Zentrum für Informatik (2009)

28. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science 256(1–2), 63–92 (2001)

29. Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems.
ACM Trans. Computational Logic 6(1), 1–32 (2005)

30. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems. Theoreti-
cal Computer Science 148(2), 281–301 (1995)

31. Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with finite-state
processes. Theoretical Computer Science 258(1–2), 409–433 (2001)

32. Jurdziński, M., Lazić, R.: Alternation-free modal mu-calculus for data trees. In: Proc. LICS
2007, pp. 131–140. IEEE Comp. Soc. Press, Los Alamitos (2007)

33. Kracht, M.: A new proof of a theorem by Ginsburg and Spanier. Dept. Linguistics, UCLA
(December 2002) (manuscript)

34. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept. Journal
of Combinatorial Theory, Series A 13(3), 297–305 (1972)

Lossy Counter Machines Decidability Cheat Sheet 75

35. Kučera, A., Schnoebelen, P.: A general approach to comparing infinite-state systems with
their finite-state specifications. Theoretical Computer Science 358(2–3), 315–333 (2006)

36. van Leeuwen, J.: A partial solution to the reachability-problem for vector-addition systems.
In: Proc. STOC ’74, pp. 303–309. ACM Press, New York (1974)

37. Leroux, J., Point, G.: TaPAS: The Talence Presburger Arithmetic Suite. In: Kowalewski, S.,
Philippou, A. (eds.) Proc. TACAS 2009. LNCS, vol. 5505, pp. 182–185. Springer, Heidelberg
(2009)

38. Mayr, R.: Undecidable problems in unreliable computations. In: Gonnet, G.H., Viola, A.
(eds.) LATIN 2000. LNCS, vol. 1776, pp. 377–386. Springer, Heidelberg (2000)

39. Mayr, R.: Undecidable problems in unreliable computations. Theoretical Computer
Science 297(1–3), 337–354 (2003)

40. McAloon, K.: Petri nets and large finite sets. Theoretical Computer Science 32(1–2), 173–
183 (1984)

41. Raskin, J.-F., Samuelides, M., Van Begin, L.: Games for counting abstractions. In: Proc.
AVoCS 2004. Electronic Notes in Theor. Comp. Sci, vol. 128(6), pp. 69–85. Elsevier Science,
Amsterdam (2005)

42. Schnoebelen, P.: Bisimulation and other undecidable equivalences for lossy channel systems.
In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 385–399. Springer,
Heidelberg (2001)

43. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. In-
formation Processing Letters 83(5), 251–261 (2002)

44. Schnoebelen, P.: Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset
Petri Nets. In: Hliněny, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628.
Springer, Heidelberg (2010)

45. Sifakis, J.: A unified approach for studying the properties of transitions systems. Theoretical
Computer Science 18, 227–258 (1982)

46. Tan, T.: On pebble automata for data languages with decidable emptiness problem. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 712–723. Springer,
Heidelberg (2009)

Behavioral Cartography of Timed Automata�

Étienne André and Laurent Fribourg

LSV – ENS de Cachan & CNRS, France

Abstract. We aim at finding a set of timing parameters for which a
given timed automaton has a “good” behavior. We present here a novel
approach based on the decomposition of the parametric space into be-
havioral tiles, i.e., sets of parameter valuations for which the behavior of
the system is uniform. This gives us a behavioral cartography according
to the values of the parameters. It is then straightforward to partition
the space into a “good” and a “bad” subspace, according to the behavior
of the tiles. We extend this method to probabilistic systems, allowing to
decompose the parametric space into tiles for which the minimal (resp.
maximal) probability of reaching a given location is uniform. An imple-
mentation has been made, and experiments successfully conducted.

1 Introduction

The admissible behaviors of timed automata are determined by sets of linear con-
straints over timing parameters. The parameters in these constraints represent
constants or values chosen by the designer. The behavior is very sensitive to the
values of these parameters, and it is rather difficult to find their correct values.
The good parameters problem is the following (see [14]): Given a parametrized
timed automaton A and a rectangular real-valued parameter domain, what is
the largest set of parameters values for which A behaves well? We say that A
behaves well if it satisfies a certain set of properties. We are interested here in
properties that are invariant for automata having the same set of traces (alter-
nating sequences of locations and actions, i.e., time-abstract runs) [3]. This is in
particular the case of linear-time properties [7].

Related Work. The parameter design problem for timed automata was formu-
lated in [15], where a straightforward solution is given, based on the generation
of the whole parametric state space until a fixpoint is reached. Unfortunately, in
all but the most simple cases, this is is prohibitively expensive due, in particular,
to the brute exploration of the whole parametric state space.

The problem of parameter synthesis for timed automata has been applied to
two main domains: telecommunication protocols and asynchronous circuits. For
example, concerning telecommunication protocols, the Bounded Retransmission
Protocol has been verified in [24] using Uppaal [22] and Spin [17], and the Root

� This work is partially supported by the Agence Nationale de la Recherche, grant
ANR-06-ARFU-005.

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 76–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Behavioral Cartography of Timed Automata 77

Contention Protocol in [13] using TReX [6]. Concerning asynchronous circuits,
Clarisó and Cortadella have proposed methods with approximations [11].

In [14], the authors propose an extension based on the counterexample guided
abstraction refinement (CEGAR) [12]. When finding a counterexample, the sys-
tem obtains constraints on the parameters that make the counterexample in-
feasible. When all the counterexamples have been eliminated, the resulting con-
straints describe a set of parameters for which the system is safe.

We propose here an alternative approach. We generate a constraint on the
parameters (“tile”) for each integer point located within a given rectangle V0.
Such a tile is called “behavioral tile” because A behaves similarly under any
parameter valuation corresponding to a point of the tile: the sets of traces coin-
cide [3]. This allows us to decompose the parametric space into behavioral tiles.
Then, it is easy to partition the parametric space into a subset of “good” tiles
(which correspond to “good behaviors”) and a subset of “bad” ones. Often in
practice, what is covered is not the bounded and integer subspace of the param-
eter rectangle, but two major extensions: first, not only the integer points but
all the real-valued points of the rectangle is covered by the tiles; second, the tiles
are often unbounded and cover most of the parametric space beyond V0.

Plan of the Paper. We first recall Parametric Timed Automata in Section 2. We
then state the good parameters problem in Section 3 using an example of flip-
flop circuit. We then present the behavioral cartography algorithm in Section 4,
apply it to the example, and give a sufficient condition to get a full coverage
of the parametric space. We present an extension to probabilistic systems in
Section 5, summarize experiments in Section 6, and conclude in Section 7.

2 Parametric Timed Automata

Throughout this paper, we assume a fixed set X = {x1, . . . , xH} of clocks. A clock
is a variable xi with value in R≥0. All clocks evolve linearly at the same rate.
We define a clock valuation as a function w : X → R≥0 assigning a non-negative
real value to each clock.

Throughout this paper, we assume a fixed set P = {p1, . . . , pM} of parameters.
A parameter valuation π is a function π : P → R≥0 assigning a nonnegative
real value to each parameter. There is a one-to-one correspondence between
valuations and points in (R≥0)M . We will often identify a valuation π with the
point (π(p1), . . . , π(pM)).

Definition 1 (Constraint). A linear inequality on the parameters P (resp.
linear inequality on the clocks X and parameters P) is an inequality e ≺ e′,
where ≺∈ {<,≤}, and e, e′ are two linear terms of the form

Σiαipi + c, (resp. Σiαipi + Σjβjxj + c)
where 1 ≤ i ≤ M, 1 ≤ j ≤ H and αi, βj, c ∈ N. A constraint on the parameters
(resp. constraint on the clocks and parameters) is a conjunction of inequalities
on P (resp. on X and P).

78 É. André and L. Fribourg

Given a parameter valuation π and a constraint C, C[π] denotes the constraint
obtained by replacing each parameter p in C with π(p). Likewise, given a clock
valuation w, C[π][w] denotes the expression obtained by replacing each clock x
in C[π] with w(x). A clock valuation w satisfies constraint C[π] (denoted by
w |= C[π]) if C[π][w] evaluates to true. We say that a parameter valuation π
satisfies a constraint C, denoted by π |= C, if the set of clock valuations that
satisfy C[π] is nonempty.

Likewise, we say that a parameter valuation π satisfies a constraint K on the
parameters, denoted by π |= K, if the expression obtained by replacing each
parameter p in K with π(p) evaluates to true. We consider True as a constraint
on the parameters, corresponding to the set of all possible values for P .

We assume familiarity with timed automata [1]. The following definition is an
extension of timed automata to the parametric case. Parametric timed automata
allow within guards and invariants the use of parameters in place of constants [2].

Definition 2 (PTA). Given a set of clocks X and a set of parame-
ters P , a parametric timed automaton (PTA) A is a 6-tuple of the form
A = (Σ, Q, q0, K, I,→), where Σ is a finite set of actions, Q is a finite set of
locations, q0 ∈ Q is the initial location, K is a constraint on the parameters,
I is the invariant assigning to every q ∈ Q a constraint Iq on the clocks and
the parameters, and → is a step relation consisting in elements of the form
(q, g, a, ρ, q′) where q, q′ ∈ Q, a ∈ Σ, ρ ⊆ X is a set of clocks to be reset by the
step, and g (the step guard) is a constraint on the clocks and the parameters.

In the sequel, we consider the PTA A = (Σ, Q, q0, K, I,→). We simply denote
this PTA by A(K), in order to emphasize the fact that only K will change in A.

For every parameter valuation π = (π1, . . . , πM), A[π] denotes the PTAA(K),
where K is

∧M
i=1 pi = πi. This corresponds to the PTA obtained from A by

substituting every occurrence of a parameter pi by constant πi in the guards and
invariants. We say that pi is instantiated with πi. Note that, as all parameters
are instantiated, A[π] is a standard timed automaton. (Strictly speaking, A[π]
is only a timed automaton if π assigns an integer to each parameter.)

Also recall that the composition of several PTAs (Network of Parametric
Timed Automata, or NPTA) results in a PTA (see, e.g., [3]).

Definition 3 (State). A (symbolic) state s of A(K) is a couple (q, C) where
q is a location, and C a constraint on the clocks and the parameters.

For each valuation π of the parameters P , we may view a state s as the set of
pairs (q, w) where w is a clock valuation such that w |= C[π]. The initial state of
A(K) is a state s0 of the form (q0, C0), where C0 = K ∧ Iq0 ∧

∧H−1
i=1 xi = xi+1.

K is the initial constraint, Iq0 is the invariant of the initial state, and the rest
of the expression lets clocks evolve from the same initial value.

The symbolic semantics of a PTA is given in the following. Given a constant
d ∈ R≥0, we use X+d to denote the set {x1+d, . . . , xH+d}. Given a constraint C,
we rename the set of variables X = {x1, . . . , xH} as X ′ = {x′

1, . . . , x
′
H}. We use

the notation C(X) (resp. C(X ′)) to indicate that X (resp. X ′) is the set of clocks

Behavioral Cartography of Timed Automata 79

occurring in C. We use X ′ = ρ(X), where X ′ is a renaming of X , to denote the
conjunction of equalities x′

i = 0 for all xi ∈ ρ, and x′
i = xi otherwise. Given a

state s = (q, C), a step of the automaton from s is defined below:

– (q, C) a→ (q′, C′) if (q, g, a, ρ, q′) ∈ →, and C′ is a constraint on the clocks
and parameters defined, using the set of (renamed) clocks X ′, by:
C′(X ′) = (∃X : (C(X) ∧ g(X) ∧X ′ = ρ(X) ∧ Iq′ (X ′))).

– (q, C) d→ (q, C′), where d is a new parameter with values in R≥0, which
means that C′ is given by: C′(X ′) = (∃X : (C(X)∧X ′ = X + d∧ Iq(X ′))).

– (q, C) a⇒ (q′, C′) if ∃C′′ such that (q, C) a→ (q′, C′′) and (q′, C′′) d→ (q′, C′),
i.e., C′ is a constraint on the clocks and the parameters obtained by removing
X and d from the following expression:
C′(X ′) = (∃X, d : (C(X) ∧ g(X)∧X ′ = ρ(X) + d ∧ Iq′ (X ′ − d) ∧ Iq′ (X ′))).
It can be shown that C′ can be put under the form of a constraint on the
clocks and the parameters.

Definition 4 (Run). A run of A(K) is a finite alternating sequence of states
and actions of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . , m−1,

ai ∈ Σ and si
ai⇒ si+1 is a step of A(K).

Definition 5 (Trace associated to a run). Given a PTA A and a run R

of A of the form (q0, C0)
a0⇒ · · · am−1⇒ (qm, Cm), the trace associated to R is the

alternating sequence of locations and actions q0
a0⇒ · · · am−1⇒ qm.

The trace set of A refers to the set of traces associated to the runs of A.
In the following, we are interested in verifying properties on the trace set of A.

For example, given a predefined set of “bad locations”, a reachability property
is satisfied by a trace if this trace never contains a bad location; such a trace is
“good” w.r.t. this reachability property. A trace can also be said to be “good” if
a given action always occurs before another one within the trace (see example in
Section 3). Actually, the good behaviors that can be captured with trace sets are
relevant to linear-time properties [7], which can express properties more general
than reachability properties.

Formally, given a property on traces, we say that a trace is good if it satisfies
the property, and bad otherwise. Likewise, we say that a trace set is good if all
its traces are good, and bad otherwise.

3 The Good Parameters Problem

We consider an example of asynchronous “D flip-flop” circuit described in [11]
and depicted in Figure 1 left. It is composed of 4 gates (G1, G2, G3 and G4)
interconnected in a cyclic way, and an environment involving two input sig-
nals D and CK . The global output signal is Q. Each gate Gi has a delay in the
parametric interval [δ−i , δ+

i], with δ−i ≤ δ+
i . There are 4 other parameters (viz.,

THI , TLO , Tsetup, and THold) used to model the environment. The output signal

80 É. André and L. Fribourg

D

CK

Q

TSetup THold

TLO

THI

TCK→Q

Fig. 1. Flip-flop circuit (left) and its environment (right)

of a gate Gi is named gi (note that g4 = Q). The rising (resp. falling) edge of
signal D is denoted by D↑ (resp. D↓) and similarly for signals CK , Q, g1, . . . , g4.

We consider an environment starting from D = CK = Q = 0 and g1 =
g2 = g3 = 1, with the following ordered sequence of actions for inputs D and
CK : D↑, CK ↑, D↓, CK ↓, as depicted in Figure 1 right. Therefore, we have the
implicit constraint Tsetup ≤ TLO ∧ THold ≤ THI . Each gate is modeled by a
PTA, as well as the environment. We consider a bi-bounded inertial model for
gates (see [8,23]), where any change of the input may lead to a change of the
output (after some delay). The PTA A modeling the system results from the
composition of those 5 PTAs. The initial location q0 corresponds to the initial
levels of the signals according to the environment. The initial constraint C0
(regardless of the equality between the clock variables, see Section 2) is:

Tsetup ≤ TLO ∧ THold ≤ THI ∧
∧

i=1,..,4 δ−i ≤ δ+
i

We consider that the circuit has a good behavior if it verifies the following
property Prop1: “every trace contains both Q↑ and CK ↓, and Q↑ occurs before
CK ↓”. We are now interested in identifying parameter valuations for which the
system has such a good behavior.

More generally, the good parameters problem can be stated as follows [14]:

Given a PTA A and a rectangular real-valued parameter domain V0, what
is the largest set of parameters values within V0 for which A behaves well?

4 The Behavioral Cartography Algorithm

4.1 The Inverse Method

We first recall the inverse method algorithm, as defined in [3]. Given a PTA A
and a valuation π of the parameters, the inverse method IM (A, π) generates a
constraint K on the parameters, such that:

1. π |= K, and
2. For all π1, π2 |= K, the trace sets of A[π1] and A[π2] are equal.

We informally describe the algorithm IM in the following. Starting with K =
True, we iteratively compute a growing set of reachable states. When a π-
incompatible state (q, C) is encountered (i.e., when π �|= C), K is refined as fol-
lows: a π-incompatible inequality J (i.e., such that π �|= J) is selected within the

Behavioral Cartography of Timed Automata 81

projection of C onto the parameters and ¬J is added to K. The procedure is
then started again with this new K, and so on, until no new state is computed.
We finally return the intersection of the projection onto the parameters of all
the constraints associated to the reachable states.

A more detailed version of the inverse method is given in Algorithm 1. Given
a linear inequality J of the form e < e′ (resp. e ≤ e′), the expression ¬J denotes
the negation of J and corresponds to the linear inequality e′ ≤ e (resp. e′ < e).
Given a constraint C on the clocks and the parameters, the expression ∃X : C
denotes the constraint on the parameters obtained from C after elimination of
the clocks, i.e., {π | π |= C}. We define Post i

A(K)(S) as the set of states reachable
from S in exactly i steps, and Post∗A(K)(S) as the set of all states reachable from
S in A(K) (i.e., Post∗A(K)(S) =

⋃
i≥0 Post i

A(K)(S)). Given two sets of states S
and S′, we write S ' S′ iff ∀s ∈ S, ∃s′ ∈ S′ s.t. s = s′.

Algorithm 1. IM (A, π)
input : A PTA A of initial state s0 = (q0, C0)
input : Valuation π of the parameters
output: Constraint K on the parameters

1 i ← 0 ; K ← True ; S ← {s0}
2 while True do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (q, C) of S (i.e., s.t. π �|= C) ;
5 Select a π-incompatible J in (∃X : C) (i.e., s.t. π �|= J) ;
6 K ← K ∧ ¬J ;
7 S ← ⋃i

j=0 Postj
A(K)({s0}) ;

8 if PostA(K)(S) � S then return K ← ⋂
(q,C)∈S(∃X : C)

9 i ← i + 1 ;
10 S ← S ∪ PostA(K)(S) ; // S =

⋃i
j=0 Postj

A(K)
({s0})

The termination of IM is not guaranteed in general. However, we provide in [3]
sufficient condition for termination; in particular, IM is guaranteed to terminate
for a form of acyclic automata.

The output K of IM is a behavioral tile in the following sense: A constraint K
is said to be a behavioral tile (or more simply a tile), if for all π1, π2 ∈ K, the
trace sets of A[π1] and A[π2] are equal. Note that a tile corresponds to a convex
and dense set of real-valued points. Given a tile K, the trace set of A(K) will
be simply referred to as “the trace set of K”. Note that such a trace set is a
(possibly infinite) set of finite traces.

Given a tile K and a trace property Prop, we say that K is good if its trace
set is good. From the inverse method [3], in order to decide whether K is good
or bad, it is sufficient to select any π |= K and check the truth of Prop for A[π].

82 É. André and L. Fribourg

4.2 The Behavioral Cartography Algorithm

Principle. By iterating the above inverse method IM over all the integer points
of a rectangle1 V0 (of which there are a finite number), one is able to decompose
(most of) the parametric space included into V0 into behavioral tiles. Formally:

Algorithm 2. Behavioral Cartography Algorithm BC (A, V0)
input : A PTA A, a finite rectangle V0 ⊆ RM

≥0

output: Tiling: list of tiles (initially empty)

1 repeat
2 select an integer point π ∈ V0;
3 if π does not belong to any tile of Tiling then
4 Add IM (A, π) to Tiling;

5 until Tiling contains all the integer points of V0;

Note that two tiles with distinct trace sets are necessarily disjoint. On the
other hand, two tiles with the same trace sets may overlap.

In many cases, all the real-valued space of V0 is covered by Tiling (see Sec-
tion 6). Besides, the space covered by Tiling often largely exceeds the limits of V0
(see Section 4.4 for a sufficient condition of full coverage of the parametric space).

Partition Between Good and Bad Tiles. If now a decidable trace property is given
then one can check which tiles are good (i.e., the tiles whose trace set satisfies
the property), and which ones are bad. One can thus partition the rectangle V0
into a good (resp. bad) subspace, i.e., a union of good (resp. bad) tiles.

Advantages. First, the cartography itself does not depend on the property one
wants to check. Only the partition between good and bad tiles involves the
considered property. Moreover, the algorithm is interesting because one does
not need to compute the set of all the reachable states. On the contrary, each
call to the inverse method algorithm quickly reduces the state space by removing
the incompatible states. This allows us to overcome the state space explosion
problem, which prevents other methods, such as the computation of the whole
set of reachable states (and then the intersection with the bad states) [15], to
terminate in practice. Finally note that the algorithm could easily be parallelized,
e.g., by performing different calls to the inverse method in parallel, which is not
possible in general when computing the set of all reachable states.

4.3 Application to the Flip-Flop Example

We are interested in studying the correctness of the flip-flop described in
Section 3. For the sake of simplicity, we consider a model with only 2 parameters,

1 Actually, V0 can be a convex set containing a finite number of integer points.

Behavioral Cartography of Timed Automata 83

with the following V0: δ+
3 ∈ [8, 30] and δ+

4 ∈ [3, 30]. The other parameters are
instantiated as follows:

THI = 24 TLO = 15 TSetup = 10 THold = 17 δ−1 = 7
δ+
1 = 7 δ−2 = 5 δ+

2 = 6 δ−3 = 8 δ−4 = 3

We compute the cartography of the flip-flop circuit according to δ+
3 and δ+

4 ,
depicted in Figure 2. The dashed rectangle corresponds to V0.

1 2 3 4 5

6 78

δ+
3

δ+
4

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Fig. 2. Behavioral cartography of the flip-flop according to δ+
3 and δ+

4

First note that the whole (real-valued) V0 is covered. Note also that tiles 5
to 8 are unbounded. Actually, this cartography covers the whole2 real-valued
parametric space R≥0 × R≥0. According to the nature of the trace sets, we
can easily partition the tiles into good and bad tiles w.r.t. property Prop1 (see
Section 3).

For example, the trace set of tile 3 (corresponding to the constraint δ+
3 +δ+

4 <
24 ∧ δ+

3 ≥ 17 ∧ δ+
4 ≥ 3) is given in Figure 3. This tile is a good tile because Q↑

occurs before CK ↓ for all traces.

q0 q1 q2 q3

q4

q5

q7

q7

q6

q9

q9

q9

q10

q10

q10

D↑ G↓
1 CK ↑

D↓

G↓
3

G↓
3

D↓

Q↑

Q↑

Q↑

D↓

CK ↓

CK ↓

CK ↓

Fig. 3. Trace set of tile 3 for the flip-flop case study

2 Apart from the irrelevant zone originating from the model (δ+
3 < 8 or δ+

4 < 3).

84 É. André and L. Fribourg

Likewise, the trace set of tile 7 (corresponding to the constraint δ+
3 ≥ 24∧δ+

4 ≥
7) is given in Figure 4. This is a bad tile because there exist traces where Q↑

occurs after CK ↓.

q0 q1 q2 q3 q4

q5

q11

q7

q7

q6

q8

q9

q8

q9

q9

q10

q10

q10

q10

q10

D↑ G↓
1 CK ↑

D↓

G↓
3

G↓
3

CK ↓

D↓

Q↑

CK ↓

Q↑

CK ↓

Q↑

D↓

Q↑

CK ↓

Q↑

CK ↓

CK ↓

Fig. 4. Trace set of tile 7 for the flip-flop case study

One sees more generally that tiles 1 to 3 are good while tiles 4 to 8 are bad.
From this partition into good and bad tiles, we infer the following constraint:

δ+
3 + δ+

4 ≤ 24 ∧ δ+
3 ≥ 8 ∧ δ+

4 ≥ 3

which gives the maximal set of good parameters, thus solving the good param-
eters problem for this example.

Comparison with other methods. By computing in a brute manner the whole set
of reachable states for all possible valuations of the parameters, and performing
the intersection with the set of bad locations, we get the same constraint ensuring
the good behavior of the system. Note that this comparison is possible because
this example is rather simple; for bigger examples, such a computation would be
impossible because of the state space explosion problem (see the Root Contention
Protocol in Section 5.3). In [11], a constraint guaranteeing a good behavior is
given. The projection of this constraint onto δ+

3 and δ+
4 gives δ+

3 < 11∧δ+
3 +δ+

4 <
18 ∧ δ+

3 ≥ 8 ∧ δ+
4 ≥ 3, which is strictly included in our constraint3.

4.4 A Sufficient Condition for Full Coverage

In this section, we show that for “acyclic” automata, a variant of the cartography
algorithm allows us to cover the whole real-valued space of parameters within V0.

The graphical representation of a PTA A is an oriented graph where vertices
correspond to locations, and edges correspond to actions of A. We say that a
PTA is graphically acyclic (or, more simply, acyclic) if its graph is acyclic.
3 Actually, the comparison is not completely fair, because the two models are slightly

different.

Behavioral Cartography of Timed Automata 85

Lemma 1 (Termination). Given an acyclic PTA A and a rectangle V0, the
algorithm BC (A, V0) always terminates.

Proof. Based on the termination of the inverse method (see Proposition 23 in [3])
and the finite number of integer points in V0.

Note that the acyclicity of the PTA is a sufficient, but non-necessary, termination
condition of BC . See Section 5.3 for an example of non acyclic PTA for which
the cartography algorithm terminates.

The algorithm BC guarantees to cover the integer points within V0. How-
ever, there may exist a finite number of “small holes” within V0 (containing no
integer point) that are not covered by any tile of Tiling . In order to fill these
holes, one can refine the algorithm in a simple way. This variant, say BC ′, is
obtained from BC by repeatedly generating at the end of BC new tiles of the
form IM (A, π), where π is a rational (instead of integer) point selected within
the holes. In the case of acyclic PTAs, the termination of BC ′ is guaranteed.
This is due to the finiteness of the number of different tiles which can be output
by IM (A, π), for any rational point π of V0. Formally:

Proposition 1. Let A be an acyclic PTA. The set of tiles {IM (A, π) | π ∈
V0 ∩Q≥0} is finite.

Moreover, one can show that BC covers the whole parametric space beyond V0,
for a “sufficiently large” V0. Formally:

Proposition 2. Let A be an acyclic PTA. Then there exists a rectangle V0 such
that BC (A, V0) covers the whole real-valued parametric space outside V0.

5 Application to the Probabilistic Framework

5.1 Extending the Inverse Method to Probabilistic Systems

Probabilistic Timed Automata are an extension of Timed Automata to the prob-
abilistic case [19]. Parametric Probabilistic Timed Automata (PPTAs) are an ex-
tension of those Probabilistic Timed Automata to the parametric case [4]. In this
framework, the discrete actions are distributions of actions. Roughly speaking,
instead of going from a location to another location, one goes from a location to
a distributions of locations. A scheduler is a mapping which associates to every
state one output distribution. For each scheduler σ, one can define a probabil-
ity space for a given probabilistic timed automaton A[π]. In particular, one can
define the probability of reaching a given location for A[π] under a given σ. Such
probabilities can be computed using the Prism model-checker [16].

Given a PPTA A, one considers the non-probabilistic version A∗ of A [4]:
this is done roughly speaking by replacing each distribution of actions by a set
of standard non-deterministic actions. We have shown in [4] that the minimum
(resp. maximum) probability prob of reaching a given location inA[π] is uniquely
determined by the trace set of A∗[π]. Hence, in order to determine prob for A[π],
it is sufficient to proceed as follows:

86 É. André and L. Fribourg

1. Compute K = IM (A∗, π);
2. Compute prob (using, e.g., Prism) for A[π′], for some π′ ∈ K.

One advantage of this method is that one can take π′ small enough in order
to make the computation of Prism easier, because the performance of Prism
depends on the size of the state space of the model used as input, which in turn
depends on the size of the constants used in the probabilistic timed automata.

5.2 Extending the Cartography to the Probabilistic Framework

Using the cartography described in Section 4 and the result of [4], we can con-
struct a cartography of a probabilistic system. We get a set of tiles such that, for
any point in a given tile, the minimum (resp. maximum) probability of reaching
a given location is the same. Formally, given a PPTA A, a rectangle V0 and a
reachability property rp:

1. Compute Tiling = BC (A∗, V0);
2. For each tile K ∈ Tiling , select π |= K, and compute the minimum (resp.

maximum) probability of satisfying rp in A[π] (using, e.g., Prism).

Note that, if one wants to consider another reachability property rp′, one can
keep Tiling as computed in step 1, and only needs to redo step 2.

This cartography method is useful for finding appropriate timing parameters,
e.g., in randomized protocols. To our knowledge, no other method allows the
synthesis of constraints on the parameters within which the values of reachability
probabilities are preserved.

5.3 Example: Root Contention Protocol

This case study concerns the Root Contention Protocol of the IEEE 1394
(“FireWire”) High Performance Serial Bus, considered in the parametric frame-
work in [20]. We consider the following valuation π0 of the parameters given
in [20]: rc fast min = 76, rc fast max = 85, rc slow min = 159, rc slow max =
167, and delay = 30. We are interested in computing the minimum probabil-
ity prob1 of satisfying the following property rp1: “a leader is elected after three
rounds or less”. Using Prism, it is possible to determine that prob1 = 0.75 for π0.
To study this probability for other points around π0, we compute a cartography
with the following V0: rc slow min ∈ [140, 200], rc slow max ∈ [140, 200] and
delay ∈ [1, 50]. The two other parameters remain constant, as in π0.

The cartography is given in Figure 5. For the sake of clarity, we project onto
delay and rc slow min. In each tile, the parameter rc slow max is only bound
by the implicit constraint rc slow min ≤ rc slow max .

Note that tiles 1 and 6 are infinite towards dimension rc slow min , and all
tiles are infinite towards dimension rc slow max . Moreover, although all the
integer points within V0 are covered (from the algorithm), note that the real-
valued part of V0 is not fully covered, because there are some “holes” (real-
valued zones without integer points) in the lower right corner. It would not be

Behavioral Cartography of Timed Automata 87

1

2

3

4

5

6

7

9

11

12
8

10
13

14

15

16
17

18

19

delay

rc slow min

00 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

Fig. 5. Behavioral cartography of the Root Contention Protocol according to delay
and rc slow min

possible to fill completely those holes, using the refinement of the algorithm BC
given in Section 4.4, because Proposition 1 does not hold any longer here. Note
that, nevertheless, our method is still capable of giving valuable information by
partitioning most of the parametric space within V0 into good and bad tiles.
Finally note that the computation of the whole set of reachable states (see, e.g.,
[15]) does not terminate in this example, due to the infinite number of generated
traces (with incomparable constraints).

Partition into good and bad subspaces. Applying Prism to one point of each tile,
we find prob1 = 0.75 for tile 1. For tiles 2, 3 and 6, we have prob1 = 0.625.
For the other tiles, prob1 = 0.5. Let us suppose that a tile is good when the
probability prob1 is greater than 0.7, and bad otherwise. In this case, only tile 1
is a good tile, and the others are bad tiles.

88 É. André and L. Fribourg

An advantage of the cartography algorithm is that, if one considers another
property than rp1, there is no need to re-compute the cartography again. Various
other properties have been considered (e.g., the election of a leader after five
rounds or less), leading to different partitions into good and bad subspaces.

6 Case Studies

An implementation of the behavioral cartography algorithm has been made,
called Imitator II. This program is a complete new version, written in OCaml,
of the prototype Imitator [5]. The execution of Imitator II is fully automated,
from the source file to the generation of the behavioral tiles and the correspond-
ing trace sets under a graphical form. Imitator II makes use of the library
APRON for the manipulation of constraints [18].

Results are presented in the table below. The input rectangle V0 in each
case study was chosen for containing the reference valuation π0 of the model,
corresponding to a reference behavior (see, e.g., [3]). We give from left to right
the name of the example, the number of PTAs composing the global system A,
the lower and upper bounds on the number of locations per PTA, the number
of clocks, of non-instantiated parameters, of integer points within V0, of tiles
computed, the average number per tile of states and transitions of the trace set,
and the computation time in seconds.

Example PTAs loc./PTA |X| |P | |V0| tiles states trans. Time
SR-latch 3 [3, 8] 3 3 1331 6 5 4 0.3

Flip-flop [11] 5 [4, 16] 5 2 644 8 15 14 3
SPSMALL [9] 10 [3, 8] 10 2 3149 259 60 61 1194

CSMA/CD [21] 3 [3, 8] 3 3 2000 140 349 545 269
RCP [20] 5 [6, 11] 6 3 186050 19 5688 9312 7018

Note that the version of the algorithm that we used in Imitator II is the
classical algorithm (viz., BC , and not BC ′). Also note that only the SR-latch
case study is modeled with an acyclic PTA (see Section 4.4).

For all those examples, the cartography covers 100% of the real-valued space
of V0, except for the Root Contention Protocol, where “only” 99,99% of V0 is
covered (see Section 5.3). Moreover, a significant part of the real-valued space
outside V0 is also covered. Those examples, as well as other case studies, can be
found on Imitator II’s Web page4.

Finally note that it is possible to find examples (such as the “And–Or” circuit
considered in [10,3]) for which the algorithm BC does not terminate for some V0,
because the algorithm IM does not terminate for some π ∈ V0.

7 Final Remarks

In this paper, we presented a cartography algorithm, which covers most of the
parametric space with tiles, for which the behavior is uniform. This gives a
4 http://www.lsv.ens-cachan.fr/~andre/IMITATOR2/

http://www.lsv.ens-cachan.fr/~andre/IMITATOR2/

Behavioral Cartography of Timed Automata 89

new approach for solving the good parameters problem. Our algorithm has been
successfully applied to various examples of asynchronous circuits and protocols.
Our cartography algorithm often covers the whole real-valued space of V0 as well
as a significant part of the space beyond V0.

This method extends naturally to probabilistic systems. This allows us to
decompose the parametric space into tiles which are uniform w.r.t. probabilistic
reachability properties. The tiles generated by the cartography are always the
same, whatever the considered probabilistic property is. Only the partition into
good and bad subspaces changes.

Our approach has the following limitation: the equivalence relation on pa-
rameters that leads to “tiles” as equivalence classes is strong (because of the
equality of trace sets). This may lead to a big (even infinite) number of small
equivalence classes (as shown in Section 5.3). It would be interesting to consider
a more general inverse method in order to weaken the equivalence relation.

As suggested in Section 4.4, it is interesting to consider variants of BC with
a strategy of dynamic point selection for IM : instead of starting from the set
of all integer points of V0, one starts from a sparse subset of points, and fill
incrementally the uncovered zones by selecting (non-necessarily integer) points
in the “holes”.

Finally, it would be interesting to extend the method to hybrid systems, where
clocks evolve at different rates.

Acknowledgment. We thank the anonymous referees for their helpful comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC

’93, pp. 592–601. ACM, New York (1993)
3. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for

parametric timed automata. International Journal of Foundations of Computer
Science 20(5), 819–836 (2009)

4. André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to proba-
bilistic timed automata. In: AVoCS’09. Electronic Communications of the EASST,
vol. 23 (2009)

5. André, É.: IMITATOR: A tool for synthesizing constraints on timing bounds of
timed automata. In: Leucker, M., Morgan, C. (eds.) Theoretical Aspects of Com-
puting - ICTAC 2009. LNCS, vol. 5684, pp. 336–342. Springer, Heidelberg (2009)

6. Annichini, A., Bouajjani, A., Sighireanu, M.: Trex: A tool for reachability analysis
of complex systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 368–372. Springer, Heidelberg (2001)

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

8. Brzozowski, J.A., Seger, C.J.: Asynchronous Circuits. Springer, Heidelberg (1995)
9. Chevallier, R., Encrenaz, E., Fribourg, L., Xu, W.: Timed verification of the generic

architecture of a memory circuit using parametric timed automata. Formal Meth-
ods in System Design 34(1), 59–81 (2009)

90 É. André and L. Fribourg

10. Clarisó, R., Cortadella, J.: Verification of concurrent systems with parametric de-
lays using octahedra. In: ACSD ’05. IEEE Computer Society, Los Alamitos (2005)

11. Clarisó, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput. Pro-
gram. 64(1), 115–139 (2007)

12. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

13. Collomb–Annichini, A., Sighireanu, M.: Parameterized reachability analysis of the
IEEE 1394 Root Contention Protocol using TReX. In: RT-TOOLS ’01 (2001)

14. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parame-
ter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

15. Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters
for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl
Seminar 1995. LNCS, vol. 1165, Springer, Heidelberg (1996)

16. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

17. Holzmann, G.: Spin model checker, the: primer and reference manual. Addison-
Wesley, Reading (2003)

18. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS,
vol. 5643, pp. 661–667. Springer, Heidelberg (2009)

19. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. TCS 282, 101–150 (2002)

20. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of dead-
line properties in the IEEE 1394 FireWire root contention protocol. Formal Aspects
of Computing 14(3), 295–318 (2003)

21. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Information and Computation 205(7), 1027–1077
(2007)

22. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

23. Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed au-
tomata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987,
pp. 189–205. Springer, Heidelberg (1995)

24. D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, G.J.: The bounded retrans-
mission protocol must be on time! In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217. Springer, Heidelberg (1997)

On the Joint Spectral Radius for Bounded
Matrix Languages

Paul C. Bell1, Vesa Halava2, and Mika Hirvensalo2

1 Department of Computer Science, University of Liverpool, Ashton Building,
Ashton St, Liverpool, L69 3BX, U.K.

p.c.bell@liverpool.ac.uk
2 TUCS-Turku Centre for Computer Science, Department of Mathematics,

University of Turku, FIN-20014, Turku, Finland
vehalava@utu.fi, mikhirve@utu.fi

Abstract. We show several problems concerning probabilistic finite au-
tomata with fixed numbers of letters and of fixed dimensions for bounded
cut-point and strict cut-point languages are algorithmically undecidable
by a reduction of Hilbert’s tenth problem using formal power series.

For a finite set of matrices {M1, M2, . . . , Mk} ⊆ Qt×t, we then con-
sider the decidability of computing the joint spectral radius (which char-
acterises the maximal asymptotic growth rate of a set of matrices) of the
set X = {M j1

1 M j2
2 · · ·M jk

k |j1, j2, . . . , jk ≥ 0}, which we term a bounded
matrix language. Using an encoding of a probabilistic finite automa-
ton shown in the paper, we prove the surprising result that determining
whether the joint spectral radius of a bounded matrix language is less
than or equal to one is undecidable, but determining if it is strictly less
than one is in fact decidable (which is similar to a result recently shown
for quantum automata).

This has an interpretation in terms of a control problem for a switched
linear system with a fixed and finite number of switching operations; if
we fix the maximum number of switching operations in advance, then
determining convergence to the origin for all initial points is decidable
whereas determining boundedness of all initial points is undecidable.

1 Introduction

Most decision problems on (non-)deterministic finite automata are known to be
decidable, however if we extend the model to probabilistic finite automata (PFA),
their computational power increases dramatically (PFA may be interpreted as
having a probability distribution of possible states).

A typical question we may ask on a PFA is the decidability of emptiness for
cut-point languages, that is, given a PFA R acting on alphabet A and a cut-
point λ ∈ Q, does there exist any word w ∈ A∗ such that R has probability
greater than or equal to λ of being in a final state upon input w. The emptiness
problem for strict cut-point languages may be defined analogously, see Section 2
for formal definitions. The emptiness problem for cut-point and strict cut-point
languages on PFA was shown to be undecidable, even with just two letters and

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 91–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 P.C. Bell, V. Halava, and M. Hirvensalo

47 states (corresponding to two rational matrices of dimension 47, see Section 2
for details) in [3] and this was recently improved to two letters and 25 states in
[10] by using “Claus instances” of Post’s correspondence problem.

The emptiness problem was shown to be undecidable for 2-counter determinis-
tic finite automata with reversal bounded counters in [12]. However, the emptiness
problem for two-way nondeterministic finite automata with one reversal-bounded
counter onbounded languageswas shown tobe decidable in [7].We investigate deci-
sion questions for probabilistic finite automata whose inputs come from a bounded
language (see Section 2.1 for definitions).

In this paper, we also show the undecidability of a set of problems denoted
F-problems, following [12], for bounded strict and non-strict cut-point languages
in PFA. The PFA are defined on all words from A∗, but only words from a
bounded language L are possible solutions. We mainly concentrate on bounded
languages of the form L = x∗

1 · · ·x∗
k ⊆ A∗ where A = {x1, . . . , xk}. We show the

undecidability via a reduction of Hilbert’s tenth problem into a PFA by using
formal power series and a result from [1].

We then consider the joint spectral radius (see Sec. 5 for definitions) of a set
of matrices X = {M j1

1 M j2
2 · · ·M

jk

k |j1, j2, . . . , jk ≥ 0}, where each Mi ∈ Qt×t,
which we term a bounded matrix language. Following a technique used in [5] and
an encoding of a PFA given in this paper, we prove the surprising result that de-
termining whether the joint spectral radius of a bounded matrix language is less
than or equal to 1 is undecidable, but determining if it is strictly less than 1 is in
fact decidable. This is similar to a result in the field of quantum automata where
it was shown that for non-strict cut point languages, the emptiness problem is
decidable, whereas for strict cut point languages it is undecidable, see [6], [10].

The joint spectral radius characterises the maximal asymptotic growth rate
of a set of matrices and can be considered as a stability condition for a discrete-
time switched linear system. In such a system, we are given a set of matrices
M = {M1, M2, . . . , Mn} and we update an initial vector x0 by:

xi+1 = Mσ(i)xi

where σ : N → {1, . . . , n} is a switching signal (we can think of this signal as
changing the matrix being applied at each step according to some criteria). If
all trajectories for any initial vector x0 and any switching signal σ converge to
zero, then we say the switched linear system is stable. This is characterised by
the value of the joint spectral radius of M written ρ(M). A stable switched
linear system satisfies ρ̂(M) < 1. Determining if there exists an algorithm to
calculate if ρ̂(M) < 1 for a finite matrix set M is a well-known and important
open problem [5].

In this paper we study the joint spectral radius for bounded matrix languages.
We may think of this as characterising the stability of a switched linear system
where we are allowed to apply the switching signal to change from one matrix
to another a fixed number of times. This is a natural question to ask as pointed
out in [8], since in many applications it is desirable to minimize the number of
switches between different modes and this is a measure of cost used in hybrid

On the Joint Spectral Radius for Bounded Matrix Languages 93

control applications. In [8], the authors show that it is NP-hard to determine
whether there exists some switching signal σ which changes matrix a fixed num-
ber of times and which drives an initial point x0 to the origin.

We shall consider instead whether all such switching signals with a fixed
maximum number of switches cause any x0 to converge to the origin (this is
equivalent to determining if the JSR of a bounded matrix language is < 1). We
show that this problem is decidable. However, to determine whether the switched
linear system has a bounded trajectory for any initial point x0 (this is equivalent
to determining if the JSR of a bounded matrix language is ≤ 1) we show is
actually undecidable. For the system we use in our proofs, we show that the only
possible trajectories that do not converge towards zero have a very specific form
and the order of changes of matrices one must check can be fixed in advance.
For products not using such a form, they will always converge towards zero.

2 Preliminaries

2.1 Probabilistic Finite Automata

Let A = {x1, x2, . . . , xk} be a finite set of letters called an alphabet. A word
w is a finite sequence of letters from A, the set of all words over A is denoted
A∗ and the set of nonempty words is denoted A+. The empty word is denoted
by ε. For two words u = u1u2 · · ·ui and v = v1v2 · · · vj , where u, v ∈ A∗, the
concatenation of u and v is denoted by u·v (or by uv for brevity) such that u·v =
u1u2 · · ·uiv1v2 · · · vj . A subset L of A∗ is called a language. Language L ⊆ A∗ is
called a bounded language if and only if there exist words w1, w2 . . . , wm ∈ A+

such that L ⊆ w∗
1w∗

2 · · ·w∗
m.

A vector y ∈ Qn is called a probability distribution if its elements are nonnega-
tive and sum to 1 (we say y has an L1 norm of 1). A matrix M is called a column
stochastic matrix if each column is a probability distribution, a row stochastic
matrix if each row is a probability distribution and it is called a doubly stochastic
matrix if it is both row and column stochastic. For any row stochastic matrix M ,
if y is a probability distribution, then so is yT M , since M preserves the L1 norm
on vectors and has no negative elements. The product of two row/column/doubly
stochastic matrices is also row/column/doubly stochastic (respectively) as is not
difficult to verify.

A probabilistic finite automaton (PFA, see [14] for further details) over an
alphabet A is a triplet (u, ϕ, v), where u ∈ Qn (n = |A|) is the initial probability
distribution, ϕ : A∗ → Qn×n is a monoid homomorphism whose range is the set
of n-dimensional row stochastic matrices and v ∈ Qn is the final state vector
whose ith coordinate is 1, if state i is final, and 0 otherwise.1

1 The definition of a PFA in the literature often interchanges the roles of u and v from
our definition and requires column stochastic matrices, but the two can easily be
seen to be equivalent by transposing all matrices and interchanging u and v. Our
definition makes the proof of Theorem 3 easier to read.

94 P.C. Bell, V. Halava, and M. Hirvensalo

For a given PFA denoted R = (u, ϕ, v) and a word w ∈ A∗, we shall also use
the notation fR : A∗ → [0, 1], where:

fR(w) = uT ϕ(w)v ∈ [0, 1] ; w ∈ A∗.

This is the probability of R being in a final state after reading word w ∈ A∗.
Let L ⊆ A∗ be a given language over an alphabet A, R be a probabilistic

finite automaton and λ ∈ [0, 1]. We define the cut-point languages by:

ΨΔλ(R, L) = {w ∈ L | fR(w)Δλ}; Δ ∈ {≤, <, >,≥} (1)

It is known that testing the emptiness of the language ΨΔλ(R, A∗) for any Δ ∈
{≤, <, >,≥}, i.e., when the language the words are taken over is unrestricted, is
undecidable. We will show that it is undecidable to determine whether:

ΨΔλ(R, L) ?= ∅; Δ ∈ {≤, <, >,≥} (2)

for a bounded input language L = x∗
1x

∗
2 · · ·x∗

k ⊆ A∗. Note that our automata
will be defined on any input word w ∈ A∗, but due to the construction, any
possible solution must be a member of L, thus we may restrict to testing words
in L.

2.2 Formal Power Series

We use the definitions and terminology for formal power series as in [2]. Let K
be a semiring and A a finite alphabet generating a free monoid denoted by A∗.
A formal power series S is defined to be a function S : A∗ → K, and the image
of a word w ∈ A∗ under S is denoted (S, w) and is called the coefficient of w in
S. The set of formal power series (FPS) over A with coefficients in K is denoted
by K〈〈A〉〉. If there are only finitely many nonzero coefficients in a FPS, then it
is called a polynomial and denoted by K〈A〉. We can use the following standard
notation to define a FPS S ∈ K〈〈A〉〉:

S =
∑

w∈A∗
(S, w)w.

The operations of sum, product, external products and star product can all be
defined in a natural and precise way, see [2] for definitions. These make up the
rational operations of a FPS.

A subset of K〈〈A〉〉 is rationally closed if it is closed under the rational oper-
ations. The smallest rationally closed subset of K〈〈A〉〉 containing a subset E,
is called the rational closure of E. A formal power series is called K-rational if
it is contained within the rational closure of K〈A〉.

A formal power series S ∈ K〈〈A〉〉 is called recognizable if there exists an
integer n ≥ 1, two vectors ρ, τ ∈ Kn and a monoid homomorphism μ : A∗ →
Kn×n, such that for all words w ∈ A∗,

(S, w) = ρT μ(w)τ

and then (ρ, μ, τ) is called a linear representation of S.

On the Joint Spectral Radius for Bounded Matrix Languages 95

The following fundamental theorem was shown by Kleene and Schützenberger,
see [2] for details.

Theorem 1 (Schützenberger, 1961 [17]). A formal power series is rational
if and only if it is recognizable.

2.3 Hilbert’s Tenth Problem

The following problem was posed in 1900 by David Hilbert:
Hilbert’s Tenth Problem - Given a Diophantine equation with any num-

ber of unknown quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers.

A “negative solution” to the problem was shown in 1970 by Y. Matiyasevich
building upon earlier work of many mathematicians, including M. Davis, H. Put-
man and J. Robinson. For more details of the history of the problem as well as
the full proof of the undecidability of this problem, see [13]. We may, without
loss of generality, restrict the variables to be natural numbers, see [13, p.6].

Let P (n1, n2, . . . , nk) be an integer polynomial with k variables. Hilbert’s
tenth problem can be rephrased to instead determine if there exists a procedure
to find if there exist x1, x2, . . . , xk ∈ N such that: P (x1, x2, . . . , xk) = 0. It is
well known that this may be reduced to a problem in formal power series. It was
shown in [16, p.73] that the above problem can be reduced to that of determining
for a Z-rational formal power series S ∈ Z〈〈A〉〉, whether there exists any word
w ∈ A∗ such that (S, w) = 0. The following theorem was proven in [1]:

Theorem 2. [1] Given integral matrices M1, M2, . . . , Mk of dimension n × n,
it is algorithmically undecidable to determine whether there exists a solution to
the equation:

M i1
1 M i2

2 · · ·M ik

k = Z,

where Z denotes the zero matrix and i1, i2, . . . , ik ∈ N are variables.

From the construction shown in [1], the following corollary is immediate:

Corollary 1. Given an integer polynomial P (n1, n2, . . . , nk), one can construct
two vectors ρ = (1, 0, . . . , 0)T ∈ Nn and τ = (0, 0, . . . , 1)T ∈ Nn, an alphabet
A = {x1, x2, . . . , xk} and a homomorphism μ : A∗ → Zn×n, such that for words
of the form w = xn1

1 xn2
2 · · ·xnk

k ∈ A+:

ρT μ(w)τ = P (n1, n2, . . . , nk)2, (3)

for any word w′ ∈ A+ not of this form, ρT μ(w′)τ = 1 and for the empty word
ε we have that ρT μ(ε)τ = 0. The triple (ρ, μ, τ) is a linear representation of a
Z-regular formal power series S ∈ N〈〈A〉〉.

Thus, determining if there exists any word w ∈ A+ such that ρT μ(w)τ = 0 is
undecidable. Note that Eqn. (3) only holds for nonempty words w since in fact
ρT μ(ε)τ = 0. We shall require Corollary 1 in the proof of Theorem 3 where the
pathological case of empty words will be specifically dealt with in Step 2.

96 P.C. Bell, V. Halava, and M. Hirvensalo

3 Probabilistic Encoding

In this section we shall show an encoding of Hilbert’s tenth problem into a prob-
abilistic finite automaton by using Corollary 1 in order to show that the (strict)
emptiness problems for PFA are undecidable even over bounded languages. This
is an important theorem for several later results since it shows the possible solu-
tions of the problems must be from the given bounded language and any words
not in this language cannot be solutions.

Theorem 3. Given a probabilistic finite automaton R = (u, ϕ, v) over an alpha-
bet A = {x1, x2, . . . , xk}, a bounded language L ⊆ A∗ and a rational cut-point
λ ∈ [0, 1]. Determining if ΨΔλ(P, L) = ∅ where Δ ∈ {≤, <, >,≥, } is undecid-
able. Moreover, this result holds even when we know ΨΔλ(P, L) = ∅ and thus we
only need test words from language L.

Proof. Let us first give an intuitive notion of the theorem for the equality ≤ as
an example. Given the probabilistic finite automata R, cut-point λ ∈ [0, 1] and
the bounded language L, we would like to determine if there exists any word
w ∈ L such that fR(w) ≤ λ. In our construction, if w′ �∈ L, then fR(w′) > λ and
so we may restrict to testing words in L.

We shall reduce an instance of Hilbert’s tenth problem into the emptiness
problem for the cut-point language of a PFA. Let P (n1, n2, . . . , nk) be an in-
teger coefficient polynomial. According to Corollary 1, there exists a Z-rational
formal power series S with linear representation (ρ, μ, τ) over an alphabet A =
{x1, x2, . . . , xk} such that

(S, w) = ρT μ(w)τ =

⎧⎨⎩
P (n1, . . . , nk)2; if w ∈ L \ {ε}
1; if w ∈ A∗ \ L,
0; if w = ε,

(4)

where L is the bounded language L = x∗
1x

∗
2 · · ·x∗

k ⊆ A∗. Let (t − 2) be the
dimension of the vectors and matrices of the linear representation, i.e., ρ, τ ∈
Z(t−2), μ : A∗ → Z(t−2)×(t−2). It can thus be seen that it is undecidable to
determine if there exists a nonempty word w ∈ A+ such that ρT μ(w)τ = 0 by
the undecidability of Hilbert’s tenth problem.

Step 1. Our first step is to convert the set G = {μ(xi) : 1 ≤ i ≤ k} ⊆
Z(t−2)×(t−2) of matrices into a set of strictly positive doubly stochastic matrices2.
Let μ1 : A+ → Zt×t be defined by:

μ1(xi) =

⎛⎝ 0 0 0
ti μ(xi) 0
s rT

i 0

⎞⎠ ; 1 ≤ i ≤ k,

where ti, ri ∈ Z(t−2) and s ∈ Z are chosen so that the row and column sums of
each μ1(xi) are 0 (note that these values are well defined and unique). It is not

2 This step follows the construction of P. Turakainen [19], see also [10].

On the Joint Spectral Radius for Bounded Matrix Languages 97

difficult to verify that the product of two such matrices retains the given form
and still has zero row and column sums.

Now define the matrix Ω ∈ Zt×t to be a matrix such that all elements equal
1. Clearly Ω2 = tΩ, thus Ωi = ti−1Ω for i ≥ 1. Let Z ∈ Zt×t denote the zero
matrix and by the definition of μ1, for all 1 ≤ i ≤ k, it holds that

μ1(xi) ·Ω = Ω · μ1(xi) = Z. (5)

Let c ∈ Z+ be chosen so that μ1(xi) + c Ω is a strictly positive matrix for each
1 ≤ i ≤ k (i.e., each element is > 0). Next, define μ2 : A+ → (Q+)t×t by:

μ2(xi) =
(

1
ct

)(
μ1(xi) + c Ω

)
; 1 ≤ i ≤ k,

where Q+ is the set of positive rationals. For a word w ∈ A+, it thus holds that:

μ2(w) =
(

1
ct

)|w| (
μ1(w) + c|w|t|w|−1 Ω

)
; 1 ≤ i ≤ k,

by using the fact that μ1 is a homomorphism, Eqn. (5) to cancel the central
summands and the property that Ωi = ti−1Ω. By the choice of c, we see that
μ2 : A+ → [0, 1]t×t. Each μ2(xi) for 1 ≤ i ≤ k is doubly stochastic since the row
and column sums of μ1(xi) + c Ω for each xi ∈ A equal ct.

Finally, we define the vectors ρ2 = (0, ρT , 0)T = (0, 1, 0, . . . , 0)T ∈ Nt and
τ2 = (0, τT , 0)T = (0, . . . , 0, 1, 0)T ∈ Nt. The converted linear representation is
given by (ρ2, μ2, τ2) which is the linear representation of a Q+-rational formal
power series S′ ∈ Q+〈〈A〉〉. It is clear that for a word w ∈ A+,

ρT
2 μ2(w)τ2 =

(
1
ct

)|w|
ρT
2

(
μ1(w) + c|w|t|w|−1 Ω

)
τ2 (6)

=
(

1
ct

)|w| (
ρT μ(w)τ

)
+

1
t
≥ 1

t
, (7)

with equality if and only if ρT μ(w)τ = 0. Testing whether this value equals
zero is undecidable by Corollary 1, thus testing whether there exists any word
w ∈ A+ such that ρT

2 μ2(w)τ2 = 1/t is also undecidable. However, we have to
take account of the case that w = ε since ρT

2 Iτ2 = 0 where I is the identity
matrix. Our next step will avoid this situation.

Step 2. Let us define ρ3 = (0, 0, 1
2 , 0, . . . , 0, 1

2)T and τ3 = (0, . . . , 0, 1, 0, 1)T

where ρ3, τ3 ∈ (Q+)t+2. Note that ρ3 is 1
2ρ2 with a 0 appended to the start and

1
2 appended to the end of the vector and τ3 is τ2 with a 0 appended at the start
and a 1 at the end. Now, define the homomorphism μ3 : A∗ → (Q+)(t+2)×(t+2):

μ3(xi) =

⎛⎝ 1
2 0 1

2
0 μ2(xi) 0
1
2 0 1

2

⎞⎠ ; 1 ≤ i ≤ k

98 P.C. Bell, V. Halava, and M. Hirvensalo

and note that this is still a doubly stochastic matrix and retains the given form
under multiplication. Note also that ρT

3 μ3(ε)τ3 = ρT
3 τ3 = 1

2 , so the empty word
now maps to 1

2 . For a word w ∈ A∗, we can compute that:

ρT
3 μ3(w)τ3 =

1
2

(
ρT
2 μ2(w)τ2

)
+

1
4
≥

(
1
2t

+
1
4

)
which follows from Eqn. (6) and Eqn. (7), with equality if and only if ρT μ(w)τ =
0 as required. Since (t− 2) is the dimension of the initial linear representation,
we may assume t > 2. We thus set the cut-point to be λ = 1

2t + 1
4 . For the

empty word we have: ρT
3 μ3(ε)τ3 = 1

2 which is greater than λ when t > 2, thus
determining if there exists any w ∈ A∗ such that ρT

3 μ3(w)τ3 ≤ λ is undecidable.
In fact, by Corollary 1, we now see the only possible solutions to the problem
come from L, proving the last statement of the Theorem. Let u = ρ3, v = τ3,
ϕ = μ3 and λ = 1

2t + 1
4 and we get the undecidability for the bounded cut-point

language ‘≤’.

Step 3. We may modify the formal power series to obtain the undecidability for
the inequalities <, > and ≥. Let (S2, w) = −(S, w) for all w ∈ A∗. We may avoid
Step 2, since the empty word mapping to 0 will be less than the (nonzero) bound
we shall set. Following this proof, we create a PFA such that it is undecidable
to determine if there exists any w ∈ A∗ such that uT ϕ(w)v ≥ λ for the same
bounded language L for λ ∈ (0, 1].

Let us define two formal power series, (S3, w) = 1 − (S, w) and (S4, w) =
(S, w)−1, for all w ∈ A∗. Both S3 and S4 are still rational and thus by Theorem 1,
they are recognizable. Using these FPS in Eqn. (4) and following the above proof
(setting an appropriate threshold), it is not difficult to obtain the undecidability
of the bounded strict cut-point languages, thus proving the theorem. ��

4 F-Problems

We may now show that the other “F-Problems” studied in [12] are also unde-
cidable by using the probabilistic finite automata constructions from the proof
of Theorem 3. Given two PFA R1 and R2 with respective cut-points λ1, λ2, we
use the definition of ΨΔλ(R, L) from the preliminaries. The emptiness problem
has already been defined, i.e., is ΨΔλ1(R1, L) = ∅? The infiniteness problem asks
whether ΨΔλ1(R1, L) is an infinite set. The disjointedness problem asks whether
the intersection ΨΔλ1(R1, L) ∩ ΨΔλ2(R2, L) is empty. The containment problem
asks if the following containment holds: ΨΔλ1(R1, L) ⊆ ΨΔλ2(R2, L). The uni-
verse problem asks if ΨΔλ1(R1, L) is the set of all strings in L. The equivalence
problem asks if ΨΔλ1(R1, L) = ΨΔλ2(R2, L).

Corollary 2. The “F-Problems” are undecidable for bounded cut-point languages
on probabilistic finite automata.

Proof. Let R1 be a PFA over an alphabet A = {x1, x2, . . . , xk} as in Theo-
rem 3 and λ1 the corresponding cut-point. Then we know that determining if

On the Joint Spectral Radius for Bounded Matrix Languages 99

ΨΔλ1(R1, L) = ∅ where Δ ∈ {≤, <, >,≥, } is undecidable for the bounded lan-
guage L = x∗

1x
∗
2 · · ·x∗

k ⊆ A∗.
Let S ∈ Z〈〈A〉〉 be such that S = char(L) where we recall that char(L) denotes

the characteristic series of language L. Since this power series is rational, it is
recognizable by Theorem 1, thus it has a linear representation and we can convert
it to a PFA, R2, as we did in Theorem 3. A cut-point λ2 ∈ [0, 1] can then easily
be computed such that

ΨΔλ2(R2, A
∗) = L; Δ ∈ {≤, <, >,≥, }

in other words, this PFA accepts any word w ∈ A∗ with probability Δλ2 if and
only w ∈ L (we shall use several Δ for different problems below).

For the disjointedness problem, we may consider the language intersection:
Ψ≤λ1(R1, L) ∩ Ψ≤λ2(R2, A

∗) which is empty if and only if for all w ∈ A∗,
fR(w) > λ1 which is undecidable. For the containment problem, we consider
the problem Ψ≤λ2(R2, A

∗) ⊆ Ψ>λ1(R1, L) which holds if and only if w ∈ A∗,
fR1(w) > λ1 using the same PFA as for disjointedness but with ≤ replaced by
>. Showing the equivalence problem’s undecidability is also straightforward, sim-
ply consider Ψ≤λ2(R2, A

∗) = Ψ>λ1(R1, L) as in containment but with ⊆ replaced
by =. For the universe problem, we need a slight modification by removing the
characteristic series for the language L in the defining formal power series for
R1, but we shall not give the details. Once this is done, we consider Ψ>λ1(R1, L)
which equals L if and only if ¬∃w ∈ A∗ : fR1(w) ≤ λ1.

Finally we show the infiniteness problem is undecidable. We define a PFA
R3 as in Theorem 3, but extend the alphabet to A′ = A ∪ {x0} and construct
R3 using polynomial (n0 + 1)(P (n1, n2, . . . , nk)2). Recall that all variables are
natural numbers, thus if this polynomial equals 0, then P (n1, n2, . . . , nk)2 = 0.
In this case, the polynomial has an infinite number of solutions for all n0 ∈ N.
Thus for bounded language L′ = x∗

0x
∗
1 · · ·x∗

k ⊆ (A′)∗, we see that:

|Ψ≤λ1(R3, L
′)| =∞ if and only if Ψ≤λ1(R1, L) �= ∅. ��

5 The Joint Spectral Radius

We now define the joint spectral radius of a set of matrices and our interpre-
tation of it for bounded matrix languages. We shall show a dichotomy result
concerning the decidability of computing the joint spectral radius for bounded
matrix languages, dependent upon whether we use a non-strict (Theorem 4) or
strict (Theorem 5) cut point in the problem.

Given a set of matrices S, a measure of the largest possible growth rate of a
product of matrices from S is given by the joint spectral radius (JSR):

ρ̂(S) = lim sup
r→∞

(
max
M∈Sr

(||M ||1/r)
)

,

where || · || is a matrix norm (the JSR can be shown not to depend upon the
chosen norm). Analogously the generalized spectral radius of S is defined by:

100 P.C. Bell, V. Halava, and M. Hirvensalo

ρ(S) = lim sup
r→∞

(
max
M∈Sr

(ρ(M)1/r)
)

,

where ρ is the standard spectral radius of a single matrix. It is known that for
a finite set of matrices S, ρ̂(S) = ρ(S) and as r increases, the limiting sequence
defining ρ̂(S) approaches this value from above whilst the sequence defining ρ(S)
approaches it from below. The joint spectral radius can thus be approximated to
any desired accuracy, although this is known to be NP-hard in general, see [4].

It was shown in [5] that deciding whether the joint spectral radius of a given
set of matrices is ≤ 1 is undecidable. We shall show that determining the joint
spectral radius remains undecidable even over a matrix equation corresponding
to a bounded language. For a given set of matrices S = {M1, M2, . . . , Mk} ⊆
Qt×t, we define a bounded matrix language as X = {M j1

1 M j2
2 · · ·M

jk

k } where
j1, j2, . . . , jk ≥ 0 are variables. Define by Xr ⊆ X the subset of X formed by a
product of length r ≥ 0, i.e., Xr = {M j1

1 M j2
2 · · ·M

jk

k |j1 + j2 + . . . + jk = r}. We
now formalize the definition of the JSR of such a bounded matrix language:

ρ̂(X) = lim sup
r→∞

(
max

M∈Xr

(||M ||1/r)
)

,

where the generalized spectral radius for X is defined analogously. Clearly equal-
ity ρ(X) = ρ̂(X) still holds. We now show that determining if the joint spectral
radius of a bounded matrix language is ≤ 1 is undecidable. This also has the in-
terpretation that determining if all trajectories of a switched linear system with
a fixed, finite number of switching signals are bounded, is undecidable.

Theorem 4. Computing whether the joint (or equivalently generalized) spectral
radius of a bounded matrix language is less than or equal to 1 is undecidable.

Proof. The proof is essentially the same as in [5] but using the PFA described
in Theorem 3 with the inequality > as described in Step 3 of the proof.

In [5], the authors show a clever encoding of a probabilistic finite automata
into a set of matrices which allow them to obtain a similar result to that denoted
in our theorem but over arbitrary products of matrices. If one instead encodes
the PFA described in Theorem 3 with the inequality > as described in Step 3
of the proof, then we may obtain the undecidability result for products over a
bounded matrix language.

We must add a matrix Mk+1 = τ2ρ
T
2 ∈ Qt×t which is zero except for a

single element which is 1. Thus we are essentially determining if there exists
j1, j2, . . . , jk−1 ≥ 0 such that

ρ(M j1
1 M j2

2 · · ·M
jk

k Mk+1) > 1.

Each of the matrices M1, . . . , Mk ∈ Qt×t tends towards Ω/t as we take higher
powers by the Perron-Frobenius theorem. Note that any matrix in the semigroup
generated by M not of this form has spectral radius ≤ 1, as is not difficult to
see from the encoding used in [5]. ��

On the Joint Spectral Radius for Bounded Matrix Languages 101

The following corollary may be derived from the above proof. Blondel and Tsit-
siklis also derived such a result, but for arbitrary matrix products, in [5].

Corollary 3. Given a set of matrices S = {M1, M2, . . . , Mk} ⊆ Qt×t, deter-
mining the boundedness of M j1

1 M j2
2 · · ·M

jk

k where each ji ≥ 0, is undecidable.

Proof. The corollary follows in a similar way as in [5]. For the matrices one
constructs by their encoding but using the modified PFA as above, we have
that ρ̂({M j1

1 M j2
2 · · ·M

jk+1
k+1 }) ≤ 1 (here we denote the JSR of a bounded ma-

trix language) if and only if the matrix product M j1
1 M j2

2 · · ·M
jk+1
k+1 is bounded.

The reason is that if ρ(M j1
1 M j2

2 · · ·M
jk+1
k+1) > 1, then clearly this product is

unbounded. If ρ(M j1
1 M j2

2 · · ·M
jk+1
k+1) ≤ 1 however, then the encoding technique

used in the proof is such that a particular matrix norm defined on this product
is less than or equal to 1. ��

For an arbitrary finite set of matrices S, an important open problem is whether
it is decidable to determine if the joint spectral radius of S is strictly less than
1. If ρ̂(S) < 1 then this means any product of matrices from S will converge
to the zero matrix. We now prove that an analogous problem to that defined in
Theorem 4 but for a strict inequality is actually decidable.

Theorem 5. Computing whether the joint (or equivalently generalized) spectral
radius of a bounded matrix language is strictly less than 1 is decidable.

Proof. Given a set of matrices S = {M1, M2, . . . , Mk} ⊆ Qt×t defining a bounded
matrix language X = {M j1

1 M j2
2 · · ·M

jk

k |j1, j2, . . . , jk ≥ 0} ⊆ Qt×t. If ρ(Mi) ≥ 1
for some Mi ∈ S then clearly ρ(X) ≥ 1 by the definition of ρ, thus we may
assume that ρ(Mi) < 1 for all Mi ∈ S. Note that computing inequalities of the
spectral radius of a single matrix (with algebraic entries) is known from the lit-
erature to be decidable by Tarski-Seidenberg elimination (see [15] for details of
the Tarski-Seidenberg theorem) and thus determining if ρ(Mi) < 1 is decidable.

In the Jordan normal form Ji of any matrix Mi, it is well known that the
entries of Jj

i are given by an expression of the form p(j)λj (where p(·) is a
polynomial and λ is an eigenvalue of Mi). Since for each eigenvalue λ, we have
|λ| < 1, then for any ε > 0, after some computable x (found by considering
the derivatives of p(·)), p(j)λj is always smaller than ε for j ≥ x. Applying
this property entrywise to all elements of Mi, we see that for higher powers
than x, all entries of the matrix will be strictly less than ε and monotonically
decreasing, since λj is exponentially decreasing to zero whereas p(j) only has at
most polynomial growth.

The following equality (know as Gelfand’s formula, see [9] for a proof) states
that for any matrix norm || · || and matrix A ⊆ Cn×n:

ρ(A) = lim
j→∞

||Aj ||1/j (8)

Since eventually the individual entries of powers of any Mi are exponentially
and monotonically decreasing towards zero, then, for some computable yi, the

102 P.C. Bell, V. Halava, and M. Hirvensalo

value ||M ji

i ||1/ji will always be strictly less than 1 for any ji > yi since this value
tends towards ρ(Mi) by (8) and ρ(Mi) < 1 by the above assumption. We can
find such a value yi for each matrix Mi. Since || · || is submultiplicative, for each
Mi and ji > yi then

||M j1
1 M j2

2 · · ·M
jk

k || ≤
k∏

r=1

||M jr
r || <

k∏
r=1, r �=i

||M jr
r ||

with j1, j2 · · · jk ≥ 0 (in other words, the norm is larger by removing the element
M ji

i from the product).
In the definition of ρ̂(S), since we know the form of a product is from a

bounded matrix language and ρ̂(S) is defined by a supremum limit, some ma-
trix must occur an infinite number of times. This will, in the limit, contribute
limj→∞ ||M j

i ||1/j = ρ(Mi) < 1 to the matrix norm that we are trying to maxi-
mize. There should thus be exactly one matrix used an infinite number of times,
otherwise the norm would strictly increase by removing that matrix from the
product completely (i.e. setting its exponent to 0 in the product).

Finally then, it is not difficult to see there is a finite number of matrix products
to check to determine ρ̂(S) exactly and since ρ̂(S) = ρ(S), we are done. To see
this, we individually consider each Mi being used an infinite number of times
giving a multiplicative factor of ρ(Mi) and for the other matrices Mj (with
j �= i), we know that it only makes sense to consider powers up to yj , since for
higher powers, the resulting matrix norm would start to decrease. ��

6 Conclusion

In this paper, we considered several computational problems for bounded lan-
guages, most notably Theorem 3 dealing with emptiness problems for proba-
bilistic finite automata and Theorems 4 and 5 giving a dichotomy result for
the decidability of the joint spectral radius (JSR) on bounded matrix languages
when considering either strict or non-strict cut points.

The main motivation for considering the joint spectral radius for bounded
matrix languages was that is characterises the maximal asymptotic growth rate
of a system where we may change the matrix being applied to some initial vector
only a fixed, finite number of times. It is perhaps surprising and interesting
that undecidability results can be obtained from such restricted systems and
this comes directly from encoding Hilbert’s tenth problem rather than the more
widespread tool of Post’s correspondence problem for example where such a
restriction does not seem possible. For the case that the number of changes of
matrix is unbounded, we get the standard JSR of a set of matrices Σ and the
important and long standing problem of whether ρ̂(Σ) < 1 remains open.

It is worth noting that the undecidability results hold for a finite number
of matrices related to the number of unknowns in the polynomials for which
Hilbert’s tenth problem is undecidable (currently 9, see [11]).

On the Joint Spectral Radius for Bounded Matrix Languages 103

References

1. Bell, P., Halava, V., Harju, T., Karhumäki, J., Potapov, I.: Matrix Equations and
Hilbert’s Tenth Problem. International Journal of Algebra and Computation 18(8),
1231–1241 (2008)

2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer,
Heidelberg (1988)

3. Blondel, V., Canterini, V.: Undecidable Problems for Probabilistic Automata of
Fixed Dimension. Theory of Comp. Sys. 36, 231–245 (2003)

4. Blondel, V., Tsitsiklis, J.: The Lyapunov Exponent and Joint Spectral Radius of
Pairs of Matrices are Hard - when not Impossible – to Compute and to Approxi-
mate. Math. of Control, Signals, and Sys. 10, 31–40 (1997)

5. Blondel, V., Tsitsiklis, J.: The Boundedness of all Products of a Pair of Matrices
is Undecidable. Sys. and Control Letters 41(2), 135–140 (2000)

6. Blondel, V., Jeandel, E., Koiran, P., Portier, N.: Decidable and Undecidable Prob-
lems about Quantum Automata. SIAM Journal on Computing 34(6), 1464–1473
(2005)

7. Dang, Z., Ibarra, O., Sun, Z.: On the emptiness problem for two-way NFA with
one reversal-bounded counter. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS,
vol. 2518, pp. 103–114. Springer, Heidelberg (2002)

8. Egerstedt, M., Blondel, V.: How Hard Is It to Control Switched Systems? In: Proc.
of the American Control Conference, Anchorage (2002)

9. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge
(1990)

10. Hirvensalo, M.: Improved Undecidability Results on the Emptiness Problem of
Probabilistic and Quantum Cut-Point Languages. In: van Leeuwen, J., Italiano,
G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007.
LNCS, vol. 4362, pp. 309–319. Springer, Heidelberg (2007)

11. Jones, J.P.: Universal Diophantine Equation. The Journal of Symbolic Logic 47(3),
549–571 (1982)

12. Ibarra, O.: Reversal-Bounded Multicounter Machines and their Decision Problems.
Journal of the ACM 25(1), 116–133 (1978)

13. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
14. Paz, A.: Introduction to Probabilistic Automata. Academic Press, London (1971)
15. Renegar, J.: On the Complexity and Geometry of the First-order Theory of the

Reals. Parts I, II, and III. Journal of Symbolic Computation 13(3), 255–352 (1992)
16. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.

Springer, Heidelberg (1978)
17. Schützenberger, M.P.: On the Definition of a Family of Automata. Information and

Control 4, 245–270 (1961)
18. Schützenberger, M.P.: On a Theorem of R. Jungen. Proc. Amer. Math. Soc. 13,

885–890 (1962) ISSN 0002-9939
19. Turakainen, P.: Generalized automata and stochastic languages. Proceedings of

American Mathematical Society 21, 303–309 (1969)

Z-Reachability Problem for Games on
2-Dimensional Vector Addition Systems with

States Is in P�

Jakub Chaloupka

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic

xchalou1@fi.muni.cz

Abstract. We consider a two-player infinite game with zero-reachability
objectives played on a 2-dimensional vector addition system with states
(VASS), the states of which are divided between the two players. Brázdil,
Jančar, and Kučera (2010) have shown that for k > 0, deciding the
winner in a game on k-dimensional VASS is in (k− 1)-EXPTIME. In this
paper, we show that, for k = 2, the problem is in P, and thus improve
the EXPTIME upper bound.

1 Introduction

Vector addition systems with states (VASS) are an abstract computational model
equivalent to Petri nets [6] which is well suited for modelling and analysis of
distributed concurrent systems. Roughly speaking, a k-dimensional VASS, where
k > 0 is an automaton with a finite control and k unbounded counters which can
store non-negative integers. It can be represented as a finite k-weighted directed
graph G = (V, E, w). For simplicity, the weights of the edges are restricted
to vectors from the set {−1, 0, 1}k. At the beginning of the computation, a
token is placed on one of the vertices. In each step of the computation, a VASS
can move the token to one of the destination vertices of the edges emanating
from the current vertex with the token. This also updates the vector of current
counter values by adding the weight of the traversed edge. Since the counters
cannot become negative, transitions which attempt to decrease a zero counter
are disabled. Configurations of a given VASS are written as pairs (v,−→n), where
v is the current vertex and −→n ∈ Nk

0 is a vector of the current counter values.
Brázdil, Jančar, and Kučera [1] extended VASS in two respects. First, the

set of vertices is divided between two players, named � and ♦, and so we get
a turn-based two-player game where the choice of an outgoing edge is upon the
player who owns the current vertex with the token. Second, the weights of edges
may contain symbolic components (denoted by ω) whose intuitive meaning is
“add an arbitrarily large non-negative integer to the appropriate counter”. Edges

� This work has been partially supported by the Grant Agency of the Czech Republic
grants No. 201/09/1389, 102/09/H042.

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 104–119, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 105

with symbolic components represent infinite number of transitions. This two-fold
extension of a VASS is called a game on k-dim VASS and it has been shown
in [1] to be capable of modelling interesting systems.

Various problems on games on k-dim VASS have been considered in [1]. In
particular, the Z-reachability problem is the problem of deciding whether for
a given starting configuration (v,−→n), the player � has a strategy that ensures
that not one of the k counters is ever equal zero, which is the complement of the
problem of deciding whether the player ♦ has a strategy that ensures that even-
tually at least one of the counters is zero, i.e., a configuration (v′, (n′

1, . . . , n
′
k))

such that (∃i ∈ {1, . . . , k})(n′
i = 0) is reached. This problem was shown in [1] to

belong to the complexity class (k − 1)-EXPTIME. In particular, for k = 1 and
k = 2, the problem is in P and EXPTIME, respectively.

Our Contribution. In this paper, we show that 2-dimensional VASS games
with Z-reachability objectives are solvable in polynomial time, and thus improve
the EXPTIME upper bound given in [1]. More precisely, we show that the winner
in 2-dim VASS games can be decided in polynomial time, and a finite description
of winning starting configurations of both players is also computable in polyno-
mial time. This contrasts sharply with the previous results about VASS (or,
equivalently, Petri nets) where the undecidability/intractability border usually
lies between one and two counters. For example, k-dim VASS are equivalent to
Petri nets with k unbounded places, and it has been shown that the bisimilarity
problem is decidable for Petri nets with one unbounded place and undecidable
for Petri nets with two or more unbounded places [4,5]. The Z-reachability prob-
lem for games on 2-dim VASS also seems to be harder than the 1-dim case,
because unlike for the games on 1-dim VASS, in games on 2-dim VASS, if we
add an arbitrarily small rational number to some element of some edge-weight,
then the set of vertices of G which are part of some winning configuration for �
may change.

An interesting open question is whether the techniques presented in this paper
can be extended to three- (or even more-) dimensional VASS games. Since the
presented results about 2-dimensional VASS are relatively complicated (despite
investing some effort, we did not manage to find any substantial simplifications),
we suspect this problem as difficult.

The Z-reachability problem for games on k-dim VASS can be also thought of
as a problem of deciding the winner in an ordinary two-player reachability game
with infinite arena. The arena consists of all possible configurations (v,−→n) ∈
V ×Nk

0 and it is divided between � and ♦ according to the first component of the
configurations. The set of target configurations is the set Z = {(v, (n1, . . . , nk)) |
(∃i ∈ {1, . . . , k})(ni = 0)}. � wants to avoid the set Z while ♦ wants to reach
it. We note that the game is upward-closed in the sense that if � has a strategy
to win from a configuration (v,−→n) ∈ V × Nk

0 , then the same strategy also wins
each play starting from (v,−→n ′) ∈ V ×Nk

0 such that −→n ′ ≥ −→n . Therefore, there is
a finite set of minimal winning starting configurations.

106 J. Chaloupka

2 Preliminaries

For technical convenience, we will define the game in a slightly different way
than in Section 1, and then we will show how the properties of the modified
game imply existence of a polynomial algorithm for solving the original game.
The properties of the modified game are proved in Section 3, the main part of
this paper.

A game on 2-dim vector addition system with states (VASS) is a tuple Γ =
(G, V�, V♦), where G = (V, E, w) is a finite two-weighted directed graph such
that V is a disjoint union of the sets V� and V♦, E ⊆ V 2, w : E → {−1, 0, 1}2,
and each vertex has at least one outgoing edge. The graph G can also be thought
of as a 2-dim VASS [3]. The game is played by two opposing players, named �
and ♦. A play starts by placing a token on some given vertex and the players
move the token along the edges of G ad infinitum. If the token is on vertex
v ∈ V�, � moves it. If the token is on vertex v ∈ V♦, ♦ moves it. This way
an infinite path p∞ = (v0, v1, v2, . . .) is formed. The path p∞ is also called a
play. The play is winning for �, if both components of the sum of the weights
of the traversed edges are above some constant K ∈ Z during the whole play,
i.e., (∃K ∈ Z)(∀k ∈ N0)(

∑k−1
i=0 w(vi, vi+1) ≥ (K, K)) where the sum and the

inequality are element-wise. The play is winning for ♦, if for any constant K ∈ Z,
there is a point in the play where at least one of the components of the sum of
the traversed edges is below K, i.e., (∀K ∈ Z)(∃k ∈ N0)(

∑k−1
i=0 w1(vi, vi+1) <

K∨
∑k−1

i=0 w2(vi, vi+1) < K). Please note that the initial vector of counter values
is (0, 0) and the counters are allowed to go negative.

A strategy of � is a function σ : V ∗ · V� → V such that for each finite path
p = (v0, . . . , vk) with vk ∈ V�, it holds that (vk, σ(p)) ∈ E. Recall that each
vertex has out-degree at least one, and so the definition of a strategy is correct.
The set of all strategies of � in Γ is denoted by ΣΓ . We say that an infinite
path p∞ = (v0, v1, v2, . . .) agrees with the strategy σ ∈ ΣΓ if for each vi ∈ V�,
σ(v0, . . . , vi) = vi+1. A strategy π of Min is defined analogously. The set of all
strategies of Min in Γ is denoted by ΠΓ . Given an initial vertex v ∈ V , the
outcome of two strategies σ ∈ ΣΓ and π ∈ ΠΓ is the (unique) infinite path
outcomeΓ (v, σ, π) = (v = v0, v1, v2, . . .) that agrees with both σ and π.

The set V can be partitioned into two sets, W� and W♦, so that if the play
starts at some vertex v ∈ W�, then � has a strategy that ensures that he will
win, and if the play starts at some vertex v ∈ W♦, then ♦ has a strategy that
ensures that she will win [1]. Formally:

v ∈ W� ⇔ (∃σ ∈ ΣΓ)(∀π ∈ ΠΓ)
(outcomeΓ (v, σ, π) = (v = v0, v1, v2, . . .) ∧
(∃K ∈ Z)(∀k ∈ N0)(

∑k−1
i=0 w(vi, vi+1) ≥ (K, K)))

(1)

To solve the game is to determine the sets W� and W♦. In this paper, we will
show that there is a constant Kmin ∈ Z of polynomial size with respect to |V |
such that for each v ∈ W�, the constant K in (1) can always be chosen so that
K ≥ Kmin. By the statement that Kmin ∈ Z is of polynomial size with respect
to |V |, we mean that |Kmin| ≤ l · |V |k for some fixed constants k, l ∈ N.

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 107

The polynomial size of Kmin implies that the values of both counters in all
minimal winning configurations of � in the original reachability game with in-
finite arena is of polynomial size with respect to |V | (cf. the full version of this
paper [2]). It follows that we can obtain the solution of the original game by
solving only a restricted game, where the values of both counters are bounded
by a number of polynomial size with respect to |V |. Since a reachability game
can be solved in polynomial time with respect to the number of its configura-
tions, we have a polynomial-time algorithm for solving the original reachability
game with infinite arena. Our definition of the game on 2-dim VASS does not
consider edge-weights with the symbolic component ω. We outline how to ex-
tend the proofs to games with symbolic components in edge-weights in the full
version of this paper [2].

If e ∈ E, then w1(e) is the first component of w(e) and w2(e) is the second
component of w(e), i.e., w(e) = (w1(e), w2(e)). Simple cycle in G is a cycle
with no repeated vertex. In this paper, we will work only with simple cycles,
and so we will often omit the adjective “simple”. If c = (v0, . . . , vk−1, vk = v0)
is a cycle, then w(c) is the sum of the weights of its edges, element-wise, i.e.,
w(c) = (

∑k−1
i=0 w1(vi, vi+1),

∑k−1
i=0 w2(vi, vi+1)). The terms w1(c) and w2(c) have

the intuitive meaning. Because of the limitations on the weights of the edges, it
always holds that |w1(c)|, |w2(c)| ≤ |V |, for each cycle c in G. The weight of a
path (v0, . . . , vk) is defined analogically.

The cycles of G can be partitioned into four sets. The first set, P , is the set of
cycles c such that w1(c) ≥ 0 ∧w2(c) ≥ 0. The second set, N , is the set of cycles
c such that (w1(c) ≤ 0∧w2(c) < 0)∨ (w1(c) < 0∧w2(c) ≤ 0). The third set, A,
is the set of cycles c such that w1(c) > 0∧w2(c) < 0. Finally, the fourth set, B,
is the set of cycles such that w1(c) < 0 ∧ w2(c) > 0.

The ratio of the weights of a cycle c is the fraction w1(c)
w2(c) . We will use R

to denote the set of all possible ratios of weights of the cycles from A ∪ B,
i.e., R = {a

b | a ∈ {−|V |, . . . ,−1} ∧ b ∈ {1, . . . , |V |}}. For each X ∈ {A, B},
∼∈ {<,≤, =,≥, >}, and R ∈ R, we will use X∼R to denote the set of cycles
{c ∈ X | w1(c)

w2(c) ∼ R}.
Let Γ = (G = (V, E, w), V�, V♦) be a game on 2-dim VASS such that W� �= ∅,

and let v ∈ W�. We can define the following finite directed tree rooted at v.
T Γ,v = (T Γ,v

V , T Γ,v
E), where

T Γ,v
V = {p = (v = v0, v1, . . . , vk) | p is a path in G ∧

(∀0 ≤ i < j < k)(vi �= vj) ∧
(∀0 ≤ i < k)(vi ∈W�) ∧
(vk ∈W♦ ∨ (∃0 ≤ i < k)(vi = vk)) }

That is, the set of nodes of the tree is the set of paths in G starting from v and
ending either at the first repeated vertex or at the first vertex from ♦’s winning
region. If p = (v0, . . . , vk) ∈ T Γ,v

V , then last(p) = vk. We define depth of a node
p = (v0, . . . , vk) ∈ T Γ,v

V as h(p) = k.
There is an edge ((v0, . . . , vk), (u0, . . . , ul)) ∈ T Γ,v

E if and only if l = k + 1, for
each i ∈ {0, . . . , k}, vi = ui, and (vk, ul) ∈ E. If the game Γ is clear from the

108 J. Chaloupka

context, then the tree is denoted simply T v. The set of nodes, T v
V , is divided into

inner nodes and leaves. The leaves of the tree are the nodes with no successors.
Let q = (v0, . . . , vk) be a leaf. If last(q) /∈ W♦, then ce(q) = (vi, . . . , vk),

rh(q) = i, and ph(q) = (v0, . . . , vi), where i < k such that vi = vk. That is, ce(q)
is the cycle closed at vk, rh(q) is the depth of the node at which the closed cycle
starts, and ph(q) is the path from the root to the starting vertex of the cycle. It
holds that rh(q) = h(ph(q)).

For the whole paper, let Γ = (G = (V, E, w), V�, V♦) be a game on 2-dim
VASS. The elements of V will be called vertices. For each v ∈ W�, the elements
of T v

V will be called nodes, inner nodes, leaves, or, when it is convenient, paths,
because they are paths in G. We suppose that |V | > 1. For |V | = 1 the game is
very simple to solve: There is only one vertex v with a self-loop, and so v ∈W�
if and only if the self-loop is in the set P .

3 The Proof

We prove that if v ∈ W�, then � has a strategy σ such that for each play
(v0, v1, v2, . . .) agreeing with σ, it holds that (∀k ∈ N0)(

∑k−1
i=0 w(vi, vi+1) ≥

(Kmin, Kmin)), where Kmin is of polynomial size with respect to |V |. There-
fore, we can reduce the problem of solving a game on 2-dim VASS to solving
a reachability game with finite arena of polynomial size with respect to |V |, as
described in the full version of this paper [2]. For reachability games there are
polynomial-time algorithms. We first give an outline of the proof and then prove
it formally.

3.1 Proof Outline

Each prefix pk∞ = (v0, . . . , vk) of an infinite path p∞ = (v0, v1, v2, . . .) in G can
be partitioned using the following procedure: Start at v0 and go along the path
until an already visited vertex is encountered, then remove the closed cycle,
leaving only the first vertex of the cycle, and continue in the same fashion. This
way, pk

∞ is partitioned into a set of cycles c1, . . . , cl and remaining path with
no repeated vertex. If for each i ∈ {0, . . . , k}, it holds that vi ∈ W�, then the
partitioning corresponds to a traversal of the tree T v0 in the following sense. The
traversal starts at (v0) ∈ T v0

V . When a leaf q is reached, ce(q) is added to the set
of traversed cycles and the traversal continues at ph(q) until a node p ∈ T v0

V such
that last(p) = vk is reached. The path p is the remaining path. The partitioning
of paths into simple cycles plays a crucial role in our proof.

It is easy to see that if � can ensure that only simple cycles from P are
traversed, then he can win. However, this is not the only way he can win. �
can also win if he is able to balance the cycles from A and B. The cycles from
A increase the first counter and decrease the second counter, and the cycles
from B decrease the first counter and increase the the second counter. What is
important are the ratios of the first and the second weights of the simple cycles.
If c1 ∈ A and c2 ∈ B are the only simple cycles that can be traversed, and � is

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 109

able to alternate them arbitrarily, then he can win if and only if w1(c1)
w2(c1)

≤ w1(c2)
w2(c2)

,
or, equivalently w1(c1)w2(c2) ≥ w1(c2)w2(c1). Moreover, he can alternate the
cycles in such a way that both counters are always greater or equal to −|V |.
Please note, that the set of all possible ratios of cycles in G from A and B is a
subset of R, and so it has at most |V |2 elements.

If v ∈ W�, then for each R ∈ R, for a play starting at v, � can ensure that
only cycles from A≤R ∪B≥R ∪ P are traversed. This does not mean that � can
ensure that all these three types of cycles are traversed, we only claim that �
can ensure that each traversed cycle is from A≤R or B≥R or P . For example,
consider the following situation winning for �. In this situation, � can force
only two cycles c1 and c2 such that w(c1) = (1,−1), w(c2) = (−1, 1), and these
cycles have a common vertex so that � is able to alternate between them. In
this example, � is not able to force a cycle from P and the ratio of both c1 ∈ A
and c2 ∈ B is −1. Now, consider three cases: R = −1, R < −1, and R > −1. If
R = −1, then � is able to force a cycle from A≤R, namely, the cycle c1, and he
is also able to force a cycle from B≥R, namely, the cycle c2. If R < −1, he is able
to force a cycle only from B≥R, and if R > −1, then he is able to force a cycle
only from A≤R. To sum up, in all the three cases, � can ensure that only cycles
from A≤R ∪B≥R ∪P are traversed. To see why the claim holds in general, recall
that each play in Γ starting at v corresponds to a traversal of the tree T v.

Let v ∈ W� and R ∈ R, then � can ensure that all reached leaves in T v

correspond to cycles from A≤R ∪ B≥R ∪ P , because if ♦ could ensure that a
leaf q such that ce(q) ∈ A>R ∪ B<R ∪N is reached, then she would be able to
ensure that all reached leaves correspond to a cycle from ce(q) ∈ A>R∪B<R∪N
(Recall that if a leaf q is reached, then the play continues at ph(q)). Therefore,
if the play is long enough, then at least one of the counters goes below arbitrary
constant. We omitted the possibility that a leaf q such that last(q) ∈ W♦ is
reached, because if such a leaf is reached, then ♦ can also win.

Unfortunately, the strategy of �, σv
R, that ensures that all traversed cycles

are from A≤R ∪ B≥R ∪ P may not be the sought strategy, because it may not
be winning for �. The reason is that he may not be able to alternate the cycles
from A≤R and B≥R so that both counters are always above some constant. For
example, ♦ may be able to ensure that out of the cycles from A≤R ∪B≥R ∪ P ,
only cycles from A≤R are traversed, and so the second counter goes to −∞.
However, the sought strategy for � can be assembled from the strategies σv

R for
all v ∈ W� and R ∈ R, albeit we may have to select much less number than
−|V | as the constant Kmin, but still polynomial with respect to |V |. The sought
strategy is assembled in the following way.

Let v ∈ W� be the starting vertex. We select R ∈ R arbitrarily, and start
using the strategy σv

R. We are using the strategy σv
R until there is a certain

“disbalance” between the cycles from A≤R and the cycles from B≥R. Let u be
the current vertex when the disbalance occurs. If too many cycles from A≤R were
traversed, then we change the current strategy to σu

R′ such that the disbalance
was caused by cycles from A=R′ where R′ < R, and if too many cycles from
B≥R were traversed, then we change the current strategy to σu

R′′ such that

110 J. Chaloupka

the disbalance was caused by cycles from B=R′′ where R′′ > R. The precise
definition of the disbalance (it must be polynomial somehow) and the precise
rules for selecting the new ratio will be given later. Before we get to the formal
proof, one additional point has to be discussed.

From the previous paragraph, it follows that it is not enough that the strategy
σv

R traverses only cycles from A≤R∪B≥R∪P . It must also be able to balance the
cycles from A=R and B=R, so that a disbalance between A≤R and B≥R is never
caused by the cycles from A=R or B=R. Therefore, the strategy σv

R we will define
guarantees that only cycles from A≤R∪B≥R∪P are traversed and the traversed
cycles from A=R or B=R are kept in balance. The balance will not be the best
possible as if we were able to alternate the cycles arbitrarily, but it will be such
that the sum of the weights of the traversed cycles from A=R ∪ B=R is always
greater or equal to (−2 · |V |2,−2 · |V |2). This “balancing property” also ensures
that if R = minR, then only the cycles from B>R can cause a disbalance, and
if R = maxR, then only the cycles from A<R can cause a disbalance.

3.2 Formal Proof

We will first define the “local” strategies for each v ∈W� and R ∈ R, and then
we will assemble the “global” strategy from the local strategies. So let v ∈W�,
R ∈ R, and consider the tree T v.

We define values of the nodes of the tree T v: value : T v
V → {−1, 0, . . . , |V |}2 ∪

{0,1}.
The values are defined recursively. The values of leaves are defined as follows.

Let q = (v0, . . . , vk) ∈ T v
V be a leaf.

value(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if last(q) ∈ W♦
0 if last(q) ∈ W� ∧ ce(q) ∈ N ∪A>R ∪B<R

1 if last(q) ∈ W� ∧ ce(q) ∈ P ∪A<R ∪B>R

(rh(q),−1) if last(q) ∈ W� ∧ ce(q) ∈ A=R

(−1, rh(q)) if last(q) ∈ W� ∧ ce(q) ∈ B=R

(2)

To define the value of an inner node p = (v0, . . . , vk) ∈ T v
V , we introduce some

notation:
amin(p) = min{a | (∃(p, q) ∈ T v

E)(value(q) = (a, b))}

bmin(p) = min{b | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

amax(p) = max{a | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

bmax(p) = max{b | (∃(p, q) ∈ T v
E)(value(q) = (a, b))}

If there is no successor of p with value from {−1, 0, . . . , |V |}2, i.e., all successors
have the value 0 or 1, then amin(p) = bmin(p) = ∞ and amax(p) = bmax(p) =
−∞. If last(p) ∈ V�, then value(p) is defined as follows.

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 111

value(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if (∀(p, q) ∈ T v

E)(value(q) �= 1) ∧
(amin(p) ≥ h(p) ∨ bmin(p) ≥ h(p))

(amin(p), bmin(p)) if (∀(p, q) ∈ T v
E)(value(q) �= 1) ∧

amin(p) < h(p) ∧ bmin(p) < h(p)
1 if (∃(p, q) ∈ T v

E)(value(q) = 1)

(3)

If last(p) ∈ V♦, then value(p) is defined as follows.

value(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if (∀(p, q) ∈ T v

E)(value(q) = 1)
(amax(p), bmax(p)) if (∀(p, q) ∈ T v

E)(value(q) �= 0) ∧
−∞ < amax(p), bmax(p) < h(p)

0 if (∃(p, q) ∈ T v
E)(value(q) = 0) ∨

amax(p) ≥ h(p) ∨ bmax(p) ≥ h(p)

(4)

The cycles from N ∪ A>R ∪ B<R are called bad cycles. The cycles from P ∪
A<R ∪ B>R are called good cycles. The cycles from A=R ∪ B=R are not given
any special name.

We will show that the value of the root (v) ∈ T v
V is either 1 or (−1,−1)

(Please note that if value((v)) = (a, b), then the condition a, b < h((v)) = 0
implies a = b = −1). We will show this by proving that if value((v)) = 0, then
♦ has a winning strategy, which is in contradiction with v ∈W�. From the fact
that the root has value 1 or (−1,−1), we will infer a strategy for � that ensures
that only cycles from A≤R∪B≥R∪P are traversed, and the cycles from A=R and
B=R are kept in balance. So, let’s first prove that the value of the root cannot
be 0. We will only give a sketch of the proof, the whole formal proof is in the
full version of this paper [2].

We will use a proof by contradiction. We will suppose that value((v)) = 0 and
show that ♦ has a strategy that ensures that for each K ∈ Z, the first counter or
the second counter will eventually go below K. The strategy is outlined below.

If value((v)) = 0, then ♦ has a strategy that ensures that only cycles from
A≥R∪B≤R∪N are traversed or a leaf q ∈ T v

V such that last(q) ∈W♦ is reached.
Moreover, she can choose the strategy in such a way that whenever a node p
such that value(p) = 0 is visited, then either the strategy ensures that if the
next reached leaf r has ce(r) ∈ A=R ∪B=R, then ce(r) ∈ A=R ∧ rh(r) ≥ h(p), or
the strategy ensures that if the next reached leaf r has ce(r) ∈ A=R∪B=R, then
ce(r) ∈ B=R ∧ rh(r) ≥ h(p). This allows ♦ to prevent � from alternating cycles
from A=R and B=R. We note that � may be able to perform a few alternations,
because he can sometimes prevent ♦ from forcing the chosen kind of cycle, but
only at the cost of visiting another node with value 0 that is deeper, and since the
maximal depth is |V |, this cannot be repeated infinitely many times. Actually,
� may be able to perform infinite number of alternations, but at the cost of
traversing a bad cycle infinitely many times.

To sum up, ♦ has a strategy that ensures that exactly one of the following
four things happens. First, a leaf q such that last(q) ∈ W♦ is reached. Second,
only leaves q corresponding to bad cycles or cycles from A=R∪B=R are reached,
and a bad cycle is traversed infinitely many times. Third, there is a point from
which onwards all reached leaves q have ce(q) ∈ A=R. Fourth, there is a point

112 J. Chaloupka

v2

v1

v0

(−1, 1)

(−1, 1)

(0, 0)

(0, 0)(1,−1)

(1,−1)

v0v0

v2v1

v0v1

v0

(0,−1) (−1, 0)

(0, 0)

(−1, 1)

(0,−1)

(−1, 0)

(−1,−1)

(a) (b)

Fig. 1. Example tree valuation: (a) example game, (b) tree T v0

from which onwards all reached leaves q have ce(q) ∈ B=R. For the last three
possibilities, at least one of the counters goes below arbitrary constant. For
the first possibility, ♦ can apply her winning strategy from last(q) ∈ W♦, and
so at least one of the counters goes below arbitrary constant too. The whole
formal proof is in the full version of this paper [2]. Therefore, there are only
two possibilities for the value of the root: 1 and (−1,−1). Let’s now define the
strategy for � and show that it has the desired properties. We will start with
some intuition.

The intuitive meaning of the node value 1 is that � has a strategy to reach a
leaf corresponding to a good cycle. The meaning of the node value (a, b) is more
complex.

If a node p has the value (a, b), then � has a strategy to reach a leaf corre-
sponding to a good cycle or a cycle from A=R ∪ B=R. Moreover, the strategy
can be chosen in such a way that if the reached leaf q has ce(q) ∈ A=R, then
rh(q) ≤ a, or the strategy can be chosen in such a way that if the reached leaf
q has ce(q) ∈ B=R, then rh(q) ≤ b. In particular, if a = −1, then � can force
a good cycle or a cycle from B=R (albeit nothing can be said about the depth
the play returns to), and if b = −1, then � can force a good cycle or a cycle
from A=R (albeit nothing can be said about the depth the play returns to). The
rules for assigning values to nodes stipulate that a < h(p) and b < h(p). This is
important for balancing the cycles from A=R and B=R.

The player � may not be able to alternate the cycles from A=R and B=R

arbitrarily, as Figure 1 shows. In Figure 1 (a), there is a game on 2-dim VASS.
Squares are �’s vertices and the diamond is a ♦’s vertex. The pairs of numbers
are weights of the edges depicted as arrows. In this game, � can win from all
vertices. Let R = −1, then all cycles in the figure are from A=R ∪ B=R. In
Figure 1 (b), there is the tree T v0 . The pairs of numbers are values of the nodes
and the dashed arrows emanating from leaves show, for each leaf, where the
game (projected on the tree) continues when it reaches the leaf.

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 113

If the play starts from v0, then at the beginning, � is able to traverse a cycle
from A=R arbitrary number of times (the cycle (v0, v0)), after that he is able to
traverse a cycle from B=R arbitrary number of times (the cycle (v1, v1)). How-
ever, after that he is not able to start traversing cycles from A=R immediately.
The value of the node (v0, v1) ∈ T v0

V at depth 1 is (−1, 0), which indicates that �
is able to force a cycle from B=R, but not from A=R. However, � has a strategy
that ensures that if ♦ forces a cycle from B=R, then the play returns to a node
at smaller depth, namely, the depth 0. At the depth 0, � is, again, able to force
a cycle from A=R.

In general, we claim that � has a strategy that ensures that only good cycles
and cycles from A=R ∪ B=R are traversed. Moreover, the strategy also ensures
that both the sum of the first weights of the cycles from A=R ∪ B=R and the
sum of the second weights of the cycles from A=R ∪ B=R is always greater or
equal to −2 · |V |2.

In the case where value((v)) = 1, � has a strategy to traverse only the good
cycles and the claim obviously holds.

The second case is that value((v)) = (−1,−1). In this case, � has a strategy
that ensures that only nodes p with value 1 or value (a, b) ∈ {−1, . . . , |V |}2 are
visited. This alone implies that only good cycles and cycles from A=R ∪ B=R

are traversed. Moreover, he is able to choose the strategy in such a way that it
balances the cycles from A=R and B=R. When a disbalance between the cycles
from A=R and B=R occurs, let’s say that too many cycles from A=R have been
traversed, then � aims to traverse cycles from B=R or good cycles. If the current
node p has the value 1, then � can ensure that the next traversed cycle is a good
cycle, which does not worsen the disbalance. If p has the value (a, b) and a �= −1,
♦ can force a cycle from A=R, but if she does, � can ensure that the play returns
to the depth a or smaller, and since a < h(p), we return to a smaller depth than
the depth of p. We can continue using the same reasoning and conclude that after
traversing at most |V | − 1 (maximal depth of an inner tree node) “unwanted”
cycles from A=R, we get to the root, where � can force cycles from B=R or
good cycles. Therefore, he can alleviate the disbalance caused by the cycles from
A=R. Of course, the case when a disbalance is caused by cycles from B=R is
symmetric. Formal definition of this “balancing” strategy of � is as follows.

A general strategy of � is a function σ : V ∗ · V → V , i.e., it decides based on
the whole history of the play. However, the strategy we define now will decide
only based on the current node of the tree T v

V (which consists of fragments of
the whole history) and some additional memory which could be computed from
the complete history of the play.

Apart from the current node, the player � keeps a triple (x, y, z) ∈ {−2 ·
|V |2, . . . , 0, . . . , 2 · |V |2}2 × {0, 1}, where x is the sum of the first weights of the
traversed cycles from A=R ∪ B=R, y is the sum of the second weights of the
traversed cycles from A=R ∪ B=R, and z is the mode of the strategy: z = 0
means that the strategy aims to traverse cycles from A=R, and z = 1 means
that the strategy aims to traverse cycles from B=R. The memory plays a crucial
role in keeping the traversed cycles from A=R and B=R in balance.

114 J. Chaloupka

The strategy of � visits only nodes p of the tree T v with value(p) = 1 or
value(p) = (a, b) (recall that a, b < h(p)). The play starts at the root (v). It
holds that h((v)) = 0, and value((v)) = 1 or value((v)) = (−1,−1). Initial state
of the memory is (0, 0, 0). Let’s consider a general situation where we are at the
inner node p such that last(p) ∈ V�, value(p) = 1 or value(p) = (a, b) such that
a, b < h(p), and the current state of memory is (x, y, z), then the strategy of
�, denoted by σ, works as follows. Please note that the strategy does not have
to consider leaves, because at each leaf q, the play automatically returns to the
inner node ph(q). First, how a successor is chosen:

σ(p, (x, y, z)) =

⎧⎨⎩
q if (p, q) ∈ TE ∧ value(p) = 1 ∧ value(q) = 1
q if (p, q) ∈ TE ∧ value(p) = (a, b) ∧ z = 0 ∧ value(q) = (a′, b)
q if (p, q) ∈ TE ∧ value(p) = (a, b) ∧ z = 1 ∧ value(q) = (a, b′)

(5)
Please note that for a node p with value(p) = (a, b), the existence of a succes-
sor with value (a′, b) and the existence of a successor with value (a, b′) follows
from (3). It is also possible that these are not two distinct successors but only
one with value (a, b).

Second, how the memory is updated. The memory is updated only when a leaf
is reached, so let’s suppose that we have reached the leaf q. Then the memory
(x, y, z) is updated to:

(x, y, z) if ce(q) is a good cycle
(x + w1(ce(q)), y + w2(ce(q)), z) if ce(q) ∈ A=R ∪B=R ∧

z = 0 ∧
(x + w1(ce(q)) < 0 ∨
(x + w1(ce(q)) ∈ [−|V |2, |V |2] ∧
y + w2(ce(q)) ∈ [−|V |2, |V |2]))

(x + w1(ce(q)), y + w2(ce(q)), z) if ce(q) ∈ A=R ∪B=R ∧
z = 1 ∧
(y + w2(ce(q)) < 0 ∨
(x + w1(ce(q)) ∈ [−|V |2, |V |2] ∧
y + w2(ce(q)) ∈ [−|V |2, |V |2]))

(x + w1(ce(q)), y + w2(ce(q)), 1) if ce(q) ∈ A=R ∪B=R ∧
z = 0 ∧
x + w1(ce(q)) ≥ 0 ∧
(|x + w1(ce(q))| > |V |2 ∨
|y + w2(ce(q))| > |V |2)

(x + w1(ce(q)), y + w2(ce(q)), 0) if ce(q) ∈ A=R ∪B=R ∧
z = 1 ∧
y + w2(ce(q)) ≥ 0 ∧
(|x + w1(ce(q))| > |V |2 ∨
|y + w2(ce(q))| > |V |2)

(6)

We note again that if a leaf q is reached, then the play automatically continues
at node ph(q), and so the play is infinite. Let’s now take a closer look at the
memory updates.

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 115

While x, y ∈ [−|V |2, |V |2], the strategy does not change the type of cycles
it aims for, z is not changed (first 3 items in (6)). When |x| or |y| exceeds
|V |2, z = 0, and x ≥ 0, it means that too many cycles from A=R have been
traversed. Therefore z is changed to 1, and so the strategy aims for cycles from
B=R (4th item in (6)). As described before, even after this action, some cycles
from A=R may be traversed before cycles from B=R, but there can be at most
|V | − 1 of these unwanted cycles, therefore x and y do not leave the interval
[−2 · |V |2, 2 · |V |2]. The situation where too many cycles from B=R have been
traversed is dealt with analogously (5th item in (6)).

The following two lemmas show that the strategy σ satisfies the desired prop-
erties. An intuition why they hold was already given. Their formal proofs are in
the full version of this paper [2].

Lemma 1. Let Γ = (G = (V, E, w), V�, V ♦) be a game on 2-dim VASS. Let
further v ∈ W� be the starting vertex, R ∈ R, and let the strategy σ be defined
as in (5). Then the following holds. If the value of the root (v) of the tree T v is
value((v)) = 1, then the strategy σ ensures that only nodes p with value(p) = 1
are visited. If the value of the root (v) of the tree T v is value((v)) = (−1,−1), then
the strategy σ ensures that only nodes p with value(p) = 1 or value(p) = (a, b)
such that a, b < h(p) are visited. �

Lemma 1 implies that only good cycles and cycles from A=R∪B=R are traversed.
The next lemma states that the cycles from A=R and B=R are kept in balance.

Lemma 2. Let Γ = (G = (V, E, w), V�, V ♦) be a game on 2-dim VASS. Let
further v ∈ W� be the starting vertex, R ∈ R, let the root (v) of the tree T v

have the value 1 or (−1,−1), and let the strategy σ be defined as in (5). Let
� use the strategy σ, let ♦ use arbitrary strategy. The outcome of these two
strategies corresponds to a sequence of nodes (p0, p1, p2, . . .). Let (q0, q1, q2, . . .)
be the subsequence of the sequence containing all reached leaves corresponding
to cycles from A=R ∪B=R. In particular, for each i ∈ N0, ce(qi) ∈ A=R ∪B=R.
Then for each k ∈ N0, it holds that |

∑k
i=0 wj(ce(qi))| ≤ 2 · |V |2 where j = 0, 1.

�

For technical convenience, let’s number the elements of the set of the cycle ratios,
namely, let R = {R1, . . . , R|R|} where R1 < · · · < R|R|. It holds that |R| ≤ |V |2.
By Lemma 2, for each v ∈ W� and Rk such that k ∈ {1, . . . , |R|}, the player
� has the strategy σv

k that ensures that only cycles from P ∪A≤Rk
∪B≥Rk

are
traversed. Moreover, the cycles from A=Rk

and B=Rk
are balanced in the sense

that the absolute value of both components of the sum of their weights never
exceeds 2 · |V |2. Also, when using the strategy σv

k , the play never leaves the set
W�.

Using the above facts, we will now assemble a global strategy σ of � such
that there is a constant Kmin ∈ Z of polynomial size with respect to |V |
such that whatever strategy π the opponent ♦ uses, the resulting infinite play
outcomeΓ (v0, σ, π) = (v0, v1, v2, . . .) satisfies the following. For each k ∈ N0,∑k−1

i=0 w1(vi, vi+1) ≥ Kmin and
∑k−1

i=0 w2(vi, vi+1) ≥ Kmin. The strategy σ will

116 J. Chaloupka

be assembled from the strategies σv
k where v ∈ W� and k ∈ {1, . . . , |R|}. So,

let’s describe how this is done.
Each strategy σv

k has the three-component memory as described before. Let
k ∈ {1, . . . , |R|}. For each v ∈ W�, the strategy σv

k balances the cycles from
A=Rk

and B=Rk
. We will let all the strategies with the same k use the same

three-component memory. Therefore, the global strategy σ will have |R| three-
component memories, one for each k. For a specific k ∈ {1, . . . , |R|}, the tree-
component memory will be denoted by (xk, yk, zk). Apart from that, σ will have
additional memory that consists of two |R|-tuples. The first |R|-tuple will be
(a1, . . . , a|R|) ∈ {0, . . . , 4 · |V |4 + 3 · |V |}|R| and it will store the sums of the first
weights of the traversed cycles from A, separately for each ratio. The second
|R|-tuple will be (a′

1, . . . , a
′
|R|) ∈ {−4 · |V |4 − |V |, . . . , 0}|R| and it will store

the sums of the first weights of the traversed cycles from B, separately for each
ratio. However, when using the strategy σv

k , only traversed cycles from A and B
with ratios Ri such that i �= k will be recorded in the additional memory. The
traversed cycles with the ratio Rk will be recorded only in the three-component
memory (xk, yk, zk). The global strategy σ will also remember which strategy σv

k

it is currently using by remembering the vertex v and the integer k. The strategy
σ is defined as follows.

We will not describe (again) how the three-component memories are used and
updated, we will only describe how the two additional |R|-tuples are handled.
The current tree that the strategy is working with is denoted by T v = (T v

V , T v
E)

where (v) is the root of the tree. Let v, k, (a1, . . . , a|R|), (a′
1, . . . , a

′
|R|) be the

current state of the additional memory, and let p be the current inner node in
the current tree T v. We will first describe how the strategy decides and then
how the memory is updated. The strategy decides as follows:

σ(p, v, k, (a1, . . . , a|R|), (a′
1, . . . , a

′
|R|)) = σv

k(p) (7)

Now, let us describe how the memory is updated. The initial state of the memory
is (v, 1, (0, . . . , 0), (0, . . . , 0)) where v is the vertex the play starts from, and so the
first tree the strategy σ works with is the tree T v rooted at v, and the first used
substrategy is σv

1 . The two |R|-tuples in the memory play a crucial role in keeping
the traversed cycles from A and B in balance. As was already mentioned, the
first |R|-tuple records the sums of the first weights of the traversed cycles from
A. There are two bounds that bound the elements of the tuple from above: a soft
bound and a hard bound. The soft bound is equal to 4·|V |4+2·|V | and we denote
it by CA. If some element ai exceeds the soft bound, then the strategy takes some
actions so that ai is not increased further and it never exceeds the hard bound
C̄A which is equal to 4 · |V |4 +3 · |V |. Similarly, there is a soft bound and a hard
bound for the second |R|-tuple. The second |R|-tuple records the sums of the
first weights of the traversed cycles from B. Unlike for the first tuple, the bounds
for the second tuple bound the elements of the tuple from below. The soft bound
is CB = −4 · |V |4, and the hard bound is C̄B = −4 · |V |4−|V |. Before explaining
the actions the strategy takes to ensure that the hard bounds are never exceeded,
we describe precisely how the memory is updated. It is updated only when a leaf

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 117

in the current tree is reached, so let’s suppose that we have reached the leaf q.
Then the memory (v, k, (a1, . . . , a|R|), (a′

1, . . . , a
′
|R|)) is updated to:

(v, k, (a1, . . . , a|R|),
(a′

1, . . . , a
′
|R|))

if ce(q) ∈ P ∪A=Rk
∪B=Rk

(v, k, (a1, . . . , ai + w1(ce(q)), . . . , a|R|),
(a′

1, . . . , a
′
|R|))

if ce(q) ∈ A=Ri ∧
i < k ∧
ai + w1(ce(q)) ≤ CA

(v, k, (a1, . . . , a|R|),
(a′

1, . . . , a
′
j + w1(ce(q)), . . . , a′

|R|))
if ce(q) ∈ B=Rj ∧

j > k ∧
a′

j + w1(ce(q)) ≥ CB

(v, k, (a1, . . . , ai − ai, . . . , a|R|),
(a′

1, . . . , a
′
j − a′

j , . . . , a
′
|R|)

if ce(q) ∈ A=Ri ∧
i < k ∧
ai + w1(ce(q)) > CA ∧
j > i ∧ a′

j < CB

(v, k, (a1, . . . , ai − ai, . . . , a|R|),
(a′

1, . . . , a
′
j − a′

j , . . . , a
′
|R|)

if ce(q) ∈ B=Rj ∧
j > k ∧
a′

j + w1(ce(q)) < CB ∧
i < j ∧ ai > CA

(last(q), i, (a1, . . . , ai + w1(ce(q)), . . . , a|R|),
(a′

1, . . . , a
′
|R|))

if ce(q) ∈ A=Ri ∧
i < k ∧
ai + w1(ce(q)) > CA ∧
(�j > i)(a′

j < CB)
(last(q), j, (a1, . . . , a|R|),

(a1, . . . , a
′
j + w1(ce(q)), . . . , a′

|R|))
if ce(q) ∈ B=Rj ∧

j > k ∧
a′

j + w1(ce(q)) < CB ∧
(�i < j)(ai > CA)

(8)

We note that if a leaf q is reached, then there are two possibilities as to which
node the play continues at. The first case is when σ does not change the sub-
strategy σv

k (first 5 items in (8)). In this case the play continues at node ph(q).
The second case is when σ does change the substrategy σv

k (last 2 items in (8)).
In this case the play continues at the root (last(q)) of the new tree T last(q).

Before getting to formal proofs we will describe how the definition of the
strategy σ corresponds to what was said in Section 3.1.

While using the substrategy σv
k , only cycles from P ∪ A≤Rk

∪ B≥Rk
are tra-

versed. Moreover, by Lemma 2, the effects of the cycles from A=Rk
and B=Rk

are balanced. The additional memory of the global strategy σ is used to detect a
disbalance between the cycles from A<Rk

and B>Rk
. A disbalance is suspected

when some ai such that i < k goes above CA = 4 · |V |4 + 2 · |V |, or some a′
j such

that j > k goes below CB = −4 · |V |4. However, this does not necessarily imply
a disbalance. We will look only at the first case, the other one is symmetric. If
some ai such that i < k goes above CA, and there is also some j > i such that a′

j

is below CB , then there is no disbalance. The effects of the corresponding cycles
from A=Ri and B=Rj balance each other. The bounds were selected so that the
sum of the weights of these cycles is greater or equal to (|V |, |V |), which justifies

118 J. Chaloupka

the zeroing of the appropriate elements of the memory (4th item in (8)) and
also compensates for the possibly negative simple paths that are “lost” when
switching a substrategy.

A substrategy is changed when there is no a′
j that would compensate for ai,

and so a disbalance occurs. The substrategy is changed to σu
i where u is the

current vertex when the disbalance occurred (6th item in (8)). It holds that
u = last(q) where q is the appropriate leaf in the tree T v, the visit of which
caused the disbalance. The substrategy is changed to ensure that ai is not further
increased. The substrategy σu

i works with the tree T u, and so the path ph(q)
from v to u is lost in the sense that it is reflected neither in the local nor in the
global memory. However, as mentioned above this lost paths are compensated
for, and so the global memory together with the local memories gives a lower
bound on the first counter, and indirectly also on the second counter. Since all
the components of the memories are of polynomial size, so are the lower bounds.

The following theorem makes the above arguments precise. Its formal proof
is in the full version of this paper [2].

Theorem 1. Let Γ = (G = (V, E, w), V�, V ♦) be a game on 2-dim VASS. Let
further v ∈ W� be the starting vertex, and let � use the strategy σ as defined
in (7). Let ♦ use an arbitrary strategy π, and let outcomeΓ (v, σ, π) = (v =
v0, v1, v2, . . .) be the resulting play. Let k be the state of the play after k steps,
i.e., we are at the vertex vk. Let (v′, l, (a1, . . . , a|R|), (a′

1, . . . , a
′
|R|)) be the state of

the global memory, and let (xi, yi, zi)i∈{1,...,|R|} be the state of the local memories
of the substrategies. Then the following holds:∑k−1

i=0 w1(vi, vi+1) ≥
∑

i∈{1,...,|R|}(ai + a′
i + xi)− |V |3 − 2 · |V |∑k−1

i=0 w2(vi, vi+1) ≥
∑

i∈{1,...,|R|}(−|V |ai − 1
|V |a

′
i + yi)− |V |3 − 2 · |V | �

For each i ∈ {1, . . . , |R|}, it holds that 0 ≤ ai ≤ C̄A = 4 · |V |4 + 3 · |V |, and
−4 · |V |4 − |V | = C̄B ≤ a′

i ≤ 0, and xi, yi ∈ [−2 · |V |2, 2 · |V |2]. Therefore,
by Theorem 1, if we set Kmin to, for example, −100 · |V |7, then for each play
(v0, v1, v2, . . .) with v0 ∈ W�, agreeing with the strategy σ, it holds that (∀k ∈
N0)(

∑k−1
i=0 w(vi, vi+1) ≥ (Kmin, Kmin)).

Acknowledgement. I would like to thank to Tomáš Brázdil, Petr Jančar, and
Antońın Kučera for fruitful consultations and advice.

References

1. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition
systems with states. In: Proc. International Colloquium on Automata, Languages
and Programming. LNCS. Springer, Heidelberg (2010)

2. Chaloupka, J.: Z-reachability problem for games on 2-dimensional vector addition
systems with states is in P. Technical Report FIMU-RS-2010-06, Faculty of Infor-
matics, Masaryk University, Brno, Czech Republic (2010)

Z-Reachability Problem for Games on 2-Dimensional VASS Is in P 119

3. Hopcroft, J.E., Pansiot, J.-J.: On the reachablility problem for 5-dimensional vector
addition systems. Theoretical Computer Science 8(2), 135–159 (1979)

4. Jančar, P.: Undecidability of bisimilarity for petri nets and related problems. The-
oretical Computer Science 148, 281–301 (1995)

5. Jančar, P.: Decidability of bisimilarity for one-counter processes. Information and
Computation 158, 1–17 (2000)

6. Reisig, W.: Petri Nets – An Introduction. Springer, Heidelberg (1985)

Towards the Frontier between Decidability
and Undecidability for Hyperbolic Cellular

Automata

Maurice Margenstern

Université Paul Verlaine − Metz, IUT de Metz,
LITA EA 3097, UFR MIM,

Campus du Saulcy,
57045 METZ Cédex 1, France

margens@univ-metz.fr

http://www.lita.sciences.univ-metz.fr/~margens

Abstract. In this paper, we look at two ways to implement one di-
mensional cellular automata into hyperbolic cellular automata in three
contexts: the pentagrid, the heptagrid and the dodecagrid, these tilings
being classically denoted by {5, 4}, {7, 3} and {5, 3, 4} respectively. As
an application, this may give a hint for the boundary between decidable
and undecidable problems for hyperbolic cellular automata.

Keywords: Cellular automata, weak universality, decidability, hyper-
bolic spaces, tilings.

1 Introduction

In this paper, we look at the possibility to embed one-dimensional cellular au-
tomata, 1D- for short, into hyperbolic cellular automata in the pentagrid, the
heptagrid or the dodecagrid which are denoted by {5, 4}, {7, 3} and {5, 3, 4} re-
spectively. We consider 1D-cellular automata which are deterministic and whose
number of cells is infinite. This will have consequences on the border between
a decidable and an undecidable halting problem for a large class of hyperbolic
cellular automata.

First, we shall prove a general theorem, and then we shall try to strengthen
it at the price of a restriction on the set of cellular automata which we wish to
embed in the case of the pentagrid.

The first theorem says:

Theorem 1. There is a uniform algorithm to transform a deterministic 1D-
cellular automaton with n states into a deterministic cellular automaton in the
pentagrid, the heptagrid or the dodecagrid with, in each case, n+1 states. More-
over, the cellular automaton obtained by the algorithm is rotation invariant.

Later on, as we consider deterministic cellular automata only, we drop this pre-
cision. This theorem has a lot of corollaries, in particular we get this one, about
weak universality:

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 120–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.lita.sciences.univ-metz.fr/~margens

Towards the Frontier between Decidability and Undecidability 121

Corollary 1. There is a weakly universal cellular automaton in the pentagrid,
in the heptagrid and in the dodecagrid which is weakly universal and which has
three states exactly, one state being the quiescent state. Moreover, the cellular
automaton is rotation invariant.

We prove Theorem 1 and Corollary 1 in Section 2. In particular, we remind
the notion of rotation invariance, especially for the 3D case. In Section 3, we
strengthen the results, but this needs a restriction on the cellular automata under
consideration in the case of the pentagrid.

2 Proof of Theorem 1 and Its Corollary

The idea of theorem 1 is very simple. Consider a one-dimensional cellular au-
tomaton A. The support of the cells of A is transported into a structure of the
hyperbolic grid which we consider as a line of tiles. In each one of the three
tilings which we shall consider, we define the line of tiles in a specific way. We
examine these case, one after the other.

2.1 Pentagrid and Heptagrid

In the case of the pentagrid and of the heptagrid, it is the set of cells such that
one side of the cells is supported by the same line of the hyperbolic plane. In the
pentagrid, it is a line of the tiling, which is supported by a side of a cell, fixed
once for all. In the heptagrid, it is what we call a mid-point line, a notion for
which we refer the reader to [3]. Indeed, it was there proved that the mid-points
of two contiguous sides of a heptagon define a line which cuts the other tiles of
the heptagrid at the mid-points of two contiguous sides.

Fig. 1. Implementation of a cellular automaton in the pentagrid, left-hand side, and in
the heptagrid, right-hand side. The white cells represent the line of tiles used for the
1D-CA. The gray cells represent the cells which receive the new state.

122 M. Margenstern

In each case, the just defined line is called the guideline of the implementa-
tion. The guideline is illustrated in Figure 1. In this figure, the line on which we
implement the 1D cellular automaton is represented by the white cells along the
guideline. Note that a white cell has exactly two white neighbours. The cells are
generated by the shift along the guideline which transforms one of the neighbours
of the cell on the line into the cell itself.

In the figure, the white colour is assumed to represent the n states of the orig-
inal automaton. The gray cells represent the additional state which is different
from the n original ones. In the figure, there are three hues of gray which allow
us to represent the tree structure of the tiling. These different hues represent the
same state.

From the figure, it is plain that we have the following situation: white cells
have exactly two white cells among their neighbours, the cell itself not being
taken into account. In the pentagrid, a gray cell has at most one white cell
in its neighbourhood. In the heptagrid, it has at most two white neighbours.
Accordingly, this difference is enough to define the implementation of the rules
in the pentagrid and in the heptagrid.

We can make this more precise as follows: denote the format of a rule by
η0η1...ηαη1

0 with α ∈ {5, 7} and where η0 is the current state of the cell, ηi is
the current state of neighbour i of the cell and η1

0 is the new state of the cell,
obtained after the rule was applied. We remind the reader that the neighbour i
is the cell which shares the side i of the cell. We assume that the rules are
rotation invariant. This means that if π is a circular permutation on {1..5}
and if η0η1...ηαη1

0 is a rule of the automaton, η0ηπ(1)...ηπ(α)η
1
0 is also a rule of

the automaton. Now, as we assume the rules to be invariant, the numbering
has only to be fixed according to the orientation: we consider that it increases
from 1 to α as we clockwise turn around the tile. Which side is number 1 is not
important. However, for the convenience of the reader, we shall fix it in a way
which will be the most convenient for us.

In [4], we fixed the numbering in a rather uniform way. It consists in fixing
number 1 to one side of the central cell. Then, for all other cells, number 1 is
given to the side shared with the father: we remind the reader that the central
cell is the father of the roots of the sectors which are displayed around itself.

Here, we keep this general setting for most cells except the white cells and
those which share a side with a white cell. As the white cells are put along
a linear structure defined by their guideline, we can order them. Accordingly,
starting from now on, any white cell has one white left-hand side neighbour
exactly and one white right-hand side neighbour exactly. Looking at Figure 1,
the white left-hand side neighbour of a white cell is indeed on its left-hand side,
both in the pentagrid and in the heptagrid. Now, we number the cells in such a
way that the white left-hand side neighbour of a cell shares the side α of the cell.
This fixes the cell with number 1 and, consequently, all the other neighbours. In
the pentagrid, a gray cell c is in contact with at most one white cell. In this case,
we consider that the white cell is number 5 for c. In the heptagrid, a gray cell c

Towards the Frontier between Decidability and Undecidability 123

is in contact with at most two white cells. We decide that they are numbered
6 and 7 for c or, in case of a unique white neighbour, that it is numbered 7 for c.

The rules for a white cell are: η0bbaη2+abaηαη1
0 , with a = 1 or 2 for the

pentagrid, the heptagrid respectively. Moreover, η2+aη0ηα → η1
0 is the unique

rule of A which can be associated to the cell. For a gray cell which is in contact
with a white cell, the rule is bb2+2aηαb or, in the case of the heptagrid, it is the
rule bb6ηαb. Now, the rule for a gray cell which is not in contact with a white
cell is: bbαb.

Accordingly, we proved Theorem 1 for what are the grid of the hyperbolic
plane which we considered. It can easily be proved that the same result holds for
all the grids of the hyperbolic plane of the form {p, 4} and {p+2, 3}, with p ≥ 5.

2.2 In the Dodecagrid

In the dodecagrid, we use the representation introduced in [7]. We briefly remind
it the reader for his/her convenience.

In fact, we consider the projection of the dodecahedra on a plane which is
defined by a fixed face of one of them: this will be the plane of reference Π0. The
trace of the tiling on Π0 is a copy of the pentagrid. So that, using a projection
of each dodecahedron which is in contact with Π0 and on the same half-space
it defines which we call the half-space above Π0, we obtain a representation of

Fig. 2. Implementation of a cellular automaton in the dodecagrid. The white cells
represent the line of tiles used for the one-dimensional CA. The gray cells represent
the cells which receive the new state.

124 M. Margenstern

the line which is given by Figure 2. Indeed, the projection of each dodecahedron
on this face looks like a Schlegel diagram, see [7,3] for more details on this tool
dating from the 19th century. Figure 3 also illustrates this representation for one
dodecahedron.

Accordingly, the guideline is simply a line of the pentagrid which lies on Π0.
On the figure, we can see that the line which implements the one-dimensional
cellular automaton is represented by the white cells, the other cells which receive
the new state being gray. This line of white cells will be also called the white
line. As in Figure 1, the different hues of gray are used in order to show the
spanning trees of the pentagrid, dispatched around the central cell.

To define the rules of a cellular automaton, we also introduce a numbering of
the faces of a dodecahedron which will allow us to number the neighbours. This
numbering is given by Figure 3.

Fig. 3. The numbering of the faces of dodecahedron. Face 0 is delimited by the biggest
pentagon of the figure.

Accordingly, the format of a rule is of the form η0
0η0...η11η

1
0 . Now, as the rules

are assumed to be rotation invariant, which face receives number 1 is not impor-
tant. However, for the convenience of the reader, we shall adopt the following
convention. For all the white cells, we consider that the face which is on Π0 is
face 0. Accordingly, the numbers should appear in Figure 2 as they appear in
Figure 3. Moreover, we consider that the other face of the cell which is in contact
with the guideline is face 5.

Now, we come to the notion of rotation invariant cellular automata on the
dodecagrid. We say that a motion in the hyperbolic 3D space is a positive
invariant displacement of the dodecahedron if it leaves the dodecahedron
globally invariant and if it preserves orientation. We shall say later positive

Towards the Frontier between Decidability and Undecidability 125

displacement. Let μ be a positive invariant displacement of the dodecahedron.
We denote by μ(i) the number of the face which is the image of face i under μ.
Now, let ρ = η0

0η0...η11η
1
0 be a rule. We say that η0

0ημ(0)...ημ(11)η
1
0 is a rotated

form of ρ. Say that η0
0η0...η11 is the context or ρ. Then, we shall say that

η0
0ημ(0)...ημ(11) is a rotated image of the context of ρ. Now, a cellular automaton

is called rotation invariant if and only if two rules having contexts which are
rotated forms of each other always produce the same new state.

Now, there are 60 positive displacements of the dodecahedron. They constitute
a group which is called the icosahedral rotation group and which is isomorphic
to A5, the group of permutations on 5 elements whose signature is positive. It
is well known that A5 is a simple non-abelian group. This means that repre-
sentations are difficult and that there is no canonical way to do that. In [10],
we provided a simple algorithm to enumerate the positive displacements of the
dodecahedron which we call the rotation algorithm.

Using this algorithm, we can define all the rotated forms of the context of a rule.
These forms are words on the alphabet of the states of the cellular automaton and
we can order these words lexicographically.As this order is total, there is a smallest
element which we call the minimal form of the context. Similarly, we can define
the minimal form of a rule. This allows us to obtain the following result:

Lemma 1 (see [7]) A cellular automaton on the dodecagrid is rotation invariant
if and only if for any pair of rules, if their minimal forms have the same context,
they have the same new state too.

Now, checking this property can easily be performed thanks to the rotation
algorithm.

As we already indicated, we decided that face 0 of the cells belonging to the
line of the implementation are on Π0 and that the other face which has a side on
the guideline is face 5. As a consequence, a white cell is in contact with two white
neighbours by its faces 1 and 4. We decide that the face 1 of a cell is the same
as the face 4 of the next white neighbour and, accordingly, its face 4 is the same
as the face 1 of the other white neighbour. This allows to define two directions
on the white line. The direction from left to right on the one-dimensional cellular
automaton is, by convention,the direction from face 1 to face 4 of the same cell.

For the proof of Theorem 1 in the case of the dodecagrid, the rules for a gray
cell have the form bη0...η11b with all states in η0...η11 being b except, possibly,
one of them. From the just defined convention on the numbering of the faces of
the white cells, the rules for a white cell are of the form η0bη1bbη4bbbbbbbη1

0 ,
where η1η0η4 → η1

0 is the rule of the one-dimensional cellular automaton.
Now, as the gray cells have at most one white neighbour and as the white cells

have two white neighbours exactly, the difference between the rules is clearly
recognizable.

This completes the proof of Theorem 1.
Now, the proof of Corollary 1 is very easy: it is enough to apply the theorem to
the elementary cellular automaton defined by rule 110 which is now known to
be weakly universal, see [1,13].

126 M. Margenstern

3 Refinement of Theorem 1

Now, we shall prove that, under particular hypotheses in the case of the pentagrid
and no restriction in the case of the heptagrid and of the dodecagrid, a 1D cellular
automaton with n states can be simulated by a hyperbolic cellular automaton
with n states too.

In order to formulate this hypothesis, consider a one-dimensional deterministic
cellular automaton A. Say that a state s of A is fixed in the context x, y in this
order, if the rule xsy → s belongs to the table of transitions of A. As an example,
a quiescent state for A, usually denoted by 0, is fixed in the context 0, 0. Now,
we say that A is a fixable cellular automaton if it has a quiescent state 0 and
another state, denoted by 1, such that 0 is also fixed in the context 1, 0 and 1 is
fixed in the context 0, 0.

We can now formulate the following results:

Theorem 2. There is an algorithm which transforms any fixable 1D cellular
automaton A with n states into a rotation invariant cellular automaton B in the
pentagrid with n states too, such that B simulates A on a line of the pentagrid.

Theorem 3. There is an algorithm which transforms any deterministic 1D cel-
lular automaton A with n states into a rotation invariant deterministic cellular
automaton B in the heptagrid, the dodecagrid respectively, with n states too, such
that B simulates A on a line of the heptagrid, the dodecagrid respectively.

We have not the room to produce a full proof of these theorems: we refer the
reader to [8] for such a proof. Here, we simply sketch the outlines of the proof
of Theorem 2.

Consider the left-hand side picture of Figure 4. The white colour is still used
to represent any state of the automaton A. Now, the gray colour represents the
quiescent state 0, and the black one represents the state 1 which is fixed in the
context 0, 0. We also assume that 0 is fixed in the context 1, 0.

We shall consider all the neighbours of the central cell. Its black neighbour
will be numbered by 1, and the others from 2 to 5, increasing as we clockwise
turn around the cell. We also consider the cells which just has one vertex in
common with the central cell. All the other cells are in quiescent state or they
belong to the white line or are neighbouring a cell belonging to this line. In this
latter case, such a cell is obtained from one of those we consider around the
central cell by a shift along the guideline.

Define B with n states represented by different letters from those used from A.
We fix a bijection between the states of A and those of B in which B is associated
to the state 1 of A and W is associated to the state 0 of A.

Consider the configuration around the central cell. If we write the states of the
cell and then those of its neighbours according to the order of their numbers, we
get the following word: Y BWZWX, where X, Y, Z are taken among the states
of B. Now, if Z = B, we can start from this neighbour in state B which has
number 3, and we get the word Y BWXBW in which we see B in position 4. If
X = B, then we get the word Y BBWZW in which we see B in position 2. In

Towards the Frontier between Decidability and Undecidability 127

both case, the configuration around the cell is different from the one we obtain
by starting from position 1. We can synthesise this information as follows:

1 2 3 4 5

0 Y B W Z W X
B W X B W
B B W Z W

The first line corresponds to the configuration which triggers the application
of the rule of A corresponding to XY Z → X ′. Clearly, as already noticed with
the positions of the fixed B and W, the other lines do not correspond to the
application of a rule of A.

We shall do this for all the neighbours of the central cell, and in Table 1, we
can see all the possible configurations for the neighbours of the central cell.

Table 1. Table of the configurations around the central cell in the pentagrid for the
automaton B

1 2 3 4 5

0 Y B W Z W X

B W X B W

B B W Z W

11 B Y W W W W

21 W B W W W W

12 W Y W W W B

B W W W B

B B W W B

B W W W W

22 B W W W W Z

B W W W W

13 Z Y B W T W

B B W T W

B W T W Y

B W Y B W

1 2 3 4 5

23 W Z W W W W

14 W Y W W W W

24 W W W W W X

B W W W W

15 X Y W U B W

B W U B W

B B W Y W

B W Y W U

25 W X W W W B

B W W W B

B B W W W

B W W W W

In Table 1, we indicate the coordinate of the cell which we represent together
with its state. Then, if there are states as U , X , Y , Z, T , we also represent the
case when one of this variable takes the value B and we represent the configu-
ration around the cell when this B is put onto position 1.

128 M. Margenstern

Fig. 4. Implementation of a 1D cellular automaton in the pentagrid, left-hand side,
and in the heptagrid, right-hand side. The white cells represent the line of tiles used for
the 1D-CA. The gray cells represent the cells which receive a particular state among
the states of the 1D-CA.

The left-hand side picture of Figure 4 allows us to check the correctness of
Table 1. We refer the reader to [8] for a further checking.

This completes the proof of Theorem 2.

Table 2. Table of the configurations around the central cell in the pentagrid for the
automaton B

1 2 3 4 5 6 7

0 Y X B W B Z W W

B B W B Z W W

B W B Z W W X

B Z W W X B W

B W W X B W B

11 X Y W W U B W B

B W W U B W B

B B W B Y W W

B W B Y W W U

B Y W W U B W

12 B Y X W W W W W

B X W W W W W

B W W W W W Y

13 W Y B W W W W B

B B W W W W B

B W W W W B Y

1 2 3 4 5 6 7

14 B Y W W W W W Z

B W W W W W Z

B Y W W W W W

15 Z Y B W B T W W

B B W B T W W

B W B T W W Y

B T W W Y B W

B W W Y B W B

16 W Y Z W W W W W

B Z W W W W W

B W W W W W Y

17 W Y W W W W W X

B W W W W W X

B Y W W W W W

Towards the Frontier between Decidability and Undecidability 129

Now, let us turn to the case of the heptagrid. In this case, the situation is in
some sense easier as it requires no special hypothesis on the deterministic 1D
cellular automaton. Indeed, the fact is that due to the number of neighbours,
there is a way to differentiate the cells belonging to the white line from those
which do not. As mentioned in Subsection 2.1, the white line is now implemented
along a mid-point line of the heptagrid which is fixed, once for all. As in the case
of the pentagrid, the white colour represents any state of automaton A. Now,
we assume that A has at least two states, 0 and 1. In the right-hand side picture
of Figure 4, these states are represented in gray and in black respectively. As
in the case of the pentagrid, we use different hues of gray in order to make
visible the tree structure which spans the tiling. Now, it is easy to see that the
configurations allowing the application of a rule of A are reached only in the case
of cells of the white line and that for these cells, among the rotated contexts,
exactly one is compatible with the application of a rule of A. This can be checked
on the figure and we report this examination in Table 2.

Looking at each entry of the table attached to a cell, we can see that there is
at most a single configuration which is compatible with the application of a rule
of A. Moreover, the admissible configuration occurs only for the cells which are
on the white line and never for the others. Accordingly, the rule which consists
in applying the rule of A when there is one for that and to leave the current
state unchanged otherwise works more easily here. This completes the proof of
Theorem 3 in the case of the heptagrid.

Let us now look at the same problem in the case of the dodecagrid. This, time,
we can take advantage of a bigger number of neighbours and of their spatial
display to strengthen the difference between a cell of the white line which is
implemented as indicated in Subsection 2.2 and the cells which does not belong to
this line. The way in which we establish this difference is illustrated by Figure 6.
In this figure, the white colour represents the states of B which, by construction,
are in bijection with those of A. As previously, the gray colour is associated with
the state W which corresponds to the quiescent state 0 of A, and the black
colour is associated with the state B which corresponds to the state 1 of A.

Now, each cell of the white line has four black neighbours. Numbering the
cells as indicated in Subsection 2.2, the faces with a black neighbour are: 0, 3,
9 and 10. Figure 5 represents a cut in the plane of the face 4 of a white cell and
it makes it easy to understand the configuration. Due to the fact that face 0 is
on the plane Π0, we can see only three black faces on the cells of the white line
in Figure 6.

We refer the reader to [8] in order to check that the cells which do not belong
to the white line have at most two black neighbours.

This completes the proof of Theorem 3.
Now, we can see that from Theorem 3 we have as an immediate corollary:

Corollary 2. There is a weakly universal rotation invariant cellular automaton
on the heptagrid, as well as in the dodecagrid with two states exactly.

In both cases, we apply the construction defined in the proof of Theorem 3 to the
elementary cellular automaton with rule 110. Now, if we look at the transitions of

130 M. Margenstern

Fig. 5. Implementation of a cellular automaton in the heptagrid. The white cells rep-
resent the line of tiles used for the 1D CA. The gray cells represent the cells which
receive a particular state among the states of the 1D CA.

Fig. 6. Implementation of a cellular automaton in the dodecagrid. The white cells
represent the line of tiles used for the 1D CA. The gray cells represent the cells which
receive a particular state among the states of the 1D CA.

Towards the Frontier between Decidability and Undecidability 131

rule 110, we can see that 0 is a quiescent state, that it is fixed for the context 1, 0
and that 1 is fixed for the context 0, 0. This proves that the elementary cellular
automaton with rule 110 is fixable. Consequently, applying Theorem 2 to this
1D-cellular automaton, we get:

Corollary 3. There is a weakly universal rotation invariant cellular automaton
on the pentagrid with two states exactly.

4 Conclusion

With this result, we reached the frontier between decidability and weak univer-
sality for cellular automata in hyperbolic spaces: starting from 2 states there are
weakly universal such cellular automata, with 1 state, there are none, which is
trivial.

We can remark that the argument of Theorem 3 can be applied to all tilings
of the form {p, 4} and {p+2, 3} with p ≥ 5.

We can also remark that the result proved in this paper suffers the same defect
as the result indicated in [7] with 3 states. The results proved in this paper can
be obtained in a not too complicate manner by an appropriate implementation
of rule 110 which is weakly universal, as already mentioned. In the case of the
dodecagrid, the author proved a similar result with 3 states but involving a much
more elementary construction which is also an actual 3D construction. In the
case of the heptagrid, he obtained 4 states with an actual planar construction,
see [5,9] and the best result known for the pentagrid is 9 states, see [12], again
with elementary tools and using an actual planar construction. What can be
done in this direction is also an interesting question.

Accordingly, there is some work ahead, probably the hardest as we are now
so close to the goal.

References

1. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

2. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional
cellular automata. Complex Systems 4, 299–318 (1990)

3. Margenstern, M.: Cellular Automata in Hyperbolic Spaces Theory, vol. 1, p. 422,
OCP, Philadelphia (2007)

4. Margenstern, M.: Cellular Automata in Hyperbolic Spaces Implementation and
computations, vol. 2, p. 360, OCP, Philadelphia (2008)

5. Margenstern, M.: A new universal cellular automaton on the ternary heptagrid,
35p (2009) arXiv:0903.2108[cs.FL]

6. Margenstern, M.: Surprising Areas in the Quest for Small Universal Devices. Elec-
tronic Notes in Theoretical Computer Science 225, 201–220 (2009)

7. Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D space
with three states, 54p. (2010) arXiv:1002.4290[cs.FL]

8. Margenstern, M.: About the embedding of one dimensional cellular automata into
hyperbolic cellular automata, 19p (2010) arXiv:1004.1830[cs.FL]

132 M. Margenstern

9. Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic
plane with four states. Theoretical Computer Science (2010) (accepted)

10. Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D
space with three states, Discrete Mathematics and Theoretical Computer Science
(to appear)

11. Margenstern, M., Skordev, G.: Tools for devising cellular automata in the hyper-
bolic 3D space. Fundamenta Informaticae 58(2), 369–398 (2003)

12. Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid.
Parallel Processing Letters 19(2), 227–246 (2009)

13. Wolfram, S.: A new kind of science. Wolfram Media, Inc. (2002)

Rewriting Systems for Reachability in
Vector Addition Systems with Pairs

Paulin Jacobé de Naurois and Virgile Mogbil

LIPN, UMR CNRS 7030 - Université Paris 13,
Institut Galilée, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Abstract. We adapt hypergraph rewriting system to a generalization of
Vector Addition Systems with States (VASS) that we call vector addition
systems with pairs (VASP). We give rewriting systems and strategies,
that allow us to obtain reachability equivalence results between some
classes of VASP and VASS. Reachability for the later is well known be
equivalent to reachability in Petri nets. VASP generalize also Branch-
ing Extension of VASS (BVASS) for which it is unknown if they are
more expressive than VASS. We consider here a more restricted notion
of reachability for VASP than that for BVASS. However the reachability
decision problem corresponding is already equivalent to decidability of
the provability in Multiplicative and Exponential Linear Logic (MELL),
a question left open for more than 20 years.

1 Introduction

Vector Addition Systems with Pairs (VASP) are Vector Addition Systems with
States (VASS) extended with paired arcs. A VASS is a directed graph whose
arcs are labeled by vectors in Zm, and nodes are used as control states. Vector
addition is done when traversing an arc, starting from a value associated to the
source state and producing a value associated to the target state. A VASP is a
VASS, together with a set of disjoint arc pairs, where two arcs of a pair share
the same source or the same target. The configurations of a VASP are multisets
of vectors (values) in Zm, and its operational semantics is the following: when
traversing an arc pair with shared source the value of the source state is split, and
when the target is shared the values of the two sources are added. While VASS
are well known to be equivalent to Petri Nets, VASP correspond to Petri Nets
with split and join transitions, where a multiset of markings evolves accordingly
to the transitions fired, the size of this multiset being increased or decreased
when firing a split or join transition respectively.

VASP are defined as a restriction of directed hypergraph. They inherit no-
tions of paths in hypergraph and connectedness [5], but the chosen presentation
as paired graph allows us to keep also usual paths in underlying graphs with-
out pairs (in other words paths using part of hyperarcs). Hypergraph rewriting
systems give rewriting systems for VASP. Yet, (hyper- and) graph rewriting ter-
mination in general is undecidable [16]. In order to obtain termination, we look

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 133–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

134 P. Jacobé de Naurois and V. Mogbil

at rewriting strategies for VASP, which we use to rewrite some classes of VASP
as VASS, and to transfer VASS reachability results to these classes of VASP.

Branching Extension of VASS (BVASS also called VATA [2]) for which Karp-
Miller trees were designed [18] are by the way a particular restriction of VASP,
where arcs in a pair do only share their target. A motivating result about BVASS
was given by [2]: the reachability decision problem for BVASS is equivalent to the
open decision problem of the provability in Multiplicative and Exponential Lin-
ear Logic (MELL [8]). The VASP operational semantic we consider is restricted,
so we have not full generalization of BVASS but an essential intersection. In fact
we allow to traverse pairs only under a condition called division of values, that
preserves the sign component-wise. However our condition is implicit for reach-
ability problems with positive values, like in the proof given by [2] to establish
their equivalence result.

Originally VASP were designed by the first author (work in progress) to work
on the provability decidability in MELL. The second author gives here a slightly
different presentation with explicit paths to study them by rewriting systems.
We think that VASP allow to work on an adaptation of the technical proof of the
reachability problem decidability for Petri nets [11,13,17,12,4], with the goal to
obtain the reachability decidability for Petri nets with split and join transitions.
This is a work in progress not presented here, which may imply the decidability
of the provability in MELL.

Outline. We present in the first section basic definitions of VASP and ribbons,
which are paths in VASP. VASP model which generalizes VASS need to introduce
new material and redefine both the notions of paths and reachability. Then we
give the operational semantic. It is made through promenades which give the
reachable values in a VASP. Reachability decision problem is defined in this
subsection.

The second section is devoted to rewriting systems for VASP. The definitions
are standard in rewriting systems for hyper-graphs. We present rewriting systems
and rules as a tool for reachability study. An important subsection contains the
set of rules we use and our key lemma of reachability preservation when rules
are applied. We also describe a limited strategy for ribbons.

In the last section we give results of reachability relationships between VASP
and VASS. There is two kind of results: lemmas about reachability preservation
by rewriting strategies, and corollaries about reduction of reachability decision
problem for certain classes of VASP to reachability decision problem for VASS.

2 VASP and Reachability

2.1 Basic Definitions

Given m > 0, values are vectors in Zm. If not precised, operations done on vectors
are component-wise. Components of a vectors are given by the projections (x)j

for 1 � j � m. A value x ∈ Zm is divided into (x1, x2) when x = x1 + x2 and
∀1 � j � m, |(x)j | = |(x1)j | + |(x2)j |. Remark that positive components of a
value are divided into positive integers.

Rewriting Systems for Reachability inVector Addition Systems with Pairs 135

Lemma 1. Given m > 0, let x � y be values in Zm. If (y1, y2) is a division of
y then there exists a division (x1, x2) of x such that x1 � y1 and x2 � y2.

Definition 1 (VASP). A Vector Addition System with States (VASS) (m, G, v)
of dimension m>0 is a directed graph G=(Q, A) whose vertices are called states,
together with a labeling function v : A (→ Zm, called valuation, that associates a
value to each arc in A. For a given arc a = (s, t) ∈ Q2, we call source S(a) = s
and target T (a) = t respectively the source state and the target state of a.

A Vector Addition System with Pairs (VASP) (m, G, P, v) of dimension m is a
vector addition system with states (m, G, v) whose graph G = (Q, A) is equipped
with a set P ⊆ A × A of disjoint pairs, such that the two arcs of each pair in
P share the same source or the same target, called a paired state. A source or
target sharing pair (resp. shared arc) is called a split or join pair respectively
(resp. split or join arc). An arc is called regular if it does not occur in the pair
set. A paired graph (G, P) is a graph G equipped with such a pair set P . A paired
graph (G′, P ′) is a subgraph of (G, P) if and only if P ′ ⊆ P and G′ is a subgraph
of G such that no arc in G′\P ′ is paired in P . A sub-VASP of a VASP V is a
VASP of same dimension and valuation whose paired graph is a subgraph of that
of V . The reverse of a VASP V , denoted V rev, is a VASP with same dimension,
valuation, states and paired states, obtained by reversing arc orientations.

Remark that VASS are VASP with empty pair set. Without lost of generality,
we consider VASP of dimension m where all paired arcs are valued with the null
vector denoted 0m.1

Definition 2 (configuration). A single configuration of a VASP (m, G =
(Q, A), P, v) is a couple (q, x) ∈ Q × Zm. A configuration of (m, G, P, v) is
a multiset of single configurations. A configuration of (m, G, P, v) is positive
when the value of any of its single configurations is positive. A configuration of
(m, G, P, v) is divisible if the set of contained values is a division of its sum.

With the generalization to paired graphs, there are multiple kinds of paths. We
keep the simplest one from graphs but the notion of cycle is generalized. E.g.
(2, 4, 3) is a cycle from 2 to 3 in Fig. 1(b).

Definition 3 (path). A path in a VASP (m, G = (Q, A), P, v) is a path in the
graph G. We say that (m, G, P, v) is weakly connected if G is connected when
orientation is removed. We say that t is connected to s in (m, G, P, v) if there is
a path from s to t in G. Given a path p in (m, G, P, v), p is the minimal subgraph
of (G, P) containing p. We say that a path p from s = S(a) ∈ p to t = S(b) ∈ p
is a cycle if a = b or {a, b} is a pair in p. In a simple path all arcs are distinct.

This notion of path in graphs is extended to VASP in the following way: in
our paired graphs, a path is split and joined accordingly to paired arcs. We call
ribbons such paths, by analogy with a (two sides) ribbon of paper cut with scis-
sors (and sometimes paste). In order to have good properties over reversibility,
ribbons are based on the notion of B-paths for which each source state must be
reachable before the arc is traversable (Fig. 1(a)).
1 This will be clarified with the reachability definition.

136 P. Jacobé de Naurois and V. Mogbil

1

2

3

4
5

6

7

(a) A B-path

1

2

3

4
5

6

7

(b) Not a B-path from {1}

1

7

63

4
2

5

(c) Reverse of Fig. 1(a) VASP

Fig. 1. Examples

Definition 4 (ribbon). Given two sets of states S and T , a Backward-path
(or B-path) B from S to T in a VASP V is a minimal weakly connected sub-
VASP of V with state set Q′ such that i) S, T ⊆ Q′, ii) if q ∈ Q′ then q is
connected in B to a state s ∈ S by means of an acyclic simple path.

A Forward-path (or F-path) from S to T in a VASP is a B-path from T to
S in the reversed VASP. A ribbon (or BF-path) from S to T in a VASP is both
a B-path and a F-path from S to T . A state t is B-connected (respectively F-
connected, BF-connected) to state s if there exists a B-path (respectively F-path,
BF-path) from {s} to {t}. A bridge in a ribbon ρ from S to T is a regular arc or
an arc pair which disconnects ρ into two or three connected components when it
is removed, such that each of them gives a partition of S or T but not of both.

Paths in VASP subsume paths in graphs whereas B-path, F-path and BF-path
are paths in hypergraph considering that paired arcs are hyperarcs. E.g. the
VASP in Fig. 1(b) is not a B-path from {1} because the only path connecting
3 to 1 contains the cycle (2, 4, 3). However the cycle (4, 5, 4) in Fig. 1(a) is not
contained in any simple path from 1 to 7. See Fig. 2 for ribbon examples.

Proposition 1 ([5]). Given a B-path from {s} containing an arc pair {a, b},
states S(a) and S(b) are B-connected to state s.

2.2 Reachability

When starting from a positive configuration {(s, xs)}s∈S of a VASP, values
reached following a ribbon from S are given by a promenade:

Definition 5 (promenade, reachability). Given a VASP V = (m, G, P, v)
with a positive configuration S, a promenade p on V from S is a sequence of
configurations (Ci)i=0,··· ,f associated to a ribbon ρ in V from states of S such
that the initial configuration of p is C0 = S and,

- given c = (q, x) ∈ Ci and a regular arc a = (q, q′) ∈ ρ, then Ci+1 = Ci−{c}∪
{c′} where c′ = (q′, x + v(a)),

- given c1 = (q1, x1) ∈ Ci and c2 = (q2, x2) ∈ Ci and a join pair of ρ (q1, q
′)

and (q2, q
′), then Ci+1 = Ci − {c1, c2} ∪ {c′} where c′ = (q′, x′), and (x1, x2)

is a division of x′ (�),
- given c = (q, x) ∈ Ci and a split pair of ρ (q, q1) and (q, q2), then Ci+1 = Ci−
{c}∪{c′1, c′2} where c′1 = (q1, x1), c′2 = (q2, x2) and x is non-deterministically
divided into (x1, x2).

Rewriting Systems for Reachability inVector Addition Systems with Pairs 137

A promenade from S to the final configuration T is a promenade associated to a
ribbon from states of S to states of T such that division conditions are valid. A
positive promenade on a VASP is a promenade whose configurations are positive.
We say that the final configuration Cf of a positive promenade on V is reachable
from the initial one C0. We denote it by: C0 �V Cf .

Remark that our strong definition of both ribbons and division conditions for
arc pairs in promenades imply that C0 �V Cf ⇔ Cf �V rev C0. Remark also that
ribbons in a VASS coincide with paths, and a promenade (respectively a positive
promenade) on a VASS V , considering it as a VASP with empty pair set, is then
a sequence of single configurations (respectively with values in Nm) associated
to a path in V . So the classical reachability decision problem for VASS coincides
with the one for VASP restricted to an empty pair set:

Reachability decision problem for VASP, denoted RPVASP:
Input: Given a VASP V , two sets of single configurations S and T of V ,
Question: Is there a positive promenade on V between configurations whose
underlying sets are S and T respectively?

Remark that contrary to BVASS case, RPVASP is equivalent to a simpler
restriction: Given a VASP V and two configurations S and T of V , is there a
positive promenade on V between S and T ?

Variation. Branching VASS (BVASS) are VASP where we allow only regular
arcs and join arcs. Compared to the operational semantic of BVASS, the oper-
ational semantic of VASP is restricted by the division condition for arc pairs in
promenades, denoted (�) in the definition. Nevertheless the reachability decision
problem for VASP without split arcs is equivalent to RPBVASS. Indeed, in both
cases, promenades are positive. It turns out that RPVASP implies RPBVASS,
which is equivalent to the decidability of MELL provability [2].

3 VASP Rewriting Systems

In this section we establish results concerning VASP reachability. For this pur-
pose, we consider different restrictions of VASP, such as the separated ribbon
(Figure 2).

Q

R

(a) A standard case

Q R

T
U

V

(b) An inductive case

Fig. 2. Examples of separated ribbons

138 P. Jacobé de Naurois and V. Mogbil

Definition 6 (Separated ribbon). A 2-tree with root s and leave set L is a
ribbon from {s} to L which contains no join arc and whose underlying graph is a
rooted binary tree. A separated ribbon from {s} to {t} (Fig. 2) is a ribbon whose
paired graph consists of a 2-tree with root s and leaves set L, and a reversed
2-tree from t to L. An inductive ribbon is a sequence of regular arcs, or is a
separated ribbon that consists of 1) two disjoint inductive ribbons (like U, V in
Fig. 2(b)), related by 2) a sequence of regular arcs which finishes by a split pair,
and by 3) a join pair which finishes by a sequence of regular arcs.

The separation refers to the set of arc pairs that is separated accordingly to split
pairs and join pairs. In an inductive ribbon we can “glue” the sub-ribbons and
then reduce reachability to VASS reachability:

Lemma 2. Let V be a inductive ribbon from {s} to {t} with valuation v. Let
W be a VASP of same dimension which is only a regular arc (s′, t′) valued by
Σv(a) for all regular arc a ∈ V . We have:

{(s′, x)}�W {(t′, y)} ⇒ {(s, x)}�V {(t, y)}.

Proof. Remark that by definition of inductive ribbons we have equality of the
underlying binary subtree heights. Given m > 0, we define an inductive ribbon
SU,V of dimension m inductively on size(SU,V) = 1 + max{size(U), size(V)},
where U, V are the two disjoint inductive ribbons of the definition (like in Fig.
2(b)). The result is obtained by strong induction on this size.

Corollary 1. The reachability problem for inductive ribbon reduces to the reach-
ability problem for VASS (via many-one reductions).

3.1 Rewriting System Definitions

We generalize the previous approach by using rewriting systems for VASP as
a tool for reachability proofs. We present rewriting systems as a restriction of
hypergraph rewriting system. The goal is to give reachability results between
VASP and rewritten VASP depending on rewriting systems and chosen strate-
gies. As consequence, when we rewrite a VASP as a VASS, we have transfer
reachability results from VASS to VASP.

Definition 7 (Morphism). A morphism f : V → V ′ between two VASP
V = (m, G = (Q, A), P, v) and V ′ = (m, G′ = (Q′, A′), P ′, v′) consists of two
functions fq : Q → Q′ and fa : A → A′ preserving arcs, paired states and
valuations. Such a morphism is an isomorphism if the functions fq and fa are
bijective. In this case V and V ′ are isomorphic, which is denoted by V) V ′.

Definition 8 (Rule, Rewrite step). A rule r = (m, L ⊇ K ⊆ R) is a triple of
VASP of dimension m such that K is a sub-VASP of both L and R. The VASP
L and R are called the left- and right-hand side of r, and K is the interface.

Given a VASP V of dimension m and a set of rules R, there is a rewrite step
from V based on R if there is a rule r = (m, L ⊇ K ⊆ R) in R and a morphism

Rewriting Systems for Reachability inVector Addition Systems with Pairs 139

f : L→ V satisfying the following conditions: No arc in V − f(L) is incident to
any state in f(L)− f(K), and for all distincts items x, y ∈ L, f(x) = f(y) only
if x, y ∈ K. We called f(L) a redex for the rule r. The result (or reduct) of
such a rewrite step is isomorphic to the VASP W of dimension m constructed
as follows: let U be the sub-VASP of V obtained by removing all arcs and states
in f(L)− f(K) and by restricting the valuation of V , let W be obtained from U
by adding disjointly all arcs, states and valuations in R −K.

Rewrite steps from V to W based on R define the relation →R between V
and W . We denote →∗

R the transitive and reflexive closure of →R, and relation
sequences denote the composition. We abusively denote a rewriting rule r =
(m, L ⊇ K ⊆ R) as a rewrite step from the left-hand side L →{r} R where
valuation is given, since K is clear from the context.

Definition 9 (Rewriting system). Given some n � 0, a rewriting of length
n from V to V ′ based on R is a sequence of the form V) V0 →R V1 →R
· · · →R Vn = V ′. A rewriting system (m,R) is an integer m > 0 and a finite set
R of rules of dimension m. A rewriting system (m,R) is terminating if there is
not an infinite sequence of rewrite steps based on R. Given a rewriting system
(m,R), a VASP V of dimension m is in normal form if there is not a VASP W
such that V →R W , and V has a normal form if there is a finite sequence from
V to some normal form.

3.2 Our Rewriting Rules and Strategies

When a rule interface is only a set of states, we give it by states labelled with
capital letters Q, R, S, Given m > 0, we consider rules given in Fig. 3 called
Regular Sum (RSum), Backward Zip (BZip), Backward Swap (BSwap), Collapse
(Col), Zed (Zed) and Backward Expansion (BExp). For each rule, valuations are
divided : that is, the valuation (of the regular arcs) of one side is a division of the
valuation (of the regular arcs) of the other side. So they are set of rules. Abusively
we consider rule sub-cases with the same name: BZip where one of the left-hand
side regular arc is erased (and the corresponding source and target are merged),
and BExp without regular arcs both side (then corresponding source and target
are merged). We define rules called Forward Zip (FZip), Forward Swap (FSwap)
and Forward Expansion (FExp) by respectively BZip, BSwap and BExp on the
reversed VASP. We denote r−1 the reversed relation of rule r: r−1 goes from
right-hand side of rule r to left-hand side of rule r.

Remark that Zed, Col and RSum rules are their own reversed. Remark that
by definition of rules and rewrite steps, there is no arc other than those indicated,
to or from states which are not in a rule interface.

Lemma 3 (Key lemma). Let m > 0, let r = (m, L ⊇ K ⊆ R) be one of the
previously defined rules except Zed, but including reversed and inverted rules. Let
C be a configuration of zero in-degree states of L (labelled Q, Q′ for Backward
rules in Fig.3). Let C′ be a configuration of zero out-degree states of R. Then,

C �L C′ ⇔ C �R C′.

140 P. Jacobé de Naurois and V. Mogbil

−→BZipQ

R

S

Q

R

S

−→RSumQ RR Q

−→BExp

Q

Q′

R

R′

R

R′

Q

Q′

−→BSwapQ

R

S Q
R

S

T

T

Q RR Q
0m

−→Col

Q

Q′

R′
Q

R Q′ R

R′
−→Zed

Fig. 3. Rewriting rules

Proof. Let r ∈ R. Since by definition C and C′ are configurations of the interface
of rule r, they are configurations of R. The result is easily obtained by a case
analysis because of a division of a split pair is the “reverse” of a division of
a join pair, and reciprocally. Notably, the result is obvious for BSwap, Col and
RSum, for all reversed Backward rules, and for inverse rules when proved for the
corresponding rule. An interesting case is for the BZip rule: the right implication
is clear. For the converse let us denote by c the regular arc of R, and a and b the
regular arcs of L. By definition of BZip we have a divided valuation: (v(a), v(b))
is a division of v(c). Let C = {(Q, x)}, if C �R C′ then x � v(c) in R, and for
any division (x1, x2) of x− v(c) we have C′ = {(R, x1), (S, x2)}. By lemma 1 let
us take a division (x1, x2) of x− v(c) such that x1 � v(a) and x2 � v(b). This is
the requirement for reachability from C in L: we obtain C �L C′ ⇐ C �R C′.
For BZip rules, it is important to understand that only the requirement of
divided valuation in VASP gives the left implication. Remark that only C �L

C′ ⇒ C �R C′ holds for rule Zed.
From a reachability point of view, we cannot use a rewriting system without

knowing if it is terminating, but (hyper- and) graph rewriting termination is
undecidable [16]. Here we present a notion of strategies for a rewriting system
that allows us to study termination of rewriting systems in a restricted case.
Other methods are certainly useful but we are just interested in reachability. A
strategy for a rewriting system is a VASP transformation that defines when a
rewrite step is performed and what rule it takes:

Definition 10 (Strategy). Given a VASP rewriting system S, a strategy is a
function fS from VASP set to itself. A strategy fS is normalizing if whenever V
has a normal form, then there is some n so that fSn(V) is a normal form.

Given a rewriting system with a singleton rule set {r}, a strategy is usually
a function that maps a VASP V with a redex into fS(V), the correspond-
ing reduct obtained by one rewrite step from V . Sharper strategies give an
order on the redexes for determining which redex is rewritten. A strategy im-
plementation is often an algorithm for VASP traversal with a decision func-
tion to choose rules to be applied. We use in what follows this set of rules:
R2 = {RSum, BZip−1, FZip−1, BSwap, FSwap, BExp}.

Rewriting Systems for Reachability inVector Addition Systems with Pairs 141

We consider the following separation strategy using R2 rules, which is a re-
cursive function that maps a VASP V with a ribbon ρ to an isomorphic VASP
where ρ is rewritten into a separated ribbon by pushing away every split arcs to
the left of join arcs (or the converse, from join arcs pushed away to the right,
or by mixing them). BExp rule allows to cross in the right direction two arc
pairs with “opposite” sharing. We are interested in terminaison of the separa-
tion strategy, but the BExp rule may create new BExp redexes. However we
have:

Lemma 4. Given a rewriting system (m, {BExp}), there is no infinite sequence
of rewrite steps in a ribbon.

Proof. We give a sketch by generalizing VASP pairs of paired graphs to hyperarcs
of hypergraphs. In this case there is a measure that decreases in every BExp
redex context, so terminaison for this rewrite rule generalizes to hyperarcs. This
give us a bound on the number of BExp rewrite steps in the VASP by simulating
with a fixed maximal number of steps the rule for hyperarcs.

4 Reachability Relationship between VASP and VASS

We give a simple example illustrating how rewriting systems are used as a tool
to obtain a reachability equivalence. With VASP rewriting system we just need
to consider an ad-hoc strategy to rewrite a separated ribbon into a VASS.

Lemma 5. Let V be a separated ribbon from {s} to {t} with valuation v. Let
W be a VASP of same dimension which is only a regular arc (s′, t′) valued by
Σv(a) for all regular arc a ∈ V . We have:

{(s, x)}�V {(t, y)} ⇔ {(s′, x)}�W {(t′, y)}

Proof. Let V be a separated ribbon from {s} to {t} of dimension m > 0 and
valuation v. Let W be the regular arc defined in the lemma hypothesis. Let
V = (m, {RSum, Col, BZip, FZip}) be a rewriting system. Let U be the normal
form of V obtained by the following strategy on V : firstly from s we apply−→F = (→∗

RSum→BZip)∗ on the 2-tree with root {s}, and we apply from t the
same reversed strategy, that is

←−F = (→∗
RSum→FZip)∗, on the reversed 2-tree

with root {t}. Secondly we apply →∗
Col and we finish with →∗

RSum.

Corollary 2. The reachability problem for separated ribbon between states re-
duces to the reachability problem for VASS (via many-one reductions).

Now we give an example using a separation strategy which preserves reachability.

Lemma 6. Let V be a ribbon from {s} to {t}. Let V = (m,R2) be a rewriting
system. There is separating strategy for V rewriting V into a separated ribbon W
from {s′} to {t′} such that: {(s, x)}�V {(t, y)} ⇔ {(s′, x)}�W {(t′, y)}

Proof. Let V be a ribbon from {s} to {t}. Let the separation strategy be:

142 P. Jacobé de Naurois and V. Mogbil

For each shared source of pairs, we call it d,
if a path p from s to d is not a branch of a 2-tree from s
then apply BExp, using other R2 rules in order to reduce

the length of p and to reveal BExp redexes.

Remark that if there is a subpath p′ of p from a shared target of a pair to a d state,
then its length can always be reduced to zero by applying rules of R2−{BExp}.
It follows that in a not separated ribbon, BExp redexes can always be revealed.
If the d states to treat are chosen with smallest distance from s then by lemma
4 the strategy terminates. Remark that V rewrites a ribbon into a ribbon. So V
is rewritten into a ribbon such that every shared source paired states are in a
branch of a 2-tree from s. In other words this ribbon is separated.

Remark that a ribbon is defined to be both B-path and F-path, and this is
essential to ensure that the strategy terminates by building a separated ribbon:
there is no Zed rule to apply to build a new BExp redex, so one can continue
the strategy preserving reachability, or we have already a separated ribbon.

Corollary 3. The reachability problem for ribbon between states reduces to the
reachability problem for separated ribbon between states.

We easily extend the lemma 6 to ribbons from {s} to an arbitrary set T : the
implemented separation strategy both terminates and normalizes in a separated
ribbon from {s} to T (extended as expected) preserving the reachability.

This is generalizable to separation for ribbons between arbitrary sets when
there is a bridge between S and T (Definition 4). We are interested in bridged
ribbons because they are always associated to a positive promenade in a BVASS.

Lemma 7. Let V be a bridged ribbon from S to T . Let V = (m,R2) be a rewrit-
ing system. There is a separating strategy for V rewriting V into a separated
ribbon W from S to T such that: S′ �V T ′ ⇔ S′ �W T ′.

Proof. Let ρ be a ribbon from S to T with a bridge such that the, at most three,
simply connected components are denoted by V ρ

i , i ∈ I. Let i ∈ I. V ρ
i is by

definition a ribbon from Si to Ti where either Si or Ti is a singleton, whose state
is a state of the bridge. W.l.g. let Si = {si} be an arbitrary such singleton. By
the previous extension of lemma 7, V ρ

i is separable in W ρ
i between the same sets

such that reachability is preserved. Let W be the normal form by separation
strategy of the ribbon which consists of the bridge of ρ added to the W ρ

i ribbon.
We have that W is the normal form of ρ and again reachability is preserved.

Remark that there is a bridge in all ribbons from S to T if at least one of these
sets is a singleton. In fact one bridge is the arc or arc pair which is to or from the
state of the singleton set. So bridged ribbons generalize ribbons from a singleton
to a set.

To compare bridged ribbon reachability to VASS reachability, we want to
reduce reachability of arbitrary separated ribbon to VASS reachability. We have:

Rewriting Systems for Reachability inVector Addition Systems with Pairs 143

Lemma 8. Let ρ be a separated ribbon between arbitrary sets S and T . Let s
and t be two states not in ρ. Let θs,S (respectively θT,t) be a VASP of same
dimension than ρ consisting of a binary tree of split pairs (respectively of join
pairs) from {s} to S (respectively from T to {t}). Let W be the ribbon from
{s} to {t} which consists of θs,S composed with ρ and composed with θT,t (by
identity morphism on S and T). We have: if x (respectively y) is a division of
{xi}1�i�|S| (respectively of {yj}1�i�|T |) then

{(si, xi)si∈S}�ρ {(tj, yj)tj∈T } ⇔ {(s, x)}�W {(t, y)}

Remark that the ribbon W is separable, therefore there is a reduction between
reachability for bridged ribbon and VASS reachability using a separability strat-
egy. So by lemma 7 and 8 we have:

Corollary 4. The reachability problem for bridged ribbons reduces to the reacha-
bility problem for VASS (via many-one reductions). Then the former is decidable.

We finish a last step further with a strategy for VASP which are not ribbons:

Repeat
rewrite a ribbon between arbitrary sets by separation strategy

Until all ribbons are separated.

This (too strong) strategy does not always terminate, sometimes for bad reasons:
rules cannot be applied because of interface restrictions, for example, when there
is an arc to a node of the left-hand side of a rule, whose target or source is not
in the interface. Rewriting rules with interfaces which consist of all the states
of the left-hand side are quite inextricable (from a reachability point of view).
Thus we are even far from semidecidability.

Lemma 9. Given a VASP V , if the separation strategy terminates for V in a
normal form W , we have: S �V T ⇒ S �W T .

In such a normal form, all ribbons are separated. So by corollary 4 we have:

Proposition 2. Given a VASP V , if the separation strategy terminates for V ,
then the reachability problem for V with divisible initial and final configurations
reduces to VASS reachability problem.

5 Conclusion

We introduce a generalization of VASS called Vector Addition Systems with Pairs
(VASP) by pairing arcs with same source or with same target. These correspond
to split and joint transitions with a multiset of vectors. The reachability decision
problem for VASP RPVASP subsumes the one for BVASS (as a sub-case of VASP
without split pairs) which is equivalent to the open MELL provability decision
problem. There is also a natural simplification of RPVASP not valid for BVASS.

144 P. Jacobé de Naurois and V. Mogbil

We present graph rewriting systems in order to study paths in VASP. This
tool permits reduction between restricted forms of VASP and VASS, preserving
reachability properties. Notably the reachability problem is decidable for VASP
in which our separation strategy terminates.

Other strategies, like zipping one using {RSum, BZip, BSwap, BCol} rules
and reversed rules, can be used to obtain reachability for other kind of VASP.
By zipping strategy we think to rewrite a ribbon starting from a source state
and applying rules step-by-step on each outgoing arcs (source paired or not),
making synchronization on each target paired state by reducing the remaining
branch of ribbon before it.

The main other way for reachability decision is to adapt the original proof
of reachability for VASS to VASP. It seems approachable to obtain decidability
associated to Karp and Miller “trees” for VASP.

References

1. Brázdil, T., Jancar, P., Kucera, A.: Reachability games on extended vector addition
systems with states. CoRR (2010) abs/1002.2557

2. de Groote, P., Guillaume, B., Salvati, S.: Vector addition tree automata. In: LICS,
pp. 64–73. IEEE Computer Society, Los Alamitos (2004)

3. Demri, S., Jurdzinski, M., Lachish, O., Lazic, R.: The covering and boundedness
problems for branching vector addition systems. In: Kannan, R., Kumar, K.N.
(eds.) FSTTCS. LIPIcs, vol. 4, pp. 181–192 (2009)

4. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of
the EATCS 52, 244–262 (1994)

5. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Dis-
crete Applied Mathematics 42(2), 177–201 (1993)

6. Ginsburg, S., Spanier, E.H.: Semigroups, presburger formulas, and languages.
Pacific Journal of Mathematic 16(2), 285–296 (1966)

7. Ginzburg, A., Yoeli, M.: Vector addition systems and regular languages. J. Comput.
Syst. Sci. 20(3), 277–284 (1980)

8. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
9. Hopcroft, J.E., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector

addition systems. TCS 8, 135–159 (1979)
10. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),

147–195 (1969)
11. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary

version). In: STOC, pp. 267–281. ACM, New York (1982)
12. Lambert, J.-L.: A structure to decide reachability in petri nets. Theor. Comput.

Sci. 99(1), 79–104 (1992)
13. Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM J.

Comput. 13(3), 441–460 (1984)
14. Müller, H.: The reachability problem for vas. In: Rozenberg, G., Genrich, H.J.,

Roucairol, G. (eds.) APN 1984. LNCS, vol. 188, pp. 376–391. Springer, Heidelberg
(1985)

15. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
16. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Inform. 33(2),

201–209 (1998)

Rewriting Systems for Reachability inVector Addition Systems with Pairs 145

17. Reutenauer, C.: Aspects Mathématiques des Réseaux de Pétri. Masson (1989)
18. Verma, K.N., Goubault-Larrecq, J.: Karp-miller trees for a branching extension of

vass. Discrete Mathematics & Theoretical Computer Science 7(1), 217–230 (2005)
19. Verma, K.N., Goubault-Larrecq, J.: Alternating two-way ac-tree automata. Inf.

Comput. 205(6), 817–869 (2007)

The Complexity of Model Checking for
Intuitionistic Logics and Their Modal

Companions

Martin Mundhenk and Felix Weiß

Universität Jena, Institut für Informatik, Jena, Germany
{martin.mundhenk,felix.weiss}@uni-jena.de

Abstract. We study the model checking problem for logics whose se-
mantics are defined using transitive Kripke models. We show that the
model checking problem is P-complete for the intuitionistic logic KC. In-
terestingly, for its modal companion S4.2 we also obtain P-completeness
even if we consider formulas with one variable only. This result is opti-
mal since model checking for S4 without variables is NC1-complete. The
strongest variable free modal logic with P-complete model checking prob-
lem is K4. On the other hand, for KC formulas with one variable only
we obtain much lower complexity, namely LOGDCFL as an upper bound.

1 Introduction

We investigate the complexity of the model checking problem for intuitionistic
propositional logics and for its modal companions. Intuitionistic propositional
logic IPC (see e.g. [1]) is the part of classical propositional logic that goes with-
out the use of the excluded middle a ∨ ¬a. We will use its semantical definition
by Kripke models with a partially ordered set of states and a monotone valu-
ation function. A straightforward upper bound follows from the Gödel-Tarski
translation (see e.g. [2, p.96]) that embeds intuitionistic logic into the modal
logic S4. Since the model checking problem—given a formula and a model, does
the model satisfy the formula (or does the formula evaluate to “true” under the
model)?—for modal logic is in P [3], we obtain the same as an upper bound for
the problem in intuitionistic logic. For classical propositional logic, the model
checking problem can be solved in logarithmic space [4] and even better in alter-
nating logtime [5]. Since the models for classical logic can be seen as a special case
of Kripke models with one state only, we cannot expect such a low complexity
for intuitionistic logic, where the models may consist of many states.

More generally, we will consider the classical propositional logic PC, the intu-
itionistic logics LC (Gödel-Dummet logic, see [6]), KC (Jankov’s logic, see [6]),
IPC, and BPL (Visser’s basic propositional logic [7]), and their respective modal
companions S5, S4.3, S4.2, S4, and K4 (see e.g. [2] for an overview). Remind
that PC ⊃ LC ⊃ KC ⊃ IPC ⊃ BPL.

Our first hardness result (Theorem 2) is the P-hardness of the model checking
problem for the superintuitionistic (or intermediate) logic KC. This hardness

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 146–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Complexity of Model Checking for Intuitionistic Logics 147

PC
[5]

S5

S51

PC1
[5]

LC

S4.3

S4.31

LC1

KC

S4.2

S4.21

KC1

S4.20

IPC

IPC1
[10]

S4

S41

IPC0

S40

BPL

BPL1

K4

K41

K40

BPL0

Legend:

P-complete

AC1-complete

in LOGDCFL and NC1-hard

NC1-complete

Fig. 1. Summary of results: the structure of the logics and the complexity of the model
checking problem. Lower and upper bounds for the uncircled logics follow from their
neighbourhoods, but non-trivial bounds are unknown.

result consequently also holds for IPC and BPL and their companions S4.2, S4,
and K4. Hence, the well-known upper bound [3] turns out to be the lower bound.

Since the expressivity of intuitionistic logics seems to be much lower than
that of their modal companions, it is somewhat surprising that all these logics
have P-hard model checking problems. In fact, the satisfiability problem for
S4.2 up to K4 are PSPACE-complete [8,9], whereas the satisfiability problem for
intuitionistic logic has the same complexity as that for classical logic—both are
NP-complete. We can point out some differences for the model checking problem
that can be seen as a result of the greater expressivity of modal logics. This
difference appears if we consider formulas with one variable only or without any
variables. In Theorem 3 we show that the model checking problem remains P-
hard for S4.2, even if we consider formulas with one variable only. For K4 we
show P-hardness, even if we consider formulas without variables (Theorem 4).
These results are in contrast to the recent result in [10] showing that the model
checking problem for IPC with one variable only is AC1-complete. For KC with
one variable only we will show that the complexity of model checking is even
lower, namely in LOGDCFL (Theorem 7). Regarding the number of variables
for S4.2 resp. S4, Theorem 3 is optimal. We show that model checking for the
variable free fragment of S4 is NC1-complete (Theorem 8).

148 M. Mundhenk and F. Weiß

Figure 1 summarizes our results. There, PC denotes classical propositional
logic, and subscript 1 or 0 (e.g. S4.21) denotes the fragment with one variable
only resp. without variables.

Technically, our hardness results use a reduction from the alternating graph
accessibility problem Agap, being one of the standard P-complete problems
[11,12]. It can straightforwardly be logspace reduced to the model checking prob-
lem for propositional modal logic by taking the alternating graph as the frame
of a Kripke model (with an empty valuation function) and a formula essentially
consisting of a sequence of � and � operators that simulates the search through
the graph. This straightforward approach does not work anymore when we want
to reduce to Kripke models with transitive frames—like for the modal logic S4 or
intuitionistic propositional logic. On the one hand, making an alternating graph
transitive, destroys essential properties it has, and on the other hand, a logspace
reduction does not have enough computational power to calculate the transitive
closure of a directed graph.

This paper is organized as follows. In Section 2 we introduce the notations for
the logics under consideration, and we show P-completeness of a graph accessi-
bility problem for a special case of alternating graphs that will be used for our
P-hardness proofs. In Section 3 we give P-hardness proofs for the model checking
problem for KC, S4.21, and K40. The upper bounds are presented in Section 4.
The resulting completeness results and conclusions are drawn in Section 5.

2 Preliminaries

Kripke Models. We will consider different propositional logics whose formulas
base on a countable set PROP of propositional variables (resp. atoms). A Kripke
model is a triple M = (U, R, ξ), where U is a nonempty and finite set of states,
R is a binary relation on U , and ξ : PROP→ P(U) is a function — the valuation
function. Informally spoken, for any variable it assigns the set of states in which
this variable is satisfied. (U, R) can also be seen as a directed graph—it is called
a frame in this context.

Modal Propositional Logic. The language ML of modal logic is the set of
all formulas of the form
ϕ ::= ⊥ | p | ϕ→ ϕ | �ϕ ,
where p ∈ PROP. As usual, we use the abbreviations ¬ϕ := ϕ → ⊥, $:= ¬⊥,
ϕ ∨ ψ := (¬ϕ)→ ψ, ϕ ∧ ψ := ¬(ϕ→ ¬ψ), and �ϕ := ¬�¬ϕ.

The semantics is defined via Kripke models. Given a model M = (U, R, ξ)
and a state s ∈ U , the satisfaction relation for modal logics |=M is defined as
follows.

M, s �|=M ⊥
M, s |=M p iff s ∈ ξ(p), p ∈ PROP,

M, s |=M ϕ→ ψ iff M, s �|=M ϕ orM, s |=M ψ,

M, s |=M �ϕ iff ∃t ∈ U : sRt andM, t |=M ϕ.

The Complexity of Model Checking for Intuitionistic Logics 149

A formula ϕ is satisfied by model M in state s iff M, s |=M ϕ. If it is satisfied
byM in every state s ofM, then we writeM |=M ϕ.

The modal logic defined in this way is called K (after Saul Kripke) and it
is the weakest normal modal logic. We will consider the stronger modal logics
K4, S4, S4.2, S4.3, and S5. The formulas in all these logics are the same as for
ML. Since we are interested in formula evaluation, we use the semantics defined
by Kripke models. They will be defined by properties of the frame (i.e. graph)
(U, R) that is part of the model. A frame (U, R) is reflexive, if xRx for all x ∈ U ,
and it is transitive, if for all a, b, c ∈ U , it follows from aRb and bRc that aRc.
A reflexive and transitive frame is called a preorder. If a preorder (U, R) has the
additional property that for all a, b ∈ U there exists a c ∈ U with aRc and bRc,
then (U, R) is called a directed preorder. If for all a, b ∈ U holds aRb or bRa,
then (U, R) is called a linear preorder.

The semantics of several modal logics can be defined by restricting the class of
Kripke frames under consideration. The semantics of K4 is defined by transitive
frames. This means, that a formula α is a theorem of K4 if and only ifM |=M α
for all models M whose frame is transitive. The semantics of S4 is defined by
preorders, of S4.2 by directed preorders, of S4.3 by linear preorders, and of S5
by equivalence relations (symmetric preorders). For any logic L, let Li denote
its fragment with i variables only. The fragment L0 has no variables but the
constant ⊥ only.

Intuitionistic Propositional Logic. The languageIPC of intuitionistic propo-
sitional logic is the same as that of propositional logic PC, i.e. it is the set of all
formulas of the form

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ ,

where p ∈ PROP. As usual, we use the abbreviations ¬ϕ := ϕ → ⊥ and $:=
¬⊥. Because of the semantics of intuitionistic logic, one cannot express ∧ or ∨
using → and ⊥.

The semantics is defined via Kripke modelsM = (U, R, ξ) that fulfill certain
restrictions. Firstly, R is a preorder on U , and secondly, the valuation function
ξ : PROP→ P(U) is monotone in the sense that for every p ∈ PROP, a, b ∈ U :
if a ∈ ξ(p) and aRb, then b ∈ ξ(p). We will call such models intuitionistic.

Given an intuitionistic modelM = (U, �, ξ) and a state s ∈ U , the satisfaction
relation for intuitionistic logics |=I is defined as follows.

M, s �|=I ⊥
M, s |=I p iff s ∈ ξ(p), p ∈ PROP,

M, s |=I ϕ ∧ ψ iff M, s |=I ϕ andM, s |=I ψ,

M, s |=I ϕ ∨ ψ iff M, s |=I ϕ orM, s |=I ψ,

M, s |=I ϕ→ ψ iff ∀n � s : ifM, n |=I ϕ then M, n |=I ψ

An important property of intuitionistic logic is the monotonicity property: if
M, s |=I ϕ then ∀n � s holdsM, n |=I ϕ, for all formulas ϕ.

150 M. Mundhenk and F. Weiß

int. logic modal companion frame properties
BPL K4 transitive
IPC S4 preorder
KC S4.2 directed preorder
LC S4.3 linear preorder
PC S5 equivalence relation

Fig. 2. Intuitionistic logics, their modal companions, and the common frame properties

A formula ϕ is satisfied by an intuitionistic modelM in state s iffM, s |=I ϕ.
Intuitionistic propositional logic IPC is the set of IPC-formulas that are satisfied
by every intuitionistic model.

Notice that IPC is a proper subset of the tautologies in classical propositional
logic PC.1 The superintuitionistic (or intermediate) logics KC and LC are also
subsets of the tautologies in classical propositional logic, but proper supersets of
IPC. Syntactically, KC results from adding the weak law of the excluded third
¬a ∨ ¬¬a to IPC. Its semantics is defined by Kripke frames that are directed
preorders—similar as for S4.2. LC (also called Gödel-Dummett logic) results
syntactically from adding (a → b) ∨ (b → a) to IPC. Its semantics is defined
by Kripke frames that are linear preorders–similar as for S4.3. The logic BPL
is Visser’s basic propositional logic [7]. Its semantics is defined by transitive
(not necessarily reflexive) Kripke models with monotone valuation functions.
Hence it holds that BPL ⊆ IPC. Finally, the classical propositional logic PC
can syntactically be seen as IPC plus the law of the excluded third a ∨ ¬a. Its
semantics is defined by Kripke frames that are equivalence relations–similar as
for S5. Notice that in a Kripke frame being an equivalence relation and having
a monotone valuation function, all equivalent states satisfy exactly the same
formulas. Therefore, evaluating a formula ϕ in a state w in such a model is the
same as evaluating ϕ in the classical propositional sense under the assignment
in which exactly those variables p with w ∈ ξ(p) are set to true.

The Gödel-Tarski translation (see e.g. [2, p.96]) maps any IPC-formula α to
a modal formula by inserting a � before every implication and every atom. For a
formula α, let αGT be its Gödel-Tarski translation. The goal of this translation is
to preserve validity. I.e., α is a theorem for IPC (resp. BPL, KC, LC, PC) iff αGT

is a theorem for S4 (resp. K4, S4.2, S4.3, S5). Therefore, S4 (resp. K4, S4.2, S4.3,
S5) is called a modal companion of IPC (resp. BPL, KC, LC, PC). Figure 2 gives
an overview about the intuitionistic logics and their modal companions used
here. The Gödel-Tarski translation also preserves satisfaction in the different
logics.

Lemma 1. Let α be a formula from IPC, and an intuitionistic M with state
s. Then M, s |=I α if and only if M, s |=M αGT .

1 The satisfiable formulas in intuitionistic logic are the same as in classical proposi-
tional logic.

The Complexity of Model Checking for Intuitionistic Logics 151

Model Checking Problems. This paper examines the model checking prob-
lems L-Mc for logics L whose formulas are evaluated on Kripke models with
different properties.

Problem: L-Mc

Input: 〈ϕ,M, s〉, where ϕ is an L-formula, M = (U, R, ξ) is a
Kripke model for L, and s ∈ U is a state

Question: Is ϕ satisfied byM in state s ?

We assume that formulas and Kripke models are encoded in a straightforward
way. This means, a formula is given as a text, and the graph (U, R) of a Kripke
model is given by its adjacency matrix that takes |U |2 bits. Therefore, only finite
Kripke models can be considered.

Notice that all instances 〈ϕ,M, s〉 of IPC-Mc have a graph (U, R) contained
in M that is a preorder. Instances without this property can be assumed to be
rejected. The same holds for S4-Mc and S41-Mc. Accordingly, KC-Mc, S4.2-Mc,
and S4.21-Mc (resp. LC-Mc and S4.3-Mc) have instances only where the graph
underlying the model is a directed preorder (resp. linear preorder). Since we only
consider finite models, every directed preorder must have a maximal element.
Therefore, it can be easily decided whether the model has the order property
under consideration.

Complexity. We assume familiarity with the standard notions of complexity
theory as, e. g., defined in [13]. In particular, we will show results for the classes
LOGDCFL and P. The notion of reducibility we use is the logspace many-one re-
duction ≤log

m . The Gödel-Tarski translation can be seen as a reduction between
the model checking problems for intuitionistic logics and their modal compan-
ions, namely BPL-Mc ≤log

m K4-Mc, IPC-Mc ≤log
m S4-Mc, KC-Mc ≤log

m S4.2-Mc,
LC-Mc ≤log

m S4.3-Mc, and PC-Mc ≤log
m S5-Mc. The respective reducibilities also

hold for the model checking problems for formulas with any restricted number
of variables.

LOGDCFL is the class of sets that are ≤log
m -reducible to deterministic context-

free languages. It is also characterized as sets decidable by deterministic Turing
machine in polynomial-time and logarithmic space with additional use of a stack.
The inclusion structure of the classes under consideration is as follows.

NC1 ⊆ L ⊆ LOGDCFL ⊆ AC1 ⊆ P

L denotes logspace, the formula value problem for propositional logic is complete
for NC1 (= alternating logarithmic time) [5], and the model checking problem for
IPC1 is complete for AC1 (= alternating logspace with logarithmically bounded
number of alternations) [10].

P-complete problems. Chandra, Kozen, and Stockmeyer [11] have shown that
the Alternating Graph Accessibility Problem Agap is P-complete. In [12] it is
mentioned that P-completeness also holds for a bipartite version.

An alternating graph G = (V, E) is a bipartite directed graph where V =
V∃ ∪ V∀ are the partitions of V . Nodes in V∃ are called existential nodes, and

152 M. Mundhenk and F. Weiß

nodes in V∀ are called universal nodes. The property apathG(x, y) for nodes
x, y ∈ V is defined as follows.

1) apathG(x, x) holds for all x ∈ V
2a) for x ∈ V∃: apathG(x, y) iff ∃z ∈ V∀ : (x, z) ∈ E and apathG(z, y)
2b) for x ∈ V∀: apathG(x, y) iff ∀z ∈ V∃ : if (x, z) ∈ E then apathG(z, y)

The problem Agap consists of directed bipartite graphs G and nodes s, t that
satisfy the property apathG(s, t). Notice that in bipartite graphs existential and
universal nodes are strictly alternating.

Problem: Agap

Input: 〈G, s, t〉, where G is a directed bipartite graph
Question: does apathG(s, t) hold?

Theorem 1. [11,12] Agap is P-complete under ≤log
m -reductions.

For our purposes, we need an even more restricted variant of Agap. We claim
that the graph is sliced. An alternating slice graph G = (V, E) is a directed bipar-
tite acyclic graph with a bipartitioning V = V∃ ∪ V∀, and a further partitioning
V = V1∪V2∪· · ·∪Vm (m slices, Vi∩Vj = ∅ if i �= j) where V∃ =

⋃
i≤m,i odd

Vi and

V∀ =
⋃

i≤m,i even
Vi, such that E ⊆

⋃
i=1,2,...,m−1

Vi × Vi+1 — i.e. all edges go from

slice Vi to slice Vi+1 (for i = 1, 2, . . . , m− 1). Finally, we claim that all nodes in
a slice graph excepted those in the last slice Vm have outdegree > 0.

Problem: AsAgap

Input: 〈G, s, t〉, where G = (V∃ ∪ V∀, E) is a slice graph with slices
V1, . . . , Vm, and s ∈ V1 ∩ V∃, t ∈ Vm ∩ V∀

Question: does apathG(s, t) hold?

It is not hard to see that this version of the alternating graph accessibility
problem remains P-complete.

Lemma 2. AsAgap is P-complete under ≤log
m -reductions.

Sketch of Proof. AsAgap is in P, since it is a special case of Agap, that is
known to be in P, and since instances 〈G, s, t〉 where G is not a slice graph or
s �∈ V1 ∩ V∃ or t �∈ Vm ∩ V∀ can easily be identified.

In order to show P-hardness of AsAgap, it suffices to find a reduction
Agap ≤log

m AsAgap. For an instance 〈G, s, t〉 of Agap where G has n nodes
it is straightforward to construct an instance 〈Gn, s′, t′〉 of AsAgap using the
considerations from above. If 〈Gn, s′, t′〉 ∈ AsAgap, then there exists a tree
being a subgraph of Gn, that witnesses this fact. This tree can directly be trans-
formed to a witness for 〈G, s, t〉 ∈ Agap. If 〈G, s, t〉 ∈ Agap, this is also be
witnessed by a (finite) tree T that can be seen to consist of copies of nodes and
edges of G. This tree can be trimmed in a way that on every path from the root
to a leaf, every node appears at most once. Hence T induces a tree that witnesses
〈Gn, s′, t′〉 ∈ AsAgap. ��

The Complexity of Model Checking for Intuitionistic Logics 153

3 Lower Bounds

We now give hardness results for the model checking problem. The P-hardness
proofs use logspace reductions from the P-hard problem AsAgap (Lemma 2).
The slice graph is transformed to a frame to be used in an instance of the
model checking problem. Since the semantics of the logics under consideration
are defined by Kripke models with frames that are transitive (and reflexive), we
need to produce frames that are transitive (and reflexive). The straightforward
way would be to take the transitive closure of a slice graph. But we cannot
compute the transitive closure of a directed graph in logspace. Fortunately, slice
graphs can easily be made transitive by adding all edges that “jump” from a
node to a node that is at least two slices higher. Clearly, the resulting graph
is not anymore a slice graph, but it is a transitive supergraph of the transitive
closure of the slice graph. We then will use the valuation function in order to let
us rediscover in which slice a state is.

s

t

s

t

Fig. 3. A slice graph and its pseudo-transitive closure

Definition 1. Let V≥i :=
⋃

j=i,i+1,...,m Vj , and V≤i :=
⋃

j=1,2,...,i Vj . The pseudo-
transitive closure of a slice graph G = (V, E) with V = V1 ∪ . . . ∪ Vm is the graph
G′ = (V, E′) where

E′ := E ∪
⋃

i=1,2,...,m−2

Vi × V≥i+2 .

The reflexive and pseudo-transitive closure of G is the graph G′′ = (V, E′′) where

E′′ := E′ ∪ V × V.

An example for a slice graph and its pseudo-transitive closure is shown in
Figure 3.

Theorem 2. KC-Mc—i.e. the model checking problem for KC—is P-hard.

154 M. Mundhenk and F. Weiß

∃ V1 s

∀ V2

∃ V3

∀ V4 t

∀ slice 2: a1, a2

∃ slice 1: a1

∃ slice 3: a1, a2, a3

t slice 4: a1, a2, a3, a4

Fig. 4. A slice graph G, and the model MG as constructed in the proof of
Theorem 2. Pseudo-transitive edges are drawn dashed, and reflexive edges are not
drawn for simplicity.

Sketch of Proof. We show AsAgap ≤log
m KC-Mc. The P-hardness of KC-Mc

then follows from Lemma 2.
For simplicity, we informally sketch the ideas for the reduction AsAgap ≤log

m
IPC-Mc. Given an AsAgap instance 〈G, s, t〉 where G has m slices, let (U, R) be
its reflexive and pseudo-transitive closure. The valuation function ξ is defined for
variables t, a1, . . . , am as follows. t holds exactly in the state t of the graph (ξ(t) =
{t}), and the variables a1, . . . , ai hold in slice i (for i = 1, 2, . . . , m) (ξ(ai) = V≥i)
This yields the Kripke model MG = (U, R, ξ). Figure 4 shows a slice graph G
with m = 4 slices and Kripke modelMG = (U, R, ξ) that is transformed from it.
The fat lines indicate that apathG(s, t) holds. The graph (U, R) is the reflexive
and pseudo-transitive closure of G. The blue lines in Figure 4 are the pseudo-
transitive edges, the reflexive edges are not depicted. The valuation function
ξ is defined so that variable t holds exactly in the state t of the graph, and
additionally the variables a1, . . . , ai hold in slice i (for i = 1, 2, . . . , m).

The formulas ψ1, . . . , ψm, ψm+1 are inductively defined as follows.

1. ψm+1 := t, and
2. ψj := ψj+1 → aj+1 for all j = m, m− 1, . . . , 1.

Notice that ψi = (· · · ((t→ am+1)→ am)→ · · · → ai+2)→ ai+1 . Therefore, ψi

is satisfied in all slices where ai+1 is satisfied, i.e. the slices V≥i+1. In slice Vi,
ψi and ψi+1 behave like the mutual complement. Say that a state v is good, if
apathG(v, t) holds, and otherwise it is bad. It turns out, that the good and the
bad states can be distuingished using the formulas ψi as follows.

Claim. For all i = 1, 2, . . . , m and all w ∈ Vi holds:

1. if i is odd: apathG(w, t) iffMG, w �|=I ψi+1, and
2. if i is even: apathG(w, t) iffMG, w �|=I ψi.

For our example, this means the following.

The Complexity of Model Checking for Intuitionistic Logics 155

slice(s): in every good state holds: in every bad state holds:
4,3: �|=I t→ a5 |=I t→ a5
3,2: |=I (t→ a5)→ a4 �|=I (t→ a5)→ a4
2,1: �|=I ((t→ a5)→ a4)→ a3 |=I ((t→ a5)→ a4)→ a3
1: |=I (((t→ a5)→ a4)→ a3)→ a2 �|=I . . .

Since 〈G, s, t〉 ∈ AsAgap iff s is a good state, it now follows that 〈G, s, t〉 ∈
AsAgap if and only if MG, s |=I ψ1, i.e. 〈ψ1,MG, s〉 ∈ IPC-Mc. By the sim-
plicity of the construction it follows that AsAgap ≤log

m IPC-Mc.
In order to make this reduction work for KC-Mc, we add an additional top-

state, to which every state is related and in which every variable is satisfied. ��

It follows immediately from Lemma 1 that the model checking problem for S4.2—
the modal companion of KC—is P-hard, too. In fact, we can improve the result
and obtain P-hardness for the model checking problem for S41—i.e. the fragment
of S4 with formulas with one variable only. This result is optimal in the sense
that the model checking problem for S40 is easy to solve. A formula without
any variables is either satisfied by every model w.r.t. S4, or it is satisfied by no
model. This is because �$ (resp. �$) is satisfied by every state in every model,
and �⊥ (resp. �⊥) is satisfied by no state in every model. Essentially, the modal
operators can be ingnored and the remaining formula can be evaluated like a
classical propositional formula—this problem is in NC1 [5].

Theorem 3. S4.21-Mc is P-hard—i.e. the model checking problem for S4.2 is
P-hard, even if we consider modal formulas with one variable only.

Sketch of Proof. We show that AsAgap ≤log
m S4.21-Mc. Since AsAgap is P-

hard (Lemma 2), the P-hardness of S4.21-Mc follows. For space reasons, we
informally sketch the ideas for the reduction AsAgap ≤log

m S4.21-Mc below.
Let 〈G, s, t〉 be an instance of AsAgap with a slice graph G with m slices

(m even). First, we define the valuation function so that a holds in all nodes in
all even slices. In order to be able to distinguish the goal node t from the other
nodes, t gets a successor t′, and t′ is the only node in the new m + 1st slice.
Finally, we add a slice Vm+2 with some nodes between which we also have edges.
For all nodes in the other slices we add edges to all nodes in Vm+2. By the choice
of edges in Vm+2 there is now a node h that is the top node of this construction.
We chose the valuation ξ for the nodes in Vm+2 in a way that a certain formula
γ′ is satisfied in all states in Vm+2, and in all other states it is not satisfied. For
the remaining slices V1, . . . , Vm+1 it holds that Vi ⊆ ξ(a) iff i is odd. Using this
alternation of slices that satisfy a and that satisfy ¬a, we can estimate the slice
to which a state belongs as follows using the inductively defined formulas δi (for
i = 1, 2, . . . , m).

1. δm := �(a ∧ ¬γ′)
2. for odd i, 1 ≤ i < m: δi := �(¬a ∧ δi+1)

for even i, 1 ≤ i < m: δi := �(a ∧ δi+1)

For x ∈ V≤m we now have that MG, x |=M δi iff x ∈ V≤i.

156 M. Mundhenk and F. Weiß

The goal state t is the only state in Vm that satisfies a ∧ �(¬a ∧ γ′). Using
the δi formulas to verify an upper bound for the slice of a state, we can now
simulate the alternating graph accessibility problem by the following formulas.

1. λm := a ∧�(¬a ∧ ¬γ′)
2. for odd i < m: λi := ¬a ∧�(δi+1 ∧ λi+1)

for even i < m: λi := a ∧�(δi+1 → λi+1)

It follows that 〈G, s, t〉 ∈ AsAgap iffMG, s |=M λ1, i.e. 〈λ1,MG, s〉 ∈ S4.21-Mc.
Since the construction of MG and λ1 from G can be computed in logarithmic
space, it follows that AsAgap ≤log

m S4.21-Mc. ��

The reduction in the proof of Theorem 3 is not suitable for intuitionistic logics,
since the constructed Kripke model lacks the monotonicity property of the vari-
ables. Moreover, in that proof we make extensive use of negation, that would
have a very different meaning in intuitionistic logics.

In Theorem 4 we show P-hardness of the model checking problem for the
modal logic K4, even if we consider formulas without any variables.

Theorem 4. K40-Mc is P-hard.

Sketch of Proof. The P-hardness of the model checking problem for the modal
logic K40 can easily be obtained using the P-hardness of AsAgap from Lemma 2.
The reduction from AsAgap to K4-Mc works as follows. Let 〈G, s, t〉 be an
instance of AsAgap where G is a slice graph with m slices. Define MG =
(U, R, ξ) as follows.

– (U, R′) is the pseudo-transitive closure of G.
– R := R′ ∪ {(v, v) | for every vertex v �= t in the top slice Vm of G}.

Informally spoken, the modelMG is the pseudo-transitive closure of G and every
state in the last slice except the state t has an edge to itself. We define ϕG as
follows.

– αi := � . . .��⊥ with m− i �s for i ∈ {2, . . . , m− 1}.
– ϕm−1 := ��⊥

for odd i, m− 1 > i ≥ 1: ϕi := �(αi+1 ∧ ϕi+1)
for even i, m > i > 1: ϕi := �(αi+1 → ϕi+1)

– ϕG := ϕ1

Notice that �⊥ is satisfied only in t because t is the only state without any
successor. The subformula αi is satisfied in state w, if there is a path in G from
w to t with m − i vertices. For this reason M, w |=M αi implies w ∈ V≤i.
With a straightforward induction it can be shown that for all w ∈ V≤i holds:
MG, w |=M ϕi iff apathG(w, t). Hence it follows that 〈G, s, t〉 ∈ AsAgap iff
MG, s |=M ϕG. ��

The Complexity of Model Checking for Intuitionistic Logics 157

4 Upper Bounds

We give upper bounds for the complexity of the model checking problem for the
logics under consideration. For S4, the model checking problem is in P [3]. By
the properties of the Gödel-Tarski embedding of IPC into S4 (Lemma 1), the
same upper bound follows immediately for IPC. The same holds for the more
common fragments BPL and K4.

Theorem 5. [3] The model checking problem for K4 and for BPL is in P.

Consequently, the model checking problems for the superintuitionistic logics and
their modal companions can also be solved in polynomial time. We now consider
logics for which this goes even better.

Theorem 6. The model checking problem for LC is in LOGDCFL.

Proof. The idea is as follows. Let M = (U, �, ξ) be an LC-model. This means
that ξ is monotone and (U, �) is a total preorder. For simplicity of notation we
assume that U = {1, 2, . . . , n} and � orders these states in the intuitive way,
namely 1 � 2 � 3 � . . . � n. Because of the monotonicity of intuitionistic logic,
for every formula α there exists an iα ∈ {1, 2, . . . , n, n + 1} such that α is not
satisfied in states 1, 2, . . . , iα − 1 and α is satisfied in states iα, iα + 1, . . . , n. If
iα = n + 1, then α is not satisfied in states 1, 2, . . . , n. We define a function g
that maps formulas to this value. This function can inductively be defined as
follows.

(1) g(⊥) = n + 1
(2) for atoms α = a: g(a) = min

(
{i | i ∈ ξ(a)} ∪ {n + 1}

)
(3) for α = β ∧ γ: g(β ∧ γ) = max(g(β), g(γ))
(4) for α = β ∨ γ: g(β ∨ γ) = min(g(β), g(γ))

(5) for α = β → γ: g(β → γ) =

{
g(γ), if g(β) < g(γ)
1, otherwise

In order to decide M, 1 |=I α we calculate g(α) and decide whether this value
equals 1. The calculation of g(α) can be done by a depth first search through the
formula that we consider here as a tree. The “leaves” of this tree are variables
resp. ⊥. The g-values of these leaves can easily be computed in logarithmic space
by inspecting the valuation function ξ. Every internal node of this tree represents
a subformula of α. The g-value of each of these nodes can be computed using
the g-values of its sons as described by the inductive definition of g above.
Altogether, this search can be performed deterministically in polynomial time
within logarithmic space and an additional stack. This shows that the model
checking problem for LC is in LOGDCFL. ��

The model checking problem for KC1 can be reduced to that of LC1, and by The-
orem 6 it also has LOGDCFL as upper bound. The reduction relies on algebraic
properties of KC1 according to [14,15] and is left out here for space reasons.

158 M. Mundhenk and F. Weiß

Theorem 7. The model checking problem for KC1 is in LOGDCFL.

We obtain the same upper bound for S5-Mc.

Proposition 1. The model checking problem for S5 is in LOGDCFL.

Sketch of Proof. Let 〈ϕ,M, s〉 be an instance of S5-Mc forM = (U, R, ξ). Then
R is a total relation on U . Therefore, every subformula of ϕ that begins with a
modal operator (i.e. a subformula of the form �α or �α) is either satisfied in
all states of U or in no state of U . Now, ϕ can be evaluated as follows. First,
evaluate the subformulas �α and �α, where α is a propositional formula without
any modal operators. In order to do this, check whether α is satisfied in every
resp. in one state of U . This can be done in logspace. Replace these evaluated
subformulas in ϕ by the propositional constants according to their satisfaction
and evaluate the resulting formula. This must be repeated until one obtained
a propositional formula that can straightforwardly be evaluated in the actual
state.

This process can be implemented using a top down search through the formula,
during which propositional formulas have to be evaluated in the states of U . The
whole process then takes polynomial time, logarithmic space, and uses a stack
for the top down search. This shows that S5-Mc can be solved in LOGDCFL. ��

In Theorem 8 we show NC1-completeness of the model checking problem for the
modal logic S4, even if we consider formulas without any variables. We sketch a
proof for the upperbound. The NC1-hardness follows immediately from [5].

Theorem 8. The model checking problem for S40 is NC1-complete.

Sketch of Proof. Notice that the S4 frames are reflexive and transitive. It is not
possible to distinguish differents states in a reflexive and transitive frame with
a variable free formula. Hence S40 contains exactly all variable free formulas
that can be satisfied by a reflexive and transitive Kripke model. For an S40-Mc
instance 〈M, ϕ〉 it suffices to check whether ϕ ∈ S40. Because we can not distin-
guish differents states, modal operators can be ignored. We define the operator
free version ϕof of the S40 formula ϕ as follows.

– pof = p for p ∈ {⊥,$}
– (α→ β)of = αof → βof

– (�α)of = αof

It holds for an arbitrary M that 〈M, ϕ〉 ∈ S40-Mc iff ϕof evaluates to true.
Hence from [5] follows directly that S40-Mc is NC1-complete. ��

5 Conclusion

The upper and lower bounds from the last sections (Theorems 2, 3, 4, and 5)
combine to the following completeness results.

The Complexity of Model Checking for Intuitionistic Logics 159

Theorem 9. The following problems are P-complete.

1. K40-Mc—i.e. the model checking problems for K4 and formulas without vari-
ables.

2. K41-Mc, S41-Mc, S4.21-Mc—i.e. the model checking problems for K4, S4
resp. S4.2 and formulas with one variable only.

3. KC-Mc, IPC-Mc, BPL-Mc, S4.2-Mc, S4-Mc, K4-Mc—i.e. the model check-
ing problems for KC, IPC, BPL, S4.2, S4, and K4.

The one variable fragment IPC1 of IPC is already deeply studied (see [16]).
Recently it was shown that model checking for IPC1 is AC1-complete [10]. Our P-
hardness proof of model checking for IPC uses an arbitrary number of variables.
Rybakov [17] has shown that the tautology problem for the two variable fragment
IPC2 of IPC is already PSPACE-complete. This indicates that it is interesting to
study whether model checking for IPC2 is already P-complete.

O’Connor [18] gives a tautology-preserving translation from IPC formulas to
those with two variables only. It is an open problem, whether such a translation
to IPC1 exists. From Theorem 2 and Proposition 7 follows, that we can exclude
this for model checking for KC.

Theorem 10. KC-Mc �≤log
m KC1-Mc, unless P ⊆ LOGDCFL.

The Gödel-Tarski translation from intuitionistic logic into S4 and the PSPACE-
hardness of the tautology problem for IPC brought up the question for a “trans-
lation” from S4 into intuitionistic logic. In fact, this translation is expressed in
terms of a reduction in [19]. Our results on the P-hardness of the model check-
ing problem for S4.2 for formulas with one variable only (Theorem 3) and the
contrasting LOGDCFL upper bound for KC1 (Proposition 7) shows that those
translations cannot omit the use of additional variables (unless P ⊆ LOGDCFL).

Theorem 11. S4.21-Mc �≤log
m KC1-Mc, unless P ⊆ LOGDCFL.

At all, the LOGDCFL upper bounds for the model checking for LC, KC1, and
S5 are not really satisfactory. A LOGDCFL computation (polynomial time and
logarithmic space with an additional stack) allows to explore a formula in a top
down manner. This seems to be a very natural way to evaluate a formula. It
is very surprising, that for classical propositional logic the stack is not needed
[4,5]. We conjecture that this is also possible for S5, and Proposition 1 could
accordingly be improved. For KC1, one can conclude from [14,15] that there are
only 7 equivalence classes of formulas, and only 3 types of models–all states of
the model satisfy a, no state satisfies a, resp. all others. The third type is the type
that makes the difference to classical propositional logic. Nevertheless, we expect
that the LOGDCFL upper bound for KC1 (Proposition 7) can be improved.

Notice that the logics KC1 and LC1 are the same. In [15] it is shown that
S4.31—their modal companion—has infinitely many equivalence classes of for-
mulas. Therefore it seems possible to find a lower bound for model checking for
S4.31 that is above the upper bound for KC1 and LC1.

160 M. Mundhenk and F. Weiß

Acknowledgements. The authors thank Steve Awodey for his introduction to
intuitionistic logic and many helpful discussions, Matthias Kramer for discussing
predecessors of the proofs of Theorems 2 and 6, Vitezslav Svejdar for helpful
discussions about intuitionistic logic, and Thomas Schneider for his support.
The authors specially thank an anonymous referee for her/his idea to improve
Theorem 3 by saving one variable.

References

1. van Dalen, D.: Logic and Structure, 4th edn. Springer, Heidelberg (2004)
2. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)
3. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.

Comput. Syst. Sci. 18(2), 194–211 (1979)
4. Lynch, N.A.: Log space recognition and translation of parenthesis languages. J.

ACM 24(4), 583–590 (1977)
5. Buss, S.R.: The Boolean formula value problem is in ALOGTIME. In: Proc. 19th

STOC, pp. 123–131. ACM Press, New York (1987)
6. Dummett, M., Lemmon, E.: Modal logics between S4 and S5. Zeitschrift für Math-

ematische Logik und Grundlagen der Mathematik 14(24), 250–264 (1959)
7. Visser, A.: A propositional logic with explicit fixed points. Studia Logica 40, 155–

175 (1980)
8. Ladner, R.: The computational complexity of provability in systems of modal

propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)
9. Spaan, E.: Complexity of Modal Logics. PhD thesis, Department of Mathematics

and Computer Science. University of Amsterdam (1993)
10. Mundhenk, M., Weiß, F.: The model checking problem for intuitionistic logic with

one variable is AC1-complete (2010) (unpublished manuscript)
11. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. Journal of the Associa-

tion for Computing Machinery 28, 114–133 (1981)
12. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-

Completeness Theory. Oxford University Press, New York (1995)
13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
14. Nishimura, I.: On formulas of one variable in intuitionistic propositional calculus.

J. of Symbolic Logic 25, 327–331 (1960)
15. Makinson, D.: There are infinitely many Diodorean modal functions. J. of Symbolic

Logic 31(3), 406–408 (1966)
16. Gabbay, D.M.: Semantical investigations in Heyting’s intuitionistic logic. D.Reidel,

Dordrecht (1981)
17. Rybakov, M.N.: Complexity of intuitionistic and Visser’s basic and formal logics in

finitely many variables. In: Papers from the 6th conference on “Advances in Modal
Logic”, pp. 393–411. College Publications (2006)

18. O’Connor, M.: Embeddings into free Heyting algebras and translations into intu-
itionistic propositional logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS,
vol. 4514, pp. 437–448. Springer, Heidelberg (2007)

19. Fernandez, D.: A polynomial translation of S4 into intuitionistic logic. J. of Sym-
bolic Logic 71(3), 989–1001 (2005)

Depth Boundedness in Multiset Rewriting
Systems with Name Binding�

Fernando Rosa-Velardo

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

fernandorosa@sip.ucm.es

Abstract. In this paper we consider ν-MSR, a formalism that com-
bines the two main existing approaches for multiset rewriting, namely
MSR and CMRS. In ν-MSR we rewrite multisets of atomic formulae,
in which some names may be restricted. ν-MSR are Turing complete.
In particular, a very straightforward encoding of π-calculus process can
be done. Moreover, pν-PN, an extension of Petri nets in which tokens
are tuples of pure names, are equivalent to ν-MSR. We know that the
monadic subclass of ν-MSR is a Well Structured Transition System. Here
we prove that depth-bounded ν-MSR, that is, ν-MSR systems for which
the interdependance of names is bounded, are also Well Structured, by
following the analogous steps to those followed by R. Meyer in the case
of the π-calculus. As a corollary, also depth-bounded pν-PN are WSTS,
so that coverability is decidable for them.

1 Introduction

In [16] we revised multiset rewriting with name binding, by combining the
two main existing approaches to the study of concurrency by means of multi-
set rewriting: multiset rewriting with existential quantification and constrained
multiset rewriting. The paper [6] presents a meta-notation for the specification
and analysis of security protocols. This meta-notation involves facts and tran-
sitions, where facts are first-order atomic formulae and transitions are given
by means of rewriting rules, with a precondition and a postcondition. For in-
stance, A0(k), Ann(k′)→ ∃x.(A1(k, x), N(enc(k′, 〈x, k〉)), Ann(k′)) specifies the
first rule of the Needham-Schroeder protocol. This notation gave rise to the
specification language for security protocols MSR [5].

In [8] Constraint Multiset Rewriting Systems (CMRS) are defined. As in [6],
facts are first-order atomic formulae, but the terms that can appear as part
of such formulae must belong to a constraint system. For instance, the rule
count(x), visit→ count(x + 1), enter(x + 1) could be used to count the number
of visits to a web site. For a comprehensive survey of CMRS see [9]. In CMRS,
there is no mechanism for name binding or name creation, so that it has to be

� Research supported by the MEC Spanish project DESAFIOS10 TIN2009-14599-
C03-01, and Comunidad de Madrid program PROMETIDOS S2009/TIC-1465.

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 161–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 F. Rosa-Velardo

Buyer

Seller

• k k

k

• k k

a a a

a a a

ν o p p

o o ν p

ν

o (o, ν)

(o, p) p

p

Fig. 1. Interconnection model between a buyer and a seller

simulated using the order in the constraint system (e.g., simulating the creation
of a fresh name by taking a value greater than any of the values appeared so far).
Thus, in an unordered version of CMRS, in which only the equality predicate
between atoms is used, there is no way of ensuring that a name is fresh.

In [16] we combined the features in MSR and CMRS, obtaining ν-MSR. On
the one hand, we maintain the existential quantifications in [6] to keep a compo-
sitional approach, closer to that followed in process algebrae with name binding.
On the other hand, we restrict terms in atomic formulae to be pure names, that
can only be compared with equality or inequality, unlike the arbitrary terms over
some syntax, as in [6], or terms in a constraint system, as in CMRS.

We know [16] that ν-MSR is equivalent to pν-PN [18], an extension of Petri
nets in which tokens are tuples of pure names, that can only be compared with
each other by equality or inequality by using matching variables in the arcs
of the net. pν-PN are Turing complete [18], so that so are ν-MSR. Moreover,
the subclass of monadic ν-MSR is equivalent to ν-PN [17], the monadic version
of pν-PN, for which tokens are just pure names. In [19] we proved that ν-PN
are strictly Well Structured Transition Systems (WSTS) [10,2], which allows
us to conclude that so are monadic ν-MSR, and coverability, boundedness and
termination are decidable for them. However, reachability is still undecidable
for ν-PN [19]. Finally, processes of the π-calculus [20] can be simulated within
ν-MSR in a very natural way. This translation was inspired by the results about
structural stationary π-calculus processes [14], that can be mapped to P/T nets.

Though ν-PN have better decidability properties than pν-PN, some works
need to use the model of pν-PN to model things like instance isolation in ar-
chitectures with multiple concurrent conversations [7] or transactions in data
bases [21]. The example in Fig. 1 is taken from [7]. The subnet inside the dashed
line in the top represents buyer processes, and the subnet inside the dashed line
in the bottom represents seller processes. The places outside the dashed lines
are interface processes used for communication purposes.

Thus, it is interesting to find subclasses of pν-PN in which some interesting
properties are decidable. In the field of process algebra, there are many recent
works that look for subclasses of the π-calculus for which some properties, such
as termination, are decidable [4,14,13,15,3]. In this paper we will consider the
results in [13] about depth-bounded π-calculus processes. Depth-boundedness is

Depth Boundedness in Multiset Rewriting Systems with Name Binding 163

a semantic restriction on π-calculus proceesses. Intuitively, a process is depth-
bounded whenever the interdependance of names is bounded in any process
reachable from it. As a simple example, and assuming that the reader is famil-
iar with the following π-calculus syntax, if starting from some process P the
processes νa1.an.(a1〈a2〉 | a2〈a3〉 | · · · | ai〈ai+1〉 | · · · | an−1〈an〉) | Qn are
reachable for every n > 0, then P is a depth-unbounded process. However, the
fact that processes νa.a1.an.(a〈a1〉 | a〈a2〉 | · · · | a〈ai〉 | · · · | a〈an〉) | Qn

can be reached from P for every n does not allow us to conclude that P is
depth-unbounded, since though an unbounded number of names can appear in
reachable processes, those names do not depend one another, as happened in
the previous example. Meyer proved in [13] that depth-bounded processes are
WSTS. In this paper we adapt those results to ν-MSR. More precisely, we will
consider depth-bounded ν-MSR, that is, ν-MSR for which the interdependance
of bound names is bounded in every reachable term. We will prove that this sub-
class of ν-MSR is well structured by following the same steps followed in [13].
As a corollary, we obtain the analogous result not only for the π-calculus (which
is already known) but also for pν-PN.

The rest of the paper is organized as follows. In Section 2 we introduce some
basic definitions and notations we will use in the rest of the paper. Section 3
defines ν-MSR. Section 4 contains our main results: well structuredness of depth-
bounded ν-MSR, which implies decidability of coverability for pν-PN. Finally,
Section 5 presents our conclusions and some directions for future work.

2 Preliminaries

We denote byMS(A) the set of finite multisets over A. A quasi order in A is a
reflexive and transitive binary relation on A. Every quasi order ≤ defined in A
induces a quasi order ' inMS(A), given by {a1, . . . , an} ' {b1, . . . , bm} if there
is some h : {1, . . . , n} → {1, . . . , m} injective st ai ≤ bh(i) for all i ∈ {1, . . . , n}. A
quasi order ≤ is said to be a well-quasi order (wqo) if for every infinite sequence
s0, s1, . . . there are i and j, with i < j, st si ≤ sj . Equivalently, it is a wqo if
every infinite sequence has an increasing subsequence. It is a well known fact
that the multiset order ' induced by a wqo ≤ is also a wqo.

The set T (A) of trees over (A,≤) is defined by

T ::= a | (a, {T1, . . . , Tn})

where a ranges over A. We define the order % relating trees by a % a′ if
a ≤ a′, and (a,A) % (a′,A′) if a ≤ a′ and A ' A′, where ' is the multiset
order induced by %. The mapping height(T) is defined as height(a) = 0 and
height(a, {T1, . . . , Tn}) = 1 + max{height(Ti) | i = 1, . . . , n}. If we denote by
T (A)n the set of trees of height less or equal than n, then (T (A)n,%) is a wqo
provided (A,≤) is a wqo.

A hypergraph is a tuple G = (V, E, inc), where V is the set of vertices, E is
the set of edges and for each e ∈ E, inc(e) is the set of vertices that incide in e.
There is an arc between v ∈ V and e ∈ E whenever v ∈ inc(e).

164 F. Rosa-Velardo

A transition system is a tuple (S,→, s0), where S is a (possibly infinite) set of
states, s0 ∈ S is the initial state and →⊆ S × S. We denote by →∗ the reflexive
and transitive closure of →. The reachability problem in a transition system
consists in deciding for a given states sf whether s0 →∗ sf . The termination
problem consists in deciding whether there is an infinite trace s0 → s1 → s2 →
· · · . The boundedness problem consists in deciding whether the set of reachable
states is finite. For any transition system (S,→, s0) endowed with a quasi order
≤ we can define the coverability problem, that consists in deciding, given a state
sf , whether there is s ∈ S reachable st sf ≤ s.

A Well Structured Transition System (WSTS) is a tuple (S,→,≤), where
(S,→) is a transition system, ≤ is a decidable wqo compatible1 with → (mean-
ing that s′1 ≥ s1 → s2 implies that there is s′2 ≥ s2 with s′1 → s′2), and so that for
every s we can compute (a finite representation of) the set {s′ | s′ → s′′ ≥ s}. We
will refer to these properties as monotonicity of → with respect to ≤, and com-
putability of the set of predecessors, respectively.2 For WSTS, the coverability
and the termination problem are decidable [2,10]. A WSTS is said to be strict if
it satisfies the following strict compatibility condition: s′1 > s1 → s2 implies that
there is s′2 > s2 with s′1 → s′2. For strict WSTS, also the boundedness problem
is decidable [10].

3 ν-MSR

We fix a finite set of predicate symbols P , a denumerable set Id of names and a
denumerable set Var of variables. We use a, b, c, . . . to range over Id , x, y, . . . to
range over Var , and η, η′ . . . to range over Id ∪ Var .

An atomic formula over P and Var has the form p(η1, . . . , ηn), where p ∈ P
and ηi ∈ Var ∪ Id for all i. A ground atomic formula has the form p(a1, . . . , an),
where p ∈ P and ai ∈ Id for all i. We use X, Y, . . . to range over atomic formulae
and A, B, . . . to range over atomic ground formulae. We denote by Var(X) and
Id(X) the set of variables and names appearing in X , respectively. We will write
x̃ and ã to denote finite sequences of variables and names, respectively, so that
we will sometimes write p(x̃) or p(ã). We sometimes use set notation with these
sequences and write, for instance, x ∈ x̃ or x̃1 ∪ x̃2. A ν-MSR term is given by
the following grammar:

M ::= 0 � A � M1 + M2 � νa.M

We denote M the set of ν-MSR terms, ranged over by M , M ′ . . . We define
fn(M) the set of free names in M as follows: fn(0) = ∅, fn(A) = Id(A),
fn(M1 + M2) = fn(M1) ∪ fn(M2), and fn(νa.M) = fn(M) \ {a}. A rule t is
an expression of the form

t : X1 + . . . + Xn → νã.(Y1 + . . . + Ym)
1 Different compatibility conditions are discussed in [10].
2 Strictly speaking, decidability of the wqo and computability of the set of predeces-

sors, are not part of the definition of WSTS, but of the so called effective WSTS.
These properties are needed to ensure decidability of coverability and termination.

Depth Boundedness in Multiset Rewriting Systems with Name Binding 165

st post(t) ⊆ pre(t), where pre(t) =
⋃n

i=1 Var(Xi), post(t) =
⋃m

j=1 Var(Ym), and
Var(t) = pre(t) ∪ post(t). A ν-MSR is a pair 〈R, M0〉, where M0 is the initial
ν-MSR term and R is a finite set of rules.

Sometimes in examples, we will use commas instead of the symbol +. For
instance, we will write p(x, y), q(y, y)→ νa.q(x, a) instead of p(x, y) + q(y, y)→
νa.q(x, a). We will identify ν-MSR terms up to ≡, the least congruence on M
where α-conversion of bound names is allowed, st (M, +,0) is a commutative
monoid and:

νa.νb.M ≡ νb.νa.M νa.0 ≡ 0

νa.(M1 + M2) ≡ νa.M1 + M2 if a /∈ fn(M2)

The first rule justifies our notation νã.M . The last rule is called name extrusion
when applied from right to left. A mode for t : X1+. . .+Xn → νã.(Y1+. . .+Ym)
is any substitution σ : Var(t) → Id . We write pret(σ) = σ(X1) + . . . + σ(Xn),
where σ(p(η1, . . . , ηn)) = p(a1, . . . , an), with ai = σ(xi) if ηi ∈ Var , or ai = ηi if
ηi ∈ Id . To define post t(σ) we consider a sequence of pairwise different names b̃
(of the same length as ã) with σ(Var (t)) ∩ b̃ = ∅. Then, we take σ′ = σ ◦ {ã/b̃}
and post t(σ) = νb̃.(σ′(Y1)+ . . .+σ′(Ym)), where {ã/b̃} denotes the simultaneous
substitution of each ai ∈ ã by the corresponding bi ∈ b̃. The transition system
(M,→, M0), is given by

(t)
σ mode for t

pret(σ) t−→ post t(σ)

M1 ≡M ′
1

t−→M ′
2 ≡M2

M1
t−→M2

(≡)

(+)
M1

t−→M2

M1 + M
t−→M2 + M

M1
t−→M2

νa.M1
t−→ νa.M2

(ν)

Rules (+) and (ν) state that transitions can happen inside a sum or inside a
restriction, respectively. Rule (≡) is also standard, and formalizes that we are
rewriting terms modulo ≡. Then we have a rule schema (t) for each t ∈ R. We
will write M → M ′ if there is t ∈ R such that M

t−→ M ′. As an example,
let t : p(x), q(x) → νb.p(b) be a rule in R. The rewriting p(a), q(a) → νb.p(b)
can take place by taking σ(x) = a, which satisfies the conditions for modes and
pret(σ) = p(a), q(a) and post t(σ) = νb.p(b). In order to apply the rule t starting
from p(b), q(b) we need to rename b in the right handside of the rule, obtaining
(e.g. if we replace b by a) νa.p(a). We denote by →�≡ the transition relation
obtained by considering only rules (t), (+) and (ν) above (that is, without (≡)).

As in the π-calculus [20], we can consider several normal forms, that force a
certain rearrangement of bound names. M is said to be in standard normal form
if M = νã.(A1 + . . . + An). Every term is equivalent to some term in standard
form, that can be obtained by applying the extrusion rule and α-conversion as
much as necessary. The standard form is unique up to commutativity and asso-
ciativity of +, and α-conversion and commutativity of the names in ã. Moreover,
the transition relation is compatible with respect to the standard form, that is,
if M1 ≡M2, M2 is in standard form and M1

t−→�≡ then M2
t−→�≡ [16, Prop. 1].

166 F. Rosa-Velardo

Let us now define restricted normal forms, which will help us to characterize
depth-bounded terms. A term is in restricted form if the scope of its restrictions
is minimal, that is, if all its subterms νa.(A1 + . . . + Am) satisfy a ∈ fn(Ai)
for all i, so that no extrusion rule can be applied from left to right. Therefore,
restricted forms can be seen as the opposite concept to standard forms.

Definition 1. Let us define ≡̂ as the least congruence onM st + is commutative
and associative with 0 as identity, and � as the least binary relation on M st:

a /∈ fn(M2)
νa.(M1 + M2) � νa.M1 + M2

M1≡̂M ′
1 � M ′

2≡̂M2

M1 � M2

M1 � M2

M1 + M � M2 + M

M1 � M2

νa.M1 � νa.M2

M is in restricted form if there is no M ′ with M � M ′. We say a term M in
restricted form is a fragment if it cannot be decomposed as M = M1 + M2.

Any M in restricted form satisfies M = F1 + . . . + Fn with Fi fragments,
and any fragment is either an atomic formula or a term of the form νa.(F1 +
. . . + Fm), with Fi fragments st a ∈ fn(Fi), for all i. For instance, M =
νa.νa1.νan.(p(a, a1), . . . , p(a, an)) � F = νa.(νa1.p(a, a1), . . . , νan.p(a, an)).
Notice that F and each νai.p(a, ai) are fragments. The relation � is confluent,
up to ≡̂. Moreover, if M � M ′ then M ≡ M ′. Unlike the standard normal
form, the restricted normal form is not compatible with the transition relation.
For instance, for M and F above, the rule t : p(x, y1), p(x, y2) → q(x) satisfies
M

t−→�≡ but not F
t−→�≡. However, restricted normal forms give more insight

about the topology of pure names in terms. In particular, they are the basis of
the proof that depth-bounded ν-MSR terms yield WSTS.

4 Depth-Bounded ν-MSR

We now consider depth-bounded ν-MSR. Intuitively, a ν-MSR is depth-bounded
if names cannot appear linked in an arbitrarily long way. Thus, if every term
of the form νa1, . . . , νan.(p(a1, a2), p(a2, a3), . . . , p(an−1, an)) can be reached,
then the ν-MSR is not depth-bounded. However, reaching all terms of the form
νa1, . . . , νan, νa.(p(a, a1), . . . , p(a, an)) does not allow us to conclude that the ν-
MSR is depth-unbounded. In order to define depth-bounded ν-MSR, we define
a function nestν , that measures the nesting of restrictions (occurrences of the
operator ν) in a term.

Definition 2. We define nestν(M) by structural induction on M :

– nestν(A) = nestν(0) = 0,
– nestν(M1 + M2) = max(nestν(M1),nestν(M2)),
– nestν(νa.M) = 1 + nestν(M).

Depth Boundedness in Multiset Rewriting Systems with Name Binding 167

We take depth(M) = min{nestν(M ′) | M ≡ M ′}. A ν-MSR is k-bounded if
depth(M) ≤ k for any reachable M , and depth-bounded if it is k-bounded for
some k ≥ 0.

As explained in [13], depth measures the interdependence of restricted names.
The fragment F = νa1.νan.νa.(p(a, a1), . . . , p(a, an)), satisfies nestν(F) =
n+1 and is equivalent to F ′ = νa.(νa1.p(a, a1), . . . , νan.p(a, an)), which satisfies
nestν(F ′) = 2. In fact, it can be easily checked that depth(F) = 2.

Lemma 1. If F ≡̂G then nestν(F) = nestν(G).

Proof. Obvious.

We said above that the relation � is confluent up to ≡̂. However, it would
not be confluent if the congruence ≡̂ also allowed reordering of bound names.
For instance, the term M = νa.νa1.νan.(p(a, a1), . . . , p(a, an)) satisfies M
� νa.(νa1.p(a, a1), . . . , νan.p(a, an)), but F = νa1.νan.νa.(p(a, a1), . . . , p(a,
an)) is in restricted normal form, that is, F ��. Therefore, restricted forms are
not enough to characterize the interdependance of bound names. Next, we will
define for each fragment F another fragment that we denote by nf (F) equivalent
to F with respect to ≡. Intuitively, nf (F) is a representation of F that gives
a better insight about the interdependance of names in F . In order to obtain
nf (F) from F we rearrange the whole set of bound names in F . For that purpose,
as the first step we will consider the standard normal form of F . Then, we will
split the set of bound names in those that appear both in A1 and outside A1,
those that appear only in A1 and the rest of names.

Definition 3. Given a fragment F , we define nf (F) in the following steps:

1. Let F ≡ νã.(A1 + . . . + An) in standard form.
2. Split ã into ã1, ã2 and ã3 so that ã1 = fn(A1) ∩ fn(A2 + . . . + An), ã2 =

fn(A1) \ fn(A2 + . . . + An) and ã3 = fn(A2 + . . . + An) \ fn(A1). Then,
F ≡ νã1.(νã2.A1 + νã3.(A2 + . . . + An)).

3. Let νã3.(A2 + . . . + Am) � G1 + . . . + Gm in restricted form.
4. Compute nf (Gi) = Fi

5. Let νã1.(νã2.A1 + F1 + . . . + Fm) � nf (F).

Whenever F ≡ νã.A (that is, whenever n = 1 above) then nf (F) is again F . Let
us see how the procedure works (with n > 1) in the following example.

Example 1. Let F = νa1. . . . νan.νa.(p(a, a1), . . . , p(a, an)).

1. F is already in standard normal form.
2. We split {a, a1, . . . , an} into ã1 = a, ã2 = a1 and ã3 = {a2, . . . , an}, so that

F ≡ νa.(νa1.p(a, a1) + νã3.(p(a, a2) + . . . + p(a, an)).
3. Let νã3.(p(a, a2) + . . . + p(a, an)) � νa2.p(a, a2) + . . . + νan.p(a, an).
4. As we have said above, nf (νai.p(a, ai)) = νai.p(a, ai).
5. We obtain F ′ = νa.(νa1.p(a, a1) + νa2.p(a, a2) + . . . + νan.p(a, an)), which

is already is restricted form, so that F ′ is nf (F).

168 F. Rosa-Velardo

p(a, a1) p(a, ai) p(a, an)

a

a1 ai an

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Fig. 2. Hypergraph of the fragments in Example 1

p(a1, a2) p(a2, a3) p(a3, a4)a1 a2 a3 a4

Fig. 3. Hypergraph of the fragments in Example 2

In this example we start building nf (F) starting from the standard normal
form νa1. . . . νan.νa.(p(a, a1), . . . , p(a, an)), but we could have also started from
another term in standard normal form in which the atomic formulae p(a, ai) were
given in a different order. It can be checked that in this particular example such
order does not make any difference, so that the nf (F) obtained is always the
same (up to ≡̂). However, in general this is not the case, that is, the fragment
nf (F) defined above is not unique. More precisely, it is only unique (up to ≡̂),
after fixing a given representative of the standard normal form.

The fragments of the form nf (F) are called anchored fragments in [13]. Such
fragments have an anchor, an atomic formula that contains the names that are
bound. More precisely, in an anchored fragment νa.(F1 + . . .+Fm) it is not only
true that a is free in each Fi, but it is also free in the anchor of Fi. This fact will
be used in Lemma 4 to characterize the nesting of restrictions in such fragments.

Example 2. Let

F1 = νa1, a2, a3, a4.(p(a1, a2), p(a2, a3), p(a3, a4))

F2 = νa1, a2, a3, a4.(p(a2, a3), p(a1, a2), p(a3, a4))

be two fragments in standard normal form, equivalent up to ≡̂. If we compute
nf (Fi) starting from Fi for i = 1, 2, then it can be checked that

nf (F1) = νa2.(νa1.p(a1, a2) + νa3.(p(a2, a3) + νa4.p(a3, a4)))

nf (F2) = νa2, a3.(p(a2, a3) + νa1.p(a1, a2) + νa4.p(a3, a4))

Therefore, as we have seen in the previous example, nf (F) is not uniquely de-
termined. Let us now prove some results that we will need to prove well struc-
turedness of depth-bounded ν-MSR.

Lemma 2. The two following facts hold:

– F ≡ nf (F) for every fragment F .
– If F1 ≡ F2 then there are nf (F1) and nf (F2) st nf (F1)≡̂nf (F2).

Depth Boundedness in Multiset Rewriting Systems with Name Binding 169

Proof. F ≡ nf (F) because all the steps in Def. 3 preserve ≡. Let us now take F1
and F2 st F1 ≡ F2. In that case, there is F in standard normal form st Fi≡̂F .
Then, steps 2 to 5 in Def. 3 coincide for F1 and F2, so that nf (F1)≡̂nf (F2).

As in [13], we use the graph-theoretic interpretation of fragments. A fragment
can be seen as a hypergraph with its atomic formulae as nodes and its names as
arcs, that link all the formulae that contain that name.

Definition 4. For a term M ≡ νã.(A1 + . . . + Am) we define the hypergraph
G(M) = (V, E, inc), where V = {A1, . . . , Am}, E = ã and for e ∈ E, inc(e) is
the set of atomic formulae in V in which e occurs.

Fragments correspond to connected components. M1 ≡ M2 implies that G(M1)
and G(M2) are isomorphic hypergraphs. For the two fragments F = νa1 . . .
νanνa.(p(a, a1), . . . , p(a, an)) and F ′ = νa.(νa1.p(a, a1), . . . , νan(p(a, an))) seen
in Example 1, since F ≡ F ′ the hypergraphs obtained for them are isomorphic
(see Fig. 2). The ones in Example 2 are shown in Fig. 3.

A path is a finite sequence ρ = A1a1A2a2 · · · anAn+1 with Ai, Ai+1 ∈ inc(ai).
The length of ρ is |ρ| = n, and ρ is simple whenever ai �= aj for i �= j. A simple
path in the hypergraph in Fig. 2 is for instance

ρ1 = p(a, a1) a1 p(a, a1) a p(a, a2) a2 p(a, a2)

with length 3. Any attempt to extend that simple path results in a path that is
no longer simple (since a and a2 alread occur in it). Indeed, it can be checked
that the length of every single path is at most 3. In the case of the hypergraph
in Fig. 3 the longest simple path, with length 4, is

ρ2 = p(a1, a2) a1 p(a1, a2) a2 p(a2, a3) a3 p(a3, a4) a4 p(a3, a4)

In the first place, let us see that the length of any simple path in G(F) is bounded
by a value that depends only on nestν(F).

Lemma 3. If F is a fragment and ρ is a simple path in G(F), then |ρ| ≤
2nestν(F) − 1.

Proof. We prove it by structural induction on F . If F = A then p = A, so that
nestν(F) = 0 and |p| = 0 = 2nestν(F) − 1. Let now F = νa.(F1 + . . . + Fn) and
let p be a simple path in G(F). Then one of the following holds:

– p is a simple path in G(Fk) for some k, so that the hypothesis induction tells
us that |p| ≤ 2nestν(Fk) − 1 ≤ 2nestν(F) − 1, or

– p = piapj with pi simple path of G(Fi) and pj simple path in G(Fj), so that
by induction we know that |pi| ≤ 2nestν(Fi) − 1 and |pi| ≤ 2nestν(Fi)− 1. Let
m st nestν(Fm) = max{nestν(Fl) | l = 1, . . . , n}. Then, |p| = |pi|+|pj |+1 ≤
2nestν(Fi) − 1 + 2nestν(Fj) − 1 + 1 ≤ 2 · 2nestν(Fm) − 1 = 2nestν(Fm)+1 − 1 =
2nestν(F) − 1.

170 F. Rosa-Velardo

For the fragments F and F ′ = nf (F) in Example 1 we saw that nestν(F) = n+1
and nestν(F ′) = 2. A maximal simple path in G(F ′) is ρ1, with |ρ1| = 3, which
satisfies |ρ1| ≤ 2nestν(F ′)−1 = 3. In the case of the fragments seen in Example 2,
both nestν(F1) = nestν(F2) = 4 and nestν(nf (F1)) = nestν(nf (F2)) = 3.
Moreover, the length of the maximal simple path ρ2 is |ρ2| = 4, wich satisfies
|ρ2| ≤ 23 − 1. Next let us see that nestν(nf (F)) coincides with the length of
some simple path in G(F).

Lemma 4. nestν(nf (F)) = |ρ| for some simple path ρ in G(F).

Proof. Any nf (F) is of the form A or νa.(F1 + . . . + Fn) with a ∈ anc(Fi) for
all i, where anc(A) = A and anc(νa.(F1 + . . . + Fn)) = anc(F1). Therefore,
it is enough to see that for such a fragment F , there is a simple path p in
G(F) with nestν(F) = |p|. We will also prove that p starts in anc(F). We
proceed by induction on F . If F = A the path p = A starts in anc(A) = A
and satisfies nestν(A) = 0 = |p|. Let us now consider F = νa.(F1 + . . . + Fn).
By definition, nestν(F) = 1 + max{nestν(F1), . . . , nestν(Fn)}. The induction
hypothesis tells us that there are anchored paths p1, . . . , pn st pi starts at anc(Fi)
and nestν(Fi) = |pi|. Let pm the path with maximun length, so that nestν(F) =
1+ |pm|. Since pm starts in anc(Fm) and a is free both in anc(F1) and anc(Fm),
p = anc(F1)apm is an anchored path that starts in anc(F) = anc(F1) with
length |p| = 1 + |pm| = nestν(F).

The proof of the previous result builds a path in G(F), whose arcs correspond
to the bound names traversed when computing nestν(nf (F)). For instance, for
the fragment F in Example 1 and nf (F) = νa.(νa1.p(a, a1), . . . , νan.p(a, an))
the proof builds the path p(a, a1) a p(a, ai) ai p(a, ai) (i > 1), with length
2 = nestν(nf (F)). For the fragments F1 and F2 in Example 2 it builds

p(a2, a3) a2 p(a2, a3) a3 p(a3, a4) a4 p(a3, a4)

p(a2, a3) a2 p(a2, a3) a3 p(a1, a2) a1 p(a1, a2)

respectively, both having length 3. The previous results can be combined to
prove the following proposition.

Proposition 1. nestν(nf (F)) ≤ 2depth(F) − 1

Proof. Let G st F ≡ G and depth(F) = nestν(G). Since F ≡ G, the hypergraphs
G(F) and G(G) are isomorphic. By Lemma 4 there is a simple path p in G(F)
st nestν(nf (F)) = |p|. By Lemma 3, |p| ≤ 2nestν(G) − 1 = 2depth(F) − 1, and the
thesis follow.

We have obtained a bound on the nesting of restrictions in every fragment of
the form nf (F), that only depends on depth(F). Next we define an order over
terms, that will endow ν-MSR with a well-structure.

Definition 5. We define 'F as the least binary relation over fragments st A 'F

A, νa.(
∑n

i=1 Fi) 'F νa.(
∑n

i=1 Gi +
∑n′

i=1 G′
i) provided Fi 'F Gi for all i ∈

{1, . . . , n}, and F 'F G provided F ≡ F ′ 'F G′ ≡ G. We also define M1 'M2
if Mi ≡

∑ni

j=1 F i
j , n1 ≤ n2 and F 1

i 'F F 2
i for i ∈ {1, . . . , n1}.

Depth Boundedness in Multiset Rewriting Systems with Name Binding 171

a1

a1

an

a

p(a, a1) p(a, ai) p(a, an)· · · · · ·

...

a1 ai an

p(a, a1) p(a, ai) p(a, an)

a

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Fig. 4. Trees of the fragments F (left) and F ′ (right) in Example 1

The order ' over terms can be seen as the multiset order induced by 'F over
fragments. In turn, 'F can be intuitively characterized using standard forms.

Lemma 5. Given two fragments F and G, F 'F G holds if and only if F ≡
νã.(A1 + . . . + Am) and G ≡ νã.(A1 + . . . + Am + M).

Proof. Let F and G st F 'F G. We proceed by induction on the rules used
to derive F 'F G. For F = A 'F A = G it is trivial. Suppose now that
F = νa.(F1+. . .+Fn) and G = νa.(G1+. . .+Gn+G′

1+. . .+G′
m) with Fi 'F Gi.

The induction hypothesis tells us that Fi ≡ ãi.(
∑

Ai
j) and Gi ≡ ãi.(

∑
Ai

j +Mi).
Then, F ≡ νa, ã1, . . . , ãn.(

∑
Ai

j) and G ≡ νa, ã1, . . . , ãn.(
∑

Ai
j +

∑
G′

i+
∑

Mi),
which satisfy the thesis. Finally, if F ≡ F ′ 'F G′ ≡ G the induction hypothesis
tells us that F ′ ≡ νã.(A1 + . . . + Am) and G′ ≡ νã.(A1 + . . . + Am + M) and
because ≡ is transitive, the same holds for F and G.

Conversely, if F ≡ νã.(A1 + . . . + Am) and G ≡ νã.(A1 + . . . + Am + M),
trivially Ai 'F Ai, so that νã.(A1 + . . . + Am) 'F νã.(A1 + . . . + Am + M) and
we can conclude by rule (≡) that F 'F G.

Let us see that depth-bounded ν-MSR are WSTS with respect to that order. In
order to see that the order is a wqo, we map fragments to trees as follows.

Definition 6. Let Δ be the set of names and atomic formulae. We define T
that maps fragments to trees in T (Δ) as follows:

– T (A) = A,
– T (νa.(F1 + . . . + Fn)) = (a, {T (F1), . . . , T (Fn)}).

Figure 4 and Fig. 5 show the trees corresponding to the fragments considered in
Example 1 and Example 2, respectively. The following lemma is easy to prove.

Lemma 6. nestν(F) = height(T (F))

Proof. Clearly, nestν(A) = 0 = height(A) = height(T (A)). For a fragment
F = νa.(F1 + . . . + Fn), nestν(F) = 1 + max{nestν(Fi) | i = 1, . . . , n}.
By the induction hypothesis, nestν(Fi) = height(T (Fi)). Then, nestν(F) =
1 + max{height(T (Fi)) | i = 1, . . . , n} = height((a, {T (F1), . . . , T (Fn)})) =
height(T (F)).

172 F. Rosa-Velardo

a1

a2

a3

a4

p(a1, a2) p(a2, a3) p(a3, a4)

a2

a1 a3

a4p(a1, a2) p(a2, a3)

p(a3, a4)

a2

a3

a1 a4p(a2, a3)

p(a1, a2) p(a3, a4)

Fig. 5. Trees of the fragments F1 (left), nf (F1) (center) and nf (F2) (right) in Example 2

Moreover, the corresponding orders are preserved by T in the following sense:

Proposition 2. If T (F1) % T (F2) then F1 'F F2.

Proof. We proceed by induction on the rules used to derive T (F1) % T (F2). If
T (F1) = A % A = T (F2) then F1 = F2 = A and trivially, F1 'F F2. Otherwise,
T (F1) = (a, {T1, . . . , Tn}) % (a, {T ′

1, . . . , T
′
n′}) = T (F2) and {T1, . . . , Tn} '

{T ′
1, . . . , T

′
n′}, so that we can assume without loss of generality that Ti % T ′

i

for all i ∈ {1, . . . , n}. Then, F1 = νa.(F 1
1 + . . . + F 1

n) with T (F 1
i) = Ti, and

F2 = νa.(F 2
1 + . . . + F 2

n′) with T (F 2
i) = T ′

i . The induction hypothesis tells us
that F 1

i 'F F 2
i , which allows us to conclude that F1 'F F2.

We denote by Fn the set of fragments with depth less or equal than n, i.e.,
Fn = {F fragment | depth(F) ≤ n}, and analogously, we define Mn as the
set of terms with depth less or equal than n. Then we can prove the following
lemma.

Lemma 7. (Fn,'F) and (Mn,') are wqos.

Proof. Let (Fi) be an infinite sequence of fragments, and let us consider the se-
quence of trees (T (nf (Fi))). Because every fragment is in Fn, height(T (nf (Fi)))
= nestν(nf (Fi)) ≤ 2nest(Fi) − 1 ≤ m = 2n − 1, thanks to Lemma 6 and Prop. 1.
If (T (Δ)m,%) is a wqo then there are i < j st T (nf (Fi)) % T (nf (Fj)). By
Prop. 2, nf (Fi) 'F nf (Fj). Finally, because Fi ≡ nf (Fi) and Fj ≡ nf (Fj) we
can conclude that Fi 'F Fj . Indeed, (T (Δ)m,%) is a wqo. To see it it is enough
to check that we can take Δ to be a finite set. Indeed, since fragments are depth-
bounded, we can choose a finite set of names so that every name in Δ and every
name in a formula in Δ is taken from that set. (Mn,') is also a wqo because
'F is and ' is the multiset order induced by 'F .

The proof of the previous result makes use of the fact that the order % in trees
is a wqo. Therefore, if a ν-MSR is depth-bounded by n, then the set of reachable
terms is contained inMn, which is a wqo with its order. In order to see that they
are a WSTS, we still have to see that the transition relation is monotonic with
respect the considered order, and that we can compute a finite representation of
the set of predecessors of a given term.

Depth Boundedness in Multiset Rewriting Systems with Name Binding 173

(a, b) k

a

b c l

(x, y) x

y ν

→
k a

a

c d

(d fresh)

(x, y) x

y ν

Fig. 6. A simple pν-PN

Theorem 1. Depth-bounded ν-MSR are strict WSTS.

Proof. We have to see that the defined order is monotonic with respect the
rewriting relation, and that we can compute a finite representation of the set of
predecessors of a given term. The former follows from the compatibility of the
transition relation with respect to the standard normal form and Lemma 5. The
latter follows from the fact that ν-MSR are finitary, that is, for a given M there
are finitely many terms M ′ up to ≡ st M →M ′.

Since coverability, termination and also boundedness are decidable for strict
WSTS [10,2], we obtain the following result as a corollary.

Corollary 1. Coverability, boundedness and termination are decidable for the
class of depth-bounded ν-MSR.

In [16] we proved that π-calculus processes can be directly encoded into ν-MSR.
Moreover, depth-bounded π-calculus processes correspond to depth-bounded ν-
MSR.

Proposition 3 ([16]). For all π-calculus process P there is a ν-MSR H(P)
(with H computable) st the transition systems induced by P and H(P) are iso-
morphic.

Moreover, if P is a depth-bounded process then H(P) is a depth-bounded ν-
MSR. Then, thanks to the previous result, and as a corollary of Prop. 1 we can
obtain the following result (that was already obtained in [13]).

Corollary 2. Depth-bounded π-calculus processes are strict WSTS. Therefore,
coverability, termination and boundedness are decidable for depth-bounded π-
calculus processes.

The novelty of our results lies in the fact that we can apply Prop. 1 to other
formalisms that can be easily encoded within ν-MSR. This is the case for pν-PN.
A pν-PN is a Petri net that manages tuples of pure names. More precisely, tokens
in a pν-PN are of the form (a1, . . . , an), where each ai is a pure name [12], taken
from a set Id . In order to handle names, arcs are labelled by tuples of variables,
taken from a set Var . Moreover, transitions can create fresh names, which is
formalized by means of a special variable ν ∈ Var , that can only be instantiated
to names that do not occur in the current state. Fig. 6 depicts a simple pν-PN
and the firing of its only transition. See [18] for more details on pν-PN.

In [16] we proved that ν-MSR and pν-PN are actually the same thing, so that
pν-PN can be seen as a graphical representation of ν-MSR that work in their
standard normal form.

174 F. Rosa-Velardo

Proposition 4 ([16]). For every pν-PN N there is a ν-MSR K(N) (with K
computable) st the transition systems induced by N and K(N) are isomorphic.

We say a pν-PN is depth-bounded if there is k st for any reachable state M and
for any sequence A1, . . . , An of tokens in M st for every i, there is a different name
ai in Ai and Ai+1, then necessarily n ≤ k. Depth-bounded ν-PN correspond to
depth-bounded ν-MSR [16]. Moreover, one can check that ordinary Petri nets
correspond to 0-bounded ν-MSR and ν-PN (the monadic subclass of pν-PN) to
1-bounded ν-MSR.

Corollary 3. Depth-bounded pν-PN are strict WSTS. Therefore, coverability,
boundedness and termination are decidable for the class of depth-bounded pν-PN.

5 Conclusions and Future Work

In this paper we consider a variation of the existing formalisms of concurrency
based on multiset rewriting, that we call ν-MSR. We proved in [16] that they are
Turing-complete, so that no interesting problem can be decided for them. Now we
adapt the results in [13] in order to prove that a subclass of ν-MSR, that in which
the interdependance of restricted names is bounded, is a strict Well Structured
Transition System. This yields decidability of coverability, termination and also
boundedness.

These results can be transferred to any formalism that can be encoded within
ν-MSR. We know that π-calculus processes can be easily translated to a ν-
MSR system, so that depth-bounded π-calculus processes are WSTS. This was
already proved in [13]. However, we can also obtain as a corollary the strict
well structuredness of depth-bounded pν-PN. Moreover, we claim that the same
result holds for spi-calculus processes [1], with an encoding analogous to the one
used for the π-calculus.

We have seen that the class of depth-bounded ν-MSR has decidable cover-
ability. However, in order to obtain such decidability result, one needs to know
a priori a bound on the nesting of restrictions in every reachable state. The pa-
per [22] establishes how the algorithmic schema in [11] can be used to decide
coverability using a forward analysis. This approach has the advantage that we
do not need to know a bound on the nesting of restrictions a priori.

As an immediate future work, it would be interesting to find (structural)
sufficient conditions for depth-boundedness of ν-MSR. In that sense, it would be
useful to strengthen the bound found in Prop. 1 on the nesting of a fragment.

References

1. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The spi Calcu-
lus. Inf. Comput. 148(1), 1–70 (1999)

2. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput. 160(1-2), 109–127 (2000)

Depth Boundedness in Multiset Rewriting Systems with Name Binding 175

3. Baldan, P., Bonchi, F., Gadducci, F.: Encoding asynchronous interactions using
open Petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 99–114. Springer, Heidelberg (2009)

4. Busi, N., Gorrieri, R.: Distributed semantics for the pi-calculus based on Petri nets
with inhibitor arcs. J. Log. Algebr. Program. 78(3), 138–162 (2009)

5. Cervesato, I.: Typed MSR: Syntax and Examples. In: Gorodetski, V.I., Skormin,
V.A., Popyack, L.J. (eds.) MMM-ACNS 2001. LNCS, vol. 2052, pp. 159–177.
Springer, Heidelberg (2001)

6. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-
notation for protocol analysis. In: CSFW, pp. 55–69 (1999)

7. Decker, G., Weske, M.: Instance isolation analysis for service-oriented architectures.
In: IEEE SCC, vol. (1), pp. 249–256. IEEE Computer Society, Los Alamitos (2008)

8. Delzanno, G.: An overview of MSR(C): A CLP-based framework for the symbolic
verification of parameterized concurrent systems. Electr. Notes Theor. Comput.
Sci, vol. 76 (2002)

9. Delzanno, G.: Constraint multiset rewriting. Technical Report DISI-TR-05-08, Uni-
versity of Genova (2005)

10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

11. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: New algo-
rithms for the coverability problem of wsts. J. Comput. Syst. Sci. 72(1), 180–203
(2006)

12. Gordon, A.D.: Notes on nominal calculi for security and mobility. In: Focardi, R.,
Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidel-
berg (2001)

13. Meyer, R.: On boundedness in Depth in the pi-calculus. In: Ausiello, G.,
Karhumäki, J., Mauri, G., Ong, C.H.L. (eds.) IFIP TCS. IFIP, vol. 273, pp. 477–
489. Springer, Heidelberg (2008)

14. Meyer, R.: A theory of structural stationarity in the pi-calculus. Acta Inf. 46(2),
87–137 (2009)

15. Meyer, R., Gorrieri, R.: On the relationship between pi-calculus and finite
place/transition Petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 463–480. Springer, Heidelberg (2009)

16. Rosa-Velardo, F.: Multiset rewriting: a semantic framework for concurrency with
name binding. In: 8th International Workshop on Rewriting Logic and its Appli-
cations, WRLA 2010. Springer, Heidelberg (to appear, 2010)

17. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in Petri net
systems 88(3), 329–356 (2008)

18. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability problems in Petri nets with
name creation and replication (submitted)

19. Rosa-Velardo, F., de Frutos-Escrig, D., Alonso, O.M.: On the expressiveness of
Mobile Synchronizing Petri Nets. Electr. Notes Theor. Comput. Sci. 180(1), 77–94
(2007)

20. Sangiorgi, D., Walker, D.: The pi-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

21. van Hee, K.M., Sidorova, N., Voorhoeve, M., van der Werf, J.M.E.M.: Generation
of database transactions with petri nets. Fundam. Inform. 93(1-3), 171–184 (2009)

22. Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-bounded pro-
cesses. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 94–108. Springer,
Heidelberg (2010)

Efficient Construction of Semilinear
Representations of Languages Accepted by

Unary NFA

Zdeněk Sawa�

Center for Applied Cybernetics, Department of Computer Science
Technical University of Ostrava

17. listopadu 15, Ostrava-Poruba, 708 33, Czech republic
zdenek.sawa@vsb.cz

Abstract. Chrobak (1986) proved that a language accepted by a given
nondeterministic finite automaton with one-letter alphabet, i.e., a unary
NFA, with n states can be represented as the union of O(n2) arithmetic
progressions, and Martinez (2002) has shown how to compute these pro-
gressions in polynomial time. To (2009) has pointed out recently that
Chrobak’s construction and Martinez’s algorithm, which is based on it,
contain a subtle error and has shown how they can be corrected. In this
paper, a new simpler and more efficient algorithm for the same problem is
presented. The running time of the presented algorithm is O(n2(n+m)),
where n is the number of states and m the number of transitions of
a given unary NFA.

1 Introduction

It is well known that Parikh images of regular (and even context-free) languages
are semilinear sets [7,4]. In unary languages, i.e., languages over a one-letter
alphabet, words can be identified with their lengths (i.e., an can be identified
with n), so the Parikh image of a unary language is just the set of lengths of
words of the language, and it can be identified with the language itself. It can be
easily shown that each regular unary language can be represented as the union
of a finite number of arithmetic progressions of the form {c + di | i ∈ N} where
c and d are constants specifying the offset and the period of a progression.

A unary nondeterministic finite automaton (a unary NFA) is an NFA with
a one-letter alphabet. Given a unary NFA A, a set of arithmetic progressions
representing the language accepted by A can be computed by determinization
of A; however, this straightforward approach can produce an exponential number
of progressions. Chrobak [1] has shown that this exponential blowup is avoidable
and that a language accepted by a unary NFA with n states can be represented
as the union of O(n2) progressions of the form {c + di | i ∈ N} where c < p(n)
for some p(n) ∈ O(n2) and 0 ≤ d ≤ n. The computational complexity of the

� Supported by the Czech Ministry of Education, Grant No. 1M0567.

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 176–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Construction of Semilinear Representations 177

construction of these progressions was not analyzed in [1], but it can be eas-
ily seen that a naive straightforward implementation would require exponential
time. Later, Martinez [5,6] has shown how the construction described in [1] can
be realized in polynomial time. The exact complexity of Martinez’s algorithm is
O(kn4) where n is the number of states of the automaton and k the number of
strongly connected components of its graph. The result was recently used for ex-
ample in [3,2] to obtain more efficient algorithms for some problems in automata
theory and the verification of one-counter processes.

In [8], To pointed out that Chrobak’s construction and Martinez’s algorithm
(whose correctness relies on correctness of Chrobak’s construction) contain a sub-
tle error, and he has shown modifications that correct this error.

In this paper, we give a simpler and more efficient algorithm for the same
problem, i.e., for computing of a corresponding set of arithmetic progressions for
a given unary NFA. The time complexity of the algorithm is O(n2(n + m)) and
its space complexity O(n2), where n is the number of states and m number of
transitions of the unary NFA.

Section 2 gives basic definitions and formulates the main result, Section 3
describes the algorithm and proofs of its correctness, and Section 4 contains
a description of an efficient implementation of the algorithm and an analysis of
its complexity.

2 Definitions and Main Result

The set of natural numbers {0, 1, 2, . . .} is denoted by N. For i, j ∈ N such
that i ≤ j, [i, j] denotes the set {i, i + 1, . . . , j}, and [i, j) denotes the (possibly
empty) set {i, i + 1, . . . , j − 1}. Given c, d ∈ N, an arithmetic progression is the
set {c+d · i | i ∈ N}, denoted c+dN, where c is called the offset and d the period
of the progression.

The following definitions are standard (see e.g. [4]), except that they are
specialized to the case where a one-letter alphabet is used. In such an alphabet,
words can be identified with their lengths.

A unary nondeterministic finite automaton (a unary NFA) is a tuple A =
(Q, δ, I, F) where Q is a finite set of states, δ ⊆ Q × Q is a transition relation,
and I, F ⊆ Q are sets of initial and final states respectively. A path of length k
from q to q′, where q, q′ ∈ Q, is a sequence of states q0, q1, . . . , qk from Q where
q = q0, q′ = qk, and (qi−1, qi) ∈ δ for each i ∈ [1, k]. We use q

k−→ q′ to denote
that there exists a path of length k from q to q′. A word x ∈ N is accepted by
A if q0

x−→ qf for some q0 ∈ I and qf ∈ F . The language L(A) accepted by
a unary NFA A is the set of all words accepted by A.

We consider the following problem:

Problem: UNFA-Arith-Progressions
Input: A unary NFA A.
Output: A set {(c1, d1), (c2, d2), . . . , (ck, dk)} of pairs of natural

numbers such that L(A) =
⋃k

i=1(ci + diN).

178 Z. Sawa

The main result presented in this paper is:

Theorem 1. There is an algorithm solving UNFA-Arith-Progressions with time
complexity O(n2(n + m)) and space complexity O(n2) where n is the number of
states and m the number of transitions of a given unary NFA. The algorithm
constructs O(n2) pairs of numbers and each constructed pair (ci, di) satisfies
ci < 2n2 + n and di ≤ n.

3 L(A) as Union of Arithmetic Progressions

In this section, we describe the algorithm for UNFA-Arith-Progressions and prove
its correctness.

In the rest of the section, we assume a fixed unary NFA A = (Q, δ, I, F) with
|Q| = n.

3.1 The Algorithm

The algorithm works as follows. It computes the resulting set R of pairs of
numbers that represent arithmetic progressions as the union of the following
sets R1 and R2 where:

– R1 is the set of all of pairs (x, 0) where x ∈ L(A) and x ∈ [0, 2n2 + n), and
– R2 is the set of all of pairs (c, d) where d ∈ [1, n], c ∈ [2n2 − d, 2n2), and

where for some q0 ∈ I, q ∈ Q, and qf ∈ F we have q0
n−→ q, q

d−→ q,
and q

c−n−→ qf (note that c ≥ n).

To compute R1, it is sufficient to test for each x ∈ [0, 2n2+n) if x ∈ L(A), and to
compute R2, it is sufficient to test for each of O(n2) pairs (c, d), where d ∈ [1, n]
and c ∈ [2n2 − d, 2n2), if the required conditions are satisfied. All these tests
can be easily done in polynomial time and we can also see that |R| ∈ O(n2).
An efficient implementation of the algorithm, which avoids some recomputations
by precomputing certain sets of states, is described in Section 4 together with
a more detailed analysis of its complexity.

The correctness of the algorithm is ensured by the following crucial lemma and
its corollary; the proof of the lemma is postponed to the next subsection.

Lemma 2. Let x ≥ 2n2 + n. If x ∈ L(A) then x ∈ c + dN for some (c, d) ∈ R2.

Corollary 3. Let x ∈ N. Then x ∈ L(A) iff x ∈ c + dN for some (c, d) ∈ R.

Proof. (⇒) Assume x ∈ L(A). Either x < 2n2 + n and then (x, 0) ∈ R1 and
x ∈ (x + 0N) = {x}, or x ≥ 2n2 + n and then x ∈ c + dN for some (c, d) ∈ R2
by Lemma 2.

(⇐) It can be easily checked that c+dN ⊆ L(A) for each (c, d) ∈ R. For (c, d) ∈
R1 this follows from the definition, and for (c, d) ∈ R2 from the observation that
if q0

n−→ q, q
d−→ q, and q

c−n−→ qf for some q0 ∈ I, q ∈ Q, and qf ∈ F (where
c ≥ n), then A accepts each word from c + dN. 	

Efficient Construction of Semilinear Representations 179

3.2 Proof of Lemma 2

The rest of this section is devoted to the proof of Lemma 2, which is done by
the following sequence of simple propositions.

The basic idea of the proof is that there exists a polynomial p(n) ∈ O(n2)
such that if q1

x−→ q2 for some q1, q2 ∈ Q and x ≥ p(n) then there is a path α of
length x from q1 to q2 of the following form: α goes from q1 to some state q by
c1 steps, then goes through a cycle of length d ∈ [1, n] several times, and then
goes from q to q2 by c2 steps. Obviously x = c1 + k · d + c2 for some k ∈ N, and
it will be also ensured that c1 + c2 < p(n).

Every path α of length x from q1 to q2 can be transformed into the described
form by the following construction: we can decompose α into elementary cycles,
i.e., cycles where no state is repeated, and a simple path, i.e., a path where
no state is repeated, from q1 to q2. We can do this by repeatedly removing
elementary cycles from α. Using this decomposition, we can construct a path of
the required form by selecting one elementary cycle of some length, say d, and
by repeatedly “cutting-out” some subsets of the remaining elementary cycles,
such that the sums of lengths of cycles in these subsets are multiples of d, which
means that they can be replaced with iterations of the selected cycle of length d.

However, when we “cut-out” cycles, we must be careful, because by cutting-
out some cycles, some other cycles can become unreachable. An error of this
kind was made by Chrobak in [1] as pointed out by To in [8].

To ensure that none of the cycles becomes unreachable, we divide elementary
cycles into two categories — removable and unremovable. Only removable cycles
will be cut-out, and it will be ensured that it is safe to remove any subset of
removable cycles.

We say a sequence β0, β1, . . . , βr, where β0 is a simple path from q1 to q2 and
where β1, β2, . . . , βr are elementary cycles, is good if for each i ∈ [1, r] there is
some j ∈ [0, i), such that βi and βj share at least one state q. Note that from such
good sequence we can construct a path from q1 to q2, whose length is the sum of
lengths of all βi, by starting with β0 and repeatedly “pasting-in” β1, β2, . . . , βr

(in this order). Each cycle βi can be “pasted-in” since it shares some state q
with some βj where j < i (βi can be pasted in by splitting it in q).

Note that a decomposition β0, β1, . . . , βr of an original path α, where β0 is
a simple path from q1 to q2 and where β1, β2, . . . , βr are elementary cycles in
the reverse order, in which they were removed from α (i.e., βr was removed first
and β1 last), is good. We say a cycle βi, where i ∈ [1, r], is removable if for each
state q of βi there is some j ∈ [0, i) such that βj contains q. Cycle βi that is
not removable is unremovable. It can be easily checked that a sequence obtained
from β0, β1, . . . , βr by removing some arbitrary subset of removable cycles is also
good.

The following proposition is the main “tool” that allows us to find a subset
of removable cycles such that the sum of lengths of cycles in this subset is a
multiple of d.

180 Z. Sawa

Proposition 4. Let d ≥ 1. Every sequence x1, x2, . . . , xr of natural numbers,
where r ≥ d, contains a non-empty subsequence xi, xi+1, . . . , xj (where 1 ≤ i ≤
j ≤ r) such that (xi + xi+1 + · · · + xj) ≡ 0 (mod d).

Proof. Consider a sequence s0, s1, . . . , sr where si = x1+x2+· · ·+xi for i ∈ [0, r].
There are at most d different values of si modulo d. Since r ≥ d, by the pigeonhole
principle we have si ≡ sj (mod d) for some i, j such that 0 ≤ i < j ≤ r. The
nonempty sequence xi+1, xi+2, . . . , xj has the required property (xi+1 + xi+2 +
· · · + xj) ≡ 0 (mod d), since sj − si ≡ 0 (mod d). 	

Proposition 5. Let q1, q2 ∈ Q, x ∈ N, and d ∈ [1, n]. If q1
x−→ q2 then q1

y−→ q2
for some y ∈ [0, 2n2 − n) such that y ≤ x and y ≡ x (mod d).

Proof. Let us assume q1
x−→ q2 and let y ∈ N be the smallest number such that

y ≡ x (mod d) and q1
y−→ q2 (such y exists, since y = x satisfies these proper-

ties). Let β0, β1, . . . , βr be a good decomposition of a path of length y from q1 to
q2 (β0 is a simple path from q1 to q2 and βi for i ∈ [1, r] are elementary cycles).
Let us assume that there are at least d removable cycles in this decomposition.
Then, by Proposition 4, there is a nonempty subset of these removable cycles
such that the sum of lengths of the cycles in this subset is a multiple of d. By
removing the cycles in this subset we obtain a good sequence, from which we
can construct a path from q1 to q2 of length y′ < y where y′ ≡ y (mod d).

So q1
y′
−→ q2 and y′ ≡ x (mod d), which is a contradiction, since we have as-

sumed that y is the smallest such number. This implies that in the sequence
β0, β1, . . . , βr there are at most d − 1 removable cycles.

A cycle βi is unremovable iff it contains a state q that does not belong to
any βj with j < i, which implies that there are at most n−1 unremovable cycles
(note that there is at least one state in β0). The length of β0 is at most n − 1
and a length of each elementary cycle is at most n, which implies

y ≤ (n − 1) + (n − 1 + d − 1) · n < 2n2 − n,

since d ≤ n. 	

Corollary 6. Let q1

x−→ q2 for some q1, q2 ∈ Q and x ∈ N. If x ≥ n then there
exist q ∈ Q, c1 ∈ [0, n), d ∈ [1, n], and c2 ∈ [0, 2n2 − n) such that q1

c1−→ q,
q

d−→ q, q
c2−→ q2, and x ∈ (c1 + c2) + dN.

Proof. By the pigeonhole principle, some q ∈ Q must be visited twice in the first
n steps of a path from q1 to q2 of length x ≥ n, and so for some c1 ∈ [0, n),

d ∈ [1, n], and c′2 ∈ N we have q1
c1−→ q, q

d−→ q, q
c′2−→ q2, and x = c1 + d + c′2.

By Proposition 5, there is some c2 ∈ [0, 2n2 − n) satisfying c2 ≤ c′2, q
c2−→ q2,

and c2 ≡ c′2 (mod d). So c′2 = c2 + k · d for some k ∈ N, and x = c1 + d + c′2 =
(c1 + c2) + (k + 1) · d, which means that x ∈ (c1 + c2) + dN. 	

Proposition 7. Let q1
x−→ q2 for some q1, q2 ∈ Q and x ∈ N. If x ≥ 2n2 + n

then there exist q ∈ Q, c ∈ [0, 2n2 − n), and d ∈ [1, n], such that q1
n−→ q,

q
d−→ q, q

c−→ q2, and x ∈ (n + c) + dN.

Efficient Construction of Semilinear Representations 181

Proof. Assume q1
x−→ q2 where x ≥ 2n2 + n. By Corollary 6, there are some

q′ ∈ Q, c1 ∈ [0, n), d ∈ [1, n], c2 ∈ [0, 2n2 − n), and k ∈ N such that q1
c1−→ q′,

q′ d−→ q′, q′ c2−→ q2, and x = (c1 + c2)+k ·d. Let α be a path of length x from q1
to q2 that goes from q1 to q′ by c1 steps, then goes k times through a cycle β of
length d, and then goes from q′ to q2 by c2 steps, and let q be the state reached
after the first n steps of α. Note that since (c1 + c2) + k · d = x ≥ 2n2 + n and
c1+c2 < 2n2 (because c1 < n and c2 < 2n2−n), we have k ·d ≥ n. Together with
c1 < n this ensures that the state q is on the cycle β, which implies q1

n−→ q,
q

d−→ q, and q
x−n−→ q2. By Proposition 5, there is some c ∈ [0, 2n2 −n) such that

c ≤ x−n, q
c−→ q2, and c ≡ x−n (mod d). This means that n+ c ≡ x (mod d),

and since c ≤ x − n implies n + c ≤ x, we have x ∈ (n + c) + dN. 	

Now we can prove Lemma 2.

Proof (of Lemma 2). Assume that x ≥ 2n2 + n and x ∈ L(A), so there are
some q0 ∈ I and qf ∈ F such that q0

x−→ qf . By Lemma 7, there exist q ∈ Q,

c′ ∈ [0, 2n2 − n), and d ∈ [1, n], such that q0
n−→ q q

d−→ q, q
c′−→ qf , and

x ∈ (n+c′)+dN. This means that for each c ∈ (n+c′)+dN, such that c ≤ x, we
have q

c−n−→ qf and x ∈ c + dN. In particular, there is one such c in the interval
[2n2 − d, 2n2), since n + c′ ∈ [n, 2n2). 	

4 Efficient Implementation

To avoid recomputations, the algorithm precomputes some sets. For i ∈ N we
define Si = {q ∈ Q | ∃q0 ∈ I : q0

i−→ q} and Ti = {q ∈ Q | ∃qf ∈ F : q
i−→ qf},

and for q ∈ Q we define Periods(q) = {d ∈ [1, n] | q
d−→ q}. In particular, the

algorithm precomputes the sets Sn, Ti for i ∈ [2n2−2n, 2n2−n), and Periods(q)
for q ∈ Sn. To test for a given q if q0

n−→ q for some q0 ∈ I, the algorithm tests
if q ∈ Sn, to test if q

c−n−→ qf for some qf ∈ F , it tests if q ∈ Tc−n, and to test if

q
d−→ q, it tests if d ∈ Periods(q).
All these sets can be implemented as bit arrays, so operations like adding

an element to a set, testing if an element is member of a set, and so on, can
be performed in a constant time. It is also obvious that for Q′ ⊆ Q, the sets
Succ(Q′) = {q ∈ Q | ∃q′ ∈ Q′ : (q′, q) ∈ δ} and Pre(Q′) = {q ∈ Q | ∃q′ ∈
Q′ : (q, q′) ∈ δ} can be computed in time O(n + m) where m is the number
of transitions (i.e., |δ| = m). Using subroutines for computing Pre and Succ,
the precomputation of all necessary sets can be done in time O(n2(n + m)). For
example, Sn can be precomputed by computing sequence S0, S1, . . . , Sn where
S0 = I, and Si+1 = Succ(Si) for i ≥ 0, Ti can be computed by T0 = F , and
Ti+1 = Pre(Ti) for i ≥ 0, etc. Also all x < 2n2 + n such that x ∈ L(A) can
be found in time O(n2(n+m)) by computing the sequence S0, S1, . . . , S2n2+n−1
and checking if Sx ∩ F �= ∅ for x ∈ [0, 2n2 + n).

There are O(n2) pairs (c, d) such that d ∈ [1, n] and c ∈ [2n2−d, 2n2), and for
each of them, at most n states are tested. Since the corresponding tests for one

182 Z. Sawa

triple c, d, q can be done in a constant time as described above, all triples can
be tested in time O(n3). We see that the overall running time of the algorithm
is O(n2(n + m)).

During the computation, only the values of Sn, Ti for i ∈ [2n2−n−d, 2n2−n),
and Periods(q) for q ∈ Sn need to be stored. Obviously, O(n2) bits are sufficient
to store these values. Other values are used only temporarily, can be discarded
after their use, and do not take more than O(n2) bits, so the overall space
complexity of the algorithm is O(n2).

References

1. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Sci-
ence 47(2), 149–158 (1986)

2. Göller, S., Mayr, R., To, A.W.: On the computational complexity of verifying one-
counter processes. In: LICS’09, pp. 235–244. IEEE Computer Society, Los Alamitos
(2009), http://dx.doi.org/10.1109/LICS.2009.37

3. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008.
LNCS, vol. 5196, pp. 261–272. Springer, Heidelberg (2008)

4. Kozen, D.C.: Automata and Computability. Springer, Heidelberg (1997)
5. Martinez, A.: Efficient computation of regular expressions from unary nfas. In: De-

scriptional Complexity of Formal Systems, DFCS (2002)
6. Martinez, A.: Topics in Formal Languages: String Enumeration, Unary NFAs and

State Complexity. Master’s thesis, University of Waterloo (2002)
7. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
8. To, A.W.: Unary finite automata vs. arithmetic progressions. Information Processing

Letterss 109(17), 1010–1014 (2009),
http://dx.doi.org/10.1016/j.ipl.2009.06.005

http://dx.doi.org/10.1109/LICS.2009.37
http://dx.doi.org/10.1016/j.ipl.2009.06.005

Efficient Graph Reachability Query Answering
Using Tree Decomposition

Fang Wei

Computer Science Department, University of Freiburg, Germany

Abstract. Efficient reachability query answering in large directed graphs
has been intensively investigated because of its fundamental importance
in many application fields such as XML data processing, ontology rea-
soning and bioinformatics.

In this paper, we present a novel indexing method based on the con-
cept of tree decomposition. We show analytically that this intuitive ap-
proach is both time and space efficient. We demonstrate empirically the
efficiency and the effectiveness of our method.

1 Introduction

Querying and manipulating large scale graph-like data has attracted much atten-
tion in the database community, due to the wide application areas of graph data,
such as GIS, XML databases, bioinformatics, social network, and ontologies.

The problem of reachability test in a directed graph is among the fundamental
operations on the graph data. Given a digraph G = (V, E) and u, v ∈ V , a
reachability query, denoted as u → v, ask: is there a path from u to v? One of
the fundamental queries on biological networks is for instance, to find all genes
whose expressions are directly or indirectly influenced by a given molecule [15].
Given the graph representation of the genes and regulation events, the question
can also be reduced to the reachability query in a directed graph.

Recently, tree decomposition methodologies have been successfully applied
to solving shortest path query answering over undirected graphs [17]. Briefly
stated, the vertices in a graph G are decomposed into a tree in which each
node contains a set of vertices in G. Different from other partitioning based
methods, there are overlapping between the tree nodes, i.e., for any vertex v in
G, there could be more than one node in the tree which contains v. However, it
is required that all these nodes constitute a connected subtree (see Definition 1
for the formal definition). Based on this decomposed structure, many otherwise
intractable problems can be solved if the underlying tree decomposition has
bounded treewidth.

In this paper we make an attempt to solve reachability problems over di-
rected graphs by using tree decomposition based index structures. In compar-
ison to shortest path queries, reachability query answering enjoys some nice
properties. For instance, the existing BFS or DFS algorithms are highly effi-
cient. However, these properties might cause challenging problems to occur, if

A. Kučera and I. Potapov (Eds.): RP 2010, LNCS 6227, pp. 183–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 F. Wei

substantial improvement on time complexity is desired. Note that one extreme
scheme is to store all the transitive closures in the pre-processing stage, thus
the reachability queries can be answered in constant time. However this requires
an index of size O(n2), which is unrealistic for large scale graphs. Therefore,
finding a better trade-off between time and storage is the ultimate goal of many
reachability query answering algorithms. Surprisingly, we have found that the
tree decomposition-based methodology can be adapted on directed graphs and
moreover, the efficiency of the query algorithm is substantially improved, based
on the index which is much smaller than O(n2). Our main contributions are the
following:

– Linear time tree decomposition algorithm. In spite of the theoreti-
cal importance of the tree decomposition concept, many results are practi-
cally useless due to the fact that finding a tree decomposition with optimal
treewidth is an NP-hard problem, w.r.t. the size of the graph. To overcome
this difficulty, we propose a simple heuristics to achieve a linear time tree
decomposition algorithm.

– Flexibility of balancing the time and space efficiency. From the pro-
posed tree decomposition algorithm, we discover an important correlation
between the query time and the index size. This flexibility enables the users
to choose the best time/space trade-off according to the system requirements.

1.1 Related Work

Most of the current research of reachability query answering concentrates on
methods that first build an index structure to store part of the transitive closures,
then speed up the query answering process, thus to find better trade-offs of index
size and the query answering time. They can be categorized into the two main
groups. The first group of algorithms are based on the 2-Hop approach first
proposed by Cohen et al. [6]. The second are based on the interval labeling
approach by Agrawal et al. [1].

2-Hop based algorithms. The basic idea of the 2-Hop approach is to assign
for each vertex v a list of vertices which are reachable from v, denoted as Lin(v),
and a list of vertices to which v can reach, denoted as Lout(v), so that for any two
vertices u and v, u → v if and only if Lout(u)∩Lin(v) �= ∅. The ultimate goal of
the algorithm is to minimize the index size of the form

∑
v∈V Lout(v) + Lin(v).

Clearly if the index is available, the reachability query answering requires only
two lookups. However, this optimization problem is NP-hard. Improvements on
the 2-Hop algorithm can be found in [13,14] Generally 2-Hop based algorithms
do not scale for large size graphs.

Interval labeling based algorithms. Interval labeling based approaches uti-
lize the efficient method of indexing and querying trees which was applied to
XML query processing in recent years [18]. It is well known that given a tree,
we can label each node v by an interval [start(v), end(v)]. Thus the reachability
query can be answered by comparing the start and the end labels of u and v

Efficient Graph Reachability Query Answering Using Tree Decomposition 185

in constant time. The labeling process takes linear time and space. The Dual
Labeling algorithm proposed by Wang et al. [16] achieved to answer reachability
queries in constant time. They first identify a spanning tree from the graph and
label the vertices in the tree with pre- and post-order values. Then the transitive
closure for the rest of the edges is stored. Clearly, the price for the constant query
time is paid by the storage cost of t2 where t is number of the non-tree edges
in the graph. Therefore the Dual Labeling approach achieves good performance
only if the graph is extremely sparse where t � n.

Jin et al. [9] proposed a different index structure called Path Tree. Like other
interval labeling based methods, they extract a tree from the original graph.
But every node in the tree contains a path, instead of a single vertex. This index
structure is superior to the previous ones since it can encode some non-tree
structures such as grid in an elegant way.

All of these algorithms in common is that the performance deteriorate for
non-sparse graphs. In contrast, the index structure proposed in this paper scales
for dense graphs as well.

2 Graph Indexing with Tree Decomposition

2.1 Tree Decomposition of Directed Graphs

A directed graph is defined as G = (V, E), where V = {0, 1, . . . , n − 1} is the
vertex set and E ⊆ V ×V is the edge set. Let n = |V | be the number of vertices
and m = |E| be the number of edges.

For each directed graph, its tree decomposition is defined as follows:

Definition 1. A tree decomposition of G = (V, E), denoted as TG, is a pair
({Xi | i ∈ I}, T), where {Xi | i ∈ I} is a collection of subsets of V and T = (I, F)
is a tree such that:

1.
⋃

i∈I Xi = V .
2. for every (u, v) ∈ E, there is i ∈ I : u, w ∈ Xi.
3. for all v ∈ V , the set {i | v ∈ Xi} induces a subtree of T .

A tree decomposition contains a set of tree nodes, where each node contains a
set of vertices in V . We call the sets Xi bags. It is required that every vertex
in V should occur in at least one bag (condition 1), and for every edge in E,
both vertices of the edge should occur together in at least one bag (condition 2).
The third condition is usually referred to as the connectedness condition, which
requires that given a vertex v in the graph, all the bags which contain v should
be connected.

Note that from now on, the node in the directed graph G is referred to as
vertex, and the node in the tree decomposition is referred to as tree node or simply
node. For each tree node i, there is a bag Xi consisting of vertices. To simplify
the presentation, we will sometimes use the term node and its corresponding bag
interchangeably.

186 F. Wei

Given any graph G, there may exist many tree decompositions which ful-
fill all the conditions in Definition 1. However, we are interested in those tree
decompositions with smaller bag sizes. The width of a bag is the cardinality
of the bag. The width of a tree decomposition ({Xi | i ∈ I}, T) is defined as
max{|Xi| | i ∈ I}1. The treewidth of G is the minimal width of all tree decom-
positions of G. It is denoted as tw(G). Note that trees and forests are precisely
the structures with treewidth 2.

Example 1. Consider the graph illustrated in Figure 1(a). One of the tree de-
compositions is shown in Figure 1(b) . Recall that only trees and forests have
treewidth 2, therefore this tree decomposition is optimal and we have tw(G) = 3.

(a) (b)

Fig. 1. The graph G (a) and one tree decomposition TG (b) with tw(G) = 3

Let G = (V, E) be a graph and TG = ({Xi | i ∈ I}, T) its tree decomposition.
Due to the third condition in Definition 1, for any vertex v in V there exists
an induced subtree of TG in which every bag contains v. We call it the induced
subtree of v and denote it as Tv. Furthermore, we denote the root of Tv as rv

and its corresponding bag as Xrv . For instance, the induced subtree of vertex 3
in Figure 1(b) contains the bags X0, X1 and X2, where r3 = 0.

2.2 Tree Path

Let G = (V, E) be a directed graph, and u, v ∈ V . We say v is reachable from
vertex u, denoted as u → v, if there is a path starting from u and ending at v
with the form (u, v1, . . . , vn, v), where (u, v1), (vi, vi+1, (vn, v) ∈ E. Note that in
this paper, we consider the more general definition of path, that is, a path is not
necessarily a simple path.

Let us consider the graph vertices in the tree nodes. Since each vertex occurs
in more than one bag, a vertex can be identified with {v, i}, where v is a vertex
and i the node in the tree, meaning that vertex v is located in the tree node i.
We denote it as tree vertex. Now we define the so-called inner edge and inter
edge in the tree decomposition.

Definition 2 (Inner edge, Inter edge, Tree path). Let G = (V, E) be a
directed graph and TG = ({Xi | i ∈ I}, T) its tree decomposition.

1 The original definition of the width is max{|Xi| | i ∈ I}−1, due to esthetic reasons.

Efficient Graph Reachability Query Answering Using Tree Decomposition 187

– The inner edges of TG are precisely the pairs of tree vertices defined as
follows: {({u, i}, {v, i}) | (u, v) ∈ E, u, v ∈ Xi(i ∈ I)}.

– The inter edges of TG are the pairs of tree vertices with the form ({v, i}, {v, j})
where v ∈ Xi and v ∈ Xj, and either (i, j) ∈ F or (j, i) ∈ F holds.

– A tree path from {u, i} to {v, j} is a sequence of tree vertices connected with
either inter or inner edges.

Intuitively, the set of inner edges consists precisely of those edges in E, with the
extra information of the bags in which the edges are located. For instance, the in-
ner edges of the tree decomposition of the graph in Example 1 are: ({0, 2}, {5, 2}),
({1, 3}, {2, 3}), ({2, 1}, {3, 1}), ({3, 2}, {0, 2}), Note that it happens that the
same pair of vertices occurs in more than one bag. For instance, the edge (4, 3)
occurs in both bags X0 and X1. Thus there are two inner edges: ({4, 1}, {3, 1})
and ({4, 0}, {3, 0}) For instance, in Example 1, ({5, 0}, {5, 2}) is an inter edge,
as well as ({5, 2}, {5, 0}).

Lemma 1. Let G = (V, E) be a directed graph and TG = ({Xi | i ∈ I}, T) its
tree decomposition. Let u, v ∈ V . Let further {u, i} and {v, j} be tree vertices in
TG. There is a path from u to v in G if and only if there is a tree path from
{u, i} to {v, j}.

Example 2. Consider the graph in Figure 1(a). Vertex 4 reaches vertex 0 with
the path {4, 1, 2, 3, 0}. In the tree decomposition in Figure 1(b), there is a tree
path from {4, 1} to {0, 2} as follows: { {4, 1}, {4, 3}, {1, 3}, {2, 3}, {2, 1}, {3, 1},
{3, 0}, {3, 2}, {0, 2} }.

2.3 Reachability Test on Tree Decomposition

With the definition of tree path, to find a path from u to v, we can simply
search in the tree decomposition for a corresponding tree path. Moreover, over
the tree decomposition, we only need to concentrate on the simple path between
the corresponding tree vertices. There is a well known property of trees that says
for any two nodes i and j in a tree, there exists a unique simple path, denoted
as SPi,j , such that every path from i to j contains all the nodes in SPi,j .

Proposition 1. Let G = (V, E) be a directed graph and TG = ({Xi | i ∈ I}, T)
its tree decomposition. Let u, v ∈ V . Let further ru (resp. rv) be the root node of
the induced subtree of u (resp. v). Then u → v if and only if for every node n
in SPru,rv , there is at least one vertex t ∈ Xn, such that u → t and t → v.

Proof. The ”if” direction is trivial: given a tree path from {u, i} to {v, j}, we
only need to consider the inner edges. Since for each inner edge {u, i}, {v, i},
there is an edge (u, v) ∈ E, the path from u to v can be easily constructed.

Now we prove the ”only if” direction: assume that there is a path from u to
v in G. We prove it by induction on the length of the path.

188 F. Wei

– Basis: if u reaches v with a path of length 1, that is, (u, v) ∈ E. Then there
exists a node k in the tree decomposition, s.t. u ∈ Xk and v ∈ Xk. We start
from {u, i}, traverse along the induced subtree of u, till we reach {u, k}.
Since the induced subtree is connected, the path from {u, i} to {u, k} can be
constructed with inter edges. Then we reach from {u, k} to {v, k} with an
inner edge. Now we traverse from {v, k} to {v, j} along the induced subtree
of v, which can again be constructed with inter edges. The tree path from
{u, i} to {v, j} is thus completed.

– Induction: assume that the lemma holds with paths whose length is less than
or equal to n− 1, we prove that it holds for paths with length of n. Assume
that there is a path from u to v with length n, where u reaches w with length
n − 1 and (w, v) ∈ E. From induction hypothesis, we know that there is a
tree path form {u, i} to {w, l} in the tree decomposition, where l is a node
in the induced subtree of w. Since (w, v) ∈ E, there is a node n such that
w ∈ Xn and v ∈ Xn. Thus {w, n} can be reached from {w, l} with inter
edges. Then {w, n} can reach {v, n} with an inner edge. Finally {v, n} can
reach {v, j} with a sequence of inter edges. This completes the proof. 	

Proposition 1 shows that for the reachability test from u to v, although the tree
path from {u, ru} to {v, rv} may possibly visit any node in the tree, we only
need to concentrate on the reachability test for those vertices which occur in the
simple path SPru,rv . More precisely, we can simply take any node n from SPru,rv ,
and check whether there is a vertex t ∈ Xn, such that u → t and t → v hold.
In order to further accelerate the query process, we can execute the reachability
test along the path tree in a bottom-up manner, as shown in Figure 2. In order
to enable the bottom up operation, we need to store the transitive closure for
each bag in the tree decomposition. That is, in every bag X , for every pair of
vertices x, y ∈ X , the boolean values of x → y and y → x are pre-computed. We
show in the following proposition how the reachability queries from u to all the
vertices in SPru,k can be answered.

Fig. 2. Bottom-up processing on the simple tree path

Proposition 2. Let G = (V, E) be a directed graph and TG = ({Xi | i ∈ I}, T)
its tree decomposition. Let u, v ∈ V . Let k be the lowest common ancestor of

Efficient Graph Reachability Query Answering Using Tree Decomposition 189

ru and rv. The reachability queries from u to all the vertices in SPru,k can be
answered in O(w2h), where h = |SPru,k| and w is the maximal width of the bags
in SPru,k.

Proof. Assume that the transitive closure in every bag from SPru,k is available.
The reachability test starts with node ru. From the information of transitive
closure, we can simply obtain the set Yru ⊆ Xru such that every vertex in Yru can
be reached from u. Next, we consider ru as the child node and process its parent
node, with the available reachability information. This process is recursively
executed h times, until k is reached.

Next we show that at each step of the processing, all the vertices in the
current bag reachable from u can be found in w2 time, where w is the width
of the current bag. Assume p is the current node, c its child node, and we have
obtained Yc ⊆ Xc, where Yc contains all the vertices reachable from u. Now we
have to decide the set Yp ⊆ Xp, i.e. identify all the vertices reachable from u
in Xp.

Let z be a vertex in Xp. We want to decide whether u → z. We have the
following two cases:

1. z ∈ Xp and z ∈ Xc. Since at the child node we know whether z ∈ Yc, we set
z ∈ Yp if z ∈ Yc.

2. z ∈ Xp and z /∈ Xc. This is a more complex case. We show that z ∈ Yp (i.e.
z is reachable from u) if and only if there exists a vertex t, such that t ∈ Xp,
t ∈ Yc and t → z holds.
(a) ”if” direction is trivial.
(b) ”only if: Assume that u → z holds. Since z does not occur in Xc, accord-

ing to the connectedness condition, z does not occur in any bag in the
subtree rooted with c. Thus the induced subtrees of u and z do not share
any common node in TG. Since u → z, there is a tree path from {u, ru}
to {z, rz}, and c, p ∈ SPru,rz . The tree path from {u, ru} to {z, rz} must
contain an inter edge of the form ({t, c}, {t, p}), where t ∈ Xp, Xc, be-
cause this is the only possible edge to traverse from c to p. Clearly u → t
holds. From the assumption u → z, we obtain that t → z must hold.

Given the set Yc ⊆ Xc and the transitive closure in Xp, we can obtain Yp

as follows: First set Yp as Yc ∩ Xp. Then for each vertex t ∈ Yp, we add the
vertex s into Yp, if t → s holds. Clearly the time consumption is in the worst
case O(w2) where w is the width of Xp. 	

3 Algorithms and Complexity Results

In this section, we present the detailed algorithms for both the index construc-
tion and the reachability query answering. In Section 3.1 we begin with the
introduction of algorithmic issues on the tree decomposition from a complexity
theory perspective, and then justify our choice of an efficient but suboptimal
decomposing algorithm. In Section 3.2 we first analyze the reachability query
answering algorithm proposed in Theorem 2 from the previous section. Then,
we point out that the time and space improvement can be made to achieve higher
efficiency of our algorithm.

190 F. Wei

3.1 Index Construction via Tree Decomposition

Since its introduction by Robertson and Seymour [12], the concepts of tree de-
composition has been proved to be of great importance in computational com-
plexity theory [4]. The theoretical significance of the tree decomposition based
approach lies in the fact that many intractable problems can be solved in poly-
nomial time (or even in linear time) for graphs with treewidth bounded by a
constant. Problems which can be dealt with in this way include many well known
NP-complete problems, such as the Independent Set, the Hamiltonian Circuits,
etc. Recent applications of tree decomposition based approaches can be found
in Constraint Satisfaction [10] and database design [7].

However, the practical usefulness of tree decomposition based approaches has
been limited due to the following two problems: (1) Calculating the treewidth
of a graph is hard. In fact, determining whether the treewidth of a given graph
is at most a given integer w is NP-complete [2]. Although for fixed w, linear
time algorithms exist to solve the decision problem ”treewidth ≤ w” [3], there
is a huge hidden constant factor, which prevents it to be useful in practice.
There exist many heuristics and approximation algorithms for determining the
treewidth, unfortunately few of them can deal with graphs containing more than
1000 nodes [11]. (2) The second problem lies in the fact that even if the treewidth
can be determined, it still can not be guaranteed that good performance will be
obtained since the time complexity of most of the algorithms is exponential to
the treewidth. Therefore, to solve really hard problems efficiently by using the
tree decomposition based approaches, we have to require that the underlying
graphs have bounded treewidth (i.e. less than 10).

As far as the efficiency is concerned, we can only search for an approxi-
mate solution, which yields a tree decomposition whose width is greater than
the treewidth. On the other hand, we can tolerate a tree decomposition whose
treewidth is not bounded. As we have seen from Proposition 2, the time com-
plexity is in the worst case quadratic of the maximal bag size. We will show
later in this section that our query answering algorithm does not depend on the
treewidth, but with some parameter which can be enforced to be bounded, due
to the nice property of our dedicated decomposing algorithm, and the height of
the tree.

Inspired from the so-called pre-processing methods by Bodlaender et al. [5], we
apply the reduction rules on the graph by reducing stepwise a graph to another
one with fewer vertices, due to the following simple fact.

Definition 3 (Simplicial). A vertex v is simplicial in an undirected graph G
if the set of neighbors of v form a clique in G.

Figure 3 shows some special cases. If a vertex v has degree of one (Figure 3(a)),
then we can remove v without increasing the treewidth. Figure 3(b), 3(c) illus-
trate the cases of degree 2 and 3 respectively.

The main idea of our decomposition algorithm is to reduce the graph by
removing the vertices one by one from the graph, and at the same time push
the removed vertices into a stack, so that later on the tree can be constructed

Efficient Graph Reachability Query Answering Using Tree Decomposition 191

(a) (b) (c)

Fig. 3. A undirected graph containing a vertex v with degree 1 (a), 2 (b) and 3 (c)

with the information from the stack. First a vertex v with a specific degree is
identified. We first check whether all its neighbors form a clique, if not, we add
the missing edges to construct a clique. Then v together with its neighbors are
pushed into the stack, which is followed by the deletion of v and its edges in the
graph. See Algorithm 2.

Algorithm 1. tree decomp(G)
Input: G = (V, E) is a directed graph.
Output: return the tree decomposition TG.
1: Transform G into an undirected graph UG;
2: graph reduction(UG); {output the vertex stack S}
3: tree construction(S, G); {output the tree decomposition}

The program begins with removing isolated vertices and vertices with degree
1. Then, the reduction process proceeds with the vertices with degree of 2, 3,
We denote such procedure of removing all the vertices with degree x as degree-x
reduction.

Example 3. Consider the undirected version of the graph in Example 1. Figure 4
illustrates the reduction process. The process starts with a degree-2 reduction by
removing vertex 0 and its edges, after adding the edge between 3 and 5. Vertex
0 and its neighbors are then pushed in the stack. Next vertex 1 is removed,
following the same principle as of 0. After vertex 2 is removed, a single triangle
is then left.

The procedure graph reduction will terminate when one of the following con-
ditions is fulfilled. (1) The graph is reduced to an empty set. For instance, if
the graph contains only simple cycles, it will be reduced to an empty set after
degree-2 reductions. This is usually the case for extremely sparse graphs. (2) For
graphs which are not sparse, one has to define a upper bound l for the reduction,
so that the program stops after the degree-l reduction. Note that as the degree
increases, the effectiveness of the reduction will decrease, because in the worst
case, we need to add x(x − 1)/2 edges in order to remove x edges.

192 F. Wei

Fig. 4. The reduction process on the undirected graph of Example 1

Algorithm 2. graph reduction(UG)
Input: UG is the undirected graph of G, l is the upper bound for the reduction.
Output: stack S and the reduced graph UG′

1: initialize stack S;
2: for i = 1 to l do
3: remove upto(i);
4: end for
5: return S, UG;

6: procedure remove upto(x)
7: while TRUE do
8: if there exists a vertex v with degree less than x then
9: {v1, . . . , vx} = neighbors of v;

10: build a clique for {v1, . . . , vx};
11: push v, v1, . . . , vx into S;
12: delete v and all its edges from UG;
13: else
14: break;
15: end if
16: end while

After the reduction process, the tree decomposition can be constructed as
follows: (1) At first we collect all the vertices which were not removed by the
reduction process and assign this set as the bag of the tree root. The size of the
root depends on the structure of the graph (i.e. how many vertices are left after
the reduction). (2) The rest of the tree is generated from the information stored
in stack S. Let Xc be the set of vertices {v, v1, . . . , vx} which is popped up from
the top of S. Here v is the removed vertex and {v1, . . . , vx} are the neighbors
of v which form a clique. After the parent bag Xp which contains {v1, . . . , vx}
is located in the tree, Xc is added as a child bag of Xp. This process proceeds
until S is empty. Algorithm 3 illustrates the process.

The last step of the tree construction process is to generate the transitive
closure for every bag.

The correctness of our tree decomposition algorithm can be shown by the
induction on the reduction steps. Note that during the reduction process, edges

Efficient Graph Reachability Query Answering Using Tree Decomposition 193

Algorithm 3. tree construction(S, G, UG′)
Input: S is the stack storing the removed vertices and their neighbors, G is the directed

graph, UG′ is the reduced graph of UG.
Output: return tree decomposition TG

1: construct the root of TG containing all the vertices of UG′;
2: while S is not empty do
3: pop up a bag Xc = {v, v1, . . . , vx} from S;
4: find the bag Xp containing {v1, . . . , vx};
5: add Xc into T as the child node of Xp;
6: end while
7: generate transitive closure in all bags;

are inserted into the original graph. Therefore, the tree decomposition we obtain
according to the algorithm is based on a graph consisting of extra edges. However,
this does not affect the correctness proof due to the following proposition.

Proposition 3. Let G = (V, E) and G′ = (V, E′) be graphs where E ⊆ E′.
Then any tree decomposition of G′ is a tree decomposition of G.

Proof. Let TG′ be the tree decomposition of G′. By checking the three properties
of Definition 1, it is obvious that TG′ is also a tree decomposition of G.

3.2 Reachability Query Answering

Recall from Proposition 2 that the time complexity of the bottom-up query
answering is O(w2h). This upper bound is optimal, only if the following two
conditions are fulfilled: (1) the treewidth of the underlying graph is bounded
(that is, w2 � n), and (2) there is an efficient tree decomposition algorithm
for it. The first condition has to be fulfilled, since otherwise the linear time
BFS algorithm would be more efficient. Unfortunately, as we have seen in the
previous section, given an arbitrary graph, it is clear that neither (1) nor (2)
can be fulfilled. Therefore, we have to inspect the tree decomposition heuristics
applied in Section 3.1 for improvements.

From Treewidth to |R| and l. According to Algorithm 2, a graph G can
be decomposed by the degree-l reductions by increasing x from 1 to l. As soon
as the degree-l reduction is done, all the vertices which are not yet removed
are the elements in R of the tree decomposition. Usually if the graph is not
extremely sparse, the relationship l � |R| holds. In fact, we could even enforce
such a relationship by setting l to be small enough in the tree decomposition
algorithm. Hence, the resulting tree decomposition has the following properties:
(1) the root is of big size (|R|), and (2) the rest of the bags have smaller size
(the upper bound is l).

If we inspect the bottom-up query processing more carefully, we could observe
that the quadratic time computation over the root can be always be avoided. To
see this, let us consider the vertices u and v and the lowest common ancestor of

194 F. Wei

ru and rv is the root R. Assume that X1 (resp. X2) is the child node of R which
locates in the simple path from ru (resp. rv) to R. Consider now that for all
x ∈ X1, reach(u, x) (resp. all y ∈ X2, reach(y, v)) have been computed. Clearly,
any path from u to v has to pass through a vertex in X1 and X2 respectively.
Therefore, at the root node R, we can first calculate X1 ∩ R and X2 ∩ R. Since
all the paths from u to v has to pass one vertex in X1 ∩R and another vertex in
X2 ∩R, we only need to execute a nested loop on X1 ∩R and X2 ∩ R to decide
the reachability. Since both |X1| and |X2| have the upper bound of l, the overall
time consumption is of O(l2h), thus independent of |R|. Note that if both u and
v are located in R, then the shortest path can be immediately obtained from the
local shortest path from u to v, which are pre-computed.

Algorithm 4. reach(TG, u, v)
Input: TG is the tree decomposition of G and u, v vertices in G.
Output: return TRUE if u → v, otherwise FALSE

1: c = ru = root of induced subtree of u; c = rv = root of induced subtree of v;
2: k = lowest common ancestor of ru and rv;
3: Ru = reachable vertices from u in Xc;
4: while c.parent �= k do
5: p = c.parent; Ru = Ru ∩ Xc ∩ Xp;
6: for all t in Ru do
7: Rt= set of vertices reachable from t in Xp; Ru = Ru ∪ Rt;
8: end for
9: c = p;

10: end while
11: Rv = all vertices that reach v in Xc;
12: while c.parent �= k do
13: p = c.parent; Rv = Rv ∩ Xc ∩ Xp;
14: for all t in Rv do
15: Rt= set of vertices reach t in Xp; Rv = Rv ∪ Rt;
16: end for
17: c = p;
18: end while

19: Ru = Ru ∪ Xk; Rv = Rv ∪ Xk;
20: return (reach(x, y) | ∃x ∈ Ru ∧ ∃y ∈ Rv);

The algorithm for the reachability query answering is presented in Algorithm 4.
Comparing with the bottom-up query processing shown in Proposition 2,
Algorithm 4 is customized with respect to our dedicated tree decomposition al-
gorithm, in the sense that the query time complexity is adapted to be related to l,
instead of the treewidth.

3.3 Complexity

Index construction time. For the index construction, we have to (1) generate
the tree decomposition, and (2) at each tree node, generate the local transitive

Efficient Graph Reachability Query Answering Using Tree Decomposition 195

closures. For (1), both of the reduction step and the tree construction procedure
take time O(n). For (2), we deploy the classic BFS algorithm, which costs in
worst case O(m). In fact, we need to run for each vertex in G exactly one BFS
procedure. Therefore, the overall index construction time is O(nm).
Index size. In each bag X , for each pair of vertices u, v in X , if u reaches v, we
need to store a boolean value. Thus the index size is |X |2, Since the relationship
l � |R| holds, the root size (|R|) is dominant among all the bags. Therefore, the
index size is |R|2. The index size consists of the tree structure, constructed by
using the tree decomposition algorithm. However, this space overhead is linear
to n, thus can be ignored.
Query. The bottom-up query processing for reachability query answering takes
time O(l2h), where l is the number of the reductions and h is the height of
the tree decomposition. Note that the proposed tree decomposition algorithm
is independent of the treewidth of the underlying graph, since the reduction
parameter l can be adjusted according to the property of the graph. On the
other hand, there is no guarantee that the optimal tree decomposition can be
obtained. In the worst case, if tree-width is approximately n, there are Θ(n2)
edges to be stored. So the running time of the query algorithm in the worst
case is worse than the one of the BFS (or DFS): if tw(G) = Θ(|G|). Clearly our
algorithm is not suitable for such graphs.

4 Experiments

In this section we evaluate the tree decomposition method on real datasets. We
are interested in the following parameters: Index size, Index construction time,
and Query time. Note that the index size is measured as the size of transitive
closures, which takes up the major part of the overall index size. Besides the
standard measurements, we are also interested in the structure of the tree de-
composition, which may influence the performance of the algorithm. These are:
the number of tree nodes (#TreeN), the number of all the vertices stored in the
bags (#SumV), the height of the tree (h), the number of vertex reductions (l),
and the root size of the tree (|R|). Note that we have chosen the optimal l, in
order to achieve the best query time performance.

We tested our algorithm over real large datasets with density being larger
than or close to 2 used in [8]. All graphs are extracted from real-world large
datasets with density being larger than or close to 2. Among them, arXiv is
extracted from a dataset of citations among scientific papers from the arxiv.org
website. Citeseer contains citations among scientific literature publications from
the CiteSeer project, and pubmed was extracted from an XML registry of open
access medical publications from the PubMed Central website. GO contains
genetic terms and their relationships from the Gene Ontology project. Yago
describes the structure of relationships among terms in the semantic knowledge
database from the YAGO project. The details of the datasets can be found in
[8]. All tests are run on an Intel(R) Core 2 Duo 2.4 GHz CPU, and 2 GB of main
memory. All algorithms were implemented in C++ with the Standard Template

196 F. Wei

Library (STL). A query is generated by randomly picking a pair of nodes for
a reachability test. We measure the query time by answering a total of 10000
randomly generated reachability queries. We make a comparison of the query
time with the linear time Breadth First Search method (BFS).

Table 1. Statistics of real graphs, the properties of the index and query performance

Graph #V #E #TreeN #SumV h l |R| Index Query Time
Time(s) Size TD (ms) BFS (ms)

Arxiv 6000 66707 4713 28300 12 30 1288 12.5 362228 49.6 449.5
Citeseer 10720 44258 8291 33411 9 8 2430 3.6 91067 8.8 135.5

Go 6793 13361 5186 19262 9 5 1608 1.2 29674 5.8 77.1
Pubmed 9000 40028 6482 26746 6 9 2519 2.9 185065 5.8 127.4

Yago 6642 42392 6161 19677 8 8 482 1.2 11673 3.2 78.9

As shown in Table 1, the time costs for query answering are substantially
improved with respect to the naive BFS algorithm. As expected, there is a cor-
relation between the index size and the size of the root size of the tree decom-
position |R|. Note that the size of the index structure should be approximately
|R|2. However, we can reduce the size by only store those pairs which are reach-
able from one to the other. We obtain a query time speedup with respect to the
naive BFS approach between 11% (Arxiv) and 4% (Yago).

5 Conclusions and Future Work

In this paper, we introduced the tree decomposition as the index structure for
large directed graphs to answer reachability queries efficiently. With both the-
oretical and empirical analysis, we demonstrated that our approach is intuitive
and efficient. The algorithms achieve good transitive closure compression rates
and scale well on large size graphs.

In the future we plan to investigate the following problems: (1) Development of
scalable tree decomposition algorithms. We expect to investigate more heuristics
and integrate them into our implementation. (2) How to update the of the index
structure is the underlying graph is changed. Furthermore, we will consider on-
disk algorithms for both index construction and query answering.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive rela-
tionships in large data and knowledge bases. In: SIGMOD (1989)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: STOC (1993)

Efficient Graph Reachability Query Answering Using Tree Decomposition 197

4. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23
(1993)

5. Bodlaender, H.L., Koster, A.M.C.A., van den Eijkhof, F.: Pre-processing rules for
triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305
(2005)

6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

7. Gottlob, G., Pichler, R., Wei, F.: Tractable database design through bounded
treewidth. In: PODS, pp. 124–133 (2006)

8. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme
for reachability query. In: SIGMOD (2009)

9. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries
on very large directed graphs. In: SIGMOD (2008)

10. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying tree decompositions for
reasoning in graphical models. Artif. Intell. 166(1-2), 165–193 (2005)

11. Koster, A.M.C.A., Bodlaender, H.L., Hoesel, S.P.M.V.: Treewidth: Computational
experiments. Electronic Notes in Discrete Mathematics (2001)

12. Robertson, P.D., Seymour, N.: Graph minors iii: Planar tree-width. Journal of
Combinatorial Theory, Series B 36, 49–64 (1984)

13. Schenkel, R., Theobald, A., Weikum, G.: Hopi: An efficient connection index
for complex xml document collections. In: Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)

14. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and incremental main-
tenance of the hopi index for complex xml document collections. In: ICDE, pp.
360–371 (2005)

15. Trissl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: SIGMOD (2007)

16. Wang, H., He2, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: ICDE (2006)

17. Wei, F.: Tedi: Efficient shortest path query answering on graphs. In: SIGMOD
(2010)

18. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On supporting
containment queries in relational database management systems. In: SIGMOD
Conference (2001)

Author Index

André, Étienne 76

Bell, Paul C. 91

Chaloupka, Jakub 104

Fribourg, Laurent 76

Halava, Vesa 91
Hirvensalo, Mika 91
Holzer, Markus 1

Jacobé de Naurois, Paulin 133

Kutrib, Martin 1

Larsen, Kim Guldstrand 24

Margenstern, Maurice 120
Mogbil, Virgile 133
Mundhenk, Martin 146

Rabinovich, Alexander 29
Rosa-Velardo, Fernando 161

Sawa, Zdeněk 176
Schnoebelen, Philippe 51

Wei, Fang 183
Weiß, Felix 146

	Title
	Preface
	Organization
	Table of Contents
	Descriptional Complexity of (Un)ambiguous Finite State Machines and Pushdown Automata
	Introduction
	Definitions
	(Un)ambiguous Finite Automata
	Simulations
	Minimization Problems

	Quantified Ambiguity
	Ambiguity and the Succinctness of Representation
	Ambiguity and the Amount of Nondeterminism
	Finite Ambiguity and the Structure of Finite Automata

	(Un)ambiguous Pushdown Automata
	Simulations
	Non-recursive Trade-Offs
	Bounded Ambiguity and Bounded Nondeterminism

	References

	Symbolic and Compositional Reachability for Timed Automata
	References

	Temporal Logics over Linear Time Domains Are in PSPACE
	Introduction
	Monadic Logics and Temporal Logics
	Monadic Second-Order Logic
	Temporal Logics and Truth Tables

	From Temporal Logic to Conjunctive Formulas
	Elements of the Composition Method
	Hintikka Formulas and n-Types
	The Ordered Sum of Chains and of n-Types

	Recursively Defined Classes of Structures
	EXPTIME Algorithm
	PSPACE Algorithm
	Automata on Linear Orders
	Small Rank Property
	Conclusion, Further and Related Results
	References

	Lossy Counter Machines Decidability Cheat Sheet
	Introduction
	Counter Machines
	Operational Semantics
	Lossy Counter Machines
	Dickson's Lemma
	Semilinear Sets of Configurations

	Reachability and Safety
	Post-sets and Pre-sets
	Reachability Problems
	Decidability of Reachability
	Reachability Logic
	Computing Co-reachability Sets
	Computing Reachability Sets

	Termination and Inevitability
	Termination
	Inevitability
	Undecidability

	Büchi and Liveness
	Finiteness of the Reachability Sets
	Undecidability
	Uniform Finiteness

	Proving Undecidability
	Putting Counter Machines on a Budget
	Undecidability of Uniform Termination
	Undecidability of Büchi Acceptance
	Undecidability of Finiteness
	Undecidability of Uniform Finiteness

	Further Developments
	Temporal Logic Model-Checking
	Games People Play on Lossy Counter Machines
	Equivalence Checking

	Decidable but Hard
	Lower Bounds for Complexity
	Upper Bounds

	Concluding Remarks
	References

	Behavioral Cartography of Timed Automata
	Introduction
	Parametric Timed Automata
	The Good Parameters Problem
	The Behavioral Cartography Algorithm
	The Inverse Method
	The Behavioral Cartography Algorithm
	Application to the Flip-Flop Example
	A Sufficient Condition for Full Coverage

	Application to the Probabilistic Framework
	Extending the Inverse Method to Probabilistic Systems
	Extending the Cartography to the Probabilistic Framework
	Example: Root Contention Protocol

	Case Studies
	Final Remarks
	References

	On the Joint Spectral Radius for Bounded Matrix Languages
	Introduction
	Preliminaries
	Probabilistic Finite Automata
	Formal Power Series
	Hilbert's Tenth Problem

	Probabilistic Encoding
	F-Problems
	The Joint Spectral Radius
	Conclusion
	References

	Z-Reachability Problem for Games on 2-Dimensional Vector Addition Systems with States Is in P
	Introduction
	Preliminaries
	The Proof
	Proof Outline
	Formal Proof

	References

	Towards the Frontier between Decidability and Undecidability for Hyperbolic Cellular Automata
	Introduction
	Proof of Theorem and Its Corollary
	Pentagrid and Heptagrid
	In the Dodecagrid

	Refinement of Theorem
	Conclusion
	References

	Rewriting Systems for Reachability in Vector Addition Systems with Pairs
	Introduction
	VASP and Reachability
	Basic Definitions
	Reachability

	Rewriting Systems
	Rewriting System Definitions
	Our Rewriting Rules and Strategies

	Reachability Relationship between and VASP and VASS
	Conclusion
	References

	The Complexity of Model Checking for Intuitionistic Logics and Their Modal Companions
	Introduction
	Preliminaries
	Lower Bounds
	Upper Bounds
	Conclusion
	References

	Depth Boundedness in Multiset Rewriting Systems with Name Binding
	Introduction
	Preliminaries
	ν-MSR
	Depth-Bounded ν-MSR
	Conclusions and Future Work
	References

	Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA
	Introduction
	Definitions and Main Result
	L(A) as Union of Arithmetic Progressions
	The Algorithm
	Proof of Lemma

	Efficient Implementation
	References

	Efficient Graph Reachability Query Answering Using Tree Decomposition
	Introduction
	Related Work

	Graph Indexing with Tree Decomposition
	Tree Decomposition of Directed Graphs
	Tree Path
	Reachability Test on Tree Decomposition

	Algorithms and Complexity Results
	Index Construction via Tree Decomposition
	Reachability Query Answering
	Complexity

	Experiments
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

