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Preface

This volume contains the papers that were presented at the 8th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2010), held September 8–10, 2010, at IST (Institute of Science and Technology)
Austria, in Klosterneuburg, Austria.

The modeling and analysis of timing aspects of systems is a key problem that
has been treated independently in several different communities in computer
science and related areas. Researchers interested in semantics, verification, real-
time scheduling, and performance analysis study models such as timed automata
and timed Petri nets, the digital design community focuses on propagation and
switching delays, and designers of embedded controllers need to take into ac-
count the time required by controllers to compute their responses after sampling
the environment. Although the timing-related questions in these separate com-
munities have their own specific nature, there is a growing awareness that there
are basic problems that are common to all of them. In particular, all of these
disciplines model and analyze systems whose behavior depends on combinations
of logical and timing constraints between occurrences of events.

The aim of FORMATS is to promote the study of fundamental and practical
aspects of timed systems, and to bring together researchers from different dis-
ciplines that share an interest in the modeling and analysis of timed systems.
Typical topics include (but are not limited to):

– Foundations and Semantics: theoretical foundations of timed systems and
languages; comparison between different models (timed automata, timed
Petri nets, hybrid automata, timed process algebra, max-plus algebra, prob-
abilistic models).

– Methods and Tools: techniques, algorithms, data structures, and software
tools for analyzing timed systems and resolving timing constraints (schedul-
ing, worst-case execution-time analysis, optimization, model checking, test-
ing, synthesis, constraint solving).

– Applications: adaptation and specialization of timing technology in applica-
tion domains in which timing plays an important role (real-time software,
hardware circuits, and problems of scheduling in manufacturing and telecom-
munication).

This year FORMATS received 31 submissions. Each submission was reviewed
by at least 3, and on average by 3.9, Program Committee members. The com-
mittee selected 14 submissions for presentation at the conference. In addition,
the conference included three invited talks by:

– Tarek Abdelzaher, USA:
Interdisciplinary Foundations for Open Cyber-Physical Systems

– Marta Kwiatkowska, UK:
A Framework for Verification of Software with Time and Probabilities
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– Jean-François Raskin, Belgium:
Safraless Procedures for Timed Specifications

The conference also included two invited tutorials by:

– Dejan Nickovic, Austria:
Property-Based Monitoring of Analog and Mixed-Signal Systems

– Ulrich Schmid, Austria:
Synchrony and Time in Fault-Tolerant Distributed Algorithms

We thank all invited speakers for accepting our invitation and for providing
abstracts of their talks for inclusion in this proceedings volume.

We wish to thank all Program Committee members and reviewers for their
competent and timely handling of the submissions. During the selection process
and for preparing this volume, we used the EasyChair conference management
system, which provided excellent support and allowed us to focus on the sci-
entific issues. We thank the staff and scientists of IST Austria, in particular
Barbara Abraham, Dejan Nickovic, and Franz Schäfer for their help in orga-
nizing the conference. Finally, we gratefully acknowledge the financial support
we received from the European Network of Excellence on Embedded Systems
Design (ArtistDesign), from IST Austria, and from Siemens Austria.

June 2010 Krishnendu Chatterjee
Thomas A. Henzinger
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Interdisciplinary Foundations for
Open Cyber-Physical Systems

(Invited Talk)

Tarek Abdelzaher

Department of Computer Science, University of Illinois at Urbana-Champaign
zaher@illinois.edu

Abstract. A significant amount of literature addressed challenges in building de-
pendable embedded systems. Next-generation cyber-physical systems offer more
challenges that arise by virtue of openness, distribution, and scale. Emerging ap-
plications interact with both a physical and a social environment in both space
and time. They are subjected to unpredictable workloads and are composed of a
large number of subsystems of different degrees of criticality, not all of which
are well-understood. Analyzing their overall behavior, diagnosing their interac-
tion problems, and ensuring cooperation among their constituents requires new,
often interdisciplinary tools and theoretical foundations not typically explored in
classical embedded computing. This talk overviews some such tools and foun-
dations, and outlines emerging broad challenges in building next-general open
cyber-physical systems.

K. Chatterjee and T.A. Henzinger (Eds.): FORMATS 2010, LNCS 6246, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Safraless Procedures for Timed Specifications�

Barbara Di Giampaolo1, Gilles Geeraerts2,
Jean-François Raskin2, and Nathalie Sznajder2

1 Dipartimento di Informatica ed Applicazioni, Università degli Studi di Salerno, Italy
2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.)

bardig@dia.unisa.it, {gigeerae,jraskin,nsznajde}@ulb.ac.be

Abstract. This paper presents extensions of Safraless algorithms proposed in
the literature for automata on infinite untimed words to the case of automata on
infinite timed words.

1 Introduction

In this paper, we investigate the applicability of automata constructions that avoid de-
terminization for solving language inclusion and synthesis for real-time specifications.
While timed language inclusion is undecidable for the class of timed languages defin-
able by classical timed automata [AD94], there are interesting subclasses of timed lan-
guages for which language inclusion is decidable. In particular, it has been shown that
the timed inclusion problem for event-clock automata [AFH99] and recursive general-
izations [RS98, HRS98, Ras99] is PSPACE-complete for both finite and infinite words.
For infinite words, those results are obtained using an adaptation of the Safra construc-
tion [Saf88] to this subclass of timed automata. Unfortunately, this construction leads
to state spaces that are highly complex and difficult to handle in practice.

Contributions. Safra-based determinization is difficult to implement even in the con-
text of untimed languages. As a consequence, recent research efforts have investigated
alternative decision procedures [KV01, KV05, SF07, FJR09] that avoid the use of this
construction. We investigate here extensions of those techniques to timed languages
expressed by (alternating) event-clock automata and to a fragment of the Event-Clock
Logic for which the realizability problem is decidable [DGRR09].

First, we show, in Section 3, that the techniques of [KV01] can be adapted to alter-
nating event-clock automata. That is, given an alternating event-clock automaton with
co-Büchi acceptance conditionA, we show how to construct, in quadratic time, an alter-
nating event-clock automaton with Büchi acceptance condition B that accepts the same
language asA. From that alternating event-clock automatonB, we show how to construct
in exponential time a nondeterministic event-clock automaton C with Büchi acceptance
condition such that accepts the same language as B and A. This is done by adapting a

� Work supported by the projects: (i) Quasimodo: “Quantitative System Properties in
Model-Driven-Design of Embedded”, http://www.quasimodo.aau.dk/, (ii) Ga-
sics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, and (iii) Moves: “Fundamental Issues in
Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Gouvernment.

K. Chatterjee and T.A. Henzinger (Eds.): FORMATS 2010, LNCS 6246, pp. 2–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Safraless Procedures for Timed Specifications 3

classical construction due to Miyano and Hayashi [MH84] originally proposed for Büchi
automata on infinite (untimed) words. Those procedures then can be used to complement
nondeterministic event-clock automata with Büchi acceptance conditions, this in turn
leads to algorithms for solving the universality and language inclusion problems for that
class of timed automata without resorting to the Safra construction.

Second, we generalize, in Section 4, the ideas of [FJR09] to solve the realizability
problem for a fragment of the Event Clocks Logic called LTL� [DGRR09]. For each
formula of this logic, we can construct, in exponential time, a universal event-clock au-
tomaton with co-Büchi acceptance condition that accepts the set of timed words that the
formula defines. Then, we show that the co-Büchi acceptance condition can be strength-
ened into a condition that asks that all runs of the automaton visit less than K ∈ N times
the set of accepting locations. This allows to reduce the realizability problem for LTL�
to the realizability problem for universal K-co-Büchi event-clock automata. Those are
easily determinizable and this reduces the original problem to a timed safety game prob-
lem. We show, in Section 5, that this timed safety game problem can be solved using the
tool UPPAAL TIGA [BCD +̂ 07]. We illustrate this on a simple example.

2 Preliminaries

Words and timed words. An alphabet Σ is a finite set of letters. A finite (resp. infinite)
word w over an alphabet Σ is a finite (resp. infinite) sequence of letters from Σ. We
denote respectively by Σ∗ and Σω the sets of all finite and infinite words on Σ. We
denote by ε the empty word, and by |w| the length the word w (which is equal to ∞
when w is infinite). A finite (resp. infinite) timed word over an alphabet Σ is a pair
θ = (w, τ) where w is a finite (resp. infinite) word over Σ, and τ = τ0τ1 . . . τ|w|−1 is
a finite (resp. infinite) sequence of length |w| of positive real values (the time stamps)
such that τi ≤ τi+1 for all 0 ≤ i ≤ |w| − 1 (resp. for all i ≥ 0). We let |(w, τ)| = |w|
denote the length of (w, τ).

An infinite timed word θ = (w, τ) is diverging if for all t ∈ R≥0, there exists a posi-
tion i ∈ N such that τi ≥ t. We denote respectively by TΣ∗, TΣω and TΣω

td the sets of
all finite, infinite and infinite diverging timed words on Σ. In the sequel, it is often con-
venient to denote an (infinite) timed word (w, τ) by the sequence (w0, τ0)(w1, τ1) . . .
We proceed similarly for finite timed words. Since we are interested mainly in infinite
timed words, we often refer to them simply as timed words.

Remark 1 (Time divergence). In the sequel, we formalize the results for languages of
timed words that are not necessarily time divergent. Nevertheless, we systematically
explain informally how to obtain the results for diverging timed words.

Event clocks. A clock is a real-valued variable whose value evolves with time elapsing.
We associate, to every letter σ ∈ Σ, a history clock ←−xσ and a prophecy clock −→xσ . We
denote respectively by HΣ the set {←−xσ | σ ∈ Σ} of history clocks and by PΣ the set
{−→xσ | σ ∈ Σ} of prophecy clocks on Σ, and we let CΣ = HΣ ∪PΣ be the set of event-
clocks on Σ. A valuation v of a set of clocks C ⊆ CΣ is a function C → R≥0 ∪ {⊥}.
We denote by V (C) the set of all valuations of the set of clocks C. We associate to
each position i ≥ 0 of a timed word θ = (w, τ) ∈ TΣω ∪ TΣ∗ a unique valuation
Valθi of the clocks in CΣ , defined as follows. For any x ∈ HΣ , Valθi (x) = ⊥ if there
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is no j < i s.t. wj = σ. Otherwise, Valθi (x) = τi − τj where j is the largest position
s.t. j < i and wj = σ. Symmetrically, for any x ∈ PΣ , Valθi (x) = ⊥ if there is no
j > i s.t. wj = σ. Otherwise, Valθi (x) = τj − τi where j is the least position s.t. j > i
and wj = σ. Intuitively, this means that, when reading the timed word θ, the history
clock ←−xσ always records the amount of time elapsed since the last occurrence of σ, and
the prophecy clock −→xσ always tells us the amount of time before the next occurrence
of σ. For a valuation v ∈ V (C) such that ∀x ∈ PΣ ∩ C: v(x) ≥ d, we denote by
v+d the valuation from V (C) that respects the following two conditions. First, for any
x ∈ HΣ ∩C: (v + d)(x) = ⊥ if v(x) = ⊥; otherwise (v + d)(x) = v(x) + d. Second,
for any x ∈ PΣ ∩ C: (v + d)(x) = v(x) − d if v(x) = ⊥; otherwise (v + d)(x) = ⊥.
For a valuation v ∈ V (C), and a clock x ∈ C, we write v[x := 0] the valuation that
matches v on every clock x′ = x and such that v(x) = 0.

An atomic clock constraint over the set of clocks C is either true or a formula of the
form x ∼ c, where x ∈ C, c ∈ N, and ∼∈ {<,>,=}. A clock constraint is a Boolean
combination of atomic clock constraints. We denote by Constr (C) the set of all clock
constraints ranging over the set of clocks C. We say that a valuation v satisfies a clock
constraint ψ, denoted v |= ψ according to the following rules: v |= true; v |= x ∼ c iff
v(x) = ⊥ and v(x) ∼ c ; v |= ¬ψ iff v |= ψ; v |= ψ1 ∨ ψ2 iff v |= ψ1 or v |= ψ2.
We say that a timed word θ satisfies a clock constraint ψ at position i ≥ 0, denoted
(θ, i) |= ψ iff Valθi |= ψ.

Alternating event clock automata. Let X be finite set. A positive Boolean formula over
X is Boolean formula generated by:

ϕ ::= a | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | true | false

with a ∈ X , and ϕ1, ϕ2 positive Boolean formulas. We denote by B+(X) the set of
all positive Boolean formulas on X . A set Y ⊆ X satisfies a positive Boolean formula
ϕ ∈ B+(X), denoted Y |= ϕ if and only if replacing each y ∈ Y by true and each
x ∈ X \ Y by false in ϕ, and applying the standard interpretation for ∨ and ∧ yields
a formula which is equivalent to true. For example, ϕ = (q1 ∧ q2) ∨ q3 is a positive
Boolean formula on {q1, q2, q3}. Clearly, {q1, q2} |= ϕ, {q2, q3} |= ϕ, but {q1} |= ϕ.
Given a set X , and a positive Boolean formula ϕ ∈ B+(X), we denote by ϕ̃ the dual
of ϕ, which is the positive Boolean formula obtained from ϕ by swapping the ∨ and ∧
operators, as well as the true and false values.

An alternating event-clock automaton (AECA) is a tuple A = 〈Q, qin, Σ, δ, α〉,
where Q is a finite set of locations, qin ∈ Q is the initial location, Σ is a finite alphabet,
δ : Q × Σ × Constr (CΣ) �→ B+(Q) is a partial function, and α is the acceptance
condition, which can be:
1. either a Büchi acceptance condition; in this case, α ⊆ Q,
2. or a co-Büchi acceptance condition; in this case, α ⊆ Q,
3. or a K-co-Büchi acceptance condition, for some K ∈ N; in this case, α ⊆ Q,
4. or a parity condition; in this case, α : Q �→ Colours, where Colours ⊆ N is a finite

set of priorities.
Moreover, δ respects the following conditions:
(A1) For every q ∈ Q, σ ∈ Σ, δ(q, σ, ψ) is defined for only finitely many ψ.
(A2) For every q ∈ Q, σ ∈ Σ, v ∈ V (CΣ) there exists one and only one ψ ∈

Constr (CΣ) s.t. v |= ψ and δ(q, σ, ψ) is defined.
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Runs and accepted languages. Runs of AECA are formalised by trees. A tree T is a
prefix closed set T ⊆ N∗. The elements of T are called nodes, and the root of the tree is
the empty sequence ε. For every x ∈ T , the nodes x · c ∈ T , for c ∈ N are the children
of x, and x is the (unique) father of all the nodes x ·c. A node with no child is a leaf. We
refer to the length |x| of x as its level in the tree. A branch in the tree T is a sequence of
nodes π ⊆ T such that ε ∈ π, and for every x ∈ π, either x is a leaf, or there is a unique
c ∈ N such that x · c ∈ π. An X-labelled tree is a pair 〈T, �〉 where � : T → X is a
labelling function of the nodes, that associates a label from X to each node of T . We
extend the function � to (finite or infinite) branches: given a branch π = n1n2 · · ·nj · · ·
of T , we let �(π) be the sequence �(n1)�(n2) · · · �(nj) · · · Let A = 〈Q, qin, Σ, δ, α〉 be
an AECA, and θ be an timed word on Σ. Then, a Q-labelled tree R = 〈T, �〉 is a run of
A on θ iff the following hold:

– �(ε) = qin,
– for all x ∈ T , there exists a set S ⊆ Q s.t. (i) q ∈ S iff x has a child x · c ∈ T with
�(x · c) = q and (ii) S |= δ(�(x), w|x|, ψx), where ψx ∈ Constr (CΣ) is the unique
clock constraint s.t. δ(�(x), w|x|, ψx) is defined and (θ, |x|) |= ψx.

Let R = 〈T, �〉 be a run and x ∈ T . We note Rx the sub-run rooted at node x. A run
R = 〈T, �〉 is memoryless if for all levels i ∈ N, for all x, y ∈ T such that |x| = |y| = i
and �(x) = �(y), the sub-runs Rx = 〈Tx, �x〉 and Ry = 〈Ty, �y〉 are isomorphic.

Let 〈T, �〉 be an X-labelled tree, and let π be a branch of T . We let Occπ : X →
N∪{∞} be the function that associates, to any element of X , its number of occurrences
in π. We further let Inf (π) = {x ∈ X | Occπ(x) = ∞}. Let A be an AECA with set of
locations Q and acceptance condition α, and R = 〈T, �〉 be a run of A. Then, R is an
accepting run iff one of the following holds: α is a

– Büchi condition, and for all branches π ⊆ T , Inf (π) ∩ α = ∅,
– co-Büchi condition, and for all branches π ⊆ T , Inf (π) ∩ α = ∅,
– K-co-Büchi condition, and for all branches π ⊆ T ,

∑
q∈α Occπ(q) ≤ K ,

– parity condition, and for all branches π ⊆ T , max{α(q) | q ∈ Inf (π)} is even.

A timed word θ is accepted by an AECA A iff there exists an accepting run of A
on θ. We denote by L(A) the language of A, i.e. L(A) = {θ | θ is accepted by A},
and by L(A)td the time diverging language accepted by A, i.e. L(A)td = {θ | θ ∈
TΣω

td and θ is accepted by A}.
For readability, we often refer to the language of an automaton A with co-Büchi

acceptance condition as LcoB(A). Similarly, we use LB(A) to denote the accepted lan-
guage of an automaton A with Büchi acceptance condition, LKcoB(A) in the case of an
automaton A with K-co-Büchi acceptance condition, and LP(A) for an automaton A
with parity acceptance condition.

Finally, let A = 〈Q, qin, Σ, δ, α〉 be an AECA with Büchi acceptance condition.

The dual of A, denoted Ã is defined as the AECA
〈
Q, qin, Σ, δ̃, α

〉
with co-Büchi

acceptance condition, where for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ), δ̃(q, σ, ψ) is

equal to ˜δ(q, σ, ψ) iff δ(q, σ, ψ) is defined. It is easy to check that LcoB(Ã) = TΣω \
LB(A).

Remark 2 (Time divergence). It is easy to see that LcoB(Ã)td = TΣω
td \ LB(A).
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Syntactic restrictions. Let us now define syntactic restrictions of AECA. Let A =
〈Q, qin, Σ, δ, α〉 be an AECA. Then:

1. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): δ(q, σ, ψ) is either undefined or
a purely disjunctive formula, then A is a non-deterministic event-clock automaton
(NECA for short).

2. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): δ(q, σ, ψ) is either undefined or a
purely conjunctive formula, then A is an universal event-clock automaton (UECA
for short).

3. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): δ(q, σ, ψ) is either undefined, or
δ(q, σ, ψ) ∈ Q, then A is a deterministic event-clock automaton (DECA for short).

4. If, for any q ∈ Q, σ ∈ Σ and ψ ∈ Constr (CΣ): either δ(q, σ, ψ) is undefined or
ψ ∈ Constr (HΣ), then A is a past event-clock automaton (PastECA for short).

5. If, for any q ∈ Q, σ ∈ Σ: δ(q, σ, true) is defined, then A is an alternating word au-
tomaton (AWA for short). In this case, since the third parameter of δ is always true,
we omit it. We refer to such automata as untimed word automata. We use the short-
hands NWA and DWA to refer to non-deterministic and deterministic (untimed)
word automata.

Given a NECA A and a timed word θ on Σ, if there exists an accepting run R = 〈T, �〉
of A on θ, then it is easy to see that there exists an accepting run with one branch π. We
denote such a run by the sequence qin, (σ0, τ0), q1, (σ1, τ1), · · · , qj , (σj , τj), · · · where
qinq1 · · · qj · · · is the label �(π) of the single branch π of T .

Weak and strong equivalences for event-clock valuations. We define two notions of
equivalence for valuations of clocks, the former called weak equivalence and the latter
called strong equivalence. The notion of weak equivalence applies to valuations for
both history clocks and prophecy clocks, while the notion of strong equivalence applies
to valuations for history clocks only. They are defined as follows.

Let C ⊆ HΣ ∪ PΣ , and let cmax ∈ N. Two valuations v1, v2 ∈ V (C) are weakly
equivalent, noted v1 ∼cmax v2, iff the following two conditions are satisfied:

(C1) ∀x ∈ C: v1(x) = ⊥ iff v2(x) = ⊥;
(C2) ∀x ∈ C: either v1(x) > cmax and v1(x) > cmax , or �v1(x)� = �v2(x)� and

�v1(x)� = �v2(x)�.

We note [v]∼cmax the weak equivalence class of v. We note wReg (C, cmax ) the finite
set of equivalence classes of the relation ∼cmax , and call them weak regions.

Lemma 3. Let C ⊆ HΣ ∪ PΣ , and let cmax ∈ N. Two valuations v1, v2 ∈ V (C) are
weakly equivalent iff for all ψ ∈ Constr (C, cmax ): v1 |= ψ iff v2 |= ψ.

Let C ⊆ HΣ , and let cmax ∈ N. Two valuations v1, v2 ∈ V (C) are strongly equiva-
lent, noted v1 ≈cmax v2, iff conditions C1 and C2 are satisfied and additionally:

(C3) ∀x1, x2 ∈ C: �v1(x1)� − v1(x1) ≤ �v1(x2)� − v1(x2) iff �v2(x1)� − v2(x1) ≤
�v2(x2)� − v2(x2).

We note [v]≈cmax the strong equivalence class of v, we note Reg (C, cmax ) the fi-
nite set of equivalence classes of the relation ≈cmax , and we call them strong re-
gions, or simply regions. Note that our notion of strong equivalence for valuations
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of history clocks is an adaptation of the classical notion of clock equivalence defined
for timed automata [AD94], hence it is a time-abstract bisimulation. For any region
r ∈ Reg (C, cmax ), we say that r′ ∈ Reg (C, cmax ) is a time-successor of r (written
r ≤t.s. r′) if and only if for any valuation v ∈ r, there is some t ∈ R≥0 such that
v + t ∈ r′. Note that the relation ≤t.s. is a partial order over Reg (C, cmax ). A region
r ∈ Reg (C, cmax ) is initial if, for all v ∈ r, for all (history) clock x ∈ C: v(x) = ⊥.
Note that the initial region is unique and denoted rCin (when C is clear from the con-
text we denote it by rin). Finally, for all r ∈ Reg (C, cmax ) and all x ∈ C, we note
r[x := 0] the region s.t. for all v ∈ r[x := 0], there is v′ ∈ r with v′[x := 0] = v.

Region automaton. Given a set of history clocks C ⊆ HΣ and cmax ∈ N, the region
automaton RegAut (C, cmax ) =

〈
Reg (C, cmax ) ∪ {⊥}, rCin, ΣR, δR, α

〉
, is a DWA

where ΣR = Σ × Reg (C, cmax ) and α = Reg (C, cmax ) is a Büchi acceptance
condition. The transition relation δR is such that for all r, r′ ∈ Reg (C, cmax ), and for
all σ ∈ Σ:

– δR(r, (σ, r′)) = r′[←−xσ := 0] if r ≤t.s. r
′, otherwise δR(r, (σ, r′)) = ⊥,

– δR(⊥, (σ, r′)) = ⊥.

Regionalizations of a timed word. Given C ⊆ CΣ , cmax ∈ N, and a timed word θ =
(σ0, τ0)(σ1, τ1) · · · ∈ TΣω∪TΣ∗, let vi be the restriction of Valθi to the set of clocks C.
We define the weak region word associated to θ, denoted wrg(C, cmax , θ) as the (un-
timed) word (σ0, [v0]∼cmax )(σ1, [v1]∼cmax ) · · · overΣ×wReg (C, cmax ). Intuitively,
wrg(C, cmax , θ) describes, along with the sequence of letters, the sequence of weak re-
gions visited by θ. If C ⊆ HΣ , we also define the (strong) region word associated to
θ, denoted rg(C, cmax , θ) as the (untimed) word (σ0, [v0]≈cmax )(σ1, [v1]≈cmax ) · · ·
over Σ×Reg (C, cmax ). We extend wrg and rg to set of words L: wrg(C, cmax , L) =
{wrg(C, cmax , θ) | θ ∈ L} and rg(C, cmax , L) = {rg(C, cmax , θ) | θ ∈ L}.

Proposition 4. For all set of clocks C ⊆ HΣ and cmax ∈ N: LB(RegAut (C, cmax ))
= rg(C, cmax ,TΣω).
Remark 5 (Time divergence). We can extend the definition of region automaton to ob-
tain an automaton RegAuttd (C, cmax ) that accepts all the infinite words over Σ ×
Reg (C, cmax ) associated to diverging timed words. To achieve this, we must use a
generalized Büchi acceptance condition that guarantees time divergence on the regions
(see [AD94] for the details). Then, L(RegAuttd (C, cmax )) = rg(C, cmax ,TΣω

td).

Regionalizations of an AECA. Let A = 〈Q, qin, Σ, δ, α〉 be an AECA, let C ⊆ CΣ be
the set of clocks and cmax ∈ N be the maximal constant appearing in A. We define the
weak regionalization ofA as the AWA wRg(A) = 〈Q, qin, Σ × wReg (C, cmax ) , δ′, α〉
s.t. for all q ∈ Q, and (σ, r) ∈ Σ × wReg (C, cmax ): δ′(q, (σ, r)) = δ(q, σ, ψ) where
ψ is the unique constraint such that δ(q, σ, ψ) is defined and v |= ψ for all v ∈ r.

Let A = 〈Q, qin, Σ, δ, α〉 be a PastECA, let C ⊆ HΣ be the set of history clocks
and cmax ∈ N be the maximal constant appearing in A. We define the (strong) re-
gionalization of A as the AWA Rg(A) = 〈Q, qin, Σ × Reg (C, cmax ) , δ′, α〉 s.t. for
all q ∈ Q, and (σ, r) ∈ Σ × Reg (C, cmax ): δ′(q, (σ, r)) = δ(q, σ, ψ) where ψ is the
unique constraint such that δ(q, σ, ψ) is defined and v |= ψ for all v ∈ r.

The following lemma links runs in an AECA, and its weak and (strong) regionaliza-
tion (when A is a PastECA).
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Lemma 6. Let A be an AECA. For every timed word θ ∈ TΣω, R = 〈T, �〉 is
an accepting run tree of A over θ iff it is an accepting run tree of wRg(A) over
wrg(C, cmax , θ). Moreover, if A is a PastECA, R = 〈T, �〉 is an accepting run tree
of A over θ iff it is an accepting run tree of Rg(A) over rg(C, cmax , θ).

The following lemma states that, for all PastECA A, the words accepted by both Rg(A)
and by RegAut (C, cmax ) are exactly the (strong) regionalizations of the timed words
accepted by A (whatever the acceptance condition of A is):

Lemma 7. For all PastECA A = 〈Q, qin, Σ, δ, α〉, with set of clocks C ⊆ HΣ and
maximal constant cmax : L(Rg(A)) ∩ LB(RegAut (C, cmax )) = rg(C, cmax , L(A)).

Proof. Let θ be a word in L(A). Then there is an accepting run R = 〈T, �〉 of A over θ.
By Proposition 4, rg(C, cmax , θ) ∈ LB(RegAut (C, cmax )). By Lemma 6, R is also a
accepting run of Rg(A) over rg(C, cmax , θ). Thus, rg(C, cmax , θ) ∈ L(Rg(A)).

Conversely, let w be a word in L(Rg(A)) ∩ LB(RegAut (C, cmax )). Since w ∈
LB(RegAut (C, cmax )), by Proposition 4, there is θ ∈ TΣω such that rg(C, cmax , θ) =
w. Let R = 〈T, �〉 be an accepting run of Rg(A) over w. By Lemma 6, R is also a ac-
cepting run of A over θ and thus θ ∈ L(A). ��
Remark 8 (Time divergence). If we restrict our attention to diverging timed words, then:
L(Rg(A)) ∩ L(RegAuttd (C, cmax )) = rg(C, cmax , L(A)td )

3 Solving Language Inclusion without Determinization

In this section, we show how to complement AECA with Büchi acceptance condition.
This procedure allows us to solve the universality and language inclusion problems for
NECA with Büchi acceptance condition without resorting to determinization procedures
(like the one defined by Safra in [Saf88]) that are resistant to efficient implementation.

We start by showing how to transform a co-Büchi acceptance condition into a Büchi
condition when considering AECA. For that, we need the existence of memoryless runs:

Lemma 9. Let A be an AECA with co-Büchi acceptance condition. For all timed words
θ such that θ ∈ LcoB(A): A has an accepting memoryless run on θ.

Proof. Let C be the set of clocks and cmax be the maximal constant of A. Let θ
be a timed word accepted by A. By Lemma 6, wrg(C, cmax , θ) is accepted by the
AWA wRg(C, cmax , A). Let R = 〈T, �〉 be an accepting run of wRg(C, cmax , A) on
wrg(C, cmax , θ). By the result of Emerson and Jutla [EJ91, Theorem 4.4], we can make
the hypothesis that R is memoryless. By Lemma 6, R is an accepting run of A on θ. ��
The memoryless property of accepting runs in AECA with co-Büchi acceptance condi-
tion allows us to represent those runs as DAGs where isomorphic subtrees are merged.
Formally, we associate to every memoryless run R = 〈T, �〉 of A = 〈Q, qin, Σ, δ, α〉
the DAG GR = 〈V,E〉, where the set of vertices V ⊆ Q×N represents the labels of the
nodes of R at each level. Formally, (q, l) ∈ V if and only if there is a node x ∈ T such
that |x| = l and �(x) = q. The set of edges E ⊆

⋃
l≥0(Q×{l})× (Q×{l+1}) relates

the nodes of one level to their children. Formally, ((q, l), (q′, l + 1)) ∈ E if and only if
there exists some node x ∈ T and c ∈ N such that x · c ∈ T and |x| = l, �(x) = q, and
�(x · c) = q′. Note that the width of the DAG is bounded by |Q|.
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Now, we can apply results of [KV01] that characterize the structure of accepting
runs of alternating automata with co-Büchi acceptance condition. For that we need
some additional notations. For k ∈ N we write [k] for the set {0, 1, . . . , k} and [k]odd

for the set of odd elements of [k]. The following lemma is adapted from [KV01]:

Lemma 10. Let A be an AECA with n locations and co-Büchi accepting condition α.
The vertices of the DAG GR associated to a memoryless accepting run R of A can be
labelled by a ranking function f : V → [2n] having the following properties:

(P1) for (q, l) ∈ Q× N, if f(q, l) is odd, then q /∈ α,
(P2) for (q, l) and (q′, l′) such that (q′, l′) is reachable from (q, l), f(q′, l′) ≤ f(q, l),
(P3) in every infinite path π in GR, there exists a node (q, l) such that f(q, l) is odd

and, for all (q′, l′) in π reachable from (q, l): f(q′, l′) = f(q, l).

We use this ranking function to justify the transformation of an AECA with co-Büchi
acceptance condition into an AECA with Büchi acceptance condition.

Let A = 〈Q, qin, Σ, δ, α〉 be an AECA with co-Büchi acceptance condition, and let
|Q| = n. We define the AECA Rank(A) as 〈Q′, q′in, Σ, δ′, α′〉 with Büchi acceptance
condition, where Q′ = Q× [2n], q′in = (qin, 2n), and δ′ is defined using the auxiliary
function (we use the notations of [KV01]): release : B+(Q) × [2n] → B+(Q′), which
maps a formula φ ∈ B+(Q) and an integer i ∈ [2n] to a formula obtained from φ by
replacing each atom q ∈ Q by the disjunction

∨
j≤i(q, j). Then, for any (q, i) ∈ Q′,

σ ∈ Σ and ψ ∈ Constr (CΣ) such that δ(q, σ, ψ) is defined,

δ′((q, i), σ, ψ) =

{
release(δ(q, σ, ψ), i) if q /∈ α or i is even,

false if q ∈ α and i is odd.

Finally, α′ = Q× [2n]odd is a Büchi acceptance condition.
Remark that, by condition A2 of the definition of the transition relation in AECA,

for all q ∈ Q, σ ∈ Σ and valuation v ∈ V (C), there is exactly one clock constraint
ψ such that δ(q, σ, ψ) is defined and v |= ψ. Thus, by construction of Rank(A), for all
q ∈ Q, i ∈ [n] and valuation v ∈ V (C), there is exactly one clock constraint ψ such
that δ′((q, i), wk, ψ) is defined and v |= ψ. Thus, δ′ is well-formed. Let us establish the
relationship between the accepted languages of A and Rank(A)

Proposition 11. For all AECA A with co-Büchi condition: LB(Rank(A)) = LcoB(A).

Proof. Let θ = (σ, τ) ∈ TΣω be a timed word in LB(Rank(A)) and let us show
that θ ∈ LcoB(A). Let R′ = 〈T, �′〉 be an accepting run of Rank(A) on θ. Consider
R = 〈T, �〉 where for all x ∈ T , �(x) = q if �′(x) = (q, j) for some rank j. By
definition of Rank(A), R is a run of A on θ. Let us now show that it is an accepting
run of A. As R′ is accepting for Rank(A), we know that every branch has the following
property: from some level i ∈ N, the rank j is not changing anymore. This is because
the definition of the transition function of Rank(A) requires the ranks to decrease along
a path, while staying positive. Moreover, the acceptance condition imposes that this
rank is odd. Let π be such a branch. As accepting locations of A are associated to odd
ranks and cannot appear in runs of Rank(A) (it is forbidden by the transition relation),
we know that the branch π in R visits only finitely many accepting locations and so it
respects the acceptance condition of A.
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Conversely, let θ ∈ LcoB(A) and let us show that θ ∈ LB(Rank(A)). Let R = (T, �)
be an accepting run of A on θ. Now consider the tree R′ = (T, �′), where �′ is s.t.
�(ε) = (qin, 2n) and for all x ∈ T , �′(x) = (�(x), f(x)). Following properties P1 and
P2 of Lemma 10, R′ = (T, �′) is a run of Rank(A) over the timed word θ. Let π be a
branch of R′. Then, property P3 in Lemma 10 ensures that at some point, all the states
in π are labelled by the same odd rank. Thus, any branch of R′ visits infinitely often a
state in Q× [2n]odd, and Rank(A) is accepting. ��
Next, we show that the construction due to Miyano and Hayashi [MH84] to transform
an alternating Büchi automaton into a nondeterministic one can be easily adapted to
AECA with Büchi acceptance condition. Formally, given an AECA with Büchi accep-
tance condition A = 〈Q, qin, Σ, δ, α〉, we define a NECA MH(A) as follows. For any
σ ∈ Σ, for any q ∈ Q, let Φσ

q = {ψ ∈ Constr (CΣ) | δ(q, σ, ψ) is defined}. By con-
dition A1 of the definition of an AECA, Φσ

q is finite. We also define, for any σ ∈ Σ,
for any subset S ⊆ Q, the set of formulas Ψσ

S = {
∧

q∈S ψq | ψq ∈ Φσ
q }. Intuitively,

Ψσ
S contains all the conjunctions that contain exactly one conjunct from each set Φσ

q

(for q ∈ S). Finally, for S ⊆ Q, O ⊆ Q, σ ∈ Σ, ψ =
∧

q∈S ψq ∈ Ψσ
S , we let

P (S,O) = {(S′, O′) | S′ |=
∧

q∈S δ(q, σ, ψq), O′ ⊆ S′, O′ |=
∧

q∈O δ(q, σ, ψq)} if
O = ∅, and P (S,∅) = {(S′, S′) | S′ |=

∧
q∈S δ(q, σ, ψq)}.

Then, we define MH(A) as the AECA
〈
2Q × 2Q, ({qin},∅), Σ, δ′, 2Q × {∅}

〉
with

Büchi acceptance condition where, for any (S,O) ∈ 2Q × 2Q, for any σ ∈ Σ, for any
ψ ∈ Ψσ

S : δ′((S,O), σ, ψ) =
∨

(S′,O′)∈P (S,O)(S
′, O′ \ α) (and δ′ is undefined other-

wise). Remark that, by conditions A1 and A2, Ψσ
S is a finite set, and for any valuation v,

there is exactly oneψ ∈ Ψσ
S s.t. v |= ψ. Hence, δ′ respects the definition of the transition

relation of an AECA. The next proposition proves the correctness of the construction.

Proposition 12. For all AECA A with Büchi condition: LB(MH(A)) = LB(A).

Proof. Assume A = 〈Q, qin, Σ, δ, α〉. Let θ be a timed word in LB(A) and R = 〈T, �〉
be an accepting run of A over θ. Then, let ρ = ({qin},∅), (σ0, τ0), (S1, O1), (σ1, τ1),
· · · be the sequence such that, for all i ∈ N: (i) Si = {q | ∃x ∈ T, |x| = i, �(x) = q}
and (ii) Oi = Si \α if Oi−1 = ∅; Oi = {q | ∃x · c ∈ T, |x · c| = i, �(x · c) = q, �(x) ∈
Oi−1} ∩ (Q \ α) otherwise (with the convention that O0 = ∅). It is easy to see that, as
in the original construction of [MH84], ρ is an accepting run of MH(A) over θ.

Conversely, given a run ({qin},∅)(σ0, τ0)(S1, O1)(σ1, τ1)(S2, O2) · · · of MH(A),
we consider a labelled tree 〈T, �〉 s.t. (i) �(ε) = qin and (ii) for any x ∈ T : {�(x · i) |
i ∈ N} ⊆ S|x|+1 and {�(x · i) | i ∈ N} |= δ(�(x), σ|x|, ψ), where ψ is the unique
constraint s.t. δ(�(x), σ|x|, ψ) is defined and (θ, |x|) |= ψ. Clearly, R is an accepting
run tree of A over θ. ��

Applications. Let us show how to apply these constructions to complement an NECA.
Given a NECA A = 〈Q, qin, Σ, δ, α〉 with Büchi acceptance condition, we first con-
struct its dual Ã which is thus a UECA with co-Büchi acceptance condition s.t. LcoB(Ã)
= TΣω \LB(A). Then, thanks to Proposition 11 and Proposition 12, it easy to check that
MH(Rank(Ã)) is a NECAwith Büchi condition s.t. LB(MH(Rank(Ã))) = TΣω\LB(A).

This construction can be applied to solve the language inclusion and language uni-
versality problems, because LB(A) is universal iff TΣω \LB(A) is empty and LB(B) ⊆
LB(A) iff LB(B) ∩ (TΣω \ LB(A)) is empty.
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Remark 13 (Time divergence). All the constructions presented above are valid if we
consider the time divergent semantics. Indeed, L(A)td ⊆ L(B)td if and only if (L(A)∩
L(B)) ∩ TΣω

td = ∅

Remark 14 (Efficient implementation). In [DR10], it is shown how to use subsumption
to implement efficient emptiness test for automata defined by the Miyano and Hayashi
construction without explicitly constructing them. Those methods can be readily ex-
tended to the case of event-clock automata.

4 Safraless Algorithm for Realizability

In this section, we study the realizability problem for timed specifications expressed
by UECA. We restrict to event-clock automata with history clocks only as the use of
prophecy clocks leads to undecidability [DGRR09]. To formalize the realizability prob-
lem in this context, we rely on the notion of timed game.

Timed games. A timed game (TG for short) is a tuple 〈Σ1, Σ2,W 〉 where Σi (i = 1, 2)
is a finite alphabet for player i (with Σ1 ∩ Σ2 = ∅), and W ⊆ TΣω is a set of timed
words, called the objective of the game (for player 1).

A TG is played for infinitely many rounds. At each round i, player 1 first chooses
a delay t1i and a letter σ1

i ∈ Σ1. Then, player 2 chooses either to pass or to overtake
player 1 with a delay t2i ≤ t1i and a letter σ2

i ∈ Σ2. A play in a timed game is a timed
word (w, τ) s.t. for any i ≥ 0 either (i) player 2 has passed at round i, wi = σ1

i and
τi = τi−1 + t1i , or (ii) player 2 has overtaken player 1 at round i, wi = σ2

i and τi =
τi−1+t2i (with the convention that τ−1 = 0). A timed word θ is winning in 〈Σ1, Σ2,W 〉
iff θ ∈ W . A strategy for player 1 is a function π that associates to every finite prefix
of a timed word (w0, τ0) . . . (wk, τk) an element from Σ1 × R≥0. A play θ = (w, τ)
is consistent with strategy π for player 1 iff for every i ≥ 0, either player 1 has played
according to its strategy i.e., (wi, τi − τi−1) = π((w0, τ0) . . . (wi−1, τi−1)) or player 2
has overtaken the strategy of player 1 i.e., wi ∈ Σ2, and π((w0, τ0) . . . (wi−1, τi−1)) =
(σ, τ) with τ ≥ τi − τi−1. The outcome of a strategy π in a game G = 〈Σ1, Σ2,W 〉,
noted Outcome (G, π) is the set of all plays of G that are consistent with π. A strategy
π is winning iff Outcome (G, π) ⊆ W .

The realizability problem asks, given a universal PastECA A with co-Büchi accep-
tance condition, whose alphabet Σ is partitioned into Σ1 and Σ2, if player 1 has a
winning strategy in G = 〈Σ1, Σ2, LcoB(A)〉.

To solve this problem without using Safra determinization, we show how to reduce
it to a timed safety objective via a strengthening of the winning objective using K-co-
Büchi acceptance condition. We state the main result of this section:

Theorem 15. Given a universal PastECAAwith co-Büchi acceptance condition,whose
alphabet Σ is partitioned into Σ1 and Σ2, player 1 has a winning strategy in GT =
〈Σ1, Σ2, LcoB(A)〉 iff he has a winning strategy in GT

K = 〈Σ1, Σ2, LKcoB(A)〉, for any
K ≥ (2nn+1n! + n) × |Reg (HΣ , cmax ) | where n is the number of locations in A.

To establish this result, we use several intermediary steps. First, we show that we can
associate a game with an ω-regular objective, played on untimed words, to any timed
game whose objective is defined by a UECA with co-Büchi acceptance condition.
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Region games. A region game is a tuple GR = 〈Σ1, Σ2, cmax ,W 〉 where Σ = Σ1 ∪
Σ2, Σ1∩Σ2 = ∅, cmax ∈ N, W is a set of infinite words on the alphabet (Σ1�Σ2)×
Reg (HΣ , cmax ), called the objective of the game (for player 1).

A play of a region game is an infinite (untimed) word on the alphabet (Σ1 ∪Σ2) ×
Reg (HΣ , cmax ). The game is played for infinitely many rounds. In the initial round,
player 1 first chooses a letter σ1 ∈ Σ1. Then, either player 2 lets player 1 play and the
first letter of the play is (σ1, rin), or player 2 overtakes player 1 with a letter σ2 ∈ Σ2

and the first letter of the play is (σ2, rin). In all the subsequent rounds, and assuming
that the prefix of the current play is (σ0, r0), · · · (σk, rk), player 1 first chooses a pair
(σ1, r1) ∈ Σ1×Reg (HΣ, cmax ) such that rk[←−xσk

:= 0] ≤t.s. r
1. Then, either player 2

lets player 1 play and the new prefix of the play is ρk+1 = ρk · (σ1, r1), or player 2
decides to overtake player 1 with a pair (σ2, r2) ∈ Σ2 × Reg (HΣ, cmax ), respecting
rk[←−xσk

:= 0] ≤t.s. r2 ≤t.s. r1. In this case, the new prefix of the play is ρk+1 =
ρk · (σ2, r2). A play ρ is winning in 〈Σ1, Σ2, cmax ,W 〉 iff ρ ∈ W . As for timed
games, a strategy for player 1 is a function πR that associates to every finite prefix
(w0, r0) . . . (wk, rk) an element (σ, r) ∈ Σ1 × Reg (HΣ , cmax ) such that rk[←−−xwk

:=
0] ≤t.s. r. A play ρ = (σ0, rin)(σ1, r1) · · · is consistent with strategy π for player 1
iff for all i ≥ 0, either player 1 has played according to its strategy, i.e., (σi, ri) =
π((σ0, rin) . . . (σi−1, ri−1)) (with the convention that (σ−1, r−1) = ε), or player 2 has
overtaken the strategy of player 1 i.e., σi ∈ Σ2, π((σ0, rin) . . . (σi−1, ri−1)) = (σ, r)
and ri ≤t.s. r.

Remark 16. All plays of 〈Σ1, Σ2, cmax ,W 〉 are in LB(RegAut (HΣ , cmax )).

The outcome Outcome (G, π) of a strategy π on a region gameG and winning strategies
are defined as usual. The next proposition shows how a timed game can be reduced to a
region game.

Proposition 17. Let A be a universal PastECA with maximal constant cmax . Player 1
has a winning strategy in the timed game GT = 〈Σ1, Σ2, LcoB(A)〉 iff he has a winning
strategy in the region game GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉. Moreover, for any
K ∈ N, player 1 has a winning strategy in GT = 〈Σ1, Σ2, LKcoB(A)〉 iff he has a
winning strategy in GR = 〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉.

Proposition 17 tells us that we can reduce the realizability problem of timed games to
that of region games. Next we show that region games can be won thanks to a finite
memory strategy. For that, we expose a reduction from region games to parity games.

Parity games. A parity game is a tuple G = 〈Q,E, q0,Colours, λ〉 where Q = Q1�Q2

is the set of positions, partitioned into the player 1 and player 2 positions, E ⊆ Q×Q
is the set of edges, q0 ∈ Q is the initial position, and λ : Q �→ Colours is the coloring
function.

A play of a parity game G = 〈Q,E, q0,Colours, λ〉 is an infinite sequence ρ =
q0q1 · · · qj · · · of positions s.t. for any j ≥ 0: (qj , qj+1) ∈ E. Given a play ρ =
q0q1 · · · qj · · · , we denote by Inf (ρ) the set of positions that appear infinitely often in ρ,
and by Par (ρ) the value max{λ(q) | q ∈ Inf (ρ)}. A play ρ is winning for player 1 iff
Par (ρ) is even. A strategy for player 1 in G is a function π : Q∗Q1 → Q that associates,
to each finite prefix ρ of play ending in a Player 1 state Last(ρ), a successor position π(ρ)
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s.t. (Last(ρ), π(ρ)) ∈ E. Given a parity gameG and a strategyπ for player 1, we say that
a play ρ = q0q1 · · · qj · · · of G is consistent with π iff for j ≥ 0: qj ∈ Q1 implies that
qj+1 = π(q0 · · · qj). We denote by Outcome (G, π) the set of plays that are consistent
with π. A strategy π is winning iff every play ρ ∈ Outcome (G, π) is winning.

It is well-known that parity games admit memoryless strategies. More precisely, if
there exists a winning strategy for player 1 in a parity game G, then there exists a
winning strategy π for player 1 s.t. for any pair of prefixes ρ and ρ′: Last(ρ) = Last(ρ′)
implies π(ρ) = π(ρ′). A memoryless strategy π can thus be finitely represented by a
function fπ : Q1 → Q, where, for any q ∈ Q1, fπ(q) is the (unique) position q′ s.t. for
any prefix ρ = q0 · · · q, π(ρ) = q′. In the sequel we often abuse notations and confuse
fπ with π when dealing with memoryless strategies in parity games.

Let us show how to reduce the region game 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉 to a par-

ity game. First consider the NWA R̃g(A) that dualizes Rg(A) and such that LB(R̃g(A))
= Σω \ LcoB(Rg(A)). Then, using Piterman’s construction [Pit07], we can obtain a de-

terministic parity automaton D̃ such that LP(D̃) = LB(R̃g(A)), and by complementing
D̃, we obtain a deterministic (and complete) parity automaton D such that LP(D) =
LcoB(Rg(A)). We use this automaton and the region automaton RegAut (HΣ , cmax ) as
a basis for the construction of the parity game.

A play in the parity game simulates runs over words in (Σ × Reg (HΣ, cmax ))ω

of both D =
〈
QD, qDin, Σ × Reg (HΣ , cmax ) , δD, αD

〉
and RegAut (HΣ , cmax) =〈

QR, qRin, Σ
R, δR, αR

〉
. Formally, GD =

〈
qGin, Q

G, EG,Colours, λG
〉
, where the posi-

tions of player 1 are QG
1 = (QD × Reg (HΣ, cmax )), and the positions of player 2 are

QG
2 = (QD × Reg (HΣ, cmax )) × (Σ1 × Reg (HΣ , cmax )). Intuitively, (q, r) ∈ QG

1

means that the simulated runs are currently in the states q and r of respectively D and
RegAut (HΣ , cmax ). From a position in QG

1 , player 1 can go to a position memorizing
the current states in D and RegAut (HΣ , cmax ), as well as the next move according to
player 1’s strategy. Thus, (q, r, σ1, r1) ∈ QG

2 means that we are in the states q and r in the
automata, and that (σ1, r1) is the letter proposed by player 1. Then, from (q, r, σ1, r1),
player 2 chooses either to let player 1 play, or decides to overtake him. In the former
case, the game moves a position (q′, r′) where q′ and r′ are the new states in D and
RegAut (HΣ , cmax ) after a transition on (σ1, r1). In the latter case (overtake player 1),
the game moves to a position (q′′, r′′), assuming there are σ2 ∈ Σ2, r2 ≤t.s. r

1 such
that q′′ and r′′ are the new states of D and RegAut (HΣ, cmax ) after a transition on
(σ2, r2). These moves are formalized by the set of edges EG = EG

1 � EG
2 where:

EG
1 = {

(
(q, r), (q, r, σ1, r1)

)
| σ1 ∈ Σ1, δ

R(r, (σ1, r1)) = ⊥}
EG

2 = {
(
(q, r, σ1, r1), (q′, r′)

)
| (q′, r′) = (δD(q, (σ1, r1)), δR(r, (σ1, r1))}

∪
{(

(q, r, σ1, r1), (q′, r′)
) ∣∣∣∣∃σ

2 ∈ Σ2, r
2 ≤t.s. r

1, δR(r, (σ2, r2)) = ⊥, and
(q′, r′) = (δD(q, (σ2, r2)), δR(r, (σ2, r2)))

}

Intuitively, player 1 chooses its next letter in Σ1 and a region. The definition of EG
1 uses

transitions of RegAut (HΣ, cmax ) and hence enforces the fact that player 1 can only
propose to go to a region that is a time successor of the current region, and thus respects
the rules of the region game. Symmetrically, player 2 can either let player 1 play, or play a
letter fromΣ2 with a region which is a time predecessor of the region proposed by player
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1. Again, the automatonD being complete, player 2 can play any letter in Σ2, but he can
only play in regions that are time successors of the current region. The initial position is
qGin = (qDin, rin). Finally, the labelling of the positions reflects the colouring of the states
in D: λG(q, r) = λG(q, r, σ1, r1) = αD(q). Hence, a play in the parity game is winning
for player 1 if and only if the word simulated is accepted by D. The next proposition
shows the relationship between GR and the corresponding parity game GD.

Proposition 18. Player 1 has a winning strategy in the region game GR if and only if
he has a winning strategy in the corresponding parity game GD.

Because parity games admit memoryless strategies, and thanks to Proposition 18, we
can deduce a bound on the memory needed to win a region game whose objective is
given by LcoB(Rg(A)) for a universal PastECA A.

Lemma 19. Let A be a universal PastECA with n locations and maximal constant
cmax . If player 1 has a winning strategy in GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉, then
he has a finite-state strategy, represented by a deterministic finite state transition system
with at most m states, where m = (2nnn! + 1) × |Reg (HΣ, cmax ) |.

Proof. If player 1 has a winning strategy in 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉, then by
Proposition 18, and by the memoryless property of parity games, he has a memory-
less winning strategy in the parity game GD, πG : QG

1 → QG
2 . From this memory-

less strategy, one can define a finite-state strategy for player 1 in the original region
game. We first define π : QG

1 → Σ1 × Reg (HΣ , cmax) as follows. For all q ∈ QD,
r ∈ Reg (HΣ , cmax ): π(q, r) = (σ1, r1) iff πG(q, r) = (q, r, σ1, r1). Then, we let
Aπ be the finite transition system

〈
QG

1 , q
G
in, Σ × Reg (HΣ, cmax ) , δπ

〉
where, for all

q = (q1, r1) ∈ QG
1 , (σ, r) ∈ Σ × Reg (HΣ , cmax ): δπ(q, (σ, r)) = (q′1, r

′
1) iff (i)

q′1 = δD(q1, (σ, r)) and (ii) r′1 = δR(r1, (σ, r))) and (iii) either π(q) = (σ, r), or
π(q) = (σ′, r′) and σ ∈ Σ2, and r ≤t.s. r

′. In the other cases, δ is undefined.
From π and Aπ , we can define the strategy πR to be played in the region game

as follows. Let Δ : QG
1 × (Σ × Reg (HΣ, cmax ))∗ → QG

1 ∪ {⊥} be the function
s.t. Δ(q, w) is the location reached in Aπ after reading the finite word w from lo-
cation q, or ⊥ if w cannot be read from q. Then, πR is defined as follows. For any
ρR = (σ1, r1) · · · (σn, rn), we let πR(ρR) = π(Δ(qGin, ρ

R)) if Δ(qGin, ρ
R) = ⊥;

otherwise: πR(ρR) = (σ, rn) where σ is any letter in Σ1. Remark that, by defini-
tion of π and Aπ, the proposed region is always a time successor of the last region
of the play, so the strategy is correctly defined. Let us show that πR is winning: let
ρR = (σ0, r0) · · · (σj , rj) · · · be a play consistent with πR. By definition of πR, there
is a run R = qGin, (σ0, r0), qG1 , · · · , qGj , (σj , rj), · · · of Aπ over ρR. It is easy to see that
one can construct from this run a play in GD that is consistent with πG. Then, since πG

is winning, ρR ∈ LP(D) = LcoB(Rg(A)). Since this is true for any run that is consistent
with πR, it is a winning strategy.

Finally, observe that the number of states of Aπ is |QD| × |Reg (HΣ, cmax ) |. By

the result of [Pit07], |QD̃| = 2nnn!. Then |QD| = 2nnn! + 1, and this establishes the
bound m = (2nnn! + 1) × |Reg (HΣ, cmax ) |. ��

Thanks to Lemma 19, we can now prove that we can strengthen the co-Büchi condition
of the objective of the region game, to a K-co-Büchi condition:
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Proposition 20. Let A be a universal PastECA with co-Büchi acceptance condition,
n locations and maximal constant cmax . Then, player 1 has a winning strategy in
GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉 if and only if he has a winning strategy in GR

K =
〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉, with K = (2nn+1n! + n) × |Reg (HΣ, cmax ) |.
Proof. First, observe that, since LKcoB(Rg(A)) ⊆ LcoB(Rg(A)), any winning strategy
for player 1 in GR

K , is winning in GR.
Conversely, suppose player 1 has a winning strategy inGR. Then, by Lemma 19, there

is a strategy π and a transition system Aπ = 〈Qπ, qπin, Σ × Reg (HΣ , cmax ) , δπ〉 with
m locations (where m = (2nnn! + 1) × |Reg (HΣ , cmax) |) s.t. Outcome (GR, π) =
L(Aπ) and L(Aπ) ⊆ LcoB(Rg(A)). Let Rg(A) = 〈Q, qin, Σ × Reg (HΣ, cmax ) , δ, α〉,
and let Aπ×Rg(A) = 〈Qπ ×Q, (qπin, qin), Σ × Reg (HΣ , cmax ) , δ′〉 be the transition
system s.t. for all (qπ, q) ∈ Qπ ×Q, for all (σ, r) ∈ Σ × Reg (HΣ , cmax ): (qπ2 , q2) ∈
δ′((qπ1 , q1), (σ, r)) iff δπ(qπ1 , (σ, r)) = qπ2 and q2 appears as a conjunct in δ(q1, (σ, r))
(recall that Rg(A) is universal). Clearly, each run of Aπ ×Rg(A) simulates a run of Aπ,
together with a branch that has to appear in a run of Rg(A).

Then, let us show that there is, in Aπ × Rg(A), no cycle that contains a location
from Qπ × α. This is established by contradiction. Assume such a cycle exists, and let
(qπin, qin)(qπ1 , q1)(q

π
2 , q2) · · · (qπj , qj) · · · be an infinite run of Aπ × Rg(A) that visits a

location from Qπ ×α infinitely often. Moreover, let w be the infinite word labeling this
run. Then, clearly, qπinq

π
1 q

π
2 · · · qπj · · · is a run of Aπ that accepts w. On the other hand,

the run of Rg(A) on w necessarily contains a branch labelled by qinq1q2 · · · qj · · · .
Since this branch visits α infinitely often, Rg(A) rejects w because the acceptance con-
dition α of Rg(A) is co-Büchi. This contradicts the fact that L(Aπ) ⊆ LcoB(Rg(A)).

Then, any word accepted by Aπ visits at most m × n times an accepting state of
Rg(A), and L(Aπ) ⊆ LKcoB(Rg(A)), with K = (2nnn! + 1) × |Reg (HΣ , cmax) | ×
n = (2nn+1n! + n) × |Reg (HΣ, cmax ) |. Thus, player 1 has a winning strategy in
〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉 too. ��
Thanks to these results, we can now prove Theorem 15:

Proof of Theorem 15. Let K ≥ (2nn+1n! + n) × |Reg (HΣ , cmax ) |. If there is a
winning strategy for player 1 in GT

K
then obviously there is a winning strategy for player

1 in GT . Conversely, suppose there is a winning strategy for player 1 in GT . Then, by
Proposition 17, he has a winning strategy in GR = 〈Σ1, Σ2, cmax , LcoB(Rg(A))〉, and
by Proposition 20, he has a winning strategy in GR

K = 〈Σ1, Σ2, cmax , LKcoB(Rg(A))〉,
with K = (2nn+1n! + n) × |Reg (HΣ, cmax ) |. By applying again Proposition 17, he
has a winning strategy in the timed game GT

K = 〈Σ1, Σ2, LKcoB(A)〉. Since K ≤ K,
LKcoB(A) ⊆ LKcoB(A). Hence player 1 has a winning strategy in GT

K
. ��

Solving games defined by UECA with K-co-Büchi acceptance condition. For solving
those games, we show how to build, from a UECA A = 〈Q, qin, Σ, δ, α〉 with K-
co-Büchi acceptance condition, a DECA with 0-co-Büchi acceptance condition which
is denoted DetK(A), that accepts the same timed language. The construction of this
DECA is based on a generalization of the subset construction. When applied to an
untimed universal automatonA with set of locationsQ, the classical subset construction
consists in building a new automaton A′ whose locations are subsets of Q. Thus, each
location of A′ encodes the set of locations of A that are active at each level of the run
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tree. In the case of K-co-Büchi automata, one needs to remember how many times
accepting states have been visited on the branches that lead to each active location.
As a consequence, the locations of the subset construction should be sets of the form
{(q1, n1), . . . , (q�, n�)}, where each qi is an active location that has been reached by a
branch visiting exactly ni accepting states. However, in this case, the set of locations in
the subset construction is not finite anymore. This can be avoided by observing that we
can keep only the maximal number of visits (up to K+1) to accepting locations among
all the branches that reach q. So, the states of the deterministic automaton are functions
F : Q �→ {−1, 0, 1, . . . ,K,K + 1}, where F (q) = −1 means that q is not currently
active, F (q) = k with 0 ≤ k ≤ K means that q is currently active and that the branch
with maximal number of visits to α that leads to q has visited accepting states k times,
and F (q) = K + 1 means that q is currently active and that the branch with maximal
numbers of visits to α that leads to q has visited accepting states more than K times. In
this last case, the timed word which is currently read has to be rejected, because of the
K-co-Büchi condition.

Formally, DetK(A) = 〈F , F0, Σ,Δ, αK〉 where the following holds. F = {F | F :
Q → {−1, 0, 1, . . . ,K,K + 1}}. If we let (q ∈ α) be the function that returns 1 if
q ∈ α and 0 otherwise, F0 ∈ F is such that F0(q0) = (q0 ∈ α) and F0(q) = −1 for
all q ∈ Q and q = q0. Now, Δ(F, σ, ψ) is defined if there exists a function h : {q ∈
Q | F (q) ≥ 0} → Constr (PΣ) s.t. (i) ψ is equal to

∧
q|F (q)≥0 h(q) and this formula

is satisfiable, (ii) for all q ∈ Q such that F (q) ≥ 0, δ(q, σ, h(q)) is defined. In this
case, Δ(q, σ, ψ) = F ′ where F ′ is the counting function such that for all q ∈ Q, F ′(q)
equals: max

{
min
(
K+1, F (p)+(q ∈ α)

) ∣∣∣ q ∈ δ(p, σ, h(p))∧F (p) = −1
}

. Finally,

αK = {F ∈ F | ∃q ∈ Q · F (q) = K + 1}.

Proposition 21. For all UECA A, for all K ∈ N: LKcoB(A) = L0coB(DetK(A)).

From this deterministic automaton, it is now easy to construct a timed safety game
for solving the realizability problem. We do that in the next section when solving the
realizability problem of a real-time extension of the logic LTL.

Remark 22 (Time divergence). Handling time divergence in timed games requires tech-
niques that are more involved than the ones suggested in previous sections. In the timed
games considered in this section, if the set of winning plays only contains divergent
timed words, then clearly player 1 can not win the game, no matter what the objective
is. Indeed, as player 2 can always overtake the action proposed by player 1, he can eas-
ily block time and ensure that the output of the game is a convergent timed word. To
avoid such pathological behaviors, the specification should declare player 1 winning in
those cases. In [dAFH+̂03], the interested reader will find an extensive discussion on
how to decide winner in the presence of time convergence.

5 Application: Realizability of LTL�

The LTL� logic. The logic LTL� we consider here is a fragment of the Event Clock
Logic (ECL for short) [Ras99, RS98, HRS98]. ECL is an extension of LTL with two
real-time operators: the history operator �I ϕ expressing that ϕ was true for the last time
t time units ago for some t ∈ I , and the prediction operator �I ϕ expressing that the
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next time ϕ will be true is in t time units for some t ∈ I (where I is an interval). LTL�
is obtained by disallowing prediction operators. The realizability problem for ECL is
as in the previous section with the exception that the set of winning plays is defined by
an ECL formula instead of a UECA. The realizability problem has recently [DGRR09]
been shown 2EXPTIME-complete for LTL� but undecidable1 for the full ECL. In this
paper, we further restrict ourselves to the case where expressions of the form �I ϕ
appear with ϕ = a only, where a is some alphabet letter. Remark that this last restriction
is not necessary to obtain decidability [DGRR09], but it makes the presentation easier.
Our results carry on to the more general case.

Formally, given an alphabet Σ, the syntax of LTL� is as follows (with a ∈ Σ):

ψ ∈ LTL� ::= a | ¬ψ | ψ ∨ ψ | ψ S ψ | ψ U ψ | �I a

The models of an LTL� formula are infinite timed words. A timed word θ = (w, τ)
satisfies a formula ϕ ∈ LTL� at position i ∈ N, written θ, i |= ϕ, according to the
following rules:

– if ϕ = a, then wi = a;
– if ϕ = ¬ϕ1, then θ, i |= ϕ1;
– if ϕ = ϕ1 ∨ ϕ2, then θ, i |= ϕ1 or θ, i |= ϕ2;
– if ϕ = ϕ1 S ϕ2, then there exists 0 ≤ j < i such that θ, j |= ϕ2 and for all
j < k < i, θ, k |= ϕ1;

– if ϕ = ϕ1 U ϕ2, then there exists j > i such that θ, j |= ϕ2 and for all i < k < j,
θ, k |= ϕ1;

– if ϕ = �I a, then there exists 0 ≤ j < i such that wj = a, τi − τj ∈ I , and for all
j < k < i, wk = a;

When θ, 0 |= ϕ, we simply write θ |= ϕ and we say that θ satisfies ϕ. We denote by
[[ϕ]] the set {θ | θ |= ϕ} of models of ϕ. Finally, we define the following shortcuts:
true ≡ a ∨ ¬a with a ∈ Σ, false ≡ ¬true, ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡
¬ϕ1 ∨ ϕ2, ♦ϕ ≡ trueU ϕ, �ϕ ≡ ϕ ∧ ¬♦(¬ϕ), ©ϕ ≡ falseU ϕ, �ϕ ≡ falseS ϕ,
and ♦-ϕ ≡ trueS ϕ. We also freely use notations like ≥x to denote the interval [x,∞),
or <x for [0, x), etc. in the � operator.

Let Σ = Σ1 � Σ2 be an alphabet that is partitioned into a set Σ1 of player 1 events
(controllable events), and Σ2 of player 2 events (uncontrollable events), and let ϕ be
an LTL� formula on Σ. Then, ϕ is realizable iff Player 1 has a winning strategy in the
TG 〈Σ1, Σ2, [[ϕ]]〉. The realizability problem for LTL� asks, given an LTL� formula ϕ
whether ϕ is realizable.

An efficient algorithm to solve realizability of LTL�. Let us now show how to exploit
the results from the previous section to obtain an incremental algorithmic schema that
solves the realizability problem of LTL�. From an LTL� formula ϕ, we build, using
standard techniques [Ras99, RS98], a NECA with Büchi acceptance condition A¬ϕ

s.t. LB(A¬ϕ) = [[¬ϕ]]. Then, we consider its dual Ã¬ϕ, which is thus a UECA with

1 Note that the undecidability proof has been made for a slightly different definition of timed
games, but the proof can be adapted to the definition we rely on in the present paper.
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co-Büchi acceptance condition s.t. LcoB(Ã¬ϕ) = [[ϕ]]. As a consequence, solving the
realizability problem for ϕ now amounts to finding a winning strategy for player 1 in

the timed game
〈
Σ1, Σ2, LcoB(Ã¬ϕ)

〉
. Theorem 15 tells us that we can reduce this to

finding a winning strategy in a timed game whose objective is given by an automaton
with K-co-Büchi acceptance condition (for a precise value of K). In this game, the
objective of player 1 is thus to avoid visiting accepting states too often (no more than
K times), and this is thus a safety condition. The automaton DetK(Ã¬ϕ) can be used to
define a timed safety game. Such games can be solved by tools such as UPPAAL TIGA

[BCD +̂ 07].
The drawback of this approach is that the value K is potentially intractable: it is

doubly-exponential in the size of ϕ. As a consequence, DetK(Ã¬ϕ) and its underlying
timed safety game are unmanageably large. To circumvent this difficulty, we adopt an
incremental approach. Instead of solving the game underlying DetK(Ã¬ϕ), we solve
iteratively the games underlying Deti(Ã¬ϕ) for increasing values of i = 0, 1, . . .. As
soon as player 1 can win a game for some i, we can stop and conclude that ϕ is realiz-
able. Indeed, L0coB(Deti(Ã¬ϕ)) = LicoB(Ã¬ϕ) by Proposition 21, and LicoB(Ã¬ϕ) ⊆
LKcoB(Ã¬ϕ) ⊆ [[ϕ]]. In other words, realizability of L0coB(Deti(Ã¬ϕ)) implies realiz-
ability of ϕ. Unfortunately, if ϕ is not realizable, this approach fails to avoid considering
the large theoretical bound K . To circumvent this second difficulty, we use the prop-
erty that our games are determined: ϕ is not realizable by player 1 iff ¬ϕ is realizable
by player 2. So in practice, we execute two instances of our incremental algorithm in
parallel and stop whenever one of the two is conclusive. The details of this incremental
approach are given in [FJR09], and it is experimentally shown there, in the case of LTL
specifications, that the values that one needs to consider for i are usually very small.

To sum up, our incremental algorithm works as follows. Fix an LTL� formula ϕ, and

set i to 0. Next, if player 1 has a winning strategy in
〈
Σ1, Σ2, L0coB(Deti(Ã¬ϕ))

〉
, then

ϕ is realizable; else if player 2 has a winning strategy in
〈
Σ1, Σ2, L0coB(Deti(Ãϕ))

〉
,

then ϕ is not realizable; else, increment i by 1 and iterate.

Experiments with UPPAAL TIGA. We have thus reduced the realizability problem of
LTL� to solving a sequence of TG of the form 〈Σ1, Σ2, L0coB(A)〉, whereA is a DECA.
Solving each of these games amounts to solving a safety game played in an arena which
is defined by A (where the edges are partitioned according to Σ1 and Σ2). In practice,
this can be done using UPPAAL TIGA [BCD +̂ 07], as we are about to show thanks to
a simple yet realistic example. Our example consists of a system where a controller
monitors an input line that can be in two states: high or low. The state of the input line
is controlled by the environment, thanks to the actions up and down, that respectively
change the state from low to high and high to low. Changes in the state of the input line
might represent requests that the controller has to grant. More precisely, whenever con-
secutive up and down events occur separated by at least two time units, the controller
has to issue a grant after the corresponding down but before the next up. Moreover,
successive grants have to be at least three time units apart, and up and down events
have to be separated by at least one time unit. This informal requirement is captured by
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1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants
no grant allowed

grant

1 2 3 4 5 6 7 8

up down up updown

input
hi

lo

grants no grant allowed

grant

Fig. 1. Two examples of execution of the systems. The state of the input is represented on top,
grants are represented at the bottom. Each dot represents a grant event. Thick lines represent the
period during which the controller cannot produce any grant because of Req2.

the LTL� formula ϕ ≡ Hyp → Req1 ∧ Req2 on Σ = Σ1 � Σ2 where Σ1 = {grant},
Σ2 = {up, down} and:

Hyp ≡ �
(
up →

(
¬down U(down ∧ �≥1 up)

))
∧

�
(
down →

(
¬up U(up ∧ �≥1 down)

))
Req1 ≡ �

(
(down ∧ �>2 up) → (¬up U grant)

)
Req2 ≡ �(grant → ¬�<3 grant)

Remark that ϕ does not forbid the controller from producing grant events that have
not been requested by the environment. However, a controller producing grants too
often might hinder itself because Req2 requires each pair of grants to be separated from
each other by at least 3 time units. Fig. 1 illustrates this by showing two prefixes of
executions. The left part shows a prefix that respects ϕ. The right part of the figure
shows a case where the controller has issued an unnecessary grant that prevents him
from granting the request that appears with the down event at time 5.75.

Let us now apply the algorithmic schema presented above to this example. We first
build the NECA with Büchi acceptance condition A¬ϕ, given in Fig. 2. This automa-
ton has two parts, identified by the names of the states: the top part (corresponding to
the states 1, . . . 7) accepts the models of [[¬(Hyp → Req1)]] and the lower part (states
1, 2, . . . , 6) accepts the models of [[¬(Hyp → Req2)]], so the whole automaton accepts
exactly [[¬ϕ]]. Fig. 2 can also be regarded as a depiction of the dual UECA with co-Büchi
acceptance condition Ã¬ϕ, by interpreting non-determinism as universal branching.

From Ã¬ϕ, we have applied the counting functions construction described above, for
i = 1. In order to ease the presentation, we have applied this construction separately on
the two parts of the automaton, to obtain G1 and G2, given in Fig. 3. These automata
are shown as they appear in their UPPAAL TIGA encoding: controllable transitions are
plain, and uncontrollable transitions are dashed. The history clocks corresponding to up,
down and grant are respectively denoted u, d and g. Remark that since UPPAAL TIGA

uses classical Alur-Dill timed automata, and not NECA, we have to explicitly manage
the reset of those clocks. Finally, observe that we have used the synchronisation mech-
anism offered by UPPAAL TIGA to ensure that the game is played on the synchronous
product of these two automata (which corresponds to the counting function construction
applied to A¬ϕ).
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Fig. 2. The NECA A¬ϕ
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Fig. 3. The DECA obtained from the two parts of A¬ϕ, when applying the counting functions
construction for i = 1. Unreachable states, as well as transitions to the state F with F (q) = −1

for any q are not shown.
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We provided this model to UPPAAL TIGA together with the synthesis objective
control: A[not BadState], where BadState is true iff one of the automata
reaches one of its Bad locations (that corresponds to one of the counters being > 1).
In this case, UPPAAL TIGA can compute a winning strategy for player 1, which means
that player 1 is capable of ensuring that, on any branch of any run of Ã¬ϕ, accepting
states occur at most one time. This strategy thus ensures that all the plays are accepted
by Ã¬ϕ, and so they all satisfy ϕ. Hence, ϕ is realizable. This example shows that,
although an exponentially-large K might be needed to prove realizability of an LTL�
formula, in practice, small values of i (here, 1) might be sufficient. A larger set of exper-
iments (on large LTL formulas) exploiting the same techniques can be found in [FJR09].
These experiments confirm that small values of i are sufficient in practice.

Remark 23 (Time divergence). In this example, time divergence is not an issue. Indeed,
the objective is such that, on the one hand, player 1 wins the game if player 2 proposes
to play up followed by down, or down followed by up without waiting at least one time
unit (because of Hyp), and, on the other hand, player 1 violates Req2 if he plays two
grant actions too close in time (less than 3 t.u. apart).
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Abstract. In the recent past, there has been a steady growth of the

market for consumer embedded devices such as cell phones, GPS and

portable multimedia systems. In embedded systems, digital, analog and

software components are combined on a single chip, resulting in increas-

ingly complex designs that introduce richer functionality on smaller de-

vices. As a consequence, the potential insertion of errors into a design

becomes higher, yielding an increasing need for automated analog and

mixed-signal validation tools. In the purely digital setting, formal verifi-

cation based on properties expressed in industrial specification languages

such as PSL and SVA is nowadays successfully integrated in the de-

sign flow. On the other hand, the validation of analog and mixed-signal

systems still largely depends on simulation-based, ad-hoc methods. In

this tutorial, we consider some ingredients of the standard verification

methodology that can be successfully exported from digital to analog and

mixed-signal setting, in particular property-based monitoring techniques.

Property-based monitoring is a lighter approach to the formal verifica-

tion, where the system is seen as a “black-box” that generates sets of

traces, whose correctness is checked against a property, that is its high-

level specification. Although incomplete, monitoring is effectively used

to catch faults in systems, without guaranteeing their full correctness.

In the first part of the tutorial, we present a technique for property-

based analog and mixed-signal monitoring. In the heart of the frame-

work lies signal temporal logic STL, that is a high-level specification

language allowing to express transient properties of analog, mixed and

timed signals. STL is an extension of the real-time metric interval tem-
poral logic MITL, where one can specify temporal relations between rele-

vant “events” in the continuous signals that are captured using numerical

predicates. We then present procedures for automatic translation of ar-

bitrary STL specifications into monitors, i.e. programs that check the

correctness of a set of simulation traces with respect to the given prop-

erty. We introduce analog monitoring tool AMT that implements the

presented monitoring techniques and illustrate the usefulness and the

limitations of the approach on two industrial case studies, considering

properties of a FLASH memory cell and a DDR2 memory interface.

Although the STL framework implemented in AMT provides a theo-

retical basis for analog and mixed-signal verification, it is not adequate

for industrial-strength verification. The DDR2 example shows that STL

lacks the expressiveness to specify complex timing relationships required

K. Chatterjee and T.A. Henzinger (Eds.): FORMATS 2010, LNCS 6246, pp. 23–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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by industrial designs. The STL framework provides real-time extensions

to linear temporal logic, but it does not provide extensions to the reg-

ular expressions present in both PSL and SVA. However, the industrial

interest in the methodology resulted in the creation of the A-SVA sub-

committee of the Accellera Verilog-AMS committee that is investigat-

ing extending SVA with features that would enable industrial-strength

property-based monitoring of analog and mixed-signal systems. This in-

cludes in particular real-time regular expressions, local variables, and re-

quirements for the properties to access accurate continuous values. The

committee have agreed upon a preliminary syntax and semantics for real-

time regular expressions and local variables. They are in the process of

integrating the real-time regular expressions with the digital and real-

time properties. These results are expected to be integrated into the next

revisions of Verilog-AMS and SystemVerilog.
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Abstract. Quantitative verification techniques are able to establish sys-

tem properties such as “the probability of an airbag failing to deploy

on demand” or “the expected time for a network protocol to success-

fully send a message packet”. In this paper, we describe a framework

for quantitative verification of software that exhibits both real-time and

probabilistic behaviour. The complexity of real software, combined with

the need to capture precise timing information, necessitates the use of

abstraction techniques. We outline a quantitative abstraction refinement

approach, which can be used to automatically construct and analyse ab-

stractions of probabilistic, real-time programs. As a concrete example of

the potential applicability of our framework, we discuss the challenges

involved in applying it to the quantitative verification of SystemC, an

increasingly popular system-level modelling language.

1 Introduction

Computerised systems pervade all aspects of modern society, including safety-
critical application domains such as the automotive and avionics industries. This,
combined with the growing complexity of such devices, necessitates the develop-
ment of rigorous techniques to verify their correctness. Furthermore, this analysis
must often take into account the quantitative aspects of the systems that are being
verified. This includes both real-time characteristics and probabilistic behaviour.
Embedded devices, in safety-critical applications for example, will often have strict
timing requirements. Similarly, it is important to quantify the effect of inherently
stochastic behaviour, such as component failures or message loss in communication
between networked devices. Another source of probabilistic behaviour is the use of
randomisation, an essential ingredient ofmany network protocols such as FireWire
or Ethernet and wireless technologies including Bluetooth and ZigBee.

Quantitative verification is a formal method for the analysis of timed and
probabilistic systems. It is based on the construction of a mathematical model
capturing the system’s behaviour, followed by the analysis of formally specified
quantitative properties. These might include, for example, “the probability of an
airbag failing to deploy within 0.02 seconds”, “the expected time for a network
protocol to send a packet” or “the expected power consumption of a sensor
network during 1 hour of operation”. Notice that this permits an analysis not
just of a system’s correctness, but also its performance and reliability.
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Quantitative verification techniques have seen a great deal of progress in re-
cent years. For real-time systems, a prominent modelling formalism is timed
automata, for which mature verification tools such as UPPAAL [1] exist. For
probabilistic systems, the most commonly used models are Markov chains or
Markov decision processes (MDPs). Probabilistic model checking tools such as
PRISM [2] and MRMC [3] are widely used and have been successfully applied
to the verification of a range of systems. Recent work [4–7] has seen progress in
the development of tools for systems with time and probabilities.

A weakness of all these tools, however, is that they require the user to specify
the system model in a custom modelling language. In order to minimise the
chance of errors introduced in the modelling phase and to encourage the use
of these tools, there is a need to extend quantitative verifications techniques to
the languages used by real system designers. In the context of non-probabilistic
verification, progress has been made in this direction. In particular, software
model checking tools and techniques can now be applied directly to mainstream
programming languages such as C and Java.

In this paper, we develop the underlying theory for quantitative verification
of software with both probabilistic and real-time characteristics. We formalise
the notion of probabilistic timed programs, whose semantics are defined in terms
of infinite-state MDPs. The complexity of real software means that the use of
abstraction is typically essential. Building on our previous work on tools and
techniques for verifying a probabilistic extension of ANSI-C [8], we propose a
quantitative abstraction refinement approach [5, 9, 10]. This builds successive,
increasingly precise abstractions of an MDP, represented as two-player stochas-
tic games [9]. At each step, the process is driven by refinement techniques which
construct a new abstraction using information derived from quantitative verifica-
tion of the stochastic game. This technique has already proven to be an efficient
approach to the verification of probabilistic timed automata [5].

As a concrete illustration of the potential applicability of our verification
framework, we discuss the challenges involved in applying it to the quantitative
verification of SystemC, a C++-based system-level modelling language. SystemC
is becoming increasingly prominent in the embedded systems domain, for exam-
ple in the development of System-on-Chips (SoCs). Building formal verification
techniques for SystemC has already been identified as an important but chal-
lenging direction of research [11]. Clearly, quantitative verification of SystemC
will be even more demanding. We describe how some of the existing approaches
and tools might be combined with our framework and identify some of the more
important directions of future work.

An extended version of this paper, including additional details and proofs
omitted from the text, can be found at [12].

2 Background Material

A distribution over Q is a function λ :Q→[0, 1] where the support {q∈Q |λ(q)>0}
is countable and

∑
q∈Qλ(q)=1, let Dist(Q) denote the set of such distributions.
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2.1 MDPs and Stochastic Games

Markov decision processes (MDPs) are used to model systems that exhibit both
nondeterministic and probabilistic behaviour.

Definition 1. An MDP M is a tuple (S, S,Act ,StepsM) where S is a set of
states, S ⊆ S is a set of initial states, Act is a set of actions and StepsM :
S×Act → Dist(S) is a partial probabilistic transition function.

For a state s of an MDP M, we write Act(s) for the set of actions available
in s, i.e., the actions a ∈ Act for which StepsM(s, a) is defined. The behaviour
in state s is both probabilistic and nondeterministic: first an available action
(i.e. an action in Act(s)) is selected nondeterministically, then a successor state
is chosen according to the distribution StepsM(s, a). A path is a sequence of
such choices and a state is reachable if there is a path to it from an initial
state. Under an adversary A, which resolves all nondeterminism, we can define
a probability measure over paths [13]. The fundamental quantitative property
for MDPs is that of probabilistic reachability which concerns the minimum or
maximum probability of reaching a set of states F . Formally, we have:

pmin
M (F ) def= infs∈S infA pAs (F ) and pmax

M (F ) def= sups∈S supA pAs (F )

where pAs (F ) denotes the probability of reaching target F , starting from s, when
the MDP behaves according to adversary A.

Stochastic two-player games [14, 15] extend MDPs by allowing two types of
nondeterministic choice, controlled by separate players.

Definition 2. A stochastic game G is a tuple (S, S,Act ,StepsG) where S is
a set of states, S ⊆ S is a set of initial states Act is a set of actions and
StepsG : S×Act → 2Dist(S) is a partial probabilistic transition function.

The behaviour in a state s of a game G includes two successive nondeter-
ministic choices: first player 1 selects an available action, then a distribution
λ ∈ StepsG(s, a) is selected by player 2. Finally, the successor state is then cho-
sen according to the distribution λ. A pair of strategies (σ1, σ2) for players 1
and 2, resolve all the nondeterminism present in the game, and this induces a
probability measure over the paths of the game.

2.2 Quantitative Abstraction Refinement

As proposed in [9], we use stochastic games to represent abstractions of MDPs.
The key idea is to separate the two forms of nondeterminism: using player 1
choices to represent the nondeterminism caused by abstraction; and player 2
choices for the nondeterminism of the MDP. For an MDP M, the construction of
an abstraction is based on a partition P={S1, . . . , Sn} of its state space. For λ ∈
Dist(S), we let λP ∈ Dist(P) denote the distribution where λP (S′)=

∑
s∈S′ λ(s)

for all S′ ∈ P . Formally, we define the abstraction of an MDP as follows.
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Fig. 1. Quantitative abstraction refinement for MDPs

Definition 3. Let M=(S, S,Act ,StepsM) be an MDP and P a partition of S.
The abstraction of M with respect to P is given by the stochastic game G =
(P ,P, 2Act×Dist(P),StepsG) where P={S′ ∈ P | S′ ∩ S = ∅} and for S′ ∈ P and
Θ ∈ 2Act×Dist(P): StepsG(S′, Θ) is defined and equals {λ | (a, λ) ∈ Θ ∧ a ∈ Act}
if and only if there exists s ∈ S′ such that Θ={(a,StepsM(s, a)P ) | a ∈ Act(s)}.

If G is an abstraction of M, then the reachability probabilities on G yield lower
and upper bounds on the reachability probabilities of M:

plb,min
G (F )�pmin

M (F )�pub,min
G (F ) and plb,max

G (F )�pmax
M (F )�pub,max

G (F ) (1)

where, for example, in the stochastic game G:

plb,max
G (F ) def= supS′∈P infσ1 supσ2

pσ1,σ2
S′ (F )

pub,max
G (F ) def= supS′∈P supσ1

supσ2
pσ1,σ2
S′ (F )

and pσ1,σ2
S′ (F ) denotes the probability of reaching the target α(F ) under the pair

of strategies (σ1, σ2) when starting in the state S′. These reachability values can
be determined efficiently using value iteration [16] together with the correspond-
ing adversary or strategy-pair which achieves the value. In [17], the game-based
abstraction of Definition 3 above is phrased in terms of abstract interpretation
[18] and the resulting bounds obtained are shown to coincide with the “best”
values obtainable for a fixed abstraction of the MDP.

Quantitative abstraction refinement [5, 8, 10] is an approach for automatically
constructing abstractions of probabilistic models. Using the notion of abstracting
MDPs with stochastic games describe above, it has been successfully applied to
the verification of a probabilistic extension of ANSI-C [8], probabilistic timed
automata [5] and concurrent probabilistic systems [17].

Illustrated in Figure 1, the technique starts with an MDP M (or, in practice a
high-level model with MDP semantics) and coarse partition P of its state space.
It then constructs and analyses the resulting abstraction of M, yielding lower
and upper bounds on a property of interest (e.g. the probability of reaching a
set of target states F as in (1) above). If the difference between these bounds
(the “error”) is below a pre-specified bound ε, the process terminates, producing
suitably tight lower and upper bounds. If not, the abstraction is refined, based on
information (strategies) from the analysis of the game. The abstraction, analysis
and refinement loop is repeated until the error drops below ε.
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2.3 Clocks, Zones, Variables and Predicates

Clocks. Let X be a finite set of clocks. A function v : X → R is referred to as a
clock valuation and the set of all clock valuations is denoted by RX . For v ∈ RX ,
t ∈ R and X ⊆ X , we use v+t to denote the valuation which increments all
clocks by t and v[X :=0] for the valuation in which clocks in X are reset to 0.

Zones. The set of zones of X , written Zones(X ), is defined by the syntax:

ζ ::= true | x � d | c � x | x+c � y+d | ¬ζ | ζ ∨ ζ

where x, y ∈ X and c, d ∈ N. A zone ζ represents the set of clock valuations v
which satisfy ζ, denoted v �ζ, i.e. those where ζ resolves to true by substituting
each clock x with v(x). We will use several classical operations on zones [19, 20]:

– ↗ζ contains all valuations that can be reached from ζ by letting time pass;
– ↙ζ contains all valuations that can reach ζ by letting time pass;
– [X :=0]ζ contains the valuations which are in ζ after resetting the clocks X ;
– ζ[X :=0] contains the valuations obtained from ζ by resetting the clocks X .

In standard fashion, we restrict our attention to c-closed zones, in which con-
straints with bounds greater than c are removed, and where c is the largest such
bound appearing in the description of the model under study.

Data Variables and Predicates. Let D be a finite set of data variables. We denote
by Val(D) the set of data valuations over D and by Up(D) the set of updates, i.e.
the set of functions up : Val(D)→Val(D). Let Pred(D) be the set of predicates
over the data variables D. For a data predicate φ and valuation u, we say u � φ
if φ holds after substituting each variable d with the value u(d).

3 Probabilistic Timed Programs

We now introduce the formal model of probabilistic timed programs (PTPs), on
which the techniques in this paper are based. These combine:

– timed behaviour, through real-valued clocks in the style of timed automata;
– stochastic behaviour, through discrete probabilistic choice;
– nondeterminism and concurrency through parallel composition;
– control flow and discrete data variables to capture program behaviour.

PTPs are essentially probabilistic timed automata (PTAs) [21–23] with the ad-
dition of discrete-valued variables. For timed automata formalisms, discrete vari-
ables are typically considered to be a straightforward syntactic extension since
their values can simply be encoded into locations. Our focus in this paper is how
to use abstraction when such an encoding is not feasible in practice.

Definition 4. A probabilistic timed program (PTP) is a tuple of the form
P=(L, l,D, u,X ,Act , inv , enab, prob) where:

– L is a finite set of locations and l ∈ L is an initial location;
– D is a finite set of data variables and u ∈ Val(D) is an initial data valuation;
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– X is a finite set of clocks;
– Act is a finite set of actions;
– inv : L → Zones(X ) is an invariant condition;
– enab : L×Act → Pred(D)×Zones(X ) is an enabling condition;
– prob : L×Act → Dist(Up(D)×2X×L) is a probabilistic transition function.

We use enabD and enabX to denote the data and time components of the en-
abling function, i.e. enab(l, a) = (enabD(l, a), enabX (l, a)). A state of a PTP is a
tuple (l, u, v) ∈ L×Val(D)×RX such that v � inv(l). In a state (l, u, v), a certain
amount of time t ∈ R can elapse, after which an action a ∈ Act is performed.
The choice of t requires that, while time passes, the invariant inv(l) remains
continuously satisfied. An action a can be chosen only if it is enabled, that is,
the predicate-zone pair enab(l, a) is satisfied by (u, v+t). Once an action a is
chosen, the update of the data variables, clocks to reset and successor location
are selected at random, according to the distribution prob(l, a). We call each
element (l, a, up, X, l′) such that (up, X, l′) ∈ Up(D)×2X×L is in the support
of prob(l, a) an edge and, for convenience, assume that the set of such edges,
denoted edges(l, a), is an ordered list 〈e1, . . . , en〉.

Definition 5. Let P=(L, l,D, u,X ,Act , inv , enab, prob) be a PTP. The seman-
tics of P is an (infinite-state) MDP [[P]] = (S, S,R×Act ,StepsP) where:

– S = {(l, u, v) ∈ L×Val(D)×RX | v � inv (l)} and S = {(l, u,0)};
– StepsP((l, u, v), (t, a)) = λ if and only if

• v+t′ � inv(l) for all 0�t′�t;
• (u, v+t) � enab(l, a);
• for any (l′, u′, v′) ∈ S:

λ(l′, u′, v′) =
∑

{| prob(l, a)(up, X, l′) | (up, X) ∈ Upu
→u′×Xv+t
→v′ |}

where the set of updates Upu
→u′ equals {up ∈ Up(U) | up(u)=u′} and
the set of clock resets Xv+t
→v′ is given by {X ⊆ X | (v+t)[X :=0]=v′}.

Each transition of the semantics of a PTP is a time-action pair (t, a), rep-
resenting t time units elapsing, followed by a discrete a-labelled transition.
For any state (l, u, v) and time-action pair (t, a), if StepsP((l, u, v), (t, a)) is
defined and edges(l, a)=〈(l, a, up1, X1, l1), . . . , (l, a, upn, Xn, ln)〉, then we write
(l, u, v)

t,a−−→ 〈(l1, up1(u), (v+t)[X1:=0]), . . . , (ln, upn(u), (v+t)[Xn:=0])〉.
The definition of parallel composition for PTPs is a straightforward extension

of that for probabilistic timed automata [24], see [12] for details.

4 Abstraction of PTPs

We now consider the problem of constructing abstractions of PTPs, that is to say
building a stochastic game abstraction [9] for its underlying MDP semantics. For
this, we combine several different techniques. For the data part of PTPs, we use
predicate abstraction [25]. For the time aspect, we consider two possibilities: first,
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we again use predicates (over clock, rather than data, variables); secondly we use
zones, which can be efficiently stored and manipulated using difference-bound
matrices (DBMs) [19, 20]. The latter is better suited to the forwards reachability
based techniques commonly used for timed automata (and proposed for the
construction of abstractions of PTAs in [5]).

We thus have two abstractions to consider: (i) using predicates for both data
and time; (ii) using predicates for data and zones for time. A crucial difference
between the two is that (i) induces a partition of the PTP states S (in which
case, Definition 3 applies directly), whereas (ii) gives instead a covering of S.

4.1 Abstract Domains for PTPs

We formally define the two different abstractions discussed above using the no-
tion of abstract domains from the abstract interpretation framework of [18].

Definition 6. For a given set of concrete states S, an abstract domain A is a
tuple ((Z,�,�,#), α, γ) where:

– (Z,�,�,#) is a lattice of abstract states;
– α : 2S→Z and γ : Z→2S are abstraction and concretisation functions;

such that (α, γ) form a Galois connection.

From this point on, we assume sets of data and clock predicatesΦ={φ1, . . . , φn} ⊆
Pred(D) and Ψ = {ψ1, . . . , ψm} ⊆ Pred(X ). For a predicate ϕ and valuation w
(over D or X ), let ϕ(w) denote the value of ϕ evaluated against w. For predicates
Υ={ϕ1, . . . , ϕk}, let Υ (w) denote the predicate valuation (ϕ1(w), . . . , ϕ|Υ |(w)) ∈
BΥ and, for b ∈ BΥ , let Υ [b] denote the predicate ϕ̃1∧ . . .∧ϕ̃k where ϕ̃i=ϕi if
bi=true and ¬ϕi otherwise. Note that Ψ [b] can be considered as a zone.

The Abstract Domain AΦ,Ψ . The atoms of the lattice (ZΦ,Ψ ,�,�,#) are the
tuples z=(l, b1, b2) ∈ L×BΦ×BΨ , comprising a location l and predicate valua-
tions b1 and b2. Since L×BΦ×BΨ form the atoms of the lattice, the operations
�, � and # can be considered as the standard set operators over 2L×BΦ×BΨ

.
For any S′ ⊆ S and (l, b1, b2) ∈ L×BΦ×BΨ the abstraction and concretisation
functions are defined as follows:

α(S′)=�(l,u,v)∈S′ (l, Φ(u), Ψ(v)) and γ(l, b1, b2)={(l, u, v) | Φ(u)=b1∧Ψ(v)=b2} .

The Abstract Domain AΦ,X . A basis for the lattice (ZΦ,X ,�,�,#) are the tuples
z=(l, b, ζ) ∈ L×BΦ×Zones(X ) comprising a location l, predicate valuation b and
zone ζ. For (l, b, ζ), (l′, b′, ζ′) ∈ L×BΦ×Zones(X ):

(l, b, ζ) � (l′, b′, ζ′) = if (l, b)=(l, b′) then {(l, b, ζ ∨ ζ′)} else {(l, b, ζ), (l′, b′, ζ′)}
(l, b, ζ) � (l′, b′, ζ′) = if (l, b)=(l, b′) then {(l, b, ζ ∧ ζ′)} else ∅

and (l, b, ζ) # (l′, b′, ζ′) if and only if (l, b)=(l′, b′) and ζ⇒ζ′ ≡ true, while
Z′ # Z′′ if and only if for all z′ ∈ Z′ there exists z′′ ∈ Z′′ such that z′ # z′′. We
illustrate these operations with the following examples:
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{(l, b, x�4)} � {(l, b, y�1), (l′, b, x�4)} = {(l, b, (x�4)∨(y�1)), (l′, b, x�4)}
{(l, b, x�4)} � {(l, b, x�2)} = {(l, b, 2�x�4)}

{(l, b, x�1), (l′, b′, y�3)} # {(l, b, (x�4), (l′, b′, y�2)), (l′′, b′′, z�1)} .

With regards to the abstraction and concretisation functions, we have:

α(S′)= �(l,u,v)∈S′ (l, Φ(u), [v]) and γ(l, b, ζ)={(l, u, v) | Φ(u)=b ∧ v � ζ} .

where [v] is the clock equivalence class (or clock region) of v [26].

For both abstract domains we use loc(z), data(z) and time(z) to denote the
different components of the tuple z representing an abstract state.

4.2 Abstract Post Operators

We now describe how to construct an abstract post operator for each abstract
domain, i.e. the “best” abstraction [18] of the concrete PTP transition semantics.
For convenience, we split the post operator into two parts, representing the elapse
of time in the current location l and the subsequent discrete transition along edge
e = (l, a, up, X, l′). For any set S′⊆S of concrete states, we have:

tpost[l](S′) = {(l, u, v+t) | (l, u, v) ∈ S′ ∧ t ∈ R ∧ ∀t′�t. (v+t′) � inv (l)}
dpost[e](S′) = {(l, up(u), v[X :=0]) | (l, u, v) ∈ S′ ∧ (u, v)�enab(l, a)}

For the abstract domain A=((Z,�,�,#), α, γ), the corresponding “best” abstract
time-post and discrete-post operators are given by:

tpostA[l](z) = α(tpost[l](γ(z))) and dpostA[e](z) = α(dpost[e](γ(z))) .

For both of the abstract domains introduced in the previous section, these oper-
ators can be efficiently computed, using DBMs to manipulate zones [19, 20] and
SAT or SMT based techniques for predicates over data variables [27].

When representing clock valuations as zones, the elapse of time in l is cap-
tured by the function tpostX [l] : Zones(X )→Zones(X ) and the effect of edge e
by dpostX [e](ζ) : Zones(X )→Zones(X ). Both can computed with simple and ef-
ficient zone operations that can be implemented with DBMs. For ζ ∈ Zones(X ):

tpostX [l](ζ) = inv (l)∧ ↗ζ

dpostX [e](ζ) = (ζ∧enabX (l, a))[X :=0]∧inv (l′) .

For the representation of data using predicates, we define the function dpostΦD[e] :
BΦ→2BΦ

giving the set of possible predicate valuations of the variables in succes-
sor states when taking edge e. Let p1, . . . , p|Φ| be Boolean variables correspond-
ing to the predicates φ1, . . . , φ|Φ| and b ∈ BΦ be a predicate valuation. Then
dpostΦD[e](b) contains all satisfying instances of p1, . . . , p|Φ| such that:

∃u, u′ ∈ Val(D). up(u)=u′ ∧ Φ(u)=b ∧
(
p1⇔φ1(u′) ∧ · · · ∧ p|Φ|⇔φ|Φ|(u′)

)
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which we use an SMT solver to enumerate. This assumes that the types of
variables in D and the operations occurring in up and predicates φi match the
underlying theory of the SMT solver used. Alternatively, a bit-level encoding of
data variables can be employed, and a SAT solver used for enumeration [28].

On the other hand, tpostΨX [l] : BΨ→2BΨ

and dpostΨX [e] : BΨ→2BΨ

, given b2 as
input, return the satisfiable instances b′2 of the predicates:

Ψ [b′2] ∧ tpostX [l](Ψ [b2]) and Ψ [b′2] ∧ dpostX [e](Ψ [b2]) .

Using these functions, we are able to efficiently compute the abstract post oper-
ators for both domains. More precisely, for any (l, b1, b2) ∈ ZΦ,Ψ :

tpostΦ,Ψ [l](l, b1, b2) = {(l, b1, b′2) | b′2 ∈ tpostΨX [l](b2)}
dpostΦ,Ψ [e](l, b1, b2) = {(l′, b′1, b′2) | b′1 ∈ dpostΦD[e](b) ∧ b′2 ∈ dpostΨX [e](b2)}

and for any (l, b, ζ) ∈ ZΦ,X :

tpostΦ,X [l](l, b, ζ) = {(l, b, tpostX [l](ζ))}
dpostΦ,X [e](l, b, ζ) = {(l′, b′, dpostX [e](ζ)) | b′ ∈ dpostΦD[e](b)} .

4.3 Abstract Reachability Graphs

The abstract post operators of the previous section can be used to construct an
abstract reachability graph. This generalises the approach taken in [5] for PTAs.
In this section, for a given abstract domain, we formally define the concept of an
abstract reachability graph, describe how it can be used to construct a stochastic
game abstraction of a PTP, and then how to build such a graph. We fix a PTP
P and abstract domain A=((Z,�,�,#), α, γ) over P.

We begin by introducing the concept of abstract transitions. An abstract tran-
sition of P with respect to the abstract domain A takes the form:

θ =
(
z, a, 〈z1, . . . , zn〉

)
∈ Z× Act × Z+

where n = |edges(loc(z), a)|. Intuitively, θ represents the possibility of, from a
PTP state in γ(z), letting time pass, then taking action a and, for each edge
ei = (l, a, upi, Xi, li) ∈ edges(loc(z), a), reaching a state in γ(zi). The notion
of validity for an abstract transition expresses the fact that a corresponding
concrete transition actually exists. More precisely, we define:

valid(θ) def=
{
s ∈ γ(z) | ∃t ∈ R.

(
s

t,a−−→ 〈s1, . . . , sn〉 ∧ ∀1�i�n. si ∈ γ(zi)
)}

as the set of PTP states from which such a transition is possible, and we say
that θ is valid if the set valid(θ) is non-empty.

We now explain how validity can be checked for the abstract domains AΦ,Ψ

and AΦ,X . For simplicity, we will split the computation by considering validity
with respect to the data and time components of an abstract transition θ =
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(z, a, 〈z1, . . . , zn〉). More precisely, we let validD(θ) ⊆ Val(D) and validX (θ) ⊆
RX denote the sets of data valuations satisfying data(z) and clock valuations
satisfying time(z) from which it is possible to let time pass and perform the
action a such that taking the ith edge ei gives a state in zi. An abstract transition
is then valid if the valid sets for both data and time are nonempty and moreover:

valid(θ) = {(l, v, x) ∈ γ(z) | l = loc(z) ∧ v ∈ validD(θ) ∧ x ∈ validX (θ)} .

For the data component, validD(θ) is characterised by the formula:

Φ[data(z)] ∧
(
enabD(loc(z), a)∧ (∧n

i=1 (wp[upi](Φ[data(zi)] ))
)

where wp[upi] denotes the weakest precondition for update upi. Thus, like in the
previous section, we can check emptiness of validD(θ) via a satisfiability check
of the above formula using an SMT/SAT solver.

For the time component, we can compute validX (θ) as a zone. For abstract
domain AΦ,X , where abstract states contain zones, validX (θ) is the zone:

time(z)∧ ↙
(
enabX (loc(z), a)∧ (∧n

i=1 ([Xi:=0]time(zi) ))
)
.

Checking its emptiness is a simple DBM operation. For abstract domain AΦ,Ψ ,
we can perform the same computation after first converting predicate valuations
to zones, i.e. replacing time(·) with Ψ [time(·)] in the above.

We are now in a position to define abstract reachability graphs for PTPs.

Definition 7. An abstract reachability graph for PTP P with respect to target
locations F and abstract domain A=((Z,�,�,#), α, γ), is a tuple (Y, R) where:

– Y ⊆ Z is a covering multiset of abstract states, i.e. S ⊆ ∪z∈Y γ(z);
– R ⊆ Y×Act×Y+ is a set of valid abstract transitions;

such that, if z ∈ Y, loc(z) ∈ F , s ∈ γ(z) and s
t,a−−→ 〈s1, . . . , sn〉, then R contains

an abstract transition (z, a, 〈z1, . . . , zn〉) such that si ∈ γ(zi) for all 1�i�n.

An abstract transition θ = (z, a, 〈z1, . . . , zn〉) induces the probability distribu-
tion λθ over the abstract states Z where for any z′ ∈ Z:

λθ(z′)
def=
∑n

i=1 {| prob(l, a)(ei) | zi=z′ |} .

We now extend the notion of validity for the data and time components of
abstract transitions to sets of abstract transitions with the same source. For any
abstract state z ∈ Z and set of abstract transitions Θ ⊆ R(z), let:

validD(Θ) def= (∩θ∈ΘvalidD(θ)) \
(
∪θ∈R(z)\ΘvalidD(θ)

)
(2)

validX (Θ) def= (∩θ∈ΘvalidX (θ)) \
(
∪θ∈R(z)\ΘvalidX (θ)

)
. (3)

By construction, validD(Θ) and validX (Θ) identify precisely the data valuations
u satisfying data(z) and the clock valuations v satisfying time(z), such that, from
(loc(z), u, v), it is possible to perform the transition encoded by any abstract
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BuildGame(P, (Y, R), A)

1 Y = {y | (l, u,0) ∈ γA(y)}
2 for y ∈ Y

3 for Θ ⊆ R(y) such that Θ is valid

4 StepsG(y, Θ) := {λθ | θ ∈ Θ}
5 return G = (Y, Y, 2R,StepsG)

Fig. 2. Algorithm for building abstraction from reachability graph

transition θ ∈ Θ, but it is not possible to perform a transition encoded by any
other abstract transition of R(z). We say a set of abstract transitions Θ ⊆ R(z)
is valid if either validD(Θ) or validX (Θ) hold.

We use the approach of [9] to represent an abstraction of an MDP as a stochas-
tic two-player game. The basic idea is that the two players in the game represent
nondeterminism introduced by the abstraction and nondeterminism from the
original model. In an abstract state z of the game abstraction of a PTP, player
1 first picks a PTP state (l, u, v) ∈ γ(z) and then player 2 makes a choice over
the actions that become enabled after letting time pass from (l, u, v).

The algorithm BuildGame in Figure 2 describes how to construct for a PTP P,
from a reachability graph (Y, R) over an abstract domain A, a stochastic game.
In a state y of the game, player 1 chooses between any valid set of abstract
transitions Θ ⊆ R(y). Player 2 then selects an abstract transition θ ∈ Θ. As the
following result demonstrates, this game yields lower and upper bounds on both
the minimum and maximum reachability probabilities of the PTP.

Theorem 1. Let P be a PTP with target locations F and A an abstract domain
over P. If (Y, R) is a reachability graph for P with respect to F and A, then

plb,∗
G {y ∈ Y | loc(y) ∈ F} � p∗P(F ) � pub,∗

G {y ∈ Y | loc(y) ∈ F}

where G is returned by BuildGame(P,(Y,R),A) (see Figure 2) and ∗ ∈ {min,max}.
Finally, we describe the process of constructing the reachability graph for a
PTP. A generic reachability graph generation algorithm is given in Figure 3
which takes as input a PTP, target set of locations and abstract domain. The
following theorem states the correctness of this algorithm.

Theorem 2. Let P be a PTP with target locations F and A an abstract do-
main over P. If (Y, R) is returned by BuildReachGraph(P, F, A), then (Y, R) is a
reachability graph of P with respect to F and A.

The following proposition demonstrates that, for the abstract domain AΦ,Ψ , the
resulting abstraction corresponds to the one generated using the approach of [9],
applied to the (infinite-state) MDP semantics of a PTP based on the partition
of the state space induced from the predicates Φ and Ψ .

Proposition 1. Let P be a PTP with target locations F and abstract domain
AΦ,Ψ . If (Y, R) is the reachability graph returned by BuildReachGraph(P, F, AΦ,Ψ )
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BuildReachGraph(P, F, A)

1 Y := ∅
2 X := α(l, u,0)

3 while X �= ∅
4 choose x ∈ X

5 l := loc(x)

6 X := X \ {x}
7 Y := Y ∪ {x}
8 for z ∈ tpostA(x)
9 for a ∈ Act such that enab(l, a) �= false

10 for ei = (l, a, upi, Xi, li) ∈ edges(l, a) = 〈e1, . . . , en〉
11 Zi := dpostA[ei](z)

12 if li �∈ F then X := X ∪ (Zi \ Y)
13 for 〈z1, . . . , zn〉 ∈ Z1 × · · · × Zn

14 R := R ∪ {(x, a, 〈z1, . . . , zn〉)}
15 return (Y, R)

Fig. 3. Algorithm for reachability graph construction

(see Figure 3), then the game BuildGame(P, (Z, R), AΦ,Ψ) equals that constructed
by Definition 3 for the MDP [[P]] (after the states with locations in F are made
absorbing) when using the partition P = {γ(z) | z ∈ ZΦ,Ψ}.

5 Abstraction Refinement for PTPs

The previous section described how to compute the abstraction of a PTP for two
types of abstract domains, AΦ,Ψ and AΦ,X . To implement a quantitative abstrac-
tion refinement scheme similar to that described in Section 2.2, we also require
refinement techniques for automatically constructing more precise abstractions.
In practice, this means splitting one or more abstract states. There are two forms
of refinement, either in terms of zones or predicates. In both cases, the refine-
ment process works by modifying the abstract reachability graph. However, in
the former, we will split abstract states by breaking up the zone component of
an abstract state, while for the latter, we modify the abstract domain by adding
a new data or clock predicate.

Choosing a State to Refine. Given an abstraction for a PTP P with target
locations F , i.e. a reachability graph (Y, R) with respect to some abstract do-
main A, the refinement approach is guided by the analysis of the corresponding
stochastic game, i.e. that generated by BuildGame(P, (Y, R), A). More precisely,
given the bounds for the probability of reaching F and player 1 strategies that
attain these bounds, we look at a single abstract state z for which the bounds
differ and for which distinct player 1 strategies yield each bound.1 In state z, a
player 1 strategy chooses an action available in z, which, by construction, is a

1 From the results of [9] such a state exists when the bounds differ in some state.
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RefineZone(P, (Y, R), AΦ,X , z, (ζ1, . . . , ζk))

1 Ynew := {(loc(z), data(z), ζ1), . . . , (loc(z), data(z), ζk))}
2 Yref := (Y \ {z}) 	 Ynew

3 Rref := ∅
4 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R

5 if z �∈ {z0, z1, . . . , zn} then

6 Rref := Rref ∪ {θ}
7 else
8 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | z′i ∈ Ynew if zi = z and z′i = zi o/wise}
9 for θnew ∈ Θnew such that valid(θnew ) �= ∅

10 Rref := Rref ∪ {θnew}
11 return (Yref, Rref)

Fig. 4. Algorithm to perform zone refinement in abstract state z

valid set of abstract transitions from R(z). Therefore, let Θlb , Θub ⊆ R(z) denote
the distinct player 1 strategy choices for the lower and upper bound respec-
tively. Since both sets are valid, we have that either validD(Θlb) or validX (Θlb)
is nonempty and either validD(Θub) or validX (Θub) is nonempty.

In the next section we show how to refine the zones when the abstract domain
is of the form AΦ,X and either validX (Θlb) or validX (Θub) holds. Following this,
we consider how to refine the predicates over D assuming either validD(Θlb)
or validD(Θub) hold. The remaining case (refining clock predicates when the
abstract domain is of the form AΦ,Ψ and either validX (Θlb) or validX (Θub) holds)
follows similarly, see [12] for details.

Zone Refinement. In this case, the abstract domain is of the form AΦ,X and
either validX (Θlb) or validX (Θub) holds. Since the time validity conditions of Θlb

and Θub identify precisely the clock valuations in the zone component time(z)
of z for which the corresponding transitions of [[P]] are possible, we split the zone
component of z into:

validX (Θlb), validX (Θub) and time(z)∧¬(validX (Θlb)∨validX (Θub)) . (4)

Since at least one of valid(Θlb) and valid(Θub) is non-empty and by construction
Θlb = Θub , using the definition of validity, it follows that the split of the zone
time(z) given in (4) produces a strict refinement.

The refinement algorithm is shown in Figure 4. It takes as input a PTP,
abstract domain and set of zones and returns a new reachability graph for the
PTP with respect to the same abstract domain. When using the algorithm the set
{ζ1, . . . , ζk} is given by the non-empty zones in (4). Lines 1–2 split the abstract
state z based on the set of zones given as input, then, based on this splitting,
lines 3–10 update the set of abstract transitions R resulting in a new reachability
graph, for which the corresponding stochastic game is a refined abstraction of the
PTP. The following result states the correctness of the zone refinement scheme.
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RefineDataPredicate(P, (Y, R), AΦ,�, φ′)

1 Φref := Φ ∪ {φ′}
2 Aref := AΦref,�

3 Yref := {yref ∈ ZΦref,� | ∃y ∈ Y. γAref(y
ref) ⊆ γA(y)}

4 Rref := ∅
5 for θ = (z0, a, 〈z1, . . . , zn〉) ∈ R

6 Θnew := {(z′0, a, 〈z′1, . . . , z′n〉) | γAref(z
′
i) ⊆ γA(zi) for all 0�i�n}

7 for θnew ∈ Θnew such that valid(θnew ) �= ∅
8 Rref := Rref ∪ {θnew}
9 return (Zref, Rref, Aref)

Fig. 5. Algorithm for refinement in terms of data predicates

Proposition 2. Let P be a PTP with target locations F , AΦ,X an abstract do-
main for P, (Y, R) a reachability graph for P with respect to F and AΦ,X and G
the game. If (Yref, Rref) is returned by RefineZone(P, (Y, R), AΦ,X , z, {ζ1, . . . , ζk})
for z ∈ Y and ζ1, . . . , ζk ∈ Zones(X ) and Gref=BuildGame(P, (Zref, Rref), AΦ,X ),
then:

(i) (Zref, Rref) is a reachability graph for P with respect to F and AΦ,X ;
(ii) plb,∗

G (YF ) � plb,∗
Gref (Y

ref
F ) and pub,∗

Gref (Yref
F ) � pub,∗

G (YF ) for ∗ ∈ {min,max}

where YF = {y ∈ Y | loc(y) ∈ F} and Yref
F = {y ∈ Yref | loc(y) ∈ F}.

Data Predicate Refinement. In this case we suppose either validD(Θlb) or
validD(Θub) holds. The aim of the refinement is to remove the player 1 choices
between Θlb and Θub , so the simplest approach would be to add predicates repre-
senting either or both of the sets of data valuations validD(Θlb) and validD(Θub).
However, as can be seen from the definition of validD (see (2)), the correspond-
ing predicates will be complex and therefore make the abstraction construction
prohibitively expensive. Hence, we take a different approach outlined below.

By construction Θlb = Θub , and hence, there exists an abstract transition
θ′ ∈ R(z) such that either θ′ ∈ Θlb\Θub or Θub\Θlb . We will show that if we
refine by adding a predicate φθ′ representing validD(θ′), then we eliminate the
player 1 choice between Θlb and Θub . Without loss of generality we suppose
θ′ ∈ Θlb\Θub , and therefore from (2) it follows that:

validD(Θlb) ⊆ validD(θ′) and validD(Θub) ∩ validD(θ′) = ∅ .

By adding the predicate φθ′ it then follows that, if φθ′ is true in some abstract
state, Θub cannot be valid, while, if the predicate is false, Θlb cannot be valid.
Thus, in any abstract state at most one of these choices can be valid and the
choice between Θlb and Θub has been eliminated.

The data predicate refinement algorithm is given in Figure 5 where φ′ is a
predicate over D (which in practice would correspond to the predicate φθ′). The
lines 1–3 create the new abstract domain, while lines 4–8 create an abstract
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reachability graph over the new abstract domain, for which the corresponding
stochastic game is a refined abstraction of the PTP. The following demonstrates
the correctness of the predicate refinement approach.

Proposition 3. Let P be a PTP with target locations F , AΦ,� an abstract domain
for P, (Y, R) a reachability graph for P with respect to F and AΦ,�, and G the
game. If (Yref, Rref, Aref) is returned by RefineDataPredicate(P, (Y, R), AΦ,�, ϕ′) for
any data predicate ϕ′, and Gref is the resulting game, then:

(i) (Zref, Rref) is a reachability graph for P with respect to F and Aref;
(ii) plb,∗

G (YF ) � plb,∗
Gref (Y

ref
F ) and pub,∗

Gref (Yref
F ) � pub,∗

G (YF ) for ∗ ∈ {min,max}

where YF = {y ∈ Y | loc(y) ∈ F} and Yref
F = {y ∈ Yref | loc(y) ∈ F}.

Quantitative Abstraction Refinement. The refinement schemes presented
above, combined with the techniques for abstraction given in the previous sec-
tion, can be combined into a quantitative abstraction refinement loop. This pro-
vides fully automatic construction of abstractions for PTPs. We omit the details
of the loop implementation, which are similar to [5]. See [12] for details.

6 Quantitative Verification of SystemC

We now describe a specific potential instantiation of the verification framework
we have presented. In particular, we discuss its applicability to the quantita-
tive verification of SystemC, a system-level modelling language that is becom-
ing increasingly prominent in the development of embedded systems, e.g. for
System-on-Chip (SoC) designs. Currently, analysis of SystemC designs is primar-
ily performed using simulation; however, there is growing interest in applying
verification techniques [29–34].

SystemC is appealing to designers because it is close enough to the hardware
level to support synthesis to RTL (register transfer level) descriptions, but allows
modelling of complex designs at a higher level of abstraction. Based on C++, it
combines an imperative programming style, low-level data-types for hardware,
an object-oriented approach to design and convenient high-level abstractions of
concurrent communicating processes. Furthermore, systems can be efficiently
simulated at the design stage.

System-on-Chip designs typically include many different components, includ-
ing for example support for radio communications. Furthermore, these devices
may then become integrated into larger, networked embedded systems. In these
instances, reasoning about the behaviour of a SystemC design may need to take
account of the inherently stochastic characteristics of the unreliable or unpre-
dictable components that it interacts with. Another source of probabilistic be-
haviour is the use of randomisation. This is a key feature of, for example com-
munication technologies like ZigBee, which are increasingly found in today’s
embedded devices.

Considered in its entirety, a quantitative analysis of SystemC requires all of
the basic ingredients that we have proposed for probabilistic timed programs:
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– software: basic process behaviour is defined in terms of C++ code, using a
rich array of data types;

– concurrency: designs comprise multiple concurrent processes, communicat-
ing through message-passing primitives;

– timing: processes can be subjected to precisely timed delays, through inter-
action with the SystemC scheduler;

– probability: SystemC components may link to unpredictable devices, due
to communication failures, unreliable components or randomisation.

The development of (non-quantitative) verification techniques for SystemC has
already been identified as an important, but difficult, challenge [11]. Applying
quantitative verification offers more powerful analysis techniques but promises
to be even more demanding. In the remainder of this section, we outline how
some of the existing approaches and tools for SystemC verification might be
built upon to implement our framework. We then conclude by identifying some
useful directions and challenges for future work.

Translating SystemC to PTPs. A SystemC design is decomposed into
modules, representing the separate components within a design. Modules are
connected, through ports, to channels, which model interactions between com-
ponents. Built-in “primitive” channels such as signals, FIFOs and mutexes are
provided. The behaviour of each module is described by a set of threads or pro-
cesses, specified as C++ class methods.

In [34], a translation from SystemC to the timed automata based input lan-
guage of UPPAAL is proposed and implemented. Our probabilistic timed pro-
gram formalism is a superset of timed automata so the basic ideas can be used
directly.2 The approach of [34] is to translate each C++ method, representing a
process or thread into a timed automaton. This is based on an extraction of the
control flow graph: control vertices becomes locations, control flow edges become
transitions and branching conditions (e.g. on if statements or while loops) are
incorporated into the enabling conditions of transitions. The process of generat-
ing the control flow graph is facilitated by model extraction tools for SystemC
like Scoot [35] and PINAPA [36]. These have been designed with a variety of
applications in mind, including verification.

In order to ensure that the predicate abstraction techniques described in
this paper can be applied to SystemC C++ code, the underlying SMT/SAT
solvers used need to support the data-types and operations allowed in the lan-
guage. Since SystemC offers low-level datatypes aimed at hardware designs, a
SAT-based approach using a bit-level semantics is likely to be needed [28]. This
approach was already applied to abstraction-based software model checking of
SystemC in [30] and to a probabilistic extension of ANSI-C in [8].

Scheduling and Timed Behaviour. Concurrency between SystemC threads
is controlled by the scheduler, whose behaviour is precisely defined in the lan-
guage standard [37]. The SystemC scheduler is co-operative and non-preemptive:
2 In practice, we need to add various syntactic niceties such as urgent and committed

locations, and communication over channels, but this is relatively straightforward.
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threads suspend themselves explicitly by calling a wait() or wait(t) function.
The latter is an example of timed behaviour: the calling thread is suspended
until it receives a timed notification from the scheduler after delay t.

The translation scheme of [34] captures the behaviour of the SystemC sched-
uler as a network of timed automata. This keeps track of which processes should
be run in each part of each scheduler cycle. Uncertainty between the order in
which multiple ready processes are executed is modelled as a nondeterministic
choice. Delays in each process are handled by local clocks in each automaton.

Probabilistic Behaviour. As outlined above, it is often desirable to incorpo-
rate either randomisation or failures into SystemC models. For randomisation,
this is likely to appear as calls to a C/C++ rand() function. Alternatively,
as is done in [8], custom randomised functions could be added. In either case,
these can be intercepted and converted to a probabilistic branch in the PTP. For
failures, as in [8], SystemC code that corresponds to connections or communi-
cations with unreliable components can be replaced by a stub that captures the
stochastic behaviour (e.g. using rand() as above). Probabilistic timed automata
(PTAs) have already been applied to a large number of realistic case studies in
which randomisation or failures are modelled in this fashion [22, 24, 38, 39].

Directions and Challenges. Implementing the verification techniques sketched
in this section represents a considerable challenge. As ever, the most immediate
difficulty is scalability: extending existing tools and techniques to handle the size
and complexity of real SystemC designs. In this respect, it may be beneficial to
consider state-of-the-art techniques for software model checking, which are not
currently applied to the probabilistic case because they are non-trivial to adapt.
These include, for example, the use of approximate abstractions and “lazy” con-
struction of abstractions. One particular source of complexity in SystemC models
is concurrency between processes. Development of software model checking tech-
niques for concurrent programs is another very active field of research, that may
yield gains in this area.

In a different direction, we may also aim to improve the expressivity of the
PTP formalism proposed in this paper. In the current version, probability and
time are largely orthogonal which, in many cases, is not a serious restriction for
system modelling. However, it would be interesting to explore to what extent
this can generalised. An extension with costs and rewards would be relatively
straightforward. Looking further ahead, the use of languages like SystemC in
embedded systems means that the digital components of the design will often
interact with analogue devices. This would necessitate the use of more general,
but less tractable, probabilistic models such as stochastic hybrid automata.

7 Related Work

For quantitative verification of probabilistic timed automata (PTAs), a variety
of techniques [5, 21, 22, 24, 38, 39] and tools [4, 6, 7] have been produced. In [6],
an extension of PTAs with discrete-valued variables, called VPTAs, is handled
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via a translation to the basic case. Another interesting extension is priced PTAs
[24, 40], which add a notion of prices (or weights) to locations and actions.

The development of abstraction and refinement techniques for probabilistic
models such as MDPs is also an active area of research. This was first proposed
in [41], using MDPs as abstractions, rather than stochastic games as in [5, 8, 10]
(and this paper). In [42], MDP abstractions based on predicates are used to
form a probabilistic CEGAR (counterexample-guided abstraction refinement)
technique. Later work [17] adapted this to stochastic games. Other abstraction
refinement frameworks for MDPs are put forward in [43] and [44].

Abstraction-refinement approaches have been proposed for non-probabilistic
timed automata, e.g. [45], which uses bounded model checking and SAT-based
techniques, [46], which is based on the region graph construction, and [47], for
verifying PLC automata using UPPAAL [1]. Also related is [48], which applies
SAT-based techniques to timed automata with data.

Finally, as highlighted in the previous section, there is an increasing amount
of interest in developing verification techniques for SystemC [11]. A variety
of existing verification techniques have been explored, including BDD-based
model exploration [29], bounded model checking [31] and abstraction-refinement
[30]. Another approach is to translate SystemC into other formalisms and lan-
guages for which tool support exists. This includes translations to Petri nets [32],
Promela [33] and UPPAAL [34]. With the exception of [34], which models timing
information, none of the above consider quantitative properties of SystemC.

8 Conclusions

We have outlined a theoretical framework for the verification of programs that
exhibit both probabilistic and timed behaviour, based on quantitative abstrac-
tion refinement techniques. This represents the first steps towards quantitative
verification of complex software systems, such as those found in the domain of
embedded systems. We discussed some of the ongoing work and the challenges in
this direction of research, using the SystemC language as an illustrative example.

Acknowledgements. The authors are supported in part by EPSRC grants
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Abstract. The extension of timed formalisms to a hybrid setting with

urgency, has been carried out in a rather straightforward manner,

seemingly without difficulty. However, in this paper, we show that the

combination of urgency with abstraction from continuous variables leads

to undesired behavior. Abstraction from continuous variables ultimately

leads to a timed system again, but with a much richer set of possible

branching behaviors than a timed system that comprises only clocks. As

it turns out, the formal definition of urgency, as defined for timed systems

with clocks, does not fit our intuition of urgency anymore when applied

to a timed system that is an abstraction of a hybrid system. Therefore,

we propose to extend the formal semantics of timed and hybrid systems

with guard trajectories. In this way, the continuous branching behavior

introduced by hybrid systems remains visible even after abstraction from

continuous variables. The practical applicability of the introduction of

guard trajectories is illustrated by our revision of the structured oper-

ational semantics of the CIF language. The interplay between urgency

and abstraction now adheres to our intuition, while compositionality

with respect to urgency, variable abstraction, and parallel composition,

is retained. In the future, symbolic elimination of urgency can be used

to ensure that guard trajectories do not need to be actually calculated.

1 Introduction

Urgent actions were introduced in timed formalisms to support easy modeling
of greedy, or eager, behavior. As an example, we consider timed automata of [1].
These timed automata are extensions of standard automata with clocks that
keep track of passage of time. The actions of an automaton are guarded by
constraints on the clocks, which indicate when the action may be performed.
In addition, the introduction of urgency of actions to this model allows the
modeler to determine when an action must be performed. Using model checkers
like UPPAAL, KRONOS, and IF [2–4], one can then check whether the urgent
execution of actions will guarantee that these actions meet their deadlines.

� This work was partly done as part of the EU FP7 2007-2013 projects MULTIFORM

and C4C, contract numbers FP7-ICT-224249 and FP7-ICT-223844.
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The extension of these timed formalisms to a hybrid setting with urgency has
been carried out in a rather straightforward manner. In hybrid automata [5, 6]
clocks are generalized to differential equations over continuous variables. Thus,
guards deal with continuous variables, so urgency allows the modeler to specify
that an action will happen as soon as a guard becomes true. Tools like HyTech
and HyVisual [7, 8] already support this idea, e.g., they can be used to verify
that an action is executed before a certain continuous condition is met.

Admittedly, the formal definition of urgency has had its complications. One
problem was that the earliest possible moment of an action may not be defined,
e.g., when the guard on an action is a left-open time-interval. Another problem
was that the unexpected blocking of urgent actions due to a failing synchroniza-
tion may enable other actions that were not available before. In this way, systems
that were considered equivalent before placing them in a parallel composition,
may behave differently after placing them in a parallel composition, thus ruining
compositionality. Still, most of these complications have been solved for timed
systems. Thus, one often defines that the urgent execution of an action in a
left-open time-interval leads to a deadlock, and one can strengthen the notion
of equivalence to consider non-urgent actions, even if there are earlier urgent
actions that prevent them. These solutions, even though not the only possible
ones, are satisfactory and readily transferrable to a hybrid setting as well.

An additional complication in the definition of urgency arises only when one
starts in a hybrid setting and subsequently obtains a timed system through ab-
straction of hybrid variables. In fact, the problem already manifests itself when
only part of the continuous behavior is abstracted from, but for the sake of
simplicity we abstract from all variables in the setting of this paper. To the best
of our knowledge, the combination of urgency and variable abstraction has not
been studied in detail before, hence the problem did not manifest itself sooner.

When abstracting from the value of continuous variables in a hybrid system,
one would like to obtain a timed system in which the moments at which certain
urgent actions are enabled or disabled are accurately preserved. The fact that the
value of a continuous variable is not directly observable, should not change the
fact that a certain guard that depends on this value is true or false at a certain
time. Furthermore, we would expect in particular that if a system contains a
deadlock before abstracting from the value of continuous variables, that it also
contains this deadlock after abstracting from the value of these variables. After
all, the abstraction is intended to give us a system that is easier to analyse,
which means that the abstraction should preserve the properties that we are
interested in. Finally, we expect that abstraction distributes over compositions
and operators whenever reasonably possible, because we would like to employ
abstraction to verify separate components. In the opposite case, the results of
such a partial verification could not be used in the verification of the whole.

The definitions for abstraction from variables in current literature, e.g. [9, 10],
aim towards obtaining a timed transition system when all variables are ab-
stracted from. However, in a timed transition system the continuity of the mo-
ments of choice is abstracted from, which becomes even more prominent when
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Fig. 1. μCIF automata Saw and Smooth , and the resulting infinite timed transitions

systems parameterized with t ∈ IR such that t > 0 after applying: (1) variable abstrac-

tion and (2) urgency followed by variable abstraction

urgency is introduced. We note that other typical compositions and operators
in the automata- and process-theoretic approaches are not affected. As an illus-
tration of how urgency depends on the continuity of the moments of choice, let
us consider the hybrid systems depicted in Fig. 1. The systems differ only in the
differential inclusions that define their continuous behavior. Saw has a differen-
tial inclusion ranging over two points, while Smooth has a differential inclusion
ranging over the closed interval between these two points.

Using the existing definitions of urgency, we can show that any behavior of
Saw can be mimicked by Smooth, but not vice versa. In particular, from the
initial valuation x �→ 0, Smooth allows x to remain 0 for an arbitrary period of
time (thus disallowing the action a), while Saw does not allow x to remain 0
and it is always able to execute an a after an arbitrarily small delay. Declaring
the action a to be urgent, now shows the difference between Saw and Smooth
even more prominently, because the action a must happen as soon as it can. The
application of urgency to Saw leads to a deadlock, since the guard leads to a left-
open time-interval in which a is enabled. The latter gives us a system in which
x(t) = 0 is the only possible solution, so a will never occur, but time can progress.

The above described behavior supports the intuition, but when we abstract
from the value of x before applying urgency, the semantics changes unexpectedly.
The abstraction from x results in a isomorphic timed transition system for both
Saw and Smooth, as each variable trajectory in Smooth has a related trajectory
in Saw with the same duration and the same start- and end-valuation. Making
a urgent leads to a system in which no transition labeled by a can occur, but
time can progress. Apparently, by abstracting from x, we also abstracted from
the intervals in which a is enabled, causing the deadlock to disappear. This is
not desirable, since it allows for variable abstraction only on the ’top’ level,
after the system has been described completely and urgency has been applied.
Therefore, we cannot employ variable abstraction to simplify the verification of
the components of a system.

As a remedy, we propose to make the guard trajectories visible on the timed
transitions, even if one has already abstracted from the values of the variables
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that these guards comprise. To illustrate our approach, we adapt the structured
operation semantics (SOS) [11] of a subset of the compositional interchange for-
mat (CIF ) language [12, 13] that comprises urgency and variable abstraction.
Another solution to the above problem would be to restrict to hybrid systems
in which the above phenomenon does not occur. These systems, referred to as
finite set refutable, were studied in [14]. All timed systems that comprise fixed
clock-rates are finite-set refutable, as well as all hybrid systems that employ
only differential equations, rather than differential inclusions. However, open
systems with free input/output variables and systems with open differential in-
clusions are, in general, not finite-set refutable. So, while the extension to guard
trajectories does not change anything for classical timed system, it provides a
more applicable theory with a more robust notion of variable abstraction. Fur-
thermore, ongoing research indicates that symbolic elimination of the urgency
operator is possible, meaning that the introduced guard trajectories never need
to be actually calculated when analyzing the behavior of a system.

The remainder of this paper is structured as follows. We discuss related work
in section 2. Section 3 illustrates our approach by adapting the SOS of a relevant
subset of the CIF language. We show that urgency and variable abstraction
indeed distribute modulo bisimulation, solving the aforementioned problems. In
section 4 we show compatibility with the common urgency concepts from the
literature, and we end with concluding remarks in section 5.

2 Related Work

In this section we discuss the notions of urgency in the literature on timed and
hybrid automata and relate them to our work.

Specifying urgency. Early approaches to specifying urgency employed state in-
variants to limit the progress of time at a given location [15]. Amongst others,
this approach found its way into the toolset UPPAAL [2]. A variant of this ap-
proach, termed stopping conditions, has been employed in a timed restriction of
the hybrid I/O automata [16]. When the stopping condition becomes valid, the
progress of time is stopped and an activity must execute immediately. Another
extension, termed timed automata with deadlines, was investigated in [17–20].
Deadlines are auxiliary clock constraints, which specify when the transition has
become urgent. It is required that they imply the corresponding guard con-
straints to ensure that at least one transition has been enabled after stopping
the progress of time. This property of progress of time is also known as time
reactivity or time-lock freedom [19, 21]. Timed automata with deadlines are
embedded in the specification languages IF and MODEST [4, 22]. Yet another
approach employing urgency predicates has been proposed in [23] as an exten-
sion of timed I/O automata. In the same study the four approaches from above
have been paralleled, concluding that stopping conditions, deadlines, and ur-
gency predicates essentially have the same expressivity, whereas invariants can
be additionally applied to right-open intervals as well. However, by construction
only deadlines and urgency predicates guarantee time reactivity.
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In the hybrid setting, urgency flags denote urgent actions in the framework
of HyTech [7] and invariants are required to endorse urgent transitions. The
same approach is used when coupling Hytech and UPPAAL [24]. The completely
opposite approach is taken in HyVisual [8], where every action considered urgent.

In this paper, we consider two types of urgency: (1) global labeled transition
urgency by means of urgent action labels and (2) local urgency by means of
the time-can-progress construct. The former is implemented by means of an
urgency mapping in a fashion similar to the urgency flags of [7], whereas as the
latter is closest to the stopping conditions of [16]. As a design choice, we do not
hard-code/enforce the property of time reactivity in the semantics, although we
foresee that it can be supported by restricting the allowed syntax.

Synchronization of urgent actions. When considering synchronization of ur-
gent actions, the literature provides three prominent manners: (1) synchroniza-
tion with hard deadlines or impatient synchronization or AND-synchronization,
where the urgency constraints of all synchronizing parties must be endorsed as
soon as they are enabled, (2) synchronization with soft deadlines or patient syn-
chronization or MAX-synchronization, where some urgency constraints can be
contravened so that the synchronization can occur as long as the guards still
hold, and (3) MIN-synchronization, which occurs when one of the synchroniz-
ing parties is ready to synchronize provided that the other will eventually be
enabled. In the setting of this paper, we opt for both patient and impatient
synchronization. Implementing MIN-synchronization would require substantial
changes of the semantics, i.e., time look-ahead capability, whilst its practical use
for modeling real-life systems is limited [25].

When using urgency flags, there are substantial restrictions on the guards
of the synchronizing actions [7, 24]. In the current setting, we use an opera-
tor to specify synchronizing actions and urgency. The patient synchronization
contravenes urgency constraints by assuming non-urgency of all synchronizing
actions and, only after successful synchronization in accordance with the guards
has succeeded, it re-imposes the urgency constraints. Our approach is similar to
the drop bisimulation proposed in [20], where deadlines are dropped to enable
patient synchronization and, afterwards, undropped to preserve compositional-
ity. To support modeling with data we also introduced urgent channels in the
extended framework of χ 2.0 [26], a topic beyond the scope of this paper.

3 μCIF

This section presents a concise syntax and formal semantics of a subset of the
CIF language [12], denoted as μCIF . It illustrates how the urgency concept
can be defined in a compositional way, robust against abstraction from local
variables, by extending hybrid transition systems (HTSs) [27] with guard tra-
jectories. Similar ideas are applied in the complete framework of χ 2.0 [26], and
in the latest extension of CIF [12, 28]. μCIF is a modeling language for hybrid
systems that adopts concepts from hybrid automata theory and process algebra.
We briefly overview the features of the language.
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The basic building blocks of μCIF are atomic automata, which consist of a
set of locations L and edges that connect them. A location specifies a state of
the system, and it can have equations associated to it in the form of time can
progress predicates. These equations define the continuous behavior of the au-
tomaton: they determine when time can pass, and how the value of the variables
changes as time elapses. The values of the variables belong to the set Λ that
contains, among else, the sets B, R, and C. Guarded labeled transitions specify
the discrete behavior of the system. These transitions are labeled with actions
originating from A. Guards are incorporated as predicates over variables, given
by P . Continuous behavior is specified by timed transitions labeled by variable
and guard trajectories as described below. The set T comprises all time points.

We distinguish between two types of variables: (1) variables, denoted by the
set V , and (2) the dotted versions of those variables, which belong to the set
V̇ � {ẋ | x ∈ V}. The evolution of the value of a variable as time elapses is con-
strained by equations. Furthermore, we distinguish between discrete variables,
which dotted versions are always 0, and continuous variables, which dotted ver-
sions represent the derivative. Variables are constrained by differential algebraic
equations and we implement them as predicates, given by P , over all variables
V ∪ V̇. We also have initialization conditions, elements of P , which allows to
model steady state initialization.

We introduce several operators of μCIF . Parallel composition with synchro-
nization composes two μCIF automata in parallel, synchronizing on a specified
set of actions, while interleaving the rest. Actions are not synchronizing by de-
fault and they must be declared as such by placing them in the synchroniza-
tion set. We introduce local urgency by means of a time-can-progress predicate
and global urgency by means of urgency composition. The time-can-progress
predicate is associated to each location of the automaton and specifies whether
passage of time is allowed. Action transitions become urgent when time can no
longer progress. The urgency operator declares action transitions as urgent, thus
disabling the passage of time whenever an urgent action is enabled. Finally, vari-
ables in μCIF can be made local by means of variable scopes. When a variable
is abstracted from, the changes made to the variable by the automaton are not
visible outside the scope, and vice versa, external automata cannot change the
value of the abstracted variable.

The semantics of the μCIF is given in the form of a structured operational
semantics (SOS) [11] on a hybrid transition system(HTS) [27]. This is signifi-
cantly different with the typical way of giving semantics to hybrid automata [5].
In the SOS approach, the semantics of the operators is defined by rules that give
the semantics of the composition on the basis of the semantics of the constituent
components, whereas in traditional approaches, the semantics of the composition
is given by syntactic transformations of the constituent components to a basic
automaton. In [12, 28], the SOS approach was chosen since it is better suited for
guiding the implementation process [29]. Additionally, it makes use of standard
SOS formats to show compositionality [30], thus enabling symbolic reasoning.
Since μCIF is a subset of CIF, we inherit the SOS approach.
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Syntax. The basic building block of μCIF are atomic automata. An atomic
automaton resembles a hybrid automaton: for each location in an automaton
there is a predicate ‘init’ that specifies the conditions under which execution
can begin on that location, and a predicate ‘tcp’ that specifies local urgency by
giving the conditions under which time can progress in that location and that
determines how the value of variables change over time, defining the dynamic
behavior. The edges of the automaton describe the actions that the automaton
can perform.

Definition 1. An atomic automaton is a tuple (L, init, tcp, E) with a set of
locations L ⊆ L; initial and time-can-progress predicates init, tcp : L → P; and
a set of edges E ⊆ L× P ×A× L.

Starting with atomic automata, μCIF automata are built using a set of compo-
sitions C ∈ C, given by C ::= α | C ‖S C | υU (C) | |[ x, ẋ �→ c, d :: C ]|, where α
is an atomic automaton, S ⊆ A , U ⊆ A, x ∈ V , ẋ ∈ V̇ , and c, d ∈ Λ.

The semantics of μCIF automata is in terms of a hybrid transition system
(HTS). Each state of this HTS is a pair 〈p, σ〉 comprising a composition of
automata p and a valuation σ that associates a value to each variable. The set
of all valuations is denoted by Σ � V ∪ V̇ → Λ. We keep track of the evolution
of the values of variables using the concept of variable trajectories, denoted as
ρ : T → Σ. A variable trajectory ρ holds the values of the variables at each time
point s ∈ T in the delay. Since the values of variables change over time, the truth
values of the guards dependent on the variable change as well. Thus, the set of
enabled action transitions at each point in time can be determined using the
concept of guard trajectories. A guard trajectory, denoted as θ : T → 2A, keeps
track of the set of enabled actions for each point in time.

The discrete and continuous behavior of HTSs is defined in terms of action
transitions, given by −→ ⊆ (C × Σ) × A × (C × Σ), and timed transitions,
given by �−→ ⊆ (C ×Σ)× ((T →Σ)× (T → 2A))× (C ×Σ), respectively. The
intuition of an action transition 〈p,σ〉 a−→〈p′,σ′〉 is that 〈p,σ〉 executes the discrete
action a ∈ A and thereby transforms into 〈p′, σ′〉, where p′ and σ′ denote the
resulting automaton and variable valuation, respectively. The intuition behind
a timed transition 〈p, σ〉 ρ,θ�−→ 〈p′, σ′〉 is that during the passage of time, the
valuation that defines the values of the visible variables at each time-point s ∈
[0, t] = dom(ρ) = dom(θ) is given by the variable trajectory ρ(s). The novelty in
this paper is the set of enabled actions at each time-point s ∈ [0, t], given by the
guard trajectory θ(s). At the end-time point t ∈ T , the resulting state is 〈p′, σ′〉.

Structural Operational Semantics. We use σ(x), with σ ∈ Σ, to denote the value
of variable x in valuation σ. By σ |= u we denote that the predicate u ∈ P is
satisfied in the valuation σ.

An atomic automaton (L, init, tcp, E) can execute actions or time delays.
Given an active location � ∈ L, i.e., a location for which init(�) holds, an action a
can be executed only if there is an edge (�, g, a, �′) such that the guard g is
satisfied. Rule 1 formalizes as follows:
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(�, g, a, �′) ∈ E, σ |= init(�), σ |= g

〈(L, init, tcp, E), σ〉 a−→ 〈(L, id�′ , tcp, E), σ〉
1

where id� ∈ L → P for � ∈ L such that id�(�′′) � � = �′′.
During a time delay [0, t] for t ∈ T , the values of variables can change. In a

timed transition 〈p, σ〉 ρ,θ�−→ 〈p′, σ′〉, the variable trajectory ρ contains the values
of variables at each point in the time interval [0, t]. The value of x can be defined
as a function ρ ↓ x : [0, t] → Λ, in terms of ρ, such that (ρ ↓ x)(s) = ρ(s)(x).

In the CIF tooling, the variables x and ẋ are, in principle, different variables.
This makes it easier to implement an algorithm that checks whether a certain
variable trajectory is a solution of an equation. The coupling between x and ẋ
is performed through the definition of a dynamic type. Most importantly, this
dynamic type ensures that discrete variables remain constant over time, and that
continuous variables have the expected derivatives. Formally, the dynamic type
of a variable is a set G ⊆ 2(T →Λ×T →Λ). A variable trajectory ρ is said to satisfy
a dynamic type constraint G if (ρ ↓ x, ρ ↓ ẋ) ∈ G. For each variable x we assume
the existence of a dynamic type Gx associated to it.

Now, timed transitions are enabled in an active location � if there exists
a valid variable trajectory. A variable trajectory ρ is valid if it has a positive
duration, i.e. dom(ρ) = [0, t] and 0 < t; tcp holds during [0, t), with [0, 0) � ∅,
and all variables satisfy the dynamic type constraints. The guard trajectory is
constructed accordingly based on the variable trajectory, as given by rule 2:

ρ(0) |= init(�), ∀s∈[0,t) ρ(s) |= tcp(�), ∀x∈V (ρ ↓ x, ρ ↓ ẋ) ∈ Gx

〈(L, init, tcp, E), ρ(0)〉 ρ,θ�−→ 〈(L, id�, tcp, E), ρ(t)〉
2

where the duration of the delay is positive, 0 < t, and the trajectories are defined
exactly on the delay interval dom(ρ) = [0, t], dom(θ) = [0, t]. The guard trajectory
is defined as ∀s∈[0,t] θ(s) = {a | (�, g, a, �′) ∈ E ∧ ρ(s) |= g}.

Parallel composition. As a result of composing two μCIF automata in parallel,
the equally labeled action transitions of both components that are specified in
the synchronization set S ⊆ A must be taken together. This is given by rule 3.
The other action transitions are interleaved, as stated by rules 4 and 5.

〈p, σ〉 a−→ 〈p′, σ′〉, 〈q, σ〉 a−→ 〈q′, σ′〉, a ∈ S

〈p ‖S q, σ〉 a−→ 〈p′ ‖S q′, σ′〉
3

〈p, σ〉 a−→ 〈p′, σ′〉, a /∈ S

〈p ‖S q, σ〉 a−→ 〈p′ ‖S q, σ′〉
4

〈q, σ〉 a−→ 〈q′, σ′〉, a /∈ S

〈p ‖S q, σ〉 a−→ 〈p ‖S q′, σ′〉
5

For timed transitions, the two components must agree in their variable trajec-
tories (and hence in the duration of the time delay). The guard trajectory is
constructed from the guard trajectories of the components of the parallel com-
position: at a given time point s, an action is enabled in the parallel composition
p ‖S q if is enabled in p and q (regardless of whether the action is in S), or if it
is enabled in p or q and it is not synchronizing. Rule 6 formalizes this:
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〈p, σ〉 ρ,θp�−→ 〈p′, σ′〉, 〈q, σ〉 ρ,θq−−→ 〈q′, σ′〉

〈p ‖S q, σ〉 ρ,θp�Sθq�−→ 〈p′ ‖S q′, σ′〉
6

where (θp �S θq)(t) � (θp(t) ∩ θq(t)) ∪ (θp(t) \ S) ∪ (θq(t) \ S).

Urgency operator. The urgency operator υU (p) gives actions from the set U ⊆A
a higher priority than timed transitions. Timed transitions are allowed only if
at the current state, and at each intermediate state while delaying, there is no
urgent action enabled. This is given by rules 7 and 8 as follows:

〈p, σ〉 a−→ 〈p′, σ′〉
〈υU (p), σ〉 a−→ 〈υU (p′), σ′〉

7
〈p, σ〉 ρ,θ�−→ 〈p′, σ′〉, ∀s∈[0,t) U ∩ θ(s) = ∅

〈υU (p), σ〉 ρ,θ�−→ 〈υU (p′), σ′〉
8

Variable Scope. We introduce local variables by means of the variable scope
operator. The variable scope |[ x, ẋ �→ c, d :: p ]|, for x ∈ V , ẋ ∈ V̇, c, d ∈ Λ, and
p ∈ C, behaves as p but all the changes made to the local variables x and ẋ are
invisible. The initial values of x and ẋ are c and d, respectively.

To define the semantics of this operator we use the function overwriting oper-
ator ), which, given two functions f and g, is defined as f ) g = f ∪ g 	dom(f),
where g 	X is the restriction of the domain of function g to dom(g)\X . In rules 9
and 10 the local value of the variables at the end of the transition is kept in the
scope operator, whereas changes in the global valuation are overridden.

〈p, σxcd〉 a−→ 〈p′, σ′〉
〈|[ x, ẋ �→ c, d :: p ]|, σ〉 a−→ 〈|[ x, ẋ �→ σ′(x), σ′(ẋ) :: p′ ]|, σ′

xef 〉
9

〈p, σxcd〉
ρ,θ�−→ 〈p′, σ′〉

〈|[ x, ẋ �→ c, d :: p ]|, ρx(0)〉 ρx,θ�−→ 〈|[ x, ẋ �→ σ′(x), σ′(ẋ) :: p′ ]|, ρx(t)〉
10

where ∀σ∈Σ, x∈V, c,d∈Λ σxcd � {x �→ c, ẋ �→ d} ) σ and dom(ρx) = dom(ρ) with
∀s∈dom(ρ) ∃c,d∈Λ ρx(s) � ρ(s) 	{x,ẋ} ∪{x �→ c, ẋ �→ d}.

Stateless bisimilarity. Two μCIF components are equivalent if they have the
same behavior (in the bisimulation sense) given the same valuation of variables.

Definition 2. A symmetric relation R⊆ C×C is a stateless bisimulation relation
if and only if for all (p, q) ∈R it holds that (1) ∀σ,σ′∈Σ, a∈A, p′∈C 〈p,σ〉 a−→ 〈p′, σ′〉 ⇒
∃q′∈C 〈q,σ〉 a−→〈q′,σ′〉∧(p′,q′)∈R, and (2) ∀σ,σ′∈Σ, ρ∈T →Σ, θ∈T→2A, p′∈C 〈p,σ〉

ρ,θ�−→
〈p′, σ′〉 ⇒ ∃q′∈C 〈q, σ〉 ρ,θ�−→ 〈q′, σ′〉 ∧ (p′, q′) ∈ R. Two components p and q are
stateless bisimilar, denoted by p ↔ q, if there exists a stateless bisimulation rela-
tion R such that (p, q) ∈ R.

Stateless bisimilarity is a congruence for all μCIF operators. This facilitates
symbolic reasoning as we can replace equivalent automata in any context.
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Theorem 1. Stateless bisimilarity is a congruence over all μCIF operators.

Proof. The SOS rules 1–10 satisfy the process-tyft format, which guarantees
congruence for stateless bisimilarity [30]. ��

Urgency and variable abstraction. The core of the problem in the interaction be-
tween urgency and variable abstraction is in the use of timed transition systems.
In the previous subsections, we have given a semantics that does not abstract
to a timed transition system, but rather to a ’guard trajectory labeled’ transi-
tion system. Next, we give the main theorem of this paper, and prove that this
change in semantics indeed solves the problem. The theorem states that urgency
and variable abstraction distribute, meaning that the order in which they are
applied is of no consequence anymore.

Theorem 2. ∀p∈C, U⊆A |[ x, ẋ �→ c, d :: υU (p) ]| ↔ υU (|[ x, ẋ �→ c, d :: p ]|).

Proof. Let R = {(|[ x, ẋ �→ c, d :: υU (r) ]|, υU (|[ x, ẋ �→ c, d :: r ]|)) | r ∈ C,
U ⊆A, c, d ∈ Λ}. We will show that R is a stateless bisimulation, i.e., it satisfies
the conditions of Definition 2.

Let (p, q) ∈ R be such that p = |[ x, ẋ �→ c, d :: υU (r) ]| and
q = υU (|[ x, ẋ �→ c,d :: r ]|)). Assume 〈|[ x, ẋ �→ c,d :: υU (r) ]|,σ〉 a−→〈p′,σ′

xef 〉. By rules
9 and 7, we know that p′ = |[ x, ẋ �→ σ′(x), σ′(ẋ) :: υU (r′) ]|,
〈υU (r), σxcd〉 a−→ 〈υU (r′), σ′〉, and 〈r,σxcd〉 a−→ 〈r′, σ′〉. Thus applying rules 9 and 7,
we have that 〈υU (|[ x, ẋ �→ c, d :: r ]|)), σ〉 a−→ 〈υU (|[ x, ẋ �→ σ′(x), σ′(ẋ) :: r′ ]|), σ′

xef 〉.
Next suppose 〈p,ρx(0)〉 ρx,θ�−→ 〈p′,ρx(t)〉. By rule 10, we have that [4]〈υU (r),σxcd〉

ρ,θ�−→ 〈υU (r′),σ′〉, and by rule 8 we have that [4]〈r,σxcd〉
ρ,θ�−→ 〈r′,σ′〉 and ∀s∈[0,t)U ∩

θ(s) = ∅. Applying rule 10 to the last transition we get 〈|[ x, ẋ �→ c, d :: r ]|
, ρx(0)〉 ρx,θ�−→ 〈|[ x, ẋ �→ c,d :: r′ ]|, ρx(t)〉, and since we know that ∀s∈[0,t)U ∩θ(s) = ∅,
we can apply rule 8 to obtain 〈υU (|[ x, ẋ �→ c, d :: r ]|), ρx(0)〉 ρx,θ�−→ 〈υU (|[ x, ẋ �→
c, d :: r′ ]|), ρx(t)〉. ��

We note that an essential part of the proof of Theorem 2 is that the guard
trajectories remain the same after variable abstraction, allowing us to deduce
that urgent transitions do not interrupt the passage of time. Only when a system
is finite set refutable[14], these guard trajectories can be recovered from the
duration of the time transitions and the guards on the intermediate states.

4 Compositionality and Synchronization

We discuss the compositionality features of μCIF that are prominent in the lit-
erature, as well as passage of time when synchronizing urgent action transitions.

Compositionality of the parallel composition. When synchronizing action transi-
tions in timed and hybrid automata, one typically takes the conjunction of the
guards involved in the synchronization as a guard of the synchronized transi-
tion. As noted in [20, 23] this is the most prominent way of synchronization.
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P1 : x = 0
��

�� ���� ��tcp ẋ = 1

1 ≤ x ≤ 5 → a

��
�� ���� �	tcp false

‖{a}

P2 : x = 0
��

�� ���� ��tcp ẋ = 1

4 ≤ x ≤ 6 → a

��
�� ���� �	tcp false

↔

P3 : x = 0
��

�� ���� ��tcp ẋ = 1

4 ≤ x ≤ 5 → a

��
�� ���� �	tcp false

Fig. 2. Parallel composition with synchronization of μCIF automata

As an illustration, we depict the composition of two μCIF automata in Fig. 2,
where P1 ‖{a} P2 ↔ P3. Recall that initial states are depicted by incoming ar-
rows on which we state the initial values of the variables. State invariants like
tcp predicates are placed inside a state.

Taking the conjunction of the guards as a guard of the synchronized actions
may lead to compositionality problems, depending on the way urgency is defined.
As an example, consider the implementation of urgent transitions through dead-
lines, as in [20]. In Fig. 3 we have two timed automata with deadlines (TAD),
T1 and T2. The initial value of the clock x is 0 and the guards g : 1 ≤ x ≤ 5 and
g : 4 ≤ x≤ 6 are associated with the actions a and c, respectively, denoting when
the transitions may be taken. The deadlines d : x ≥ 3 and d : x ≥ 6 express when
the transitions labeled by a and c must be taken, respectively. Thus, the action a
is enabled in the interval [1, 5] and must be taken at 3, whereas c is enabled in
the interval [4, 6] and must be taken at 6. The TAD T1 and T2 are considered
bisimilar, since due to the urgency of the action a, the transition labeled by c
will never be taken. However, when synchronizing on the action a, with a com-
ponent that suppresses it, e.g., a component ‘stop’ that only idles, we see that
the parallel composition behaves differently. Namely, the previously preempted
action c is now observable in T2 ‖{a} stop, whereas T1 ‖{a} stop. Consequently,
standard timed bisimulation [1] is not a congruence for TAD [20].

In μCIF , we solve the compositionality issue by defining the semantics of
urgency and synchronization differently. We specify urgency using the tcp pred-
icate, which is basically a state timed invariant, different from deadlines, which
are on transition level. Additionally, we use SOS to define synchronization di-
rectly on the semantic level of transition systems, rather than defining it on the
symbolic level of automata. In this way, we obtain compositionality for free by
adhering to the process-tyft format from [30].

The closest mimic to the automata of Fig. 3 is given by the μCIF automata
in Fig. 4, where the behavior of the automata T1, T2, and ‘stop’ is mimicked by
P4, P5 and P6, respectively. The crucial difference is that we use the tcp state
predicate to stop the progress of time in order to induce urgency, which imposes
a unique deadline for all outgoing transitions. This is observed in the initial state
of P5 as tcp x ≤ 3 ∧ x ≤ 6, which is equivalent to tcp x ≤ 3. In our setting, P4

is bisimilar to P5, but the change in the semantics of urgency and the parallel
composition ensures that P4 ‖{a} P6 is also bisimilar to P5 ‖{a} P6.
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T1 :

x = 0 ��
������

g : 1 ≤ x ≤ 5

d : x ≥ 3

a
��
������

T2 :

x = 0 ��
������

g : 1 ≤ x ≤ 5

d : x ≥ 3

a

����
��

��
��

��
�

g : 4 ≤ x ≤ 6

d : x ≥ 6

c

���
��

��
��

��
��


������ 
������

T1 ‖{a} stop :

x = 0 ��
������

T2 ‖{a} stop :

x = 0 ��
������

g : 4 ≤ x ≤ 6

d : x ≥ 6

c
��
������

Fig. 3. Compositionality of timed automata with deadlines

P4 : x = 0
��

�� ��

�� �	

tcp ẋ = 1

x ≤ 3

1 ≤ x ≤ 5 → a

��
�� ���� �	tcp false

P5 : x = 0
��

�� ��

�� �	

tcp ẋ = 1

x ≤ 3 ∧ x ≤ 6

1 ≤ x ≤ 5 → a

4 ≤ x ≤ 6 → c

��
�� ���� �	tcp false

P6 :
��

�� ���� ��tcp true

Fig. 4. μCIF automata P4, P5, and P6, mimicking the behavior of TAD automata T1,

T2, and stop, of Fig. 3, respectively

Impatient and patient synchronization. Above we showed how to impose hard
deadlines by means of the tcp predicate. Alternatively, one could obtain the same
behavior by means of the global urgency operator υU for U ⊆ A. We put the
automaton on which we want to impose urgency in parallel with an automaton
that request urgency on synchronizing action transitions as depicted in Fig. 5.
Here, we show how to alternatively specify the urgency of action a at time 3,
obtaining μCIF automaton P7 that is bisimilar to the automaton P4 of Fig. 4.

An advantage of the specification of deadlines using the urgency operator,
is that it provides for more flexibility. In particular, the scope of the urgency
operator can be used to specify both impatient and patient synchronization
of actions. In impatient synchronization, we have hard deadlines. Therefore, the
urgency constraints of all synchronizing parties must be endorsed as soon as they
are enabled. In patient synchronization we have soft deadlines. Some urgency
constraints can be contravened so that the synchronization can occur as long as
the guards still hold. To specify patient synchronization, we place the parallel
composition inside the scope of the urgency operator. For example, υ{a}(P1 ‖{a}
P2), where P1 and P2 are given in Fig. 2 specifies the patient synchronization
of P1 and P2. The resulting system has an outgoing guarded action transition
4 ≤ x ≤ 5 → a, which must be taken at time 4, restricted by tcp x ≤ 4.

The urgency operator we defined, provides a reasonable amount of flexibil-
ity at specifying various types of synchronization. Ongoing research shows that
the global urgency operator can be eliminated through symbolic reasoning at
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P7 : x = 0
��

�� ���� ��tcp ẋ = 1

1 ≤ x ≤ 5 → a

��
�� ���� �	tcp false

‖a υ{a}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x = 0
��

�� ���� ��tcp ẋ = 1

x ≥ 3 → a

��
�� ���� �	tcp false

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

P8 : x = 0
��

�� ��

�� �	

tcp ẋ = 1

x ≤ 4

4 ≤ x ≤ 5 → a
��

�� ���� �	tcp false

Fig. 5. The μCIF automaton P7 shows an alternative definition of hard deadlines

P7 ↔ P4; the μCIF automaton P8 is the result of the patient synchronization of P1

and P2, i.e., P8 ↔ υ{a}(P1 ‖{a} P2).

the syntactic level, by transferring it to local urgency of the tcp predicate. We
can achieve this by means of a linearization procedure that transforms μCIF
automata by pushing the guards of the urgent transitions in the tcp predicate.
As a consequence, guard trajectories never need to be actually calculated when
proving properties of a system. Their only purpose is to retain compositionality
when combining urgency with variable hiding. After a composition has been lin-
earized, the need for guard trajectories disappears. The linearization approach
can be illustrated by observing the μCIF automata P4 of Fig. 4 and P7 of Fig. 5.
The guard of the urgent transitions a of P7, given by x ≥ 3, is pushed to the tcp
predicate of the initial state of P4, given by tcp x ≤ 3. Thus, the linearization
procedure provides an efficient implementation of urgency in the CIF toolset [13].

5 Concluding Remarks

In this paper, we investigated the interplay between urgent actions and variable
abstraction in timed and hybrid systems. We showed that this interaction is not
distributive due to the use of timed transition systems as the basic semantic
model, rendering component-wise verification inapplicable. We proposed to add
guard trajectories in the labels of the timed transitions as a remedy. We illus-
trated the proposal by revising the semantics of the CIF language, as it is used
in the MULTIFORM project. We proved that the identified problem indeed dis-
appears, while retaining commonly desired properties of urgency and variable
abstraction, such as compositionality and the possibility of specifying different
kinds of synchronization. Our approach employs SOS techniques, guaranteeing
compositionality with respect to stateless bisimilarity. Furthermore, it makes
that the concepts introduced in this paper easily transferrable to other timed
and hybrid formalisms. This has, e.g., already been done for the χ language [10].
Whether our results are useful in the verification of hybrid systems with urgency,
remains as a topic for future research. Ongoing research based on linearization
procedures that eliminate the urgency operator is promising and, moreover, the
obtained results provide for local variable abstraction and verification based on
this abstraction, an option not available in previous work.
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Abstract. We study two-player timed games where the objectives of the two
players are not opposite. We focus on the standard notion of Nash equilibrium
and propose a series of transformations that builds two finite turn-based games
out of a timed game, with a precise correspondence between Nash equilibria in
the original and in final games. This provides us with an algorithm to compute
Nash equilibria in two-player timed games for large classes of properties.

1 Introduction

Timed games. Game theory (especially games played on graphs) has been used in com-
puter science as a powerful framework for modelling interactions in embedded sys-
tems [16,13]. Over the last fifteen years, games have been extended with the ability
to depend on timing informations, taking advantage of the large development of timed
automata [1]. Adding timing constraints allows for a more faithful representation of
reactive systems, while preserving decidability of several important properties, such as
the existence of a winning strategy for one of the agents to achieve her goal, whatever
the other agents do [3]. Efficient algorithms exist and have been implemented, e.g.
in the tool Uppaal-Tiga [4].

Zero sum vs. non-zero sum games. In this purely antagonist view, games can be seen as
two-player games, where one agent plays against another one. Moreover, the objectives
of those two agents are opposite: the aim of the second player is simply to prevent the
first player from winning her own objective. More generally, a (positive or negative)
payoff can be associated with each outcome of the game, which can be seen as the
amount the second player will have to pay to the first player. Those games are said to
be zero-sum.

In many cases, however, games can be non-zero-sum: the objectives of the two play-
ers are then no more complementary, and the aim of one player is no more to prevent
the other player from winning. Such games appear e.g. in various problems in telecom-
munications, where the agents try to send data on a network [12]. Focusing only on
surely-winning strategies in this setting may then be too narrow: surely-winning strate-
gies must be winning against any behaviour of the other player, and do not consider the
fact that the other player also tries to achieve her own objective.
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Nash equilibria. In the non-zero-sum game setting, it is then more interesting to look
for equilibria. One of the most-famous and most-studied notion of equilibrium is that
proposed by Nash in 1950 [14]: a Nash equilibrium is a behaviour of the players in
which they act rationally, in the sense that no player can get a better payoff if she, alone,
modifies her strategy [14]. Notice that a Nash equilibrium needs not exist in general,
and may not be optimal, in the sense that several equilibria can coexist, and may have
very different payoffs.

Our contribution. We extend the standard notion of Nash equilibria to timed games,
where non-determinism naturally arises and has to be taken into account. We propose
a whole chain of transformations that builds, given a two-player timed game, two turn-
based finite games which, in some sense that we will make precise, preserve Nash
equilibria. The first transformation consists in building a finite concurrent game with
non-determinism based on the classical region abstraction; the second transformation
decouples this concurrent game into two concurrent games, one per player: in each
game, the preference relation of one of the players is simply dropped, but we have to
consider “joint” equilibria. The last two transformations work on each of the two copies
of the concurrent game: the first one solves the non-determinism by giving an advantage
to the associated player, and the last one makes use of this advantage to build a turn-
based game equivalent to the original concurrent game. This chain of transformations is
valid for the whole class of two-player timed games, and Nash equilibria are preserved
for a large class of objectives, for instance ω-regular objectives1. These transforma-
tions allow to recover some known results about zero-sum games, but also to get new
decidability results for Nash equilibria in two-player timed games.

Related work. Nash equilibria (and other related solution concepts such as subgame-
perfect equilibria, secure equilibria, ...) have recently been studied in the setting of
(untimed) games played on a graph [8,9,10,15,17,18,19,20]. None of them, however,
focuses on timed games. In the setting of concurrent games, mixed strategies (i.e., strate-
gies involving probabilistic choices) are arguably more relevant than pure (i.e., non-
randomized) strategies. However, adding probabilities to timed strategies involves
several important technical issues (even in zero-sum non-probabilistic timed games),
and we defer the study of mixed-strategy Nash equilibria in two-player timed games to
future works.

For lack of space, proofs are omitted and can be found in [5].

2 Preliminaries

2.1 Timed Games

A valuation over a finite set of clocks Cl is a mapping v : Cl → R+. If v is a valuation
and t ∈ R+, then v + t is the valuation that assigns to each x ∈ Cl the value v(x)+t. If v
is a valuation and Y ⊆ Cl, then [Y ← 0]v is the valuation that assigns 0 to each y ∈ Y
and v(x) to each x ∈ Cl \ Y . A clock constraint over Cl is a formula built on the

1 In the general case, the undecidability results on (zero-sum) priced timed games entail unde-
cidability of the existence of Nash equilibria.
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grammar: C(Cl) + g ::= x ∼ c | g∧g, where x ranges over Cl, ∼ ∈ {<,≤,=,≥, >},
and c is an integer. The semantics of clock constraints over valuations is natural, and
we omit it.

Definition 1. A timed automaton is a tuple 〈Loc,Cl, Inv,Trans〉 such that:

– Loc is a finite set of locations;
– Cl is a finite set of clocks;
– Inv : Loc → C(Cl) assigns an invariant to each location;
– Trans ⊆ Loc × C(Cl) × 2Cl × Loc is the set of transitions.

We assume the reader is familiar with timed automata [1], and in particular with states
(pairs (�, v) ∈ Loc × RX

+ such that v |= Inv(�)), runs (seen as infinite sequences of
states for our purpose), etc. We now define the notion of two-player timed games. The
two players will be called player 1 and player 2. Our definition follows that of [11].

Definition 2. A (two-player) timed game is a tuple G = 〈Loc,Cl, Inv,Trans,Owner,
(
1,
2)〉 where:

– 〈Loc,Cl, Inv,Trans〉 is a timed automaton;
– Owner : Trans → {1, 2} assigns a player to each transition;
– for each i ∈ {1, 2}, 
i ⊆

(
Loc × RCl

+

)ω ×
(
Loc × RCl

+

)ω
is a quasi-order on runs

of the timed automaton, called the preference relation for player i.

A timed game is played as follows: from each state of the underlying timed automaton
(starting from an initial state s0 = (�,0), where 0 maps each clock to zero), each player
chooses a nonnegative real number d and a transition δ, with the intended meaning that
she wants to delay for d time units and then fire transition δ. There are several (natural)
restrictions on these choices:

– spending d time units in � must be allowed2 i.e., v + d |= Inv(�);
– δ = (�, g, z, �′) belongs to the current player (given by function Owner);
– the transition is firable after d time units (i.e., v + d |= g), and the invariant is

satisfied when entering �′ (i.e., [z ← 0](v + d) |= Inv(�′)).

When there is no such possible choice for a player (for instance if there is no transition
from � belonging to that player), she chooses a special move, denoted by ⊥.

From a state (�, v) and given a choice (m1,m2) for the two players, with mi ∈
(R+×Trans)∪{⊥}, an index i0 such that di0 = min{di | mi = (di, δi) and i ∈ {1, 2}}
is selected (non-deterministically if both delays are identical), and the corresponding
transition δi0 = (�, g, z, �′) is applied, leading to a new state (�′, [z ← 0](v + di0)).
To ensure well-definedness of the above semantics we assume in the sequel that timed
games are non-blocking, that is, for any reachable state (�, v), at least one player has an
allowed transition (this avoids that both players play the special action ⊥).

The outcome of such a game when players have fixed their various choices is a run
of the underlying timed automaton, that is an element of

(
Loc × RCl

+

)ω
, and possible

2 Formally, this should be written v + d′ |= Inv() for all 0 ≤ d′ ≤ d, but this is equivalent to
having only v |= Inv() and v + d |= Inv() since invariants are convex.
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outcomes are compared by each player using their preference relations. In the examples,
we will define the preference relation of a player by assigning a value (called a payoff )
to each possible outcome of the game, and the higher the payoff, the better the run in
the preference relation.

This semantics can naturally be formalized in terms of an infinite-state non-deter-
ministic concurrent game and strategies, that we will detail in the next section.

Example 1. We give an example of a timed game, that
we will use as a running example: consider the timed
game G on the right. When relevant the name of a tran-
sition is printed on the corresponding edge. Owners of
the transitions are specified as follows: player 1 plays
with plain edges, whereas player 2 plays with dotted
edges. On the right of these locations we indicate pay-
offs for the two players (if a play ends up in �1, player 1
gets payoff 1, whereas player 2 gets payoff 0). Hence
player 1 will prefer runs ending in �1 or �3 than runs
ending in �2.

�0

(x≤1)

�1 (1,0)

�2 (0,1)

�3 (1,1)

0<x<1 a
x:=0

0<x≤1 b

x:=0

x=1 c
x:=0

x:=0

x:=0

x:=0

2.2 Concurrent Games

In this section we define two-player concurrent games, which we then use to encode the
formal semantics of timed games. A transition system is a 2-tuple S = 〈States,Edg〉
where States is a (possibly uncountable) set of states, and Edg ⊆ States × States
is the set of transitions. A path π in S is a non-empty sequence (si)0≤i<n (where n ∈
N∪{+∞}) of states of S such that (si, si+1) ∈ Edg for all i < n−1. The length of π,
denoted by |π| is n−1. The set of finite paths (also called histories in the sequel) of S is
denoted by3 HistS , the set of infinite paths (also called plays) of S is denoted by PlayS ,
and PathS = HistS ∪ PlayS is the set of paths of S. Given a path π = (si)0≤i<n and
an integer j ≤ |π|, the j-th prefix of π, denoted by π≤j , is the finite path (si)0≤i<j+1.
If π = (si)0≤i<n is a history, we write last(π) = s|π|.

We extend the definition of concurrent games given e.g. in [2] with non-determinism:

Definition 3. A (two-player non-deterministic) concurrent game is a tupleG = 〈States,
Edg,Act,Mov,Tab, (
1,
2)〉 in which:

– 〈States,Edg〉 is a transition system;
– Act is a (possibly uncountable) set of actions;
– Mov : States×{1, 2} → 2Act �{∅} is a mapping indicating the actions available

to each player in a given state;
– Tab : States × Act2 → 2Edg � {∅} associates to each state and each pair of

actions the set of resulting edges. It is required that if (s′, s′′) ∈ Tab(s, (m1,m2)),
then s′ = s.

– for each i ∈ {1, 2}, 
i ⊆ Statesω×Statesω is a quasi-order called the preference
relation for player i.

3 For this and the following definitions, we explicitly mention the underlying transition system
as a subscript. In the sequel, we may omit this subscript when the transition system is clear
from the context.
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A deterministic concurrent game is a concurrent game where Tab(s, (m1,m2)) is a
singleton for every s ∈ States and (m1,m2) ∈ Mov(s, 1) × Mov(s, 2). A turn-
based game is a concurrent game for which there exists a mapping Owner : States →
{1, 2} such that, for every state s ∈ States, the set Mov(s, i) is a singleton unless
Owner(s) = i.

In a concurrent game, from some state s, each player i selects one action mi among
its set Mov(s, i) of allowed actions (the resulting pair (m1,m2) is called a move). This
results in a set of edges Tab(s, (m1,m2)), one of which is applied and gives the next
state of the game. In the sequel, we abusively write HistG , PlayG and PathG for the cor-
responding set of paths in the underlying transition system of G. We also write HistG(s),
PlayG(s) and PathG(s) for the respective subsets of paths starting in state s.

Definition 4. Let G be a concurrent game, and i ∈ {1, 2}. A strategy for player i is
a mapping σi : HistG → Act such that σi(π) ∈ Mov(last(π), i) for all π ∈ HistG .
A strategy profile is a pair (σ1, σ2) where σi is a player-i strategy. We write StratiG for
the set of strategies of player i in G, and ProfG for the set of strategy profiles in G.

Notice that we only consider non-randomized (pure) strategies in this paper.
Let G be a concurrent game, i ∈ {1, 2}, and σi be a player i-strategy. A path π =

(sj)0≤j≤|π| is compatible with the strategy σi if, for all k ≤ |π| − 1, there exists
a pair of actions (m1,m2) ∈ Act2 such that mj ∈ Mov(sk, j) for all j ∈ {1, 2},
mi = σi(π≤k), and (sk, sk+1) ∈ Tab(sk, (m1,m2)). A path π is compatible with
a strategy profile (σ1, σ2) whenever it is compatible with both strategies σ1 and σ2.
We write OutG,s(σi) (resp. OutG,s(σ1, σ2)) for the set of paths from s (also called
outcomes) in G that are compatible with strategy σi (resp. strategy profile (σ1, σ2)).
Notice that, in the case of deterministic concurrent games, a strategy profile has a single
infinite outcome. This might not be the case for non-deterministic concurrent games.

Given a move (m1,m2) and a new action m′ for player i, we write (m1,m2)[i
→m′]
for the move (n1, n2) with ni = m′ and n3−i = m3−i. This notation is extended to
strategies in a natural way.

In the context of non-zero-sum games, several notions of equilibria have been de-
fined. We present a refinement of Nash equilibria towards non-deterministic concurrent
games.

Definition 5. Let G be a concurrent game, and s be a state of G. A pseudo Nash
equilibrium in G from s is a tuple ((σ1, σ2), π) where (σ1, σ2) ∈ ProfG , and π ∈
Out(G,s)(σ1, σ2) is such that for all i ∈ {1, 2} and all σ′

i ∈ StratiG , it holds:

∀π′ ∈ Out(G,s)((σ1, σ2)[i
→σ′
i ]
). π′ 
i π.

Such an outcome π is called a best play for the strategy profile (σ1, σ2).

In the case of deterministic games, π is uniquely determined by (σ1, σ2), and pseudo
Nash equilibria coincide with Nash equilibria as defined in [14]: they are strategy pro-
files where no player has an incentive to unilaterally deviate from her strategy.

In the case of non-deterministic games, a strategy profile for an equilibrium may give
rise to several outcomes. The choice of playing the best play π is then made coopera-
tively by both players: once both strategies are fixed, it is the interest of both players to
cooperate and play “optimally”.
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2.3 Back to Timed Games

Two comments are in order here: (i) non-determinism in timed games could be dropped
by giving priority to one of the players, in case both of them play the same delay. Our
algorithm could of course be adapted in this case; (ii) even if the timed game were de-
terministic, our transformation to region games involves some extra non-determinism.
As will be seen in the sequel, the above notion of pseudo Nash equilibria is the notion
we need for our construction to preserve equilibria.

It is easy to see the semantics of a timed game as the semantics of an infinite-state
concurrent game (see the research report [5]). Using that point-of-view, timed games
inherit the notions of history, play, path, strategy, profile, outcome and pseudo Nash
equilibrium. We illustrate some of these notions on the running example.

Example 1 (Cont’d). This game starts in configuration (�0, 0) (clock x is set to 0). A
strategy profile is then determined by an initial choice for the first transition. If one
of the players choose some delay smaller than 1, she will have payoff 1 but the other
player will have payoff 0, hence the other player will be able to preempt this choice and
choose a smaller delay that will improve her own payoff. Hence there will be no such
pseudo Nash equilibrium. There is a single pseudo Nash equilibrium, where player 1
chooses (1, c) (delay for 1 t.u. and take transition c) and player 2 chooses (1, b). The
best play for that strategy profile is the run taking transition c.

In this paper we will be interested in the computation of pseudo Nash equilibria in timed
games. To do so we propose a sequence of transformations that will preserve equilibria
(in some sense), yielding the construction of two turn-based finite games in which the
initial problem will be reduced to the computation of twin Nash equilibria. All these
transformations are presented in the next section. These transformations will also give
a new point-of-view on timed games, which we will use in Section 4.2 to recover some
decidability results. Many more results are expected.

3 From Timed Games to Turn-Based Finite Games

In this section we propose a chain of transformations of the timed game G into two
turn-based finite games, and reduce the computation of pseudo Nash equilibria in G
to the computation of ‘twin’ Nash equilibria in the two turn-based games. Notice that
we will have to impose restrictions on the preference relations: indeed, price-optimal
reachability is undecidable in two-player priced timed games, and these quantitative
objectives can be encoded as a payoff function, see [7] for details.

3.1 From Timed Games to Concurrent Games...

We assume the reader is familiar with the region automaton abstraction for timed au-
tomata [1]. Let G = 〈Loc,Cl, Inv,Trans,Owner, (
1,
2)〉 be a timed game. Let R
be the set of regions for the timed automaton underlying G, and πR be the projection
over the regions R (for configurations, runs, etc.) We define the region game R =
〈States,Edg,Act,Mov,Tab, (
R

1 ,
R
2 )〉 as follows:
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– States = {(�, r) ∈ Loc × R | r |= Inv(�)};
– Edg = {((�, r), (�′, r′)) | (�, r) → (�′, r′) in the region automaton of G};
– Act = {⊥} ∪ {(r, δ) | r ∈ R and δ ∈ Trans};
– Mov : States × {1, 2} → 2Act \ {∅} such that:

Mov((�, r), i) = {(r′, δ) | r′ ∈ Succ(r), r′ |= Inv(�), δ = (�, g, Y, �′) is s.t.

r′ |= g and [Y ← 0]r′ |= Inv(�′) and Owner(δ) = i}

if this set is non-empty, and Mov((�, r), i) = {⊥} otherwise.
– Tab : States × Act2 → 2Edg \ {∅} such that for every (�, r) ∈ States and every

(m1,m2) ∈ Mov((�, r), 1) × Mov((�, r), 2), if we write r′ for min{rj | j ∈
{1, 2} and mj = (rj , δj)},4 then we have:

Tab((�, r), (m1,m2)) = {((�, r), (�j , [Yj ← 0]rj)) | j ∈ {1, 2} and

mj = (rj , δj) with rj = r′, (�, gj , Yj , �i) = δj and rj |= gj}

– The preference relation 
R
i for player i is defined by saying that γ 
R

i γ′ iff there
exists ρ and ρ′ such that πR(ρ) = γ, πR(ρ′) = γ′ and ρ 
i ρ

′.

Note that the game R is non-deterministic, even if the original timed game is not. In-
deed, non-determinism appears when players want to play delays leading to the same
region. The (relative) order of the choices for the delays chosen by the two players
cannot be distinguished by the region abstraction.

Definition 6. A preference relation 
i is said to be region-uniform when for all plays ρ
and ρ′, if the sequence of regions seen in both paths are the same, then they are equiv-
alent, i.e. ρ 
i ρ

′ and ρ′ 
i ρ.

Proposition 7. Let G be a timed game, and assume that the two preference relations of
G are region-uniform. Let R be its associated region game. Then there is a pseudo Nash
equilibrium in G from (�0,0) with best play ρ iff there is a pseudo Nash equilibrium in
R from (�0, [0]R) with best play πR(ρ). Furthermore, this equivalence is constructive.

Example 1 (Cont’d). We illustrate the construction and the previous notions on the run-
ning example. We write r0 (resp. r1, r2) for the region x = 0 (resp. 0 < x < 1, x = 1).
The region game R is as depicted on Fig. 1. In this region game, there are two non-
deterministic transitions. First when the two players choose to wait until region r2, in
which case the game can turn to either �2 or to �3. Then when both players choose to
move within the region r1 (there is an uncertainty on whether player 1 or player 2 was
faster), and depending on who was faster, the game will move to either �1 or �2. The
first non-determinism is inherent to the game (and could be removed by construction as-
suming one player is more powerful, see Subsection 2.3 for explanations), whereas the
second non-determinism is (somehow) artificial and comes from the region abstraction.

In G, there is a single pseudo Nash equilibrium, where both players wait until x = 1
(region r2), and propose to move respectively to �3 (resp. �2). The best play is then
(�0, 0)(�3, 0)∗. This corresponds to the unique pseudo Nash equilibrium that we find in
the region game.

4 This is well-defined because both rj’s are time-successors of r.
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�0,r0

�1,r0 (1,0)

�2,r0 (0,1)

�3,r0 (1,1)

(r1,a),(r2,b)

(r1,a),(r1,b)

(r2,c),(r1,b)

(r2,c),(r2,b)

The transition table from (0, r0)

(i.e., Tab((0, r0), (m1, m2))):

m2 = (r1, b) m2 = (r2, b)

m1 = (r1, a) (1, r0), (2, r0) (1, r0)

m1 = (r2, c) (2, r0) (2, r0), (3, r0)

Fig. 1. The region game from our original automaton

3.2 ... Next to Two Twin Concurrent Games...

Given a concurrent non-deterministic finite game R = 〈States,Edg,Act,Mov,Tab,
(
R

1 ,
R
2 )〉, we construct two concurrent games R1 and R2 where we simply forget

the preferences of one player. Formally for i ∈ {1, 2}, we define the game Ri =
〈States,Edg,Act,Mov,Tab, (
i

1,
i
2)〉, where 
i

i is the quasi-order 
i, and 
i
3−i is

the trivial quasi-order where all runs are equivalent.

Definition 8. A twin pseudo Nash equilibrium for the two games R1 and R2 is a tuple
((σR1

1 , σR1
2 ), (σR2

1 , σR2
2 ), ρ) such that ((σR1

1 , σR1
2 ), ρ) is a pseudo Nash equilibrium

in the game R1 and ((σR2
1 , σR2

2 ), ρ) is a pseudo Nash equilibrium in the game R2. We
furthermore say that ρ is a best play for the twin pseudo equilibrium.

We relate pseudo Nash equilibria in R with twin pseudo Nash equilibria in R1 and R2.
Note that we require best plays be the same, but not strategies.

Proposition 9. Let R be the region game associated with some timed game G. Then
there is a pseudo Nash equilibrium in R from s with best play γ if and only if there is
a twin pseudo equilibrium for the corresponding games R1 and R2 from s with best
play γ. Furthermore this equivalence is constructive.

3.3 ... Next to Concurrent Deterministic Games...

We transform each game Ri into a concurrent deterministic game Ci. Game Ci will give
priority to player i, in that it will be the role of player i to solve non-determinism. The
game Ci = 〈States,Edg,Act′,Movi,Tabi, (
i

1,
i
2)〉 is defined as follows:

– Act′ = Act ∪ ((Act \ {⊥})× {•, ◦});
– Movi : States × {1, 2} → 2Act′ \ {∅} such that:

Movi(s, i) =

{
{⊥} if Mov(s, i) = {⊥}
Mov(s, i) × {•, ◦} otherwise

Movi(s, 3 − i) = Mov(s, 3 − i)



70 P. Bouyer, R. Brenguier, and N. Markey

– Given (m1,m2) ∈ Mov(s, 1) × Mov(s, 2) we have that Tab(s, (m1,m2)) has at
least one element, and at most two elements.5

• In case it has only one element, then setting m′
3−i = m3−i and picking m′

i ∈
{(mi, •), (mi, ◦)}, we define: Tabi(s, (m′

1,m
′
2)) = Tab(s, (m1,m2));

• In case it has two elements, say (s, s•) and (s, s◦), one of them comes from a
transition of player i in G and the other comes from a transition of player 3− i
in G. Hence w.l.o.g. we can assume that (s, s•) belongs to player i. We now
define m′

3−i = m3−i and for any m′
i ∈ {(mi, •), (mi, ◦)}, we define:

Tabi(s, (m′
1,m

′
2)) =

{
{(s, s•)} if m′

i = (mi, •)
{(s, s◦)} if m′

i = (mi, ◦)

By construction, the two games C1 and C2 are deterministic, and they share the same
structure. Only decisions on how to solve non-determinism are made by different play-
ers. Our aim will be to compute equilibria in these two similar games.

Proposition 10. Assume Ci (with i ∈ {1, 2}) is the deterministic concurrent game de-
fined from the concurrent game Ri. Then there is a pseudo Nash equilibrium in Ri

from s with best play γ iff there is a Nash equilibrium in Ci from s with best play γ.6

Furthermore this equivalence is constructive.

Game C1

�0,r0

�1,r0 (1,0)

�2,r0 (0,0)

�3,r0 (1,0)

((r1,a),�),(r2,b)

((r1,a),•),(r1,b)

((r1,a),◦),(r1,b)

((r2,c),�),(r1,b)

((r2,c),◦),(r2,b)

((r2,c),•),(r2,b)

Game C2

�0,r0

�1,r0 (0,0)

�2,r0 (0,1)

�3,r0 (0,1)

(r1,a),((r2,b),�)

(r1,a),((r1,b),◦)

(r1,a),((r1,b),•)

(r2,c),((r1,b),�)

(r2,c),((r2,b),•)

(r2,c),((r2,b),◦)

Fig. 2. Two concurrent games C1 and C2 from our original automaton

Example 1 (Cont’d). We build on the previous example, and give the two games C1

and C2 in Fig. 2. An action (m, �) denotes either (m, •) or (m, ◦). There are several
Nash equilibria in game C1: one where the first player chooses ((r2, c), •) and the sec-
ond player chooses (r2, b), which leads to (�3, r0) with payoff (1, 0); and one where
both players play a pair of actions leading to (�1, r0), in which case the payoff is also
(1, 0).

Similarly there are several Nash equilibria in game C2: one where the second player
chooses ((r2, b), ◦) and the first player chooses (r2, c), which leads to (�3, r0) with

5 This is because the game G is non-blocking, and in this game, each player proposes her choice
for a transition, and one of these two transitions will be chosen.

6 Remember that Ci’s and Ri’s share the same structure and have the same runs.
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payoff (0, 1); the second one where both players play a pair of actions leading to
(�2, r0), in which case the payoff is also (0, 1).

There is a single twin equilibrium in C1 and C2, namely the one leading to state
(�3, r0), which coincides with those equilibria already found in G and R.

3.4 ... And Finally to Two Turn-Based Games

In the (deterministic) concurrent game Ci, the advantage is given to player i, who has
the ability to solve non-determinism. We can give a slightly different interpretation
to that mechanism, which takes into account an interpretation of the new actions. In-
deed, actions have a timed interpretation in the original timed game, and can be or-
dered w.r.t. their delay. Taking advantage of this order on actions, we build a turn-based
game Ti.

Let Ci = 〈States, s0,Edg,Act′,Movi,Tabi, (
i
1,
i

2)〉 be the games obtained from
the previous construction. Let s ∈ States. We naturally order the set Movi(s, 1) ∪
Movi(s, 2) with a relation <s so that:

(i) if ⊥ ∈ Movi(s, 1) ∪ Movi(s, 2) then ⊥ is maximal w.r.t. <s;
(ii) for every m ∈ Movi(s, j), there exists s′ ∈ States such that for every m′ ∈

Movi(s, 3 − j), m <s m
′ implies Tabi(s, (m,m′)) = {(s, s′)}.

This is possible due to the definition of game Ci: when (r, δ3−i) is allowed to player 3−i
from s, and ((r, δi), •) and ((r, δi), ◦) are allowed to player i from s, then the three
actions are totally ordered by <s as follows:7 ((r, δi), •) <s (r, δ3−i) <s ((r, δi), ◦).
Intuitively an action with marker • means that player i can play her own transition faster
than player 3 − i can play her own transition, but also that she can decide to play more
slowly (role of action with marker ◦).

We can also define an equivalence relation =s compatible with this order, by saying
m =s m′ ⇔ m,m′ ∈ Movi(s, 1) ∪ Movi(s, 2), m ≮s m′ and m′ ≮s m. It is worth
noticing that m =s m′ implies that they belong to the same player. This can be the
case if two transitions are available to a player from the same region, and also if a
player can only play action ⊥. We will write [m]s for the equivalence class associated
to m. We next say that [m]s belongs to player j whenever all actions in [m]s belong to
player j.

Example 1 (Cont’d). Consider games C1 and C2 depicted in Fig. 2. In game C1, the
order on actions (written simply as <) from (�0, r0) is given by:

((r1, a), •) < (r1, b) < ((r1, a), ◦)< ((r2, c), •)< (r2, b) < ((r2, c), ◦)� � � � �

(�1, r0) (�2, r0) (�1, r0) (�3, r0) (�2, r0)

Below each action we write the target state when this action is played, provided an
action smaller (for the order <) is not played by the other player. There is no target with
action ((r2, c), ◦) because it is always preempted by some ‘faster’ action (no ⊥ action
is available in our example).

In game C2, the order on actions (also written <) from (�0, r0) is given by:

7 This is due to the fact that we have assumed edge (s, s•) belong to player i, see the construction
of game Ci.
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((r1, b), •) < (r1, a) < ((r1, b), ◦)< ((r2, b), •)< (r2, c) < ((r2, b), ◦)� � � � �

(�2, r0) (�1, r0) (�2, r0) (�2, r0) (�3, r0)

We will take advantage of this order on actions to build turn-based games that will in
some sense be equivalent with the previous concurrent (deterministic) games. The idea
will be to take the smallest action(s) in the order, and ask the corresponding player
whether or not she wants to play that action; if yes, we proceed with this action in the
game, otherwise we do the same with the second action in the order until one of the
players plays her action; The meaning in the context of timed games is actually also
the following: we see that if the two players want to play in the same region, then in
game Ci the advantage of player i is that we first ask her whether she wishes to play
her action (role of action labelled with •), then if not, the other player will be asked to
decide whether she wants to play her own action, and finally, if not, we ask a last time
player i whether she wants to play her action (now she has the additional knowledge
that the other player didn’t choose her own action).

Formally we define the turn-based game Ti as follows: Ti = 〈Statesi,Edgi,Act′ ∪
{del},Mov′i,Tab′

i, (
′i
1,
′i

2)〉 where:

– Statesi = {(s, [m]s) | s ∈ States and m ∈ (Movi(s, 1) ∪ Movi(s, 2)) \ {⊥}};
– The set Edgi is defined as follows:

Edgi = {((s, [m]s), (s, [m′]s)) | m′ = ⊥ is next after m w.r.t. <s}
∪ {((s, [m]s), (s′, [m′]s′)) | {(s, s′)} = Tabi(s, (m,m′′))

for every m <s m′′ and m′ is minimal w.r.t. <s′ from s′};
– The set of available actions is defined as follows:

• if [m]s belongs to player j, then we use the new action del (for delay):

Mov′i((s, [m]s), j) =

⎧⎨
⎩

Movi(s, j) ∩ [m]s if m is maximal w.r.t.
<s in Movi(s, j)

(Movi(s, j) ∩ [m]s) ∪ {del} otherwise
• if [m]s belongs to player 3 − j, then Mov′i((s, [m]s), j) = {⊥}.

– The transition table is defined as follows:
• if [m]s belongs to player 1:⎧⎪⎨

⎪⎩
Tab′

i((s, [m]s), (m,⊥)) = {((s, [m]s), (s′, [m′]s)) | {(s, s′)} = Tabi(s, (m,m′′))
for every m <s m

′′ and m′ is minimal w.r.t. <s′ from s′}
Tab′

i((s, [m]s), (del,⊥)) = {((s, [m]s), (s, [m′]s)) | m′ is next after m w.r.t. <s}

• the second case ([m]s belongs to player 2) is similar, just swap m or del with
⊥.

– In order to define the preference relations we first define a projection from plays in
the turn-based game Ti onto plays in the concurrent game Ci. Pick a run ν in Ti,
and define its projection ψi(ν) in Ci as follows: if

ν = (s1,m
1
1)(s1,m

2
1)...(s1,m

k1
1 )(s2,m

1
2)...(s2,m

k2
2 )...(sp,m1

p)...(sp,m
kp
p )...

with m1
i minimal w.r.t. <si for every 1 ≤ i, then ψ(ν) = s1s2 . . . sp . . . . The

preference relations are then defined according to this projection:
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ν
′i
jν

′ ⇔ ψi(ν) 
i
j ψi(ν′)

Note that the game Ti is turn-based8 and that a state (s, [m]s) belongs to player j such
that m ∈ Movi(s, j) (as already mentioned this is independent of the choice of m in
[m]s). The structure of the turn-based games T1 and T2 are now slightly different from
that of the previous concurrent deterministic games C1 and C2.

Proposition 11. Let Ci (with i ∈ {1, 2}) be the previous deterministic concurrent game,
and let Ti be the associated turn-based game. There is a Nash equilibrium in Ci from s
with best play ψi(ν) iff there is a Nash equilibrium in Ti from (s, [m]s) with best play ν,
where m is a minimal action w.r.t. <s. Furthermore this equivalence is constructive.

Example 1 (Cont’d). We build on our running example, and compute the correspond-
ing games T1 and T2. They are displayed on Fig. 3. Plain states and plain edges belong

Game T1

(�0,r0),((r1,a),•)

(�0,r0),(r1,b)

(�0,r0),((r1,a),◦)

(�0,r0),((r2,c),•)

(�0,r0),(r2,b)

(�0,r0),((r2,c),◦)

(�1,r0) (1,0)

(�2,r0) (0,0)

(�3,r0) (1,0)

((r1,a),•),⊥

del,⊥

⊥,(r1 ,b)
⊥,del

((
r 1

,a
),
◦),

⊥

del,⊥

((r2 ,c),•),⊥del,⊥

(r
2
,b
),
⊥

Game T2

(�0,r0),((r1,b),•)

(�0,r0),(r1,a)

(�0,r0),((r1,b),◦)

(�0,r0),((r2,b),•)

(�0,r0),(r2,c)

(�0,r0),((r2,b),◦)

(�1,r0) (0,0)

(�2,r0) (0,1)

(�3,r0) (0,1)

⊥
,((r

1 ,b),•)

⊥,del
(r1,

a),⊥

del,⊥
⊥,((r1,b),◦)

⊥,del ⊥,((
r2,

b),
•)

⊥,del

(r2,c),⊥

Fig. 3. Final turn-based games from our original timed game

to player 1 whereas dotted states and dotted edges belong to player 2. We do recog-
nize here the various Nash equilibria that we described in the concurrent deterministic
games, and only one is “common” to both games, namely the one leading to (�3, r0).

3.5 Summary of the Construction

The following theorem summarizes our construction:

Theorem 12. Let G be a timed game with region-uniform preference relations. Assume
T1 and T2 are the two turn-based (deterministic) games constructed in this section.
Then, there is a pseudo Nash equilibrium in G from (�0,0) with best play ρ iff there
are two Nash equilibria in T1 and T2 from ((�0,0), [m](�0,0)) with best plays ν1 and ν2

8 By construction, in any state (s, [m]s), one of Mov′
i((s, [m]s), j) with j ∈ {1, 2} equals {⊥}.
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respectively, where m is a minimal action w.r.t. <(�0,0), such that ψ1(ν1) = ψ2(ν2) =
πR(ρ). Furthermore this equivalence is constructive.

Remark 1. The three-player game on the right has
several Nash equilibria, for instance player 1 (plain
arrows) chooses her transition at time 0.6, player 2
(dotted arrows) chooses her transition at time 0.7,
and player 3 (dashed arrows) chooses her transition
at time 0.8. If we build the region abstraction, each
player will have a single possible move (play her
transition in the region 0 < x < 1), and the game
will proceed by selecting non-deterministically one of them. There would be several
ways to extend the method developed in this paper to three players: have a copy of the
game for each player, assuming she plays against a coalition of the other players, or
have a copy of the game for each priority order given to the players. It is not hard to be
convinced that none of these choices will be correct on this example.

�0

(x≤1)

�1 (0,0,1)

�2 (0,0,1)

�3 (1,1,0)

0<x<1 a

0<x<1 b

0<x<1 c

4 Decidability Results

4.1 Some General Decidability Results

We first need a representation for the preference relations (which must be region-uniform)
of both players. Let G = 〈Loc,Cl, Inv,Trans,Owner, (
1,
2)〉 be a two-player timed
game. We assume the preference relation for player i is given by a (possibly infinite)
sequence of linear-time objectives (Ωi

j)j≥1 where it is better for a run to satisfy Ωi
j than

Ωi
k as soon as k > j (w.l.o.g. we assume that Ωi

j+1 implies ¬Ωi
l for all l ≤ j). In other

terms, the aim of player i is to minimize the index j for which the play belongs to Ωi
j . ω-

regular or LTL-definable objectives, and also more quantitative objectives (for instance,
given a distinguished goal state Goali ∈ Loc for player i, by defining Ωi

j to be the set of
traces visiting Goali in less than j steps.

We first need to (be able to) transfer objectives (and preference relations) to the two
turn-based games T1 and T2: a linear-time objective Ω in G is said to be transferable
to game Ti whenever we can construct an objective Ω̂ such that for every run ν in Ti,
ν |= Ω̂ iff for all ρ with πR(ρ) = ψi(ν), ρ |= Ω. It is said transferable whenever it
is transferable to both T1 and T2. For example, notice that (sequences of) stutter-free
region-uniform objectives are transferable.

Nash equilibria in game Ti will be rather easy to characterize since player 3 − i will
never be enclined to deviate from her strategy (all runs are equivalent for her preference
relation). We assume all objectives Ωi

j are transferable, and we write W 3−i
i (j) for the

set of winning states in game Ti for player 3 − i with the objective
∧

1≤k<j

(
¬Ω̂i

k

)
.

Those sets are computable for many classes of objectives. Then:

Theorem 13. Let G be a timed game with preference relations given as transferable,
region-uniform, prefix-independent sequences (Ωi

j)j of objectives. There is a pseudo

Nash equilibrium in G with payoff (Ωj
1, Ω

k
2 ) iff there are two runs ν1 in T1 and ν2 in T2

s.t.9 (i) ν1 |=
(
GW 2

1 (j)
)
∧Ω̂1

j , (ii) ν2 |=
(
GW 1

2 (k)
)
∧Ω̂2

k , and (iii) ψ1(ν1) = ψ2(ν2).

9 G is the LTL modality for “always”.
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Notice that this allows to handle ω-regular (and LTL-definable) objectives by consider-
ing the product of the game with a suitable (deterministic) automaton.

The sequence of states (W 3−i
i (j))j≥1 in game Ti is non-increasing and hence sta-

tionary (because Ti is finite-state). Hence there exist indices h0 = 1 < h1 < h2 <
· · · < hl such that the function j �→ W 3−i

i (j) is constant on all intervals [hp, hp+1)
and on [hl,+∞). Those indices can be computed together with the corresponding sets
of winning states. Then the only possible equilibria in Ti are those such that there is a
run satisfying Ω̂i

j that stays furthermore within the set W 3−i
i (hp) if hp ≤ j < hp+1,

or within W 3−i
i (hl) if j ≥ hl. This can be done for instance if each player is given a

goal state Goali, and Ωi
j is “reach Goali in j steps”. In that case, W 3−i

i (hl) is the set of
states from which player 3− i can avoid Goali. Hence we can compute Nash equilibria
in two-player timed games where each player tries to minimize the number of steps to
the goal state. This allows to recover part of the results of [8] for two-player games.

4.2 Zero-Sum Games

Our chain of transformations also yields a new point-of-view on classical two-player
timed games with zero-sum objectives. In that case the preference relation of player 1
is characterized by the sequence (Ω,¬Ω) whereas that of player 2 is characterized by
the sequence (¬Ω,Ω). In that case we say that the objective of player 1 is Ω.

Theorem 14. Let G be a zero-sum timed game where player 1’s objective is Ω, and is
assumed to be transferable. Then player 1 has a winning strategy in G from (�,0) iff
player 1 has a winning strategy in game T2 from (�, [0]) for the objective Ω̂.

5 Conclusion

We have proposed a series of transformations of two-player timed games into two turn-
based finite games. These transformations reduce the computation of Nash equilibria in
timed games for a large class of objectives (the so-called region-uniform objectives) to
the computation of “twin” equilibria for related objectives in the two turn-based finite
games. We give an example on how this can be used to compute Nash equilibria in
timed games. In turn our transformations give a nice and new point-of-view on zero-
sum timed games, which can then be interpreted as a turn-based finite game.

Our method does not extend to n players. In [6], we have developed a completely
new approach that allows to compute Nash equilibria in timed games with an arbitrary
number of players but only for reachability objectives. We plan to continue working on
the computation of Nash equilibria in timed games with an arbitrary number of players.

Another interesting research direction is the computation of other kinds of equilibria
in timed games (secure equilibria, subgame-perfect equilibria, etc). We believe that the
transformations that we have made in this paper are correct also for these other notions,
and that we can for instance reduce the computation of subgame-perfect equilibria to the
computation of subgame-perfect equilibria in the two turn-based finite games. A major
difference is that Theorem 13 has to be refined. Tree automata could be the adequate
tool for this problem [17].
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Abstract. SMT solvers have traditionally been based on the DPLL(T)

algorithm, where the driving force behind the procedure is a DPLL search

over truth valuations. This traditional framework allows for a degree of

modularity in the treatment of theory solvers. Over time, theory solvers

have become more and more closely integrated into the DPLL process,

and consequently less and less modular. In this paper, we present a

DPLL-like algorithm for SMT solving in which the search takes place

over the natural domain of the variables in the problem. As a case

study, we analyze its application to continuous domain linear arithmetic,

present implementation techniques and some experimentation with dif-

ference logic. Results indicate the method can sometimes outperform

leading SMT solvers but that the method is not yet robust.

1 Introduction

SMT solvers have traditionally been based on the DPLL(T) [GHN+04] algo-
rithm, where the driving force behind the procedure is a DPLL search over
truth valuations. This traditional framework allows for a degree of modularity
in the treatment of theory solvers. Over time, theory solvers have become more
and more closely integrated into the DPLL process with such techniques as the-
ory propagation, theory driven case splitting, and theory learning. These tech-
niques generally correspond to the introduction of new proof rules, and hence
non-determinism, in the underlying proof system. Consequently, SMT solvers
which incorporate these techniques face the problem of deciding when to apply
them. In general, increased non-determinism in the solving process presents a
corresponding need for more effective heuristics to guide the solving process. Un-
fortunately, such heuristics are not well understood, and in fact are often static,
theory specific, and perhaps over-tuned to competition benchmarks.

In this paper, we present a DPLL-like algorithm for SMT solving which unifies
theory solving and DPLL search into a single process, directly searching for a
model over the space of variable valuations, rather than searching piecewise for
theory models of (partial) propositional models. The goal of this effort is to find
a natural domain formalism which supports dynamic and principled heuristics.
In particular, by searching over variable valuations we are able to make use of
VSID [MMZ+01] variable ordering heuristics found in modern SAT solvers but

K. Chatterjee and T.A. Henzinger (Eds.): FORMATS 2010, LNCS 6246, pp. 77–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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applied to arbitrary variables; and by defining a notion of progress over the
search space, we are able to determine which learned theory literals and clauses
are relevant to progress, thus giving a principled and dynamic heuristic for the
creation and maintenance of a set of theory literals.

However, our algorithm also introduces problematics not found in the tradi-
tional DPLL(T) based techniques. In particular, theories with unbounded deriva-
tions introduce strong restrictions on the algorithm if completeness is desired.
Thus our framework is by no means a panacea and in fact only outperforms tra-
ditional methods on a minority of the benchmarks we evaluated. Nonetheless,
we find the abstract formulation, analysis, and implementation-level solutions
interesting and potentially useful to the design of future solvers.

1.1 Related Work

On the abstract level, our work is most closely related to GDPLL [MKS09],
providing a general satisfiability solving framework. Unlike [MKS09], our generic
framework is explicitly based on variable valuations and clause learning. As a
result, our framework guarantees that progress is made during the search – new
variable valuations are always explored because the search space is properly
restricted over time. Using this notion of progress, we establish how learned
clauses can be safely forgotten, a topic which was not addressed in [MKS09].
Finally, we define a notion of a proof graph with some properties similar to
propositional resolution proof graphs, and show how this relates to completeness
of the method for unbounded proof systems.

On a more concrete level, we present an application to linear real arithmetic,
and some experimentation on various difference logic problems. Previously in
[KTV09], a (conjunctive) theory solver for linear arithmetic has been presented
which uses numeric variable valuations to detect and resolve conflicts in a manner
similar to clause learning in SAT solving. In [MKS09], the GDPLL-QFLRA al-
gorithm is presented to solve CNF formulas whose literals are linear constraints,
and experimentation is presented on difference logic problems. Both works make
use of a fixed variable ordering. In this work, we show some conditions under
which dynamic variable orderings are complete and show that using dynamic
variable orderings in an incomplete way can be much faster in practice.

More generally, most SMT solving makes use of the DPLL(T) framework,
and some extensions to the basic DPLL(T) proof system allow for arbitrary
generation of theory literals [BSST09]. In its most general form, this exten-
sion may be used to simulate our algorithm. Various restricted instantiations
[BDdM08, dMB08, WGG06] of this extension exist, but none views the solving
process as a search on variable valuations. On the other hand, the constraint
programming community has a long history of work on search in non-Boolean
domains, including the use of interval constraint propagation [BG06] for bounded
continuous domains and some techniques from constraint logic programming
for unbounded domains [MSW06]. To the author’s best knowledge, the work
presented here is distinct from this body of work in that we apply SAT based
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heuristics and apply conflict driven learning on top of a local consistency condi-
tion to unbounded domains.

1.2 Organization

The rest of this paper is organized as follows. We present our abstract search algo-
rithm in Section 2. Section 3 presents generic implementation problems and solu-
tions. Section 4 presents an application to linear real arithmetic. Experiments on
the sub-theory of difference logic problems are presented in 5. Section 6 concludes.

2 Univariate Consistent Search

The framework we present is, at its base, a depth first search over the natural do-
main of variables. By natural domain, we have in mind sets such as the integers Z
or rationals Q, or perhaps explicitly represented finite domains, though we place
no a priori restrictions on the variable domains. By depth first search, we mean a
backtracking search takes place by assigning variables to values, one at a time until
either a satisfying assignment is found or it is clear that the formula under the as-
signed variable valuations is inconsistent. In this latter case, the search backtracks,
learning a clause which excludes some part of the variable assignment.

In this respect, the framework we present is very much like a conflict-driven
clause learning propositional SAT solver. However, the coordination of search,
consistency checking, and learning becomes much more crucial when we consider
a multi-valued search over arbitrary variable domains. In the following, the main
concept behind this coordination is the notion of univariate consistency, which
is a simple local consistency condition. Consider a quantifier free CNF formula
φ �
∧
C where each c ∈ C is a clause. Now given a variable x, we denote by

φ|x �
∧

{c ∈ C | vars(c) = {x}}

That is, φ|x is the set of all x-univariate clauses. We say φ is univariate consistent,
or simply u-consistent, if for every variable x ∈ vars(φ) it is the case that ∃x.φ|x.
Similarly, given an assignment α, we denote by φ|α,x the set of all clauses c ∈ φ
such that vars(c[α]) = {x}.

In a depth first search framework, u-consistency can be used to determine
what partial assignments can be extended, whether or not to backtrack, and
what to learn upon backtracking. Below we present each of these functionalities
as a procedure. Later, we will analyze different ways in which these procedures
can be composed.

select(φ, α). This procedure takes a formula φ and a partial assignment α
as arguments and returns a pair (x, a) where a is in the domain of x, x ∈
vars(φ[α]) and where the assignment x �→ a is feasible for all x-univariate
clauses in φ[α]. This is an analog of selecting a decision variable and phase
in a DPLL sat solver.

isUC(φ) This procedures tests the u-consistency of a conjunction of clauses. It
returns true if the formula φ is u-consistent and false otherwise.
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resolve(φ, α, x) This procedure takes a formula φ, a partial assignment α and
a variable x such that (φ[α])|x is unsatisfiable, and returns a clause w such
that
1.
∧
{c | c ∈ φ ∧ vars(c[α]) = {x}} |= w

2. w[α] contains no variables and evaluates to false.
Resolve is used for learning new clauses when u-consistency is violated for
some variable x and assignment α. It finds some consequence w of the x-
univariate clauses under α which is false under α.

Suppose that we have implementations of the three above-mentioned procedures.
Using these, we formulate a simple recursive algorithm for deciding CNF formu-
las, which is written in pseudo-code in Figure 1. We will use this algorithm both
as a formal point of reference for analysis, and subsequently as a basis on which
various implementations may be built.

UC-Search(φ, α)

1 if isUC(φ[α]) then
2 let (x, a) = select(φ,α)

3 if vars(φ[α]) = {x} then
4 return (1, α ∪ {x �→ a})
5 let (r,w) = UC-Search(φ, α ∪ {x �→ a})
6 if r = 1 or x �∈ vars(w) then
7 return (r,w)

8 else
9 return UC-Search(φ ∧ w, α)

10 else
11 let x be s.t. φ[α]|x is unsat

12 let w = resolve(φ, α, x)

13 return (0, w)

Fig. 1. UC-Search takes two arguments, φ, α, where φ is a formula and α is a partial

assignment to the variables in φ. It returns either a pair (1, α) where α is a satisfying

assignment for φ or a pair (0, w) where w is a false clause i.e a clause whose every

literal has no variables and such that each literal evaluates to false. The algorithm

implements a depth first search which either extends the assignment (at line 2) or

learns and records clauses (lines 12 and 9). Backtracking is expressed implicitly as the

return of a function call, and can have the effect of retracting a partial assignment (line

7) or forgetting a learned clause (line 9).

Perhaps the most interesting aspect of the UC-Search algorithm is that mem-
ory of learned clauses is managed by the call stack. In particular, line 9 of the
algorithm extends the call stack without extending the assignment but rather
by extending the set of learned clauses. The following example shows how the
call stack is also used to forget learned clauses.

Example 1 (UC-Search run). Consider the propositional formula φ

φ � (x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬z ∨ y) ∧ (¬x ∨ ¬y)
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A diagram of a possible trace of the algorithm deciding φ follows.
(φ, ∅)1

(φ, {x �→ 1})2

(φ, {x �→ 1, y �→ 0})3

(φ ∧ (¬x ∨ y), {x �→ 1})4

(φ ∧ ¬x, ∅)5

(φ ∧ ¬x, {x �→ 0})6

(φ ∧ ¬x, {x �→ 0, y �→ 1})7

(¬x ∨ y) ⊕ (¬x ∨ ¬y)

(¬x ∨ z) ⊕ (y ∨ ¬z)

SAT: {x �→ 0, y �→ 1, z �→ 1}
The nodes in the graph are annotated with subscripted pairs (φ, α)n repre-

senting a sequence of calls to the procedure UC-Search. The recursion depth in
which each call occurs is represented by horizontal position. Each call opens a
new scope which in turn triggers at most 2 calls directly contained in that scope.
The first such call occurs at line 5 and the second at line 9 in the pseudo-code
listing. No calls are triggered when the formula φ[α] is not univariate consistent
nor when the assignment satisfies the formula. Outgoing edges of calls which
fail the consistency check are labeled with resolution operations c⊕ d. Observe
that the clause (¬x∨ y) derived between calls 3 and 4 is subsequently forgotten
because it falls out of the scope of call 2.

2.1 Some Properties of UC-Search

Theorem 1. UC-Search Soundness

Proof. In every invocation of UC-Search, the argument φ is built up from the
original formula together with learned clauses recorded at line 9. Such recorded
clauses are generated by resolve, and hence are a consequence of the original
formula. Hence in every invocation of UC-Search the argument φ is a consequence
of the original formula.

Now a top level call to UC-Search returns either a value (1, α), or a value
(0, w). In the first case, the procedure must have returned (1, α ∪ {x �→ a}) at
line 5 when φ[α] is univariate consistent and x �→ a is a satisfying assignment for
φ[α]|x and {x} = vars(φ[α]). The assignment α ∪ {x �→ a} thus satisfies φ, and
hence the original formula. In the second, case w is generated by resolve and
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must be variable-free. Additionally, resolve guarantees that w evaluates to false
and is a consequence of φ, which again by the reasoning above is a consequence
of the original formula.

The following theorem shows that the UC-Search procedure is guaranteed to
make progress in the sense that the search space becomes more and more con-
strained over time.

Theorem 2. UC-Search Progress
Let U(φ, α) denote the set of all univariate-feasible 1-extensions of α

U(φ, α) � {(x, a) | x ∈ vars(φ[α]), (φ[α]|x)[x �→ a] is true}

Let (φ1, α1)(φ2, α2) . . . (φk, αk) denote a sequence of calls to UC-Search during
a run of the procedure. Consider a cycle with two calls i, j, such that i > j and
αi = αj. Let α � αi. Then U(φi, α) ⊂ U(φj , α).

Progress is an analog of the termination argument for a DPLL solver which
learns asserting clauses [ZM03]. Of course, one cannot guarantee termination
without specifying something more about the theory or the resolution procedure.
However, progress is more subtle in UC-Search because of the fact that when a
variable is univariate constrained it may or may not be assigned under α. This
situation leads to the possibility of the procedure cycling with respect to a partial
assignment. Progress simply says that whenever this happens, the procedure is
in a state in which the search space is properly constrained with respect to
the variable order in which the variables are assigned. Note that progress takes
place even though UC-Search forgets clauses from deeper in the call stack. Thus
progress allows a solver to safely forget clauses, but still there is no limit on
the minimum number of clauses necessary to guarantee progress because many
learned univariate clauses can be recorded under a given assignment before the
procedure backtracks over that assignment. Also note that as stated, progress
requires that upon learning a clause w, UC-Search backtracks to the maximal
assignment under which w is univariate. A similar notion of progress holds if
UC-Search backtracks to the minimal assignment, which we omit for simplicity.

The notion of progress is extremely weak by comparison to termination of
DPLL by asserting clauses; which brings us directly to the question of exactly
when UC-Search terminates. Having established progress, it is not hard to see
that if the closure of a finite set of clauses under resolve() is finite, then the
procedure terminates. However, for arbitrary variable domains, resolve() is not
necessarily finite. For example, from

(x > 1) ∧ (y > x + 1) ∧ (x > y + 1)

resolve may produce y > 2 and subsequently x > 3, y > 4, etc.
To better address this issue, we introduce the notion of the proof graph traced

by UC-Search in terms of the input-output relation of the procedure resolve.
Consider a call

v = resolve(φ, α, x)
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v is a consequence of some subset W of the clauses in φ where each w ∈ W is
x-univariate under α. The proof graph then consists of one edge (w, v) for each
w ∈ W . For example, consider a call to resolve(c∧ d∧ e∧ f, α, x) which results
in the conclusion g. Then the proof graph representing this step may consist
of the edges (d, g), (e, g), (f, g), provided resolve() found that d, e, f |= g. We
label each edge in this graph with x, referred to as the pivot variable. As in
propositional resolution, the proof graph is regular if for every path in the graph,
the corresponding sequence of pivot variables contains each variable at most
once. The proof graph is tree-like, if each instance of a derived clause1 can be
the antecedent of at most one other derived clause.

Consider the topological properties of a proof graph generated by calls to
resolve() in UC-Search. The graph is not necessarily tree-like nor necessarily
regular, because the variables are chosen in any order. One may restrict the form
of resolution using the following notion.

Definition 1 (Exhaustively Asserting). We say that UC-Search is exhaus-
tively asserting if any variable chosen after a conflict is the variable constrained
by the last learned clause.

To illustrate this property, consider a backtrack sequence. Every time there is
an inconsistency, UC-Search returns a clause w derived by resolve. Either w
has no variables, and the problem is unsatisfiable, or the clause w has a variable
x which is maximal in the search, and w excludes an assignment α ∪ {x �→ a}.
In this later case, (φ ∧ w)[α] may or may not be univariate consistent. If it is
not univariate consistent, the backtrack sequence is not maximal and resolve
is called again. Otherwise, (φ∧w)[α] is univariate consistent and a free variable
is selected. In the case that UC-Search always selects x within such a context,
we say it is exhaustively asserting.

Theorem 3 (Restricted Resolution). If UC-Search is exhaustively asserting
then the proof graph traced by UC-Search is tree-like and regular.

Restricted resolution, in turn, allows us to relax the requirements on resolve()
necessary for termination. Consider the property of finite width:

Definition 2 (Finite Width). Let L be a language of literals (atomic predi-
cates or their negations). Given a finite set of clauses φ whose literals fall in L
and a distinguished variable x ∈ vars(φ), let

r(x) � {w | ∃α . φ[α]|x is unsat, and w = resolve(φ, α, x)}

denote the set of all derivable clauses under any variable valuation around x.
We say that resolve has finite width for L, if for any finite set of clauses φ
over L, r(x) is finite and contains only literals in L, for all x ∈ vars(φ).

Theorem 4. Termination Sufficiency
UC-Search terminates for a CNF formula φ with literal language L if
1 Derived clauses can appear multiple times in the graph. An instance of a derived

clause corresponds to a particular call to resolve.
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1. resolve has finite width for L; and
2. UC-Search is exhaustively asserting.

Proof. Having established progress (Theorem 2), it will suffice to show that the
set of learned clauses is finite. Since resolve has finite width it will suffice to
show that every learned clause falls in the k-closure of resolve for some bound
k. By Theorem 3, the proof graph is regular, and so for a formula of n variables,
every learned clause falls in the n-closure of resolve. ��

Since progress and termination implies completeness, we have a convenient cri-
terion for establishing completeness provided an appropriate implementation of
resolve(). Note however that the proof relies indirectly on the fact that the
resolution graph is tree-like, i.e that UC-Search forgets clauses on backtracking.
This is contrary to the intuition that the more clauses one adds to the formula,
the “closer” to proving unsatisfiability. The potential problem introduced by
keeping clauses if resolve has finite width but infinite closure is that one risks
creating infinitely long chains of resolution steps.

3 Implementing UC-Search

In this section we consider implementing some variations of the UC-Search al-
gorithm, each corresponding to different degrees of restriction on the underlying
proof graph. At the same time, we are interested in an efficient implementation,
which supports incremental, lazy, and backtrack-friendly data structures. We
consider three kinds of restrictions on underlying proof graphs.

1. Tree-like regular proofs. This configuration corresponds to the formal al-
gorithm in Figure 1, with the restriction that the process is exhaustively
asserting. Variable orders are dynamic and learned clauses are necessarily
forgotten upon backtracking.

2. Directed proofs. In this configuration, the implementation uses a fixed vari-
able ordering and remembers learned clauses for at least as long as is nec-
essary to satisfy the notion of progress. Learned clauses may be kept longer
– those learned clauses not required for progress are cached and the cache
size is limited by using a simple activity heuristic as found in many SAT
solvers. Modulo implementation details and forgetting clauses, this configu-
ration closely corresponds to GDPLL QFLRA [MKS09]

3. Semi-constrained proofs. In this configuration, the process is exhaustively
asserting and learned clauses are cached as above, but dynamic variable
orderings are used. If the proof system is unbounded, this configuration is
incomplete.

Thus one main problematic for implementation is the management of learned
clauses, in particular the identification of those clauses which are essential to
progress (Theorem 2). Another problematic is making consistency checking in-
cremental and backtrack-friendly. Since consistency checking only applies to uni-
variate clauses, it is convenient to treat consistency checking on a per-variable
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x 
→ a y 
→ b z (unassigned)

c3c1 c4

c2

Fig. 2. Constraint Stack Indexing. A variable stack holds the partial assignments in

UC-Search and is represented on the horizontal axis with bold links. Each variable

is placed in an assignment stack and maintains privately two stacks of clauses. In

the figure, clauses are labeled ci with i an index of the time at which the procedure

discovered that the clause became univariate. Each univariate clause belongs to two

stacks. First, a stack representing constraints of the variable for which the clause is

univariate. These stacks are placed vertically associated with each variable in the figure.

Second, clauses are placed in a stack associated with the (possibly empty) variable

assignment which caused them to become univariate. These stacks are linked by dashed

lines in the figure. Clauses which are not essential to progress (Theorem 2) are those

clauses which do not occur in any variable stack. Each variable assignment x �→ a may

cause some clauses to become univariate, and each such clause triggers an incremental

consistency check for the associated variable.

basis, in such a way that the constraints placed on a given variable are treated in
an incremental, backtrack-friendly fashion. Figure 2 illustrates a data structure
which provides efficient support for these operations.

The constraint index also facilitates backtracking. Backtracking occurs imme-
diately after a call to resolve. Backtracking is then a function of the current
state of the constraint index and a newly learned clause. Backtracking occurs
in per-variable units of work. As each variable x is unassigned, all its outgoing
constraints are popped from x’s outgoing stack and the constrained variable’s
incoming stack. This occurs until the newly learned clause w is univariate. Once
it is univariate, a consistency check occurs. If the check succeeds, the procedure
stops backtracking and passes control to the select function. If the check fails,
resolve is called again, resulting in a new learned clause w′ which replaces w
and backtracking starts over again with w′ and the new state of the constraint
index.

4 Application to Linear Real Arithmetic

In this section, we present an application of UC-Search to real linear arithmetic.
We are interesting in deciding a set of clauses whose literals are linear constraints
over the reals, such as
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((2x − 7y ≤ 43) ∨ (2x + 7y + z > 42) ∨ (x > 9))

∧
((2x − 7y ≤ 41) ∨ (2x + 7y + z > 49) ∨ (z ≤ 0))

∧
. . .
((x < 0 ∨ x > 0))

4.1 Consistency Checking

Variable consistency checking, i.e. an implementation of isUC() plays an im-
portant role in the UC-Search algorithm because it occurs very frequently. In
UC-Search, the method isUC() is called initially and in response to variable
assignments as well as in response to clause learning. Each call to the method
checks the consistency of all free variables. Of course, one may simply consider
the constraints placed on each variable x independently. Over the course of a
UC-Search run, the constraints over a variable x are asserted incrementally and
may be subsequently un-asserted if the procedure backtracks or forgets a clause.

Thus consistency checking begs a per-variable incremental and backtrack
friendly implementation. Section 3 describes data structures centered around
identifying when clauses become univariate, free of true predicates, and non-
trivial on the fly. Accordingly, we will assume that consistency checks occur upon
the assertion of one non-trivial x-univariate clause at a time, for every variable
x. More particularly, we consider a sequence of clause assertions cx,1cx,2 . . . cx,k
where each clause cx,i is a non-trivial x-univariate clause. A convenient means
to maintain consistency for x incrementally is to under-approximate the feasible
set with lower and upper bounds lx, ux such that

lx ∧ ux |=
∧

1≤i≤k

ci

It is possible to maintain such an under-approximation with constant time up-
dates to the values lx, ux upon assertion of an x-univariate clause c as follows.
Initially, we let lx = ux = /. Let lx(c) and ux(c) denote the weakest lower
and upper bounds for x found in c, defaulting to ⊥ in the case that there is no
respective bound in c. After assertion of c, the next state l′x, u

′
x of the under-

approximation may be computed as

(l′x, u
′
x) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(lx, ux) if lx ∧ ux |= c
(lx(c), ux) else if ux(c) = ⊥
(lx, ux(c)) else if lx(c) = ⊥
(lx(c), ux) else if lx(c) |= lx
(lx, ux(c)) else if ux(c) |= ux

(⊥,⊥) otherwise

If l′x ∧ u′
x is satisfiable, the under-approximation may defer a real consistency

check until a new x-univariate constraint is asserted. Otherwise, a real consis-
tency check needs to take place with respect to the current set of clauses to find
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whether there is a set of inconsistent clauses. In case the clauses are consistent,
a new under-approximation needs to be computed. A real consistency check
exploits the fact that an x-univariate clause defines an interval in which x is
infeasible. If the union of the infeasible intervals defined by a set of x-univariate
clauses covers the real line, the clauses are inconsistent.

4.2 Resolution

As an implementation of resolve(), resolution takes as a starting point an
assignment α and a set of clauses W such that W [α] is x-univariate and incon-
sistent. Let us denote by Iα,c the infeasible interval of clause c under α. Since
W is inconsistent, there are always two clauses l, u whose infeasible intervals
properly overlap, i.e. so that the weakest lower bound on x in l[α] is greater
than the weakest upper bound on x in u[α]. A resolution rule for such a pair of
clauses was described in [MKS09] and we briefly recall it here.

We can write l in the form l1 ∨ l2 ∨ . . . ∨ lm ∨A where each li bounds x from
below. Similarly we can write u in the form u1 ∨ u2 ∨ . . .∨ un ∨B where each ui

bounds x from above. To derive a consequence r, one can compute

r � A ∨B ∨
∨

{∃x . li ∧ uj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

One then eliminates x from each quantified disjunct in r by Fourier-Motzkin
elimination, which results in a single linear constraint rather than a conjunction.
It is straightforward to verify that Iα,r = Iα,l∪Iα,u, and thus either r[α] contains
no variables or we can resolve another pair of clauses from W \ {l, u} ∪ {r},
continuing until we derive a clause which does not contain x.

Since, up to linear equivalence, Fourier-Motzkin elimination of a single vari-
able from a set of literals can only produce finitely many literals, and each clause
contains finitely mainy literals, this implementation of resolve has finite width,
provided we normalize the literal language in such a way that linearly equivalent
constraints are also syntactically equivalent.

5 Experimentation with Difference Logic

We implemented a prototype solver for linear real arithmetic based on the ideas
presented in this paper. The solver is restricted to CNF formulas, and represents
rationals as a pair of 64 bit integers. Our prototype supports the three config-
urations mentioned in section 3 with dynamic variable orderings using VSID
heuristic based on the number of times resolve was called for a given variable.
The prototype also supports non-chronological backtracking, toggling value se-
lection to upper or lower bounds or using cached values at various times, coding
propositional literals in real linear arithmetic, and performing unit propagation
for those literals.

As a result of the fixed precision rationals and CNF requirements, we only
applied the solver to CNF difference logic problem sets in SMT-LIB [BRST08],
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since difference logic in general doesn’t require arbitrary precision arithmetic.
Overall, we found that the treelike resolution configuration was very slow, di-
rected resolution was very slow on scheduling problems and often slow elsewhere,
and semi-constrained resolution (which is incomplete) performed the best.

All experiments were run on a Sun Java VM version 1.6.0 11 on a Debian
Linux machine with dual Xeon 3.20 GHz processors and 4GB RAM. Below we
detail the results.

5.1 Wide Net Experiment

Our first experiment consisted of casting a wide net over the configuration space
for jobshop problems in QF RDL/scheduling. We identified a set of configura-
tions for experimentation; namely reasonable combinations of resolution config-
uration, variable selection, value selection, and backtrack depth selection (i.e
whether or to use non-chronological backtracking). The fixed variable ordering
does not make sense with varying backtracks, and so we only tested one fixed
variable selection configuration. Otherwise, all combinations of semi-constrained
resolution were tried, yielding a total of 19 configurations to run on 105 bench-
mark problems. To limit total computation time, we limited each try of a con-
figuration on a benchmark to 15 seconds. There were a total of 1995 prob-
lem/configuration tries, of which only 576 were solved in the 15 second time
limit.

The variable selection entries, all of which assume the process is exhaustively
asserting, may be one of

1. fix. The solver uses a fixed variable ordering based on variable identities and
uses directed resolution.

2. vsid. All variables are selected according to VSID heuristics, and all variables
are incremented on every clause resolution step.

3. vsid + ncb. All variables are selected according to VSID heuristics and the
solver does non-chronological backtracking, which decreases the backtrack
depth.

The value selection strategies either used the last assigned value, a recent value
derived from consistency checking, or a value based on the constraints at the time
of assignment, which we refer to as a “current” value. All values were placed on
the boundaries of constraints and initialized to 0. The search direction for an
assignment (towards upper or lower bounds) was toggled alternatively on every
assignment, never, or only immediately after asserting a learned clause.

A table of the results is appended to this paper. The most important configu-
ration choice appears to be whether or not a fixed variable order is used. Apart
from this, we observe that value selection plays a very important role and that
the “last” configuration outperforms the “recent” configuration which in turn
generally outperforms the “current” configuration. The bias flipping mechanism
also appears to have a significant impact on performance. Generally, toggling
search directions on assignments seems to work best. But in the best overall
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configuration, bias toggling on assertion appears to work best. There is a large
span of improvement over the space of configurations: the best configuration
solves more than 4 times the problems of the worst.

5.2 Comparison to Z3

In our second experiment, we compared our best configuration to the state-of-
the-art solver Z3 on the scheduling problems, diamond problems, and parity
game problems from SMT-LIB. On the scheduling problems, Z3 vastly outper-
formed our method. On diamond problems, our method outperforms Z3. This
is consistent with the observation in [MKS09] that the resolution procedure can
generate exponentially shorter proofs for diamond problems. On the parity game
problems, the results are largely off-diagonal with a majority in favor of Z3. The
off-diagonal results indicate that the strengths of the framework presented in
this paper are orthogonal to traditional approaches for this set of problems.

6 Conclusion

We have presented an abstract algorithm, UC-Search, for deciding a wide range
of quantifier-free CNF formulas. The goal of this work is to find a decision pro-
cedure formalism which supports more principled and dynamic heuristics for
SMT solving. Our procedure supports VSID style heuristics over arbitrary vari-
ables, as well as principled and dynamic heuristics for forgetting clauses based
on the notion of progress. While this procedure may be applied to a wide range
of theories, we observed that unbounded proof procedures introduce significant
restrictions on the algorithm. Despite this fact, experiments indicate that even
an incomplete version of the procedure is much faster than a leading SMT solver
based on traditional techniques on a significant portion of the benchmarks we
performed. While our results do not achieve improvements as a general-purpose
solver for linear arithmetic, by applying the algorithm in this way we have dis-
covered some fundamental costs associated with introducing dynamic variable
orderings in systems with unbounded proof systems. To remedy this situation,
a solver based on arbitrary regular resolution, rather than directed or tree-like
resolution could be explored. Alternatively, UC-Search could be applied to other
theories or embedded within a traditional framework, providing a basis for de-
riving and forgetting theory literals.
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Abstract. We consider temporal logic formulae specifying constraints in contin-
uous time and space on the behaviors of continuous and hybrid dynamical system
admitting uncertain parameters. We present several variants of robustness mea-
sures that indicate how far a given trajectory stands, in space and time, from sat-
isfying or violating a property. We present a method to compute these robustness
measures as well as their sensitivity to the parameters of the system or parameters
appearing in the formula. Combined with an appropriate strategy for exploring
the parameter space, this technique can be used to guide simulation-based ver-
ification of complex nonlinear and hybrid systems against temporal properties.
Our methodology can be used for other non-traditional applications of temporal
logic such as characterizing subsets of the parameter space for which a system is
guaranteed to satisfy a formula with a desired robustness degree.

1 Introduction

Analyzing the behavior of complex hybrid and nonlinear systems admitting uncertain
parameters and inputs is an important ingredient in the design of control systems and
analog circuits as well as in studying biochemical reactions. The adaptation of veri-
fication techniques to this domain proceeds along different threads, two of which are
combined in the present paper. Property checking, also known as monitoring or run-
time verification, uses temporal formulae to express desired behaviors and then checks
whether individual system behaviors satisfy them, without worrying whether the set
of behaviors checked covers the reachable state space. Simulation-based verification
attempts to guide the generation of traces so as to demonstrate the satisfaction or viola-
tion of a property based on finitely many of them. In [8] we developed an algorithm that
verifies this way safety properties of high-dimensional nonlinear systems. In this work
we extend this technique to arbitrary properties expressed in a suitable temporal logic,
for which we have devised a monitoring procedure [15]. The approach of [8] is strongly
based on sensitivity, which in a nutshell, is the derivative of one continuous quantity
with respect to another. To apply this concept to temporal formulae, we need to “con-
tinualize” their semantics by making it real-valued, to extend the monitoring procedure
to compute this semantics efficiently for a given trace and compute the sensitivity of
this semantics to parameters. This is what we do in the present paper after giving some
background and motivation.

The introduction by Amir Pnueli [20] of linear-time temporal logic (LTL) into sys-
tems design as a formalism for specifying desirable and acceptable behaviors of reactive

K. Chatterjee and T.A. Henzinger (Eds.): FORMATS 2010, LNCS 6246, pp. 92–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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systems is recognized as an important turning point in verification, putting the ongoing
sequential behavior of a system at the center stage of the verification process. The ver-
ification framework developed over the years by Manna and Pnueli [18] consisted of
three major components:

1. A system description formalism, specifying a behavior-generating mechanism S;
2. A property specification formalism, describing sets of acceptable behaviors, those

that satisfy a formula ϕ;
3. A verification methodology for checking whether all behaviors of S satisfy ϕ.

In addition to verification where one checks whether all system behaviors satisfyϕ, LTL
is also used for lightweight verification (monitoring, runtime verification [5]) where the
satisfaction of a formula by one or more individual behaviors is checked. For both
uses, monitoring and verification alike, we point out three fundamental features of this
framework, the first two related to the nature of the systems and behaviors considered
while the third is related to the very notion of property and logical truth.

1. Discrete qualitative time: behaviors are defined as sequences of states or events,
which are often interpreted in a purely qualitative manner, that is, without consid-
ering the metric distance between subsequent time instances;

2. Discrete state space: the sequences are defined over discrete and often finite do-
mains emphasizing control rather than data;

3. Yes/No answer: the satisfaction of a temporal formula by a behavior is considered
as membership in a set, with no quantitative degree of satisfaction.1

The first two features are natural for all sorts of transition system models expressed in
various syntactic forms. Logically speaking, they imply the use of discrete-time and
typically propositional temporal logic. The third feature often goes without saying. In
the past two decades various attempts have been made to extend this methodology to-
ward more refined models of systems and behaviors, going from discrete to timed and
then to hybrid (discrete-continuous) systems. Such extensions involve departures from
each of the above features.

The first departure consists in replacing the discrete time domain by the dense and
metric domain R. Behaviors of this type are generated by timed system models such
as timed automata [1] and similar formalisms that can express the durations of discrete
processes. Natural extensions of LTL to handle dense time are logics such as MTL [14]
or MITL [2] which can express requirements concerning the time elapsing between
events. Timed behaviors can be viewed as either Boolean signals, which are functions
from the real time axis to Bn, or as timed words consisting of instantaneous events,
taken from some alphabet, separated by real time durations, see [4]. The second depar-
ture, motivated by the application of verification and monitoring techniques to continu-
ous and hybrid systems, consists of letting predicates over the reals, such as inequalities,

1 In a probabilistic setting one assigns probabilities to the satisfaction of a formula but this is
done with respect to a set of behaviors, while the satisfaction by individual behaviors remains
Boolean.
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play the role of atomic propositions2 and thus specify properties of real-valued signals.
In [15] the logic STL (signal temporal logic) which combines the dense time modalities
of MITL with such numerical predicates has been introduced, along with a monitoring
tool [17,19] for deciding satisfaction of such properties by time-stamped traces pro-
duced by numerical simulators.

However, the third premise of a yes/no answer is not fully compatible with quanti-
tative entities in the continuous domain where real-valued distance functions play an
important role. As an illustration, consider the inequality x ≤ c. Boolean satisfaction
does not make a difference between x = c+ε and x >> c as both cases are classified as
violating the property. Likewise, one cannot distinguish between marginal satisfaction
by x = c− ε and a more robust satisfaction by x << c. The same criticism applies to
satisfaction of timing constraints: a requirement that some event occurs within t time
can be violated by its occurrence at t+ ε, at t′ >> t as well as by its complete absence,
and a yes/no answer cannot tell the difference.

These issues are extremely important in the continuous setting because such systems
are subject to noise and numerical errors, not to mention the inherent approximative
character of mathematical models of natural phenomena. Consequently, parameters ap-
pearing in system descriptions such as differential equations, as well as in formulae, are
often a result of guessing and estimation and should not be regarded as representing
universal constants. Thus if a property is violated in a marginal way as in x = c + ε,
satisfaction can still be achieved by slight modifications in the property, in the behavior
or in the parameters of the generating system. In fact, the use of temporal logic in a
scientific context, as in systems biology is methodologically different from its use in the
engineering context of system design. In biology, it is often the case that the role of the
temporal formula is to provide a succinct abstract model of the observed behavior of
a complex network of chemical reactions [10,3]. The question there is not whether the
system model satisfies a given specification but rather to find a formula, as semantically-
tight as possible, compatible with the system model or with a set of observed behaviors.
In such a model-search process it is important to know how close we are to a satisfac-
tory model and which parameters should be changed (and in which direction) in order
to approach it.

These observations have led several researchers to look more closely at the notion
of robust satisfiability by continuous signals of properties expressed in STL or similar
formalisms [11,22].3 Fainekos and Pappas [11] define the notion of robustness degree
as a real number associated with a property-behavior pair, based on, roughly speaking,
the distance between the behavior and the (boundary of) the set of all behaviors that
satisfy the property. This measure is more positive when the behavior is deeper inside
the set of satisfying behaviors and more negative the further is the behavior outside
that set. Hence it satisfies a natural notion of soundness of such a robustness measure,

2 Such predicates are used, of course, also in more conventional applications of temporal logic
to programs with numerical variables and also in similar logics introduced and used in biology
[3,10]. All such logics are quantifier-free fragments of first-order temporal logic.

3 The study of robust satisfaction and, more generally, of multi-valued and quantitative inter-
pretation of logical formalisms is, of course, very old. We focus on works relevant to our
motivation, sensitive monitoring of continuous signals.
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namely, being positive for signals that satisfy the property and negative for violating
signals. They propose an inductive procedure for computing the robustness degree, as
well as a recent tool [12]. Their approach is behavior oriented, indicating how much
should the signal be modified in order to satisfy or violate the property.

The measures introduced by Rizk et al. [22] are more property-oriented and intend
to assess how far a given formula, written in some variant of LTL4 augmented with
numerical predicates, is from being an adequate description of a given simulation trace.
Their real-valued degree of satisfaction is obtained first by replacing all constants in
the formula by parameters and hence viewing all formulae admitting the same form as
points in an Euclidean parameter space. They compute the set of all points that corre-
spond to formulae satisfied by a given trace (or set of traces) and define a real-valued
satisfaction/violation degree based on the distance between the original formula and
the set of satisfied formulae. They use this measure to guide a search in the parameter
space. Their approach has been integrated into the BIOCHAM tool [6] and has been
applied to numerous biological examples.

In this paper we extend these works in several directions. First we propose an alter-
native quantitative semantics for MITL/STL which focuses on the robustness of satis-
faction with respect to time. We then show how these two robustness measures can be
combined into a generalized robustness measure which captures both space and time,
from which both the space robustness of [11] and our time robustness are obtained as
special cases. Then we present an efficient dense-time algorithm for computing these
measures for piecewise-linear signals. Finally we extend the algorithm to compute the
sensitivity of these measures with respect to parameter variations thus paving the way
for the extension of sensitivity-based parameter-space exploration methodology of [7]
to handle STL formulae.

2 Logics for Real-Valued Signals

In this section, we partly and briefly recall the framework set in [15,17] to define an
appropriate logic for real-valued continuous time signals. In the rest of the paper, we
implicitly assume the existence of a system under study whose state is described by a
set of n variables V = {x1, x2, . . . , xn}. The domain of valuation of V is denoted by
D = D1×D2× . . .×Dn. The domain R is the set of real numbers, B = {true, false} is
the Boolean domain and the time set is T = R≥0. As a preparation for the real-valued
semantics we will view B as {−1,+1} rather than {0, 1}. Disjunction and conjunc-
tion are realized as max and min and negation as minus. This way the passage to
the quantitative semantics of [11] will be immediate. A trace (or signal or behavior)
w describing an evolution of the system is a function from T to D. We define a set
P = {p1, p2, . . . , pn} of projectors, so that for a given trace w, pi(w[t]) = xi[t] for all
t. If the context is not ambiguous, we write pi[t] instead of pi(w[t]).

We first consider continuous-time Boolean signals, i.e., when D = Bn. A popu-
lar logic to characterize such timed behaviors is the Metric Interval Temporal Logic
(MITL) [2] whose grammar is given by:

4 Their treatment of time, interpreting the next operator as referring to the next integration step,
is too implementation-dependent to serve as a solid basis for defining time robustness.
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ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2 (1)

where ϕ, ϕ1 and ϕ2 are MITL formulae, p ∈ P = {p1, p2, . . . , pn} and I is an interval
of the form I = (i1, i2), (i1, i2], [i1, i2) or [i1, i2], where i1 < i2 are in T. For t in T,
t + I is the set {t + t′ | t′ ∈ I}. Traditionally the satisfaction of an MITL formula ϕ
by a trace w at time t is denoted by (w, t) � ϕ. We will use instead the characteristic
function χ(ϕ,w, t) which is 1 when (w, t) � ϕ and −1 otherwise.

Definition 1 (Semantics). The characteristic function of an MITL formula relative to
a trace w at time t is defined inductively as

χ(p, w, t) = p[t] (2)
χ(¬ϕ,w, t) = −χ(ϕ,w, t) (3)

χ(ϕ1 ∧ ϕ2, w, t) = min(χ(ϕ1, w, t), χ(ϕ2, w, t)) (4)
χ(ϕ1 UI ϕ2, w, t) = max

t′∈t+I
min(χ(ϕ2, w, t

′), min
t′′∈[t,t′]

χ(ϕ1, w, t
′′)) (5)

Note again that the semantics of until is equivalent to the more familiar notation:

(w, t) � ϕ1 UI ϕ2 ⇔ ∃t′ ∈ t + I s.t. (w, t′) � ϕ2 and ∀t′′ ∈ [t, t′], (w, t′′) � ϕ1

where dense Boolean operations are replaced by dense min and max. From the ba-
sic operators of MITL, other standard operators can be defined such as eventually and
always: ♦Iϕ � true UI ϕ, �Iϕ � ¬♦I¬ϕ.

Signal temporal logic (STL) [15] allows one to apply MITL-like reasoning to traces
over D = Rn. The connection is done via a finite set M = {μ1, . . . , μk} of predicates
(Booleanizers), each mapping Rn to B. For a given 1 ≤ j ≤ k, the predicate μj is of
the form μj ≡ fj(x1, x2, . . . , xn) ≥ 0 where fj is some real-valued function.

Definition 2. We call xi the primary signals of w and call their images by fj secondary
signals that we denote by {y1, . . . , yk}.

The syntax is thus identical to MITL except for the predicates in M replacing the atomic
propositions in P . The semantics is identical to that of Definition 1 except for the base
case (we interpret sign(0) as 1):

χ(μ,w, t) = sign(f(x1[t], . . . , xn[t])) (6)

Figure 1 illustrates the semantics of the STL formulae ♦[1,2](x1 +2x2−2 ≥ 0) relative
to a two-dimensional real-valued signal. The methodology developed in [15,17] for
deciding satisfaction of an STL formula ϕ by a real-valued signal is based on assigning
to each sub-formula ψ of ϕ a satisfaction signal, that is a Boolean signal whose value
at t is equal to χ(ψ,w, t). The computation goes bottom up (and backwards, for the
future fragment of the logic) starting from the primary signals from which the secondary
signals and their Booleanizations are computed, and then climbing up the parse tree
of ϕ until the satisfaction signal of the top formula is computed. This procedure is
similar in spirit to the novel translation from MITL to timed automata [16] based on
the compositional principles of temporal testers initiated in [13,21] where each formula
is associated with a transducer which computes the satisfaction signal of the formula
based on those of its sub-formulae. In Section 4 we present a monitoring procedure for
the quantitative semantics.
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Fig. 1. A two-dimensional real-valued signal w and the time evolution of χ(ϕ, w, t) and
ρ(ϕ, w, t) for ϕ � ♦[1,2](x1 + 2x2 − 2 ≥ 0). (a) the primary signals x1, x2 and the sec-
ondary signal y = x1 + 2x2 − 2; (b) the truth value and spatial robustness of the sub-formula
corresponding to y ≥ 0; (c) the truth value and spatial robustness of ♦[1,2]y ≥ 0 (notice the
smoothing effect of the non-punctual eventually operator).

With the flexibility of the definition of STL we can express a rich collection of rel-
evant temporal properties for continuous signals. However, it has two drawbacks: first,
the values of the primary and secondary signals at different time instances cannot “com-
municate” before being Booleanized and then handled by the temporal operators. This
limitation can be alleviated by letting predicates use also the shift operator (which is
a punctual version of ♦). Although our implementation allows this feature we will as-
sume here only simple point-wise predicates in order to focus on the second drawback
mentioned in the introduction: the loss of quantitative information due to Booleaniza-
tion. In the next section, we propose several quantitative semantics for STL reflecting
the robustness, in space and time, of satisfaction or violation.

3 Quantitative Semantics

The first quantitative measure of satisfaction that we present is a simple reformulation
of the spatial robustness degree of [11], after which we proceed to a novel measure
of temporal robustness and finally to a generalized measure that combines both. The
definitions of all these measures are identical to Definition 1 except for the base cases.
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Definition 3 (Space Robustness). The space robustness of an STL formula relative to
a trace w at time t, denoted by ρ(ϕ,w, t), is defined inductively as

ρ(μ,w, t) = f(x1[t], . . . , xn[t]) where μ ≡ f(x1, . . . , xn) ≥ 0
ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t) = min(ρ(ϕ1, w, t), ρ(ϕ2, w, t))
ρ(ϕ1 UI ϕ2, w, t) = max

t′∈t+I

(
min(ρ(ϕ2, w, t

′), min
t′′∈[t,t′)

ρ(ϕ1, w, t
′′)
)

It is not hard to see that the definition above is sound in the sense of [11]: χ(ϕ,w, t) =
sign(ρ(ϕ,w, t)). Figure 1 illustrates the behavior of this measure. It captures the ro-
bustness of the satisfaction to noise in w. Let the point-wise distance between two finite
signals of the same length be ||y − y′|| = maxt |y[t] − y′[t]|. The following is a refor-
mulation of the results of [11]:

Theorem 1 (Property of Space Robustness). If ρ(ϕ,w, t) = r then for every w′ in
which every secondary signal satisfies ||yj − y′j|| < r, χ(ϕ,w, t) = χ(ϕ,w′, t).

While this semantics captures the robustness of satisfaction with respect to point-wise
changes in the value of the signal or in constants appearing in the predicates, it does not
fully capture the effect of changes in the constants appearing in the temporal operators
of the formula nor in changes in the signal along the time axis. Such changes are often
expressed using a retiming function, a monotone function α : T → T which transforms
a signal x to x′ by letting x′[t] = x[α(t)]. Figure 2 shows three different signals satisfy-
ing ρ(ϕ,w1, 0) = ρ(ϕ,w2, 0) = ρ(ϕ,w3, 0) > 0 for the formula ϕ � ♦[i1,i2](x > 0).
Intuition tells us, however, that w1 satisfies ϕ more robustly being positive during a
large part of the [i1, i2] interval while w2 has only a short positive spike and w3 al-
most misses the deadline for satisfying the positivity condition. All those signals have
the same value of ρ because they admit the same maximal value in the interval and
the point-wise space robustness cannot account for these differences. For the same rea-
son, it cannot capture the similarity between w3 and the property-violating signal w4,
obtained from w3 by a slight shifting in time, that is, w4[t] = w3[t− ε].

This observation motivates our definition of time robustness which indicates the ef-
fect on satisfaction of shifting events in time, where the term event refers to rising and
falling edges in Boolean signals, the moments where certain secondary signals cross a
threshold and their predicates change their truth value. Since the notion of a change in a
truth value is discrete, we define time robustness with respect to MITL and Boolean sig-
nals but the definition applies as well to the standard Boolean semantics of STL where
Booleanizers replace atomic propositions.

Definition 4 (Time Robustness). The left and right time robustness of an MITL for-
mula ϕ with respect to a trace w at time t are defined inductively by letting

θ−(p, w, t) = χ(ϕ,w, t) · max{d ≥ 0 s.t. ∀t′ ∈ [t− d, t], χ(ϕ,w, t′) = χ(ϕ,w, t)}
θ+(p, w, t) = χ(ϕ,w, t) · max{d ≥ 0 s.t. ∀t′ ∈ [t, t + d], χ(ϕ,w, t′) = χ(ϕ,w, t)}

and then applying to each of (θ−, θ+) the rules (3-4) as in Definition 1.

Figure 3 illustrates the time robustness of the satisfaction of p by a Boolean signal.
Note that there are (unavoidable) discontinuities in the evolution of these measures at
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Fig. 2. Limitations of the point-wise quantitative semantics: signals w1, w2 and w3 are considered
as satisfying ♦[i1,i2](x > 0) from t = 0 at the same degree, while the similarity between w3 and
the violating w4 is not captured.

d1

d2

t t′

d′1
d′2

p

θ−θ+

(b)(a)

Fig. 3. (a) Illustration of time robustness of a propositional formula p with respect to a Boolean
signal: θ−(p,w, t) = d1; θ+(p, w, t) = d2; θ

−(p, w, t′) = −d′
1; θ+(p, w, t) = −d′

2; (b) The
evolution of θ− and θ+ with time.

rising/falling edges and that θ−(p, w, t) + θ+(p, w, t) is constant inside an interval in
which the truth value of p is uniform. The following property holds naturally for atomic
propositions and is preserved by temporal operators:

Theorem 2 (Property of Time Robustness). If θ−(ϕ,w, t) = s (resp. θ+(ϕ,w, t) =
s) then for any signal w′ obtained from w by shifting events to the right (resp. to the
left) by less than s, we have χ(ϕ,w, t) = χ(ϕ,w′, t).

We can now move to a combined space-time robustness which reflects trade-offs be-
tween space and time robustness: the same signal will be more robust temporally if we
are ready to compromise its spatial robustness and vice versa. The space-time robust-
ness of an STL formula ϕ with respect to a trace w at time t is a family of function pairs
{θ+

c , θ
−
c }c∈R which map every spatial robustness c to left/right temporal robustness.

For an STL predicate μ, let χc(μ,w, t) = sign(ρ(μ,w, t)− c), that is, a Boolean whose
value is positive if and only if the robustness of μ for w at t is at least c.

Definition 5 (Space-Time Robustness). The temporal robustness of a formula ϕ rela-
tive to a spatial robustness c is obtained by letting

θ−c (μ,w, t) = θ−(χc(μ,w, t))
θ+
c (μ,w, t) = θ+(χc(μ,w, t))

and then applying the rules of Definition 4.

Geometrically, these functions define the basis of the largest rectangle of height c that
can be constructed around t while remaining below the secondary signal associated
with μ, as illustrated in Figure 4. In fact, the set of realizable triples (ρ, θ−, θ+) repre-
sents the possible trade-offs (a kind of Pareto curve) between these measures. It could
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Fig. 4. Illustration of the combined time-space robustness

equivalently be captured by a function ρ
d−,d+ which maps time robustness to space ro-

bustness. The previously-defined space and time robustness measures are obtained as
the special cases: ρ = ρ0,0 , θ− = θ−0 and θ+ = θ+

0 .

4 Computing Robustness Degrees

In this section we present an algorithm to compute the different quantitative semantics
for a given signal w and a formula ϕ. We focus on space robustness ρ but the compu-
tation for θ or θc (for any value of c) is similar. The robustness function ρ(ϕ,w, ·) is
computed inductively on the structure of the formula, beginning with the computation
of the secondary signals based on the primary signals in w and the predicates in M .
Thus we need to compute the right-hand side terms of the semantics in Definition 1
which reduces to the following subproblems corresponding, respectively, to operators
¬, ∧ and UI :

1. Given y : T → R, compute z : T → R such that ∀t ∈ T, z[t] = −y[t];
2. Given y, y′ : T → R, compute z : T → R such that

∀t ∈ T, z[t] = min(y[t], y′[t]) (7)

3. Given y, y′ : T → R and an interval I, compute z : T → R such that
∀ t ∈ T, z[t] = max

τ∈t+I
(min(y′[τ ], min

s∈[t,τ ]
y[s]))) (8)

The first of these being trivial, we focus on the second and third. The difficulty lies in
the fact that we compute functions and not only single values at specific time instants.
Dealing with continuous time and space, a natural input for our algorithm is a sequence
of time-stamped values of w obtained via variable step-size numerical simulation that
we interpret as a piecewise-linear function by linear interpolation. More precisely, we
assume that a secondary signal y is a piecewise-affine function of time with a finite
sequence of points {tk}1<k<ny where its derivative changes. We assume that y is right-

continuous and admits a right-derivative noted dy[t] � limε→0
y[t+ε]−y[t]

ε , which is
simply its slope at t. If y is not continuous at t, we note y[t−] (resp. y[t+]) its limit to
the left (resp. to the right) of t. Finally, we extend the trace to be unbounded by letting
y[t] = y[t0] for t < t1 and y[t] = y[tny ] for t > tny .5 Clearly, to compute z satisfying

5 There are various other ways to interpret temporal logic over finite traces, such as the weak
semantics of [9] and other solutions surveyed in [17]. This topic is orthogonal to the rest of the
paper.
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(7) or (8) it is sufficient to know its values and its slopes at a finite sequence of time
instances {rk}1≤k≤nz such that z is continuous and dz is constant on each interval
[rk, rk+1). We note

NextEvent(z, t) =
{
∞ if (z, dz) is continuous for r > t
min{r > t | (z[r−], dz[r−]) = (z[r+], dz[r+])} otherwise

thus z can be computed incrementally by the generic Algorithm 1. An interesting fea-
ture of this approach is that it can easily be adapted to work online where input w is
revealed progressively. Indeed, each time a new pair (z(rk), dz(rk)) is computed, the
algorithm can be paused to wait for additional input data w needed to compute rk+1

and (z(rk+1), dz(rk+1)).

Algorithm 1. An iterative algorithm to compute the robustness z of the conjunction or
the until of two secondary signals y and y′

1: Init r1, k = 1

2: Repeat
3: Compute (z[rk], dz[rk]) from (y, y′)
4: Compute rk+1 = NextEvent(z, rk) from (y, y′)
5: Let k = k + 1

6: Until rk = ∞

To implement Algorithm 1, we need to implement the intialization (line 1), the com-
putation of (z, dz) at a given time instant (line 3) and the NextEvent function (line 4)
based on the representation of y and y′ sampled at {tk}1≤k≤ny and {t′k}1≤k≤ny .

4.1 Conjunction: z[t] = min(y[t], y[t′])

Initialization and computation of (z, dz). In the case of the conjunction, we initial-
ize r1 to min(t1, t′1) and we note that computation of (z, dz) satisfying (7) is triv-
ial except when y[t] = y′[t]. In that case it can be seen easily though that dz[r] =
min(dy[z], dy′[r]) (the min operator preserves the right-derivative) so that if we extend
the min function with the lexicographic order, we have

∀t ∈ T, (z[t], dz[t]) = min { (y[t], dy[t]), (y′[t], dy′[t]) } (9)

Computation of next event. Observe first that since we know y and y′, we know their
NextEvent functions. Then, the slope of z can be discontinuous in r > rk only if r is a
time event for y or y′ or if y[r] = y′[r]. Thus there are three possibilities:

1. (z[rk], dz[rk]) = (y[rk], dy[rk]) then
NextEvent(z, rk) = min{ NextEvent(y, rk), arg min

t>rk

{y[t] = y′[t]}}
2. (z[rk], dz[rk]) = (y′[rk], dy′[rk]) then

NextEvent(z, rk) = min{ NextEvent(y′, rk), arg min
t>rk

{y[t] = y′[t]}}
3. (z[rk], dz[rk]) = (y[rk], dy[rk]) = (y′[rk], dy′[rk]) then

NextEvent(z, rk) = min { NextEvent(y, rk), NextEvent(y′, rk)}
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4.2 The Until Operator: z[t] = max
τ ∈t+I

(min(y′ [τ ], min
s∈[t,τ ]

y[s])))

The computation for the until operator involves the detection of the change in the max-
imal or minimal value of a signal over a moving time window. We note y[t, τ ] =
mins∈[t,τ ] y[s], so that we have to compute

∀ t ∈ T, z[t] = max
τ∈t+I

(min(y′[τ ], y[t, τ ]))) (10)

The value z[t] is provided either by y or by y′ at some time instant in [t, t + i2]. The
following result, that we use to compute (z, dz) and the NextEvent function, shows that
if z[t] is not provided by y′, then it has to be y[t, t + i1].

Lemma 1. We say that τ is an admissible time for y′ iff y′[τ ] ≤ y[t, τ ]. If there is no
admissible time for y′, then z[t] = y[t, t + i1] = min

s∈[t,t+i1]
y[s].

Proof. Since there is no admissible time for y′, there must be t∗ ∈ [t, t + i2] such
that z[t] = y[t∗]. Moreover, y[t∗] has to be equal to min

s∈[t,τ ]
y[s] for some τ in [t +

i1, t + i2]. Since [t, t + i1] ⊆ [t, τ ], z[t] = y[t∗] ≤ min
s∈[t,t+i1]

y[s]. Furthermore, z[t] =

y[t∗] = max
τ∈t+I

( min
s∈[t,τ ]

y[s]) and since t + i1 ∈ t + I, z[t] ≥ min
s∈[t,t+i1]

y[s] so that

z[t] = min
s∈[t,t+i1]

y[s].

Initialization and computation of (z, dz). Since (z[t], dz[t]) depends on the values of y
and y′ on the interval [t, t+ i2], the first time event for z is r1 = min(t1 − i2, t

′
1 − i2).

Then to compute z[t] for a given t, we first scan chronologically the values of y on
[t, t + i1] to compute their minimum y[t, t + i1]. Then we scan the values of y′ and y
for τ in [t+ i1, t+ i2], updating y[t, τ ], then getting the minimum with y′[τ ] and finally
the maximum with the value obtained before τ . At the end, we get the value z[t].

In the process, we also compute dz[t] starting by initializing it to dy[t]. Then, each
time a new value for the minimum of y is found for some τ in the interval (t, t + i1),
we compare the current value for dz[t] with 0 (because τ does not depend on t) and
keep the minimum. For τ = t + i1, we compare the current value for (z[t], dz[t])
with (y′[t + i1], dy′[t + i1]) and (y[t + i1], dy[t + i1]) and keep the minimum (in the
lexicographic sense). For τ in the interval (t + i1, t + i2), as long as we do not find an
admissible time for y′, we only update dz[t] if y[τ ] is equal to the current value of z[t],
in which case we set to dz[t] = min(0, dz[t]). When a new admissible time τ is found,
(z[t], dz[t]) is updated to max((y′[τ ], 0), (z[t], dz[t])). Finally, if t+i2 is admissible, we
let (z[t], dz[t]) = max((y′[τ ], dy′[τ ]), (z[t], dz[t])). We note arg z[t] the time instant in
[t, t + i1] when the value of (z[t], dz[t]) is determined.

Computation of next event. Assuming that we computed (z[rk], dz[rk]), we need to
compute the minimum time rk+1 > rk such that z is discontinuous in rk+1 and/or
dz[rk+1] is different from dz[rk]. Firstly, an event can occur at r > rk due to an event
for y or y′ at rk , rk + i1 or rk + i2, i.e. if

r = min{NextEvent(y, t),NextEvent(y′, t′) such that
t ∈ {rk, rk + i1, rk + i2}, t′ ∈ {rk + i1, rk + i2}}

(11)
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Fig. 5. Computation of until robustness. Here, arg z represents the point that determines z. For
τ < rk, there is no admissible time for y′ and z[τ ] = y[τ ]. The following admissible time is
rk + i1, since y[τ ] = y′[τ + i1] (second condition of (13)). At rk+1, another time becomes
admissible, which causes z to be discontinuous (first condition of (13) ).

The second possibility of event depends on whether the value of (z[rk], dz[rk]) comes
from y or y′. If there is no admissible time for y′, we showed that z[rk] is y[rk, rk + i1]
so an event can occur when y[r, r + i1] and/or its derivative is discontinuous. We can
show that this can happen only if r satisfies:

min{y[tj ], y[t−j ] | r < tj < r + i1} = min(y[r], y[r + i1])
or min{y[tj ], y[t−j ] | r < tj < r + i1} > y[r] = y[r + i1]

(12)

Now, whether there are admissible times for y′ or not, we have to monitor the appear-
ance of new admissible (adm.) times. This can happen only if r satisfies:

y[r] = min{y′[t′j ], y′[t′−j ] | r + i1 < t′j < r + i2 with t′j not adm. for rk}
or y′[r + i1] = y[r] with r + i1 not adm. for rk
or y′[r + i2] = y[r, r + i2]

(13)

Finally, we have to monitor discontinuities in the maximum values of y′ among existing
admissible times. They can happen only if

r+i1 is adm. and y′[r]=max{y′[t′j ], y′[t−j ] | r+i1<t′j(adm.)<r+i2}
or r+i2 is adm. and y′[r+i2]=max{y′[t′j ], y′[t′−j ] | r+i1<tj(adm.) <r+i2}
or y′[r+i1] = y′[r+i2] with r+i1, r+i2 adm.

(14)
Then the expressions (11-14) provides conservative conditions for r > rk to be
NextEvent(z, rk). The algorithm computes the minimum r̃k > rk satisfying one of
these conditions, then (z[r̃k], dz[r̃k]) and iterates with rk = r̃k until (z, dz) is found to
be discontinuous in r̃k . Figure 5 illustrates the process.

4.3 Computational Cost

The complexity of the robustness computation for a given signal and a formula is clearly
linear with respect to the computational cost of Algorithm 1, the constant being the
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size of the formula. The cost (time and space) of algorithm 1 depends on the number
of events generated. In the case of conjunction, there can be as many as ny + ny′ +
max(ny, n

′
y) (the third term counting the maximal number of intersections between y

and y′) so it is linear in the number of samples in y and y′.
In the case of the until operator, this number is more difficult to estimate due to the

complex inter-dependance of values of y and y′ in the intervals [t, t + i2]. We con-
jecture that this bound is also linear in ny + ny′ . Then each time step requires the
computation of (z, dz) for a given interval [t, t + i2] involving scanning and compar-
ing the values of y and y′ in this interval. The worst complexity for this operation
is of the order of the sum of the maximum number of sampling points of y and y′ that
[t, t+i2] can contain. We write this number n(y∪y′)∩I , so that our conjectured complex-
ity is O

(
(ny + ny′) × n(y∪y′)∩I

)
. In practice, we found that the complexity is usually

better since the value of z may have much less changes due to the fact that the maxi-
mum/minimum of a signal over a moving time window is likely to remain constant for
long periods.

We compared our implementation with TaLiRo [12], the only other known tool for
computing robustness degrees of temporal formulae. Their algorithm, for which the
implementation details are not provided, appeared experimentally to behave linearly
in the size of the input signals but, at least in some cases, exponentially (in time and
memory) in the size of the formula. For the same data and formulae, our algorithm was
behaving as (or better than) the above analysis suggests.6

5 Robustness Sensitivity

In [8,7] we have developed a methodology, based on numerical simulation and sensitiv-
ity analysis, to explore the parameter space of a dynamical system in order to determine
the region in this space which induces some qualitative behavior. This work has been
restricted so far to simple reachability properties and the development in this paper ex-
tends its applicability to the whole range of temporal properties, with sensitivity defined
as follows.

Assume that the robust satisfaction of a formula ϕ by a signal w is parameterized by
some λ ∈ R, i.e., for t ∈ R, its value is ρ(ϕ,w, t, λ), and that it is differentiable with
respect to λ, with derivative noted dλρ(ϕ,w, t, λ). As a simple illustration, consider the
predicate μ: x1 + 2x2 − λ ≥ 0 with the corresponding secondary signal y. We have
ρ(x1 +2x2−λ ≥ 0, w, t, λ) = y[t, λ] = x1[t]+2x2[t]−λ, which is differentiable with
respect to λ, with dλy[t, λ] = −1. Another common situation is when the signal results
from the simulation of a system with an uncertain parameter λ. Then w is a function of
λ and we can get the derivative of the primary signals from a sensitivity-aware simulator
and deduce those of the secondary signals by applying the chain rule.

Having defined the robustness sensitivity to λ for some base formulae (supposedly
for all λ and t), we remark that our algorithm presented above can be easily adapted
to compute the robustness sensitivity of any formula built from these base formulae.
As for the robustness, the core of the algorithm needs only to implement the derivative

6 See http://www-verimag.imag.fr/˜donze/breach page.html for experi-
mental data.
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of some function z satisfying z[t, λ] = −y[t, λ], the relation (7) or the relation (8)
including λ, corresponding to ¬, ∧ and UI . We first observe that if y and y′ are
differentiable with respect to λ, then z = min(y, y′) is differentiable everywhere except
when y[t, λ] = y′[t, λ] for some t ∈ T. However, it has a right- and left-derivative at
this point which are

d+
λ z[t, λ] = min(d+

λ y[t, λ], d+
λ y

′[t, λ]) and d−λ z[t, λ] = max(d−λ y[t, λ], d−λ y
′[t, λ])

(15)
Thus we can adapt Algorithm 1 to compute the right- and left-derivatives of z in a
way similar to the way we compute dz. In addition to computing (z[rk]), dz[rk]), we
compute (d+

λ z[rk, λ], d−λ z[rk, λ]): each time z is updated with the comparison of two
signals taking the same value, we update d+

λ z and d−λ z using rule (15).

6 Discussion

We have contributed to further proliferation of logic-based ideas to the study of contin-
uous and hybrid systems. Temporal logic offers a complementary way to evaluate real-
valued signals, a way which is different from other commonly-used norms, measures
and metrics, most of which are either point-wise or based on summation and averaging.
We strongly believe that the measures introduced in this paper will find their appli-
cation niche in situations where the interaction between timing and magnitude is non
trivial as is the case in the design of mixed-signal circuits or the analysis of biochemical
pathways.

Future work includes the application of these measures and algorithms to the explo-
ration of the parameter space of examples coming from the above application domains,
including the incorporation of the sensitivity measure into gradient-based optimiza-
tion procedures. To make the exploration procedure more effective, we intend to aug-
ment these measures with a more refined diagnostics to indicate more precisely what
(Boolean combinations of) changes in the primary signals are required or sufficient in
order to secure satisfaction. To this end we will need to propagate the information down
from the secondary to primary signals and resolve possible conflicts due to the fact that
the same primary signal may appear in several predicates.
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106 A. Donzé and O. Maler
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Abstract. We present a general approach to combine symbolic state

space representations for the discrete and continuous parts in the synthe-

sis of winning strategies for timed reachability games. The combination

is based on abstraction refinement where discrete symbolic techniques

are used to produce a sequence of abstract timed game automata. Af-

ter each refinement step, the resulting abstraction is used for computing

an under- and an over-approximation of the timed winning states. The

key idea is to identify large relevant and irrelevant parts of the pre-

cise weakest winning strategy already on coarse, and therefore simple,

abstractions. If neither the existence nor nonexistence of a winning strat-

egy can be established in the approximations, we use them to guide the

refinement process. Based on a prototype that combines binary deci-

sion diagrams [7,9] and difference bound matrices [5], we experimentally

evaluate the technique on standard benchmarks from timed controller

synthesis. The results clearly demonstrate the potential of the new ap-

proach concerning running time and memory consumption compared to

the classical on-the-fly algorithm implemented in Uppaal-Tiga [10,4].

1 Introduction

In the last two decades, the timed automaton model by Alur and Dill [2] has
become a de-facto standard for modeling timed asynchronous systems. A natural
extension to their classical definition is to distinguish between internally and
externally controllable behaviors [15,3]. The automated analysis of such so-called
open systems requires a game-based computational model where an internal
controller plays against an external environment. Solving problems defined on
open systems (such as, e.g., timed controller synthesis [15]) is an active area
of research [15,3,13,1,10,4,8,16] and usually corresponds to computing winning
strategies in two-player games played on timed automata.

A predominant source of complexity in this setting is the large size of the
concurrent control structure induced by a network of communicating timed au-
tomata. Current timed game solvers such as Uppaal-Tiga [10,4] represent the
continuous parts symbolically, but the location information explicitly. Hence,
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such semi-symbolic representations fail in the analysis of timed systems with
many concurrent components causing a discrete blow-up in the state space.

In this paper, we tackle this problem by introducing an abstraction refinement
approach that uses discrete symbolic techniques (e.g., binary decision diagrams
(BDDs) [7,9,18]) to produce a sequence of syntactic abstractions with increasing
precision of the input network of timed automata. We obtain the abstractions by
merging locations such that the abstract control structure strictly weakens one
player and strengthens her opponent. For each abstraction, we apply traditional
solving algorithms to obtain an under- and an over-approximation of the winning
states of the reachability player (e.g., one can use [10], which works fine for timed
games with few locations, to obtain under-approximations).

Instead of solving the original game on the most precise control structure
directly, our key idea is to solve a sequence of simpler games where each solv-
ing process reuses the approximations obtained from the previous one. That
is, we use winning state set approximations computed on coarse (and there-
fore simple) abstractions to (1) characterize interpolants for refinement that
ensure an increase in precision, and (2) derive pruning rules and optimizations
that accelerate subsequent game solving processes over finer abstractions. Both
soundness and effectiveness of our approach rely on the fact that whenever an
abstract state appears in an under-approximation, all subsumed concrete states
are surely winning, and dually, whenever an abstract state is not contained in
an over-approximation, all subsumed concrete states are surely not winning.

In our prototype, the use of BDDs allows us to represent sets of locations effi-
ciently and to refine abstract games arbitrarily while retaining an algorithmically
simple check for the existence of abstract transitions. Based on (federations of)
difference bound matrices (DBMs) [5], we use our own implementation of [10]
for obtaining winning state set approximations.

Example. Consider the timed game automaton G given in Fig. 1(a), where
l0 is the initial and l3 is the goal location. The reachability player (�) controls
the dashed edges and wants to reach l3 while the safety player (�) controls the
solid edges and wants to avoid l3. We abstract G by merging its locations. The
abstract locations so obtained are connected via abstract transitions which are
either (1) surely available, i.e., there is a corresponding concrete transition from
each represented location, or (2) potentially available, i.e., there is a correspond-
ing concrete transition from some represented location. Figures 1(b) and 1(c)
show abstract automata with one abstract location representing the concrete
goal location l3 and one abstract location representing the remaining locations
l0, l1, and l2. In �G�0, we strengthen � by letting her play on the potentially
available transitions and weaken � by letting him play on the ones that are surely
available. Dually, we weaken � and strengthen � in �G�0. In �G�0, the abstract
initial location (together with the initial clock valuation x = 0) is winning for�, whereas in �G�0, it is winning for �. Hence, we cannot determine the winner
of G based on this coarse initial abstraction. Therefore, we refine the abstraction
by separating l0 in an additional abstract location. The finer abstractions are
shown in Figures 1(d) and 1(e). Now, � wins in �G�1 and, therefore, also in G.
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Fig. 1. Game automaton G, abstractions �G�0/�G�0, and refinements �G�1/�G�1

Related Work. The definition of the game solving problem in the framework of
timed automata [2] was given by Maler et al. [15,3]. In their fundamental work,
the decidability of the problem was shown by demonstrating that the standard
discrete attractor construction [19] on the region graph suffices to obtain winning
strategies. Henzinger and Kopke showed that this construction is theoretically
optimal by proving EXPTIME-completeness of the problem [13]. A first on-
the-fly solving technique was proposed by Altisen and Tripakis which, however,
requires an expensive preprocessing step [1]. As a remedy to this problem, Cassez
et al. proposed a fully on-the-fly solving algorithm that combines the backward
attractor construction with a forward zone graph exploration [10,4]. Recently,
we developed an incremental variant that takes the compositional nature of
networks of timed automata into account [16]. As a continuation of this line of
research, the approach presented here can be seen as a further generalization that
(1) provides the general basis for more fine-grained (location-based) abstractions,
and (2) reports on a concrete application combining BDDs and DBMs.

Henzinger et al. adapted counterexample-guided abstraction refinement for
games [12] where abstractions are defined over game states, counterexamples are
abstract strategies, and refinement corresponds to the splitting of abstract game
states. De Alfaro et al. introduced three-valued abstractions [11] where the refine-
ment process is guided by differences between under- and over-approximations
of the game states. Due to their semantic (i.e., state-based) natures, both tech-
niques can be seen as a generalization of the approach presented in this paper.
However, due to the lack of suitable data structures, an immediate implemen-
tation of these techniques for timed games, resulting in an efficient solving al-
gorithm, appears not (yet) possible. We argue that location-based abstractions
are an interesting sweet spot between granularity and implementability.

We propose an optimization technique that prunes irrelevant moves early in
the refinement process which resembles slicing from model checking. Brückner
et al. proposed a technique that combines slicing with abstraction refinement [6].
While their work only considers model checking problems for closed systems, our
approach is capable of handling the strictly more general class of open systems.
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Outline. Section 2 recalls the necessary foundations. In Sect. 3, we first for-
malize the notion of abstract games and give an algorithm that constructs an
abstract game from a given concrete game and a location partition. Based on
that, Sect. 4 describes an approximation-guided refinement loop, which is the
formal basis for our prototype implementation presented in Sect. 5.

2 Preliminaries

2.1 Timed Games

We consider two-player, zero-sum reachability games played on timed automata.
We distinguish between the reachability player � whose objective is to eventually
reach some goal state, and the safety player � whose objective is to always
avoid goal states. Following the setting of [3], we assume that timed automata
are strongly nonzeno, i.e., there are no cycles where a player can play a time-
convergent sequence of moves.

Timed Game Automata. A timed game automaton (TGA) [2,15,3] G is a
tuple (L, I,Δ,X,G), where L is a finite set of locations, I ⊆ L is a set of initial
locations, Δ ⊆ L×C(X)×P(X)×L is the set of transitions1, X is a finite set of
real valued clocks, and G ⊆ L is a set of goal locations. We distinguish between
controller Δ� and environment transitions Δ� such that Δ = Δ� � Δ�. The
clock constraints ϕ ∈ C(X) are recursively defined as ϕ = true |x  � c |ϕ1 ∧ ϕ2,
where x is a clock in X , c is a constant in IN0,  � ∈ {<,≤,≥, >}, and ϕ1,
ϕ2 are constraints in C(X). A clock valuation t : X → IR≥0 assigns a non-
negative value to each clock and can also be represented by a |X |-dimensional
vector t ∈ R where R = IRX

≥0 denotes the set of all clock valuations. For a
constraint ϕ ∈ C(X), we define �ϕ� = {t ∈ R | t |= ϕ}. We denote clock resets
as t[λ := 0], for a set λ ⊆ X , and uniform time elapse as t + d, for a d ∈ IR≥0.

A partition of the locations L of a TGA G is a set Π = {π1, . . . , πn} ∈
P(P(L) \ {∅}) such that

�n
i=1 πi = L and πi ∩ πj = ∅ for i = j. We say that a

partition Π ′ is finer than a partition Π , written as Π ≺ Π ′, iff |Π | < |Π ′| and
∀π′ ∈ Π ′ : ∃π ∈ Π : π′ ⊆ π. The refinement of a partition Π with a set R ⊆ L,
is defined as Π |R =

�
π∈Π{π ∩R, π \R} \ {∅}. The most fine-grained partition

is denoted as �Π with |�Π | = |L|.
Timed Game Structures. The semantics of timed game automata is defined
in terms of timed game structures. A timed game structure (TGS) S is a tuple
(S, S0, Γ�, Γ�) where S is an infinite set of states, S0 ⊆ S are the initial states,
and Γ�, Γ� ⊆ S × S are the moves of the players. A TGA (L, I,Δ� ∪Δ�, X,G)
induces a timed game structure S = (L×R, I × {0}, Γ�, Γ�) with

Γp =
�
(s, s′) | ∃d > 0: s′ = s + d

�
∪

1 For the sake of simplicity, we omit transition labels in our formal definition since

control-related concepts such as synchronization or integer variables are just techni-

calities in the construction of the symbolic discrete transition relation.
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�
((l, t), (l′, t′)) | ∃〈l, ϕ, λ, l′〉 ∈ Δp : t |= ϕ ∧ t′ = t[λ := 0]

�
,

for a player p ∈ {�,�}, where, for a game state s = (l, t) ∈ S and a delay
d ∈ IR≥0, we write s + d for (l, t + d).

Strategies and Outcomes. A strategy is a function that determines a par-
ticular player’s decisions during the course of a game. In general, a strategy is
defined over a history of events. However, for reachability games under complete
information, it suffices to consider state-based (or memoryless) strategies [15,3].
Formally, a memoryless strategy for player p is a function fp : S → S such that
all s ∈ S are mapped to an s′ with (s, s′) ∈ Γp. Such an s′ always exists because
even if there is no successor location of the current location, it is always possible
to play a time elapse move.

The notion of an outcome of a pair of strategies f� and f� defines the set of
states that are reached if player � sticks to f� and player � sticks to f�. Let
s and s′ be two states in S with s′ = fp(s), p ∈ {�,�}, then the time elapse
between s and s′, written as δ(s, s′), is defined as (1) δ(s, s′) = d, if s′ = s + d,
for a d ∈ IR>0; (2) δ(s, s′) = 0, otherwise. The set Outcome(f�, f�) ⊆ S is the
smallest subset of S (wrt. set inclusion), such that the following holds:

– S0 ⊆ Outcome(f�, f�);
– if s ∈ Outcome(f�, f�), then

f�(s) ∈ Outcome(f�, f�), if δ(s, f�(s)) < δ(s, f�(s)), and
f�(s) ∈ Outcome(f�, f�), if δ(s, f�(s)) ≤ δ(s, f�(s)).

With this definition of Outcome, we assume that (1) player � chooses the initial
state, and (2) the scheduler resolving concurrent moves is always playing in favor
for player �. Note that this captures the controller synthesis problem accurately
since any actual controller implementation (player �) has to be robust wrt.
any low-level scheduling policy or arbitrary environment (player �). Moreover,
along with complementary winning objectives, the timed games considered here
are always determined and their semantics is equivalent to Uppaal-Tiga [10,4].

Timed Reachability Games. Let S = (S, S0, Γ�, Γ�) be a TGS and K ⊆ S
a set of goal states. Then (S,K) represents a timed reachability game. Player �
wins (S,K) iff she can enforce a visit to K. More formally, player � wins iff
∃f�∀f� : Outcome(f�, f�) ∩K = ∅. A TGA G with goal locations G induces a
timed reachability game Game(G) = (S,K) such that S is the game structure
induced by G and K = G×R is the set of G’s goal states.

2.2 Solving Timed Games

Solving a timed reachability game (S,K) means computing the set of states
from which player � has a strategy to enforce an outcome that contains some
states from K. Before we come to the actual solving algorithm, we formalize the
notion of controllability. For a TGS S = (S, S0, Γ�, Γ�), the timed enforceable
predecessor operator PreEnf : P(S) → P(S) for player � is defined as

PreEnf(Y ) =
�
r ∈ S | ∃s ∈ Y : (r, s) ∈ Γ� ∧ (∀d > 0 : s = r + d
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⇒ ∀0 ≤ d′ < d : ∀(r′, s′) ∈ Γ� : r′ = r + d′ ⇒ s′ ∈ Y )
�
.

Intuitively, PreEnf(Y ) comprises the source states of �-moves leading to Y that
(1) change the location or (2) delay with no spoiling �-move in between. It was
shown in [15,3] and later in [10] that PreEnf can be effectively computed using
clock regions or clock zones.

We define those states from which player � has a winning strategy to enforce
an outcome that eventually visits some state in K as the attractor of K. For
a reachability game (S,K), the computation of the attractor Attr(S,K) ⊆ S is
carried out by iteratively applying PreEnf in a least fixed point construction on
K, i.e., Attr(S,K) corresponds to μA.A ∪K ∪ PreEnf(A) [15,3]. Note that any
starting point A′, with K ⊆ A′ ⊆ Attr(S,K), converges to Attr(S,K) in the fixed
point construction. We will write Attr(G) as an abbreviation for Attr(Game(G)).
Player � wins Game(G) iff S0 ∩ Attr(G) = ∅. Dually, player � wins Game(G) iff
player � does not win, i.e., S0 ∩ Attr(G) = ∅.
Theorem 1. [13] For a TGA G, constructing Attr(G) is complete for EXPTIME.

From a practical point of view, a careful analysis shows that the application of
the (nonconvex) symbolic PreEnf operator is very expensive compared to a zone-
based forward analysis. For this purpose, the authors of [10] propose an on-the-
fly game solving algorithm based on an interleaved fixed point construction that
alternates between a forward exploration of the reachable states and a backward
propagation of the attractor. Here, the number of PreEnf applications is reduced
at the cost of introducing forward steps. In combination with the abstraction
refinement technique presented in this paper, we use this algorithm to compute
attractor under-approximations. In the following, we refer to algorithms such as
[10] as backend solving algorithms.

2.3 Boolean Functions and Binary Decision Diagrams

Sets of locations can be represented by Boolean functions (BFs) F : P(B) → �

for some finite set of variables B. In practice, reduced ordered binary decision
diagrams (BDDs) [7,9] are the predominantly used data structure for this task.
Since the usual operations on Boolean functions such as conjunction, disjunction
and negation can be implemented as manipulations of BDDs, we treat Boolean
functions and BDDs interchangeably here. In addition, BDDs support existential
(and universal) abstraction. Given a set of variables B′ ⊆ B and a BDD F , the
existential abstraction of F wrt. B′ is written as ∃B′.F and denotes the BDD
that maps those and only those x ⊆ B to true for which there exists some
x′ ⊆ B′ such that F (x′ ∪ (x \ B′)) = true.

3 Abstract Timed Games

We abstract a TGA by merging its locations such that the resulting abstract
control structure strictly privileges one player and penalizes her opponent. We
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can do this asymmetric abstraction in two ways: (1) we can weaken player �
and strengthen player � to obtain a weakened reachability game; (2) we can
strengthen player � and weaken player � to obtain a strengthened reachability
game. In this section, we first introduce the formal model which acts as a basis
for showing soundness and completeness of our approach. Then, we describe a
Boolean function-based algorithm for constructing abstractions.

3.1 Abstract Timed Game Automata

A TGA G = (L, I,Δ,X,G) with Δ = Δ� �Δ� and a partition Π of L induce a
weakened TGA �G�Π and a strengthened TGA �G�Π :

�G�Π = (Π, �I�Π , �Δ��Π ∪ �Δ��Π , X, �G�Π);
�G�Π = (Π, �I�Π , �Δ��Π ∪ �Δ��Π , X, �G�Π).

Here, the weak abstracting operator �·� and the strong abstracting operator �·�
are defined as follows. For any set L′ ⊆ L (and in particular I and G), we define

�L′�Π = {π ∈ Π | π ⊆ L′} and
�L′�Π = {π ∈ Π | π ∩ L′ = ∅}.

Furthermore, for any set Δ′ ⊆ Δ, we define

�Δ′�Π = {〈π, ϕ, λ, π′〉 | ∀l ∈ π : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ Δ′} and
�Δ′�Π = {〈π, ϕ, λ, π′〉 | ∃l ∈ π : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ Δ′}.

Intuitively, transitions in �Δ′�Π are surely available, while transitions in �Δ′�Π
are potentially available. It is easy to see that �Y �Π ⊆ �Y �Π , for every set of
locations or transitions Y . We say that a pair of abstract locations (π1, π2) ∈
Π×Π represents a potential connection in a TGA G wrt. a partition Π iff there
is a connecting transition from π1 to π2 in �Δ�Π . The following lemma states
that a refinement never introduces new potential connections.

Lemma 1. For a TGA G with locations L and partitions Π and Π ′ of L with
Π ≺ Π ′, if (π1, π2) ∈ Π×Π is not a potential connection in G wrt. Π, then there
is no potential connection (π′

1, π
′
2) ∈ Π ′×Π ′ in G wrt. Π ′ with π′

1 ⊆ π1 ∧ π′
2 ⊆ π2.

In order to compare abstract attractor sets for different partitions, we need to
flatten them: let a = (π, t) ∈ P(L)×R and A ⊆ P(L)×R. Then, the flattenings
of a and A are defined as �a = {(l, t) | l ∈ π} and �A =

�
a∈A �a. Recall that �Π

denotes the most fine-grained partition. With these definitions, we can state the
central soundness lemma.

Lemma 2. Let G be a TGA with locations L and Π be a partition of L. Then,
�Attr(�G�Π) ⊆�Attr(�G��Π) = Attr(G) =�Attr(�G��Π) ⊆�Attr(�G�Π).

On the one hand, Lemma 2 guarantees the soundness of our abstractions: once
an abstract state (π, t) appears in the attractor under-approximation, every
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subsumed concrete state (l, t), for any l ∈ π, is surely winning for player �.
Dually, once an abstract state (π′, t′) is not contained in the attractor over-
approximation, every subsumed concrete state (l′, t′), for any l′ ∈ π′, is surely
winning for player �. On the other hand, the lemma ensures that every refine-
ment process eventually ends up with the precise attractor (e.g., when Π = �Π).

Soundness of Zeno Abstractions. Location-based abstractions of timed sys-
tems may contain zeno loops giving rise to the existence of physically unmean-
ingful, and therefore spuriously too powerful, winning strategies. Note that this
does not affect the soundness of our approach: there can only be zeno loops in an
over-approximating control structure since we require the original system to be
strongly nonzeno. Then, giving spuriously more power to an over-approximated
player � is consistent with the abstraction. On the other hand, giving zeno
moves to an over-approximated player � does not increase her winning possibil-
ities since no moves leading to goal states are added.

We do not require a special treatment of zeno behavior in the backend solving
algorithm; we only expect that, for zeno inputs, the algorithm reports sound
(though zeno) strategies (which is the case for [10]).

3.2 Constructing Abstractions Using Boolean Functions

The key motivation for considering location-based abstractions is the possibility
to use BFs for the construction of the abstract control structure. In this section,
we describe an algorithm that constructs abstract (both weakened and strength-
ened) TGAs from a concrete TGA G = (L, I,Δ,X,G) and a location partition
Π . Note that we only use BFs for the construction of abstract TGAs but not
for the actual game solving: abstract TGAs are represented using the standard
(explicit location) representation [10].

In a preparation step, we encode Δ as a BF. The set of BF variables B that
we use for our symbolic encoding consists of three disjoint sets BL, BL′ , and
BX , where BL and BL′ represent predecessor- and successor-locations of timed
transitions (with |BL| = |BL′| = �log2 |L|�). Furthermore, BX is a set containing
one variable vx for each clock x (for encoding resets in the transition relation)
and one variable vϕ for each atomic constraint ϕ = x  � c in Δ (for encoding
guards).

We formalize these encodings in the following predicates over B. First of all,
for each location l ∈ L, the predicate �l� over BL encodes l in binary form, and
similarly, the predicate �l�′ over BL′ encodes the primed version of l as a succes-
sor location. Formally, �l� and �l�′ are functions mapping an assignment to the
variables in BL and BL′ (respectively) to true iff the assignment corresponds to
the location l. As long as the binary encoding of the locations guarantees that
the locations add up to true and are disjoint (

�
l∈L�l� =

�
l∈L�l�′ = true and

for all locations l1, l2 ∈ L, �l1� ∧ �l2� ≡ false and �l1�
′ ∧ �l2�

′ ≡ false when-
ever l1 = l2), the details of the encoding are not important and are therefore
not discussed here. We refer to Sect. 5 for further details. Additionally, we de-
fine �ϕ� = vϕ for all atomic constraints ϕ appearing in Δ, �ϕ� =

	n
i=1�ϕi� for all
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Algorithm 1. BF-based construction of the transition relations of �G�Π and
�G�Π , for a given TGA G and a location partition Π .
1: for all p ∈ {�, �} do
2: for all (π, π′) ∈ Π × Π s.t. A ≡ �π� ∧ �Δp� ∧ �π′�′ �≡ false do
3: for all ϕ ∈ C(X) and λ ⊆ X s.t. B ≡ A ∧ �ϕ� ∧ �λ� �≡ false do
4: add 〈π, ϕ, λ, π′〉 to �Δp�Π

5: if


�π� ⇒ (∃BL′ ∪ BX .B)

�
≡ true then

6: add 〈π, ϕ, λ, π′〉 to �Δp�Π

nonatomic constraints ϕ = ϕ1∧ . . .∧ϕn and �λ� =
	

x∈λ vx∧
	

x∈X\λ¬vx for all
resets λ ⊆ X appearing in Δ. These predicates are used to encode the guards of
a transition and the respective resets in the transition relation.

For a set of locations π ⊆ L, we write �π� for
�

l∈π �l�. The Boolean predicate
that symbolically represents the concrete transition relation for a player p ∈
{�,�} can be defined as �Δp� ≡

�
〈s,ϕ,λ,t〉∈Δp

�s� ∧ �ϕ� ∧ �λ� ∧ �t�′. Note that
the extension of this definition by, e.g., an action-based synchronization of dis-
tributed components or discrete integer variables used in guards and update
expressions is straightforward. However, for the sake of simplicity of our presen-
tation, we stick to the minimalistic, monolithic setting, although our prototype
implementation described in Sect. 5 supports these features. Then, for a network
of timed automata, by building the transition relation for each automaton sepa-
rately, explicitly enumerating all locations in the product automaton is avoided.

Finally, Algo. 1 describes the construction of the transition relations for the
abstract TGAs �G�Π and �G�Π from the concrete TGA G and a partition Π .
In the first two lines, the algorithm iterates over the players and all potential
connections (π, π′), which are represented as the BF A. In line 3, we iterate over
all combinations of guards ϕ and resets λ whose corresponding predicates satisfy
A, and compute the BF B that represents all concrete transitions (l, ϕ, λ, l′),
with (l, l′) ∈ π × π′. In line 4, the transition is added to the set of potentially
available transitions. Then, in line 5, the algorithm tests if the transition is surely
available, i.e., if it also needs to be added to the set of surely available transitions
in line 6. It is easy to see that the abstract transition relations constructed by
Algo. 1 satisfy the definition from Sect. 3.1.

Note that the iterations in lines 2 and 3 do not necessarily induce a global
explicit blow-up, as we can use the following optimizations:

1. We use the algorithm only to update the abstract TGAs in an incremental
way during the refinement process. This way, we only need to consider the
abstract locations modified by the respective last refinement step in line 2.

2. According to Lemma 1, if two abstract locations π1 ∈ Π and π2 ∈ Π are not
connected in �G�Π , we can safely assume that any pair of refined abstract
locations π′

1 ⊆ π1 or π′
2 ⊆ π2 is also not connected in �G�Π′ , where Π ≺ Π ′,

π′
1 ∈ Π ′, and π′

2 ∈ Π ′.
3. In line 3, assuming that we use a BDD to represent the BF A, we can inspect

the BDD structure of A to skip guard/reset combinations that do not occur
for the chosen abstract states π and π′.
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4 Approximation-Guided Abstraction Refinement

In an abstraction refinement loop, we incrementally solve a sequence of abstract
games with increasing precision converging to the original game. In Sect. 4.1, we
first describe how to obtain sets of concrete locations that serve as interpolants
for refining abstract locations. Then, Sect. 4.2 describes the actual refinement
loop. Finally, Sect. 4.3 investigates optimizations.

4.1 Abstract Location Refinement

We give a general characterization of sets of concrete locations that can be used
as interpolants for splitting abstract locations, i.e., location partitions in Π . All
interpolants selected by any concrete refinement heuristic must satisfy this char-
acterization. Due to the lack of space, we only describe the refinement for enlarg-
ing attractor under-approximations; shrinking attractor over-approximations is
just the dual case and can be done analogously.

Definition 1. Let G = (L, I,Δ,X,G) be a TGA, Π be a partition of L, and
�A� = Attr(�G�Π). A set of concrete locations R ⊆ L is defined to be an effective
interpolant if and only if there is at least one π ∈ Π with ∅ � π ∩ R � π such
that either

(1) there is at least one transition 〈π, ϕ, λ, π′〉 ∈ �Δ��Π \ �Δ��Π such that

∀l ∈ π ∩R : ∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ Δ� and
∃t ∈ �ϕ� : (π, t) /∈ �A� ∧ (π′, t[λ := 0]) ∈ �A�, or

(2) there is at least one transition 〈π, ϕ, λ, π′〉 ∈ �Δ��Π \ �Δ��Π such that

∀l ∈ π : (∃l′ ∈ π′ : 〈l, ϕ, λ, l′〉 ∈ Δ�) ⇒ l ∈ R and
∃t ∈ �ϕ� : (π′, t[λ := 0]) /∈ �A�.

In other words, an effective interpolant R refines some abstract locations whose
transitions are either spuriously too weak for player � or spuriously too powerful
for player �. More precisely, guided by an attractor under-approximation, R is
defined based on transitions whose appearance generates winning �-moves or
whose disappearance removes spoiling �-moves. There always exists an effective
interpolant unless the abstraction is most precise:

Lemma 3. If �Attr(�G�Π) � Attr(G), then there exists an effective interpolant.

Refinements with effective interpolants always ensure progress:

Lemma 4. If R ⊆ L is an effective interpolant, then Π ≺ Π |R.

Refinements leading to an increase of precision are based on effective inter-
polants:

Lemma 5. Let R ⊆ L, �A� = Attr(�G�Π), and �A′� = Attr(�G�Π|R), where �A�
is the starting point for computing �A′�.
If ��A� � �A′�, then R is an effective interpolant.
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4.2 Refinement Loop

For a TGA G = (L, I,Δ,X,G), we construct a finite sequence of location parti-
tions of the form Π0 ≺ Π1 ≺ . . . ≺ Πn in a refinement loop, where n is a natural
number and Π0 = {L \G, G} is the trivial initial partition that separates non-
goal locations from goal locations. We use the Boolean function-based technique
from Sect. 3.2 to initially construct and incrementally update a sequence of ab-
stract TGAs converging to G. Note that, instead of constructing the complete
abstract TGA in each refinement cycle, we incrementally update the previous
one by letting Algo. 1 iterate only over those partitions that were affected by
the previous refinement step. Each refinement step is guided by a refinement
heuristic that determines an effective interpolant as defined in Sect. 4.1. More
precisely, after each cycle i, for an effective interpolant Ri ⊆ L, we obtain the
succeeding partition Πi+1 = Πi|Ri.
We compute the initial and intermediate attractor approximations as follows:

�A0� = �Attr(�G�Π0) and �Ai+1� = �Ai� ∪ �Attr(�G�Πi+1) ;

�A0� = �Attr(�G�Π0) and �Ai+1� = �Ai� ∩ �Attr(�G�Πi+1) .

Hence, every maximal sequence of approximations is of the form

�A0� ⊆ · · · ⊆ �An� = Attr(G) = �An� ⊆ · · · ⊆ �A0�.

The loop terminates whenever the existence (nonexistence) of a winning strategy
can be established in an under-approximation (over-approximation):
– (I × {0}) ∩ �Ai� = ∅, i.e., player � surely has a winning strategy, or
– (I × {0}) ∩ �Ai� = ∅, i.e., player � surely has a winning strategy.
Clearly, this suffices for termination, since if neither of the two conditions is
satisfied, Lemma 3 guarantees that some further refinement is possible.

Theorem 2. The presented abstraction refinement loop always terminates and
yields a sound winning strategy for one of the players upon termination.

4.3 Optimizations

Our abstraction refinement algorithm greatly benefits from several optimiza-
tions which can be applied early in the refinement loop. They are based on
(1) pruning irrelevant moves that do not affect the winning capabilities of ei-
ther player and (2) identifying surely winning states for player � based on
a strengthened TGA. For any abstract TGA G = (Π, I,Δ,X,G) and its in-
duced game structure (S, S0, Γ�, Γ�), with attractor under-approximation �A�
and over-approximation �A�, one can apply the following optimizations.

States already determined. We can remove all moves that lead out of
states that are already known to be winning for some player. According to
Lemma 2, once a state appears in an attractor under-approximation, it is surely
winning for player �, and once a state is no more contained in an attractor
over-approximation, it is surely winning for player �. Hence, it is safe to ignore
all moves from {(s, s′) ∈ Γ� ∪ Γ� | s ∈ �A� ∨ s /∈ �A�}.
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Moves already determined. We can remove all moves that lead to states
that are already known to be winning for the opponent. Hence, it is safe to ignore
all moves from {(s, s′) ∈ Γ� | s′ ∈ �A�} ∪ {(s, s′) ∈ Γ� | s′ /∈ �A�}.
States surely winning. Under the assumption that G is a strengthened TGA,
an abstract state in S is surely winning for � if each subsumed concrete state
has some concrete move leading to �A�. Hence, we can safely extend PreEnf by
all states (π, t) ∈ Π ×R where
π ⊆ {l ∈ L | ∃π′ ∈ Π : ∃l′ ∈ π′ : (π′, t) ∈ �A� ∧ ((l, t), (l′, t)) ∈ Γ�}.

The first rule can easily be realized in the backend solving algorithm, when
computing �Ai+1� (or �Ai+1�), by not forward-exploring moves whose source
states are already contained in �Ai� (or not contained in �Ai�). The second rule
is realized by reusing �Ai� as a starting point for �Ai+1� (and �Ai� for �Ai+1�).
The third rule is used to extend the results of PreEnf when constructing �Ai�.

5 Experimental Results

5.1 Prototype Implementation

We implemented a prototype in C++, where we combined the Cudd BDD li-
brary [18] for representing location partitions and the Uppaal-DBM library [5]
for representing federations of clock zones in the attractors.

In the initialization phase, our tool registers all BDD variables after calling the
Nova tool from the SIS toolset [17] for finding efficient assignments of control
locations to BDD variable valuations. Then, as described in Sect. 3.2, we con-
struct the symbolic discrete transition relation representing the control structure
of the input network of TGAs. Note that, although not discussed in detail in the
rest of the paper, in general our approach (and in particular our tool) is able to
handle networks of communicating TGAs with integer variables: such pure dis-
crete features are covered in the construction of the discrete transition relation.
In the next initialization step, we use the discrete transition relation to compute
an over-approximation of the reachable locations in a (cheap) BDD-based least
fixed point computation. The initial partition splits this over-approximation into
(1) the set of potentially reachable goal locations, (2) the set of potentially reach-
able locations from which no goal location is reachable, and (3) the remaining
locations. At the end of the initialization phase, we use Algo. 1 to construct the
initial weakened and strengthened TGAs, where we merge transitions with the
same resets whose guards subsume each other.

In the automatic abstraction refinement loop, we use our implementation
of the backend solving algorithm proposed in [10] to incrementally update an
attractor under-approximation. After each iteration, we check if the concrete
initial state is contained in the abstract attractor. In this case, we terminate
since we can deduce that player � surely wins. If this is not the case, we identify
abstract transitions which are spuriously too weak for player � and symbolically
compute corresponding effective interpolants (by applying the BDD-based pre-
image operator). If there are no abstract transitions for player �, we identify
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abstract transitions which are spuriously too powerful for player � and refine
likewise. Then, we split the partition with each computed interpolant (by simple
BDD-based conjunctions) and update the weakened TGA using Algo. 1. Each
refinement step might split a single abstract location by multiple interpolants
resulting in an exponential number of split operations. To address this issue, we
fix a number K of maximal split operations per abstract location.

5.2 Benchmarks

We evaluated our approach on two standard benchmarks2 for timed controller
synthesis and compared the results with Uppaal-Tiga [4] version 4.1.3-0.14.

The Production Cell (Prodcell) example [14,10] represents a manufacturing
plant consisting of a feeding belt, two robot arms, a press, and a departure belt.
The timed game comes into play when synthesizing a controller for the robot
arms such that all parts put onto the feeding belt are transported to the press
right in time and are finally transported to the departure belt.

The Gear Production Stack (GPS) example [16] models a pipeline-like ar-
chitecture that sequentializes a series of stations, each specialized in a certain
processing method. The task is to synthesize a controller for the machine that
ensures that the pieces are transported from station to station right in time. We
investigate the nonextended version without sub-processing units.

Table 1 shows the results of our comparison where we fixed K = 1000. From
left to right, the first two columns describe the name of the benchmark, the
length (in number of plates and stations, resp.), and whether there exists a con-
troller implementation (i.e., a winning strategy for player �). The next three
columns show the number of explored states, the running time, and the memory
consumption of Uppaal-Tiga. The last four columns show the number of re-
finement steps, the final size (in number of locations) of the abstract TGA, the
running time, and the memory consumption of our prototype. All benchmarks
were executed on an AMD Opteron processor with 2.6 GHz and 4 GB RAM.
The running times are given in seconds and the memory consumptions are given
in MB. The time limit was set to four hours.

The most striking observation is that for both benchmarks, our approach al-
most always outperforms Uppaal-Tiga. Only for small benchmark instances,
Uppaal-Tiga performs slightly better. This is due to the preprocessing phase
where all BDD variables are registered and the symbolic discrete transition
relation is constructed. However, for benchmark instances of nontrivial size,
Uppaal-Tiga either runs out of memory or needs at least an order of mag-
nitude more running time than our tool.

The impact of different values for K on the running time and memory con-
sumption is shown in Table 2. Smaller values for K result in a higher number of
refinement steps but lead to a lower memory peak consumption since fewer split
abstract locations have to be maintained during a single refinement step. If there is

2 The Uppaal-Tiga models of the benchmarks are available at

http://www.avacs.org/Benchmarks/Open/formats10.tgz

http://www.avacs.org/Benchmarks/Open/formats10.tgz
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Table 1. Comparison of Uppaal-Tiga with our prototype

Uppaal-Tiga Our prototype
Benchmark Cont States Time Mem Steps Abs Time Mem
Prodcell 3 No 15241 1 54 14 293 3 94
Prodcell 4 No 131999 5 74 14 935 13 156
Prodcell 5 No 1238698 240 309 14 2762 39 244
Prodcell 6 No TIMEOUT 14 8212 150 538
Prodcell 7 No TIMEOUT 15 24757 761 1936
Prodcell 8 No TIMEOUT 15 75085 6543 2092
Prodcell 3 Yes 15206 1 54 14 294 3 113
Prodcell 4 Yes 133181 5 75 15 940 11 156
Prodcell 5 Yes 1255498 238 314 15 2772 42 246
Prodcell 6 Yes TIMEOUT 15 8232 172 538
Prodcell 7 Yes TIMEOUT 16 24792 1068 1936
Prodcell 8 Yes TIMEOUT 16 75140 6444 2093
GPS 6 No 170470 4 69 14 274 2 81
GPS 7 No 1406744 40 190 16 560 3 117
GPS 8 No 12123700 545 1327 18 1134 6 133
GPS 9 No MEMOUT 20 2284 20 250
GPS 10 No MEMOUT 23 5518 91 402
GPS 11 No MEMOUT 25 11128 307 948
GPS 12 No MEMOUT 27 22368 1553 3550
GPS 6 Yes 190484 4 69 17 320 2 81
GPS 7 Yes 1647955 48 207 20 704 3 118
GPS 8 Yes 15187763 712 1551 23 1536 9 133
GPS 9 Yes MEMOUT 26 3328 35 223
GPS 10 Yes MEMOUT 29 7168 131 402
GPS 11 Yes MEMOUT 32 15360 461 948
GPS 12 Yes MEMOUT 35 32768 2207 3550

Table 2. Comparison of different values for K

Benchmark Cont K Steps Abs Time Mem
GPS 12 No 50 28 16187 973 661
GPS 12 No 100 27 16215 1047 711
GPS 12 No 200 27 17974 1254 1201
GPS 12 No 300 27 20236 1341 2237
GPS 12 No 500 27 21859 1970 2893
GPS 12 No 1000 27 22368 1553 3550
GPS 12 No 2000 27 22368 1399 3454
GPS 12 No 5000 MEMOUT
GPS 12 Yes 50 358 32768 13872 1947
GPS 12 Yes 100 190 32768 9041 1517
GPS 12 Yes 200 73 32768 4774 1585
GPS 12 Yes 300 44 32768 3167 2621
GPS 12 Yes 500 35 32768 2962 3277
GPS 12 Yes 1000 35 32768 2207 3550
GPS 12 Yes 2000 35 32768 1813 3454
GPS 12 Yes 5000 MEMOUT

a player � winning strategy (Cont=No), more states can be pruned due to a more
fine-grained refinement process. Consequently, the effect of pruning is weaker if
there is no player � winning strategy (Cont=Yes). On the other hand, higher val-
ues forK result in a lower number of refinement steps but require more memory for
a single refinement step. The decrease in the running times results from fewer calls
of the backend solving algorithm which reuses the attractor under-approximation
from the last call but has to recompute the reachable states.
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Vojtěch Forejt1, Marta Kwiatkowska2, Gethin Norman3, and Ashutosh Trivedi2

1 Faculty of Informatics, Masaryk University, Botanická 68a, Brno, Czech Republic
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Abstract. In an expected reachability-time game (ERTG) two players, Min and
Max, move a token along the transitions of a probabilistic timed automaton, so as
to minimise and maximise, respectively, the expected time to reach a target. These
games are concurrent since at each step of the game both players choose a timed
move (a time delay and action under their control), and the transition of the game
is determined by the timed move of the player who proposes the shorter delay.
A game is turn-based if at any step of the game, all available actions are under
the control of precisely one player. We show that while concurrent ERTGs are
not always determined, turn-based ERTGs are positionally determined. Using the
boundary region graph abstraction, and a generalisation of Asarin and Maler’s
simple function, we show that the decision problems related to computing the
upper/lower values of concurrent ERTGs, and computing the value of turn-based
ERTGs are decidable and their complexity is in NEXPTIME ∩ co-NEXPTIME.

1 Introduction

Two-player zero-sum games on finite automata, as a mechanism for supervisory con-
troller synthesis of discrete event systems, were introduced by Ramadge and Won-
ham [1]. In this setting the two players—called Min and Max—represent the controller
and the environment, and control-program synthesis corresponds to finding a winning
(or optimal) strategy of the controller for some given performance objective. If the ob-
jectives are dependent on time, e.g. when the objective corresponds to completing a
given set of tasks within some deadline, then games on timed automata are a well-
established approach for controller synthesis, see e.g. [2,3,4,5,6].

In this paper we extend this approach to objectives that are quantitative both in terms
of timed and probabilistic behaviour. Probabilistic behaviour is important in modelling,
e.g., faulty or unreliable components, the random coin flips of distributed communi-
cation and security protocols, and performance characteristics. We consider games on
probabilistic timed automata (PTAs) [7,8,9], a model for real-time systems exhibiting
nondeterministic and probabilistic behaviour. We concentrate on expected reachability-
time games (ERTGs), which are games on PTAs where the performance objective con-
cerns the minimum expected time the controller can ensure for the system to reach a
target, regardless of the uncontrollable (environmental) events that occur. This approach
has many practical applications, e.g., in job-shop scheduling, where machines can be
faulty or have variable execution time, and both routing and task graph scheduling prob-
lems. For real-life examples relevant to our setting, see e.g. [10,6].
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In the games that we study, a token is placed on a configuration of a PTA and a
play of the game corresponds to both players proposing a timed move of the PTA, i.e.
a time delay and action under their control (we assume each action of the PTA is under
the control of precisely one of the players). Once the players have made their choices,
the timed move with the shorter delay1 is performed and the token is moved according
to the probabilistic transition function of the PTA. Players Min and Max choose their
moves in order to minimise and maximise, respectively, the payoff function (the time
till the first visit of a target in the case of ERTGs). It is well known, see, e.g. [11], that
concurrent timed games are not determined, which means the upper value of the game
(the minimum expected time to reach a target that Min can ensure) is strictly greater
that the lower value of the game (the maximum expected time to reach a target that
Max can ensure). A game is determined if the lower and upper values are equal, and in
this case, the optimal value of the game exists and equals the upper and lower values.
We show that a subclass of ERTGs, called turn-based ERTGs, where at each step of
the game only one of the players has available actions are positionally determined, i.e.
both players have ε-optimal (optimal up to a given precision ε>0) positional (history-
independent and non-randomised) strategies.

The problem we consider is inspired by Asarin and Maler [2] who studied the brachys-
tochronic problem for timed automata. This work focused on reachability-time games,
i.e. games on a timed automata where the objective concerns the time to reach a target.
The techniques of [2] exploit properties of a special class of functions called simple
functions. The importance of simple functions is also observed in [12] in the context
of one-player games. Simple functions have also enabled the computation of a uniform
solution for (turn-based) reachability-time games [13] and the proof of correctness of
game-reduction for turn-based average-time games [14]. However, we show that the
concept of simple functions is not sufficient in the setting of PTAs.

Contribution. We show that the problem of deciding whether the upper (lower, or the op-
timal when it exists) value of an ERTG is at most a given bound is decidable. An impor-
tant contribution of the paper is the generalisation of simple functions to quasi-simple
functions. By using this class of functions and the boundary region abstraction [15,16],
we give a novel proof of positional determinacy of turn-based ERTGs. We demon-
strate that the problem of finding the upper and lower value of general ERTGs is in
NEXPTIME ∩ co-NEXPTIME. An EXPTIME-hardness lower bound follows from the
EXPTIME-completeness of the corresponding optimisation problem [16]. From [17] it
follows that the problem is not NEXPTIME-hard, unless NP equals co-NP. Extending
this work we get the similar results for expected discounted-time games.

Related Work. Hoffman and Wong-Toi [18] were the first to define and solve optimal
controller synthesis problem for timed automata. For a detailed introduction to the topic
of qualitative games on timed automata, see e.g. [19]. Asarin and Maler [2] initiated
the study of quantitative games on timed automata by providing a symbolic algorithm
to solve reachability-time games. The work of [20] and [13] show that the decision
version of the reachability-time game is EXPTIME-complete for timed automata with

1 Min and Max represent two different forms of non-determinism called angelic and demonic.
To prevent the introduction of a third form, we assume the move of Max (the environment) is
taken if the delays are equal. The converse can be used without changing the presented results.
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at least two clocks. The tool UPPAAL Tiga [5] is capable of solving reachability and
safety objectives for games on timed automata. Jurdziński and Trivedi [14] show the
EXPTIME-completeness for average-time games on automata with two or more clocks.

A natural extension of reachability-time games are games on priced timed automata
where the objective concerns the cumulated price of reaching a target. Both [3] and [4]
present semi-algorithms for computing the value of such games for linear prices. In [21]
the problem of checking the existence of optimal strategies is shown to be undecidable
with [22] showing undecidability holds even for three clocks and stopwatch prices.

We are not aware of any previous work studying two-player quantitative games on
PTAs. For a significantly different model of stochastic timed games, deciding whether
a target is reachable within a given bound is undecidable [23]. Regarding one-player
games on PTAs, [16] reduce a number of optimisation problems on concavely-priced
PTAs to solving the corresponding problems on the boundary region abstraction and
[24] solve expected reachability-price problems for linearly-priced PTAs using digi-
tal clocks. In [25] the problem of deciding whether a target can be reached within a
given price and probability bound is shown to be undecidable for priced PTAs with
three clocks and stopwatch prices. By a simple modification of the proofs in [25] it can
be demonstrated that checking the existence of optimal strategies is undecidable for
reachability-price turn-based games on priced (probabilistic) timed automata with three
clocks and stopwatch prices.

A full version of this paper, including proofs is also available [26], while a prelimi-
nary version appeared as [27].

2 Expected Reachability Games

Expected reachability games (ERGs) are played between two players Min and Max
on a state-transition graph, whose transitions are nondeterministic and probabilistic, by
jointly resolving the nondeterminism to move a token along the transitions of the graph.
The objective for player Min in the game is to reach the final states with the smallest
accumulated reward, while Max tries to do the opposite.

Before we give a formal definition, we need to introduce the concept of discrete
probability distributions. A discrete distribution over a (possibly uncountable) set Q is
a function d : Q→[0, 1] such that supp(d)= {q ∈ Q | d(q)>0} is at most countable and∑

q∈Q d(q)=1. Let D(Q′) denote the set of all discrete distributions over Q. We say a
distribution d ∈ D(Q) is a point distribution if d(q)=1 for some q ∈ Q.

Definition 1. An ERG is a tuple G=(S, F,AMin, AMax, pMin, pMax, πMin, πMax)
where:

– S is a (possibly uncountable) set of states including a set of final states F ;
– AMin and AMax are (possibly uncountable) sets of actions controlled by players

Min and Max and ⊥ is a distinguished action such that AMin ∩AMax = {⊥};
– pMin : S×AMin → D(S) and pMax : S×AMax → D(S) are the partial prob-

abilistic transition functions for players Min and Max such that pMin(s,⊥) and
pMax(s,⊥) are undefined for all s ∈ S;

– πMin : S×AMin → R≥0 and πMax : S×AMax → R≥0 are the reward functions
for players Min and Max.
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We say that the ERG is finite if both S and A are finite. For any state s, we let
AMin(s) denote the set of actions available to player Min in s, i.e., the actions
a ∈ AMin for which pMin(s, a) is defined, letting AMin(s)=⊥ if no such action ex-
ists. Similarly, AMax(s) denotes the actions available to player Max in s and we let
A(s)=AMin(s)×AMax(s). We say that s is controlled by Min (Max) if AMax(s)={⊥}
(AMin(s)={⊥}) and the game G is turn-based if there is a partition (SMin, SMax) of S
such that all states in SMin (SMax) are controlled by Min (Max).

A game G starts with a token in some initial state and players Min and Max construct
an infinite play by repeatedly choosing enabled actions, and then moving the token to a
successor state determined by their probabilistic transition functions where the reward
of the move is determined by their reward functions. More precisely, if in state s players
Min and Max choose actions a and b respectively, then if πMin(s, a)<πMax(s, b) or b =
⊥ the probabilistic transition function and reward value are determined by Min’s choice,
i.e. by the transition function pMin(s, a) and reward value πMin(s, a), and otherwise are
determined by Max’s choice. Formally we introduce the following auxiliary functions
of an ERG which return the transition function and reward value of the game.

Definition 2. Let G be an ERG. The probabilistic transition and reward functions p :
S×AMin×AMax→D(S) and π : S×AMin×AMax→R≥0 of G are such that for any
s ∈ S and (a, b) ∈ AMin:

p(s, a, b) =

⎧⎨
⎩

undefined if a = b = ⊥
pMin(s, a) if a = ⊥ and either b = ⊥ or πMin(s, a)<πMax(s, b)
pMax(s, b) otherwise

π(s, a, b) =
{
πMin(s, a) if b = ⊥ or πMin(s, a)<πMax(s, b)
πMax(s, b) otherwise.

From the conditions imposed on the probabilistic transition function, it follows that
(a, b) ∈ A(s) if and only if p(s, a, b) is defined. Using these definitions, if in state s
the action pair (a, b) ∈ A(s) is chosen, then the probability of making a transition to s′

equals p(s′|s, a, b)def=p(s, a, b)(s′) and the reward equals π(s, a, b).
A transition of G is a tuple (s, (a, b), s′) such that p(s′|s, a, b)>0 and a play is an

finite or infinite sequence 〈s0, (a1, b1), s1, . . .〉 such that (si, (ai+1, bi+1), si+1) is a
transition for all i ≥ 0. For a finite play ρ = 〈s0, (a1, b1), s1, . . . , sk〉, let last(ρ)
denote the last state sk of the play. We write Play (Playfin ) for the sets of (finite) plays
in G and Play(s) (Playfin(s)) for the sets of (finite) plays starting from s ∈ S.

A strategy of Min is a function μ : Playfin→D(AMin) such that supp(μ(ρ)) ⊆
AMin(last(ρ)) for all finite plays ρ ∈ Playfin , i.e. for any finite play, a strategy returns
a distribution over actions available to Min in the last state of the play. A strategy χ
of Max is defined analogously and we let ΣMin and ΣMax denote the sets of strategies
of Min and Max, respectively. A strategy σ is pure if σ(ρ) is a point distribution for
all ρ ∈ Playfin , while it is stationary if last(ρ)=last(ρ′) implies σ(ρ)=σ(ρ′) for all
ρ, ρ′ ∈ Playfin . A strategy is positional if it is pure and stationary and let ΠMin and
ΠMax denote the set of positional strategies of Min and Max, respectively.

For any state s and strategy pair (μ, χ) ∈ ΣMin×ΣMax, let Playμ,χ(s) denote the
infinite plays in which Min and Max play according to μ and χ, respectively. Using
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standard results from probability theory, see e.g., [28], we can construct a probabil-
ity measure Probμ,χ

s over the set Playμ,χ(s). Let Xi and Yi denote the random vari-
ables corresponding to ith state and action of a play (i.e., for play 〈s0, (a1, b1), s1, . . .〉
we have Xi=si and Yi+1=(ai+1, bi+1)), and given a real-valued random variable
f : Play → R, let Eμ,χ

s {f} denote the expected value of f with respect to the prob-
ability measure Probμ,χ

s . To keep the presentation simple, for the rest of the paper we
only consider transient stochastic games [29, Chapter 4] (games where every play is
finite with probability 1) and for this reason we make the following assumption2.

Assumption 1. For any strategy pair (μ, χ) ∈ ΣMin×ΣMax, and state s ∈ S there is
q > 0 and n ∈ N such that Probμ,χ

s (Xn ∈ F ) ≥ q.

Recall that the objective for Min is to reach a final state with the smallest accumulated
reward, while for Max it is the opposite. Starting from s, if Min uses the strategy μ and
Max χ, then the expected reward accumulated before reaching a final state is given by:

EReachμ,χ(s) def= Eμ,χ
s

{∑min{k−1 |Xk∈F}
i=0 π(Xi, Yi+1)

}
.

Observe when starting at state s, Max can choose actions such that the expected re-
ward is at least a value arbitrarily close to supχ∈ΣMax

infμ∈ΣMinEReachμ,χ(s). This
is called the lower value Val∗(s) of the game when starting at state s. For χ ∈
ΣMax let Valχ(s)= infμ∈ΣMin EReachμ,χ(s). We say χ is optimal (ε-optimal), if
Valχ(s)=Val∗(s) (Valχ(s)≥Val∗(s)−ε) for all s ∈ S. Similarly, Min can make
choices such that the expected reward is at most a value arbitrarily close to the up-
per value Val∗(s)= infμ∈ΣMinsupχ∈ΣMax

EReachμ,χ(s). In addition, for μ ∈ ΣMin, we
can define Valμ(s) and say when μ is optimal or ε-optimal.

A game G is determined if Val∗(s)=Val∗(s) for all s ∈ S and then we say that the
value of the game exists and equals Val(s)=Val∗(s)=Val∗(s). If G is determined, then
each player has an ε-optimal strategy for all ε>0. A game is positionally determined if

Val(s)= infμ∈ΠMinsupχ∈ΣMax
EReachμ,χ(s) = supχ∈ΠMax

infμ∈ΣMinEReachμ,χ(s)

for all s ∈ S. It is straightforward to see that if a game is positionally determined, then
both players have positional ε-optimal strategies for all ε>0.

Optimality Equations. We complete this section by introducing optimality equations
for ERGs. For a game G and function P : S→R≥0, we say that P is a solution of the
optimality equations Opt∗(G), and write P |=Opt∗(G), if for any s ∈ S:

P (s) =

⎧⎨
⎩

0 if s ∈ F

inf
α∈AMin(s)

{
sup

β∈AMax(s)

{
π(s, α, β) +

∑
s′∈S

p(s′|s, α, β) · P (s′)
}}

if s ∈ F .

and P is a solution of the optimality equations Opt∗(G), and write P |=Opt∗(G), if for
any s ∈ S:

P (s) =

⎧⎨
⎩

0 if s ∈ F

sup
β∈AMax(s)

{
inf

α∈AMin(s)

{
π(s, α, β) +

∑
s′∈S

p(s′|s, α, β) · P (s′)
}}

if s ∈ F .

2 Techniques (see, e.g., positive stochastic games [29, Chapter 4]) for lifting such an assumption
are orthogonal to the main idea presented in this paper.
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The following result demonstrate the correspondence between these equations and the
lower and upper values of the expected reachability game.

Proposition 3. For any ERG G and bounded function P : S→R≥0 :

– if P |= Opt∗(G), then Val∗(s) = P (s) for all s ∈ S and for any ε>0 player Min
has a positional strategy με such that Valμε(s)≤P (s)+ε for all s ∈ S;

– if P |= Opt∗(G), then Val∗(s)=P (s) for all s ∈ S and for any ε>0 player Max
has a positional strategy χε such that Valχε(s)≥P (s)−ε for all s ∈ S.

If G is turn-based, then the equations Opt∗(G) and Opt∗(G) are the same and we write
Opt(G) for these equations. The following is a direct consequence of Proposition 3.

Proposition 4. If G is a turn-based, P : S→R≥0 is a bounded and P |= Opt(G), then
Val(s)=P (s) for all s ∈ S and for any ε>0 both players have ε-optimal strategies.

3 Expected Reachability-Time Games

Expected reachability-time games (ERTGs) are played on the infinite graph of a prob-
abilistic timed automaton where Min and Max choose their moves so that the expected
time to reach a final state is minimised or maximised, respectively. Before defining
ERTGs, we introduce the concept of clocks, constraints, regions, and zones.

Clocks. Let C be a finite set of clocks. A clock valuation on C is a function ν : C→R≥0

and we write V for the set of clock valuations. Abusing notation, we also treat a val-
uation ν as a point in R|C|. If ν ∈ V and t ∈ R≥0 then we write ν+t for the clock
valuation defined by (ν+t)(c) = ν(c)+t for all c ∈ C. For C ⊆ C, we write ν[C:=0]
for the valuation where ν[C:=0](c) equals 0 if c ∈ C and ν(c) otherwise. For X ⊆ V ,
we write X for the smallest closed set in V containing X . Although clocks are usually
allowed to take arbitrary non-negative values, w.l.o.g [30] we assume that there is an
upper bound K such that for every clock c ∈ C we have that ν(c) ≤ K .

Clock constraints. A clock constraint over C is a conjunction of simple constraints of
the form c  � i or c−c′  � i, where c, c′ ∈ C, i ∈ N, i≤K , and  � ∈ {<,>,=,≤,≥}.
For ν ∈ V , let SCC(ν) be the finite set of simple constraints which hold in ν.

Clock regions. A clock region is a maximal set ζ⊆V such that SCC(ν)=SCC(ν′) for
all ν, ν′ ∈ ζ. We write R for the finite set of clock regions. Every clock region is
an equivalence class of the indistinguishability-by-clock-constraints relation, and vice
versa. We write [ν] for the clock region of ν and, if ζ=[ν], write ζ[C:=0] for [ν[C:=0]].

Clock zones. A clock zone is a convex set of clock valuations, which is a union of a set
of clock regions. We write Z for the set of clock zones. A set of clock valuations is a
clock zone if and only if it is definable by a clock constraint. Observe that, for every
clock zone W , the set W is also a clock zone.

We now introduce ERTGs which extend classical timed automata [31] with discrete
distributions and a partition of the actions between two players Min and Max.

Definition 5 (ERTG Syntax). A (concurrent) expected reachability-time game
(ERTG) is a tuple T =(L,LF , C, Inv ,Act ,ActMin,ActMax, E, δ) where

– L is a finite set of locations including a set of final locations LF ;
– C is a finite set of clocks;
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– Inv : L → Z is an invariant condition;
– Act is a finite set of actions and {ActMin,ActMax} is a partition of Act;
– E : L×Act → Z is an action enabledness function;
– δ : L×Act → D(2C×L) is a probabilistic transition function.

When we consider an ERTG as an input of an algorithm, its size is understood as the
sum of the sizes of encodings of L, C, Inv , Act , E, and δ. As usual [32], we assume
that probabilities are expressed as ratios of two natural numbers, each written in binary.

An ERTG is turn-based if for each location �, only one player has enabled actions,
i.e. E(�, a)=∅ for all a ∈ ActMin or a ∈ ActMax. In this case, we write LMin and LMax

for the set of locations where players Min and Max, respectively, have an enabled action.
A one-player ERTG is a turn-based ERTG where one of the player does not control any
location, i.e., either LMin=∅ orLMax=∅. A (non-probabilistic) reachability-timed game
is an ERTG such that δ(�, a) is a point distribution for all � ∈ L and a ∈ Act .

A configuration of an ERTG is a pair (�, ν), where � is a location and ν a clock val-
uation such that ν ∈ Inv(�). For any t ∈ R, we let (�, ν)+t equal the configuration
(�, ν+t). In a configuration (�, ν), a timed action (time-action pair) (t, a) is available
if and only if the invariant condition Inv(�) is continuously satisfied while t time units
elapse, and a is enabled (i.e. the enabling conditionE(�, a) is satisfied) after t time units
have elapsed. Furthermore, if the timed action (t, a) is performed, then the next con-
figuration is determined by the probabilistic transition relation δ, i.e. with probability
δ[�, a](C, �′) the clocks in C are reset and we move to the location �′.

An ERTG starts at some initial configuration and Min and Max construct an infi-
nite play by repeatedly choosing available timed actions (ta, a) ∈ R≥0×ActMin and
(tb, b) ∈ R≥0×ActMax proposing ⊥ if no timed action is available. The player respon-
sible for the move is Min if the time delay of Min’s choice is less than that of Max’s
choice or Max chooses ⊥, and otherwise Max is responsible. We assume the players
cannot simultaneously choose ⊥. We now present the formal semantics which is an
ERG with potentially infinite number of states and actions. It is straightforward to show
the semantics of a turn-based ERTG is a turn-based ERG.

Definition 6 (ERTG Semantics). Let T be an ERTG. The semantics of T is given the
ERG [[T ]]=(S, F,AMin, AMax, pMin, pMax, πMin, πMax) where

– S ⊆ L×V is the (possibly uncountable) set of states such that (�, ν) ∈ S if and
only if ν ∈ Inv(�) and F = {(�, ν) ∈ S | � ∈ LF} is the set of final states;

– AMin = (R≥0×ActMin) ∪ {⊥} and AMax = (R≥0×ActMax) ∪ {⊥} are the sets
of timed actions of players Min and Max;

– for � ∈ {Min,Max}, (�, ν) ∈ S and (t, a) ∈ A� the probabilistic transition
function p� is defined when ν+t′ ∈ Inv(�) for all t′≤t and ν+t ∈ E(�, a) and for
any (�, ν′):

p�((�, ν), (t, a))((�′, ν′)) =
∑

C⊆C∧(ν+t)[C:=0]=ν′ δ[�, a](C, �′);

– for � ∈ {Min,Max}, s ∈ S and (t, a) ∈ AMin the reward function π� is given by
π�(s, (t, a))=t.

The sum in the definitions of pMin and pMax is used to capture the fact that resetting
different subsets of C may result in the same clock valuation (e.g. if all clocks are
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Fig. 1. An expected reachability-time game

initially zero, then we end up with the same valuation, no matter which clocks we
reset). Also, notice that the reward function of the ERG corresponds to the elapsed time
of each move. For any ERTG T , to ensure Assumption 1 holds on the ERG [[T ]], we
require only that the following weaker assumption holds on [[T ]].

Assumption 2. For any strategy pair (μ, χ) ∈ ΣMin×ΣMax, and state s ∈ S we have
that limn→∞ Probμ,χ

s (Xn ∈ F ) = 1.

Example 7. Consider the ERTG in Figure 1; we use solid and dashed lines to indicate
actions controlled by Min and Max respectively. The shaded circle denotes the final
location. Considering location �1, the invariant condition is 0<y≤2∧x≤2, actions a
and c are enabled when y>1 and, if a is taken, we move to �F , while if c is taken, with
probability 0.2 we move to �0 and reset y, and with probability 0.8 move to �F .

Starting in the configuration3 (�0, (0, 0)) and supposing Min’s strategy is to choose
(1.1, b) (i.e., wait 1.1 time units before performing action b) in location �0 and then
choose (0.5, a) in location �1, while Max’s strategy in location �1 is to choose (0.2, c).
One possible play under this strategy pair is 〈(�0,(0,0)), ((1.1,b),⊥), (�1,(0,1.1)),
((0.5,a), (0.2,c)), (�0,(0.2,0)), ((1.1,b),⊥), (�F , (1.3,1.1))〉 which has probability
0.5·0.2·0.5 = 0.05 and time 1.1+0.2+1.1 = 2.4 of reaching the final location. Using
the optimality equations Opt∗(G) and Opt∗(G), we obtain upper and lower value in
state (�0, (0, 0)) of 10

9 and 1, respectively. For details of the equations see [26].

Example 7 above demonstrates that in general expected reachability-time games are
not determined. However, our results yield a novel proof of the following fundamental
result for turn-based expected reachability-time games.

Theorem 8. Turn-based ERTGs are positionally determined.

Since the general ERTG are not determined, we study the following decision problem
related to computing the upper-value of a configuration. All presented results also apply
to the corresponding lower value problem, and the value problem, if the value exists.

Definition 9 (ERTG Decision Problem). The decision problem for an ERTG T , a
state s of [[T ]], and a bound T ∈ Q is to decide whether Val∗(s)≤T .

We now present the second fundamental result of the paper.

Theorem 10. The ERTG decision problem is in NEXPTIME ∩ co-NEXPTIME.

From [16] we know that the ERTG problem is EXPTIME-complete even for one player
ERTGs with two or more clocks. Hence the ERTG problem for general (two-player,

3 We suppose the first (second) coordinate in a clock valuation correspond to the clock x (y).
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concurrent) ERTG is at least EXPTIME-hard. Moreover, from the results of [17]
and [33] it follows that ERTG problem is not NEXPTIME-hard, unless NP = co-NP.

4 Proofs of Theorems 8 and 10

This section is dedicated to the correctness of Theorems 8 and 10. We begin by defining
boundary region abstraction (BRA) (an instance of an ERG) of an ERTG. In Section 4.2
we show that the solution of the optimality equations for a BRA always exists and is
unique. While Section 4.3 demonstrates (Theorem 15) that the solution of the optimality
equations of the BRA can be used to construct a solution of the optimality equations of
the ERTG. Using these results we can then prove our main results.

Proof outline of Theorem 8. Using Theorem 15, a boudned solution of the equations
for the upper and lower values of a ERTG always exists, and hence Proposition 3 im-
plies both players have positional ε-optimal strategies. Since for turn-based ERTGs
both equations are equivalent, from Proposition 4 positional determinacy of turn-based
ERTGs follows.

Proof outline of Theorem 10. From Theorem 15 the upper value of a state of a ERTG can
be derived from that of the boundary region abstraction. Since in the BRA the sub-graph
of reachable states from any state is finite (Lemma 12) and its size is at most exponential
in size of its ERTG, the upper value of a state in BRA can be computed by analysing
an ERG of exponential size. The membership of the ERTG problem in NEXPTIME
∩ co-NEXPTIME then follows from the fact that a non-deterministic Turing machine
needs to guess a (rational) solution of optimality equations only for exponentially many
states, and it can verify in exponential time whether it is indeed a solution.

4.1 Boundary Region Abstraction

The region graph [31] is useful for solving time-abstract optimisation problems on
timed automata. The region graph, however, is not suitable for solving timed optimi-
sation problems and games on timed automata as it abstracts away the timing informa-
tion. The corner-point abstraction [34] is an abstraction of timed automata which retains
some timing information, but it is not convenient for the dynamic programming based
proof techniques used in this paper. The boundary region abstraction (BRA) [13], a gen-
eralisation of the corner-point abstraction, is more suitable for such proof techniques.
More precisely, we need to prove certain properties of values in ERTG, which we can
do only when reasoning about all states of the ERTG. In the corner point abstraction we
cannot do this since it represents only states corresponding to corner points of regions.
Here, we generalise the BRA of [13] to handle ERTG.

Timed Successor Regions. Recall that R is the set of clock regions. For ζ, ζ′ ∈ R, we
say that ζ′ is in the future of ζ, denoted ζ

∗−→ ζ′, if there exist ν ∈ ζ, ν′ ∈ ζ′ and
t ∈ R≥0 such that ν′ = ν+t and say ζ′ is the time successor of ζ if ν+t′ ∈ ζ ∪ ζ′ for
all t′ ≤ t and write ζ → ζ′, or equivalently ζ′ ← ζ, to denote this fact. For regions
ζ, ζ′ ∈ R such that ζ

∗−→ ζ′ we write [ζ, ζ′] for the zone ∪{ζ′′ | ζ ∗−→ ζ′′ ∧ ζ′′
∗−→ ζ′}.

Thin and Thick Regions. We say that a region ζ is thin if [ν]=[ν+ε] for every ν ∈ ζ
and ε>0 and thick otherwise. We write RThin and RThick for the sets of thin and thick
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regions, respectively. Observe that if ζ ∈ RThick then, for any ν ∈ ζ, there exists ε>0,
such that [ν]=[ν+ε] and the time successor of a thin region is thick, and vice versa.

Intuition for the Boundary Region Graph. Recall K is an upper bound on clock val-
ues and let �K�N = {0, 1, . . . ,K}. For any ν ∈ V , b ∈ �K�N and c ∈ C we de-
fine time(ν, (b, c))def=b−ν(c) if ν(c)≤b, and time(ν, (b, c))def=0 if ν(c)>b. Intuitively,
time(ν, (b, c)) returns the amount of time that must elapse in ν before the clock c
reaches the integer value b. Observe that, for any ζ′ ∈ RThin, there exists b ∈ �K�N

and c ∈ C, such that ν ∈ ζ implies (ν+(b−ν(c)) ∈ ζ′ for all ζ ∈ R in the past of
ζ′ and write ζ →b,c ζ

′. The boundary region abstraction is motivated by the following.
Consider a ∈ Act , (�, ν) and ζ

∗−→ ζ′ such that ν ∈ ζ, [ζ, ζ′] ⊆ Inv(�) and ν′ ∈ E(�, a).

– If ζ′ ∈ RThick, then there are infinitely many t ∈ R≥0 such that ν+t ∈ ζ′. How-
ever, amongst all such t’s, for one of the boundaries of ζ′, the closer ν+t is to
this boundary, the ‘better’ the timed action (t, a) becomes for a player’s objective.
However, since ζ′ is a thick region, the set {t ∈ R≥0 | ν+t ∈ ζ′} is an open interval,
and hence does not contain its boundary values. Observe that the infimum equals
binf − ν(cinf) where ζ →binf,cinf ζinf → ζ′ and the supremum equals bsup−ν(csup) where
ζ →bsup,csup ζsup ← ζ′. In the boundary region abstraction we include these ‘best’
timed actions through the actions (binf, cinf, a, ζ

′) and (bsup, csup, a, ζ
′).

– If ζ′ ∈ RThin, then there exists a unique t ∈ R≥0 such that ν+t ∈ ζ′. Moreover
since ζ′ is a thin region, there exists a clock c ∈ C and a number b ∈ N such that
ζ →b,c ζ′ and t = b−ν(c). In the boundary region abstraction we summarise this
‘best’ timed action from region ζ via region ζ′ through the action (b, c, a, ζ′).

Based on this intuition above the boundary region abstraction is defined as follows.

Definition 11. For an ERTG T = (L,LF , C, Inv ,Act ,ActMin,ActMax, E, δ) the BRA
of T is given by the ERG T̂ = (Ŝ, F̂ , ÂMin, ÂMax, p̂Min, p̂Max, π̂Min, π̂Max) where

– Ŝ ⊆ L × V ×R is the (possibly uncountable) set of states such that (�, ν, ζ) ∈ Ŝ
if and only if ζ ∈ R, ζ ⊆ Inv(�), and ν ∈ ζ;

– F̂ = {(�, ν, ζ) ∈ Ŝ | � ∈ LF} is the set of final states;
– ÂMin ⊆ (�K�N×C×ActMin×R) ∪ {⊥} is the set of actions of player Min;
– ÂMax ⊆ (�K�N×C×ActMax×R) ∪ {⊥} is the set of actions of player Max;
– for � ∈ {Min,Max}, s = (�, ν, ζ) ∈ Ŝ and α = (bα, cα, aα, ζα) ∈ Â� the

probabilistic transition function p� is defined if [ζ, ζα] ⊆ Inv(�) and ζα ⊆ E(�, aα)
and for any (�′, ν′, ζ′) ∈ Ŝ:

p̂�(s, α)((�′, ν′, ζ′)) =
∑

C⊆C∧να[C:=0]=ν′∧ζα[C:=0]=ζ′ δ[�, aα](C, �′)

where να = ν+time(ν, (bα, cα)) and one of the following conditions holds:
• ζ →bα,cα ζα,
• ζ →bα,cα ζinf → ζα for some ζinf ∈ R
• ζ →bα,cα ζsup ← ζα for some ζsup ∈ R;

– for � ∈ {Min,Max}, (�, ν, ζ) ∈ Ŝ and (bα, cα, aα, ζα) ∈ Â� the reward function
π̂� is given by π̂�((�, ν, ζ), (bα, cα, aα, ζα)) = bα−ν(cα).

Although the boundary region abstraction is not a finite ERG, for a fixed initial state we
can restrict attention to a finite ERG, thanks to the following result of [15,16].
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(�0, (0.3, 0.1),

0<y<x<1)

(�1, (0, 0.8),

x=0∧0<y<1)

(�1, (0, 1.8),

x=0∧1<y<2)

(�1, (0, 1),

x=0∧0<y<1)

(�1, (0, 1),

x=0∧y=1)

(�1, (0, 1),

x=0∧1<y<2)

(�0, (1, 0),

0<x<1∧y=0)

�F

((1, x, b, 1<x<2∧0<y<1),⊥); 0.7

((2, x, b, 1<y<x<2),⊥); 1.7

((2, x, b, x=2∧1<y<2),⊥); 1.7

((1,y,b,1<x<2,0<y<1),⊥);0.9

((1,y,b,1<x<2,y=1),⊥);0.9

((1,y,b,1<y<x<2),⊥);0.9

0.8

0.2
((2,y,a,0<x<1,1<y<2),

(1,y,c,x=0∧1<y<2)); 0

Fig. 2. Sub-graph of the boundary region abstraction for the ERTG of Figure 1

Lemma 12. For any state of a boundary region abstraction, its reachable sub-graph is
finite and is constructible in time exponential in the size of corresponding ERTG.

Example 13. Sub-graph of BRA reachable from (�0, (0.3, 0.1), 0<y<x<1) for the
ERTG of Figure 1 is shown in Figure 2. Edges are labelled (b, c, a, ζ) whose intuitive
meaning is to wait until clock c attains the value b and then fire action a. The rewards
of edges (indicated in bold) correspond to the time delay before the action is fired. Fig-
ure 2 includes the actions available in the initial state and one of action pairs available in
(�1, (0, 1), x=0∧1<y<2). To simplify, the states with location �F are merged together
into a single state labelled �F and probabilities that are equal to 0.5 are omitted.

4.2 Solving Optimality Equations of a Boundary Region Abstraction

Based on the optimality equations Opt∗(T̂ ) (see Section 2), we define the value im-
provement function Ψ : [Ŝ→R≥0]→[Ŝ→R≥0] where for f : Ŝ→R≥0 and s ∈ Ŝ:

Ψ(f)(s)def=

⎧⎨
⎩

0 if s ∈ F̂

min
α∈ÂMin(s)

{
max

β∈ÂMax(s)

{
π̂(s, α, β) +

∑
s′∈Ŝ

p̂(s′|s, α, β) · f(s′)
}}

if s ∈ F̂

By construction, a fixpoint of Ψ is a solution of Opt∗(T̂ ). The following demonstrates
the existence and uniqueness of a fixpoint of Ψ, and thus also the solution of Opt∗(T̂ ).

Proposition 14. For any ERTG T , the value improvement function Ψ on the BRA T̂
has a unique fixed point and equals limi→∞ Ψi(f) for an arbitrary f ∈ [Ŝ → R≥0].

Proof. From Assumption 2 and Lemma 12 follows that every |L×R|-th iterate of Ψ is
a contraction. Hence using Banach fixed point theorem the result is immediate. ��

4.3 Correctness of the Boundary Region Abstraction Reduction

In this section we show how the optimality equations for the boundary region abstrac-
tion can be used to solve optimality equations for its ERTG. Given an ERTG T and
real-valued function f : Ŝ → R on the states of the BRA T̂ , we define f̃ : S → R by
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00 ≤ x ≤ 1 1 F

a

b, x=1

0.5
x:=0

0.5 x=1

Fig. 3. Example demonstrating optimal strategies are not regionally positional

f̃(�, ν) = f(�, ν, [ν]) which gives a real-valued function on the states of T . The follow-
ing theorem states that, by applying this mapping, the solution of optimality equations
for an ERTG is given by that of the optimality equations for its BRA.

Theorem 15. Let T be an ERTG. If P |= Opt∗(T̂ ), then P̃ |= Opt∗(T ).

To prove Theorem 15 we first introduce quasi-simple functions and state some of their
key properties. Next, we show that for any BRA T̂ the solution of Opt∗(T̂ ) is region-
ally quasi-simple (a quasi-simple function for every region). Finally, we sketch how
Theorem 15 follows from this fact (Proposition 19 and Theorem 21).

Quasi-simple functions. Asarin and Maler [2] introduced simple functions, a finitely
representable class of functions, with the property that every decreasing sequence is
finite. Given X⊆V , a function F :X→R is simple if there exists e ∈ N and either
F (ν)=e for all ν ∈ X , or there exists c ∈ C and F (ν)=e−ν(c) for all ν ∈ X . A
function F :Ŝ→R≥0 is regionally simple if F (�, ·, ζ) is simple for all � ∈ L and ζ ∈ R.

For timed games, Asarin and Maler showed that if f :Ŝ→R≥0 is regionally simple,
then Ψ(f) is regionally simple. Therefore, since Ψ is a decreasing function, it follows
that starting from a regionally simple function in finitely many iterations of Ψ a fixed
point is reached and the upper value in reachability-time games is regionally simple.
Also, using the properties of simple functions, [13] shows that for a non-probabilistic
reachability-time game, the optimal strategies are regionally positional, i.e., in every
state of a region the strategy chooses the same action. Unfortunately, in the case of
ERTGs, Ψ(f) is not necessarily regionally simple for any given regionally simple func-
tion f . Moreover, as the example below demonstrates, neither is the value of the game
necessarily regionally-simple nor optimal strategies regionally positional.

Example 16. Consider the ERTG shown in Figure 3. Observe that for every state
(�0, ν) in the region (�0, 0<x<1), the optimal expected time to reach �F equals
min{inft≥0 {t + 0.5·1 + 0.5·0} , 1−ν(x)} = min{0.5, 1−ν(x)}. Hence optimal ex-
pected reachability-time is not regionally simple. Moreover, the optimal strategy is not
regionally positional, since if ν(x)≤0.5, then the optimal strategy is to fire a immedi-
ately, while otherwise the optimal strategy is to wait until ν(x)=1 and fire b.

Due to these results it is not possible to work with simple function, and we define quasi-
simple functions. Let  ⊆ V×V be the partial order on clock valuations, where νν′ if
and only if there exists a t ∈ R≥0 such that for each clock c ∈ C either ν′(c)−ν(c) = t
or ν(c)=ν′(c). For x=(x1, . . . , xn) ∈ Rn, we let ‖x‖∞ = max {|xi| | 1 ≤ i ≤ n}.

Definition 17. Let X ⊆ V . A function F : X → R is quasi-simple if for all ν, ν′ ∈ X:

– (Lipschitz Continuous) there exists k≥0 such that |F (ν)−F (ν′)| ≤ k · ‖ν−ν′‖∞;
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– (Monotonically decreasing and nonexpansive w.r.t. ) ν  ν′ implies F (ν)≥F (ν′)
and F (ν)−F (ν′) ≤ ‖ν−ν′‖∞.

For a convex set X ⊆ V and continuous function F : X → R, we let F : X → R
denote the unique continuous function satisfying F (ν)=F (ν) for all ν ∈ X .

Theorem 18 (Properties of Quasi-simple Functions). Let X ⊆ V .

1. Every simple function is also quasi-simple.
2. If F : X→R is quasi-simple, then F : X→R is quasi-simple.
3. If F, F ′ : X→R are quasi-simple functions, then both the pointwise minimum and

maximum of F and F ′ are quasi-simple.
4. The limit of a sequence of quasi-simple functions is quasi-simple.

We say that f : Ŝ → R≥0 is regionally quasi-simple if f(�, ·, ζ) is quasi-simple for all
� ∈ L and ζ ∈ R. Using Theorem 18 and Definition 11 we get the following result.

Proposition 19. If f is regionally quasi-simple, then Ψ(f) is regionally quasi-simple.

From Proposition 14 it follows that for an arbitrary function f : Ŝ → R≥0 the limit of
the sequence 〈f,Ψ(f),Ψ2(f), . . .〉 is the solution of Opt∗(T̂ ). From Proposition 19 it
follows that, if we start from a regionally quasi-simple function f , then all the functions
in the sequence 〈f,Ψ(f),Ψ2(f), . . .〉 are regionally quasi-simple. Since the limit of
quasi-simple functions is quasi-simple, the following proposition is immediate.

Proposition 20. For any ERTG T , if P |= Opt∗(T̂ ), then P is regionally quasi-simple.

The following result states that, from a regionally quasi-simple solution of the optimal-
ity equations for the boundary region abstraction, one can derive the solution of the
optimality equations for the expected reachability time-game.

Theorem 21. For any ERTG T , if P |= Opt∗(T̂ ) and P is regionally quasi-simple,
then P̃ |= Opt∗(T ).

The following observation is crucial for the proof of Theorem 21.

Lemma 22. Let s = (�, ν) ∈ S and ζ ∈ R such that [ν] ∗−→ ζ. If P : Ŝ → R is
regionally quasi-simple, then the functions:

t �→ t +
∑

s′∈S p(s′|s, (t, a),⊥)·P̃ (s′) and t �→ t +
∑

s′∈S p(s′|s,⊥, (t, b))·P̃ (s′)

are continuous and nondecreasing on the interval {t ∈ R≥0 | ν+t ∈ ζ}.

5 Conclusions

We introduced expected reachability-time games and showed that the natural decision
problem is decidable and in NEXPTIME ∩ co-NEXPTIME. Furthermore, we proved
that the turn-based subclass of these games is positionally determined. We believe
that the main contribution of this paper is the concept of quasi-simple function that
generalise simple functions to the context of probabilistic timed games. In fact, the
techniques introduced in this paper extend to expected discounted-time games
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(EDTGs)4 in a straightforward manner, since every expected discounted-time game can
be reduced to an expected reachability-time game. Hence all the result presented for
ERTGs are valid for EDTGs as well. Regarding other games on probabilistic timed au-
tomata, we conjecture that it is possible to reduce expected average-time games to mean
payoff games on the boundary region abstraction. However, the techniques presented in
this paper are insufficient to demonstrate such a reduction.

Although the computational complexity of solving games on timed automata is high,
UPPAAL Tiga [5] is able to solve practical [6,10] reachability and safety properties for
timed games by using efficient symbolic zone-based algorithms. A natural future work
is to investigate the possibility of extending similar algorithms for probabilistic timed
games.
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Université européenne de Bretagne
3 Software Technologies Laboratory, Università di Firenze, Italy

Abstract. This paper considers the model of Time Petri Nets (TPNs)

extended with time parameters and its use to perform on-line diagnosis

of distributed systems. We propose to base the method on unfoldings.

Given a partial observation, as a possibly structured set of actions, our

method determines the causal relation between events in the model that

explain the observation. It can also synthesize parametric constraints

associated with these explanations. The method is implemented in the

tool Romeo. We present its application to the diagnosis of the example

of a cowshed with pigs.
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1 Introduction

In this paper, we decided to bring attention on a dynamic verification method,
called model-based supervision. It is established that diagnosing dynamical sys-
tems, represented as discrete-event systems, amounts to finding what happened
to the system from existing observations (an event log) derived from sensors. In
this context, the diagnostic task consists in determining the trajectories compat-
ible with the observations. The standard situation is that the observed events
correspond to the firing of some transitions of the model, while the other tran-
sitions are just internal (this situation is called “partial observation” in super-
visory control theory [4]). Supervision, based on unfoldings [7,12] in our case, is
implemented by the on-the-fly construction of the unfolding, guided by the ob-
servations. With this dynamic approach, since we consider only finite sequences
of observations, decidability questions become much easier. The only require-
ment is to be able to decide whether a transition can be fired or not. Petri nets
for supervisory control and diagnosis have been proposed in numerous papers
(see for instance [16] and [9]). In most cases the construction of diagnosers is
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based on the state graph (i.e. the interleaving view). The use of unfoldings is
more recent. Safe ordinary nets are used in [8] with emphasis on distributed
diagnosis. This has been extended to safe time Petri nets in [5]. The parametric
case has not been considered yet.

The great interest of unfoldings in that task is their ability to infer the pos-
sible causal dependencies, which are not in general part of the observations. We
think that adding parameters in specifications is a real need. It is often difficult
to fix them a priori: indeed, we expect from the analysis some useful informa-
tion about their possible values. This feature clearly adds some “robustness” to
the modeling phase. It is particularly relevant for the supervision activity we
consider, in which an arbitrary choice of parameters often avoids to find expla-
nations compatible with the observations. This leads to rejection of the model;
moreover, no additional knowledge how to correct it is provided.

We implemented our method inside the Romeo tool developed in the IRCCyN
lab in Nantes [11], available as free software. This implementation allowed us to
demonstrate the proposed supervision method on small case studies. In this
paper we chose to develop a new case study, the “cowshed with pigs”. It is
freely inspired from [10], in which the idea was to show how Uppaal can handle
some hybrid models. Here, we consider a Time Petri Net modelling with time
parameters. By observing some particular transitions of the model, we show that
it is possible to infer causalities between the corresponding events, allowing us
to correlate them in order to find the root causes. Furthermore, the method can
compute constraints on parameters that must be satisfied in order to explain the
observations.

We consider here for the first time, the possibility of having a structured set of
observations. The goal of the supervision is to produce explanations compatible
with this set (no contradiction between the respective causal structures).

The contributions of this paper are:

– a general method for on-line diagnosis based on Time Petri Nets with pa-
rameters, able of causal, time, and parametric inference from a structured
set of observations.

– an illustration using an original model of cowshed, which could be of general
interest for the community.

The paper is organised as follows. In Section 2, we first present the Time Petri
net model with parameters and the way it can be unfolded. Then the model of
observations is presented in Section 3 and how it is used to guide the construction
of the unfolding. Section 4 describes our case study and illustrates the method,
before a few words of conclusion.

2 Time Petri Nets with Parameters and Their Unfolding

2.1 General Notations

We denote by� the set of non-negative integers, by� the set of rational numbers
and � the set of real numbers. For A denoting the sets � or �, A≥0 (resp. A>0)
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denotes the subset of non-negative (resp. strictly positive) elements of A. Given
a, b ∈ � such that a ≤ b, we denote by [a..b] the set of integers greater or equal
to a and less or equal to b. For any set X , we denote by |X | its cardinality.
In the symbolic expressions, ∧ denotes the logical conjunction, ∨ the logical
disjunction and ¬ the logical negation operators. We will also use ⇒ as the
logical implication.

For a function f on a domain D and a subset C of D, we denote by f|C the
restriction of f to C.

Let X be a finite set. A (rational) linear expression on X is an expression
of the form a1x1 + · · · + anxn, with n ∈ �, ∀i, ai ∈ � and xi ∈ X . The set
of linear expressions on X is denoted Expr(X). A linear constraint on X is an
expression of the form LX ∼ b, where LX is a linear expression on X , b ∈ � and
∼∈ {<,≤,≥, >}. We will also use abbreviations like = and =.

For the sake of readability, when non-ambiguous, we will “flatten” nested
tuples, e.g. 〈〈〈B,E, F 〉, l〉, v, θ〉 will be written 〈B,E, F, l, v, θ〉.

2.2 Petri Nets

Definition 1 (Place/transition net). A place/transition net (P/T net) is a
tuple 〈P, T,W 〉 where: P is a finite set of places, T is a finite set of transitions,
with P ∩ T = ∅ and W ⊆ (P × T ) ∪ (T × P ) is the flow relation.

This structure defines a directed bipartite graph.
We further define, for all x ∈ P ∪ T , the following sets: •x = {y ∈ P ∪

T | (y, x) ∈ W} and x• = {y ∈ P ∪ T | (x, y) ∈ W}. These set definitions
naturally extend by union to subsets of P ∪ T .

A marking m : P → � is a function such that (P,m) is a multiset. For all
p ∈ P , m(p) is the number of tokens in the place p. In this paper we restrict our
study to 1-safe nets, i.e. nets such that ∀p ∈ P, m(p) ≤ 1. Therefore, in the rest
of the paper, we usually identify the marking m with the set of places p such
that m(p) = 1. In the sequel we will call Petri net a marked P/T net, i.e. a pair
〈N ,m〉 where N is a P/T net and m a marking of N , called initial marking.

A transition t ∈ T is said to be enabled by the marking m if •t ⊆ m. We
denote by en(m), the set of transitions enabled by m.

There is a path x1, x2, . . . , xn in a P/T net iff ∀i ∈ [1..n], xi ∈ P ∪ T and
∀i ∈ [1..n− 1], (xi, xi+1) ∈ W .

In an acyclic P/T net, consider (x, y) ∈ P ∪ T . x and y are causally related,
which we denote by x < y, iff there exist a path in the net from x to y. x and
y are in conflict, which we denote by x#y, iff there exists two paths p, t, . . . , x
and p, t′, . . . , y, starting from the same place p ∈ P but such that t = t′. It is
also convenient to consider the relation of direct conflict between transitions,
denoted x conf y, indicating that they share in their presets the place that
originated the conflict (•x ∩ •y = ∅). x and y are in concurrency, which we
denote by x co y, iff none of the two previous relations holds, that is to say
¬(x < y) ∧ ¬(y < x) ∧ ¬(x#y).
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An occurrence net is an acyclic P/T net, finite by precedence, and such that no
element is in conflict with itself and each place has at most one input transition.
We use the classical terminology of conditions and events to refer to the places
and transitions in an occurrence net.

Definition 2 (Branching process). A branching process of a Petri net N =
〈P, T,W,m0〉 is a labeled occurrence net β = 〈O, l〉 where O = 〈B,E, F 〉 is an
occurrence net and l : B ∪ E → P ∪ T is the labeling function such that:

– l(B) ⊆ P and l(E) ⊆ T ,
– for all e ∈ E, the restriction l|•e of l to •e is a bijection between •e and •l(e),
– for all e ∈ E, the restriction l|e• of l to e• is a bijection between e• and l(e)•,
– for all e1, e2 ∈ E, if •e1 = •e2 and l(e1) = l(e2) then e1 = e2.

E should also contain the special event ⊥, such that: •⊥ = ∅, l(⊥) = ∅, and l|⊥•

is a bijection between ⊥• and m0.

Example 1. Fig. 1b shows one branching process of the net presented in Fig. 1a
(ignoring any timing or parameter information). The labels are put inside the
nodes. We can see that the branching process in Fig. 1b unfolds the loop t1, t2, t0
once. This loop could be unfolded infinitely many times, leading to an infinite
branching process.

Branching processes can be partially ordered by a prefix relation. There exists
the greatest branching process according to this relation for any Petri net N ,
which is called the unfolding of N , denoted U(N ).

Let β = 〈B,E, F, l〉 be a branching process.
A co-set in β is a subset B′ of B such that ∀b, b′ ∈ B′, b co b′.
A configuration of β is a set of events E′ ⊆ E which is causally closed and

conflict-free, that is to say ∀e′ ∈ E′, ∀e ∈ E, e < e′ ⇒ e ∈ E′ and ∀e, e′ ∈
E′,¬(e#e′).

For any co-set B′, l(B′) defines a subset of the marking of the net. A cut is
a maximal co-set (inclusion-wise). For any configuration E′, we can define the
set Cut(E′) = E′• \ •E′, which is the marking of the Petri net obtained after
executing the sequence of events in E′.

An extension of β is a pair 〈t, e〉 such that e is an event not in E , s.t. •e ⊆ B
is a co-set, the restriction of l to •e is bijection between •e and •t and there is no
e′ ∈ E s.t. l(e′) = t and •e′ = •e. Adding e to E and labeling e with t gives a new
branching process. Starting from the event ⊥, and adding successively possible
extensions forms the “unfolding algorithm”.

2.3 Parametric Time Petri Nets

A mainstream way of adding time to Petri nets is by equipping transitions with
a time interval [13,3]. We consider here an extension allowing the designer to
leave open the knowledge of time bounds by putting symbolic expressions on
parameters in time intervals instead of rational constants.
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t0e4

p2p1

(b)

Fig. 1. A parametric time Petri net (a) and a prefix of the unfolding of its underlying

(untimed) Petri net (b)

Definition 3 (Parametric Time Petri net). A parametric Time Petri Net
(PTPN) is a tuple 〈P, T,W,m0, eft, lft, Π,DΠ〉 where:

〈P, T,W,m0〉 is a Petri net, Π is a finite set of parameters (Π ∩ (P ∪ T ) =
∅), DΠ is a conjunction of linear constraints describing the set of initial
constraints on the parameters, and eft : T → �≥0 ∪ Expr(Π) and lft : T →
�≥0 ∪ {∞} ∪ Expr(Π) are functions respectively called earliest (eft) and
latest (lft) transition firing times. For each transition t, if eft(t) and lft(t)
are constants, it is assumed that eft(t) ≤ lft(t), otherwise, it is assumed that
DΠ ⇒ eft(t) ≤ lft(t).

Example 2. Fig. 1a gives an example of a PTPN. Notice that the time interval
of transition t2 refers to two parameters a and b. The only initial constraint is
DΠ = {a ≤ b}.

Given a PTPN N = 〈P, T,W,m0, eft, lft, Π,DΠ〉, we denote by Untimed(N ) the
Petri net 〈P, T,W,m0〉. The definition of unfolding for PTPN is developed in
[14,15]. It relies on an extension and improvement of [6] to have a compact rep-
resentation of the unfolding and to deal with parameters. The idea is to decorate
the unfolding of the underlying net in associating to each event e a symbolic ex-
pression θ(e) representing the constraints that must be satisfied to justify the
occurrence of e. For each event e, we consider its firing date represented by the
variable θe. The expressions on events are boolean expressions on linear con-
straints on the set of variables and parameters. Fig.2 gives an example of such
“decorated” unfolding.

Let N = 〈P, T,W,m0, eft, lft, Π,DΠ〉 be a PTPN and β = 〈B,E, F, l〉 be the
associated unfolding of Untimed(N ). We define the enabling date of an event
e ∈ E as the expression TOE(e) standing for maxf∈••e θf . It gives the date at
which the corresponding transition has been enabled.
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∅⊥ [θ⊥ = 0]

p1 p2

t1 e1[(θ1 = ∞) ∨ (0 ≤ θ1 − θ⊥)] t2e2 [(θ2 = ∞) ∨ (a ≤ θ2 − θ⊥ ≤ b)]

p3 p4

t3 e3

[(θ3 �= ∞) ∧ (θ3 − θ1 = 2) ∧ (θ4 = ∞)]

∨ [(θ3 = ∞) ∧ (θ1 = ∞)]

∨ [(θ3 = ∞) ∧ (θ4 �= ∞) ∧ (θ4 ≤ θ1 + 2)]

p5

t0e4

[(θ4 �= ∞) ∧ (θ4 − max(θ1, θ2) = 0)∧
(θ3 = ∞)

]

∨ [(θ4 = ∞) ∧ ((θ1 = ∞) ∨ (θ2 = ∞))]

∨ [(θ4 = ∞) ∧ (θ3 �= ∞)∧
(θ3 ≤ max(θ1, θ2))

]

p2p1

Fig. 2. A prefix of the symbolic unfolding of the PTPN of Fig. 1a

Definition 4 (Valid timing function for an unfolding). Given a PTPN
N = 〈P, T,W,m0, eft, lft, Π,DΠ〉. Let β = 〈B,E, F, l〉 be the unfolding of
Untimed(N ). The timing function θ is defined by θ(⊥) = 0 and ∀e ∈ E (e = ⊥),⎧⎨
⎩
[
(θe = ∞) ∧ (eft(l(e)) ≤ θe − TOE(e) ≤ lft(l(e))) ∧

∧
e′∈E,e′ conf e(θe′ =∞)

]
∨
[
(θe = ∞) ∧

∨
b∈•e(θ•b = ∞)

]
∨
[
(θe = ∞) ∧

∨
e′∈E,e′ conf e[(θe′ = ∞) ∧ (θe′ ≤ TOE(e) + lft(l(e)))]

]

Note that in this definition, the parameters appear through the functions eft
and lft.

The first line of the expression means that the event e has been fired, and
consequently that no conflicting events has been fired and that its firing date
must conform to its time interval according to the TPN semantics. The remaining
two lines consider the case in which the event e has not been fired (coded by
the expression θe = ∞). There are two possibilities: either a preceding event has
not yet fired, or a conflicting event has been fired and has prevented e to occur.
This latter case means that such conflicting event has fired while e was enabled.

Example 3. Fig. 2 shows a symbolic prefix of the unfolding of the PTPN in
Fig. 1a. We can see that each event is attributed with a symbolic expression.
The expressions are formed with variables denoting the firing dates of the con-
sidered event and of its neighbourhood (the events that directly precede and
those in conflict) and parameters. In practice, the expressions are implemented
in polyhedrons.

We also define the set of events temporally preceding an event e ∈ E as:
Earlier(e) = {e′ ∈ E | θ(e′) < θ(e) is satisfiable}.

Following the standard semantics of TPNs, [2] has defined the notion of valid
time configuration, which can be used here:
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Definition 5 (valid time configuration). AconfigurationE′ of U(Untimed(N ))
is a valid time configuration of
U(N ) iff (θ⊥ = 0) and
∧

e∈E′\{⊥}
[θe ≥ TOE(e) + eft(l(e)) ∧

∧
e′∈en(l(Cut(Earlier(e)))

θe ≤ TOE(e′) + lft(l(e′))]

Let us consider a maximal (in term of set inclusion) configuration E′ of
U(Untimed(N )), extended with the events that are in direct conflict E′′ and
equipped with the corresponding symbolic expressions of U(N ). Assuming that
events in E′ have fired and that events in E′′ not, E′ is a valid time configuration
if the conjunction of all expressions of E′ ∪ E′′ is satisfiable. This leads to the
following theorem [14].

Theorem 1 (Correctness). Let 〈B,E, F, l, v, θ〉 be the unfolding of a para-
metric time Petri net N = 〈P, T,W,m0, eft, lft, Π,DΠ〉. Consider a maximal
configuration E′ ⊆ E, and E′′ = {e ∈ E | ∃e′ ∈ E′, e conf e′}
E′ is a valid time configuration iff

[
∧

e∈E′
(θe = ∞) ∧

∧
e∈E′′

(θe = ∞)] ⇒
∧

e∈E′∪E′′
θ(e) is satisfiable.

3 Application to Supervision

We first define the notion of structured observation and then show how to guide
the construction of a finite unfolding containing the configurations that are com-
patible with the observations. We consider that the real distributed system un-
der supervision has been instrumented in such a way that it will produce events
(like prints used for debugging) during its execution. These events have a name,
picked up in some finite alphabet Σ and can be possibly related to each other.
In practice, we consider three cases: two events can be causally related, they can
be concurrent, or their relation is not known. As usual, the causal relation must
be an order. The two others are just symmetric.

Definition 6 (Observation). An observation is a finite set of eventsO, equipped
with a causal order 2 and a symmetric relation co. If two events are not related,
their relation is said to be “unknown”. An event also has a name, addressed by
the labelling function λ : O → Σ.

In order to relate the observation and the model, we also consider that transitions
of the PTPN are labelled by a similar function λ : T → Σ∪{ε}. The ε symbol not
belonging to Σ is used to indicate that the occurrence of the transition cannot
be linked to an observable event. The labelling does not need to be injective,
and in general the same observation can be explained by several trajectories of
the model.
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We construct the unfolding compatible with the observation. To define this
notion of compatibility, we consider the maximal configurations and ask they
do not contain events and relations that contradicts the observation. Given an
observation O, we consider the Parikh vector $(O) = (|λ−1(a)|)a∈Σ , which
counts the number of occurrences of each action in O. The same function can
also be applied to configurations, considering that for each event e, λ(e) is in
fact λ(l(e)).

Definition 7 (Compatibility). The unfolding of a PTPN N is compatible
with an observation O if all its maximal (in the sense of set inclusion) configu-
rations are. A configuration E is compatible with an observation iff:

– ∀e ∈ E,$(E) = $(O) and

–
∀o1, o2 ∈ O, o1 2 o2 ⇒
∃e1, e2 ∈ E s.t. (λ(o1) = λ(e1)) ∧ (λ(o2) = λ(e2)) ∧ (e1 ≤ e2)

–
∀o1, o2 ∈ O, o1 co o2 ⇒
∃e1, e2 ∈ E s.t. (λ(o1) = λ(e1)) ∧ (λ(o2) = λ(e2)) ∧ (e1 co e2)

Theorem 2 (Finiteness). Given a finite observation, if the PTPN does not
contain loops of ε transitions, the set of compatible configurations is finite and
thus the unfolding.

Proof. Because of the finiteness of the original Petri net, the only possibility to
obtain an infinite object is to have an infinite configuration. Such a configuration
contains some observable events (events e such that λ(l(e)) = ε). They are in
finite number, due to the finiteness of the observation and by application of the
Parikh constraint. Thus, the only possibility is to have an infinite number of ε
events. Because of the safeness of the net, this infinite set of events must form a
chain of causality, which is prevented by the absence of ε-loop in the net.

At the end of the observation, we obtain a finite unfolding in which each event
is equipped with a symbolic expression. From Theorem 1, it is possible to ex-
tract the valid timed configurations. This is done by considering the maximal
configurations of the underlying untimed net, extended by the events that are
in direct conflict with some event of the configuration. The associated symbolic
constraint is given by Theorem 1. After Boolean simplification, keeping only the
configurations in which the expression is satisfiable, we obtain a set of timed
configurations which constitutes the set of “explanations”. An explanation adds
in general a lot of information to the observation:

– It has inferred some added causal and concurrent relations between the ob-
servable events;

– it has inserted also some patterns of non observable events;
– it gives the constraint that must be satisfied between all the firing dates of

the events;
– it gives some constraints about the possible values of the parameters.
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p2p1
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Fig. 3. Two possible explanations

This is illustrated in Fig. 3. We have considered the PTPN of Fig. 1a in which
only transitions t1 and t2 are observable and labelled with the same letter. Let
us now consider a simple observation formed with only two occurrences of the
letter. The finite symbolic unfolding we obtain is the one depicted in Fig. 2.
There are only two maximal valid timed configurations as shown in Fig. 3.

4 Case Study

4.1 The Continuous Model

In this section, we present a realistic case-study based on the industrial case
study for climate control in a cowshed proposed in [10]. The problem is to keep
the temperature, humidity, CO2 and ammonia concentrations at specified levels
so that the well-being of pigs is ensured. Though it would be relevant to model
temperature, humidity, CO2 and ammonia concentration we limit ourselves to
modeling only temperature. It would though be easy to include the disregarded
climate parameters since the mixing dynamics are, roughly, identical.

The cowshed is divided into distinct climatic zones which interact by ex-
changing air flow. Besides internal air flow a zone interact with the ambient
environment by activating a ventilator in an exhaust pipe and also by opening
a screen to let fresh air into the building. Air flowing from outside into the ith

zone is denoted Qin
i [m3/s]. Air flowing from the ith zone to outside is denoted

Qout
i [m3/s]. Air flowing from zone i to i + 1 is denoted Qi,i+1[m3/s](air flow is

defined positive from a lower index to a higher index). A stationary flow bal-
ance for each zone i is found: Qi−1,i + Qin

i = Qi,i+1 + Qout
i where by definition

Q0,1 = QN,N+1 = 0. The flow balance for zone i is illustrated in Fig. 4.
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Qout
i

Qin
i

Qi−1,iQi,i−1 Qi,i+1Qi+1,i

heater

fresh air inlet

fan+outlet

zone izone i − 1 zone i + 1

Fig. 4. The zone number i and the air flows through it

The temperature in a given zone is impacted in several ways:

– Each zone is equipped with a heater which can be either on (ui = 1) or off
(ui = 0). We denote by Ui[J/s] the resulting heating;

– The pigs in the zone produce heat, denoted by Wi[J/s];
– Air flows from/to adjacent zones;
– Fresh air flows in from outside through the inlet. Tamb is the outside tem-

perature. Qin,max
i is the maximum flow of air drawn from outside;

– Air flows outside by means of the fan. Qout,max
i is the maximum flow of air

fanned outside.

The evolution of the temperature in zone i is therefore given by the following dif-
ferential equation, where Vi is the volume of zone i, ρair the air density [kg/m3],
and cair the specific heat capacity of air [J/kg.C]:

dTi

dt = f(Ti−1, Ti, Ti+1),with
f(Ti−1, Ti, Ti+1) = 1

Vi
[Qin

i Tamb −Qout
i Ti + Qi−1,iTi−1 −Qi,i−1Ti

−Qi,i+1Ti −Qi+1,iTi+1 + uiUi+Wi

ρaircair
]

Among all the factors impacting the temperature in the zone, only three are
directly controllable:

– The heater, which is on or off;
– The aperture of the inlet, between 0 and some maximal value inducing

Qin,max
i ;

– The speed of the fan, between 0 and some maximal value inducing Qout,maxi .

In particular, the internal air flows between zones are induced by these last two
parameters. We also decided to extend the system with an extra feature which
is a possibility of failures of fans (depicted by the state OOOi in Fig. 5).
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Fig. 5. The cell i

4.2 The PTPN Generation

We consider a discrete evolution of temperature of each cell on a scale of n
degrees. Each possible temperature in a cell is represented as a place. The marked
place gives the current temperature of the cell. We sample and compute the
successor state considering that Ti−1, Ti and Ti+1 are constants. Let us denote
nextδ(Ti) the temperature of cell i, obtained in these conditions after δ units of
time (t.u.).

We define Cδ ∈ [0, 1] as the coefficient of heat exchange on the duration δ.

1. Without fan (no communication with outside) and without pig:

nextδ(Ti) = Ti + Cδ ∗
Ti−1 − Ti

3
+ Cδ ∗

Ti+1 − Ti

3
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On an infinite delay (Cδ = 1), we would obtain the heat equilibrium:
nextδ(Ti) = Ti−1+Ti+Ti+1+Tamb

3
2. Without fan, but with pigs:

Let TW
δ be the heat brought by the pigs during δ time units.

nextδ(Ti) = Ti + Cδ ∗
Ti−1 − Ti

3
+ Cδ ∗

Ti+1 − Ti

3
+ TW

δ

3. With fan and pigs:
Let Camb

δ ∈ [0, 1[ the coefficient of heat exchange with outside (depends on
the power of the fan: Camb

δ = 1 means a fan with an infinite power).
nextδ(Ti) = Camb

δ ∗Tamb+(1−Camb
δ )∗(Ti+Cδ∗ Ti−1−Ti

3 +Cδ ∗ Ti+1−Ti

3 +TW
δ )

The model of a cell i, given in Fig. 5, consists of 4 blocks:

– the block Ti with one place per temperature,
– the block Nexti is used to store the intermediate state,
– the block FANi is a model of the behaviour of the fan including possibility

of failures,
– the block nextδ compute the next temperature of the cell and performs the

exchange of tokens between bloks Ti and Nexti using the block FANi and
the temperature of adjacent cells. This exchange is given by the quantization
(on the n temperature levels) of the function nextδ(Ti).

The sampling is controlled by the places Ctrli Computei and Waiti and transi-
tions topi, runi and updatei. The new temperature of the cell i is computed in
two steps. First, the new temperature nextδ(Ti) is computed at (δ − ε) t.u. and
the result is stored in the intermediate places of block Nexti. This intermedi-
ate result is obtained in zero t.u. and does not depend of the interleaving since
marking of block Ti is not modified by this computation. Then, the intermediate
result is moved from Nexti to Ti after ε t.u.

All the possibilities are defined, which leads to a complex graph. With n the
number of temperature levels, the model have 2 × n3 transitions.This one is
tedious to build by hand. Thus we decided to automatically generate the model
by programming a tcl-tk generator, parameterized by the number of considered
cells and the temperature scale. This generator of 1000 lines builds an PTPN
model as a XML file directly read by Romeo. For example, Fig. 6 gives an insight
of the model with 2 cells and 3 levels of temperature.

4.3 The Diagnosis Experiment

The goal of the experiment is to show a case in which a certain maximal tem-
perature is exceeded in one of the cells. This leads in turn to the death of some
pigs. In the model, we assume that we can observe the changes of temperature
in each of the cells, and we can get to know if some pigs died. As a result we
would like to know the possible explanations of cases in which a pig died. For
example, we can imagine a situation where a fan is broken in a cell. Moreover,
we would like to obtain some information about the possible dates of death.
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Fig. 6. The model with 2 cells and 3 levels of temperature

The experiment was performed on the system presented in the previous section
in Fig. 6. It consists of 2 cells and 3 levels of temperature. In the example, we
assume that the temperature of cells is monitored at some given rate, which
amounts to 10 units of time.

To be able to execute our scenario, we added some additional transitions to
the model (see Fig. 6). They do not change the main functionality of the model.
They are used for two reasons. The first reason is to verify whether the critical
temperature was reached or not. Consequently, each time the extra transitions
are fired, one can observe the death of pigs as a consequence of the excessive
temperature. The second reason is to compute a minimal delay between two
events: the initial event of the model (at time 0), and the potential death of pigs
in a cell. The structure which implements this task is based on two transitions.
One of the transitions has a parametrized constraint [a, a]. The transitions share
an input place with a token. The token is active from the very beginning of
the model activity. However, the non-parametrized transition t depends also on
some other token at place p (in the model it denotes the maximal temperature).
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Our goal is to get to know when the place p can activate the non-parametrized
transition (in the model it denotes the death of pig). We can note that using the
structure we get the minimal possible date of firing t by reading the parameter a.

For the purpose of the experiment, we set up an initial temperature for each
cell and we entered a set of observed events into our tool for analysis, i.e.: log
with unordered temperature measurements, and an event which signals death
of an animal in one of the cells. In total, there were 8 observable events and
a limit of 6 unobservable events in the observation. As a result, we obtain a
prefix consisting of 108 events with 4 possible explanations. From the prefix we
can observe that in any of the four scenarios, the fans in the both cells have to
be broken before the temperature become critical. Moreover, as a result of the
experiment, we get possible valuations of the parameters given in the model.
Thus, we get to know that the minimal time amount necessary in order to reach
the state dangerous for the pigs amounts to 20 units of time.

To perform the experiment we used a prototype implemented in Romeo, which
is a software for analysis of time Petri nets. The experiment was executed on
a small machine with 1GB of RAM and 2GHz Intel Pentium processor. The
computation time of the example needed about 15 seconds. During our exper-
iments we tested also some different variants of the problem: with more cells,
with more levels of temperature, and with different observations. In general, size
of the model and observations can strongly influence the time complexity of the
diagnosis. It is not difficult to observe that one of the issues which plays a great
role in the time consumption of the analysis is the number of unobservable, or
indistinguishable events in the system. During the tests we observed many diffi-
cult cases in the context of time complexity. We intend to address that issue in
our future work and improve the software tool we used for our experiments.

5 Conclusion

The current version of the Romeo tool 2.9.0 is available on the webpage [1].
It offers the possibility of computing symbolic unfoldings for safe time Petri
Nets with parameters. When guided by a sequence of actions, this feature allows
the user to perform some diagnosis. The diagnosis consists in a finite prefix of
the unfolding, presenting all the possible explanations of the input sequence.
The explanations show the inferred causal relationships between the events of
the model and also give the possible values for the parameters. We think that
such an integrated method is a real added-value for the analysis of concurrent
systems, and opens the door to deal with even more complex models like TPNs
with stopwatches, or TPNs with more robust time semantics (e.g. with imperfect
clocks).
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Abstract. In this paper we propose a novel technique for constructing timed au-
tomata from properties expressed in the logic MTL, under bounded-variability as-
sumptions. We handle full MTL and include all future operators. Our construction
is based on separation of the continuous time monitoring of the input sequence
and discrete predictions regarding the future. The separation of the continuous
from the discrete allows us to determinize our automata in an exponential con-
struction that does not increase the number of clocks. This leads to a doubly
exponential construction from MTL to deterministic timed automata, compared
with triply exponential using existing approaches.

We offer an alternative to the existing approach to linear real-time model
checking, which has never been implemented. It further offers a unified frame-
work for model checking, runtime monitoring, and synthesis, in an approach that
can reuse tools, implementations, and insights from the discrete setting.

1 Introduction

The ability to write high-level, intuitive specifications in temporal logic is what, in many
cases, underlies the success of applications in model checking, runtime monitoring,
and controller synthesis. In this paper we concentrate on applications where linear-time
temporal logic (LTL) [20] is used to describe ongoing behaviors. In the case of model-
checking the specification ϕ is effectively translated to a nondeterministic automaton
Aϕ that is composed with the system and analyzed in the search of bad behaviors. In
runtime monitoring, it is not enough to translate ϕ to a nondeterministic automaton.
Indeed, an individual behavior of the system may induce multiple runs, which have
to be followed simultaneously. Resolving nondeterminism on-the-fly induces an extra
computational cost at every step of the monitoring. Thus, it is best to use a determinis-
tic automaton. As monitoring is usually concerned only with finite input sequences, a
simple determinization, based on the subset construction, suffices. Finally, in controller
synthesis, we would like to automatically generate an implementation of a system S
that satisfies a specification ϕ [24]. Synthesis requires to convert ϕ to a deterministic
automaton, however, full determinization of ω-automata is required [26,23].

Here, we are interested in these three applications in the context of real-time. The
main model for reasoning quantitatively about time is timed automata [3]. Timed au-
tomata are suitable for modeling certain time-dependent phenomena, and their reacha-
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bility (or empty language) problem is decidable, facts that have been exploited in veri-
fication tools, e.g., Kronos [29] and Uppaal [15].

As in the untimed case, we would like to combine the model of timed automata with
a powerful logic and apply algorithms for model checking, runtime monitoring, and
controller synthesis. Many variants of real-time logics [14,5,12,11] have been proposed.
However, unlike in the untimed case, the correspondence between simply-defined logics
and variants of timed automata is not simple. One of the most popular dense-time exten-
sions of LTL is the logic MITL introduced in [4] as a restriction of the logic MTL [14].
The principal modality of MITL is the timed until U I , where I is some non-singular
interval. A formula pU (a,b)q is satisfied by a model at any time instant t that admits q
at some t0 ∈ (t + a, t + b), and where p holds continuously from t to t0. Decidability
of MITL was established in [4] by converting an MITL formula to a nondeterministic
timed automaton and analyzing the structure of that automaton. Further investigations
of MITL and MTL suggested alternative translations of MITL to nondeterministic timed
automata [17,18] and used alternating timed automata to show decidability of MTL in
certain circumstances [22].

The mentioned translations of MITL to nondeterministic timed automata provide the
necessary theory for MITL model checking. However, to the best of our knowledge,
(due to their complexity) there are no tools implementing linear-time model checking
of timed systems. In addition, these constructions do not offer a viable solution for run-
time monitoring or controller synthesis, as they do not produce deterministic automata.
In general, for MITL it is impossible to construct deterministic automata [16]. Con-
sider, for example, the formula ϕ = � (0,a)(p → � (a,b) q), which says that for every
t ∈ (0, a), if p is true at time t then there is a time point t′ ∈ (t + a, t + b) in which
q holds. A deterministic automaton for ϕ would require infinite memory to remember
all possible occurrences of p within (0, a). Even if we find a fragment of MITL that
can be translated to deterministic timed automata, the known constructions [4,17] can-
not be used, as arbitrary timed automata cannot be determinized [3]. Determinization
constructions rely on the ability to create a finite representation of a set of runs. When
clocks are involved, it is impossible to finitely represent all the values of the clocks
in a deterministic timed automaton. Even worse, the realizability problem for MITL is
undecidable [10]; and for MTL, realizability is undecidable even for finite words, but
becomes decidable if one restricts the number of clocks used by the controller [8].

Synthesis from specifications given as deterministic timed automata is possible [21].
In order to produce deterministic automata one has to resolve two sources of nondeter-
minism in timed automata arising from MITL:
1. Unbounded variability: there can be an unbounded number of events in a fixed inter-

val of time, which the automaton needs to remember. It follows that one cannot fix a
bound on the number of clocks that the timed automaton needs to use for memorizing
relevant events. Most examples showing that timed automata cannot be determinized
or complemented use unbounded variability.

2. Acausality: the satisfaction of a formula at time t may depend on values of inputs
at time t′ > t. In order to determine whether the input sequence satisfies the for-
mula at time t, the automaton “predicts” the future values of inputs, and aborts later
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(at t′) computations corresponding to wrong predictions. Acausality is a source of
nondeterminism for both untimed and real-time temporal logics.

Wilke showed that removing the first source of nondeterminism (i.e., bounding the
variability of input signals) enables complementation and determinization of timed au-
tomata [28]. His proof uses monadic-second order logic and offers no practical solu-
tion. Several classes of timed automata that can be determinized are identified in [7].
These automata include strongly non-Zeno timed automata, which reject words that
vary more than a certain bound. The construction in [7] is impractical for MITL speci-
fications as it is doubly exponential and uses an exponential number of clocks; leading
to a triple exponential construction with a doubly exponential number of clocks. Also,
determinization is considered only for finite words.

In [18] a construction from MTL under bounded variability to deterministic timed
automata is suggested. This solution, however, only partially solves acausality: only
invariants “always ϕ” are handled, where ϕ is an MTL formula with past temporal oper-
ators and bounded future operators. Bounded future operators in the scope of an always
are syntactically changed to past operators. As the past is naturally deterministic [16],
the standard construction of [17] produces a deterministic automaton. Compared with
[7], the construction is single exponential instead of triple exponential.

It follows that bounded variability is a practical solution for constructing determinis-
tic timed automata from real-time specifications. For many applications, bounded vari-
ability is a very reasonable assumption [6]. High variability arises from the frequency
at which systems operate; and almost all systems have a bound on the frequencies in
which they operate. In general, high frequencies are hard to produce making systems
more complicated. In practice, bounded variability covers the most interesting cases.

Using the assumption of bounded-variability, we show how to fully handle acausal-
ity of MTL semantics. For that, we devise a completely new construction for converting
MTL formulas to nondeterministic automata, which relies on bounded variability. Our
construction separates the timed automata into two parts: (i) a standard timed automaton
that monitors changes in the inputs and memorizes events with clocks; and (ii) a depen-
dent timed automaton, that makes passive use of clocks controlled by the first part. The
first part is deterministic by construction. The second part, namely the dependend timed
automaton, generates discrete predictions regarding future events.

We then show that dependent timed automata with the following properties can be
determinized: (i) transitions cannot be enabled throughout the stay in a state (no dense
nondeterminism); and (ii) when a transition is enabled the automaton can stay for a
little while in the target state. Both conditions hold for the automata we construct. The
determinization itself is a slight variant of determinization for untimed finite automata
on infinite words [26,23]. The determinization is exponential and does not change the
number of clocks. The overall result is doubly exponential construction from MTL to
deterministic timed automata.1

Our new construction has many additional advantages even when producing nonde-
terministic automata. In our construction the number of clocks depends on the num-
ber of propositions, the depth of the longest chain of nested timed operators, and the

1 In contrast, an exponential determinization for general timed automata under bounded vari-
ability is impossible. The doubly exponential determinization in [7] is optimal.
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bounded variability of the input. Updates to clocks are extremely simple and depend
directly on the input. In previous constructions clocks are allocated according to vari-
ability and depth of each operator separately. In our construction the number of states
associated with every unbounded-until is constant, while in previous constructions ev-
ery temporal operator requires states that are proportional to the number of active inter-
vals that the temporal operator may have. For the fragment of bounded future operators
considered in [18] our automata are deterministic by construction and do not require the
extra determinization step. Finally, previous translations read “singular” (zero-duration)
and “open” intervals, while in our construction automata use only left-closed right-open
intervals, which matches existing tools, such as Kronos [29] and Uppaal [15].

2 Signals and MTL

Let AP be a set of atomic propositions. A signal over AP is a function w : T → 2AP ,
where T is either the non-negative reals R≥0 (infinite-length) or an interval [0, r) (finite
length). We denote by wp the projection of w to the proposition p. Concatenation of two
finite signals w1 and w2 defined over [0, r1) and [0, r2), respectively, is the finite signal
w = w1 ·w2, defined over [0, r1 + r2) as w[t] = w1[t] for t < r1 and w[t] = w2[t− r1]
for t ≥ r1. Consider signal w over AP and signal w′ over AP ′ of the same length such
that AP ∩AP ′ = ∅. Their product w × w′ is the signal such that for p ∈ AP we have
(w × w′)p = wp and for p ∈ AP ′ we have (w × w′)p = w′

p. Product is defined for
sets of words in the natural way. We say that w is of bounded-variability l if for every
proposition p, every t ∈ T, and every t0 < t1 < · · · < tl ∈ [t, t+ 1) there is i such that
wp[ti] = wp[ti+1]. That is, proposition p changes its value at most l − 1 times in every
interval of length 1. In this paper we consider only signals of bounded variability.

The syntax of the future fragment of MTL interpreted over dense-time signals is
defined by the grammar ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U I ϕ2, where p belongs to a set
AP = {p1, . . . , pn} of propositions and I is an interval of one of the following forms:
[b, b], (a, b), or (a,∞) where 0 ≤ a < b are integers. An until U I is unbounded if I is
(a,∞), otherwise it is bounded.

The semantics of an MTL formula ϕ with respect to a signal w is defined recursively
via the satisfiability relation (w, t) |= ϕ, indicating that signal w satisfies ϕ at time t:

(w, t) |= p ↔ wp[t] = 1

(w, t) |= ¬ϕ ↔ (w, t) �|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U Iϕ2 ↔ ∃ t′ ∈ t + I st (w, t′) |= ϕ2 ∧ ∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

A formula ϕ is satisfied by w if (w, 0) |= ϕ and L(ϕ) = {w | (w, 0) |= ϕ}. Other
Boolean and temporal operators are derived as usual. In particular, � I ϕ = T U I ϕ
and � I ϕ = ¬ � I ¬ϕ are the eventually and always operators. Similarly, intervals
such as [a, b], [a, b), [a,∞) can be expressed. When I = (0,∞), we simply omit it.

We suggest a new construction from MTL under bounded variability to timed au-
tomata. The construction is based on computing a bound f such that the automaton at
time t memorizes the input signal at the interval [t−f, t). The truth value of the formula
is computed with a delay: when the automaton is reading time t it computes the value
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fut(p) = 0, where p is a proposition.
fut(ϕ1 ∨ ϕ2) = max(fut(ϕ1), fut(ϕ2))

fut(¬ϕ1) = fut(ϕ1)

fut(ϕ1 U Iϕ2) = a + 2 + max(fut(ϕ1), fut(ϕ2)), where I = (a,∞).
fut(ϕ1 U Iϕ2) = b + max(fut(ϕ1), fut(ϕ2)), where I = (a, b) or I = [b, b].

Fig. 1. The function fut()

of the formula for time t− f . The function fut, which determines the interval’s size, is
defined in Figure 1.

We compute the truth value of a formula ϕ at time t by looking on the interval
[t, t + fut(ϕ)). The only non-trivial part of this definition is the unbounded until ϕ =
ϕ1 U (a,∞)ϕ2, which, apart from a, requires two additional lookaheads (a + 2). In this
paragraph, we give an informal overview of the ingredients needed for our construction
of determinizable timed automata from an unbounded until formula. The formal defini-
tion of the construction is presented in Section 4 and illustrated by Figure 4. We want
an automaton to know for sure that ϕ is true without remembering how long ϕ1 held.
For that, the interval (t, t + a] is never sufficient: if ϕ1 holds throughout (t, t + a], we
must guess that ϕ1 continues until ϕ2 holds later and if ϕ1 holds until ϕ2 holds within
[t, t + a), then we need to know whether ϕ1 held also before t. Thus, we memorize
ϕ1 and ϕ2 in (t, t + a + 1], which is sometimes sufficient to know for sure that ϕ is
true. For example, ϕ holds for sure if ϕ1 holds throughout (t, t + a + 0.5] and ϕ2 holds
at t + a + 0.5. We use the information recorded in (t, t + a + 1], combined with a
purely discrete guess about the satisfaction of the untimed formula ϕ1U≥0ϕ2 at time
t + a + 1, to construct an automaton that determines the truth value of ϕ at t. It dis-
tinguishes between three situations: (1) ϕ2 is true at some t′ ∈ (t + a, t + a + 1] and
ϕ1 holds throughout (t, t′), hence ϕ clearly holds at t; (2) ϕ1 does not hold at some
t′ ∈ (t, t + a + 1] and ϕ2 is false during (t + a, t′), hence ϕ is false at t; (3) ϕ1 is
true during (t, t + a + 1] and ϕ2 is false throughout (t + a, t + a + 1], and we need
to predict the truth value of ϕ1U≥0ϕ2 at t + a+ 1. The automaton is nondeterministic:
it makes wrong guesses and aborts runs. We use the additional lookahead to eliminate
one type of wrong guess. Consider, for example, some t > 0 and the case that ϕ1 holds
continuously throughout [0,∞) and ϕ2 holds in (0, t+a) and (t+a+1,∞). For every
t′ < t we have ϕ holds at time t′ and our automaton sees that ϕ is true. At exactly time
t, the automaton is blind: ϕ2 does not hold throughout (t + a, t + a + 1]. It has to guess
whether ϕ continues to hold. If it guesses that ϕ is false, then at every t′′ > t it realizes
its mistake and aborts as, indeed, ϕ2 holds at t′′+a+1. Hence, the “length of error” was
0: exactly at time t. We eliminate 0-duration errors using the second lookahead t+a+2,
which provides enough ‘prediction’ power to avoid such errors. It follows that the 0-
duration error elimination results in an automaton that remains non-deterministic, but
this step is important for its determinization described in Section 5.

The function fut is used also to decide where the truth value of a formula expires.
For example, if at time t we know the value of q and r in [t − 8, t), our knowledge for
the formula qU (2,∞)r expires at time t− 2 − 2. As qU (2,∞)r is unbounded, this truth
value may depend further on a guess.
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3 Timed Automata

We use a variant of timed automata that differs slightly from the classical definitions
[3,13,1]. Our automata read multi-dimensional dense-time Boolean signals and output
Boolean signals. Input and output are associated with states and transitions. We also
extend the domain of clock values to include the special symbol ⊥ indicating that the
clock is currently inactive and extend the order relation on R≥0 accordingly by letting
⊥ < v for every v ∈ R≥0. We freely use multiplication by −1 and comparison with
negative values. It follows that −⊥ > −v for every v ∈ R≥0. For a set A ⊆ Rn

≥0 we
use cl(A) to denote its (topological) closure.

The set of valuations of a set C = {x1, . . . , xn} of clock variables, each denoted as
v = (v1, . . . , vn), defines the clock space H = (R≥0 ∪ {⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v′n) such that v′i = vi if
vi = ⊥ and v′i = vi + t otherwise. An atomic clock constraint is a condition of the
form x  � y + d or x  � d, where x and y are clocks,  � ∈ {<,≤,≥, >}, and d is
an integer. Let A(C) denote the set of atomic constraints over the set C of clocks. For
a set X , let B+(X) denote the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using ∧ and ∨). Let C(C) = B+(A(C)) denote the
set of constraints over the set of clocks C. We view a constraint c ∈ C(C) as a subset
c ⊆ H. We also introduce free real variables to constraints and quantify over them. That
is, we use constraints in the first-order theory of the reals, where clocks in C are free
variables. In the full version we show that application of quantifier elimination results
in clock constraints in C(C). We used the tool in [19] to eliminate quantifiers in some
of the examples below.

Definition 1. A timed automaton (TA) is A = 〈Σ,Q, C, λ, I,Δ, q0,F〉, where Σ is
the input alphabet, Q is a finite set of discrete states, and C is a set of clock variables.
We assume that Σ is 2AP for some set of propositions AP . We freely use Boolean
combinations of propositions to denote sets of letters. The labeling function λ : Q → Σ
associates an input letter with every state. The staying condition (invariant) I assigns
to every state q a constraint I(q) ∈ C(C). The transition relation Δ consists of elements
of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition guard g is a
subset of H defined by a clock constraint, and ρ is the update function, a transformation
of H defined by an assignment of the form x := 0, x := ⊥, or x := y or a set of such
assignments. Finally, q0 is the initial state. Transitions leaving q0 have the guard True
and use only updates of the form x := 0. We consider generalized Büchi automata,
where F ⊆ 2Q, and parity automata, where F = 〈F0, . . . , Fk〉 partitions Q. Unless
mentioned explicitly, automata are of the first type.

The behavior of a TA as it reads a signal w consists of a strict alternation between time
progress periods, where the TA stays in a state q as long as w[t] = λ(q) and I(q) holds,
and discrete instantaneous transitions guarded by clock conditions. Formally, a step of
the TA is one of the following:

– A time step (q, v) σt

−→ (q, v+ t) t ∈ R>0 where σ = λ(q) and (v, v+ t) ⊆ cl(I(q)).
– A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ Δ, such

that v ∈ g and v′ = ρ(v).
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Let v⊥ = (⊥, . . . ,⊥) be the assignment of⊥ to all clocks. A run of the TA starting from
a configuration (q0, v⊥) is a finite or infinite sequence of strictly alternating time and

discrete steps of the form ζ : (q0, v0)
δ0−→ (q1, v1)

σ
t1
1−→ (q1, v1 + t1)

δ1−→ (q2, v2)
σ

t2
2−→

(q2, v2 + t2)
δ2−→ · · · , such that

∑
i ti diverges. We denote by ζ[t] the valuation of the

clocks in ζ at time t. That is, at t =
∑i

j=1 tj we have ζ[t] = vi+1 and for t′ < ti+1 we
have ζ[t+ t′] = ζ[t]+ t′. Given a run ζ, the set inf(ζ) is the set of states q such that the
set of time instants in which q is visited is unbounded. A run is accepting according to
the generalized Büchi conditionF if for every F ∈ F we have F ∩inf(ζ) = ∅. A run is
accepting according to the parity condition F if the minimal i such that Fi∩inf(ζ) = ∅
is even. The input signal carried by the run is σt1

1 · σt2
2 · · · , where we abuse notation

and denote by σti

i the concatenation of the punctual signal σi and the open signal σti

i .
That is σi : [0, ti) → Σ such that forall t ∈ [0, ti) we have w(t) = σi. An input signal
is accepted if it is carried by an accepting run. The language of A, denoted L(A), is the
set of accepted input signals.

Let Ai=〈Σi, Qi, Ci, λi, Ii, Δi, qi0, Fi〉, for i ∈ {1, 2}, be two TA such that C1∩C2 =
∅. The composition A1 ‖ A2 = 〈Σ1 ×Σ2, Q1 ×Q2, C1 ∪ C2, λ, I,Δ, (q1

0 , q
2
0),F〉,

where λ(q1, q2) = (λ1(q1), λ2(q2)), I(q1, q2) = I1(q1)∧I2(q2), and F = {S×T | S ∈
F1 and T = Q2, or S = Q1 and T ∈ F2}. The transition relation Δ includes:
– Simultaneous transitions ((q1, q2), g, ρ, (q′1, q

′
2)), where (qi, gi, ρi, q′i) ∈ Δi for i ∈

{1, 2}, g = g1 ∧ g2 and ρ = ρ1 ∪ ρ2,
– Left-side transitions ((q1, q2), g, ρ, (q′1, q2)), where (q1, g1, ρ, q

′
1) ∈ Δ1 and g =

g1 ∧ I2(q2), and
– Right-side transitions ((q1, q2), g, ρ, (q1, q′2)), where (q2, g2, ρ, q

′
2) ∈ Δ2 and g =

I1(q1) ∧ g2.
These three types of transitions reflect the asynchronicity of the composed TA, allowing
one to take a discrete step while the other is in the middle of a time step. Note that the
alphabets of A1 and A2 are disjoint.

Lemma 1. L(A1 ‖ A2) = L(A1) × L(A2)

A TA is deterministic if from every reachable configuration every event and every ‘non-
event’ leads to exactly one configuration:

Definition 2. A deterministic timed automaton is an automaton whose guards and stay-
ing conditions satisfy:
1. For every two distinct transitions (q, g1, ρ1, q1) and (q, g2, ρ2, q2) we have either
λ(q1) = λ(q2) or g1 ∧ g2 is unsatisfiable.

2. For every transition (q, g, ρ, q′), either λ(q) = λ(q′) or the intersection of g and
I(q) is either empty or isolated, i.e., there does not exist an open interval (t, t′) such
that (t, t′) ⊆ I(q) and (t, t′) ∩ g = ∅.

Dependent timed automata (DTA) are transducers of runs of TA. Accordingly, DTA
have output and composition of DTA allows one automaton to read the output of the
other. DTA passively read clocks of other TA and have no clocks of their own. Thus,
they depend on other TA to supply them the clocks.

Definition 3. A dependent timed automaton (DTA) is B = 〈Σ,Γ,Q, C, γ, I,Δ, q0,F〉,
where Σ, Q, C, q0, and F are as in timed automata. DTA have, in addition, an output
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alphabet Γ , and an output function γ : Q → Γ . The labeling function is replaced by a
more general staying condition I that assigns to every state a Boolean combination of
atomic constraints and input letters I : Q → B+(A(C) ∪ Σ). The transition relation
Δ consists of elements of the form (q, g, o, q′), where g ∈ B+(A(C) ∪Σ) is a Boolean
combination of atomic constraints and input letters, o ∈ Γ is an output, and the clock
update is removed. We assume that Γ = 2AP for a set AP of propositions and freely
use propositions to define staying conditions and transition guards.

Let ζ be the run of TA A on input signal w. A run of the DTA reading ζ and w is a
finite or infinite sequence of states and transitions, where the states are annotated by

the time the DTA stayed in them. Formally, ζ′ : q0
δ0−→ qt11

δ1−→ qt22 · · · , such that for
every i ≥ 0, there are gi and oi such that δi = (qi, gi, oi, qi+1) and gi is satisfied by
the values ζ[%ti] and w[%ti], where %ti =

∑i
j=1 tj . Furthermore, for every t ∈ (%ti,%ti+1)

we have I(qi) is satisfied by ζ[t] and w[t]. Acceptance is defined as for runs of TA. An
accepting run ζ′ carries the signal w′ over Σ × Γ such that w′

Σ = w, w′[%ti]Γ = oi, and
for all t ∈ (%ti,%ti+1) we have w′[t]Γ = γ(qi). Given a TA run ζ carrying signal w, we
denote by B(w, ζ) the set of signals carried by accepting runs of B.

Consider two DTA Bi = 〈Σi, Γi, Qi, C, γi, Ii, Δi, qi0, Fi〉 for i ∈ {1, 2}, where
Σ2 = Σ1 × Γ1. The composition B1 ⊗ B2, where B2 reads the output of B1, is the
following DTA. Let B1 ⊗ B2 = 〈Σ1, Γ1 × Γ2, Q1 × Q2, C, γ, I , Δ, (q1

0 , q
2
0), F 〉,

where γ(q1, q2) = (γ1(q1), γ2(q2)) and F = {S × T | S ∈ F1 and T = Q2, or S =
Q1 and T ∈ F2}. The staying condition is I(q1, q2) = I1(q1) ∧ simp(γ1(q1), I2(q2))
where simp(γ1(q1), ϕ) is the constraint obtained from ϕ by replacing γ1(q1) by true
and all other letters in Γ1 by false. The transition relation Δ includes:

– simultaneous transitions ((q1, q2), g, (o1, o2), (q′1, q′2)), where (qi, gi, oi, q′i) ∈ Δi for
i ∈ {1, 2} and g = g1 ∧ simp(o1, g2),

– left-side transitions ((q1, q2), g, (o1, γ2(q2)), (q′1, q2)), where (q1, g1, o1, q
′
1) ∈ Δ1

and g = g1 ∧ simp(o1, γ2(q2)), and
– right-side transitions ((q1, q2), g, (γ1(q1), o2), (q1, q′2)), where (q2, g2, o2, q

′
2) ∈ Δ2

and g = I1(q1) ∧ simp(γ1(q1), g2).

Lemma 2. For every run ζ and signal w, B1 ⊗B2(w, ζ) = B2(B1(w, ζ), ζ).

Consider a TA A1 = 〈Σ1, Q1, C, λ1, I1, Δ1, q1
0 , F1〉 and a DTA B2 = 〈Σ1, Γ2, Q2, C,

γ2, I2, Δ2, q2
0 , F2〉. Their composition A1 ⊗ B2 is the TA 〈Σ1, Q1 × Q2, C, λ, I , Δ,

(q1
0 , q

2
0), F〉, where λ(q1, q2) = λ1(q1), andF = {S×T | S ∈ F1 and T = Q2, or S =

Q1 and T ∈ F2}. The staying condition is I(q1, q2) = I1(q1) ∧ simp(λ1(q1), I2(q2)).
The transition relation Δ includes:
– simultaneous transitions ((q1, q2), g, ρ1, (q′1, q′2)), where (q1, g1, ρ1, q

′
1) ∈ Δ1, (q2,

g2, o2, q′2) ∈ Δ2, g = g1 ∧ app(ρ1, simp(λ1(q′1), g2)), and app(ρ1, g2) applies the
effect of ρ1 on g2, e.g., if ρ1 includes x := y we replace x in g2 by y,

– left-sided transitions ((q1, q2), g, ρ1, (q′1, q2)), where (q1, g1, ρ1, q
′
1) ∈ Δ1 and g =

g1 ∧ app(ρ1, simp(λ1(q′1), γ2(q2))) , and
– right-sided transitions ((q1, q2), g, ∅, (q1, q′2)), where (q2, g2, o2, q

′
2) ∈ Δ2 and g =

I1(q1) ∧ simp(λ1(q1), g2).
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Δ = {(qin, True, ∅, q0), (qin, True, x1 := 0, q1)} ∪
{(q2i, y1 < f, xi+1 := 0, q2i+1), (q2i+1, y1 < f, yi+1 := 0, q2i+2)} ∪
{(q2i+2, y1 = f, {x1 := x2, y1 := y2, . . . , xi := xi+1, yi := yi+1,

xi+1 := ⊥, yi+1 := ⊥}, q2i)} ∪
{(q2i+2, y1 = f, {x1 := x2, y1 := y2, . . . , xi := xi+1, yi := yi+1,

xi+1 := 0, yi+1 := ⊥}, q2i+1)} ∪
(q2i+3, y1 = f, {x1 := x2, y1 := y2, . . . , xi := xi+1, yi := yi+1,

xi+1 := ⊥, yi+1 := ⊥}, q2i+1)} ∪
{(q2i+3, y1 = f, {x1 := x2, y1 := y2, . . . , xi+1 := xi+2, yi+1 := 0,

xi+2 := ⊥}, q2i+2)}

Fig. 2. The transition of proposition monitor

Lemma 3. L(A1⊗B2)={w | ∃ζ1 accepting run ofA1 carryingw andB2(w, ζ1) =∅}.

As TA have no output, the composition of a TA with a DTA removes the output. Thus,
as in the composition B1 ⊗ B2 DTA B2 may read the output of B1, the composition
A ⊗ B1 ⊗ B2 should be read as A ⊗ (B1 ⊗ B2). If A1 is generalized Büchi with
F1 = {Q1} and B1 is parity with F2 = 〈F0, . . . , Fk〉 their composition A1 ⊗ B2 is a
parity automaton with F = 〈F ′

0, . . . , F
′
k〉, where F ′

i = Q1×Fi. We do not define other
compositions of parity conditions.

4 MTL to Nondeterministic Timed Automata

We suggest a novel construction for the conversion of MTL formulas to nondetermin-
istic TA. The advantage of this construction is that it effectively distinguishes between
discrete guesses relating to occurrences in the future (made by DTA) and the accumula-
tion of knowledge with clocks (made by deterministic and extremely simple TA). This
separation allows us to construct a deterministic automaton for the formula in Section 5.
This section starts by introducing proposition monitors, deterministic TA that log infor-
mation about the input. We then show how to construct the DTA that handle general
MTL formulas. Note that the number of clocks depends on the structure of the formula
through the function fut and the construction of the proposition monitors.

We introduce a TA that memorizes the times in which a proposition is true. Given
a formula ϕ let f = fut(ϕ). The automaton is going to memorize all events occurring
in the interval [t− f, t). Let k be the bounded-variability value (i.e., the limit on the
number of changes possible in a proposition in 1 time unit). It follows that in the interval
[t− f, t) there can be at most � fk

2 � different sub-intervals in which the proposition is
true. Thus, we need 2 · � fk

2 � clocks to memorize their start and end times. Let n =
� fk

2 �. Formally, for a proposition p, let Ap = 〈2{p}, Q, C, λ, I,Δ, qin, {Q}〉, where
Q = {qin, q0, . . . , q2n}, λ(q2i) = ∅, λ(q2i+1) = {p}, C = {xp

1, . . . , x
p
n, y

p
1 , . . . , y

p
n},

for j > 1 we have I(qj) = yp1 < f and I(q0) = I(q1) = True and Δ is given in
Figure 2. One such proposition monitor is given in Figure 3.

We use the TA Az with one state and one clock z, which measures the time since
time 0, to check whether the bound f has been reached. Formally, Az = 〈2∅, {qin, q},
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x1 := 0

y1 = f;
x1 := ⊥, y1 := ⊥

x2 := ⊥, y2 := ⊥
y1 = f;

x1 := x2, y1 := y2
x2 := ⊥
y1 = f;

x1 := x2, y1 := ⊥

x2 := ⊥
y1 = f;

x1 := x2, y1 := 0

¬p ¬p ¬p

x1

p py1<f y1<f y1<f

x1, y1,
x2, y2

x1, y1
x2

x1, y1

y1 < f; y1 < f;

x1 := 0 y1 := 0 x2 := 0 y2 := 0

y1 = f;
x1 := 0, y1 := ⊥qin

Fig. 3. Proposition monitor for p, where f = fut(ϕ) and � fk
2
� = 2. State labels consist of: the

label p or ¬p; the invariant true (blank) or y1 < f ; and clocks active in the state. Transition labels
consist of: the transition guard, e.g., y1 < f ; and the clock update, e.g., y1 := ⊥.

g
4
;¬

p
ψz < f

g
1 ; p

ψ

I1 I3

I4I2

s1 s3

s2 s4

pψ ¬pψ

¬pψpψ

g2; pψ

g4; ¬pψ

z = f ∧ g4; ¬pψ

g 3
;¬

p ψ

z = f ∧ g3; ¬pψ

g
1
;
p

ψ

g
2
;
p

ψ

g
3
;
¬

p
ψ

z =
f ∧

g2 ; p
ψ

z
=

f
∧ g1

; p ψ

Fig. 4. A DTA for unbounded until. States s1 and s3 correspond to � (0,a+1) ϕ1 ∧
¬(ϕ1 U (a,a+1)ϕ2), state s2 corresponds to ϕ1 U (a,a+1)ϕ2, and state s4 corresponds to
¬(� (0,a+1) ϕ1) ∧ ¬(ϕ1 U (a,a+1)ϕ2).

{z}, λ, I,Δ, qin, {q}〉, where λ(q) = True, I(q) = z > 0, and Δ = {(qin, True, {z :=
0}, q)}. Let Am denote the composition of all proposition monitors and Az .

We turn to the construction of DTA. Consider an MTL formula ϕ. We construct a
sequence of DTA that use each other’s outputs and eventually are all composed with
Am, which supplies all the clocks that are read by them. For most subformulas ψ of
ϕ, the truth value of ψ can be deduced from the values of clocks in Am and the DTA
of their subformulas. For such formulas, we define constraints cψ(t) that depend on
mentioned DTA and Am and, intuitively, characterize the truth value of ψ at time t.
These constraints are ultimately staying conditions and transition guards in DTA for
superformulas of ψ. For an unbounded subformula ψ (i.e., Until where the upper limit
is ∞) we construct a small DTA that computes the value of ψ at exactly the time point
fut(ψ) − fut(ϕ) (i.e., fut(ϕ) − fut(ψ) before the current time point). This DTA uses
constraints defined for subformulas of ψ. Similar to other formulas, based on the DTA
for ψ, we also define the constraint cψ(t), which characterizes the truth value of ψ at
other times t = fut(ψ)−fut(ϕ). This constraint is again used for staying conditions and
transition guards in superformulas of ψ. Finally, we construct a DTA for the formula ϕ
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itself. Then, we take the composition of all DTA constructed and compose them with
Am to produce the TA that accepts the language of ϕ. Formally, we have the following.

The mentioned constraints are in the first-order theory of the reals with clocks of
Am as free variables. By eliminating quantifiers these constraints can be converted to
clock constraints that are used in staying conditions and transition guards. We think
about the current time point as 0. For example, if xr

1 = 2.37 and yr1 = 1.49, from
our point of view r was true during the interval [−2.37,−1.49). Formally, we define by
induction the DTA and constraints. For a subformulaψ, the constraint Cψ(t) is valid for
t ∈ [−f,−fut(ψ)). We assume that quantifier elimination is applied on all constraints.
– For a proposition p and for t ∈ [−f, 0). We define Cp(t) =

∨
i .−xp

i ≤ t∧−ypi > t.
The finite disjunction on i depends on the number of clocks in Ap (part of Am).

– For subformulaψ of the form¬ψ1, ψ1∨ψ2, or ψ1∧ψ2 we define Cψ(t) using Cψ1(t)
and Cψ2(t) in the obvious way. The range allowed for t is the minimal range allowed
by Cψ1 and Cψ2 . For example, we define Cψ1∨ψ2(t) = Cψ1(t) ∨ Cψ2(t).

– For ψ = ψ1 U Iψ2, where I = (a, b) or I = [b, b], by definition fut(ψ) = b +
max(fut(ψ1), fut(ψ2)). It follows that Cψ1(t) is defined for t ∈ [−f,−fut(ψ1)) and
Cψ2(t) is defined for t ∈ [−f,−fut(ψ2)). So, for t ∈ [−f,−fut(ψ)) it is always the
case that t + b is in the range where Cψ1(t) and Cψ2(t) are defined. In the case that
I = (a, b), for t ∈ [−f,−fut(ψ)) we formally define Cψ(t) = ∃t′ ∈ (t + a, t +
b).Cψ2(t′) ∧ ∀t′′ ∈ (t, t′).Cψ1(t′′). In the case that I = [b, b], for t ∈ [−f,−fut(ψ))
we formally define Cψ(t) = Cψ2(t + b) ∧ ∀t′ ∈ (t, t + b).Cψ1(t′).

– Consider a formula ψ = ψ1 U (a,∞)ψ2.
By definition2 fut(ψ) = a + 2 + max(fut(ψ1), fut(ψ2)). It follows that Cψ1(t) is
defined for t ∈ [−f,−fut(ψ1)) and Cψ2(t) is defined for t ∈ [−f,−fut(ψ2)). So,
for t ∈ [−f,−fut(ψ)] it is always the case that (t, t+a+2) is contained in the range
where Cψ1 and Cψ2 are defined. We construct a DTA for ψ and use its output for
defining Cψ.
• We construct a DTA for the truth value of ψ at time t = −fut(ψ). Formally, let Bψ

be the automaton in Figure 4, where the guards and the invariants are as follows.

I1, I3 : ∀t ∈ (−fut(ψ),−fut(ψ) + a + 1).Cψ1(t)∧
∀t ∈ (−fut(ψ) + a,−fut(ψ) + a + 1).¬Cψ2(t)

I2 : ∃t ∈ (−fut(ψ) + a,−fut(ψ) + a + 1). Cψ2(t) ∧ ∀t′ ∈ (−fut(ψ), t).Cψ1(t)
I4 : ∃t(−fut(ψ),−fut(ψ) + a + 1).¬Cψ1(t) ∧ ∀t′ ∈ (−fut(ψ) + a, t).¬Cψ2(t)
g1, g3 : I1 ∧ ∃t ∈ [−fut(ψ) + a + 1,−fut(ψ) + a + 2).

∀t′ ∈ [−fut(ψ) + a + 1, t).Cψ1(t
′) ∧ ¬Cψ2(t′)

g2 : I2 ∨ (I1 ∧ ∃t ∈ (−fut(ψ),−fut(ψ) + 1).
∀t′ ∈ (−fut(ψ), t).∃t′′ ∈ (t′ + a, t′ + a + 1).Cψ2(t′′) ∧ ∀t′′′ ∈ (t, t′′)Cψ1(t

′′′)
g4 : I4 ∨ (I3 ∧ ∃t ∈ (−fut(ψ),−fut(ψ) + 1).∀t′ ∈ (−fut(ψ), t).

∃t′′ ∈ (t′, t′ + a + 1).¬Cψ1(t′′) ∧ ∀t′′′ ∈ (t′ + a, t′′)¬Cψ2(t
′′′)

States s1, s2 and their incoming transitions are labeled by pψ, all other states and
transitions by ¬pψ , and s1 is the only unfair state.

2 We note that replacing a + 2 by a + 2ε for every ε > 0 would not affect the correctness of
the construction. We choose integer values for the lookaheads to avoid normalizing the largest
constant in the guards and invariants of the timed automaton
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Intuitively, the invariants realize the intuitive meaning of the states as explained in
Figure 4. The transition guards, in addition, use the extra 1 in order to make sure
that when going to the next state it is possible to stay in it (eliminate 0-duration
errors). This is required in order to be able to apply determinization. In case that
determinization is not pursued, the extra lookahead can be removed and the guards
are I1 for transitions into s1 and s3, I2 ∨ I1 for transitions into s2, and I4 ∨ I3 for
transitions into s4.

• For every t ∈ [−fut(ϕ),−fut(ψ)] the constraint Cψ(t) that describes the truth
value of ψ is formally defined as follows:

(t = −fut(ψ) ∧ pψ) ∨ (t < −fut(ψ) ∧ pψ ∧ ∀t′ ∈ (t,−fut(ψ)].Cψ1(t))∨
(t < −fut(ψ) ∧ ∃t′ ∈ (t + a,−fut(ψ)).Cψ2(t

′) ∧ ∀t′′ ∈ (t, t′).Cψ1(t))

This completes the inductive part of the construction3. Let ψ1, . . ., ψn be all the un-
bounded temporal operators in ϕ such that if ψi is a subformula of ψj then i < j. Let
Bψ1 , . . ., Bψn be the DTA constructed in the inductive part, AP ′ = {pψ1, . . . , pψn},
and Γ = 2AP ′

. That is, Γ includes the output of all DTA constructed by induction.
Note that for every i we have Bψi is merely informative. That is, Bψi accepts all inputs
and adorns them with the proposition pψi .

We now construct a final DTA B for ϕ itself. Let B be 〈Σ×Γ, {o}, {q0, q1, q2}, C, γ,
I,Δ, q0, {{q1}}〉, where γ(q0) = γ(q1) = γ(q2) = o, I(q0) = z < f , and I(q1) =
I(q2) = True. The transition relation is Δ = {(q0, g1, o, q1), (q0, g2, o, q2)}, where
g1 = Cϕ(−f) ∧ z = f and g2 = ¬Cϕ(−f) ∧ z = f . That is, B enters state q1 if ϕ is
true at time 0 and state q2 if ϕ is false at time 0. State q1 is an accepting sink state and
state q2 is a rejecting sink state. Let Bϕ = Bψ1 ⊗ · · · ⊗ Bψn ⊗B. Finally, the TA for ϕ,
denoted by Aϕ, is Am ⊗ Bϕ.

Lemma 4. L(Aϕ) = L(ϕ)

Corollary 1. For every MTL formula ϕ with m propositions, n unbounded temporal
operators, and inputs of bounded variability k, there exists a nondeterministic timed
automaton with 2m�k·fut(ϕ)

2 �+1 clocks and ((2�k·fut(ϕ)
2 �+1)m +1)(2 ·4n +1) states

that accepts the language of ϕ.

5 Deterministic Timed Automata

We show that the automata constructed in Section 4 can be determinized. The sepa-
ration of the construction to deterministic proposition monitors and nondeterministic
DTA makes this part possible. We use a variant of Piterman’s version of Safra’s de-
terminization [23] to determinize DTA. The differences are mostly syntactic, taking
into account the ‘asynchronicity’ of transitions from a set of states. We assume that
every transition (q, g, o, q′) of a DTA the intersection of g and I(q) is either empty or
isolated, i.e., there does not exist an open interval (t, t′) such that (t, t′) ⊆ I(q) and
(t, t′) ∩ g = ∅ and if (q, g, o, q′) is enabled at time t then there is a small interval (t, t′)

3 Due to the lack of space, we restrict attention to intervals of the form [b, b], (a, b) and (a,∞)

and include a full treatment of all other types of intervals in the full version of the paper.
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such that (t, t′) ⊆ I(q′). The DTA from Section 4 satisfy this condition. We also as-
sume that the DTA takes infinitely many steps and that its acceptance set F contains
exactly one set. It is simple to modify the automaton to an automaton that takes in-
finitely many steps by adding (or reusing) a clock that keeps resetting itself and taking
a transition whenever this clock reaches some value. Converting an automaton where
|F| > 1 to an automaton where |F| = 1 is standard. We make this assumption solely
to simplify presentation.

Let B = 〈Σ,Γ,Q, C, γ, I,Δ, q0,F〉 be a DTA satisfying these conditions. We con-
struct an ‘equivalent’ DTA D. The construction is based on the subset construction [25].
Thus, every state of D is associated with a set of states of B. A state of D associated
with Q′ ⊆ Q follows a set of runs of B ending in the states Q′. For a set Q′ ⊆ Q let
I(Q′) be

∧
q∈Q′ I(q) and I(Q′) be

∧
q∈Q′ ¬I(q). Let Δ(Q′) = {(q, g, o, q′) ∈ Δ | q ∈

Q′}. For a set Δ′ ⊆ Δ let g(Δ′) be
∧

(q,g,o,q′)∈Δ′ g and g(Δ′) be
∧

(q,g,o,q′)∈Δ′ ¬g. A
set of runs of B that end in states in Q′ can be extended in three different ways: Some
runs are extended by staying in the same state, some runs are extended by crossing
discrete transitions (and cannot be extended by crossing other discrete transitions), and
some runs cannot be extended. We represent such a choice by a set T ⊆ Q′∪Δ(Q′). Let
stay(T ) = T ∩Q′ be the states whose runs are extended by staying in the same state.
In particular, all transitions from stay(T ) have to be disabled. Let Δ(T ) = Δ(Q′) ∩ T
be the discrete transitions taken by states in Q. Let deadend(Q′, T ) be the set of states
q ∈ Q′ such that q /∈ T and for every (q′, g, o, q′′) ∈ T we have q′ = q. That is, the
states whose runs cannot be extended. Let move(T ) = Q′ \ (stay(T )∪ deadend(T )),
the set of states that have some transitions going out of them in T . Let succ(Q′′, T ) be
stay(T ) ∩Q′′ ∪ {q | ∃(q′, g, o, q) ∈ T ∩Δ(Q′′)}. For every T as above, a state of D
associated with Q′ can take a T -transition with guard g(T ):

I(stay(T ))∧ g(Δ(stay(T )))∧ g(T ∩ Δ) ∧ g(Δ(move(T )) \ T ) ∧
I(deadend(Q′, T )) ∧ g(Δ(deadend(Q′, T )))

That is, states whose run is extended by staying in the same state contribute their invari-
ants and the negation of transitions exiting them; transitions that are crossed contribute
their guards and the negation of transitions that are not crossed; and states whose run
is going to end contribute the negation of their invariants and the guards of transitions
exiting them. The case when both deadend(T ) and T ∩Δ are empty is not interesting
as all runs are extended.

Definition 4. [23] A compact Safra tree t over Q is 〈N,M, 1, p, l, e, f〉, where the
components of t are as follows. Let |Q| = n. (a) N ⊆ [n] is a set of nodes. (b) 1 ∈ N
is the root node. (c) p : N → N is the parent function. (d) l : N → 2Q is a labeling of
the nodes with subsets of Q. The label of every node is a proper superset of the union of
the labels of its sons. The labels of two siblings are disjoint. (e) e, f ∈ [n + 1] are used
to define the parity acceptance conditions. For a tree t, let set(t) =

⋃
i∈[n] l(i) be the

set of states that label at least one node in t.

The deterministic DTA is D = 〈Σ, {o} ,S, C, γ′, I ′, Δ′, s0 , α〉, where components are
defined as follows. Differences from the construction in [23] are in bold.
– S is the set of compact Safra trees over Q.
– s0 is the tree with a single node 1 labeled {q0}, where e = 2 and f = 1.
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– The parity acceptance condition α = 〈F0, . . . , F2n−1〉, where F2i = {s ∈ S | f =
i + 1 and e > f} and F2i+1 = {s ∈ S | e = i + 2 and f ≥ e}.

– For every state s ∈ S we have γ′(s) = o and I′(s) = I(set(s)).
– For every tree s ∈ S and every set T ⊆ set(s) ∪ Δ(set(s)) we add to Δ′

the transition (s, g(T ), o, s′) where s′ is obtained from s using the following
transformations.
1. For every node v with label Q′ replace Q′ by succ(Q′, T ).
2. For every node v with label Q′ such that Q′ ∩ α = ∅, create a new son v′ /∈ N of
v. Set its label to Q′ ∩ α. Set its name to the minimal value greater than all used
names. We may have to use temporarily names in the range [(n+1)..(2n)].

3. For every node v with label Q′ and state q ∈ Q′ such that q belongs also to some
sibling v′ of v such that M(v′) < M(v), remove q from the label of v and all its
descendants.

4. For every node v whose label is equal to the union of the labels of its children,
remove all descendants of v. Call such nodes green. Set f to the minimum of n+1
and all green nodes. Notice that no node in [(n+1)..(2n)] can be green.

5. Remove all nodes with empty labels. Set e to the minimum of n+1 and all nodes
removed during all stages of the transformation.

6. Let Z denote the set of nodes removed during all previous stages of the transfor-
mation. For every node v let rem(v) be |{v′ ∈ Z | M(v′) < M(v)}|. That is, we
count how many nodes that are smaller than v are removed during the transforma-
tion. For every node v such that l(v) = ∅ we change v to M(v) − rem(v).

Theorem 1. For every deterministic timed automaton A, we have A ⊗D is determin-
istic and L(A⊗D) = L(A⊗B).

Corollary 2. For every MTL formula ϕ with m propositions, n unbounded temporal
operators, and inputs of bounded variability k, there exists a deterministic timed au-
tomaton with 2m�k·fut(ϕ)

2 � + 1 clocks and ((2�k·fut(ϕ)
2 �)m + 1) · 22O(nlog n)

states that
accepts the language of ϕ.

We note that the double exponent in the number of unbounded temporal operators is
unavoidable, as follows from the same for LTL.

6 Conclusions

We developed a novel construction for translating full MTL to timed automata, under
bounded variability assumptions. Our construction provides a unified framework for
model checking, runtime monitoring, and controller synthesis, and offers an alternative
translation that improves exponentially on the complexity of securing a deterministic
timed automaton, avoiding a doubly exponential number of clocks.

In the future, we intend to investigate further improvements of our construction:

– Consider MTL with past operators. This extension does not increase the complexity
of the construction as satisfaction of past operators depends only on the observation
of memorized events in the proposition monitors.
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– Interpret the logic over finite signals, in the context of monitoring timed behaviors.
– Optimize and improve the translation. One straightforward improvement would re-

quire a smarter memorization of events in the proposition monitors.
– Implement the translation presented in this paper and evaluate it in the context of

model checking, runtime monitoring, and controller synthesis.

Acknowledgements. We would like to thank Dana Fisman and Oded Maler for their
insightful suggestions that helped us improve the clarity of the manuscript.
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Abstract. Unambiguous languages (UL), originally definedbySchutzen-

berger using unambiguous polynomials, are a robust subclass of regular

languages. They have many diverse characterizations: they are recognized

by partially-ordered two-way deterministic automata (po2dfa), they are

definable by Unary Temporal Logic (UTL) as also by the two variable first-

order logic over words (FO2[<]).

In this paper, we consider the timed version of unambiguous lan-

guages. A subclass of the two-way deterministic timed automata (2DTA)

of Alur and Henzinger, called partially-ordered two-way deterministic au-
tomata (po2DTA) are examined and we call the languages accepted by

these as Timed Unambiguous Languages (TUL). This class has some in-

teresting properties: we show that po2DTA are boolean closed and their

non-emptiness is NP-Complete. We propose a deterministic and unary

variant of MTL called DUMTL and show that DUMTL formulae can be

reduced to language equivalent po2DTA in polynomial time, giving NP-

complete satisfiability for the logic. Moreover, DUMTL is shown to be

expressively complete for po2DTA. Finally, we consider the unary frag-

ments of well known logics MTL and MITL and we show that neither

of these are expressively equivalent to po2DTA. Contrast this with the

untimed case where unary temporal logic is equivalent to po2dfa .

1 Introduction

Regular languages and their automata are a well established formalism which
have made considerable impact on techniques for modelling and verification of
systems. The connection between temporal logics and finite automata provides
the key to algorithmic analysis and reasoning about logical properties of reactive
systems.

Attempts to extend the above paradigm to timed logics and timed automata
has proved challenging. One impediment is that logics have boolean operations
and the timed automata (of Alur-Dill) are not closed under complementation.
Thus, one must consider some variant/subclass of the timed automata which are
boolean closed. The classical timed logic, MTL (interpreted over timed words),
is undecidable and has no automaton characterization. This logic uses time con-
strained until and since operators UI and SI where I is a time interval with
� Corresponding author.
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integral endpoints: we denote this by MTL[UI , SI ]. Various subclasses of MTL
have been investigated for decidablity. Ouaknine and Worrell have shown [OW05]
that over finite timed words the logic MTL[UI ] is decidable by reducing the logic
to 1-clock alternating timed automata which are boolean closed. The emptiness
of 1-clock ATA is decidable with non-primitive-recursive complexity.

An altogether different approach is followed by Alur, Feder and Henzinger
who consider logic MTL with only non-punctual (non-singleton) intervals in
the modalities UI and SI . The resulting logic is called MITL [AFH96]. In their
pioneering work called “Back to the Future”, Alur and Henzinger have defined
the notion of two-way deterministic timed automata (2DTA) and shown that the
subclass of reversal-bounded 2DTA is boolean closed. The emptiness of 2DTA
with bounded number of reversals is PSPACE-complete. Alur and Henzinger also
give a reduction from logic MITL[UI , SI ] to reversal bounded 2DTA. Using this
they show that the satisfiability of the logic is EXPSPACE-complete. Real-time
Temporal Logics with low decision complexities are a rarity.

In this paper, we consider a subclass of the reversal-bounded 2DTA of Alur
and Henzinger called partially-ordered two-way deterministic timed automata
(po2DTA). The automaton is partially ordered in the sense that the underlying
graph is acyclic upto self loops. By restricting to this subclass, we show that
we can achieve better complexities for the decision problems for the automata
and their logics. We call the languages accepted by these automata as timed
unambiguous languages (TUL). In this nomenclature, we are motivated by the
unambiguous languages (UL), originally proposed by Schutzenberger [Sch75].
Schwentick et al showed that UL is precisely the subclass of regular languages
that can be recognized by partially-ordered two-way deterministic finite au-
tomata (po2dfa) [STV01]. Moreover, Etessami et al [EVW02] showed that UL
are precisely the languages definable by the Unary Temporal Logic, UTL, which
is linear temporal logic using only the modalities −→� and ←−� . In our recent work,
we proposed an unambiguous interval temporal logic, UITL, which also specifies
exactly the class UL [LPS08]. One feature of this deterministic (or unambigu-
ous) logic is that every model (word) can be “uniquely parsed” to match the
formula. The survey article by Diekert et al gives a comprehensive treatment of
UL [DGK08].

In this paper, we explore the properties of po2DTA and show that these au-
tomata are closed under the operations of union, intersection and complementa-
tion. In fact, each of these operations only results in a linear blowup in the size
of the automaton. We also show that non-emptiness of a po2DTA is decidable
and is NP-Complete. Membership in NP is based on showing that every po2DTA
with non-empty language has a “small-sized” timed word in its language which
uses only a limited set of integral and fractional values in the time stamps. It is
possible to guess this word non-deterministically and to simulate the po2DTA in
time polynomial in the number of states to check for non-emptiness. Contrast
this with k-reversal bounded 2DTA for which emptiness is PSPACE-complete
for fixed k. It follows that the language inclusion of po2DTA is Co-NP-Complete.
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As our next key exploration, we consider logics for specifying timed unam-
biguous languages. We propose a variant of MTL called DUMTL (Deterministic
Unary MTL) where UI and SI are replaced by “deterministic” and “unary” op-
erators ξUx

θ and ξSx
θ . A guarded event θ has the form (a, g) where guard g puts

constraints on the time of occurrence of a relative to other events in the word.
The exact form of guards is defined in Section 2. Let ξ be a finite set of guarded
events. Then formula ξ Ux

θ φ holds at position i in a timed word provided j is
the first position strictly after i with letter a satisfying the time constraint g and
the formula φ holds at j with a freeze variable x remembering the time stamp of
j. Moreover, all the positions strictly inbetween i and j must have events match-
ing the set ξ. Note that ξ is a set of guarded events and not a formula. In this
sense, the operator ξUx

θ is unary and deterministic (requiring match with first
occurrence of θ). The operator ξSx

θ is the past (mirror image) version of ξUx
θ and

defined similarly. We show that every formula of logic DUMTL can be reduced
to po2DTA in linear time. Hence, satisfiability of DUMTL is NP-complete. We
also show that language of every po2DTA can be specified by a DUMTL formula.
The logic DUMTL is deterministic or unambiguous in the sense that every timed
word can be uniquely parsed to match a formula.

Next we explore expressiveness of various timed logics. The contrast between
timed and untimed case should be noted. In untimed case, expressively, UTL ≡
UITL ≡ po2dfa . In order to complete the picture, we consider the unary version
of the well known logic MTL and call it UMTL. By an example, we show that
there are languages definable by UMTL which are not po2DTA recognizable.
We also consider the unary fragment of logic MITL and call it UMITL. Again,
by an example we show that there are po2DTA recognizable languages which
are not definable using UMITL. Thus, unambiguity in timed regular languages
seems to be captured only by the rather esoteric timed logic DUMTL which is
expressively distinct from the other timed logics listed above.

The rest of the paper is organized as follows. Section 2 defines the po2DTA
and investigates their properties. Section 3 gives the unambiguous unary metric
temporal logic, DUMTL and shows its NP-complete satisfiability. Finally, Sec-
tion 4 compares the expressiveness of unary fragments of MTL and MITL with
po2DTA. The paper ends with a short discussion.

2 Partially Ordered 2-Way Deterministic Timed
Automata

Let Σ be a finite alphabet. A timed word w over Σ is a finite sequence w =
(σ1, τ1), (σ2, τ2)...(σm, τm) of symbols σi ∈ Σ paired with non-negative real num-
bers τi ∈ R, such that the sequence τ1, ...τm is weakly monotonically increasing.
We shall often represent w as (σ, τ) with σ = σ1, ...σm and τ = τ1, ...τm and
let untime((σ, τ )) = σ. For any real number τ let Int(τ) and Fra(τ) be the
integral and fractional parts of τ . The set of all finite timed words over an al-
phabet Σ is denoted by TΣ∗. A timed language is a subset of TΣ∗. For 2-way
automata it is convenient to enclose a timed word w between end markers. Let
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t

r

b, x ≥ T − 1

c, true

x := T

b, true

c, x < (T + 1)

c, x ≥ (T + 1)

b, ∧x > T − 2
x < T − 1s

Fig. 1. Example of po2DTA

ŵ = ( , 0)w(�, τ|w|) and let Σ′ = Σ ∪ { , �}. Also, let dom(ŵ) = 0, 1, ...(|w| + 1)
be the set of all positions in the word ŵ. When clear from context, we shall
abbreviate ŵ by w.

A two way finite state automaton has a read-only head which scans the input
word by reading the letter at its current head position i and the head can move
in both directions (as in Turing machines). The textbook by Kozen [Koz97]
provides a readable account of two way deterministic finite automata and their
equivalence to 1-way DFA. Alur and Henzinger [AH92] generalized this to 2-
way determinstic timed automata, 2DTA, which work over timed words. These
timed automata are equipped with a finite set C of clocks (or registers) and
in each transition a subset X of these can be reset to the value of the current
time stamp under the head. The clocks retain their value till reset, thus they
are like registers. As in timed automata, each transition is labelled with a letter
and a guard. A guard g specifies a constraint on the values of the clocks and the
current timestamp T . We label each state with a direction (left or right) and
the head moves in direction specified by the target state of the transition. This
form is more convenient for reduction to logics. (It can be shown that this form
of automata are equivalent with a linear blowup in size to automata where the
transitions carry the direction of head movement as in [AH92].) Each automaton
is total, deterministic (see the formal definition below) and partially ordered. By
partial ordering of states we mean that the only loops allowed are self-loops and
once the automaton exits a state it can never return to it.

Example 1. Figure 1 shows an example po2DTA. Notation x := T denotes that
clock x is reset to current time stamp. This automaton accepts timed words
with the following property: There is b in the interval (1, 2) and c occurs before
it. Moreover, if j is the position of the first b in the interval (1, 2) and k is the
position of the last c before it then τj − τk < 1.

We now give a formal definition of the syntax and semantics of po2DTA. Let
GC denote the set of guards over the clock set C. Let x range over C and c over
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integer constants. Let ∼∈ {<,>,≤,≥,=}. The distinguished variable T denotes
the current time. A guard g has the syntax:

g ∈ GC ::= x ∼ T + c | g1 ∧ g2 | ¬g

As usual, a clock valuation ν : C → 40 assigns to each clock a non-negative
real number. Let ν, τ |= g denote that ν satisfies the guard g when T is assigned
the real value τ . Also, let ν′ = ν ⊗ (x → τ) denotes a valuation such that
∀y ∈ C . y = x ⇒ ν′(y) = ν(y) and ν′(x) = τ . Two guards g1 and g2 are said to
be disjoint if for all valuations ν and all τ , we have ν, r |= ¬(g1 ∧ g2). A special
valuation νinit maps all clocks to 0.

Definition 1 (Syntax of po2DTA). A po2DTA over alphabet Σ is a tuple
M = (Q,≤, δ, s, t, r, C) where (Q,≤) is a partially ordered and finite set of states
such that r, t are the only minimal elements and s is the only maximal element.
Here, s is the initial state, t the accept state and r the reject state. Set C is a
finite set of clocks. The set Q \ {t, r} is partitioned into Ql and Qr (making the
head move resp. left and the right on transitions leading into them) with s ∈ Qr.
Function δ : ((Ql ∪Qr) ×Σ′ ×GC) → Q× 2C) is the transition function which
satisfies the following conditions: Let δ(q, a, g) = (q′, X). Then, X ⊆ 2C specifies
the subset of clocks to be reset to the current time stamp. Moreover,

– (Partial-order) q′ ≤ q.
– (Reset on progress) If q′ < q (i.e. q = q′) then the transition is called a

progress transition (or progress edge). A transition with q = q′ is called a
self-loop. We allow resets only on progress edges, i.e. X = ∅ if q = q′.

– If a = � then q′ ∈ Ql and if a =  then q ∈ Qr. This prevents the head from
falling off the end-markers.

– (Determinism) For all q ∈ Q and a ∈ Σ′, if there exist distinct transitions
δ(q, a, g1) = (q1, X1) and δ(q, a, g2) = (q2, X2), then g1 and g2 are disjoint.

Definition 2 (Run). Let w = (σ1, τ1), (σ2, τ2)...(σm, τm) be a given timed word.
The automaton actually runs on the word ŵ which is w enclosed in end markers,
as defined before. The configuration of a po2DTA at any instant is given by
(q, ν, l) where q is the current state, ν is the the current clock valuation and
l ∈ dom(ŵ) is the current head position. In this configuration, the head reads the
letter σl and the time stamp τl.

The run ρ of a po2DTA on the timed word w with starting head position k and
starting clock valuation ν is the (unique) sequence of configurations (q1, ν1, l1), ...,
(qn, νn, ln) such that

– Initialization: q1 = s, l1 = k and ν1 = ν. The automaton always starts in
the initial state s.

– If the automaton is in a configuration (qi, νi, li) and there exists a (unique)
transition δ(qi, a, g) = (p,X) such that σli = a and νi, τli |= g. Then,
• qi+1 = p
• νi+1(x) = τli for all clocks x ∈ X, and νi+1(x) = νi(x) otherwise.
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• li+1 = li − 1 if p ∈ Ql

li+1 = li + 1 if p ∈ Qr

li+1 = li if p ∈ {t, r}

– Termination: qn ∈ {t, r}. The run is accepting if qn = t and rejecting if
qn = r. The configuration (qn, ln, νn) is called the final configuration and the
head position ln is called the accepting/rejecting position.

LetFM be a function such that FM(w, i, ν) gives the final configuration (qn, ln, νn)
of the unique run of M on w starting with the configuration (s, i, ν). The language
accepted by an automaton M is given by:

L(M) = {w | FM(w, 1, νinit) = (t, i, ν), for some i, ν}.

2.1 Properties of po2DTA

We now discuss the properties of po2DTA. One nice property of our po2DTA is
that all runs on a given word are of bounded length and the automaton cannot
loop for ever.

Reversal Bounding. A reversal refers to the change in the direction of the head
movement within a run of the automaton. Recall that in po2DTA, the head
movement direction is determined by the direction of the target state of a tran-
sition. Hence, for a po2DTA, a reversal corresponds to a progress transition from
a Ql to a Qr state, or vice versa: reversal can occur only on progress transitions.
Due to partial ordering, we can have at most (n− 1) progress transitions during
the run where |Q| = n, the number of states. Hence the number of reversals is
also at most (n − 1). Moreover, the run on a word ŵ can be at most of length
|w| × (n− 1).

Number of Clocks. Due to the partial order on the states, each progress edge in
a po2DTA is traversed at most once in a given run of the automaton. Since a
clock may be reset only on progress edges, there can be only n − 1 number of
resets on any run of the automaton. Hence, the number of clocks of a po2DTA
can upper-bounded by n− 1. Any automaton with more clocks will have clocks
which are always equal and these can be removed. We now assume that the
automaton has at most n− 1 clocks.

Composition of Automata. We define some useful constructions on po2DTA.
These also establish the closure properties of the language class po2DTA.

– Let Acc be a po2DTA that immediately accepts without moving the head.
Thus, FAcc(w, i, ν) = (t, i, ν). Similarly, let Rej be a po2DTA that immedi-
ately rejects without moving the head. Hence, FRej(w, i, ν) = (r, i, ν).

– Let Start be a po2DTA that scans leftward for the start end marker and
then accepts after moving one step to the right. Thus, ∀i ∈ dom(w) we have
FStart(w, i, ν) = (t, 1, ν). Similarly, let End be the automaton that accepts at
the end of the word. Thus, ∀i ∈ dom(w), we have FEnd(w, i, ν) = (t, |w|, ν).
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– Let Freeze(x) be a po2DTA which accepts after assigning the current time
to the clock x. Hence, FFreeze(x)(w, i, ν) = (t, i, ν′), where ν′ = ν⊗ (x → τi).

– Let M1?M2 : M3 be an automaton that executes M1 first. If M1 accepts
then the execution continues with the run of M2 from the final configuration
of M1. If M1 rejects then the execution continues with the run of M3. We
omit the details of this simple construction. Let M = M1?M2 : M3. Then
the size (number of states) of M is equal to the sum of the sizes of M1, M2

and M3. Also, FM(w, i, ν) = FM2(w, j, ν′) if FM1(w, i, ν) = (t, j, ν′) and
FM(w, i, ν) = FM3(w, j, ν′) if FM1(w, i, ν) = (r, j, ν′).

– Let M1;M2 = M1?M2 : Rej.

We state the following lemma without proof.

Lemma 1 (Boolean Closure). Let M1 and M2 be po2DTA with disjoint
clock sets.

– Let M1 ∨M2 = M1?Acc : (Start;M2).
Then, L(M1 ∨M2) = L(M1) ∪ L(M2).

– Let M1 ∧M2 = M1?(Start;M2) : Rej.
Then, L(M1 ∧M2) = L(M1) ∩ L(M2).

– Let ¬M1 = M1?Rej : Acc. Then, L(¬M1) = TΣ∗ \ L(M1).

Note that in each case, the size of the constructed automaton exceeds the sum of
sizes the component automata by only a constant factor. The construction can
be carried out in time polynomial in the input. ��

2.2 po2DTA: Decision Problems

Membership Since po2DTA are total and deterministic, there is a unique run
ρ of the automaton on any word w. As stated before, the size of the run is
upperbounded by |w|× (n− 1) where n is the number of states. For every timed
word w with rational timestamps, we may simulate this run on the automaton in
time polynomial in the size of the word and number of states of the automaton,
and decide whether or not the automaton accepts w. Thus, the membership
problem for po2DTA is in P.

Non-emptiness. As discussed earlier, recollect that a po2DTA with n states has
at most (n − 1) clocks. Given positive integers n, k, we define an equivalence
≈n

k , using ideas similar to the region equivalence found in literature. Consider
two sequences of timestamps u = u1...un and t = t1...tn. Define u ≈n

k t iff
∀0 ≤ i, j < n

– ti − tj > k ⇔ ui − uj > k
– (ui − uj) ≤ k ⇒ Int(ui − uj) = Int(ti − tj)
– Fra(ui) < Fra(uj) ⇔ Fra(ti) < Fra(tj)

Fra(ui) = Fra(uj) ⇔ Fra(ti) = Fra(tj)
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Lemma 2. Consider po2DTA M kmax as the maximum integer constant ap-
pearing on the guards. Consider two words w = (σ, u) and w′ = (σ, t) of length
p, with the same untimed word but possibly different timestamps. If u ≈p

kmax
t,

then w ∈ L(M) iff w′ ∈ L(M).

Proof. (Outline) We can inductively observe that the run of M on both w and w′

takes the same sequence of edges (transitions). Essentially, the guards compare
the time distance between two timestamps with integer constants ≤ kmax. Hence,
if the configurations after i steps in runs on w and w′ are (q, ν, l) and (q, ν′, l)
respectively, then for any guard g we have ν, ul |= g iff ν′, tl |= g due to
u ≈p

kmax
t. Hence, the same edge e is taken as i + 1’th transition in both runs.

��

Lemma 3. Given positive integers n, kmax, for all u of length n−1, there exists
t of length n− 1 such that u ≈n−1

kmax
t and ∀i

– Int(ti) ≤ (kmax + 1)(n− 1)
– Fra(ti) is a multiple of 1/n

Proof. (Outline) The equivalence definition states that once difference between
successive numbers in list u is greater than kmax their magnitude does not af-
fect the equivalence. Hence, we can construct an equivalent sequence t where
difference in timestamps between successive elements is at most kmax + 1. Also,
only the relative ordering of fractional parts is important for equivalence. Since
in each sequence there are at most n− 1 different numbers, the relative ordering
between their fractional parts can be faithfully recorded using fractions which
are multiple of 1/n. ��

Theorem 1 (Small-model property). Given a po2DTA M with n number
of states and kmax being the maximum integer appearing on the guards, if L(M)
is non-empty, then there exists a timed word w = (σ1, τ1)...(σm, τm) ∈ L(M)
such that

– m < n
– τm ≤ (n− 1)(kmax + 1) and
– ∀i ∈ dom(w), the fractional part of τi is a multiple of 1/n

Proof. Consider any word w ∈ L(M) (since L(M) is non-empty). Let w1 be the
subword of w consisting of only those positions which correspond to the progress
transitions of M. Since resets only occur at the progress transitions, it is easy
to see that w ∈ L(M) ⇔ w1 ∈ L(M). Since the number of progress transitions
on any path from start to accept state is < n, we know that length of w1 is < n.
Let w1 = (σ, u) and w2 = (σ, t) such that u ≈n−1

kmax
t and ∀i

– Int(ti) ≤ (kmax + 1)(n− 1)
– Fra(ti) is a multiple of 1/n

From Lemma 2, we know that such a word w2 exists, and from Lemma 3, we
know that w1 ∈ L(M) ⇔ w2 ∈ L(M). Hence, we have the word w2 with the
desired properties. ��
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Corollary 1 (Non-emptiness and Language Inclusion)

– Non-emptiness of po2DTA is decidable with NP-Complete complexity.
– Language inclusion of po2DTA is decidable with Co-NP-Complete complex-

ity.

Proof. From Theorem 1, we know that a polynomial-sized word is included in
the language of any po2DTA with non-empty language. This word can be guessed
non-deterministically and checked for membership using the PTIME member-
ship checking. Hence, non-emptiness of po2DTA is in NP. The non-emptiness of
the (untimed) subclass po2dfa of po2DTA is already shown to be NP-complete
[SP09] by giving a log-space reduction of satisfiability of CNF boolean formu-
lae to non-emptiness of po2dfa . This immediately implies the NP-hardness of
po2DTA non-emptiness.

Note that L(M1) ⊆ L(M2) iff L(¬(M2) ∧ M1) = ∅. Since boolean
operations on po2DTA automata are achieved in PTIME with linear increase
in size by Lemma 1, and non-emptiness checking is NP-Complete, we have that
language inclusion of po2DTA is in co-NP-Complete. ��

3 DUMTL

In real-time logics, Freeze quantifiers are typically used in order to bind the time
of occurrence of some events to variables[AH91]. Let Σ be the finite alphabet
and X the finite set of freeze variables. We use the same syntax of guards GX

as in po2DTA to express time constraints. A Guarded Event over Σ,X is a
pair θ = (a, g) such that a ∈ Σ and g ∈ GX and a Guarded-Event-Set ξ over
Σ,X is a finite set of guarded events. (A guarded event is just a singleton
Guarded-Event-Set). A Guarded-Event-Function is a function in Σ → GX . For
each Guarded-Event-Set ξ we define equivalent Guarded-Event-Function χξ such
that χξ(a) = ∨{gi | (a, gi) ∈ ξ}. Also, for a Guarded-Event-Function χ we
can define a Guarded-Event-Set ξχ = {(a, χ(a)) | a ∈ Σ}. Thus, Guarded-
Event-Set and Guarded-Event-Function are equivalent representations. Let /
denote Guarded-Event-Set such that χ�(a) = true. Given two Guarded-Event-
Function χ1 and χ2, we define boolean operation on them in pointwise manner.
E.g. ∀a ∈ Σ. (χ1 ∧ χ2)(a) = χ1(a) ∧ χ2(a). This also allows us to carry out
boolean operations on Guarded-Event-Set. This notational facility will be useful
in constructing automata.

The logic DUMTL over Σ,X specifies properties of finite timed words using
guarded events in its formulae. Let φ, φ1, φ2 range over DUMTL formulas, θ be
any guarded event and ξ be any Guarded-Event-Set. The syntax of DUMTL
formulas is as follows:

φ := true | θ | ξUx
θφ1 | ξSx

θφ1 | ¬φ1 | φ1 ∨ φ2

Semantics. Let θ = (a, g), then w, i |=ν θ iff (σi = a) ∧ (ν, τi |= g). Similarly,
w, i |=ν ξ iff ν, τi |= χξ(σi). The remaining cases are defined inductively:
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w, i |=ν ξUx
θφ iff ∃j > i.w, j |=θ ∧ ∀i < k < j.w, k |=(ξ ∧ ¬θ) ∧ w, j |=ν′ φ

where ν′ = ν ⊗ x → τj .
w, i |=ν ξSx

θφ iff ∃j < i.w, j |=θ ∧ ∀j < k < i.w, k |=(ξ ∧ ¬θ) ∧ w, j |=ν′ φ
where ν′ = ν ⊗ x → τj .

w, i |=ν φ1 ∨ φ2 iff w, i |=ν φ1 or w, i |=ν φ2

w, i |=ν ¬φ1 iff w, i |=ν φ1

Notice that the U and S modalities are strict and no next/previous modalities
are needed. The language of formula φ is given by Lφ = {w | w, 0 |=νinit φ}
where νinit assigns the value 0 to each freeze variable.

Example 2. Let θ1 = (b, x < (T − 1)) and θ2 = (c, y = T + 1). Then the formula
/Uy

θ1
(/Sθ2true) defines the language of all timed words where there is a b after

time 1, and there is a c exactly one time unit before the first occurrence of b
after time 1.

3.1 From DUMTL to po2DTA

Consider a DUMTL formula φ. Our aim is to construct a po2DTA M(φ) recog-
nizing the language L(φ). The logic is deterministic. Hence, given a timed word
w, in evaluating φ any subformula ψ of φ can be uniquely determined to be
relevant or irrelevant. Moreover, if relevant, its value is needed only at a deter-
mined position in the word. We denote this position by posψw. We construct a
po2dfa R(ψ), called the ranker of ψ such that, starting with any position, R(ψ)
accepts at position posψw if the formula is relevant and rejects if it is irrelevant.
The ranker actually depends not on the subformula ψ but the context λ such
that φ = λ(ψ). Its inductive construction is given below. Let AU(ξ, θ, x) and
AS(ξ, θ, x) be po2DTA as shown in Figure 2 which scan forwards (or backwards
respectively) accepting at the first (or last) θ provided all intermediate positions
are events in ξ.

– R(φ) = Start
– If ψ = ψ1 ∨ ψ2 then R(ψ1) = R(ψ2) = R(ψ).

Also, if ψ = ¬ψ1 then R(ψ1) = R(ψ).
– ψ = ξUx

θψ1 then R(ψ1) = R(ψ);AU(ξ, θ, x)
– ψ = ξSx

θψ1 then R(ψ1) = R(ψ);AS(ξ, θ, x)

Given rankers R(ψ) for each subformula ψ, we can construct po2DTA automaton
M(ψ) in a bottom-up fashion so that the automaton accepts if ψ is relevant and
evaluates to true at its relevant position. A fresh clock is introduced each time
we assign a freeze quantifier.

– If ψ = θ then M(ψ) = R(ψ);A(θ) where A(θ) accepts immediately if θ
evaluates to true at current position and rejects immediately otherwise.

– If ψ = ξUx
θψ

′ then M(ψ) = R(ψ);AU(ξ, θ, x);M(ψ′)
– If ψ = ξSx

θψ
′ then M(ψ) = R(ψ);AS(ξ, θ, x);M(ψ′)

– If ψ = ψ1 ∨ ψ2 then M(ψ) = M(ψ1) ∨M(ψ2)
– If ψ = ¬φ then M(ψ) = ¬(M(φ))
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t t

r r

θ
θ

x := T x := T

ξ ∧ ¬θ ξ ∧ ¬θ

�,/ �,/
¬(ξ ∨ θ) ¬(ξ ∨ θ)

Fig. 2. Automata for AU(ξ, θ, x) and AS(ξ, θ, x)

We state the following lemma without proof.

Lemma 4. Given a DUMTL formula φ, the above construction gives an equiv-
alent po2DTA M(φ) such that ∀w ∈ TΣ∗ . w ∈ L(φ) iff w ∈ L(M(φ)).

3.2 From po2DTA to DUMTL

We now give a translation from an automaton M to a language equivalent
DUMTL formula φM. Since the automaton works on words ŵ = ( , 0)w(�, τ|w|),
we shall extend the alphabet of the DUMTL formulas to include end-markers:
Σ′ = Σ ∪ { , �}. For each clock in the automaton, we have a freeze variable in

s

s1

sk

θ1

θi
xi := T

x1 := T

xk := T

ξ

θk

Fig. 3. A typical state of po2DTAwith incoming and outgoing transitions

the formula. Consider a state s in M as shown in Figure 3. We will construct a
formula ψs satisfying the following lemma which we give here without proof.

Lemma 5. For any state s of M and for any word w if M in its partial run
executes a progress transition e with head at position p and enters the configura-
tion (s, p′, ν) then w, p |=ν ψs iff there is an accepting run of M on w from the
configuration (s, p′, ν)
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We inductively construct ψs for each state as follows:

– ψt = / and ψr = ⊥
– Given ψsi for all 1 ≤ i ≤ k (as in the figure), then

• If s ∈ Qr, ψs := ∨1≤i≤k(ξUxi

θi
(ψsi))

• If s ∈ Ql, ψs := ∨1≤i≤k(ξSxi

θi
(ψsi))

For the formula ψs corresponding to the start state s, we assume that there is
a dummy incoming edge on the left end-marker, for which s is the target state.
Hence, the DUMTL formula ψs must be evaluated from the position 0.

Theorem 2. Given a po2DTA M, there is an equivalent DUMTL formula
ψM = ψs (where s is the start state) such that ∀w ∈ TΣ∗, M accepts w iff
ŵ, 0 |=νinit ψM, where νinit assigns 0 to each freeze variable.

4 Unary Metric Temporal Logics and Expressiveness

For untimed words, it was shown by [EVW02] that Unary Temporal Logic (UTL)
is expressively equivalent to po2DFA. Here, we add timing constraints to the
temporal modalities of UTL to get logic UMTL.

Consider finite timed words over a finite alphabet, Σ. Let φ, φ1, φ2 range over
UMTL formulae and a ∈ Σ. An interval I is a convex subset of non-negative reals
with integral end-points. It may be open, half-open or closed. Such an interval
may be represented as I =< i, j > in general. Here j can even be ∞ specifying
infinite right open interval. If i = j, then the interval is said to be singular. It is
non-singular if i < j. The syntax of UMTL is as follows:
φ := a | −→� Iφ | ←−� Iφ | φ1 ∨ φ2 | ¬φ
Let w = (σ1, τ1), ...(σm, τm) be a finite timed word over Σ. UMTL formulas are
interpreted over a position in the timed word. We give the semantics of UMTL
formulas as follows.

w, i |= a iff σi = a
w, i |= −→�Iφ iff ∃j > i.τj ∈ τi + I ∧ w, j |= φ
w, i |= ←−�Iφ iff ∃j < i.τj ∈ τi − I ∧ w, j |= φ
w, i |= φ1 ∨ φ2 iff w, i |= φ1 ∨ w, i |= φ2

w, i |= ¬φ iff w, i |= φ

4.1 Punctuality and Expressiveness

The logic UMTL allows singular or punctual intervals in its formulae. Let UMITL
be the subclass of UMTL where all intervals are syntactically required to be
non-punctual. In context of MITL, Alur and Henziger [AH92] have shown with
examples that punctuality is a property that cannot be expressed by two-way
deterministic TA even without any reversal bounds.

Theorem 3. There is no po2DTA which recognizes the language defined by the
UMTL formula φ := −→� (0,1)(a ∧ −→� [3,3]c).
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Proof. Let us assume Mφ is a po2DTA which recognizes L(φ), and Mφ has n
states.
Consider a word w such that untime(w) = a2n+1c2n+1 such that all the a’s
are in the interval (0, 1) and −→� [3,3]c holds only for the (n + 1)th a. In order
to recognize the timestamp of this a, there must be a progress transition on
this a (because resets are allowed only on progress transitions). However, if the
(n+1)th a within the unit interval (0, 1) is on a progress transition, it must imply
that the other n a’s before (or after) are also on progress transitions since the
automaton is deterministic. But the automaton Mφ may have at most (n − 1)
progress transitions on a given run. Hence, the assumption that Mφ recognizes
the language is false. ��

Theorem 4. The automaton in the figure below does not have an equivalent
UMITL formula.

a, x > T − 1

x := T

tc, x = T − 1

{a, c}, x > T − 1

x ∈ T − (1, 2)
a,

Fig. 4. Expressiveness of UMITL

Proof (Outline). The following property holds for UMITL formulas. We omit its
detailed proof. Given a UMITL formula φ there exists δ > 0 such that for any
word w = (σ, t) ∈ L(φ), there exists a sequence of open intervals I such that
each Ii is of width δ and ti ∈ Ii and for any sequence u formed with ui ∈ Ii,
we have w′ = (σ, u) ∈ L(φ). Informally, it states that time stamps of models of
a UMITL formula can be perturbed in a small neighbourhood preserving truth.
Now, the automaton (M) above accepts all words such that for the first a in the
interval (1, 2), there is a c exactly one time unit after it. A word in L(M) with
only one c in it, will not satisfy the perturbation property of UMITL formulas
stated above. Hence, there is no UMITL formula equivalent to M. ��

5 Discussion

Unambiguous languages [Sch75] are a robust subclass of regular languages with
diverse characterizations. The po2dfa give an automaton based characterization
of this class[STV01] and the unary temporal logic, UTL, which is a temporal
logic using only the modalities −→� and ←−� provides a logical characterization of
this class [EVW02]. In our past work [LPS08, LPS10] we have shown that deter-
ministic temporal logics admitting unique parsability can be defined for unam-
biguous languages. The deterministic logics have intimate connections with the
automata for unambiguous languages and this results into efficient satisfiability
checking of determinstic logic formulae. In this paper, we carry over the same
approach to much more challenging setting of timed languages.
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po2DTA

DTA

NTA

∪kDTAk

Fig. 5. Showing Expressiveness of po2DTA

In this paper, we have initiated the study of timed unambiguous languages
(TUL). We have chosen to specify this class by defining partially ordered two
way deterministic timed automata, po2DTA, which recognize TUL. We have
also come up with a temporal logic called deterministic, unary metric temporal
logic, DUMTL, which is expressvily complete for po2DTA. Using the reduction
from logic to automata we have shown that the satisfiability of DUMTL is NP-
complete.

Alur and Henzinger [AH92] defined 2DTA. The subclass of 2DTA with at
most k reversals is called DTAk. The subclass ∪kDTAk of reversal bounded
2DTA is boolean closed and the emptiness of DTAk with fixed reversal bound k
is PSPACE-complete. Alur and Henzinger also showed that logic MITL[UI , SI ]
can be reduced to ∪kDTAk giving EXPSPACE satisfiability for the logic.

Our po2DTA are a subclass of ∪kDTAk. They have many pleasant properties:
they are boolean closed (with only polynomial blowup), their non-emptiness is
NP-Complete and the language inclusion between automata is Co-NP-Complete.
Moreover, an automaton with n states and arbitrarily many clocks can be re-
duced to an automaton with at most n-1 clocks. Expressively, po2DTA are a
strict subset of ∪kDTAk and unrelated to the deterministic timed automata
(DTA). The exact expressiveness is depicted diagrammatically in Figure 5.

For untimed case, unambiguous languages correspond to unary temporal logic
[EVW02]. The generalization of this to timed case turns out to be tricky. The
unary temporal logic is obtained by replacing the U and the S by unary opera-
tors −→� and ←−� . Unfortunately, this method does not yield timed unambiguous
languages. In the paper, we have considered the unary version of logic MTL and
called it UMTL. We also considered the unary fragment of MITL and called it
UMITL. In Section 4, we were able to show with examples that UMTL is not
contained within po2DTA and that po2DTA are not contained within UMITL.
Hence, neither of these logics characterize the class of timed unambiguous lan-
guages. Our deterministic and unary logic DUMTL seems to adequately capture
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the essence of unambiguity in timed regular languages. In our opinion, the effi-
cient satisfiability checking of DUMTL is a direct consequence of this connection.
The exact relationship between the expressive powers of logics DUMTL, UMTL
and UMITL is a topic of our ongoing investigation.
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Abstract. As real-time embedded systems become more complex, resource par-
titioning is increasingly used to guarantee real-time performance. Recently, sev-
eral compositional frameworks of resource partitioning have been proposed using
real-time scheduling theory with various notions of real-time tasks running under
restricted resource supply environments. However, these real-time scheduling-
based approaches are limited in their expressiveness in that, although capable
of describing resource-demand tasks, they are unable to model resource supply.
This paper describes a process algebraic framework for reasoning about resource
demand and supply inspired by the timed process algebra ACSR. In ACSR, real-
time tasks are specified by enunciating their consumption needs for resources.
To also accommodate resource-supply processes we define PADS where, given a
resource CPU, the complimented resource CPU denotes for availability of CPU
for the corresponding demand process. Using PADS, we define a supply-demand
relation where a pair (S, T ) belongs to the relation if the demand process T can
be scheduled under supply S. We develop a theory of compositional schedulabil-
ity analysis as well as a technique for synthesizing an optimal supply process for
a set of tasks. We illustrate our technique via a number of examples.

1 Introduction

The increasing complexity of real-time embedded systems demands compositional de-
sign and analysis methods for the assurance of timing requirements. Component-based
design has been widely accepted as a compositional approach to facilitate the design of
complex systems. It provides means for decomposing a complex system into simpler
components and for composing the components using interfaces that abstract compo-
nent complexities. Such approaches are increasingly used in practice for real-time sys-
tems. For example, ARINC-653 standard by the Engineering Standards for Avionics
and Cabin Systems committee specifies partition-based design of avionics applications.
Also, hypervisors for real-time virtual machines provide temporal partitions to guaran-
tee real-time performance [15,11].

To take advantage of the component-based design of real-time systems, schedu-
lability analysis should support compositional analysis using component interfaces.
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These interfaces should abstract the timing requirements of a component with a min-
imum resource supply that is needed to meet the resource demand of the component.
Component-based real-time systems often involve hierarchical scheduling frameworks
that support resource sharing among components as well as associated scheduling algo-
rithms [5,20]. To facilitate the analysis of such systems, resource component interfaces
and their compositional analysis have been proposed [16,21,22,8,23,12]

This paper presents a formal treatment of the problem of compositional hierarchical
scheduling by introducing a process algebraic framework, PADS, for modeling resource
demand and supply inspired by the timed process algebra ACSR [13,14]. The notions of
resource demand and supply are fundamental in defining the meaning of compositional
real-time scheduling analysis. Our proposed algebraic framework formally defines both
of these notions. As in ACSR, a task in our formalism is specified by describing its
consumption needs for resources. To also accommodate resource-supply processes, we
extend the notion of a resource and given a resource cpu we use cpu to denote the
availability of the resource for consumption by a requesting task. Our formalism then
addresses the following issues:

1. Schedulability: We define a supply simulation relation |= that captures when a task
T is schedulable by a supply S, S |= T .

2. Compositionality: We explore conditions under which we may safely compose
schedulable systems. Specifically, we are interested to define functions on supplies,
◦, and appropriate conditions, f , such that if T1 is schedulable by S1 and T2 by S2

then the parallel composition of T1 and T2 is schedulable by S1 ◦S2, assuming that
condition f holds:

S1 |= T1, S2 |= T2

S1 ◦ S2 |= T1‖T2
, f(S1, S2)

3. Supply Synthesis: We propose a method by which we can generate a supply process
to schedule a set of tasks, assuming that such a scheduler exists. Our method is
based on the notion of a demand of a task which is a supply that can schedule the
task and, at the same time, it is optimal in the sense that (1) it does not reserve more
resources than those required and (2) it captures all possibilities in which a task can
be scheduled. We then prove that two or more tasks are schedulable if and only if
they can be scheduled by the composition of their demands.

Related work. As mentioned above, this work brings together two long-standing lines
of research. On the one hand, there has been much work on compositional hierarchical
scheduling based on real-time scheduling theory [16,21,22,8,6,7]. Typically, such ap-
proaches to schedulability analysis rely on overapproximations of task demand using,
for example, demand bound functions and underapproximations of resource supply us-
ing, supply bound functions. Efficient algorithms are developed to ensure that demand
never exceeds supply. On the other hand, several formal approaches to scheduling based
on process algebras [3,14,13,19,18], task automata [10,9], preemptive Petri nets [4],
etc., have been developed. To the best of our knowledge, none of these approaches
consider the problem of modeling resource supply explicitly. Instead, sharing of a con-
tinuously available processing resource between a set of tasks has been considered.
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Our approach to supply synthesis is conceptually similar to the work of Altisen
et al. on applying controller synthesis to scheduling problems [1,2]. The difference
is that we are not aiming to generate schedulers, but rather an interface for a task set, an
abstraction that can be used in a component-based approach to real-time system design.

The rest of the paper is structured as follows. Section 2 presents our process algebra
and its semantics. Section 3 contains our results on compositional schedulability anal-
ysis and interface construction, followed by examples illustrating the application of the
theory in Section 4. Section 5 concludes the paper.

2 The Language

In our calculus, PADS (Process Algebra for Demand and Supply), we consider a system
to be a set of processes operating on a set of serially reusable resources denoted by R.
These processes are (1) the tasks of the system, which require the use of resources in
order to complete their jobs, and (2) the supplies, that specify when each resource is
available to the tasks. Based on this, each resource r ∈ R can be requested by a task, r,
granted by a supply, r, or consumed,

↔
r , when a supply and a request for the resource

are simultaneously available. An action in the formalism is a set containing resource
requests, grants and consumptions, where each resource may be represented at most
once. For example, the action {r1, r2} represents a request for the resources r1 and r2
whereas the action {r1,

↔
r2, r3} involves the granting of resource r1, consumption of

resource r2 and request for resource r3. We take a discrete time approach: we assume
that all actions require one unit of time to complete measured on a global clock with
action ∅ representing idling for one time unit since no resource is being employed.

We write Act, ranged over by α and β, for the set of all actions and distinguish
ActR, the set of actions involving only resource requests, ranged over by ρ, and ActG,
the set of actions involving only resource grants, ranged over by γ. Given α ∈ Act
we use the notation α to reverse between resource grants and requests in action α, so,

{r1, r2,
↔
r3} = {r1, r2,

↔
r3}. Finally, we write res(α) for the set of resources occurring

in α: res(α) = {r ∈ R|r ∈ α or r ∈ α or
↔
r∈ α}.

2.1 Syntax

The following grammars define the set of tasks, T, the set of supplies S and the set of
timed systems P, where I and J are sets of indices, and I is assumed to be nonempty.
Furthermore,C ranges over a set of task constants, each with an associated definition of

the formC
def= T , where T may contain occurrences of C as well as other task constants

and, D ranges over a similar set of supply constants.

T ::= FIN | Σi∈Iρi : Ti | C

S ::= FIN | Σi∈Iγi : Si | D

P ::= FIN | T | S | P‖P | Σj∈Jαj : Pj

We consider FIN to be the terminated process. Then a task process can be a terminated
process, a task constant, or a nondeterministic choice Σi∈Iρi : Ti. The latter offers the
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choice of executing each of the actions ρi and then proceeding as Ti, where I = ∅.
Similarly, a supply process can be a terminated process, a supply constant, or a non-
deterministic choice. Finally, a process can be an arbitrary composition of tasks and
supplies or a nondeterministic choice between processes Σj∈Jαj : Pj .

2.2 Semantics

The semantics of PADS are given in two steps. First, we develop a transition system in
which nondeterminism is resolved in all possible ways, �. Then, we refine � into −→
by implementing a type of “angelic” behavior in the way in which tasks resolve their
nondeterminism by choosing the best possible outcome given the available supply. The
rules for the first-level transition relation can be found in Table 1, whereas the second-
level transition relation is subsequently defined on the basis of a preemption relation.

We proceed to consider relation � defined in Table 1. FIN being a well-terminated
(and not a deadlocked) process, it allows time to pass (axiom (IDLE)). Nondeterministic
choice in tasks and supplies can be resolved by executing an action and then proceed-
ing as its continuation ((SumT) and (SumS)). A constant behaves as the process in
its defining equation (Const). Finally, rule (Par) specifies the way in which a paral-
lel system evolves. To begin with, note that the components of a parallel composition
evolve synchronously in that the composition advances only if both of the constituent
processes are willing to take a step. Furthermore, the rule enunciates the outcome of
the synchronization between two parallel processes, the most important aspect being
that a request within the one component is satisfied by an available grant in the other.
The condition of rule (PAR) imposes a restriction on when two actions may take place
simultaneously within a system. Specifically, we say that actions α1 and α2 are com-
patible with each other if, whenever r occurs in both actions then one occurrence must
be a request and the other a supply of the resource. So, for example, it is not possible to
simultaneously offer a resource in one component and consume or offer it in another,
nor to request it by two different tasks. We capture this requirement as follows:

compatible(α1, α2) =
∧

r∈res(α1)∩res(α2)

(r ∈ α1 ∧ r ∈ α2) ∨ (r ∈ α2 ∧ r ∈ α1)

We may now combine compatible actions by transforming a simultaneous request and
supply of the same resource into a consumption:

α1 ⊕ α2 = {r ∈ α1, α2|r ∈ α1 ∪ α2} ∪ {r ∈ α1, α2|r ∈ α1 ∪ α2}
∪{↔r |r ∈ αi, r ∈ α(i+1)mod2, i ∈ {1, 2}} ∪ {↔r | ↔

r∈ α1 ∪ α2}

Note that, the associativity of the parallel composition operator with respect to �
follows by the associativity of ⊕ which, in turn, is easy to prove by its definition.

Example 1. Consider the supply S
def= {r1, r2} : S and the following task processes:

T1
def= {r1, r2} : FIN + {r1} : T1 T2 = {r2} : FIN + {r1, r3} : T2

T3
def= {r2} : FIN T4 = {r1} : FIN
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Table 1. Transition rules for tasks, supplies and systems

(Idle) FIN
∅� FIN

(SumT) Σi∈Iρi : Ti

ρi� Ti I �= ∅

(SumS) Σi∈Iγi : Si

γi� Si I �= ∅

(Const) P
α� P ′

C
α� P ′ C

def
= P

(Par) P1

α1� P ′
1 P2

α2� P ′
2

P1‖P2

α1⊕α2� P ′
1‖P ′

2

compatible(α1, α2)

(SumP) Σj∈Jαj : Pj

αj

� Pj J �= ∅

We have:

T1‖S
{↔
r1,

↔
r2}� FIN‖S (1) T1‖S

{↔
r1,r2}� T1‖S (2)

T2‖S
{r1,

↔
r2}� FIN‖S (3) T2‖S

{↔
r1,r2,r3}� T2‖S (4)

(T1‖S)‖T3

{↔
r1,

↔
r2}� (T1‖S)‖FIN (5)

Note that (T1‖S)‖T3 has no transition other than (5) above, while (T1‖S)‖T4 has no
transitions altogether since both T1 and T4 require r1 during the first time unit. �

Moving on to the second level of the semantics, we employ a preemption relation on
actions to prune away all transitions that do not represent correctly the behavior of a
system, as we would expect it. In particular, we make the following two assumptions:

1. Given a supply, a task should respond angelically and, given a nondeterministic set
of transitions by which it can evolve, it should choose only between the ones that
are satisfied by the available suply, assuming that such options exist. For example,
T2‖S above should retain only transition (3) out of the available (3) and (4).

2. In addition, we assume that a task behaves greedily and, at each step, it employs as
many of the supplied resources as possible. For example, the composition T1‖S in
Example 1 should only retain transition (1) out of transitions (1) and (2).

Given the above, we define the preemption relation ≺ so that α ≺ β if one of the
following hold:

1. {r|r ∈ α,
↔
r∈ α} = {r|r ∈ β,

↔
r∈ β}, α ∩ R = ∅ and β ∩ R = ∅,

2. α ∩ R = β ∩ R = ∅, {r|r ∈ α,
↔
r∈ α} = {r|r ∈ β,

↔
r∈ β} and {r| ↔

r∈ α} ⊆
{r| ↔

r∈ β}.

Intuitively, an action precludes another if it makes better usage of the same offered
resources. In particular, an action β preempts an action α, if, either α and β concern
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the same offered resources (granted or consumed) but α, unlike β, also contains some
unsatisfied resource requests (condition (1)), or α and β contain only the same granted
and consumed resources but β consumes more resources than α (condition (2)).

We may now define the relation
α−→ by the following rule:

P
α� Q

P
α−→ Q

, there is no P
β
�, α ≺ β

We conclude this section by introducing some notations. We write P −→ if there exists
action α such that P

α−→. If P  α−→ for all actions α, we write P = δ, where δ is the
deadlocked process. We write P =⇒ P ′ if there exist actions α1 . . . αn and processes
P1, . . . , Pn−1 such that P

α1−→ P1
α2−→ . . . Pn−1

αn−→ P ′. The set of traces of P ,
traces(P ), is defined to be the set of all infinite sequences of actions α1α2 . . . such that
P

α1−→ P1
α2−→ . . .. Finally, for w = α1α2 . . ., we write w for α1 α2 . . .

3 Schedulability

In this section we present a theory of schedulability for our calculus. We begin by
defining when a set of tasks is considered to be schedulable by a supply. Then we
present an alternative characterization based on a type of simulation relations and we
prove the two definitions to be equivalent. In what follows we write T∗ for the set
containing all processes of the form T1‖ . . . ‖Tn, n ≥ 1, and S∗ for the set containing
all processes of the form S1‖ . . . ‖Sn, n ≥ 1. For simplicity, we refer to elements of T∗

and S∗ simply as tasks and supplies, respectively.

Definition 1. A task T ∈ T∗ is schedulable under supply S ∈ S∗ if whenever T ‖S =⇒
P then P = δ and for all P

α−→ we have α ∩ R = ∅.

According to this definition, a task T is schedulable under supply S if at no point during
their interaction does the system deadlock and, moreover, no request for a resource
remains unsatisfied.

Example 2. Here follow some examples relating to the above definition.

– T
def= {r}:FIN is not schedulable under S

def= {r′}:FIN. We have T ‖S {r,r′}−→ and
the definition is violated.

– T
def= {r}:FIN is schedulable under S

def= {r, r′}:FIN. We have T ‖S {↔
r ,r′}−→

FIN‖FIN which satisfies the definition.

– T
def= {r}:FIN + ∅:{r}:FIN is schedulable under S

def= {r}:FIN. The composition

of the two processes has only one possible transition T ‖S {↔
r }−→ FIN‖FIN. Note that

the transition T ‖S
{r}
� {r}:FIN‖FIN at the lower-level of the semantics is pruned

by the preemption relation. Thus, the definition is satisfied. The same holds for

T
def= {r}:FIN+{r′}:FIN and S

def= {r}:FIN since {r′, r} ≺ {↔r }. This illustrates
that as long as there is some possible way of scheduling a task’s requirements by
an available supply, the task is considered to be schedulable by the supply. �
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Before moving on to our alternative schedulability definition we introduce the following
useful notation: For T ∈ T∗ and α, β ∈ Act, we write, β �T α, if there exists no γ such
that T

γ−→ T ′ and β ⊂ γ ⊆ α.

Definition 2. A relation S ⊆ T∗× S∗ is a supply simulation relation if for all (T, S) ∈
S, S −→, and, if S

α−→ S′ then

1. there exists T
β−→ T ′ with β ⊆ α and (T ′, S′) ∈ S, and

2. if T
β−→ T ′ with β �T α, then (T ′, S′) ∈ S.

If there exists a supply relation between T and S, then we write S |= T and we say that
S schedules T .

That is, a task and a supply are related by a supply simulation relation if (i) the supply
is able to offer resources to the task (S −→), (ii) if a supply offers a set of resources
then the task will be able to respond by employing some (or all) of these resources and
remain schedulable by the resulting state of the supply (clause 1), and (iii) given a set of
resources offered by the supply, any maximal transition by which the task can accept the
offered supply will result in a state that remains schedulable by the remaining supply
(clause 2). Here, by a maximal response of the task, we mean all greedy transitions β by
which the task can employ the offered resources α, that is, where β�T α. Note that any
non-maximal transition of T taking place as a response to S

α−→ would be subsequently
pruned in the composition S‖T as it would be preempted by greedier responses of T .
Therefore, such transitions can be ignored.

We may now prove that the two alternative ways of defining schedulability of a task
by a supply coincide.

Lemma 1. A task T ∈ T∗ is schedulable under supply S if and only if S |= T .

Proof: To begin with, suppose there exists a supply simulation relation R between
T and S. We will show that if S‖T α−→ S′‖T ′ then S′‖T ′ = δ, α ∩ R = ∅ and
(S′, T ′) ∈ R. So suppose that S‖T α−→ S′‖T ′, S

α1−→ S′ and T
α2−→ T ′, α = α1⊕α2.

We know that for some β ⊆ α1, T
β−→ T ′′ (Definition 2(1)). This implies that α2 ⊆ α1

(otherwise α1 ⊕α2 ≺ α1⊕β and S‖T  α−→). Consequently, we deduce that α∩R = ∅.
In addition, since T ′ is schedulable by S′, by Definition 2 we have that S′ −→ and for

each S′ β1−→ there exists T ′ β2−→ such that S′‖T ′ −→, that is, S′‖T ′ = δ. And, finally,
we may observe that there is no T

γ−→, α2 ⊂ γ ⊆ α1 (otherwise α1 ⊕ α2 ≺ γ ⊕ α2),
which, by Definition 2(2), implies that (S′, T ′) ∈ S.

Conversely, suppose that task T is schedulable by supply S. We will show that R =
{(S, T )|S is schedulable by T } is a supply simulation relation. Suppose (S, T ) ∈ R.
Since S‖T = δ, S −→. Furthermore, if S

α−→ S′ then T −→. Since T is schedulable

by S, there exists T
β−→ T ′, β ⊆ α. If not, that is for all T

γ−→ T ′′, γ ∩ α = γ,

then S‖T α′
−→, α′ ∩ R = ∅ which contradicts our assumption of T being schedulable

by S. Next, suppose that T
β−→ T ′, β ⊆ α and for no β ⊂ γ ⊆ α. Then, clearly,

S‖T α⊕β−→ S′‖T ′, where T ′ is schedulable by S′, which implies that (S′, T ′) ∈ R, as
required. �

We define when a task is schedulable and this is done in the following obvious way.
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Definition 3. A task T ∈ T∗ is schedulable if there exists a supply S with S |= T .

We observe that the crux of the schedulability of a task by a supply lies in the capability
of the task to operate acceptably for all possible behaviors of the supply. Furthermore,
at each point during its execution and for each supply provision of the supplier, the task
must behave well in all its nondeterministic executions that can take place by employing
the resources available. The notion of a cylinder, defined below is intended to capture
the relevant executions of the task given a behavior of the supply.

Definition 4. Given a task T ∈ T∗ and an infinite trace w = α1α2 . . ., we define the
w-cylinder of T to be the set A = ∪i≥1Ai, where

A1 = {(T, α1, P1)|T
α1−→ P1}

Ai = {(Pi, βi, P
′
i )|Pi

βi−→ P ′
i , βi �Pi αi, ∃(Q, γ, Pi) ∈ Ai−1}, i > 1

Furthermore, we say that an w-cylinder A = ∪i≥1Ai is live if (i) A contains no triple
of the form (Q,α, δ), (ii) Ai = ∅ for all i and (3)

⋃
(P,β,Q)∈Ai

β = αi.

Lemma 2. A task T ∈ T∗ is schedulable if and only if it possesses a live cylinder.

Proof: Suppose T has a live w-cylinder where w = α1α2 . . .. Consider supply S0

defined by the following set of equations Si
def= αi+1:Si+1. Then, we may confirm that

S0 |= T . The details are omitted. On the other hand, if T is schedulable, then there
exists a supply S that schedules it. If we consider a trace w = α1 α2 . . . of S, we may
construct an associated cylinder of T and confirm that it is live. �

3.1 Matching Supplies to Tasks

In this section we focus our attention to the problem of collecting the resource require-
ments of a task into a matching supply. Specifically, given a task, we would like to
generate a supply process which schedules the task and at the same time is optimal in
that (1) it does not reserve more resources than those required by the task and (2) it
provides all the alternative resource assignments in which the task can be scheduled.
Both of these properties are important during the compositional scheduling of real-time
tasks. The first property is clearly desirable since conservation of resources becomes
critical when real-time components are composed. For the second property, we observe
that capturing all possible ways of scheduling a task gives flexibility when one tries to
compositionally schedule a set of tasks where the challenge is to share the resources
between the tasks in ways that are acceptable to each one of them.

We begin by defining a function on combining supplies. This is helpful for a subse-
quent definition that considers matching supplies to tasks.

Definition 5. Given supplies S1 and S2 we define S1 ⊗ S2 =

S1 ⊗ S2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1 if S2 = FIN
S2 if S1 = FIN
Σi∈IΣj∈J αi ∪ βj :(

⊗
k∈I,αk�S1αi∪βj

Pk ⊗
⊗

l∈J,βl�S2αi∪βj
Ql)

if S1
def=
∑

i∈I αi:Pi and S2
def=
∑

j∈J βi:Qi
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Essentially, the joined supply S1 ⊗ S2, joins together the various summands of the
individual supplies as follows: in its topmost summand it unites all available grants of
S1 with all available grants of S2, while the continuation process consists of the join
of those continuations of S1 and S2 which appear after ”maximal” subsets of the initial
action in question. For example we have:

∅ : {cpu} : ∅ : FIN ⊗ ∅ : ∅ : {cpu} : FIN = ∅ : {cpu} : {cpu} : FIN
∅ : {cpu} : ∅ : FIN ⊗ (∅ : ∅ : {cpu} : FIN + {cpu} : ∅ : ∅ : FIN)

= ∅ : {cpu} : {cpu} : FIN + {cpu} : {cpu} : ∅ : FIN

Using this definition we now move to define the demand of a task. The demand of a
task is intended to capture the optimal supply that can schedule a task in the sense we
have already discussed. The main point to note in this definition is that we combine all
same-prefixed nondeterministic choices of a task by a singly-prefixed supply.

Definition 6. Given a task T
def=
∑

i∈I αi:Ti, we define its demand as follows:

demand(T ) def= Σi∈Iαi:
⊗

j∈I,αi=αj

demand(Tj)

Example 3. Consider tasks

T1 = {cpu} : ∅ : T1 + ∅ : {cpu} : T1

T2 = {cpu} : ∅ : ∅ : T2 + ∅ : {cpu} : ∅ : T2 + ∅ : ∅ : {cpu} : T2

T3 = {cpu} : ∅ : ∅ : T3 + ∅ : ({cpu} : ∅ : T3 + ∅ : {cpu} : T3)

Their demands are given by X1, X2 and X3 below, respectively.

X1 = {cpu} : ∅ : X1 + ∅ : {cpu} : X1

X2 = {cpu} : ∅ : ∅ : X2 + ∅ : {cpu} : {cpu} : X2

X3 = {cpu} : ∅ : ∅ : X3 + ∅ : ({cpu} : ∅ : X3 + ∅ : {cpu} : X3)

�

The next lemma considers the optimality of demand(T ) following the requirements
posed at the beginning of this section. We write w′ ≤ w for the infinite traces w′ =
α1α2 . . . and w = β1β2 . . ., if either w′ = w, or there exists j such that αj ⊂ βj and
αi = βi for all 1 ≤ i < j.

Lemma 3. A task T possesses a live w-cylinder if and only if there exists w′ ≤ w such
that w′ ∈ traces(demand(T )).

Proof: Suppose demand(T ) α1−→ T1
α2−→ T2

α3−→ . . .. We may show that for the w-
cylinder A = ∪i≥Ai, where w = α1α2 . . . we have Ti =

⊗
(P,β,Q)∈Ai

demand(Q)
and A is live. The details are omitted.

To establish the opposite direction suppose A = ∪i≥Ai is a live w-cylinder of T .
Now consider the w′-cylinder of T , B = ∪i≥Bi, where w′ = β1β2 . . . is defined such
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that β1 = α1, B1 = A1 and βi ∈ {γ1∪ . . .∪γn|Pi
γi−→, Pi ∈ {P |(P, α,Q) ∈ Bi−1}},

Bi = {(P, α,Q)|P α−→ Q,α �P βi, ∃(Q, γ, P ) ∈ Bi−1}. We may now prove, that
w′ ∈ traces(demand(T )) and, therefore, that it is a live cylinder of T . �

As a consequence of the result we conclude that a task T is schedulable by its demand.
Furthermore, demand(T ) may schedule all cylinders of T and it schedules them exactly,
i.e. it offers exactly the resources that are necessary for the scheduling.

3.2 Compositional Theory

We proceed to consider the schedulability problem of a set of tasks. The first issue we
tackle is the compositionality problem: If T1 is schedulable by S1 and T2 by S2 can we
combine S1 and S2 into a supply that schedules T1‖T2? We begin by noting a certain
subtlety in this problem which we need to consider while answering it.

Consider the tasks

T1 = {r}:∅:FIN + ∅:{r}:FIN and T2 = {r}:∅:FIN + ∅:{r}:{r}:FIN.

These tasks are schedulable under supplies S1 = ∅:{r}:FIN and S2 = {r}:∅:FIN,
respectively. That is, it is sufficient for task T1 to obtain resource r during the second
time unit and for task T2 during the first time unit. However, a supplyS = {r}:{r}:FIN,
offering r during both time units, fails to schedule T1‖T2. This is due to the fact that
the supply for resource r during the first time unit is intended for task T2 but may be
consumed by task T1 leading to a deadlock of the system during the third time unit.

To resolve this issue, we associate tasks with their matching supplies by annotating
each resource reference by a number which distinguishes the task in which the resource
is employed/supplied. Precisely, we assume that each task is associated with a resource
identity and if resource r is requested by a task with identifier i we write r[i] for the
request and, similarly, if a supply of r is intended for the task with identifier i we write
r[i] for the supply. So, we say that task {r[1]}:FIN is schedulable by supply {r[1]}:FIN
and task {r[2]}:FIN by supply {r[2]}:FIN. However, note that resources r[1] and r[2]
do refer to the same resource and for all other purposes should be treated as the same.
So, for example, {r[1]} ∩ {r[2]} = ∅. To model this precisely we write:

– P [i] for the process P with all its resources r renamed as r[i].
– α ∩R β for {r ∈ R|r[i] ∈ α, r[j] ∈ β, or r[i] ∈ α, r[j] ∈ β}

Furthermore, we use the notation α[i] = {r|r[i] ∈ α} and, if w = α1α2 . . ., w[i] =
α1[i]α2[i] . . .. We have the following result:

Lemma 4. If T1 is schedulable by S1, T2 is schedulable by S2 and S1‖S2 does not
deadlock, then T1[1]‖T2[2] is schedulable by S1[1]‖S2[2].

Proof: We will show that R, below, is a supply simulation relation.

R = {(T1[1]‖T2[2], S1[1]‖S2[2])|S1 |= T1, S2 |= T2, S1[1]‖S2[2] does not deadlock}
Let (T1[1]‖T2[2], S1[1]‖S2[2]) ∈ R. By the definition of R, S1[1]‖S2[2] −→. So con-
sider S1[1]‖S2[2] α−→ S′

1[1]‖S′
2[2]. It must be that α = α1[1]⊕α2[2], whereS1

α1−→ S′
1,

S2
α2−→ S′

2 and α1 ∩ α2 = ∅. Since S1 |= T1, S2 |= T2, we have T1
β1−→ T ′

1, S′
1 |= T ′

1,
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and similarly T2
β2−→ T ′

2, S′
2 |= T ′

2. In fact, for all T1
β1−→ T ′

1, β1 �T1 α1, it holds that

S′
1 |= T ′

1, and for all T2
β2−→ T ′

2, β2 �T2 α2, it holds that S′
2 |= T ′

2. This implies that for

all T1[1]‖T2[2]
β−→ T ′

1[1]‖T ′
2[2], β �T1[1]‖T2[2] α, (T ′

1[1]‖T ′
2[2], S′

1[1]‖S′
2[2]) ∈ R and

there exists at least one such α-transition. This completes the proof. �

However, note that even if S1‖S2 deadlocks, it is still possible that the schedules S1 and
S2 can be combined to produce a schedule for T1‖T2. In particular, we may suspect that
every infinite trace of S1‖S2 is capable of scheduling T1‖T2, and in fact we can show
that the part of the transition system that pertains to non-deadlocking behavior achieves
exactly that. The following operator on supplies extracts this type of behavior.

S1×S2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S1 if S2 = FIN
S2 if S1 = FIN
(α ∪ β):(S′

1 × S′
2) if S1 = α:S′

1, S2 = β:S′
2, α ∩ β = ∅, S′

1 × S′
2 = δ

δ if S1 = α:S′
1, S2 = β:S′

2, α ∩ β = ∅ or S′
1× S′

2 = δ

Σi∈I,j∈J(Si
1 × Sj

2) if S1 = Σi∈IS
i
1, S2 = Σj∈JS

j
2

Note that the set of recursive equations used in the definition of S1×S2 may allow more
than one solution. Consider, for example, S1 = {r1} : S1 and S2 = {r2} : S2. It is easy
to see that S1 × S2 = δ is a trivial solution. However, we are interested in the maximal
solution to this set of equations, which in this case is S1×S2 = {r1, r2} : S1 ×S2. For
finite-state processes, the maximal solution can be computed iteratively. Due to space
restrictions the proof is omitted.

It is easy to see that, if S1‖S2 does not deadlock then S1 × S2 = δ. However, the
opposite is not true. By the construction of ×, S1 × S2 selects the part of the transition
system of S1‖S2 that does not lead to deadlocked states. For example, consider

S1
def= {r}:{r}:FIN + ∅:{r}{r}:FIN and S2

def= ∅:{r}:FIN + {r}:∅:FIN

Then, although S1‖S2
{r}−→ {r}:FIN‖{r}:FIN = δ, S1 × S2 = {r}:({r} : {r}:FIN ×

∅:FIN), and ({r}{r}:FIN × ∅:FIN) = {r}{r}:FIN.

Lemma 5. If T1 is schedulable by S1, T2 is schedulable by S2 and S1 × S2 = δ, then
T1[1]‖T2[2] is schedulable by S1[1] × S2[2].

Proof: The proof is similar to that of the previous lemma. �

At this point we turn our attention to the problem of constructing an interface for a set
of mutually schedulable tasks. To do this, we employ the notion of demands and we
prove the following:

Lemma 6. If T1[1]‖T2[2] has a live w-cylinder then there exists a trace w′ ≤ w such
that w′ ∈ traces(demand(T1[1]) × demand(T2[2])).

Proof: Suppose that the w-cylinder of T1[1]‖T2[2] is live. It is easy to see that w[1]
and w[2] give rise to live cylinders in T1[1] and T2[2]. Then, by Lemma 3, there ex-
ist w1 ≤ w[1] and w2 ≤ w[2] such that w1 ∈ traces(demand(T1[1])) and w2 ∈
traces(demand(T2[2])). This implies that, w1 ∪w2 ≤ w is a trace of demand(T1[1])×
demand(T2[2]), as required. �
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This result implies that all alternatives of scheduling T1[1]‖T2[2] will be explored by
demand(T1[1])× demand(T2[2]). It can be extended to the composition of an arbitrary
number of tasks. We are now ready to present our main theorem:

Theorem 1. T1‖T2 is schedulable if and only if demand(T1[1])×demand(T2[2]) = δ.
Moreover, if it is schedulable, then it is schedulable by demand(T1[1])×demand(T2[2]).

Proof: Suppose T1[1]‖T2[2] is schedulable. Then, by Lemma 2 it has a live w-cylinder.
Consequently, by Lemma 6 there is a trace w′ ≤ w such that the w′ is a trace of
demand(T1[1])×demand(T2[2]). This implies that demand(T1[1])×demand(T2[2]) =
δ. On the other hand, if demand(T1[1]) × demand(T2[2]) = δ, then, since, addition-
ally, demand(T1[1]) schedules T1[1] and (T2[2]) schedules T2[2], then, by Lemma 5,
T1[1]‖T2[2] is schedulable by demand(T1[1]) × demand(T2[2]). �

Based on this result we may determine the schedulability and a related scheduler for
a set of tasks T1, . . . , Tn, as follows: For each task, extract its demand and compute
the combinations D1 = demand(T1) × demand(T2), D2 = D2 × demand(T3), . . .. If
this process does not reduce to some Di = δ then the tasks are schedulable by Dn−1.
Furthermore, according to Theorem 1, if they are indeed schedulable then Dn−1 = δ.
Thus, this method is guaranteed to produce a schedule if one exists.

4 Examples

Example 4. We first define a simple periodic task with period p and execution time w,
Taskw,p = T0,0,w,p, as follows:

Te,t,w,p =

⎧⎪⎪⎨
⎪⎪⎩

∅ : Te,t+1,w,p if e = w, t < p
T0,0,w,p if e = w, t = p
∅ : Te,t+1,w,p + {r} : Te+1,t+1,w,p if e < w,w − e < p− t
{r} : Te+1,t+1,w,p if e < w,w − e = p− t

Note that in our definition, the task cannot idle if idling will make it miss the deadline.
If the supply can avoid giving the resource to the task in this case, the system will have
an unmet resource request transition that signals non-schedulability (by Definition 1).
Let us consider an instance of a classical scheduling problem for a set of periodic tasks
running on a single processor resource: Task2,3‖Task2,7‖S, where S = {r} : S. In
the figure below, we show the initial part of the state space of the example. Each state is
represented as a tuple ij|km, where i and j are the first two parameters of the first task
and k and m are the first two parameters of the second task. The other two parameters
do not change and are omitted to avoid cluttering the figure. We also omit labels on the
transitions: all transitions are labeled by {↔r }.

00 | 00 11 | 01 22 | 02 00 | 13 11 | 14 22 | 15 00 | 26 11 | 00

01 | 11 12 | 12 01 | 24 12 | 25

22 | 01

12 | 11

00 | 12 11 | 13

01 | 23

...

...

The tasks are schedulable according to the Definition 1 and the transition system
of the composite process, shown above, can be seen as the specification of feasible
schedulers for the task set. Non-determinism in the transition system represent different
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decisions that a scheduler can make. For example, the trace along the top of the figure
corresponds to the rate-monotonic scheduling policy, which gives priority to Task2,3

as it has the smallest period.
We now consider the demand of a periodic task defined above. It is easy to see that

the task process is resource-deterministic, that is, its behavior is determined by the
availability of resources. For a resource-deterministic task, the demand is obtained by
a straightforward replacement of requested resources by matching offered resources.
Thus, demand(Taskw,p) = X0,0,w.p is defined below:

Xe,t,w,p =

⎧⎪⎪⎨
⎪⎪⎩

∅ : Xe,t+1,w,p if e = w, t < p
X0,0,w,p if e = w, t = p
∅ : Xe,t+1,w,p + {r} : Xe+1,t+1,w,p if e < w,w − e < p− t
{r} : Xe+1,t+1,w,p if e < w,w − e = p− t

It is easy to check that demand(Task2,3)‖demand(Task2,7) does not deadlock and
thus can schedule the two tasks according to Lemma 4.

Let us now consider a task with variable execution time which takes between b and
w time units to complete: Taskv

b,w,p = Taskb,p + Taskb+1,p + . . . + Taskw,p. One
can see that demand(Taskv

b,w,p) = demand(Taskw,p). This observation matches the
well-known fact from the real-time systems theory that for independent periodic tasks
it is sufficient to consider worst-case execution time of each task [17].

Example 5. To illustrate compositional analysis with partial supplies, we begin with a
simple example of time-partitioned supplies that are widely used in practice. Consider
a periodic time partition with period P , duration D ≤ P , and relative start time t0,
which essentially offers a resource r for the interval [t, t + D) during each period:
Partt0,D,P = P0,t0,D,P is defined as follows where, again, addition is modulo P :

Pt,t0,D,P =
{
{r} : Pt+1,t0,D,P if t0 ≤ t < t0 + D
∅ : Pt+1,t0,D,P otherwise

It is clear that partitions with the same period and non-overlapping service intervals
[t, t + D) do not conflict. We can now analyze schedulability of tasks allocated to a
partition separately from any other task in the system. It is, for example, trivial to see
that partition Partt0,D,P can schedule a task TaskD,P for any t0.

We can similarly define more complex partial supplies. Consider, for example, com-
positional scheduling based on periodic resource models [21,22]. A periodic resource
model is a supply that guarantees w units of resource execution within a period P ,
however, the availability of the resource within the period is unknown a priori. We can
straightforwardly model a periodic resource model as PRMw,P = demand(Taskw,P ).
We can then analyze whether a set of tasks is schedulable with respect to this supply.
This analysis will not be limited to independent periodic or sporadic tasks, unlike exist-
ing approaches in the literature.

As an example, consider the system T1 = Task1,3‖Task1,5‖PRM3,5. Figure 1
shows the initial state space using the same notation as above, except now the state tuple
also includes the state of the supply. Note that, in this transition system we have actions
pertaining to resource consumption, abbreviated by

↔
r , actions pertaining to resource
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r
r

rr

O

OrO O

r

00 | 00 | 00

11 | 01 | 11 01 | 11 | 11

12 | 02 | 12

01 | 01 | 01

12 | 12 | 22 02 | 12 | 12
r

13 | 13 | 13

02 | 02 | 02

Fig. 1. Scheduling with a periodic resource

requests, abbreviated by r, and idling actions. Recall that idling and consumed resource
actions are incomparable in the preemption relation, while idling preempts unsatisfied
resource requests. We see that a poor scheduling decision can make Task1,3 miss its
deadline. The scenario is seen on the right side of the figure: in the first two time units,
one unit of resource goes to T1,5 and the other unit of resource is denied to both tasks
(this can happen in any order). If on the third step the supply denies access to the
resource again, the first task cannot idle, thus we reach a transition labeled by {r},
which implies that the task misses its deadline, leading to a violation of Definition 1.

5 Conclusions

In this paper, we have presented PADS, a process algebra for resource demand and
supply. The algebra can be used to describe a process and its demand on resources nec-
essary for the execution of a real-time task as well as a supply process that describes the
behavior of a resource allocator. We have defined precisely the notion of schedulabil-
ity using demand and supply, that is, when a process can be scheduled under a supply
process, and provided a compositional theory of demand-supply schedulability. We be-
lieve that PADS is the first process algebra that can describe the behavior of demand
and supply processes and compositional schedulability between them.

There are several directions in which the current work can be extended. We are cur-
rently adding priorities to resource requests in the same way as in [13]. This allows us
to represent schedulability with respect to particular schedulers, which is often a more
practical question to analyze. We plan to extend the framework with the notion of or-
der between supplies. This notion will capture the “generosity” of a supply, that is, a
more generous supply will be able to schedule any task that the less generous supply
can. With this notion, we will be able to formally represent the hierarchical scheduling
approaches based on resource models [21] that rely on approximating the necessary
supply, making it more generous than necessary, in exchange for a simple representa-
tion. It would also be interesting to explore how to extend the notion of schedulability to
the notion of resource satisfiability between demand and supply of arbitrary resources
that are not shared mutually exclusively. Another extension is to explore demand and
supply processes in the presence of probabilistic behavior.
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Abstract. We introduce logics and automata based on memory event
clocks. A memory clock is not really reset: instead, a new clock is
created, while the old one is still accessible by indexing. We can thus
constrain not only the time since the last reset (which was the main lim-
itation in event clocks), but also since previous resets. When we introduce
these clocks in the linear temporal logic of the reals, we create Recursive
Memory Event Clocks Temporal Logic (RMECTL). It turns out to have
the same expressiveness as the Temporal Logic with Counting (TLC)
of Hirshfeld and Rabinovich. We then examine automata with recursive
memory event clocks (RMECA). Recursive event clocks are reset by sim-
pler RMECA, hence the name “recursive”. In contrast, we show that for
RMECA, memory clocks do not add expressiveness, but only concision.
The original RECA define thus a fully decidable, robust and expressive
level of real-time expressiveness.

1 Introduction

Finite automata is a widely used computational model to capture and anal-
yse the behavior of possibly concurrent systems. The main question is checking
whether an automaton satisfies a given specification, which can be represented
either by some temporal logic formula or by another automaton. The first case,
called model checking, is usually reduced to the second. In the second case, the
problem is called language inclusion between automata, which models step-wise
refinement.

Nowadays, real-time plays a crucial role in system design, especially in the
area of embedded systems. To capture the behavior of a real-time system, one
needs to augment the computational model with a notion of time. An important
model is timed automata (TA) [1], that are automata augmented with clocks used
to monitor the evolution of time. Timed automata offer tools [21,9,6] for many
real-time problems. Unfortunately, TA have an undecidable language inclusion
problem [1]. Around the same time, the satisfiability of natural real-time logics
such as Metric Temporal Logic (MTL) and Temporal Propositional Timed Logic
(TPTL) were also proved undecidable [5]. In fact, one of the central problems is
that TA are not closed under determinization (see [16,15,7] for discussions). The
situation contrasts strongly with the one of automata without real time, where
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the problems of complementation, language inclusion, emptiness, union and in-
tersection are decidable, as well as the satisfiability and validity of propositional
linear temporal logic (LTL). When all these problems are decidable, we call the
formalism (automata or logic) fully decidable. These negative results spurred a
quest for expressive but still fully decidable formalisms.

To overcome the problem, [3] proposed to restrict the behavior of TA clocks
in such a way that language inclusion becomes decidable. The key idea is that
the problematic clocks of TA are reset by non-deterministic, internal transitions,
that prevent determinization. In contrast, an event clock (EC) xp is reset when
the atomic proposition p occurs. The event clock resets and values are determined
by the input and thus Event Clock Automata (ECA) are determinizable, making
language inclusion decidable and thus enabling step-wise refinement.

Event clocks can also be introduced in temporal logics [20]. An event clock
constraint is naturally translated into a proposition �Ip, that means “the last
time that a p occurred was a time d ago, where d lies in I”. However, the expres-
siveness of ECA is rather weak. Indeed, events are just the last or next occurrence
of an atomic proposition. For instance, the property “p is continuously true in
interval (0, 1)” cannot be expressed by such an event clock formula: any model
where the distances between p’s are below 1 will see the clocks always below 1,
whether or not it satisfies this property. Therefore [11] introduced the notion of
“recursive” event. In a recursive event model, the reset of a clock is decided by a
lower-level automaton or formula. This automaton cannot read the clock that it
is resetting. Clock resets are thus still deterministic, but the concept of “event”
is now much more expressive. For instance, the property above can be expressed
as ¬ �(0,1) ¬p: �I is now a modality that can contain any subformula, and can
be nested. The temporal logic of recursive event clocks (variously called SCL [20]
or EventClockTL [11]) has the same expressiveness as Metric Interval Temporal
Logic MITL [2] (a decidable fragment of MTL where punctual constraints are
forbidden) in the interval semantics. First-and second-order monadic logics with
matching expressiveness have been provided [11], yielding a natural, robust, fully
decidable level of real-time expressiveness. However, the expressiveness of event
clock models has still been criticized, because event clocks can only constrain
the time since the last (or next) event. For instance, EventClockTL cannot ex-
press the assumption that no more than 3 requests per second will arrive, or the
requirement that these all requests will be treated within the next second, when
the treatment requires several steps.

In this paper, we address the above limitation and introduce memory clocks,
already sketched in [3]: “We could employ a clock xi

a that records the time since
the i-th-to-last occurrence of a”. A memory clock x is not really reset: instead, a
new clock is created, while the old one is still accessible by indexing: x1 will be
the usual value of the clock x, i.e. the time since last reset, while x2 will be the
time since the last but one reset. In general, xi will be the time since the last but i
reset. Said otherwise, a reset will save a copy of the clock of index i in the clock of
index i+1. It can be seen as a series of clock updates: x3 := x2;x2 := x1;x1 := 0.
Here, we will study the recursive variant, as explained above.
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Our first contribution is to extend the EventClockTL logic with memory
clocks. This gives us the memory event clocks logic (RMECTL), which we show
to be PSPACE-complete if the indices of the clocks are encoded in unary and
EXPSPACE-complete for the binary case. RMECTL is strictly more expressive
than EventClockTL. To obtain these results, we show that the expressiveness of
RMECTL is equivalent to the one of the Temporal Logic with Counting (TLC)
[13]. It is worth observing that TLC was inspired by a TPTL formula (see Sec-
tion 3.3). TPTL is a “really temporal” but highly undecidable logic [5]. We isolate
a decidable fragment of TPTL, which we call TPTL1R. It also has the same ex-
pressive power, showing the robustness of this level of expressiveness. Our second
contribution is to extend RECA with memory clocks. Surprisingly, RMECA are
as expressive as the original Recursive Event Clock Automata RECA [11]. How-
ever, in the binary case, they may be exponentially more succinct.

Structure of the paper. The rest of the paper is organized as follows. Sections 2
recalls preliminary notions. Section 3 examines real-time temporal logics. First, it
recalls TLC [18], then introduce RMECTL and shows its equivalence with TLC.
Then, it defines a fragment of TPTL that also has the same expressiveness.
Section 4 defines Recursive Memory Event Clock Automata (RMECA), studies
their properties, and concludes that they can be reduced to good old RECA [11].

2 Preliminaries

We briefly recall the various models of time that are used in the literature [4]. We
present our results in the interval semantics, that is the richest and most natural
(but also most difficult) model. We also recall clocks and their constraints.

2.1 Models of Time

Models of time can be linear, considering a single future, or branching, con-
sidering several alternative futures. We only consider linear time in this paper.
Classical automata and LTL also use a linear discrete model of time. The point
semantics adds a time stamp to each event of this discrete model.

Our goal here is to model real-time reactive systems, and thus we will use
the real numbers as our model of time. This avoid a premature commitment
to a discretization of time: even if computer systems are often discrete, their
discretization grain (e.g. clock speed) should not appear at requirements level.

Let P be a set of propositional symbols. A state over P is an element of 2P.
Let N the set of nonnegative integers, R denote the set of reals, R+ the set of
nonnegative reals.

In this paper, we use the interval semantics. An interval is a convex subset of
R+. An interval is singular if it is a singleton. Two intervals I and I ′ are said to
be adjacent when I ∩ I ′ = ∅ and I ∪ I ′ is an interval. We denote by IR+ the set
of intervals whose bounds are in R+. An interval sequence over R+ is an infinite
sequence I = I0I1 · · · of non-empty intervals of IR+ where
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1. successive intervals Ij and Ij+1 are adjacent and Ij < Ij+1, for all j ≥ 0
2. I is covering, i.e., for every t ∈ R+, there exists j ∈ N such that t ∈ Ij .

An interval state sequence (ISS) is a pair ρ = (σ, I) where σ = σ0σ1 · · · is an
infinite sequence of states and I = I0I1 · · · is an interval sequence. A interval
state sequence ρ can equivalently be seen as an sequence of elements in 2P×IR+ .
It can also be seen as a signal, i.e. a function from R+ to states: Let ρ = (σ, I) be
a interval state sequence and given t ∈ R+, let i ∈ N be the interval such that t ∈
Ii. We define ρ(t) as the state σi. A signal derived from an ISS will always have
finite variability. Below, our automata will consider two ISS that define the same
signal as equivalent, even if the intervals might be split differently. Our automata
assume finite variability. In contrast, our logics will admit infinite variability.

Given two intervals I1, I2, we define the interval between I1 and I2 by
BetwI (I1, I2) = {x | I1 < x < I2}.

Given a set S and an interval I, we define S Begins During I by ∃t ∈ (S ∩ I),
and �t′ ∈ S such that t′ < I. Symmetrically, we define S Ends During I iff ∃ t,
t ∈ (S ∩ I), and � t′ ∈ S such that t′ > I.

2.2 Clocks

The value of a clock is the time elapsed since its last reset. When we use real
numbers, there is not always a “last” reset but just a limit, e.g. when the reset
holds in an open interval. For this case, we will use non-standard clock values
of the form υ+. The set of non-standard reals, noted R+

ns, is the set of {υ, υ+ |
υ ∈ R+}, ordered by <ns as following: υ1 <ns υ+

2 iff υ1 ≤ υ2. R+
⊥ is R+

ns plus
a special value ⊥ for uninitialized clocks. ⊥ is not comparable to other values.

Let X be a finite set of clock names. A clock valuation over X is a mapping
ν : X → R+

⊥. The constraints over X, noted Φ(X), are defined by the following
grammar, where φ ranges over Φ(X), x ∈ X, c ∈ N, and ∼ ∈ {<, ≤, =, >, ≥}:

φ ::= true | x ∼ c | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

We write ν |= φ when the valuation ν satisfies the constraint φ. By convention,
the value ⊥ does not satisfy any constraint except true.

3 Temporal Logics

As we said in the Introduction, the goal of our quest is to construct two levels
of expressiveness: (i) fully decidable real-time logics to specify requirements on
systems; we examine them in this section; (ii) fully decidable real-time automata,
that can express these logics, and model systems (see Section 4). In this way,
specifications and systems can be handled uniformly, and verification can be
automated. We first recall Temporal Logic with Counting (TLC) [13], since our
new logics will turn out have the same expressiveness. Then we define the new
logics: RMECTL, that includes memory event clocks, and TPTL1R, a decidable
fragment of the logic TPTL with the same expressiveness.
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3.1 Temporal Logic with Counting

The Temporal Logic with Counting [13] is an extension of the Temporal Logic
of the Reals with Past by counting modalities. Here we use a slight variant,
called TLCI0 [18], where the counting modalities are C

(0,b)
k (φ) and

←−
C

(0,b)
k (φ).

The modality C
(0,b)
k (φ) says that φ will be true at least at k points in the interval

(t, t+ b), and its symmetrical
←−
C

(0,b)
k (φ) says that φ has happened k times in the

interval (t− b, t). The syntax of TLCI0 formulae is given by:

φ ::= p | φ1 ∧ φ2 | ¬ φ | φ1 U φ2 | φ1 S φ2 | C(0,b)
k (φ) | ←−C (0,b)

k (φ)

where p is a propositional symbol, k ∈ N, b ∈ N and φ1, φ2 ∈ TLCI0.
Formally, the semantics is as follows:

(ρ, t0) |= C
(0,b)
k (φ) iff ∃t1 · · · ∃tk, t0 < t1 < · · · < tk < t0 + b ∧

∧
0<i≤k

φ(ti)

(ρ, t0) |=
←−
C

(0,b)
k (φ) iff ∃t1 · · · ∃tk, t0 − b < t1 < · · · < tk < t0 ∧

∧
0<i≤k

φ(ti)

Let us also recall the classical semantics, that we will use throughout the paper:

(ρ, t) |= p iff p ∈ ρ(t)
(ρ, t) |= ¬φ iff (ρ, t) |= φ

(ρ, t) |= φ1 ∧ φ2 iff (ρ, t) |= φ1 and (ρ, t) |= φ2

(ρ, t) |= φ1Uφ2 iff ∃t′ > t.(ρ, t′) |= φ2 ∧ ∀t′′ ∈ (t, t′), (ρ, t′′) |= φ1

(ρ, t) |= φ1Sφ2 iff ∃t′ < t.(ρ, t′) |= φ2 ∧ ∀t′′ ∈ (t′, t), (ρ, t′′) |= φ1

The satisfiability problem for TLCI0 is PSPACE-complete when the indices k of
C

(0,b)
k is coded in unary, and EXPSPACE-complete when the indices are coded

in binary [18]. TLC is the special case where the upper bound b is 1.
Real-time logics are usually required to be scalable, in the sense that a change

of the time scale (e.g. from second to minutes), or said otherwise the multiplica-
tion by a rational number, should not affect their definition. The logics presented
here are not scalable, but their scalable version can be obtained by replacing the
integers by rationals in the definition. This may change the expressiveness results
below.

TLC was shown to be strictly more expressive than MITL with past with
a simple non-scalable example [14]: It uses a single proposition p, that is true
exactly at multiples of 2/3. Every MITL formula with past will eventually behave
like p,¬p, true, or false. In contrast, C(0,1)

2 (p) will be true on {((1 + 2i)/3, (2 +
2i)/3)|i ∈ N} indefinitely. Similarly, we see that the event clock yp for p will
always be between 0 and 1, but the memory event clock y2

p will periodically go
above 1. In general, memory clocks bring the same supplementary expressive
power, as we will see in the next section.

From [8] we can show that future TLC can be translated to the scalable MTL.
To the best of our knowledge, the question whether TLC is more expressive than
scalable MITL with past is open.
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3.2 Recursive Memory Event Clocks Temporal Logic

In this section we introduce the Recursive Memory Event Clocks Temporal
Logic (RMECTL). RMECTL extends EventClockTL of [20,11]. We generalise
its modalities by adding an index k: the recording modality �k

Iφ means that
the kth last time that φ was true is in interval t − I, and symmetrically the
predicting modality �k

Iφ says the kth next occurrence of φ will occur within I.
We count only one occurrence for an interval where φ is continuously true. Such
a modality in fact introduces a memory event clock: �k

Iφ means that we reset a
memory clock each time φ is true, and we constrain the kth clock value at the
time of evaluation. We denote the temporal logic where k ≤ n by RMECTLn,
for n ∈ N. If we allow only index 1, we find back EventClockTL.

Definition 1. The formulas of Recursive Memory Event Clock Temporal Logic
(RMECTL) are built from propositional symbols P, boolean connectives, the tem-
poral operators until and since and two symmetric real-time modalities, the
recording modality and predicting modality. The formulas φ of RMECTL are
defined by the grammar:

φ ::= p | �n
I φ | �n

I φ | φ1 ∧ φ2 | ¬φ | φ1 U φ2 | φ1 S φ2

where p is a propositional symbol, I ∈ IN is an interval, and n ∈ N+. Let φ be a
RMECTL formula and let ρ be a signal whose propositional symbols contain all
propositions that occur in φ. The semantics of the new modalities are:

(ρ, t) |= �n
I φ iff the set {tn | ∃t1, . . . , tn−1, s1, . . . , sn−1 : tn < sn−1 < tn−1 <

· · · < t1 < t,
∧

i≤n(ρ, ti) |= φ,
∧

i<n(ρ, si) |= φ} Ends During t− I
(ρ, t) |= �n

I φ iff the set {tn | ∃t1, . . . , tn−1, s1, . . . , sn−1 : tn > sn−1 > tn−1 >
· · · > t1 > t,

∧
i≤n(ρ, ti) |= φ,

∧
i<n(ρ, si) |= φ} Begins During t + I

where “Begins During” and “Ends During” have been defined in Section 2.1. The
intuition is that each ti is a witness of an interval where φ was true, that caused
a reset of the clock. They must be distinct intervals, i.e. they must be separated
by an interval where φ is false, as witnessed by si. Intuitively, the nth previous
reset is the maximum of the candidates tn, but this maximum might not exist.
Hence the indirect definition using “Begins During”.

RMECTL turned out to be very close to TLCI0:

Theorem 1. RMECTL and TLCI0 are intertranslatable linearly.

Proof. From RMECTL to TLCI0. We first simplify formulas of RMECTL.
First note that the left bound can always be set to 0 as follows: Define the
downward closure of an interval I as ↓ I = {t > 0 | ∃t′ ∈ I.t ≤ t′}. We use
�n

I φ ≡ ¬�n
↓I\I φ∧�n

↓Iφ. For instance, �n
(a,b]φ ≡ ¬�n

(0,a] φ∧�n
(0,b]φ. Second,

if the right bound of the interval is closed, we can open it. Define J φ as
φU true. Intuitively, it means that φ will be true for some time just after
the current point of time. Its dual K+ [10], i.e. ¬(¬φU true), means that φ
will be true arbitrarily close after the current point of time. Symmetrically,
Bφ, defined as φS true, means that φ was true for some time just before



204 J.J. Ortiz, A. Legay, and P.-Y. Schobbens

now, and K− [10], that φ will be true arbitrarily close before now. Then we
use �n

(0,b]φ = J �n
(0,b) φ if φ is left-closed, which is expressed by ¬φUφ. This

gives �n
(0,b]φ = (¬φUφ ∧J �n

(0,b) φ) ∨ (¬(¬φUφ) ∧�n
(0,b)φ). We are only left

with operators of the form �n
(0,b)φ, which mean that n resets occur within

interval (0, b). A reset for a predicting clock is a rising edge, i.e. φ becomes
true, and can be described by the formula: (K−¬φ ∧ φ) ∨ (¬φ ∧ K+φ), that
we abbreviate Rφ. A special case is when φ is true just after now (K+φ),
then �1

(0,b] is true, even without a rising edge.Thus we translate �n
(0,b)φ by

(¬K+φ′ ∧ C(0,b)
n (Rφ′)) ∨ (K+φ′ ∧ C

(0,b)
n−1 (Rφ′))

which is a formula of TLCI0. �n
(0,b)φ is translated symmetrically. All other

operators appear in both logics, and are translated trivially. This translation
is linear in the number of subformulas, i.e. in DAG size which is the relevant
measure for logics. It preserves or decreases the indices.

From TLCI0 to RMECTL. Let I be (0, b). C(0,b)
n (φ) means that there are at

least n points satisfying φ in t + (0, b), while �n
(0,b)φ means that t + (0, b)

comprises at least n rising edges (or n − 1 if it begins with a φ). This is
different as soon as φ is true on a non-singular φ-interval. But then, this
interval comprises an infinite number of φ points, and thus makes C

(0,b)
n (φ)

true. Otherwise, all φ-intervals are singular, erasing the difference. Thus
we translate C

(0,b)
n (φ) by (�(0,b)Jφ′) ∨ (�n

(0,b)φ
′).

←−
C

(0,b)
n (φ) is translated

symmetrically. All other operators appear in both logics, and are translated
trivially. This translation is linear in the number of subformulas (DAG size).

Corollary 1. RMECTL and TLCI0 have the same expressiveness.

Corollary 2. RMECTL is more expressive than MITL and EventClockTL.

Note that MITL, TLC1, and EventClockTL have the same expressiveness in
interval or signal semantics [11].

Corollary 3. Satisfiability and validity of RMECTL is PSPACE-complete if
indices are in unary, EXPSPACE-complete if indices are in binary.

3.3 The Temporal Logic of One Clock with Right Constraint

In this section, we introduce a fragment of the Timed Propositional Temporal
Logic (TPTL) [5] that is expressively equivalent to TLC, but offers a more
convenient syntax. TPTL is a temporal logic based on clock variables declared
by “freeze quantifiers”; these clock variables can then be used in explicit real-
time constraints. It is very natural and expressive, in particular more than MTL;
hence it was dubbed “a really temporal logic” by its authors. Alas, satisfiability
of full TPTL in most semantics is Σ1

1 -complete, i.e. highly undecidable [5]. The
example TPTL formula below, borrowed from [4]:

Gx.(p → F (q ∧ F (r ∧ x < 1)))
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where Fφ is true Uφ, and G its dual, expresses quite naturally that each time we
have p (a request), we will have q then r (it will be processed) within 1 second.
This formula spurred further research [12,18,8] to express it in more decidable
logics. Here, we propose instead a decidable fragment of TPTL that contains
this example. Recently, another fragment was shown decidable, but only for the
point semantics [17].

We use an adapted version of TPTL, called Clock Temporal Logic [19, p.46]:
We interpret it with a continuous semantics on the non-negative reals (rather
than a point semantics on the natural numbers [5]); we add the past modalities;
we interpret the quantifiers as clock resets (rather than as a freezed copy of
absolute time [5]).

Our fragment is called the One Clock Temporal Logic with constraints on the
Right, abbreviated TPTL1R to evoke its link with TPTL. In this logic, only
one clock can be active at a time. Furthermore, inside the scope of a clock, the
formulae must be positive and until/since can only contain a constraint in the
right side. The syntax is rather natural:

φ ::= p | x.φx | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2

φx ::= φ | x ∈ I | φx ∨ φx | φ ∧ φx | φ1Uφx | φ1Sφx

where φx means “a formula with clock variable x free”, p ∈ AP, I is an interval
with integer bounds.

The semantics, (ρ, t) |= φ, is defined as usual, plus for the reset quantifier:

(ρ, t) |= x.φx iff (ρ, t) |=t φx

For formulae φx, the real value v below is the time of the reset.

(ρ, t) |=v φ iff (ρ, t) |= φ

(ρ, t) |=v x ∈ I iff t− v ∈ I

(ρ, t) |=v φ′
x ∨ φx iff (ρ, t) |=v φ′

x or (ρ, t) |=v φx

(ρ, t) |=v φ′ ∧ φx iff (ρ, t) |= φ′ and (ρ, t) |=v φx

(ρ, t) |=v φ1Uφx iff ∃t′ > t.(ρ, t′) |=v φx ∧ ∀t′′ ∈ (t′, t).(ρ, t′′) |= φ1

(ρ, t) |=v φ1Sφx iff ∃t′ < t.(ρ, t′) |=v φx ∧ ∀t′′ ∈ (t′, t), (ρ, t′′) |= φ1

In the proof below, we use the fact that Q2MLO (called L2 in [12]) and TLCI0
have the same expressiveness [13]. Let us recall that Q2MLO is a first-order
monadic logic of order. It contains first-order logic, plus a metric quantifier:

φ ::= ∀t. φ1 | ¬φ1 | φ1 ∧ φ2 | t1 = t2 | t1 < t2 | ∃t ∈ t0 + I. φ(t, t0)

where I is a non-singular interval with integer bounds. Only two free variables
t, t0 are allowed in the quantified formula φ(t, t0).

Theorem 2. TPTL1R is as expressive as TLC, TLCI0, and Q2MLO.

Proof. It suffices to translate TLCI0 to TPTL1R, and then TPTL1R to Q2MLO.



206 J.J. Ortiz, A. Legay, and P.-Y. Schobbens

1. TPTL1R can express C
(0,b)
n :

C(0,b)
n (φ) = x.(F (φ ∧ F (φ ∧ . . . F (φ ∧ x < b))))

And symmetrically for the past operator.
2. The semantics of TPTL1R translates any φx appearing in x.φx into a first-

order formula φx(v). We note that: (i) disjunctions are in the scope of exis-
tential quantifiers only, so that we can move the disjunctions out; (ii) each
constraint tk − v ∈ I is also in the scope of existential quantifiers only, and
in particular ∃tk. Therefore the order of these existential quantifications is
irrelevant, and we move in front ∃tk (the quantification whose variable ap-
pears in the constraint) then the other variables. The constraints are now
part of a conjunction. We move each constraint just after its quantification.
We obtain a formula of the form ∃tk.tk−v ∈ I∧φ(v, tk), that we can express
in Q2MLO as ∃tk ∈ v + I.φ(v, tk).

4 Recursive Memory Event Clocks Automata

As explained in the introduction, our goal is to extend in the realm of real-
time the success of classical automata, that can express both specifications and
programs uniformly, and are thus the internal data structure used by most model-
checkers. Automata can deal with real-time by adding clocks that can be reset or
tested. Timed automata allow liberal use of their clocks, making their inclusion
problem undecidable. A more disciplined use of clocks is needed. Our proposal
follows the idea of ECA. Since ECA reset clocks only on the occurrence of their
atomic proposition, which is not very expressive, we proposed Recursive Event
Clock Automata (RECA) [11]. “Recursive” refers to the fact that the resets of
each clock of an automaton are controlled by a lower-level automaton. When
this automaton visits a monitored location, it resets the associated clocks: An
event-recording clock xA and an event-predicting clock yA can be associated
with each monitored automaton. Thus no automaton can reset its own clocks.
In particular, an automaton of level 0 has no subautomata, hence no clock.

Here, we examine whether introducing Memory Event Clocks (MEC) will
further increase their power. This leads to Recursive Memory Event Clock Au-
tomata (RMECA). Event-recording memory clocks xi

A record the time that has
expired since the ith last time at which the automaton A could pass through a
monitored location, and the event-predicting memory clock yiA always records
the amount of time that will expire until the ith next time at which the automa-
ton A could pass through a monitored location. Equivalently, a reset does not
destroy the previous values of a memory clock: instead, a new clock with value
0 is created, and earlier clocks are still accessible by the indexed notation. We
have already used MEC to define RMECTL in Section 3.2.

MEC are determined by the ISS (and not by the run as for TA). To deal with
MEC, it is easier to consider them as supplementary propositions. We have then to
make them mutually exclusive, so we consider atomic constraints. For a given clock
c, letRc = {r1, . . . , rn} be the constants to which it is compared inA, in increasing
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order. The atomic constraints for c are c = ⊥, c < r1, c = ri, c ∈ (ri, ri+1), c > rn.
An atomic constraint for A is a conjunction of atomic constraints for each clock.
No clock valuation can satisfy two different atomic constraints, and each constraint
of A can be expressed as a disjunction of atomic constraints. This latter property
allows us to use only atomic constraints, using more locations if needed.

We now examine the complexities due to continuous time. We want these au-
tomata to consider ISS that define the same signal as equivalent, even if the inter-
vals might be split differently. This goal will force the definition of deterministic
automata below. To simplify it, we label our locations not only with atomic propo-
sitions but also with “limits”. Intuitively, a past (resp. future) limit describes what
happened just before (resp. just after) the current time. Locations where some
limit is different from the current label are called singular : only a single instant
can be spent there. From a singular location, we can only make a transition to a
non-singular location, where the labelling must be as predicted by the limit of the
singular location. The past limit of / is false only in initial locations.

Given a set propositions P, the limit closure (Limit(P)) is the set {p,−→p ,←−p |
p ∈ P ∪ {/}}. −→p is the future limit of p and ←−p is the past limit of p.

Definition 2. A Recursive Memory Event Clock Automaton (RMECA) is a
tuple A = (P,S,S0,→, C, γ,M,F), such that:

1. P is a set finite set of propositional symbols.
2. S is a finite set of locations and S0 ⊆ S is the set of starting locations.
3. →⊆ S × S are the transitions.
4. A finite set of atomic constraints C, containing clocks xi

B or yiB, with B a
lower-level RMECA.

5. γ : S → 2Limit(P∪C) is a function which labels each location s ∈ S with the
set of limits of propositions and constraints that are true in that location.

6. M ⊆ S is the set of monitored locations: when the automaton visits such a
location, it resets the associated clock.

7. F ⊆ S is a set of Büchi accepting locations.

We now define when a RMECA accepts an ISS ρ, thanks to a timed run. This
is the time t when the automaton can visit a monitored location.

Definition 3. A RMECA A accepts a signal ρ at time t, if there exist an infinite
timed run θ = (s, I) such that following conditions holds:

1. the run starts in a starting location s0 ∈ S0.
2. for all i > 0, the run either follows a transition: si−1 → si or stutters:

si−1 = si.
3. It is in a monitored location at time t: θ(t) ∈ M .
4. The labelling of the location corresponds to the ISS and satisfies the limits

and clock constraints: ∀t′ ∈ R+, (ρ, t) |= γ(θ(t)).
5. It visits infinitely often a Büchi location.

The clock valuation function over a lower-level RMECA at A and time t at ρ, is
noted νρ

t : CA → R+
⊥. It assigns a (non-standard) positive real, or undefined, to

each clock variable. The resets are done when A can visit a monitored location.
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Given t and ρ, the reset interval of ynA is the interval In such that there are
non-empty intervals I1, · · · , In−1 where:

1. t < I1 < · · · < In,
2. ∀i ≤ n, ∀r ∈ Ii,A accepts ρ in r
3. ∀i < n,BetwI (Ii, Ii+1) is not empty and ∀r ∈ BetwI (Ii, Ii+1),A does not

accept ρ in r
4. ∀r ∈ BetwI ({t}, I1),A does not accept ρ in r.

Note that I1 might begin just after t, in which case the last condition is vacuously
true. The reset interval for a recording clock is symmetric. The value of a clock is:

νρ
t (xn

A) =

⎧⎨
⎩

t− r if the reset interval of xn
A is (l, r] or [l, r]

(t− r)+ if the reset interval of xn
A is (l, r) or [l, r)

⊥ if xn
A has no reset interval

Symmetrically,

νρ
t (ynA) =

⎧⎨
⎩

l − t if the reset interval of ynA is [l, r) or [l, r]
(l − t)+ if the reset interval of ynA is (l, r) or (l, r]
⊥ if ynA has no reset interval

The logic RMECTL and RMECA in fact use the same memory clocks:

Fig. 1. The value of yn
A and its reset interval In

Theorem 3. νρ
t (xn

A) ∈ I iff (ρ, t) |= �n
I p

where p is a proposition such that (ρ, t) |= p iff A accepts ρ at time t.

4.1 Properties of RMECA

We now show here that RMECA inherit all good properties of RECA and ECA:
they are determinizable and closed over all boolean operations. The proofs are
the same as for RECA [19], replacing clocks by memory clocks. In view of the fact
that we later show that they are expressively equivalent, this seems obvious, but
(i) we need those properties to prove the equivalence, and (ii) the direct proofs
give algorithms that are more efficient, since the translation of the next section
is exponential.

We first adapt the definition of determinism to cater for continuous time [19]:

Definition 4. A RMECA A = (P,S,S0,→, C, γ,M,F), is deterministic iff:

1. Distinct initial locations s1 = s2 ∈ S0 have distinct labellings: γ(s1) = γ(s2)
2. Successive locations s1 → s2 have distinct labellings.
3. Distinct successor locations s2 = s3, s1 → s2, s1 → s3 have distinct labellings.
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MA1

-rq-qp
yA1<1
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MA2

-r q -q p
yA2<1

-p

Fig. 2. A RECA for Gx.(p → F (q ∧ F (r ∧ x < 1)))

The determinism ensures that, at each time t during a run, the choice of the next
location is uniquely determined by the current location of the automaton and
(ρ, t). Condition (2) ensures that the time at which to leave a location is uniquely
given by the signal ρ. Therefore there is at most one (signal) run for each ρ.

Theorem 4. For any RMECA A, we construct a deterministic Rabin RMECA
A′ that accepts the same language. If A has n locations, A′ has 2O(nlogn) locations
and the same clocks and subautomata.

Note that the time of acceptance also preserved by determinization.

Theorem 5. The class of RMECA-recognizable timed languages is closed under
union, intersection and complementation.

Theorem 6. The emptiness, universality, and language inclusion problems for
RMECA are EXPSPACE-Complete.

This differs from RECA and ECA, where those problems are PSPACE-complete.
The higher complexity is only due to the indices n of the clocks, that can be
expressed compactly (in logn) in binary notation, while their implementation
requires n clocks. If the indices are expressed in unary notation, these problems
are PSPACE-complete.

4.2 From RMECA to RECA

Memory clocks allow to measure distances from several resets. But do they really
increase the expressiveness when placed inside automata? The answer is positive
for ECA, but negative for RECA and TA. Intuitively, automata can already count
resets (though less concisely). For an example, consider again the formula [4]:

Gx.(p → F (q ∧ F (r ∧ x < 1)))

Assuming that p and q do not occur together on a non-singular interval (which
is always the case in point semantics), this formula can be translated to the
RECA of Fig. 2, that counts modulo 2. To save space, we have drawn the main
automaton and its two subautomata A1, A2 with the same transitions. All states
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are accepting. A1 is a copy of the figure where clocks constraints are removed,
and the location marked MA1 is the only monitored location, and similarly for
A2. The main automaton has the clock constraints, but no monitored locations.
Although the formula conceptually starts an infinite number of clocks x, this
automaton shows that two clocks suffice.

More generally, we can use counting to eliminate memory event clocks:

Theorem 7. For any RMECA, we can construct a RECA that accepts the same
language.

Proof. Let A be the initial RMECA. To simulate a memory clock xn
C where C

is a subautomaton of A, we must keep track of the last n events and thus use
n clocks. The clocks must be used in a rotating manner, since we cannot copy
them. We can assume that C is deterministic, since RMECA are determinizable.
To reset them, we augment C to count modulo n, and make n copies C′(i) with
monitored states that differ by the count only.

Let C′(i) (with i < n) be the automaton:

1. Its symbols are the same: P′ = P
2. Its states S′ = S × [0..n) are pairs (s, j) where s is a state of C, and j < n

counts the number of times we entered a monitored region, modulo n;
3. S′

0 = S0 × {0};
4. The copy C′(i) monitors states of count i: S′

m = Sm × {i};
5. The transitions update the count when entering a monitored region: (s, j) →

(s′, j′) iff s → s′, j = j′, (s ∈ Sm if s′ ∈ Sm) or s → s′, j′ = j + 1 mod n, s ∈
Sm, s′ ∈ Sm;

6. The labellings are unchanged: γ′((s, j)) = γ(s);
7. The accepting states are unchanged: F ′ = F × {0..n− 1}.

Each C′(i) is bisimilar with C. C visits a monitored state iff (exactly) one of
the C′(i) does. Therefore the set of values of the clocks is the same:

{νρ
t (xC′(i)) | i < n} = {νρ

t (xj
C) | 0 < j ≤ n}

Now we translate the constraints that appear in the upper level automaton: the
value of xn

C is the maximal value of this set. Thus a constraint xn
C < c is translated

by
∧

i<n xC′(i) < c (idem for ≤), symmetrically xn
C > c by

∨
i<n xC′(i) > c (idem

for ≥), and xn
C = ⊥ by

∨
i<n xC′(i) = ⊥. x = c is considered as an abbreviation

for x ≥ c ∧ x ≤ c.

4.3 From RMECTL to RMECA

We briefly present the construction of a RMECA from a RMECTL formula.

Theorem 8. For every RMECTL formula φ, we can construct a RMECA Aφ

that accepts ρ at time t iff (ρ, t) |= φ.

The construction is as in [19], with memory clocks instead of clocks. The trans-
formation is done level by level, where the level of a formula is the nesting depth
of real-time modalities. A formula �n

I φ is translated as constraint xn
Aφ

∈ I. The
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formula φ is recursively transformed in a tableau automaton for continuous time,
where the monitored states are the states containing φ. The construction is ex-
ponential in the size of the non-real time part of the formula, but linear in the
real-time part.

5 Conclusions

Recursive event clocks have been criticized to be too weak as they only record
the time to next/previous event. In this paper, we have introduced memory event
clocks that are designed to overcome this limitation. We presented them in the
interval-based semantics, both to ease comparison with related work and since
this setting is more general and more difficult than point semantics.

When we introduce such clocks in a temporal logic, we obtain RMECTL.
RMECTL allows punctuality constraints and allows constraints on the nth next
(nth last) time a formula will be (was) true. Still, we have shown that RMECTL
has the same expressiveness and complexity as TLCI0.

We also identified a fragment of TPTL that is expressively equivalent and
decidable. We conjecture that a larger fragment of TPTL is decidable.

The operational nature of these clocks blends nicely with automata, giving
RMECA. They keep all the nice properties of the original event clock automata.
They are as expressive as our RECA [11], showing that TLC was already included
in RECA, under finite variability. The increase of expressive power is thus modest
enough to disappear at automata level. In other words, the criticism was not
founded with respect to RECA.

Automata are known to be equivalent to second-order quantification, and
this opens the corresponding logical question, whether Q-MITL and Q-TLC,
(i.e. with second-order quantification that does not to cross scope with real-
time operators) are equivalent. Our results settles this question only under finite
variability. Another open question is to characterize the strongest first-order real-
time temporal logic included in RECA, beyond TLC perhaps. It is also open,
whether TLC is more expressive than scalable MITL with past.
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{sproston,troina}@di.unito.it

Abstract. Probabilistic timed automata are an extension of timed au-

tomata with discrete probability distributions. Simulation and bisimula-

tion relations are widely-studied in the context of the analysis of system

models, with applications in the stepwise development of systems and in

model reduction. In this paper, we study probabilistic timed simulation

and bisimulation relations for probabilistic timed automata. We present

an EXPTIME algorithm for deciding whether two probabilistic timed

automata are probabilistically timed similar or bisimilar. Furthermore,

we consider a logical characterization of probabilistic timed bisimulation.

1 Introduction

The increasing complexity of embedded and networked technologies has lead to a
growing demand for formal techniques to reason about their safety, reliability and
efficiency. In particular, formal modelling languages for describing systems have
been developed, together with associated automatic verification techniques. We
consider the case of real-time systems, in which timing information is associated
with system behaviour, which can be reflected in system choices (for example,
the system times-out if a response has not been received within 30ns) and in
measures such as timeliness and efficiency (for example, a system is regarded as
being timely if a leader is elected within 1s after a new node joins the network).
A widespread example of a system description formalism for real-time systems
is timed automata [1]. We also consider probabilistic systems, in which system
behaviour is associated with a quantity representing its relative likelihood (for
example, a message is lost with probability 0.01). When modelling probabilis-
tic systems, it is often convenient, for representing interleaving between parallel
components or for abstraction, to consider formalisms which include both non-
deterministic and probabilistic choice, such as those based on Markov decision
processes [2] or Segala’s probabilistic automata [3,4]. In certain cases, our aim is
to model probabilistic real-time systems, for which it is important to model both
timed and probabilistic behaviour within the same system model. An example
of a formalism for such systems, based on a combination of timed automata
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and Segala’s probabilistic automata, is probabilistic timed automata [5]. Prob-
abilistic timed automata have been used previously to model systems such as
the IEEE 1394 root contention protocol, the backoff procedure in IEEE 802.11
Wireless LANs, and the IPv4 Zeroconf protocol [6,7].

In the field of formal modelling of systems, reasoning about the same system
at different levels of detail using the notions of refinement and abstraction is
well-established. Both notions involve the use of a relation between two system
models A and B: the relation establishes that A refines B, or, equivalently, that B
is an abstraction of A. These notions can be used in two different ways. Firstly,
they offer mechanisms for the stepwise development of system models. That
is, the system modeller starts from an abstract description of the system, then
refines successively this description to obtain a detailed system model. Secondly,
abstraction can be used in the context of system analysis: a system model may
be too large to allow its analysis within the resources available, and therefore a
smaller model which abstracts the original one can be constructed and analyzed.

An example of a relation for refinement and abstraction of system models is
simulation [8]. This relation is defined on the states of the two models A and B.
If state sB of B simulates state sA of A, then any single transition from sA can
be mimicked from sB, and the states reached by these transitions are also in the
simulation relation. If the converse also holds (that is, also any single transition
from sB can be mimicked from sA), then the relation is a bisimulation [9,10].
Simulation and bisimulation relations have been considered for real-time sys-
tems: in this paper we consider timed (rather than time-abstract) versions of
these relations. Deciding timed simulation and bisimulation for timed systems
is in EXPTIME [11,12]. Similarly, deciding timed alternating (bi)simulation for
timed games, which can be used to model real-time controller synthesis prob-
lems, is also in EXPTIME [13]. Simulation and bisimulation have also been
considered for Markov decision processes or probabilistic automata models: de-
ciding simulation and bisimulation can be done in polynomial time [14,15]. The
relations can also be accompanied by a logical characterization: in the case of
bisimulation, this concerns in identifying a logic such that, whenever two states
satisfy the same formulas of the logic, then the two states are bisimilar. The log-
ical characterization of timed bisimulation for a subclass of timed systems has
been considered in [16], whereas the logical characterization of timed alternating
simulation for timed games has been presented in [13] (this result also provides
a logical characterization for simulation and bisimulation for timed automata).
In both cases a timed modal logic, based on Hennessy-Milner logic [17], or on
temporal logic without the until operator, is considered. Instead, for probabilis-
tic automata, a logical characterization of bisimulation has been presented in
terms of a probabilistic extension of Hennessy-Milner logic [18].

In this paper we consider timed simulation and bisimulation relations for prob-
abilistic timed automata, both in terms of algorithms for deciding such relations
and in terms of a logical characterization of bisimulation. Such timed simu-
lation and bisimulation relations for Segala’s probabilistic automata enriched
with timing durations have been presented in [4]. Given that probabilistic timed
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automata are a generalization of both timed automata and Segala’s probabilistic
automata, our algorithm is inspired by [12,13] for timing aspects, and by [14,15]
for probabilistic aspects. More precisely, a variant of the classical region graph is
constructed from two probabilistic timed automata, on which an operator, which
can determine whether sets of states are related using certain sub-procedures
taken from [14,15], is iterated. We show that, as for timed automata, decid-
ing whether two probabilistic timed automata are related by (bi)simulation is
EXPTIME-complete. The logical characterization that we present considers a
logic in which the classical diamond operator is replaced with a diamond opera-
tor with a time constraint, as in [13], and which features probability thresholds,
as in [18]. We also treat probabilistic timed (bi)simulation relations in the sense
of [3,4], which consider convex combinations of identically labelled transitions in
order to represent randomized choice between nondeterministic alternatives.

We briefly discuss related work. Jensen and Gregersen [19,20] presented a
model similar to probabilistic timed automata, but which cannot have nonde-
terministic choice between transitions labelled with the same action. They con-
sidered a logical characterization of timed bisimulation for their formalism, and
showed that timed bisimulation between acyclic versions of their models is de-
cidable. Yamane [21] studied timed simulation on probabilistic timed automata.
However, although introducing a region-graph construction, the possibility of ob-
taining an algorithm was mentioned only briefly. In particular, the key concept
of a finite sampling of timing durations [11,12] was missing, and the definition of
how to relate probability distributions at the region-graph level was incomplete.
Instead we provide a detailed description of an algorithm. Furthermore, we also
establish that our algorithm matches the known lower bound, and consider also
probabilistic timed (bi)simulation. Time-abstract bisimulation for probabilistic
timed automata was considered in [22].

2 Probabilistic Timed Automata

Notation. We use R≥0 to denote the set of non-negative real numbers and N
to denote the set of natural numbers. A discrete probability distribution over a
countable set Q is a function μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. For a

function μ : Q → R≥0 we define support(μ) = {q ∈ Q | μ(q) > 0}. Then for an
uncountable set Q we define Dist(Q) to be the set of functions μ : Q → [0, 1], such
that support(μ) is a countable set and μ restricted to support(μ) is a distribution.
For q ∈ Q, let {q �→ 1} be the point distribution at q which assigns probability 1
to q. Let {μ1, ..., μk} be a finite set of distributions over Q, and let c1, ..., ck be
a sequence of real numbers in [0, 1] such that

∑
1≤i≤k ci = 1. Then the convex

combination
∑

1≤i≤k ciμi is the distribution μ defined by μ(q) =
∑

1≤i≤k ciμi(q)
for each q ∈ Q.

Probabilistic Timed Labelled Transition Systems. A probabilistic timed
labelled transition system (PTLTS) P = (S, S̄,Act ,→) comprises the following
components:



216 J. Sproston and A. Troina

– A possibly uncountable set of states S with initial states S̄ ⊆ S.
– A finite set Act of actions.
– A possibly uncountable timed, probabilistic, nondeterministic transition re-

lation →⊆ S × R≥0 × Act × Dist(S).

The transitions from state to state of a PTLTS are performed in two steps: given
that the current state is s, the first step concerns a nondeterministic selection of
(s, d, a, μ) ∈→, where d and a are the duration and the action of the transition,
respectively; the second step comprises a probabilistic choice, made according to
the distribution μ, as to which state to make the transition to (that is, we make
a transition to a state s′ ∈ S with probability μ(s′)).

Syntax of Probabilistic Timed Automata. Let X be a finite set of real-
valued variables called clocks, the values of which increase at the same rate as
real-time. The set CC (X ) of clock constraints over X is defined as the set of
conjunctions over atomic formulas of the form x ∼ c, where x, y ∈ X , ∼∈ {<,≤,
>,≥,=}, and c ∈ N.

A probabilistic timed automaton (PTA) A = (L, L̄,Act ,X , inv , prob) is a tuple
consisting of the following components:

– A finite set L of locations with the initial locations L̄ ⊆ L.
– A finite set X of clocks.
– A finite set Act of actions.
– A function inv : L → CC (X ) associating an invariant condition with each

location.
– A finite set prob ⊆ L× CC (X ) × Act × Dist(2X × L) of probabilistic edges.

A probabilistic edge (l, g, a, p) ∈ prob is a tuple containing (1) a source location
l, (2) a clock constraint g, called a guard, (3) an action a, and (4) a probability
distribution p which assigns probability to pairs of the form (X, l′), where X is
a set of clocks to be reset and l′ is a location. The behaviour of a PTA takes a
similar form to that of a timed automaton [1]: in any location time can advance
as long as the invariant holds, and a probabilistic edge can be taken if its guard
is satisfied by the current values of the clocks. PTA generalize timed automata in
the sense that, once a probabilistic edge is nondeterministically selected, then the
choice of which clocks to reset and which target location to make the transition
to is probabilistic.

The size |A| of the PTA A is |L|+|X |+|inv |+|prob|, where |inv | represents the
size of the binary encoding of the constants used in the invariant condition, and
|prob| includes the size of the binary encoding of the constants used in guards
and the probabilities used in probabilistic edges (probabilities are expressed as
a ratio between two natural numbers, each written in binary).

Semantics of Probabilistic Timed Automata. We refer to a mapping v :
X → R≥0 as a clock valuation. Let RX

≥0 denote the set of clock valuations. Let
0 ∈ RX

≥0 be the clock valuation which assigns 0 to all clocks in X . For a clock
valuation v ∈ RX

≥0 and a value d ∈ R≥0, we use v+d to denote the clock valuation
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obtained by letting (v + d)(x) = v(x) + d for all clocks x ∈ X . For a clock set
X ⊆ X , we let v[X := 0] be the clock valuation obtained from v by resetting
all clocks in X to 0; formally, we let v[X := 0](x) = 0 for all x ∈ X , and let
v[X := 0](x) = v(x) for all x ∈ X \X . The clock valuation v satisfies the clock
constraint ϕ ∈ CC (X ), written v |= ϕ, if and only if ϕ resolves to true after
substituting each clock x ∈ X with the corresponding clock value v(x).

The semantics of the PTA A = (L, L̄,Act ,X , inv , prob) is the PTLTS [[A]] =
(S, S̄,Act ,→) where:

– S = {(l, v) | l ∈ L and v ∈ RX
≥0 s.t. v |= inv(l)} and S̄ = {(l,0) | l ∈ L̄};

– → is the smallest set such that ((l, v), d, a, μ) ∈→ if there exist d ∈ R≥0 and
a probabilistic edge (l, g, a, p) ∈ prob such that:
1. v + d |= g, and v + d′ |= inv(l) for all 0 ≤ d′ ≤ d;
2. for any (X, l′) ∈ 2X × L, if p(X, l′) > 0 then (v + d)[X := 0] |= inv(l′);
3. for any (l′, v′) ∈ S, we have that μ(l′, v′) =

∑
X∈Reset(v,d,v′) p(X, l′),

where Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}.

Given the state (l, v) and the duration d ∈ R≥0 such that v + d′ |= inv(l)
for all 0 ≤ d′ ≤ d, in the sequel we often write (l, v) + d to denote the state
(l, v + d). By abuse of notation, we also write ((l, v), d, a, p) ∈→ to denote the
existence of ((l, v), d, a, μ) ∈→ such that a probabilistic edge (l, , , p) ∈ prob is
used to define ((l, v), d, a, μ) according to the second point in the definition of
the semantic PTLTS of the PTA.

Composition of Probabilistic Timed Automata. To aid higher-level mod-
elling, it is often useful to define complex systems as the parallel composition of
a number of interacting sub-components. The definition of the parallel compo-
sition operator ‖ of PTA uses ideas from the theory of (untimed) probabilistic
automata [3] and classical timed automata [1], and was presented in [6]. Let
Ai = (Li, L̄i,Act i,Xi, inv i, probi) for i ∈ {1, 2} and assume that X1 ∩ X2 = ∅.
Given p1 ∈ Dist(2X1 × L1) and p2 ∈ Dist(2X2 × L2), we define the distribu-
tion p1⊗p2 ∈ Dist(2X1∪X2 × (L1 × L2)) in the following way: for each X1 ⊆ X1,
X2 ⊆ X2, l1 ∈ L1 and l2 ∈ L2, let p1⊗p2(X1∪X2, (l1, l2)) = p1(X1, l1)·p2(X2, l2).
The parallel composition of two PTA A1 and A2 is the PTA

A1‖A2 = (L1 × L2, L̄1 × L̄2,Act1 ∪Act2,X1 ∪ X2, inv , prob)

such that

– inv(l1, l2) = inv1(l1) ∧ inv2(l2) for all (l1, l2) ∈ L1 × L2;
– ((l1, l2), g, a, p) ∈ prob if and only if one of the following conditions holds:

1. a ∈ Act1 \ Act2 and there exists (l1, g, a, p1) ∈ prob1 such that p =
p1⊗{(∅, l2) �→ 1};

2. a ∈ Act2 \ Act1 and there exists (l2, g, a, p2) ∈ prob2 such that p =
{(∅, l1) �→ 1}⊗p2;

3. a ∈ Act1 ∩ Act2 and there exists (li, gi, a, pi) ∈ probi for i = 1, 2 such
that g = g1 ∧ g2 and p = p1⊗p2.
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3 Algorithms for Timed Simulation and Bisimulation

Timed Simulation and Bisimulation. We now define probabilistic timed
simulation in the manner of [4,21]. Given two sets Q1 and Q2, let R ⊆ Q1 ×Q2

be a binary relation. Let μ1 ∈ Dist(Q1) and μ2 ∈ Dist(Q2) be distributions on
Q1 and Q2, respectively. A weight function [23] for (μ1, μ2) with respect to R is
a function Δ : Q1 ×Q2 → [0, 1] such that:

1. Δ(q1, q2) > 0 implies (q1, q2) ∈ R;
2.
∑

q2∈Q2
Δ(q1, q2) = μ1(q1) for each q1 ∈ Q1;

3.
∑

q1∈Q1
Δ(q1, q2) = μ2(q2) for each q2 ∈ Q2.

The lifting of R is a relation L(R) ⊆ Dist(Q1) × Dist(Q2) such that μ1L(R)μ2

if there exists a weight function for (μ1, μ2) with respect to R. When clear from
the context, we use R also to refer to the lifting L(R).

Let P = (S, S̄,Act ,→) be a PTLTS. A binary relation R ⊆ S × S is a
timed simulation if s1Rs2 implies that, for each (s1, d, a, μ1) ∈→, there exists
(s2, d, a, μ2) ∈→ such that μ1Rμ2. Given two states s1, s2 ∈ S, we write s1 2 s2

if there exists a timed simulation R such that s1Rs2. A timed bisimulation is
a symmetric timed simulation. Given two states s1, s2 ∈ S, we write s1 ≈ s2 if
there exists a timed bisimulation R such that s1Rs2.

Let s ∈ S, d ∈ R≥0 and a ∈ Act . Consider the largest set {μ1, ..., μk} of
distributions over S such that (s, d, a, μi) ∈→ for 1 ≤ i ≤ k. Then the tu-
ple (s, d, a, μ) is a combined transition if there exists a sequence c1, ..., ck of
real numbers in [0, 1] such that

∑
1≤i≤k ci = 1 where μ =

∑
1≤i≤k ciμi. We

let Combined(s, d, a) denote the set of combined transitions associated with s,
d and a. A binary relation R ⊆ S × S is a probabilistic timed simulation if
s1Rs2 implies that, for each (s1, d, a, μ1) ∈→, there exists a combined transition
(s2, d, a, μ2) ∈ Combined(s2, d, a) such that μ1Rμ2. Given two states s1, s2 ∈ S,
we write s1 2p s2 if there exists a probabilistic timed simulation R such that
s1Rs2. A probabilistic timed bisimulation is a symmetric probabilistic timed
simulation. Given two states s1, s2 ∈ S, we write s1 ≈p s2 if there exists a
probabilistic timed bisimulation R such that s1Rs2.

Let A = (LA, L̄A,ActA,XA, invA, probA) and B = (LB, L̄B,ActB,XB, invB,
probB) be two PTA. The disjoint composition of A and B is the PTA A � B =
(LA � LB, L̄A � L̄B,ActA � ActB,XA � XB, inv , probA � probB), where inv(l) =
invA(l) if l ∈ LA, and inv(l) = invB(l) if l ∈ LB. Given A � B, a (probabilistic)
timed simulation relation R on [[A � B]] is initialized if and only if, for every
lA ∈ L̄A, there exists some lB ∈ L̄B such that (lA,0)R(lB,0). We write A 2 B
if there exists an initialized (probabilistic) timed simulation relation on [[A � B]].
It follows from [4] that 2 and 2p are preorders, and, together with [12], that 2
and 2p are compositional in the following sense: given the PTA A, B and C, if
A 2 B then A‖C 2 B‖C, and if A 2p B then A‖C 2p B‖C.

Example 1. Consider the two PTA fragments A (left) and B (right) in Figure 1.
We write the invariant conditions within the locations they refer to and we omit
them when they are true. A probabilistic edge (l, g, a, p) is represented as an
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l0A
x ≤ 1

l1A l2A l3A

a
x = 1

1
3

2
3

b
x ≤ 1

l0B
y ≤ 2

l1B l2B l3B

a
1 ≤ y ≤ 2

1
2

1
2

b
y ≤ 1

Fig. 1. An example of timed simulation

arc exiting location l, labeled with the action a and guard g. The distribution
p is represented by connecting the location l to a dot from which arcs, labeled
with a probability, reach the locations indicated by the elements of support(p).
For simplicity, when p(∅, l′) = 1, we draw a direct arc from l to l′. The initial
locations of A and B are l0A and l0B, respectively. Assume that there is subsequent
behaviour from the bottom line of locations in the figure such that, for all clock
valuations v ∈ R{x}

≥0 and v′ ∈ R{y}
≥0 , we have (l1A, v) 2 (l1B, v

′), (l2A, v) 2 (l1B, v
′),

(l2A, v) 2 (l2B, v
′) and (l3A, v) 2 (l3B, v

′) (states in 2 are indicated by locations of
the same color and shape, except for states with the gray location, which are
timed simulated by the states of the short and long dashed shape). From (l0A,0),
there exist transitions ((l0A,0), d, b, {(l3A, vd) �→ 1}) ∈→A, which can be mim-
icked by transitions ((l0B,0), d, b, {(l3B, v′d) �→ 1}) ∈→B from (l0B,0), where d ≤ 1
and vd(x) = v′d(y) = d. From (l0A,0), there exists the single a-labelled transition
((l0A,0), 1, a, μA) ∈→A such that μA(l1A, v1) = 1

3 and μA(l2A, v1) = 2
3 . This tran-

sition can be mimicked from (l0B,0) by the transition ((l0B,0), 1, a, μB) ∈→B such
that μB(l1B, v

′
1) = 1

2 and μB(l2B, v
′
1) = 1

2 . Furthermore, there exists a weight func-
tion Δ for (μA, μB) with respect to 2: we can consider Δ((l1A, v1), (l1B, v1)) = 1

3 ,
Δ((l2A, v1), (l1B, v1)) = 1

6 and Δ((l2A, v1), (l2B, v1)) = 1
2 . It can be verified that Δ

satisfies the conditions of a weight function for (μA, μB) with respect to 2. Hence
we have (l0A,0) 2 (l0B,0). From this, we conclude that A 2 B.

Example 2. Consider the two PTA fragments A (left) and B (right) in Figure 2.
Here we suppose that, for all clock valuations v ∈ R{x}

≥0 and v′ ∈ R{y}
≥0 , we have

(l1A, v) 2 (l1B, v
′), (l2A, v) 2 (l2B, v

′), (l1A, v) 2 (l3B, v
′) and (l2A, v) 2 (l4B, v

′). It
holds that A 2 B, because A can reach a location l1A in a single step with prob-
ability 1

2 , while B can reach a related location (l1B or l3B) either with probability
1
3 or 2

3 , but not with probability 1
2 . However, there exists a combined transition

for B obtained by assigning 1
2 to the two illustrated probabilistic edges from l0B,

and for which it is possible to reach l1B or l3B with probability 1
2 . Continuing this

reasoning also for l2A, we can verify that A 2p B.

We now present an algorithm for deciding whether a PTA (probabilistically) timed
simulates another PTA. Our approach is to extend the techniques of [12,13], which
were applied to non-probabilistic timed automata/timed games, to the case
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Fig. 2. An example of probabilistic timed simulation

of PTA. We focus our attention on the case of timed simulation. Formally, for two
PTA A and B, our aim is to decide whether A 2 B. We comment briefly on how to
extend the algorithm to the case of timed bisimulation, and to probabilistic timed
(bi)simulation, at the end of this section.

Region Equivalence. We begin by recalling the standard definition of region
equivalence [1]. For r ∈ R≥0, we let frac(r) = r−�r�. Let A = (L, L̄,Act ,X , inv ,
prob) be a PTA, and let cmax be the maximal constant to which a clock is
compared in any of the guards of probabilistic edges or invariants of A. Two
clock valuations v, v′ ∈ RX

≥0 are clock equivalent if the following conditions are
satisfied: (1) for all clocks x ∈ X , we have v(x) ≤ cmax if and only if v′(x) ≤ cmax ;
(2) for all clocks x ∈ X with v(x) ≤ cmax , we have �v(x)� = �v′(x)�; (3) for all
clocks x, y ∈ X with v(x) ≤ cmax and v(y) ≤ cmax , we have frac(v(x)) ≤
frac(v(y)) if and only if frac(v′(x)) ≤ frac(v′(y)); and (4) for all clocks x ∈ X with
v(x) ≤ cmax , we have frac(v(x)) = 0 if and only if frac(v′(x)) = 0. Two states
(l, v), (l′, v′) of [[A]] are region equivalent, written (l, v) ≡ (l′, v′), if (1) l = l′,
and (2) v and v′ are clock equivalent. A region is an equivalence class of region
equivalence, and let RegionsA be the set of regions of A. Given a state (l, v), we
use [(l, v)] to denote the region to which (l, v) belongs. The number of regions
corresponding to the PTA A is bounded by |L| · (2cmax + 2)|X | · |X |! · 2|X |.

For deciding timed simulation on two PTA, we consider region equivalence
over the state space of the parallel composition of the PTA. The subsequent
algorithm for deciding whether A 2 B operates on the set of regions RegionsA‖B.
In the following, given two states (lA, vA) of A and (lB, vB) of B, the unique
state of A‖B corresponding to these states is written ((lA, lB), vA‖B), where
vA‖B(x) = vA(x) if x ∈ XA, and vA‖B(x) = vB(x) if x ∈ XB (note that it
is possible that vA‖B |= invA‖B(lA, lB), where invA‖B denotes the invariant
condition of A‖B; it is trivial to decide timed simulation on such states, and
henceforth we do not consider states of this form).

Restriction to a Finite Set of Time Durations. Let ((lA, vA), (lB, vB)) ∈
SA × SB. Let x1, ..., xn ⊆ XA ∪ XB be the clocks such that vA‖B(xi) < cmax for
each 1 ≤ i ≤ n, ordered such that τ1 ≤ τ2 ≤ · · · ≤ τn, where τi = frac(vA‖B(xi))
for each 1 ≤ i ≤ n. Furthermore, let τ0 = 0 and τn+1 = 1. We also define
min(vA, vB) = min{�vA‖B(x1)�, · · · , �vA‖B(xn)�}. We now recall the definition of
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a finite set Times((lA, vA), (lB, vB)) of time durations from [12,13]; it will suffice
to consider only the time durations in this set in the subsequent algorithm.

Times((lA, vA), (lB, vB)) =
{c− 1

2 (τi + τi+1) | c ∈ N and 0 ≤ i ≤ n and 1 ≤ c ≤ cmax − min(vA, vB)}∪
{c− τi | c ∈ N and 1 ≤ i ≤ n and 1 ≤ c ≤ cmax − min(vA, vB)}∪
{c | c ∈ N and 0 ≤ c ≤ cmax + 1 − min(vA, vB)} .

Let I = {c | c ∈ N and 1 ≤ c ≤ cmax − min(vA, vB)}. The finite set of durations
Times((lA, vA), (lB, vB)) contains: (1) the distances between the mid-points of
the intervals (τi, τi+1) and the integers in I, (2) the distances between τi and the
integers in I, (3) the set of integers in {c | c ∈ N and 1 ≤ c ≤ cmax−min(vA, vB)}.
Following [12,13], the distance d ∈ Times((lA, vA), (lB, vB)) between the mid-
point 1

2 (τi + τi+1) and an integer c ∈ I can be used as a representative for all
the time delays between c− τi+1 and c− τi.

One-Step Goodness. We now define two notions of “goodness”, which we will
use subsequently to refer to a single transition step from each of the PTA A
and B. This notion will be presented in two versions: a concrete version, defined
on the states of A and B, and a symbolic version, defined on RegionsA‖B and
using time durations taken from Times( , ). Analogues of these notions, and
their associated results, can be found in [12,13].

Let R ⊆ SA × SB, and let (sA, sB) ∈ SA × SB. Then (sA, sB) is concretely
good in R if, for each (sA, d, a, μA) ∈→A, there exists (sB, d, a, μB) ∈→B such
that μARμB. The following lemma states that concrete goodness, with respect
to a relation described as a union of regions, is invariant over regions.

Lemma 1. Let Γ ⊆ RegionsA‖B, and let R ∈ RegionsA‖B be such that there
exists (sA, sB) ∈ R which is concretely good in

⋃
R′∈Γ R′. Then each (s′A, s

′
B) ∈ R

is concretely good in
⋃

R′∈Γ R′.

Given a relation R ⊆ SA × SB, we let ΓR = {R ∈ RegionsA‖B | R ∩R = ∅}.

Proposition 1. If R ⊆ SA × SB is a timed simulation, then
⋃

R′∈ΓR R′ is a
timed simulation.

Let R ∈ RegionsA‖B. Let XA ⊆ XA, XB ⊆ XB, lA ∈ LA and lB ∈ LB. Then we
write R[XA ∪XB := 0, loc := lA, lB] to denote the region which has the location
components lA and lB, and the clock equivalence class equal to R except that
the clocks in XA and XB are reset to 0. Now let Γ ⊆ RegionsA‖B. Let pA ∈
Dist(2XA×LA) and pB ∈ Dist(2XB×LB). Then RR,Γ ⊆ support(pA)×support(pB)
is defined as follows: for each (XA, lA) ∈ support(pA) and (XB, lB) ∈ support(pB),
we have (XA, lA)RR,Γ (XB, lB) if and only if R[XA ∪XB := 0, loc := lA, lB] ∈ Γ .

The region R is symbolically good in Γ if there exists (sA, sB) ∈ R such that,
for each (sA, d, a, pA) ∈→A with d ∈ Times(sA, sB), there exists a transition
(sB, d, a, pB) ∈→B such that pARR′,ΓpB, where R′ = [sA + d, sB + d]. The fol-
lowing lemma establishes a connection between symbolic and concrete goodness.
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Lemma 2. Let Γ ⊆ RegionsA‖B, and let R ∈ RegionsA‖B be symbolically good
in Γ . Then each (sA, sB) ∈ R is concretely good in

⋃
R′∈Γ R′.

The proof of Lemma 2 relies on first showing that a state pair (sA, sB) in R
which witnesses symbolic goodness in Γ is also concretely good in

⋃
R′∈Γ R′,

which then, by Lemma 1, implies concrete goodness in
⋃

R′∈Γ R′ for all state
pairs in R.

Algorithm. Let Ω : 2RegionsA‖B → 2RegionsA‖B be the monotone operator defined
by Ω(Γ ) = {R ∈ Γ | R is symbolically good in Γ}. By Lemma 2, to decide
whether a region R ∈ Γ is such that R ∈ Ω(Γ ), the choice of which representative
state pair to consider for R is not significant: hence, an arbitrary state pair
can be considered. Note also that |Times(sA, sB)|, for any (sA, sB) ∈ SA ×
SB, is exponential in the sizes of A and B, as is |RegionsA‖B|. By the results
of [14], we have that, for any pA ∈ Dist(2XA × LA), pB ∈ Dist(2XB × LB), it is
possible to decide pARR,Γ pB in polynomial time. Hence, we can compute Ω(Γ )
in exponential time in the sizes of A and B.

Lemma 3. If R ⊆ SA × SB is a timed simulation, then ΓR is a fixpoint of Ω.

Proposition 2. Let Γ ⊆ RegionsA‖B be a set of regions. Then Γ is a fixpoint
of Ω if and only if

⋃
R∈Γ R is a timed simulation.

The operator Ω provides the basis of the algorithm for deciding whether A 2
B. Our aim is to compute its greatest fixpoint Γmax . Let Γ0 = RegionsA‖B,
and let Γi+1 = Ω(Γi) for each i ≥ 0. From the monotonicity of Ω, for some
i ≤ |RegionsA‖B|, we have Γi = Ω(Γi). Hence it suffices to apply Ω at most
|RegionsA‖B| times, and therefore Γmax can be computed in exponential time in
the sizes of A and B.

Let Rmax be the maximal timed simulation relation from A to B. By Propo-
sition 1, we have that Rmax is a union of regions. Given the computation of
Γmax , by Proposition 2 we have that Rmax =

⋃
R∈Γmax

R. We then have that the
following are equivalent:

– A 2 B;
– for every lA ∈ L̄A, there exists some lB ∈ L̄B such that (lA,0)Rmax (lB,0);
– for every lA ∈ L̄A, there exists some lB ∈ L̄B such that [((lA, lB),0)] ∈ Γmax .

We can adapt the algorithm above to obtain an algorithm for deciding whether
two PTA A and B are timed bisimilar. First, we note that concrete and symbolic
goodness are required to be redefined to obtain symmetric versions; furthermore,
concrete goodness is defined with respect to an equivalence relation R, and
symbolic goodness is defined with respect to a set Γ of regions which induces
an equivalence relation (that is,

⋃
R∈Γ R is an equivalence relation). Then it is

possible to define a version of the operator Ω which makes reference to the new,
symmetric notion of symbolic goodness.

From the results of [24], we have that deciding timed simulation or timed
bisimulation is EXPTIME-hard. In combination with the above, this gives us
the following theorem.
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Theorem 1. Given twoPTAA andB, the following two problems are EXPTIME-
complete: (1) checking whether A 2 B; (2) checking whether A ≈ B.

Probabilistic Timed Simulation. The results of the previous subsection can
be adapted to the case of probabilistic timed simulation and bisimulation. As in
the previous section, we can obtain an algorithm for probabilistic timed bisimula-
tion from an algorithm for probabilistic timed simulation, and hence we consider
the latter. Formally, for two PTA A and B, our aim is to decide whether A 2p B.

Firstly, we extend the notions of concrete and symbolic goodness to ac-
commodate the possibility of B choosing combined transitions. For concrete
goodness, this is done simply by replacing the condition (sB, d, a, μB) ∈→B
with (sB, d, a, μB) ∈ Combined(sB, d, a). For symbolic goodness, we first ap-
ply the notion of combined transition to the case of distributions featured in
probabilistic edges: given the largest set {p1, ..., pk} of distributions such that
(sB, d, a, pi) ∈→B for 1 ≤ i ≤ k, we then write Combinedp(sB, d, a) for the set of
all tuples (sB, d, a, p) such that there exists a sequence c1, ..., ck of real numbers
in [0, 1] with

∑
1≤i≤k ci = 1 and p =

∑
1≤i≤k cipi. Then, to obtain the new

notion of symbolic goodness, we replace the condition (sB, d, a, pB) ∈→B with
(sB, d, a, pB) ∈ Combinedp(sB, d, a). Then the operator Ω is adapted to take into
account the new notion of symbolic goodness. Using the results of [15], for a
given Γ ⊆ RegionsA‖B, it is possible to compute Ω(Γ ) in exponential time in the
sizes of A and B. This reasoning, combined with that concerning the exponential
number of iterations of Ω given for timed simulation, then can be used to obtain
the following result.

Theorem 2. Given twoPTAA andB, the following two problems are EXPTIME-
complete: (1) checking whether A 2p B; (2) checking whether A ≈p B.

4 Logical Characterization of Bisimulation

In this section we give a logical characterization of our timed bisimulation and
probabilistic timed bisimulation relations. Recall that [18] presents an extension
of Hennessy-Milner logic [17] for probabilistic automata. The principal novelty
of the logic of [18] is that its semantics is defined over distributions on states,
rather than over states. Here we extend the logic of [18] with constraints on the
duration of transitions, similarly to [16,13].

We now present the syntax of the logic. The logic PTLogic is syntactically
defined by the following formulas:

ψ ::= true | ¬ψ | ψ ∧ ψ | 〈a,∼ c〉ψ | [ψ]p

where a ∈ Act is an action, c ∈ R≥0 is a constant, and p ∈ [0, 1] is a probability.
Note that we will discuss the sub-logic of PTLogic in which c ∈ Q≥0 (where Q≥0

denotes the set of non-negative rationals) at the end of this section.
Let P be a PTLTS. Given a distribution μ ∈ Dist(S) and a set S′ ⊆ S

of states, we let μ(S′) =
∑

s∈S′ μ(s). Let ψ be a formula in PTLogic and μ be
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a distribution over the set of states of a PTLTS P. We say that μ satisfies ψ,
written μ |= ψ, according to the following:

μ |= true
μ |= ¬ψ iff μ |= ψ
μ |= ψ1 ∧ ψ2 iff both μ |= ψ1 and μ |= ψ2

μ |= 〈a,∼ c〉ψ iff for all s ∈ support(μ) there exists (s, d, a, μ′) ∈→ such that
d ∼ c and μ′ |= ψ

μ |= [ψ]p iff μ({[ψ]}) ≥ p

where {[ψ]} = {s ∈ S | s |= ψ} denotes the set of all states of P that satisfy the
PTLogic formula ψ, and where s |= ψ if and only if {s �→ 1} |= ψ.

We now show that timed bisimilar states of the semantic PTLTS [[A]] =
(S, S̄,Act ,→) resulting from a PTA A satisfy the same formulas of PTLogic
and, conversely, if there exists a formula of PTLogic that is satisfied in one state
and not another, then these two states are not timed bisimilar. We introduce the
following notation. Let F be the set of all PTLogic formulas. Given a set F ′ ⊆ F
of PTLogic formulas, we use F ′(s) and F ′(μ) to denote the subset of formulas of
F ′ that are satisfied at state s ∈ S and by distribution μ ∈ Dist(S), respectively.
The depth of a PTLogic formula ψ is defined as the maximum number of nested
〈a,∼ c〉ψ′ operators that occur in ψ. Let Fn be the set of PTLogic formulas of
depth n, and let  �n⊆ S × S be the relation such that s  �n s′ if and only if
Fn(s) = Fn(s′). Then, as in [18], we have the following results.

Lemma 4. 1. For each pair s, s′ ∈ S of states, if F(s) = F(s′) then F(s) ⊆
F(s′).

2. For each pair s, s′ ∈ S of states, F0(s) = F0(s′).
3. Let R ⊆ �n for some n ∈ N. Then, for each pair μ, μ′ ∈ Dist(S), we have

that μRμ′ implies Fn(μ) = Fn(μ′).

The first two points of Lemma 4 follow from the definitions in a straightforward
manner. The third point can be shown in a manner similar to the analogous
result of [18].

Let ≈0= S × S (that is, the relation ≈0 relates all states). For n ∈ N, let
≈n+1⊆ S × S be the equivalence relation defined as follows: for each s, s′ ∈ S,
s ≈n+1 s′ implies that, for each (s, d, a, μ) ∈→, there exists (s′, d, a, μ′) ∈→ such
that μ ≈n μ′. On semantic PTLTS of PTAs, we have that ≈=

⋂
n∈N ≈n.

Theorem 3. Let [[A]] = (S, S̄,Act ,→) be the semantic PTLTS of the PTA A.
For each pair s, s′ ∈ S of states, we have s ≈ s′ if and only if F(s) = F(s′).

Proof. The proof proceeds along the same lines as that of Theorem 1 of [18];
for completeness, we present the overall structure of the proof. We proceed by
induction on n ∈ N, and show that s ≈n s′ if and only if Fn(s) = Fn(s′). The
base case follows from point 2 of Lemma 4 and the definition of ≈0. We now
consider both directions of the inductive step.

(⇒) Let s ≈n+1 s′. We require that Fn+1(s) = Fn+1(s′), which requires
showing that, for all ψ ∈ Fn+1, we have s |= ψ if and only if s′ |= ψ. The
cases of the Boolean combinators and probabilistic operator [ψ]p are similar to
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the analogous cases in [18]. Consider the case of ψ = 〈a,∼ c〉φ. Then, by the
semantics of PTLogic, there exists (s, d, a, μ) ∈→ such that d ∼ c and μ |= φ.
From s ≈n+1 s′, there exists (s′, d, a, μ′) ∈→ such that μ ≈n μ′. From μ ≈n μ′

and point 3 of Lemma 4, we have that Fn(μ) = Fn(μ′). Noting that φ ∈ Fn,
then from μ |= φ we have μ′ |= φ. From this fact, and the observation that d ∼ c,
we have that s′ |= 〈a,∼ c〉φ.

(⇐) We proceed by showing that s ≈n+1 s′ implies Fn+1(s) = Fn+1(s′). Let
{[ti]n}i∈I be an enumeration of the equivalence classes of ≈n (there will be a finite
number of such classes by the results of Section 3, in contrast to possibly countably
infinite number in [18]). For each i ∈ I, by induction and point 1 of Lemma 4,
we can construct a formula φi which is satisfied only by states in [ti]n. We then
select some (s, d, a, μ) ∈→ such that there does not exist any (s′, d, a, μ′) ∈→ for
which μ ≈n μ′. Such (s, d, a, μ) exists because s ≈n+1 s′. Let φ =

∧
i∈I [φi]μ([ti]n).

Clearly μ |= φ, and hence s |= 〈a,= d〉φ. Aiming for a contradiction, assume
that Fn+1(s) = Fn+1(s′). Then s′ |= 〈a,= d〉φ. This implies the existence of
(s′, d, a, μ′′) ∈→ such that μ′′ |= φ. This is turn implies that μ′′([ti]n) = μ([ti]n)
for each i ∈ I, which implies that μ ≈n μ′′, contradicting s ≈n+1 s′. ��

Probabilistic Timed Bisimulation. As in [18], the above material can be
adapted to the case of probabilistic timed bisimulation in the following way. First
we replace the operator 〈a,∼ c〉ψ in PTLogic with the operator 〈·a,∼ c·〉ψ, which
has the following semantics: given a distribution μ, we have μ |= 〈·a,∼ c·〉ψ if
and only if for all s ∈ support(μ) there exists (s, d, a, μ′) ∈ Combined(s, d, a) such
that d ∼ c and μ′ |= ψ. Let F• denote the set of formulas of the resulting logic.
The proof of Theorem 3 can be adapted to the new logic by changing references
to transitions to references to combined transitions as necessary, because timing
issues are independent of issues concerning combined transitions. This leads to
the following result.

Theorem 4. Let [[A]] = (S, S̄,Act ,→) be the semantic PTLTS of the PTA A.
For each pair s, s′ ∈ S of states, we have s ≈p s′ if and only if F•(s) = F•(s′).

Restriction to Rational Timing Bounds. The logic PTLogic features real
values in constraints on timing bounds in order to provide a logical characteriza-
tion of timed bisimulation for all states of a PTA. However, inspired by [13], we
note that a version of PTLogic restricted to non-negative rationals Q≥0 provides
a logical characterization of timed bisimulation for those states of a PTA with ra-
tional values of clocks. Let FQ≥0 denote the set of formulas of the logic obtained
from PTLogic by restricting formulas of 〈a,∼ c〉ψ to the case of c ∈ Q≥0.

Theorem 5. Let [[A]] = (S, S̄,Act ,→) be the semantic PTLTS of the PTA A
with the set X of clocks. For each pair (l, v), (l′, v′) ∈ S of states such that
v(x) ∈ Q≥0 and v′(x) ∈ Q≥0 for all clocks x ∈ X , FQ≥0(s) = FQ≥0(s

′) implies
(l, v) ≈ (l′, v′).

The proof of Theorem 5 follows that of direction (⇐) of Theorem 3, except that,
as in [13], and without loss of generality, only transitions with durations taken
from Times(s, s′) are considered.
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The converse of Theorem 5 (that is, that (l, v) ≈ (l′, v′) implies FQ≥0(s) =
FQ≥0(s

′)) follows trivially from Theorem 3, because FQ≥0 ⊆ F . Theorem 5 can
also be extended to the case of probabilistic timed bisimulation.

Note that, to decide A ≈ B, we consider whether the initial states of the PTA
are related by ≈; as all clocks have to value 0 initially, clearly the above PTLogic
with time constraints restricted to Q≥0 characterizes bisimulation between PTA.
Finally, we observe that formulas of PTLogic with time constraints restricted to
Q≥0 can be expressed in the timed modal logic of [25,26] extended with the
probabilistic operator of [ψ]p. Hence, such a logic can also provide a logical
characterization of states with rational clock values.

5 Conclusions

In this paper we have presented a framework for reasoning about simulation and
bisimulation relations for PTA. On the one hand, we have presented an EX-
PTIME algorithm for deciding such relations, and on the other hand we have
shown how a timed extension of the probabilistic model logic of [18] provides a
logical characterization of bisimulation. To our knowledge a logical characteriza-
tion of simulation for Segala’s probabilistic automata does not yet exist: if such
a characterization is found, it is likely that it can be adapted also to the case of
PTA. For specifying properties of probabilistic timed automata, temporal logics
such as Ptctl [5], which include constraints on time and probability, have been
introduced: we note that timed bisimulation preserves Ptctl properties, and
that, for a negation-free fragment of Ptctl, a state s that is timed simulated
by another state s′ satisfies at least the same properties as s′ [3,4,27].

For future work, we intend to study weak extensions of the considered rela-
tions, which abstract from non-observable computation (see [28]), and to develop
quantitative versions of simulation and bisimulation for PTA, which can quantify
how closely two PTA resemble each other.
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Abstract. We investigate layered composition for real-time systems

modelled as (networks of) timed automata (TA). We first formulate the

principles of layering and transition independence for TA, and demon-

strate the validity of the communication closed layer (CCL) laws in such

a setting, by means of an operator for layered composition that is inter-

mediate between parallel and sequential composition. Next, we introduce

the principles of input/output (i/o) and partial-order (po) equivalences,

and show that such equivalences are preserved when the layered compo-

sition operator is replaced by sequential composition within the expres-

sions appearing in the CCL laws. Finally, we proceed to show that such

layering (together with equivalences obtained through the CCL laws)

can be useful in the design and verification of dense real-time systems

that consist of a network of interacting components, by bringing about a

reduction of the state-space through the exploitation of transition inde-

pendence. This is illustrated by considering a collision avoidance protocol

developed for an audio/video system of Bang and Olufsen.

1 Introduction and Related Work

Real-time systems have strict timing requirements and are used within many
safety critical applications. Such systems are becoming increasingly complex, and
often consist of multiple parallel interacting components, with the interaction
taking place by means of shared variables or by message passing along common
channels. Reasoning about such systems is much easier when the execution of the
components is viewed sequentially, as opposed to corresponding distributed or
concurrent representations. This is because the physical structure of the system
is often in the form of multiple parallel interacting components, each executing
a (sequential) program, while the system’s logical structure is in the form of a
complex protocol consisting of a sequence of layers, wherein each layer consists
of many actions distributed across the whole system [1].

Such a distinction between the physical and logical structures of a distributed
system has motivated research into techniques such as communication closedness
[2] for transforming concurrent/distributed representations of the system into
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appropriate (and equivalent) layered ones, in order to enable easier reasoning
about system properties.

Layering for real-time systems was first investigated in [3], where systems
are expressed in a process language that allows for the specification of events
of a (sub-)process within a given time interval (expressed by means of a timing
operator), with interaction among the (sub-)processes being via shared variables.
The timing operator is used here to enforce a temporal order between events,
which is then exploited in the layer transformation rules. A process algebra
with a new operator for layered composition (intermediate between sequential
and parallel composition) based on hierarchical graphs is presented in [4]. This
layered composition operator is then used to formalize equivalences between
distributed and layered representations of a system, by exploiting independence
between events across multiple system components, through the communication
closed layer (CCL) laws. Section 9.1 of [4] discusses real-time extensions of the
process algebra, with real-time behaviour being embedded into the algebra by
means of explicit constructs (such as a delay construct) that model the passage
of time. Such real-time extensions to the process algebra are elaborated further
in [1], wherein an assertional proof system is presented that is then used for
checking real-time side conditions for (extended) CCL laws.

However, the assertional proof system presented in the above works is not
amenable to efficient and automatic tool-based verification. There has since been
extensive study of the formalism of timed automata (TA) as an effective means
for the modelling and (automatic) verification of real-time systems. TA [5] extend
(finite) automata by augmenting them with non-negative real-valued clocks, in
order to quantitatively capture the timing behaviour of the system. The TA
model has been shown to be very amenable to automatic verification of large
real-time systems, with TA model checkers such as UPPAAL [6] and KRONOS
[7] having been successfully used in industrial case studies (such as [8]). We
therefore propose here to investigate notions of layering and communication
closedness in the context of TA. Our approach thus differs from that of previous
related works on layering (particularly [1,4]) in the following aspects:

– Previous works on layering present assertional proof systems for validating
(real-time) side conditions for the applicability of the CCL laws for process
algebras based on hierarchical graphs, under notions of process indepen-
dence, and the techniques therein are not amenable to efficient and automatic
verification. Our approach however investigates the conditions for applica-
bility of the CCL laws on timed automata based models that come equipped
with extensive tool-support for automatic verification.

– The layered composition operator used in all cases relies crucially on notions
of independence between actions, transitions, and processes across a system.
Previous works (particularly [1,4]) rely on explicitly postulated notions of
(in-)dependence, based on dependency graphs. Our work additionally uses a
semantic notion of transition independence (involving the conditions of en-
abledness and commutativity), similar to the ones that have been extensively
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studied in the context of partial order reduction approaches [9] (for tackling
the state-space explosion problem in model checking).

– The approach in previous works on layering is mainly motivated by a design
process that starts with a sequential algorithm (corresponding to the sys-
tem’s logical structure) and then gradually transforms it into a distributed
version (corresponding to the system’s actual implementation), by succes-
sively applying the layering operator. The approach in our work, on the other
hand, is motivated by the necessity of transforming a distributed represen-
tation of a system into an equivalent layered one, in order to permit easier
verification of system properties. Such easier verification is made possible by
means of the notion of input/output (i/o) and partial order (po) equivalences
between the sequential and layered compositions of processes [4]. We estab-
lish in this paper the validity of such i/o and po equivalences also between
sequential and layered compositions of timed automata, and exploit their use
in reducing the state space of large real time systems for easier verification.

Partial order reduction for timed automata has been investigated in many papers
[10,11,12,13,14,15,16,17], with a view towards reducing the system’s state space
by exploiting transition independence, with efficient symbolic techniques being
integrated within the UPPAAL model checker, by means of the UPPAAL PORT
extension [16]. Our goal here is to exploit the notions of transition independence
used within such partial order reduction techniques for timed automata, in order
to bring about a further reduction of a large system’s state space by transforming
its distributed representation into an equivalent layered version, by investigat-
ing conditions for the applicability of the CCL laws. It should be noted here
that our layering approach is complementary to partial order reduction based
approaches, while exploiting similar (in-)dependence notions at different levels.
More specifically, our contributions here are the following:

1. We first formulate the principles of layering and communication closedness
for (networks of) timed automata, by exploiting notions of transition inde-
pendence in order to formulate the CCL laws. We then proceed to show the
validity of such CCL laws in the absence of “cross-dependencies” between
system components, corresponding to [1,4].

2. Next, we formulate the notions of i/o and po equivalences, and show that
these equivalences are preserved when one replaces layered composition by
sequential composition within the expressions in the CCL laws.

3. We then proceed to show that such layering can be useful in the design and
verification of dense real-time systems that consist of a network of interact-
ing components, by exploiting (in-)dependencies in order to bring about a
reduction of the state-space, through the CCL laws, together with i/o and
po equivalences. Such a reduction is shown to complement partial order re-
duction approaches applied to (parallel compositions of) timed automata.
This is illustrated by considering a collision avoidance protocol that was
developed for an audio/video system of Bang and Olufsen [8].

The rest of the paper is structured as follows. Section 2 reviews timed
automata and their semantics. Section 3 discusses composition technqiues for
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timed automata, and introduces our operator • for layered composition, and
the consequent CCL laws. Section 4 introduces the notions of i/o and po equiva-
lences, and demonstrates their validity in the context of the CCL laws. Extension
of these results to TA enriched with data (widely used within the model checker
UPPAAL) and a methodology of using these results for state-space reduction
is also discussed. Section 5 provides preliminary ideas on the application of our
results by considering a collision avoidance protocol that was developed for an
audio/video system of Bang and Olufsen [8]. Section 6 concludes the paper along
with directions for future research.

2 Preliminaries

Given a finite set C of clocks, a clock valuation over C is a map v : C → R≥0 that
assigns a non-negative real value to each clock in C. If |C| = n, a clock valuation
is identified with a point in Rn

≥0, which we henceforth denote by %u,%v, %x, %y etc.
By %0 we denote the clock valuation where all clocks are set to 0.

A zone over a set of clocks C is a constraint defined by the following grammar
g ::= x  d | g ∧ g, where x ∈ C, d ∈ N, and  ∈ {<,≤, >,≥}. The set of zones
over C is denoted Z(C). The subset of zones having only upper bounds <,≤ is
denoted by ZU (C). In the sequel we shall identify zones with the set of clock
valuations satisfying them, so that set-theoretic operations may be applied on
zones.

Definition 1 (Timed automaton). A timed automaton (TA) is a tuple
A = (L,Σ,C, l0, lF , Inv, E), where

– L is a finite set of locations, Σ a finite alphabet, and C a finite set of clocks,
– l0 ∈ L is the initial location, and lF ∈ L the final location, with l0 = lF ,
– Inv : L → ZU (C) assigns a clock invariant to each location,
– E ⊆ L×Σ×Z(C)×2C×L is a finite set of directed edges between locations.

An edge e = (l, a, g, r, l′) from l to l′ involves an action a ∈ Σ, a guard
g ∈ Z(C), and a reset set r ⊆ C.

For a clock valuation %x, its time-passage is timepass(%x) = {%x + d | d ≥ 0},
where %x + d denotes the addition of a scalar d ∈ R≥0 to each component of %x.
The k-region-equivalence relation ≈k on clock valuations %x and %y is defined by

%x ≈k %y iff ∀i ≤ n :

⎛
⎝ (xi > k) ∧ (yi > k)

∨ (int(xi) = int(yi) ∧ (fr (xi) = 0 ⇔ fr(yi) = 0)∧
∀j ≤ n : ( fr(xi) ≤ fr(xj) ⇔ fr (yi) ≤ fr (yj)) )

⎞
⎠ ,

where, for a clock valuation %x ∈ Rn
≥0, xi denotes its i-th component, i.e., the

value of the i-th clock, and int(xi) and fr (xi) denote the integer and fractional
parts of xi, respectively. By [%x]k we denote the k-region containing %x, which is
the equivalence class induced by ≈k.

The semantics of a TA is given in terms of its underlying timed transition sys-
tem, which consists of an infinite set of states of the form (l, %x), where l ∈ L and
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%x ∈ Rn
≥0, with the transitions between states resulting in the formation of canon-

ical paths through the transition system.

Definition 2 (Canonical path). A canonical path π through such a timed
transition system is a (possibly infinite) sequence 〈(l0, %x0), (l1, %x1), . . .〉 of states,
subject to the following initiation and consecution conditions:

1. Initiation: l0 is the initial location and %x0 = %0.
2. Consecution (time-passage): for even i we require li+1 = li and

%xi+1 ∈ Inv(li) ∩ timepass(%xi).
3. Consecution (edges): for odd i we require ∃ e = (li, a, g, r, li+1) ∈ E :

%xi ∈ Inv(li) ∩ g and %xi+1 ∈ Inv(li+1) ∩ r(%xi).1

Let Π denote the set of all such canonical paths. A transition between two
consecutive states in such a path thus corresponds either to time-passage within
a location, or to an edge-traversal between discrete locations. The reachable
state space of the TA is then given by the set of states that are reachable from
the initial state, through the transitions of all possible canonical paths, and is
defined as follows.

Definition 3 (Reachable state space). Reach(A) ⊆ L × (C → R≥0) is the
reachable state space of a TA A, consisting of an infinite set of states of the
form (l, %x), where l ∈ L and %x ∈ Rn

≥0. It is defined inductively as follows, with
Reachi(A) denoting the reach-set under i ∈ N steps, starting from the initial
state (l0,%0) and alternating between time-passage and discrete transitions:

– Reach0(A) =
{
(l0,%0)

}
,

– Reachi+1(A) = Reachi(A) ∪ Succ(Reachi(A)), where

if i ≥ 0 even, Succ(Reachi(A)) =
{

(l, %x)
∣∣∣∣∃ %u ∈ Inv(l) : (l, %u) ∈ Reachi(A)
∧ %x ∈ timepass(%u) ∩ Inv(l)

}

if i ≥ 0 odd, Succ(Reachi(A)) =

⎧⎪⎪⎨
⎪⎪⎩(l, %x)

∣∣∣∣∣∣∣∣

∃ e = (l′, a, g, r, l) ∈ E
∃ %u ∈ Inv(l′) ∩ g :

(l′, %u) ∈ Reachi(A)
∧ %x ∈ Inv(l) ∩ r(%u)

⎫⎪⎪⎬
⎪⎪⎭

– Reach(A) =
⋃

i∈N Reachi(A).

This leads to the following notion of reachability equivalence denoted by ≡. Given
two TA A1 and A2, we define

A1 ≡ A2 iff ∀i ∈ N : Reachi(A1) = Reachi(A2).

Thus the equivalence requires equal sets of reachable states after every iteration
of the transition relation.
1 To simplify subsequent proofs, we use even- and odd-numbered steps to distinguish

between time-passage and taking edges between discrete locations. Here r(�x) denotes

the valuation obtained from �x after resetting all the clocks in r.
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3 Layered Composition and CCL Laws

We have thus far considered the semantics of timed automata that operate in
isolation. However, real-time systems in practice communicate with each other
and with the environment, and this results in a composite system consisting of
communicating components. The communication between components is often
through synchronization actions drawn from a shared alphabet. We now define
three operators for constructing such composite systems: sequential, parallel, and
layered composition, where the latter is new for timed automata.

In the sequel we consider timed automata Ai = (Li, Ci, l0i, lF i, Invi, Ei, Σi),
i = 1, 2, with disjoint locations and clocks: L1 ∩ L2 = C1 ∩ C2 = ∅.

Definition 4 (Sequential composition). Let l01 = lF 1 and l02 = lF 2. Then
the sequential composition of A1 and A2 is defined as the timed automaton

A1;A2 = (L1 ∪ L2 ∪ {l̃F 1}, Σ1 ∪Σ2, C1 ∪C2, l01, lF 2, Inv1 ∪ Inv2, E),

where l̃F 1 is a copy of lF 1 disjoint from L1 ∪ L2, with Inv(l̃F 1) = Inv(lF 1) ∧
Inv(l02), and E is given by:

E = (E1 \ {(l1, a1, g1, r1, lF 1) | (l1, a1, g1, r1, lF 1) ∈ E1})
∪ {(l1, a1, g1, r1, l̃F 1) | (l1, a1, g1, r1, lF 1) ∈ E1}
∪ (E2 \ {(l02, a2, g2, r2, l2) | l02, a2, g2, r2, l2) ∈ E2})
∪ {(l̃F 1, a2, g2, r2, l2) | (l02, a2, g2, r2, l2) ∈ E2}.

Thus A1;A2 is obtained by first performing the actions in A1 and then perform-
ing the actions in A2. The final location lF 1 of A1 and the initial location l02 of
A2 are amalgamated to a new location l̃F 1. It is assumed here that invariants of
lF 1 and l02 are mutually consistent2. This definition is adapted from [18,19].

Definition 5 (Parallel composition). The parallel composition is defined by

A1‖A2 = (L1 × L2, Σ1 ∪Σ2, C1 ∪ C2, (l01, l02), (lF 1, lF 2), Inv, E),

where ∀ (l1, l2) ∈ L1 × L2 : Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2) and E given by:

– Synchronization: If ei = (li, ai, gi, ri, l′i) ∈ Ei for i = 1, 2 with a1 = a2 then
((l1, l2), a1, g1 ∧ g2, r1 ∪ r2, (l′1, l

′
2)) ∈ E.

– Interleaving: (1) If e1 = (l1, a1, g1, r1, l
′
1) ∈ E1 with a1 /∈ Σ2 then

∀ l2 ∈ L2 : ((l1, l2), a1, g1, r1, (l′1, l2)) ∈ E.
(2) Conversely, if e2 = (l2, a2, g2, r2, l

′
2) ∈ E2 with a2 /∈ Σ1 then

∀l1 ∈ L1 : ((l1, l2), a2, g2, r2, (l1, l′2)) ∈ E.

2 Our example in Section 5 satisfies this condition.
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Note that parallel composition is symmetric, it involves a CSP-style synchro-
nization on common actions and interleaving on disjoint actions. This compo-
sition does not respect the dependencies between the individual components3.
As mentioned in the introduction, a real-time distributed system often consists
of (sequential) phases that execute in parallel on multiple platforms, wherein an
action (resp. transition) within a given phase can execute only after all dependent
actions (resp. transitions) in each preceding phase have been executed.

Motivated by this, we now proceed to define layered composition between two
TA. As in [1,4], we assume in this definition an explicitly postulated notion of
dependencies between the actions of the timed automata that constitute the
layered composition, as part of the overall system specification. The edges of the
timed automata are then dependent iff they execute dependent actions.

Actions/edges that are not dependent are termed independent. Two indepen-
dent actions need to satisfy the conditions of enabledness and commutativity.
Enabledness here implies that they do not disable each other, while commuta-
tivity implies that they can be executed in either order starting from a given
input state, and yet result in the same (or an “equivalent”) output state. We
refer to [10,16] for formal definitions of independent actions in timed automata.
The dependency between two actions a and b is denoted a � b, their indepen-
dence by a �| b. We stipulate that the dependency relation � is reflexive. Two
TA A1 and A2 are said to be independent, denoted A1 �| A2, iff every action
of A1 is independent of every action of A2.

Definition 6 (Layered composition). The layered composition is defined by

A1 •A2 = (L1 × L2, Σ1 ∪Σ2, C1 ∪ C2, (l01, l02), (lF 1, lF 2), Inv, E),

where Inv and E are as in the parallel composition A1‖A2, except that part (2)
of the interleaving case is now different:

– Synchronization: If ei = (li, ai, gi, ri, l′i) ∈ Ei for i = 1, 2 with a1 = a2 then
((l1, l2), a1, g1 ∧ g2, r1 ∪ r2, (l′1, l

′
2)) ∈ E.

– Interleaving: (1) If e1 = (l1, a1, g1, r1, l
′
1) ∈ E1 with a1 /∈ Σ2 then

∀ l2 ∈ L2 : ((l1, l2), a1, g1, r1, (l′1, l2)) ∈ E.
(2) If e2 = (l2, a2, g2, r2, l

′
2) ∈ E2 with a2 /∈ Σ1 and

∀l1, l∗1 ∈ L1 : l1
∗−→ l∗1 ∀e1 = (l1∗, a1, g1, r1, l

′
1) ∈ E1 : a1 �| a2, then

((l1, l2), a2, g2, r2, (l1, l′2)) ∈ E,

where l1
∗−→ l∗1 expresses that l∗1 is reachable from l1 in the syntactic structure

of A1 through an arbitrary sequence of edges.

Thus only part (2) of the interleaving case differs from parallel composition: an
interleaving edge of the second automaton A2 is allowed to execute only after all

3 We assume local time semantics as in [10,16] to obtain fewer dependencies induced

by timing.
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A1:

l01

l1

lF 1

A2:

l02

lF 2

a

x ≥ 1

b

x ≤ 2

x := 0

c

x ≤ 2

d

y ≤ 1

A1; A2:

l01

l1

flF 1 lF 2

a

x ≥ 1

b

x ≤ 2

x := 0

c

x ≤ 2

d

y ≤ 1

Fig. 1. Left : timed automata A1 and A2 with the stipulated dependency a � d; right :
sequential composition A1; A2

dependent edges of the first automaton A1 have been executed. Figures 1 and 2
illustrate the three composition oparators for two simple timed automata.

We now proceed to formulate and validate the CCL laws (equivalences) of
[1,4] for layered composition of timed automata.

A1‖A2:

(l01, l02)

(l1, l02)

(lF 1, l02)

(l01, lF 2)

(l1, lF 2)

(lF 1, lF 2)

a

x ≥ 1

a

x ≥ 1

b

x ≤ 2

x := 0

b

x ≤ 2

x := 0

c

x ≤ 2

c

x ≤ 2

d

y ≤ 1

d

y ≤ 1

d

y ≤ 1

A1 • A2:

(l01, l02)

(l1, l02)

(lF 1, l02)

(l1, lF 2)

(lF 1, lF 2)

a

x ≥ 1

b

x ≤ 2

x := 0

b

x ≤ 2

x := 0

c

x ≤ 2

c

x ≤ 2

d

y ≤ 1

d

y ≤ 1

Fig. 2. Left : parallel composition A1‖A2; right : layered composition A1 • A2

Theorem 1 (CCL laws for timed automata). For all timed automata A1,
A2, B1, and B2, with A1 �| B2 and A2 �| B1, the following communication
closed layer equivalences (CCL laws) hold for the reachability equivalence ≡ :

1. A1 •B2 ≡ A1‖B2 (Indep)
2. (A1 •A2)‖B2 ≡ A1 • (A2‖B2) (CCL-L)
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3. (A1 •A2)‖B1 ≡ (A1‖B1) •A2 (CCL-R)
4. (A1 •A2)‖(B1 •B2) ≡ (A1‖B1) • (A2‖B2) (CCL)

Proof. Owing to space limitations, we provide below only a brief sketch of the
proof of the law CCL-L. The proofs of the other CCL laws are similar.
Given TA A1, A2, B2, with A1 �| B2, we show (A1 • A2)‖B2 ≡ A1 • (A2‖B2),
i.e., the sets of reachable states are equal at every iteration i of their transition
relations.4 The proof is by induction over i.

The containment Reachi(A1•(A2‖B2)) ⊆ Reachi((A1•A2)‖B2) is not hard to
see intuitively, as the parallel composition operator dominates on the right-hand
side and the layered composition operator on the left-hand side. The dominance
of layered composition induces fewer interleavings on the basis of the respective
dependencies, as seen from the definition earlier.

We show Reachi((A1 •A2)‖B2) ⊆ Reachi(A1 • (A2‖B2)) by induction over i.
Induction Basis. This case i = 0 is obvious.
Assume that the containment holds for some i.

Induction Step. Consider ((lA1, lA2, lB2), (%u,%v, %w)) ∈ Reachi+1((A1 • A2)‖B2).
For the case where ((lA1, lA2, lB2), (%u,%v, %w)) ∈ Reachi((A1 • A2)‖B2) the proof
is again immediate from the induction hypothesis. We now examine the cases
where ((lA1, lA2, lB2), (%u,%v, %w)) ∈ Succ(Reachi((A1 •A2)‖B2)).

If i is even, the preceding transition corresponds to time-passage, which is
possible also in A1 • (A2‖B2), and the proof then follows immediately.

If i is odd, using the fact that A1 and B2 are independent (thereby ruling
out synchronization between A1 and B2), we see that the preceding transition
corresponds to an action which could have been performed (a) either by A1, A2,
B2 individually, (b) or as a synchronization action involving A1 and A2, (c) or
as a synchronization action involving A2 and B2.

The cases corresponding to the preceding transition having been executed
individually either by A1 or by A2 are relatively straightforward, as are the
cases (b) and (c). We now consider the case where the preceding transition
corresponds to an action performed by B2 alone. This means that there exist
((lA1, lA2, l

′
B2), (%u′, %v′, %w′)) ∈ Reachi((A1 • A2)‖B2) and e = (l′B2, a, g, r, lB2) ∈

EB2 such that %u′ ∈ Inv(lA1) ∩ g, %v′ ∈ Inv(lA2) ∩ g, %w′ ∈ Inv(lB2) ∩ g, with
%u = r(%u′), %v = r(%v′), %w = r( %w′). The proof is then immediate from the induction
hypothesis, and using the fact that A1 and B2 are independent. ��

4 Equivalences

We now formalize the notions of input/output (i/o) and partial order (po) equiv-
alences as a means of relating sequential and layered composition. In particular,
we show that, for two timed automata A1 and A2, it is always the case that
A1;A2 and A1 • A2 are i/o and po equivalent, irrespective of any (in-) depen-
dence relation between the actions of A1 and A2.

4 We identify nested pairs ((x, y), z) and (x, (y, z)) of locations with tuples (x, y, z).
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We elaborate on these equivalences, through the following definitions and
lemmas.

Definition 7 (i/o equivalence of paths). Given two TA A1 and A2 with Π1

and Π2 denoting the corresponding sets of finite, canonical paths ending in lF 1

and lF 2, respectively, and given a relation ≈ relating the locations of A1 and
A2, a path π1 ∈ Π1 is i/o equivalent to a path π2 ∈ Π2 (relative to ≈), denoted
π1 ≡i/o π2, where πi = 〈(l0i,%0), . . . (lF i, %xi)〉, i = 1, 2, iff l01 ≈ l02, lF 1 ≈ lF 2,
and %x1 ≈k %x2, where k is the maximum of all constants in A1 and A2

Definition 8 (Layered normal form). A (finite) canonical path π of A1 •A2

is in layered normal form (LNF) if it consists of consecutive transitions from E1

passing through lF 1, followed by consecutive transitions from E2 ending in lF 2

(i.e., no transition from E2 precedes a transition from E1).

Definition 9 (po equivalence of paths). Let A1 and A2 be two TA sharing
a common alphabet Σ, with Π1 and Π2 denoting the corresponding sets of finite,
canonical paths. Let ≈ be a relation between the locations of A1 and A2. A path
π1 ∈ Π1 is po equivalent to π2 ∈ Π2, denoted π1 ≡po π2, relative to ≈ on
the corresponding locations, and region-equivalence on the corresponding clock-
valuations (w.r.t the maximum constant of A1 and A2) if πi can be obtained
from π3−i by repeated permutation of adjacent independent transitions separated
by only one time-passage.

Thus, two po equivalent paths π1 and π2 (relative to region-equivalence on their
clock valuations and ≈ on their locations) differ only in the (permutative) or-
dering of independent transitions. This definition has been adapted for TA from
[20].

Lemma 1. Let A1 and A2 be two TA, let Π denote the set of all finite, canonical
paths of A1 •A2, and ΠL ⊆ Π the subset of these paths that are in LNF. It then
holds that ∀π ∈ Π ∃π′ ∈ ΠL : π ≡i/o π′ ∧ π ≡po π′.

The proof follows from the definitions of layered composition of TA, and of i/o
and partial order equivalences between paths of a TA. Thus, every path of a
layered composition can be rewritten into an i/o and po equivalent path that is
in layered normal form.

The notions of i/o and po equivalence are then lifted to TA as follows:

Definition 10 (i/o and po equivalence of TA). Let A1 and A2 be two TA
sharing a common alphabet Σ, with Π1 and Π2 denoting the corresponding sets
of finite, canonical paths that end in their respective final states. Then A1 and
A2 are i/o (resp. po) equivalent, denoted A1 ≡i/o A2 (resp. A1 ≡po A2), iff
∀π1 ∈ Π1 ∃π2 ∈ Π2 : π1 ≡i/o π2 (resp. π1 ≡po π2), and conversely, ∀π2 ∈
Π2 ∃π1 ∈ Π1 : π1 ≡i/o π2 (resp. π1 ≡po π2).

We then have the following theorem that establishes the i/o and po equivalence
between sequential and layered compositions of timed automata
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Theorem 2. For any two TA A1 and A2 we have A1 • A2 ≡i/o A1;A2 and
A1 •A2 ≡po A1;A2.

Proof. We provide a brief sketch of the proof here owing to space limitations.
We first introduce a relation � that relates locations of A1 •A2 with those of

A1;A2. ∀l1 ∈ L1 with l1 = lF 1 : (l1, l02) � l1, ∀l2 ∈ L2 with l2 = l02 : (lF 1, l2) �
l2, and (lF 1, l02) � l̃F 1 (where l̃F 1 is as defined for sequential composition).

Let Π ; (resp. Π•) be the set of all finite, canonical paths of A1;A2 (resp.
A1 •A2) ending in lF 2. Then

– ∀π ∈ Π ; ∃π′ ∈ Π• : π′ ≡i/o π ∧ π′ ≡po π, such that π′ is in LNF.
– ∀π ∈ Π• ∃π′ ∈ Π ; : π ≡i/o π′ ∧ π ≡po π′, where π is either in LNF, or is

i/o and po equivalent to another path in Π• that is in LNF (cf. Lemma 1).

The i/o and po equivalence between π and π′ above is relative to � between
their respective locations, and to region equivalence (w.r.t the maximum of all
constants of A1 and A2) between the clock valuations. The i/o and po equivalence
between A1;A2 and A1 •A2 then follows as an immediate consequence. ��

Corollary 1. Replacing • by ; within the expressions appearing in Theorem 1
yields i/o and partial order equivalences.

Proof. The proof follows from Theorems 1 and 2. ��

A consequence of Corollary 1 is the preservation of (timed) LTL and CTL prop-
erties without the next operator (see [12] and Chapter 8 of [21]).

Extensions to TA with Data. We have thus far considered (simple) TA that
communicate by means of sychronization actions drawn from a shared alphabet,
and an explicitly postulated notion of a dependency relation between actions.
TA models used within model checkers such as UPPAAL are often extended
with data variables that range over finite subsets of integers. We do not provide a
formal definition of such extended TA, but instead refer the reader to Section 4.4
of [22] for the details concerning their syntax and semantics.

For such extended TA, one may now infer the dependencies from the syntactic
structure of the given TA, based on the Read and Write sets associated with
the actions. Two actions are dependent in such a setting if one of the two writes
a variable that is read or written by the other action (see Section 4 of [1] for
formal details).

The complementary independence relation then respects the commutativity
condition necessary for partial order reduction. I/O and po equivalence for paths
of such extended TA are defined as earlier (i.e., relative to a ≈-relation on their
locations and appropriate region-equivalence on their clock valuations), together
with identity on their data valuations.

Theorems 1 and 2 and Corollary 1 then carry over to extended TA under such
modified notions of i/o and po equivalences.
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Methodology. We now outline the intended methodol-
ogy on a schematic example. Suppose we want to verify
for TA A1, A2, B1 that the system (A1;A2)‖B1 satis-
fies a temporal formula ϕ without the next operator. If
A2 �| B1 we can reduce the state space of the TA sys-
tem by applying to it the equivalences stated above, as
shown on the right-hand side. Thus it suffices to check
that (A1‖B1);A1 satisfies ϕ. If each of A1, A2, B1 has
10 locations then original TA system has 200 locations
whereas the transformed system has 110 locations.

(A1;A2)‖B1

≡po { Corollary 1 }
(A1 •A2)‖B1

≡ { CCL-R }
(A1‖B1) •A2

≡po { Corollary 1 }
(A1‖B1);A2.

We proceed to apply such a methodology for easier automatic verification of
a large system consisting of a network of data-enriched TA.

5 Example: Audio/Video Collision Avoidance Protocol

We present in this section preliminary ideas on the application of the techniques
discussed so far (in particular, the CCL laws and the corresponding i/o and
po equivalences) towards easier automatic verification of large real-time systems
modelled as networks of timed automata. For this purpose, we consider a collision
avoidance protocol that was developed for an audio/video system of Bang and
Olufsen, whose formal modelling and analysis is considered in detail in [8], using
the UPPAAL tool for modelling the protocol as a network of timed automata.
The treatment of the protocol in this section is brief, and is only intended to
illustrate a possible application of the layering and partial order equivalences
discussed hitherto for easier verification of networks of TA.

The UPPAAL model of the collision avoidance protocol presented in [8] con-
sists of a network of nine timed automata communicating in parallel. The pro-
tocol schematic is described in Figure 3. This is a simplified version of the
schematic found in [8], omitting the names of shared variables and channels.
The schematic essentially describes the communication between two (sender)
systems A and B that send data frames via a shared Bus.5. Each (sender) sys-
tem consists of a corresponding Sender (SA, SB), Detector (DetA, DetB), Frame
Generator (FGA, FGB), and Observer (ObsA, ObsB).

The protocol is given by the Sender and Detector, where the Sender transmits
frames over the shared bus, while the Detector performs collision detection.
The Frame Generator and Observer in a sense constitute the environment in
which the protocol operates. The protocol together with its environment is then
represented by a parallel composition of nine (data-enriched) timed automata:

System = SA ‖ObsA ‖DetA ‖FGA ‖Bus ‖SB ‖ObsB ‖DetB ‖FGB.

This system is required to satisfy the following informal correctness properties

1. Any frame transmitted by a Sender X (where X is A or B) that is destroyed
due to collision is (eventually) detected by X .

2. Collision detection must be simultaneous across all senders.

5 Receiver systems are not relevant for the analysis.
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A DetA

R & W

variables

SA

R & W

variables

Bus

read only

variables

BDetB

R & W

variables

SB

R & W

variables

ObsA

R & W

variables

FGA

R & W

variables

FGB

R & W

variables

ObsB

R & W

variables

Fig. 3. Audio/video protocol as a network of timed automata, adapted from [8]

These properties may be formally expressed as a CTL formula (without the next
operator) involving conditions on the shared data variables (see [8]).

Based on the detailed timed automata models given in [8], we find that each
Sender System comprises 19 discrete locations, each Detector 8 locations, each
Frame Generator 7 locations, each Observer 1 location, while the Bus contains
2 discrete locations. Thus the total number of discrete locations in the parallel
composition is 192 × 82 × 72 × 12 × 2 (i.e., over 2 million discrete locations). The
timing behaviour of the system is governed by a single clock Ac per sender that
runs locally, consistent with the local time semantics introduced in [10].

We however note that the execution of each Sender System described in [8]
consists of three sequential phases corresponding to initialization (Init) (com-
prising 8 discrete locations), transmission (Tx) (comprising 5 discrete locations),
and collision response (Coll) (comprising 6 discrete locations). For simplicity, we
consider only a single run of the protocol and thus ignore cross-over edges be-
tween phases. Each Sender (as given in Figure 10 of [8]) may then be described
by the following sequential composition of timed automata

SX = InitX ;TxX ;CollX ,

where X denotes either A or B.
Exploiting the fact that certain “cross-dependencies” do not exist in the sys-

tem (for instance, between TxA and InitB), and the consequent application of
the CCL laws and the corresponding partial order equivalences, we may rewrite
the system’s composition as follows:
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System′
= Bus ‖ ( (InitA‖InitB)

;

(FGA ‖FGB ‖TXA ‖TXB)

;

(DetA ‖DetB ‖ObsA ‖ObsB ‖CollA ‖CollB) )

Based on the methodology described at the end of Section 3, it follows that
System and System′ are po equivalent, and thus the satisfaction of the desired
correctness property (expressed in CTL without next) is preserved when trans-
forming System into System′. An advantage of such a transformation is that
System′ is much easier to reason about than System (given that ; dominates
in the former, as opposed to ‖ in the latter). In fact, it may be seen that the
number of discrete locations in System′ is a little over 7000, yielding a state
space reduction by a factor of over 300.

Such a layered transformation may be seen as being complementary to the
well-studied partial order reduction approach to the model checking of networks
of timed automata, given that exactly the same class of system properties is
preserved. In fact, such a layered transformation performs, in a certain sense,
partial order reduction on the system apriori.

6 Conclusion

We have presented a framework for layered reasoning of complex real-time sys-
tems modelled as networks of timed automata. This was achieved by means of
a layered composition operator that enables a combination of both parallel ex-
ecution and sequential verification, by appropriately exploiting (in-)dependence
conditions across components. The approach complements the partial order re-
duction approach in the verification of real-time systems, in the sense that layered
transformation using the CCL laws and the resulting i/o and po equivalences
bring about an apriori (partial order) reduction of the state space to be explored.
Preliminary ideas on the application of the approach have been illustrated on
a realistic example. Future work includes the extension of these techniques to
more complex models of real-time systems such as Phase Event Automata [23],
and their application to detailed analysis on realistic examples.

Acknowledgements. We wish to thank the reviewers for useful feedback.
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1 Introduction

Specification-based testing is a branch of model-based testing, where test-cases
are derived automatically from a formal specification (given as a labelled tran-
sition system or a related formalism) and executed against real-life implemen-
tations. The distinction to many other instances of model-based testing is that
the whole test-case derivation and test-execution process is described formally.
This rigorous definition enables the proof of soundness of the approach. In par-
ticular, it is possible to show that the execution of a derived test-case does
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not yield false positives, i.e., test-failures, when the implementation is actu-
ally correct. To achieve this form of rigorousity, a formal criterion is needed
which relates specifications to its correct implementations: the conformance re-
lation. Specification-based testing has developed over the last two decades. A
well-known representative is the ioco framework [19], where the specification is
given as a a labelled transition system (LTS ) with input and output actions.
The conformance relation is called ioco. The ioco relation expresses that an im-
plementation may only produce outputs if those outputs are also produced by
the specification. Additionally, ioco possesses a notation for silence, denoted qui-
escence. An implementation that is ioco-correct may only be quiescent if this
is allowed by the specification. There exists several tools for the derivation of
ioco test-cases, e.g. TorX [3], TGV [14] and AGEDIS TOOL SET [11]. Based
on ioco, recently more expressive formalisms have been considered to serve as
specifications. Timed Automata have been proposed as specification formalisms
in several approaches for testing real-time behaviours [16,4,5]. Different notions
of conformance have been defined on the basis of timed LTS (TLTS ), i.e., only
on the semantic level. Symbolic Transition Systems (STS ) [8,9] have been intro-
duced to specify systems with input- and output-data. STS are LTS extended
with a notion of data and data-dependent control flow based on first order logic.
The symbolic representation of data in STS allows for infinite data domains
without facing the problems of infinite branching and infinite state space. For
STS , the implementation relation sioco has been developed, which is defined
solely within the FO-Logic framework on STS level [9].

What does not exist yet is a combination of real-time and data. In this paper
we take first steps in the direction of specification-based testing for systems com-
bining input/output data with real-time aspects in a non-orthogonal way, i.e.,
the input data can influence the real-time behaviour. In particular, we introduce
a conformance relation which takes data and real-time into account.

Our contributions are (1) a new formalism – called Symbolic Timed Automata
(STA) – for modelling reactive real-time systems with data input and output; (2)
a concrete operational semantics (in terms of timed labelled transition systems)
and a symbolic trace semantics for this formalism; (3) a family of conformance
relations stiocoFs , which expresses a correctness criterion of input-enabled im-
plementations, formulated as STA, with specifications, also given as STA; (4)
a theorem stating that stiocoFs coincides on the concrete semantical level with
tioco of Krichen and Tripakis [16]. Our formalism allows the real-time behaviour
to be influenced by inputs. While allowing nondeterministic STA in general, we
restrict ourselves in this paper to branching nondeterministic STA, i.e., without
τ -steps.

Related Work. A detailed comparison of the different notions of conformance for
real-time testing is given by Schmaltz et al. [17]. In the testing tool UPPAAL
Tron [13], a pragmatic approach to combine data and time is implemented.
It is possible to let clock constraints depend on integer variables. Moreover,
global integer variables can be designated as input or output parameters to
input or output actions. With this a notion of value passing is implemented.
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However, values are limited to finite sub-sets of integers, which allows an explicit
representation of data as actions on Timed Automata level. This approach is
hardly formally described, least of all on a symbolic level. A similar approach is
taken in JTorX [2].

STS and the implementation relation sioco have been introduced in [9]. This
implementation relation is used in the java testing tool Jambition introduced
by Frantzen et al. [7]. Jambition uses a random and on-the-fly approach to
automatically test web services based on STS specifications. In order to simulate
the STS in Jambition the Java library STSimulator has been developed [18].

Another tool for symbolic testing is STG [6], an extension of TGV. It au-
tomatically derives symbolic test-cases from a given formal model and a test
purpose. The issue of symbolic test-case generation and selection has been ad-
dressed in [21] and [15].

2 Timed Transition Systems and Tioco

A timed labelled transition system (TLTS ) is a tuple 〈S,Act , s0,→〉 with S a
set of states, Act = ActI ∪ ActU a disjoint union of two sets of input- and
output-actions, s0 the starting state, and →⊆ S × (Act ∪ R≥0) × S a transition
relation, where the following conditions must hold: ∀s, s′, s′′ ∈ S (i) s

0−→ s; (ii)

s
d−→ s′

d′
−→ s′′ if and only if s d+d′

−−−→ s′′; (iii) s d−→ s′ and s
d−→ s′′ implies s′ = s′′. In

the following we consider a fixed TLTS 〈S,Act , s0,→〉, and identify it with its
starting state s0. The generalised transition relation =⇒⊆ S × (Act ∪ R≥0)∗ × S

is defined as the least relation satisfying the following rules: (i) s
ε=⇒ s ∀s ∈ S;

(ii) s
σ·d==⇒ s′, if s σ=⇒ s′′

d−→ s′ for d ∈ R≥0; (iii) s
σ·a==⇒ s′, if s σ=⇒ s′′

a−→ s′,
for a ∈ Act . We consider normalised traces where actions and delays strictly
alternate, starting with a delay. It has been shown that this set characterises the
set of all traces [5]. A timed trace is thus a sequence σ ∈ (R≥0 ·Act)∗ · (R≥0 + ε)
such that s0

σ=⇒ s′ for some s′ ∈ S. The set of traces of TLTS S is noted
traces(S). The set of states that can be reached from state s via a trace σ is
denoted as s aftert σ.

Definition 1 (aftert). Let 〈S,Act , s0,→〉 be a TLTS and σ ∈ (R≥0 · Act)∗ ·
(R≥0 + ε). Then s aftert σ =def {s′ | s

σ=⇒ s′}.

Crucial for the definition of tioco is the set of delay and output labels of the
outgoing transitions of a state.

Definition 2 (elapse(s) and outt(s)). We define elapse(s) =def {d | s
d−→},

and outt(s) =def {o ∈ ActU | s
o−→} ∪ elapse(s). For S′ ⊆ S,outt(S′) =def⋃

s∈S′ outt(s).

As in the ioco theory, we assume that implementations under test are input-
enabled.
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Fig. 1. TLTS Specification of a Beverage Vending Machine
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Fig. 2. Implementations of a Beverage Vending Machine

Definition 3 (Input-enabled TLTS). A TLTS 〈S,Act , s0,→〉is called input-
enabled if and only if for all s ∈ S and all i ∈ ActI : s

i−→.

With the introduced concepts we can define the family of implementation rela-
tions tiocoF .

Definition 4 (tiocoF). Let P be an input-enabled TLTS, S a TLTS, and F ⊆
traces(S). Then P conforms to S w.r.t. tiocoF (written P tiocoF S) if and only
if the following holds: ∀σ ∈ F : outt(P aftert σ) ⊆ outt(S aftert σ).

Example 1. In Figure 1, a TLTS specifying a beverage vending machine is
sketched. After inserting money, users can choose either tea or coffee. The for-
mer is produced between 5 and 7 time units after pushing the ?tea button.
The latter is produced between 10 and 12 time units after pushing the ?coffee
button (the time intervals are indicated by the dashed lines, which stand for
a continuum of states). Figure 2 shows two implementations of beverage ma-
chines. None of these implementations conform to the specification according
to the tioco relation. The implementation on the left (starting state l0) is too
slow to produce tea. The implementation on the right (starting state k0) is too
fast to produce coffee. Formally, the reasons for non-conformance are (1) that
8 ∈ elapse(l0 aftert ?money · ?tea) but 8 /∈ elapse(s0 aftert ?money · ?tea) and
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(2) that !serve coffee ∈ outt(k0 aftert ?money · ?coffee · 8) but !serve coffee /∈
outt(s0 aftert ?money · ?coffee · 8).

3 Symbolic Timed Automata

A symbolic timed automaton (STA) combines a timed automaton [1,12] with a
symbolic transition system (STS ), as introduced in [8,9]. STS extend labelled
transition systems with variables, input- and output-parameters associated with
input- and output-actions, guards, which are first-order logic formulas control-
ling the enabledness of transitions, and variable updates, which manipulate the
values of variables while performing transitions. In STA, the concepts of timed
automata, namely clocks, guards, invariants and clock resets, are integrated. In
particular, clock constraints become just another sort of FO formulas.

3.1 An Example

Figure 3 shows an STA modelling a beverage vending machine. The machine ac-
cepts money in bills (parameter x of input ?money) and returns change in coins
(parameter x of output !serve). If there is not enough change in the machine on
a bill, the bill is returned (output !return). Otherwise, the user can choose a bev-
erage, the change is returned, and the beverage served (parameter y of output
!serve). Variables x, y, t are interaction variables. Interaction variables represent
the possible values that can be passed through input and output actions. Vari-
ables i, q, change, beverage, money, time are location variables — i.e., the store
of the STA — and c is a clock, conceptually identical with a clock of a timed
automaton. The switch from l0 to l1 is labelled with input action ?money, with
parameter x. Only if the value of x is larger or equal than 1 the switch can
be executed. In that case, change is mapped to x − 1 and money to x. From
location l1, the money is returned immediately, if change > q, i.e., the required
change is not available. In that case, money and change are both mapped to 0. If
change < q, it is possible to choose a beverage via input ?choice, where the type
of beverage is communicated via y, and t stands for the time after which the
machine shall serve the beverage. t could for example express the brewing time
of a tea or whether an espresso should be short or long. Input t is assigned to
location variable time, which occurs in the invariant of location l2 and the clock
guard of the switch l2 → l0. Together they ensure that location l2 is left after
exactly time time units. In that case, output !serve with output parameters y
and x is sent, where x = change and y = beverage is required by the guard.
Location variables money and change are then mapped to 0, and q is mapped
on q − change. Note that location variable i, used as bound in the invariant
of l1 and the guard leading back to l0, is never explicitly set in the STA. It is
assumed that location variables (thus also i) are initialised when starting the
STA. Different initialisations might define different behaviours of the same STA.

In this example, the time at which the transition from location l2 to l0 can
be taken is controlled by input data t given in the previous transition (from l1
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l0
true

l1

c ≤ i

l2

x = change, c = time,
change �→ 0

?choice〈y, t〉, change < q ∧ t ≤ 5

beverage �→ y, money �→ x, time �→ t, c := 0

!serve〈y, x〉, y = beverage ∧

c ≤ time

?money〈x〉, x ≥ 1, change �→ x − 1!return〈x〉
x = money ∧ change ≥ q

change �→ 0, money �→ 0,
c := 0

!return〈x〉,
x = money,

change �→ 0,

money �→ 0,

c ≥ i money �→ x,c := 0

Fig. 3. STA Beverage Vending Machine

to l2). In an STA, location variables are allowed to serve as bounds in clock
guards and invariants. This is the only instance in which we allow an interaction
between time (clocks) and data (variables). Interaction variables cannot be used
to control time. This prevents the case where the time at which a transition
can be taken depends on the value of the parameter of the action of that same
transition. In our example, time t must first be stored in local variable time
before it can be used to control time.

3.2 Definition and Concrete Semantics of STA

An STA is defined over a two sorted FO structure FOΣ = ({Ud, Ut}, {rΣ | r ∈
R}, {fΣ | f ∈ F}), where Ud denotes the universe for data and Ut the time
domain (e.g., the reals). The signature contains constant 0t, binary addition +t,
and relations ≤, <, declared for all combinations {t, d}×{t, d}, i.e., comparisons
between time and data.

Clock-constraints are FO formulas using the above relations. Let C be the set
of clocks and Var be a set of variables. An atomic clock-constraint is a formula
of the form bl ≺ x ≺ bu for x ∈ C, ≺∈ {<,≤}, and bl, bu ∈ NFO ∪ Var , where
NFO stands here for the representation of natural numbers on the logic level1.
Clock constraints are conjunctions of atomic clock constraints. The set of all
clock constraints over clock set C and variables Var is denoted by B(C,Var),
and B(C), if Var = ∅. Bounds of atomic clock constraints can be variables. We
denote by T(V ) the set of all terms over a variable set V and by F(V ) the set of
all FO formulas. Function ρ : V → T(V ) is called a term mapping.

Definition 5 (Symbolic Timed Automaton). A symbolic timed automa-
ton is a tuple A = 〈L, l0,V , I,G, type, C, Inv,→〉 with L being a finite set of
locations, l0 ∈ L is the initial location, V and I disjoint sets of location and in-
teraction variables, G is a set of gates, type : G → 2I assigns sets of interaction

1 Other literals are imaginable as bounds, depending on the choice of Ud.
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variables to gates, C is a set of clocks, Inv : L → B(C,V) assigns a clock invari-
ant to a location, and →⊆ L×G ×F(V ar)×B(C,V)×

⋃
V ⊆V T(V ar)V × 2C ×L

is the transition relation, where Var = I ∪ V.

As usual, we write l
γ,ϕ,g,ρ,r−−−−−−→ l′ to denote (l, γ, ϕ, g, ρ, r, l′) ∈→, where γ is the

gate, ϕ the data guard, g the clock guard, ρ the update function, and r the clock
reset.

A variable valuation is a function ϑ : Var → Ud from variables to concrete
values in the universe Ud. A clock valuation is a function u : C → Ut. We
denote with [C �→ 0] the constant 0 clock valuation. For d ∈ Ut, we define
(u + d)(c) = u(c) + d. If ϑ is a variable valuation and C ∈ B(C,Var), then
we denote with C[ϑ] the clock constraint, where every occurrence of a variable
x ∈ Var is replaced by ϑ(x); thus, C[ϑ] ∈ B(C). We write u |= C, if clock
valuation u satisfies clock constraint C ∈ B(C), i.e., if the relational expression
obtained by replacing all occurrences of clock names c by u(c) evaluates to true.
If r ⊆ C, then u[r �→ 0](c) = 0, if c ∈ r, and u[r �→ 0](c) = u(c), otherwise. The
semantics of an STA is given as a TLTS , defined as follows.

Definition 6. Let A = 〈L, l0,V , I,G, type, C, Inv,→〉 be an STA. Its TLTS
semantics in the context of an initial valuation ι ∈ UV of location variables and
ζ0 = [C �→ 0] for clocks, is a TLTS �A�ι = 〈S,Act , s0,→〉, where S = L×UV

d×UC
t ,

s0 = (l0, ι, ζ0), Act =
⋃

γ∈G({γ} × Utype(γ)), and → is defined as the least set
of transitions derivable by the following rules:

〈Delay〉 ζ |= Inv(l)[ϑ] ∀d′ ≤ d : ζ + d′ |= Inv(l)[ϑ]

(l, ϑ, ζ) d−→ (l, ϑ, ζ + d)
(d ∈ R≥0)

〈Action〉 l
γ,ϕ,ρ−−−→ l′ ϑ ∪ ς |= ϕ ζ′ |= Inv(l′)[ϑ′]

(l, ϑ, ζ)
(γ,ς(type(γ)))−−−−−−−−−−→ (l′, ϑ′, ζ′)

(ς ∈ Utype(γ))

with ϑ′ = ((ϑ ∪ ς)ev ◦ ρ)V and ζ′ = ((ζ)ev ◦ ρ)C .

With (·)ev we denote the lifting of a variable/clock valuation to terms. With
(·)V and (·)C we denote the restriction of a valuation or term mapping to sets
V and C. In Definition 6 we see that we can only delay if all clock valuations ζ
before the delay and all clock valuations ζ′ after the delay satisfy the invariant
of location l. Delaying has no influence on the location itself or on the valuation
of location variables ϑ. To take a switch from l to l′ with gate γ, the constraint
ϕ over variables and clocks and the invariant of the next location l′ have to be
satisfied. Important is that the invariant of l′ has to be satisfied after the clocks
in ρ have been set to zero.

4 Symbolic Trace Semantics for STA

Inspired by Frantzen et al. [9], we define a symbolic trace semantics for STA,
which is sound and complete w.r.t. the TLTS semantics described before. We
use delay-variable d to represent time symbolically. Variable d is of sort t and
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represents delaying in a location. We define the following two notations. First,
for r ⊆ C, we denote with FO(r) a term-mapping that maps all clocks c ∈ r to
zero, i.e., FO(r) : c �→ 0t for c ∈ r and c �→ c otherwise. Second, * : C → T(C∪T )
is a partial term-mapping that expresses the passing of time: * : c �→ c+ d, i.e.,
delaying is described by adding delay variable d to all clocks c ∈ C.

The symbolic trace semantics is expressed by transition relation l
σ,ϕ,ρ
===⇒ l′,

where ϕ denotes the logical condition which needs to be fulfilled to reach lo-
cation l′ from l with symbolic trace σ, and ρ is a term mapping that denotes
symbolically the possible variable and clock valuations after l′ has been reached
with σ. Relation =⇒ thus describes the symbolic execution of the STA. To define
ϕ and ρ, we introduce history variables, i.e., variables that allow to distinguish
between different input- and output values communicated over the gates, and
time delays spent in locations. The history variables are an infinite number
of “copies” i1, i2, i3, . . . of each interaction variable i ∈ I, and delay history
variables d1, d2, d3, . . . for variable d. We define In = {in|i ∈ I} for n ≥ 1 and
Î =def

⋃∞
n=1 In. Similarly, we consider sets Tn = {dn} for (n ≥ 1) and T̂ defined

analogously to Î. Let Hn =def In ∪Tn and Ĥ =def Î ∪ T̂ , H =def I ∪T . We de-
fine renaming bijections rn : H → Hn with rn(v) = vn for all v ∈ H, and n ∈ N.
Function s�i : Ĥ → Ĥ is defined as s�i : x �→ xn+i for all x = xn ∈ Ĥ. In the
following, the entirety of all relevant variables is the set V̂ar =def V ∪C ∪H∪Ĥ,
and Var =def V̂ar \ Ĥ.

If ρ ∈ (T(V̂ar))V̂ar and t ∈ T(V̂ar), we denote by t[ρ] the term obtained by
substituting all variables x occurring in t by ρ(x). Analogously for all formulas
ϕ ∈ F(V̂ar), where all free variables are substituted.

4.1 Symbolic Trace Semantics

The symbolic trace semantics of an STA 〈L, l0,V , I,G, type, C, Inv,→〉 is then
givenby the transition relation⇒⊆ L×((d·G)∗·{d, ε})×F(V̂ar)×(

⋃
V ⊆V T(V̂ar)V

∪
⋃

C⊆C T(C ∪ T̂ )C) × L, which is defined as follows:

Definition 7 (Generalised Switch Relation for STA).
(d)

l
d,κ[$][r1],$[r1]=========⇒ l

(Sd)
l

σ·γ,ϕ,ρ
====⇒ l′

l
σ·γ·d, ϕ∧κ′[$][rn][ρ], Θ(ρ,rn,$)
=====================⇒ l′

(Sγ)
l

σ·d,ϕ,ρ
====⇒ l′′ l′′

γ,ψ,π−−−→ l′

l
σ·d·γ, ϕ∧ψ[rn][ρ]∧κ′[π][ρ], Θ(ρ,rn,π)
========================⇒ l′

where n = |σ| + 2, Θ(a, b, c) = c[b][a], κ ≡ Inv(l), and κ′ ≡ Inv(l′).

Rule (d) states that delaying in a location l is possible as long as formula κ[*][rn],
i.e., the historised and updated invariant of l, is satisfied. The clocks change
according to term mapping *[r1].

Rule (Sd) states that if location l′ is reached from l with trace σ·γ under
condition ϕ, then the condition to delay further in l′ is the conjunction of ϕ
and κ[*][rn][ρ]. As an example, we assume that n = 7, κ ≡ c ≤ v, where c is
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a clock, and v a location variable, and ρ(c) = d1 + d3 + d5, ρ(v) = 4. Then
κ[*] ≡ c + d ≤ v, κ[*][r7] ≡ c + d7 ≤ v, and κ[*][r7][ρ] ≡ d1 + d3 + d5 + d7 ≤ 4.

Similarly, Rule (Sγ) states that if l′′ is reached from l with σ·d under condition
ϕ, then the condition to reach l′ from l with trace σ·d·γ is the conjunction of
ϕ and ψ[rn][ρ] ∧ κ[π][ρ]. Formula ψ[rn][ρ] is the “historised” enabling condition

of switch l′′
γ,ψ,π−−−→ l′, with all variables and clocks substituted according to ρ.

Formula κ[π][ρ] is the historised invariant of l′ and expresses an extra condition
on the symbolic clock valuations under which l′ may be entered.

In both rules (Sd) and (Sγ), the new update mapping Θ for variables and
clocks is obtained by the concatenation of the current update mapping ρ with
the renaming function rn and the variable update π for (Sγ) or the clock update
* for (Sd). If, for example, we assume ρ(c) = d1 + d3, rn = 5, then *[rn][ρ](c) =
([ρ] ◦ [rn] ◦ *)(c) = d1 + d3 + d5.

4.2 Symbolic States and Relation to TLTS Semantics

To record under which conditions a location can be reached and with what
potential variable valuations, we introduce symbolic states. Whenever l

σ,ϕ,ρ
===⇒ l′,

tuple (l′, ϕ, ρ) is a symbolic state. If in ϕ and ρ only history variables with an
index up to at most i occur, we note this fact by indexing the symbolic state
with i, i.e., in this example (l′, ϕ, ρ)i.

A symbolic state (l, ϕ, ρ) defines implicitly a set of concrete states �(l, ϕ, ρ)�ι
for ι ∈ UV

d (as defined in the TLTS semantics above). Let υ ∈ UÎ
d and $ ∈ UT̂

t .
Then �(l, ϕ, ρ)�ι,υ,&∪[C
→0] =def {(l, ((ι ∪ υ)ev ◦ ρ)V , (($ ∪ [C �→ 0])ev ◦ ρ)C) |
ι∪υ∪$∪ [C �→ 0] |= ϕ}. Note that �(l, ϕ, ρ)�ι,υ,& is either a singleton or empty.

Also traces σ ∈ (d·G)∗ have an interpretation on the semantic level. Let χ ∈
F(Ĥ ∪V ∪C). Then we call (σ, χ) an extended trace. χ can be chosen freely. The
set of all symbolic extended traces of an STA S is defined by the following set:
ETraces(S) = {(σ, χ) | l0

σ,ϕ,ρ
===⇒ l′, χ ∈ F(Ĥ ∪ V ∪ C)}. Defining ι, υ,$ as above,

�(σ, χ)�ι,υ,&∪[C
→0] = {ettracesυ,&(σ) | ι ∪ υ ∪ $ |= χ}, where ettracesυ,& is
defined inductively as follows:

ettracesυ,&(ε) = ε

ettracesυ,&(σ · g) = ettracesυ,&(σ) · (g, υ(rlength(σ)+1(type(g))))

ettracesυ,&(σ · d) = ettracesυ,&(σ) ·$
(
dlength(σ)+1

)
.

The following two theorems state that the interpretations of symbolic states and
extended traces are correct w.r.t. the TLTS semantics. Variable mapping id is
defined as id(x) = x.

Theorem 1 (Soundness). For all $ ∈ UT̂
t , ι ∈ UV

d and υ ∈ UÎ
d it holds that

l
σ,ϕ,ρ
===⇒ l′ and ι∪υ∪$∪[C �→ 0] |= ϕ implies �(l,/, id)�ι,υ,&∪[C
→0]

�(σ,ϕ)�ι,υ,
∪[C	→0]============⇒
�(l′, ϕ, ρ)�ι,υ,&∪[C
→0]

Theorem 2 (Completeness). For all semantical states (l, υ, ζ) ∈ L×UV
d ×UC

t

such that (l0, ι, [C �→ 0]) σ=⇒ (l, υ, ζ) for ι ∈ UV
d and some timed trace σ, there is a
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valuation υ′ ∈ UÎ
d , $ ∈ UT̂

t and a transition l0
σ,ϕ,ρ
====⇒ l such that ι∪υ′∪$∪ [C �→

0] |= ϕ, σ = �(σ, ϕ)�ι,υ′,&∪[C
→0] and (l, υ, ζ) = �(l, ϕ, ρ)�ι,υ′,&∪[C
→0].

The proofs of Theorems 1 and 2 can be found in [20].

5 Stioco - A Symbolic Timed Implementation Relation

Taking the symbolic trace semantics in Definition 7 as a foundation, we define
symbolic implementation relation stioco. This definition is based on two central
notions: after, a function which returns the symbolic states reachable with an
extended trace, and out, the outputs that can potentially be observed from a
set of symbolic states. The big difference is that outputs are accompanied by FO
formulas which state the conditions under which outputs can be observed.

Definition 8 (after). Let (l, ϕ, ρ)i be a symbolic state with index i and (σ, χ)
an extended trace with n the length of σ. Then after is defined as

(l, ϕ, ρ)iafter(σ, χ) =def {(l′, ϕ′(ψ), ρ′(π)) | l σ,ψ,π
====⇒ l′},

where ϕ′(ψ) = ϕ ∧ ((ψ ∧ χ)[s�i])[ρ], and ρ′(π) = ([ρ] ◦ [s�i] ◦ π).

ϕ′(ψ) is the conjunction of ϕ and the condition ψ ∧ χ, where every index of
a history variable is increased by i and every clock and location variable is
substituted according to ρ. ρ′(π) is the symbolic variable valuation of the location
variables and clocks after (σ, χ) has been executed. Note that the symbolic states
in (l, ϕ, ρ)iafter(σ, χ) have index i + n.

Symbolic observations are tuples (γ, ϕ, ψ), where γ ∈ GUd
, ϕ is a general

enabling condition for γ and ψ is a special enabling condition. ϕ and ψ are thus
both formulas, which are however defined over different variable sets: ϕ ∈ F(V̂ar)
and ψ ∈ F(Var). The set of symbolic observations, denoted as O, is thus defined
as O =def GUd

× F(V̂ar) × F(Var).
The out-set of a symbolic state is defined, similar to outt for TLTS , as the

union of delays and output actions that can be made in the symbolic state.
We use symbolic observations in order to symbolically represent the conditions
under which an output or a delay may be observed.

Definition 9 (out). Let (l, ϕ, ρ) be a symbolic state. Then out((l, ϕ, ρ)) is a
set of symbolic observations, defined as follows.

out((l, ϕ, ρ)) =def {(γ, ϕ, ψ[ρ] ∧ Inv(l′)[π][ρ]) ∈ O | ∃γ ∈ GU , ψ, π, l
′ :

l
γ,ψ,π−−−→ l′} ∪ {(d, ϕ, Inv(l)[*][ρ]) ∈ O}.

We define out(Q) =def

⋃
(l,ϕ,ρ)∈Q out((l, ϕ, ρ)), for Q a set of symbolic states.

The following definition of stioco is in essence very similar to the definition
of tioco: there, an implementation conforms to the specification w.r.t. tioco, if,
whenever the implementation, after the execution of a certain timed trace σ,
produces an output of a certain kind or a delay of a certain length, then also the
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specification, after the execution of σ, must be able to produce the same output
or delay. In the case of stioco, however, this condition is expressed logically in
terms of an FO formula, which says the following: the implementation conforms
to the specification w.r.t. stioco, if, whenever the logical conditions are satisfied
for the implementation to produce an output or delay, then also the specification
satisfies the conditions to produce the same output or delay. It is therefore
necessary to collect all conditions that lead to an observation. This is done by
formula φ defined as follows.

Definition 10. Let γ ∈ GUd
, l ∈ L, and σ a trace. Then φ(γ, l, σ) is an FO

formula defined as

φ(γ, l, σ) =def

∨
{ϕ ∧ ψ | (γ, ϕ, ψ) ∈ out ((l,/, id) after (σ,/))}.

Formula φ is a disjunction of all conditions that lead to an observation after a
trace σ. There is a valuation such that (1) at least one sub-term ϕ ∧ ψ of the
disjunction is satisfied, (2) formula φ holds, and (3) we know that there is a least
one symbolic observation that can be observed after executing σ.

The tioco-relation is defined for input-enabled implementations. We define an
STA S to be input-enabled if and only if its semantics �S�ι is an input-enabled
TLTS .

Definition 11 (stioco). Let S(ιs) = (Ls, ls,Vs, I,G, CS , Inv,→) be an initialised
STA (the specification) AS , Fs ⊆ ETraces(S) and let P(ιp) = (Lp, lp,Vp, I,G,
CP , Inv,→) be an input-enabled implementation given as an STA, with Vp∩Vs = ∅
and C = CS ∪ Cp the set of all clocks. P conforms to S with respect to stiocoFs

(written as P stiocoFs S,) if and only if the following holds. ∀(σ, χ) ∈ Fs, γ ∈ GUd
:

(ιp)Vp ∪ (ιs)Vs ∪ [C �→ 0] |= ∀̄Ĥ∪H(φ(lp, γ, σ) ∧ χ → φ(ls, γ, σ))︸ ︷︷ ︸
(∗)

.

The heart of this definition lies in the universally quantified formula (∗). At the
symbolic level, we do not look at concrete outputs but at symbolic constraints
defining a set of possible concrete actions. On the left-hand side of the implication
we have for the implementation a conjunction of a disjunction of the symbolic
constraints accumulated after trace σ and restriction χ which can be used to
prune the symbolic execution. On the right-hand side, we have the disjunction of
all accumulated symbolic constraints for the specification. The implication states
that the constraints accumulated for the implementation imply the constraints
accumulated by the specification.

Example 2. We consider two instances, S1 and S2, of the STA shown in Figure 3.
Assuming the following instantiations for variable i: i := 8 for S1 and i := 10
for S2 we get that S1 stioco S2. Since whenever the conditions for S1 to produce
an output or for delaying are satisfied the conditions for S2 are also satisfied.
However this does not hold for S2 stioco S1. The condition for an output of
location l1 for STA S2 is φS2 := (d3 ≤ 10∧ (x = money∧ (change ≥ q∨d3 ≥ 10)
and φS1 := (d3 ≤ 8) ∧ (x = money ∧ (change ≥ q ∨ d3 ≥ 8)) for S1. Therefore
φS2 → φS1 . Thus, formula ∗ in Definition 11 for stioco is violated.
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The following theorem states that stioco corresponds to tioco on the semantical
level. The proof of Theorem 3 is given in [20].

Theorem 3.
Let P(ιP ) be an input-enabled initialised STA S(ιS ) be an initialised STA. Let
Fs be a set of delayed symbolic extended traces for S. Then:

P(ιP) stiocoFs S(ιS ) ⇔ �P�ιP tioco�Fs�ιS
�S�ιS .

6 Conclusions

We presented a symbolic framework for timed automata combined with symbolic
transitions systems. We defined an implementation relation stioco on STA which
coincides with tioco [16] on the semantical level. To define such an implementa-
tion relation we provided symbolic trace executions and symbolic observations.
It must be noted that, since timed automata are a subclass of STA, stioco is
also a symbolic implementation relation expressing tioco on a symbolic level for
timed automata.

The interaction between time and data in this paper is restricted to the influ-
ence that data inputs can have on the timing behaviour of the considered STA.
This was expressed by allowing location variables to serve as bounds in clock
constraints and invariants. More and different interactions between time and
data are imaginable, for example, by assigning clock valuations to location vari-
ables, i.e., by keeping historic information about the occurrence time of events
in the STA. In principle, this extension could also be encoded in the first-order
logical framework. However, even for the more restricted case considered in this
paper, it is necessary to investigate first whether the obtained formalism is not
already too expressive to be useful for practical testing, in terms of decidability
of the forward reachability problem. A suitable subclass of FO logic might have
to be identified to ensure this and to be able to apply the provided theory on
practical applications. This would encompass the development of an algorithm
for automatic test-case generation and test-execution.

Our theory is restricted to systems without τ -transitions. Adding those would
be straightforward, in a similar way as it has been done for STS in [9], although
special care has to be taken to combine successive delays. This will be part of
future investigations.

Acknowledgments. We thank Lars Frantzen for helpful discussions and a prelim-
inary chapter of his PhD thesis on STS .
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2006 and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

10. Grabowski, J., Nielsen, B. (eds.): FATES 2004. LNCS, vol. 3395. Springer,

Heidelberg (2005)

11. Hartman, A., Nagin, K.: The AGEDIS tools for model based testing. SIGSOFT

Softw. Eng. Notes 29(4), 129–132 (2004)

12. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for

real-time systems. Inf. and Comp. 111(2), 193–244 (1994)

13. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Test-

ing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M.

(eds.) FORTEST 2000. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)
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