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Abstract. Kleptography deals with employing and generating cryp-
tographically secure covert channels as threats to unscrutinized (e.g.,
tamper-proof) cryptosystems and their applications. A prototypical ex-
ample is a cryptosystem (or a protocol message employing a cryptosys-
tem) where a cryptogram field (e.g., a public key, an encrypted message,
a signature value) hosts an “inner cryptographic field” that is invisible
(in the sense of indistinguishability) to all but the attacker, yet it is
a meaningful ciphertext to the attacker (who is the designer/producer
of the cryptosystem). The technical goal of Kleptography has been to
identify “inner fields” as a way to embed cryptographic values in small
bandwidth channel/sub-cryptogram inside a hosting system (RSA, DH
based systems, etc.)

All asymmetric backdoors to date, that seamlessly embed an inner
subliminal crypto field inside a hosting cryptographic value needed ran-
dom oracle assumptions. This was used to make the inner value look
“almost uniformly random” as part of its hosting random field. It was
open whether the need for a random oracle is inherent, or, positively put:
is there an algebraic cryptographic ciphertext that is embeddable inside
another algebraic cryptographic field “as is”? In this work we achieve this
goal for small bandwidth fields. To this end we present a new information
hiding primitive that we call a “covert key exchange” that permits prov-
ably secure covert communications. Our results surpass previous work
since: (1) the bandwidth that the subliminal channel needs is extremely
small (bit length of a single compressed elliptic curve point), (2) the er-
ror probability of the exchange is negligible, and (3) our results are in
the standard model. We use this protocol to implement the first klepto-
graphic (i.e., asymmetric) backdoor in the standard model in RSA key
generation and point at other applications. Key properties of the covert
key exchange are that (1) both Alice’s message to Bob and their shared
secret appear to all efficient algorithms as uniformly random strings from
{0, 1}k+1 and {0, 1}M , respectively (this is needed for the embedding),
and (2) the fastest adversaries of the exchange run in time exponential
in k, based on current knowledge (they have to solve DL over e-curves).
We achieve this in the standard model based on the ECDDH assumption
over a twisted pair of e-curves.
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1 Introduction

Advances in information hiding reveal new threats by parties (e.g., hardware
manufacturers, system designers) and uncover trust-related issues in systems. In-
formation hiding in cryptographic algorithms/ protocols, fundamentally requires
embedding one cryptographic primitive inside another. Often, kleptographic de-
sign is perhaps more demanding than simple cryptosystems (one has usually
to prove security of two cryptosystems: one inside the other). In particular, it
requires a random element in one cryptosystem to host, as a random substring,
an element from another cryptographic primitive, and do so in a hidden (indis-
tinguishable) fashion.

For example, an kleptographic backdoor in RSA key generation has been
shown that works for a wide-range of RSA keys (e.g., 768 bits and above) with
a complete proof given in [26]. However, the result relies on the random oracle
model and ECDDH, thus it does not tell us about an algebraic embedding of
a backdoor directly inside an RSA modulus, and is not a “direct relationship”
between two algebraic cryptographic distributions. Another example is a highly
space-efficient public key stegosystem [17]. But, it relies on the less conventional
“Oracle Diffie-Hellman” assumption, which again does not imply feasibility based
on a more general assumption such as DDH.

A new approach is needed to advance the state-of-the-art in areas like these,
so that we may understand better the direct embedability relationships between
algebraic primitives and natural cryptographic assumptions about them (so we
get proofs that are not in an idealized world).

Here, we show a new method for the task of “hidden embedding”. In our
key exchange, the approach balances the entropy in Alice’s message to Bob
against that of their resulting shared secret, and it permits Alice’s message to
be subliminally embedded (in a provably indistinguishable sense) and at the
same time their shared secret is ready for direct use (no entropy extraction
needed). We call the approach “entropy balancing.” We further say that such
an exchange is covert since Alice’s trapdoor value looks like a random bit string.
This problem is strictly more demanding than simply requiring that one value
in the exchange, e.g. the shared secret, appear as a uniformly random bit string.

To make things even more difficult, a covert key exchange is often conducted
through a subliminal channel having narrow bandwidth (e.g., in kleptography).
First, this implies that if the channel is inside a hosting distribution, one can first
determine a random choice of its wishes and can nevertheless sample the hosting
distribution (which is a prime property of subliminal channels). Second, the small
size necessitates a space-efficient key exchange (e.g., using elliptic curve crypto
with point compression). To put it another way, whereas in many cryptographic
applications space-efficiency is merely a convenience or an “added benefit”, in
information hiding space-efficiency is often a mandatory design requirement (this
is the case in the asymmetric backdoors that we present).

Our complete covert key exchange solution relies on the traditional ECDDH
problem in the following sense. We use a twisted pair of elliptic curves that
exhibit the following distinguishing characteristic. In one curve the Weierstrass
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coefficient b is a quadratic residue whereas in the other curve this coefficient is
a quadratic non-residue. Both curves in the twist have prime order and half of
the upper order bits of p are binary 1s. As we show, an adversary that breaks
our scheme is able to solve ECDDH on at least one of these two types of curves.

We employ the notion of entropy balancing to provide the following contri-
butions: (1) space-efficient covert key exchange as our building block. We prove
the security of the exchange in the standard model using only the traditional
ECDDH assumption (as opposed to a newer assumption such as oracle DH).
Note that Alice’s message size is optimized provided that ECDDH is expo-
nentially hard on both curves in the twist. (2) Kleptographic attack on RSA
key generation. This was the first and most researched kleptographic problem,
and we give the first complete solution in the standard model. (3) Public key
stegosystem secure against chosen plaintext attacks based on ECDDH. (4) We
also give the first asymmetric backdoor in SSL in the standard model such that:
(a) the backdoor is in effect in each session with overwhelming probability, and
(b) there is no state-information for the backdoor stored across sessions (i.e., no
key-exposure between sessions).

Organization: In Section 2 we present related work and background material
on twisted elliptic curves. The definition of a covert key exchange is presented in
Section 3 and a construction for it is given in Section 4. In Section 5 we present
our applications. ECDDH is reviewed in Appendix A. The Twisted Decision
Diffie-Hellman (TDDH) problem is reviewed in Appendix B. We prove that the
key exchange is complete (i.e., terminates in agreement) in Appendix C. The
security proofs for the key exchange are given in Appendix D.

2 Background

The background material spans results on key exchange protocols, and asym-
metric backdoors in RSA key generation. We review the works in these areas
that closely relate to the applications that we present.
Entropy extraction in key exchanges: Previous work has solved the problem of
conducting a key exchange in which the shared secret is a uniformly random
binary string. The leftover hash lemma [12] was used to derive symmetric keys
properly from a Diffie-Hellman shared secret [7]. In other words, the symmetric
key bits are drawn independently using the uniform distribution. An algebraic
approach based on a twisted pair of curves was used to derive a shared secret
that is a uniformly random binary string [2]. Related work is [9] that presents
a secure hashed Diffie-Hellman transform over a non-DDH group G (a group
in which DDH does not hold). Gennaro et al showed that for the hashed DH
transform to be secure it is sufficient that G contain a sufficiently large Decision
Diffie-Hellman subgroup. Note that unlike the above cases, entropy balancing
has the stronger requirement that one of the key exchange messages that is sent
in the clear must also be a random binary string. This notion applies to various
information hiding applications and we concretely implement this notion in the
form of a covert key exchange protocol.
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Asymmetric Backdoors in SSL: An asymmetric backdoor in the Secure Sock-
ets Layer (SSL)1 was shown in [10]. The constructions are heuristic in nature
and there are no formal security arguments made. Recent work on the problem
also includes [11] that presents general attack ideas. Again, no formal security
arguments are made in these works.

An asymmetric backdoor in SSL was presented in [27] that employs Kaliski’s
elliptic curve pseudorandom bit generator [14]. The construction is based on
a key exchange and is proven secure under ECDDH in the standard model.
However, key agreement fails with probability very close to 1/2 and this causes
the backdoor in SSL to fail to take effect in each session with probability very
close to 1/2. However, an extension to the backdoor attack is shown that retains
state information across SSL connections (chaining), and the expectation is that
the backdoor will remain in effect after the first few SSL sessions. The two
problems with the approach are that: (1) completeness of the backdoor is not
assured in the first few exchanges, and (2) there is key-exposure in the state
information that is stored in the backdoor. We solve these problems.

Asymmetric backdoors in RSA key generation: The notion of an asymmetric
(kleptographic) backdoor was introduced in [24,25] along with the first asym-
metric backdoor in RSA key generation. The backdoor employs a well-known
subliminal channel [21,22] in composites [16,5] to leak the private key. An asym-
metric backdoor can only be used by the designer that plants it, even when the
full specification of the backdoor is public (confidentiality property). It is ap-
plicable in black-box implementations in which the implementation is private.
This is relevant, for example, in obfuscated software or tamper-proof hardware
or open source code that no one scrutinizes!

An asymmetric backdoor attack is known as a secretly embedded trapdoor
with universal protection (SETUP). The embedded trapdoor is the public key of
the (malicious) designer. The attack revolves around a reference key generator
that has no backdoor (it is a typical public specification of the key generator).
An RSA key generation SETUP must satisfy the indistinguishability property.
This holds when the ensemble corresponding to the key pair that is output by
the backdoor key generator is polytime indistinguishable from the ensemble cor-
responding to the key pair that is output by the reference key generator. So,
RSA key pairs with the backdoor are indistinguishable from key pairs without
the backdoor. A secure SETUP satisfies both the confidentiality and indistin-
guishability properties.

Crépeau and Slakmon presented backdoor designs for RSA key generation in
[4]. These designs emphasized speed and were symmetric backdoors as opposed to
being asymmetric since the constructions assume that a secret key remains hidden
even after reverse-engineering (i.e., when the backdoor is layed bare). The paper
presents an approach that is intended to work even when Lenstra’s composite gen-
eration method is used [16]. The authors made an important observation in RSA
key generation backdoor design, namely, that by using Coppersmith’s algorithm

1 Freier, Karlton, and Kocher, Internet Draft “The SSL Protocol Version 3.0,” Network
Working Group, Nov. 18, 1996.
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[3], the amount of information that needs to be leaked is small. In more detail, it
is sufficient for the backdoor key generator to leak the upper half of the bits of the
RSA prime p instead of (nearly) the whole prime. We employ this observation.

A recent asymmetric backdoor in RSA key generation was proposed that uti-
lizes a twisted pair of binary curves [26]. The backdoor key generator was shown
to be secure in the random oracle model under the ECDDH assumption. The
backdoor we present, on the other hand, does not use the random oracle model.
Note that from a basic research point of view, asymmetric backdoor designs are
not merely a warning to users, but represent also properties of cryptographic
mechanisms, thus our result establishes a purely algebraic relationship between
the two cryptographic distributions.

We point out that straightforward Diffie-Hellman (DH) [6] using twisted
curves does not solve our problem of implementing a space-efficient covert key
exchange. The space-efficiency of ECDH is not the problem, since points can be
compressed. However, the problem is making Alice’s message to Bob and their
shared secret appear as random binary strings. To solve this, the curves could
be, e.g. binary or over IFp with p being a large prime with the upper half of the
bits of p being 1. In both cases, a properly chosen twist has the property that
a random encoded (compressed) point on it looks like a random binary string.
In such a solution, Alice chooses a curve in the twist randomly2 and uses it for
a DH key exchange. The problem is that Alice’s trapdoor value to Bob will be
on one of the two curves and their shared secret will be on the same curve. This
correlation causes the solution to fail to solve the problem.

Indeed this key exchange problem was addressed in [27]. As noted, this idea
causes Bob to fail to learn the shared secret with probability very close to 1/2.
The partial covert key exchange solution in [27] is therefore ill-suited for a back-
door in RSA key generation since the backdoor would only take effect with
probability very close to 1/2 when a key pair is generated. This is a serious
problem since RSA keys are typically generated infrequently (sometimes once
every couple of years). It also appears undesirable as a basis for an elliptic curve
public key stegosystem since it is not clear how to preserve space-efficiency given
that the exchange is prone to fail. In this paper we solve these issues.

2.1 Notation and Conventions

Elliptic Curves: An elliptic curve Ea,b(IFp) is defined by the simplified Weier-
strass equation y2 = x3 + ax + b where a, b ∈ IFp satisfy 4a3 + 27b2 �≡ 0 mod
p. Let #Ea,b(IFp) denote the number of points on the curve Ea,b(IFp). Let O
denote the point at infinity on Ea,b(IFp). We use uppercase to denote a point
on an elliptic curve and lowercase to denote a scalar multiplier. So, xG denotes
scalar multiplication. Recall that 0G = O, 1G = G, 2G = G+G, and so on.

In our review of Kaliski’s work in [14] (and in particular his Lemma 6.6
that covers embedding using twisted curves) we use his notation Ea,b(IFp) and
Ea′,b′(IFp). However, we do not use this convention in our constructions. We

2 In accordance with the number of points on each curve.
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define E0(IFp) = Ea,b(IFp) and E1(IFp) = Ea′,b′(IFp). This lets us select between
the two curves using a single bit, which we do often. We also define ri = #Ei(IFp)
to be the number of points on curve Ei(IFp) for i = 0, 1. Let Oi be the point at
infinity on Ei(IFp) for i = 0, 1.
String Operations: If α is a bit string then |α| denotes the length in bits of α.
However, if S is a set then |S| denotes the cardinality of S. Let α||β denote
the concatenation of strings α and β. Let LSB(α) be a function that returns the
least significant bit of bit string α. Let ⊕ denote the infix bitwise exclusive-or
operator that operates on two bit strings of equal length. α >> b denotes the
following string operation. The string α is returned but with the rightmost b bits
removed from α (this is right shifting).
Selection and Assignment: We use s ∈R S to denote the selection of an element
s uniformly at random from set S. However, unless otherwise stated, an element
that is selected randomly is selected using the uniform distribution. The symbol
← is used for assignment.
Integers vs. Strings: We are careful to treat integers as separate from bit strings.
This is to avoid ambiguities that can result from the presence/absence of lead-
ing zeros. This is of particular importance in information hiding since the rep-
resentation of information must be carefully controlled. We define algorithm
StrToInt(xs) to take as input a bit string xs and return the integer x corre-
sponding to xs in base-2. We define algorithm IntToStr(x) to take as input a
non-negative integer x and return the bit string xs corresponding to x in base-2
(so the most significant bit is always 1, unless x = 0 in which case the output is
xs = 0). We define algorithm Format as follows.

Format(x, �):
1. xs ← IntToStr(x)
2. if (|xs| > �) then output 0� else output 0�−|xs|||xs

Flow Control: We use logical indentation to show the body of if statements,
for loops, and so on. Also, an algorithm that terminates early uses the keyword
halt in order to terminate.

2.2 Elliptic Curve Background

Twists using the general class of elliptic curves over IFp were studied by Kaliski
[13,14,15]. Below we give Lemma 6.5 and Definition 6.1 from [14].

Lemma 1. Let β �= 0 be a quadratic nonresidue in the field IFp and let Ea,b(IFp)
be an elliptic curve. Then for every value x, letting y =

√
x3 + ax+ b:

1. If y is a quadratic residue, then the points (x,±y) are on the curve Ea,b(IFp).
2. If y is a quadratic nonresidue, then (βx,±

√
β3y) are on Eaβ2,bβ3(IFp).

3. If y = 0, then the point (x, 0) is on the curve Ea,b(IFp) and the point (βx, 0)
is on the curve Eaβ2,bβ3(IFp).
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A corollary to this lemma is that the number of points on the two curves is
2p+ 2, two points for each value of x and two identity elements.

Definition 1. Let Ea,b(IFp) be an elliptic curve of parameter k (i.e., p is k bits
long) and let β be a quadratic nonresidue modulo p. A twisted pair Ta,b,β(IFp) of
parameter k is the union of the elliptic curves Ea,b(IFp) and Eaβ2,bβ3(IFp).

A twist may be a multiset, since Ea,b(IFp) and Eaβ2,bβ3(IFp) may intersect.
Below we review algorithms from [27] (which are built on [14]) that en-

code/decode points using fixed-length bit strings. Fact 1 is from [14]. The input
P to Encode is a point originating on Ec where c ∈ {0, 1}. Decode outputs (P, c)
where P resides on Ec where c ∈ {0, 1}. XT , X−1

T,even, and X−1
T,odd are defined in

[14]. Encode(Ta,b,β(IFp), P, c) = Format(XT [Ta,b,β(IFp)](P, c), k + 1).

Decode(Ta,b,β(IFp), Ps):
1. set ysgn← LSB(Ps) and set α← StrToInt(Ps)
2. if (ysgn = 0) then output (P, c)← X−1

T,even[Ta,b,β(IFp)](α) and halt

3. output (P, c)← X−1
T,odd[Ta,b,β(IFp)](α)

Fact 1. Let Ta,b,β(IFp) be a twisted pair. Encode is a polynomial time com-
putable, probabilistic polynomial time invertible mapping between the set of
points on the twisted pair Ta,b,β(IFp) and all (k + 1)-bit strings corresponding
to the integers in the set {0, ..., 2p+ 1} padded with leading zeros as necessary.
The inverse function of Encode is Decode.

3 The Covert Key Exchange

The covert key exchange protocol, denoted by Φ1, is an implementation of the no-
tion of entropy balancing for secret embeddings. The covert key exchange uses a
twisted pair of curves over IFp where p is a k-bit prime. Informally,when we say that
the covert key exchange is space-efficient what we mean is that the following prop-
erties hold: (1) Alice’s message to Bob in the exchange is k+1 bits long and (2) the
best known cryptanalytic algorithms against the exchange (confidentiality break-
ing/distinguishing) run in time exponential in k. Currently, the fastest knownalgo-
rithm for solving ECDDH for curve Ea,b(IFp) runs in time O(

√
#Ea,b(IFp)) when

#Ea,b(IFp) is prime. It is from this that (2) holds based on current knowledge.
This enables Alice to send a small key exchange message to Bob (in the hundreds
of bits rather than in the thousands for an algorithm based on DL over a finite field
or factoring), based on the state-of-the-art. Property (2) is mandatory to achieve
the degree of space-efficiency that we desire (so it is part of the definition below
that concretely defines the setting of the key exchange and its constraints).

Definition 2. Let τ = (Ta,b,β(IFp), G0, G1) be agreed upon system parameters
where |p| = k, let M ≤ 104 be a constant, let Tτ,Φ1 denote the probability ensem-
ble corresponding to all possible (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk) resulting
from Φ1 and the probability distribution over them resulting from Φ1, let Tτ,U
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denote E0(IFp)M ×E1(IFp)M ×{0, 1}k+1×{0, 1}M and the uniform distribution
over it, and let Alice and Bob be probabilistic polytime algorithms. If in a 2-round
protocol Φ1 between Alice and Bob, Bob sends (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) to Al-
ice where Yi,j ∈R Ei(IFp) for i = 0, 1 and j = 1, 2, ...,M (Bob knows the discrete
logs xi,j of the Yi,j), and Alice generates a (k+ 1)-bit message mA and a M -bit
shared secret mk, and sends mA to Bob, and

1. (completeness) using mA and private information (the xi,j) Bob computes
mk with a probability that is overwhelming (in k), and

2. (security) the fastest algorithm that distinguishes ensemble Tτ,Φ1 from ensem-
ble Tτ,U with an advantage that is non-negligible (in k) runs in exponential
time (2εk for a constraint ε > 0),

then Φ1 is a k-secure space-efficient covert key exchange.

The upper bound on M is somewhat arbitrary (104 is simply large enough for
practical use). Security implies covertness since it establishes that mA appears
as a uniformly random (k + 1)-bit string. It also implies confidentiality since it
establishes that mk appears as a uniformly random M -bit string.

4 Key Exchange Construction

Alice and Bob agree on TDDH parameters τ . For our reductions to hold and
our applications to be secure, they should generate τ using IG1 (see Appendix
B for a review of TDDH) where IG1 adheres to the following list of constraints.

1. The prime p in τ is of the form p = 2k − δ where δ satisfies 1 ≤ δ <
√

2k.
The value δ may be randomly chosen until p of this form is generated.

2. The curves E0(IFp) and E1(IFp) have prime order. So, r0 and r1 are prime.
3. To prevent the attack on prime-field-anomalous curves [19,20,23], it is re-

quired that r0, r1 �= p.
4. To prevent the Weil and Tate pairing attacks [18,8], it is required that r0

does not divide pν − 1 for ν = 1, 2, 3... up to, say, 20. The same holds for r1.
5. More generally, E0(IFp) and E1(IFp) must provide suitable settings for the

ECDDH problem.

From Subsection 2.2 it is the case that r0 + r1 = 2p + 2. We define Sa,b,β,p as
follows.
Sa,b,β,p =

{s : P ∈ E0(IFp), s = Encode(Ta,b,β(IFp), P, 0)}⋃
{s : P ∈ E1(IFp), s = Encode(Ta,b,β(IFp), P, 1)}

4.1 Intuition Behind the Covert Exchange

By glossing over some details and omitting others, it is possible to describe the
covert key exchange algorithm at a high-level. We do so here.
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Bob generates 2M public keys. Half are points on one curve in the twist and
half are on the other. He gives these to Alice. It is her job to generate both her
trapdoor value to Bob and their shared secret. Given her trapdoor value he will
with overwhelming probability compute their shared secret using his 2M private
keys.

Alice chooses one of the curves to use randomly. In this choice, the curves are
selected in direct proportion to the number of points on them. So, the curve in
the twist with the most points is slightly more likely than the other. Let the
curve she selects be denoted by Eu(IFp) where u ∈ {0, 1}. She generates a scalar
multiplier k1 randomly for this curve and computes her key exchange value to
Bob using it. She then generates M shared secrets using k1 and the M public
keys of Bob on Eu(IFp). She Kaliski encodes them and concatenates the least
significant bits of the M encodings together. The resulting string is their shared
secret.

We defer to the proofs why the shared secret appears independently random
and uniformly distributed. The method that Bob uses to compute the shared
secret can be inferred from the above.

4.2 Key Exchange Protocol Φ1

We define SelCurve(Ta,b,β(IFp)) to be a randomized algorithm that outputs 0
with probability r0

2p+2 and 1 with probability r1
2p+2 . Algorithm DeriveBit and

algorithm FillGap are used in the key exchange.

DeriveBit(Ta,b,β(IFp), P ):
Input: point P on twist Ta,b,β(IFp)
Output: b ∈ {0, 1}
1. if (P ∈ E0(IFp)) then c← 0 else c← 1
2. if (P = Oc) then output b ∈R {0, 1} and halt
3. output b← LSB(ψs) where ψs ← Encode(Ta,b,β(IFp), P, c)

FillGap(Ta,b,β(IFp)):
Input: twist Ta,b,β(IFp)
Output: (y, s1, s2) ∈ {0, 1} × {0, 1}k+1 × {0, 1}M
1. choose μ ∈R {0, 1}k+1

2. if (μ /∈ Sa,b,β,p) then
3. choose ψ ∈R {2p+ 2, 2p+ 3, ..., 2k+1 − 1}

and s2 ∈R {0, 1}M
4. compute s1 ← Format(ψ, k + 1),

output (1, s1, s2), and halt
5. output (0, 0k+1, 0M )

We refer to the following as protocol Φ1. The value M ≤ 104 is a constant.

Step 1: Bob chooses xi,j ∈R {0, 1, 2, ..., ri − 1} and computes Yi,j ← xi,jGi for
i = 0, 1 and j = 1, 2, ...,M . Bob sends (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) to Alice.

Step 2: Alice sends the key exchange message mA to Bob where
(mA,mk)← ExchAlg1(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ).
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ExchAlg1(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ):
Input: TDDH parameters τ , points Yi,j on

Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
Output: (mA,mk) ∈ {0, 1}k+1 × {0, 1}M
1. (y, s1, s2)← FillGap(Ta,b,β(IFp))
2. if (y = 1) then output (s1, s2) and halt
3. u← SelCurve(Ta,b,β(IFp))
4. choose k1 ∈R ZZru and compute U ← k1Gu

5. mA ← Encode(Ta,b,β(IFp), U, u)
6. for j = 1 to M do:
7. compute Pj ← k1Yu,j and

bj ← DeriveBit(Ta,b,β(IFp), Pj)
8. set mk ← bM ||bM−1||...||b1 and output (mA,mk)

Step 3: Bob receives the message mA from Alice. Bob computes
Recover(Ta,b,β(IFp),mA, x0,1, ..., x0,M , x1,1, ..., x1,M ), thereby obtaining (t,mk).

Recover(Ta,b,β(IFp),mA, x0,1, ..., x0,M , x1,1, ..., x1,M ):
Input: twist Ta,b,β(IFp), mA ∈ {0, 1}k+1,

xi,j ∈ ZZri for i = 0, 1, j = 1, 2, ...,M
Output: (t,mk) ∈ {0, 1} × {0, 1}M
1. if (mA /∈ Sa,b,β,p) then output (0, 0M ) and halt
2. (U, u)← Decode(Ta,b,β(IFp),mA)
3. for j = 1 to M do:
4. compute Pj ← xu,jU and

bj ← DeriveBit(Ta,b,β(IFp), Pj)
5. set mk ← bM ||bM−1||...||b1 and output (1,mk)

We define failure of protocol Φ1 to be a condition in which any of the following
occur:

1. mA ∈ Sa,b,β,p and the decoding of mA is on Eu(IFp) and ∃ j ∈ {1, 2, ...,M}
such that Yu,j = Ou.

2. mA ∈ {0, 1}k+1 \ Sa,b,β,p.
3. mA ∈ Sa,b,β,p and the decoding of mA is O0 or O1 (i.e., ExchAlg1 chooses
k1 = 0).

The rationale behind this definition is as follows. These are the conditions that
cause one or more bits of mk to be derived directly from a fair coin flip. So, Bob
cannot be certain that he receives mk correctly in these cases.

An alternate definition is of course possible. For example, we could define
success as the raw probability that Bob decides on an mk that is the same as the
mk that Alice selected (Bob may have to guess 1 or more bits). However, we have
decided to use a definition of success that measures Bob’s certainty regarding
his computation of mk.

The following Lemma is proven in Appendix C where the definition of a
negligible function is reviewed.
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Lemma 2. (completeness) Failure occurs in protocol Φ1 with a probability that
is negligible in k.

In our failed attempts at designing the exchangewe found that the following seemed
to occur:when we succeeded in removing the bias inmA, the constructionwould in-
troduce bias intomk in the process, and vice-versa. The two are inextricably linked.
ExchAlg1 succeeds in balancing the entropy in mA and mk in the sense that they
are both random binary strings. This is the origin of our terminology.

We prove Theorem 1 in Appendix D. Theorem 1 establishes Property 2 of
Definition 2.

Theorem 1. (security) The ECDDH problem over (E0(IFp), G0) or ECDDH
over (E1(IFp), G1) polytime reduces to the problem of distinguishing Tτ,Φ1 from
Tτ,U with an advantage that is non-negligible (in k).

Lemma 2 establishes property 1 of Definition 2. So, Lemma 2 and Theorem 1
imply Theorem 2.

Theorem 2. If ECDDH requires exponential time (in k) on (E0(IFp), G0) and
(E1(IFp), G1) then Φ1 is a k-secure space-efficient covert key exchange.

The above theorem is proven in the appendix. The proof establishes that the
exchanged value from Alice is random and that the key established is random and
hard to compute to any polynomial time adversary (under the proper decisional
DH assumption). The basic intuition of the proof idea is that the exchanged
value is random and then the decisional assumption implies that the resulting
shared secret is indistinguishable from a random value in the target group, and
therefore the shared key extracted itself should not help distinguishing between
them and thus is indistinguishable from a pseudorandomly chosen value and
thus from a randomly chosen value.

5 Applications

Kleptographic RSA key generation in the standard model: The following describes
how to build an asymmetric backdoor in RSA key generation in which the RSA
public exponent e can be fixed for all users. The attacker Bob places his public
key (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) in Alice’s key generation device. Key genera-
tion performs Alice’s side of the covert key exchange. The shared secret mk is
embedded in the upper order bits of the RSA prime p being generated. The
corresponding key exchange value mA is encoded in the upper order bits of the
RSA modulus being generated. Under this constraints an otherwise random pub-
lic composite is chosen. The attacker obtains Alice’s public key from a public
channel (e.g., CA, a certificate, etc.). He extracts mA and uses his private key to
compute mk. Using this and Coppersmith’s factoring algorithm [3], he factors
the public modulus.

The security adheres to the notion of a SETUP (secretly embedded trapdoor
with universal protection). It can be shown that indistinguishability holds pro-
vided ECDDH is hard on both curves in the twist. Confidentiality can be shown
under this and the assumption that integer factorization is hard.
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Public Key Stegosystem: The stegosystem construction is a straightforward
implementation of ElGamal based on the covert key exchange. The primary dif-
ference between this version of the ElGamal and traditional implementations
(ECC and otherwise) is that we exclusive-or the plaintext with the shared se-
cret. Informally, the indistinguishability property dictates that a ciphertext must
appear as a fixed-length bit string, where the bits appear as fair coin tosses. We
can show that this holds provided ECDDH is hard on both curves in the twist.
Furthermore, we can show that if ECDDH is hard on both curves in the twist
then the stegosystem is semantically secure against chosen plaintext attacks.

Kleptographic backdoor in SSL: It is well-known that the 28 byte hello nonce
in SSL is a subliminal channel that is visible in the clear to passive eavesdroppers
on the network. The client sends such a nonce to the server and vice-versa. The
pre-master secret is 48 bytes and it contains a 46 byte nonce. The pre-master
secret nonce is chosen by the client and is sent securely to the server. Knowledge
of the two hello nonces and the pre-master secret nonce implies the ability to
eavesdrop on the SSL session.

We build an asymmetric backdoor into the client in the SSL protocol. Let
k = 223 and M = 368 for the covert key exchange. The attacker Bob places his
elliptic curve public key (Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) into Alice’s SSL client.

When Alice initiates an SSL session with a server, the asymmetric back-
door takes over the generation of the client hello nonce and the pre-master
secret nonce. The backdoor runs ExchAlg1(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ) to ob-
tain (mA,mk). It sets the hello nonce to be mA and the pre-master secret nonce
to be mk.

Bob passively eavesdrops on the SSL session. He learns both hello nonces since
he sees them in the clear. He sets mA to be Alice’s hello nonce. Bob then runs
Recover and obtains mk. He is then able to decipher the SSL session.

We note that this attack is a perfect example of the power of our covert key
exchange primitive (of Section 4). This is because: (1) the subliminal channel is
extremely narrow, a mere 224 bits, and therefore space-efficiency is an obvious
requirement, and (2) the kleptographic application is incredibly simple. Observe
that the host distribution over (hello nonce,pre-master secret nonce) is exactly
the uniform distribution over {0, 1}224× {0, 1}368. It is not likely to get simpler
than this.

For security note that the indistinguishability and confidentiality properties
of the asymmetric backdoor in SSL follow from Theorem 1. It is therefore a
provable asymmetric backdoor on top of a secure subliminal channel.
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4. Crépeau, C., Slakmon, A.: Simple backdoors for rsa key generation. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003)

5. Desmedt, Y.: Abuses in cryptography and how to fight them. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, Heidelberg (1990)

6. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

8. Frey, G., Rück, H.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. of Computation 62(206), 865–874 (1994)

9. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over non-
DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361–381. Springer, Heidelberg (2004)

10. Goh, E.-J., Boneh, D., Pinkas, B., Golle, P.: The design and implementation of
protocol-based hidden key recovery. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS,
vol. 2851, pp. 165–179. Springer, Heidelberg (2003)

11. Golebiewski, Z., Kutylowski, M., Zagorski, F.: Stealing secrets with SSL/TLS
and SSH—kleptographic attacks. In: Pointcheval, D., Mu, Y., Chen, K. (eds.)
CANS 2006. LNCS, vol. 4301, pp. 191–202. Springer, Heidelberg (2006)

12. Impagliazzo, R., Levin, L., Luby, M.: Pseudo-random generation from one-way
functions. In: Symp. on the Theory of Comput.—STOC 1989, pp. 12–24 (1989)

13. Kaliski, B.S.: A pseudo-random bit generator based on elliptic logarithms. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 84–103. Springer, Hei-
delberg (1987)

14. Kaliski, B.S.: Elliptic curves and cryptography: A pseudorandom bit generator and
other tools. PhD Thesis. MIT (February 1988)

15. Kaliski, B.S.: One-way permutations on elliptic curves. Journal of Cryptology 3(3),
187–199 (1991)

16. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)
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A Review of ECDDH

A group family denoted by G is a set of finite cyclic groups G = {Ea,b(IFp)}
where each group has prime order. Let IG0 be an instance generator for G that
on input k (in unary) generates (Ea,b(IFp), G) where Ea,b(IFp) is from G, G is
a generator of Ea,b(IFp), and r = #Ea,b(IFp). The ECDDH assumption is that
no polytime algorithm A0 exists for G. We define the superpolynomial ECDDH
assumption to be that no superpolynomial time algorithm A0 exists for G.

Definition 3. An ECDDH algorithm A0 for G satisfies, for some fixed α > 0
and sufficiently large k:

|Pr[A0(Ea,b(IFp), G, aG, bG, abG) = 1] − Pr[A0(Ea,b(IFp), G, aG, bG, cG) = 1]| > 1
kα

The probability is over the random choice of (Ea,b(IFp), G) according to the
distribution induced by IG0(k), the random choice of integers a, b, c satisfying
0 ≤ a, b, c ≤ r − 1, and the bits used by A0.

We now review the ECDDH randomization method from [1] adapted for the case
of elliptic curves. Let the (Ea,b(IFp), G,X ,Y,Z) be an ECDDH problem instance.
Algorithm f chooses scalars u1, u2, v randomly satisfying the inequality 0 ≤
u1, u2, v ≤ r − 1. The function f(Ea,b(IFp), G,X ,Y,Z) outputs (vX +
u1G,Y + u2G, vZ + u1Y + vu2X + u1u2G).

B Review of Twisted DDH

We now review the twisted DDH problem that is covered in [27]. Let TWk be
the set of all twists of parameter k in which both groups (curves) in each twist
have prime order. Let IG1 be an instance generator for TWk that on input the
value k (in unary) generates τ = (Ta,b,β(IFp), G0, G1) where G0 is a generator of
E0(IFp) and G1 is a generator of E1(IFp) (these curves are defined in Subsection
2.1). Our results in this paper require that IG1 generate TDDH parameters in
accordance with Section 4.
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Definition 4. A TDDH algorithm A1 for TWk satisfies, for some fixed α > 0
and sufficiently large k:

|Pr[A1(τ, (a0G0, b0G0, a0b0G0), (a1G1, b1G1, a1b1G1)) = 1] −
Pr[A1(τ, (a0G0, b0G0, c0G0), (a1G1, b1G1, c1G1)) = 1]| > 1

kα

The probability is over the random choice of τ according to the distribution in-
duced by IG1(k), the random choice of a0, b0, c0 ∈ {0, 1, ..., r0 − 1}, the random
choice of a1, b1, c1 ∈ {0, 1, 2, ..., r1 − 1}, and the bits used by A1.

The twisted DDH assumption (TDDH) is that no such polytime A1 exists for
TWk. The superpolynomial TDDH assumption is that no such superpolynomial
time A1 exists for TWk.

Theorem 3 is straightforward to show. Being able to compute ECDDH for
just one of the two curves in the twist breaks TDDH.

Theorem 3. The TDDH problem polytime reduces to the ECDDH problem over
(E0(IFp), G0) or the ECDDH problem over (E1(IFp), G1).

Theorem 4. The ECDDH problem over (E0(IFp), G0) or the ECDDH problem
over (E1(IFp), G1) polytime reduces to TDDH.

Proof. Suppose there exists a distinguisher D that solves TDDH. Both E0(IFp)
and E1(IFp) are as defined in Subsection 2.1. Let the values t0 and t1 be ECDDH
problem instances where ti = (Ei(IFp), Gi, Xi, Yi, Zi) for i = 0, 1.

M0(E0(IFp), G0, X0, Y0, Z0):
1. u0 ← f(E0(IFp), G0, X0, Y0, Z0)
2. generate a random 3-tuple u1 over (E1(IFp), G1)
3. output (τ, u0, u1)

M1(E1(IFp), G1, X1, Y1, Z1):
1. u1 ← f(E1(IFp), G1, X1, Y1, Z1)
2. generate a random DH triple u0 over (E0(IFp), G0)
3. output (τ, u0, u1)

Clearly M0 and M1 run in time polynomial in k. Let Si,DH be the set of all DH
triples over (Ei(IFp), Gi) for i = 0, 1. Let Si,T be the set of all 3-tuples over
(Ei(IFp), Gi) for i = 0, 1.

Without loss of generality we may suppose that the TDDH distinguisher D
outputs 1 with advantage δ1 in k when both 3-tuples are DH triples and 0 with
advantage δ0 in k when both 3-tuples are random 3-tuples, where δ1 and δ0 are
non-negligible. Observe that a slightly less powerful distinguisher can be used to
construct D, e.g., one in which δ1 is non-negligible but δ0 is negligible.

Consider the case that v0 ∈R S0,DH and v1 ∈R S1,T . There are 3 cases:

Case 1: Consider the case that D(τ, v0, v1) outputs 0 with probability 1/2±γ(k)
where the function γ is negligible. Let d← D(M0(E0(IFp), G0, X0, Y0, Z0)). M0 gen-
erates u1 to be a random 3-tuple over (E1(IFp), G1). Suppose that (X0, Y0, Z0)
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is a DH triple. Then by the correctness of f, u0 is a random DH triple. So,
in this case d = 0 with probability 1/2 ± γ(k) (negligible advantage). Suppose
that (X0, Y0, Z0) is not a DH triple. Then by the correctness of f, u0 is a ran-
dom 3-tuple. So, d = 0 with probability 1/2 + δ0(k) (non-negligible advantage).
There is a polynomial time observable difference in behavior here. Therefore,
D(M0(E0(IFp), G0, X0, Y0, Z0)) solves the ECDDH problem over (E0(IFp), G0).

Case 2: Suppose that D(τ, v0, v1) outputs 0 with probability 1/2 − δ2(k) and
1 with probability 1/2 + δ2(k) where the value δ2 is non-negligible. Let d ←
D(M0(E0(IFp), G0, X0, Y0, Z0)). Machine M0 generates u1 to be a random 3-tuple
over (E1(IFp), G1). Suppose that (X0, Y0, Z0) is a DH triple. Then by the cor-
rectness of f, u0 is a random DH triple. So, in this case d = 1 with probability
1/2+δ2(k). Suppose that (X0, Y0, Z0) is not a DH triple. Then by the correctness
of f, u0 is a random 3-tuple. So, d = 0 with probability 1/2 + δ0(k). Therefore,
D(M0(E0(IFp), G0, X0, Y0, Z0)) solves ECDDH over (E0(IFp), G0).

Case 3: Suppose that D(τ, v0, v1) outputs 0 with probability 1/2 + δ3(k) and
1 with probability 1/2 − δ3(k) where the value δ3 is non-negligible. Let d ←
D(M1(E1(IFp), G1, X1, Y1, Z1)). Algorithm M1 generates u0 to be a random DH
triple over (E0(IFp), G0). Suppose that (X1, Y1, Z1) is a DH triple. Then by the
correctness of f, u1 is a random DH triple. So, in this case d = 1 with probability
1/2+δ1(k). Suppose that (X1, Y1, Z1) is not a DH triple. Then by the correctness
of f, u1 is a random 3-tuple. So, d = 0 with probability 1/2 + δ3(k). Therefore,
D(M1(E1(IFp), G1, X1, Y1, Z1)) solves ECDDH over (E1(IFp), G1).

It follows that Theorem 5 holds (equivalence).

Theorem 5. TDDH is polytime equivalent to ECDDH over (E0(IFp), G0) or
ECDDH over (E1(IFp), G1)

C Completeness Proof

Definition 5. ν is a negligible function if for every constant c ≥ 0 there exists
an integer kc such that ν(k) < 1

kc for all k ≥ kc.

The following is the proof of Lemma 2, namely, that failure occurs in Φ1 with a
probability that is negligible in k.

Proof. Let p1(k) denote the success probability of protocol Φ1 having security
parameter k. Let kc be 64 (see Definition 5). p1(k) =

( r0−1
r0

)M ∗ 1 ∗ 2p+2
2k+1

r0
2p+2

r0−1
r0

+ 1 ∗ ( r1−1
r1

)M 2p+2
2k+1

r1
2p+2

r1−1
r1

p1(k) = ( r0−1
r0

)M r0−1
2k+1 + ( r1−1

r1
)M r1−1

2k+1

Hasse showed that |#Ea,b(IFp)− (p+ 1)| ≤ 2
√
p for an elliptic curve Ea,b(IFp).

So, ru − 1 ≥ p− 2
√
p for u = 0, 1.
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p1(k) ≥ (( r0−1
r0

)M p−2
√

p

2k+1 + ( r1−1
r1

)M p−2
√

p

2k+1 ) = p−2
√

p

2k+1 (( r0−1
r0

)M + ( r1−1
r1

)M )

From the Binomial Theorem it follows that,

(− 1
ru

+ 1)M = 1− M
ru

+
∑M

�=2

(
M
�

)
(− 1

ru
)�

Observe that if M is even, then the last term in the summation above is positive.
So, we can get rid of it and use an inequality. So, let L = M if M is odd and set
L = M − 1 if M is even. Then,

(− 1
ru

+ 1)M ≥ 1− M
ru

+
∑L

�=2

(
L
�

)
(− 1

ru
)�

(− 1
ru

+ 1)M ≥ 1− M
ru

+
∑L−1

2
�=1 ( 1

ru
)2�

(
L
2�

)
(1− 1

ru

L−2�
2�+1 )

Since M ≤ 104 and k ≥ kc = 64 it follows from Hasse’s Theorem that the term
1− 1

ru

L−2�
2�+1 > 0 for u = 0, 1 and � = 1, 2, ..., (L− 1)/2. So,

(− 1
ru

+ 1)M ≥ 1− M
ru

Recall that p = 2k − δ and 1 ≤ δ <
√

2k. So, p − 2
√
p > 2k − 3 ∗ 2k/2. Since

r0, r1 > p− 2
√
p,

p1(k) ≥ p−2
√

p

2k+1 (2− 2M
p−2

√
p ) > 2k−3∗2k/2

2k+1 (2− 2M
p−2

√
p ) = (1− 3

2k/2 )(1 − M
p−2

√
p )

It follows from Definition 5 that the failure probability is negligible in k.

D Security Proof

Algorithm f1 chooses scalars u1, u2, v randomly satisfying the inequality 0 ≤
u1, u2, v ≤ r−1. However, unlike f, algorithm f1 gives the additional output u2.
f1(Ea,b(IFp), G,X ,Y,Z) = (vX +u1G,Y +u2G, vZ +u1Y + vu2X +u1u2G, u2)
Algorithm f2 chooses scalars u1, v randomly satisfying the inequality 0 ≤ u1, v ≤
r − 1. Algorithm f2(Ea,b(IFp), G,X ,Y,Z, u2) returns the following tuple (vX +
u1G,Y + u2G, vZ + u1Y + vu2X + u1u2G).

Let (X,Y, Z) = f2(Ea,b(IFp), G,X ,Y,Z, u2). We partition the set of possible
inputs to f2 into two sets, DH triples and non-DH triples.

Suppose that (X ,Y,Z) is a DH triple. Let X = xG, Y = yG and Z = xyG.
So, X = (vx + u1)G, Y = (y + u2)G, and,

Z = (vxy + u1y + vu2x+ u1u2)G = (vx + u1)(y + u2)G

It follows that (X,Y, Z) is (X ,Y,Z) transformed as follows. The scalar y is
replaced by y+u2 and the scalar x is replaced by the random scalar vx+u1. So,
(X,Y, Z) is a DH triple. We say that such a DH triple is a one-scalar randomized
DH triple of (X ,Y,Z).

Now suppose that (X ,Y,Z) is not a DH triple. Then X,Z ∈R Ea,b(IFp). This
claim needs justification. Let Z = zG. Observe that z = xy + c for some scalar
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c > 0. So, Z = (vx + u1)(y + u2)G + v(cG). Define X ′ = (vx + u1)G, Y ′ =
(y + u2)G, and Z ′ = (vx+ u1)(y + u2)G. Then (X,Y, Z) = (X ′, Y ′, Z ′ + v(cG))
and cG is a generator since c > 0.

We now consider an “exchange” Φ2 in which Bob really has no hope of re-
covering mk (we will show why later on). Let Φ2 be the same as Φ1 except that
ExchAlg1 is replaced with ExchAlg2.

ExchAlg2(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ):
Input: TDDH parameters τ , points Yi,j on

Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
Output: (mA,mk) ∈ {0, 1}k+1 × {0, 1}M
1. (y, s1, s2)← FillGap(Ta,b,β(IFp))
2. if (y = 1) then output (s1, s2) and halt
3. u← SelCurve(Ta,b,β(IFp))
4. choose k1 ∈R ZZru and compute U ← k1Gu

5. mA ← Encode(Ta,b,β(IFp), U, u)
6. for j = 1 to M do:
7. choose Pj ∈R Eu(IFp) and compute

bj ← DeriveBit(Ta,b,β(IFp), Pj)
8. set mk ← bM ||bM−1||...||b1 and output (mA,mk)

Lemma 3. In algorithm ExchAlg2, mA ∈R {0, 1}k+1.

Proof. Consider the operation of ExchAlg2. Let s be any string in {0, 1}k+1 \
Sa,b,β,p. Then it follows from the definitions of algorithm FillGap and algorithm
Format that Pr[mA = s] = 2δ−2

2p+2
1

2δ−2 . Let P be any point on Eu(IFp). Then it
follows from the definitions of FillGap, SelCurve, and Encode that the proba-
bility that mA is the Kaliski encoding of P is 2p+2

2k+1
ru

2p+2
1
ru

. It follows that each
string contained in {0, 1}k+1 is selected by ExchAlg2 and output as mA with
probability 1

2k+1 .

Fact 1: The following is from the Group Law for Ea,b(IFp) when the prime
p �= 2, 3. Negatives: If P = (x, y) ∈ Ea,b(IFp) then (x, y) + (x,−y) = O. The
point (x,−y) is denoted by −P and is referred to as the negative of P . So, −P
is in fact a point on Ea,b(IFp). It is also the case that −O = O.

Lemma 4. If #Ea,b(IFp) is odd then there are no points with an ordinate of
zero on Ea,b(IFp).

Proof. Let f(x) = x3 + ax + b with coefficients in IFp. It is well-known that
f(x) = 0 has 0 solutions, 1 solution x1, or 3 solutions x2, x3, x4 in IFp. We
consider these 3 cases in turn.
Case 1: There are 0 solutions. Let S = Ea,b(IFp)\{O}. Then |S| = #Ea,b(IFp)−1.
From Fact 1, all points in S have the following property: (x, y) ∈ S ⇔ (x,−y) ∈
S with (x, y) �= (x,−y). We now make a partitioning argument. Consider the
following two sets.

S0 = {(x, y) : (x, y) ∈ S, y < p/2} S1 = {(x, y) : (x, y) ∈ S, y > p/2}
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Clearly S = S0

⋃
S1, S0

⋂
S1 = ∅, and |S0| = |S1|. So, |S| = 2|S0|. It follows

that |S| is even, therefore #Ea,b(IFp) is odd. This supports our claim.
Case 2: There is one solution x1 and therefore (x1, 0) is the only point on
Ea,b(IFp) with an ordinate of zero. Let S = Ea,b(IFp) \ {O, (x1, 0)}. Then |S| =
#Ea,b(IFp)−2. From Fact 1, all points in S have the following property: (x, y) ∈
S ⇔ (x,−y) ∈ S with (x, y) �= (x,−y). Using the partitioning argument it
follows that |S| is even and therefore #Ea,b(IFp) is even.
Case 3: The integers x2, x3, x4 are solutions to f(x) = 0 and therefore the points
(x2, 0), (x3, 0), (x4, 0) are the only points with an ordinate of zero on Ea,b(IFp).
Let S = Ea,b(IFp) \ {O, (x2, 0), (x3, 0), (x4, 0)}. Then |S| = #Ea,b(IFp)− 4. By a
similar argument, #Ea,b(IFp) is even.

Lemma 5. For u = 0, 1, the ordered execution of, Pj ∈R Eu(IFp), followed by
bj ← DeriveBit(Ta,b,β(IFp), Pj) causes bj to be a fair coin flip.

Proof. Let u be any element in {0, 1}. Since ru is odd it follows from Lemma
4 that there are no points with an ordinate of zero on Eu(IFp). So, aside from
the point at infinity, if (x, y) ∈ Eu(IFp) then (x,−y) ∈ Eu(IFp) where y �= 0. It
follows from the definition of Kaliski’s XT function that Eu(IFp)\{Ou} contains
exactly ru−1

2 points with Kaliski encodings that have an LSB of 0. Similarly,
Eu(IFp) \ {Ou} contains exactly ru−1

2 points with Kaliski encodings that have
an LSB of 1. DeriveBit returns a fair coin flip on input Ou. So, Pr[bj = 1] =
ru−1

2
ru

+ 1
ru

1
2 = 1

2 .

Lemma 6. In algorithm ExchAlg2, mk ∈R {0, 1}M .

Proof. Consider algorithm FillGap. Clearly, Pr[μ /∈ Sa,b,β,p] = 2δ−2
2k+1 . If μ /∈

Sa,b,β,p then it follows from the definition of FillGap that s2 = mk is chosen
randomly from {0, 1}M . Also, Pr[μ ∈ Sa,b,β,p] = 2p+2

2k+1 . If μ ∈ Sa,b,β,p then from
Lemma 5, ExchAlg2 chooses mk ∈R {0, 1}M . Either μ ∈ Sa,b,β,p or not and in
both cases it follows that mk ∈R {0, 1}M .

Algorithm InstTrans transforms an input TDDH problem instance into a tuple
that looks like it is from Φ1 or from Φ2. InstTrans is used in several proofs in
this paper.

InstTrans(τ, t0, t1):
Input: TDDH problem instance (τ, t0, t1) where

ti = (X (i),Y(i),Z(i)) are points on Ei(IFp) for i = 0, 1
Output: (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)
1. (y, s1, s2)← FillGap(Ta,b,β(IFp))
2. if (y = 1) then
3. choose Yi,j ∈R Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
4. (mA,mk)← (s1, s2)
5. halt with (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)
6. u← SelCurve(Ta,b,β(IFp))
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7. (X,Y, Z, u2)← f1(Eu(IFp), Gu,X (u),Y(u),Z(u))
8. mA ← Encode(Ta,b,β(IFp), Y, u)
9. for j = 1 to M do:
10. (Xj , Yj , Zj)← f2(Eu(IFp), Gu,X (u),Y(u),Z(u), u2)
11. set Yu,j ← Xj and choose Y1−u,j ∈R E1−u(IFp)
12. set Pj ← Zj and bj ← DeriveBit(Ta,b,β(IFp), Pj)
13.mk ← bM ||bM−1||...||b1
14. output (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)

Lemma 7. TDDH polytime reduces to the problem of distinguishing Tτ,Φ1 from
Tτ,Φ2 with an advantage that is non-negligible (in k).

Proof. Suppose there exists an algorithm D that distinguishes Tτ,Φ1 from Tτ,Φ2

with an advantage that is non-negligible in k. Consider the polytime (in k)
algorithm InstTrans that takes as input a problem instance (τ, t0, t1) for TDDH.

Suppose that both t0 and t1 are DH triples. From the correctness of f1 and
f2, the (Xj , Yj , Zj) for j = 1, 2, ...,M in algorithm InstTrans are all one-scalar
randomized DH triples of the input Diffie-Hellman triple (X (u),Y(u),Z(u)) where
u ∈ {0, 1} is selected using SelCurve in algorithm InstTrans. So, the output of
algorithm InstTrans given by the tuple (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk)
is drawn from the same set and probability distribution as in Φ1.

Suppose t0 and t1 are not DH triples. From the correctness of f1 and f2,
(Xj , Zj) ∈R Eu(IFp) × Eu(IFp) for j = 1, 2, ...,M . So, the output of algorithm
InstTrans given by the tuple (τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ,mA,mk) is drawn
from the same set and probability distribution as in Φ2.

Therefore, D(InstTrans(τ, t0, t1)) solves TDDH.

Let protocol Φ3 be the same as protocol Φ2 except that algorithm ExchAlg2 is
replaced with algorithm ExchAlg3.

ExchAlg3(τ, Y0,1, ..., Y0,M , Y1,1, ..., Y1,M ):
Input: TDDH parameters τ , points Yi,j on

Ei(IFp) for i = 0, 1, j = 1, 2, ...,M
Output: (mA,mk) ∈ {0, 1}k+1 × {0, 1}M
1. choose mA ∈R {0, 1}k+1 and mk ∈R {0, 1}M
2. output (mA,mk)

Lemma 8. Tτ,Φ2 is perfectly indistinguishable from Tτ,Φ3 .

Lemma 9. TDDH polytime reduces to the problem of distinguishing Tτ,Φ1 from
Tτ,U with an advantage that is non-negligible (in k).

Lemma 8 follows from Lemmas 3, 6. But, Tτ,U = Tτ,Φ3 . So, lemmas 7 and 8 give
Lemma 9. Theorem 5 and Lemma 9 imply Theorem 1.
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