
Algorithmic Tamper-Proof Security under Probing
Attacks

Feng-Hao Liu� and Anna Lysyanskaya�

Department of Computer Science, Brown University
{fenghao,anna}@cs.brown.edu

Abstract. Gennaro et al. initiated the study of algorithmic tamper proof (ATP)
cryptography: cryptographic hardware that remains secure even in the presence
of an adversary who can tamper with the memory content of a hardware device.
In this paper, we solve an open problem stated in their paper, and also consider
whether a device can be secured against an adversary who can both tamper with
its memory and probe a few memory locations or wires at a time. Our results are
as follows:

– It is impossible to realize a secure cryptographic functionality with a per-
sonal identification number (PIN) where a user is allowed to make up to �
incorrect consecutive attempts to enter her PIN, with no total limit on incor-
rect PIN attempts. (This was left as an open problem by Gennaro et al.)

– It is impossible to secure a deterministic cryptographic device against an
adversary who is allowed to both tamper with the memory of the device and
probe a memory location; it is also essentially infeasible to secure it if the
adversary’s probing power is restricted to internal wires; it is impossible to
secure it against an adversary whose probing power is restricted to internal
wires, but who is also allowed to tamper with a few internal wires.

– By extending the results of Ishai et al., we show that a cryptographic de-
vice with a true source of randomness can withstand tampering and limited
probing attacks at the same time.

1 Introduction

In cryptography, we typically assume that an adversary launching an attack can nei-
ther probe bits of a secret key, nor tamper with it; the adversary may only obtain in-
put/output (i.e. black-box) access to a functionality it is trying to attack. However, in
practice, adversaries may attack a cryptographic device through other means. For ex-
ample, in a side-channel attack [AK96, AK97], an adversary can measure the power
consumption of the device [KJJ99, CRR03], timing of operations [Koc96], electromag-
netic radiation [AARR03], etc. Additionally, an adversary may tamper with the device’s
memory [BS97] or circuitry [SA03] and check the effect this might have on the device’s
computation.

There are several lines of work that place these attacks on theoretical foundations.
Gennaro et al. [GLM+04] defined security of a cryptographic functionality against an

� Supported by NSF grant CNS-0347661 and CNS-0831293.

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 106–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Algorithmic Tamper-Proof Security under Probing Attacks 107

adversary who can tamper with the contents of a device’s memory, and showed how to
satisfy their definition. Ishai et al. [ISW03], in contrast, defined and realized security
for devices where an adversary can probe the memory of the device (more precisely,
wires of its circuit), and even fix some of the wires in a circuit under attack.

In this paper, we examine security under a combination of attacks described in these
previous papers. Intuitively, it would seem that it should be possible to combine the
positive results of the two lines of work and design a device that would withstand an
adversary who can both tamper with its memory and probe a few memory locations at
a time. Surprisingly, we show that a cryptographic functionality cannot withstand such
a combined attack, unless augmented with a true source of randomness. We give an
adversary who, given the ability to only probe one memory location at a time, and the
ability to tamper with the memory of a deterministic device, retrieves the entire secret
content of the device’s memory, even though the device may continuously update its
secret content (so the trivial attack that just probes memory locations one by one would
not work).

Related work. Gennaro et al. [GLM+04] considered the adversary who, in addition to
black-box access to a functionality he is trying to attack, also has the ability to tam-
per with the memory of this device. Their work was motivated by that of Biham and
Shamir [BS97] who showed how to break cryptographic schemes by having the mem-
ory of a device modified in a certain way. Gennaro et al. gave a definition of algorithmic
tamper-proof (ATP) security: this means that the device is programmed in such a way
that the underlying cryptographic functionality (e.g., a signature scheme) will remain
secure (e.g., existentially unforgeable) even in the presence of such an adversary. They
then showed that, unless a device has a self-destruct capability and can be initialized via
a trusted setup phase, this notion of security is unattainable. However, they also showed
that using self-destruct and trusted setup, it is possible to achieve ATP security.

Ishai et al. [ISW03] considered the adversary who, in addition to black-box access to
a circuit implementing a cryptographic functionality, could also probe individual wires
of this circuit (we call this a “memory probing adversary”). They showed, surprisingly,
that one could tolerate an adversary that probes up to some constant t wires at a time
using a transformed circuit where corresponding to every wire of the original circuit,
there are Θ(t) wires, each carrying a share of value of the original wire. Moreover,
every time such a circuit is invoked it can redistribute these shares, and so it can be
probed again, so over the lifetime of the circuit, the adversary can probe each wire
several times. This resharing does not require a continuous source of true randomness:
it can be done using a pseudorandom generator seeded by a random string that resides
in the circuit’s memory and also gets updated at every invocation. In a follow-up paper,
Ishai et al. [IPSW06] further extended this model to allow the adversary to tamper with
another c wires: to fix them temporarily or permanently. They showed that it was still
possible to have a circuit that withstood such an attack.

Micali and Reyzin [MR04] defined security for cryptographic primitives under side
channel attacks and show how to use these primitives; their side channel attack is
much more general than attacks that are known in the real world [AK96, Koc96,
KJJ99, AARR03, CRR03], and also more general than the probing attack of Ishai
et al. [ISW03]. In fact, the model of Ishai et al. [ISW03] is a special case of the



108 F.-H. Liu and A. Lysyanskaya

Micali-Reyzin model. Micali and Reyzin do not, however, consider an adversary that
tampers with the device.

Recently Dziembowski, Pietrzak, and Wichs [DPW10], they also consider security
against the algorithmic tamper and probing adversaries. Their main technique is to con-
struct “non-malleable codes” against a certain class of tampering attacks. In the plain
model, their positive result holds for a smaller class of tampering functions that do mod-
ifications effecting each bit of the memory but independent of other bits. With a random
oracle, they are able to extend the results against a broader class of tampering functions,
yet the random oracle model is less desirable. We remark this does not contradict our
impossibility results since we consider the stronger adversaries who can perform any
polynomial-time computable tampering attacks in the plain model, where it is still open
that one can extend their positive results in this case.

Our contribution. Our first contribution in the ATP model is to resolve, in the negative,
the problem left open by Gennaro et al. of whether it was possible to realize a secure
cryptographic functionality with a personal identification number (PIN) where a user is
allowed to make up to � incorrect consecutive attempts to enter her PIN, with no total
limit on incorrect PIN attempts. (In contrast, Gennaro et al. showed that it was possible
to limit the total number of incorrectly entered PINs). Along the way, we also showed
that no ATP secure functionality can allow a user to change her PIN.

Next, we address the natural question of whether it is possible to achieve ATP secu-
rity even in the presence of a memory-probing adversary. Here we remark that suppose
the adversary can read all the contents in the memory by probing at one shot, then no
security can be achieved. Thus in our model of memory-probing adversary, we con-
sider a relaxation of the adversary’s power by restricting the number of bits she can
probe in a time. However, we do not limit the total number of bits (information) she can
gather over time. This approach is similar to the key leakage model where the leakage
is bounded at any moment but not over time.

Then, we give a definition of security for this scenario; our definition is a natural
generalization of the definition of Gennaro et al. Next, we show that no deterministic
circuit can achieve this notion of security: a memory-probing adversary who can also
tamper with the memory can retrieve the secret content of the device’s memory, even
if she can only probe a constant number (very small fraction of the memory) in any
moment.

Note that this impossibility applies to the circuit constructed by Ishai et al.: even
though their construction uses randomness, ultimately it is the pseudorandom generator
supplying it using a random seed in a deterministic fashion, hence their overall circuit
is deterministic. The difference is that they only allow up to a certain number of wires
to be tampered, while we consider the much more powerful tampering adversary of
Gennaro et al., who may apply any polynomial-time computable transformation to the
contents of a circuit’s memory.

We also consider a variation of the memory probing adversary: one who may not
probe memory cells, but only intermediate wires of the circuit. This is to model the
idea that perhaps memory cells can be invulnerable to probing. It turns out that such
an adversary is almost equally powerful: even though he is only explicitly allowed to
read up to a constant t wires of the circuit at a time, he can cause any deterministic



Algorithmic Tamper-Proof Security under Probing Attacks 109

circuit to behave in such a way that the contents of every wire in a particular invo-
cation of the circuit (other than the protected memory cells) will become exposed to
the adversary, i.e. the adversary can read all the wires at once. Due to impossibility
of obfuscation [BGI+01], this leads to insecurity. (On the other hand, since we cannot
reverse-engineer a circuit either, it does not necessarily imply that the secret content of
the circuit can be computed from this information.)

Finally, we also consider the adversary who is allowed to tamper with wires of a
circuit in addition to tampering with its memory and probing additional wires. Here,
even if we do not allow the adversary to probe memory cells, the adversary can still
retrieve the secret content of any deterministic circuit. Moreover, he can do it even if he
chooses the set of wires to probe and tamper with non-adaptively.

On the positive side, we show that the Ishai et al.’s randomized construction (i.e. the
one that uses true randomness, not a pseudorandom generator), in combination with the
Gennaro et al.’s construction, achieves ATP security in the face of the circuit probing
and tampering attack (but not memory probing). This is the best positive result we could
get: for any other scenario we showed negative results!

Having investigated into the models in both paper, we briefly describe the distinction
between those two: for the [GLM+04] model, the adversary can tamper with the whole
memory, but cannot do with the circuit. In [IPSW06] model, the adversary can partially
tamper and probe every part of the circuit, but cannot tamper with the whole memory
in a single clock cycle. Both models have positive results. It is natural to consider if we
can combine those models, to give the adversary more power, to see if positive results
still remain or where they get stuck.

We show, mostly, that security cannot be achieved under a combination of attacks, for
circuits without a source of true randomness. Under some conditions, the circuit with
such source can apply the previous techniques to achieve security against the combined
attacks. This is a separation for the models that shows a circuit with its randomness
stored vulnerably is strictly less secure than that with a source of true randomness.

2 Definitions

2.1 ATP Models

Following Gennaro et al., we consider a system with two components: (1) secret con-
tent, sc (containing some secret key, sk, randomness, and possibly state information),
and (2) a cryptographic algorithm implemented by a circuit C which uses the secret
content.

We say that the system implements a certain function F , if for any input a,C(sc, a)=
F (a). We say that C implements a keyed cryptographic functionality F (·, ·), if for every
key sk (from the appropriate domain) there exists a setting scsk of the secret data, such
that the system (C, scsk) implements the function F (sk, ·). An algorithm computing
scsk will be called a software setup algorithm. Finally, a device setup protocol imple-
menting F (·, ·) is a pair of algorithms. The first generates the algorithm C, possibly
with some additional state information to be passed to the second algorithm. The sec-
ond is a software setup algorithm: given input sk and C, and possibly an additional state



110 F.-H. Liu and A. Lysyanskaya

information input, the algorithm generates an appropriate scsk. If the software setup al-
gorithm is stateful, we say that the device uses public parameters. We will consider
devices with efficient setup algorithms, and all the functionalities the devices compute
are polynomially-computable.

Consider C which implements some F (·, ·) (e.g., a signature algorithm). Gennaro
et al. defined a tampering adversary who can request two commands to be carried out:
Run(·) and Apply(·), and Setup.

– The command Run(a), invokes the cryptographic computation C using the soft-
ware content sc on input a. The output is the output of such computation, i.e.,
C(sc, a). For example, if the cryptographic algorithm is a signature then the output
is a signature on the message a using the secret key stored in sc.

– The command Apply(f) takes as input a function f , and modifies the software con-
tent sc to f(sc). From this point on, until a new Apply(f) is requested, all Run(a)
operations will use f(sc) as the new software content. f can be a probabilistic func-
tion. Note that the next invocation of Apply(f ′) would change f(sc) to f ′(f(sc)),
i.e. it does not apply f ′ to the original sc. There is no output for this command.

– The command Setup(sk) invokes the software setup algorithm, outputting sc such
that the device C(sc, ·) implements the function F (sk, ·).

The device may also have a self-destruct capability, called by the circuit C. If this
happens, every Run command from then on will always output ⊥.

As mentioned above, security of smartcards and other portable devices is one of the
motivations for considering this model. For convenience, throughout this paper we refer
to the system interchangeably as a “card” or a “device”.

In the tampering adversary model (referred to in the sequel as the ATP model and the
[GLM+04] model), the adversary only applies a polynomial-time computable transfor-
mation on the secret memory content sc without reading it directly. On the other hand,
the underlying hardware circuit C cannot be tampered with, and results of intermediate
computation steps cannot be eavesdropped.

In the following sections, we extend the [GLM+04] model to allow the adversary
to not only tamper with the circuit’s memory, but also to probe the circuit’s wires and
gates while the computation is going on, and to tamper with the individual wires in
the circuit. We get adversaries of different strengths by allowing various combinations
of these attacks. The memory probing adversary is allowed to read one bit at a time
of the secret content sc, in addition to being able to tamper with it through the Apply
command. The circuit probing adversary will be allowed to retrieve the contents of a
wire in the circuit during the execution of a Run command, in addition to being able
to issue Apply commands. The wire fixing adversary is allowed to fix a particular wire
of the circuit so that for the duration of the Run query it carries a particular bit. We
will formalize the definitions of these additional adversarial behaviors in the following
sections.

2.2 Memory-Probing Models

In this section, we consider the adversary by allowing the probing attacks on the mem-
ory. Besides Run, the adversary can probe several (a constant number of) cells in the



Algorithmic Tamper-Proof Security under Probing Attacks 111

memory once, after Run is finished. To formalize that, we make available to the adver-
sary the following capability: Let the memory content sc ∈ {0, 1}m be an m-bit string,
and T be a subset of {1, 2, . . . , m} The command ProbeMem(T ) returns the ith bit of
the secret content, sci for any i ∈ T .

If |T | = m, then we could never achieve security.Therefore, it is natural to limit the
size of probing by allowing |T | = t for a constant parameter (that does not grow with
m). The command ProbeMem can be executed at most once following an execution of
the Run command. We allow the adversary to change the set of indices it queries, T ,
adaptively.

2.3 Circuit-Probing and Circuit-Tampering Models

In this section, we consider another type of attacks: the adversary can tamper or probe the
circuit’s wires when Run is operating. To formalize that, we let the wires in the circuit be
labeled by W = {w1, w2, . . . , w�} for some �, and T be a subset of {w1, w2, . . . , w�}.

For the Circuit-Probing model, the adversary may issue the following command:

– The commands ProbeWire(T ) returns the values of the wires wi ∈ T .

For the Circuit-Tampering model, the adversary may issue the following commands:

– The commands ChangeWire(T, val) returns nothing but replaces the value in the
wire wi ∈ T with vali temporarily.

– The commands FixWire(T, val) returns nothing but replaces the value in the wire
wi ∈ T with vali permanently.

The adversary is able to apply any and only one of these commands per clock cycle
when the circuit is operating (Run is called.) Since this model inherits the results of
[IPSW06], it is reasonable for us to limit the size of T by setting |T | = t for some
constant parameter, as they did.

2.4 Combined ATP, Memory-Probing, Circuit-Tampering, Circuit-Probing
Models

In the following sections, we will consider a variety of combination of models. In
summary, section 4 considers the combination of ATP and Memory-Probing models;
section 5 considers the combination of ATP, Circuit-Probing, and Circuit-Tampering
models. The details will be explained in the sections respectively.

2.5 Security Definition

Here we give a general definition for the security of the circuit. This definition is an ex-
tension of the [GLM+04] definition: it gives the adversary a broader set of capabilities.

Definition 1. Define AIdeal be the set of adversaries that can only obtain the input-
output behavior of the device, and AModel be the set of adversaries that can perform
any attack defined in a particular Model (this Model can be a combination of attack
capabilities described above). Let C be a circuit that implements some functionality.



112 F.-H. Liu and A. Lysyanskaya

We say C is Model-secure if there exists a probabilistic polynomial time simulator S
such that for any A ∈ AModel, the following two experiments are computationally in-
distinguishable:

1. SA ∈ AIdeal outputs a bit after interacting with C.
2. A ∈ AModel outputs a bit after interacting with C.

In the following sections, if we don’t specify the Model, we are referring to the model
discussed in that section.

3 New Impossibility Result in the ATP Model

Consider the following functionality for a signature device with a personal identifica-
tion number (PIN). The device has a public key pk, and its secret content sc contains
the corresponding sk and a personal identification code pin that must be entered for
the device to run properly. The idea is that a user Alice of the device would need to
remember a short PIN; if she loses the device and it falls into the adversary’s hands, the
adversary will still have to correctly guess the PIN before he can use it. We want a de-
vice that tolerates a few incorrect PIN attempts (since Alice may occasionally mistype
the PIN), but stops working after the number of incorrectly entered PINs exceeds a cer-
tain threshold α (a constant that is much smaller than all possible PINs). Gennaro et al.
showed that this is possible if we want to tolerate α as the total number of incorrectly
entered PINs, but left as an open problem the question of whether it was possible to
have a functionality that allowed any number of incorrectly entered PINs over the life
of the device, but would stop working if the number of consecutive incorrect PINs ex-
ceeds the threshold α. Here we show that this functionality (referred to in the sequel as
“signature with consecutive PIN protection”) cannot be ATP-secure. We also show that
we cannot achieve ATP security for the functionality that allows Alice to change her
PIN (referred to in the sequel as “signature with user changeable PIN”).

In the following theorems, we assume that the device computes a polynomial-time
function that on input PIN and the secret component outputs 1/0, denoting the validity
of the PIN. Also we assume that the PIN has a polynomial-size support.

Theorem 1. The signature with user changeable PIN functionality cannot be ATP se-
cure, even if a circuit can self-destruct, assuming the device implements a polynomial-
time change-pin function fChangePIN that on input (sc,NewPIN ,OldPIN ) outputs
a new valid secret component sc′, and the devices calls fChangePIN when the user
changes her PIN.

Proof. The adversary will take advantage of the existence of this function fChangePIN

in order to break the ATP security of the device. Recall that the adversary may specify,
as input to the Apply command, a polynomial-time computable function f . As a result
of Apply(f), our adversary will succeed in replacing the old PIN (which he does not
know) with a new PIN. For simplicity, the new PIN will be the all-zero string 0� where
� is the length of the PIN. As a result of Apply(f), the adversary will be able to use the
device from now on.



Algorithmic Tamper-Proof Security under Probing Attacks 113

This function f works as follows: for every possible PIN p, it runs the following
function fp: On input secret component sc of the device, fp first checks whether p is
the correct PIN, then it returns sc′ = fChangePIN (sc, 0�, p). Else fp returns sc. Since
f does this for every possible PIN p, we guarantee that in the end, sc will be modified
in the same way as if the user changed her PIN to 0�. f is polynomial-time, because
the PIN is a memorizable short number, for which all possibilities can be enumerated
in polynomial time (from the assumption). ��
Theorem 2. The signature with consecutive PIN protection functionality cannot be
ATP secure, even if a circuit can self-destruct, assuming the device implements a
polynomial-time reset function fResetPIN that on input sc, Input , pin outputs a valid
sc′ for the correct PIN, and every time every time the PIN is correctly entered, the
counter of consecutive errors is reset.

Proof. Our adversary will take advantage of the existence of this function fResetPIN in
order to come up with the function f to give as argument to the Apply command. As
a result of Apply(f), the counter for incorrect consecutive PIN attempts will be reset,
even though the adversary has not issued Run(Input , pin) for the correct PIN pin .

f will work as follows: for all possible PINs p, it will run the function fp. fp (sim-
ilarly to the proof of Theorem 1) works like this: on input (sc, Input), where Input is
any message in the message space of the signature scheme — for simplicity, let Input
be the all-zero message 0n. it first checks whether p is the correct PIN; if so, it returns
sc′ = fResetPIN (sc, Input , p); else, it returns sc.

Once again, since PIN is a memorizable short number, f can call every possible fp

in polynomial time. After Apply(f) is executed, the secret content is whatever it would
be after Run(Input , pin) is queried with the valid PIN pin . ��

4 Impossibility of Deterministic Circuits in the ATP-Memory-
Probing Model

Suppose that, after the circuit C executes a Run command, the secret contents sc always
remains unchanged, i.e. the same as before the Run command was executed. Then the
memory probing adversary can trivially learn the entire string sc by simply probing
each bit of sc one by one. Here we show that even if the circuit C updates sc before
completing the execution of Run, the memory probing adversary can still compute a
candidate sc′ that would correspond to the secret contents of the device for some time
period.

Let Cmem be the function that, on input sc and a outputs the updated version of sc,
the secret contents of the device’s memory left behind after Run(a) is executed. For a
particular a, let X0 = sc, Xi+1 := Nexta(Xi) be shorthand for Cmem(Xi, a). Let sc
and a be given; for i > 0, if the circuit is deterministic, each Xi is well-defined.

Theorem 3. A deterministic signature functionality cannot be ATP-Memory-Probing
secure, even if the circuit can self-destruct: there exists a polynomial-time adversary
that outputs Xi for some i.



114 F.-H. Liu and A. Lysyanskaya

Proof. We prove the theorem by giving an adversary that attacks any device that
implements the signature functionality. The adversary will get some “useful” informa-
tion by probing some bits in the memory. The intuition is: the adversary takes advan-
tage of a polynomial-time computable function f that first identifies a good location to
probe, signals this location back to the adversary, and then conveys the secret content
in that particular location in the memory. To be more specific: for the memory con-
tents X0, X1, . . . , X� for some �, there is either a simple cycle or at least one bit of the
memory that has changes with enough regularity. For the former case, the adversary can
always fix the memory content to be the same and then probe it bit by bit. For the latter
one, the adversary can obtain this location (having changes with enough regularity) and
then transmit one Xt for some t through probing at this location.

Let us explain how this function conveys information and how the adversary receives
it with the following algorithms. Algorithm 5 describes the function f that the adversary
is going to use: f is parameterized by (r, aux , a). r is an integer that depends on how
many times the adversary has already modified the memory. aux is a string that depends
on what she is trying to do at this stage. a is the index of Nexta(sc) = Cmem(sc, a).
With the algorithm, we develop the following lemmas for the theorem.

Lemma 1. The adversarial function is a polynomial-time computable function.

Proof. Every step in the algorithm is clearly polynomial-time computable. We put a
more detailed proof in the full version of this paper.

Lemma 2. The adversary will find a sc′ that C(sc ′, ·) also implements a valid signa-
ture function as C(sc, ·) does.

Proof. We consider two cases, (1) there exists a cycle with length no greater than m3 +
3m on X0, X1, . . . , X�, where X0 = sc, Xi = Nexta(Xi−1), and � = m3 + 4m − r,
for some r ∈ [m]. (2) there doesn’t. For the first case, we let X0 be the start of the cycle;
otherwise the function will first return Xj , where Nexta(Xj) is the start of the cycle,
and then we go back to the case where X0 is the start of the cycle.

1. Suppose there exists a j < m3 + 4m < � such that Xj = X0 = sc, the adversarial
function will move the memory to Xj−1. After the device runs, it updates the mem-
ory from Xj−1 to Xj = X0 = sc, so the adversary will probe with the same mem-
ory contents (sc) in the first m rounds. Also, since m3 + 3m ≤ � = m3 + 4m − r
for r ∈ [m], the adversarial function will always find this cycle, and the memory
will always be X0 when the adversary probes it. Therefore the adversary will find
sc and construct C(sc, ·) as desired.

2. Suppose there doesn’t exist such small cycle, then the adversary will most likely
not get a good candidate after step 1. (Note: if she still does get one by luck, then she
will be very happy and doesn’t need the following procedure. The proof is done.)
Now, she is going to query “Is location k a good place to probe?” for every bit.
Since there doesn’t exist a cycle or a small cycle in X0, X1, . . . , Xl, we assume
X0, X1, . . . , Xm3+3m are distinct elements without loss of generality. Then the
adversary is going to ask which location is a good place to probe. Note: a good
location is the place which contains a lot of 0, 1 alternations. So the adversarial



Algorithmic Tamper-Proof Security under Probing Attacks 115

function can use those 0/1’s to convey sc′ when the adversary is probing such
location.

3. Now we want to prove there must be a good location to probe: if location i is not
the place to be probed, then the adversarial function will at most move from X0 to
X2 after “Give me 0” and “Give me 1”, since we can always find a two-bit string
in X0(i), X1(i), X2(i) that violates “01” (in any one of the eight combinations of
those three bits.) Thus, at each time when the third step of the function is run, there
are at least m3 distinct elements (i.e. X0, X1, . . . Xm3 , ) (for a bad location, we
waste at most three distinct elements. Thus, every time we have at least m3 +3m−
3m distinct elements.)

Since those elements are distinct, we have
∑j=m

j=1 |Xi(j)−Xi+1(j)| ≥ 1 for any

i = 1....m3 − 1. This implies
∑m3−1

i=0

∑j=m
j=1 |Xi(j) − Xi+1(j)| ≥ m3. This is a

finite summation and i, j are independent, so we can change the summation order

to get:
∑j=m

j=1

∑m3−1
i=0 |Xi(j) − Xi+1(j)| ≥ m3. According to the pigeon hole

principle, we must have some k such that
∑m3−1

i=0 |Xi(k) − Xi+1(k)| ≥ m3/m =

m2 > 5m+2. Note: diffk =
∑m3+4m−r

i=0 |Xi(k)−Xi+1(k)| ≥ ∑m3−1
i=0 |Xi(k)−

Xi+1(k)| ≥ 5m + 2− r. Thus we must have some k such that diffk > 5m + 2− r
for r = 0 or 1.

This implies in this case, there must exist a good location to probe. And the
adversary will get this one from the function f . After this location is obtained,
there are 5m alternations of 0/1 on this bit, and the adversarial function can easily
convey the message about sc′ through this bit. The remaining argument follows
straightforwardly with the algorithm ��

Remark 1. A natural question is: what can this attack do to a functionality with a PIN?
In such a functionality, the adversary must enter the correct PIN pin to run Run(a, pin).
Recall that we require the PIN to be an easily memorizable string, and so the number of
possible choices is not large. Therefore the adversary has a non-negligible probability
of guessing it correctly. Once she guesses the correct PIN, she can find out the secret
content sc′ using the attack above.

Remark 2. This result is not limited to the signature functionality; we used signatures
for concreteness. In fact, no deterministic testable (as defined by Gennaro et al.) func-
tionality can be ATP secure in the memory probing model.

5 Impossibility of Deterministic Circuits in the ATP-Circuit-
Probing-Tampering-Model

In this section, we are going to consider the model where the adversary can do the
probing attacks and tampering attacks on the wires. From the previous section, we have
already shown that if the adversary is able to read directly the memory cell (or read
from the wires that carry the content into the circuitry) then the deterministic circuit
can not achieve ATP security. Those impossibilities are still inherited here. Therefore,
we are going to consider further restrictions on the adversary.



116 F.-H. Liu and A. Lysyanskaya

Algorithm 1. Description of the Adversary (Theorem 3)
1. Pick an arbitrary a from the message space in the signature scheme.

for i = 1 to m do
Let r = i, aux = ε, sc′ = ε.
Run consecutively Apply(fr,aux ,a), Run(a), and sc′ = sc′ ◦ ProbeMem({i}). I.e.
probe location i of the memory and then concatenate the outcome with sc′.

end for
Then we have a candidate sc′ from the bits we’ve probed.
Construct a circuit C(sc′, ·) and check if this circuit outputs validly for the signature
scheme as C(sc, ·) does.

2. if the constructed circuit does then
Output sc′

else
for i = 1 to m do

Let r = 0, aux =“Is location i a good place to probe?”◦“Give me 0”
Run Apply(fr,aux ,a), Run(a) and then ProbeMem({i}). .
Let r = 1, aux =“Is location i a good place to probe?”◦“Give me 1”
Run Apply(fr,aux ,a), Run(a) and then ProbeMem({i}).
If the outcomes of two consecutive probes are anything other than 01, then the ad-
versary knows this is not a good location to probe, so it continues. Otherwise, exit
for and let bit pb = i be the location to be probed.

end for
end if

3. Let str = ε
for i = 1 to m do

Let r = i, aux =“Location pb will be probed.”◦”I want bit i of the secret.” ◦”Bits
1, 2, . . . , i − 1 of the secret are str”
Run Apply(fr,aux ,a), Run(a), and b = ProbeMem({pb}). (Probe location pb, and get
the outcome b.)
Let str = str ◦ b (a concatenation.)

end for
Output str.

Before stating them, we first consider some motivations for intuitively understand-
ing. Suppose the adversary has some nano needles that can perform the probing and
tampering attacks on wires, but each needle occupies some areas and after placing the
needle, the adversary cannot change its position without damaging the original circuit.
Thus she should choose a small set of wires which she is going to attack in advance and
cannot change them adaptively. In this section, we show that even with the restrictions,
the adversary can destroy the ATP security. As a consequence, the adversary with even
stronger power that can attack wires adaptively can certainly destroy the ATP security.

Now we state the restrictions explicitly: the adversary needs to select a set of wires
to attack before the operation of the device. Note: every wire can be included in this
set, and once it is chosen, the adversary can only tamper or probe the wires in this
set. Also, after this set has been chosen, the adversary cannot change it. This is called
non-adaptive attacks.



Algorithmic Tamper-Proof Security under Probing Attacks 117

Algorithm 2. The adversarial function fr,aux ,a (Theorem 3)
On input sc do:

1. Compute X0, X1, . . . , X�, for � = m3 + 4m − r. Note: recall X0 = sc, Xi =
Nexta(Xi−1) as defined in the beginning in this section.

2. If aux = ε, then try to determine if the sequence of values {Xi} contains a cy-
cle:

If aux �= ε, goto Step 3: that is, the adversary already knows that there are no small
cycles.
Else, check for cycles with its length no greater than m3 + 3m: does there exist an 0 ≤
i < j ≤ � such that Xi = Xj , and j − i < m3 +3m, and Xi, Xi+1, . . . , Xj are distinct.

if NO (i.e. no cycle or there exists a cycle but the length is too large) then
Output X0.

else
consider two cases: (a) i > 0: output Xi (b) i = 0: output Xj−1.

end if
3. if aux contains the string “Location k will be probed.” then

go to Step 4. The adversary already knows which location to probe in the memory to
get useful information.

else
aux must contain the string “Is location k a good place to probe?” A good location to
probe is one where, as the value of sc changes over time, the bit stored at this memory
location keeps changing. Thus, if we want to communicate a bit b to the adversary, we
can do so by setting sc = Xi for some Xi whose kth bit is b.
Let S be the string obtained by concatenating the following bits: S = X1(k)◦X2(k)◦
· · · ◦ Xl(k) where Xi(j) means the j-th bit of Xi. Let diff k =

∑�
j=2 |Xj(k) −

Xj−1(k)|. I.e., diff k measures how many times the value stored at the kth memory
location changes as sc changes over time.
if diff k > 5m + 2 − r then

This is a good location, because diff k is high. This needs to be communicated back
to the adversary. We know that the adversary will be probing the kth memory loca-
tion to get the answer to this question, and therefore we do as follows:
consider the two cases:

(a) aux contains “Give me a 0” then let t + 1 be the smallest integer such that
Xt+1(k) = 0. Output Xt.

(b) aux contains “Give me a 1” then let t + 1 be the smallest integer such that
Xt+1(k) = 1. Output Xt.

else
k is a bad location.
consider the two cases:

(a) aux contains the string “Give me a 0” then if X1(k) = 1 output X0. If X1(k) =
0, and X2(k) = 1 output X1. Else if X1(k) = 0,and X2(k) = 0 output X0.

(b) aux contains the string “Give me a 1” then output X0.
end if

end if
4. The adversary will probe location k. Among the � possibilities for sc, X0, . . . , X�, find

Xt for a sufficiently large t, consistent with what the adversary already knows, and com-
municate a bit of Xt by making sure that this bit will be read off from location k. More
precisely:

aux must contain “Location k will be probed”, and “I want bit j of the secret.”, and “Bits
1, 2, . . . , j − 1 of the secret are s1, s2, . . . , sj−1.”
Find the least t ≥ m5 −m3r such that the first j−1 bits of Xt are s1, s2, . . . , sj−1. Find
the least u such that Xu+1(k) = Xt(j). Output Xu.



118 F.-H. Liu and A. Lysyanskaya

In the following, we are going to show the adversary only needs to attack a small
set of wires to destroy ATP security. Since the construction of the adversary and proofs
are similar to theorem 3, we only state the theorem here and leave the details including
the formalization of the model and proofs the full version of this paper for the curious
readers.

Theorem 4. A deterministic signature functionality cannot be ATP-Circuit-Probing-
Tampering secure in the non-adaptive model. That is: the adversary first sets the attack
range on the output wires of Ccheck and then will either disable the self-destruct func-
tion or find out some valid sc′.

Note: Ccheck is one part of the components in the circuit, which checks if the memory is
valid. The functionality is necessary for every cryptographic device. The precise model
can be found in the the full version of this paper.

Remark 3. Gennaro et al. showed there is no ATP secure achieved without self-destruct
functionality. Thus, if the adversary disables such functionality, she can retrieve the
secret content as the authors did in [GLM+04].

Remark 4. Since the signature functionality cannot be ATP secure under non-adaptive
model, it is clearly that it cannot withstand a stronger adversary which can do the adap-
tive attacks.

6 ATP-Circuit-Probing-Tampering Security from Encoded
Randomness Gates

In the previous sections, we see the limitations of deterministic circuits. Thus it seems
that the signals in the wires should be made independent of the memory content to de-
fend against probing attacks. And this is where randomness comes in handy. Intuitively,
one can think that randomness provides an independent and unpredictable shield that
hides each signal (using a secret sharing scheme [ISW03]) which the adversary cannot
manipulate by merely tampering with the memory content.

In this section, we consider circuits with a source of true randomness. For this model,
the previous results in [IPSW06, ISW03, GLM+04] work. After we rule out yet an-
other class of attacks that makes the circuit entirely vulnerable, we can combine the
techniques in those works to achieve ATP security in this new model.

Definition 2 (Randomness gate). A randomness gate is a gate with no input and one
output wire that emits a truly random bit each clock cycle.

Lemma 3. In the ATP-Circuit-Probing-Circuit-Tampering model, there exists an ad-
versary who, for any keyed cryptographic functionality, either discovers a valid secret
sc′, or determines all the values of all the internal wires corresponding to the execution
of the Run() command, even for circuits with randomness gates.

Proof (sketch). Let RG = {rg1, rg2, . . . , rgr} be the set of randomness gates used by
the circuit. Since the adversary can tamper with any internal wire, he can fix the output



Algorithmic Tamper-Proof Security under Probing Attacks 119

of every randomness gate. We must make sure that this does not cause the device to
self-destruct (for example, a device that remembers the randomness used in previous
invocation might detect that something suspicious is going on). To do that, once the
output of a randomness gate is fixed, the adversary must run the Apply() command
that will make a device that can store m bits of memory “fast-forward” far enough
into the future, using true randomness, so that it would no longer remember the fixed
randomness. Now the circuit becomes deterministic and we can use a similar attack in
the previous section. A formal description is deferred to the full version of this paper.

We see that if all randomness gates are vulnerable under tampering attacks, then the
circuit can be made deterministic. Thus, to defend against tampering attacks, we need
a more complex gadget: “encoded randomness gate,” as proposed in [IPSW06]. Let
the encoded randomness gate ERGk be an element that takes no input and produces a
string of output a k-bit string per clock cycle, 1k representing 1, 0k representing 0, and
others representing the invalid signal. The output distribution is Pr[ERGk = 1k] =
Pr[ERGk = 0k] = 1/2. The intuition for this gadget is that the adversary has little
probability to fix the entire output of a gadget before causing an invalid signal. From
the techniques in [IPSW06], we can design an implementation that if an invalid signal
is caused, then it will be passed to the whole circuit and erase the whole output and
memory content.

Theorem 5 (main result in [GLM+04]). Under the assumption of the existence of
strong universalunforgeable signaturescheme, thereexistsunforgeable signaturescheme
that achieves ATP security. That is, there exists a circuit C(sc, ·) that implements a sig-
nature functionality with secret content sc stored in the Memory and is ATP secure.

The main idea here is let sc = sc′◦σΠ(sc) where σ is a universal unforgeable signature
scheme and Π is the secret signing key of the card manufacturer, and sc′ contains the
signing key of the signature device. In brief, since σΠ(sc) can be only issued by the
manufacturer, the adversary is not able to produce it by himself, and thus she cannot
produce any other valid sc′ that will pass the verification process. The formal reduction
proof can be found in [GLM+04].

Next, we recall the main result of Ishai et al. By “registers” we mean a special com-
ponent of the circuit into which a portion of memory (and intermediate results of com-
putation steps) can be loaded at execution time.

Theorem 6 (main result in [IPSW06]). There exists a circuit C(·), using AND, OR,
NOT, and “encoded randomness gates,” with sc stored in its registers that implements
a signature functionality and achieves Circuit-Probing-Circuit-Tampering security.

Theorem 7 (combined result). Let m be the length of the secret content sc. There ex-
ists a circuit C(·), using AND, OR, NOT, “encoded randomness gates,” and Θ(m) “ro-
bust wires” which are invulnerable to probing attacks, with sc stored in its memory that
implements a signature functionality and achieves ATP-Circuit-Probing-Tampering
security.

The idea here is that the circuit first uses the robust wires to load the memory content to
the registers. Then during the execution, the device only uses the registers in the circuit



120 F.-H. Liu and A. Lysyanskaya

for the memorization of internal states, etc. Finally, the circuit updates the memory
through the robust wires. Then Theorem 5 and Theorem 6 combine perfectly.

References

[AARR03] Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

[AK96] Anderson, R., Kuhn, M.: Tamper Resistance - a Cautionary Note. In: Proceedings
of the Second Usenix Workshop on Electronic Commerce, pp. 1–11 (November
1996)

[AK97] Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Lomas,
M. (ed.) Security Protocols 1996. LNCS, vol. 1189. Springer, Heidelberg (1997)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

[BS97] Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

[CRR03] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

[DPW10] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)
[GLM+04] Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic

tamper-proof (atp) security: Theoretical foundations for security against hardware
tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer,
Heidelberg (2004)

[IPSW06] Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits ii: Keeping se-
crets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

[KJJ99] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (1996)

[MR04] Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

[SA03] Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)


	Algorithmic Tamper-Proof Security under Probing Attacks
	Introduction
	Definitions
	ATP Models
	Memory-Probing Models
	Circuit-Probing and Circuit-Tampering Models
	Combined ATP, Memory-Probing, Circuit-Tampering, Circuit-Probing Models
	Security Definition

	New Impossibility Result in the ATP Model
	Impossibility of Deterministic Circuits in the ATP-Memory-Probing Model
	Impossibility of Deterministic Circuits in the ATP-Circuit-Probing-Tampering-Model
	ATP-Circuit-Probing-Tampering Security from Encoded Randomness Gates
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




