
Distributed Private-Key Generators for
Identity-Based Cryptography�

Aniket Kate and Ian Goldberg

Cheriton School of Computer Science
University of Waterloo, Canada

{akate,iang}@cs.uwaterloo.ca

Abstract. An identity-based encryption (IBE) scheme can greatly reduce the
complexity of sending encrypted messages. However, an IBE scheme necessarily
requires a private-key generator (PKG), which can create private keys for clients,
and so can passively eavesdrop on all encrypted communications. Although a dis-
tributed PKG has been suggested as a way to mitigate this key escrow problem
for Boneh and Franklin’s IBE scheme, the security of this distributed protocol
has not been proven. Further, a distributed PKG has not been considered for any
other IBE scheme.

In this paper, we design distributed PKG setup and private key extraction pro-
tocols for three important IBE schemes; namely, Boneh and Franklin’s BF-IBE,
Sakai and Kasahara’s SK-IBE, and Boneh and Boyen’s BB1-IBE. We give special
attention to the applicability of our protocols to all possible types of bilinear pair-
ings and prove their IND-ID-CCA security in the random oracle model against
a Byzantine adversary. Finally, we also perform a comparative analysis of these
protocols and present recommendations for their use.

1 Introduction

In 1984, Shamir [2] introduced the notion of identity-based cryptography (IBC) as an
approach to simplify public-key and certificate management in a public-key infrastruc-
ture (PKI) and presented an open problem to provide an identity-based encryption (IBE)
scheme. After seventeen years, Boneh and Franklin [3] proposed the first practical and
secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work, in the last
few years, significant progress has been made in IBC (for details, refer to a recent book
on IBC [4] and references therein).

In an IBC system, a client chooses an arbitrary string such as her e-mail address to be
her public key. With a standardized public-key string format, an IBC scheme completely
eliminates the need for public-key certificates. As an example, in an IBE scheme, a
sender can encrypt a message for a receiver knowing just the identity of the receiver
and importantly, without obtaining and verifying the receiver’s public-key certificate.
Naturally, in such a system, a client herself is not capable of generating a private key
for her identity. There is a trusted party called a private-key generator (PKG) which
performs the system setup, generates a secret called the master key and provides private
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keys to clients using it. As the PKG computes a private key for a client, it can decrypt
all of her messages passively. This inherent key escrow property asks for complete trust
in the PKG, which is difficult to find in many realistic scenarios.

Importantly, the amount of trust placed in the holder of an IBC master key is far
greater than that placed in the holder of the private key of a certifying authority (CA) in a
PKI. In a PKI, in order to attack a client, the CA has to actively generate a fake certificate
for the client containing a fake public key. In this case, it is often possible for the client
to detect and prove the malicious behaviour of the CA. The CA cannot perform any
passive attack; specifically, it cannot decrypt a message encrypted for the client using
a client-generated public key and it cannot sign some document for the client, if the
verifier gets a correct certificate from the client. On the other hand, in IBC, 1) knowing
the master key, the PKG can decrypt or sign the messages for any client, without any
active attack and consequent detection, 2) the PKG can make clients’ private keys public
without any possible detection, and 3) in a validity-period-based key revocation system
[3], bringing down the PKG is sufficient to bring the system to a complete halt (single
point of failure), once the current validity period ends. Therefore, the PKG in IBC needs
to be far more trusted than the CA in a PKI. This has been considered as a reason for
the slow adoption of IBC schemes outside of closed organizational settings.

Boneh and Franklin [3] suggest distributing a PKG in their BF-IBE scheme to solve
these problems. In an (n, t)-distributed PKG, the master key is distributed among n
PKG nodes such that a set of nodes of size t or smaller cannot compute the master key,
while a client extracts her private key by obtaining private-key shares from any t + 1
or more nodes; she can then use the system’s public key to verify the correctness of her
thus-extracted key. Boneh and Franklin [3] propose verifiable secret sharing (VSS) [5]
of the master key among multiple PKGs to design a distributed PKG and also hint
towards a completely distributed approach using the distributed (shared) key generation
(DKG) schemes of Gennaro et al. [6]; however, they do not provide a formal security
model and a proof. Further, none of the IBE schemes defined after [3] consider the
design of a distributed PKG.

Although various proposed practical applications using IBE, such as pairing-based
onion routing [7] or verifiable random functions from identity-based key encapsula-
tion [8], require a distributed PKG as a fundamental need, there is no distributed PKG
available for use yet. This practical need forms the motivation of this work.

Related Work. Although we are defining protocols for IBE schemes, as we are concen-
trating on distributed cryptographic protocols and due to space constraints, we do not
include a comprehensive account of IBE. We refer readers to [9] for a detailed discus-
sion on the various IBE schemes and frameworks defined in the literature. Pursuant to
this survey, we work in the random oracle model for efficiency and practicality reasons.

None of the IBE schemes except BF-IBE considered distributed PKG setup and key
extraction protocols in their design. Recently, Geisler and Smart [10] defined a dis-
tributed PKG for Sakai and Kasahara’s SK-IBE [11]; however, their solution against
a Byzantine adversary has an exponential communication complexity and a formal
security proof is also not provided. We overcome both of these barriers in our dis-
tributed PKG for SK-IBE: our scheme is secure against a Byzantine adversary and has
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the same polynomial-time communication complexity as their scheme, which is secure
only against an honest-but-curious adversary; we also provide a formal security proof.

Other than [10], there have been a few other efforts in the literature to counter the in-
herent key escrow and single point of failure issues in IBE. Al-Riyami and Paterson [12]
introduce certificateless public-key cryptography (CL-PKC) to address the key escrow
problem by combining IBC with public-key cryptography. Their elegant approach, how-
ever, does not address the single point of failure problem. Although it is possible to solve
the problem by distributing their PKG using a VSS (which employs a trusted dealer to
generate and distribute the key shares), which is inherently cheaper than a DKG-based
PKG by a linear factor, it is impossible to stop a dealer’s active attacks without completely
distributed master-key generation. Further, as private-key extractions are less frequent
than encryptions, it is certainly advisable to use more efficient options during encryp-
tion rather than private-key extraction. Finally, with the requirement of online access
to the receiver’s public key, CL-PKC becomes ineffective for systems without continu-
ous network access, where IBC is considered to be an important tool. Lee et al. [13] and
Gangishetti et al. [14] propose variants of the distributed PKG involving a more trustwor-
thy key generation centre (KGC) and other key privacy authorities (KPAs). As observed
by Chunxiang et al. [15] for [13], these approaches are, in general, vulnerable to passive
attack by the KGC. In addition, the trust guarantees required by a KGC can be unattain-
able in practice. Goyal [16] reduces the required trust in the PKG by restricting its abil-
ity to distribute a client’s private key. This does not solve the problem of single point of
failure. Further, the PKG in his system still can decrypt the clients’ messages passively,
which leaves a secure and practical implementation of distributed PKGs wanting.

Threshold versions of signature schemes obtained from some IBE schemes using the
Naor transform have been proposed and proved previously [17,18]. However, these so-
lutions do not work for the corresponding IBE scheme. This is due to the inherent secret
nature of a client’s private keys and corresponding shares as compared to the inherent
public nature of signatures and corresponding signature shares. While designing IBE
schemes with a distributed PKG, we have to make sure that a PKG node cannot derive
more information than the private-key share it generates for a client and that private-key
shares are not available in public as commitments.

Our Contributions. We present distributed PKGs for all three important IBE frame-
works: namely, full-domain-hash IBEs, exponent-inversion IBEs and commutative-
blinding IBEs [9]. We propose distributed PKG setups and distributed private-key
extraction protocols for BF-IBE [3], SK-IBE [11], and Boneh and Boyen’s (modified)
BB1-IBE [9,19] schemes. The novelty of our protocols lies in achieving the secrecy
of a client private key from the generating PKG nodes without compromising the effi-
ciency. We realize this with an appropriate use of non-interactive proofs of knowledge,
pairing-based verifications, and DKG protocols with and without the uniform random-
ness property. Based on the choice of the DKG protocol, our distributed PKGs can work
in the synchronous or asynchronous communication model. In terms of feasibility, we
ensure that our protocols work for all three pairing types defined by Galbraith et al. [20].

We prove the adaptive chosen ciphertext security (IND-ID-CCA) of the defined
schemes in the random oracle model. Interestingly, compared to the security proofs
for the respective IBE schemes with a single PKG, there are no additional security
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reduction factors in our proofs, even though the underlying DKG protocol used in the
distributed PKGs does not provide a guarantee about the uniform randomness for the
generated master secrets. To the best of our knowledge, there is no threshold cryp-
tographic protocol available in the literature where a similar tight security reduction
has been proven while using a DKG without the (more expensive) uniform random-
ness property. Finally, using operation counts, key sizes, and possible pairing types, we
compare the performance of three distributed PKGs we define.

2 Preliminaries

2.1 Cryptographic Background

Bilinear Pairings. For three cyclic groups G, Ĝ, and GT (all of which we shall write
multiplicatively) of the same prime order p, an admissible bilinear pairing e is a map
e : G× Ĝ → GT with the bilinearity, non-degeneracy and admissibility properties. For
a detailed mathematical discussion of bilinear pairings refer to [21]. We consider all
three types of pairings [20] for prime order groups: namely, type 1, 2, and 3. In type 1 or
symmetric pairings, an isomorphismφ : Ĝ → G as well as its inverseφ−1 are efficiently
computable. In type 2 pairings, only the isomorphism φ, but not φ−1, is efficiently
computable. In type 3 pairings, neither φ nor φ−1 can be efficiently computed. The
efficiency of the pairing computation improves from type 1 to type 2 to type 3 pairings.
For a detailed discussion of the performance aspects of pairings refer to [20,22].

Non-interactive Proofs of Knowledge. As we assume the random oracle model in
the paper, we can use non-interactive zero-knowledge proofs of knowledge (NIZKPK)
based on the Fiat-Shamir methodology [23]. In particular, we use a variant of NIZKPK
of a discrete logarithm (DLog) and one for proof of equality of two DLogs.

We employ a variant of NIZKPK of a DLog where given a DLog commitment
(C〈g〉(s) = gs) and a Pedersen commitment [24] (C〈g,h〉(s, r) = gshr) to the same
value s for generators g, h ∈ G and s, r ∈ Zp, a prover proves that she knows s and r
such that C〈g〉(s) and C〈g,h〉(s, r). We denote this proof as

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z
3
p. (1)

It is nearly equivalent to proving knowledge of two DLogs separately.
We use another NIZKPK (proof of equality) of discrete logs [25] such that given

commitments C〈g〉(s) = gs and C〈h〉(s) = hs, a prover proves equality of the associated
DLogs. We denote this proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z
2
p. (2)

Note that g and h can belong two different groups of the same order. Refer to the
extended version of the paper [1] for the descriptions of the above proofs.

There exists an easier way to prove this equality of DLogs if a pairing between the
groups generated by g and h is available. Using a method due to Joux and Nguyen [26]
to solve the decisional Diffie-Hellman (DDH) problem over pairing-friendly groups,

given gx and hx
′

the verifier checks if e(g, hx
′
) ?= e(gx, h). However, when using a type



440 A. Kate and I. Goldberg

3 pairing, in the absence of an efficient isomorphism between G and Ĝ, if both g and h
belong to the same group then the pairing-based scheme does not work. NIZKPK≡DLog
provides a completely practical alternative there.

2.2 Assumptions

System Assumptions. Except for the steps involving DKG in some form, all other steps
in our distributed PKG protocols are independent of the communication model used. As
distributedness of PKG is important in IBC outside closed organizational settings, we
suggest the asynchronous communication model as it closely models the Internet. In
particular, we follow the system model of the DKG protocol in [27]. In a synchronous
communication network, it is straightforward to replace this asynchronous DKG with a
more efficient protocol such as the Joint Feldman DKG (JF-DKG) [28].

We assume a standard t-Byzantine adversary in a system with n ≥ 3t + 1 nodes
P1, P2, . . . , Pn, where any t nodes are compromised or crashed by the adversary. In the
synchronous communication model, the above resiliency bound becomes n ≥ 2t + 1.
Further, when the communication model is synchronous, we assume a rushing adver-
sary. It can wait for the messages of the uncorrupted players to be transmitted, then
decide on its computation and communication for that round, and still get its messages
delivered to the honest parties on time. The adversary is also static as all of the efficient
VSS and DKG schemes that we use are proved secure only against a static adversary,
which can choose its t compromisable nodes before a protocol run. They are not con-
sidered secure against an adaptive adversary because their security proofs do not go
through when the adversary can corrupt nodes adaptively. [28, §4.4] Canetti et al. [29]
presented a DKG scheme provably secure against adaptive adversaries with at least
two more communication rounds as compared to JF-DKG. Due to the inefficiency of
adaptive (provably) secure DKG protocols, we stick to protocols provably secure only
against a static adversary. However, it possible to easily use the DKG protocol in [29]
and obtain security against the adaptive adversary.

Cryptographic Assumptions. Our adversary is computationally bounded with a se-
curity parameter κ. We assume an instance of a pairing framework e of groups G, Ĝ

and GT , whose common prime order p is such that the adversary has to perform 2κ

operations to break the system. Let G = 〈e,G, Ĝ,GT 〉. Following [9], we work in the
random oracle model for efficiency reasons. For the security of the IBE schemes, we use
the bilinear Diffie-Hellman (BDH) [30] and bilinear Diffie-Hellman inversion (BDHI)
[31,32] assumptions. Here, we recall their definitions for asymmetric pairings from [9].

BDH Assumption: Given a tuple (g, ĝ, ga, ĝa, gb, ĝc) in a bilinear group G, the BDH
problem is to compute e(g, ĝ)abc. The BDH assumption then states that it is infeasible
to solve a random instance of the BDH problem, with non-negligible probability, in
time polynomial in the size of the problem instance description.

BDHI Assumption: Given two tuples (g, gx, gx
2
, . . . , gx

q

) and (ĝ, ĝx, ĝx
2
, . . . , ĝx

q

) in
a bilinear group G, the q-BDHI problem is to compute e(g, ĝ)1/x. The BDHI
assumption for some polynomially bounded q states that it is infeasible to solve a ran-
dom instance of the q-BDHI problem, with non-negligible probability, in time polyno-
mial in the size of the problem instance description.
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2.3 Distributed Computation

We next describe the distributed computation primitives that are required to design our
distributed PKGs in an network of n nodes with a t-limited Byzantine adversary. Note
that these distributed computation primitives are the efficient versions of the their orig-
inal forms in [33,34,35,28,36,27] that utilize the presence of random oracles and the
pairing-based DDH problem solving technique [26].

DKG over Zp. Pedersen [24] introduced the concept of DKG and developed a DKG
protocol. Unlike VSS, where a dealer chooses a secret and distributes its shares among
the nodes, DKG requires no trusted dealer. In an (n, t)-DKG protocol over Zp, a set of
n nodes generates an element s ∈ Zp in a distributed fashion with its shares si ∈ Zp

spread over the n nodes such that any subset of size greater than a threshold t can
reveal or use the shared secret, while smaller subsets cannot. We mandate the following
correctness and secrecy properties for a DKG protocol.

Correctness (DKG-C). There exists an efficient algorithm that on input shares from
2t + 1 nodes and the public information, outputs the same unique value s, even if
up to t shares are submitted by malicious nodes.

Secrecy (DKG-S). The adversary with t shares and the public parameters cannot com-
pute the secret s.

In the synchronous and asynchronous communication models, respectively JF-DKG in
[28] and the DKG protocol in [27] achieve these properties and are suitable for our use.
For ease of exposition, we avoid crash-recoveries used in the DKG protocol in [27].

The shared secret in the above DKG protocols may not be uniformly random; this
is a direct effect of using only DLog commitments having only computational secrecy.
(See [28, §3] for a possible adversary attack.) In many cases, we do not need a uni-
formly random secret key; the security of these schemes relies on the assumption that
the adversary cannot compute the secret. Most of our schemes similarly only require the
assumption that it is infeasible to compute the secret given public parameters and we
stick with DLog commitments those cases. However, we do indeed need a uniformly
random shared secret in few protocols. We mandate the following stronger correctness
and secrecy properties based on the DKG correctness and secrecy defined in [28, §4.1].

Strong Correctness (DKG-sC). Along with the DKG-C property, s is now uniformly
distributed in Zn.

Strong Secrecy (DKG-sS). No information about s can be learnt by the adversary ex-
cept for what is implied by the public parameters.

In this case, we use Pedersen commitments, but we do not employ the methodology
defined by Gennaro et al. [6], which increases the number of rounds in the protocol.
We observe that with the random oracle assumption at our disposal, the communica-
tionally demanding technique by Gennaro et al. can be replaced with the much simpler
computational non-interactive zero-knowledge proof of equality of committed values
NIZKPK≡Com described in Eq. 1. The simulator-based proof for the above is similar
to that in [28, §4.3] and is included in [1]. We represent DKG protocols using the DLog
and Pedersen commitments as DKGDLog and DKGPed respectively. For node Pi,
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(
C(s)
〈g〉, si

)
= DKGDLog(n, t, t̃, g, αi) (3)

(
C(s,s′)
〈g,h〉 , [C(s)

〈g〉,NIZKPK≡Com], si, s′i
)

= DKGPed(n, t, t̃, g, h, αi, α′
i) (4)

Here, t̃ is the number of VSS instances to be chosen (t < t̃ ≤ 2t + 1), g, h ∈ G

are commitment generators and αi, α
′
i ∈ Zp are respectively a secret and random-

ness shared by Pi. For ψ, ψ′ ∈ Zp[x] of degree t with ψ(0) = s and ψ′(0) = s′,
C(s)
〈g〉 = [gs, gψ(1), · · · , gψ(n)] and C(s,s′)

〈g,h〉 = [gshs
′
, gψ(1)hψ

′(1), · · · , gψ(n)hψ
′(n)] are

respectively DLog and Pedersen commitment vectors. The optional NIZKPK≡Com is

a vector of proofs that the entries of C(s)
〈g〉 and C(s,s′)

〈g,h〉 commit to the same values.
In the most basic form of DKG, nodes generate shares of a secret z chosen jointly

at random from Zp. Here, every node generates a random ri ∈ Zp and shares that
using the DKG protocol with DLog or Pedersen commitments as DKG(n, t, t̃ = t +
1, g, [h], ri, [r′i]) where the generator h and randomness r′i are only required if Pedersen
commitments are used. We represent the corresponding protocols as follows:

(
C(z)
〈g〉, zi

)
= RandomDLog(n, t, g) (5)

(
C(z,z′)
〈g,h〉 , [C(z)

〈g〉 ,NIZKPK≡Com], zi, z′i
)

= RandomPed(n, t, g, h). (6)

Distributed Addition over Zp. Let α, β ∈ Zp be two secrets shared among n nodes
using the DKG protocol. Let polynomials f(x), g(x) ∈ Zp[x] be the respectively asso-
ciated degree-t polynomials and let c ∈ Zp be a non-zero constant. Due to the linearity
of Shamir’s secret sharing [37], a node Pi with shares αi and βi can locally generate
shares of α+β and cα by computing αi+βi and cαi, where f(x)+g(x) and cf(x) are
the respective polynomials. f(x) + g(x) is random if either one of f(x) or g(x) is, and
cf(x) is random if f(x) is. Commitment entries for the resultant shares respectively are(
C(α+β)
〈g〉

)
i
=

(
C(α)
〈g〉

)
i

(
C(β)
〈g〉

)
i

and
(
C(cα)
〈g〉

)
i
=

(
C(α)
〈g〉

)c
i
.

Distributed Multiplication over Zp. Local distributed multiplication of two shared se-
crets α and β looks unlikely. We use a distributed multiplication protocol against a com-
putational adversary by Gennaro et al. [36, §4]. However, instead of their interactive
zero-knowledge proof, we utilize the pairing-based DDH problem solving technique
to verify the correctness of the product value shared by a node non-interactively. For
shares αi and βi with DLog commitments gαi and ĝβi , given a commitment gαiβi of

the shared product, other nodes can verify its correctness by checking if e(gαi , ĝβi) ?=
e(gαiβi , ĝ) provided the groups of g and ĝ are pairing-friendly. We observe that it is also
possible to perform this verification when one of the involved commitments is a Peder-
sen commitment. However, if both commitments are Pedersen commitments, then we
have to compute DLog commitments for one of the values and employ NIZKPK≡Com
to prove its correctness in addition to using the pairing-based verification. In such a
case, the choice between the latter technique and the non-interactive version of zero-
knowledge proof suggested by Gennaro et al. [36] depends upon implementation effi-
ciencies of the group operation and pairing computations.
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In our IBC schemes, we always use the multiplication protocol with at least one
DLog commitment. We denote the multiplication protocol involving two DLog com-
mitments as MulDLog and the one involving a combination of the two types of commit-
ments as MulPed. For the protocol correctness, along with recoverability to a unique
value (say s), protocol Mul also requires that s = αβ. For the protocol secrecy, along
with the secrecy of αβ, the protocol should not provide any additional information
about the individual values of α or β once αβ is reconstructed.(

C(αβ)
〈g∗〉 , (αβ)i

)
= MulDLog(n, t, g∗,

(
C(α)
〈g〉 , αi

)
,
(
C(β)
〈ĝ〉 , βi

)
) (7)

(
C(αβ,αβ′)
〈ĝ,ĥ〉 , (αβ)i, (αβ′)i

)
= MulPed(n, t, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
,
(
C(β,β′)
〈ĝ,ĥ〉 , βi, β

′
i

)
) (8)

For MulDLog, g∗ = g or ĝ. For MulPed, without loss of generality, we assume that β
is distributed with the Pedersen commitment. If instead α uses Pedersen commitment,
then the Pedersen commitment groups for (αβ) change to g and h instead of ĝ and ĥ.

Briefly, the protocol works as follows. Every honest node runs the DKG(n, t, 2t +
1, ĝ, [ĥ], αiβi, [αiβ′

i]) from Eq. 3 or 4. As discussed above, pairing-based DDH solving
is used to verify that the shared value is equal to the product of αi and βi.1 At the end,
instead of adding the subshares of the selected VSS instances, every node interpolates
them at index 0 to get the new share (αβ)i of αβ.

The above Mul protocols can be seamlessly extended for distributed computation of
any expression having binary products (BPs). For � shared secrets x1, · · · , x�, and their
DLog commitmentsC(x1)

〈g〉 , · · · , C(x�)
〈g〉 , shares of any binary productx′ =

∑m
i=1 kixaixbi

with known constants ki and indices ai, bi can be easily computed by extending the pro-
tocol in Eq. 7. We denote this generalization as follows.(

C(x′)
〈g∗〉, x

′
i

)
= MulBP(n, t, g∗, {(ki, ai, bi)},

(
C(x1)
〈g〉 , (x1)i

)
, · · · ,

(
C(x�)
〈g〉 , (x�)i

)
) (9)

Node Pj shares
∑

i ki(xai )j(xai)j . For a type 1 pairing, the correctness of the sharing

is verified by other nodes as e(g
∑

i ki(xai
)j(xbi

)j , g) ?=
∏
i e((g

(xai
)j )ki , g(xbi

)j ). For
type 2 and 3 pairings, NIZKPK≡DLog is used to provide DLog commitments to the
(xbi)j with generator ĝ, and then a pairing computation like the above is used. We use
MulBP in Eq. 9 during distributed private-key extraction in the BB1-IBE scheme in §3.5.

Sharing the Inverse of a Shared Secret. Given an (n, t)-distributed secret α, computing
shares of its inverse α−1 in distributed manner (without reconstructing α) can be done
trivially but inefficiently using a distributed computation ofαp−1; this involvesO(log p)
distributed multiplications. However, using a technique by Bar-Ilan and Beaver [33],
this can be done using just one Random and one Mul protocol. This protocol involves
interpolation of the product of the secret α with a distributed random element z. If z
is created using DLog commitments and is not uniformly random, the product αz may
leak some information about α. We avoid this by using Pedersen commitments while
generating z. For a generator g∗, we represent this protocol as follows:(

C(α−1)
〈g∗〉 , (α−1)i

)
= Inverse(n, t, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
) (10)

1 For type 3 pairings, a careful selection of commitment generators is required to make the
pairing-based verification possible.



444 A. Kate and I. Goldberg

The protocol secrecy is the same as that of DKG except it is defined in the terms
of α−1 instead of α; for the correctness property, along with recoverability to a
unique value s, this protocol additionally mandates that s = α−1. For a dis-

tributed secret
(
C(α)
〈g〉 , αi

)
, protocol Inverse works as follows: Every node Pi runs(

C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
= RandomPed(n, t, ĝ, ĥ) and computes shares of (w,w′) = (αz, αz′)

as
(
C(w,w′)
〈ĝ,ĥ〉 , wi, w

′
i

)
= MulPed(n, t, ĝ, ĥ,

(
C(α)
〈g〉 , αi

)
,
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
). It then sends

(wi, w′
i) to each node and interpolates w using the correct received shares. If w = 0,

repeats the above two steps, else locally computes (α−1)i = w−1zi. Finally, it com-

putes the commitment C(α−1)
〈g∗〉 using w−1, C(z,z′)

〈ĝ,ĥ〉 , and if required, any of the NIZKPK

techniques. A modified form of this protocol is used in the distributed PKG for SK-IBE
in §3.4.

3 Distributed PKG for IBE

We present distributed PKG setup and private key extraction protocols for three IBE
schemes: BF-IBE [3], SK-IBE [11], and modified BB1-IBE [9]. Each of these schemes
represents a distinct important category of an IBE classification defined by Boyen [38].
They respectively belong to full-domain-hash IBE schemes, exponent-inversion IBE
schemes, and commutative-blinding IBE schemes. The distributed PKG architectures
that we develop for each of the three schemes apply to every scheme in their respective
categories. Our above choice of IBE schemes is influenced by a recent identity-based
cryptography standard (IBCS) [19] and also a comparative study by Boyen [9], which
finds the above three schemes to be the most practical IBE schemes in their respective
categories. In his classification, Boyen [38] also includes another category for quadratic-
residuosity-based IBE schemes; however, none of the known schemes in this category
are practical enough to consider here.

The role of a PKG in an IBE scheme ends with a client’s private-key extraction and
the distributed form of the PKG does not affect the encryption and decryption steps of
IBE. Consequently, we define only the distributed PKG setup and private-key extraction
steps of the three IBE schemes under consideration. We recall the original encryption
and decryption steps in the extended version of the paper [1].

3.1 Bootstrapping Procedure

Each scheme under consideration here requires the following three bootstrapping steps.

1. Determine the node group size n and the security threshold t such that n ≥ 3t+ 1
(the asynchronous case) or n ≥ 2t+ 1 (the synchronous case).

2. Choose the pairing type to be used and compute groups G, Ĝ, and GT of prime
order p such that there exists a pairing e of the decided type with e : G× Ĝ → GT .
The security parameter κ determines the group order p.

3. Choose two generators g ∈ G and ĝ ∈ Ĝ required to generate public parameters as
well as the commitments. With a type 1 or 2 pairing, set g = φ(ĝ).
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Any untrusted entity can perform these offline tasks. Honest DKG nodes can verify the
correctness of the tuple (n, t) and confirm the group choices G, Ĝ, and GT as the first
step of their distributed PKG setup. If unsatisfied, they may decline to proceed.

3.2 Formal Security Model

An IBE scheme with an (n, t)-distributed PKG consists of the following components:

– A distributed PKG setup protocol for node Pi that takes the above bootstrapped
parameters n, t and G as input and outputs a share si of a master secret s and a
public-key vector Kpub of a master public key and n public-key shares.

– A distributed private key-extraction protocol for node Pi that takes a client identity
ID, the public key vector Kpub and the master-secret share si as input and outputs
a verifiable private-key share dIDi. The client computes the private key dID after
verifying the received shares dIDi.

– An encryption algorithm that takes a receiver identity ID, the master public key
and a plaintext message M as input and outputs a ciphertext C.

– A decryption algorithm for client with identity ID that takes a ciphertextC and the
private key dID as input and outputs a plaintext M .

Note that the above distributed PKG setup protocol does not require any dealer and
that we mandate verifiability for the private-key shares rather than obtaining robustness
using error-correcting techniques. During private-key extractions, we insist on minimal
interaction between clients and PKG nodes—transferring identity credentials from the
client at the start and private-key shares from the nodes at the end.

To define security against an IND-ID-CCA attack, we consider the following game
that a challenger plays against a polynomially bounded t-limited Byzantine adversary.

Setup: The adversary chooses to corrupt a fixed set of t nodes and the challenger sim-
ulates the remaining n− t nodes to run a distributed PKG setup protocol. At the end of
the protocol execution, the adversary receives t shares of a shared master secret for its t
nodes and a public key vector Kpub. The challenger knows the remaining n− t shares
and can derive the master secret as n− t ≥ t+ 1 in any communication setting.

Phase 1: The adversary adaptively issues private-key extraction and decryption queries
to the challenger. For a private-key extraction query 〈ID〉, the challenger simulates the
distributed key extraction protocol for its n − t nodes and sends verifiable private-key
shares for its n − t nodes. For a decryption query 〈ID, C〉, the challenger decrypts C
by generating the private key dID or using the master secret.

Challenger: The adversary chooses two equal-length plaintexts M0 and M1, and a
challenge identity IDch such that IDch does not appear in any private-key extraction
query in Phase 1. The challenger chooses b ∈R {0, 1} and encrypts Mb for IDch and
Kpub, and gives the ciphertext Cch to the adversary.

Phase 2: The adversary adaptively issues more private-key extraction and decryption
queries to the challenger except for key extraction query for 〈IDch〉 and decryption
queries for 〈IDch, Cch〉.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.
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Security against IND-ID-CCA attacks means that, for any polynomially bounded
adversary, b′ = b with probability negligibly greater than 1/2.

3.3 Boneh and Franklin’s BF-IBE

BF-IBE [3] belongs to the full-domain-hash IBE family. In a BF-IBE setup, a PKG
generates a master key s ∈ Zp and a public key gs ∈ G, and derives private keys for
clients using their identities and s. A client with identity ID receives the private key
dID = (H1(ID))s = hsID ∈ Ĝ, where H1 : {0, 1}∗ → Ĝ∗ is a full-domain crypto-
graphic hash function. (Ĝ∗ denotes the set of all elements in Ĝ except the identity.)

Distributed PKG Setup. This involves generation of the system master key and the sys-
tem public-key tuple in the (n, t)-distributed form among n nodes. Each node Pi partic-
ipates in a common DKG over Zp to generate its share si ∈ Zp of the distributed master

key s. The system public-key tuple is of the form C(s)
〈g〉 = [gs, gs1 , · · · , gsn ]. We obtain

this using our RandomDLog protocol from Eq. 5 as
(
C(s)
〈g〉, si

)
= RandomDLog(n, t, g).

Private-key Extraction. As a client needs t+ 1 correct shares, it is sufficient for her to
contact any 2t+ 1 nodes (say set Q). The private-key extraction works as follows.

1. Once a client with identity ID contacts every node in Q, every honest node Pi ∈ Q
authenticates the client’s identity and returns a private-key share hsi

ID ∈ Ĝ over a
secure and authenticated channel.

2. Upon receiving t + 1 valid shares, the client can construct her private key dID as
dID =

∏
Pi∈Q(hsi

ID)λi ∈ Ĝ, where the Lagrange coefficient λi =
∏
Pj∈Q\{i}

j
j−i .

The client can verify the correctness of the computed private key dID by check-

ing e(g, dID)
?= e(gs, hID). If unsuccessful, she can verify the correctness of each

received hsi
ID by checking if e(g, hsi

ID)
?= e(gsi , hID). An equality proves the cor-

rectness of the share, while an inequality indicates misbehaviour by the node Pi
and its consequential removal from Q.

In asymmetric pairings, elements of G generally have a shorter representation than those
of Ĝ. Therefore, we put the more frequently accessed system public-key shares in G,
while the occasionally transferred client private-key shares belong to Ĝ. This also leads
to a reduction in the ciphertext size. However, for type 2 pairings, an efficient hash-to-
Ĝ is not available for the group Ĝ [20]; in that case we compute the system public key
shares in Ĝ and use the more feasible group G for the private key shares.

Proof of Security. Using the encryption and decryption steps of the FullIdent version
of BF-IBE [3, §4.2] along with the above distributed setup and key extraction protocols,
we prove the IND-ID-CCA security of BF-IBE with the (n, t)-distributed PKG ((n, t)-
FullIdent) based on the BDH assumption. Hereafter, qE , qD and qHi denote the number
of extraction, decryption and random oracle Hi queries respectively.

Theorem 1. Let H1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA
adversary that has advantage ε1(κ) in running time t1(κ) against (n, t)-FullIdent
making at most qE , qD, qH1 , qH2 , qH3 , and qH4 queries. Then, there exists an
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algorithm B that solves the BDH problem in G with advantage roughly equal to
ε1(κ)/(qH1qH2(qH3 + qH4)) and running time O(t1(κ), qE , qD, qH1 , qH2 , qH3 , qH4).

For their proof, Boneh and Franklin define two additional public key encryption
schemes: BFBasicPub [3, Sec. 4.1], and its IND-CCA secure version BFBasicPubhy

[3, Sec. 4.2] and prove the security of FullIdent in the following proof sequence:
FullIdent → BFBasicPubhy → BFBasicPub → BDH. We use distributed versions
of these encryption schemes: (n, t)-BFBasicPubhy and (n, t)-BFBasicPub respec-
tively, and prove the proof sequence (n, t)-FullIdent → (n, t)-BFBasicPubhy →
(n, t)-BFBasicPub → BDH. For the complete proof, refer to the extended version
of the paper. [1]

3.4 Sakai and Kasahara’s SK-IBE

SK-IBE [11] belongs to the exponent-inversion IBE family. Here, the PKG generates
a master key s ∈ Zp and a public key gs ∈ G just as in BF-IBE. However, the key-
extraction differs significantly. Here, a client with identity ID receives the private key

dID = ĝ
1

s+H′
1(ID) ∈ Ĝ, where H ′

1 : {0, 1}∗ → Zp.

Distributed PKG Setup. The distributed PKG setup remains the exactly same as
that of BF-IBE, where si ∈ Zp is the master-key share for node Pi and C(s)

〈g〉 =
[gs, gs1 , · · · , gsn ] is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightforward
as that for BF-IBE. We modify the Inverse protocol described in §2.3; specifically, here a
private-key extracting client receiveswi from the node in step 3 and instead of nodes, the
client performs the interpolation. In step 4, instead of publishing, nodes forward ĝzi and
the associated NIZKPK≡Com directly to the client, which computes ĝz and then dID =
(ĝz)w

−1
. The reason behind this is to avoid possible key escrow if the node computes

both ĝz and w. Further, the nodes precompute another generator ĥ ∈ Ĝ for Pedersen

commitments using
(
C(r)
〈ĝ〉, ri

)
= RandomDLog(n, t, ĝ), and set ĥ =

(
C(r)
〈ĝ〉

)
0

= ĝr.

1. Once a client with identity ID contacts all n nodes the system, every node Pi au-

thenticates the client’s identity, runs
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
= RandomPed(n, t, ĝ, ĥ) and

computes sIDi = si +H ′
1(ID) and for 0 ≤ j ≤ n,

(
C(sID)
〈g〉

)
j

=
(
C(s)
〈g〉

)
j
gH

′
1(ID) =

gsj+H
′
1(ID). RandomPed makes sure that z is uniformly random.

2. Pi performs
(
C(w,w′)
〈ĝ,ĥ〉 , wi, w

′
i

)
= MulPed(n, t, ĝ, ĥ,

(
C(sID)
〈g〉 , sIDi

)
,
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
),

where w = sIDz = (s + H ′
1(ID))z and w′ = (s + H ′

1(ID))z′ and sends(
C(w,w′)
〈ĝ,ĥ〉 , wi

)
along with NIZKPK≡Com(wi, w′

i,
(
C(w)
〈ĝ〉

)
i
,

(
C(w,w′)
〈ĝ,ĥ〉

)
i
) to the

client, which upon receiving t + 1 verifiably correct shares (wi) reconstructs w
using interpolation. Ifw �= 0, then it computesw−1 or else starts again from step 1.

3. Node Pi sends
(
C(z)
〈ĝ〉

)
i

= ĝzi and C(z,z′)
〈ĝ,ĥ〉 along with

NIZKPK≡Com(zi, z′i,
(
C(z)
〈ĝ〉

)
i
,
(
C(z,z′)
〈ĝ,ĥ〉

)
i
) to the client.



448 A. Kate and I. Goldberg

4. The client verifies
(
C(z)
〈ĝ〉

)
i

using the received NIZKPK≡Com, interpolates t + 1

valid ĝzi to compute ĝz and derives her private key (ĝz)w
−1

= ĝ
1

(s+H(ID)) .

This protocol can be used without any modification with any type of pairing. Further,
online execution of the RandomPed computation can be eliminated using batch pre-

computation of distributed random elements
(
C(z,z′)
〈ĝ,ĥ〉 , zi, z

′
i

)
.

Proof of Security. The security of SK-IBE with a distributed PKG ((n, t)-SK-IBE) is
based on the BDHI assumption.

Theorem 2. Let H ′
1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA

adversary that has advantage ε1(κ) in running time t1(κ) against (n, t)-SK-IBE making
at most qE , qD, qH′

1
, qH2 , qH3 , and qH4 queries. Then, there exists an algorithm B that

solves the BDHI problem in G with advantage roughly equal to ε1(κ)/(qH′
1
qH2(qH3 +

qH4)) and running time O(t1(κ), qE , qD, qH′
1
, qH2 , qH3 , qH4).

Chen and Cheng [39] prove the security of the original SK-IBE protocol in a proof se-
quence: SK-IBE → SKBasicPubhy → SKBasicPub → BDHI, where SKBasicPub
and SKBasicPubhy [39, §3.2] are public key encryption schemes based on SK-IBE.
We prove Theorem 2 by showing (n, t)-SK-IBE → SKBasicPubhy . For the complete
proof, refer to the extended version of the paper [1].

3.5 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Boneh and Boyen [32]
proposed the original scheme with a security reduction to the decisional BDH assump-
tion [40] in the standard model against selective-identity attacks. However, with a prac-
tical requirement of IND-ID-CCA security, in the recent IBCS standard [19], Boyen
and Martin proposed a modified version, which is IND-ID-CCA secure in the random
oracle model under the BDH assumption. In [9], Boyen rightly claims that for practical
applications, it would be preferable to rely on the random-oracle assumption rather than
using a less efficient IBE scheme with a stronger security assumption or a weaker attack
model. We use the modified BB1-IBE scheme as described in [9] and [19].

In the BB1-IBE setup, the PKG generates a master-key triplet (α, β, γ) ∈ Z3
p and an

associated public key tuple (gα, gγ , e(g, ĝ)αβ). A client with identity ID receives the
private key tuple dID = (ĝαβ+(αH′

1(ID)+γ)r, ĝr) ∈ Ĝ2.

Distributed PKG Setup. In [9], Boyen does not include the parameters ĝ and ĝβ

from the original BB1 scheme [32] in his public key, as they are not required during
key extraction, encryption or decryption (they are not omitted for security reasons).
In the distributed setting, we in fact need those parameters to be public for efficiency
reasons; a verifiable distributed computation of e(g, ĝ)αβ becomes inefficient other-
wise. To avoid key escrow of clients’ private-key components (ĝr), we also need ĥ

and C(β)

〈ĥ〉 ; otherwise, parts of clients’ private keys would appear in public commitment

vectors. As in SK-IBE in §3.4, this extra generator ĥ ∈ Ĝ is precomputed using the
RandomDLog protocol. Distributed PKG setup of BB1 involves distributed generation
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of the master-key tuple (α, β, γ). Distributed PKG node Pi achieves this using the fol-

lowing three RandomDLog protocol invocations:
(
C(α)
〈g〉 , αi

)
= RandomDLog(n, t, g),(

C(β)
〈ĝ〉 , βi

)
= RandomDLog(n, t, ĝ), and

(
C(γ)
〈g〉 , γi

)
= RandomDLog(n, t, g).

Here, (αi, βi, γi) is the tuple of master-key shares for node Pi. We also need C(β)

〈ĥ〉 ;

each node Pi provides this by publishing
(
C(β)

〈ĥ〉

)
i

= ĥβi and the NIZKPK≡DLog

(βi, ĝβi, ĥβi). The tuple
(
C(α)
〈g〉 , e(g, ĝ)

αβ , C(γ)
〈g〉 , C(β)

〈ĥ〉

)
forms the system public key,

where e(g, ĝ)αβ can computed from the public commitment entries. The vector C(β)
〈ĝ〉 ,

although available publicly, is not required for any further computation.

Private-key Extraction. The most obvious way to compute a BB1 private key seems
to be for Pi to compute αiβi + (αiH ′

1(ID) + γi)ri and provide the corresponding
ĝαiβi+(αiH

′
1(ID)+γi)ri , ĝri to the client, who now needs 2t+1 valid shares to obtain her

private key. However,αiβi+(αiH ′
1(ID)+γi)ri here is not a share of a random degree-

2t polynomial. The possible availability of ĝri to the adversary creates a suspicion about
secrecy of the master-key share with this method. For private-key extraction in BB1-
IBE with a distributed PKG, we instead use the MulBP protocol in which the client is
provided with ĝwi , where wi = (αβ + (αH ′

1(ID) + γ)r)i is a share of random degree
t polynomial. The protocol works as follows.

1. Once a client with identity ID contacts all n nodes the system, every node Pi au-

thenticates the client’s identity and runs
(
C(r,r′)
〈ĥ,ĝ〉 , [C

(r)

〈ĥ〉,NIZKPK≡Com], ri, ri
)

=

RandomPed(n, t, f, ĥ, ĝ). RandomPed makes sure that r is uniformly random.
2. Pi computes its share wi of w = αβ + (αH ′

1(ID) + γ)r using MulBP in Eq. 9.
(
C(w)
〈g∗〉, wi

)
= MulBP(n, t, f, g∗, desc,

(
C(α)
〈g〉 , αi

)
,
(
C(β)

〈ĥ〉 , βi

)
,
(
C(γ)
〈g〉 , γi

)
,
(
C(r)

〈ĥ〉, ri

)
).

Here, desc = {(1, 1, 2), (H ′
1(ID), 1, 4), (1, 3, 4)} is the description of the required

binary product under the ordering (α, β, γ, r) of secrets. To justify our choices
of commitment generators, we present the pairing-based verification in protocol

MulBP: e(gαiβi+(αiH
′
1(ID)+γi)ri , ĥ) ?= e(gαi , ĥβi)e((gαi)H

′
1(ID)gγi , ĥri). For type

2 and 3 pairings, g∗ = g, as there is no efficient isomorphism from G to Ĝ. For
type 1 pairings, we use g∗ = ĥ = φ−1(h). Otherwise, the resultant commitments
for w (which are public) will contain the private-key part gαβ+(αH′

1(ID)+γ)r.
3. Once the MulBP protocol has succeeded, Node Pi generates ĝwi and ĝri and sends

those to the client over a secure and authenticated channel.
4. The client generates her private key (ĝαβ+(αH′

1(ID)+γ)r, ĝr) by interpolating the
valid received shares. For type 1 and type 2 pairings, the client can use the pairing-
based DDH solving to check the validity of the shares. However, for type 3 pairings,
without an efficient mapping from Ĝ to G, pairing-based DDH solving can only be
employed to verify ĝwi . As a verification of ĝri , node Pi includes a NIZKPK≡DLog
(ri, ĥri , ĝri) along with ĝwi and ĝri .

As in SK-IBE in §3.4, online execution of the RandomDLog computation can be elimi-

nated using batch precomputation of distributed random elements
(
C(r)

〈ĥ〉, ri
)

.
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Proof of Security. Along with the above distributed setup and private-key extraction
protocols, we prove IND-ID-CCA security of BB1-IBE with the (n, t)-distributed PKG
((n, t)-BB1-IBE) based on the BDH assumption. To the best of our knowledge, an IND-
ID-CCA security proof for the modified BB1-IBE scheme has not been published yet.

Theorem 3. Let H ′
1, H2, H3 and H ′

4 be random oracles. Let A be an IND-ID-CCA
adversary that has advantage ε(κ) in running time t(κ) against (n, t)-BB1-IBE making
at most qE , qD, qH′

1
, qH2 , qH′

3
, and qH4 queries. Then, there exists an algorithm B

that solves the BDH problem in G with advantage roughly equal to ε(κ)/(qH′
1
qH′

3
) and

running time O(t(κ), qE , qD, qH′
1
, qH2 , qH′

3
, qH4).

For the proof, refer to the extended version of the paper [1].
Using a more expensive DKG protocol with uniformly random output, all of our

proofs would become relatively simpler. However, note that our use of DKG without
uniformly random output does not affect the security reduction factor in any proof.
This is something not achieved for the known previous protocols with non-uniform
DKG such as threshold Schorr signatures [28]. Further, we do not discuss the liveness
and agreement properties for our asynchronous protocols as liveness and agreement of
all the distributed primitives provides liveness and agreement for the distributed PKG
setup and distributed key extraction protocols. Finally, for simplicity of the discussion,
it would have been better to combine three proofs. However, that looks difficult, if not
impossible, as the distributed computation tools used in these distributed PKGs and the
original IBE security proofs vary a lot from a scheme to scheme.

Finally, observing the importance of proactiveness and a capability to handle group
dynamics in any practical system, we also discuss the proactive security and group mod-
ification primitives for our distributed PKGs in the extended version of the paper [1].

4 Comparing Distributed PKGs

In this section, we discuss the performance of the setup and key extraction protocols
of the above three distributed PKGs. For a detailed comparison of the encryption and
decryption steps of BF-IBE, SK-IBE and BB1-IBE, refer to [9]. The general recommen-
dations from this survey are to avoid SK-IBE and other exponent-inversion IBEs due to
their reliance on the strong BDHI assumption, and that BB1-IBE and BF-IBE both are
good, but BB1-IBE can be a better choice due to BF-IBE’s less efficient encryption.

Table 1 provides a detailed operation count and key size comparison of threedistributed
PKGs. We count DKG instances, pairings, NIZKPKs, interpolations and public and pri-
vate key sizes. We leave aside the comparatively small exponentiations and other group
operations. As mentioned in §3.5, for BB1-IBE, with pairings of type 1 and 2, there is a
choice that can be made between usingnNIZKPKs and 2n pairing computations. The ta-
ble shows the NIZKPK choice (the only option for type 3 pairings), and footnote b shows
where NIZKPKs can be traded off for pairings. An efficient algorithm for hash-to-Ĝ is
not available for type 2 pairing curves and we interchange the groups used for the public
key and client private-key shares. Footnote c indicates how that affects the key sizes.

In Table 1, we observe that the distributed PKG setup and the distributed private-
key extraction protocols for BF-IBE are significantly more efficient than those for
SK-IBE and BB1-IBE. Importantly, for BF-IBE, distributed PKG nodes can extract
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Table 1. Operation count and key sizes for distributed PKG setups and distributed private-key
extractions (per key)

BF-IBE SK-IBE BB1-IBE
Setup Extraction Setup Extraction Setup Extraction

Operation Count
Generator h or ĥ X � �
DKGa (precomputed) - 0 - 1P - 1P

DKG (online) 1D 0 1D 1P 3D 1D

Parings @PKG Node 0 0 0 2n 1b 2n

Parings @Client - 2(2t + 2) - 0 - 2nb

NIZKPK 0 0 0 2n nb 2nb

Interpolations 0 1 0 2 1 2
Key Sizes

PKG Public Key (n + 2)Gc (n + 3)G (2n + 3)G, (n + 2)Ĝ, (1)GT

Private-key Shares (2t + 1)Ĝc (3n)Zp, (3n + 1)Ĝ (2n)Zp
b, (2n)Ĝ

a For DKG, D indicates use of DLog commitments, while P indicates Pedersen commitments.
b For type 1 and 2 pairings, 2n extra pairings replace n NIZKPKs. Further, the 2n Zp elements

are omitted from the private-key shares.
c For type 2 parings, the groups used for the PKG public key and the private-key shares are

interchanged.

a key for a client without interacting with each other, which is not possible in the other
two schemes; both BB1-IBE and SK-IBE require at least one DKG instance for every
private-key extraction; the second required instance can be batch precomputed. There-
fore, for IBE applications in the random oracle model, we suggest the use of the BF-IBE
scheme, except in situations where private-key extractions are rare and efficiency of the
encryption step is critical to the system. For such applications, we suggest BB1-IBE as
the small efficiency gains in the distributed PKG setup and extraction protocols of SK-
IBE do not well compensate for the strong security assumption required. BB1-IBE is
also more suitable for type 2 pairings, where an efficient map-to-group hash functionH1

is not available. Further, BB1-IBE can also be proved secure in the standard model with
selective-identity attacks. For applications demanding security in the standard model,
our distributed PKG for BB1-IBE also provides a solution to the key escrow and single
point of failure problems, using pairings of type 1 or 2.

5 Concluding Remarks
We have designed and compared distributed PKG setup and private key extraction pro-
tocols for BF-IBE, SK-IBE, and BB1-IBE. We observed that the distributed PKG pro-
tocol for BF-IBE is the most efficient among all and we suggest its use when the system
can support its relatively costly encryption step. For systems requiring a faster encryp-
tion, we suggest the use of BB1-IBE instead. However, during every distributed private
key extraction, it requires a DKG and consequently, interaction among PKG nodes.
That being said, during private-key extractions, we successfully avoid any interaction
between clients and PKG nodes except the necessary identity at the start and key share
transfers at the end. Finally, each of the above schemes represents a separate IBE frame-
work and our designs can be applied to other schemes in those frameworks as well.
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