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Preface

We are pleased to present the proceedings of the 10th Workshop on Algorithms
in Bioinformatics (WABI 2010) which took place in Liverpool, UK, Septem-
ber 6–8, 2010. The WABI 2010 workshop was part of the four ALGO 2010
conference meetings, which, in addition to WABI, included ESA, ATMOS, and
WAOA. WABI 2010 was hosted by the University of Liverpool Department of
Computer Science, and sponsored by the European Association for Theoretical
Computer Science (EATCS) and the International Society for Computational
Biology (ISCB). See http://algo2010.csc.liv.ac.uk/wabi/ for more details.

The Workshop in Algorithms in Bioinformatics highlights research in algo-
rithmic work for bioinformatics, computational biology and systems biology. The
emphasis is mainly on discrete algorithms and machine-learning methods that
address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and
tested in simulations and on real datasets. The goal is to present recent research
results, including significant work-in-progress, and to identify and explore direc-
tions of future research.

Original research papers (including significant work-in-progress) or state-of-
the-art surveys were solicited for WABI 2010 in all aspects of algorithms in
bioinformatics, computational biology and systems biology. In response to our
call, we received 83 submissions for papers and 30 were accepted. In addition,
WABI 2010 hosted distinguished lectures by Eran Halperin, of Tel Aviv Univer-
sity and ICSI, Berkeley, and, together with ESA, Paolo Ferragina of University
of Pisa. We would like to sincerely thank the authors of all submitted papers
and the conference participants. We also thank the Program Committee and
their sub-referees for their hard work in reviewing and selecting papers for the
workshop.

We would espcially like to thank Bernard Moret and Tandy Warnow for all
of their advice and support in carrying out the role of being Co-chairs.

Thanks once again to all who participated in making WABI’s 10th anniver-
sary such a success. For us it has been an exciting and rewarding experience.

June 2010 Vincent Moulton
Mona Singh
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A Worst-Case and Practical Speedup for the
RNA Co-folding Problem Using the

Four-Russians Idea

Yelena Frid and Dan Gusfield

Department of Computer Science, U.C. Davis

Abstract. The computational formulation for finding the optimal si-
multaneous alignment and fold (optimal Co-fold) of RNA sequences was
first introduced by Sankoff in 1985. Since then the importance of Co-
Folding has grown as conservation of structure and its relationship to
function have been widely observed in RNA. For two sequences, the
computation time of Sankoff’s Algorithm is θ(N6). Existing literature
on cofolding attempts to improve efficiency through simplifying the orig-
inal problem formulation.

We present here a practical and worst-case speed up using the Four-
Russians method, without placing any added constraints on the types
of alignments or folds allowed. Our algorithm, Fast Cofold, finds the
optimal Co-fold in O(N6/ log(N2))-time, a speedup which is observed in
practice.

Because the solution matrix produced by our algorithm is identical
to the one produced by the Sankoff algorithm, the contribution of the
algorithm lays not only in its standalone practicality but also in the
ability to implement it alongside heuristic speed ups leading to even
greater reductions in time.

1 Introduction

The algorithmic goal of finding alignments together with structure prediction is
motivated by the understanding that RNA structure helps to determine func-
tion. It has been observed particularly that in eukaryotic genomes ncRNA (Non
coding RNA) function is seen more clearly from conserved structure then from
alignment alone [17,13,16]. In trRNAs, srpRNA and tRNAs there are also ob-
served relationships between structure and function. Alignment methods that
take structure into account can also allow biologists to identify non-functional
transcripts as well as structure motifs for RNA[4].

Algorithms that produce both folds and alignments can be classified into
three groups:(1) folding methods that use aligned sequences as input to find a
common structure [11,18,12,15];(2) algorithms that compute structure and then
align [8]; and (3) cofolding algorithms i.e. those that do alignment and folding
simultaneously [14,7,3,9,5,19,1].

Sankoff’s Algorithm was the first dynamic programming algorithm to simul-
taneously find alignment and RNA folding for a set of sequences [14]. For L

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 1–12, 2010.
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2 Y. Frid and D. Gusfield

sequences of equal length N the algorithm required O(N3L)-time and O(N2L)-
space[14].

Because of the large run-time and space requirement of Sankoff’s solution,
his original problem formulation has often been restricted to allow for greater
efficiency, but at the cost of not solving the original problem[7,3,9,5]. Prob-
lem simplification and restrictions on the recurrences were explored by [7,3,9,5].
FoldAlign[7] removed the possibility of a branch in the recurrences, achieving an
O(N4) time algorithm. Dynalign [9] constrained the distance d between aligned
nucleotides, thereby reducing the computation time to O(N3 ∗ d3). Eddy et al.
used covariance models to achieve O(N3 ∗ r) run-time where |r| is the number
of states in the model [5]. Consan[3] used pairSCFG to constrain the algorithm
leading to an asymptotic time between O(N6) and O(N3).

Ziv-Ukelson et al. introduced a time reduction algorithm that retained the
Sankoff style recurrence. Based on some simple pruning of the branching points,
the algorithm was able to achieve practical time reduction and asymptotic bound
O(N4 ∗ K)1 where K is constrained by N ≤ K ≤ N2 and converges to O(N)
when assuming the polymer folding model[19]. An O(N3+Z)space algorithm
was developed based on the pruning formulation by Backofen et al. [2]. While Z
ranges from N2 to N4, in practice it was seen to be lower then N4.

Surprisingly, the Four Russians method, which is widely used and known to
speed up dynamic programming, has not previously been applied to the cofolding
problem. Traditionally the Four-Russians method performs some preprocessing
for a subset of all possible inputs and then computes using that preprocessing.
We take advantage of the idea discussed in Frid and Gusfield [6] interleaving the
computation and preprocessing to create a speedup.

The algorithm as presented by Sankoff does not easily lend itself to subset
precomputation, and we reorganized the order of evaluation. We also create a
function that choose the optimal subset size that leads to the greatest speedup.

The Fast Cofold algorithm presented in this paper formulates a Four Rus-
sians speed up to the Sankoff’s original cofolding problem and reduces the asymp-
totic computation time to O(N6/log(N2)).

2 Sankoff Algorithm for Two Sequences

Let s1 and s2 be two RNA sequences over the four-letter alphabet {A,U,C,G},
where each letter in the alphabet represents an RNA nucleotide. We are inter-
ested in finding the optimal cofold or optimal alignment and common structure
of the two sequences, using a scoring scheme that accounts for alignment, fold-
ing, and substitutions that conserve structure. We will make use of a modified
version of Sankoff’s Algorithm for cofolding as described by Ziv-Ukelson et al.
[19] . That version restricts the original algorithm to computing the optimal
cofold of two sequences(L = 2) by maximizing the pair contributions to the fold
instead of minimizing energy of a fold.

1 Still O(N6) time in terms of the length N.
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The basic optimal Alignment problem. Define a scoring scheme α such that
α(x, y) is the score for substituting nucleotide x for y where x, y ∈ {A,U,C,G,−}.
Let s1 and s2 be two RNA sequences of length N over the four-letter alphabet
{A,U,C,G}. Alignment sequences s1′ and s2′ of s1, s2 are created by inserting
gaps or ’ ’ into each sequence such that |s1′| = |s2′| and {¬∃i|s1′[i] = s2′[i] = ’ ’}.

Let AligScore =
|s1′|∑
i=0

α(s1′[i], s2′[i]) be the score associated with the alignment

sequences s1′,s2′.
The optimal alignment problem: Given s1 and s2 find alignment sequences s1′

and s2′ for which AligScore is maximum. Alignments can also be enhanced by
creating more complicated scoring schemes, for example adding larger penalties
for introducing gaps versus extending gaps.

The basic optimal Folding Problem. We present below the maximum match-
ing folding problem as introduced by Nussinov et al.[10]. However, it is slightly
modified to incorporate sequences that have gaps as characters. A nucleotide
pair (x, y) is a permitted pair if (x, y) or (y, x) ∈ {(A,U), (C,G), (G,U), ( , )}.
For a given sequence seq of length N over the alphabet {A,U,C,G, } we de-
fine the folding set M as a set containing disjoint permitted pairs of sites in
sequence seq, such that for any i, i′, j, j′ where i < i′ < j < j′, M does not
contain both pairs (i, j) and (i′, j′). Let β be a scoring scheme such that β(x, y)
returns the contribution of pairing nucleotide at site x with the nucleotide at
site y. The basic scoring scheme sets β(x, y) equal to one if (x, y) is a permitted
pair with |y − x| > d and set β(x, y) to zero otherwise. However, richer scoring
schemes as those formulated by the cofold problem, allow non-permitted pairs
to match. Let foldScore be the score associated with a folding set M where
foldScore =

∑
(i,j)∈M

β(seq[i], seq[j]).

The optimal folding problem: Find the set M for which foldScore is maximum.

The Optimal Cofolding Problem. The cofold of s1 and s2 consists of align-

ment sequences s1′, s2′, and a folding set M [19]. Let cofoldScore =
|s1′|∑
i=0

α(s1′[i],

s2′[i]) +
∑

(i,j)∈M

β(s1′[i], s1′[j]) + β(s2′[i], s2′[j]) + τ(s1′[i], s1′[j], s2′[i], s2′[j])

where τ(s1′[i], s1′[j], s2′[i], s2′[j]) is a score for aligning s1’[i] for s2’[i] and substi-
tuting s1’[j] for s2’[j] taking into account compensator mutations that preserve
structure. In general all the scoring schemes α, β and τ can be modified to fit
richer biological models.

The optimal cofold problem: Find the M and alignment sequences s1′ and s2′

for which the cofoldScore is maximum.
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Recurrences for finding the Optimal Co-fold. Let S[i, j;k, l] contain the
score for the optimal cofold of subsequence s1(i..j)2 and subsequence s2(k...l).
S is therefore a four dimensional matrix and optimal cofold score for the entire
sequence is equal to S[1, n; 1, n].

We make use of the following recurrences derived from Sankoff’s algorithm
in [19].

S[i, j; k, l] = max

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Rule a. S[i + 1, j; k, l] + α(s1[i],′ −′)
Rule b. S[i, j; k + 1, l] + α(s2[k],′ −′)
Rule c. S[i, j − 1; k, l] + α(s1[j],′ −′)
Rule d. S[i, j; k, l − 1] + α(s2[l],′ −′)
Rule e. S[i + 1, j; k + 1, l] + α(s1[i], s2[k])
Rule f. S[i, j − 1; k, l − 1] + α(s1[j], s2[l])
Rule g. S[i + 1, j − 1; k, l] + β(s1[i], s1[j]) + α(s1[i],′ −′) + α(s1[j],′ −′)
Rule h. S[i, j; k + 1, l − 1] + β(s2[k], s2[l]) + α(s2[k],′ −′) + α(s2[l],′ −′)
Rule i. S[i + 1, j − 1; k + 1, l − 1] + β(s1[i], s1[j]) + β(s2[k], s2[l]) + τ(s1[i], s1[j], s2[k], s2[l])
Rule j. maxi≤m≤j∧k≤n≤l{S[i, m; k, n] + S[m + 1, j; n + 1, l]}

( )
(1)

Rules a to d account for the possibility of placing gaps and not adding any new
pair to folding set M . Rules e and f account for the possibility of aligning either
the right, or left end of the sequences but not adding any pair to the folding set
M . Rules g and h account for the possibility of adding a pair to folding set M
where the characters of the pair in one sequence are aligned with inserted gaps
in the other subsequence 3. Rule i accounts for adding a pair to folding set M
and aligning both ends of the sequences.

Let us call Rule j the Branch Rule. The Branch Rule covers the case where
the optimal solution comes from breaking up s1 at index m, breaking up s2 at
index n and cofolding s1(i..m) with s2(k..n) and s1(m+1..j) with s2(n+1..l)
or S[i, m; k, n] + S[m+1, j; n+1, l]. The branching rule looks at all combina-
tion of m and n and finds the combination which maximizes S[i, m; k, n] +
S[m+1, j; n+1, l].

We will call every break up index a branch point and call S[i,m;k,n] the head
of the branch and S[m+1,j;n+1,l] the tail . We will call each possible {m, n} a
branch point combination .

2.1 Cofold Algorithm

The S matrix can be computed by an algorithm that goes through all the possible
subsequences of s1 and s2 and finds the optimal cofold for each pair. There are
O(N4) such pairs of subsequences . For each pair a branch function computes
the Branching Rule in an O(N2) time, searching through the possible branch
point combinations.

As shown in Cofold Algorithm below, the recurrences are evaluated in increas-
ing order of the right endpoints of s1 and s2.

2 Notational note: All subsequences will be represented as seq(a..b) where a is the
starting index of the subsequence and b is the index of the of the final character in
that subsequence.

3 Constraint: Rule g is applicable only if (s1(i + 1), s1(j − 1)) ∈ folding set M . Rule
h is applicable only if (s2(k + 1), s2(l − 1)) ∈ folding set M .
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Cofold Algorithm
for j=1 to N do

for l=1 to N do
for i=j − 1 to 1 do

for k=l − 1 to 1 do
const oper max=max(Rules a to i)
branch max= branch function(i, j; k, l)
S[i,j;k,l]=max( const oper max, branch max)

branch function(i,j;k,l)::
for m=j − 1 to i + 1 do

for n=l − 1 to k + 1 do
cur max= max( cur max,S[i,m;k,n]+S[m+1,j;n+1,l] )

return cur max

This algorithm is correct based on the following facts.

Fact 1. During computation of S[i, j; k, l] we have already computed the optimal
solution for S[i′, j′; k′, l′] where j′ ≤ j − 1, l′ ≤ l − 1 and( i′ < j′ and k′ < l′.)

Fact 2. For a particular i and k at the time S[i, j; k, l] is computed all S[i′, j; k′, l]
have been computed where i′ > i and k′ > k.

It is clear that the Cofold Algorithm takes O(N6) time operations to compute
the solution matrix S. We present a method that produces the identical solution
matrix S as the the above O(N6) time algorithm. Moreover, we will reduce
the asymptotic time to O(N6/logb(N2)), by speeding up the branch function
through the adaptation of the Four-Russians method.

3 Conceptually Speeding Up the Branch function

For s1(i..j) and s2(k..l) let {m∗,n∗} be the branch point combination that
maximizes S[i, m; k, n] + S[m + 1, j; n + 1, l] over all possible branch point com-
binations {m, n} where m belongs to the set {i + 1, i + 2, i + 3, ...j − 1} and n
belongs to the set {k + 1, k + 2, ....l − 1}.

Overall there are there are O(N2) branch points combinations to evaluate i.e.
{i + 1, k + 1}{i + 1, k + 2}...{i + 2, k + 1}...{j − 1, l − 1}. Therefore, the time to
a compute branch function for a fixed i, j, k, and l is O(N2).

The Four Russians method applied to the branch function lowers the compu-
tation to O(N2/q2). The value of q will play an important role in the speedup
and will be examined in the time analysis section.

We conceptually divide all the possible branch points of s1 into sets of size
q called Mgroups. Let Mg=0 be the first such group that contains the possible
branch points {0, 1, ...q− 1}, let Mg=1 contain {q, ...2q− 1} and so on ... the last
group of which Mg=n/q = {n − q, ...n − 1}. We will also conceptually divide all
the possible branch points of s2 into sets of size q called Ngroups such that
Ng′=0 = {0, 1, ..., q − 1} and so on. In general:

Mg = {g ∗ q, g ∗ q + 1, ...g ∗ q + q − 1}
Ng = {g′ ∗ q, g′ ∗ q + 1, ...g′ ∗ q + q − 1}
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Let {m∗
g,n∗

g′} be the branch point combination that maximizes the sum
S[i, m; k, n] + S[m + 1, j, n + 1, L] such that m ∈ Mg and n ∈ Ng′ .

Let {M∗,N∗} be equal to the pair {m∗
g, n

∗
g′} where S[i, m∗

g, k, n∗
g′ ] + S[m∗

g +
1, j, n∗

g′+1, l] is maximum for all Mg,Ng′ sets g, g′ in { i+1
q , ..., j−1

q }, {k+1
q , ..., l−1

q }
respectively.

Fact 3. {m∗, n∗} = {M∗, N∗}.
Based on Fact 3. we change the Branch Rule from
max{{m,n}|m∈{i+1,...,j−1}∧n∈{k+1,...,l−1}}S[i, m; k, n] + S[m + 1, j, n+ 1, l]

to

max{{m∗
g,n∗

g′}|g∈{ i+1
q ,..., j−1

q }∧g′∈{ k+1
q ,..., l−1

q }}S[i, m
∗
g, k, n

∗
g′] + S[m∗g + 1, j, n∗g′ + 1, l]

Now assume there is a precomputed table R2 that returns {m∗
g, n

∗
g′} in O(1) time

for any i, j, k, l. Such a table would reduce computation of the branch function
to O(N2/q2) time.

3.1 Implementing the Branch Function with Table R2

Encoding. For a particular j, l, let Vg,g′ be a q by q matrix that contains the
possible tails for the branches in Mg, Ng′ . Where Vg,g′ (1, 1) = S[gq+1, j; g′q+1, l]
... Vg,g′(1, q) = S[gq + q, j; g′q + q, l] and so on.

More precisely Vg,g′ (m+1− gq, n+1− g′q) = S[m+1, j; n+1, l] (see Figure 1).

Fig. 1. The example V matrix shown in figure 1 is for Mgroup g and Ngroup g’ and
some j,l. The integers x,y,z,y’, x’ are example values in Vg,g′ . These values equal the
designated values of the S matrix. The base= S[gq + q, j; g′q + q, l]=x.

Optimal cofold scores stored in S[i, j; k, l] and S[i + 1, j; k, l] can differ by the
effect of only one more nucleotide i.e. s1[i]. Therefore we can observe that for
the scoring scheme and the recurrences of the Colfold Algorithm, |S[i, j; k, l] −
S[i+1, j; k, l]| belongs to a finite set of differences D, where D is the set of scores
created by combinations of scores from the sets α, β, and τ . The cardinality or
size of D is O(1) as a function of N . Clearly, |S[i, j; k − 1, l] − S[i, j; k, l]| also
belongs to D.
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Fig. 2. The corresponding E matrix to Vg,g′ in figure 1. A few example values are
shown i.e. Eg,g′ [1, 1]=Vg,g′ [1, 1]-base=z − x ∈ D.

Let S[gq+q, j; g′q+q, k] be called the base of Vg,g′ and let E be q by q matrix
of differences from the base. We define Eg,g′(x,y) = (S[a + x, j; b + y, l]− S[a +
q, j; b + q, l]), where S[a+q,j;b+q,l] is the base of Vg,g′ and a = gq and b = g′q.

For a particular j, l we can create and store matrices Eg,g′ as soon as the
corresponding values in the S matrix are computed. Once computed, retrieval of
any desired E clearly takes O(1) time. The overall overhead for encoding the S
matrix into a set of E matrices for the entire algorithm requires an addition of
O(N4) time.

Theorem 1. Given Eg,g and the base we can reconstruct all the values of Vg,g′ .

Proof. Vg,g′ (e, f)= Ei,k(e, f)+base

Fact 4. For a specific i, j, k, l and g, g′, if {m, n} is the branch point combination
that leads to the maximum of the sum of S[i, m; k, n]+Eg,g′(m+1−gq, n+1−g′q)
where m ∈ Mg and n ∈ Ng then {m∗

g, n
∗
g′} = {m,n}.

3.2 R2 Table Integration into Branching

The fast branch function below calculates the new Branch Rule. Taking advan-
tage of the precomputed R2 table as well as the precomputed and stored E
matrices, the total time for this function will be O(N2/q2).

fast branch function(i,j;k,l)::
for g= �j−1�

q
to �i+1�

q
do

for g′= �l−1�
q

to �k+1�
q

do
retrieve Eg,g′

{m∗
g , n∗

g′}=R2(i, k, g, g′, Eg,g′)
cur max= max( cur max, S[i, m∗

g; k, n∗
g′ ] + S[m∗

g + 1, j; n∗
g′ + 1, l] )

return cur max
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4 Precomputing the R2 Table

Finally we present how to precompute table R2 for all possible variations of E.
For simplicity of exposition we reorganize the Cofolding Algorithm as follows.

for g=0 to N/q do
for g′=0 to N/q do

for j=g ∗ q to gq + q − 1 do
for l=g′q to g′q + q − 1 do

for i=j − 1 to 1 do
for k=l − 1 to 1 do

const oper max=max(Rules a to i)
branch max= branch function(i, j; k, l)
S[i,j;k,l]=max( const oper max, branch max)

Note that neither the run-time nor accuracy is affected by this change. Also note
that facts 1,and 2, still hold true.

Assume we have completed the iteration of algorithm above where g = 0 and
g′ = 0 and have the optimal solutions for all i, k S[i, m′; k, n′] where m′ < q
and n′ < q. At this point we have computed all the heads for branch points in
Mgroup M0, and Ngroup N0 (g = 0,g′ = 0). For any matrix E the following
algorithm computes {m∗

0, n
∗
0}.

for each matrix v of size q by q such v[x, y] ∈ D do
compute (E from v) 4

for each i such that i < q − 1 do
for each k such that k < q − 1 do

R2(i, k, g = 0, g′ = 0, E) is the to the branch combination {m, n} such that
S[i, m; k, n] + E[m + 1, n + 1] is maximum.

We can generalize this algorithm for any g, g′, by creating an update table
function that is called once any g′ iteration is complete.

update table function(g,g’) ::
for each matrix size q by q v such v[x, y] ∈ D do

compute E from v
for each i such that i < gq − 1 do

for each k such that k < g′q − 1 do
R2(i, k, g, g, E) is set to branch combination {m, n} such that S[i, m; k, n]+
E(m + 1 − g ∗ q, n + 1 − g′ ∗ q) is maximum.

4.1 Fast Cofold Algorithm

We present the speedup algorithm combining both preprocessing and use of table
R2.

4 For example compute E from v function sets E(i, j) =
i∑

x=q−1

v[x, q] +
j∑

y=q−1

v[i, y].
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Fast Cofold Algorithm
for g=0 to N/q do
for g′=0 to N/q do

for j=g ∗ q to gq + q − 1 do
for l=g′q to g′q + q − 1 do

for i=j − 1 to 1 do
for k=l − 1 to 1 do

const oper max=max(Rules a to i)
branch max= fast branch function(i, j; k, l)
S[i,j;k,l]=max( const oper max, branch max)

update table(g,g’)

Boundary case for branch function. We define the boundary case of the
fast branch function(i,j,k,l) the case where g = j/q and/or g′ = l/q. Because,
the update table function has not yet precomputed {m∗

g, n
∗
g′} in this case, we

must explicitly compute {m∗
g, n

∗
g′} comparing all q2 branch point combinations.

The fast branch function including the Boundary case is shown below.

fast branch function(i,j;k,l)::

for g= �j−1�
q to �i+1�

q do

for g′= �l−1�
q to �k+1�

q do
if(boundary case) compute {m∗

g, n
∗
g′} directly; continue

retrieve Eg,g′

{m∗
g, n

∗
g′}=R2(i, k, g, g′, Eg,g′)

cur max=max( cur max, S[i, m∗
g, k; n∗

g′ ] + S[m∗
g + 1, j; n∗

g′ + 1, l] )
return cur max

5 Asymptotic Time Analysis

The Fast-Cofold algorithm can be grouped into 3 sections: (1)The computations
of Rules a-i, (2) the computation of Branch Rule j or the Fast Branch function,
(3)the preprocessing done by the update table function.

The loops g and g′ are each called O(N/q) times, loops j and l are each called
O(q) times, loops i and k are each called O(N) time. Therefore, the computation
time of Fast Cofold Algorithm for Rules a-i equals to O(N

q ∗ N
q ∗ q ∗ q ∗ N ∗

N)=O(N4) and remains unchanged from the Cofolding algorithm.
The fast branch function is called O(N4) times. In the branch function, loops

for g and g′ will reference the R2 table a total of O(N2/q2) times. There are
O(N/q + N/q) boundary cases during each call to the fast branch function that
take O(q2) time to compute. Therefore, each call to the fast branch function
takes O(N2/q2 + (2N/q) ∗ (q2)) = O(N2/q2 + 2qN) time.

In the Fast Cofold algorithm the Branch Rule j is computed in total O(N6/q2+
2qN5) time.

The update table function is called for every new Mgroup, Ngroup combi-
nation completed, or on every iteration of loop g′. In total there are N2/q2
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such iterations. With in the update table function we have three loops. The
outer loop iterates over every possible E matrix of which there are Dq2

. The
next two loops then maximize for every i,k taking O(N2) time to do O(q2)
maximizations. Therefore, the asymptotic time of the update table function is
O(N2/q2 ∗ Dq2 ∗ N2 ∗ q2)= O(N4 ∗ Dq2

).
The entire Fast Cofold algorithm algorithm has a runtime of O(N6/q2+2qN5)

+O(N4 ∗ Dq2
) + O(N4).

Theorem 2. The Fast Cofold algorithm has an asymptotic time bound of
O(N6/logb(N2)) if q=

√
logb(N2) where the log base b is is constrained by D <

b < N .

Proof. If q is set to
√

logb(N2) then the algorithm takes O(N6/ logb (N2) +
2 logb(N

2) ∗ N5) +O(N4/ logb(N
2) ∗ Dlogb (N2)) + O(N4) time.

So if O(N4 ∗ Dlogb (M2))= O(N6/logb(N2)) then Fast Cofold algorithm
computes in O(N6/ logb(N

2)) time.

Let N ′ = N2 and Q′ = q2 then the Fast Cofold Algorithm has an asymp-
totic time of O(N ′2 ∗ DQ′

). Base on theorem 1. in Frid and Gusfield O(N ′2 ∗
DQ′

)=O(N ′3/ logb(N
′)) for D < b < N [6]. Therefore, O(N ′3/ logb(N

′)) =
O((N2)3/ logb(N2)) = O(N6/ logb(N2)) q.e.d.

5.1 Memory

Unchanged from Sankoff’s algorithm, the Fast Cofold algorithm will also require
O(N4)-space to store matrix S. However, there is an additional memory cost of
O(N4/q2 ∗ Dq2

)-space for storing Table R2.

6 Empirical Results

We compare our Fast Cofold Algorithm with the Sankoff Cofold Algorithm for
two sequences described in the paper. The purpose of these empirical results is
to show that our algorithm not only achieves a theoretical speedup but can also
lead to practical improvements. As discussed above we produce the same solution
matrix S produced by the O(N6) algorithm. Therefore, we don’t test different
values for the scoring schemes α, β, τ , but do test the change in cardinality
D. Our algorithm also performs identically for randomly generated and real
sequences geneBank sequences of the same length N . In fact the practicality
and speed up of the Fast Cofold algorithm is dependent only on the size of the
sequence N , the base of the log b, and the cardinality of set D. An optimization
function was created that sets base b to the value that would create the greatest
speedup. The function calculated the optimal b for a set D, sequence length n
and the memory constraints of the computer. We report the results in Table 1 for
average times in seconds for 30 random generated and 10 geneBank sequences
(standard deviation for all tests is less than .5 seconds).
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Table 1. Empirical Results

|D| base b Size (N) Cofold Algorithm run-time(seconds) Fast Cofold Algorithm (seconds) ratio
7 9 150 21307.45 12085.9 1.76
3 4 150 21307.45 7446.04 2.88
2 4 150 21307.45 5866.39 3.66
3 4 100 1770.33 733.502 2.42
2 3 100 1770.33 631.525 2.80
5 6 50 24.41 20.79 1.17
3 4 50 24.41 18.58 1.31
2 3 50 24.41 10.63 2.30

7 Conclusion and Future Work

The Fast Cofold algorithm presented formulates Four Russians speedup for the
problem of finding an optimal simultaneous alignment and fold. The algorithm
produces the same solution matrix S as the modified Sankoff’s Cofolding algo-
rithm but in the reduced time of O(N6/ logb(N

2)) from O(N6). This compatibil-
ity makes it possible to apply other speed ups and memory reduction algorithms
alongside the FourRussians speedup. As discussed in the introduction Ziv-Ukelson
et al. [19] and Backofen et al. [2] improved computation time and lowered memory
costs by filtering the branch points that the branch function examines. Excluding
groups that don’t have any members that are co-terminus co-folding from com-
putation in the update table function and branch function would lead to an addi-
tional speedup of O(N4W ) where W is the number of group combinations that
contain co-terminus co-co folding members. W is constrained by N

log(N) ≤ W ≤
min(K, N2

log(N) )
5. There is also interest in extending the speedup to the algorithms

that compute cofolds for more than two sequences, and algorithms that compute
local alignments.We also note that based onTheorem 2Mgroups andNgroupsdon’t
have to be the same size. In fact Theorem 2 holds for Q′ = q1 ∗ q2 where q1 is the
size of any Mgroup and q2 of any Ngroup. The variation in group sizes can be im-
plemented with a few small changes to the algorithm leading to an even greater
speedup.
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Abstract. Proteins are dynamic molecules that exhibit a wide range
of motions; often these conformational changes are important for pro-
tein function. Determining biologically relevant conformational changes,
or true variability, efficiently is challenging due to the noise present in
structure data. In this paper we present a novel approach to elucidate
conformational variability in structures solved using X-ray crystallogra-
phy. We first infer an ensemble to represent the experimental data and
then formulate the identification of truly variable members of the en-
semble (as opposed to those that vary only due to noise) as a sparse
estimation problem. Our results indicate that the algorithm is able to
accurately distinguish genuine conformational changes from variability
due to noise. We validate our predictions for structures in the Protein
Data Bank by comparing with NMR experiments, as well as on syn-
thetic data. In addition to improved performance over existing methods,
the algorithm is robust to the levels of noise present in real data. In the
case of Ubc9, variability identified by the algorithm corresponds to func-
tionally important residues implicated by mutagenesis experiments. Our
algorithm is also general enough to be integrated into state-of-the-art
software tools for structure-inference.

1 Introduction

A central tenet of molecular biology is that a protein’s three-dimensional (3-
D) structure is crucial to its function. Indeed the structural genomics initiative
is producing ever increasing number of structures at high resolution, providing
accurate coordinates for each atom in the structure [2]. A protein’s structure,
however, is rarely static. Proteins are dynamic molecules, capable of exhibiting
a wide range of motions and conformational variability [11,21]. Such conforma-
tional changes are important in biological functions such as enzymatic catalysis,
cellular transport, and signaling [27,8]. It has been postulated that even subtle
conformational changes may have important functional consequences [16].

A multi-conformer model, or ensemble, attempts to model variability by ex-
plaining the data using an ensemble of conformers, rather than just one con-
former. Indeed, conformational variability in a protein might be present even
� Corresponding author.
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in a single experiment, where the observed data is an average over multiple
conformations [6,9]. Multi-conformer approaches have long been the norm when
modeling NMR data. It has been suggested that, for an accurate representation
of the physical heterogeneity in a protein, such multiple-conformer models also
be used to explain X-ray crystallography data [9,24,14].

An open problem— and the focus of this paper— is understanding the nature
of conformational variability implied by experimental data. The key challenge
here is to distinguish variability resulting due to noise in experimental data
from functionally relevant physical motion [24,20,5]. The problem is particularly
difficult to solve with single-conformer approaches, given their limited ability
to model the data. Indeed, this issue has been a driving force in the efforts
toward ensemble approaches [9]. Even with the current ensemble approaches, it
is difficult to disentangle a protein’s physical motion (e.g. hinge or loop motions)
from other kinds of protein motion (e.g., vibrational motion). The key problem
is that limited sampling (i.e. number of conformations) and multiplicity of the
problem make for weak statistical estimates [9,14,12]. While a growing number of
tools address the problem of using ensembles to implicitly model conformational
variability [6,14,5], they generally do not distinguish between variability due to
noise vs. physical motion.

There have been some attempts to analyze structural variability, but using
pairs of structures rather than ensembles. Conventional parameters such as tor-
sional angle differences, temperature factors and root-mean-squared-distance
(RMSD) values have been used to identify flexible regions. But they combine
estimation noise and true variability into a single quantity; thus, they are of lim-
ited usefulness under noisy data (e.g. for low-to-medium resolution structures)
(see Related Work, [20]). More importantly, conformational variability is best de-
scribed over a population (i.e ensemble) of conformations; pairwise comparison
between structures implies such limited sampling of the conformational space
that it may be unreliable for all but the least noisy datasets.

In this paper, we take a different approach to analyzing variability. Our ap-
proach is inspired by recent developments in regression-based predictive models
in machine learning. The basic intuition behind the approach is to construct an
ensemble of conformers that explain the experimental data and then use sparse
estimation to distinguish between conformers that are just noisy versions of a
base conformation (e.g., the PDB structure) and those that capture true confor-
mational variability (relative to the base). Accordingly, structures sampled from
a Gaussian distribution about the base structure should be more predictive of
the base structure than structures displaying true variability. This allows us to
separate out the biologically relevant variability due to physical motion using a
feature selection technique, Lasso [25]. Lasso, which stands for “least absolute
shrinkage and selection operator”, is a regularized regression technique in which
only the most significant predictor features are selected [25]. We illustrate the
approach on X-ray crystallographic data, as it is the most common source of
structural data. Our results demonstrate that the method compares favorably
with previous approaches. It is more robust to specific parameter choices and
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produces fewer false positives and false negatives (see Comparative Analysis).
In contrast to conventional approaches of pairwise structure comparison, we use
Electron Density Maps (EDM) for identification of true variability; this allows us
greater power in accurately identifying true structural outliers without the need
for any artificial parameters to model noise [13]. Finally, our predictions of true
variable regions are in good agreement with the dynamics inferred from solution
NMR experiments; the latter are presumably closer to the physical reality.

One of the key contributions of our work is in framing the problem as a
sparse estimation problem, in a way that allows a wealth of machine learning
knowledge to be applied to it. In particular, the problem of identifying sparse
models that can be physically interpreted has recently gained much attention
in machine learning, data mining and statistics due to the exponential growth
in publicly available data [10]. We show here that identification of true variable
regions in an ensemble is naturally formulated as a sparse learning problem via
Lasso. This formulation allows us to rigorously deal both with noise in the exper-
imental data and uncertainty associated with the structure-building process. Our
approach of using Lasso is quite general, and can be applied to any structural
data. Application of our method to proteins of interest may reveal interesting
conformational changes that might go unnoticed due to the absence of alternate
structural evidence, i.e. independently solved alternate conformations, which are
still expensive and cumbersome to obtain.

A key intuition driving our approach is as follows: to identify true variabil-
ity in a protein fragment, rather than performing a per-atom statistical test,
we perform a whole-model statistical test. A per-atom test will essentially ig-
nore correlated motions (even if small) between neighboring atoms; in contrast,
a whole-model test will be able to identify even small correlated motions. We
formalize this approach using the Lasso-based test. We exploit the idea of bor-
rowing information from all the samples to make a reliable statistical inference on
a particular sample. In contrast, a pairwise t-statistic approach uses information
from only a single sample to make a decision [12].

2 Related Work

Coordinate-based methods using pairwise comparisons have had reasonable suc-
cess in identifying flexible regions [20]. However these techniques were designed
to identify true flexibility in conformations that have been solved independently,
where there is already some evidence of variability. Nigham et al. give a statis-
tical test based on pairwise RMSD to identify regions showing true variability
in the presence of noise. Key to their method is the assumption of a uniform,
normal independent noise (artificially added) at each coordinate. However, this
assumption typically does not hold in reality [26].

Related approaches rely on the use of various parameters such as torsion angle
differences, temperature factors and RMSD. Torsion angle differences are highly
sensitive to noise: small deviations in coordinates might cause significant changes
in torsion angles [20]. Temperature factors (B-factors) are parameters used to
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model uncertainty in atomic positions; the value of the B-factor corresponding
to an atom represents the degree of uncertainty in that atom’s location in the
model. This distribution accounts for small vibrations about an atom’s position.
However, B-factors tend to encapsulate in one value the conformational variabil-
ity, as well as ambiguities related to inadequacies in data (e.g. related to crystal
imperfections, errors in measurement of intensities). This problem is aggravated
at medium-to-low resolutions (> 1.5Å). At such resolutions, B-factors act as
“error-sinks”, absorbing any errors (not necessarily related to protein motion)
in the optimization and model building process [13].

A number of methods have been proposed to model multiple conformations that
might give rise to X-ray crystallographic data from a single crystal [6,24,14,5].
Although independently optimized multi-conformer representations prove to be a
very attractive solution, interpretation of what the ensemble represents is a gray
area [24,5]. Knight et al. (2008) give a simple residue-level heuristic test based
on the variance in the ensemble to identify true variability. However, there is no
consensus method to identify true structural variability, and the interpretation of
such ensembles is still the subject of debate [24,5].

3 Methods

Our method consists of two steps: a) construction of an ensemble representative
of the observed data, and b) analysis of the variability in this ensemble using
Lasso. The ensemble generation algorithm is independent of the classification of
variability; the ensemble can be obtained from any other method. However it is
important to ensure that all the structures in the ensemble are of high-quality,
and represent the data almost as well as the PDB structure.

3.1 Ensemble Construction

To obtain a diverse, high-quality ensemble representing the X-ray diffraction
data, we seed a single-conformer maximum likelihood optimization procedure
(e.g. PHENIX) with a diverse set of conformations [1]. We assume that realis-
tic conformations explaining the crystallographic data will be within a limited
RMSD distance of the published PDB structure; this follows similar assumptions
in previous work [6,14]. However, hinge motion, if present in a single crystal spec-
imen, can also be detected by sampling in a larger conformational space around
the PDB structure. Starting from the backbone coordinates in the PDB, we con-
struct alternate backbone conformations within 2Å1RMSD using ChainTweak, a
state-of-the-art inverse-kinematics based neighborhood-sampling algorithm [22].
ChainTweak can, in principle, exhaustively sample from the neighborhood of
a conformation; leading to a highly variable and diverse ensemble. For each
backbone, we assign side-chains using RAPPER [6], based on their fit to the

1 We tried using higher cutoffs, but RAPPER often fails to find a rotamer-assignment
compatible with the EDM for conformations greater than 2Å RMSD from the PDB
backbone.
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Electron Density Map (EDM). The final ensemble is obtained by subsequent
optimization using PHENIX and filtering based on fit-to-data, measured using
a cross-validation parameter Rfree

2;lower Rfree implies better fit-to-data. The
final ensemble consists of structures that are of high quality, and collectively
represent the data as well as the PDB structure (Fig 1).

Fig. 1. Overview of the ensemble generation and classification algorithm

3.2 Analysis of Variability Using Lasso

Given an ensemble of conformations, our goal in this section is to identify the
subset of conformations whose variation from a given base conformation is most
likely due to only noise in the experimental data. The remaining conformations
can then be interpreted as demonstrating true variability compared to the base
conformation. The choice of a base conformation here is arbitrary; a natural
choice for it is the PDB structure, since one is often interested in conformational
variability not captured by the published PDB structure. To achieve this goal,
we formulate a Lasso regression problem: we express the base conformation as a
linear combination of the ensemble members (each such conformation is thus a
feature); we use experimental data (i.e. diffraction data) to fit this regression. As
part of the Lasso framework for feature selection, we assign (unknown) weights
to each feature. The key strength of Lasso is that it is likely to make the weights

2 R is a measure of agreement between the amplitudes of the structure factors cal-
culated from a structure and those from the original diffraction data. Rfree is the
corresponding cross-validation parameter, calculated on diffraction data not used in
the structure optimization process [26].
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for irrelevant features exactly zero, clearly identifying them. The intuition here is
that structures sampled from a Gaussian distribution (i.e. modeled by B-factors)
about the PDB structure should be more predictive of the PDB structure than
structures displaying true variability. The former structures will be assigned
a non-zero weight during Lasso and can then be classified as not displaying
true structural variability, since they are adequately represented by the PDB
structure and do not represent biologically relevant long time-scale motion.

Lasso regression is often an effective technique for shrinkage and feature se-
lection in cases where feature selection must be performed with noisy, limited
data [25,17,29]. The loss function of Lasso regression is defined as:

L =
∑

i

(yi −
∑

p

βpxip)2 + λ
∑

p

||βp||1 (1)

where xip denotes the pth predictor (feature) in the ith data point, yi denotes the
value of the response for this data point, and βp denotes the regression coefficient
of the pth feature. The l1 regularizer leads to a sparse solution in the feature
space, which means that regression coefficients for the most irrelevant and redun-
dant features shrink to zero. Interestingly, recent theoretical work recovers Lasso
as a formulation of a linear robust regression problem under feature-wise uncor-
related and norm-bounded noise [29]. The authors suggest that such problems
are of interest when values of the features are obtained with noisy pre-processing
steps, and the magnitudes of such noises are bounded.

We exploit this parallel in our formulation, where we compute each feature
(i.e. each structure in the ensemble) by optimizing against the observed data.
The PDB structure is the observed quantity, and the individually optimized
structures in the ensemble are our noisy predictor features. A sparse solution
in the β space will then represent structures which are variable due to noise
(βp > 0), thus decomposing the variability observed in the ensemble. To get the
regularization penalty λ, we follow suggestions based on other applications of
Lasso and use cross-validation [25,19].

3.3 Electron Density Map

Lasso regression can be performed either in the coordinate space or the electron
density space (EDM). In contrast to previous approaches, which use coordi-
nate based methods for pairwise structure comparison, we have designed the
test using EDMs, since the former cannot distinguish between model errors and
genuine structural outliers [13]. EDMs are obtained by taking an inverse-fourier
transform of the observed diffraction data, which are appropriately scaled using
B-factors [7]. Another advantage of using an EDM is that it directly includes
the B-factors of the models, and hence can also inherently deal with isotropic or
anisotropic B-factors. This circumvents the problem of estimating actual uncer-
tainty from B-factors; which is often a challenge for coordinate based methods.
The simple regression test quantifies the relevance of each structure in the en-
semble to the Gaussian distribution around the PDB (as given by the B-factors).
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As part of our Lasso formulation, we assume as the observed variable, the
EDM computed from the PDB structure. The predictor variables, or features,
are EDMs of structures in the ensemble. The electron density at a point ’g’
on a grid describing the observed EDM (ρg

PDB), is then modeled as a linear
combination of electron densities at the point ’g’ of the predictor EDMs (ρg

i ). We
assume that the observed electron density is noisy with respect to our generative
model and model this using a normally distributed noise component εg. We then
minimize the Lasso loss function:

ρg
PDB =

∑
i

wiρ
g
i + εg (2)

min
∑
gεG

(ρg
PDB −

∑
i

wiρ
g
i )

2 + λ
∑

i

wi (3)

Here, wi are the regression coefficients. The structures for which wi approaches
zero are the ones most irrelevant compared to the PDB, and hence exhibit true
variability. To optimize over a fragment (e.g. one residue), G is restricted to the
bounding box for the fragment.

All EDMs are constructed using Clipper [3], and are described on the same
unit cell with the same symmetry as that of the PDB structure. The optimization
was carried out using the non-linear optimization libraries IPOPT. IPOPT uses
an interior point method, combined with an efficient line-search procedure to
minimize the non-linear objective function [28].

4 Results
4.1 Synthetic Data

Our algorithm successfully models variability in a simulated crystal having two
conformations, one the PDB structure (conformer 1) and the other constructed
computationally (conformer 2) (Fig 2A; RMSD = 0.989 Å). The second con-
former was constructed using ChainTweak; we randomly selected a conforma-
tion from a set of 100. Side chains were built using RAPPER and all atoms
were assigned a B-factor of 30 Å2. Synthetic diffraction data were computed
by averaging the simulated structure factors of the two conformers using the
experimental resolution cutoffs [5,7].

Starting from an EDM of the simulated crystal, our algorithm generates struc-
tures similar to both the original structures (Fig 2A,B). Of the 13 structures
output by the algorithm, 4 structures were non-redundant; remaining structures
were almost identical to these 4 structures. Lasso regression on these 4 struc-
tures show that the ensemble correctly identifies the heterogeneity in the original
data, with 2 structures having coefficients w ≈ 0 with regression done with EDM
of conformer 1 (as per a t-test; colored light gray in Fig 2A), corresponding to
structures with true variability. Moreover, the same conformations had statisti-
cally significant coefficients (w > 0) in the regression with EDM of conformer
2. Indeed, these conformations are closer to conformer 2 (RMSDs= 0.298, 0.128
Å) than the conformations classified as non-variable (RMSDs = 0.456, 0.765 Å).
The algorithm thus appears to recover the heterogeneity in the data (Fig 2B).
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(A)

Num. Initial Conformers 2
Output Ensemble

Ensemble Size 4
R2 0.796

RMSDs for ω = 0 0.952, 0.712
RMSDs for ω > 0 0.324, 0.613

(B)

Fig. 2. Example of ensemble construction and classification. A) PDB structure
and the second conformer in the synthetic crystal are in black. The two structures
classified by Lasso as variable are shown in light gray and the two as variable due
to noise, in dark gray. B) Summary of the algorithm output using synthetic data.
RMSD is calculated with respect to the PDB structure. Suitability of the linear model
and statistical significance of the regression coefficients were evaluated using standard
techniques (R2 and t-test).

Performance analysis. Our method is robust and consistent (Fig 3A,B). The
consistency and accuracy of our method depends on the extent of correlation
between the features. Correlation between structures that are truly variable and
ones variable due to noise, will make the regression convoluted; different regu-
larization penalties (λ) will select different structures, leading to highly varying
regression weights [19]. Our simulations indicate that the features (i.e. confor-
mations in the ensemble) are uncorrelated to a large extent (Fig 3A), indicated
by the overall smooth trends for ω as we increase the regularization penalty λ.
Increasing λ shrinks the individual weights of the features towards zero, thereby
decreasing the ratio |ω|1/max|ω|1. We believe the overall smoothness of the
regularization path may be due to the efficiency of the sampling algorithm–
ChainTweak, which constructs highly diverse and uncorrelated conformations.
In our simulations we find that, of the four structures in the ensemble, only one
structure (dashed line) is dominant for all regularization penalties. A second
structure (dashed line) is selected only at low λ’s (< 50; Fig3A).

We find that our overall classifications are quite robust to the size of optimized
grid region ’G’. The average weight of a structure, calculated by averaging over
all fragments, is consistent across varying fragment and window sizes; structures
represented by dashed lines do indeed have the highest average weights and
those by solid lines, negligible average weights (Fig 3B). One could vary G in
two ways: by splitting the chain into separate fragments and carrying out Lasso
on each one, or by sliding a window centered around each residue and optimizing
over each window. Our results on the fragment-based approach are identical to
Fig 3B; we used fragment sizes of 1,2,4 and 8 (data not shown). For the second
approach, we use sliding windows of sizes 3 and 5 centered on each residue (Fig
3B), and optimize over the bounding box enclosing the residues in the window.

Comparative analysis. Lasso compares favorably to other methods in identi-
fying true flexibility. The pairwise comparison method of Nigham et al. (Pflex)
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Fig. 3. Performance analysis. A) Regularization path for the ensemble (|ω|1 → 0
as λ → ∞ towards left). B) Residue-level lasso with varying window sizes centered on
each residue (λ = 10). Dashed lines are for structures classified as variable due to noise,
solid lines are for those classified as truly variable.

is sensitive to the standard deviation of added noise (σ). Pflex computes a flexi-
bility measure, ’f’, for each residue based on RMSD, σ and a threshold p-value.
A lower f implies higher flexibility. We used the values suggested by Nigham et
al. for σ (0.1 <= σ <= 0.2) and the threshold p-value (= 0.0001). Pflex tends
to easily classify structures as variable at low levels of added noise (σ = 0.1, Fig
4A); three of the four structures in the ensemble are classified as variable. At
higher noise levels it fails to classify any structure as truly variable, leading to
false negatives; f remains at 8 for all residues for all structures in the ensemble
(σ = 0.2, Fig 4A Inset). While B-factors can correctly identify the regions of
high variability, they fail to distinguish between noise and true variability, as
evidenced by the similar profiles (Fig 4B). RMSD (best-fit) provides some in-
dication of the true variability, but the interpretation may be sensitive to noise
levels. The extent of the initial variability in the crystal, represented by each
structure in the ensemble can be analyzed by looking at normalized RMSD:
RMSD from the PDB structure normalized by the RMSD of conformer 2 (from
the PDB structure). A higher normalized RMSD implies the structure is closer
to conformer 2, and a lower score implies it is closer to the PDB structure (Fig
4C). However, it is not clear what RMSD cutoff one should use in the presence
of noise to robustly classify a structure as variable.

4.2 Real Data

Our algorithm performs well on experimental diffraction data from 5 crystal
structures across a range of resolutions (Table 1). We evaluated our models by
comparing them with the best available single-conformer model (i.e. PDB). Anal-
ysis of data fits and variability amongst the models emphasizes the advantages
of representing the data using multiple conformers. Even when our ensemble
contains models differing by 1 Å, we get an equivalent/improved fit to data:
Rens

free is lower than or equal to the PDB Rfree. Our average improvements in
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Fig. 4. Comparative analysis. A) Pflex is sensitive to the parameter σ, producing
false-positives at low values and false-negatives at higher values (inset). B) Average B-
factors correctly identify the regions of variability, but cannot distinguish between true
variability and variability due to noise. C) Choosing a RMSD cutoff for classification
is difficult with noisy coordinates. The line types are the ones used in Figure 3.

Rfree are competitive with other approaches that construct multiple-conformer
representations [24,5,6].

Tests on real data show that multi-conformer models add the most value at low
resolutions; at high resolutions (< 1.5Å) the ensemble is not able to significantly
improve upon the fit-to-data (Table 1, PDB Rfree <= Rens

free)
3. It is possible that

the truly variable conformers themselves cluster into a small number of sets. This
may be especially true for structures 3di9 and 1ew4, where the larger number of
observations might have a bearing on the larger size of the ensemble. Moreover,
for low resolutions, it is interesting to note that most of the variability observed
is due to noise– less than 8 alternate conformers are truly variable in most cases.
This re-confirms the importance of analyzing the basis of variability, particularly
in multi-conformer representations of low resolution data. Our method is suited
for this analysis as the structures are selected robustly and the resulting sparsity
can be physically interpreted.

We observe that Lasso can classify variability effectively for most cases; struc-
tures classified as variable appear to differ more than those classified as non-
variable (Fig 5A, B). Since we use an iterative method to solve the regression
problem, interpretation of variability in the ensemble can be further analyzed by
3 Rens

free is calculated in the same way as Rfree, except, amplitudes of structure factors
averaged over the ensemble are used to calculate the residual [6].
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Table 1. Summary of the models obtained using real diffraction data. PDB
R and Rfree are calculated after 6 iterations of optimization in PHENIX. These may
differ from published values. “No. of reflections” gives the total number of experimental
observations (i.e. intensity measurements). Rens

free measures the collective ability of the
ensemble to represent the data. Small RMSD ranges observed for the ensemble highlight
the challenges of identifying true variability in real data.

PDB id 1ew4 1q4r 3di9 9ilb 1a3s

Resolution(Å) 1.4 1.9 2.0 2.3 2.8
No. Of
reflections 22183 7578 22017 9535 5605
PDB R 0.206 0.187 0.244 0.156 0.176
PDB Rfree 0.229 0.245 0.264 0.193 0.236
Rens

free 0.228 0.216 0.237 0.193 0.240
Ensemble Size 77 4 40 5 11
RMSD (Å) 0.792-1.13 0.678-0.859 0.728-1.085 0.805-1.413 0.826-1.238

(a) (b)
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Fig. 5. Interpretation of ensembles on real data. A) Lasso tests on 9ilb:124-132
classifies 2 structures as non-variable (light gray). B) For the same loop, structures
classified as truly variable (dark gray) deviate more from the PDB structure (black).
C) Trajectory of the solution can give a qualitative knowledge of the landscape in the
vicinity of the native structure. Line types are as in Figure 3 and 4. All density maps
are contoured at 1.5σ for clarity. Figures were generated using PyMol [4].
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Fig. 6. Flexibility analysis of the 1a3s ensemble. A) Residue level Lasso with a
window size of 5 reveals variable regions. B) The N-terminal region (12-20) of 1a3s,
with multiple rotamers of R13 (left, dark gray). The black structure represents PDB
coordinates.

looking at the solution trajectory for Lasso (ω vs Lasso iteration; Fig 5C). The
trajectory can help give a qualitative picture of the landscape near the native
conformation: structures whose coefficients go to zero faster are farther away
from the native structure.

We then asked the question “is there is any biological insight from the ensem-
ble that can help us in understanding protein function ?” To this end, our re-
sults on the crystal structure of the human ubiquitin-conjugating enzyme (Ubc9,
PDB: 1a3s) give some interesting anecdotal evidence. Using a window-size of 5
centered on each residue we used Lasso to identify the most variable regions for
1a3s (11 structures; Fig 6A). Four fragments turn out to be highly variable: the
N-terminal helix (6-20), 30-40, 115-120 and C-terminus residues 135-145. This
is in good agreement with NMR experiments, which reveal that Leu6, Ala10,
Arg13, Arg17, Leu38, Leu119, Ala129, Glu132, Ile136 and Asn140 are amongst
the most flexible residues in an otherwise rigid structure [18]. These residues
overlap with our predictions of the true variable regions (Fig 6A). Our method
is thus able to identify physically relevant variabilities.

Additionally, it is known that the N-terminus is important for Ubc9s speci-
ficity for SUMO rather than ubiquitin [18]. However, the molecular mechanisms
responsible for substrate identification and interaction are not well understood
[23]. Tatham et al. (2003) conducted site-directed mutagenesis experiments on
Ubc9 to discover that mutations R13A/K14A and R17A/K18A disrupted Ubc9’s
interaction with SUMO-1. More recently, through a crystal structure of Ubc9-
SUMO-1 complex, R13 and R17 have been observed to be involved in key non-
covalent interactions with SUMO-1 [15]. A closer look at the heterogeneity mod-
eled by our method suggests two possible conformational states for R13 (Fig 6B).
Proximity of the two arginines at positions 13 and 17 indicate that such con-
formational changes might influence the binding interface with an E1-ubiquitin
conjugate [18,15]. Further detailed analysis in light of our results could give some
insight into the molecular mechanisms underlying such specific interactions.
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5 Conclusions

We have introduced a novel technique for analyzing conformational changes that
may be present in a real protein crystal. Our method first constructs a high-
quality, diverse ensemble of structures respresentative of the crystallographic
data. We then use a sparse estimation algorithm (Lasso) to distinguish structures
that are genuinely variable from those that appear variable due to noise.

Unlike previous approaches, our method involves the estimation of variability
by operating in the EDM space rather than in the 3-D coordinate space. This
allows us to avoid the errors that are implicitly introduced in inferring the 3-
D coordinates from the EDM. In particular, our method is able to effectively
deal with correlated motions, without assuming i.i.d noise - a key assumption
in earlier approaches [20]. Tests on real data show that the algorithm is able
to capture physically relevant conformational changes, even for low resolution
structures where the amount of noise is significant. Another advantage of operat-
ing in EDM-space is that our current technique is independent of any structure
inference packages, and can be integrated to improve structure inference at an
earlier stage in the structure-building process (e.g. from an initial experimental
EDM). We believe that this approach is particularly useful in inferring/analyzing
low-resolution structures. A common criticism of ensemble modeling approaches
at low-resolutions is that they over-fit the data [24,5]. In contrast, our use of
Lasso enables us to identify and discard structures that are variable only due
to noise, permitting simultaneous optimization of the ensemble against the data
without significant over-fitting risk. This, in turn, should improve automated
structure determination at low resolutions where ambiguous EDMs often lead
to error-prone single conformer models [24,5].

A key contribution of this paper is the Lasso-based statistical test to distin-
guish variability due to noise from that due to true heterogeneity. We believe
that the general approach we have introduced – to evaluate noise using the entire
ensemble, rather than on a per-atom pairwise basis– may be of value in other
ensemble based analyses also. Lasso’s performance as a statistical test here could
be further improved by using kernel-based algorithms that can effectively deal
with correlations and non-linear generative models [17].
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Abstract. Previous methods for accelerating Tanimoto queries have
been based on using bit strings for representing molecules. No work has
gone into examining accelerating Tanimoto queries on real valued de-
scriptors, even though these offer a much more fine grained measure of
similarity between molecules. This study utilises a recently discovered
reduction from Tanimoto queries to distance queries in Euclidean space
to accelerate Tanimoto queries using standard metric data structures.
The presented experiments show that it is possible to gain a significant
speedup and that general metric data structures are better suited than
a data structure tailored for Euclidean space on vectors generated from
molecular data.

1 Introduction

When developing novel drugs, researchers are faced with the task of selecting a
subset of all commercially available molecules for further experiments. There are
more than 8 million available molecules [7], and it is therefore not possible to
perform computationally expensive calculations on each one. The need therefore
arise for fast screening methods for identifying the molecules that are most likely
to have an effect on a disease or illness. It is often the case that a molecule with
some effect is already known, e.g. from an already existing drug. An obvious ini-
tial screening method presents itself, namely to identify the molecules which are
similar to this known molecule. To implement this screening method one must
decide on a representation of the molecules and a similarity measure between rep-
resentations of molecules. Several representations and similarity measures have
been proposed [5,10,17]. This study focuses on real valued molecular descriptors.

Vectors are often used for representing molecular structures when searching for
chemical compounds with similar properties. The entries of these vectors can be
binary, in which case they are referred to as fingerprints, or real valued, in which
case they are referred to as descriptors. A diverse set of similarity measures are
available for dealing with these vectors [18]. This study focuses on the Tanimoto
coefficient, which is applicable to fingerprints as well as descriptors.
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The Tanimoto coefficient T (A, B) between two vectors A, B ∈ Rn is calcu-
lated as

T (A, B) =
AB

||A||2 + ||B||2 − AB
.

A Tanimoto query consists of a target vector A and a minimum coefficient t. The
result of a Tanimoto query are the vectors B in a database for which T (A, B) ≥ t.

If A and B are binary, that is if their entries take on values either zero or some
entry specific value, T (A, B) will lie in the interval [0, 1]. In that case it has been
proven that the Tanimoto distance, defined as 1 − T , is a metric [13,11]. This
means that the triangle inequality holds and standard data structures, such as
μ-, vp-, M- and GNAT-trees [6,19,4,3], can be used for accelerating Tanimoto
queries.

If the entries of the vectors are allowed to take on arbitrary values, [18] states
that the codomain of T extends to [− 1

3 , 1], and 1− T ceases to be a metric [11].
The metric data structures for dealing with fingerprints are therefore no longer
applicable. However, it is possible to convert the query into that of a distance
query in Euclidean space, probably the best known metric. This not only allows
the use of data structures based on the triangle inequality, but it also enables
the use of data structures tailored for Euclidean space, such as the kd-tree [2],
even for binary valued vectors.

Previous studies have focused on decreasing the query time of Tanimoto
queries into databases of fingerprint vectors [15,1,8]. This article focusses on
speeding up Tanimoto queries into databases of real valued descriptors. These
descriptors are able to contain more fine grained information such as molecular
weight. Results from fingerprints can not be used on real valued descriptors, as
those techniques were tailored for binary vectors.

2 Data Structures

A distance query consists of a query point q and a query radius qr. When per-
formed on a set of points P , a distance query should return all the points p ∈ P
for which ||q − p|| ≤ qr. A Tanimoto query can be transformed into a distance
query using the result from [9] which states that if A, B ∈ Rn and t ∈]0, 1]. Then
T (A, B) ≥ t if and only if

|| t + 1
2t

A − B|| ≤
√−4t2 + (t + 1)2

2t
||A||.

Furthermore, if t ∈ [− 1
3 ; 0[ then T (A, B) ≥ t if and only if

|| t + 1
2t

A − B|| ≥
√−4t2 + (t + 1)2

2t
||A||.

Figure 1 illustrates both relations in the plane.
Distance queries can be accelerated using a variety of data structures. This

study examine three of these, namely kd-trees, vp-trees and GNATs.
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A

0.5

0.7

0.9

−0.3

Fig. 1. An example in the plane. All the vectors inside the circle labelled 0.9 have a
Tanimoto coefficient larger than 0.9 to A. All vectors outside the circle labelled −0.3
have a Tanimoto coefficient larger than −0.3 to A.

A kd-tree is constructed by recursively dividing a set of points based on one
of their entries [2]. On the ith level of the kd-tree the (i mod k)th entry of the
points is used to construct a hyper plane dividing the points into two equally
sized parts. Figure 2a illustrates this for a set of five points in two dimensional
space. kd-trees are used for searching for points, retrieving nearest neighbours
or, as in this case, performing distance queries. A distance query can discard
parts of the tree if the search radius of the distance query does not overlap with
the split plane defined by the nodes in the tree. kd-trees are memory efficient,
easy to construct and easy to implement. However, some studies indicate that
they have poor performance on high dimensional data [16].

vp-trees are based on vantage points, stored in the inner nodes of the trees [19].
Each node has two subtrees: one for the points closest to the nodes vantage
point, and one for those further away. Figure 2b illustrates a vp-tree on a set
of points, with p1 as the vantage point. vp-trees are constructed by recursively
selecting vantage points and splitting the points into two subsets according to
their distance from the vantage points. Each node stores the vantage point p
along with the vantage point radius pr within which all the closest points are
located. A distance query in a vp-tree is performed by traversing the tree, pruning
away subtrees when it can be proven that the points in the subtree cannot
possibly fall within the query radius. This is done by calculating the distance
from the vantage point p to the query point q and using this along with the
query radius qr and the vantage point radius pr. If ||p − q|| + rq < rp it is the
case that the query area falls fully within the closest points and it is therefore
possible to exclude the subtree representing points far away from any further
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a) kd-tree
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Fig. 2. Illustration of the three different data structures using the same five points.
The kd-tree first splits on the x-axis and thereafter on the y-axis. The vp-tree has p1

as its first vantage point. The GNAT has two reference points, p1 and p4.

search. Likewise, if ||p − q|| − qr > pr, the closest points can be skipped. Unlike
the kd-tree, vp-trees are designed for general metrics.

A GNAT (Geometric Near-neighbor Access Tree) is similar to a vp-tree in
that it is based on assigning points to a closest reference point [3]. GNAT nodes
have m subtrees, each with a reference point p. All other points are assigned to
the subtree to whose reference point they are closest, as illustrated in Fig. 2c.
As in the vp-tree, a radius pr is stored with each reference point. In the simplest
case, m is two and the points are divided into two sets, U and V , according to
their distance to the two reference points u and v. Given a query point q and
a query radius qr it is possible to decide if the points in the two sets should be
visited using the reference points. When calculating ||u− q|| it is possible to skip
all the points vi ∈ V if

min
vi∈V

(||u − vi||) > ||u − q|| + qr

or
max
vi∈V

(||u − vi||) < ||u − q|| − qr.

Therefore, each node stores minvi∈V (||u− vi||) and maxvi∈V (||u− vi||) to accel-
erate queries. These extra calculations require more computations but the gain
is more discriminatory power.

Some additional speed can be obtained by collapsing subtrees with under
max-points points into leafs. For kd and vp-trees, this is the only parameter,
whereas the GNAT also has the extra parameter m. Searching for points outside
the query radius (when t is less than zero) can be done by modifying the prun-
ing technique slightly for all three data structures. This has been done in the
experiments; how it is done is trivial and outside the scope of this paper. The
three trees are illustrated on a larger data set in Fig. 3.
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kd-tree vp-tree GNAT

Fig. 3. The three data structures illustrated on a data set containing 300 points

3 Experimental Setup

To examine the performance of the methods, experiments have been performed
on real descriptors, calculated from commercially available molecules from ZINC
version 8 [7]. Two different sets of descriptors were generated: one using the Mole-
gro Virtual Docker (MVD) [12] descriptor wizard, and one using the Chemistry
Development Kit (CDK) [14]. The MVD descriptors consist of the following nine
values: molecular weight; atom count; heavy atom count; number of rotatable
bonds; number of rotatable bonds excluding terminal atoms; number of hydro-
gen donors; number of hydrogen acceptors; number of rings; and the number of
aromatic rings. The CDK descriptors consists of the following 14 values: a log p;
a log2 p; AMR; x log p; molecular weight; bond count; aromatic bond count; ro-
tatable bond count; largest chain; largest pi chain; longest aliphatic chain; ele-
ment count; aromatic atoms count; and Lipinski’s rule of five. In a real setting
descriptors will often be normalised to inhibit descriptors with large values to
dominate the Tanimoto coefficient. Normalised versions of the descriptors were
therefore generated in which values were mean centered and given unit variance.

All data structures were implemented and tested in Python 2.6. The methods
were tested on thresholds ranging from −0.3 to 1.0 in 0.05 increments. For all
data points 100 different molecules were used as queries into the data structures
and the average query time and average pruning degree is presented.

4 Results

Initial experiments were focused on parameter tuning of the three data struc-
tures. In these experiments the number of descriptors were kept at 100, 000
and the Tanimoto threshold was varied from −0.3 to 1.0 in 0.05 increments.
max-points was varied from two to 20 in increments of two; for the GNAT, ms
of 2, 4, 6 and 8 were tested. Judging from the query times (not presented) the
best overall max-points for both kd- and vp-trees was chosen to be 14, while
max-points for GNAT was chosen to be 18 and m was chosen to be four. Of the
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Fig. 4. Comparison of the three data structures on both data sets. The comparison
is on both time and number of distance calculations. The threshold is varied on the
primary axis while the data base size is kept fixed at 100, 000 descriptors.

three data structures, the vp-tree seems to have the most stable query time for
different max-points.

Figure 4 presents the three methods along with a linear scan measured on
query time and the number of distance calculations performed. In the upper
part of the graph, where query time is presented, it is clear that the kd-tree
performs much worse than both the vp-tree and the GNAT. For some thresholds,
particularly on the CDK set, it is even worse than a linear scan. The reason for
this is easily explained by the bottom part of Fig. 4, in which it is clear that
the kd-tree performs many more distance calculations than the other two data
structures. Not surprisingly, the GNAT performs significantly fewer distance
calculations than the vp-tree, due to its tighter bound when pruning subtrees.
This does not, however, grant the GNAT faster query times on the tested data,
as seen from the top part of Fig. 4.

The data structures were also tested with a fixed threshold of 0.9 and a
database size that varied from 100, 000 to 1, 000, 000 in 100, 000 increments.
The result of this comparison is presented in Fig. 5, from which it is seen that
the internal relationship between the three methods seems to repeat itself for
larger database sizes, and that all three methods are far superior to a simple
linear scan. Interestingly, the vp-tree becomes faster than the GNAT when mov-
ing from the MVD to the CDK data base. This is explained by the number of
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Datastructures compared for different database sizes
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Fig. 5. Comparison of the three data structures on both data sets. The comparison is
on both time and number of distance calculations. The data base size is varied on the
primary axis while the threshold is kept steady at 0.9. The secondary axis is kept on a
log scale to highlight the difference between the data structures.

distance calculations which is practically the same for the two methods on the
CDK set, while the vp-tree still has a much smaller overhead. However, this is
not to be expected for all thresholds.

The data used in the experiments was generated from real descriptors, but
an interesting question is if the underlying structure of the data sets matter, or
if random entries would give rise to the exact same results. Observing the data
structures on random data would also render it possible to examine if the only
reason for the difference between the results on MVD and CDK is solely due to
dimensionality of descriptors.

As the MVD and CDK data is normalised, random descriptors were drawn
from a standard normal distribution. One hundred thousand vectors of length
nine and 14 were generated for comparison with MVD and CDK data respec-
tively. The methods were tested with a range of different thresholds, as in the
tuning experiments with the real data. Experiments were performed on all three
data structures, but for brevity only vp-tree results are presented in Fig. 6; the
results for kd-trees and GNATs are similar.

From Fig. 6 it is clear that the vp-tree is far slower and prunes far less on the
random data than on the original MVD and CDK data. A possible explanation
could be that many entries (e.g. number of bonds) in the MVD and CDK sets are
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vp-trees on random data from normal distribution
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Fig. 6. Comparison of vp-trees performance and pruning degree on real data and data
drawn from a normal distribution. The data from the normal distribution has the same
dimensionality as the vectors generated by MVD and CDK.

discrete, and therefore data points cluster together rather than being distributed
evenly; and therefore they are easy to discriminate against.

To examine if the discrete nature of the data explains the observations, ex-
periments in which descriptors were drawn from a binomial distribution (eight
trials, each with success probability of 0.5), were performed. Experiments with
other numbers of trials were also performed with similar results. The discrete
descriptors were normalised as the original data before the experiments were
carried out.

Surprisingly, the queries on discrete random data are just as slow and performs
just as many distance calculations as on the data from the normal distribution
(Fig. 7). The explanation of these observations might very well be highly corre-
lated entries within the MVD and CDK data. Closer examination of the MVD
and CDK data reveals that some entries of the vectors are very highly correlated.
For example, the number of aromatic bonds and the number of aromatic atoms
of the CDK descriptors have a r2 of 0.995.

To test if high correlation has an influence on the execution time of queries
random data was generated by, for each vector, setting all entries for that vector
to the same random number from a standard normal distribution. This entails
that all points lie on a line in R9 for the MVD data and R14 for the CDK data.
Running the same experiments show that the vp-tree and the GNAT are very
fast on this data; vp-tree results are presented in Fig. 8. The reason why this
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vp-trees on random data from discrete distribution
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Fig. 7. Comparison of vp-trees performance and pruning degree on real data and data
drawn from a binomial distribution. The data has the same dimensionality as the
vectors generated by MVD and CDK.

vp-trees on random data from correlated normal distribution
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Fig. 8. Comparison of vp-trees performance andpruningdegree on very highly correlated
data. The data has the same dimensionality as the vectors generated by MVD and CDK.
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happens is, that both data structures use a strategy in which the entire subtree
is accumulated without performing any distance calculations when it can be
reasoned that all points in a subtree lie within a query radius. The kd-tree can
not use this strategy and its query time is almost identical to that on the real
data (Fig. 9).

kd-trees on random data from correlated normal distribution
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Fig. 9. Comparison of kd-trees performance and pruning degree on very highly corre-
lated data. The data has the same dimensionality as the vectors generated by MVD
and CDK.

5 Conclusion

The work presented in this paper allows for very fast querying of chemical
databases in which molecules are represented as real valued descriptors. The
experiments indicate that the vp-tree or the GNAT are the best choice as ac-
celerating data structure, and that kd-trees do not work well on chemical data.
Furthermore, it seems vp-trees are least affected by changing parameters, and
they are therefore recommended as the data structure to use, especially for larger
dimensional data where the pruning degree becomes closer to that of GNATs
which have a larger overhead. All programs developed and experimental data
generated as part of this paper, are available upon request.

Future research could focus on more closely examining the highly correlated
data to find out what the underlying dimensionality of the data is, and if spe-
cial data structures could be created for handling this property. The methods
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presented here should also work on fingerprints and it would be interesting to
see a comparison with data structures tailored to handle these. There are also
other metric data structures not covered by this study, and especially IO efficient
data structures would be interesting as more data arrives. Parallelising the data
structure and the queries would also be a potential area of further investigation.
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Abstract. Although many RNA molecules contain pseudoknots, com-
putational prediction of pseudoknotted RNA structure is still in its in-
fancy due to high running time and space consumption implied by the
dynamic programming formulations of the problem. In this paper, we
introduce sparsification to significantly speedup the dynamic program-
ming approaches for pseudoknotted RNA structure prediction, which
also lower the space requirements. Although sparsification has been ap-
plied to a number of RNA-related structure prediction problems in the
past few years, we provide the first application of sparsification to pseu-
doknotted RNA structure prediction specifically and to handling gapped
fragments more generally - which has a much more complex recursive
structure than other problems to which sparsification has been applied.
We show that sparsification, when applied to the fastest, as well as the
most general pseudoknotted structure prediction methods available, - re-
spectively the Reeder-Giegerich algorithm and the Rivas-Eddy algorithm
- reduces the number of ”candidate” substructures to be considered sig-
nificantly. In fact, experimental results on the sparsified Reeder-Giegerich
algorithm suggest a linear speedup over the unsparsified implementation.

1 Introduction

Recently discovered catalytic and regulatory RNAs [1,2], exhibit their function-
ality due to specific secondary and tertiary structures [3,4]. The vast majority of
computational analysis of non-coding RNAs have been restricted to nested sec-
ondary structures, neglecting pseudoknots - which are “among the most preva-
lent RNA structures” [5]. For example, Xayaphoummine et al. [6] estimated that
up to 30% of the base pairs in G+C-rich sequences form pseudoknots.

However the general problem of pseudoknotted RNA structure prediction is
NP-hard. As a result, a number of approaches have been introduced for handling
restricted classes of pseudoknots [7,8,9,10,11,12,13]. Condon et al. [14] give an
� Joint first authors.
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overviewof their structure classes and the algorithm-specific restrictions and Möhl
et al. [15] develop a general framework showing that all these algorithms follow a
general scheme, which they use for efficient alignment of pseudoknotted RNA.

The most general algorithm (with respect to the pseudoknot classes handled)
among the above by Rivas and Eddy (R&E) has a running time of O(n6) time
and space consumption of O(n4). It is therefore too expensive to directly apply
this algorithm for large scale data analysis. Unfortunately, even the most efficient
algorithm by Reeder and Giegerich (R&G) still has a high running time of O(n4),
although it strongly restricts the class of predictable pseudoknots.

In this paper we introduce the technique of sparsification to the problem of
pseudoknotted RNA structure prediction. Sparsification improves the expected
running time and space usage of a dynamic programming based structure pre-
diction algorithm without introducing additional restrictions on the structure
class handled or compromising the optimality of solutions. Sparsification has
been recently applied to improve time and space complexity of various existing
RNA-related structure prediction algorithms. In particular, it turned out to be
successful for RNA folding for pseudoknot-free structures [16,17], simultaneous
alignment and folding [18] as well as RNA RNA interaction prediction [19].

Contributions. We study sparsification of pseudoknotted RNA structure predic-
tion. Algorithms developed for this problem differ from the previously sparsified
algorithms by their use of gapped fragments and their more complex recursion
structure. Our main contribution in this paper is the solution to the algorithmic
challenges due to this increased complexity. Among all DP based pseudoknot
prediction algorithms, we focus on the fastest algorithm (R&G) and the most
general one (R&E) and develop sparse variants of these dynamic programming
algorithms. Due to sparsification, the resulting algorithms need to consider only a
limited number of candidates substructures compared to the original algorithms.
As a result, we analyze the theoretical worst case complexities in terms of the
number of candidate substructures. We also present experimental results, com-
paring our implementations of the original and sparsified R&G algorithm. These
results suggest a significant (roughly a linear factor) reduction in the number of
candidates over the original algorithm.

2 Sparsification of the Reeder and Giegerich algorithm

The R&G algorithm [13] predicts the minimum free energy structure allowing
canonical pseudoknots for a sequence S of length n. It extends the Zuker algo-
rithm by adding one more matrix K (for knot), where K(i, j) denotes the energy
for the best canonical pseudoknot that starts at position i and ends at position
j.1 Canonical pseudoknots are defined as follows. Each pair of base pairs p1 =
(i, i′) and p2 = (j′, j) with i < j′ < i′ < j induces one canonical pseudoknot that
consists of two crossing stems {(i, i′), (i+1, i′−1), . . . , (i+di,i′ −1, i′−di,i′ +1)}
1 The original presentation of the algorithm in terms of the ADP framework does not

explicitly consider a matrix K but only a motif knot.
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Fig. 1. Recursion for canonical pseudoknots (a) and their sparsification (b)

and {(j′, j), (j′ + 1, j − 1), . . . , (j′ + dj′,j − 1, j − dj′,j + 1)} where the stacking
length of the two stems, di,i′ and dj′,j , respectively, is chosen as large as possible
such that still all base pairs are valid Watson-Crick base pairs.

To allow for sparsification, we restrict the scoring scheme slightly such that
the energy of a canonical pseudoknot only depends on the left ends of its base
pairs2 and hence can be described as PK-Energy (i, di,i′ , j

′, dj′,j). Then,

K(i, j) = min
i′,j′

score (i, j′, i′, j) (1)

with score (i, j′, i′, j) =(
PK-Energy (i, di,i′ , j

′, dj′,j)+
W (i + di,i′ , j

′ − 1) + W (j′ + dj′,j , i
′ − di,i′ ) + W (i′ + 1, j − dj′,j)

)
. (2)

As shown in Fig. 1(a), for each canonical pseudoknot starting at i and ending at
j the recursion decomposes into the pseudoknot itself and the three fragments
in-between its two crossing stems. Such pseudoknots add one case in the compu-
tation of a matrix entry W (i, j), which, as in the Zuker algorithm, contains the
optimal energy of a substructure starting at position i and ending at position
j. Due to the restriction to canonical pseudoknots, the recursion of R&G mini-
mizes only over all possible instances of i′ and j′, because the maximal stacking
lengths di,i′ and dj′,j are uniquely determined once i′ and j′ are fixed. Further-
more, Reeder and Giegerich note that the maximal stacking length dx,y can be
precomputed for all x, y in O(n3) time and stored in an O(n2) table.

In order to sparsify the algorithm, we develop an appropriate notion of a
candidate such that it is not necessary to minimize over all possible i′ and j′ but
only over the candidates.
2 The restricted scoring scheme does not distinguish between G-C and G-U base pairs

in pseudoknot-stems, since their left ends are identical.
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Definition 1 (R&G candidate). Let i < j′ < i′1 < i′2 and dj′,j ≤ i′1−j′. Then
i′1 dominates i′2 with respect to (i, j′, dj′,j) iff

scorei′2(i, j
′, i′2) ≥ scorei′2(i, j

′, i′1), where

scoreic(i, j
′, i′) :=PK-Energy (i, di,i′ , j

′, dj′,j)
+ W (i + di,i′ , j

′ − 1) + W (j′ + dj′,j , i
′ − di,i′ ) + W (i′ + 1, i′c).

We say that i′2 is a candidate with respect to (i, j′, dj′,j) if there does not exist
any i′1 that dominates it.

The notion of a candidate is visualized in Fig. 1(b). There, i′1 dominates i′2 if
the score for the gray area at the top (including the dashed part whose exact
position is not determined) is not better than the score for the corresponding
gray area at the bottom plus the green part. Note that these scores (and hence
the candidate i′) depend only on i, j′, and dj′,j and are independent of di,i′ and
j. The following lemma shows that the notion of a candidate given in Def. 1 is
suitable for sparsification, i.e. some i′ needs to be considered in the recursion (for
all j) only if it is a candidate, because otherwise it is dominated by a candidate
that yields a better score.

Lemma 1 (R&G sparsification). Let i′2 be dominated by i′1 with respect to
some (i, j′, dj′,j). Then for all j it holds score (i, j′, i′1, j) ≤ score (i, j′, i′2, j).

Proof. We start with the inequality of Def. 1 and add W (i′2 +1, j−dj′,j) on both
sides. Then the claim follows immediately from W (i′1 + 1, j − dj′,j) ≤ W (i′1 +
1, i′2)+W (i′2 +1, j−dj′,j). In Fig. 1(b) this corresponds to the fact that the score
for the red box is at least as good as the score from the green and the blue box
together. This triangle inequality holds by the correctness of the (unsparsified)
algorithm: For all x < y < z we have W (x, y) + W (y + 1, z) ≤ W (x, z) since the
concatenation of the best structures for the ranges (x, y) and (y, z) always forms
a valid structure for the range (x, z) with score W (x, y) + W (y + 1, z) which is
hence never better than the optimal score W (x, z) for that range. �

The sparsified algorithm maintains lists Li of candidates for each pair (j′, dj′,j)
since only the lists for one i need to be maintained in memory at the same time.
Whenever in the computation of some score(i, j′, i′, j) the i′ is considered the
first time for this i and j′, it is checked whether it is a candidate and if so, it is
added to the respective list. For all other instances of j, i′ is then considered only
if it is contained in the list. The sparsified algorithm is given by the following
pseudo-code (n := |S|).
1: for i := n to 1 do
2: for all dj′,j, j

′ ≤ n do Li(j′, dj′,j) :=empty list;
3: for j := i + 3 to n do
4: K(i, j) := ∞
5: for j′ := i + 1 to j − 2 do
6: // check new elements for candidacy
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7: for ic := max{j′ + dj′,j , checkedi,j′,dj′,j
+1} to j − dj′j do

8: if scoreic(i, j′, ic) < scoreic(i, j′, i′) for all i′ ∈ Li(j′, dj′,j) then
9: add ic to Li(j′, dj′,j)

10: end if
11: end for
12: checkedi,j′,dj′,j

:= max(checkedi,j′,dj′,j , j − dj′,j)
13: // iterate over all candidates
14: Ki,j′,j := ∞
15: for all i′ ∈ Li(j′, dj′,j) do
16: Ki,j′,j := min {Ki,j′,j , score (i, j′, i′, j)}
17: end for
18: K(i, j) := min {K(i, j), Ki,j′,j}
19: end for
20: compute matrix entries V (i, j) and W (i, j) as in Wexler et al.
21: W (i, j) := min(W (i, j), K(i, j))
22: end for
23: end for

The candidate lists are initialized in line 2. In lines 7 to 11 all new values ic that
have not been considered so far, are tested for candidacy. Here, checkedi,j′,dj′,j

denotes the largest i′ that has been checked for candidacy in list Li(j′, dj′,j).
Lines 14 to 17 compute scores score (i, j′, i′, j) for all candidates i′. In line 20,

we compute W (i, j) and V (i, j) as in the sparsified pseudoknot-free structure
prediction approach due to Wexler et al. [16]. The computation of matrices K
and W is interleaved such that all entries K(i, j) and W (i, j) are computed
before all entries K(i′, j′) and W (i′, j′) for i ≤ i′ ≤ j′ ≤ j and i �= i′ or j �= j′.

Complexity Analysis. Whereas the original algorithm requires O(n4) time (for
n = |S|), the sparsified variant requires O(n3L) time where L is the total size
for all candidate lists of some i i.e. L := maxi

∑
j′,dj′,j

|Li(j′, dj′.j)|. Obviously,
L ≤ n. In order to maintain the asymptotic space complexity O(n2) of the
original algorithm, we do not maintain all lists Li(j′, dj′,j) in memory but only
the lists with dj′,j ≤ k where k > 0 is a small constant. Please note that to keep
presentation simple, we didn’t make this explicit in the pseudo-code. Since the
maximal stacking length is usually small, there are only very few instances of j
with dj′,j > k such that for those few j it is cheap to consider all i′ as candidates.
Hence, we store O(kn) = O(n) candidate lists each requiring at most O(n) space.

3 Sparsification of the Rivas and Eddy Algorithm

The class of structures predicted by the R&E algorithm [8], here called class of
R&E structures, is the most general RNA secondary structure prediction algo-
rithm described in the literature [14]. To keep presentation simple we explain the
sparsification strategy for a base-pair maximization algorithm that handles the
R&E structure class. Finally, we motivate that sparsification can be transferred
to the R&E energy minimization algorithm.
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First, we give recursions of base pair maximization for R&E structures. Note
that the recursions are intentionally very close to the recursions of the R&E
energy minimization algorithm. After initialization for i ≥ j and k ≥ l

W (i, j) =

{
0 if i = j or i = j + 1
−∞ if i > j + 1

and
W (i, j; k, l) = −∞ if j < i or l < k
W (i, i; k, k) = bp(i, k)

where bp(i, j) =

{
1 if Si, Sk complementary
−∞ otherwise,

is the base pair contribution,

the recursions (R&E recursions) are given for 1 ≤ i < j < k < l ≤ |S| as

W (i, j) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W (i, j − 1) (12’)

bp(i, j) + W (i + 1, j − 1) (1’21’)

maxj′ W (i, j′ − 1) + W (j′, j) (12)

maxj′,k′,l′ W (i, j′ − 1; k′ + 1, l′ − 1) + W (j′, k′; l′, j) (1212)

W (i, j; k, l) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i + 1, j; k, l) (1’2G2)

W (i, j − 1; k, l) (12’G1)

W (i, j; k + 1, l) (1G2’1)

W (i, j; k, l − 1) (1G12’)

maxj′ W (i, j′) + W (j′ + 1, j; k, l) (12G2)

maxj′ W (i, j′ − 1, j; k, l) + W (j′, j) (12G1)

maxl′ W (i, j; l′ + 1, l) + W (k, l′) (1G21)

maxl′ W (i, j; k, l′ − 1) + W (l′, l) (1G12)

maxj′,k′ W (i, j′ − 1; k′ + 1, l) + W (j′, j; k, k′) (12G21)

maxj′,k′ W (i, j′ − 1; k, k′ − 1) + W (j′, j; k′, l) (12G12)

maxk′,l′ W (i, j; k′ + 1, l′ − 1) + W (k, k′; l′, l) (1G212)

maxi′,j′ W (i, i′ − 1; j′ + 1, j) + W (i′, j′; k, l) (121G2).

It is easy to check that W (1, |S|) is the maximal number of base pairs in a
R&E structure of S, because the recursions perform the same decompositions
as the original R&E recursions. Note that W (i, j; k, l) is the maximal number
of base pairs in structures with at least one base pair that spans the gap. We
label each recursion case in a way that illustrates the type of the decomposition
of this case. The idea of these labels is taken from Möhl et al. [15], where we
developed a type system for decompositions, which there are called splits. For
this reason, we call these labels split types, however, we won’t need any details
of the typing system. The decomposition by R&E is illustrated in Figure 2.

A fragment is defined as a set of positions of the fixed sequence S. The
fragments corresponding to matrix entries in the R&E recursion can be de-
scribed conveniently by their boundaries. We distinguish ungapped fragments
F = {i, . . . , j}, written (i, j), and 1-gap fragments F ′ = {i, . . . , j} ∪ {k, . . . , l},
written (i, j; k, l) where i, j, k, l, are called boundaries of respective F or F ′. A
split of a fragment F is a tuple (F1, F2) such that F = F1 ∪F2 and F1 ∩F2 = ∅.
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Fig. 2. Decomposition for R&E base pair maximization annotated with labels, i.e. split
types, of the corresponding recursion cases

For our sparsification approach, we will show that in each recursion case, cer-
tain optimally decomposable fragments do not have to be considered for com-
puting an optimal solution, because each decomposition using these fragments
can be replaced by a decomposition using a smaller fragment. We define optimal
decomposability with respect to the split type of a R&E recursion case.

Definition 2 (Optimally decomposable). A fragment F is optimally de-
composable by a split of type T (T -OD) iff there is a split (F1, F2) that occurs
in recursion case T and W (F1) + W (F2) ≥ W (F ).

A fragment F is optimally decomposable w.r.t a set of split types T (T -OD)
iff F is T -OD for some T ∈ T .

Here, we emphasize that testing T -OD for a fragment F is simple in a run of
the DP algorithm. After evaluating the case T in the computation of W (F ), one
compares the maximum of the case to W (F ). For example, a fragment (i, j; k, l)
is 12G21-OD iff W (i, j; k, l) = maxj′,k′ W (i, j′ − 1; k′ + 1, l) + W (j′, j; k, k′).

In the following we show that for the maximization in a recursion case T , we
do not need to consider T ′-OD fragments as second fragment of the split, where
T ′ is from a T -specific set of split types. As an example consider the recursion
case 12G21, which splits fragments (i, j; k, l) into F1 = (i, j′ − 1; k′ + 1, l) and
F2 = (j′, j; k, k′). Assume that F2 is 12G21-OD. Then we can show that every
evaluation of W (F ) where W (F ) = W (F1)+W (F2) can be replaced by another
at least equally good evaluation that splits F into F ′

1 and F ′
2 ⊂ F2, where F ′

2 is
the second fragment in the 12G21-split of F2. However, note that the argument
is split type specific and cannot be applied e.g. when F2 is 12G12-OD.

For sparsifying R&E, we define the following sets of split types.

T RE

12 = {12} T RE

1212 = {12G2, 12G1, 1G21}
T RE

12G1 = T RE

1G12 = T RE

1G21 = {12} T RE

12G2 = {12G2}
T RE

12G21 = {12G2, 1G12, 12G21} T RE

12G12 = {12G2, 1G21, 12G12}
T RE

1G212 = {12G1, 1G21, 12G21} T RE

121G2 = {12G2, 12G1, 121G2}
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These sets are defined such that in a recursion case T , whenever the second
fragment of a split (F1, F2) of F can be optimally decomposed by a split of a type
in T RE

T , a different split (F ′
1, F

′
2) of type T can be applied to F , where F ′

2 ⊂ F2.
As we show later, this split will be just as good as (F1, F2) for computing W (F ).

Then, one systematically obtains sparsified recursion equations W ′(i, j) and
W ′(i, j; k, l) from the equations for W (i, j) and W (i, j; k, l) by replacing symbol
W by W ′ and modifying them in the following way. For each case T in the
recursion of W (i, j) and W (i, j; k, l) that maximizes over W (F1) + W (F2) for
respective splits of the fragment F = (i, j) or F = (i, j; k, l), maximize only over
fragments F2 that are not T RE

T -OD. In an algorithm that evaluates the sparsified
recursion, such non-T RE

T -OD fragments correspond to entries of candidate lists.
For example, case 12G21 of W is modified in the equation for W ′(i, j; k, l) to

max
j′,k′, (j′,j;k,k′) not T RE

12G21-OD
W ′(i, j′−1; k′+1, l)+W ′(j′, j; k, k′) (12G21 of W’).

Theorem 1. Let W be the matrix of the R&E recursion and W ′ its sparsified
variant, then W (1, |S|) = W ′(1, |S|).
Proof. We show for all 1 ≤ i, j, k, l ≤ |S|, W (i, j) = W ′(i, j) and W (i, j; k, l) =
W ′(i, j; k, l). First note that it holds that W (i, j) ≥ W ′(i, j) and W (i, j; k, l) ≥
W ′(i, j; k, l). The claim is shown by induction on the fragment size and a case
distinction over recursion cases. For the case of split type 12, we show that

max
j′

W (i, j′ − 1) + W (j′, j) = max
j′, (j′,j) not T RE

12 -OD
W ′(i, j′ − 1) + W ′(j′, j).

Let (j′, j) be 12-OD for some j′ : i ≤ j′ ≤ j. By IH, it suffices to find a
(smaller) fragment (j′′, j), where j′′ > j and W (i, j′′−1)+W (j′′, j) ≥ W (i, j′−
1) + W (j′, j). Either (j′, j) is not 12-OD or there is a j′′, such that W (j′, j) =
W (j′, j′′−1)+W (j′′, j) and thus W (i, j′′−1)+W (j′′, j) ≥ W (i, j′−1)+W (j′, j)
because

W (i, j′′ − 1) + W (j′′, j) ≥Δ-ineq W (i, j′ − 1) + W (j′, j′′ − 1) + W (j′′, j)
=12-OD W (i, j′ − 1) + W (j′, j).

The triangle inequality (Δ-ineq) is an immediate consequence of the correctness
of the recursion for W . Thus, for the decompositions of all recursion cases there
holds such a corresponding inequation. Analogous arguments can be given for
all other modified recursion cases. Exemplarily, we elaborate the argument for
the complex case 12G21. Let F1 = (i, j′ − 1; k′ + 1, l) and F2 = (j′, j; k, k′), such
that (F1, F2) is a split of type 12G21 of (j, j; k, k). We need to show for all T RE

12G21-
OD fragments F2 there are non-empty ungapped or 1-gap fragments F ′

1 and F ′
2,

where F ′
1 ∪ F ′

2 = F2, F
′
1 ∩ F ′

2 = ∅, and W (F1 ∪ F ′
1) + W (F ′

2) ≥ W (F1) + W (F2)
and the split (F1 ∪F ′

1, F
′
2) occurs in a recursion case of R&E. Again, either F2 is

not T RE

12G21-OD or one of the following cases applies. Case 1 (12G2): for some j′′,
W (j′, j; k, k′) = W (j′, j′′ − 1) + W (j′′, j; k, k′). Then, the claim holds for F ′

1 =
(j′, j′′ − 1) and F ′

2 = (j′′, j; k, k′) by triangle inequality and split (F1 ∪ F ′
1, F

′
2)

occurs in recursion case 12G21. Case 2 (2G21): for some k′′, W (j′, j; k, k′) =
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W (j′, j; k, k′′) + W (k′′ + 1, k′). The claim holds for F ′
2 = (j′, j; k, k′′). Case 3

(12G21): for some j′′, k′′, W (j′, j; k, k′) = W (j′, j′′−1; k′′+1, k′)+W (j′′, j; k, k′′).
Again, this satisfies the claim by triangle inequality. �

Algorithm. The recursion equation W ′ tailors a sparsified dynamic program-
ming algorithm for the evaluation of W ′(1, |S|) with very limited overhead. We
maintain separate candidate lists for each sparsified recursion case. As already
mentioned, the T -OD properties of each fragment F can be easily checked af-
ter evaluation of each case of W (F ). A fragment is added to a candidate list
for recursion case T iff it is not T RE

T -OD. The maximizations are restricted to
run only over the candidates in the respective candidate list. Their intended use
dictates the exact nature of such candidate lists. For a case T , which splits a
fragments T into T1 and T2, there are candidate lists for all boundaries of a frag-
ment T2 that are not adjacent to boundaries of T1 due to split type T . The list
entries are tuples of the adjacent boundaries and the fragment score for T2. In
order to profit from a reduced number of candidates in space, we maintain two
three-dimensional slices of the matrix for W (i, j; k, l), storing entries only for the
current i and i+1. Scores W (i, j; k, l) for larger i are stored for candidates only.

R&E Free Energy Minimization. Sparsification is analogously applied to the en-
ergy minimizing R&E algorithm. This algorithm distinguishes several additional
matrices that contain minimal energies for fragments (i, j) or (i, j; k, l) under the
condition that respectively the base pair (i, j) or base pairs (i, l) and (j, k) or one
of them exist. Almost all decompositions in the recursion for these matrices are
of discussed split types and are sparsified analogously. The only notable excep-
tion is due to internal loops. Internal loops require minimizing over all possible
positions of the inner loop base pair, where commonly the loop size is restricted
by a constant K such that minimizing takes constant time. However, handling
inner loops requires access to entries of non-candidate fragments (i′, j′; k′, l′) for
i ≤ i′ ≤ i+K +2. This is handled by maintaining matrix slices for i to i+K +2
in O(n3) space, which preserves total space complexity.

Complexity Analysis. The described algorithm profits from sparsification in time
and space. Compared to O(n6) time and O(n4) space of the unsparsified algo-
rithm (for n = |S|), we obtain complexities in the number of candidates. Let ZT

denote the maximal length of a candidate lists for case T and Z denote the total
number of entries in all lists. Then, the time complexity is O(n2(Z12 + Z1212) +
n4(Z12G2 + Z12G1 + Z1G21 + Z1G12 + Z12G21 + Z12G12 + Z1G212 + Z121G2)) and space
complexity is O(n3 + Z). In the worst case, Z12, Z12G2, Z12G1, Z1G21 and Z1G12

are O(n), Z12G21, Z12G12, Z1G212, Z121G2 are O(n2), and Z1212 is O(n3); finally Z
is O(n4) in the worst case.

4 Experimental Results

In order to evaluate the effect of sparsification on pseudoknotted RNA sec-
ondary structure prediction, we implemented original and sparsified variants
of the Reeder and Giegerich (R&G) algorithm.



Sparsification of RNA Structure Prediction Including Pseudoknots 49

a) b)

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence length

S
pe

ed
up

0 200 400 600 800 1000

0

100

200

300

400

500

original

sparsified

Sequence length

R
un

ni
ng

 ti
m

e 
(s

)

0 200 400 600 800 1000

0

100

200

300

400

500

original

sparsified

Sequence length

R
un

ni
ng

 ti
m

e 
(s

)

0 200 400 600 800 1000

0

1

2

3

4

5

Sequence length

S
pe

ed
up

Fig. 3. Running times of the original and sparsified variants of the R&G algorithm

Data Set. We obtained all RNA sequences from PseudoBase[20], which are
known to have some pseudoknots in their secondary structures. This set con-
tains 294 sequences that their length is distributed between 76nt and 93399nt.
We randomly divided all long sequences into subsequences shorter than 1000nt.
Therefore the data set that we used in our experiments contains 1563 sequences
with length between 76nt and 1000nt.

Performance. We applied both variants of the R&G algorithm to our data set.
Fig. 3 shows the running time of the algorithms on a server with Intel Core Duo
CPU at 2.53GHz and 4GB RAM. The results in Fig. 3 show that sparsification
significantly improves the running time of the R&G algorithm. As the RNA
sequences get longer, the relative performance of the sparsified algorithm (with
respect to the non-sparsified ones) improves. Fig. 3.(b) shows the speedup of the
sparsified algorithm, which fits well to a linear regression (R2 = 0.84).

Number of candidates. For a better understanding of the effect of sparsifica-
tion on the R&G algorithm, we measured the number of (i′, j′) pairs which are
checked in each fragment [i, j] in both original and sparsified variants of the
algorithm. Note that the number of (i′, j′) pairs is in order of O((j − i)2) in the
worst case. Fig. 4 shows the average number of (i′, j′) pairs on fragments of equal
length which are checked by the two variants of the algorithm. As expected, this
amount is significantly smaller for the sparsified algorithm compared to the orig-
inal one. Moreover, we observe that as the fragments get longer, the difference
between the average number of (i′, j′) pairs in the sparsified and the original al-
gorithm increases. We define the work load per each fragment [i, j] as the number
of candidate (i′, j′) pairs. Figure 4(b), shows a significant reduction of the work
load in the sparsified algorithms. As it can be seen for subsequences of length
1000nt, the work load by the sparsified algorithm is reduced by a factor of about
10 compared to the original algorithm. Note that the work load reduction at
fragment length 1000nt does not yield the same speedup for sequences of length
1000nt (here this speedup is about 3.5, confer Fig.3(b)), because for a sequence
of length n, all fragments of smaller length are processed by the algorithm.
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Fig. 4. Average number of (i′, j′) candidates in the original and sparsified variants of
the R&G algorithm

5 Conclusion

The presented work gives two examples for sparsification in the context of gap
fragments and a complex recursion structure. Since we successfully sparsified
the fastest and the most complex pseudoknot structure prediction algorithm for
RNA, it is likely that all other DP-based pseudoknot-algorithm can be sparsified.
Thus, the paper motivates further generalization of sparsification for systematic
application to complex DP-algorithms as RNA structure prediction algorithms.
Even more, by providing detailed examples the paper directly prepares such
generalization. Our results from an implementation of the sparsified Reeder and
Giegerich algorithm show a significant, presumably even linear, expected work
load reduction due to sparsification.
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Abstract. We present three heuristic strategies for folding RNA se-
quences into secondary structures including kissing hairpin motifs. The
new idea is to construct a kissing hairpin motif from an overlay of two
simple canonical pseudoknots. The difficulty is that the overlay does
not satisfy Bellman’s Principle of Optimality, and the kissing hairpin
cannot simply be built from optimal pseudoknots. Our strategies have
time/space complexities of O(n4)/O(n2), O(n4)/O(n3), and O(n5)/O(n2).
All strategies have been implemented in the program pKiss and were
evaluated against known structures. Surprisingly, our simplest strategy
performs best. As it has the same complexity as the previous algorithm
for simple pseudoknots, the overlay idea opens a way to construct a vari-
ety of practically useful algorithms for pseudoknots of higher topological
complexity within O(n4) time and O(n2) space.

1 Introduction

1.1 Biological Relevance of Pseudoknots in RNA Structure

RNA is a chain molecule, the activated form of genetic information in all living
organisms. Folding back onto itself, RNA forms secondary structure via base
pairing of complementary nucleotides. Stacks of base pairs form helices, akin
to the Watson-Crick helix of DNA, but with base pairs A-U, G-C, G-U, and
occasionally some non-standard pairs. Ultimately, a tertiary (spatial) structure
forms which is essential for biological function. Pseudoknots are structural motifs
also defined via base pairing patterns, but, as they form late in the folding
process, are generally considered as elements of tertiary structure.

Kissing hairpins are a common RNA folding motif belonging to the class of
pseudoknots. The unpaired bases of a secondary structure build crossing base
pairs by loop-loop interactions (the “kiss”) and form a stable tertiary struc-
ture motif. Although these motifs have been known for over fifteen years, our
understanding of kissing hairpins is still small. Especially viral genomes have
been investigated for kissing hairpins, but also bacterial and eukaryotic ones.
Researchers showed that kissing hairpins have important duties in a wide va-
riety of RNA mediated processes. For example, they contribute extensively in
stabilizing the structure and also play a role in viral plasmid DNA replication [5]

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 52–64, 2010.
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or RNA synthesis [19]. Li et al. investigated in 2006 the mechanical unfolding of
a minimal kissing complex [15]. They discovered that the loop-loop interaction
is exceptionally stable.

1.2 RNA Folding of Nested Structures

In RNA structure prediction, there is a dichotomy between prediction of nested
and pseudo-knotted structures. The former is essentially a solved problem, whereas
the latter is an active area of research. A structure holds a pseudoknot, if residues
i− j and k− l form base pairs such that i < k < j < l. This situation is also called
a crossing interaction. Without any crossing interaction, a structure is nested.

Nested structures can be naturally represented as trees, and they lend them-
selves to structure prediction in O(n3) time and O(n2) space. Early algorithms
used a simple optimization criterion such as base pair maximization, while to-
day’s algorithms of practical relevance [27,14,17] use free energy minimization
under an experimentally established thermodynamic model [18]. An improve-
ment to O(n3/ logn) time for folding of nested structures has recently been
contributed by Frid et al. [9], but this approach is not easily adapted to the
established energy model. Recent progress in the field of nested structure pre-
diction has been made mostly in the area of a more comprehensive analysis of
the folding space [26,4], comparative prediction from multiple sequences [8], or
trading the thermodynamic model for machine learning techniques [2].

1.3 Folding Pseudoknots

Structures with pseudoknots are much more difficult to predict. Even under
energy models much simpler than what we use in practice, prediction of the op-
timal pseudo-knotted structure has been shown to be NP-hard [16,1]. This has
generated considerable interest in algorithms that solve the problem in polyno-
mial time for restricted topologies of pseudoknots – see the review by Condon
and Jabbari [7]. In an investigation of pseudoknot topologies [23], Rødland ar-
gues that the full topological complexity of pseudoknots is probably not needed
in practical applications. For reasons of space, in the sequel we focus on those
approaches which have resulted in realistic programs.

Pseudoknot folding using the established energy model was pioneered by Rivas
and Eddy [22]. They presented an O(n6) time, O(n4) space algorithm for a
fairly general class of pseudoknots. The high effort allows to fold only rather
short sequences, and hence, the generality of the algorithm cannot really be
exploited. A pragmatic approach was chosen by Reeder and Giegerich with the
program pknotsRG [20]. They restricted the analysis to the class of canonical
simple recursive pseudoknots, achieving O(n4) time, O(n2) space, and leading
to a program widely used 1 today. The program HotKnots [21] uses a heuristics
to assemble pseudoknots from low-energy helices.

1 Counting over 200 downloads and over 4,000 submissions per year according to
http://bibiserv.techfak.uni-bielefeld.de/statistics/

http://bibiserv.techfak.uni-bielefeld.de/statistics/
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Quite recently, a new algorithm has been published in [6], but at the point
of this writing, an implementation was not yet available. Our new approach
presented here is an extension of the ideas used with pknotsRG, which we will
review in necessary detail in Section 2.1.

1.4 Typology of Structures

Notation. Dynamic programming over sequences leads to a decomposition of the
given sequence into subwords, typically in all possible ways. Let S = 0s1 . . . sn be
a sequence over the RNA alphabet {A, C, G, U}. The use of a fictitious 0-position
at the start of S allows us to describe subwords by their bounding positions. For
example, subword (0, n) is S and subword (2, 4) is 2s3s4. A subword (i, j) has
length j − i and splits seamlessly into subwords (i, k) and (k, j) for i ≤ k ≤ j.
This convention avoids a lot of fiddling with ±1.

We write s = xyz to indicate that s is split into subwords x, y, z. The no-
tation s = ixkylzj indicates, more concretely, that s is itself a subword of the
overall input sequence S with boundaries i and j, and k, l denote the subword
boundaries between x, y, z. If all boundaries are independent, a Dynamic Pro-
gramming algorithm investigating all possible decompositions of this type has
at least O(n4) steps, iterating over all 0 ≤ i ≤ k ≤ l ≤ j ≤ n.

Fig. 1. Schematic representation of a nested structure (the Y shape), a simple pseu-
doknot, and a kissing hairpin motif. The bottom line shows the arrangement of helix
parts mapped to the primary sequence, with arbitrary sequence in between.

Nested structures, simple pseudoknots, and kissing hairpins. We use the notation
axa′ to indicate that subword a′ is a reverse complement (under RNA rules) of
a, and hence the two can form a helix. Using these conventions, Figure 1 sketches
three types of RNA structures, together with their associated sequence decom-
position. The first is a nested structure, the so-called Y-shape, the second a
simple pseudoknot (sometimes called H-type), and the third is a kissing hairpin
structure, which is our specific concern here. We shall reserve the word “pseu-
doknot” for simple pseudoknots here, to distinguish them from kissing hairpins.
When we allude to pesudoknots with a more complex topology than these two
classes, we shall explicitly say so.
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To evaluate the folding energy of a kissing hairpin motif on subword s, we
need to split s = aubva′wcxb′yc′. The subwords named u, v, w, x, y can attain
arbitrary (sub)structures, so kissing hairpins (as well as pseudoknots) may be
embedded within each other.

2 Three Strategies for Kissing Hairpin Prediction

2.1 The Combined Power of Canonization Rules and
Non-ambiguous Dynamic Programming

Canonization. The algorithm of pknotsRG reduces computational complexity
by imposing three canonization rules on the pseudoknots it considers:

Rule 1: In a helix s = aua′, a and a′ are perfect helices.
Rule 2: In a helix s = aua′, a and a′ extend towards each other maximally

according to the rules of base pairing, except the following case:
Rule 3: With crossing helices as in aubva′wb′, Rule 2 might imply a nega-

tive length of v. We set v = ε and both helices meet at an arbitrary
position.

Note that these rules are imposed on pseudoknots only, the search space of nested
structures remains untouched. The beneficial effect of these rules is that maximal
helices of form iaza′

j can be precomputed, and a canonical split into a pseudoknot
of form s = aubva′wb′ is uniquely characterized by four moving boundaries only,
more precisely as s = iaukbva′

lwb′j . This is the key to achieve O(n4) time, O(n2)
space efficiency. For details, we refer to [20]. There, it is shown that while an
optimal, pseudoknotted structure P may not satisfy the canonicity constraints,
there is a near-optimal pseudoknot Pcan which does. However, minimum free
energy folding might deliver an unknotted structure U with free energy such
that E(P ) ≤ E(U) ≤ E(Pcan). U will be returned without a hint to Pcan, and
hence to the potential existence of P . At this point, computing with canonical
pseudoknots seems but another heuristic approach.

Semantic non-ambiguity. A Dynamic Programming Algorithm is called seman-
tically ambiguous [10,11], if it examines an object of interest in its search space
more than once. This typically leads to exponential explosion of redundant so-
lution candidates. For finding a single, optimal solution in a Dynamic Program-
ming Algorithm, such redundancy does not matter, but it renders the algorithm
useless for producing near-optimals. The pknotsRG program is implemented in
a non-ambiguous way.

Combining canonicity with a non-ambiguous algorithm allows the program to
return suboptimals. In particular, we can ask the best canonical pseudoknot from
the near-optimal search space, even when the minimum free energy structure
comes out unknotted. The best canonical pseudoknot Pcan may be checked for
potential extension to a non-canonical structure P of even lower energy. In this
sense, the heuristic constraint of canonization appears tolerable. Our algorithms
presented here adhere to the same idea. All considered structures are canonical,
and there will be only one situation where a structure is considered twice.
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2.2 Decomposition Alternatives of the Kissing Hairpin Motif

An elementary decomposition of a kissing hairpin leads to three helices (a−a′, b−
b′, c − c′) with intervening sequences u, v, w, x, y, folded in arbitrary ways, with
the overall arrangement aubva′wcxb′yc′. See Figure 2 for an illustration. Such
a decomposition, in full generality, leads to 12 moving boundaries, and makes
us resort to canonization. Rule 2 of our canonization constraints eliminates six
moving boundaries – the inner endpoints of three helices, which are now fixed
by the helix maximality rule. The remaining boundaries are the outer endpoints
of the three helices. Iterating over these six boundaries would lead to an O(n6)
time, O(n2) space strategy. Our goal is to do better than this.

Our key idea is the view of the kissing hairpin motif as an overlay of two simple
pseudoknots (Figure 2). Given that we already know how to compute optimal
simple pseudoknots for the overlapping subwords aubva′zb′ and btcxb′yc′, can
we find their optimal overlay such that z = wcx and t = va′w, thus defining
the overall optimal decomposition into aubva′wcxb′yc′? Can we find its optimal
energy as the sum from its two constituents?

a u b v a′ w c x b′ y c′

|- - - -|- - - - | - - - -|- - - -|- - - - | - - - -|- - - -|- - - -|- - - - | - - - -|- - - -|
i h k m

h l m j

Fig. 2. The composition of two pseudoknots leading to a kissing hairpin motif with
the overlay of parts of the sequence and the moving boundaries i, h, k, l, m, and j
on top. The linear form of the sequence below shows 12 moving boundaries (vertical
lines). With the canonization rules, only six boundaries (labeled lines) remain.

Simple as it seems, there is a problem. First, if w = ε, the optimal choice of a′

(with respect to a and b′) may conflict with the optimal choice of c (with respect
to b and c′). Moreover, in the overlay, the energy contribution of the middle helix
(b− b′) and the structure for v, w, and x embedded within both pseudoknots are
accounted for twice, and must be subtracted from the energy sum of both parts.
This violates the monotonicity requirement for dynamic programming known as
Bellman’s Principle: for the overlay, the energy function is non-monotonic, and
as a consequence, an optimal kissing hairpin motif may arise as an overlay of
sub-optimal pseudoknots.
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We will present three, increasingly complex strategies A, B, and C, such
that their search spaces are properly included in the form SearchspaceA ⊆
SearchspaceB ⊆ SearchspaceC ⊂ SearchspaceKH . This relation will allow us
to evaluate whether the expense for a more general strategy pays off in practice,
but we will not be able to relate our results to an evaluation of the complete
search space SearchspaceKH of all (non-canonical) structures.

2.3 Strategy A – An O(n4) Time, O(n2) Space Algorithm

Strategy A makes the optimistic assumption that at least one of the pseudoknots
is the optimal structure for its underlying subword. This fixed, we choose the
rest of the motif in the best possible way.

(1) For all subwords p, find the optimal pseudoknot such that p = aubva′zb′.
Store results in a table of size O(n2).

(2) For all subwords s, split in all ways s = pt and look up the optimal
decomposition p = aubva′zb′.

(3) For all s of Step 2, use s = auq and find the pseudoknot decomposition such
that q = brcxb′yc′ and r = va′w, to complete the kissing hairpin decomposition
s = aubva′wcxb′yc′. This pseudoknot must be chosen such that c lies strictly
to the right of a′, hence this is not, in general, the optimal pseudoknot over its
underlying subword q. Record the decomposition of lowest free energy.

(4 - 6) Apply symmetric steps starting from an optimal choice for the right
pseudoknot in the overlay.

(7) Choose lower energy value from (3) and (6); store it in a table of size
O(n2).

The symmetry of (1-3) and (4-6) leads to the only case of ambiguity in our
approach: If the two locally optimal pseudoknots make a perfect overlay as a
kissing hairpin, this (optimal) structure will be found twice.

Efficiency: (1) takes O(n4) steps as with pknotsRG. (2) takes O(n3) steps,
as the decomposition of p is already computed. (3) takes also O(n4), because it
inherits O(n3) from Step 2 for all splits of s, which determine au and hence, the
split auq. (Only) one extra factor of n arises from the split rc, which in turn
determines the inner endpoints of helix (c− c′) due to the maximality rule, and
hence implies the split yc′. (4-6) take O(n4) steps for symmetry reasons. (7)
takes O(n2) steps. Postponing implementation details, we see that this yields an
algorithm with O(n4) time, O(n2) space requirements.

Note that Strategy A does some redundant work – the right pseudoknot de-
termined in Step 3 has already been considered as a (generally sub-optimal)
pseudoknot in Step 1.

2.4 Strategy B – An O(n4) Time, O(n3) Space Algorithm

Strategy B avoids the redundant work of Strategy A, and also enlarges the
search space. We spend extra space in Step 1 to store results about sub-optimal
pseudoknots.
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(1) For p = aubva′zb′, and for each choice of b therein, we record the optimal
choice of a′. Conversely, for each choice of a′, we store the optimal choice of b.
This requires two tables of size O(n3).
(2) For the kissing hairpin motif, we first choose a, b, b′, and c′, which costs
O(n4), and use the stored information to optimally determine the other bounds
for a′ and c by lookup with O(1).
(3) Unfortunately, the stored information may suggest that with an optimal
choice, a′ and c would overlap (and w have negative length).We correct this by
a heuristic decision – selecting an a′ further to the left and a c further to the
right. This decision will also be based on precomputed information in order to
retain a runtime of O(n4).
(4) We minimize over all cases considered.

The overall efficiency is O(n4) time and O(n3) space. Note that the search
space here is more general than with strategy A, as neither pseudoknot needs to
be optimal with respect to its underlying subword. This generalization lies with
Step 1. In Strategy A, only the optimal choice of b within p is considered for
overlay, while here, all possible choices of b are tried.

2.5 Strategy C – An O(n5) Time, O(n2) Space Algorithm

Strategy C avoids the extra storage required by Strategy B. The necessary infor-
mation is re-computed on demand, after choosing a, b, b′ and c′. This increases
runtime, but also allows us to avoid the heuristic decision when a′ and c would
overlap. For each choice of a′, we compute the best choice of c strictly to its right.
This threatens to raise time complexity to O(n6), but with a clever arrangement
of computations and an extra table of size O(n), we can keep it at O(n5).

The optimal choice of l with respect to (h, j) as a pseudoknot is a heuristics
with respect to (i, j) as a kissing hairpin (see Figure 3). It assumes that va′w
can fold optimally. For the kiss, however, v and w can only fold individually, as
they are separated by a′, which is the partner of a. Thus, l need not be optimal
for (i, j) as a kissing hairpin.

3 Algorithms

3.1 Algorithmic Subtleties

Annotated energies. When computing minimum free energies from pseudoknots,
we will need to also record the internal boundaries of the given subword which
achieved optimal energy. These will be data of the form (E, h, k). When we
minimize over these tuples, we do this with a lexicographic ordering. This is
consistent with mimimizing over energies alone. When two structures have the
same energy, then the choice is arbitrary and remains unspecified.

Exact subword boundaries in the input decomposition. Substructures have certain
minimal sizes. For example, we forbid lonely pairs, i.e. helices of length 1. There-
fore, in iakza′

j, we do not iterate k over i ≤ k ≤ j, but only over i+2 ≤ k ≤ j−2.



Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs 59

Fig. 3. The graphic shows the mandatory bases (black dots) of a kissing hairpin and
the indices i, h, k, l, m, and j determining the start and end points of the helices (black
tics). Gray regions u, v, w, x, and y can fold in an arbitrary way.

This does not affect the asymptotics, but saves substantial time in practice. The
minimal subword sizes used are two base pairs for each helix, loop u and y have
one unpaired base. Loop w has two single bases (k + 2 ≤ l). The size of loop v
and x is ≤ 0, because we want to keep the possibility of coaxially stacking of
the helices. With that, we get a minimal sequence length of 16 bases to form a
kissing hairpin (see Figure 3).

To be concrete in the following recurrences, we use the precise boundaries
consistent with our implementation. But for understanding the essentials of the
algorithms, the reader may choose to ignore them.

3.2 Pseudoknot-Recurrence of pknotsRG – csrPK

Due to the canonization of pknotsRG, the calculation of a canonical simple recur-
sive pseudoknot (csrPK) for a given subword needs two boundaries in addition
to (i, j): h, the start position of the b − b′ helix, and k, the end position of the
a − a′ helix. The recurrence of a csrPK for a subword (i, j) is:

csrPK(i, j) = min
i+3 ≤ h ≤ j−8
h+4 ≤ k ≤ j−4

EcsrPK
(
iauhbva′

krb′j
)

The energy function EcsrPK makes use of a precomputed table to determine the
inner endpoints of the helices in a unique, maximal and non-overlapping fashion.
With these boundaries fixed, the energy value is the sum of stabilizing energies
of both helices + energy contributions of the arbitrary folded regions u, v and
w + contributions from bases which dangle onto the helices from inside the
csrPK + penalties for explicitly unpaired bases in front of u and b′. For later
use, we adapt EcsrPK to additionaly store h and k, which can be retrieved by
the functions boundaryleft and boundaryright.

3.3 Recurrences of Strategy A – csrKHA

For Strategy A we make two strong assumptions. (1) Helices a − a′ and b − b′

of an optimal csrPK, starting at i and ending at m, can be adopted for the overall
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csrKH and thus determine the boundaries h and k. We can look up these values
via the table csrPK. (2) The remaining boundary l, the starting point for the
c − c′ helix, can be determined by using the energy of a second csrPK as an
objective function. This second csrPK must start at h, end at j and have its end
position of the left helix b : b′ at m, thus overlaying a part of the first csrPK:

left (i, j) = min
i+13 ≤ m ≤ j−3

EcsrKH
(
iauhbva′

kwlcxb′myc′j
)
, where

h = boundaryleft (csrPK(i, m)) ,

k = boundaryright (csrPK(i, m)) ,

l = boundaryleft

(
min

k+2 ≤ d ≤ m−4
EcsrPK

(
hbva′wdcxb′myc′j

))
A csrKH may alternatively arise from the opposite direction, i.e. an optimal
csrPK on its right half overlaying a suboptimal csrPK at its left:

right (i, j) = min
i+3 ≤ h ≤ j−13

EcsrKH
(
iauhbva′

kwlcxb′myc′j
)
, where

l = boundaryleft (csrPK(h, j)) ,

m = boundaryright (csrPK(h, j)) ,

k = boundaryright

(
min

h+4 ≤ d ≤ l−2
EcsrPK (iauhbva′

dwcxb′m)
)

The optimal csrKH with Strategy A is:

csrKHA (i, j) = min (left (i, j) , right (i, j))

3.4 Recurrences of Strategy B – csrKHB

Since Strategy B has to store the optimal choice of a′ for every given b for csrPKs
on the left side and the optimal b for every given a′ for csrPKs on the right side
of the csrKH, we have to replace the function csrPK with lpk and rpk. A csrPK
for a subword (i, j) can now be determined by minimizing over lpk (i, h, j) and
rpk (i, k, j):

lpk (i, h, j) = min
h+4 ≤ k ≤ j−4

EcsrPK
(
iauhbva′

krb′j
)

rpk (i, k, j) = min
i+3 ≤ h ≤ k−4

EcsrPK
(
iauhbva′

krb′j
)

An overlay of csrPKs from lpk and rkp might overlap in region w of the csrKH,
when building it. We can overcome this obstacle in a heuristic way by introducing
an artifical border ξ:

lpkheuristic (i, h, j) = min
h+4 ≤ k ≤ ξ

EcsrPK
(
iauhbva′

krb′j
)

rpkheuristic (i, k, j) = min
ξ ≤ h ≤ k−4

EcsrPK
(
iauhbva′

krb′j
)
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Thus we can construct a csrKH with Strategy B by first iterating over the outer
endpoints of helix b − b′, namely m and h. Second, we choose the energeti-
cally optimal combination of k and l by overlaying all csrPKs from lpk (i, h, m)
and rpk (h, m, j), as well as their heuristic counterparts lpkheuristic (i, h, m) and
rpkheuristic (h, m, j) to guarantee at least one feasible overlay:

csrKHB(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

EcsrKH
(
iauhbva′

kwlcxb′myc′j
)
, where

k ∈ boundaryright
{
lpk (i, h, m) , lpkheuristic (i, h, m)

}
l ∈ boundaryleft

{
rpk (h, m, j) , rpkheuristic (h, m, j)

}
3.5 Recurrences of Strategy C – csrKHC

We start with Strategy C identical to Strategy B, by iterating over m and h.
But instead of retrieving k and l from precomputed csrPK tables, we now also
iterate k to determine a′ and look up the optimal choice for l depending on k in
a one dimensional table rpk:

csrKHC(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

h+4 ≤ k ≤ m−6

l = boundaryleft(rpk(k))

EcsrKH
(
iauhbva′

kwlcxb′myc′j
)

When iterating over k, we go from right to left. Thus we have a growing sub-
word (k, m). While shifting k one position to the left, the function rpk(k) also
determines the optimal csrPK that begins at h, ends at j, has its b′ at m and its
c somewhere in the subword (k, m). Since we temporarily store the results for
rpk(k), it can be calculated in O(1) time. We just compare the existing result for
the one letter shorter subword rpk(k+1) with one new csrPK, whose boundaries
are at h, k + 2, m, j:

rpk(k) = min
(
EcsrPK

(
hbva′wk+2cxb′myc′j

)
, rpk(k + 1)

)
3.6 Implementation via Algebraic Dynamic Programming

Alike pknotsRG, pKiss is implemented with the algebraic dynamic programming
technique [12]. This makes it easy to add and combine different types of analysis.
Currently, we compute optimal and suboptimal structures. We plan to add shape
abstraction and computation of best knotted and un-knotted folding.

4 Evaluation of Strategies A, B, and C

A piece of anecdotal evidence. The RNA polymerase gene (gene 1) of the human
coronavirus 229E is a good example for the usefulness of improved secondary
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structure prediction tools. Analyzing the genome of the human coronavirus,
Herold and Siddell [13] guessed, that a “slippery site” together with an H-type
pseudoknot acts as a frameshift inducing structure. Extensive mutational anal-
yses showed that a kissing hairpin is required for high frequency frameshifts.
Their work implied computer-assisted modeling, but prior prediction tools could
not detect kissing hairpin motifs. pKiss finds the proper kissing hairpin.

Available test data. Verified structures holding pseudoknots and kissing hairpins
are rare. We collected a dataset of 61 pseudoknotted structures include 6 kissing
hairpins, one “double” pseudoknot with topology a b c d c′ a′ d′ b′ and 5 sim-
ple pseudoknots with nested sub-structures (see Appendix). The sequence length
varies from 28 to 115 nt. The sequence types consist of viral ribosomal frame
shifting or readthrough, mRNA, tmRNA, viral 3’ UTR, ribozymes, signal recog-
nition particle RNA [25], sequences with high affinity to HIV-1-RT [24] and viral
RNA. These well-studied structures are subsequently called the true structures.

Comparison of the Strategies A, B, and C. On 57 out of 61 sequences, Strategies
A, B, and C agree. B finds a structure of lower energy than A in two cases, and C
in the same two cases and two further ones. This is consistent with the hierarchy
of search space inclusion, but the small disagreement is surprising.

Positive and negative test cases. For a true positive prediction, we require the
structure with the right topology in the right sequence position, but allow for a
few missing base pairs (the price of canonization) or extra base pairs when they
are consistent with the true structure. All 6 true kissing hairpins are precisely
predicted by each strategy. Overall, 46 structures (75.4%) are correctly predicted
while 15 sequences (24.6%) deviate from the true structure. These negative cases
contain the complex pseudoknot which is beyond the class of kissing hairpins,
but the helices actually predicted are correct. In seven cases, a kissing hairpin is
predicted instead of a simple pseudoknot. One cannot exclude that this kissing
hairpin is actually correct, but has not been detected before due to the lack of
appropriate tools.

Further evaluations. Comparing pKiss to the program by Rivas and Eddy
brought little insight, as the program solves a more general problem and, as
expected from their asymptotics, is much slower and greedy for space. Compar-
ing pKiss to the most recent version of HotKnots [3] on our data set, we find the
following: HotKnots currently provides four different parameter sets. Choosing
the best prediction from those four in each case, it agrees with Strategy A in 3
out of our 6 positive test cases. On the larger data set of simple pseudoknots,
there is more agreement between the methods. Execution time for a single pa-
rameter choice is generally lower than for pKiss by a factor of 3 – 6. We have also
evaluated pKiss on random data and tested the robustness of predictions un-
der varied energy parameters for kissing hairpin initiation. All evaluation data,
as well as the first author’s M.Sc. thesis, can be obtained from our website at
http://bibiserv.techfak.uni-bielefeld.de/pkiss/.

http://bibiserv.techfak.uni-bielefeld.de/pkiss/
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5 Conclusion

Should the observations from our evaluation on sparse data generalize, inter-
esting algorithmic perspectives open up. Strategy A evaluates a more complex
motif than simple pseudoknots – without increasing asymptotic complexity. Un-
expectedly, Strategy A performs best among A, B, and C – it is faster, agrees on
the true positives, and has fewer false negatives. Closer inspection showed that
it is always the left pseudoknot of the overlay which was chosen optimally. One
may speculate that this is because the strategy is consistent with the hierarchic
folding path during transcription. Boldly dropping the symmetric computation
starting from the right pseudoknot reduces work in the innermost loop and may
provide a speed-up factor close to 2.

The more exciting perspective is the extension of the overlay idea to more
complex structures. A motif of four hairpins with two kissing interactions, for
example, can be overlaid as a b a′ c b′ c′ and b c b′ d c′ d′. Using ideas of Strat-
egy A, this can, again, be achieved in O(n4) time and O(n2) space! Addition-
ally, alternative decompostions, say a b a′ c b′ c′ with c d c′ d′ (a kissing hair-
pin overlaid with a simple pseudoknot) may be investigated, without raising the
asymptotics. Furthermore, two such double kissing structures can form an over-
lay, and so on. It appears that one can construct a variety of practically useful,
albeit increasingly heuristic, programs for pseudoknotted motifs of increasingly
complex topologies within O(n4) time and O(n2) space.

Acknowledgement. RG thanks A. Condon and H. Jabbari for discussion of
the pKiss ideas in their early state.
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Abstract. We study Valiant’s classical algorithm for Context Free
Grammar recognition in sub-cubic time, and extract features that are
common to problems on which Valiant’s approach can be applied. Based
on this, we describe several problem templates, and formulate generic al-
gorithms that use Valiant’s technique and can be applied to all problems
which abide by these templates. These algorithms obtain new worst case
running time bounds for a large family of important problems within the
world of RNA Secondary Structures and Context Free Grammars.

1 Introduction

Computational prediction of RNA structures serves as the basis of many ap-
proaches related to RNA functional analysis [1]. Most computational tools for
RNA structural prediction focus on RNA secondary structures — a reduced
structural representation of RNA molecules which describes a set of paired nu-
cleotides, through hydrogen bonds, in an RNA sequence. Over the last decades,
several variants of RNA secondary structure prediction problems were defined,
to which polynomial algorithms have been designed [2,3,4,5,6,7,8,9]. The compu-
tational feasibility of these variants (as opposed to three-dimensional structure
prediction), combined with the fact that secondary structures still reveal im-
portant information about the functional behavior of RNA molecules, account
for the high popularity of state-of-the-art tools for RNA secondary structure
prediction.

Sakakibara et al. [10] noticed that the basic variants of RNA Secondary Struc-
ture Prediction problems [2,3] are in fact special cases of the Weighted Context
Free Grammar (WCFG) Parsing problem [11]. This approach was then followed
by Dowell and Eddy [12], Do et al. [13], and others, who studied different aspects
of the relationship between these two domains. The WCFG Parsing problem is
a generalization of the simpler Context Free Grammar (CFG) Parsing problem,
where both problems can be solved by the Cocke-Kasami-Younger (CKY) al-
gorithm [14,15,16], whose running time is cubic in the number of words in the
input sentence (or the number of nucleotides in the input RNA sequence).

The CFG literature describes two improvements which allow to obtain a sub-
cubic time for the CKY algorithm. The first among these improvements was a
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Table 1. Time complexities of several VMT problems

Problem Standard DP
running time

VMT algorithm
running time

Results
previously
published

CFG Recognition / Parsing Θ
(
n3) [15, 16, 14] Θ (BS(n)) [17]

WCFG Parsing Θ
(
n3) [11] Θ (MP(n)) [19, 20]

RNA Base-Pairing Maximization Θ
(
n3) [2] Θ (MP(n)) [19]

RNA Energy Minimization Θ
(
n3) [3] Θ (MP(n)) [19]

In this
paper

WCFG Inside-Outside Θ
(
n3) [33] Θ (BS(n))

RNA Partition Function Θ
(
n3) [5] Θ (BS(n))

RNA Simultaneous
Alignment and Folding Θ

(
n3m

)
[9] Θ (MP(nm))

RNA-RNA Interaction Θ
(
n6) [4] Θ

(
MP

(
n2))

RNA-RNA Interaction
Partition Function Θ

(
n6) [7] Θ

(
BS
(
n2))

RNA Sequence to Structured-
Sequence Alignment Θ

(
n4) [8] Θ (nMP(n))

technique suggested by Valiant [17], who showed that the CFG parsing problem
can be solved in a running time which matches the running time of a Boolean
Matrix Multiplication of two n×n matrices. The currently fastest algorithm for
this variant of matrix multiplication runs in O(n2.376) time [18]. In [19], Akutsu
argued that the algorithm of Valiant can be modified to deal also with WCFG
Parsing, and consequentially with RNA Folding (this extension is described in
more details in [20]). The running time of the adapted algorithm is different
from that of Valiant’s algorithm, and matches the running time of a Max-Plus
Matrix Multiplication of two n × n matrices. The currently fastest algorithm
for this variant of matrix multiplication runs in O(n3 log3 log n

log2 n
) time [21]. The

second improvement was introduced by Graham et al. [22], who applied the
Four Russians technique [23] to the CFG parsing problem, and obtained an
O
(

n3

log n

)
running time algorithm. To the best of our knowledge, no extension

of this approach to the WCFG Parsing problem has been described. Recently,
Frid and Gusfield [24] showed how to apply the Four Russians technique to
the RNA Energy Minimization problem (under the assumption of a discrete
scoring scheme), obtaining the same running time of O

(
n3

log n

)
. Several other

techniques have been previously developed to accelerate the practical running
times of different variants of CFG and RNA related algorithms. Nevertheless,
these techniques either retain the same worst case running times of the standard
algorithms [22,25,26,27,28,29,30], or apply heuristics which compromise the op-
timality of the obtained solutions [31,32].

In this extended abstract, we present three template formulations, entitled
Vector Multiplication Templates (VMTs), which abstract the essential properties
that characterize problems for which a Valiant-like algorithmic approach can
be applied. Then, we exemplify how Valiant’s approach can be simplified and
applied in order to describe generic algorithms for all problems sustaining these
templates. Table 1 lists some examples of VMT problems. The table compares
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between the running times of standard dynamic programming (DP) algorithms,
and the VMT algorithms presented here. In the single string problems, n denotes
the length of the input string. In the double-string problems [4,7,8], we assume
that both input strings are of length n. For the RNA Simultaneous Alignment
and Folding problem, m denotes the number of input strings and n is the length
of each string. BS(n) denotes the time complexity of a Scalar or a Boolean matrix
multiplication of two n×n matrices, for which the current best result is O(n2.376),
due to [18]. MP(n) denotes the time complexity of a Min-Plus or a Max-Plus
matrix multiplication of two n× n matrices, for which the current best result is
O(n3 log3 log n

log2 n
), due to [21]. For most of the problems, the algorithms presented

here obtain lower running time bounds than the best previous algorithms.

2 Preliminaries

2.1 Interval and Matrix Notations

For two integers a, b, denote by [a, b] the interval which contains all integers q
such that a ≤ q ≤ b. For two intervals I = [i1, i2] and J = [j1, j2], define the
following intervals: [I, J ] = {q : i1 ≤ q ≤ j2}, (I, J) = {q : i2 < q < j1}, [I, J) =
{q : i1 ≤ q < j1}, and (I, J ] = {q : i2 < q ≤ j2}. When an integer r replaces one
of the intervals I or J in the notation above, we regard it as if it was the interval
[r, r]. For example, [0, I) = {q : 0 ≤ q < i1}, and (i, j) = {q : i < q < j}. For two
intervals I = [i1, i2] and J = [j1, j2] such that j1 = i2 + 1, define IJ to be the
concatenation of I and J , i.e. the interval [i1, j2].

Let X be an n1 × n2 matrix, with rows indexed with 0, 1, . . . , n1 − 1 and
columns indexed with 0, 1, . . . , n2−1. Denote by Xi,j the element in the ith row
and jth column of X . For two intervals I ⊆ [0, n1) and J ⊆ [0, n2), let XI,J

denote the sub-matrix of X obtained by projecting it onto the subset of rows I
and subset of columns J . Denote by Xi,J the sub-matrix X[i,i],J , and by XI,j

the sub-matrix XI,[j,j].
Let D be a domain of elements, and ⊗ and ⊕ two binary operations on D.

We assume that (1) ⊕ is associative (i.e. for three elements a, b, c in the domain,
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)), and (2) there exists a zero element φ in D, such that
for every element a ∈ D, a ⊕ φ = φ ⊕ a = a and a ⊗ φ = φ ⊗ a = φ.

Let X and Y be a pair of matrices of sizes n1 × n2 and n2 × n3, respectively,
which elements are taken from D. Define the result of the matrix multiplication
X ⊗ Y to be the matrix Z of size n1 × n3, where each entry Zi,j is given by

Zi,j =⊕q∈[0,n2) (Xi,q ⊗ Yq,j)=(Xi,0⊗Y0,j)⊕(Xi,1⊗Y1,j)⊕. . .⊕(Xi,n2−1⊗Yn2−1,j).

In the special case where n2 = 0, define the result of the multiplication Z to be an
n1×n3 matrix in which all elements are φ. In the special case where n1 = n3 = 1,
the matrix multiplication X ⊗Y is also called a vector multiplication (where the
resulting matrix Z contains a single element).

Let X and Y be two matrices. When X and Y are of the same size, define
the result of the matrix addition X ⊕ Y to be the matrix Z of the same size
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as X and Y , where Zi,j = Xi,j ⊕ Yi,j . When X and Y have the same number

of columns, denote by
[
X
Y

]
the matrix obtained by concatenating Y below X .

When X and Y have the same number of rows, denote by [XY ] the matrix
obtained by concatenating Y to the right of X . The following properties are well
known, and can be easily deduced from the definition of matrix multiplication
and the associativity of the ⊕ operation. In each property we assume that the
participating matrices are of the appropriate sizes.

X ⊗ [Y 1Y 2] =
[
(X ⊗ Y 1)(X ⊗ Y 2)

]
(2.1)

(X1 ⊗ Y 1) ⊕ (X2 ⊗ Y 2) =
[
X1X2]⊗ [Y 1

Y 2

]
(2.2)

Under the assumption that the operations ⊗ and ⊕ between two domain ele-
ments consume Θ(1) computation time, a straightforward implementation of a
matrix multiplication between two n × n matrices can be computed in Θ(n3)
time. Nevertheless, for some variants of multiplications, sub-cubic algorithms for
square matrix multiplications are known. Here, we consider three such variants,
which will be referred to as standard multiplications in the rest of this paper:

– Scalar multiplication: The matrices hold numerical elements, ⊗ stands for
number multiplication (·) and ⊕ stands for number addition (+). The zero
element is 0. The running time of the currently fastest algorithm for this
variant is O(n2.376) [18].

– Min-plus/Max-plus multiplication: The matrices hold numerical elements, ⊗
stands for number addition and ⊕ stands for min or max (where a min b is
the minimum between a and b, and similarly for max). The zero element is ∞
for the min-plus variant and −∞ for the max-plus variant. The running time
of the currently fastest algorithm for these variants is O(n3 log3 log n

log2 n
) [21].

– Boolean multiplication: The matrices hold boolean elements, ⊗ stands for
boolean AND (∧) and ⊕ stands for boolean OR (∨). The zero element is the
false value. Boolean matrix multiplication is computable with the same com-
plexity as the scalar multiplication, having the running time of O(n2.376) [18].

2.2 String Notations

Let s = s0s1 . . . sn−1 be a string of length n over some alphabet. Let si,j denote
the substring of s between indices i (inclusive) and j (exclusive). In a case where
i = j, si,j corresponds to an empty string, and for i > j, si,j does not correspond
to a valid string. An inside value βi,j is a value which reflects some property de-
pendent only on the substring si,j . In the context of RNA, an input string usually
represents a sequence of nucleotides, where in the context of CFGs, it usually
represents a sequence of words. Examples of inside values in the world of RNA
problems are the maximum number of base-pairs in a secondary structure of
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si,j [2], the minimum free energy of a secondary structure of si,j [3], the sum of
weights of all secondary structures of si,j [5], etc. In CFGs, inside values can be
boolean values which state whether the sub-sentence can be derived from some
non-terminal symbol of the grammar, or numeric values corresponding to the
probability of (all or best) such derivations [14,15,16,11].

In the rest of this paper, the notation β will be used to denote the set of all
values of the form βi,j with respect to substrings si,j of some given string s. It
is convenient to visualize β as an upper triangle of an (n + 1) × (n + 1) matrix,
where n denotes the length of s and the (i, j)-th entry in the matrix contains
the value βi,j . We will also use notations such as βI,J , βi,J , and βI,j to denote
the corresponding sub-matrices of β, as defined in Section 2.1.

3 The Inside Vector Multiplication Template

In this section we describe a class of problems which are called Inside VMT
problems. We start by giving a simple motivating example in Section 3.1. Then,
we formally define the class of Inside VMT problems in Section 3.2, and in Sec-
tion 3.3 we formulate an efficient generic algorithm for all Inside VMT problems.

3.1 Example: RNA Base-Pairing Maximization

The RNA Base-Pairing Maximization problem [2] is a simple problem which
exhibits the main characteristics of Inside VMT problems. In this problem, an
input string s = s0s1 · · · sn−1 represents a string of bases over the alphabet
A, C, G, U . The goal is to compute the maximum number of nested complemen-
tary base-pairs in a secondary structure of s (we refer the reader to [2] for the
formal problem definition). We call such a number the solution for the instance
s, where βi,j denotes the solution for the substring si,j . The value βi,j is 0 for
j − i ≤ 1, and otherwise can be computed according to the following recurrence:

βi,j = max

{
(I) βi+1,j−1 + δi,j−1,
(II) max

q∈(i,j)

{
βi,q + βq,j

}} ,

where δi,j−1 = 1 if si and sj−1 are complementary bases, and otherwise δi,j−1 =
−∞. This recursive computation can be efficiently implemented using dynamic
programming (DP). For an input string s of length n, the DP algorithm main-
tains the upper triangle of an (n + 1)× (n + 1) matrix B, where each entry Bi,j

in B corresponds to a solution βi,j . The entries in B are filled, starting from
short base-case entries of the form Bi,i and Bi,i+1, and continuing by computing
entries corresponding to substrings with increasing lengths. In order to compute
a value βi,j , the algorithm needs to examine only values of the form βi′,j′ such
that si′,j′ is a strict substring of si,j . Due to the bottom-up computation, these
values are already computed and stored in B, and can be obtained in Θ(1) time.

Upon computing some value βi,j , the algorithm needs to compute term (II)
of the recurrence. This computation is of the form of the vector multiplication
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operation ⊕q∈(i,j)
(
βi,q ⊗ βj,q

)
, where the multiplication variant is the Max Plus

multiplication. Since all relevant values in B are computed, this computation can
be implemented by computing Bi,(i,j)⊗B(i,j),j (see Fig. 1a), which takes Θ(j−i)
running time. After computing term (II), the algorithm needs to perform addi-
tional operations for computing βi,j which take Θ(1) running time (computing
term (I), and taking the maximum between the results of the two terms). Thus,
on average, the running time for computing each value βi,j is Θ(n), and the
overall running time for computing all Θ(n2) values βi,j is Θ(n3). Upon termi-
nation, the computed matrix B equals to the matrix β, and the required result
β0,n is found in the entry B0,n.

Note that reducing vector multiplication computation time would reduce the
overall running time of the described algorithm. This observation holds in gen-
eral for all VMT problems, as we show below. The algorithms we develop follow
the approach of Valiant, which organizes the required vector multiplication op-
erations in a manner that allows to compute them via the usage of fast matrix
multiplication algorithms, and hence reduces the amortized running time of each
vector multiplication to sub-linear time.

3.2 Inside VMT Definition

In this section we characterize the class of Inside VMT problems. The RNA
Base-Paring Maximization problem, which was presented in the previous section,
exhibits a simple special case of an Inside VMT problem, in which the goal is
to compute a single inside value for a given input string. Note that this requires
the computation of such inside values for all substrings of the input. In other
Inside VMT problems the case is similar, hence we will assume that the goal of
Inside VMT problems is to compute inside values for all substrings of an input
string. In the more general case, an Inside VMT problem defines several inside
values for each substring, where the computation of these values is formulated in
a mutually recursive manner. Examples of such a problems are the RNA Energy
Minimization problem [3] and the CFG Parsing problem [14,15,16]. A common
property of all Inside VMT problems is that the computation of at least one type
of the inside values requires the result of a vector multiplication operation, which
is of similar structure to the multiplication presented for the RNA Base-Paring
Maximization problem.

Definition 1. A problem is considered an Inside VMT problem if it fulfills the
following requirements:

1. The instances of the problem are strings, and the goal of the problem is to
compute for every substring si,j of an input string s, a series of inside values
β1

i,j , β
2
i,j , . . . , β

K
i,j.

2. Let n denote the length of s, and let 0 ≤ i ≤ j ≤ n and 1 ≤ k ≤ K.
Let μk

i,j be a result of a standard vector multiplication of the form μk
i,j =

⊕q∈(i,j)

(
βk′

i,q ⊗ βk′′
q,j

)
, where 1 ≤ k′, k′′ ≤ K. Assume that the following val-

ues can be obtained in Θ(1) running time: μk
i,j , all values βk′

i′,j′ for 1 ≤ k′ ≤



Reducing the Worst Case Running Times of a Family of RNA 71

K and si′,j′ a strict substring of si,j, and all values βk′
i,j for 1 ≤ k′ < k.

Then, the computation of βk
i,j can be performed in o

(
M(n)

n2

)
running time,

where M(n) is the running time of the matrix multiplication algorithm which
corresponds to the multiplication variant for computing μk

i,j .

3.3 Inside VMT Algorithm

We next describe a generic algorithm, based on Valiant’s algorithm [17], for
solving problems sustaining the Inside VMT requirements. For simplicity, we
assume that a single value βi,j needs to be computed for each substring si,j of
the input string s. The new algorithm also maintains the matrix B as defined in
Section 3.1. At each stage of the run, each entry Bi,j either contains the value
βi,j , or some intermediate result in the computation of μi,j . Note that only the
upper triangle of B corresponds to valid substrings of the input. Nevertheless,
our formulation handles all entries uniformly, implicitly ignoring values in entries
Bi,j when j < i. At each stage, the algorithm computes the values in a sub-
matrix BI,J for some pair of intervals I, J ⊆ [0, n]. The following pre-condition
is maintained at the beginning of the stage (Fig. 1b):

1. Each entry Bi,j ∈ B[I,n],[0,J], such that Bi,j /∈ BI,J , contains the value βi,j .
2. Each entry Bi,j ∈ BI,J contains the value ⊕q∈(I,J)

(
βi,q ⊗ βj,q

)
. In other

words, BI,J = βI,(I,J) ⊗ β(I,J),J .

Upon initialization, I = J = [0, n], and all values in B are set to φ. Observe that
at this stage the pre-condition is met. Now, consider a call to the algorithm with
some pair of intervals I, J . If I = [i, i] and J = [j, j], then from the pre-condition
we have that all values βi′,j′ which are required for the computation of βi,j are
computed and stored in B, and Bi,j = μi,j (Fig. 1a). Thus, βi,j can be evaluated

in o
(

M(n)
n2

)
running time, and be stored in Bi,j .

Else, either |I| > 1 or |J | > 1 (or both), and the algorithm partitions BI,J

into two sub-matrices of approximately equal sizes, and computes each part
recursively. This partition is described next.

In the case where |I| ≤ |J |, BI,J is partitioned “vertically” (Fig. 1,(b),(c),(d)):
Let J1 and J2 be two column intervals such that J = J1J2 and |J1| = �|J |/2�.
Since J and J1 start at the same position, (I, J) = (I, J1). Thus, from the
pre-condition and Equation 2.1, BI,J1 = βI,(I,J1) ⊗ β(I,J1),J1

. Therefore, the
pre-condition with respect to the sub-matrix BI,J1 is met, and the algorithm
computes this sub-matrix recursively. After BI,J1 is computed, the first part of
the pre-condition with respect to BI,J2 is met, i.e. all necessary solutions, ex-
cept for those in BI,J2 are computed and stored in B. In addition, at this stage
BI,J2 = βI,(I,J) ⊗ β(I,J),J2

. Let L be the interval such that (I, J2) = (I, J)L.
Observe that L = J1 if the last index in I is smaller than the first index in J , or
otherwise L is some (possibly empty) suffix of J1. To meet the full pre-condition
requirements with respect to I and J2, BI,J2 is updated using Equation 2.2
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. An exemplification of the matrix B maintained by the Inside VMT algorithm

to be BI,J2⊕(BI,L ⊗ BL,J2) =
(
βI,(I,J) ⊗ β(I,J),J2

)
⊕(βI,L ⊗ βL,J2

)
= βI,(I,J2)⊗

β(I,J2),J2
. Now, the pre-condition with respect to BI,J2 is established, and the

algorithm computes BI,J2 recursively.
In the case where |I| > |J |, BI,J is partitioned “horizontally”, in a symmet-

ric manner to the vertical partition. Fig. 1,(e),(f),(g) exemplifies this partition,
where further technical details are excluded.

The extension of the algorithm to the general case, where the goal is to com-
pute a series of inside value-sets β1, β2, . . . , βK , is implemented by maintaining
K matrices instead of a single matrix, and applying the recurrence over all K
matrices simultaneously. Time complexity analysis of this algorithm is excluded
from this abstract. It is similar to that of Valiant’s algorithm (presented in [17]),
showing that the time complexity of the Inside VMT algorithm over strings of
length n matches the time complexity of multiplying two n × n matrices, with
the corresponding variant of matrix multiplication.

Theorem 1. For every Inside VMT problem there is an algorithm whose run-
ning time is Θ (M(n)), where n is the length of the input string and M(n) is
the running time of the corresponding matrix multiplication algorithm over two
n × n matrices.

4 Additional Vector Multiplication Templates

This section presents two additional vector multiplication templates: Outside
VMT and Multiple String VMT. These templates are sustained by several im-
portant problems which do not follow the Inside VMT requirements, yet share
similar properties. Algorithms for these VMT problems may also be accelerated
by incorporating fast matrix multiplication sub-routines.
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4.1 Outside VMT

Let s be a string over some alphabet. An outside value αi,j is a value that re-
flects some property of the string obtained by removing the substring si,j from
s. Similarly to Inside VMT problems, the goal of Outside VMT problems is to
compute a set of outside values with respect to a given input string. Exam-
ples of problems which require outside value computations and adhere to the
VMT requirements are the RNA Partition Function problem [5] and the WCFG
Inside-Outside problem [33]. In both problems, the computation of outside val-
ues requires a set of pre-computed inside values, where these inside values can be
computed with the Inside VMT algorithm. In such cases, we call the problems
Inside-Outside VMT problems.

Definition 2. A problem is considered an Outside VMT problem if it fulfills
the following requirements:

1. The instances of the problem are strings, and the goal of the problem is to
compute for every substring si,j of an input string s, a series of outside
values α1

i,j , α
2
i,j , . . . , α

K
i,j .

2. Let n denote the length of s, and let 0 ≤ i ≤ j ≤ n and 1 ≤ k ≤ K.
Let β1, β2, . . . , βK be a set of pre-computed inside value matrices for s, and
let μk

i,j be an expression of the form μk
i,j = ⊕q∈[0,i)

(
βk

q,i ⊗ αk′
q,j

)
or of the

form μk
i,j = ⊕q∈(j,n]

(
αk′

i,q ⊗ βk
j,q

)
, where 1 ≤ k′ ≤ K. Assume that the

following values can be obtained in Θ(1) running time: μk
i,j, all values αk′

i′,j′

for 1 ≤ k′ ≤ K and si,j a strict substring of si′,j′ , and all values αk′
i,j for

1 ≤ k′ < k. Then, the computation of αk
i,j can be performed in o

(
M(n)

n2

)
running time, where M(n) is the running time of the matrix multiplication
algorithm which corresponds to the multiplication variant for computing μk

i,j.

A generic algorithm for Outside VMT problems, which is similar to the Inside
VMT algorithm presented in the previous section, can be described. This al-
gorithm obtains the same running time as that of the Inside VMT algorithm.
Due to its technicality and the space requirements, the description of the Out-
side VMT algorithm is excluded from this abstract, and will be presented in an
extended version of this paper.

Theorem 2. For every Outside VMT problem there is an algorithm whose run-
ning time is Θ (M(n)), where n is the length of the input string and M(n) is
the running time of the corresponding matrix multiplication algorithm over two
n × n matrices.

4.2 Multiple String VMT

In this section we describe another extension to the VMT framework, intended
for problems whose instances are sets of strings, rather than a single string.
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Examples of such problems are the RNA Simultaneous Alignment and Folding
problem [9,31], and the RNA-RNA Interaction problem [4]. Additional prob-
lems which exhibit slight divergences of the presented template, such as the
RNA-RNA Interaction Partition Function problem [7] and the RNA Sequence
to Structures-Sequence Alignment problem [8], can be solved in similar manners.

To define the Multiple String VMT variant in a general manner, we first give
some related notation. An instance of a Multiple String VMT problem is a set
of strings S =

(
s0, s1, . . . , sm−1

)
. For simplicity, we will assume that all strings

sp ∈ S are of the same length n, though this assumption can be easily relaxed. A
position in S is a set of indices X = (i0, i1, . . . , im−1), where each index ip ∈ X
is in the range 0 ≤ ip ≤ n. Let X = (i0, i1, . . . , im−1) and Y = (j0, j1, . . . , jm−1)
be two positions in S. Say that X ≤ Y if ip ≤ jp for every 0 ≤ p < m, and
say that X < Y if X ≤ Y and X �= Y . When X ≤ Y , denote by SX,Y the

sub-instance SX,Y =
(
s0

i0,j0 , s
1
i1,j1 , . . . , s

m−1
im−1,jm−1

)
of S. Denote by (X, Y ) the

set of all positions Q such that X < Q < Y .
An inside value βX,Y is a value which reflects some property that depends

only on the sub-instance SX,Y , where an outside value αX,Y reflects some prop-
erty that depends on the instance S, after excluding from each string in S the
corresponding substring in SX,Y . We next define Multiple String Inside VMT
problems. The “outside” variant can be formulated in a similar manner.

Definition 3. A problem is considered a Multiple String Inside VMT problem
if it fulfills the following requirements:

1. The instances of the problem are sets of strings, and the goal of the problem
is to compute for every sub-instance SX,Y of an input instance S, a series
of inside values β1

X,Y , β2
X,Y , . . . , βK

X,Y .
2. Let X and Y be two positions in S such that X ≤ Y , and let 1 ≤ k ≤ K.

Let μk
X,Y be a value of the form μk

X,Y = ⊕Q∈(X,Y )

(
βk′

X,Q ⊗ βk′′
Q,Y

)
, where

1 ≤ k′, k′′ ≤ K. Assume that the following values can be obtained in Θ(1)
running time: μk

X,Y , all values βk′
X′,Y ′ for 1 ≤ k′ ≤ K and SX′,Y ′ a strict sub-

instance of SX,Y , and all values βk′
X,Y for 1 ≤ k′ < k. Then, the computation

of βk
X,Y can be performed in o

(
M((n+1)m)

(n+1)2m

)
running time, where M(n) is

the running time of the matrix multiplication algorithm which corresponds
to the multiplication variant for computing μk

i,j.

In order to solve Multiple String Inside or Outside VMT problems, we reduce
them to standard single string Inside or Outside VMT problems. The reduction
maps a Multiple String VMT instance S composed of m strings of length n each,
to a single string s of length (n+1)m. Each sub-instance SX,Y of S corresponds

to a substring si,j of s, and expressions of the form ⊕Q∈(X,Y )

(
βk′

X,Q ⊗ βk′′
Q,Y

)
can

be computed by computing expressions of the form ⊕q∈(i,j)

(
βk′

i,q ⊗ βk′′
q,j

)
(and

similarly for expressions required for the computation of outside values). Due to
the space requirements, the description of this reduction is excluded from this
abstract, and will be presented in an extended version of this paper.
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Theorem 3. Let P be a Multiple String (Inside or Outside) VMT problem, and
let S be an input instance of P composed of m strings of length n each. Then,
a solution for S with respect to P can be computed in the same running time
as that of computing a solution for a string of length (n + 1)m with respect to a
regular (single string) VMT problem and the same vector multiplication variant.

5 Concluding Discussion

This paper presents a simplification and a generalization of Valiant’s technique,
which speeds up a family of algorithms by incorporating fast matrix multiplica-
tion procedures. We suggest generic templates that identify problems for which
this approach is applicable, where these templates are based on general recur-
sive properties of the problems (rather than on their specific algorithms). An
explicit algorithm is described for the Inside Vector Multiplication Template,
where algorithms for other variants of problems can be similarly designed.

The presented framework yields new worst case running time bounds for a fam-
ily of important problems. The examples given here come from the fields of RNA
secondary structure prediction and CFG parsing, yet it is possible that problems
from other domains can be similarly accelerated. While previous works describe
other practical acceleration techniques for some of these problems, Valiant’s tech-
nique, along with the Four Russians technique [24], are the only two techniques
which currently allow to reduce the worst case running times of the standard al-
gorithms, without compromising the correctness of the computations.

Valiant’s technique has several advantages over the Four Russians technique.
First, the running times obtained by applying it are faster than those obtained
by applying the Four Russians technique (for example, the running times of algo-
rithms for the RNA Energy Minimization problems which apply these techniques
are O(n3 log3 log(n)

log2(n) ) and O( n3

log(n) ), respectively). Second, it does not require the
enumeration of sub-matrices of the dynamic programming matrix, which may
be done only in the case of discrete scoring schemes. In addition, Valiant’s tech-
nique extends in a natural manner to a whole set of problems, without the need
of taking into consideration many problem-specific aspects.

Many of the previous acceleration techniques for RNA and CFG related al-
gorithms are based on sparsification, and are applicable only to optimization
problems. Another important advantage of the technique presented here over
previous ones is that it is the first technique which reduces the running times
of algorithms for the non-optimization problem variants, such as RNA Partition
Function related problems [5,7] and the PCFG Inside-Outside algorithm [33] (in
which the goals are to sum the scores of all solutions of the input, instead of
computing the score of an optimal solution).

The time complexities of the VMT algorithms we describe here are dictated
by the time complexities of matrix multiplication algorithms. As matrix mul-
tiplication variants are essential operations in many computational problems,
much work has been done to improve both the theoretical and the practical
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running times of these operations, including many recent achievements (see
e.g. [21,34,35]). It is expected that even further improvements in this domain
will be developed in the future, due to its importance.
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Abstract. Whole genome duplication (WGD) is a rare evolutionary
event that has played a dramatic role in the diversification of most eu-
karyotic lineages. Given a set of species known to have evolved from a
common ancestor through one or many rounds of WGD together with a
set of genome rearrangements, and a phylogenetic tree for these species,
the goal is to infer the pre-duplication ancestral genomes. We use a two
step approach: (1) Compute a score for each possible ancestral adjacency
at each internal node of the phylogeny; (2) Combine adjacencies to form
ancestral chromosomes. We first apply our method on simulated datasets
and show a high accuracy for adjacency prediction. We then infer the
pre-duplicated ancestor of a set of 11 yeast species and compare it to a
manually assembled ancestral genome obtained by Gordon et al. (2009).

1 Introduction

Whole genome duplication (WGD) is a spectacular evolutionary event that has
the effect of simultaneously doubling all the chromosomes of a genome. Evidence
for WGD events has shown up across the whole eukaryote spectrum, from the
protist Giardia to the yeast species, including most plant lineages, several insect,
fish, amphibians, and even to mammalian species. For some genomes, recent du-
plication is easily detected by the presence of a nearly complete set of duplicated
chromosomes. However, in most cases, due to a series of rearrangements disrupt-
ing the initial perfectly doubled structure of the genome, all that we can observe
is a set of duplicated blocks (chromosomal segments or genes) representing a
high proportion of the genome, scattered throughout the genome.

Studying the evolution of a lineage that have been subject to one or many
WGD is challenging due to the high rates of paralogy in their genomes. Inferring
the content and chromosome organization of ancestral genomes preceding the
WGD is a major step towards solving this difficulty, and also answering biological
questions such as the mechanisms of polyploid formation and the consequence
of such variations on the genetic and physiological specificities of species.

In 2003, we have presented the first formal result related to genome dupli-
cation, which is an exact linear-time algorithm for solving the genome halving

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 78–89, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Reconstruction of Ancestral Genome 79

problem [5]: Given a present-day genome G represented as a set of strings (chro-
mosomes) with each block present exactly twice, infer a perfectly duplicated
genome H (a genome with exactly two copies of each chromosome) minimizing
the rearrangement distance to G (inversions, reciprocal translocations or both).
Our results have been reformulated recently by Alekseyev and Pevzner [1] using
an alternative representation of the breakpoint graph. Subsequently, Sankoff and
colleagues [13,14], and more recently Gavranović and Tannier [6], used variations
of the genome halving strategy (Guided Genome Halving or GGH) to find the
preduplicated ancestor of a doubled genome in the presence of a non-duplicated
outgroup [13,14]. As noticed in [7], the GGH algorithms can hardly be gener-
alized to a complete phylogenetic tree, with more than one WGD event on a
path from an extant species to the root of the tree, and an arbitrary number of
post-WGD genomes and non-WGD outgroups. Moreover, as for genome halving,
GGH algorithms can only consider genes that have retained two copies after the
WGD. In the case of reconstructing the ancestor of Saccharomyces cerevisiae,
Gordon et al. [7] have noticed that less than 20% of all genes can be taken into
account by the GGH strategy. Subsequent work shows that this limitation can
be circumvented by grouping genes into double conserved syntenies [3,6].

In this paper, we consider the general problem of inferring the pre-duplicated
genome preceding the first duplication event in a multi-species evolutionary his-
tory involving WGDs, rearrangement events, and block losses. The input of our
problem is a set of extant genomes, each represented as a set of strings on an al-
phabet of blocks (each block potentially present more than once in each genome),
and a phylogenetic tree representing the evolution of the species, with specific
branches marked with WGD events. Such data and phylogenetic information is
available for a variety of eukaryotic lineages, such as the yeast species [7], grass
genomes [12], and many other lineages. Our approach for ancestral genome pre-
diction is to maximize the conservation of block adjacencies in the phylogeny.
We use a two-step methodology: (1) at each node of the phylogeny, compute
the adjacency score of each pair of blocks; (2) infer a pre-duplicated ancestral
genome by an optimal chaining of adjacencies. The main contribution of our
method is the computation of a rigorous score for each potential ancestral ad-
jacency (a, b), reflecting the maximum number of times a and b can be adjacent
in the whole phylogeny, for any setting of ancestral genomes. As it is the case
for the other local approaches [4], in the absence of a complete set of reliable
syntenies, the output of our algorithm is a set of Contiguous Ancestral Regions
fragments (CAR) [4,10], rather than a completely assembled ancestral genome.

The approaches most comparable to ours are those developed by Ma et al.
(see the method in [10] for single gene copies, and its generalization to genomes
with duplications in [11]). We show that our approach outperforms the former on
simulated data. The latter can only be used if accurate gene trees, with branch
lengths, are available, which is often limiting. In contrast, our approach works
under stronger assumptions but requires only a species tree and extant genomes
as input. Our paper is structured as follows: after introducing basic notations,
we introduce the notion of adjacency scores, show how to compute it, and how
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to use it to assemble putative ancestral genomes by solving an instance of the
traveling salesperson problem. We then show, using simulated data, that the
predicted pre-WGD genomes are highly accurate, even in the presence of a large
number of rearrangements. Finally, we apply our approach to the prediction
of the ancestral pre-WGD yeast genome and obtain results very similar to the
hand-curated ancestral genome produced by Gordon et al. [7].

2 Preliminaries

Notation: Let B be a set of unsigned blocks (e.g. genes, or any other type of
genomic markers). A string is a sequence of blocks from B, where each block is
signed (+ or −) to mark its orientation. A genome G is a collection of strings
C1, C2, . . . , CN called its chromosomes , where each element of B may be present
more than once. To represent chromosomal ends, we add an artificial block O,
which is also added to our alphabet B, at an extremity of each chromosome, and
consider each chromosome as circular. We denote by ΣG ⊆ B the set of blocks
present in G (including O), by mult(a, G) the multiplicity of block a in G , and
by ±ΣG the set obtained from ΣG by considering each block in its positive and
negative directions. The artificial block O is always considered positively signed.
A multiset of ±ΣG is a subset of ±ΣG with possibly repeated blocks. Let a ∈ ΣG

and b ∈ ±ΣG. We say that b is a left-adjacency of a in G iff “b + a” or “−a b”
is a substring of G. Symmetrically, b is a right-adjacency of a in G iff “+a b” or
“b − a” is a substring of G. We denote by LA(G, a) and RA(G, a) the multisets
of left- and right-adjacencies of the one or more copies of a in G.

Evolutionary model: A Whole Genome Duplication (or WGD for short) is an
event transforming a genome G = {C1, C2, . . . , CN} into a genome GD con-
taining 2N chromosomes, i.e. GD = {C1, C

′
1, C2, C

′
2, . . . , CN , C′

N}, where, for
each 1 ≤ i ≤ N , Ci = C′

i. Let G1, G2, . . . , Gn be a set of n related species
at the leaves of a species tree T , assumed to have evolved from a common an-
cestor through WGD events, intra-chromosomal (inversions or transpositions)
and inter-chromosomal (reciprocal translocations, fusions, or fissions) rearrange-
ments, and block losses. A phylogeny for (Gi)n

i=1 is a tree T with n leaves, where
Gi, for 1 ≤ i ≤ n, is the label of leaf i, and each internal node (also called
speciation node) has exactly two children and represents a speciation event.

In our model, WGDs are the only duplication events responsible for block
multiplicity (in particular, single-block duplications are not considered). In order
to account for those duplication events, we create new internal nodes in T , called
WGD nodes , and position them appropriately on the edges of T . Contrary to
speciation nodes, each WGD node has only a single child. Moreover, if all leaf
genomes have multiplicity greater than 1, then we add one or more WGD nodes
above the root r of T and we create a new root D, that we call the duplication
root of T .

Assuming a model with no convergent evolution and minimum losses, the mul-
tiset of blocks Σu present at node u can be obtained as follows (see Figure 1(a)).
Let A(a) be the node of T representing the least common ancestor of the leaves
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that contain a given block a. Then, we assign a to each node belonging to a path
from A(a) to any leaf containing a. In order to define the multiset Σu, we also
need to know the multiplicity of each block at u. The multiplicity of a in Σu is
recursively obtained as the maximum of its multiplicities in u’s two children.
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Fig. 1. (a) A species tree with each leaf labeled with its corresponding genome and
multiplicity number, and each internal node labeled with the multiplicity and block set
of the ancestral genome just preceding the speciation or WGD event. Squares indicate
speciation nodes, and the double circle indicates a WGD node. (b) An illustration of
the algorithm computing Lbelow for the adjacencies of gene a.

3 Problem Definition

Given a species tree T for the genomes (Gi)n
i=1, augmented with WGD nodes as

described in the previous section, we want to infer the pre-duplicated ancestral
genomes, i.e. the ancestral genomes just preceding the first WGD nodes on the
paths from the root D of T to a leaf. We will use a parsimony criteria seeking a
solution with a maximum number of adjacency conservations along the branches
of T , or, equivalently, a maximum of adjacency conservation.

Ancestral genome assignment. A genome assignment G(u) at u is a genome on
B respecting the content and multiplicity constraints given by Σu. If u is a WGD
node, G(u) must be a duplicated genome. Let u and v be two nodes of T with
u being the parent of v. In the case of genomes with single gene copies, it is
easy to define the number of adjacencies preserved along branch (u, v) as the
number of common substrings of size 2 between G(u) and G(v). This definition
is not directly transposable to the case of genomes with multiple gene copies, as
the one to one orthology between genes is not set. Instead, for each block a, we
compare its left and right-adjacency multisets in G(u) and G(v). More precisely,
we define adjCons(a, G(u), G(v)) = |LA(G(u), a)∩LA(G(v), a)|+|RA(G(u), a)∩
RA(G(v), a)|, as the number of left and right conserved adjacencies of a on the
branch (u, v), and adjCons(G(u), G(v)) =

∑
a∈Σu∩Σv

adjCons(a, G(u), G(v)) as
the total number of left and right conserved adjacencies on the branch (u, v).
In both formulas, intersections and cardinalities are taken over multisets. Notice
that adjCons(G(u), G(v)) accounts for each adjacency conservation twice.
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We then define adjCons(T ) as the maximum number of conserved adjacen-
cies in T , over all possible ancestral genome assignments G(u1), . . . G(uk) at all
internal (speciation and WGD) nodes n1, . . . nk of T :

adjCons(T ) = max
G(u1),...,G(uk)

∑
(u,v)∈E(T )

adjCons(G(u), G(v))

Finally, for a given ancestral node ui with genome assignment H(ui), define

adjCons(T |G(ui)=H(ui)) = max
G(u1),...,G(uk)|G(ui)=H(ui)

∑
(u,v)∈E(T )

adjCons(G(u), G(v)),

which is the maximum number of adjacencies that can be preserved along the
branches of T , if the genome at node ui is set to H(ui). We can now state our
optimization problem precisely.

Ancestral Genome Assignment Problem:
Input: A species tree T for the genomes (Gi)n

i=1 augmented with one or more
WGD nodes as described in the previous section; The multiset of blocks at each
internal node; A particular WGD node u of interest.
Output: An ancestral genome assignment H(u) to u such that
adjCons(T |G(u)=H(u)) is maximized.

In this paper, we focus on inferring the pre-duplicated genomes preceding a first
WGD event on a branch from the root of T to a leaf. In other words, u is the
first WGD node on a branch from the root of T to a leaf.

4 Method

We start by defining an upper bound on our objective function,
adjCons(T |G(u)=H(u)). We define adjCons(a, T |C) as the maximum number of
left and right adjacencies of a that can be preserved over the whole tree, for any
assignment G(u1), ..., G(uk) of ancestral genomes subject to a set of constraints
C. Then, it is straightforward to show that:

adjCons(T |G(u)=H(u)) ≤
∑

a

adjCons(a, T |LA(a,G(u))=LA(a,H(u)),RA(a,G(u))=RA(a,H(u)))

≤ 1/2 ·
∑

a

adjCons(a, T |LA(a,G(u))=LA(a,H(u))) +

adjCons(a, T |RA(a,G(u))=RA(a,H(u)))

Our ancestral reconstruction algorithm thus seeks a genome H such that the
above term is maximized. It proceeds in two steps: (1) For each internal node u of
the tree (speciation or WGD node), each block a ∈ Σu, and each multisets X of
possible left adjacencies of a at node u, we compute adjCons(a, T |LA(a,G(u))=X),
using a dynamic programming algorithm. We then proceed similarly for right
adjacencies. (2) We obtain the desired pre-duplicated genome at WGD node u
by chaining the adjacencies at node u in a optimal way.
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4.1 Computing Adjacency Scores

We first describe how to compute adjCons(a, T |LA(a,G(ui))=X), for any node ui,
block a ∈ Σui , and candidate left-adjacencies X . The algorithm to compute
right-adjacencies is very similar. Consider an edge (u, v) in T , where u is the
parent of v. Let X be a multisubset of ±Σu and G(u) be a genome assignment
at node u such that LA(a, G(u)) = X . We define Lbelow

(u,v) (a, X) as the maximum
number (over all possible genome assignments of T ’s internal nodes) of left-
adjacencies involving the copies of a that can be preserved along the branch
(u, v) and all the branches of the subtree rooted at node u. Similarly, we define
Labove

(u,v) (a, X) as the maximum number of left-adjacencies involving a that can be
preserved, along branch (u, v) and all the branches outside the subtree rooted
at node u. Then, for an internal node u with children v and w and parent p, we
obtain adjCons(a, T |LA(a,G(u))=X) = Lbelow

(u,v) (a, X)+Lbelow
(u,w)(a, X)+Labove

(p,u) (a, X).
Notice that, if u is a WGD node, then u has a single child v, and thus the term
Lbelow

(u,w)(a, X) should be removed from the above formula. Similarly, if u is the
root of the tree, then the term Labove

(p,u) (a, X) should be removed.

Algorithm 1: Lbelow
(u,v) (a,X)

if v is a leaf then
if u is a speciation node then

Lbelow
(u,v) (a, X) = |X ∩ LA(G(v), a)|;

if u is duplication node then
Lbelow

(u,v) (a, X) = |(X ∪ X) ∩ LA(G(v), a)|;

else v is an internal node
if v is a speciation node with children x and y then

if u is a speciation node then
Lbelow

(u,v) (a, X) = maxX′{Lbelow
(v,x) (a, X′) + Lbelow

(v,y) (a, X′) + |X ∩ X′|};

if u is a duplication node then
Lbelow

(u,v) (a, X) = maxX′{Lbelow
(v,x) (a, X′) + Lbelow

(v,y) (a, X′) + |(X ∪ X) ∩ X′|};

else v is a duplication node with one child w

Lbelow
(u,v) (a, X) = maxX′{Lbelow

(v,x) (a, X′) + |X ∩ X′|};

Algorithm 2: Labove
(p,u) (a, X)

if u is the root r of T then
p = D and Labove

(p,u) (z, X) = 0;

else let p′ be the parent of p
if p is a speciation node and s is the sibling of u then

Labove
(p,u) (a, X) = maxX′{Labove

(p′,p)(a, X′) + Lbelow
(p,s) (a, X′) + |X ∩ X′|};

if p is a duplication node (its only child is u) then
Labove

(p,u) (a, X) = maxX′{Labove
(p′,p)(a, X′) + |X ∩ (X′ ∪ X′)|};

We are thus interested in calculating the tables Lbelow
(u,v) and Labove

(u,v) for each
edge (u, v) of T . Those are obtained by the dynamic programming algorithms
shown in Algorithms 1 and 2. An illustration of this algorithm is given in
Figure 1(b). Although expressed in a recursive manner for simplicity, both
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algorithms can be re-written using a dynamic programming approach that pro-
ceeds in a bottom-up fashion to obtain Labove and in a top-down fashion to
obtain Lbelow. The running time to compute adjCons(a, T |LA(a,G(u))=X) is thus
O(Σ(u,v)∈T (| ± Σu|mult(a,G(u)) × | ± Σv|mult(a,G(v)))).

4.2 Assembling an Pre-duplication Ancestral Genome

We now seek to build a solution to the Ancestral Genome Assignment Problem,
i.e. to chain blocks at u so as to maximize the objective function. We achieve
this by solving a Traveling Salesperson Problem (TSP) on a complete undirected
graph where vertices correspond to blocks. We initially weighted edges according
to our upper bound Lall

u . However, this weighting gives too much importance to
adjacencies involving blocks with high multiplicity. Thus, we decided to weight
the edges according to the ratio rLall

u (a, X) = Lall
u (a, X)/adjConsMax(a, T ),

where adjConsMax(a, T ) = Σ(u,v)∈E(T ) min(mult(a, Gu), mult(a, Gv)). Notice
that adjConsMax(a, T ) represents the number of conserved adjacencies for the
block a in T if a is always adjacent to the same gene in all leaves of T . This ratio
allows us to evaluate the confidence of an inferred adjacency (see Figures 3 and
4 top right).

More precisely, we build an undirected graph Q that contains a pair of ver-
tices at, ah for each block a ∈ Σu, as well as a set of vertices O1, O2, Ok marking
chromosome ends, where k is chosen to be at least as large as (but possibly larger
than) the maximum number of chromosomes in the ancestral genome we seek to
infer. Edge weights are chosen as follows, for a �= b ∈ Σu, i �= j ∈ {1, ..., k}, and
M some large number:

w(ah, bt) = rRall
u (a, {+b}) + rLall

u (b, {+a}) w(at, ah) = M

w(ah, bh) = rRall
u (a, {−b}) + rRall

u (b, {−a}) w(Oi, a
t) = 2 × rLall

u (a, {O})
w(at, bt) = rLall

u (b, {−a}) + rLall
u (a, {−b}) w(Oi, a

h) = 2 × rRall
u (a, {O})

w(at, bh) = rLall
u (a, {+b}) + rRall

u (b, {+a}) w(Oi, Oj) = 0

Because at and ah are connected by heavy edges, any maximum weight hamilto-
nian cycle must include all of them. A hamiltonian cycle through Q thus defines a
set of strings (chromosomes; delimited by O vertices), with some possibly empty
(two consecutive O vertices). Starting from O1, the cycle visits pairs (at, ah)
(corresponding to +a) or (ah, at) (corresponding to −a). The heaviest hamilto-
nian cycle through Q thus corresponds to an hypothetical ancestral genome H
at u that preserves a large number of adjacencies.

The instance of the TSP we need to solve is a symmetrical weighted graph
with 2 · |Σu| + k vertices. In the case of the reconstruction of the ancestral pre-
duplication yeast genome, |Σu| = 4705, so the graph is quite large. Although an
NP-Complete problem, TSP is one of the best studied algorithmic problems and
excellent heuristics exist. We considered two of them. The first is a simple greedy
approach that repeatedly selects the heaviest edge remaining unless this results
in the premature closing of a cycle. The second is the Chained Lin-Kernighan
heuristic [9] implemented in Concorde [2], referred as TSP from now on.
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5 Results

A strong prerequisite for reconstructing accurate ancestral genomes is to have
enough data on extant species, and sufficient colinearity of gene order among a
reasonably large number of related species. Yeast genomes are a perfect example
of a data set satisfying all these conditions. Following the extensive work of Wolfe
and colleagues during the last decade, it is now almost universally accepted
that Saccharomyces cerevisiae is the descendant of an ancient whole-genome
duplication event. Moreover, the availability of a large number of completely
sequenced yeast genomes as well as the Yeast Gene Order Browser [7], provides
the material for an accurate ancestral genome reconstruction. We therefore focus,
in this paper, on the study of the yeast species data sets.

5.1 Simulated Data Sets

We first test our method on a data set obtained through a simulated evolution
that is as close as possible to the one observed for yeast species. The phylogenetic
tree given in Figure 2(a) reflects the evolution of the 11 yeast species recorded
in the Yeast Gene Order Browser, as given by [8]. Gene sets at leaves are those
provided in [7], and gene sets at internal nodes, as well as the number of gene
losses on each branch, are directly inferred from those at the leaves.

Based on this tree, we simulate the evolution of 11 genomes, starting from
an ancestor with 4705 genes distributed among 8 chromosomes (the number
of genes and chromosomes of the pre-duplicated ancestor as predicted by Gor-
don et al.), and performing a certain number of rearrangements and gene losses
on each branch of the tree. The number of gene losses is simply the one observed
in the phylogenetic tree of Figure 2 . The number of rearrangements is selected
randomly from an interval [μ/2, μ], where μ is a parameter chosen prior to the
generation, and the size of each rearrangement is random. As for the rate of rear-
rangement operations it is chosen to be similar to that reported for S. cerevisiae
in [7]. More precisely we choose the rates (Inv : Trans : Fus+Fiss) = (5 : 4 : 1).

Notice that four of the species represented in the phylogenetic tree of Fig-
ure 2 (those indicated by * ), are partially sequenced species for which only
scaffolds are available. To account for this specificity of the data, we perform
random fissions on four of our simulated genomes. Moreover, as scaffolds just
represent parts of chromosomes, adjacencies at the extremities are not relevant
to our study and are not taken into account.

Simulations without WGD. In order to measure the efficiency of our ap-
proach in absence of WGD events, we compare our results with those obtained
by the algorithm of Ma et al. [10]. We refer to this software as the Ma method.

We simulate data sets based on the subtree of the yeast phylogeny containing
only the six non-duplicated yeast species. Moreover, as the Ma et al. algorithm
does not support losses, we only consider the set of genes present in all six species.
We performed our simulations with 10 different values of μ, varying from 100
to 1000. For each of those 10 μ values, 50 different data sets are obtained, an
ancestor is inferred for each dataset and compared to the “true” known ancestor.
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Fig. 2. (a) Yeast phylogenetic tree used for the simulations. The ancestors are repre-
sented by black dots. The branch lengths represents the number of gene losses. The
ones in parentheses are the distances used for the Ma et al. method. * indicates par-
tially sequenced organisms. On leaves, the top number is the number of chromosomes,
contigs or scaffolds. The bottom number is the number of genes. (b) Size distribution
of true CARs in our inferred pre-duplicated yeast ancestor, considering the Gordon et
al. [7] ancestor as the “true” ancestor.

Results (error rates and number of preserved CARs) are averaged over all
data sets showing a comparable ancestral genome divergence, where the genome
divergence of a data set is the fraction of adjacencies in the ancestor that are
preserved in at least one leaf of the tree. In Figure 3, the error rate is the rate of
inferred adjacencies that are not present in the true ancestor, and the proportion
of true CARs is the proportion of inferred CARs that are present in the true
ancestor. Recall that a CAR is a chromosomal segment inferred by the algorithm,
and it is “true” if it is a subsequence of the ancestral genome. We arbitrarily
imposed a minimum size of 4 adjacencies to consider a CAR as a true CAR.

Comparing the error rates of the Ma method, and our methods using the
greedy or TSP approach (Figure 3 top left), we first notice that the three methods
have a good performance (less than 10% errors for genome divergence of 40%),
but with the TSP method outperforming the two others. However, a drawback
of the TSP approach is the fact that it outputs very few CARs, typically one
or two for a genome divergence above 40%. In all cases, our approaches (greedy
and TSP) infer fewer CARs than the Ma method (Figure 3 bottom left), and
fewer that the actual number of chromosomes of the true ancestor.

In order to improve the proportion of true CARs inferred, we “force” the pro-
duction of more CARs by defining “TSP τ” which is the TSP method augmented
with the procedure of cutting, from the inferred ancestor, all adjacencies with
weight less than a certain threshold τ . Figure 3 top right gives the error rate
associated to the set of adjacencies of a given weight (rate of such adjacencies in
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our results that are false predictions). Based on this figure, we choose τ = 1.4. As
observed in Figure 3 bottom left, the proportion of true CARs inferred is greatly
improved compared to the TSP approach without edge cut, but more interest-
ingly compared to the greedy approach and the Ma method. However whereas
the “true adjacencies” of the TSP approach where covering more that 90% of
the genome, the number of genes covered by the “true CARs” is less than 40%
for a genome divergence of more than 40%. However, this gene coverage remains
higher than that of the Ma method (Figure 3 bottom right).
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Fig. 3. Simulations for a tree without WGD. Top left: Error rate of the inferred ances-
tral genomes. Top right: Error rate of adjacencies depending on their weight. Bottom
left: Proportion of true CARs inferred. Bottom right: Proportion of genes in the ances-
tral genome that are covered by the inferred true CARs. See the text for explanation
about “Ancestral genome divergence”, “Error rate”, “TSP”, “TSP τ” and “MA”.

Simulations with WGD. We now simulate datasets based on the whole yeast
tree (Figure 2(a)). Sets of genomes have been generated, with μ varying from
0 to 500, with increments of 50. For each of those 11 μ values, 50 data sets
have been generated. Notice first that the addition, in our simulations, of gene
loss, increases the ancestral genome divergence. In this case, the TSP approach
clearly infers fewer false adjacencies than the greedy approach, regardless of the
ancestral genome divergence. Its error rate remains under 10% for ancestors with
divergence under 50%. Based on Figure 4 top right, we choose two thresholds
for edge-cut τ = 1.6 and τ = 1.7. We observe from Figure 4 (bottom left and
bottom right) that the proportion of true CARs inferred by TSP1.7 is over 80%
for a gene divergence under 0.3 with a gene coverage over 60%, and over 40%
for a genome divergence under 0.5, but with a significantly lower gene coverage
(only over 20%).

5.2 Comparison with the Gordon et al. Ancestor

We applied our method to the yeast species tree (Figure 2(a)) with the gene
datasets of the Yeast Gene Order Browser [7] described above, to infer the pre-
duplicated ancestral genome of Sccharomyces cerevisiae. Compared with the
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Fig. 4. Simulations for a tree with WGD. See Figure 3.

ancestral genome manually inferred by Gordon et al. [7], about 98% of the ad-
jacencies inferred by our method are also present in the Gordon et al. ancestor.
However, our TSP approach without edge-cut leads to only 4 CARs compared
to the 8 likely ancestral chromosomes. We tried two cutoff values for edge weight
to decrease the number of incorrect adjacencies. With a cutoff value of 1.6, we
obtain smaller CARs (average length 26), 84% of them (covering 79% of the
genes) being “true” CARs of the Gordon et al. ancestor. With a cutoff value of
1.7, CARs are even smaller (12 in average) with 95% true CARs, covering 75%
of the genes. Figure 2(b) illustrates the size distribution of true CARs with the
different TSP strategies.

6 Conclusion

We have developed a general method for inferring the ancestral pre-duplicated
genomes of a lineage known to have evolved through one or many rounds of
whole genome duplication, interspersed with genome rearrangements and gene
losses. The input to our method is a phylogenetic tree representing the evolution
of the species, with positions of the WGD events, and genomes represented as
ordered sets of oriented blocks, each block appearing in one or many copies in
each genome. We developed a local approach consisting in inferring ancestral
adjacencies and then chaining them in an optimal way. The originality of this
method is the computation of a rigorous score for each ancestral set of adjacen-
cies, reflecting the maximum number of conservation of this set of adjacencies
among the whole tree. This is done by a rigorous dynamic programming algo-
rithm, which is sufficiently fast to run on large data sets. Chaining adjacencies is
then performed using a traveling salesperson strategy on a graph representation
of all possible adjacencies.

Applying our method, first on simulated datasets and then on the yeast
genomes, reveals a high accuracy for adjacency prediction. However, the number
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of inferred CARs strongly depends on the cutoff value used to separate good adja-
cencies from noise. Although the TSP strategy seems appropriate, other chaining
strategies may be considered and may improve the quality of our results.

In this paper, we focused on inferring the ancestral genomes preceding a first
WGD event on the tree. In other words, the inferred genome has a single copy
of each chromosome. This restriction is only required for the chaining part of
the method, as the first step that consists in computing the score of each set of
adjacencies at each internal node of the tree is general. However, if the ancestor
of interest has more than one copy of each gene, it is not clear how to assemble
a set of relevant adjacencies to form CARs as the TSP representation breaks
down. This is one of the future directions to our project that we aim to pursue.
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Abstract. The double cut and join (DCJ) operation, introduced by
Yancopoulos, Attie and Friedberg in 2005, allows one to represent most
rearrangement events in genomes. However, a DCJ cannot perform an
insertion or a deletion and most approaches under this model consider
only genomes with the same content and without duplications, including
the linear time algorithms to compute the DCJ distance and to find an
optimal DCJ sorting sequence. In this work, we compare two genomes
with unequal content, but still without duplications, and present a new
linear time algorithm to compute the genomic distance, considering DCJ
and indel operations. With this method we find preliminary evidence of
the occurrence of clusters of deletions in the Rickettsia bacterium.

1 Introduction

The double cut and join (DCJ) is an abstract rearrangement operation, intro-
duced by Yancopoulos et al. in 2005 [5], that allows to represent most large scale
mutation events, such as inversions, translocations, fusions and fissions, that
can occur in genomes. No restriction on the genome structure considering linear
and circular chromosomes is imposed. An advantage of this general model is
that it leads to considerable algorithmic simplifications. However, a DCJ cannot
perform an insertion or a deletion and most studies concerning DCJ consider
genomes with the same content and without duplications. With these restric-
tions, linear time algorithms have been proposed to compute the DCJ distance
and to find an optimal DCJ sorting sequence [1].

In 2008, Yancopoulos and Friedberg [4] proposed an extension of the DCJ
paradigm, to include operations performing insertions and deletions, in order to
deal with genomes having unequal content. The authors introduced some con-
cepts, but left open the design of an algorithm to handle this problem, which
is the subject of this study. We propose an approach in which the cost of an
insertion or deletion is the same as that of a DCJ, where several consecutive
markers can be inserted or deleted in a single event. Therefore, we generalize the
adjacency graph, introduced by Bergeron et al. [1], by incorporating the repre-
sentation of the markers that occur in only one of the two genomes. We then
design a linear time algorithm to compute the distance between two genomes
with unequal content, but still without duplications, taking into consideration
DCJ operations, insertions and deletions. We used this method to do an inter-
esting analysis of a group of bacterial genomes, as described in the last section.

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 90–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 DCJ, Adjacency Graph and Indels

In this work, duplications are not allowed. Thus, given a genome A over a set of
markers GA, each g in GA occurs exactly once in A. Furthermore, each marker g
is a DNA fragment and can be either read in direct orientation and represented
by the symbol g, or read in reverse orientation and represented by the symbol g.
We have g = g and, for any set F , we define F̂ = F ∪F , where F = {f | f ∈ F}.

Let A be a genome, possibly composed of linear and circular chromosomes.
From each chromosome C of A we can build a string s over ĜA, obtained by the
concatenation of all symbols in C, read in any of the two directions. Each end of
a linear chromosome is called a telomere, represented by the symbol ◦. Thus, if C
is linear, it is represented by ◦s◦. If C is circular, it is simply represented by s
(we can start to build s in any symbol of C). A genome A with k chromosomes
can be represented by a set of k strings and an example is given in Fig. 1.

A � � � � � � � � �a e x c d y b z w

Fig. 1. In this graphic representation of genome A = {◦aexc◦, ◦dyb◦, ◦zw◦}, composed
of three linear chromosomes, each arrow represents a marker and its orientation

In the following we generalize definitions introduced by Bergeron et al. [1].
Given a genome A over GA and a subset G ⊆ GA, for each g ∈ G we denote its

two extremities by gt (tail) and gh (head). A G-adjacency is in general a linear
string v = γ1�γ2, such that γ1 and γ2 are telomeres or extremities of markers
in G and �, the substring composed of the markers that are between γ1 and γ2
in A, contains no marker that also belongs to G. The substring � is said to be
the label of v, and the extremities γ1 and γ2 are said to be G-adjacent. If �
is a non-empty string, v is said to be labeled, otherwise v is said to be clean.
Observe that a G-adjacency γ1�γ2 can also be represented by γ2�γ1. Moreover,
a labeled G-adjacency u = ◦�◦ indicates that A contains a linear chromosome
composed only of markers that are not in G, that is, u corresponds to a whole
linear chromosome. In the same way, if s is a circular chromosome in A composed
only of markers that are not in G, then s is also a G-adjacency. This is the only
special case of G-adjacency in which we have a circular instead of a linear string.

A genome A can be then represented by the set VG(A) containing its G-
adjacencies. For example, if G = {a, b, c, d, e}, the genome in Fig. 1 has the rep-
resentation VG(A) = {◦at, ahet, ehxct, ch◦, ◦dt, dhybt, bh◦, ◦zw◦}. However, for
G′ = GA = {a, b, c, d, e, x, y, z, w}, we have only clean adjacencies in VG′ (A) =
{◦at, ahet, ehxt, xhct, ch◦, ◦dt, dhyh, ytbt, bh◦, ◦zt, zhwh, wt◦}.

A cut performed on a genome A separates two adjacent markers of A. A cut
affects a G-adjacency v of VG(A) as follows: if v is linear, the cut is done between
two symbols of v, creating two open ends in two separate linear strings; if v is
circular, the cut creates two open ends in one linear string. A double-cut and
join or DCJ applied on a genome A is the operation that performs two cuts
in VG(A), creating four open ends, and joins these open ends in a different way.
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As an example, considering the genome A from Fig. 1 and G = {a, b, c, d, e}, if
we apply a DCJ on ahet and dhybt of VG(A) we can create ahbt and dhyet.

Observe that, if the two original G-adjacencies are γ1�1◦ and γ2�2◦, we can cre-
ate γ1�1�2γ2 and ◦◦. Conversely, a DCJ operation can be applied to ◦◦ and γ1�γ2,
creating, for example, γ1�◦ and γ2◦. These are special cases of the DCJ oper-
ation, and the clean G-adjacency ◦◦ is also called null linear chromosome [5].
There are also two special cases of a DCJ that change only labels and circu-
lar G-adjacencies: when one of the two cuts is on a circular G-adjacency s, the
result will be a single G-adjacency v and s will be integrated into the label of v.
Conversely, when both cuts of a DCJ are applied to the same G-adjacency, we
would have either an inversion in its label or an excision of a circular G-adjacency.
With respect to the structure of the involved chromosomes, a DCJ operation can
correspond to several events, such as an inversion, a translocation, a fusion, or
a fission. In addition a DCJ can also correspond to an excision or an integration
of a circular chromosome [1].

Given a genome A over GA and a genome B over GB with G = GA ∩ GB , the
adjacency graph AG(A, B) is the graph that has a vertex for each G-adjacency
in VG(A) and a vertex for each G-adjacency in VG(B). Then, for each g ∈ G, we
have one edge connecting the vertex in VG(A) and the vertex in VG(B) that con-
tain gh and one edge connecting the vertex in VG(A) and the vertex in VG(B) that
contain gt. Due to the 1-to-1 correspondence between the vertices of AG(A, B)
and the G-adjacencies in VG(A) and VG(B), we can identify each adjacency with
its corresponding vertex.

We know that AG(A, B) is composed of two types of connected components,
cycles and paths, alternating vertices in VG(A) and VG(B) [1]. A path that has
one endpoint in VG(A) and the other in VG(B) is called an AB-path. In the same
way, both endpoints of an AA-path are in VG(A), as well as both endpoints of
a BB-path are in VG(B). Furthermore, the adjacency graph can have two extra
types of components: each G-adjacency that corresponds to a linear (respect.
circular) chromosome is a linear (respect. circular) singleton. Observe that linear
singletons are particular cases of AA-paths and BB-paths. If GA = GB = G, the
adjacency graph is composed only of clean G-adjacencies, has no singletons and
is said to be clean. An example of an adjacency graph is given in Fig. 2.

Singletons, AB-paths composed of one single edge, and cycles composed of
two edges are said to be DCJ-sorted. Longer paths and cycles are said to be
DCJ-unsorted. We call DCJ-sorting of A into B the procedure of using DCJ
operations to turn AG(A, B) into DCJ-sorted components. The DCJ distance

� � � � � � � �

A ◦at ahet ehxct ch◦ ◦dt dhybt
bh◦ ◦zw◦

� � � � � �

B ◦at ahbt bhct chdt dhet eh◦

�
�
��

�
�
��
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Fig. 2. For genomes A = {◦aexc◦, ◦dyb◦, ◦zw◦} and B = {◦abcde◦}, the adjacency
graph contains one cycle, two AA-paths (one is a linear singleton) and two AB-paths
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of A and B, denoted by dDCJ (A, B), corresponds to the minimum number of
steps required to do a DCJ-sorting of A into B and can be easily obtained:

Theorem 1 ([1]). Given a genome A over GA and a genome B over GB , we
have dDCJ(A, B) = n−c− b

2 , where n is the number of markers in G = GA∩GB,
and c and b are, respectively, the number of cycles and AB-paths in AG(A, B).

Bergeron et al. [1] observed that the number of AB-paths in AG(A, B) is even
and that an optimal DCJ operation either increases the number of cycles by
one, or the number of AB-paths by two (decreasing the DCJ distance by one).
In the same way, a neutral operation does not affect the number of cycles and
AB-paths in the graph, while a counter-optimal operation either decreases the
number of cycles by one, or the number of AB-paths by two. The problem of
finding an optimal sequence of operations that do a DCJ-sorting of A into B
can be solved with a simple greedy linear time algorithm [1].

Now let A be the set of markers that occur only in genome A and let B be the
set of markers that occur only in genome B, that is, A = GA\GB and B = GB\GA.
The markers in A and B are represented in AG(A, B) as labels and singletons,
but they are simply ignored by the approaches to compute the DCJ distance
and sorting sequence, mentioned above. However, in order to completely sort A
into B, the markers in A have to be deleted, while the markers in B have to
be inserted. No DCJ operation is actually able to do an insertion or a deletion.
Moreover, no operation is able to delete and insert at the same time (such an
event would be a replacement, which is not accepted in the model we consider).
Thus, for the purpose of this study, an operation is either a DCJ operation,
or an insertion, or a deletion. We will refer to insertions and deletions as indel
operations. A DCJ and an indel operation have the same cost and we define
the DCJ-indel distance of A and B, denoted by did

DCJ(A, B), as the minimum
number of DCJ and indel operations required to transform A into B.

We can then establish a first simple upper bound for the DCJ-indel distance:

Observation 1. Given a genome A over GA and a genome B over GB, we have
did

DCJ(A, B) ≤ dDCJ(A, B) + |A| + |B|, where A = GA \ GB and B = GB \ GA.

3 Accumulating Runs with Optimal DCJ Operations

Observe that a G-adjacency with a non-empty label � can be cut in at least two
different positions, either before or after �. Since the position of the cut does
not change the effect of the DCJ operation on dDCJ(A, B), we can choose to
cut at positions that allow the concatenation of the labels of the original G-
adjacencies. As a consequence, a set of labels in G-adjacencies of genome A can
be first accumulated with DCJ operations and later deleted at once. In the same
way, a set of labels in G-adjacencies of genome B can be first inserted at once
as a cluster and later split with DCJ operations, as we can see in Fig. 3.

Due to the following observation, without loss of generality, we allow oper-
ations on both genomes A and B, in order to be able to concatenate labels in
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(i) (ii)

� �� �a x b y

↓ deletion

�� �a b y

deletion ↓
��a b

inversion ↓
� �a b

� �� �a x b y

↓ inversion

� �� �a b x y

deletion ↓
� �a b

� �a b

inversion ↓
��a b

insertion ↓
� ��a x b

insertion ↓
� �� �a x b y

� �a b

↓ insertion

� �� �a x y b

inversion ↓
� �� �a x b y

Fig. 3. (i) Two different scenarios sorting {◦axby◦} into {◦ab◦}. In the left we have two
separate deletions and an optimal DCJ (inversion). In the right, we first perform the
inversion, accumulating x and y, so that they can be deleted at once, saving one step.
(ii) Conversely, while sorting {◦ab◦} into {◦axby◦}, instead of two insertions (left), we
can insert a cluster at once and later split it with an inversion (right), saving one step.

G-adjacencies of both genomes. Regarding the operations applied on genome B,
this approach can be seen as a backtracing to find the best moment to do a
cluster insertion in genome A. An algorithm sorting genome A into B can be
derived from this approach.

Observation 2. Given two genomes A and B, any pair of sequences s1 and s2
composed of DCJ and indel operations acting on both genomes A and B, trans-
forming respectively A and B into an intermediate genome I, has a corresponding
sequence acting only on genome A, that is, transforming A into B, with length
|s1| + |s2|.
Given a component C of AG(A, B), we can obtain a string �(C) by the con-
catenation of the labels of the G-adjacencies of C in the order in which they
appear. Cycles, AA-paths and BB-paths can be read in any direction, but AB-
paths should always be read from A to B. If C is a cycle and has labels in
both genomes A and B, we should start to read in a labeled G-adjacency v
of genome A, such that the first labeled vertex before v is a G-adjacency in
genome B; otherwise C has labels in at most one genome and we can start any-
where. Each maximal substring of �(C) in Â+ (respectively in B̂+) is called an
A-run (respectively a B-run). Each A-run or B-run can be simply called a run.
A component composed only of clean G-adjacencies has no run and is said to
be clean, otherwise the component is labeled. We denote by Λ(C) the number of
runs in a component C. A path can have any number of runs, while a cycle has
zero, one, or an even number of runs. Fig. 4 shows a BB-path with 4 runs.

� � � � � �

�1 �2 �5

� � � � � � �︸ ︷︷ ︸
A-run

�3 �4︸ ︷︷ ︸
B-run

︸︷︷︸
A-run

�6 �7︸ ︷︷ ︸
B-run

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 4. A BB-path with 4 runs. Only the labels of the G-adjacencies are represented.
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Proposition 1. If γ1γ2 is a clean G-adjacency in a DCJ-unsorted component C
of AG(A, B), such that neither γ1 nor γ2 are telomeres, then it is always possible
to extract a clean cycle from C with an optimal DCJ operation.

Proof. If γ1γ2 is in VG(B), we apply a DCJ on the two vertices γ1�1γ3 and γ2�2γ4
of VG(A) that are neighbors of γ1γ2, creating the two new vertices γ3�1�2γ4 and
γ1γ2. Observe that the vertex γ1γ2 in VG(B) and the new vertex γ1γ2 in VG(A)
are extracted into a clean cycle. Analogously, if γ1γ2 is in VG(A), we do the same
procedure using the two vertices of VG(B) that are neighbors of γ1γ2. ��
Proposition 2. A run can be entirely accumulated in the label of one single
G-adjacency with optimal DCJ operations.

Proof. A run that is not yet accumulated is distributed over two or more G-
adjacencies in one genome. The G-adjacencies in the other genome within the
run are clean. We can thus apply optimal DCJs that extract clean cycles (Propo-
sition 1) and accumulate the entire run in the label of one G-adjacency. ��
Proposition 2 immediately gives a tighter upper bound for the distance:

Lemma 1. Given two genomes A and B without duplications, we have

did
DCJ(A, B) ≤ dDCJ(A, B) +

∑
C∈AG(A,B)

Λ(C).

4 Merging Runs in One Component

For some instances of A and B, the upper bound of Lemma 1 gives the exact
number of steps required to sort A into B. However, since two runs can be
merged together with a DCJ operation, the DCJ-indel distance is often smaller
than this upper bound. Given a DCJ operation ρ, let Λ0 and Λ1 be, respectively,
the number of runs in AG(A, B) before and after ρ. We define ΔΛ(ρ) = Λ1−Λ0.

Proposition 3. Given any DCJ operation ρ, we have ΔΛ(ρ) ≥ −2.

Proof. If ρ cuts between an A-run r1 and a B-run r2 and between an A-run r3
and a B-run r4, with r1 �= r3 and r2 �= r4, and joins r1 with r3 and r2 with r4,
then ΔΛ(ρ) = −2. As a DCJ has at most two cuts and two joins, it is not
possible to do better, that is ΔΛ(ρ) ≥ −2. ��
In order to obtain the exact formula for the DCJ-indel distance, we will first
analyze the components of the adjacency graph separately. Given two genomes A
and B and a component C ∈ AG(A, B), we denote by dDCJ(C) the minimum
number of DCJ operations required to do a separate DCJ-sorting in C, applying
DCJs only on vertices of C (or vertices that result from DCJs applied on vertices
that were in C). From [3], we know that it is possible to do a separate DCJ-
sorting using only optimal DCJs in any component of AG(A, B), or, in other
words, dDCJ (A, B) =

∑
C∈AG(A,B) dDCJ(C). Moreover, we denote by λ(C) the

minimum number of runs that we can obtain doing a separate DCJ-sorting in C
with optimal DCJ operations. We then have:
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Proposition 4. Given a component C in AG(A, B), we have λ(C) = �Λ(C)+1
2 �,

if Λ(C) ≥ 1. Otherwise λ(C) = 0.

Proof. The proof is by induction on i = Λ(C) and the hypothesis is T (i) = � i+1
2 �.

A labeled DCJ-sorted component can have one or two runs, thus we need two
base cases, T (1) = 1 and T (2) = 2. These cases can be easily verified. More
intricate is the inductive step, for i ≥ 3.

When i ≥ 3 is odd, we can merge the first and the last runs with an optimal
DCJ, obtaining a cycle with i − 1 runs. This gives T (i) = T (i − 1) = i−1+2

2 =
� i+1

2 �. If i ≥ 5, we can also do an optimal DCJ that has ΔΛ = −2, extracting
a cycle with even i′ ≥ 2 runs and leaving the path with odd i′′ ≥ 1 runs, such
that i = i′ + i′′ + 2 and T (i) = T (i′) + T (i′′) = i′+2

2 + i′′+1
2 = i+1

2 = � i+1
2 �.

When i ≥ 4 is even, any optimal DCJ merging runs would extract a cycle
with even i′ ≥ 2 runs and leave the other component with i′′ ≥ 1 runs. One way
is to do a DCJ that has ΔΛ = −1, such that i = i′ + i′′ + 1 and i′′ ≥ 1 is odd.
This gives T (i) = i′+2

2 + i′′+1
2 = i+2

2 = � i+1
2 �. If i ≥ 6, it is also possible to do

a DCJ that has ΔΛ = −2, such that i = i′ + i′′ + 2 and i′′ ≥ 2 is even. We
then have T (i) = i′+2

2 + i′′+2
2 = i+2

2 = � i+1
2 �. (All other optimal DCJs applied

between runs of components with Λ ≥ 3 would lead to greater values of λ.) ��
If λ0 and λ1 are, respectively, the sum of the number λ for the components of the
adjacency graph before and after ρ, we define Δλ(ρ) = λ1−λ0. By the definition
of λ, any optimal DCJ ρ acting on a single component has Δλ(ρ) ≥ 0. However,
considering the case in which only one component is affected by ρ, we still need
to investigate Δλ(ρ) when ρ is counter-optimal or neutral.

Proposition 5. Given a DCJ operation ρ acting on a single component, we
have Δλ(ρ) ≥ 0, if ρ is counter-optimal, or Δλ(ρ) ≥ −1, if ρ is neutral.

Proof. The linearization of a cycle is the only counter-optimal DCJ that acts on
a single component. This can decrease neither Λ, nor λ. Moreover, when Λ ≤ 2,
it is not possible to decrease the number λ with any DCJ. When the component
has Λ = 3, the best we can get with a neutral ρ is ΔΛ(ρ) = −1. This gives
λ1 = � (3−1)+1

2 � = � 3
2� = � 3+1

2 � = λ0, that is, Δλ(ρ) = 0. And when the
component has Λ ≥ 4, we can get ΔΛ(ρ) = −2 with a neutral ρ, resulting in
λ1 = � (Λ(C)−2)+1

2 � = �Λ(C)+1
2 � − 1 = λ0 − 1, that is, Δλ(ρ) = −1. ��

We denote by did
DCJ (C) the minimum number of DCJ and indel operations re-

quired to sort separately a component C of AG(A, B).

Proposition 6. If C is a component of AG(A, B), then we have did
DCJ (C) =

dDCJ(C) + λ(C).

Proof. By the definition of λ, the best we can do with optimal DCJs is dDCJ(C)+
λ(C). From Proposition 5, we know that Δλ(ρ) ≥ 0 if ρ is a counter-optimal
DCJ, thus we can only get longer sorting scenarios if we use such operations.
We also know that Δλ(ρ) ≥ −1 if ρ is neutral, and, since this kind of operation
increases the sorting scenario by one with respect to the scenario with only
optimal DCJs, this gives at least dDCJ(C) + λ(C). ��
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Proposition 6 gives a new upper bound for the DCJ-indel distance:

Lemma 2. Given two genomes A and B without duplications, we have

did
DCJ(A, B) ≤ dDCJ(A, B) +

∑
C∈AG(A,B)

λ(C).

Proof. We can sort the components separately with
∑

C∈AG(A,B) did
DCJ(C) steps,

which corresponds exactly to dDCJ(A, B) +
∑

C∈AG(A,B) λ(C). ��
Since λ(C) ≤ Λ(C), the upper bound given by Lemma 2 is tighter than the
one given by Lemma 1, but can still be improved. Observe that a parsimonious
scenario may not simply consist of optimal DCJ operations, insertions and dele-
tions. Sometimes a neutral DCJ can lead to a shorter sequence of operations
sorting one genome into another, as we can see in Fig. 5.

(i) (ii) (iii)

� � � �a b c d
↓ fission

� � � �a b c d

fission ↓
� � � �a b c d

� � � � � �a x b c y d
↓ fission

� � � � � �a x b c y d

↓ deletion

� � � � �a b c y d
↓ insertion

� � � � � �a u b c y d

fission ↓
� � � � � �a u b c y d

deletion ↓
� � � � �a u b c d

insertion ↓
� � � � � �a u b c v d

� � � � � �a x b c y d
translocation ↓

� �� � � �a x y c b d

insertion ↓
� �� � � � � �a x y c b u v d

fission ↓
� �� � � � � �a x y c u b v d

↓ deletion

�� � � � �a c u b v d

↓ fission

� � � � � �a u b c v d

Fig. 5. An optimal scenario sorting {◦ab◦, ◦cd◦} into {◦a◦, ◦b◦, ◦c◦, ◦d◦} (i) and two
different scenarios sorting {◦axb◦, ◦cyd◦} into {◦a◦, ◦ub◦, ◦c◦, ◦vd◦}. In (ii) in addition
to the two optimal DCJ operations (fissions) from (i) we have two insertions and two
deletions, using six steps. In (iii) we first use a neutral DCJ operation (translocation)
that allows us to do only one deletion and one insertion, achieving a total of five steps.

5 Recombinations and the DCJ-indel Distance

A DCJ operation ρ that acts on two components is called recombination and can
have Δλ(ρ) = −2. The two components on which the cuts are applied are called
sources and the components obtained after the joinings are called resultants of
the recombination.

Proposition 7. Given any recombination ρ, we have Δλ(ρ) ≥ −2.

Proof. Only the recombinations that decrease or do not change the number of
runs (ΔΛ ≤ 0) have to be analyzed (we can not have Δλ ≤ −1 if the number of
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runs increases). First consider the recombination of two paths with i and j runs,
respectively, that result in two new paths with i′ and j′ runs. Observe that the
best we can have is when i and j are even, i′ and j′ are odd and ΔΛ = −2, that
gives: λ1 = � i′+1

2 �+ � j′+1
2 � = i′+j′+2

2 = i+j
2 = i

2 + j
2 = � i+1

2 � − 1 + � j+1
2 � − 1 =

λ0 − 2. The analysis of recombinations involving cycles is analogous. ��
Given a recombination ρ, let Δdcj(ρ) be respectively 0, +1 and +2 depending
whether ρ is optimal, neutral or counter-optimal. Any recombination applied to
a vertex of an AA-path and a vertex of a BB-path is optimal [3]. A recombina-
tion applied to vertices of two different AB-paths can be either neutral, when
the result is also a pair of AB-paths, or counter-optimal, when the result is a
pair composed of an AA-path and a BB-path. All other types of path recombi-
nations are neutral. In addition, all recombinations involving at least one cycle
are counter-optimal. We define Δd(ρ) = Δdcj(ρ) + Δλ(ρ). Any counter-optimal
recombination has Δd ≥ 0, thus only path recombinations can have Δd ≤ −1.

Let A = Â+(B̂+Â+)∗ (respect. B = B̂+(Â+B̂+)∗) be a sequence with an odd
(≥ 1) number of runs, starting and ending with a run over Â (respect. over B̂).
We can then make any combination of A and B, such as AB = Â+(B̂+Â+)∗B̂+,
that is a sequence with an even (≥ 2) number of runs, starting with a run over Â
and ending with a run over B̂. An empty sequence (with no run) is represented
by ε. Then each one of the notations AAε, AAA, AAB, AAAB, BBε, BBA, BBB,
BBAB, ABε, ABA, ABB, ABAB and ABBA represents a particular type of path
(AA, BB or AB) with a particular structure of runs (ε, A, B, AB or BA).
The complete set of path recombinations with Δd ≤ −1 is given in Table 1. In
Table 2 we also list recombinations with Δd = 0 that create at least one source
of recombinations of Table 1. We denote by AB• an AB-path that can not be a
source of a recombination in Tables 1 and 2, such as ABε, ABA and ABB.

Table 1. Path recombinations that have Δd ≤ −1 and allow the best reuse of the
resultants. Optimal recombinations are in the left, neutral recombinations in the right.

sources resultants Δλ Δdcj Δd

AAAB + BBAB AB• + AB• −2 0 −2
AAA + BBAB AB• + ABAB −1 0 −1
BBA + AAAB AB• + ABBA −1 0 −1
AAB + BBAB AB• + ABBA −1 0 −1
BBB + AAAB AB• + ABAB −1 0 −1
AAA + BBA AB• + AB• −1 0 −1
AAB + BBB AB• + AB• −1 0 −1

sources resultants Δλ Δdcj Δd

AAAB + AAAB AAA + AAB −2 +1 −1
BBAB + BBAB BBA + BBB −2 +1 −1
AAAB + ABAB AB• + AAA −2 +1 −1
AAAB + ABBA AB• + AAB −2 +1 −1
BBAB + ABAB AB• + BBB −2 +1 −1
BBAB + ABBA AB• + BBA −2 +1 −1
ABAB + ABBA AB• + AB• −2 +1 −1

Table 2. Recombinations that have Δd = 0 and create resultants that can be used in
recombinations with Δd ≤ −1

sources resultants Δλ Δdcj Δd

AAA + ABBA AB• + AAAB −1 +1 0
AAB + ABAB AB• + AAAB −1 +1 0
BBA + ABAB AB• + BBAB −1 +1 0
BBB + ABBA AB• + BBAB −1 +1 0

sources resultants Δλ Δdcj Δd

AAA + BBB AB• + ABAB 0 0 0
AAB + BBA AB• + ABBA 0 0 0
ABAB + ABAB AAA + BBB −2 +2 0
ABBA + ABBA AAB + BBA −2 +2 0
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Proposition 8. The recombinations with Δd = 0 involving cycles or circular
singletons cannot create new components that can be used as sources of recom-
binations listed in Tables 1 and 2.

Proof. A recombination ρ with Δd = 0 involving a cycle or a circular singleton
C would integrate C to another component C′ without changing the type or the
structure of runs in C′. Thus, if C′ is a source of a recombination in these tables
after ρ, C′ was already the same type of source before ρ. And if C′ was not a
source before ρ, C′ cannot become a source after ρ. ��
With Proposition 8 we already have an exact formula to did

DCJ for a particular
set of instances. Given a G-adjacency γ�◦ of a genome A such that γ �= ◦, then
γ is said to be a tail of a linear chromosome in A. Two genomes are co-tailed if
their sets of tails are equal (this includes two genomes composed only of circular
chromosomes).

Theorem 2. Given two co-tailed genomes A and B without duplications, we
have did

DCJ(A, B) = dDCJ(A, B) +
∑

C∈AG(A,B) λ(C).

Proof. The graph AG(A, B) for co-tailed genomes A and B can have only sin-
gletons (that could be AAA and BBB), cycles and AB-paths of one edge. These
AB-paths could be ABAB, but never ABBA, thus no recombination listed in
Tables 1 and 2 is possible. ��
Now we continue the analysis for the general case. The two sources of a re-
combination can also be called partners. Looking at Table 1 we observe that all
partners of ABAB and ABBA paths are also partners of AAAB and BBAB paths,
all partners of AAA and AAB paths are also partners of AAAB paths and all
partners of BBA and BBB paths are also partners of BBAB paths. Moreover,
some resultants of recombinations in Tables 1 and 2 can be used in other re-
combinations. These observations allow the identification of groups, as listed in
Tables 3 and 4.

The deductions shown in Tables 3 and 4 can be computed with an approach
that greedily maximizes the number of recombinations in P , Q, T , S, M and N
in this order. The P part contains only one operation and is thus very simple.
The same happens with Q, since the two groups in this part are exclusive after
applying P . The only part that requires more attention is T , in which some
combinations of operations can happen at the same time and the order can be
relevant. The part S is only the application of all possible remaining operations
with Δd = −1. After S, the two groups in M are exclusive and then the same
happens to the six groups in N .

The results presented in this section give rise to the following theorem, that
gives the exact formula for the DCJ-indel distance:

Theorem 3. Given two genomes A and B without duplications, we have

did
DCJ(A, B) = dDCJ(A, B) +

∑
C∈AG(A,B)

λ(C) − 2P − 3Q − 2T − S − 2M − N,

where P , Q, T , S, M and N are computed as described above.
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Table 3. All recombination groups obtained from Table 1. Observe that the last four
groups in T are subsets of groups in Q and the last ten groups in S are subsets of
groups in Q and T . The column scr indicates the contribution of each path in the
distance decrease (the table is sorted in descending order with respect to this column).

sources resultants Δd scr
P AAAB + BBAB 2AB• −2 −1
Q 2AAAB + BBA + BBB 4AB• −3 −3/4

2BBAB + AAA + AAB 4AB• −3 −3/4
T AAAB + BBA + ABAB 3AB• −2 −2/3

AAAB + BBB + ABBA 3AB• −2 −2/3
BBAB + AAA + ABBA 3AB• −2 −2/3
BBAB + AAB + ABAB 3AB• −2 −2/3
2AAAB + BBA 2AB• + AAB −2 −2/3
2AAAB + BBB 2AB• + AAA −2 −2/3
2BBAB + AAA 2AB• + BBB −2 −2/3
2BBAB + AAB 2AB• + BBA −2 −2/3

sources resultants Δd scr
S AAA + BBA 2AB• −1 −1/2

AAB + BBB 2AB• −1 −1/2
ABAB + ABBA 2AB• −1 −1/2
BBAB + AAA AB• + ABAB −1 −1/2
AAAB + BBA AB• + ABBA −1 −1/2
BBAB + AAB AB• + ABBA −1 −1/2
AAAB + BBB AB• + ABAB −1 −1/2
AAAB + ABAB AB• + AAA −1 −1/2
AAAB + ABBA AB• + AAB −1 −1/2
BBAB + ABAB AB• + BBB −1 −1/2
BBAB + ABBA AB• + BBA −1 −1/2
AAAB + AAAB AAB + AAA −1 −1/2
BBAB + BBAB BBB + BBA −1 −1/2

Table 4. All recombination groups that contain operations from Tables 1 and 2. The
groups in N are subsets of the groups in M . The table is sorted in descending order
with respect to the contribution of each path in the distance decrease (column scr).

sources resultants Δd scr
M 2ABAB + AAB + BBA 4AB• −2 −1/2

2ABBA + AAA + BBB 4AB• −2 −1/2
N ABAB + AAB + BBA 3AB• −1 −1/3

ABBA + AAA + BBB 3AB• −1 −1/3

sources resultants Δd scr
N 2ABAB + AAB 2AB• + AAA −1 −1/3

2ABAB + BBA 2AB• + BBB −1 −1/3
2ABBA + AAA 2AB• + AAB −1 −1/3
2ABBA + BBB 2AB• + BBA −1 −1/3

Both AG(A, B) and dDCJ(A, B) can be computed in linear time [1]. The runs
can be obtained by a single walk through each component of AG(A, B), which is
also linear. The algorithm to compute P , Q, T , S, M and N is a finite sequence
of if and else statements, that depends only on the number of each type of
labeled path in AG(A, B), thus the whole procedure takes linear time.

6 Experiments and Discussion

We used our method to analyze the evolution of Rickettsia, a group of obligate in-
tracellular parasites that are carried by many vectors (frequently hematophagous
arthropods) and occasionally transmitted from the vector to mammalians (in-
cluding humans), causing several diseases (typhus, spotted fever, etc.) [2]. The
genomes of such intracellular parasites are observed to have a reductive evolu-
tion, that is, the process by which genomes shrink and undergo extreme levels
of gene degradation and loss. There are several completely sequenced Rickettsia
genomes, and most of them are closely related [2]. The exception is R. bellii,
which shows a high level of rearrangement with respect to the others. We com-
pared R. bellii with six other species of Rickettsia, observing in all pairwise
analyses a considerable reduction of the indels (see Table 5), when they are
grouped into runs (column ΣΛ) and into merged runs (column Σλ). Although
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Table 5. Comparing R. bellii (1.52 Mbp) with six other species of Rickettsia

species Mbp |A| + |B| ΣΛ Σλ dDCJ did
DCJ

R. felis 1.55 333 241 181 312 493
R. massiliae 1.36 302 218 172 276 448
R. africanae 1.28 290 212 166 260 426

species Mbp |A| + |B| ΣΛ Σλ dDCJ did
DCJ

R. conorii 1.27 277 192 153 261 414
R. prowazekii 1.11 241 130 117 197 314
R. typhi 1.11 239 126 114 195 309

these are preliminary results, they could suggest that each cluster is composed
of genes that have been lost together during the evolution of Rickettsia.

Discussion. We propose the first linear time algorithm to compute the distance
between two genomes with unequal content, but without duplications, taking
into consideration DCJ and indel operations. With this method we analyze a
group of bacteria, obtaining interesting results. Due to the lack of available
data, we could not yet perform analyses on linear genomes, which would let us
test the impact of path recombinations on the distance.

This work opens some perspectives. One is the development of a sorting al-
gorithm that can be derived from the results presented here. Another issue that
could be addressed next is the incorporation of replacements in the model, when
an insertion and a deletion occur at the same position of the genome.
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Abstract. We describe an average-case O(n2) algorithm to list all reversals on
a signed permutation π that, when applied to π, produce a permutation that is
closer to the identity. This algorithm is optimal in the sense that, the time it takes
to write the list is Ω(n2) in the worst case.

1 Introduction

In 1995 Hannenhalli and Pevzner [9] presented an algorithm to transform one genome
into another in a minimum number of biologically plausible moves. They modeled a
genome as a signed permutation and the move that they considered was the reversal:
the order of a substring of the permutation is reversed, and the sign of each element
in the substring is flipped. Since then many refinements and speed improvements have
been developed [4,8,10,11,16,18,19].

In 2002 Siepel and Ajana et. al. [1,15] showed how to list every parsimonious sce-
nario of reversals, each scenario being a proposed candidate for the true evolutionary
history. Fundamental to their algorithms are O(n3) techniques for finding all sorting re-
versals; the reversals that at each step produce a permutation that is closer to the target
permutation than the last. Ajana et. al. [1] used these results to support the replication-
directed reversal hypothesis. Lefebvre et. al. [12] and Sankoff et. al. [14] used similar
methodology to gain insight into the distribution of reversal lengths between genomes.
Algorithms that attempt to more succinctly represent all shortest-length scenarios [3,6]
have also been developed.

In this paper we show how to list all sorting reversals in O(n2) time on average.
This algorithm is optimal in the sense that there are Ω(n2) safe cycle-splitting reversals
in the worst-case. This affords a significant speedup of the aforementioned methods
[1,3,6,12,14,15], since listing all sorting reversals is the kernel of repeated computation
in each of them, especially when applied to permutations of sizes 3× 103 to 3× 105

(the size of bacterial or mammalian genomes).

2 Background

Take a signed permutation π = π1, . . . ,πn on the integers from 1 to n. Define a (signed)
reversal ρ(i, j) as the signed permutation

1,2, . . . ,(i−1),− j, . . . ,−i,( j + 1), . . . ,n.

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 102–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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That way, applying the reversal ρ(i, j) to permutation π gives

ρ(i, j)(π) = π◦ρ(i, j) = π1, . . . ,πi−1,−π j, . . . ,−πi,π j+1, . . . ,πn.

Given signed permutations π1 and π2, the reversal distance d(π1,π2) is the smallest k
such that π2 = π1 ◦ρ1 ◦ρ2 ◦ · · · ◦ρk. Without loss of generality1 we consider π2 = I =
1,2, . . . ,n to be the identity permutation. In this paper, we describe our methods using
circular permutations (where the leftmost element follows the rightmost element), as
any sorting reversal on a circular permutation has its counterpart on a linear version of
the permutation.

2.1 All Sorting Reversals

A reversal ρ is a sorting reversal on π if d(π ◦ρ) = d(π)− 1. Although the definition
is simple, a characterization of all sorting reversals requires effort; to do so we must
introduce the breakpoint graph [9]. Each element πi of permutation π has two vertices
associated with it denoted by π−

i and π+
i (π± can denote either). Embed the graph on a

circle as follows: place all 2n vertices on the circle so that:

1. π+
i and π−

i are adjacent on the circle,
2. π−

i is before (in the clockwise direction) π+
i if and only if πi is positive, and

3. a π±
i is adjacent to a π±

i+1 if and only if πi and πi+1 are adjacent in π.

For two vertices v1 = π±
i and v2 = π±

j (i �= j) that are adjacent on the circle, add the

edge (v1,v2)—a reality edge (also called a black edge); also add edges (π+
i ,π−

i+1) for
all i and (π+

n ,π−
1 )—the desire edges (also called gray edges). Figure 1(a) shows the

breakpoint graph for π = (−1 2 4−5 6 8−7−3). Note that every vertex has indegree 2
and outdegree 2, so the graph has a unique decomposition into cycles of even length
(alternating between reality and desire edges).

A reversal ρ(i, j) is said to act on the reality edges (π±
i−1,π

±
i ) and (π±

j ,π±
j+1) be-

cause these are the only edges in the breakpoint graph of π that are not in the graph of

(a) breakpoint graph of π = (−1 2 4−5 6 8−7−3) (b) breakpoint graph of π◦ρ(6,8)

Fig. 1. Two breakpoints graphs. The direction that reality edges are traversed on a tour of the
cycles is labeled with arrows. ρ(6,8) is an unsafe reversal on π.

1 Since I = π−1
2 ◦π1 ◦ρ1 ◦ρ2 ◦ · · · ◦ρk .
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π◦ρ(i, j). In Figure 1, the reversal ρ(6,8) acts on reality edges (3−,1+) and (6+,8−).
Two reality edges on the same cycle are convergent if a traversal of their cycle visits
each edge in the same direction in the circular embedding; otherwise they are divergent.
The following definitions classify the action of a reversal on the cycles of the breakpoint
graph [9].

Definition 1 (cycle-splitting reversal). A reversal that acts on a pair of divergent re-
ality edges splits the cycle to which the edges belong, so are called cycle-splitting re-
versals.

Conversely, no reversal that acts on a pair of convergent reality edges splits their com-
mon cycle. A reversal that acts upon a pair of reality edges in two different cycles
merges the two cycles. The permutation of Figure 1(a) has 10 cycle-splitting inversions
including ρ(1,2), ρ(4,4), and ρ(6,8). Notice that at most one cycle can be created by a
reversal, yielding the inequality

d(π) ≥ n− c(π), (1)

where c(π) is the number of cycles in the breakpoint graph. Most cycle-splitting rever-
sals are sorting reversals [17], but not all sorting reversals are cycle-splitting reversals,
which indicates a gap between this lower bound and the reversal distance.

We must further explore structure in the permutation that allows us to predict the
reversal distance when the lower bound is not realized.

Definition 2 (FCI [5]). A framed common interval (FCI) of a permutation (made cir-
cular by considering the first and last elements as being adjacent) is a substring of the
permutation, as1s2 . . . skb or −bs1s2 . . . sk−a such that

– for each i, 1 ≤ i ≤ k, |a| < |si| < |b|, and
– for each l, |a| < l < |b|, there exists a j with |s j| = l, and
– it is not a concatenation of substrings satisfying the previous two properties.

So the substring s1s2 . . . sk is a (possibly empty) signed permutation of the integers that
are greater than a and less than b; a and b are the frame elements, while those of s1 . . . sk

are trunk elements if they are not trunk elements of a smaller FCI. The framed interval
is said to be common, in that it also exists as an interval

(
a(a + 1)(a + 2) . . .b

)
in the

identity permutation.
A component of a permutation is comprised of the trunk elements of an FCI that

are not trunk elements of a shorter FCI, plus the frame elements. The permutation of
Figure 1(b) has three components: one framed by elements 2 and 7, another framed by
4 and 6. The third is an interval in the circular sense, framed by elements 7 and 2 with
the trunk comprised of elements 8 and 1; in the circular sense we have 7 < 8 < 1 < 2
here.

Definition 3 (bad component[5]). A bad component of a permutation is a component
with at least 4 elements, where the sign of every element is the same.

In Figure 1(b), the component (2 4 6 3 7) is bad. The existence of one or more bad
components in a permutation indicate exactly those situations where the lower bound



Listing All Sorting Reversals in Quadratic Time 105

cannot be met [9]. Siepel’s paper [15] describes in detail an O(n3) algorithm for finding
the set of sorting reversals when bad components exist. While further exploration of
Siepel’s characterization of sorting reversals in the presence of bad components could
eventually lead to a worst-case O(n2) algorithm, we do not address the issue here. Suf-
fice it to say that the average-case complexity is O(n2) even when the trivial O(n3)
algorithm2 is used on permutations with bad components; the probability that a permu-
tation chosen uniformly at random has a bad component is O(n−2) [7,17] and we can
detect the presence of bad components in linear time [2,5].

We focus on the bottleneck of sorting FCIs that do not correspond to bad compo-
nents: cycle-splitting reversals that create bad components (cycle-splitting reversals that
are not sorting reversals).

Definition 4 (bad reversal). A bad reversal is a reversal that creates a bad component.

Definition 5 (unsafe reversal[9]). An unsafe reversal is a cycle-splitting reversal that
is bad.

In Figure 1(a), the reversal ρ(6,8) is unsafe.

2.2 Outline

Known algorithms that list all sorting reversals check, one by one, if each of the poten-
tially Ω(n2) cycle-splitting reversals is unsafe by applying the reversal and then running
a linear time check as to whether it produced a bad (unoriented) component [1,15]. In-
stead of listing all cycle-splitting reversals and then checking them, we do the inverse:
we predict which reversals may be unsafe (whether cycle-splitting or otherwise) and
avoid listing them. We first characterize what we call ominous substrings of the permu-
tation, those substrings that could be turned into a bad component with one reversal.
Our algorithm searches for ominous substrings by doing the following: for each ele-
ment of the permutation we posit that it is a smallest element of a potential (after a re-
versal) bad component and continue by scanning the permutation to detect an ominous
substring.

In Section 3 we introduce ominous substrings while Section 4 describes how to detect
the set of all ominous substrings efficiently. Section 5 presents the algorithm. Finally
Section 6 discusses open problems.

3 Ominous Substrings

Take any unsafe cycle-splitting reversal ρ on permutation π. Since it is unsafe, the per-
mutation π ◦ ρ has at least one bad component created by ρ. In this section we will
show that there exists in π a particular pattern — an ominous substring of π — indicat-
ing that ρ is unsafe. We first describe ominous substring of permutations with a single
component.

2 Each of the O(n2) reversals can in turn be applied to the permutation and the linear time
algorithm for reversal distance [2] can be used to check if it was a sorting reversal.
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3.1 Permutation with a Single Component

A substring of a permutation is ominous if and only if there exists some elements e and
f such that the substring fits one of the following templates (or their reverse):

1. (eAX− f −B): where A,−B, and X are substrings of the permutation. A has only posi-
tive while −B has only negative elements.

2. (−A−eXB f ): where −A,B, and X are substrings of the permutation. −A has only neg-
ative while B has only positive elements. e is negative.

3. (eA−BC f ): where A,−B, and C are substrings of the permutation. A and C have only
positive while −B has only negative elements.

and A and B (and C if it exists) are comprised of exactly those elements with absolute
value i for e < i < f .

In template 3, there already exists an FCI with frame elements e and f ; the rever-
sal that acts on exactly the elements of B fixes the elements of the interval to have
the same sign. In the other two templates, a new interval is created with e and f
as the frame elements. For template 1, { f} ∪B∪ X are the elements reversed while
for template 2, {e}∪A∪X are the elements reversed. For example, (−7 1−3−4−5−2 6)
matches template 3 with the unsafe reversal acting upon the elements {2,3,4,5}; A
and C are empty in this case. (−1 2 4 6−5−3) matches template 1 with the unsafe re-
versal acting upon the elements {3,5,6}; f = −5, B = {−3}, and X = {6} in this case.
(−2−6−8−4 1 5 7 9−3) matches template 2 with the unsafe reversal acting upon the ele-
ments {1,4,6,8}; A = {6,8}, B = {5,7}, and X = {1} in this case.

We are ready to state the main lemma of this section.

Lemma 1. There is a one to one correspondence between bad reversals and ominous
substrings.

Proof. By definition, there exists at least one reversal that creates a bad component
from an ominous substring. On the other hand, take a permutation π◦ρ that has a bad
component — with frame elements e and f — created by the reversal ρ. Say that the
elements of the bad component are positive, then e is on the left and f is on the right.
If ρ includes both e and f , this implies that the bad component already exists in π,
which is a contradiction. Now let us examine the other three possibilities. If ρ does not
include e and f , then the ominous substring in π corresponds to template 3. If ρ includes
only f , then the ominous substring in π corresponds to template 1. If ρ includes only
e, then the ominous substring in π corresponds to the template 2. If the elements of the
bad component are negative then the negative analogue holds for each case. Since each
ominous substring implies exactly one reversal dictated by the A, B, C, and X , we have
the bijection.

3.2 Permutations with Multiple Components

We described ominous substrings on permutations with a single component. Since
sorting reversals act only upon adjacencies in a single component [9], we adapt the
techniques for single components to the case of multiple components in the following
manner.
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Consider a component of a permutation with some frame elements of a smaller FCI
contained in it. We obtain the condensed version of the component by doing the follow-
ing: for each pair of frame elements a and b (or −a and −b) of a smaller FCI contained
in it, we replace the pair by a (resp. −a) and change the magnitude m of every element
m > b in the component to be m− (b− a). The templates can be applied directly to
the condensed component. For example, take the component C = (2 4 6 3 7) in Fig-
ure 1 where the component (4−5 6) is contained in it. The condensed version of C is
(2 4 3 5). The condensed version of any component can be computed in linear time.

4 Detecting Ominous Substrings

We now turn to the task of detecting an ominous substring associated with a smallest
element e. The following methods can be adapted to detect the negative analogue of
each template, so we only describe the detection of the templates as they were presented
in Section 3.1. The general outline used in each of the following algorithms is the same:
we visit the permutation starting with element e, proceeding to element e + 1, then
e+2 and so on. At each step we maintain enough information to check whether certain
conditions hold that indicate we have found an ominous substring.

Call the set of elements that we visit through the first i steps Si (those with absolute
value in the interval [e,e + i]). To check for each template at step i, so that f would be
the element e + i, we maintain the following values.

– Rightmost positive index visited: rp = max({|π−1(| j|)| ∣∣ j ∈ Si, j > 0})
– Leftmost positive index visited: l p = min({|π−1(| j|)| ∣∣ j ∈ Si, j > 0})
– Rightmost negative index visited: rn = max({|π−1(| j|)| ∣∣ j ∈ Si, j < 0})
– Leftmost negative index visited: ln = min({|π−1(| j|)| ∣∣ j ∈ Si, j < 0})

Template 1 (eAX− f −B) exists, with unsafe reversal ρ(rp + 1,rn), if and only if the fol-
lowing conditions hold:

1. l p = π−1(|e|)
(e is the leftmost element visited)

2. ln > rp
(the negative elements are to the right of the positive)

3. rn− ln + rp− l p = i−1
(the positive and negative elements are all contiguous)

4. π−1(|e + i|) = ln
(the last element visited is the leftmost negative element)

5. i ≥ 3
(the FCI has at least 4 elements)

Template 2 (−A−eXB f ) exist, with unsafe reversal ρ(ln, l p− 1), if and only if the fol-
lowing conditions hold:

1. rn = π−1(|e|)
(e is the rightmost negative element)

2. l p > rn
(the negative elements are to the left of the positive)
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3. rn− ln + rp− l p = i−1
(the positive and negative elements are all contiguous)

4. π−1(|e + i|) = rp
(the last element visited is the rightmost element visited)

5. i ≥ 3
(the FCI has at least 4 elements)

To check for template 3 we maintain another value neg = |{ j
∣∣ j ∈ Si, j < 0}|, the

number of negative values visited. We know that we have found template 3 (eA−BC f )
with unsafe reversal ρ(ln,rn) if and only if all of the following conditions hold:

1. l p = π−1(|e|)
(e is the leftmost element visited)

2. ln > l p
(the negative elements are to the right of some positive)

3. rp > rn
(the negative elements are to the left of some positive)

4. rp− l p = i
(we have visited a contiguous substring)

5. rn− ln = neg−1
(the negative elements of B are contiguous)

6. π−1(|e + i|) = rp
(the last element visited is the rightmost element visited)

7. i ≥ 3
(the FCI has at least 4 elements)

Note that if at some iteration i during our scan conditions 1 or 2 for any of the templates
are broken, we know that e can no longer match that template.

5 The Algorithm

We begin by proving the following theorem.

Theorem 1. For a permutation without a bad component, there is an O(n2) algorithm
for listing all sorting reversals.

Proof. Use the methods of Section 4 to obtain a blacklist of all ominous substrings
associated with each possible smallest frame element e. Since the list of all ominous
substrings associated with a single smallest frame element is obtained by a linear scan
for all possible right endpoints f , the time to build the blacklist is O(n2). Each element
of the list is associated with a bad reversal, the indices of which we mark in an n by
n matrix; an entry r at row i and column j indicates that the bad reversal r acts on
elements from position i to position j in the permutation. Obtain the list of all cycle-
splitting reversals in O(n2) time using the standard methods [9]. Finally, examine this
list one reversal at a time, removing from the list any reversal that has a corresponding
entry marked in the matrix.
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The methods described so far are applicable to permutations with no bad components.
Permutations with bad components can be easily handled by combining our algorithm
with that of Siepel [15] in the following way. First make a linear scan of the permutation
to detect bad components [2,5]. If there are bad components, use the O(n3) algorithm
of Siepel, otherwise, use our algorithm.

Theorem 2. Pick a signed permutation uniformly at random, the expected time the
above algorithm takes to list all sorting reversals is O(n2).

Proof. The probability of seeing a bad component in a permutation taken uniformly at
random from the set of all signed permutations is O(n−2) [17]. The bound follows since
n3 ×n−2 < n2.

6 Conclusions

We presented the first quadratic time algorithm for listing all sorting reversals for a
signed permutation. This pattern matching algorithm is simple in that it requires no
special data structures. It is optimal in the sense that most permutations can have Ω(n2)
sorting reversals [20,13]. An improvement on our bound would be an algorithm that
runs in O(n + k) time where k is the number of sorting reversals. It is currently unclear
how to modify our algorithm to obtain this bound.
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Reversals. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463,
pp. 293–304. Springer, Heidelberg (2007)

7. Caprara, A.: On the tightness of the alternating-cycle lower bound for sorting by reversals. J.
Combin. Optimization 3, 149–182 (1999)

8. Hannenhalli, S., Pevzner, P.A.: Transforming mice into men (polynomial algorithm for ge-
nomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci.
(FOCS 1995), pp. 581–592. IEEE Press, Piscataway (1995)

9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for
sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)



110 K.M. Swenson, G. Badr, and D. Sankoff

10. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permu-
tations by reversals. SIAM J. Computing 29(3), 880–892 (1999)

11. Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting
signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.)
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Abstract. In kinship inference, we identify genealogical relationships
among organisms. One such problem is sibgroup reconstruction: given
a population of same-generation individuals, partition it into sibgroups
resulting from mating events. Minimizing the number of matings is NP-
hard to approximate, yet a simple heuristic, based on identifying popula-
tion triplets that can be from the same sibgroup, performs comparably to
better than integer programming algorithms in a fraction of the running
time. With high probability if we study many loci in the genome, and
large populations, our polynomial-time heuristic finds the true sibgroups,
assuming a standard probabilistic inheritance model.

1 Introduction

A natural field biology question is to characterize genealogical relationships in
wild populations, such as which organisms are siblings. Scientists use genetic
markers from highly variable genomic loci to detect parentage: if three diploid
organisms are father, mother and offspring, then at every position in the genome,
the offspring has one copy of a paternal chromosome and one copy of a maternal
chromosome. Assuming no mutations, if neither copy of a putative parent’s DNA
is found in the offspring, they cannot be parent and child. Similar arguments
identify diploid siblings when many loci are considered. At each locus, siblings
inherit one maternal and one paternal chromosome, from a choice of two in each
case, so any overlap can be used to evaluate possible relationships. Still, any two
individuals can be siblings, making studies of pairs of individuals problematic.

However, it is not possible for any three individuals to be siblings. This obser-
vation underlies our methods here in finding sibgroups of siblings in wild pop-
ulations of diploid organisms. We identify all triplets of individuals that could
be found in the same sibgroup. If two population members are found in many
compatible triplets, they are likely siblings. We develop an extremely simple
polynomial-time heuristic for finding sibgroups that gives comparable or supe-
rior results to the state of the art in much smaller runtimes.

Finally, we give our work a probabilistic basis. In a simple population genera-
tion model, a variant of our heuristic has failure probability shrinking exponen-
tially with the number of loci sampled and the population size.
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Kinship inference consists of a wide range of problems: identifying sibgroups is
one of the simplest. However, our methods offer the suggestion of a new procedure
for solving this entire class of problems heuristically and accurately.

2 Related Work

Statistical methods for this problem, as in COLONY [15], compute the like-
lihoods of putative sibgroups in a probabilistic model. More recently, KINA-
LYZER [2] has introduced a combinatorial approach: it identifies subsets that
could be complete sibgroups, and partitions the population in some optimal
way (largely, minimizing the number of sibgroups). Minimizing this objective is
NP-hard [1]; integer programming or other brute-force methods have worked for
small data sets. This approach gives reasonable results [5], though much remains
to be done for populations with small numbers of large families.

However, the approach of computing the minimum total number of sibgroups
has limitations. First, the integer programs can be huge: the number of maxi-
mal potential sibgroups can be exponential in the size of the problem instance.
Second, the problem often shows multiple optima: there may be many distinct
partitions of the population sample into the same minimum number of sibgroups,
and it is not obvious how to choose a preferred answer from this set of optima;
Sheikh et al. develop a consensus approach, but it is still challenging to find a
universally good answer [13]. Finally, it does not always solve the core problem,
as evidenced by its moderate accuracy on some instances.

3 Preliminaries and Notation

We have a population of n offspring from the same generation, whom we wish to
divide into sibgroups from individual mating events between unknown parents.

Individuals are diploid: they have two chromosomes of each type (we do not
consider the sex chromosomes). One chromosome is inherited from each parent.
At a single locus in the genome, an offspring inherits one copy of the local DNA
from its mother, and one from its father. In both cases, the inherited copy is one
choice from the two possibilities corresponding to the parent’s two chromosomes.
At some loci in the genome, there is much variability in the DNA found at that
locus in the population, so offspring may inherit different DNA at those loci
from each parent. For example, microsatellites, (“TATATA...”, for example),
which are also known as Short Tandem Repeats (STRs) or Simple Sequence
Repeates (SSRs), can be repeated a different number of times. An individual
might have 5 copies on one chromosome, and 12 on the other, indicated by the
genotype “(5,12)”, denoting the pair of alleles.

We assume such marker DNA is available at m different genetically unlinked
sites for each population member. (This requirement of no linkage is verified
in microsatellite marker development.) We cannot identify which chromosome
is derived from which parent of a population member. However, the genotype
“(5,12)” indicates that one parent of the individual has allele 5 on one of its two
chromosomes, and the other parent has allele 12 on one of its two chromosomes.
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Some genotypes can be homozygotic, such as “(8,8)”, where the offspring
inherits the same allele from both parents, so each parent must have that allele on
one of its chromosomes. Also, at different loci, the meaning of the alleles differs: at
one locus, the allele 4 may indicate the presence of the sequence “TATATATA”,
while at another, it might indicate the presence of “GGAGGAGGAGGA”.

Our input data is an n × m matrix of genotypes: each row corresponds to a
single population member pi and each column to a single locus �j. Our goal is
to partition the set P = {p1 . . . pn} into families {F1 . . . Ff} where each member
of family Fi consists of full siblings from the same mating event.

For parsimony reasons, we minimize the total number of families, which is
NP-hard to approximate to within a 153/152 ratio [1]. We give a heuristic which
does well for this goal, and also at returning the true set of families.

4 Forbidden Sets

Previous work has focused on sets of population members that can be in the same
sibgroup. We focus on sets that cannot be part of the same sibgroup. These are
based on 3-element subsets of the population, a polynomial-sized group. This
gives a small integer program, and some successful simple heuristics.

4.1 Forbidden Sets Are Triplets

Considering only the rules of genetic inheritance, any two offspring x and y can,
in principle, be full siblings: if at a single locus x has genotype (a, b) and y has
genotype (c, d), their parents may have genotypes (a, c) and (b, d).

However, it is not always possible that three offspring {x, y, z} can be full
siblings. If at the same locus x, y and z have genotypes (1, 2), (3, 4) and (5, 2),
they cannot all be siblings: in the two genotypes of their parents, we must place
five distinct alleles into four slots. Even with only three or four alleles in a set of
offspring at a locus, a triplet of individuals may be incompatible: for example,
the genotypes (1, 1), (2, 3), (3, 4) cannot come from full siblings: the first indicates
that both parents have the 1 allele, leaving three remaining alleles and only two
slots. This leads to the 2-allele rule for a general set of offspring who can feasibly
be siblings due to Berger-Wolf et al. [4]. Let a be the number of distinct alleles
at a locus in a set of individuals T , and let R be the number of alleles that
are found either homozygously or paired with at least three other alleles. The
members of T can all be siblings iff at all loci, a + R ≤ 4.

In fact, if a set of offspring cannot all be siblings, they must have an incom-
patible triplet as a subset.

Theorem 1. If T = {p1, . . . pk} cannot form a valid sibgroup, then there must
exist a subset {x, y, z} ⊂ T that is incompatible at at least one locus �.

Proof. There must be at least one locus � where T does not satisfy the 2-allele
rule: at that locus, a + R > 4. Assume for contradiction that |T | > 3 and all
3-element subsets of T do satisfy the 2-allele rule. We will have three cases.

1. If R = 0, then a ≥ 5. Pick one member x ∈ T with genotype (a1, a2). At most
two members of T share an allele with x, so since |T | ≥ 4, there is a member
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of T with genotype (a3, a4) with which x shares no alleles. Finally, pick a
member of T with the fifth allele, with genotype (a5, ∗) for some choice for ∗.
These three members form the forbidden triplet {(a1, a2), (a3, a4), (a5, ∗)}.

2. If R = 1, then a ≥ 4. Either some allele a1 appears with three other alle-
les, giving the forbidden triplet {(a1, a2), (a1, a3), (a1, a4)}, or there is a ho-
mozygous member with genotype (a1, a1). Pick that member, a member with
genotype (a2, a3) that shares no allele with it and a member with the fourth
allele, (a4, ∗). They form the forbidden triplet {(a1, a1), (a2, a3), (a4, ∗)}.

3. If R = 2, then a ≥ 3. Either an allele is found with three others (a forbidden
triplet), or there are two homozygotes, (a1, a1) and (a2, a2). Joined to (a3, ∗),
this gives the forbidden triplet {(a1, a1), (a2, a2), (a3, ∗)}. ��

4.2 Forbidden Triplets as a Means of Finding a Partition

Three incompatible members {x, y, z} cannot be in the same sibgroup. We can
verify in O(m) time if a triplet is compatible: at each locus it is a constant-time
test. In O(n3m) time, we can consider each such triplet.

An Integer Programming Formulation.

This observation gives a polynomial-sized integer programming formulation of
the problem of sibgroup reconstruction to minimize the number of sibgroups.
Let xi,j = 1 iff pi and pj belong to the same family (0 otherwise), and let qi = 1
iff pi is the numerically first member of the population in its sibgroup. We want
to optimize this integer program:

minimize
∑

i

qi subject to

xi,j + xj,k + xi,k ≤ 1 if {pi, pj , pk} are incompatible
xi,j + xj,k − xi,k ≤ 1 for all i, j.k distinct

qi ≥ 1 −
∑

j=1...i−1

xj,i for all i = 1, . . . , n

qi, xi,j ∈ {0, 1} for all i, j

The first set of constraints prevents incompatible triplets from joining the same
family. The second set ensures the x relation is transitive. The rules for the qi

variables ensure we count each family. The program has Θ(n2) variables, Θ(n3)
constraints, and is impractical in early experiments: for the 59-member shrimp
population discussed below, the IP took 52 minutes to solve; our heuristic took
97 ms, and KINALYZER took a few minutes.

A Heuristic for Finding Likely Pairings.

An alternative approach uses valid triplets. If Fi is a true sibgroup, then for any
{x, y} ⊂ Fi and z ∈ Fi, {x, y, z} is a compatible triplet; {x, y, z} may often form
compatible triplets even if z �∈ Fi: at the loci studied, x and y may be similar,
or the parents of z may be similar to the parents of x and y. If x and y are not
from the same family, then the probability that they form a compatible triplet
with an unrelated individual z is small, particularly if we study many loci.
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This suggests a heuristic: if a pair {x, y} is part of many compatible triplets,
they likely belong to the same sibgroup. We build a weighted graph G with nodes
for population members: the weight w(e) of edge e = {x, y} is the number of
population members z that do not make {x, y, z} a forbidden triplet. The graph
Gt obtained when we filter out all edges with weight below t is highly clustered:
its connected components often correspond to parts of true sibgroups.

For example, consider the graph shown in Figure 1: here, nodes represent
population members, and the groups indicated are known population sibgroups.
Nodes x and y share an edge if they are part of the at least three compatible
triplets; it is red if they participate in at least six. The graph is highly clustered,
with three obvious sibgroups. Further, three quarters of the edges in this graph
are within sibgroups, and all edges of weight greater than 3 are within sibgroups.

Fig. 1. Graph of compatibility found in a population of 59 shrimp. Nodes correspond
to edges, clusters in the graph to true sibgroups. An edge exists between two nodes if
they are found in at least 3 compatible triplets; it is red if they are found in at least 6.
The highly clustered nature of this graph supports our simple heuristic.

We join clusters discovered together (if they are compatible) into putative
sibgroups. Our algorithm has the following steps:

1. For each e = {x, y}, let we be the number of z where {x, y, z} is compatible.
2. Let threshold T = 0 and X be the entire population. Set C = ∅ be our set

of discovered clusters.
3. While X is non-empty:

(a) Compute the connected components of the graph GT with all edges
e = {x, y} such that we ≥ T .
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(b) For each connected component c, if all elements of c are mutually com-
patible, add c to C and remove c from X .

(c) Raise the threshold T by 1.
4. While there are still two clusters in C that can be joined together:

(a) Join together the two compatible clusters c1, c2 ∈ C that maximize the
number of additional compatible triplets in a single cluster.

This simple procedure runs in O(n3m) time: the dominant step is the first one.
We have explored alternative rules for picking which clusters to join, such as
maximizing the average number of compatible triplets per node newly joined into
the same cluster; all had similar performance on simulated data. Alternatively,
instead of removing edges below a fixed threshold, we can start with singletons
and keep adding heavy edges until there are clusters, which we join as before.
We end up with a similar solution in a similar amount of time.

5 Experimental Results

We have validated the use of our heuristic for kinship inference on simulated and
real data sets previously used by Chaovalitwongse et al. [5].

5.1 Accuracy Measure

To evaluate the performance of heuristics for this problem, the standard measure
is 1 minus the partition distance [9]. If the true partition of the original set into
families is P , and we computed partition C, the distance between the two is
the minimum fraction of population members that must be removed from the
population in order to make P and C identical on the remaining members. This
is computable in polynomial time using maximum matching algorithms [9], and
gives an accuracy score ranging from min(1/|P |, 1/|C|) to 1.

5.2 Simulation Results

The simulation data sets explore a wide variety of parameters: the number of
adult females (and the equal number of males), p; the number of loci, m; the
number of distinct alleles present at each locus, a; the number of families, f ; and
the size of each family (sibgroup), k. The model has the parents chosen at random
from a pool of ten males and ten females, for each family. As such, two sibgroups
may be half-sibs (sharing a parent), with both genders being promiscuous, which
makes the problem harder. The simulations include data where a = 2, so any
trio of population members are compatible. Our approach fails here (as does
KINALYZER): both return a single family with all fk members.

We report statistics for the simulated data set, and compare our results to
those for the IMCS method [5] used in KINALYZER. We implemented our
approach in Python 2.6 on a 3.06 GHz Macintosh with 2 GB of memory.

Our new method, whose results are shown in Table 1, is approximately 5%
more accurate than the IMCS procedure. The one exception is that for k = 10,
our method gives results comparable to IMCS. (It is also 1000 times faster.)
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Table 1. Simulation results for our new method, and those reported for the IMCS
method. Our method is approximately 5% more accurate, and 700 times faster.

Fixed Parameter IMCS New method
parameter settings runtime accuracy runtime accuracy

m: number of loci

2 2.28 s 57.6% 66.9 ms 62.4%
4 8.28 s 66.5% 71.9 ms 69.6%
6 29.0 s 71.4% 75.3 ms 75.6%
10 239 s 71.9% 86.7 ms 79.2%

a: number of alleles

2 0.21 s 26.7% 97.2 ms 26.7%
5 30.5 s 72.2% 62.5 ms 75.6%
10 225 s 81.8% 70.6 ms 90.4%
20 22.8 s 86.8% 70.5 ms 94.2%

f : number of sibgroups
2 0.72 s 78.1% 1.9 ms 82.1%
5 3.65 s 64.6% 27.4 ms 69.4%
10 205 s 57.9% 196 ms 63.7%

k: size of sibgroup
2 2.67 s 54.4% 2.6 ms 65.1%
5 14.4 s 69.8% 28.5 ms 74.1%
10 192 s 76.4% 195 ms 75.9%

Where k = 10, if we remove the results from the instances where a = 2, our
method gives 92.3% success, while IMCS gives 92.9%.

Our method is also much faster: 700 times faster for the entire experiment,
and consistently much faster except for the degenerate cases like a = 2, where
our algorithm must discover each triplet is compatible. The runtime is stable
with some parameters that slow IMCS down, such as a (number of alleles per
locus) and m (number of loci). We discover most incompatible triplets quickly,
so increasing the number of loci or alleles has minimal effect. Increasing the
population size slows both methods, though this effect is smaller for the new
heuristic than for IMCS.

We can also use the heuristic to study far larger families: using the same
breadth of choices for the other parameters, we find that if k = 30, our procedure
requires an average of 10.9 s, and gives overal accuracy 76.7% (93.3% if a �= 2),
while for k = 50, our procedure takes 50.4 s and gives overall accuracy 77.3%
(94.1% if a �= 2). Note that for k = 50, f = 10, we are computing tests on
populations of size 500, enumerating all 20.8 million triplets and testing them
for compatibility; these runs averaged 132 s (102 s when a �= 2), of which 95%
or more of the runtime was spent enumerating and testing triplets.

5.3 Real Data

Benchmark data for kinship inference with known ground truth and no geno-
typing errors are uncommon. Here, we present results for a handful of data sets
for which the data collection method allows some certainty in knowing which
population members are from the same sibgroup.

These data originate from wild populations of shrimp, ants, salmon, turtles,
flies and radishes. Despite their simplicity, our methods perform comparably to



118 D.G. Brown and T. Berger-Wolf

Table 2. Results for biological data. Our procedure continues to be much faster than
the IMCS procedure, though the enumeration of all triplets is slow for large populations
like the radishes. Accuacy is comparable for the two systems.

Population IMCS New method
Species Sibgroups Loci size runtime accuracy runtime accuracy
Shrimp [12] 13 7 59 185 s 100% 97 ms 100%
Flies [3] 6 2 190 22.8 s 47.4% 12.9 s 46.3%
Salmon [11] 6 4 351 149 s 98.3% 20.8s 98.3%
Radishes [6] 2 5 531 26.3 s 52.5% 316 s 52.3%
Turtles [7] 26 3 175 N/A N/A 9.35 s 41.3%
Ants [10] 10 6 377 N/A N/A 62.6 s 98.4%

that of the IMCS method on the four sets for which the results of that method
are available, while being substantially faster, as shown in Table 2. In particular,
our algorithm is 2000 times faster on the small shrimp population.

One exception is the radish population: here, the population is properly di-
vided into two very large subgroups, and only three loci offer any kinship in-
formation at all; most pairs of population members from the same family or
different families are compatible with members of both groups, and there are
many genotyping errors. Our algorithm enumerates all triplets, and then must
move to a very high threshold in the clustering algorithm, and then essentially
returns a random partition (and, indeed, the result is similar for IMCS, which
simply takes less time producing this result). Similarly, for the turtle population,
since there are only three loci, we cannot easily separate sibgroups.

6 Probabilistic Arguments

Why does such a simple heuristic work so well for a problem known not only
to be NP-hard, but MAXSNP-hard? We give a partial answer to the question:
assuming that families are fairly large, we separate between the number of com-
patible triplets {x, y, z} of which members x and y of the same family are part
and the number of compatible triplets of which members x and y of different
families are part. In particular, if we sample populations from a natural prob-
abilistic model at enough loci, then with high probability, the weighted graph
we described in our heuristic will, at the correct threshold, divide cleanly into
cliques exactly corresponding to the true families we seek.

Our bounds are fairly coarse; still, this argument goes far toward justifying
the heuristic in the previous section.

6.1 A Probabilistic Model

We assume we are studying a population that arises from the following proba-
bilistic model. There is a pool of adults who are not kin (first degree relatives).
There are f ≥ 5 matings of the adult pairs, with monogamy of both sexes, each
mating producing k juvenile offspring. The juveniles are sampled at m loci. We
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assume that the parents have a ≥ 5 alleles in each locus and each parent has
two of these alleles chosen with replacement uniformly at random from among
those a (thus, each allele has probability 1/a). The offspring then have one of
the two alleles of each parent (with probability 1/2) at each locus. The resulting
population of juvenile offspring has kf members.

6.2 A Simplified Algorithm

Next, we assume k is known. For each pair of offspring population members
e = {x, y}, let we be the number of compatible triplets {x, y, z} containing x
and y. Now, let G be a graph whose nodes are population members, and for
which e = {x, y} is an edge when we ≥ k − 2. G contains as a subgraph f clique
of size k corresponding to the families: for any pair {x, y} in a single family Fi,
it is compatible with all k − 2 other members of Fi, so e = {x, y} is in G.

If G contains other edges, then our clustering idea may fail: we may need to
raise the threshold T in our algorithm too high for the connected components to
correspond to a true sibgroup. Thus, we consider whether any pair e of members
of different families will have we ≥ k − 2.

6.3 A Bound with Two Families

First, let f = 2, so we have 2k offspring, divided into families F1 and F2. We
bound the failure probability by looking at a single pair x ∈ F1 and y ∈ F2:

Theorem 2. Suppose we are given a 2-family population from our model. For an
arbitrary x ∈ F1 and y ∈ F2, let c1(x, y) = |{z ∈ F1 | {x, y, z} are compatible}|.
The c1 variables are identically distributed, and the failure probability of the
clustering algorithm is bounded above by 2k2p, where p = Pr[c1(x, y) ≥ k−2

2 ].

Proof. All population members are drawn from the same distribution, so by
symmetry, the c1 random variables share the same distribution, though they are
not independent. We know that the algorithm only fails if there exist x ∈ F1
and y ∈ F2 such that w{x,y} ≥ k − 2; for this to happen, one of the two families
must contain k−2

2 valid third members of a compatible triplet. But this is equally
likely for each family, so we can bound the probability by 2p. Since there are k
choices for each of i and j, the 2k2p bound holds. ��

The Probability that k1 is Very Large.

Now, what is the distribution of k1? Once we consider only y ∈ F2, we no longer
care about the parents for F2; at each locus, the genotype for y is the conflation
of the toss of two a-sided dice. We also choose the genotype for x by tossing two
a-sided dice. The final choice we must make is the choice of the two alleles (one
paternal, one maternal) of the parents of F1 not found in the genotype of x at that
locus; these choices are also independent of the choices of genotypes for x and y.

For any z ∈ F1, let qz be the event that {x, y, z} are compatible. These events
are independent, conditioned on x, y and the hidden alleles in the parents of F1:
we make independent choices at each locus to pick the alleles at that site in z.
At each locus, the probability that z is compatible with x and y is a multiple of
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1/4, and is at least 1/4, since we might choose both alleles for z that were found
in x. The overall probability that {x, y, z} are compatible is the product of these
locus probabilities, and so is a multiple of 4−m. Let this probability be q. Then
k1 is the sum of f − 1 independent Bernoulli trials, each with probability q.

Consider two kinds of bad events. First, if q is large, there will likely be
many members of F1 that make compatible triplets with x and y: this is when
y appears closely related to F1. The other bad event is that q is small, and yet
many members of F1 are compatible with x and y.

We first bound the second bad event. Since f is at least 5, we must have at
least 2/5 of the members of F1 − {x} form a compatible triplet with x and y.
Assume q < 1

5e . By a standard application of the Chernoff bound [8], Pr[k1 ≥
.4(k − 1)] ≤ 2−.4(k−1) < .76k+1.

Now, consider the other bad event, where q ≥ 1
5e . Recall that q is the product

of m multiples of 1/4, one for each locus. If, at two loci, the probability that x
and y are compatible with a member of F1 is 1/4, then q < 1/16, so q < 1

5e .
At any locus, we picked the six alleles (two in x, two in y and the two “hidden”

alleles of F1) uniformly from {1 . . . a}. Let r be the probability that the only
way {x, y, z} can be compatible at a site is if z shares the alleles of x. This
probability rises as a function of a, and is 0.08064 if a = 5, which can be shown
by enumeration. So, at each locus, with at least 0.08 probability, the value of
1/4 is multiplied into q. The probability that at most one such value of 1/4 is
multiplied in, then, is at most .92m + .08m(.92)m−1, as the loci are independent.

The overall probability, then, that k1 ≥ k−2
2 is bounded above by .76k+1 +

.92m + .08m(.92)m−1, and the overall failure probability for our clustering algo-
rithm is at most 2k2(.76k+1 + .92m + .08m(.92)m−1), which drops exponentially
as both k, the family size, and m, the number of loci, grow.

Because of the quadratic dependency on k, however, it takes a while for this
bound to become strong. For example, if k = 40, m = 40, a = 10, we have
a bound of 0.05 on the failure probability; in practice, problems of size k =
10, m = 10, a = 10 never failed in 10,000 instances, despite the bound offering
no guarantee for problems of this size.

6.4 Extending to Multiple Families

If f > 2, the problem becomes more difficult. As before, the 2f parents have
their genotype at each locus chosen uniformly from {1 . . . , a}. Now, the question
is: are there pairs x, y from different families that have at least k − 2 compat-
ible population members? If so, then there exists a family Fi such that |{z ∈
Fi|{x, y, z} compatible}| > k−2

f . Let us call these events A(x, y, i), where x < y

and x and y are in different families; we are interested in Pr[
⋃

x,y,i A(x, y, i)] ≤∑
x,y,i Pr[A(x, y, i)]. By symmetry, this bound equals (fk)(f−1)k

2

∑
Pr[A(x, y, i)]

for any x ∈ F1 and y ∈ F2; this, then equals (fk)(f − 1)k
2 (2 Pr[A(x, y, 1)] + (f −

2) Pr[A(x, y, 3)]), also by symmetry arguments.
Consider these two events A(x, y, 1) and A(x, y, 3) in turn. The first of these

is parallel to what we had before: we need to bound the probability that x
and y find many compatible third members in F1, the family that contains x.
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The genotype of z ∈ F1 is chosen at each locus by two coin tosses, so the
probability q that a member of F1−{x} is compatible with x and y is a multiple
of 1/4. If q < 2

5ef , then by the same use of the Chernoff bound as before,
Pr[A(x, y, 1)|q < 2

5ef ] < 2−.8k/f < .58k/f , dropping exponentially as k grows.
What is the probability that q < 2

5ef ? Consider how often we multiply 1/4
as one of the factors from the m loci that makes up q. If we include at least
2 + log4 f such factors of 1/4, then q will certainly be less than 1

16f , so less than
the minimum threshold needed. At each locus, we multiply a 1/4 into q with
probability at least 0.08, and each locus is independent. Using straightforward
Chernoff bounding techniques, we can bound the probability that q < 2

5ef by
(2 + log4 f)m2+log4 f .92m−4−2 log4 f , dropping exponentially in m.

The second bad event, A(x, y, 3), is easier to analyze: if we choose x and y
randomly and the two parents for a third family F , at any given locus randomly,
the probability that no child of F could be compatible with x and y is at least
.16 if a ≥ 5. As such, Pr[A(x, y, 3)] ≤ .84m.

So the overall probability that the algorithm fails is at most:

(fk)(f − 1)
k

2
[2(.58k/f + (2 + log4 f)m2+log4 f .92m−4−log4 f ) + (n − 2) · .86m)],

dropping exponentially as both k and m grow.

6.5 Extending to More Robust Models

This proof, which also has a weak bound, can be extended to models with non-
identical allele frequencies; the only change is the constant corresponding to
the probability that two members of one family and one of another will be
compatible (found in both proofs) or that three members of different families will
be compatible. The overall result, that the failure probability falls exponentially
with the number of members per family and the number of loci, is still the case.

One situation that does not easily work is for variable family sizes: for small
families, it is entirely possible that we will not compute the correct assignment.

We note finally that this heuristic algorithm experiences better performance
as populations and loci expand. The runtime is cubic in the population size;
moreover, as the overwhelming majority of the runtime is in the testing of triplets
for compatibility, the heuristic is embarrassingly parallel.

7 Future Work

This simple heuristic approach to a single kinship discovery problem, that of
full sibgroup detection, may be extended to other areas of this general problem
domain. Recent work has moved to the discovery of half-sibling groups, with
a different combinatorial goal [14], but it is likely that our simple procedures
can discover good subgroups of true families here as well. It is not obvious how
easily to move from the simple combinatorial goal of discovering sibgroups to
more complex kinships, such as multi-generational families; however, this is a
major challenge for current software in general.
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Our current procedure is extremely fast, but still could easily be sped up: at
the present time, the vast majority of work time is spent enumerating triplets,
and comparing their values to triplets already known to be compatible or in-
compatible. However, with the three orders of magnitude of speedup that our
procedure gives on small populations, it may make more sense to concentrate
on solving instances more successfully. In particular, we might focus on joining
the clusters found in the early stage of our algorithm using a more intelligent
method than just looking at pairs of clusters.

Still, our current work gives an almost embarrassingly simple procedure for
discovery of sibgroups, with extremely fast performance and success comparable
to the state of the art. A probabilistic argument gives a justification for the
argument: for large families and many loci, a generalization of our procedure
has high probability of identifying exactly the correct families. This result is
interesting, given the MAXSNP -hardness of finding the minimum number of
sibgroups: can we give a complexity result, for example using parameterized
complexity, that justifies this surprising dichotomy?
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Abstract. The problem of computing the minimum number of recom-
bination events for general pedigrees with a small number of sites is
investigated. We show that this NP-hard problem can be parametrically
reduced to the Bipartization by Edge Removal problem with additional
parity constraints. The problem can be solved by an O(2k2m2

n2m3) ex-
act algorithm, where n is the number of members, m is the number of
sites, and k is the number of recombination events.

1 Introduction

Human genomes contain two copies of each chromosome. Research shows that
single chromosomes, called haplotypes, are useful to study complex genetic dis-
eases. While genomic data, called genotypes, are abundant and easy to collect,
haplotypes are rare and much more difficult to obtain by a biochemical method.
Therefore, computationally inferring haplotypes from genotype data, called hap-
lotyping, is necessary. Genotypes can be obtained from a population group where
relationships between members are unknown or from a family pedigree with
known relationships between members. We only consider pedigree data.

In the absence of recombination events, haplotypes of members in a pedigree
follow the Mendelian law of inheritance, where the two haplotypes of a child are
transferred from its parents, one haplotype from its father and the other from
its mother. Various haplotyping algorithms exist for non-recombinant pedigree
data [1,3], especially a linear algorithm for tree pedigrees [1] and a near-linear
algorithm for general pedigrees [3]. Haplotype inference is complicated by recom-
bination events and the complex structures of the data. In recombination events,
complementary parts of both of a parent’s haplotypes can be inherited as a sin-
gle combined haplotype of a child. Structures of the pedigree can be complex,
where there are multiple inheritance paths between some family members.

When recombination events are allowed, the problem of inferring haplotypes
for pedigrees with the minimum number of recombination events is NP-hard,
even for general pedigrees with only two sites or tree pedigrees with multiple
sites [8]. For reconstructing haplotype configurations for pedigree data, Qian
and Beckmann [11] proposed a rule-based algorithm with a time complexity
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O(2dn2m3), for n members, m sites, and family size ≤ d. The main principle of
their algorithm is that the best haplotype configuration for pedigree data is the
one that minimizes the number of recombination events (the MRHC problem). Li
and Jiang [7] proposed an integer linear programming (ILP) formulation for the
MRHC problem. When the number of recombination events is strictly smaller
than a positive number k, an O(mn · logk+1 n) time probabilistic algorithm is
given on tree pedigrees [12]. Doan and Evans [4] presented an O(2k · n2) time
fixed-parameter algorithm for general pedigrees where each member has two
sites, a special case of the problem that is still NP-complete.

We study the haplotype inference for general pedigrees with recombination
events when the number of recombination events k and the number of sites m in
an input pedigree are small. We also assume that there are no data missing and
no data errors. We prove that our problem can be reduced to the problem of
finding the line index of a signed graph [13] with additional parity constraints.
We further show that finding the line index of a signed graph can also be re-
duced to the Graph Bipartization by Edge Removal (GBER) problem with parity
constraints. The GBER problem is fixed-parameter tractable, but the existing
solution [5] cannot satisfy the additional parity constraints. We present an al-
gorithm that solves the problem while still satisfying the additional constraints,
and thus show that the Recombinant Haplotype Configuration problem can be
solved by a fixed-parameter algorithm with a running time of O(2k2m2

n2m3),
for n members, m sites, and k recombination events. This result extends our
prior work for pedigrees with two sites to an arbitrary small number of sites.

2 Preliminaries

A member is an individual. A set of members is called a family if it includes
only two parents and their children; it is a parent-offspring trio (hereafter a trio)
if only two parents and one child are considered. A set of families connected
through known family relationships is a pedigree.

In diploid organisms, a cell contains two copies of each chromosome. The de-
scription data of the two copies are called a genotype while those of a single copy
are called a haplotype. A specific location in a chromosome is called a site and
its state is called an allele. There are two main types of sites, microsatellites
and single nucleotide polymorphisms. A microsatellite site has several different
states while a single nucleotide polymorphism (SNP) site has exactly two possi-
ble states, denoted by 0 and 1. Only SNPs with two possible states are considered
in this paper, as in other works on haplotype inference.

If the states at a specific site in two haplotypes are the same, then this site is
a homozygous site (0-0 or 1-1); if they differ, it is heterozygous (0-1 or 1-0). Two
haplotypes combine together to form one genotype. Each member u has two
haplotypes, denoted by h1u and h2u, which are vectors of 0 and 1’s of length
m, where m is the number of sites. The genotype of u, gu, is a vector of 0’s, 1’s
and 2’s of length m, where gu[i] = 0 means h1u[i] = 0 = h2u[i], gu[i] = 1 means
h1u[i] = 1 = h2u[i], and where gu[i] = 2 means {h1u[i], h2u[i]} = {0, 1}. We say
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h1u and h2u are consistent with gu. The complement haplotype of a haplotype
h at a heterozygous site is denoted by h̄, where h̄ = 1 − h so, 0̄ = 1 and 1̄ = 0.

The problem in this paper is to find the haplotypes h1u and h2u for all mem-
bers u that minimize the number of recombination events, given their genotypes
gu. A set of haplotypes found for all members is called a haplotype configuration.
When gu[i] = 0 or 1, then h1u[i] and h2u[i] are known, but if gu[i] = 2, we may
not yet know the value of h1u[i] and h2u[i], in which case we give them the value
“?”, and say that the site is unresolved. Our problem is defined as follows.

RHCopt: Given the genotypes of a general pedigree P containing n members,
where each member has m sites (m is small), find a haplotype configuration that
minimizes the number of recombination events.

This optimization problem, called Recombination Haplotype Configuration
(RHCopt) which is identical to MRHC, was proven NP-hard [8]. We investigate
the corresponding decision version of RHCopt.

RHCk: Given positive integers k and the genotypes of a general pedigree P
containing n members, where each member has m sites (m is small), is there a
haplotype configuration with at most k recombination events explaining P?

3 Setting Up Graphs

Given a general pedigree with n members, where each member has m sites, we set
up a pedigree graph G = (V, E) and parity-constraint sets Spc. A recombination
event can only be detected if there is at least one heterozygous site on each
side of a recombination breakpoint, e.g. we cannot detect if a recombination
event happens between homozygous sites 1 and 3 of member u in Figure 1.
We capture constraints between pairs of closest heterogynous sites and pairs of
closest homozygous sites to detect possible recombination events in pedigrees.

u
1
0
0
2
2

v
0
1
1
2
2

c
2
2
2
1
2

u12

positive edge
negative edge

a. Pedigree structure 
and genotype data

u v

c

u23

v12

v23

c12

c23

b. Pedigree graph is created

u45 v45

c35

u
2
1
2
2

v
2
2
1
2

c
2
1
1
1

c. Additional vertices created

negative edge

Fig. 1. Pedigree graph created from pedigree structure and genotype data. ⊕ denotes
a red vertex, 	 denotes a green vertex, and O denotes a grey vertex.
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3.1 Pedigree Graph

Create grey vertices. Let i be a heterozygous site in u (i = 1, ..., m− 1). Let
j > i be the closest heterozygous site to i in u. We create a vertex uij from site
i and site j and label this vertex grey. A grey vertex is an unresolved vertex and
will later be resolved green if h1u[i] = h1u[j] = 0 or h1u[i] = h1u[j] = 1. It is
resolved red otherwise. The resolution of a grey vertex depends on its adjacent
vertices. Figure 1 shows a grey vertex u45 created from sites 4 and 5 of u.

Create red and green vertices. Let i be a homozygous site in u (i = 1, ..., m−
1). Let j > i be the closest homozygous site to i in u. We create a vertex uij

from site i and site j, and label this vertex red if gu[i] �= gu[j] and green if
gu[i] = gu[j]. A red or green vertex is a resolved vertex. Figure 1 shows a red
vertex u12 created from sites 1 and 2, and a green vertex u23 from sites 2 and 3.

Insert positive edges. We insert positive edges between a parent u and its
direct child v. For each vertex uij in u, if there is a vertex vij in v we insert a
positive edge between uij and vij . If there is not a vertex vij in v and i and j are
both homozygous sites or both heterozygous sites in v, we create a vertex vij in
v and label this vertex properly, inserting a positive edge between uij and vij .
We call vij a supplementary vertex as it is created by the need of member u.

Similarly, for each vertex vij in v, if there is not a vertex uij in u, and i
and j are both homozygous sites or both heterozygous sites in u, we create a
supplementary vertex uij in u and label this vertex properly, inserting a positive
edge between uij and vij . Figure 1.b shows four positive edges linking u12 and
c12, u23 and c23, v12 and c12, v23 and c23.

A positive edge between vertices uij and vij means vertex uij and vij should
be resolved with the same color (both red or both green) unless a recombination
event occurs in u. The reason for this is that if there is no recombination event
in u, then v receives one full haplotype from u and another full haplotype from
another parent. Therefore, the label of uij and the label of vij should be the same
if there is no recombination event; otherwise, there is a recombination event in
u. If uij is a resolved vertex and there is a positive edge between uij and a grey
vertex vij , we color vij the same as the color of uij , since a recombination event
at uij is not detectable and does not affect the color of vij .

Insert negative edges. We insert negative edges between two parents u and
v of a common child c. If uij is a vertex in u but there is not a vertex cij in
c (sites i and j are one homozygous and one heterozygous in c), two situations
happen. If there is a vertex vij in v, we insert a negative edge between uij and
vij . Otherwise, if there is not a vertex vij in v and i and j are both homozygous
sites or both heterozygous sites, we create a supplementary vertex vij in v and
label it properly. We insert a negative edge between uij and vij . Similarly, if vij

is a vertex in v but there is not a vertex cij in c, there are two situations. If there
is not a vertex uij in u, and i and j are both homozygous or both heterozygous,
we create a supplementary vertex uij in u, and insert a negative edge between
uij and vij . Figure 1.b shows a negative edge linking u45 and v45.
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A negative edge between uij and vij means vertices uij and vij should be
resolved with different colors unless a recombination event occurs in one parent
of c. This phenomenon can be explained as follows. If there is no recombina-
tion event and uij and vij have the same label (both red or both green), then
sites i and j of c must be both homozygous or both heterozygous based on the
Mendelian law of inheritance. Because sites i and j of c are one homozygous and
one heterozygous, one recombination occurs if uij and vij have the same label
when resolved, but no recombination event occurs if they are resolved differently.

Create additional vertices. Consider a grey vertex uij in u (i < j). It is
possible that uij has no incident edge but there is one recombination event
occurring between site i and j. In this case none of the other two members in
the trio has vertex created for site i and j. We delete vertex uij and create
an additional vertex to capture the recombination event. Let j′ be the closest
heterozygous site from j in u (j < j′), where i and j′ are both heterozygous sites
or both homozygous sites in at least one member among the other two members,
say v. If there is not a vertex uij′ in u, we create an additional grey vertex uij′

in u and create a supplementary vertex cij′ from sites i and j′ in c if it does
not exist. We color cij′ properly and insert a corresponding edge (positive or
negative) between uij′ and vij′ depending on the relationship between u and v.
Figure 1.c shows an additional vertex u14 created represented by a dashed edge
between sites 1 and 4. A negative edge is inserted between u14 and v14.

Pedigree graph. Pedigree graph G = (V, E) created as described above is an
undirected graph. Each vertex y ∈ V has three possible labels, red, green, and
grey. Each edge e(y, z) ∈ E is either a positive edge, e ∈ Epos, or a negative
edge, e ∈ Eneg , with E = Epos ∪ Eneg . Graph G, set up this way, is a signed
graph [13]. Let N(y) be the set of adjacent vertices of y. Let w(e) be the weight
of edge e. If e is a positive edge, w(e) = +1 . If e is a negative edge, w(e) = −1.

Observation 1. There are at most O(n · m2) vertices and O(n · m2) edges in
the pedigree graph.

Each member has m sites. The total number of vertices created from pairs of
sites for each member is O(m2). The whole pedigree graph with n members has
O(n · m2) vertices. A vertex has at most two positive edges linking it to two
vertices in its parents. Therefore, the number of positive edges is linear in the
number of vertices. The number of negative edges is also linear to the number
of vertices. Thus the number of edges in the pedigree graph is O(n · m2).

3.2 Parity-Constraint Sets

When a supplementary grey vertex uij is created in u by the need of an adjacent
member, there must be more than one grey vertex already created from site i
to site j in u. It is important to ensure that these grey vertices and uij when
resolved will not result in an odd number of red vertices. Recall that a grey
vertex is resolved red if h1u[i] �= h1u[j]. In other words, the value of h1u flips
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Fig. 2. Parity conflict between vertices within each member

from 0 to 1 and vice versa for a red vertex uij . Therefore there is a parity conflict
if the number of red vertices from site i to site j including uij is odd.

In Figure 2.a, there are five grey vertices created for member u where vertices
u12, u23, u34 and u45 are created from closest heterozygous sites, and a supple-
mentary vertex u15 is created for a member adjacent to u. Figure 2.b shows an
invalid solution with three resolved red vertices u23, u34 and u15 in member u.
A valid solution with an even number of red vertices is shown in Figure 2.c.

We create parity-constraint sets Spc to capture parity constraints between
each supplementary vertex and other vertices within each member. Let uij be a
supplementary vertex and uip, ..., uqj be grey vertices from site i to site j. These
vertices form a parity-constraint set, and its total number of red vertices must
be even. There are O(m2) parity-constraint sets in each member and O(nm2)
parity-constraint sets for the whole pedigree graph. A valid solution for RHCk

must ensure that the number of red vertices in each parity-constraint set is even.

4 Signed Graph

A graph G = (V, E) is a signed graph if it has both positive and negative edges
(E = Epos ∪ Eneg) [13], where w(epos) = 1 and w(eneg) = −1. Let (V1, V2) be a
partition of V , and E∗ be the set of edges between V1 and V2. The line index of
the cut (V1, V2) is defined as:

l(V1, V2) =
∑

e∈E∗∩Epos

w(e) +
∑

e∈Eneg\E∗
|w(e)| (1)

The line index of graph G is defined as:

l(G) = min
V1⊆V

l(V1, V2) (2)

The decision version of the line index of graph G is defined as follows.

LineIndexk: Given a signed graph G and a positive integer k, is there a line
index of G at most k?

Given a pedigree graph G = (V, E), the RHCk problem can be solved by deter-
mining if we can label every grey vertex in G either red or green such that if we
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partition the set of vertices V into (Vred, Vgreen) and let E∗ be the set of edges
between Vred and Vgreen then∑

e∈E∗∩Epos

w(e) +
∑

e∈Eneg\E∗
| w(e) |≤ k (3)

and this partition (Vred, Vgreen) must satisfy parity-constraint sets Spc.
Given a pedigree graph, any two adjacent members linked by a positive edge

should be in the same partition, and any two adjacent members linked by a
negative edge should be in different partitions. Any edge whose constraint is not
satisfied represents a recombination event between the two adjacent members,
or, in the case of a negative edge having endpoints in the same partition, between
one parent and the child. Equation 3 thus counts the number of recombination
events in the whole pedigree and ensures that it is at most k.

Clearly, the RHCk problem can be reduced to the LineIndexk problem with
additional parity-constraint sets Spc on its vertices. We will show that the
LineIndexk problem can be reduced to the GBER problem, a classic NP-complete
problem that is fixed-parameter tractable. The RHCk can therefore be solved
through the GBER problem with additional parity-constraint sets Spc.

Theorem 1. A pedigree has at most k recombination events if and only if its
corresponding signed graph has the line index of size at most k.

Proof. We will show that one recombination event in the pedigree corresponds
to exactly one negative edge within each partition or one positive edge crossing
partitions in the signed graph.

⇒ Consider a recombination event in member u. To detect this recombination
event there must be at least one heterozygous site on each side of the recombi-
nation breakpoint. Let i and j be the two closest heterozygous sites on the two
sides of the recombination breakpoint. There are three possible types of vertices
associated with this recombination event: a grey vertex uij , an additional vertex
uij′ , and supplementary vertices upq (p ≤ i, j ≤ q).

If vertex uij has an incident positive edge to a vertex cij , the color uij should
be different from the color of cij because of the recombination event and the
positive edge between them would cross between partitions. On the other hand,
if uij has an incident negative edge to a vertex vij , the color uij and vij should
be the same because of the recombination event and the negative edge between
them would be within the same partition. In both cases the line index increases
by one. An additional vertex uij′ replaces uij when uij has no incident edge.
The resolution of an additional vertex uij′ is similar to that of uij .

Consider a supplementary vertex upq constrained by a parity-constraint set
Spc where upq has an incident positive edge to a vertex cpq. The color upq is
determined by the swap of values in h1u by red vertices and recombination events
from p to q, including the recombination from i to j. If no more recombinations
happen, upq and cpq must have the same color and the line index of the signed
graph is the same. If upq and cpq have different colors, there must be another
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recombination from sites p to q and the line index increases by one. A similar
explanation follows for upq with an incident negative edge.

⇐ A negative edge links two vertices of two parents in a trio, and the two
vertices are supposed to have different colors based on the Mendelian law of
inheritance. Similarly, a positive edge links two vertices of a parent and a child
and the two vertices are supposed to have the same color. Therefore, if a negative
edge linking two vertices with the same color or a positive edge linking two
vertices with different colors, one recombination event must happen.

5 Fixed-Parameter Algorithm

A NP-hard problem cannot be solved by a polynomial time algorithm unless
P=NP. However, if we can restrict some parameters of the problem to small
values, the running time of an algorithm for the problem can potentially be
greatly reduced [10]. In this case, the problem is a parameterized problem and
an algorithm that can solve the parameterized problem efficiently is a fixed-
parameter algorithm, defined as follows [10].

Definition 1. A parameterized problem is a language L ⊆ Σ∗ x Σ∗, where Σ is
a finite alphabet. The second component is called the parameter of the problem.

Practically, the parameter is a nonnegative integer or a set of nonnegative inte-
gers and therefore L ⊆ Σ∗ x N. For (x, k) ∈ L, the size of the input is n = |(x, k)|,
and the parameter is k.

Definition 2. A parameterized problem L is fixed-parameter tractable (in class
FPT) if it can be determined in f(k) · nO(1) time whether or not (x, k) ∈ L,
where f is a computable function only depending on k.

5.1 Transforming to Bipartization by Edge Removal Problem

We review an important property of a signed graph given by [13].

Theorem 2. Let G be a signed graph. If we replace each edge with weight w(e) >
0 by two consecutive edges with weight -w(e) to get a graph G′ then l(G) = l(G′).

The pedigree graph is transformed into a new graph by replacing every positive
edge by two consecutive negative edges and adding new intermediate vertices
(dum vertices). We obtain a new weighted graph G′ with all negative edges.
This transformation does not affect the parity-constraint sets Spc. The graph G′

still has only O(n · m2) vertices and O(n · m2) edges. Equation 3 becomes∑
e∈Eneg\E∗

|w(e)| ≤ k (4)

This equation is to ensure that the total number of edges within V1 and edges
within V2 is at most k. Removing these edges will make the graph bipartite.
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To make the GBER algorithm [5] works on our partially colored graph, we
merge all red vertices into one red vertex and all green vertices into one green
vertex. We relabel the merged red vertex and the merged green vertex into two
grey vertices, and insert k+1 negative edges between them. This transformation
does not affect the parity-constraint set Spc. We further transform our negative
graph into a new graph with all positive edges by multiplying the weight of every
edge by -1. Our problem becomes the GBER problem [5] with additional parity-
constraint set Spc. The k-Bipartization by Edge Removal problem is defined as
follows.

Definition 3. Given a graph G=(V,E) and a positive integer k, is there a set
C ⊆ E with |C| ≤ k whose removal produces a bipartite graph?

GBER is a classical NP-hard problem [6] and is in FPT [5].

5.2 FPT Algorithm for Bipartization by Edge Removal

There are many techniques to solve an FPT problem such as kernelization, depth-
bounded search trees, dynamic programming, crown reduction, greedy localiza-
tion, and iterative compression. The iterative compression technique is used by
Guo et al. [5] to solve the GBER problem with a running time of O(2k · |E|2),
where |E| is the number of edge in the graph and k is the number of edges to be
deleted to make the graph bipartite. However, this algorithm does not enforce
our parity constraints that require the number of red vertices in each set to be
even. We thus need to modify this algorithm [5] to solve the RHCk problem
while respecting the additional parity-constraint sets Spc.

Given a graph G = (V, E) where E = {e1, ..., em}, let Gi be a graph induced
by edges {e1, ..., ei} of G (1 ≤ i ≤ m). If i = 1, the optimal edge bipartiza-
tion set of G1 is empty. If i > 1, let X be an optimal edge bipartization set of
Gi = G[e1, ..., ei] and |X | = k′. Consider graph Gi+1 = G[e1, ..., ei+1]. If X is
not an optimal edge bipartization set for Gi+1 then X ′ = X ∪ {ei+1} is clearly
an optimal edge bipartization set for Gi+1. From the edge bipartization set X ′

of size k′ + 1, we find an edge bipartization set of size at most k′ or show that
no such edge bipartization set of size at most k′ exists. The algorithm assumes
that an edge bipartization Y which is smaller than X ′ must be disjoint from
X ′, Y ∩ X ′ = ∅. This assumption can be made without loss of generality by
a simple graph transformation, replacing each edge in X ′ by three consecutive
edges and choosing the middle edge to be in the new X ′. This graph transforma-
tion preserves the parities of lengths of all cycles and does not affect the parity
constraint sets Spc. Therefore the transformed graph has an edge bipartization
set of size k′ if and only if the original graph has an edge bipartization set of size
k′. Let mapping Φ: V (X ′) → {A, B} be a valid partition of V (X ′) if for each
{y, z} ∈ X , we have Φ(y) �= Φ(z). Let AΦ be Φ−1(A) and BΦ be Φ−1(B). We
enumerate all 2k′

valid partitions Φ of V (X ′). For each valid partition Φ we find
a minimum edge cut Y in G\X ′ between AΦ and BΦ. In other words, we use X ′

to partially color G and from the partially colored graph we compute a smaller
bipartization set Y . This compression step is the core of the algorithm.
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a. Graph G b. Bipartization set X’ c. Mincut Y d. G bipartized by Y

Fig. 3. Compression step

Theorem 3. [5] Consider a graph G = (V, E) and a minimal edge bipartization
set X ′ for G. For a set of edges Y ⊆ E with X ′ ∩ Y = ∅, the following are
equivalent:

(1) Y is an edge bipartization set for G.
(2) There is a valid partition Φ for V (X ′) such that Y is an edge cut in G\X ′

between AΦ=Φ−1(A) and BΦ=Φ−1(B).

Consider a graph G in Figure 3.a where ⊕ denotes a red vertex, � a green vertex,
and O a grey vertex. A minimal edge bipartization set X ′ of size 4 illustrated
by dashed lines is given in Figure 3.b. We compute a mincut Y for G\X ′ as in
Figure 3.c. Set Y is the edge bipartization set of size 3 for G in Figure 3.d.

It remains to find a minimum edge cut Y between AΦ and BΦ that satisfies

(1) |Y | ≤ k′ and
(2) graph Gi with set Y satisfies parity-constraint sets Spc.

(s-t) Mincuts with parity constraints. A minimum edge cut Y between AΦ

and BΦ can be computed in O(k′ · |E|) time by the Edmonds-Karp algorithm [2]
by finding at most k′ augmenting paths; each path takes O(|E|) time to find. If
no min edge cut Y of size k′ is found, we skip the current partition Φ and check a
new valid partition. If a min edge cut Y of size k′ is found, we need to check if Gi

bipartized by Y satisfies the parity-constraint sets Spc. Note that there can be
many mincuts Y of size k′ between AΦ and BΦ, and it is possible that the current
mincut Y found does not make Gi satisfy Spc while another mincut Y of size k′

makes Gi satisfy Spc. However, enumerating all mincuts in a graph is expensive.
Consider a simple directed graph with n disjoint paths of length 2 from a source
s to a sink t, where the weight of each edge is 1. Each (s-t) mincut has weight
n and we have up to 2n (s-t) mincuts. If a graph is an undirected graph, we
replace each undirected edge by two directed edges with opposite directions and
the number of (s-t) mincuts is still 2n. Therefore enumerating all (s-t) mincuts
in a graph in polynomial time, or in FPT, is impossible.

We do not enumerate all mincuts. Instead, we examine the structure of all
mincuts in a graph by an algorithm in [9]. Given a graph G = (V, E) including
a source s and a sink t, where each directed edge (i, j) ∈ E has a capacity cij ,
an (s-t) cut (S, S′) is a cut where S′ = V −S, s ∈ S and t ∈ S′. If a graph is not
directed, we replace every undirected edge by two oppositely directed edges. If
a graph has multiple sources and sinks, we can transform the graph into a new
graph with only a single source and a single sink by inserting edges of ∞ weights
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from a super source s to all sources, and from all sinks into a super sink t. Flows
and mincuts in the new and old graphs correspond [2].

An (s-t) mincut is an (s-t) cut where the total capacity of all the edges between
S and S′ is minimum. We will call an (s-t) mincut a mincut hereafter. Ford and
Fulkerson [2] show that the value of a minimum cut between s and t is equal the
value of the maximum flow from s to t. Consider a binary relation R on V , a
subset of vertices V ′ ⊆ V is a closure for R if and only if for any two vertices i
and j in V with iRj and i ∈ V ′ we also have j ∈ V ′. Given a relation iRj, we say
that i is the predecessor of j and j is a successor and i. Picard and Queyranne
[9] present the relationship between mincuts and closures as follows.

Theorem 4. [9].
Let f be a maximum flow in G. Define a relation R on the set of vertices V

as follows:

iRj iff (i, j) ∈ E and fij < cij, or (j, i) ∈ E and fji > 0.
Then a cut (S,S’) separating s from t is a minimum cut if an only if S is a

closure for R containing s and not t.

Suppose we find a maximum flow in a graph by the Edmonds-Karp algorithm
[2]. Clearly, the residual graph Gr = (V, Er) of G is defined by relation R where
edge (i, j) ∈ Er iff iRj. We find strongly connected components in Gr and shrink
each of them into a single vertex. Finding strongly connected components of a
directed graph Gr can be done in O(V + E) time using two depth first searches,
one search on Gr and the other search on the transpose graph GT

r of Gr [2].
Let V ′ be the reduced vertex set of V , we define a relation R̄ on V ′ by īR̄j̄

iff iRj for some i ∈ ī, j ∈ j̄, and ī, j̄ ∈ V̄ . We eliminate component S containing
source s and its successor components, and eliminate component T containing
sink t and its predecessor components. Combining S and all successor compo-
nents with any closure induced from the remaining components will produce a
mincut. When the number of sites m is small, we can check if a member can
satisfy its parity-constraint sets by a backtracking search on at most O(m2) com-
ponents. Since the parity constraints involve vertices for an individual member,
these searches can be done independently. Therefore we need to examine if a
valid partition Φ satisfies Spc on at most 2m2 · n cuts for the whole pedigree.

Theorem 5. The RHCk problem is solvable in O(2k2m2
n2m3) time.

Proof. Setting up the pedigree graph G = (V, E) takes O(|V |) time, where
|V | = |E| = O(nm2). Generating parity-constraint sets Spc takes O(nm3).
Transforming the pedigree graph into a graph with all negative edges takes
O(|E|) time. The GBER problem can be solved by trying at most 2k valid par-
titions Φ. For each partition, we can find the first mincut in O(k · |E|) time by
finding at most k augmenting paths using Edmonds-Karp algorithm. We can
find strongly connected components in O(|E|) time. We do backtracking in at
most 2m2

cuts for each member to check if one can satisfy Spc; each check takes
O(|E|) time. Therefore, each partition takes O(k · |E|+ |E|+ 2m2 · |E| · n). The
overall time complexity of the algorithm is O(2k2m2

n2m3).
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6 Conclusion

We have shown that given a general pedigree with n members, m sites, and k
recombination events, where m and k are small, the haplotype inference can be
done in O(2k2m2

n2m3) time.
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Abstract. Genome sequencing will soon produce haplotype data for in-
dividuals. For pedigrees of related individuals, sequencing appears to be
an attractive alternative to genotyping. However, methods for pedigree
analysis with haplotype data have not yet been developed, and the com-
putational complexity of such problems has been an open question. Fur-
thermore, it is not clear in which scenarios haplotype data would provide
better estimates than genotype data for quantities such as recombination
rates.

To answer these questions, a reduction is given from genotype problem
instances to haplotype problem instances, and it is shown that solving
the haplotype problem yields the solution to the genotype problem, up
to constant factors or coefficients. The pedigree analysis problems we
will consider are the likelihood, maximum probability haplotype, and
minimum recombination haplotype problems.

Two algorithms are introduced: an exponential-time hidden Markov
model (HMM) for haplotype data where some individuals are untyped,
and a linear-time algorithm for pedigrees having haplotype data for all
individuals. Recombination estimates from the general haplotype HMM
algorithm are compared to recombination estimates produced by a geno-
type HMM. Having haplotype data on all individuals produces better
estimates. However, having several untyped individuals can drastically
reduce the utility of haplotype data.

Pedigree analysis, both linkage and association studies, has a long history of
important contributions to genetics, including disease-gene finding and some of
the first genetic maps for humans. Recent contributions include fine-scale re-
combination maps in humans [4], regions linked to Schizophrenia that might be
missed by genome-wide association studies [11], and insights into the relation-
ship between cystic fibrosis and fertility [13]. Algorithms for pedigree problems
are of great interest to the computer science community, in part because of
connections to machine learning algorithms, optimization methods, and combi-
natorics [7,16,12,10,15].

Single-molecule sequencing is an attractive alternative to genotyping and
would yield haplotypes for individuals in a pedigree [6]. Such technologies are be-
ing developed and may become commercial within five to ten years. Sequencing
methods would apparently yield more information from the same set of sampled
individuals, which is critical due to the limited availability of individuals for

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 136–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Haplotypes versus Genotypes on Pedigrees 137

sampling in multi-generational pedigrees (i.e. individuals usually must be living
at the time of sampling). There is substantial evidence that haplotypes can be
more useful than genotypes for both population and family based studies when
using methods such as association studies [1,3] and pedigree analysis [2,8]. While
it is intuitive that haplotypes provide more information than genotypes, there
are instances with family data in which there are few enough typed individu-
als that there is little practical difference between haplotype and genotype data.
Additionally, in order to exploit the information contained in haplotype data, we
need to understand the instances where diploid inheritance is computationally
tractable given haplotype data.

Pedigree analysis with genotype data is well studied in terms of complex-
ity [12,10] and algorithms [5,9,14]. Less is known about haplotype data on pedi-
grees. This paper shows that, given haplotype data on a pedigree, finding both
minimum recombination and maximum probability haplotypes is as tractable
as computing the same quantities for pedigrees with genotype data (i.e., these
problems are NP- and #P-hard, respectively). To obtain a reduction that applies
equally well to several types of pedigree calculations, we will consider a modular
polynomial-time mapping from the genotype problem to the haplotype problem.
The reduction preserves the solutions to the analyses, meaning that the solution
to the haplotype problem is the solution to the genotype problem after adjusting
by constant factors or coefficients.

Since the reduction uses a biologically unlikely recombination scenario, we will
investigate the accuracy and information of realistic examples with haplotypes
and genotype data on the same pedigree. Pedigree data was simulated having
a known number of recombinations. The recombination distributions were com-
puted at a particular locus of interest and compared to the ground-truth. Since
both the haplotypes and genotypes of a specific person contain the same alleles,
the differences between the haplotype and genotype recombination distributions
were determined by the extra information in the haplotype data. As expected,
the haplotype data reliably yields greater accuracy when all the pedigree in-
dividuals are typed. However, as fewer pedigree individuals are typed, there is
less practical difference between the utility of haplotype versus genotype data.
The number of untyped generations that separate typed individuals influences
whether haplotype data are actually more accurate than genotype data. For in-
stance with two half-siblings, having two untyped parents results in estimates
from genotype data that are nearly as accurate as the estimates computed from
haplotype data.

Finally, there is an important instance where haplotype data is more compu-
tationally tractable than genotype data. When all individuals in the pedigree
are typed, although unlikely from a practical perspective of obtaining genetic
samples, the computational problem decomposes into conditionally independent
sub-problems, and has a linear-time algorithm. This can be contrasted with the
known hardness of the genotype problem even when all individuals are geno-
typed. The existence of this linear-time algorithm for haplotype data could facil-
itate useful approaches that combine population genetic and pedigree methods.
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For instance, if the haplotypes of the founders are drawn from a coalescent and
the pedigree individuals are all haplotyped, the probability of a combined model
could easily be computed for certain coalescent models.

1 Introduction to Pedigree Analysis

A pedigree is a directed acyclic graph where the set of nodes, I, are individuals,
and directed edges indicate genetic inheritance between parent and child. A
diploid pedigree (i.e. for humans) necessarily has either zero or two incoming
edges for each person. The set, F , of individuals without incoming edges are
referred to as pedigree founders. An individual, i, with two parents is a non-
founder, and we will refer to their two parents as m(i) and p(i).

As is commonly done to accommodate inheritance of genetic information, we
will extend this model to include a representation of the alleles of each individual
and of the inheritance origin of each allele. More formally, we represent a single
chromosome as an ordered sequence of variables, xj , where each variable takes
on an allele value in {1, ..., kj}. Each variable represents a polymorphic site,
j, in the genome, where there are kj possible sequence variants. Since diploid
individuals have two copies of each chromosome, one copy inherited from each
parent, we will use a superscript m and p to indicate the maternal and paternal
chromosomes respectively. For a particular individual i, the information on both
copies of a particular chromosome at site j is represented as xm

i,j and xp
i,j .

Furthermore, we assume that inheritance in the pedigree proceeds with re-
combination and without mutation (i.e. Mendelian inheritance at each site). This
imposes consistency rules on parents and children: the allele xm

i,j must appear
in the mother m(i)’s genome as either the grand-maternal or grand-paternal al-
lele, xm

m(i),j or xp
m(i),j , and similarly for the paternal allele and the father p(i)’s

genome.
Let x be a vector containing all the haplotypes xm

i , xp
i for all individuals i ∈ I,

then we are interested in the probability

P[x] =
∏
f∈F

P[xp
f ]P[xm

f ]
∏

i∈I\F

P[xp
i |xp

p(i), x
m
p(i)]P[xm

i |xp
m(i), x

m
m(i)], (1)

where the superscript m and p indicate maternal and paternal alleles, while
the functions m(i) and p(i) indicate parents of i. The first product is over the
independent founder individuals whose haplotypes are drawn from a uniform
prior distribution, while the second product, over the non-founders, contains the
probabilities for the children to inherit their haplotypes from their parents. The
unobserved vector x is not immediately derived from observed haplotype data,
since vector x contains haplotype alleles labeled with their parental origins for
all the individuals. To compute this quantity, we need notation to represent the
parental origins of each allele where differing origins for neighboring haplotype
alleles will indicate recombination events.

For each non-founder, let us indicate the source of each maternal allele using
the binary variable sm

i,j ∈ {m, p}, where the value m indicates that xm
i,j allele has
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grand-maternal origin and p indicates grand-paternal origin. Similarly, we define
sp

i,j for the origin of i’s paternal allele. For a particular site, these indicators for
all the individuals, sj , is commonly referred to as the identity-by-descent (IBD)
inheritance path. A recombination is observed at consecutive sites as a change
in the binary value of a source vector, for instance, sm

i,j = p and sm
i,j+1 = m. To

compute the inheritance portion of Equation 1, we will sum over the inheritance
options P[x] =

∑
s P[x|s]P[s] where P[s] = 1/22|I\F |.

We can observe two kinds of data for pedigree individuals whose genetic ma-
terial is available. The first, and most common, is genotype data, a tuple of
alleles (g0

i,j , g
1
i,j) that must appear in the variables xm

i,j and xp
i,j for each site

j. Since these alleles are unlabeled for origin, we do not know which allele was
inherited from which parent. The second type of data is haplotypes, where we
observe two sequences of alleles h0

i and h1
i and each sequence represents alleles

that were inherited together from the same parent. However, we do not know
which sequence is maternal and which is paternal. For either type of data define a
function Ci,j for locus j which indicates compatibility of the assigned haplotype
alleles with the data and requires inheritance consistency between generations.
Specifically, for genotype data Ci,j = 1 if xm

i,j = x
sm

i,j

m(i),j , xp
i,j = x

sp
i,j

f(i),j , and
{xm

i,j , x
p
i,j} = {g0

i,j, g
1
i,j}. Under haplotype data, the Ci,j = 1 when the first two

equalities, above, hold and {xm
i,j , x

p
i,j} = {h0

i,j, h
1
i,j}, which are the haplotype

alleles at locus j.
Now, we write Equation 1 as a function of the per-site recombination proba-

bility θ ≤ 0.5. For particular values of all the haplotype alleles xm
i,j and xp

i,j , the
haplotype probability conditional on the inheritance options and the observed
data through Ci,j is

P[x|s] =
∏
f∈F

l∏
j=1

Cf,jP[xp
f,j ]P[xm

f,j ]
∏

i∈I\F

Ci,1

l∏
j=2

Ci,j · θ(Rm
i,j+R

p
i,j) · (1− θ)(2−Rm

i,j−R
p
i,j)

where Rm
i,j = I[sm

i,j−1 �= sm
i,j ] and Rp

i,j = I[sp
i,j−1 �= sp

i,j ].

1.1 Pedigree Problem Formulations

Given a pedigree and some observed genotype or haplotype data, there are three
problem formulations that we might be interested in. The first is to compute the
probability of some observed data, while the last two problems find values for
the unobserved haplotypes of individuals in the pedigree.

Likelihood. Find the probability of the observed data by summing over all the
possible unobserved haplotypes, i.e.

∑
x

∑
s P[x|s]P[s].

Maximum Probability. Find the values of xm
i,j and xp

i,j that maximize the
probability of the data, i.e. maxx

∑
s P[x|s]P[s].

Minimum Recombination. Find the values of xm
i,j and xp

i,j that minimize the
number of required recombinations, i.e.
minx,s

∑
i

∑
j≥2 I[sp

i,j−1 �= sp
i,j ] + I[sm

i,j−1 �= sm
i,j ].
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The likelihood is commonly used for estimating site-specific recombination rates,
relationship testing, computing p-values for association tests, and performing
linkage analysis. Haplotype and/or IBD inferences, obtained by maximizing the
probability or minimizing the recombinations, are useful for non-parametric as-
sociation tests, tests on haplotypes, and tests where there is disease information
for unobserved genomes.

2 Hardness Results

With genotype data, the likelihood and minimum recombination problems are
NP-hard, while the maximum probability problem is #P-hard. Piccolboni and
Gusfield [12] proved the hardness of the likelihood and maximum probability
computations by relying on a single locus sub-pedigree with half-siblings. Al-
though their paper discussed a more elaborate setting involving a phenotype,
their proof, however, applies to this setting. Li and Jiang proved the minimum
recombination problem to be hard by using a two-locus sub-pedigree with half-
siblings [10]. In all these proofs, half-siblings were pivotal to establishing reduc-
tions from well known NP and #P problems.

In this paper, we introduce a simple and powerful reduction that converts any
genotype problem on a pedigree of n individuals into a haplotype problem on a
pedigree of at most 6n individuals. This reduction is simple, because it merely
introduces four full-siblings and an extra parent for each genotyped individual.
We do not need complicated structures involving inbreeding or half-siblings. The
reduction works equally well for all three problem formulations.

Mapping. Given a pedigree with genotype data, for any of the three pedigree
problems, we define a polynomial mapping to a corresponding haplotype problem
with exactly 5|G| individuals haplotyped. First we create the pedigree graph
for the new haplotype instance, and later we construct the required haplotype
observations from the genotype data.

Let G ⊂ I represent the set of genotyped individuals in a pedigree having indi-
viduals I and edges E. We will create a haplotype instance of the problem, with
individuals H ∪ I and edges R∪E. To obtain the set H , we add five individuals,
i0, i1, i2, i3, i4, to H for every individual i ∈ G. The set of new relationship edges,
R, will connect individuals in sets H and G. Specifically, the edges stipulate that
i and i0 are the parents of full-siblings i1, i2, i3, and i4 by including the edges:
i0 → i1, i0 → i2, i0 → i3, i0 → i4, i → i1, i → i2, i → i3, and i → i4. We will
refer to these five individuals, i0, i1, i2, i3, and i4, and their relationships with
i as the proxy family for individual i. For example in Figure 1, the 6-individual
genotype pedigree in becomes a 21-individual haplotype pedigree. This produces
a pedigree graph with exactly 5|G| + |I| individuals and 8|G| + |E| edges.

To obtain the new haplotype data from the genotype data, we type only
individuals in |H | such that the corresponding genotyped individual in G is re-
quired, by the rules of inheritance, to have the observed genotypes. Without loss
of generality, assume that the genotype alleles are sorted such that g0

i,j < g1
i,j .
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Fig. 1. Genotype and Haplotype Pedigrees. Values are averages computed from
500 simulations. (Left) Genotyped individuals are shaded, and all the individuals are
labeled. Individuals 1, 2, and 5 are the founders, and individual 6 is the grandchild
of 1 and 2. (Right) Haplotyped individuals are shaded, and individuals have the same
labels. For each of the genotyped individuals, i, from the previous figure, the mapping
adds a nuclear family containing five new individuals labeled i0, i1, i2, i3, i4.

Now we can easily constrain the parental genotype for individual i ∈ G by
giving the spouse, i0, homozygous haplotypes of all ones while giving child i1
the haplotypes {1, g0

i }, child i2 haplotypes {1, g1
i }. This guarantees the correct

genotype, but does not ensure that the haplotypes of that genotype have the
same probability or number of recombinations.

Since there is an arbitrary assorting of genotype alleles at neighboring loci
into the parent haplotypes xp

i and xm
i , we will use the remaining two children to

represent possible re-assortments of the genotyped parent’s Ti heterozygous loci,
indexed by tj where 1 ≤ j ≤ Ti. In addition to the haplotype 1, child i3, will
have haplotype consisting of hi3,tj := g1−j mod 2

i,tj
while child i4 has the genotyped

parent’s complementary alleles hi4,tj := gj mod 2
i,tj

. This results in child i3 and i4
alternating in having the smaller allele at every other heterozygous locus.

This reduction preserves the solutions to the three problems up to constant
factors or constant coefficients. Specifically, the solution to the haplotype version
of the problem is the solution to the genotype version with the values of the
functions being related by constant factors or coefficients, depending on whether
the function is a recombination count or a probability.

Lemma 1. Let rg be the minimum number of recombinations in the genotype
problem instance. The mapping yields a haplotype problem instance having rh =
rg +

∑
i∈G 2(Ti − 1) for the minimum number of recombinations, where Ti is the

number of heterozygous sites in genotype i.

To prove this result, we exploit the alternating pattern of alleles assigned to the
four children. This pattern forces there to be two recombinations, among the
four children, between consecutive heterozygous loci.
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After applying the mapping, the haplotype probability turns out to have a
coefficient that is independent of the haplotype assignment to the non-founding
parent of the proxy family. This coefficient can be computed in linear time from
the genotype data using a Markov chain. The Markov chain has 16 states and has
a transition step between each pair of neighboring loci. This small Markov model
can be thought of in the sum-product algorithm as an elimination of the typed
individuals in the proxy family; alternatively, it is also equivalent to peeling-off
the typed proxy individuals in the Elston-Stewart algorithm [5]. Once we have
this coefficient, independent of the haplotype assignment, it is clear that the
likelihood and maximum probability haplotype problems also have haplotype
solutions related proportionally to the genotype solution.

Lemma 2. The mapping yields a haplotype problem instance having haplotype
probabilities proportional to the haplotype probabilities of the genotype instance.
Specifically, for all x,

Ph[x] =
(
Pg

[{xi|i ∈ I}])∏
i∈G

pt(i)
∏
j

P[xp
i0,j = 1]P[xm

i0,j = 1]

where the proxy family transmission probability is a function of genotype gi, the
recombination rate θ ≤ 0.5, and of the transition matrices P , Q0110, and Q1001,

pt(i) =
(

1
16

)
1 · P h0

Ti∏
j=0

(
OjQ0110 + (1 − Oj)Q1001

) · P hj · 1T

and Oj indicates whether index j is odd, h0 is the number of homozygous loci
that begin proxy parent’s genotype, and hj is the number of consecutive ho-
mozygous loci after the j’th heterozygous locus where there are Ti heterozy-
gous loci for proxy parent i. The transition probabilities are given by Pij =
θH(i,j)(1−θ)4−H(i,j) where H(i, j) is the Hamming distance between inheritance
states i and j. Let Q0110 be a transition matrix having non-zero recombination
probabilities only in column 0110 (i.e. Q0110,i,j = Pij when j = 0110). Similarly,
let Q1001 be a transition matrix with non-zero recombination probabilities only
in column 1001.

Although this reduction establishes the hardness of these haplotype pedigree
problems, it does so by constructing children whose haplotypes require many
recombinations and would be extremely unlikely to occur naturally. Accordingly,
we suspect that realistic instances of these haplotyping problems may provide
more information about the locations of recombinations than genotype instances.

3 Algorithms and Accuracy of Estimates

One indication that the haplotype problem might be practically more tractable
is the amount of information in the haplotype data relative to the genotype
data. To understand this, we can consider a pedigree with a fixed set of sam-
pled individuals. Assume that there are two input data sets available, either the
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haplotype or the genotype data, for all the sampled individuals. Note that the
alleles observed will be identical in both the haplotype and genotype data, so
we are interested in the distribution that these data impose on the inheritance
probabilities. By comparing the accuracy of the recombination estimates under
these two data sets, we can get an idea for how useful the respective probability
distributions are.

Let Rj be a random variable representing the number of recombinations in
the whole pedigree that occur between loci j − 1 and j. Similar to our notation
before, Rj =

∑
i∈I Rp

i,j +Rm
i,j . We want to compute the distribution of Rj under

both the genotype and haplotype inheritance probability distributions. These
two inheritance distributions are different precisely because there are haplotypes
and inheritance paths that are consistent with the genotype constraints but
disallowed by the haplotype constraints.

These distributions are obtained by constructing a hidden Markov model for
the linkage dependencies along the genome. At each locus, the HMM considers
the constraints given by either the haplotype or genotype data (i.e. the haplo-
type data HMM is a variation on the Lander-Green algorithm [9]). We first use
the forward-backward algorithm to compute the marginal inheritance probabil-
ities for each locus using a hidden Markov model. Once we have the marginal
probabilities, we can easily obtain the distribution for Rj .

3.1 General Haplotype and Genotype HMMs

The likelihood can be modeled using a hidden Markov model along the genome
with inheritance paths as hidden states. An inheritance path is a graph with
nodes being the alleles of individuals and directed edges between alleles that are
inherited from parent to child. The transition probabilities are functions of θ
and the number of recombinations between a given pair of inheritance graphs.

Given the data, we compute the marginal inheritance path probabilities at
each site by using the forward-backward algorithm for HMMs. Sobel and Lange
described a method for enumerating the inheritance paths compatible with the
allele data observed at each locus [14]. There are at most k = 22|I\F | inheritance
paths when I \F is the set of non-founder individuals, and both the forward and
backward recursions do an O(k2) calculation at each site.

To compute the analogous probability for haplotype data, we use a similar
HMM. For haplotypes, the hidden states must consider the haplotype orienta-
tions, which specify the parental origins of all the observed haplotypes. Notice
that these orientations are not equivalent to inheritance paths, since they only
specify inheritance edges between haplotyped individuals and their parents. For
each of the 22|H| haplotype orientations, where H is the set of haplotyped in-
dividuals, we enumerate the inheritance paths compatible with the haplotype
alleles, their orientations, and the pedigree relationships. Alternatively, each of
the inheritance paths enumerated for the genotype algorithm induces a particu-
lar orientation on the haplotypes heterozygous for that locus (i.e. parental origin
of the entire haplotype). Thus, the hidden states for the haplotype HMM are
the cross-product of the orientations and the inheritance paths.
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The haplotype HMM has transition probabilities that are nearly identical
to the genotype HMM with the exception that transitions between inheritance
paths with different haplotype orientations have probability zero. Recombina-
tions are only allowed when they do not occur between typed haplotypes.

The forward-backward algorithm is also used on the haplotype HMM.
However, there are 22(|I|+|H|−|F |) hidden states, yielding a slightly slower calcu-
lation. Fortunately, the haplotype recursions can be run simultaneous with the
genotype recursions, meaning that the inheritance paths need only be enumer-
ated once.

3.2 Haplotype Likelihoods in Linear Time

There is one obvious instance of the haplotyping problems where there are
polynomial-time algorithms. Even though it is impractical to assume that we
can sample genetic material from deceased individuals in a multi-generational
pedigree, for a moment, let us consider the case where all the individuals in the
pedigree are haplotyped.

The Elston-Stewart algorithm [5] for genotype data has a direct analogue for
haplotype data. This algorithm calculates the likelihood via the belief propaga-
tion algorithm by eliminating individuals recursively from the bottom up. Each
individual is “peeled off”, after their descendants have been peeled off, by using
a forward-backward algorithm on the HMM for the mother-father-child trio.

The haplotype version of this algorithm is linear when all the individuals are
haplotyped, since each elimination step is conditionally independent of all the
others. Given the parents’ haplotypes, regardless of which was inherited from
which grand-parent, the probability of the child’s haplotype is independent of
all other trios. Therefore, we can take a product over the likelihoods for all
the trios, and compute each trio likelihood using a 4-state HMM. Then for k
non-founding individuals, and l loci, this algorithm has O(kl) running time.

This same intuition carries through to the minimum recombination problem,
and each trio can be considered independent of the others. This contrasts with
the genotype minimum recombination problem which is known to be hard, even
when all the individuals are genotyped [10].

3.3 Results

To simulate realistic pedigree data, SNPs were selected from HapMap that span
100mb on both sides of a loosely-linked pair of sites. There are 40 SNPs total,
with 20 tightly linked SNPs on each side of a strong recombination breakpoint
having θ = 0.25. The haplotypes for these SNPs were selected randomly from
HapMap. Pedigree haplotype and genotype data were simulated for each child by
uniformly selecting one of the parental alleles for the first locus, and subsequent
loci were selected on the same parental haplotype with probability θj for each
locus j. Inheritance was simulated for 500 simulation replicates.

The simulation yielded completely typed pedigrees. For each pedigree, we
removed the genotype and haplotype information for increasing numbers of un-
typed individuals. For each instance of a specific number of untyped individuals,
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two values were computed on the estimated number of recombinations between
the central pair of loci: the haplotype and genotype accuracies. Accuracy was
computed as a function of the l1 distance between the deterministic number
of recombinations and the calculated distribution. Specifically, accuracy was
2 −∑i≥0 |xi − ai|, where xi was the estimated probability for i recombinations
and ai was the deterministic indicator of whether there were i recombinations
in the data simulated on the pedigree.

In all the instances we observed a trend where the best accuracy was ob-
tained with haplotype data where everyone in the pedigree was haplotyped. For
example, a five-individual pedigree with two half-siblings is shown in Figure 2,
left panel. With the three founders untyped, the haplotype data yielded similar
accuracy as the genotype data. Consider a three-generation pedigree having two
parents, their two children, an in-law, and a grandchild for a total of six indi-
viduals, three of them founders. This pedigree has a similar trend in accuracy
as the number of untyped founders increases, Figure 2, right panel. As the num-
ber of untyped individuals increases, the accuracies of genotype and haplotype
estimates appear to converge.

Half−Sibling Pedigree
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Fig. 2. Predicting Recombinations. The left panel is the average accuracy for pre-
dictions from a pedigree with two half-siblings and three parents. The right panel shows
results from a six-individual, three-generation pedigree. In both cases, 500 simulation
replicates were performed, and the average accuracy of estimates from the haplotype
data is superior to those from genotype data. However, as the number of untyped
founders increases, in both cases, the accuracy of estimates from haplotype data drop
relative to the accuracy from genotype data. The accuracies of genotype and haplotype
estimates appear to converge.

4 Discussion

Sequencing technologies would seem to solve the phasing problem by yielding
haplotype data. However, if we wish to consider diploid inheritance with recombi-
nation, the phasing problem remains, even when we are given chromosome-length
haplotype data. This is demonstrated by reduction of the phasing problem for
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genotypes to the phased version of the same problem for three common pedigree
problems. This theoretical result is due largely to the unavailability of genetic
material for deceased individuals.

Three pedigree calculations were discussed: likelihood, maximum probability,
and minimum recombination. Each of these calculations on haplotype data have
the same computational complexity as the same computation on genotype data.
In the worst case, it takes only a single generation to remove the correlation
between sites in the haplotype. This worst case provided the reduction that
proves the the complexity results for the haplotype computations, and it worked
equally well for all three pedigree computations.

The worst-case is not biologically realistic, since it requires roughly 2(m− 1)
recombinations for m sites in 4 meioses. This is very unlikely to occur under
typical models for inheritance. To investigate more likely scenarios, sequences
were simulated in a region of the genome surrounding a recombination break-
point. From haplotype and genotype data, we estimated the distribution of the
number of recombinations at the breakpoint and compared the estimates to the
ground-truth for accuracy.

When typing everyone in the pedigree, the estimates from haplotype data were
very accurate, because the haplotype data provides enough constraints to deter-
mine where the recombinations must have occurred. With decreasing numbers
of typed individuals, the accuracy of haplotype-based estimates dropped until it
seemed to converge to the genotype accuracy due to a lack of constraints. From
the structure of the calculations, we observed that with fewer typed individuals
there were more haplotype orientations to consider, and the haplotype calcula-
tion more closely resembled the genotype calculation. However, the haplotype
calculation had more constraints and lost accuracy at a slower rate.

Several interesting open problems remain. First, approximation algorithms
might be a useful approach for haplotypes on pedigrees. The existence of a
linear-time algorithm when all individuals are haplotyped may suggest that the
general haplotype problem instance could be amenable to approximation algo-
rithms. Second, these proofs apply when there is no missing data in a genotyped
individual (i.e. a proxy parent). The proof requires knowing whether the proxy
parent is heterozygous or homozygous at each locus, and this is unknown when
there is missing data. Third, there is an interesting case of mixed haplotypes
and genotypes. For this case to be interesting, the ends of haplotypes must oc-
cur at different locations in different individuals in the pedigree. Otherwise, the
haplotypes that start and end at the same positions in all individuals can easily
be converted into multi-allelic genotypes, with an allele for each haplotype. The
mixed haplotype-genotype problem is not amenable to the proof techniques used
here. However, the haplotype HMM in Section 3.1 can easily be revised to handle
the mixed case. This is important because the data produced by single polymer
sequencing is more likely to resemble the mixed case than either the haplotype
or the genotype cases.
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Abstract. Haplotype Inference (HI) is a computational challenge of cru-
cial importance in a range of genetic studies, such as functional genomics,
pharmacogenetics and population genetics. Pedigrees have been shown
a valuable data that allows us to infer haplotypes from genotypes more
accurately than population data, since Mendelian inheritance restricts
the set of possible solutions. In order to overcome the limitations of
classic statistical haplotyping methods, a combinatorial formulation of
the HI problem on pedigrees has been proposed in the literature, called
Minimum-Recombinant Haplotype Configuration (MRHC) prob-
lem, that allows a single type of genetic variation events, namely recombi-
nations. In this work, we define a new problem, called Minimum-Change

Haplotype Configuration (MCHC), that extends the MRHC for-
mulation by allowing also a second type of natural variation events:
mutations. We propose an efficient and accurate heuristic algorithm for
MCHC based on an L-reduction to a well-known coding problem. Our
heuristic can also be used to solve the original MRHC problem and it can
take advantage of additional knowledge about the input genotypes, such
as the presence of recombination hotspots and different rates of recom-
binations and mutations. Finally, we present an extensive experimental
evaluation and comparison of our heuristic algorithm with several other
state-of-the-art methods for HI on pedigrees under several simulated
scenarios.

1 Motivations

After the first draft of the human genome was published in 2000, a lot of research
efforts have been devoted to the discovery of genetic differences among same-
species individuals and to the characterization of their impact to the expression of
different phenotypic traits such as disease susceptibility or drug resistance. Most
of these efforts are driven by the International HapMap Project [14], which dis-
covered, investigated and characterized millions of genomic positions (called loci
or sites) where different individuals carry different genetic subsequences (called
alleles). In practice, unordered pairs of alleles coming from both parents of each
individual studied are routinely collected, since determining the parental source
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of each allele is too much time-consuming and expensive to be performed on
large studies [3]. The pairs of alleles located at a given set of loci of an individ-
ual are called the (multi-locus) genotype of the individual, while the sequence
of alleles that were inherited from a single parent is called a haplotype. The ad-
vance of high-throughput and high-density genotyping technologies, combined
with a consistent reduction of genotyping costs, had led to a great abundance of
genotypic data. Such genotypes (also called SNP genotypes) are generally bial-
lelic (i.e., at each locus only two distinct alleles are observed in the population)
and they will be the focus of this work. A number of association studies based
on SNP genotypes have been carried out but, since haplotypes substantially in-
crease the power of genetic variation studies [15], accurate and efficient compu-
tational prediction of haplotypes from genotypes is highly desirable. Mendelian
inheritance laws, which govern the transmission of genetic material from parents
to children, have been effectively used to improve the accuracy of haplotyping
methods. However, the increasing density and length of SNP genotypes challenge
classic statistics-based methods (such as Lander-Green [7] and Elson-Stewart [4]
methods) because they do not scale well on large datasets and they do not
take directly into account the presence of Linkage Disequilibrium among loci.
Combinatorial formulations have been proposed to overcome such limitations.
Among them, the most popular formulation is represented by the Minimum-

Recombinant Haplotype Configuration (MRHC) problem [12,9]. The
aim of this formulation is the computation of a haplotype configuration which is
consistent with an input genotyped pedigree and induces the minimum number
of recombinations. The formulation naturally arises since recombinations are the
most common form of variation events. However, with the progressive increase
of the size of genetic variation studies, the incidence of other types of variation
events (such as mutations) will inevitably become noticeable.

The above observation motivates the work in this paper, where the Haplo-
type Inference (HI) problem on pedigrees admitting recombination and muta-
tion events, called Minimum-Change Haplotype Configuration (MCHC),
is studied. Polynomial-time exact algorithms for MCHC are unlikely to exist
since it is possible to prove that MCHC is APX-hard even on simple instances.
The main contribution of this paper is an efficient and accurate heuristic algo-
rithm for MCHC. Our algorithm is based on an L-reduction [2] of MCHC to
a fundamental problem of coding theory: the Nearest Codeword Problem

(NCP) [2, probl. MS3]. Although NCP is theoretically hard to approximate [1],
there exists several heuristics that compute near-optimal solutions of NCP in
practice [6]. Our idea is to transform the instance of MCHC to an instance of
NCP, to solve it with a custom-tailored version of a heuristic for NCP, and,
finally, to reconstruct a solution of the original instance of MCHC from the
solution of NCP. Our L-reduction guarantees that the transformation of the in-
stance and the reconstruction of the solution are performed in polynomial-time
while preserving the solution cost.

The work is structured as follows. First, in Section 2, we formalize the
Minimum-Change Haplotype Configuration problem and define the
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related basic terminology. Then, in Section 3, we present a heuristic algorithm
based on an L-reduction from MCHC to NCP. Finally, in Section 4, we discuss
the results of an experimental evaluation of our algorithm under several simu-
lated scenarios and compare the accuracy and efficiency of our algorithm with
those of several state-of-the-art methods for HI on pedigrees in the literature.

2 The Computational Problem

In this section we define the basic concepts and formalize the computational
problem that will be studied in the rest of the work.

A pedigree graph is an oriented acyclic graph P = (V, E) such that (i) vertices
correspond to individuals and are partitioned into male and female vertices
(i.e., V = M ∪ F , with M and F disjoint), (ii) each vertex has indegree 0 or
2, and (iii) if a vertex has indegree 2, then one edge must come from a male
node and the other from a female node. For each edge (p, c) ∈ E, we say that
p is a parent of c and c is an offspring (or child) of p. More precisely, we say
that p is the father (mother, resp.) of c if p is male (female, resp.). A trio is
a triplet (f, c, m) where f is the father and m is the mother of c. Individual f
and individual m are said to be mates in such a trio. A pedigree graph contains
a mating loop if there exists two nodes a and d such that they are connected
by two distinct paths. A pedigree graph is a tree pedigree if it does not contain
mating loops.

Let Σ be an ordered set 〈l1, . . . , lm〉 of m loci and c an individual of the
pedigree P . A haplotype of individual c is an m-dimensional vector over the set
{0, 1}. The genotype gc of individual c is an m-dimensional vector over the set
{0, 1, 2}, where the i-th element (denoted with gc[i]) represents the pair of alleles
that individual c possesses at locus li. We follow the convention of encoding pair
{0, 0} as 0, {1, 1} as 1, and {0, 1} as 2.

A genotyped (haplotyped, respectively) pedigree is a pedigree such that every
individual has been associated with a genotype (an ordered pair of haplotypes,
respectively). We use gc to denote the genotype associated with an individual c of
a genotyped pedigree and 〈h0

c , h
1
c〉 the haplotypes associated with an individual c

of a haplotyped pedigree. Moreover, we say that h0
c is the paternal haplotype of

c and h1
c is the maternal haplotype of c. A haplotyped pedigree Ph is consistent

with a genotyped pedigree Pg of the same set of individuals if for each individual
c, the genotype gc is resolved by the pair of haplotypes 〈h0

c , h
1
c〉. An individual

is called a founder if its indegree is 0. Otherwise it is called a non-founder.
The grandparental source vector of a non-founder individual c w.r.t. one of its
parents p, is an m-long binary vector sp,c defined as follows. Let li be a locus
of Σ. If p is the father (mother, resp.) of c, then sp,c[i] = 0 if the allele of the
paternal (maternal, resp.) haplotype of c at locus li has been inherited from
the paternal haplotype of p. On the other hand, sp,c[i] = 1 if the allele has
been inherited from the maternal haplotype of p. Given a genotyped pedigree
Pg, a (consistent) haplotype configuration of Pg is a pair (Ph, S) where Ph is a
(consistent) haplotyped pedigree of Pg and S an assignment of two grandparental
source vectors to each individual of P .
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The Haplotype Inference (HI) problem on pedigrees asks for a haplotype config-
uration (or the set of haplotype configurations) consistent with a given genotyped
pedigree. However, since there can exist an exponential number of consistent hap-
lotype configurations, additional constraints are generally imposed. A particularly
successful approach is the formulation that attempts to minimize the number of ge-
netic variation events that are induced in the resulting haplotyped pedigree [12,9].
Two types of variation events will be considered, recombinations and mutations,
defined as follows. Let (Ph, S) be a consistent haplotype configuration of a geno-
typed pedigree Pg. The haplotype configuration induces (or contains) a recombina-
tion at locus li between an individual c and one of its parents p if sp,c[i] �= sp,c[i+1].
The haplotype configuration induces (or contains) a mutation at locus li between
c and its parent p if hj

c[i] �= hs
p[i] where s = sp,c[i] and j = 0 (j = 1, resp.) if p is

the father (mother, resp.) of c.
In this work we are interested in the computational problem of computing a

haplotype configuration that is consistent with a given genotyped pedigree and
that induces the minimum number of variation events. We call such a prob-
lem Minimum-Change Haplotype Configuration (MCHC) problem. The
MCHC problem is a generalization of two problems proposed in the literature:
the Minimum-Recombinant Haplotype Configuration (MRHC) prob-
lem (where only recombinations are allowed [9]), and the Minimum-Mutation

Haplotype Configuration (MMHC) problem (where only mutations are al-
lowed [16]). Differently from [16], in the following we do not restrict the number
of mutations at each locus (among all individuals) to be at most one. It is pos-
sible to prove that MCHC is APX-hard even on instances where genotypes are
defined on only 2 loci or where each individual has at most one mate and one
child. Due to the page limit, the proof is deferred to the full version of this paper.

3 A Heuristic Algorithm for MCHC

The presentation of the heuristic algorithm that we propose is divided into three
parts. First, we give an extension of the system of linear equations over the field
Z2 proposed by Xiao et al. [17] for representing the set of haplotype configu-
rations that are consistent with the input genotyped pedigree. In the extended
system that we propose, recombinations and mutations are explicitly modeled as
variables of the equations. In the second part, we establish an L-reduction from
MCHC to the well-known Nearest Codeword Problem (NCP) by split-
ting the system into two parts where one part contains only variables needed
for the haplotype reconstruction and the other contains only recombination and
mutation variables. Finally, we present a tailored version of a well-known heuris-
tic algorithm for NCP. Using this heuristic, we can guarantee that a feasible
solution for NCP (and hence for MCHC) is found.

3.1 A System of Linear Equations for MCHC

In this part, we first illustrate the linear system over Z2 proposed in [17] for the
HI problem where no recombinations or mutations are permitted (i.e., the zero-
recombinant haplotype configuration problem or ZRHC), and then we describe
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how it can be extended to accommodate recombinations and mutations events.
For simplicity of presentation, we denote with the symbol + the addition over
Z2 instead of using ⊕.

3.2 A Linear System for ZRHC

Computing the paternal haplotypes of all individuals is sufficient to fully describe
the haplotyped pedigree because the maternal haplotype can be reconstructed
from the paternal haplotype and the genotype of the individual. Therefore, we
introduce a variable hi[l] for each individual i and locus l which represents the
allele present at locus l of the paternal haplotype of i. Secondly, we need to rep-
resent the grandparental source. Let i be an individual and p one of its parents.
Since no recombinations are admitted, the grandparental source is denoted as a
single variable sp,i. Variable sp,i is equal to 0 if i has inherited from p the pa-
ternal haplotype of p, or 1 otherwise. To express concisely the linear equations,
we need two additional sets of constants: the w- and the d-constants. For each
locus l and individual i, constant wi[l] is equal to 0 if i is homozygous at locus
l, and 1 otherwise. For each locus l and pair of individuals p and i such that p
is a parent of i, constant dp,i[l] is equal to 0 if p is the father of i and equal to
wi[l] if p is the mother of i. Finally, since the paternal haplotype (and hence the
maternal haplotype) is known at homozygous loci, we set hi[l] = gi[l] for every
individual i and locus l such that gi[l] �= 2.

A case-by-case analysis shows that any solution of the following linear sys-
tem over Z2 is a zero-recombinant haplotype configuration consistent with the
genotyped pedigree (and vice versa) [17]. For all loci l and individuals i,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

hp[l] + sp,i · wp[l] = hi[l] + dp,i[l] for each parent p of i

hi[l] = gi[l] if gi[l] 
= 2
wi[l] = 0 if gi[l] 
= 2
wi[l] = 1 if gi[l] = 2
dp,i[l] = 0 if p is the father of i

dp,i[l] = wi[l] if p is the mother of i

(1)

Notice that, if the pedigree has n members and the genotypes are defined over
a set of m loci, then we have nm h-variables, at most 2n s-variables, and at most
2nm equations.

3.3 A Linear System for MCHC

We now show how the previous linear system can be modified for representing
all the consistent haplotype configurations that may contain recombinations and
mutations.

To accommodate recombinations, we introduce a set of δ-variables defined
as follows. For each locus l, variable δp,i[l] is equal to 1 if a recombination has
occurred at locus l between an individual p and one of its children i, and 0
otherwise. The grandparental source vector of a consistent haplotype configu-
ration can be expressed as a (linear) function of an s-variable and a subset of
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δ-variables. In particular, by induction on l, it is easy to prove that the grand-
parental source of i w.r.t. p at locus l, sp,i[l], is equal to sp,i+

∑l
j=1 δp,i[j]. Denote

as Δp,i[l] the sum
∑l

j=1 δp,i[j]. By replacing sp,i with (sp,i +Δp,i[l]) in Eq. 1, we
obtain a linear system that represents all the haplotype configurations consistent
with the genotyped pedigree and allows recombination events. Since mutations
are point events that replace an allele inherited from the parent with another
allele, it suffices to add a term in the first equation of the original linear system
to model mutation events. We denote this term as μp,i[l] and set μp,i[l] = 1 if a
mutation at locus l between p and i has occurred, and μp,i[l] = 0 otherwise. The
following lemma is straightforward.

Lemma 1. Let Pg be a genotyped pedigree. Then each solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

hp[l] + (sp,i + Δp,i[l]) · wp[l] = hi[l] + dp,i[l] + μp,i[l] for each parent p of i

hi[l] = gi[l] if gi[l] 
= 2
wi[l] = 0 if gi[l] 
= 2
wi[l] = 1 if gi[l] = 2
dp,i[l] = 0 if p is the father of i

dp,i[l] = wi[l] if p is the mother of i

(2)

concerning all loci l and individuals i represents a haplotype configuration con-
sistent with Pg that admits recombination and mutation events. Conversely, a
haplotype configuration consistent with Pg that admits recombination and muta-
tion events is represented by a solution of the linear system.

By construction, a haplotype configuration that induces k variation events is
represented by a solution of the linear system where exactly k δ- and μ-variables
are non-zero.

3.4 Reducing MCHC to NCP

The Nearest Codeword Problem is the problem of coding theory that re-
constructs the original codeword of a given received message by minimizing
the Hamming distance between them. More formally, given an r × n matrix H
over Z2, and a column vector q ∈ Zr

2, the Nearest Codeword Problem [2,
probl. MS3] asks for a vector e ∈ Zn

2 with the minimum number of non-zero
entries such that H ·e = q. The number of non-zero entries of a vector v is called
the weight of the vector and is denoted as ‖v‖.

The basic idea of our reduction is to split the linear system of Lemma 1 into
two linear systems: one containing only h- and s-variables, and the other one
containing only δ- and μ-variables. The second part of the system is, directly,
an instance of NCP.

Since all wi[l] and dp,i[l] assume constant (predetermined) values, we can write
the linear system of Eq. 2 as the following matricial equation:

Ah,s · xh,s + Aδ,μ · xδ,μ = b (3)
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where: xh,s is the column vector of the h- and s-variables, xδ,μ the column vector
of the δ- and μ-variables, Ah,s the n×m1 matrix of the coefficients of the h- and
s-variables, Aδ,μ the n × m2 matrix of the coefficients of the δ- and μ-variables,
and b a column vector composed by constant entries.

Let k be the rank of the matrix Ah,s and AT
h,s be its transpose. Suppose

w.l.o.g. that the first k rows of Ah,s are linearly independent. Now, we construct
the instance of NCP associated to an instance of MCHC as follows. Let B =
{v1, . . . , vr | vi ∈ Zn

2 } be a basis of the vector space ker(AT
h,s) = {y ∈ Zn

2 |
AT

h,s · y = 0}, where 0 denotes the all-zero column vector. Collate vectors vi to
form a r × n matrix V such that the i-th row is equal to vT

i . Then, the instance
I ′ of NCP associated with an instance I = (Ah,s, Aδ,μ, xh,s, xδ,μ, b) of MCHC is
the pair I ′ = (H, q) where H = V Aδ,μ and q = V b. Clearly, the transformation
of I into I ′ can be computed in polynomial-time via Gaussian elimination (to
compute V ) and two matrix multiplications (to compute H and q).

We complete the L-reduction from MCHC to NCP by proving the following
two lemmas. Lemma 2 illustrates how to reconstruct in polynomial-time a so-
lution of an MCHC instance given a solution for the associated NCP instance,
and Lemma 3 shows how to compute (in polynomial-time) a solution for an in-
stance I ′ of NCP associated with an instance I of MCHC given a solution for
I. Since both above transformations preserve the cost of solutions, the reduction
is an L-reduction with parameters β = γ = 1. See [2, Def. 8.4] for the formal
definition of L-reduction and an explanation of these parameters. Due to the
page limit, the proofs of the lemmas are deferred to the full version of the paper.

Lemma 2. Let I = (Ah,s, Aδ,μ, xh,s, xδ,μ, b) be an instance of MCHC and I ′ =
(H, ỹ) the NCP instance associated with I. Then, given a solution e of NCP

on I ′, it is possible to compute in polynomial-time a haplotype configuration
(x̂h,s, x̂δ,μ) of I that induces ‖e‖ variation events.

Lemma 3. Let S = (x̂h,s, x̂δ,μ) be a solution of MCHC on the instance I =
(Ah,s, Aδ,μ, xh,s, xδ,μ, b) and I ′ = (H, q) the NCP instance associated with I.
Then, vector e := x̂δ,μ is a solution of NCP on I ′.

The following corollary easily follows from Lemma 2 and Lemma 3.

Corollary 1. MCHC is L-reducible to NCP with parameters β = γ = 1.

3.5 The Heuristic Algorithm

In this section, we present an efficient heuristic algorithm that solves the MCHC

problem. In addition, this heuristic can be also used to solve the MRHC and
MMHC problems by restricting the types of variation events that are allowed.
An implementation of the heuristic described below can be freely downloaded
from the web page http://www.algolab.eu/Heu-MCHC/.

The algorithm is based on the above L-reduction from MCHC to NCP. Since
NCP �∈ APX [1], there do not exist algorithms that can guarantee a good
(i.e., constant) approximation ratio unless P = NP. Nevertheless, it has been

http://www.algolab.eu/Heu-MCHC/
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shown that the sum-product (SP) algorithm [6] (independently proposed in Ar-
tificial Intelligence as the belief-propagation algorithm [11]) is an effective and
efficient heuristic for NCP. The SP algorithm computes an approximation of the
likelihood that each bit of the received message has been “flipped” during the
transmission of the message. Such an approximation is computed by employing
the set of parity constraints of the linear code and a vector q (called syndrome)
representing the constraints that are not satisfied by the received message.

Our idea is to consider the variation events (recombinations and mutations)
as the “errors” that we have to reconstruct and, once the “errors” (variation
events) have been determined, it is easy to reconstruct the haplotyped pedigree
(by Gaussian elimination). The L-reduction in Corollary 1 formalizes this idea.
The set of parity constraints and the syndrome q are obtained from the geno-
typed pedigree (represented by the matrices Ah,s and Aδ,μ) as illustrated in the
previous section. The likelihoods computed by the SP algorithm on this instance
represents the likelihoods that each δ- or μ-variable is equal to 1. In other words,
for each possible variation event, it computes the likelihood that the event has
occurred on the pedigree.

Our heuristic iteratively adds the most likely variation event (as computed
by the SP algorithm) to a set E of imputed variation events until a haplotype
configuration that induces exactly the imputed events can be found. Given a
set of variation events E, the reconstruction of the haplotype configuration that
induces E can be performed efficiently. Indeed, it suffices to solve the linear
system of Lemma 1 with the δ- and μ-variables assigned to 1 if the corresponding
events (the mutations or the recombinations they represent) belong to E, or 0
otherwise. Initially, no variation events are imputed (thus E = ∅) while a set
N contains all the possible variation events (represented by the corresponding
δ- and μ-variables). For each binary linear code, the set of parity constraints is
represented by a particular binary matrix H , called the check matrix, such that
H · y = 0 if and only if y is a valid codeword. In our L-reduction, the check
matrix associated with the MCHC instance is computed as H = V · Aδ,μ for
some matrix V . As a consequence, matrix H has the same number of columns
as Aδ,μ, each of which is associated with a δ- or μ-variable. We associate each
column i of H with the δ- or μ-variable that is associated with the i-th column of
Aδ,μ. For simplicity, we identify each column i of H with the associated variable.

The haplotype configuration is computed in two steps: first the set of variation
events E that makes the reconstruction of a haplotype configuration possible
is computed, then the haplotype configuration is recovered using the imputed
events E. The first step iteratively constructs the set of variation events. Using
the SP algorithm, it computes an event e∗ that most likely is induced in a
haplotype configuration consistent with the pedigree. If more than one event
have the maximum likelihood, one of them is chosen at random. Once e∗ has
been determined, the corresponding δ- or μ-variable is set to 1, and the syndrome
is updated according to the check matrix H . Then, the column of H associated
with event e∗ can be removed, and e∗ can be moved from the set of possible events
N to the set of imputed events E. Based on the remaining parity constraints, we
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check if the presence (or absence) of other variation events is implied by e∗ and
the other events contained in E. This check can be performed by the Gaussian
elimination algorithm. This step ends if all the remaining parity constraints are
satisfied. The second step reconstructs the haplotype configuration consistent
with the input genotyped pedigree by solving the linear system of Eq. 2 using,
as a partial solution, the set E of imputed events.

An important remark is in order. The SP algorithm considers as an additional
input the prior probability that each variation event e has occurred. Although
we have not incorporated this feature into the current algorithm, it could be
extremely useful to model recombination hotspots (by increasing the prior prob-
ability of recombination events in regions where recombinations occurs more
frequently), to differentiate the rates of recombinations and mutations (by in-
creasing the prior probability of a recombination event with respect to a mutation
event), and/or to model additional knowledge about the input genotypes. This
feature of the SP algorithm could also allow us to combine the combinatorial
formulation of the problem presented here with some elements of statistics-based
methods.

The time complexity of the heuristic depends on several parameters. Let n be
the number of individuals of the genotyped pedigree and m the number of loci.
The NCP instance I ′ is calculated by the Gaussian elimination algorithm on AT

h,s

and by two matrix multiplications, requiring O(n3m3) time. The check-matrix
H has O(nm) rows and at most 4nm columns (one for each variation event).
Therefore the reduction from the pedigree to the NCP instance is computed in
O(n3m3) time. The time required by each iteration is bounded by O(n3m3) since
the check of the existence of predetermined events (by Gaussian elimination)
requires O(n3m3) time, the SP algorithm requires linear time in the number of
one-entries of matrix H , and the other operations that update parity constraints
and the syndrome can be accomplished in O(n2m2) time. The resolution of
the final linear system can be performed in O(n3m3) time by the Gaussian
elimination algorithm. Let k be the number of events that are imputed, then the
overall time complexity of the heuristic is O(kn3m3).

4 Experimental Results

Our approach has been experimentally analyzed under several simulated sce-
narios. The experimental analysis is divided into two parts. In the first part,
we evaluate the accuracy and efficiency of our heuristic on randomly gener-
ated MCHC instances. In the second part, we compare the performance of our
heuristic with that of three state-of-the-art approaches for MRHC and MMHC:
PedPhase v2.1 [10], SimWalk2 [13], and MMPhase [16].

4.1 Evaluation on Random Instances

The first part of our experimentation involves randomly generated instances
under several choices of 4 parameters: pedigree size (n), the number of loci (m),
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recombination probability (θr), and mutation probability (μr). For each choice of
the parameters, we generated 30 haplotype configurations on 6 different random
pedigree graphs. We applied a variation event at each locus with probability θr

for recombinations and μr for mutations. For each instance, we ran our heuristic
10 times and we picked the solution with the minimum number of induced events.

We evaluated the quality of the results considering phase error (the ratio be-
tween the number of incorrectly predicted haplotype alleles and twice the number
of heterozygous loci) and approximation ratio (the ratio between the number of
predicted events and the number of generated events). The approximation ratio
can be less than 1.0 because the generated haplotype configuration might be
suboptimal. Finally, we also evaluated the total running time required by the
heuristic on all 10 executions.

We chose a base set of values for the parameters n, m, θr, and μr and we
conducted three series of tests. In each series, we modified the value of one of
these parameters: pedigree size in the first, genotype length in the second, and
the two probabilities θr and μr in the third. The base values were: pedigree
size n = 40, number of loci m = 40, recombination probability θr = 0.02, and
mutation probability μr = 0.004. The detailed results of the three series of tests
are summarized in Table 1. In the first series of tests, we varied the pedigree size
n and analysed the cases n = 40, n = 60, and n = 100 on both tree pedigrees and
“general” pedigrees (i.e., pedigree with mating loops). In all cases, the heuristic
never required more than 6 minutes (169 seconds on average) on a standard
PC with a 1.66GHz CPU and 2GB of main memory and it always found a
haplotype configuration that induces fewer variation events than the generated
one (i.e., the approximation ratio is always smaller than 1.0). Although this fact
does not imply that the heuristic computed the optimal solution, it increases our
confidence in the soundness of the approach. The values of the quality measures
are similar in all cases and, on average, are equal to 0.02 and 0.97 for phase error
and approximation ratio, respectively. In the second series of tests, we varied
the number of loci m and considered the following cases: m = 40, m = 60,
and m = 100. Similarly to the previous series, we obtained 0.039 as the average
phase error and 0.96 as the average approximation ratio, with an average running
time of 182 seconds. In the third series of tests, we varied the probabilities of
recombinations and mutations in the range of (0.02, 0.004) to (0.10, 0.02). In
this case, the quality of the results decreases with the increase of the number
of generated events. The worst results were obtained when recombination and
mutation probabilities were at the maximum. Note that when this happens,
the generated haplotype configuration significantly deviates from the parsimony
principle that MCHC assumes. In fact, our heuristic reconstructs a solution
with much fewer events than the generated haplotype configuration (in such a
situation the average approximation ratio is 0.85).

4.2 Comparison with State-of-the-Art Methods

In the second part of the experimental evaluation, we compare the accuracy
and efficiency of our heuristic with those of some state-of-the-art approaches
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Table 1. Summary of the results obtained by our heuristic on randomly generated
instances. Each table reports the quality and performance measures of the heuristic on
a subset of instances where a parameter has been varied. The default settings of the
parameters are: pedigree size n = 40, number of loci m = 40, recombination probability
θr = 0.02, and mutation probability μr = 0.004.

(a) Increasing pedigree size (n)

Tree pedigrees General pedigrees

Pedigree size n = 40 60 100 40 60 100 Mean

Avg. no. of generated events 22.0 30.4 55.2 25.5 35.8 63.6 38.7
Avg. no. of predicted events 21.3 29.5 53.2 24.5 34.9 61.8 37.5
Avg. phase error 0.027 0.029 0.028 0.022 0.024 0.024 0.026
Avg. approximation ratio 0.968 0.975 0.965 0.963 0.975 0.972 0.970
Avg. time (in seconds) 36 73 265 62 118 460 169

(b) Increasing the number of loci (m)

Tree pedigrees General pedigrees

Number of loci m = 40 60 100 40 60 100 Mean

Avg. no. of generated events 24.0 34.7 53.2 26.4 38.0 61.0 39.6
Avg. no. of predicted events 23.1 33.0 51.2 25.7 36.9 59.6 38.3
Avg. phase error 0.035 0.057 0.042 0.026 0.026 0.044 0.039
Avg. approximation ratio 0.964 0.956 0.964 0.975 0.972 0.976 0.968
Avg. time (in seconds) 41 95 247 76 148 485 182

(c) Increasing recombination and mutation probabilities (θr and μr)

Tree pedigrees General pedigrees

Recombination prob. θr = 0.02 0.04 0.10 0.02 0.04 0.10
Mutation probability μr = 0.004 0.01 0.02 0.004 0.01 0.02 Mean

Avg. no. of generated events 24.5 48.8 111.5 24.9 48.9 121.8 63.4
Avg. no. of predicted events 23.8 45.7 94.8 24.0 45.8 105.3 56.6
Avg. phase error 0.035 0.061 0.114 0.020 0.053 0.099 0.064
Avg. approximation ratio 0.973 0.937 0.848 0.963 0.939 0.866 0.921
Avg. time (in seconds) 45 74 164 63 86 248 113

for HI on pedigrees. Popular approaches to HI on pedigrees do not allow for
both recombinations and mutations at the same time. Therefore, we separately
considered two classes of algorithms. The first one consists of algorithms for
MRHC (i.e., only recombinations are allowed) and the second class consists
of algorithms for MMHC (i.e., only mutations are allowed). We adapted our
heuristic algorithm to the two problems by keeping only the variables associated
with the type of events that are allowed (δ-variables for MRHC and μ-variables
for MMHC).

Comparison with MRHC Algorithms. Several algorithms for MRHC have been
proposed in the literature. For our comparison, we chose two popular approaches
with different computational characteristics: PedPhase v2.1 [10] (an exact ILP-
based algorithm) and SimWalk2 [13] (a popular statistical approach for HI). We
generated 750 instances using SimPed [8], a simulation program for the gen-
eration of haplotyped pedigrees based on user-supplied biological information
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Table 2. Summary of the comparison with other methods for MRHC on 750 instances
whose sizes vary from pedigrees with 8 members and 10 loci to pedigrees with 100 mem-
bers and 100 loci. For each method, we report the number of instances that have been
solved within an hour of computation (i.e., completed instances), the average number
of predicted recombinations, the average phase error, and the average running time.
To facilitate the comparison, for each row, we report in brackets the same performance
measure values obtained by our heuristic on the instances completed by the other two
methods.

Heuristic PedPhase 2.1 [10] SimWalk2 [13]

Completed instances 750 565 495
Avg. no. of recombinations 26.42 14.25 (14.27) 17.37 (7.21)
Avg. phase error 0.030 0.030 (0.031) 0.037 (0.029)
Avg. running time (s) 4.7 35.8 (1.0) 787.7 (0.2)

Table 3. Summary of the comparison with another method for MMHC on 300 instance
whose sizes vary from pedigrees with 50 members and 50 loci to pedigrees with 150
members and 150 loci. For each method, we report the number of instances that have
been solved within an hour (i.e., completed instances), the average number of computed
mutations, the average phase error, and the average running time.

Heuristic MMPhase [16]

Completed instances 298 297
Avg. no. of mutations 38.83 37.77
Avg. phase error 0.0030 0.0030
Avg. running time (s) 483.58 167.54

(such as intramarker distances and allele frequencies). The same biological in-
formation have then been used to correctly initialize the input parameters of
SimWalk2. The instance sizes ranged from pedigrees with 8 members and 10
loci to pedigrees with 100 members and 100 loci. We limited the running time
on each instance to 1 hour. Our heuristic was the only method that completed
all the 750 instances within this time limit. PedPhase completed 565 instances
and SimWalk2 only 495 of them. PedPhase took over 5 hours to solve the 565
instances that it was able to tackle, while our heuristic on the same instances
took only 575 seconds. Our heuristic was able to compute a solution with the
same number of recombinations as PedPhase (i.e., an optimal solution) in 560
of the 565 cases. SimWalk2 is a much slower approach; it took nearly 108 hours
of computation while our heuristic completed the same set of instances in less
than 90 seconds. Moreover, SimWalk2 never computed a solution with fewer
recombinations than our heuristic. On the other hand, the average phase errors
of the three approaches are almost identical (PedPhase 0.030, SimWalk2 0.037,
and our heuristic 0.030), implying that the sets of recombinations computed by
the three approaches, albeit different, are similar. A summary of the results is
presented in Table 2.
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Comparison with MMPhase. We compared our heuristic with MMPhase [16],
the only other algorithm that has been explicitly proposed for MMHC in the
literature (to the best of our knowledge). MMPhase is an ILP-based approach
for MMHC with two restrictions: the model explicitly forbids two mutations at
the same locus in different individuals (called the infinite-site assumption) and
the current implementation is only able to handle tree pedigrees. Therefore, we
generated 300 random instances of different sizes according to these restrictions.
In particular we considered 4 different pedigree sizes (50, 75, 100, 150) and 3
different numbers of loci (50, 100, 150) and we generated 25 instances for each
possible combination of the two parameters. The comparison revealed that MM-
Phase is noticeably faster than our heuristic (on average MMPhase required 167
seconds per instance vs. 483 seconds for our heuristic). However we observe that
MMPhase exploits the infinite-site assumption in order to reduce the solution
space, while our method allows more than one mutation on the same locus. More-
over, while MMPhase was able to solve 297 of the 300 instances within an hour,
our method was able to solve 298 instances in the same time limit. Although our
heuristic obtained solutions with slightly more mutations than MMPhase on 38
of the 298 instances, the average phase errors of the two methods are identical
(0.0030). A summary of the comparison results is presented in Table 3.

5 Conclusion

In this paper, we presented a heuristic method for the haplotype inference prob-
lem on pedigrees allowing two types of variation events: recombinations and mu-
tations. The experimental evaluation under several simulated scenarios showed
that the heuristic is both accurate and efficient. The heuristic also compares
favorably with several other state-of-the-art methods. It is faster than (but as
accurate as) the other methods that consider only recombinations. Moreover,
the only method considered in this study that is faster than our heuristic (MM-
Phase, which allows only point mutations) requires and exploits more restrictive
assumptions about the input data than our method. The heuristic algorithm
could handle moderately large pedigrees very well (in some of our tests, it was
able to process tree pedigrees with 50 individuals and 1000 loci in approximately
2.5 hours of computation time on a standard PC). However, it cannot be applied
directly to genome-scale data with millions of loci. Fortunately, the haplotype
block structure observed in the human genome [5] provides a straightforward way
of partitioning long genotypes into short blocks which can be readily handled by
our method.
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Abstract. Multi-channel, high throughput experimental methodologies
for flow cytometry are transforming clinical immunology and hematol-
ogy, and require the development of algorithms to analyze the high-
dimensional, large-scale data. We describe the development of two
combinatorial algorithms to identify rare cell populations in data from
mice with acute promyelocytic leukemia. The flow cytometry data is
clustered, and then samples from the leukemic, pre-leukemic, and Wild
Type mice are compared to identify clusters belonging to the diseased
state. We describe three metrics on the clustered data that help in iden-
tifying rare populations. We formulate a generalized edge cover approach
in a bipartite graph model to directly compare clusters in two samples to
identify clusters belonging to one but not the other sample. For detect-
ing rare populations common to many diseased samples but not to the
Wild Type, we describe a clique-based branch and bound algorithm. We
provide statistical justification of the significance of the rare populations.

Keywords: flow cytometry, edge cover, clique, mixture modeling, KL
divergence, acute promyelocytic leukemia (APL).

1 Introduction

We describe two algorithms to identify rare cell populations characteristic of dis-
eases such as leukemia by analyzing flow cytometric data obtained from diseased
and healthy samples. The recent development of high-throughput, multi-channel
flow cytometry creates high-dimensional and large-scale data that requires the
concomitant development of algorithms for comparative analyses of data from
diseased and healthy samples, and from diseased samples at various stages of
disease. Specifically, we need algorithms that can match cell populations among
diseased samples, and differentiate between cell populations that belong to dis-
eased and healthy states. Such studies could distinguish cancer cells from healthy
cells, and identify cancer stem cells that are responsible for generating new can-
cerous cells, which could lead to therapies targeting such cells.

In flow cytometry, fluorescently labeled antibodies are bound to antigens
on the cell, and on excitation with a laser as cells flow in a fluid stream,
the fluorochrome emits light of a specific wavelength, thus identifying the cell
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populations that express the antigen. Flow cytometry is routinely used in the
diagnosis of diseases and has many applications in clinical practice and research.
Initially flow cytometry permitted the investigation of only one fluorophore, but
recent advances allow close to twenty parallel channels to be monitored [5,12].
Various techniques have been developed in the past [7,10] to analyze this high
dimensional data. A recent survey of data analysis methods in flow cytometry
is provided in [2].

Early work on analyzing this high dimensional data has relied on project-
ing the data to lower dimensions and manual gating, which is labor intensive
and influenced by analyst bias. Hence the development of efficient and accurate
algorithms for analyzing the large-scale, high dimensional data is a critical need.

Performing comparative analysis of samples at the cell level is computationally
expensive, and hence a more practical approach is to cluster cells in each sample
first, and then perform the comparative analyses across the samples. Various
techniques have been proposed to cluster flow cytometry data and form groups
of cells [3,4,7], but there has been little work on the post-processing of the
clustered data to identify common and distinct cell populations among diseased
and healthy states.

A recent approach for downstream analysis of clustered data, flow analysis
with automated multivariate estimation (FLAME), was proposed by Pyne et
al. [10]. The fluorescense intensity matrix with rows corresponding to cells and
columns corresponding to antibodies is first clustered into cell populations using
the skew t distribution. The clusters across all samples are then pooled and
a set of global metaclusters are obtained from them using an approach called
Partitioning across Medoids. Each sample is then compared with the set of global
metaclusters using an integer programming formulation of a weighted b-matching
in a bipartite graph with additional constraints.

Our work is closest to the FLAME approach, while differing from it in signif-
icant ways. First, we use a non-parametric infinite mixture model in clustering
phase, whereas FLAME used the skew t mixture model. Second, we compare
clusters in two or more samples directly without creating metaclusters from the
clusters in all samples. We propose a generalized edge cover formulation in a
bipartite graph as a model for discovering outlying clusters using pairwise com-
parisons of samples. Third, we propose a weighted clique approach to compare
multiple samples to identify outlying clusters and classify them further into dis-
tinctive and common outliers.

2 Problem Formulation

2.1 Description of Data

We analyze two different flow cytometry datasets on mouse bone marrow cells
from Brigham and Women’s Hospital in Boston [15]. In this work, an oncogene
PML-RARα, was expressed in mice leading to acute promyelocytic leukemia
(APL) in a course of weeks. Each dataset consists of flow cytometry data of
cells from three leukemic mice (P i), one pre-leukemic mouse (H) that has the
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oncogene expressed but has not developed APL yet, and a Wild Type (WT)
sample that does not have the oncogene expressed. Each sample consists of
multidimensional (6- or 7-dimensional) flow cytometry data of cells from a single
mouse with each dimension representing a specific characteristic of the cell. A
sample is represented as a matrix of size N × d, where N is the number of cells,
and d is the dimension of data. The data is shown in Table 1. We normalize
each column of the matrix by converting it to a vector with mean equal to zero
and standard deviation equal to one, and then apply a clustering method to be
described in Sec. 3.1.

2.2 Model of the Data

Let each dataset consist of samples from N patients, labeled P 1 P 2, . . ., PN , and
one WT . The i-th patient P i has nP i clusters P i = {ui

1, u
i
2, . . . , u

i
nPi

}, where
ui

j is the j-th cluster in the i-th patient data. Similarly, WT has nWT clusters
WT = {w1, w2, . . . , wnW T }. If multiple WT samples are available they can be
combined beforehand to construct a unique WT model.

We use the Kullback-Leibler divergence as the measure of distance between
two clusters. The KL-divergence [6], also known as the relative entropy, between
two probability density functions p(x) and q(x) is:

KL(p‖q) = −
∫

p(x)ln
{

q(x)
p(x)

}
dx. (1)

For two d-dimensional Gaussian distributions N0 and N1 with means μ0, μ1 and
covariance matrices Σ0, Σ1, respectively, the KL divergence has a closed-form
expression:

KL(N0‖N1) =
1
2

[
ln
(

detΣ1

detΣ0

)
+ tr(Σ−1

1 Σ0)

+ (μ1 − μ0)T Σ−1
1 (μ1 − μ0) − d

2

]
. (2)

We make the distance measure symmetric by setting the average of KL(p‖q) and
KL(q‖p) as the distance d(p, q) between two clusters p and q. A few additional
terms are needed to discuss our objective function.

2.3 Basic Definitions

Definition 1. Cohesion Index(CI): Given a set of clusters from N patients,
S = {u1, u2...uN} such that ui ∈ P i, and d(ui, uj) is the distance between
clusters ui and uj , the Cohesion Index of the set S is the average distance
between pairs of clusters (ui, uj) in the set S:

CI(S) =
2

N(N − 1)

∑
ui,uj∈S

i<j

d(ui, uj). (3)
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A small value of CI means that the clusters in S are similar, while large values
indicate that they are dissimilar. The Cohesion Index CI for set S consisting of
clusters represented by the large filled circles (within the circles denoting the P i

vertices) in Fig. 1 is the sum of the weights of the edges joining these clusters
divided by ten.

P1 P2

P4

WT

P5
P3

Fig. 1. Graph model of data with 5 patients and 1 Wild Type. The data from each
individual has been clustered; vertices in the graph are the clusters, and the edge
weights are derived from the Kullback-Leibler divergences between clusters.

Definition 2. Divergence Index(DI): Given a set of clusters from N patients,
S = {u1, u2...uN} such that ui ∈ P i, and d(w, ui) is the KL-divergence between
clusters w ∈ WT and ui ∈ S, the Divergence Index (DI) is the minimum sum of
distances between each pair (w, ui) in the set S:

DI(S) =
1
N

min
w∈WT

{∑
ui∈S

d(w, ui)

}
. (4)

A large value of DI means clusters in S are dissimilar from any WT cluster, while
a small value of DI means the clusters in S are similar to some cluster in WT.
In Fig. 1, the central grey circle represents the WT sample, the large filled circle
within it corresponds to a cluster in WT with the least sum of distances from a
set S of patient clusters denoted by the filled circles, and the average length of
the edges between the WT and patient clusters yields DI for the set S.

To identify groups of similar outliers we look for sets of clusters S with low
values of CI(S) and high values of DI(S). However, maximizing (DI(S)−CI(S))
does not suffice to guarantee both a low value of CI and a high value of DI. This
observation leads to the next definition.

Definition 3. Coherence Confidence (CC): Given a set of clusters S =
{u1, u2...uN} such that ui ∈ P i, the Coherence Confidence (CC) is the product
of the normalized difference between DI(S) and CI(S) and a damping factor:

CC(S) =
DI(S) − CI(S)
DI(S) + CI(S)

[
1 − a−(CI(S)+DI(S))

]
, (5)

where a is a constant greater than one. The damping factor prevents the ratio
from becoming unstable for small values of the sum CI(S) + DI(S). If this sum
is small, then the factor is small enough to keep the value of CC(S) low. As
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the sum increases, the factor increases to its maximum value of one, and does
not significantly influence the CC value. The range of values of CC is [−1, 1].
The constant a in the damping factor is chosen so that it should not grow too
quickly to its maximum value. We tried various values for the constant and
a ∼ 1.2 worked reasonably well with the data here. We will identify groups
S consisting of similar outlying clusters from sets with large positive values of
CC(S).

2.4 Objectives

We now state the objectives of our analysis.

1. Pairwise Outliers: Identify dissimilar clusters in a diseased sample by pair-
wise comparison with WT. These are pairwise outliers which contain both
distinctive and common outliers described below.

2. Distinctive Outliers: Identify the clusters in a diseased sample that are
dissimilar to any WT clusters as well as clusters from other diseased samples.
These are distinctive outliers that fail to form groups with low values of CI.

3. Common Outliers: Identify group of similar outliers, i.e., groups with
members similar to each other in diseased samples but dissimilar to any WT
cluster. These common outliers have high values for CC.

3 Methods

3.1 Clustering

We denote the flow cytometry data from a sample as X = [xT
1 , xT

2 , . . . , xT
N ],

where xT
i corresponds to the data from the i-th cell. We assume the data are

generated from a hierarchical Bayesian model. First, the observation xi is sam-
pled from a likelihood function f(θi) where θi is the likelihood parameter for
the i-th observation. Second, the parameter θi follows a distribution G, which
is sampled from a Dirichlet process DP (α, G0) with a concentration parameter
α and a base distribution G0. Note that the use of a Dirichlet prior will make
many {θi}’s share the same value, naturally inducing clustering of data. The
model is known as the Dirichlet Process Mixture (DPM) model [1,9] and can be
summarized as follows:

xi|θi ∼ F (θi), θi|G ∼ G, G ∼ DP (α, G0), (6)

where X ∼ S means that X follows the distribution S. Since G is a distribution,
G ∼ DP (α, G0) suggests that the Dirichlet Process DP (α, G0) is a distribution
over distributions.

We used a publicly available Matlab implementation of DPM clustering by
Teh [14], which is based on a Chinese Restaurant Process representation of the
DPM model and uses simple Gibbs sampling. The computational cost per it-
eration is O(Nd2k), where N is the number of rows in a data sample matrix
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X , d is the number of columns of X , and k is the number of clusters in the
current iteration (k changes with iterations). The value of N is large (see Table
1 in Sec. 4), which makes each iteration computationally expensive even for a
small number of clusters. Moreover, the quality of clustering improves with the
number of iterations. In our experiments, a hundred iterations work reasonably
well for the data as the clustering changes relatively little after that.

Although the DPM inference is expensive for large samples, we prefer the
nonparametric model, DPMs, over classical parametric cluster methods, e.g, K-
means. The reason is that the computational cost of selecting the number of
clusters for a parametric model is prohibitively expensive for flow cytometry
data analysis. DPMs circumvents the model selection problem by automatically
determining the number of clusters for each sample, making it well suited as a
clustering tool before the application of our outlier detection algorithms.

The DPM model is an infinite model in the sense that it contains a mixture of
countably infinite components. For example, if F (·) is a Gaussian distribution,
the DPM model can be viewed as a mixture of infinite Gaussians [11]. Given
a finite number N data points, however, we compute the posterior distribution
of the DPM model using Bayes theorem; the expected number of components
in the posterior distribution is always finite and, often, much smaller than the
number of data points.

3.2 Pairwise Comparison: Generalized Edge Cover

One method we used to identify outliers in the clustered data is pairwise com-
parison between samples. We model a pair of samples, say A1 and A2, using a
complete bipartite graph with each cluster represented by a vertex, and edges
joining pairs of clusters in different samples. Formally G = (V1, V2, E) is a com-
plete bipartite graph, where V1 contains all clusters from A1, V2 contains all the
clusters from A2, and the edge weight function is c : E → R where cij is the
weight of edge {ui, uj}, with ui ∈ V1 and uj ∈ V2. The weight of an edge is the
average KL divergence of its endpoint clusters. In this bipartite graph we seek
to identify clusters that are common to samples A1 and A2, and also those that
belong to only one sample.

Since low edge weight implies high similarity among clusters we could find
a minimum-weight matching among all maximum cardinality matchings in the
graph G and declare unmatched vertices to be outliers. However, this attempt
at a model for outlier detection has a significant drawback. Since the number of
clusters in the two samples is generally not the same, some clusters will remain
unmatched even if they are highly similar to another cluster, and should not
be identified as outliers. We address this issue by formulating the problem as a
minimum-weight edge cover on a complete bipartite graph. An edge cover is a
subset of edges such that each vertex in the graph has at least one edge incident
on it, whereas a matching is a subset of edges such that each vertex in the
graph has at most one edge incident on it. However, even an edge cover fails to
accurately model the problem since clusters that represent outliers should not
be covered in an edge cover. Hence we find a generalized edge cover that permits
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some vertices not to be covered, at the cost of a penalty, by adding a weight
λ for each uncovered vertex to the weight of an edge cover. Thus λ acts as a
cut-off value for long edges that would not be included in a generalized edge
cover. This leads to a generalized edge cover formulation of the problem, where
the cover EC leaves some uncovered vertices Vuc ⊆ V1 ∪ V2, while minimizing
the objective function:

min

⎛⎝ ∑
(vi,vj)∈EC

cij + λ ∗ |Vuc|
⎞⎠ . (7)

A generalized edge cover in G can be computed from an edge cover in a
transformed graph G′. Let the graph G′ be obtained from G by introducing two
new distinguished vertices v1 ∈ V1 and v2 ∈ V2, and adding an edge {v1, v2} with
c({v1, v2}) = 0, and edges {v1, u2} for each u2 ∈ V2, {v2, u1} for each u1 ∈ V1,
with c({u1, v2}) = c({u2, v1}) = λ. If a minimum-weight edge cover includes
added edges with weight λ, for each such edge, we leave the original vertex in G
incident on this edge uncovered in a generalized edge cover of the original graph,
thus paying a price of λ for the vertex, without changing the weight or structure
of the remaining edge cover.

A minimum-weight edge cover in a graph can be computed in polynomial time
by making a copy of the graph and connecting each vertex to its twin in the copy
by an edge with weight equal to twice the minimum weight among original edges
incident on it. A minimum-weight perfect matching in this graph can be used to
compute a minimum-weight edge cover in the original graph [13].

Following the above discussion, our pairwise comparison algorithm for outlier
detection can be formulated in the following stages:

1. Pre-processing: Add distinguished vertices v1 ∈ V1 and v2 ∈ V2, and an
edge {v1, v2} with c({v1, v2}) = 0. Given a cut-off value λ, add edges {v1, u2}
for each u2 ∈ V2, and {v2, u1} for each u1 ∈ V1, all with a weight of λ. Let
G′ = (V ′, E′) be the resulting graph.

2. Duplicate Graph: Let G̃′ = (Ṽ ′, Ẽ′) be a disjoint copy of G′. Let Ḡ be
the the graph formed by taking the union of G′ and G̃′ and adding an edge
{v, ṽ} connecting every v ∈ V ′ with its twin ṽ ∈ Ṽ ′. Let c({v, ṽ}) = 2μ(v) for
each v ∈ V ′, where μ(v) is the minimum weight of the edges of G′ incident
on v.

3. Matching: Compute a minimum-weight perfect matching M in Ḡ.
4. Edgecover: Obtain a minimum-weight edge cover EC′ of G′ by replacing

every edge {v, ṽ} ∈ M by an edge of weight μ(v) in G′ incident on v.
5. Post-processing: Remove all edges {v1, o}, {v2, o} from EC′, where o de-

notes an original vertex in V1∪V2; add each vertex o to the set of outliers O.
Remove the distinguished vertices v1 and v2 from EC′. The resulting edge
cover EC∗ together with the set of uncovered vertices O is a solution to the
generalized edge cover problem in G.

Lemma: The Algorithm described above computes an optimal generalized edge
cover in G.
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Proof: The correctness of the algorithm for computing the edge cover EC′ in
the graph G′ was shown in [13]. We obtain a generalized edge cover in G by
deleting, the vertices v1 and v2, the edges incident on these vertices in EC′, and
all vertices adjacent to these vertices in EC′. Let O be the set of the deleted
vertices adjacent to v1 and v2, which will be identified as outliers. Let EC′′ be
the edges remaining from the edge cover EC′ in the modified graph G′′ = G\O.

We claim that EC′′ together with O is an optimal solution for the generalized
edge cover problem in G. Assume that there is an optimal solution in G consisting
of a set of outliers O and an edge cover EC∗ in G\O. Clearly c(EC′′) = c(EC∗),
for otherwise one of the solutions could be improved upon, thereby contradicting
their minimality in G′′ or G \ O respectively. It remains to prove that there is
no solution in G with a different outlier set and smaller cost. Let EC∗′

together
with O′ be such a solution for G having a smaller cost c′ < c(EC′). Then EC∗′

together with an edge {o, v1} or {o, v2} for every o ∈ O′ and the edge {v1, v2}
is an edge cover in G′ with cost c′ < c(EC′), contradicting the optimality of
EC′. ��
Thus we obtain a generalized edge cover. Note that a vertex u ∈ Vk, where k = 1
or 2, and μ(u) is the minimum weight among the edges of G incident on u, will
always be an outlier if μ(u) ≥ 2λ, and can never be an outlier if μ(u) < λ.
Otherwise, it will be an outlier if and only if it is not matched to a vertex in G′

during step 3 of the algorithm.
For a graph with n vertices and m edges, an edge cover of minimum weight

can be computed in time O(n(n + m log n)) [13]. In this context, since there are
at most K clusters in each patient, n ≤ 2K, and m ≤ K(K − 1)/2, and thus the
time complexity of pairwise comparison to identify outliers is O(K3 log K).

3.3 Comparing Multiple Clusters

Formation of Coherent Groups. We now consider an approach that com-
pares multiple diseased samples to identify clusters common to them but not
belonging to the Wild Type. A group of clusters S is a set of distinct clusters
from each patient, S = {u1, u2...uN}, with ui ∈ P i. In Sec. 4.5 we relax this
to form groups that do not cover all patients. To identify common outliers we
find such groups that exhibit high similarity among their clusters while being
dissimilar to the Wild Type.

A graph representation of a group S of clusters is a clique consisting of one
cluster from each patient. The cost of a group S is the average weight of all the
edges of the corresponding clique, which is the Cohesion Index CI(S). It is easy
to show that finding a group with minimum CI score is NP-hard via a reduction
from MAX-CLIQUE. To identify groups with low CI score we use a branch and
bound technique, which provides good performance for a reasonable number of
clusters and patients. We omit the details here due to space considerations.

The branch and bound procedure is called once with each cluster as seed, and
it finds a group with minimum cost CI(S) containing the seed cluster, resulting
in NK groups in total. The method works very well in practice, although it has
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a worst-case running time exponential in N . Since the distance measure is not
metric, no obvious approximation guarantee exists.

Once we have obtained coherent groups of clusters with small CI scores, we
calculate the DI and CC scores for those sets. Since we have a single Wild Type
sample with K clusters we can find the minimum Divergence Index for a group
S in O(NK) time. The decision about distinctive and common outliers is based
on the following rules:

Distinctive Outliers: If a group has high value for CI, then declare the seed
cluster of that set as a distinctive outlier, since it fails to form a close group with
clusters from other patients.

Common Outliers: Among the remaining groups with small CI scores, find
those groups having large CC values. These sets are close to one another while
being distinct from any WT cluster.

4 Results

4.1 Clustering Results

We cluster each normalized sample using a DPM clustering algorithm and the
results are shown in Table 1. All subsequent downstream analysis is built upon
these clustering results.

Table 1. Clustering the flow cytometry data for two datasets. WT represents the Wild
Type, P i denotes a leukemic mouse, and H is a pre-leukemic mouse with an oncogene
expressed.

Dataset-1 Dataset-2

Sample Dimension #Cells #Clusters Sample Dimension #Cells #Clusters

WT 6 115,407 18 WT 7 49,316 21
H 6 131,850 23 H 7 68,886 22
P 1 6 107,299 22 P 1 7 78,406 21
P 2 6 131,575 28 P 2 7 6,050 12
P 3 6 236,392 31 P 3 7 48,998 21

The computational cost of the clustering step using the Matlab DPM code
is about six to ten hours depending on the dataset size, while the edge cover
and branch and bound computations run under a minute on a 3 GHz PC. The
DPM clustering code should be much faster when it is implemented efficiently
in a non-interpreted environment, but it would still be the dominant cost of the
current computation. Improving its performance was not the scope of this work.

4.2 Pairwise Comparison Results

The generalized edge cover approach compares leukemic mouse samples with
WT and identifies outliers depending on a cut-off value λ. The optimal cut-off
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value is dependent on the Kullback-Leibler divergences of the clusters involved.
The number of outliers is inversely related to λ in that a large value of λ yields
very few outliers, and vice versa. A plot is shown in Figure 2.
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Fig. 2. Outliers from pairwise comparison between WT and leukemic samples with
different cut-off (λ) values for two datasets.

The outlier profile in both datasets shows a sharp change approximately at
λ = 20, which we choose to be a good cut-off value for the detection of extreme
outliers. Table 2 shows all the outliers obtained for two different values of λ.
Note that pairwise comparison of a leukemic sample with the WT sample cannot
distinguish between distinctive and common outliers.

Table 2. Outlying clusters in leukemic samples (Dataset 1) for two cut-off λ values

Sample Outliers at λ = 20 Outliers at λ = 10

P 1 2,10,13,14 2,3,10,12,13,14,16,17,18,19,21
P 2 4,12,17,18,20,24,25,28 2,3,4,11,12,16,17,18,19,20,21,22,24,25,26,27,28
P 3 11,12,13,16,17,18,19,20,21,29 8,9,11,12,13,15,16,17,18,19,20,21,23,24,26,28,29,31

4.3 Coherent Groups

Every cluster in each sample is used as a seed cluster to construct a group
S with a minimum value of the Cohesion Index. The significance of the CI
scores of the identified groups can be assessed using the permutation test [8].
We randomly select one cluster from each leukemic mouse to form a group and
construct Nperm = 100, 000 random groups in total. For any (non-randomly
constructed) group S, let NS be the number of random groups (Srand) having
CI(Srand) ≤ CI(S). The significance measure, the p-value of S, can then be
calculated as p(CI(S)) = (NS + 1)/(Nperm + 1). Groups with small p(CI(S))
values are significant since the chance of finding them at random is small. The
histogram of the Nperm permutations is shown in the left subfigure in Figure 3
with the broken vertical line indicating 5% confidence level. We observe that
most of the non-random groups fall within the 5% confidence interval.
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Fig. 3. Histogram of the permutation tests for CI (left) and CC (right) scores from
Dataset 1. Groups at a 5% confidence level are to the left of the broken vertical line
for CI scores, and to the right of the broken vertical line for CC scores.

Table 3. Groups with CI scores and p-values of CI scores. Seed clusters are shown in
grey and distinctive outliers are shown in boxed squares.

Dataset-1 Dataset-2

P1 P2 P3 CI p(CI) P1 P2 P3 CI p(CI)

1 7 8 0.62 0.00024 3 6 4 1.232 0.00064
2 4 18 296.7 - 6 8 9 24.495 -
4 7 8 1.404 0.0002 8 10 14 1.204 0.00043
10 26 18 154.658 - 10 10 7 0.627 0.00012
11 13 14 1.27 0.00013 11 4 12 44.63 -
14 1 30 74.604 - 12 5 15 3.397 0.00815
15 11 28 3.031 0.00335 13 5 15 3.918 0.01196
15 11 21 49.91 - 14 4 10 107.167 -
17 21 17 1.675 0.00046 18 5 15 3.326 0.0076
18 26 31 3.054 0.00345 21 12 21 7.234 0.053099

Several representative groups with their p-values are presented in the Ta-
ble 3, where seed clusters are highlighted in grey. Notice that multiple seeds may
construct the same group (e.g., {4, 7, 8} in dataset-1). Such groups are usually
tight with low p-values. Also notice the three groups in {12, 5, 15}, {13, 5, 15},
{18, 5, 15} in Dataset-2, where the same clusters from P 2 and P 3 are grouped
with different clusters from P 1 with similar CI scores. If clusters 12, 13, 18 from
P 1 all have small KL divergence from each other, then merging these three clus-
ters produces a unified cluster. Thus we can use the group formation approach
to refine clusters obtained from the clustering algorithm.

4.4 Distinctive and Common Outliers

Seed clusters that fail to form a group with significantly low CI scores are
declared as distinctive outliers and are shown in boxed squares in Table 3. The
p-values for such groups will be large, bearing little significance in this context.
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Common outliers are groups of clusters with high Cohesion Confidence (CC)
values, and do not have a distinctive outlier as a member. We performed the
permutation test on the CC value to assess its significance in the same way as
we did for the CI score. However, we are now interested in the confidence limit to
the right side of the broken vertical line in the histogram in the right subfigure
of Figure 3. Again, we find that groups with high CC values are significant
since the chance of finding them at random is small. We report distinctive and
common outliers discovered by the clique approach in Table 4. All distinctive and
common outliers identified by this approach were also identified by the pairwise
comparison approach (Table 2), but the converse is generally not true. Hence
the clique approach is more powerful in detecting and classifying outliers than
the edge cover approach.

Table 4. Distinctive and Common Outlying clusters identified by the weighted clique
approach. Here ui is a cluster belonging to a leukemic mouse P i.

Distinctive Outliers Common Outliers

Dataset-1 Dataset-2 Dataset-1 Dataset-2

Sample Clusters Sample Clusters {u1, u2, u3} CC p(CC) {u1, u2, u3} CC p(CC)

P 1 2,10,14,16 P 1 6,11 17,21,17 0.64 0.00007 10,10,7 0.78 0.00013
P 2 4,20 P 2 4 1,7,8 0.63 0.00011 4,9,1 0.64 0.00078
P 3 12,16,19,20,21 P 3 5,10 9,5,3 0.58 0.00015 17,2,6 0.612 0.0016

4.5 Probabilistic Model for Groups

We describe a probabilistic model to refine the groups by relaxing our initial
requirement that a group must necessarily include one cluster from each patient.
Let fij be the number of times two clusters ui and uj are grouped together, and
let fi =

∑
j �=i fij be the number of times cluster ui appears in any group. Then

for a group S = {u1, u2...uN} the probability of ui being a member of S, P (ui|S),
and the probability of the whole group, P (S) can be calculated by

P (ui|S) =

∑
uj∈S
i�=j

fij

fi
, and P (S) =

∏
ui∈S

1≤i≤N

P (ui|S). (8)

Within a group, a low P (ui|S) value and high P (uj |S) value for all j �= i,
suggests that ui is a member with weak cohesion to S. We can refine the group
S by deleting the weak member ui, and inserting a gap in that position. A high
P (ui|S) and low P (uj |S), for all j �= i, also indicates a weakly formed group.
In this case, we allow ui to form a group by itself deleting all other members
of S, making ui a distinctive outlier. We present several representative groups
from Dataset-1 in Table 5, where clusters with high support are marked in grey.
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Consider the groups in rows 2 and 3 of the Table. Each has one weak member(u1
and u3, respectively) that can be safely removed from the corresponding groups.
However, rows 4 and 5 show groups with only one strong member (u2 and u1,
respectively), which can be declared as a distinctive outlier by removing all other
members from the groups. The group in the sixth row has a low probability.

Table 5. Group-uniqueness probabilities for Dataset-1. Clusters in grey have the high-
est probabilities of belonging to the group.

u1 P (u1|S) u2 P (u2|S) u3 P (u3|S) P (S)

11 1 13 1 14 1 1
17 .29 16 1 6 1 .29
19 .83 22 .83 28 .33 .23
2 .33 4 1 18 .33 .11
21 1 6 .20 27 .25 .05
18 .17 19 .23 27 .25 .01

4.6 Effect of APL on Bone Marrow Cells

Wojiski et al. [15] compared the populations of a number of cell types in the
bone marrow of WT, leukemic and pre-leukemic (with oncogene PML-RARα ex-
pressed in the latter two groups) mice. They reported that WT and pre-leukemic
(H) mice had similar cell populations of hematopoietic stem cells (LSKs),
common myeloid progenitor cells (CMPs), granulocyte-monocyte progenitor
cells (GMPs), and megakaryocyte erythrocyte progenitor cells (MEPs); but in
leukemic mice (P) cell populations of LSKs, CMPs and MEPs are reduced and
GMPs are increased, relative to the WT and pre-leukemic mice. They also found
that mature granulocytes were increased in pre-leukemic mice relative to WT.

In a pairwise comparison of flow cytometry data from WT and H using the
edge cover approach, we found that of the 18 clusters in WT and 23 clusters in
H in the first data set, only 3 clusters from each set were left uncovered when
a value λ = 20 was used. Similar results were obtained for the second data set
also, confirming the general correspondence of populations of various cell types
in these two kinds of mice. Generally, a group of clusters from leukemic mice that
has a high value of CC (hence it is distant from any cluster in the WT) also has a
high value of CC when clusters from a pre-leukemic mouse are used in the place
of WT. However, we found some clusters in the pre-leukemic mouse that were
closer to the leukemic mice rather than the WT. We performed this experiment
by treating the pre-leukemic sample as an additional leukemic sample, and using
the branch and bound algorithm to identify sets with high CC values. In Dataset-
1, we found the clusters {8, 14, 15, 5} and {17, 21, 17, 18}; and in Dataset-2, we
found the clusters {4, 9, 1, 4} and {10, 10, 7, 8}; here in each set the first three
clusters are from leukemic mice and the last is from the pre-leukemic mouse,
and these clusters are all distant from any cluster in the WT. Identifying these
specific cell types through further experimental work could shed light on disease
progression in the murine model of APL.
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Abstract. Applied Biosystems’ SOLiD system offers a low-cost alterna-
tive to the traditional Sanger method of DNA sequencing. We introduce
two main algorithms of mapping SOLiD’s color reads onto a reference
genome. The first method performs mapping by adapting a greedy align-
ment framework. In such an alignment, reads are mapped to approximate
genome positions, allowing for a pre-specified bound on sequence differ-
ence that combines nucleotide mismatches, gaps, and sequencing errors.
The second method for precise alignment relies on a pair hidden Markov
model framework, combining a DNA sequence evolution model and se-
quencing errors (from read quality files).

1 Introduction

Next-generation sequencing (NGS) methods [1] provide economical alternatives
to the traditional Sanger method of DNA sequencing. Various commercially
available platforms can generate large amounts of information which enable im-
portant biological and medical applications [2], including, perhaps most notably,
the sequencing of personal and somatic genomes [3,4], or even entire ecosys-
tems [5]. In a typical genome analysis pipeline, NGS reads are mapped to ref-
erence sequences, and the alignments are further examined to detect variations
within the target DNA sample, and with respect to the reference.

Currently available software for large-scale NGS mapping [6] use indexing
techniques in order to speed up the search for similarities. The underlying al-
gorithms rely either on hashtable-based indexes (seed-and-extend), or on com-
pressed indexes exploiting the Burrows-Wheeler Transformation (BWT). BWT-
based methods use little memory, and have an impressive computing speed [7,8].
Seed-and-extend has an increasing advantage with higher sequence divergences,
due to flexible tailoring choices for seeding methods [9].

The AB SOLiD sequencing platform from Applied Biosystems, Inc. (Foster
City, Cal.) poses even greater challenges for bioinformatics than other widely
used NGS technologies, due to the sheer size of the produced data (up to about a
billion 35bp or 50bp reads in one production run), and the employed dinucleotide
encoding by “colors.” We introduce algorithmic solutions to different problems
encountered when mapping AB SOLiD reads to a reference genome. First, we
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propose a seed-and-extend framework for mapping color reads to locations along
a reference DNA. The novelty of the framework is a greedy extension procedure
employed in filtering the hits, which combines sequencing errors and DNA se-
quence differences. The seeding and the extension use the same “phase” repre-
sentation of the color sequences, in order to minimize the number of executed
arithmetic operations. The mappings are immediately useful for inferring struc-
tural variations [10] or phylogenetic classifications [11] (when multiple reference
genomes are considered). Our second algorithmic solution addresses fine-scale
alignments in a statistical framework. A notable feature of the approach is that
color read quality values (sequencing error probabilities) are incorporated into a
pair hidden Markov model. The statistical framework helps inferring the align-
ment with maximum expected accuracy or alignment metric accuracy (AMAP).
The model assigns posterior probabilities to all target sequence variations, which
can be used directly to deduce the consensus between overlapping reads without
a multiple alignment.

2 Methods

2.1 Sequences and Numerical Encoding

The AB SOLiD system relies on the ligase-driven synthesis of PCR-amplified
target DNA fragments. The sequencing read is produced in “color” encoding,
where colors correspond to the dinucleotides sampled by fluorescently labeled
probes in iterated synthesis cycles, arranged in their physical order along the
target fragment. In the rest of the paper, we use a convenient numerical encoding
for nucleotides and colors (or fluorescent dies):

A = 0, C = 1, G = 2, T = 3
FAM/blue = 0, Cy3/green = 1, TXR/orange = 2, Cy5/red = 3.

With this encoding, the mapping between colors and dinucleotides is simply the
bitwise exclusive OR operation, denoted by ⊕: dinucleotide xy is encoded by the
color c = x ⊕ y.

The error-free color encoding for a DNA sequence t = t0..m is the sequence
s = c1..m where ci = ti ⊕ ti−1. Notice that the same c translates into four
possible t determined by t0. The read alignment problem is that of aligning
an unknown target sequence t to a known reference DNA sequence s = s1..n,
using a color sequence c that encodes t but may contain sequencing errors. The
alignment is evaluated with respect to the implied nucleotide mismatches and
gaps, as well as the implied sequencing errors. Figure 1 illustrates this concept.
An alignment is composed of column types M1–M4, D and I1–I2, where each
column contains three cells: a reference cell s, a color cell c and a target cell t.
For all three, s, c, t ∈ {0, 1, 2, 3, �}, where � is the indel character. Concatenated
non-indel characters in the color cells give the complete sequence c1..m, and those
in the reference cells yield a reference region si..i′ . Indel characters may not
occupy all three cells, and indels appear together in the color and target cells.
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Fig. 1. Alignment between reference DNA, color sequence, and target sequence. The
tables on the bottom enumerate possible alignment columns. Every column is anno-
tated by the preceding nucleotide y in the target, defining sequencing errors.

Here we consider the simplest alignment scoring system, called the edit distance,
which is computed by penalizing columns of type M2, M3, D and I1 with 1, and
columns of type M4 and I2 with 2. Columns of type M1 are not penalized. The
classic Smith-Waterman-Gotoh alignment [12,13] is readily adaptable to find an
optimal alignment [14,15]. In order to track sequencing errors, it is necessary to
include dinucleotide information in the formulas. Formally, there is a color error
in a non-D column that is not the leftmost such column, if t ⊕ t′ �= cj where t′

is in the target cell, cj is in the color cell, and t is the target cell content in the
closest preceding non-D column.

The following lemma (proof omitted) shows that there is an optimal alignment
that contains no columns with penalty 2.

Lemma 1. There is an alignment with minimum edit distance that contains
neither M4 nor I2 columns.

In a run of � consecutive perfect matches (M1) between si..i+�−1 and cj..j+�−1,

cj = y ⊕ si (1a)
cj+k = si+k−1 ⊕ si+k {1 ≤ k < �}, (1b)

where y denotes the last aligned target nucleotide preceding the run. For conve-
nience, we introduce the phase representation φ0..m of the color sequence: φ0 = 0,
and φk = c1 ⊕ c2 ⊕ c3 ⊕ · · · ⊕ ck = φk−1 ⊕ ck for k > 0. From (1),

si+k = y ⊕ cj ⊕ cj+1 ⊕ · · · ⊕ cj+k = y ⊕ φj−1 ⊕ φj+k (2)

for all k = 0, . . . , � − 1. In other words, there exists an u (in particular, u = y ⊕
φj−1) with which si+k = u ⊕ φj+k holds for all k < �. The phase representation
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φ0..m = t0..m is thus the translation of the color read into DNA, assuming that
the target sequence starts with t0 = φ0 = 0 (A).

2.2 Color Read Indexing

In a seed-and-extend framework [9], local alignments between two DNA se-
quences R, T are found by using a seeding function h : {A, C, G, T}� "→ H, which
filters the (i, j) position pairs where local alignments are worth being looked for.
Specifically, an index table is built for R which gives the set of positions h−1

R (x) ={
i : h

(
Ri..i+�−1

)
= x

}
for all x ∈ H. A pair (i, j) is hit when h

(
Tj..j+�−1

)
=

h
(
Ri..i+�−1

)
, or i ∈ h−1

R

(
h(Tj..j+�−1)

)
. Hits are found by sliding a window

along T and consulting the index table for h
(
Tj..j+�−1

)
in each position j. Hits

are extended by performing a local alignment in a region around (i, j).
In the simplest case, h is the identity function, and hits correspond to match-

ing �-mers. Other widely used seeding functions rely on so-called spaced seeds. An
(�, w) spaced seed is defined by a set {δ1, δ2, . . . , δw} ⊆ {1, 2, . . . , �} of sampled po-
sitions, corresponding to the seeding function h(x1..�) = xδ1 · · ·xδw . Accordingly,
(i, j) pairs are hit when Ri+δk−1 = Tj+δk−1 for all k = 1, . . . , w. Spaced seeds
perform theoretically and practically better [9] than �-mers as seeding functions.

Seeding is not straightforward with color reads, because s and c do not en-
code DNA in the same way. Equation (2) suggests a possible way of adapting
spaced seeds to indexing color reads. For a hit, si+δk−1 = tj+δk−1 holds in
all sample positions k = 1, . . . , w. Assuming no sequencing errors in cj..j+�−1,
Eq. (2) implies that si+δ1−1 ⊕ si+δk−1 = φj+δ1−1 ⊕ φj+δk−1 for all k = 2, . . . , w.
Consequently, the hits can be found by indexing the reads in the phase repre-
sentation: the seeding function is h(x1..�) = y1..w−1 with yk = xδ1 ⊕ xδk+1 . For
a corresponding hit, h(si..i+�−1) = h(φj..j+�−1). (Existing tools like [14] trans-
late instead the reference sequence into color space, so that for an (i, j)-hit,
si+δk−2 ⊕ si+δk−1 = cj+δk−1 = φj+δk−2 ⊕φj+δk−1 at all k, which corresponds to
a seeding function h(x0..�) = y1..w with yk = xδk−1 ⊕ xδk

in our notation.)

2.3 Greedy Alignment between Color Read and DNA Sequence

Hits are extended by adapting the classic greedy procedure of Wu et al. [16]. An
(i, j) hit between the reference DNA s1..n and color read c1..m is extended by
computing the longest prefix of the color sequence that can be aligned starting
at reference position (i − j + 1) within prespecified bounds on the edit dis-
tance. Specifically, the procedure uses an argument dmax bounding the number
of allowed indels between the reference and the inferred target sequence, and
an argument emax that bounds the edit distance. The procedure is explained
best in terms of the edit graph. The edit graph’s vertices are {(i, j, t) : 0 ≤ i ≤
n; 0 ≤ j ≤ m; 0 ≤ t ≤ 3}. The edges are weighted, and correspond to alignment
columns of Fig. 1. By Lemma 1, it suffices to consider column types M1–M3, D
and I1. The t component of the vertex triple contains phase information on the
color sequence. An edge of type M1 has weight 0, and by (2), connects (i, j, t) to
(i + 1, j + 1, t) where t = si+1 ⊕ φj+1. All other edge types have weight 1: M2
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(i, j, t) → (i+1, j+1, si+1⊕φj+1) with t �= si+1⊕φj+1, M3 (i, j, t) → (i+1, j+1, t)
with t �= si+1 ⊕ φj+1, I1 (i, j, t) → (i, j + 1, t), and D (i, j, t) → (i + 1, j, t).

A path in the edit graph corresponds to an alignment. Given a bound emax, we
restrict our attention to paths from any of the (i, 0, t) vertices reach some (i′, j, t′)
with maximum j ≤ m, and have at most emax non-M1 edges. In other words,
we are searching for the longest alignable prefix within the bound. Define the
diagonal d = 0, 1, . . . , n as the vertex set

{
(i, i − d, t)

}
. Our greedy algorithm

considers paths along diagonals 0, . . . , 2dmax only. Let Rd
t (e) = j if (j + d, j, t)

is the farthest reachable vertex from any (i, i − d, t′) on a path with vertices on
diagonals d ≤ 2dmax, and with edge weight sum at most e ≤ emax. Algorithm
Greedy computes all Rd

t (e).

Algorithm Greedy

(
s1..n, φ0..m, dmax

)
Output: longest prefix of φ alignable within emax errors on diagonals 0, . . . 2dmax.

G1 for t ← 0, . . . , 3 and d = 0, . . . , 2dmax do Rd
t (0) ← 0; ∀e > 0: Rd

t (e) ← −∞
G2 for e ← 0, . . . , emax do
G3 for t ← 0, . . . , 3 and d = 0, . . . , 2dmax do
G4 j ← Rd

t (e); i ← j + d
G5 if j 
= −∞ then
G6 while i + 1 < n and j + 1 < m and si+1 ⊕ φj+1 = t do
G7 i ← i + 1; j ← j + 1 
 run of M1 edges
G8 if j ≥ m − (emax − e) then return m else Rd

t (e) ← j
G9 if e 
= emax then
G10 for t ← 0, . . . , 3 and d = 0, . . . , 2dmax do
G11 j ← Rd

t (e); i ← j + d
G12 if j 
= −∞ then
G13 if d 
= 2dmax then Update(d + 1, t, e + 1, j) 
 D edge
G14 if d 
= 0 then Update(d − 1, t, e + 1, j + 1) 
 I1 edge
G15 if i < n then
G16 Update(d, t, e + 1, j + 1) 
 M3 edge
G17 Update(d, si+1 ⊕ φj+1, e + 1, j + 1) 
 M2 edge
G18 return maxt=0,...,3;d=0,...,2dmax{Rd

t (emax)}
Algorithm Update(d, t, e, j)

U1 if Rd
t (e) < j then Rd

t (e) ← j

When extending a hit at (i, j) for the reference sequence s and the phase se-
quence φ0..m, Algorithm Greedy

(
si′..i′+m+2dmax−1, φ0..m, dmax

)
is called, where

i′ = i − j + 1 − dmax is the starting position of the region within which the
extension is performed. By an analogous argument to [16], the running time
is O(m + dmaxemax) on average (for random sequences), and O(mdmax) in the
worst case. The greedy framework can be adapted to slightly more general scoring
systems (match/mismatch penalties), but it is unclear whether it could accom-
modate symbol-dependent scoring and affine gap penalization [17]. Therefore,
Greedy is more useful for filtering hits than for retrieving optimal alignments.

2.4 Statistical Alignment for Color Reads

We perform statistical alignment by using a pair hidden Markov model [18],
or pair-HMM. A pair-HMM defines a probability distribution over alignments.
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The advantages of having a well-defined probabilistic model are manifold [19].
Likelihoods can be used to recognize unrelated sequence pairs, or to optimize
model parameters. Posterior probabilities quantify discrepancies between the
two sequences in a statistically principled manner.

For the alignment of color reads to a reference DNA, we introduce a pair-
HMM with state set Q = {S, E} ∪ ({M, I, D} × {0, 1, 2, 3}). The HMM generates
a state sequence q0, . . . , q� ∈ Q� as a random Markov chain determined by tran-
sition probabilities between the states. A transition is followed by the random
emission of a pair w = (s, c) where s ∈ {0, 1, 2, 3, �} is a numerically encoded
nucleotide and c ∈ {0, 1, 2, 3, �} is a numerically encoded color. A run of the
hidden Markov model [20] consists of a random state sequence q0, . . . , q� cou-
pled with the random emitted pairs w1, . . . , w�. States S and E emit unaligned
prefixes and suffixes of the reference sequence. States (M, t), (D, t), (I, t) encode
the rightmost inferred target nucleotide t, and correspond to match, deletion,
and insertion. A transition from (x, t) to (x′, t′) with x′ ∈ {M, I} entails the
emission of a color character c: the color is correct if t ⊕ t′ = c. The SOLiD
sequencing system provides error estimates in so-called quality files that encode
the error probability ν on an integer scale using a formula originally introduced
for Sanger sequencing in the phred program [21]: qual = �−10 · log10 ν�. We thus
assume that a sequence of error probabilities ν1..m is available with the color
sequence c1..m. Subsequently to a state transition (x, t) → (x′, t′), the emission
of the color character cj occurs with probability γj(t ⊕ t′), where

γj(cj) = 1 − νj and c �= cj : γj(c) = νj/3. (3)

The emission of reference nucleotides is dictated by an assumed Markov model of
DNA sequence evolution [22], like the F84 model [23]. In general, we assume that
the nucleotide substitutions between reference and target happen according to a
Markov model that specifies the stationary distribution π and the substitution
probabilities p(s → t), and that the model is reversible (πsp(s → t) = πtp(t →
s)). Transitions to states (x, t) with different t ∈ {A, C, G, T} thus happen by
probabilities proportional to πt. The emission of a reference nucleotide s �= �

occurs with probability p(t → s) on arrival to state (M, t).
Transition probabilities determine the expected lengths of unaligned prefixes

and suffixes, as well as the frequency and length of gaps. In particular, we assume
that the prefix and suffix regions have a geometric prior length distribution with
mean 1/η, that insertions and deletions start with a probability δ, and that
gaps have a geometric prior length distribution with mean 1/(1 − ε). When
aligning a color sequence of length m, we are interested in state sequences with
exactly m states emitting color characters (M and I). For that reason, we impose
the non-emitting state transition M → E and I → E after emitting m color
characters. The transition out of state S to (M, t) or (I, t), which sets the first
target nucleotide t0 = t, is also non-emitting. Figure 2 summarizes the state
transitions and the emissions.
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S → S 1 − η (s,�) πs

S → (M, t) η(1 − δ)πt (�, �) 1
S → (I, t) ηδπt (�, �) 1
(M, t) → (M, t′) (1 − 2δ)πt′ (s, t ⊕ t′) p(t′ → s)
(M, t) → (D, t) δ (s,�) πs

(M, t) → (I, t′) δπt′ (�, t ⊕ t′) 1
(M, t) → E 1[after m colors] (�, �) 1
(D, t) → (M, t′) (1 − ε − δ)πt′ (s, t ⊕ t′) p(t′ → s)
(D, t) → (D, t) ε (s,�) πs

(D, t) → (I, t′) δπt′ (�, t ⊕ t′) 1
(I, t) → (M, t′) (1 − δ − ε)πt′ (s, t ⊕ t′) p(t′ → s)
(I, t) → (D, t) δ (s,�) πs

(I, t) → (I, t′) επt′ (�, t ⊕ t′) 1
(I, t) → E 1[after m colors] (�, �) 1
E → E 1 − η (s,�) πs

Fig. 2. Pair HMM for alignment of color reads and the reference DNA. π and p are the
parameters of the nucleotide subsitution model (stationary distribution, and Markov-
chain transition probabilities, respectively); δ, ε and η are the HMM’s state transition
parameters (gap open, gap extend, and overhang, respectively). Only the correct colors
are shown in the Emission column, i.e., the sequencing error probability ν is 0 in this
table.
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2.5 Likelihood and Posterior Probabilities

A run of the pair-HMM in Fig. 2 produces an alignment, but the indels cannot
be observed, only the produced sequences. Given a reference s1..n and a color
sequence c1..m, we can compute the likelihood that such a pair is generated by
the model, while admitting color errors by known probabilities ν1..m. In order
to compute the likelihood (and various posterior probabilities later), we use
forward and backward probabilities [18,20]. The forward probabilities are denoted
by S[i] = S[i, 0], E[i] = E[i, m], Mt[i, j], It[i, j], Dt[i, j] with i = 0, . . . , n and
j = 0, . . .m. The quantity q[i, j] denotes the probability that the pair-HMM
generates the prefixes s1..i and c1..j in a run that ends with state q. Forward
probabilities can be computed in a recursive manner, as shown in Table 1.

Table 1. Recursions for forward probabilities

S[0] = 1; E[0] = 0

S[i] = πsi · (1 − η) · S[i − 1] {i > 0}
Mt[i, 0] = πt · η(1 − δ) · S[i]; It[i, 0] = πt · ηδ · S[i]; Dt[i, 0] = 0 {i ≥ 0}

Mt[i, j] = πtp(t → si)
∑
t′

(
γj(t′ ⊕ t) {i, j > 0}

×
(
(1 − 2δ) · Mt′ [i − 1, j − 1]

+(1 − δ − ε) · (It′ [i − 1, j − 1] + Dt′ [i − 1, j − 1]
)))

It[i, j] = πt

∑
t′

γj(t′ ⊕ t)
(
ε · It′ [i, j − 1]

+δ · (Mt′ [i, j − 1] + Dt′ [i, j − 1]
)) {i ≥ 0, j > 0}

Dt[i, j] = πsi

(
ε · Dt[i − 1, j] + δ · (Mt[i − 1, j] + It[i − 1, j]

)) {i, j > 0}

E[i] = πsi(1 − η) · E[i − 1] +
∑

t

(
Mt[i, m] + It[i, m]

)
{i > 0}

The backward probabilities S′[i] = S′[i, 0], E′[i] = E′[i, m], M ′
t[i, j], I

′
t[i, j],

D′
t[i, j] capture a symmetric concept. The quantity q′[i, j] is the probability that

the pair-HMM produces the suffixes si+1..n and cj+1..n in a run starting with
state q. The backward probabilities are calculated by analogous recursions to
those in Table 1.

Now, given the color error probabilities ν1..m, the likelihood for the observed
sequences is L(s1..n, c1..m) = E[n] = S′[0]. The forward and backward probabil-
ities are combined to calculate posterior probabilities for visiting various states.
The posteriors are ψ(q)[i, j] = q[i,j]·q′ [i,j]

L(s1..n,c1..m) for q = Mt, It, Dt and ψ(q)[i] =
q[i]·q′ [i]

L(s1..n,c1..m) for q = S, E. The posterior probabilities can be used to assign confi-
dence to a triple alignment column. A state transition to q = (M, t),
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followed by the emission of (s, c) corresponds to an alignment column (s, c, t)
of type M1–M4. Hence, p(i � j, t) = ψ(Mt)[i, j] is the probability that such a
column aligning s = si and c = cj is correct. The probability that si is deleted
in the target sequence is p(i � ·) =

∑
j,t ψ(Dt)[i, j] = 1 −∑j,t pt(i � j, t). The

probability that a column of type I1 or I2 containing (�, cj , t) should appear in
the alignment is p(·� j, t) =

∑
i ψ(It)[i, j]. Finally, the probability that reference

nucleotide i is part of the skipped prefix or suffix is α(i) = ψ(S)[i] + ψ(E)[i] −∑
t

(
ψ(Mt)[i, m] + ψ(It)[i, m]

)
, where the non-emitting transitions into E are

taken into account.
With the posterior probabilities at hand, we can find the so-called AMAP

alignment that maximizes metric accuracy [24]. Consider an alignment with �
columns

(
(sk, ck, tk) : k = 1, . . . , �

)
Let T (k) be the type of column k, and let

s#
k , c#

k denote the number of non-indel reference and color characters emit-
ted in columns 1, . . . , k. Using a gap-factor G ∈ [0, 1], the alignment maxi-

mizes the score (1−G) ·∑k : T (k)∈M p(s#
k � c#

k , tk)+G ·
(∑

k : T (k)=D p(s#
k � ·)+∑

k : T (k)∈I p(·� c#
k , tk) +

∑
k : T (k)∈S α(s#

k )
)

, where M = {M1, M2, M3, M4},
I = {I1, I2} and S = {S, E}. The gap-factor sets a tradeoff between specificity
and sensitivity: G = 0 corresponds to the alignment with maximum expected
accuracy [18], and G = 1/3 provides a neutral setting. Computing the AMAP
alignment is straightforward by dynamic programming after the posterior prob-
abilities are calculated.

Small-scale variations such as nucleotide substitutions and short gaps can be
readily identified with statistical confidence. The probability that si is aligned
with a target nucleotide t ∈ {0, 1, 2, 3} is p(i ∼ t) =

∑
j p(i � j, t). The proba-

bility that the reference nucleotide si is aligned with a gap is p(i � ·). Figure 3
illustrates AMAP alignments and sequence variants. The probabilities of the

(a)

(b)

Fig. 3. AMAP alignments and sequence variations. “Confidence” is the probability of
the column being correct. Shading indicates the quality values along the color sequence;
a dot ‘.’ denotes a color error. Sequence variants are shown by the logos. The height
of each logo box is proportional to the probability 1 − α(i) that the nucleotide is
covered by the alignment; posterior probabilities for homology statements are shown
by the relative symbol height. (a) Mismatches with different credibility. (b) Homology
statements may be stronger than alignment confidence (see GACC before the deletion).
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homology statements can be combined across different reads that align to the
same reference region, in order to infer sequence variations in the target DNA.

3 Experiments

We implemented the algorithms in a Java software package called Crema, and used
it on sequencing reads for Escherichia coli DH10B. The reads (35bp long reads,
no mate pairs) were downloaded from the Applied Biosystems website (http:
//download.solidsoftwaretools.com/frag/R1a007_20080307_2_EG017_F3.
csfasta.zip), with the accompanying quality file. We selected 1 million reads
randomly, and mapped them against the genome of Shigella flexneri 2a str. 301
(Genbank accession number NC 004337.1). In the experiments, we compared our
implementation with Bowtie [8] version 0.12.5, and SHRiMP [14] version 1.3.2. All
programs were tested on an ordinary Linux machine (Amazon Elastic Compute
Cloud, Standard Instance).
Read mapping. Table 2 shows the mapping results. In the greedy extension,
we mapped the reads by retaining hits where all 35 positions be aligned within
an edit distance of emax = 6, along a band of ±3 diagonals. At comparable
sensitivities, the greedy extension (with a platform-independent implementation)
is faster than Bowtie, or SHRiMP.

Table 2. Mapping DH10B sequencing reads to S. flexneri. Mappings with different
seeds (numbers denote length and weight) are compared with other tools at parameter
settings resulting in comparable sensitivities. “Unique” reads are mapped to a single
locus with maximal alignment score.

Method CPU time Mapped reads Unique
SHRiMP (-M 35bp,fast) 263 s 593785 561301
SHRiMP (-M 35bp,sensitive) 717 s 605348 572317
Bowtie (--best) 216 s 488137
Crema (19,17)-seed + greedy 118 s 511263 492230
Crema (16,14)-seed + greedy 192 s 569865 546495
Crema (14,12)-seed + greedy 581 s 605938 576419

Read alignment. We computed the alignments for uniquely mapped reads by
first optimizing the pair-HMM parameters using a random subset of 100 thou-
sand reads. We employed the F84 model [23] of DNA sequence evolution, with
equal base frequencies (GC-content of E. coli is close to 50%), and a transi-
tion/transversion ratio of 2. The sequence divergence, and the gap open/extend
probabilities were set in an Expectation-Maximization procedure by computing
the expected numbers of substitutions and indels: convergence was achieved after
four iterations with a divergence of 0.0145, gap open probability δ = 0.00025 and
gap extension probability ε = 0.5. Instead of directly using the Phred formula for
transforming quality scores into probabilities, we used our own mapping based
on the expected number of color errors at different scores, as computed by the
pair-HMM model.

http:
//download.solidsoftwaretools.com/frag/R1a007_20080307_2_EG017_F3.
csfasta.zip
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Table 3. Alignments of DH10B sequencing reads with S. flexneri. “Validated” reads
and nucleotides appear in BLAST alignments to the DH10B reference. “Incorrect”
nucleotides differ from the DH10B genome sequence.

SHRiMP
(sensitive)

Reads

unique validated

All inferred nucleotides

validated incorrect

Substitutions

validated incorrect

572 317 570 107 19 569 714 42 863
(0.22%) 184 254 28 364

(15.4%)

Bowtie
(best) 465 024 463 785 15 274 713 13 862

(0.09%) 70 110 2 783
(4.0%)

Crema
(AMAP alignment) 576 419 574 490 19 962 920 40 308

(0.20%) 249 107 27 162
(10.9%)

Insertions

validated incorrect

290 10
(3.4%)

1 108 72
(6.5%)

(does not infer indels)

In order to validate alignment results, we used blastn [25] to align the inferred
target sequences to the assembled DH10B genome (Genbank accession number
NC 010473.1), with default parameters and an E-value cutoff of 10−6. BLAST
found an alignment for 99.7–99.6% of the reads. The alignments (as reported in
SAM [http://samtools.sourceforge.net/] format’s CIGAR strings) of
uniquely mapped reads were scanned to validate the inferred target nucleotides.
Table 3 shows the results. Bowtie, designed to map human sequence variants, cap-
tures only very similar sequences, with an overall error rate of 0.09%. SHRiMP
and Crema are much more sensitive, but have a similar 0.2% overall error. Crema
is, however, better than SHRiMP at finding actual sequence differences: about
35% more substitutions are predicted, with 30% fewer errors. The framework is
especially useful in annotating the computed alignments. The posterior probabil-
ities for the inferred nucleotides can be encoded in the QUAL field of the SAM
format using the phred transformation [21]. Figure 4 illustrates that high-scoring
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Fig. 4. Quality scores for inferred nucleotides and actual correctness (“BLAST valida-
tion”) in validating BLAST hits. The horizontal dashed line shows the overall fraction
of correctly inferred nucleotides. “Predicted correctness” uses the Phred formula with
small bars denoting rounding errors. Vertical bars plot the frequency of quality scores
with scaling shown on the right.

http://samtools.sourceforge.net/
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positions have a much lower error level. For instance, inferred nucleotides with a
quality score at least 20 (96% of positions) are wrong only 0.045% of the time. The
plot also shows that quality values under 30 are predicted fairly accurately (Bowtie
quality values are underestimated by more than 20 on the same interval — data
not shown).

4 Conclusion

We presented a seed-and-extend framework for efficient color read mapping,
and a statistical alignment framework for precise alignments. The experiments
demonstrate that they offer valuable options in the comparative sequencing of
bacterial genomes.
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Abstract. New genome sequencing technologies are poised to enter the
sequencing landscape with significantly higher throughput of read data
produced at unprecedented speeds and lower costs per run. However,
current in-memory methods to align a set of reads to one or more ref-
erence genomes are ill-equipped to handle the expected growth of read-
throughput from newer technologies.

This paper reports the design of a new out-of-core read mapping al-
gorithm, Syzygy, which can scale to large volumes of read and genome
data. The algorithm is designed to run in a constant, user-stipulated
amount of main memory – small enough to fit on standard desktops –
irrespective of the sizes of read and genome data. Syzygy achieves a su-
perior spatial locality-of-reference that allows all large data structures
used in the algorithm to be maintained on disk. We compare our pro-
totype implementation with several popular read alignment programs.
Our results demonstrate clearly that Syzygy can scale to very large read
volumes while using only a fraction of memory in comparison, without
sacrificing performance.

1 Introduction

The landmark publications of Margulies et al. [1] and Shendure et al. [2] in 2005
heralded a new era of non-Sanger based, massively parallel genome sequencing
technologies. Today’s major commercial next-generation sequencing (NGS) sys-
tems include Roche’s (454) Genome Sequencer FLX, Illumina-Solexa’s Genome
Analyzer (GA) II, and Applied Biosystem’s SOLiD. The volume of data gener-
ated from these new sequencers is already staggering. (For example, Illumina’s
latest GA IIe sequencer produces about 1.75× 109 bases of read data in a day’s
run.) More recently, several new sequencing systems, such as Helicos’ Genetic
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Analysis system, Pacific Biosciences’ Single Molecule Real Time (SMRT) sys-
tem, Oxford Nanopores’ Nanopore sequencer, and Visigen’s Genetic sequencer,
have been announced promising higher read throughput at faster speeds and
significantly reduced costs per run. Some of these technologies are already in
business.

Mapping (or aligning) a set of reads to a reference genome is a fundamental
task in genome resequencing studies. Massive volumes of read data (growing
faster than Moore’s law) and very large genome sizes make the read mapping
problem computationally very challenging. Neither the classical methods for pat-
tern matching on strings [3–5] nor the methods from traditional sequence bioin-
formatics [6, 7] can cope with the large volumes of data from modern sequencers.

Since 2007, several methods catering specifically to NGS were published
[8–19].1 These methods can be broadly classified into four groups:

1. Methods which rely on hashing the read set (e.g. see [8–12]);
2. Methods which rely on hashing the reference (e.g. see [13–15]);
3. Methods based on advances in Stringology (e.g. see [16–18]);
4. A method [19] based on a sort-and-join approach.

Methods in categories 1 and 2 maintain a large hash index in main memory when
performing read alignment. The growth of data (read or genome, depending on
which set is maintained as a hash index) translates to increasing demands on
main memory for these methods. Methods in category 3, especially those that
use the Burrows-Wheeler index [20] of the reference sequence are comparatively
memory efficient when aligning reads to a single genome [16, 17]. However if
reads were to be mapped on more than one large genome (for example, multiple
human genomes simultaneously), even these methods begin to have impractical
memory demands. Slider [19] is currently a solitary method in category 4 which
relies on a simple sort-and-join strategy. The program is slow and requires both
a large amount of memory as well as disk space.

A common problem with the current programs is that they do not scale el-
egantly to handle very large data volumes due to impractical memory require-
ments or very long run times (in some cases, both). Moreover, the random nature
of data accesses to the index structures maintained by the methods in the first
three categories pose a major hurdle for their implementation out of core.

This paper describes the design of a new method, Syzygy, to efficiently align
massive numbers of reads simultaneously against multiple genomes. The design
allows the program to run in a fixed, user-stipulated amount of memory, small
enough to be deployed even on standard computers. Broadly, our method is based
on a sort-and-join strategy similar to the one used by Slider [19]. However the
details of our algorithm and its implementation is radically different, especially in
the way it handles the approximate read mapping problem. Syzygy reorganizes
the read mapping problem to achieve a superior spatial locality of accesses to
various data structures maintained by the method. This reorganization results

1 A comprehensive list of NGS read mapping tools is maintained by Heng Li at
http://lh3lh3.users.sourceforge.net/NGSalign.shtml
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in accesses to all data structures being predominantly linear, facilitating an out-
of-core implementation among other performance optimizations; all large data
structures in the algorithm are maintained on disk, requiring only a small in-
memory working set to proceed with the alignment.

2 Algorithm

2.1 Definitions

DNA sequence: A DNA sequence of length n is a string S = (s1 · · · sn) con-
taining n ‘bases’, where each base is from the alphabet of DNA nucleotides,
ℵ = {A, C, G, T}.
Reference genome set: Let G = {G1 · · · GN} be a set containing N reference
genomes where any genome Gi = (gi

1 · · · gi
ni

) (assume) is a DNA sequence con-
taining ni bases.
Read set: Let R = {r1 · · · rm} be a set containing m sequence reads, where any
read ri = (ri

1 · · · ri
L) ∈ R of length L is a short DNA sequence.

k-mer: Given any sequence S = (s1 · · · sl) of length l and a constant k ≤ l, a
k-mer of S defines another sequence K = (si · · · si+k−1), 1 ≤ i ≤ l − k + 1 which
is a substring of S.
Reverse complement: A reverse complement of a DNA sequence S, denoted
by S, is a sequence of bases which reverses S and replaces each base with its
Watson-Crick conjugate (A with T , G with C, and vice versa).
Key: A key(S) denotes an integral hash value of a sequence S using some key-
generation function which transforms strings uniquely to integers. A straight-
forward key generation function of DNA sequences over the alphabet ℵ is the
integral value as a result of representing the sequence using a 2 bits-per-base
encoding. (For example, {00, 01, 10, 11} for {A, C, G, T}.)

2.2 The Basic Sort-and-Join Method

We build our exposition by introducing first the basic sort-and-join method to
align reads simultaneously to a set of genomes. In the basic approach we use
the ideal scenario where reads R are matched exactly (that is, without errors)
with the genome set G. (To make the exposition clearer, in the entire paper we
assume that all reads in the set R are of a fixed length L. We note, however,
that it is straightforward to generalize our algorithm to variable length reads.)
The basic algorithm involves three simple steps:

Step 1: Reference list generation. A reference list defines a sorted list of
records G corresponding to every L-mer inG. Each L-mer,L= (gi

j · · · gi
j+L−1), 1 ≤

i ≤ N, 1 ≤ j ≤ ni−L+1, contributes the fields (h, p) to form a record in G, where
h = key(L) is the key of L, and p = [i, j] is the positional coordinate (sequence
number and offset in sequence) of L in G. The records in list G are sorted on the
field h.
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Step 2: Read list generation. For each read r = (r1 · · · rL) ∈ R, construct a
read list R = {(h, r)} where h =key(r). R is also sorted on the field h.
Step 3: Join list generation. A join list J = G � R is derived by joining
G = {(h, p)} and R = {(h, r)} on the field h, resulting in J = {(p, r)}. Each
record in this list gives a position p of the exact occurrence of a read r.

Observe the predominantly linear nature of data accesses in this method. In
Steps 1 and 2, genome and reference data are read sequentially while creating G
and R respectively. Again, the generation of the join list J requires all sequential
accesses through the sorted lists G and R, giving the list of matches of reads
against the genome(s). We note here that sorting of small keys (of fixed size) is
near-linear [21, 22].

Below, we use the framework of the basic sort-and-join strategy to address
the problem of approximate matching of reads to multiple genomes.

2.3 Sort-and-Join Method for Mapping with Errors

In practice, a large number of reads will not map exactly to reference sequence(s)
due to the presence of sequencing errors in the reads as well as other natural
genomic variations between the sample and the reference draft assembly. There-
fore it becomes necessary to map the reads to the reference genomes allowing a
certain number of errors or mismatches. A common strategy to handle approx-
imate matches is based on a lossless k-mer filtering technique. This technique
relies on the observation that two sequences of length L which are at a Hamming
distance of at most δ should share at least one k-mer of size k = � L

δ+1�. Indeed
this observation generalizes to Levenshtein distances between two strings. Our
method for approximate matching uses this observation. Below we describe the
extension of the basic sort-and-join strategy to map the reads in the presence of
errors under a threshold of Hamming distance δ:

Step 1: Reference list generation. Build a sorted reference list G such that
the tuples correspond to k-mers (instead of L-mers, previously) such that k =
� L

(δ+1)�.
Step 2: Read list generation. Each read is partitioned into fixed size (non-
overlapping) tiles of length k = � L

δ+1�. The pigeonhole principle suggests that
if a read matches under a threshold of δ at some position in the reference, then
there must be at least one of the δ + 1 read tiles that must match exactly to a
corresponding k-mer in the reference. Note that due to the chemistry involved
in the sequencing process each read should also be examined for a match against
the reference using its reverse complement.

Each read, therefore, contributes 2 × (δ + 1) non-overlapping (tiled) k-
mers (in both forward and reverse complement directions), where k =
� L

(δ+1)�. Specifically, a read ri = (ri
1 · · · ri

L) and its corresponding re-

verse complement ri = (ri
1 · · · ri

L) contributes to these non-overlapping k-
mer tiles:

{
(ri

1 · · · ri
k), (ri

k+1 · · · ri
2k), · · ·, (ri

δ×k+1 · · · ri
(δ+1)×k)

}
and

{
(ri

1 · · · ri
k),

(ri
k+1 · · · ri

2k), · · ·, (ri
δ×k+1 · · · ri

(δ+1)×k)
}

.
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Hence each tile of a read now contributes to the following fields: (h, r, o, s),
where h is the key of a tile, r the read from which it came, o the offset of the tile
from the start of the read, and s the ‘sense’ (forward or reverse complement) of
the tile. For example, the k-mer tile K = (ri

k+1 · · · ri
2k) and its corresponding re-

verse complement K = (ri
k+1 · · · ri

2k) contribute to R:
(
key(K), ri, (k + 1),→),

and
(
key(K), ri, (k + 1),←

)
, where ‘→’ and ‘←’ indicate matching in the sense

(forward) and antisense (reverse complement) directions of the k-mer tiles re-
spectively. Finally, the list R ≡ {(h, r, o, s)} is sorted on the field h.
Step 3: Join list generation. Join the sorted lists G = (h, p) and R =
(h, r, o, s), to give a new list J = G � R ≡ {(p′, r, s)}, where p′ = p − o is
the adjusted positional coordinate on the genome set which allows different tiles
of the same read to coalesce back together. (See Step 4.) For a given read if more
than one tile matches exactly at some position in the genome, the adjustment
p′ ensures that they point to the same starting position on the reference. This
provides the necessary efficiency in the post-processing step below.
Step 4: Verification and post-process. The list J is sorted on the fields
p′, r, and s in that order. Let a context in J define a set of items in J that
have the same (adjusted) position, read, and sense tuples. Sorting J on (p′, r, s)
ensures that tiles which share the same context will group together. Each context,
containing one or more tiles, identifies a unique position p′ ∈ G, read r, and the
directionality of the match s. While traversing linearly in the newly sorted list J ,
for each unique context, just one tile is enough to verify the Hamming distance of
the L-mer in G starting at position p′ with respect to the read r, in the direction
specified by s. The result of the verification is a list of mappings of the set R on
G under the approximate Hamming distance threshold δ.

We note that the extension of the sort-and-join strategy to approximate
matching still retains its sequential data access characteristic which is important
for any out-of-core implementation. In step 4, each Hamming distance verifica-
tion of the join record requires the extraction of a read-length sized substring
from the reference (string) data set which is then compared with the correspond-
ing read available in the join record. Since the join list is sorted primarily on
the (adjusted) position in the reference, accesses to the reference string(s) are
sequential, giving the crucial advantage of spatial locality of reference.

3 Implementation of Syzygy

3.1 Encoding, Key Generation and Other Bitwise Tricks

A nucleotide sequence from the alphabet containing four bases {A, T, G, C} is
packed into an array of unsigned 64-bit integer data types, where each base
is represented using a 2 bits-per-base encoding. Specifically, Syzygy uses the
{00, 01, 10, 11} binary encoding for {A, C, G, T} respectively. Each unsigned 64-
bit word (or, plainly, word) can encode information of up to 32 bases of a se-
quence. For example, a DNA sequence of length 100 is packed into an array
of 4 encoded words. (This requires an implicit convention to align strings to
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a consistent word boundary, necessary to decode strings whose length are not
an integral multiple of 32. Assuming a little-endian architecture, in Syzygy, the
start of strings are aligned to the most-significant word boundary). In the im-
plementation of Syzygy, the key of a k-mer is simply the integer defined by its
encoded word(s).

#define MASK 0x5555555555555555UL

uint8_t hammingDistance(
uint64_t *w1,
uint64_t *w2,
size_t n

) {
uint64_t tmp ;
uint8_t d = 0 ;

for( size_t i = 0 ; i < n ; i++ ) {
/* XOR ith words */
tmp = w1[i] ^ w2[i];

/* convert to a popcount problem */
tmp = (tmp & MASK) |

(tmp>>1 & MASK) ;

/* count set bits in tmp */
d += popcount( tmp ) ;

}
return d ;

}

Fig. 1. Code for Hamming distance compu-
tation of two strings packed into an array
of n words w1 and w2

In practice, both the genome and
read sequences come from an extended
alphabet to account for ambiguous or
unknown bases. On the genome side,
we store the strings in the encoded
form by converting each ambiguous
base to a random unambiguous base
in ℵ, while ignoring the contributions
to the reference list G by the k-mers
in the regions containing ambiguous
bases. For the read set we ignore all
sequences containing more than two
ambiguous bases.

This encoding has some convenient
advantages. Hamming distance and
reverse complement generation can be
performed cheaply using a few bitwise
operations. The code for determining
Hamming distance is shown in Fig. 1.
(There are several bitwise tricks to fa-
cilitate fast population count using popcount() in Fig. 1. See [23] for a compre-
hensive summary on accelerated population counting. Alternatively, a rapid way
to perform this operation would be to invoke a POPCNT instruction which comes
as a part of the instruction set on most modern microprocessors.) Coincidentally,
the specific encoding used in Syzygy also allows a fast computation of reverse
complements of DNA sequencing which relies on the fact that, in our encoding,
Watson-Crick conjugates have their bits flipped. (See Fig. 2 below.)

3.2 Main List Data Structures

Reference list: Recall, the reference list G is a list of records of the form {(h, p)}.
The field h, storing the key (the integer encoding) of a k-mer, can be denoted using
an array of one or more words depending on the size of the k-mer. Field p on the
other hand can be simply stored in a single word. In Syzygy,however, the reference
list is generated using 32-mers from the reference genome set, requiring just one
word each to store the fields h and p. (See also the special construction of the
reference list, explained in section 3.3, to handle ‘blowups’ in the join.) In addition,
we observe that a 32-mer based reference list containing (h, p) tuples subsumes all
reference lists corresponding to any (k < 32)-mers. This holds primarily due to
the encoding Syzygy uses and the nature of its key generation function. A fully
sorted 32-mer keys implies the sorted order of any of its prefixes. For example, a
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16-mer reference list can be derived from a 32-mer list by trivially masking out
the encoded bits corresponding to the trailing 16 bases. (Note however that some
(k < 32)-mers in the end of each genome – or any discontinuous region – will
be lost when sliding along the genome set with a window of size 32. But this is a
minor issue which can be trivially remedied.) Using the above observation, a 32-
mer reference list can be preprocessed and used for mapping under variable tile
sizes, calculated based on the hamming distance threshold and the read length.
This is especially meaningful because often it is the read set which changes while
the set of reference genomes remains mostly static.

#define MASK1 0x3333333333333333UL
#define MASK2 0x0F0F0F0F0F0F0F0FUL
#define MASK3 0x00FF00FF00FF00FFUL
#define MASK4 0x0000FFFF0000FFFFUL

void reverseComplement(
uint64_t *w,
size_t n

) {
uint64_t tmp ;

/* First, reverse complement one word at a time */
for( size_t i = 0 ; i < n ; i++ ) {
/* A base complement trick on whole word */
w[i] = ~w[i] ;

/* Reverse base (NOT bits) order in each word*/
w[i] = ((w[i]>>2)&MASK1) | ((w[i]&MASK1)<<2) ;
w[i] = ((w[i]>>4)&MASK2) | ((w[i]&MASK2)<<4) ;
w[i] = ((w[i]>>8)&MASK3) | ((w[i]&MASK3)<<8) ;
w[i] = ((w[i]>>16)&MASK4) | ((w[i]&MASK4)<<16) ;
w[i] = ((w[i]>>32)) | (w[i]<<32) ;

}

/* Next, reverse order of words in array */
for( size_t i = 0, j = n-1 ; i < j ; i++, j-- ) {
tmp = w[i] ; w[i] = w[j] ; w[j] = tmp ;

}
/* additional shift of bases across words may be

needed to align to consistent word boundary */
}

Fig. 2. Code of reverse complement computation
of a sequence w encoded into an array of n words

Read list: Reference list R is
a list of records of the form
{(h, r, o, s)}. To conserve space,
we do not store the field h but,
instead, it is calculated on the
fly using the remaining fields: r,
o and s. Field r is an array of
words representing the encoded
read. In addition to the encoded
read data, it makes practical
sense to carry along a read iden-
tifier. Read identifier (a number)
and fields o and s are packed to-
gether into one word. We will
call this word, read metadata.

Syzygy computes an appro-
priate tile size depending on the
read length L and the parame-
ters for approximate matching δ
as min {�L/(δ + 1)�, 32}.
Join list: The resultant join list
J consists of, for each item in
the list, a word corresponding to
a k-mer’s (adjusted) position in
the genome set, a word of the read metadata and remaining words corresponding
to the encoded read.

Memory and disk usage: Syzygy runs within the user-defined amount of
memory(≥ 32 MB). The program operates under the stipulated memory limit
by maintaining all main data structures on disk rather than in memory. Each of
the large data structures in the algorithm, G, R, and J is simply represented as
one large linear array of words.

3.3 Managing “Blowups” in the Join List

A major challenge in this approach is to manage the size of the join list J .
Consider a range of records in R = {(h, r, o, s)} which share the same key h with



196 A.S. Konagurthu et al.

another range of records in G = {(h, p)}. During the join operation, the join list
will be populated with the product—Cartesian product of two sets containing
items from the two ranges—of the items in these two ranges. For preponderant
k-mers (such as poly-As in the Human genome which occur a very large number
of times), this product would be staggering causing an unmanageable “blowup”
in the size of the join.

Syzygy uses the following strategies to handle blowups. The program initially
computes and stores (in memory) all k-mers (for a given tile size in the run)
and their corresponding preponderances when they exceed a predefined threshold
(100, 000). Now, when generating the read list, tiles which can potentially cause
a blowup are excluded from the read list at the time of its generation. A read is
blacklisted (and written out to a blacklist file) if one or more of its tiles cause a
blowup. For a given read it is however possible that only a few tiles are excluded
while the remainder enter the read list, in which case the program does not guar-
antee to find all matches under the chosen distance parameters for that read. The
program generates a ‘greylist’ of reads to inform the user of such cases.

We observe that the join list usually contains many false-positives which are
removed at a later verification stage (in step 4). A vast portion of records in the
join can be filtered out using a fast early-verification step. Recall (from section
3.1) that each record in the reference list has 32 bases. For a given tile size T ,
the join is performed by masking out unrelated 32− T trailing bases. For a tile
size of (say) 20, the bits corresponding to the 12-mer suffixes (that is, 24 bits) in
all 32-mer keys from G are masked out. Since we are carrying in R the read data
corresponding to all k-mer tiles, an early verification can be performed during
the join on the remaining 32 − k bases between the read and the reference. If
a tile fails the chosen distance threshold so would the read it belongs to. Hence
such tiles are barred from entering into the join list.

While this procedure prunes the number of false positives drastically, it is
possible, under some parameters, that the last tiles of the reads do not benefit
from the early-verification. Take for example a read of length 50 mapped under
an Hamming distance of 2. Each read will contain 3 tiles of length 16. While the
first two tiles can be verified on 32-bases, the last tile can only be verified on
the remaining two bases(that is 49th and 50th base in the read). Since we are
running under a Hamming distance of 2 and there are only two additional bases
to check, it is easy to see that all the last tiles of the read in such a run will pass
unfiltered into the join list.

An alternative construction of Reference list used in Syzygy to aid
early-verification of all tiles: A modification in the reference list generation
will guarantee even the last tiles to benefit from early-verification. Recall that
the reference list is constructed on 32-mers (and their positions) lexicographi-
cally sorted on the entire 32-mer keys. Modify the sort procedure by sorting the
keys only on their 28-mer suffixes, instead of the complete 32-mers. To illustrate
why this helps, we use the example in the above paragraph. The first 16-mer tile
can now be verified on 28-bases (of which we know that 16-bases match exactly).
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sorted 28-mer suffix

(c) Verification of last tile

Reference 32-mer: 

Last 16-mer tile:

Matched 16-mer

in join

verification range = 4+16+2 

                   = 22 bases
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0 31 32 47 49
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(b) Verification of middle tile

Reference 32-mer: 
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                   = 32 bases

0 4 20 31

0 15 16 31 32 43 49

19

12

verifiable

4-mer

sorted 28-mer suffix

(a) Verification of first tile

Reference 32-mer: 

First 16-mer tile:

Matched 16-mer

in join

verifiable

12-mer

verification range = 16+12 

                   = 28 bases

0 4 19 20 31

0 15 16 27 28 49

Fig. 3. An illustration of early-verification. (Assume: read length = 50; Hamming
distance = 2; Tile size = 16. The reference list G is constructed on 32-mers sorted on
their 28-mer suffixes.) (a) Verification of all first tiles: When the key of a first tile in
a read matches a 16-mer key from the reference, bases at the positions [0-15] of the read
are equivalent to those at the positions [4-19] of the reference. Early-verification can be
performed on bases at the positions [16-27] of the read with those in positions [20-31]
of the reference. (b) Verification of all middle tiles: When the key of a middle tile
in a read matches a 16-mer key from the reference, bases at the positions [16-31] of the
read are equivalent to those at the positions [4-19] in the reference. Early-verification
can be performed on bases at the positions [12-15] and [32-43] of the read with those
at the positions [0-3] and [20-31] of the reference respectively. (c) Verification of all
last tiles: When the key of a last tile in some read matches with a 16-mer key from
the reference, bases at the positions [32-47] in the read are equivalent to bases at the
positions [4-19] in the reference. Early-verification can be performed on bases at the
positions [28-31] and [48-49] of the read with those in the positions [0-3] and [20-21] of
the reference respectively.

(See Fig. 3(a).) The middle tile can be verified on all 32-positions including the
4 base prefix that was left out from sorting. (See Fig. 3(b).) Importantly, the
last tile can now be verified on the remaining 2 bases (49th and 50th) in the
read, plus on the 4 bases preceding the last tile. (See Fig. 3(c).) In summary,
early-verification filters out a significant portion of false-positives from entering
into the join list, thereby severely constraining the final size of the join list. This
naturally translates to a significant boost in the program’s run time since it is
implemented out of core.
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3.4 Overlapped I/O

Syzygy uses a system of memory-mapped files and buffered writing for all I/O
involving its data structures that are maintained on disk.

Memory mapping is an efficient alternative to standard file I/O on Unix-
based systems where the kernel provides an interface to seamlessly map portions
of very large files into memory. POSIX.1 standardizes the system call mmap()
which most current Unix-based distributions implement. In addition, the user
can advise the kernel in advance on how a memory-mapped block can be utilized.
Linux provides, for example, madvise() system call for this purpose. Where the
kernel recognizes (or is advised) that the accesses to memory mapped blocks are
sequential, it automatically optimizes the read-performance by caching asyn-
chronously pre-fetched pages of data through aggressive read-ahead from the
point where data is being processed in the memory-mapped block.

Syzygy uses write() defined in POSIX.1 to write data to disk. The behaviour
of write() is optimized by Linux. Write calls return immediately because the ker-
nel copies the data into its buffers, batching many writes together and deferring
the writeback to disk at a later time to be written asynchronously.

3.5 Sorting

Syzygy implements an efficient external sorting that is capable of sorting a
very large number of records (and their payloads) on disk. Broadly, the sorting
is performed in two steps. In the first step the collection is partitioned into
several consecutive blocks or runs, where each run is fully sorted in memory.
The size of each partition depends on the user-defined memory limit. Syzygy
implements a variant of least significant digit (LSD) radix sort to sort the runs
in memory. We note that the radix sort in general has a complexity of O(kn),
where k is the number of radixes in the sort-key while n is the size of the
run. Our implementation uses byte-size radices. Sorting a sort-key of size one
64-bit word requires 8 linear passes (using byte-size radices) on the run. Our
implementation additionally benefits from several algorithmic and hardware-
directed optimizations derived from the works of [21] and [22]. The second step
involves a merge step which merges partially sorted runs of a collection on disk
into a fully sorted collection.

4 Results and Discussion

One tool from each of the three categories of read mapping programs was cho-
sen to compare against our prototype implementation of Syzygy. Specifically,
maq [10] from category 1, soap(v.1) [13] from category 2 and bwa [16] from
category 3 were chosen for comparisons.

Reads used here belong to sample NA19240, sequenced using Illumina tech-
nology, downloaded from the 1000 Genome Project.2 Human genome (draft 18)

2 http://www.1000genomes.org/
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Table 1. Results of comparison of Syzygy with maq, soap(v.1) and bwa when mapping
varying sizes of reads on the Human genome under a Hamming distance threshold of 2.
All programs were run on a single core as a sequential program. ‘–’ in various columns
indicate that the program ran exceeded 48 hours and hence were aborted. Runs on
Syzygy were performed with a 1GB memory limit. (Syzygy runs faster with a larger
memory limit.)

Program nReads Time (wall) Memory Scratch

maq 1 million 1.9 hrs 1.1 GB 0
soap(v.1) 1 million 7.4 hrs 14.1 GB 0

bwa 1 million 0.4 hrs 2.3 GB 0
Syzygy 1 million 0.7 hrs 1 GB 5.7 GB
maq 10 million 21.6 hrs 5.7 GB 0

soap(v.1) 10 million — — 0
bwa 10 million 3.7 hrs 2.3 GB 0

Syzygy 10 million 3.4 hrs 1 GB 27 GB
maq 50 million — — 0

soap(v.1) 50 million — — 0
bwa 50 million 20.5 hrs 2.3 GB 0

Syzygy 50 million 8.2 hrs 1 GB 65.4 GB
maq 100 million — — 0

soap(v.1) 100 million — — 0
bwa 100 million 40.0 hrs 2.3 GB 0

Syzygy 100 million 13.9 hrs 1 GB 103 GB

was used as the reference genome. All experiments were carried out on a single
node of a AMD Quad-core server with 32GB of main memory. The server is
connected to a large array of Serially Connected SCSI (SAS) disks accessible via
fast Ethernet (giving a upper limit of 125 MB/s on the disk bandwidth).3

Table 1 summarizes the results of comparison between various programs. From
the table we can see that as the volume of reads increases, the run times of other
programs grow drastically. soap(v.1) has the worst run time of all the methods,
becoming impractical even at a read volume of 10 million. At a read volume of
50 million, maq becomes impractical. Only bwa scales to 50 million reads and
beyond. Syzygy runs significantly faster than all other program, especially on
very large read volumes. At the read volume of 100 million, Syzygy is ∼ 2.8x
faster than bwa. The results clearly show that Syzygy scales elegantly compared
to other methods.

Notice in Table 1 that the memory usages of various programs. Syzygy runs
in the user-stipulated amount of memory (in this case 1GB) while the rest of
the programs have a variable memory footprint depending on the size of various
indexes they maintain. soap(v.1) uses an inverted hash table on the reference
genome. For a human genome the size of this data structure is roughly 14GB
3 The runs of Syzygy in Table 1 uses two independent disks to alternate reading the

writing operations of the algorithm to reduce the I/O latency.
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which has to be maintained in memory. maq uses an inverted index composed of
pairs of k-mer tiles (that is, spaced tiles). However, since such an index prepared
on large reference genomes is huge, maq chooses to prepare the inverted index
on the read set. To further conserve space, maq indexes the read set in batches
compromising on program speed. bwa which uses a Burrow-Wheeler index [20]
has the most concise index structure among the tools. However, for the program
to work efficiently, the entire index has to be maintained in memory. This comes
in the way of mapping a set of reads on multiple (instead of one) genome.

Syzygy uses a large amount of scratch space on disk to allow the program to
run in a fixed, user-defined amount of main memory. The last column of Table
1 gives the amount of scratch space used by the program for various runs. Note
that, compared to main memory, disks are inexpensive and vastly bigger in sizes.
(A standard 1TB disk costs only a couple of hundred Dollars.)

5 Conclusion

The design of an efficient read mapping algorithm, Syzygy, has been described
in this paper. The program reorganizes the read mapping problem to maxi-
mize spatial locality of reference of data accesses in the algorithm, a crucial
ingredient for any performance optimization. This facilitates the program to
maintain all its data structures on disk, and hence allowing Syzygy to run in
any user-defined amount of memory. Syzygy scales elegantly to volumes of read
and genome data unachievable by current read-mapping programs. Our future
work will extend Syzygy to handle paired-end read mapping while generalizing
the alorithm for mapping under an edit distance threshold. We are also working
towards parallelizing Syzygy for symmetric as well as distributed memory mul-
tiprocessors. An academic version of the program will be available shortly from
http://www.csse.unimelb.edu.au/~arun/syzygy.
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Abstract. In this paper we present a novel expectation-maximization
algorithm for inference of alternative splicing isoform frequencies from
high-throughput transcriptome sequencing (RNA-Seq) data. Our algo-
rithm exploits disambiguation information provided by the distribution
of insert sizes generated during sequencing library preparation, and takes
advantage of base quality scores, strand and read pairing information if
available. Empirical experiments on synthetic datasets show that the algo-
rithm significantly outperforms existing methods of isoform and gene ex-
pression level estimation from RNA-Seq data. The Java implementation
of IsoEM is available at http://dna.engr.uconn.edu/software/IsoEM/.

1 Introduction

Ubiquitous regulatory mechanisms such as the use of alternative transcription
start and polyadenylation sites, alternative splicing, and RNA editing result
in multiple messenger RNA (mRNA) isoforms being generated from a single
genomic locus. Most prevalently, alternative splicing is estimated to take place
for over 90% of the multi-exon human genes [19], and thought to play critical
roles in early stages of development and normal function of cells from diverse
tissue types. Thus, the ability to reconstruct full length isoform sequences and
accurately estimate their frequencies is critical for understanding gene functions
and transcription regulation mechanisms.

Three key interrelated computational problems arise in the context of tran-
scriptome analysis: gene expression level estimation (GE), isoform discovery
(ID), and isoform expression level estimation (IE). Targeted GE has long been
a staple of genetic studies, and the completion of the human genome has en-
abled genome-wide GE performed using expression microarrays. Since expres-
sion microarrays have limited capability of detecting alternative splicing events,
specialized splicing arrays have been developed to interrogate genome-wide both
(annotated) exons and exon-exon junctions. However, despite sophisticated de-
convolution algorithms [1,15], the fragmentary information provided by splicing
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arrays is often insufficient for unambiguous identification of transcribed isoforms
[6,9]. High-throughput transcriptome sequencing, commonly referred to as RNA-
Seq, is quickly replacing microarrays as the technology of choice for performing
GE due to the far wider dynamic range and more accurate quantitation capabil-
ities [20]. Unfortunately, most RNA-Seq studies to date either ignore alternative
splicing or, similar to splicing array studies, restrict themselves to surveying the
presence/expression levels of exons and exon-exon junctions. The main difficulty
lies in the fact that current technologies used to perform RNA-Seq generate
short reads (from few tens to hundreds of bases), many of which cannot be
unambiguously assigned to individual isoforms.

1.1 Related Work

RNA-Seq analyses typically start by mapping sequencing reads onto the refer-
ence genome, transcript libraries, exon-exon junction libraries, or combinations
thereof. Early RNA-Seq studies have recognized that short read lengths result
in a significant percentage of so called multireads, i.e., reads that map equally
well at multiple locations in the genome. A simple (and still commonly used) ap-
proach is to discard multireads, and estimate expression levels using only the so
called unique reads. Mortazavi et al. [12] proposed a multiread “rescue” method
whereby initial gene expression levels are estimated from unique reads and used
to fractionally allocate multireads, with final expression levels re-estimated from
total counts obtained after multiread allocation. An expectation-maximization
(EM) algorithm that extends this scheme by repeatedly alternating between frac-
tional read allocation and re-estimation of gene expression levels was recently
proposed in [13].

A number of recent works have addressed the IE problem, namely isoform ex-
pression level estimation from RNA-Seq reads. Under a simplified “exact infor-
mation” model, [9] showed that neither single nor paired read RNA-Seq data can
theoretically guarantee unambiguous inference of isoform expression levels, but
paired reads may be sufficient to deconvolute expression levels for the majority
of annotated isoforms. The key challenge in IE is accurate assignment of am-
biguous reads to isoforms. Compared to the GE context, read ambiguity is much
more significant, since it affects not only multireads, but also reads that map
at a unique genome location expressed in multiple isoforms. To overcome this
difficulty, [8] proposed a Poisson model of single-read RNA-Seq data explicitly
modeling isoform frequencies. Under this model, maximum likelihood estimates
are obtained by solving a convex optimization problem, and uncertainty of esti-
mates are obtained by importance sampling from the posterior distribution. Li
et al. [11] introduced an expectation-maximization (EM) algorithm similar to
that of [13] but apply it to isoforms instead of genes. Unlike the method of [8],
which estimates isoform frequencies only from reads that map to a unique loca-
tion in the genome, the algorithm of [11] incorporates multireads as well. The IE
problem for single reads is also tackled in [14], who propose an EM algorithm for
inferring isoform expression levels from read coverage of exons (reads spanning
exon junctions are ignored).
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The related isoform discovery (ID) problem has also received much interest
in the literature. De novo transcriptome assembly algorithms have been pro-
posed in [2,7]. Very recently, [4] and [18] proposed methods for simultaneously
solving ID and IE based on paired RNA-Seq reads. Assuming known genomic
positions for alternative transcription start and polyadenylation sites as well as
exon boundaries, [4] formulate IE as a convex quadratic program (QP) that can
be efficiently solved for each gene locus after discarding multireads. ID is solved
by iteratively generating isoform candidates from the splicing graph derived from
annotations and reads spanning exon-exon junctions. The process is continued
until the p-value of the objective value of the QP corresponding to the set of
selected isoforms, assumed to follow a χ2 distribution, exceeds an empirically
selected threshold of 5%. However, pair read information is not directly used in
isoform frequency estimation, contributing only as secondary data to filter out
false positives in the process of isoform selection. Trapnell et al. [18] also describe
a method, referred to as Cufflinks, for simultaneously solving ID and IE. Unlike
the method of [4], Cufflinks requires no genome annotations (but can use them if
available). After performing spliced alignment of (paired) reads onto the genome
using TopHat [17], Cufflinks constructs a read overlap graph and generates can-
didate isoforms by finding a minimal size path cover via a reduction to maximum
matching in a weighted bipartite graph. Reads that match equally well multiple
locations in the genome are fractionally allocated to these locations, and esti-
mation is then performed independently at different transcriptional loci, using
an extension to paired reads of the methods in [8].

1.2 Our Contributions

In this paper we focus on the IE problem, namely estimating isoform expression
levels (interchangeably referred to as frequencies) from RNA-Seq reads, under
the assumption that a complete list of candidate isoforms is available. Projects
such as [3] and [16] have already assembled large libraries of full-length cDNA
sequences for humans and other model organisms, and the coverage of these
libraries is expected to continue to increase rapidly. Although an incomplete
isoform library may lead to estimation biases [18], statistical tests such as the one
in [4] can be used to detect the presence of isoforms not represented in the library.
Inferring expression at isoform level provides information for finer-resolution
biological studies, and also leads to more accurate estimates of expression at
the gene level by allowing rigorous length normalization. Indeed, as shown in
Section 3, genome-wide gene expression level estimates derived from isoform
level estimates are significantly more accurate than those obtained directly from
RNA-Seq data using isoform-oblivious GE methods such as the widely used
counting of unique reads, the rescue method of [12], or the EM algorithm of [13].

Our main contribution is a novel expectation-maximization algorithm for iso-
form frequency estimation from (any mixture of) single and paired RNA-Seq
reads. A key feature of our algorithm, referred to as IsoEM, is that it exploits
the information provided by the distribution of insert sizes, which is tightly con-
trolled during sequencing library preparation under current RNA-Seq protocols.
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The recently published [18] is the only other work we are aware of that exploits
this information (that is not captured by the “exact” information models of
[6,9]) in conjunction with paired read data. We show that modeling insert sizes
is also highly beneficial in conjunction with single RNA-Seq reads. Insert sizes
contribute to increased estimation accuracy in two different ways. On one hand,
insert sizes help disambiguating the isoform of origin for the reads. In IsoEM, in-
sert lengths are combined with base quality scores, and, if available, read pairing
and strand information to probabilistically allocate reads to isoforms during the
expectation step of the algorithm. As in [11], the genomic locations of multireads
are also resolved probabilistically in this step, further contributing to overall ac-
curacy compared to methods that ignore or fractionally pre-allocate multireads.
On the other hand, insert size distribution is used to accurately adjust isoform
lengths during frequency re-estimation in the M step of the IsoEM algorithm;
an equivalent adjustment was independently employed in [18].

We also present preliminary experimental results on synthetic datasets gen-
erated with various sequencing parameters and distribution assumptions. The
results show that IsoEM algorithm significantly outperforms existing methods of
isoform and gene expression level estimation from RNA-Seq data. Furthermore,
we empirically evaluate the effect of sequencing parameters such as read length,
read pairing, and strand information on estimation accuracy. Our experiments
confirm the finding of [11] that, for a fixed total number of sequenced bases,
longer reads do not necessarily lead to better accuracy for estimation of isoform
and gene expression levels.

2 Methods

2.1 Read Mapping

As with most RNA-Seq analyses, the first step of IsoEM is to map the reads. Our
approach is to map them onto the library of known isoforms using any one of
the many available aligners (we used Bowtie [10] with default parameters in our
experiments). An alternative strategy is to map the reads onto the genome using
a spliced alignment tool such as TopHat [17], as done in [18]. However, prelim-
inary experiments with TopHat resulted in fewer mapped reads and increased
mapping uncertainty. Since further increases in read length coupled with im-
provements in spliced alignment algorithms could make genome mapping more
attractive in the future, we made our IsoEM implementation compatible with
both mapping approaches by converting read alignments to genome coordinates
and performing all operations in genome space.

2.2 Finding Read-Isoform Compatibilities

The candidate set of isoforms for each read is obtained by putting together all
genome coordinates for reads and isoforms, sorting them and using a line sweep
technique to detect read-isoform compatibilities. During the line sweep, reads
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are grouped into equivalence classes defined by their isoform compatibility sets;
this speeds up the E-steps of the IsoEM algorithm by allowing the processing of
an entire read class at once.

Some of the reads match multiple positions in the genome, which we refer
to as alignments (for paired end reads, an alignment consists of the positions
where the two reads in the pair align with the genome). Each alignment a can in
turn be compatible with multiple isoforms that overlap at that position of the
genome. During the line sweep, we compute the relative “weight” of assigning a
given read/pair r to isoform j as wr,j =

∑
a QaFaOa, where the sum is over all

alignments of r compatible with j, and the factors of the summed products are
defined as follows.

– Qa represents the probability of observing the read from the genome loca-
tions described by the alignment. This is computed from the base quality
scores as Qa =

∏|r|
k=1[(1− εk)Mak

+ εk(1−Mak
)], where Mak

= 1 if position
k of alignment a matches the genome and 0 otherwise, while εk denotes the
error probability of kth base of r.

– Fa represents the probability of the fragment length needed to produce align-
ment a from isoform j. For paired end reads, the length of the fragment can
be inferred from the positions of the two reads. For single reads, we can only
estimate a maximum fragment length: if the alignment is on the same strand
as the isoform, we use the distance from the start of the alignment to the end
of the isoform, otherwise we use the distance from the end of the alignment
to the start of the isoform.

– Oa is 1 if alignment a of r is consistent with the orientation of isoform j,
and 0 otherwise. Consistency between the orientations of r and j depends
on whether or not the library preparation protocol preserves the strand in-
formation. For single reads Oa = 1 when reads are generated from fragment
ends randomly or, for directional RNA-Seq, when they match the known
isoform orientation. For pairs, Oa = 1 if the two reads come from different
strands, point to each other, and, in the case of directional RNA-Seq, the
orientation of first read matches the known isoform orientation.

Weigths wr,j can be further adjusted to account for biases introduced by
sequencing library preparation or the sequencing process once a model of this
biases, such as the one in [5], is available.

2.3 The IsoEM Algorithm

The IsoEM algorithm starts with the set of N known isoforms. For each iso-
form we denote by l(j) its length and by f(j) its (unknown) frequency. If we
ignore library preparation and amplification biases, the probability that a read
is sampled from isoform j is proportional with (l(j)− μ + 1)f(j) where μ is the
mean fragment length from the sample preparation. To see why this is true, we
write the expected number of reads coming from an isoform by summing over
all possible fragment lengths. For each fragment length k we expect the number
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Algorithm 1. IsoEM algorithm
assign random values to all f(i)
while not converged do

initialize all n(j) to 0
for each read r do

sum =
∑

j:wr,j>0 wr,jf(j)
for each isoform j with wr,j > 0 do

n(j)+ = wr,jf(j)/sum
end for

end for
s =

∑
j n(j)/(l(j) − μ + 1)

for each isoform j do
f(j) = n(j)/(l(j)−μ+1)

s

end for
end while

of fragments of that length to be proportional to the number of valid starting
positions for a fragment of that length in the isoform. If p(k) denotes the prob-
ability of a fragment of length k and n(j) denotes the number of reads coming
from isoform j then E[n(j)] ∝ ∑

k p(k)(l(j) − k + 1) = l(j) − μ + 1. Thus, if
the isoform of origin is known for each read, the maximum likelihood estimator
for f(j) is given by c(j)/(c(1) + . . . + c(N)), where c(j) = n(j)/(l(j) − μ + 1)
denotes the length-normalized fragment coverage.

Unfortunately, some reads match multiple isoforms, so their isoform of origin
cannot be established unambiguously. The IsoEM algorithm (see Algorithm 1)
overcomes this difficulty by simultaneously estimating the frequencies and im-
puting the missing read origin within an iterative framework. After initializing
frequencies f(j) at random, the algorithm repeatedly performs the next two
steps until convergence:

– E-step: Compute the expected number n(j) of reads that come from isoform
j under the assumption that isoform frequencies f(j) are correct, based on
weights wr,j

– M-step: For each j, set the new value of f(j) to c(j)/(c(1) + . . . + c(N)),
where normalized coverages c(j) are based on expected counts computed in
previous step

3 Experimental Results

3.1 Simulation Setup

We tested IsoEM on simulated human RNA-Seq data. The human genome se-
quence (hg18, NCBI build 36) was downloaded from UCSC together with the
coordinates of the isoforms in the KnownGenes table. Genes were defined as
clusters of known isoforms defined by the GNFAtlas2 table. The dataset con-
tains a total of 66803 isoforms pertaining to 19372 genes. The isoform length
distribution and the number of isoforms per genes are shown in Figure 1.
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Fig. 1. Distribution of isoform lengths (left panel) and gene cluster sizes (right panel)
for the UCSC KnownGenes dataset

Single and paired-end reads were randomly generated by sampling fragments
from the known isoforms. Each isoform was assigned a true frequency based on
the abundance reported for the corresponding gene in the first human tissue of
the GNFAtlas2 table, and a probability distribution over the isoforms inside a
gene cluster. Thus, the true frequency of isoform j is a(g)p(j), where a(g) is the
abundance of the gene g for which j is an isoform and p(j) is the probability
of isoform j among all the isoforms of g. We simulated datasets with uniform
and geometric (p = 0.5) distributions for the isoforms of each gene. Fragment
lengths were simulated from a normal probability distribution with mean 250
and standard deviation 25. We simulated between 1 and 60 million single and
paired reads of lengths ranging from 25 to 100 base pairs, with or without strand
information.

We compared IsoEM to several existing IE and GE algorithms. For IE we
included in the comparison the isoform analogs of the Uniq and Rescue methods
used for GE [12], an improved version of Uniq (UniqLN) that estimates isoform
frequencies from unique read counts but normalizes them using adjusted isoform
lengths that exclude ambiguous positions, the Cufflinks algorithm of [18], and
the RSEM algorithm of [11]. For the GE problem, the comparison included the
Uniq and Rescue methods, our implementation of the EM algorithm described
in [13] (GeneEM), and estimates obtained by summing isoform expression levels
inferred by Cufflinks, RSEM, and IsoEM. All methods except Cufflinks use align-
ments obtained by mapping reads onto the library of isoforms with Bowtie [10]
and then converting them to genome coordinates. As suggested in [18], Cufflinks
uses alignments obtained by mapping the reads onto the genome with TopHat
[17], which was provided with a complete set of annotated junctions.

Frequency estimation accuracy was assessed using the coefficient of determi-
nation, r2, along with the error fraction (EF) and median percent error (MPE)
measures used in [11]. However, accuracy was computed against true frequencies,
not against estimates derived from true counts as in [11]. If f̂i is the frequency
estimate for an isoform with true frequency fi, the relative error is defined as
|f̂i − fi|/fi if fi �= 0, 0 if f̂i = fi = 0, and ∞ if f̂i > fi = 0. The error fraction
with threshold τ , denoted EFτ is defined as the percentage of isoforms with
relative error greater or equal to τ . The median percent error, denoted MPE, is
defined as the threshold τ for which EFτ = 50%.
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Table 1. r2 for isoform and gene expression levels inferred from 30M reads of length
25 from reads simulated assuming uniform, respectively geometric expression of gene
isoforms

Isoform Expression Gene Expression
Algorithm Uniform Geometric Algorithm Uniform Geometric

Uniq 0.466 0.447 Uniq 0.579 0.586
Rescue 0.693 0.675 Rescue 0.724 0.724
UniqLN 0.856 0.838 GeneEM 0.636 0.637
Cufflinks 0.661 0.618 Cufflinks 0.778 0.757
RSEM 0.919 0.911 RSEM 0.939 0.934
IsoEM 0.979 0.964 IsoEM 0.988 0.978

3.2 Comparison between Methods

Table 1 gives r2 values for isoform, respectively gene expression levels inferred
from 30M reads of length 25, simulated assuming both uniform and geometric
isoform expression. IsoEM significantly outperforms the other methods, achiev-
ing an r2 values of over .96 for all datasets. For all methods the accuracy differ-
ence between datasets generated assuming uniform and geometric distribution of
isoform expression levels is small, with the latter one typically having a slightly
worse accuracy. Thus, in the interest of space we present remaining results only
for datasets generated using geometric isoform expression.

For a more detailed view of the relative performance of compared IE and
GE algorithms, Figure 2 gives the error fraction at different thresholds ranging
between 0 and 1. The variety of methods included in the comparison allows us
to tease out the contribution of various algorithmic ideas to overall estimation
accuracy. The importance of rigorous length normalization is demonstrated by
the IE accuracy gain of UniqLN over Uniq – clearly larger than that achieved by
ambiguous read reallocation as implemented in the IE version of Rescue. Proper
length normalization is also the main reason for the accuracy gain of isoform-
aware GE methods (Cufflinks, RSEM, and IsoEM) over isoform oblivious GE
methods. Similarly, the importance of modeling insert sizes even for single read
data is underscored by the IE and GE accuracy gains of IsoEM over RSEM.

For yet another view, Tables 2 and 3 report the MSE and EF.15 measures for
isoform, respectively gene expression levels inferred from 30M reads of length 25,
computed over groups of isoforms with various expression levels. IsoEM consis-
tently outperforms the other IE and GE methods at all expression levels except
for isoforms with zero true frequency, where it is dominated by the more conser-
vative Uniq algorithm and its UniqLN variant.

3.3 Influence of Sequencing Parameters

Although high-throughput technologies allow users to make tradeoffs between
read length and the number of generated reads, very little has been done to
determine optimal parameters even for common applications such as RNA-Seq.
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Fig. 2. Error fraction at different thresholds for isoform (top panel) and gene (bot-
tom panel) expression levels inferred from 30M reads of length 25 simulated assuming
geometric isoform expression.

Table 2. Median percent error (MPE) and 15% error fraction (EF.15) for isoform
expression levels inferred from 30M reads of length 25

Expression range 0 (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# isoforms 13290 10024 23882 18359 1182 66 66803

Uniq 0.0 100.0 98.4 97.1 98.5 96.6 95.4
Rescue 0.0 294.7 75.5 49.2 30.4 28.3 71.9

MPE UniqLN 0.0 100.0 80.8 30.3 26.4 24.8 36.0
Cufflinks 0.0 100.0 49.7 25.5 27.2 44.6 34.1
RSEM 0.0 100.0 31.9 13.5 11.4 13.0 21.2
IsoEM 0.0 100.0 22.7 7.3 3.5 2.5 11.8

Uniq 0.2 98.4 97.2 96.9 97.0 95.5 78.0
Rescue 48.4 95.5 86.2 73.1 61.5 56.1 76.0

EF.15 UniqLN 0.2 97.2 86.2 82.8 83.3 77.3 69.8
Cufflinks 17.6 96.4 81.3 71.0 74.7 80.3 67.9
RSEM 19.9 93.7 71.1 46.4 39.8 47.0 56.9
IsoEM 5.1 91.2 62.8 29.3 15.8 7.6 45.5

The intuition that longer reads are better certainly holds true for many appli-
cations such as de novo assembly. Surprisingly, [11] found that shorter reads are
better for IE when the total number of sequenced bases is fixed. Figure 3 plots
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Table 3. Median percent error (MPE) and 15% error fraction (EF.15) for gene expres-
sion levels inferred from 30M reads of length 25

Expression range (0, 10−6] (10−6, 10−5] (10−5, 10−4] (10−4, 10−3] (10−3, 10−2] All
# genes 120 5610 11907 1632 102 19372

Uniq 37.4 43.6 42.7 43.0 48.2 43.0
Rescue 32.8 28.7 26.0 25.1 28.8 26.7

MPE GeneEM 30.6 28.2 25.7 25.1 28.0 26.3
Cufflinks 33.0 21.1 19.0 20.2 40.2 19.7
RSEM 23.6 11.0 7.2 7.9 11.4 8.1
IsoEM 18.3 8.4 3.3 2.2 2.1 4.0

Uniq 77.5 82.4 81.7 79.7 82.4 81.7
Rescue 74.2 74.0 71.6 72.8 76.5 72.4

EF.15 GeneEM 72.5 73.8 71.5 73.0 74.5 72.3
Cufflinks 73.3 64.7 62.3 66.2 82.3 63.5
RSEM 64.2 37.3 17.4 16.3 41.2 23.5
IsoEM 57.5 28.3 6.8 6.5 4.9 13.3
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Fig. 3. IsoEM MPE (top panel) and r2 values (bottom panel) for 750Mb of data
generated using single and paired-end sequencing with read length between 25 and 100
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Fig. 4. IsoEM r2 (top panel) and CPU time (bottom panel) for 1-60 million sin-
gle/paired reads of length 75, with or without strand information

IE estimation accuracy for reads of length between 25 and 100 when the total
amount of sequence data is kept constant at 750M bases. Our results confirm
the finding of [11], although the optimal read length is somewhat sensitive to
the accuracy measure used and to the availability of pairing information. While
25bp reads optimize the MPE measure regardless of the availability of paired
reads, the read length that maximizes r2 is 36 for paired reads and 50 for sin-
gle reads. While more experiments are needed to determine how the optimum
length depends on the amount of sequence data and transcriptome complexity,
this does suggest that, for isoform and gene expression estimation accuracy, in-
creasing the number of reads may be more useful than increasing read length
beyond a certain limit.

The top panel of Figure 4 shows, for reads of length 75, the effects of paired
reads and strand information on estimation accuracy as measured by r2. Not
surprisingly, for a fixed number of reads, paired reads yield better accuracy than
single reads. Also not very surprisingly, adding strand information to paired
sequencing yields no benefits to genome-wide IE accuracy (although it may be
helpful, e.g., in identification of novel transcripts). Quite surprisingly, performing
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strand-specific single read sequencing is actually detrimental to IsoEM IE (and
hence GE) accuracy under the simulated scenario, most likely due to the reduc-
tion in sampled transcript length.

As shown in the bottom panel of Figure 4, the runtime of our Java imple-
mentation of IsoEM scales roughly linearly with the number of fragments, and
is largely insensitive to the type of sequencing data (single or paired reads, di-
rectional or non-directional). IsoEM was tested on a DELL PowerEdge R900
server with 4 Six Core E7450Xeon Processors at 2.4Ghz (64 bits) and 128Gb of
internal memory. None of the datasets require more than 16GB of memory to
complete, however, increasing the amount of memory made available to the Java
virtual machine significantly decreases runtime by reducing the time needed for
garbage collection. The runtimes in Figure 4 were obtained by allowing IsoEM
to use up to 32GB of memory, in which case none of the datasets took more
than 3 minutes to solve.

4 Conclusions and Ongoing Work

In this paper we have introduced an expectation-maximization algorithm for
isoform frequency estimation assuming a known set of isoforms. Our algorithm,
called IsoEM, explicitly models base quality scores, insert size distribution,
strand and read pairing information. Experiments on synthetic data sets gen-
erated using two different assumptions on the isoform distribution show that
IsoEM consistently outperforms existing algorithms for isoform and gene ex-
pression level estimation with respect to a variety of quality metrics.

The open source Java implementation of IsoEM is freely available for down-
load at http://dna.engr.uconn.edu/software/IsoEM/. In ongoing work we are
extending IsoEM to perform allelic specific isoform expression and exploring in-
tegration of isoform frequency estimation with identification of novel transcripts
using the iterative refinement framework proposed in [4].
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Abstract. The orientation of physical networks is a prime task in deci-
phering the signaling-regulatory circuitry of the cell. One manifestation
of this computational task is as a maximum graph orientation problem,
where given an undirected graph on n vertices and a collection of vertex
pairs, the goal is to orient the edges of the graph so that a maximum
number of pairs are connected by a directed path. We develop a novel
approximation algorithm for this problem with a performance guarantee
of O(log n/ log log n), improving on the current logarithmic approxima-
tion. In addition, motivated by interactions whose direction is pre-set,
such as protein-DNA interactions, we extend our algorithm to handle
mixed graphs, a major open problem posed by earlier work. In this set-
ting, we show that a polylogarithmic approximation ratio is achievable
under biologically-motivated assumptions on the sought paths.

1 Introduction

A fundamental problem in the study of biological networks is the inference
of causal relations that are often not covered by current experimental tech-
niques. One prime example for such deficiency concerns protein-protein inter-
action (PPI) networks. While PPIs have been measured at large scale across
tens of organisms for over a decade now, current technologies do not provide
information on the direction in which signal flows. Such information may be
indirectly obtained from perturbation experiments in which a gene is perturbed
and as a result other genes change their expression levels. Assuming that the
expression changes imply directed pathways from the perturbed, or causal, gene
to the affected genes, several authors have successfully inferred interaction di-
rections [15].

The inference of interaction directions that best fit the perturbation experi-
ments can be cast as a maximum graph orientation (MGO) problem. An instance
of this problem consists of an undirected graph on n vertices, representing the
PPI network, and a collection C of requests. Each request is given as an ordered
pair of source-target vertices, representing a causal gene and an affected gene.
The goal is to orient the graph, i.e., choose a single direction for each of its
edges, such that a maximal number of requests admit a directed path from the
source to the target. We note that any instance of MGO can be reduced to one
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where the underlying graph is a tree. Indeed, if the input graph contains cycles,
one can sequentially contract them, one after the other. In each step, the edges
of an arbitrary cycle are all oriented in the same direction (either clockwise or
counter-clockwise). As a result, every pair of vertices on this cycle admit a di-
rected path between them and, thus, the cycle can be contracted into a single
vertex.

Medvedovsky et al. [15] were the first to study MGO. They demonstrated that
the seemingly simple setting when the underlying graph is a star is equivalent
to the maximum directed cut problem. The latter problem admits a semidefinite
programming based 0.874-approximation algorithm [4,13], while approximating
it within factors of 11/12 ≈ 0.916 and αGW ≈ 0.878 is NP-hard [10] and Unique
Games-hard [12], respectively. These hardness bounds clearly follow to MGO. On
the positive side, they devised an O(log n) approximation algorithm for arbitrary
trees, and proposed an exact dynamic-programming algorithm for the special
case of path graphs.

Further research along these lines focused on variants of the maximum graph
orientation problem. For instance, Hakimi, Schmeichel, and Young [8] studied
the special setting in which the set of requests contains all vertex pairs, and
developed an exact polynomial time algorithm. Arkin and Hassin [2] established
hardness results for the problem of deciding whether one can orient a mixed
graph, i.e., a graph in which the orientation of some edges is predetermined, to
satisfy a given set of requests.

Our contribution in this paper is two-fold: (i) We propose a deterministic al-
gorithm for the maximum graph orientation problem whose approximation ratio
is O(log n/ log log n). This result improves on the current O(log n) approxima-
tion due to Medvedovsky et al. [15]. Our algorithm optimizes with respect to the
optimal solution, which is crucial to our sublogarithmic performance guarantee.
In contrast, previous results made use of the request set cardinality, |C|, as a
reference point, and were therefore limited by the observation that there are
certain trees in which any orientation cannot satisfy more than a logarithmic
fraction of the entire set of requests [14]. (ii) We devise an approximation algo-
rithm for the generalized scenario of mixed graphs. This scenario is motivated
by the need to include in the network protein-DNA interactions (PDIs), which
are both fundamental to signal transduction and key mediators in the observed
expression changes. The approximation guarantee of our algorithm depends on
the number of PDI segments in the underlying pathways. For typical cases, in
which the pathways contain at most one segment, our algorithm achieves an
approximation ratio of O(log n).

The rest of the paper is organized as follows: In Section 2, we describe and
analyze the algorithm for the maximum graph orientation problem, while in
Section 3, we study the mixed-graphs scenario.

2 Orienting Undirected Graphs

In this section, we devise a deterministic algorithm that achieves an approxi-
mation guarantee of O(log n/ log log n) for MGO. The algorithm employs the
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classify-and-select paradigm, that is, it exploits various structural properties of
the input graph to partition the collection of requests into O(log n/ log log n)
pairwise-disjoint classes. For each such class, given the additional structure im-
posed, we separately compute a graph orientation that satisfies a constant frac-
tion of the optimal number of satisfiable requests in this class. Consequently, the
above-mentioned approximation ratio follows by picking, out of the set of all the
computed orientations, the one that satisfies a maximum number of requests.
Below we describe the classification and orientation steps in detail.

2.1 The Classification Process

To specify the process by which requests are partitioned into classes, we begin
by presenting the notion of an almost-balanced decomposition, which can be
viewed as a generalization of the well-known centroid decomposition [5]. Note
that structural properties in this spirit have been explored and exploited in
various settings (see, e.g., [3,7,9]).

Definition 1. Let T = (V, E) be a tree. An almost balanced k-decomposition
of T is a partition of T into k edge-disjoint subtrees T1, . . . , Tk such that each
subtree contains between |E|/(3k) and 3|E|/k edges.

Lemma 1. ([6]) Let T = (V, E) be a tree with |E| ≥ k. An almost balanced
k-decomposition of T exists and can be found in polynomial time. In addition,
the number of vertices that are shared by at least two subtrees is less than k.

The classification process corresponds to a recursive decomposition of the input
tree T . Let T1 = {T1, . . . , Tk} be an almost balanced k-decomposition of T into k
edge-disjoint subtrees. We say that a decomposition separates a request i when its
endpoints si and ti reside in different subtrees of the decomposition (see Figure 1
for an example). The first class of requests, C1, consists of all requests separated
by T1. To classify the remaining set of requests, C \ C1, we recursively apply
the previously-described procedure with respect to the collection of subtrees
in T1. Specifically, in the second level of the recursion, an almost balanced k-
decomposition is computed in each of the subtrees T1, . . . , Tk, to obtain a set
T2, comprising of k2 subtrees. The second class of requests, C2, consists of all
yet-unclassified requests separated by T2. In other words, the endpoints of each
request i ∈ C2 reside in different subtrees of T2, but in the same subtree of T1.
The remaining classes C3, C4, . . . are defined in a similar manner. It is important
to note that the recursive process ends as soon as we arrive at a subtree with
strictly less than k edges. In this case, we make use of the trivial decomposition,
where the given subtree is broken into its individual edges.

In the above description, k was treated as a parameter whose value has
not been determined yet. To obtain the desired approximation ratio, we set
k = �log n�. It follows that the overall number of levels in the recursion, or
equivalently, the number of request classes is O(logk n) = O(log n/ log log n).
This claim is immediately implied by observing that the maximum size of a
subtree in level � of the recursion is at most (3/k)� · |E|.
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s1

t2

t4 s4

s3

s2

t5

t1

s5

t3

Fig. 1. An almost balanced 9-decomposition. Here, requests 1, 2, and 3 are separated,
whereas requests 4 and 5 are not.

2.2 An Orientation Algorithm for a Single Decomposition

Notice that a class of requests, say C�, generally consists of several subsets of re-
quests, each created when different subtrees in T�−1 are partitioned by the decom-
position T�. More specifically, assuming that the subtrees in T�−1 are T1, T2, . . .,
the class C� can be written as the disjoint union of C1

� , C2
� , . . ., where Cj

� is the
set of requests that are first separated when Tj is partitioned. Recall that the
path of any request separated by some subtree decomposition must be contained
in that subtree (otherwise, this request would have been separated in previous
recursion steps). This observation implies that it is sufficient to compute an
orientation for a single subtree decomposition and its induced set of separated
requests. Given a polynomial-time algorithm that computes such an orientation,
one can sequentially apply it to each of the subtree decompositions in the same
recursion level. The resulting orientations (in edge-disjoint subtrees) can then be
“glued” to form a single orientation, defined for the entire edge set, satisfying at
least as many requests as the overall number of requests satisfied in all individual
subtrees.

In what follows, we focus our attention on a single decomposition, and devise
a randomized algorithm that computes an orientation which satisfies, in expec-
tation, a constant fraction of the optimal number of satisfiable requests for this
decomposition. Formally, an instance of the problem in question consists of a tree
T = (V, E), and a partition T = {T1, . . . , Tk} of this tree into k edge-disjoint
subtrees, where k ≤ �logn�, and the number of vertices shared by at least two
subtrees is less than k. In addition, we are given a collection C of requests, where
each request path is separated by T , meaning that si and ti reside in different
subtrees of the decomposition T .

We need the following notation (exemplified in Figure 2). Let OPT denote the
number of satisfied requests in some fixed optimal orientation of T . Let VB ⊆ V



Improved Orientations of Physical Networks 219

T5

T6

T4T3T2T1

Fig. 2. An almost balanced 6-decomposition. Note that black vertices are border ver-
tices, gray vertices are junction vertices, and bold edges make up the skeleton of the
decomposition.

be the set of border vertices of T , that is, the set of vertices that are shared by at
least two subtrees in T . Moreover, let S ⊆ T be the skeleton of T , namely, the
minimal subtree spanned by all border vertices. Note that this subtree consists
of the union of paths connecting any two vertices in VB . Finally, let VJ ⊆ V the
set of junction vertices, defined as non-border skeleton vertices with degree at
least 3 (counting only skeleton edges).

The algorithm. We are now ready to present the orientation algorithm. Our
algorithm consists of two phases: segment guessing, where the optimal direction
state of disjoint subpaths of the skeleton is attained, followed by randomized
assignment, in which individual edges are assigned a direction.

Phase I: segment guessing. Let us name the vertex set VB ∪ VJ the core of
the skeleton S. One can easily verify that |VB ∪ VJ | < 2k as |VJ | < |VB| < k,
by Lemma 1. We now partition the skeleton into a collection Σ(S) of edge-disjoint
paths, which are referred to as segments.Each such segment is a subpath ofS whose
endpoints are corevertices,but its interior traverses only non-corevertices.Clearly,
|Σ(S)| = |VB ∪ VJ | − 1 < 2k. We now argue that one could obtain in polynomial
time the direction state that the optimal orientation induces on each segment σ ∈
Σ(S), simultaneously for all segments.To this end, notice thatany skeleton segment
σ = 〈v1, v2, . . . , v�〉 may be in one of three possible direction states:

1. Right direction: all edges are consistently directed from v1 towards v�, i.e.,
v1 → v2, v2 → v3, . . . , v�−1 → v�.

2. Left direction: all edges are consistently directed from v� towards v1, namely,
v1 ← v2, v2 ← v3, . . . , v�−1 ← v�.

3. Mixed direction: the direction of segment edges is non-consistent.

These definitions imply that the total number of segment direction states to be
examined is of polynomial size since 3|Σ(S)| = 3O(k) = 3O(log n) = nO(1). As a
consequence, we may assume without loss of generality that the set of direction
states induced by the optimal orientation on all the segments of Σ(S) is known
in advance. This assumption can be easily enforced by enumerating over all nO(1)

possible segment direction states.
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Phase II: randomized assignment. The goal of this phase is to orient the
graph while making sure that the edge directions respect the outcome of the seg-
ment guessing phase. For this purpose, we begin by considering skeleton segments
that have a consistent direction, namely, segments in either right or left direction
states, and assign all the edges in these segments their implied direction. The as-
signment procedure proceeds with two randomized assignment steps:

1. Each segment in a mixed direction state is assigned, independently and uni-
formly at random, a right or left direction. All segment edges are oriented
according to the chosen direction.

2. Each of the decomposition subtrees T1, . . . , Tk is assigned, independently and
uniformly at random, the role of a sender or a receiver. All the edges of each
sender subtree are oriented towards the skeleton (in its simplest form, when
the subtree contains a single border vertex, all edges are oriented toward
that vertex). In contrast, all the edges of each receiver subtree are oriented
away from the skeleton. We refer the reader to an example in Figure 3(a).

(a)

Tti

si ti

Tsi

rsi

vsi

vti

rti

(b)

Fig. 3. (a) An orientation of a sender subtree, where the bold edges are part of the
skeleton. (b) A partition of a request path into five parts.

We turn to prove that the expected number of satisfied requests is within a
constant factor of optimal, as formally stated in the following theorem.

Theorem 1. The resulting orientation satisfies at least OPT/16 requests in ex-
pectation.

Proof. Recall that we have previously assumed the endpoints of each request to
reside in different subtrees of the decomposition T . In particular, this implies
that each request path must traverse at least one border (core) vertex. For this
reason, as shown in Figure 3(b), we can divide each request path, with endpoints
si and ti, into five (some possibly empty) parts:

1. A subpath between si and its closest skeleton vertex vsi .
2. A subpath, along a partial skeleton segment, between vsi and its closest core

vertex rsi .
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3. A subpath between ti and its closest skeleton vertex vti .
4. A subpath, along a partial skeleton segment, between vti and its closest core

vertex rti .
5. A subpath between rsi and rti , along a sequence of complete skeleton seg-

ments.

With these definitions in mind, let us focus on some request i that is satisfied in
the optimal orientation. We now argue that, with probability at least 1/16, this
request is satisfied in the random orientation constructed by the algorithm. Con-
sequently, by linearity of expectation, the overall expected number of satisfied
requests is OPT/16. A key observation one should make to establish this argu-
ment is that all the segments along the subpath between rsi and rti must have a
consistent direction in the optimal orientation; otherwise, this request would not
have been satisfied. Accordingly, we may assume that our algorithm assigned the
same direction to all the edges in these segments. Now, notice that the request
under consideration is satisfied if the following four probabilistic events occur:
(1) the edges in the subpath between si and vsi are oriented towards vsi ; (2) the
edges in the subpath between vsi and rsi are oriented towards rsi ; (3) the edges
in the subpath between vti and rti are oriented towards vti ; and (4) the edges in
the subpath between ti and vti are oriented towards ti. One can easily validate
that these four events are independent, and that each one of them occurs with
probability of at least 1/2. For example, the edges in the subpath between si and
vsi are oriented towards vsi if the underlying subtree Tsi is selected as a sender.
As a result, the probability that request i is satisfied in the random orientation
is at least 1/16.

Derandomization. The avid reader may have already noticed that the extent
to which we utilize randomization is rather limited, and that its foremost pur-
pose is to make the presentation of our algorithm simpler. Specifically, each
segment in a mixed direction state is randomly assigned one of two possible
directions, while each decomposition subtree is randomly assigned one of two
possible roles. In other words, all we need to obtain a deterministic algorithm
is a uniform sample space, with two possible values for O(log n) independent
random variables. This can be constructed in polynomial time either explicitly,
as there are only nO(1) possible outcomes, or in a more compact way, by observ-
ing that fourwise-independence is sufficient for the preceding analysis (see, for
instance, [1, Chap. 15]).

A semi-oblivious property. In view of the derandomization procedure, we
may reinterpret our algorithm as the following two-stage process: initially, we
generate a set of polynomially-many potential orientations, determined by all
possible outcomes of both the segment guessing and randomized assignment
phases, and then, we select an orientation that maximizes the number of satis-
fied requests. Now, notice that the first stage of this process is semi-oblivious.
Specifically, the set of generated orientations is independent of the collection
of requests, and only builds on the structure of the underlying network. This
property allows us to employ the algorithm in generalized requests settings. For
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instance, a natural generalization of maximum graph orientation is when each
request is characterized by a collection of ordered source-target pairs, rather
than a single pair. In this setting, a request is regarded as satisfied if at least
one of its source-target pairs admits a directed path in the oriented graph. One
can easily verify that our algorithm attains the same performance guarantees for
this setting by applying nearly identical analysis.

One interesting scenario that is captured by the above-mentioned generaliza-
tion is of maximum graph orientation with groups. In this scenario, a request i
is satisfied if there is a directed path from some vertex si ∈ Si to some vertex
ti ∈ Ti in the oriented graph. Here, Si and Ti are vertex sets that characterize
the request.

3 Orienting Mixed Graphs

Thus far, we have restricted our attention to undirected graphs. In practice, sig-
naling pathways contain various types of interactions whose direction is specified
in advance, most notably protein-DNA interactions. This implies that the input
to the graph orientation problem is, in its utmost general setting, a mixed graph.
A key difficulty in this setting is that, unlike the seemingly easier-to-handle sce-
nario of unoriented edges, there is no trivial reduction to tree instances. What
prevents us from contracting cycles is the possible existence of cycles with ori-
ented edges pointing in opposite directions, for which there does not seem to be
an easy way to decide in advance on the orientation of remaining edges.

Despite the inherent difficulty in a mixed graph input, the biological setting
provides us with several constraints on the input graph, which we exploit in
our approximation algorithm. The first biologically-motivated constraint relates
to the occurrence of PDI edges along pathways. Reviewing real pathways, we
observed that signaling pathways do not jump back and forth between PPIs and
PDIs, rather in the vast majority of the cases there is a single switch from PPIs to
PDIs. Precisely, define a PDI segment in a linear path as a series of consecutive
PDIs along the path that is flanked by PPI edges or by the start/end of the
path. To gather statistics on the number of PDI segments in real pathways,
we downloaded 116 human pathways from KEGG [11]. For each pathway, we
counted the number of PDI segments in its longest linear path. Only 35 of the
116 pathways contained PDIs, and 18 of which had at least one PDI segment
in their longest path. Notably, 17 of the 18 contained a single PDI segment; the
remaining pathway contained two segments.

A second constraint is a refinement of the first one: In two thirds of the 18
KEGG pathways with at least one PDI segment, the segment occurred at the
end of the pathway. Interestingly, our algorithm can be directly applied to this
latter scenario (of a single PDI segment that occurs at the end of the pathway)
as each cause-effect pair can then be translated into a group request where the
cause should connect to any of the genes that have a directed PDIs path to the
effect. Below, we consider the general case and show that if the sought pathways
contain at most � segments then an O(log� n) approximation is possible.
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3.1 The Approximation Algorithm

Let G = (V, E) be a mixed graph whose edge set can be described as E =
EO ∪ EU , where EO consists of edges with predefined directions, and EU are
unoriented edges. Even though the input graph may contain cycles with oriented
edges pointing in opposite directions, we can still contract unoriented cycles, and
more generally, cycles where all oriented edges are consistently pointing in the
same direction. Therefore, from this point on we assume that such cycles have
already been contracted. With this setting in mind, an unoriented component
(or, U-component, for short) is defined as a maximal connected component of
the unoriented subgraph (V, EU ). It is worth noting that any U-component is
necessarily a tree, or otherwise, there must be unoriented cycles, which should
have been contracted earlier on. Also note that there are no oriented edges
with both head and tail residing in the same U-component since any such edge
induces a cycle that should have been contracted before. As a consequence of
the preprocessing steps described above, the input graph can be represented
as a directed acyclic graph on the U-components, as illustrated in Figure 4(a).
That is, the collection of U-components can be topologically sorted such that all
oriented edges between them are pointing from left to right.

Let T = (VT , ET ) be some U-component. We first show how to compute a
random orientation of ET such that any pair of vertices in T is connected with
probability Ω(1/ log n). For this purpose, suppose we execute the classification
process suggested in Section 2.1 where the collection of requests consists of all
vertex pairs in T . However, rather than using almost-balanced k-decompositions
with k = �log n�, we will simplify the process by picking k = 2. Even though
the number of resulting request classes slightly blows up to O(log n), each time
a tree is being decomposed, we obtain only two almost-balanced edge-disjoint
subtrees which intersect in a common vertex. On top of picking an alternative
value of k, instead of testing all O(log n) request classes as potential candidates
for the class that separates the maximal number of pairs, we will pick one such
class uniformly at random. Given this class, the orientation of each decomposed
tree (two edge-disjoint subtrees) is determined, independently and uniformly at
random, from one of the following two alternatives, as shown in Figure 4(b):

(b)

. . .

(a)

right:

left:

Fig. 4. (a) A directed acyclic graph on U-components. (b) The two possible orientations
of a decomposed tree.
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– Right orientation: All edges of the first subtree are oriented towards the
common root and all edges of the second subtree are oriented away from
that root.

– Left orientation: All edges of the second subtree are oriented towards the com-
mon root and all edges of the first subtree are oriented away from that root.

Following Section 2.1, it is not difficult to verify that any pair of vertices (s, t) ∈
VT ×VT is connected with probability Ω(1/ logn) since the particular class that
separates s and t is picked with probability Ω(1/ log n), and given that this class
has been picked, there is a directed path from s to t with probability 1/2.

We handle an arbitrary mixed graph G = (V, EO ∪ EU ), which has already
been brought to the structural form of a directed acyclic graph on the collec-
tion of its U-components, by independently running the randomized single-tree
procedure in each U-component. As a result, we obtain a random orientation
of the graph, whose performance guarantee depends on the minimal number of
U-components that must be traversed in order to satisfy any request. Specifi-
cally, let (si, ti) be the i-th request pair, and suppose �i stands for the minimal
number of components that have to be traversed in an orientation that connects
si to ti. Then the following result can be stated:

Theorem 2. The random orientation algorithm constructs an orientation that
satisfies Ω(OPT/ log� n) requests in expectation, where � = max �i.

Proof. Let us focus on request i, and let Pi be a directed si-ti path that tra-
verses �i components in some orientation of G; we denote these U-components
by U1, . . . ,U�i , indexed in topological order. Furthermore, let xj and yj be the
entry vertex and exit vertex of Pi in Uj , respectively. Notice that every (xj , yj)
pair is connected with probability Ω(1/ log n) since the randomized single-tree
procedure is independently run in each U-component. This implies that si and ti
are connected with probability Ω(1/ log�i n). Consequently, the expected number
of satisfied requests is Ω(OPT/ log� n) by linearity of expectation.

4 Conclusions

We have designed a novel approximation algorithm for maximum graph ori-
entation that achieves an O(log n/ log log n) ratio. We have further shown an
extension of the algorithm that handles mixed graphs and provides a polyloga-
rithmic approximation ratio under biologically-motivated assumptions. On the
theoretical side, we believe that the techniques presented here are of indepen-
dent interest, and may be applicable in other settings as well. On the practical
side, the algorithmic extension to mixed graphs tackles a major open problem
posed in [14] and is expected to yield much more realistic network orientations
by integrating knowledge on PDIs into the orientation process.
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Abstract. The structural analysis of metabolic networks aims both at
understanding the function and the evolution of metabolism. While it
is commonly admitted that metabolism is modular, the identification of
metabolic modules remains an open topic. Several definitions of what is
a module have been proposed. We focus here on the notion of chemical
organisations, i.e. sets of molecules which are closed and self-maintaining.
We show that finding a reactive organisation is NP-hard even if the net-
work is flux-consistent and that the hardness comes from blocking cycles.
We then propose new algorithms for enumerating chemical organisations
that are theoretically more efficient than existing approaches.

1 Introduction

Until recently, metabolism was analysed via the pathways composing it, which
were traditionally established in a non automatic way by experts interested in
some specific function (glycolysis for instance, or anaerobic respiration). The
pathways were studied independently from each other, even though molecules
could be shared. The advent of full genome sequences now enables to infer
genome-scale metabolic networks (see [8] for an overview) and the study of these
networks has revealed extensive cross-talk between traditionally defined path-
ways, as well as the use by different organisms of alternative pathways, that is,
different metabolic routes to a same final overall product goal. While the notion
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of metabolic pathway remains useful as a reference definition of functional mod-
ules, the exact frontiers between pathways can now be questioned, and other
definitions of the concept of metabolic module can be proposed. While several
formal definitions have already been suggested, none of them is able to capture
all the expert knowledge that led to the first pathways while at the same time
providing an insight into alternative functional ones. It is actually an open ques-
tion in the field whether such definition exists. Most likely, not a single model
will suffice. The motivation of this paper is to explore one model for metabolic
modules called chemical organisations, both in terms of the complexity of enu-
merating such modules and of exact algorithms for performing the enumeration.
The results obtained constitute a solid algorithmic ground for the study of chem-
ical organisations, a necessary first step to widen the use of this notion for the
computational analysis of metabolic networks.

Several formal definitions of pathways and modules can be found in the lit-
erature on metabolism, the best known of which may be elementary modes [12]
or any of its close cousins (see [8,9] for a survey). Elementary modes may be in-
formally described as metabolic subnetworks that can function at steady state,
meaning that all internal metabolites are produced and consumed in equal rates
(that is, nothing accumulates internally). This is a fine definition, but has at least
one drawback: it is restricted to the analysis of the system at steady state and
does not allow to describe states of the system where metabolites can accumu-
late. However, such states are relevant as they could correspond to intermediary
steps in the evolution of metabolism, or temporary states in the dynamics of
metabolism.

As far as we know, two models in the literature enable to study such states.
One is Petri nets and the other is a more recent model called chemical organi-
sations. Because it is algebraically easier to manipulate chemical organisations
as their formulation follows closely that of (hyper)graphs and matrices, we focus
our attention in this paper on chemical organisations. The concept was intro-
duced in 2005 by Peter Dittrich and his group [4], building on earlier work by
Fontana and Buss [6] and can be used not only for metabolism, but also for any
kind of reaction system, including regulatory networks. In this paper, however,
we focus exclusively on metabolism.

Chemical organisations are sets of molecules that are self-maintaining and
closed (in this paper, we use the terms metabolite and molecule with no distinc-
tion). Informally, a self-maintaining set is a set where molecules can accumulate
– the feature we were seeking – provided no molecule vanishes. A set is closed if
all metabolites produced from reactions for which all the inputs are present in
the set will also be present and thus part of the set. By convention, this includes
all reactions that take their input from the environment, i.e. are external. All
external inputs are therefore considered as being available and used. This intro-
duces a second contrast with elementary modes (EMs). Indeed, EMs may use
only part of the externally available inputs. More generally, EMs are not closed.

Finally, as we have already said, the theory of chemical organisations has been
proposed for general reaction systems. Its application to metabolic networks
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raises new specific questions, as the networks have specific properties. They
are indeed expected to be flux-consistent (each reaction belongs to at least one
elementary mode).

The objectives of this paper are thus twofold. The first is to revisit chemical
organisations in the context of flux-consistent networks. In particular, finding a
chemical organisations was shown to be hard in [2]. A legitimate and non trivial
question is whether this remains true in biologically more realistic flux-consistent
networks. Section 2 presents the main definitions on chemical organisations and
consistency of networks. Section 3 shows that even for consistent networks the
enumeration problem is hard. We go however further by identifying the specific
structural properties of the network that account for this hardness. Those are
discussed in Section 4, while Section 5 fulfills the second objective of this paper.
This is to describe a new algorithm that takes advantage of such properties
to obtain an exact method that is in all cases theoretically more efficient for
consistent networks than the enumeration algorithms presented in [2] because,
at best, a smaller part of the solution space needs to be explored. Due to space
limitations some of the proofs are omitted here and will be presented in the
journal version.

2 Preliminaries

A metabolic network, like any reaction system, can be modelled as a weighted
directed hypergraph G = (M, R) with M the set of vertices corresponding to
the metabolites and R the set of hyperarcs corresponding to the reactions. A
directed hyperarc (i.e. a reaction) r ∈ R is an ordered pair of sets of vertices
(i.e. metabolites) r = (subs(r), prod(r)) where subs(r) is the set of substrates
of r and prod(r) is the set of products of r. For each x in subs(r) (in prod(r))
the weight of x with respect to r denotes the stoichiometric coefficient of x in
r, that is, the number of units of x consumed (or produced) when r fires. Note
that x can belong to both subs(r) and prod(r); in this case there are two weights
associated to x w.r.t. r. Note also that, according to the above definitions, the
set of substrates of a reaction r can be empty: in this case, we say that the
metabolites in prod(r) are inputs of the network.

Metabolic networks have also been often modelled using matrices [11]. The
stoichiometric matrix S has |M | rows and |R| columns where Si,j is the stoichio-
metric coefficients of molecule i in reaction j. Si,j is negative if i is consumed
and it is positive if i is produced. We notice here that while the stoichiomet-
ric matrix can always be derived from the weighted hypergraph, the reverse is
not true. Indeed, metabolites involved as substrates and products of the same
reaction cannot be handled in the matrix representation.

For some of the results presented, we also use the concept of the underlying
graph of G, which is a directed multigraph with the same set of vertices of G
and arcs x → y for every pair of vertices x, y for which there is an hyperarc r
such that x ∈ subs(r) and y ∈ prod(r). A reaction is said to be on a path/cycle
of the underlying directed graph if any of its (substrate,product)-pairs is an arc
of the path/cycle.
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In the context of metabolic networks, we say that a flux over the network is
the rate at which each reaction occurs. A flux can be represented as a flux vector
v ∈ R|R| with v[i] denoting the rate of reaction i.

A metabolic network is flux-consistent if there exists a flux vector v > 0,i.e
∀i ∈ R the flux v[i] > 0, such that Sv = 0 [1]. This is the same as saying that
every reaction of the network belongs to at least one elementary mode, thus
checking for the usefulness of each reaction. For more information on elementary
modes, see [12] and [11].

We denote by RA ⊆ R the subset of reactions that can be fired when the
metabolites in set A ⊆ M are present, i.e., RA = {r ∈ R|subs(r) ⊆ A}. We now
introduce the basic definitions that will be used throughout the paper.

Definition 1. A set C ⊆ M is closed if, for all reactions r ∈ RC , prod(r) ⊆ C.
Moreover, given a set C ⊆ M , the closure of C, denoted by ClC , is the smallest
closed set H that contains C.

Note that if C is a closed set of molecules, then C must contain all inputs of
the network (since the empty set is a subset of C and input reactions therefore
belong to RC). In particular, the closure of the empty set will contain all inputs
and whatever can be produced from them.

Definition 2. A set of molecules C ⊆ M is self-maintaining if there is a flux
vector v such that:

1. for all reactions r ∈ RC , v[r] > 0;
2. for all reactions r �∈ RC , v[r] = 0;
3. for all molecules i ∈ C, the production rate (Sv)[i] ≥ 0.

A set of molecules is self-maintaining if there exists a flux vector such that the
molecules present in the set can accumulate ((Sv)[i] > 0) or be consumed and
produced at the same rate ((Sv)[i] = 0) but none of them may disappear (3rd
condition). Conditions 1 and 2 basically specify that all reactions that can fire
with molecules from the set will fire. In particular, reactions which produce
molecules outside the set will also fire. A self-maintaining set is therefore really
self-maintaining, even in the presence of “leaks”.

Definition 3. A set of molecules O ⊆ M is an organisation if it is closed and
self-maintaining. O is said to be reactive connected if:

– (reactive) each metabolite in O takes part as substrate or product in at least
one reaction inside RO;

– (connected) for any two molecules x and y in O, there is a path from x to y
in the underlying undirected graph.

We present a network in Figure 1 that has 3 connected components and 8 organ-
isations but only 2 of them are reactive connected organisations. The others are
just combinations of organisations which cannot directly interact among them.
Notice also that some sets are not organisations, such as for instance the sets
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{s, p} and {b, c, d}, since they are not closed, or the sets {s, q, r} and {c, d} that
are not closed nor self-maintaining. On the other hand, the closure of the empty
set is {s} and it is an organisation. This organisation must be present in all or-
ganisations even if there is no possible interaction between their molecules as in
the case of organisation {s, a}. Clearly, any set of disconnected nodes will form
an organisation, as long as we consider its union with the closure of the empty
set. In the following, we shall ignore such organisations and focus on organisa-
tions where the molecules interact among them. This is our motivation to find
only reactive connected organisations.

Fig. 1. A metabolic network with (a) 3 connected components, (b) 8 organisations:
{{s}, {s, p, q, r}, {s, a}, {s, b, c, d}, {s, a, b, c, d}, {s, a, p, q, r}, {s, b, c, d, p, q, r}, {s, a, b, c,
d, p, q, r}}, and (c) 2 reactive connected organisations: {{s}, {s, p, q, r}}

For this reason, from now on we restrict our networks to have only one con-
nected component and some input and output metabolites. For general networks,
indeed, we can without loss of generality work on each connected component sep-
arately and then combine the results.

Since throughout the paper we need to compute closures of sets, we recall
here the forward propagation procedure [10] that in an iterative process enables
to obtain the closure of a given set C. Informally, this consists in starting from
C itself, adding prod(r) for every r ∈ RC , and repeating this procedure until no
new metabolites are added to C.

As already mentioned, all inputs of the network need to be considered together
in order to compute organisations. This is a modelling choice that implies that
if one wished to compute organisations for different subsets of the inputs, then
it would be necessary to edit the network and recompute the organisations for
the subsets of interest.

3 Chemical Organisations in Consistent Networks

It was shown that deciding whether a network contains at least one organisation
is NP-complete [2]. However the proof was based on a network that was not
flux-consistent. We now characterise organisations in consistent networks. First
of all, we observe that it is easy to check whether a set C is an organisation by
inspecting the reaction rules to check closure and self-maintenance using linear
programming.

The following theorem shows how to compute two possible organisations.

Theorem 4. If a network is flux-consistent then the whole network and the
closure of the empty set are organisations.
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Proof. The whole network is always closed. By definition of flux-consistency, we
have a flux vector v that covers the whole network, satisfying the condition of self-
maintenance. Therefore the whole network is an organisation. Analogously, if the
closure of the empty set produces the whole network then it is an organisation.
Otherwise, since every metabolite is produced from the empty set, we can easily
obtain a valid flux vector v satisfying the condition of self-maintenance. ��
Notice that the closure of the empty set is the smallest possible organisation since
it has to be contained in all other organisations.In the following, we say that the
whole network and the closure of the empty set are trivial organisations.

Observe that the closure of the empty set may not always produce the whole
network. An example is given in Figure 2 since the closure of the empty set for
that network is {a}.

Fig. 2. Network in which the closure of the empty set does not produce the whole
network

Theorem 5. If the network is flux-consistent and acyclic, i.e. the underlying
directed graph of the hypergraph is acyclic, then the whole network is the only
organisation.

Proof. The smallest organisation is given by the closure of the empty set, which
can be obtained by applying the forward propagation algorithm to the empty
set. As the network is flux-consistent and acyclic, from the inputs any metabolite
can be reached, i.e., produced. Hence, the closure of the empty set is the entire
network. From the flux-consistency of the network and from Theorem 4, it follows
that the smallest organisation is the whole network. ��
The next result shows that the problem of finding a non trivial organisation in a
flux-consistent network is NP-hard. The proof is based on a reduction from the
3-SAT problem, which is an appropriate modification of the original reduction
given in [2], that showed that finding a reactive organisation in a general reaction
system is NP-hard.

Theorem 6. Deciding if a flux-consistent network contains a non trivial organ-
isation is NP-hard.

4 Enumerating Chemical Organisations

Theorem 6 immediately implies that it is not possible to enumerate all organi-
sations in a flux-consistent network in polynomial-time-delay in the size of the
network.
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We now observe that Theorem 5 indicates that for flux-consistent networks,
the difficulty of finding non trivial organisations comes from the presence of
cycles in the network. Indeed, as shown in Figure 3(b), cycles may interrupt the
forward propagation if there exists a reaction that can produce a new metabolite
a but needs for this a metabolite b which is not available and therefore blocks
the reaction.

Fig. 3. (a) Non blocking cycle that will be traversed by the forward propagation pro-
cedure. (b) Forward propagation blocked by a unreached metabolite b.

In order to find the reactive connected organisations, we need to process cycles
every time the forward propagation procedure stops. This simple observation
gives an upper bound of 2k on the number of reactive connected organisations
in flux-consistent networks, where k is the number of cycles in the network. In
order to proceed we first define cycles formally. By a cycle in the metabolic
network we mean a simple directed cycle in the underlying graph. Self-loops are
also considered as cycles.

Definition 7. A hitting set of a set of cycles is a set of metabolites such that
each cycle contains at least one element of the hitting set.

Theorem 8. Let H be a hitting set of all the cycles of a directed hypergraph.
The set of all reactive connected organisations, denoted as O, is such that

O ⊆
⋃

C⊆H

{ClC}

Proof. It is sufficient to show that if A is a reactive connected organisation then
A = ClC , where C = A ∩ H .

First observe that, since A is closed and C is a subset of its metabolites, it
follows that ClC ⊆ A.

Let us suppose that A contains vertices which are not in ClC . We colour these
vertices white and the vertices of ClC black. Consider any white metabolite a1.
Since A is an organisation, a1 cannot be vanishing. Moreover, it is not an input
of the network as otherwise it would be black. Therefore, there exists a reaction
r fired by A that has a1 as product and has a white substrate a2, a2 �= a1,
otherwise a1 would again be black by closure.

By iterating the above reasoning, it follows that the subgraph of the under-
lying directed graph induced by white vertices has minimum in-degree at least
1 and contains a directed cycle. This contradicts the fact that H hits all the
cycles. The set of white vertices is therefore empty and A = ClC . ��
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The bound of the previous theorem is tight. Indeed, an example where the num-
ber of organisations reaches 2|H| is given in Figure 4 where from the input, k
metabolites are produced by k independent reactions and all of them are blocked
by cycles. Any combination of these independent paths can be de-blocked and
produce a new organisation, and therefore we have 2k organisations.

Fig. 4. Example with k parallel blocking cycles and 2k organisations

However, some cycles never interrupt the forward propagation procedure as
illustrated in Figure 3(a). Other cycles, on the other hand, exhibit structural
properties that may lead to a blocking situation. Such cycles are called poten-
tially blocking cycles. A basic solution to find all organisations is to know
how to unblock all cycles of the network independently of whether they are po-
tentially blocking cycles or not. Therefore, instead of finding a hitting set for
all cycles of the network, it is enough to break all potentially blocking cycles
to compute all reactive connected organisations. In order to prove this, we first
introduce a more formal definition of potentially blocking cycle.

Definition 9. A potentially blocking cycle is a cycle such that there exists a
reaction r = ({s1, . . . , sh} , {p1, . . . , pk}) in the network satisfying the following
two conditions: (1) there exists i and j such that (si, pj) is an edge of the cycle,
and (2) there exists � such that s� is not in the cycle.

A potentially blocking cycle may or may not interrupt the forward propagation
depending on the metabolites that were produced by the procedure once the
cycle is reached. Figure 5(a) shows an example in which the cycle will be tra-
versed, while Figure 5(b) shows an example in which it will block the forward
propagation algorithm.

Fig. 5. Example of a potentially blocking cycle formed by the vertices a and c and
reactions a + b → c and c → a + b (note that vertices b and c also form a symmetric
cycle). If the forward propagation procedure (FP) reaches the cycle through c, the cycle
is traversed, but if it reaches it through a, it is blocked.
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Theorem 10. Let H be a hitting set of all the potentially blocking cycles of a
directed hypergraph. The set of all reactive connected organisations, denoted as
O, is such that

O ⊆
⋃

C⊆H

{ClC}

Proof. As in the proof of Theorem 8, it is sufficient to show that, given a reactive
connected organisation A, A = ClC , where C = A∩H (in the following, all paths
and cycles are meant directed in the underlying directed graph). Once again, it
is easy to see that ClC ⊆ A. Let us then suppose that A contains vertices which
are not in ClC and let us colour them white and those of ClC black.

Let ai (i = 1, 2, . . . , k) be the set of white vertices such that there exists a
reaction ri having ai as product and at least one black substrate. Then ri has
also at least one white substrate, which we denote by wi, as otherwise ai would
be black by closure. Note that a white vertex does not have to belong to the set
of the ai’s, but that this set is not empty as the organisation is connected and
the set of white vertices is not empty.

If wi = ai, the selfloop induced by ri is a potentially blocking cycle that
contains no vertex of H , leading to a contradiction. Thus we may assume that
wi is distinct from ai.

For 1 ≤ i ≤ k, define Ti as follows: a vertex w is in Ti if either w = wi or there
exists a white path starting from w and ending in wi. Up to a reordering, we
may assume that |T1| ≤ |Ti| for 2 ≤ i ≤ k. As T1 is not empty, it has to contain
at least one vertex that is a product of a reaction having a black substrate. If
that vertex is a1, there exists a path from a1 to w1, which yields a white cycle
with the edge (w1, a1). That cycle is a potentially blocking cycle (because of the
reaction r1) which contains no vertex in H , leading to a contradiction.

In other words, T1 contains a vertex among (a2, . . . , ak), say a2. This implies
that every path ending in w2 can be extended to a path ending in w1 and thus
T2 ⊆ T1. Therefore, by minimality of T1, T1 = T2.

This implies that w1 ∈ T2: hence, there exists a white path from w1 to w2. As
a2 ∈ T1, there also exists a white path from a2 to w1. Thus, we can construct a
white path from a2 to w2. Considering the edge (w2, a2), we again obtain a white
cycle, which is potentially blocking (because of the reaction r2) and contains no
vertex in H , leading to a contradiction.

Thus, the set of white vertices is empty and A ⊆ ClC . ��
Even in the case of the previous theorem, the bound is tight. Indeed, an example
where the number of organisations is 2|H| is, once again, given in Figure 4, since
all cycles presented in the example are potentially blocking.

5 Hitting Set Approach to Enumerate Organisations

Two exact algorithms were proposed in [2] to enumerate organisations. The first
one consisted in enumerating all closed sets and then checking for their self-
maintenance, while the second one consisted in enumerating all self-maintaining
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sets and then checking linear combinations of them in order to obtain closed
sets. A third approach was also proposed that was based on the second one
but avoided enumerating all self-maintaining sets. This algorithm however was a
heuristic not guaranteed to find all self-maintaining sets (and thus organisations).
Finally, a variation of the first algorithm was proposed in order to enumerate
only reactive connected organisations. This algorithm comes closer to the one
we describe later and works as follows. First, the forward propagation of the
empty set is computed. Once the procedure is blocked, all possible combinations
of metabolites that are connected to the produced set X are considered for
addition, in order to obtain further closed sets that include X . At this point, the
algorithm recursively continues.

Note that in the above procedures, no concept of blocking cycles has been for-
mally identified and used. Now that we know that the hardness comes from such
cycles, two different approaches can be applied in flux-consistent networks. One
is to find a global hitting set for all cycles of the network and then, following
Theorem 8, to apply the forward propagation procedure on each subset of the
hitting set to produce closed sets which together form all candidate organisations
and, finally, to check through LP if the candidates are self-maintaining. However,
the problem of finding a minimum hitting set for all cycles of a directed graph is
NP-hard as indeed it corresponds to the feedback vertex sex (FVS) problem
[7]. Nevertheless approximation algorithms such as the one described in [13] can
be used in order to perform this step.

A second possibility is to find a local hitting set. According to Theorem 10
only potentially blocking cycles need to be considered. This is a superset of the
blocking cycles that can be identified when the forward propagation procedure
stops because it is at this moment that we know we are dealing with actually
blocking cycles. A more efficient algorithm to enumerate reactive connected or-
ganisations is thus the following one: apply the forward propagation algorithm
and once blocked, identify the set B of metabolites that are blocking the closure
and find a hitting set that unblocks only the cycles which directly or indirectly
involve these blocking metabolites.

In [5], the authors presented an approximation algorithm to a generalisa-
tion of the FVS problem, called SUBSET-FVS, in which only a subset of
the directed cycles in the graph is considered interesting, more specifically the
ones that intersects a set of special vertices. In our case, the set of special
vertices would be the blocking metabolites locally identified as described in
the previous paragraph. The authors in [5] gave two approximation algorithms
for the SUBSET-FVS problem. The first algorithm achieves an approxima-
tion factor of O

(
log2 |B|). The second achieves an approximation factor of

O (min{log T log log T, logn log log n}), where T is the value of the optimum frac-
tional solution of the problem at hand, and n is the number of vertices in the
graph.

Before proving that this idea can be correctly used to exactly solve our prob-
lem, we need to define the concept of a blocking cycle in relation to a given set
C of metabolites.
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Definition 11. Let C be a set of metabolites. A C-blocking cycle is a cycle of
vertices which are not in C such that there exists a reaction r in the cycle whose
set of substrates contains at least one metabolite in C.

C-blocking cycles correspond to those which actually stop the forward propaga-
tion procedure.

Theorem 12. Let C be a closed set and H a hitting set of the C-blocking cy-
cles of a metabolic network. Let A be a reactive connected organisation whose
metabolites contain C. Then either C = A or there exists a non empty subset B
of H such that the closure of C ∪ B is still a subset of A.

Proof. Let A be a reactive connected organisation containing C as a subset of
its metabolites and let B = A ∩ H . Let us suppose that C �= A. To prove the
theorem, it is then sufficient to prove that B = A ∩ H is not empty.

We colour the vertices of A \ C in white and those of C in black. Since A
is a reactive connected organisation, there exist edges between the white and
the black metabolites and some of them go from a black to a white vertex, as
otherwise, white vertices would be vanishing. Let (a1, . . . , ak) be the set of white
vertices reached by at least one edge coming from a black vertex.

The same argument of the proof of Theorem 10 can now be applied, showing
that, as the set of white vertices is not empty, it contains a white C-blocking
cycle. Therefore, B is not empty. ��
Corollary 13. Every reactive connected organisation is included in the set CO
returned by the procedure given in Algorithm CCO.

Proof. Let A be a reactive connected organisation. It has to contain C0 as every
organisation contains the closure of the empty set. Let C be maximum among the
elements of CO which are subsets of A. Then Theorem 12 implies, by maximality
of C, that A = C. ��

Algorithm CCO(G)

Require: a metabolic network represented as a hypergraph G = (M, R);
Ensure: the set CO of all candidates for being organisations.

CO ← {C0} where C0 is the closure of the empty set (Cl{})
for all elements C in CO which have not been treated before do

Compute a hitting set H of the C-blocking cycles
for every B ⊂ H do

Compute ClC∪B and add it to CO if it was not present already
return CO

Notice that the size of the hitting set computed by the algorithm is never greater
than the number of blocking metabolites. Thus we can guarantee that our algo-
rithm is theoretically better than existing algorithms which consider all blocking
metabolites and then test all subsets.
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6 Conclusion

All the results presented in this paper correspond to enumerating closed sets as
potential organisations. The problem of enumerating self-maintaining sets is still
open. Such an approach could enable us to design a method that enumerates
stoichiometrically valid precursor sets, which would be an important follow-up
of the work on minimal precursors sets presented in [3]. Finally, the algorithms
introduced in this paper do not take any specific advantage of the fact that
the network should be mass-consistent and exploiting this might lead to better
algorithms for enumerating self-maintaining sets.
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Abstract. Many biological networks contain recurring overrepresented
elements, called network motifs. Finding these substructures is a com-
putationally hard task related to graph isomorphism. G-Tries are an
efficient data structure, based on multiway trees, capable of efficiently
identifying common substructures in a set of subgraphs. They are highly
successful in constraining the search space when finding the occurrences
of those subgraphs in a larger original graph. This leads to speedups
up to 100 times faster than previous methods that aim for exact and
complete results. In this paper we present a new efficient sampling algo-
rithm for subgraph frequency estimation based on g-tries. It is able to
uniformly traverse a fraction of the search space, providing an accurate
unbiased estimation of subgraph frequencies. Our results show that in
the same amount of time our algorithm achieves better precision than
previous methods, as it is able to sustain higher sampling speeds.

Keywords: complex networks, network motifs, subgraph frequency,
sampling, g-tries.

1 Introduction

A wide variety of real-life systems can be modeled and analyzed with complex
networks [4]. It has been found that many of these networks contain recurring
elements, called network motifs [15]. These are overrepresented subnetworks,
i.e., subgraphs that appear in higher frequency than it would be expected in
randomized networks with similar topological characteristics.

Network motif analysis has a broad multidisciplinary applicability. Just to
name a few domains, it has been applied on biological systems (like in brain
networks [20], protein-protein interactions [1] or gene regulation [5]), social net-
works [9]), engineering systems like electronic circuits [8] and even on software
architecture [21]. Discovering these motifs is a computationally hard task closely
related to the graph isomorphism problem. Currently, this is done by comput-
ing the frequency of subgraph classes of a determined size both in the original
network and in a randomized ensemble of networks sharing similar topological
features, namely the degree sequence.

Discovering subgraph frequencies is the main bottleneck of the whole com-
putation, with an explosive combinatorial effect as the subgraph size increases.
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This is typically tackled using one of two approaches: either we compute the
frequency of each possible individual subgraph class, one at the time (subgraph-
centric approach) [7], or we enumerate all subgraphs and then we compute which
ones are isomorphic (network-centric approach) [15,23].

Recently we have proposed a new specialized data-structure, g-tries [17]. It
takes advantage of common subgraph substructures in order to avoid redundant
computations, matching an entire set of the subgraph classes at the same time
in a given network. This leads to significant performance gains when compared
to previous methods, up to one hundred times faster for some networks.

In the network-centric approach, approximation techniques have been de-
veloped in order to improve execution time at the cost of reducing the accu-
racy [11,23,16]. This is done by sampling a fraction of the subgraph occurrences,
instead of exhaustively enumerating all of them.

Our main contribution is an efficient heuristic sampling algorithm for discov-
ering network motifs using g-tries. We take the already existing g-trie exhaustive
and complete algorithm and extend it in order to obtain an unbiased sample that
can be used to estimate the desired subgraph frequencies. This leads to a new
algorithm that, by taking advantage of g-tries, achieves higher sampling rates
and thus is able to reach more accurate predictions than previous algorithms for
the same computing time. To substantiate this claim, we empirically evaluate
the sampling speed, accuracy and total execution time of the algorithm in a set
of representative networks. Our results show that in the same amount of time
our algorithm can potentially reach higher subgraph and graph sizes. It can also
only sample subgraphs from a predefined set.

The remainder of this paper is organized as follows. Section 2 establishes a
network terminology and gives an overview of related work. Section 3 overviews
the used g-trie data structure and details our sampling algorithm. Section 4
discusses the obtained results on a set of representative networks. Section 5
concludes the paper, with comments on the results and possible future work.

2 Preliminaries

To ensure a coherent network terminology, we briefly review the main concepts
and notation that will be used throughout the paper, and discuss related work.

2.1 Graph Terminology

A graph G is composed by the set of vertices V (G) and the set of edges E(G).
The size of a graph is |V (G)|, the number of vertices. A k-graph has size k. An
edge is a pair (a, b) : a, b ∈ V (G). If the graph is directed the order of the pair
expresses direction, while in undirected graphs there is no direction in edges.
The neighborhood of a vertex u is defined as N(u) = {v : (v, u)∨ (u, v) ∈ E(G)}.
All vertices are assigned consecutive integer numbers starting from 0, and the
comparison v < u means that the index of v is lower than that of u. The
adjacency matrix of a graph G is denoted as GAdj, and GAdj [a][b] represents a
possible edge between vertices with index a and b.
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A k-subgraph Gk of a graph G is a k-graph such that V (Gk)⊆V (G) and
E(Gk)⊆E(G). This subgraph is said to be induced if u, v ∈ V (Gk) and (u, v) ∈
E(G) implies (u, v) ∈ E(Gk). Two graphs G and H are said to be isomorphic
(G∼H) if there is a one-to-one mapping between the vertices of both graphs
where two vertices of G share an edge if and only if their corresponding vertices
in H also share an edge.

2.2 Network Motifs and Frequency Count

In network motif discovery, frequency count is the central subproblem being
addressed, and thus, we define it more precisely:

Definition 1 (Subgraph Counting Problem). Given a set of subgraphs SG

and a graph G, count the number of all induced occurrences of subgraphs of SG

in G. Two occurrences are considered different if they have at least one node or
edge that they do not share. Other nodes and edges can overlap.

Note especially that we only count induced occurrences and how we distinguish
occurrences. Although other frequency concepts exist [19], we resort to the stan-
dard definition for the network motif discovery problem [18]. It has direct im-
plications on the number of occurrences and on the tractability of the problem,
with no downward closure property [12] on the frequencies, i.e., a subgraph may
appear more times than a subgraph contained in it.

2.3 Related Work

A general and informal survey on algorithms for network motifs discovery can be
seen in [3], and [18] provides a more technical comparison of the algorithms. The
overall most efficient exhaustive network-centric algorithms are ESU [23] and
Kavosh [10]. MODA [16] and Grochow and Kellis [7] provide efficient subgraph-
centric algorithms and we provided the g-trie data-structure for an efficient in-
termediate appproach [17].

Regarding heuristic approximate algorithms, there are three different ap-
proaches that we are aware of. Kashtan et al [11] propose to sample one subgraph
at a time, following a random graph walk, which results in a biased estimator.
RAND-ESU [23] algorithm provides unbiased sampling by associating probabil-
ities with each recursive search tree branch of the ESU algorithm. MODA [16]
chooses nodes with a probability proportional to their degree. Our sampling al-
gorithm differs from all previous approaches since we use a different underlying
data structure and its associated methodology.

3 Sampling Algorithm

3.1 G-Tries Data Structure

A g-trie is a data structure designed to store a set of graphs. It is conceptually
inspired in prefix trees (trie) in the sense that it tries to identify common graph
substructures in the same way a trie identifies common prefixes of sequences.
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A g-trie is a tree where each tree node contains information about a single
graph vertex and its correspondent connection to the vertices of ancestor tree
nodes. Every node can have an arbitrary number of children and the path from
the root to a node (possible a leaf) defines a single subgraph. Note that all
descendants of a node share the same initial g-trie substructure and therefore
have a common subtopology in graph terms. Figure 1 gives an example of a
g-trie with 6 undirected subgraphs.

Fig. 1. A g-trie representing a set of 6 undirected subgraphs. Each g-trie node adds a
new vertex (in black) to the already existing vertices in the ancestor nodes (in white).
The connections to these nodes are represented by a sequence of boolean numbers
indicating the corresponding adjacency matrix row.

As said, each g-trie node needs to specify the connections of is vertex to all
ancestor ones (and to itself). This can be done in several ways, but in our current
implementation we just store the correspondent part of the adjacency matrix. If
the graphs are undirected, we store in each node the adjacency matrix row up to
that vertex. If the graphs are directed we also store the adjacency matrix column
up to that vertex, because we must specify ingoing and outgoing connections. In
any case, given a path from the root to a node, we have a fully specified graph.
The g-trie root node is empty since there are two possible direct child nodes: a
vertex with or without a connection to itself.

Considering that we want an unique and univocal representation of a set of
graphs, we use a canonical adjacency matrix. This guarantees that any subgraph
will always lead to the same path traversing the tree. There are many possible
choices here, and we opted for the lexicographically bigger adjacency matrix.
This favors the occurrence of more common substructures with higher degree
nodes appearing in lower tree depth levels.

This capability of identifying common subtopologies is the main strength of
a g-trie. We are compressing information and avoiding redundant storage. But
more than that, at a later stage, when using the g-trie to search for sugraphs
and when matching a specific vertex in the g-trie, we are matching at the same
time all possible descendant subgraphs stored in the g-trie.

In order to avoid subgraph symmetries, g-tries also store symmetry breaking
conditions of the form a < b indicating that the vertex in position a should have
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a graph index smaller than vertex in position b. Similar to what was done in [7],
these conditions establish an order for the vertices of the same symmetry group
and guarantee that each subgraph can be found only once. More details on this
can be seen in our previous work [17].

For the sake of clarity, from now on we will use the term node to refer to a g-
trie tree node, and vertex to refer to a vertex of the stored graphs. Given a g-trie
node T , we will use T.vertex to refer the new vertex of that node (represented
in black in Figure 1), and T.in[i] and T.out[i] to refer to the boolean value of the
new vertex having respectively an ingoing or outgoing connection to the vertex
with index i, i.e., the new node represented in the ancestor of depth i. Note
that if the g-trie stores undirected graphs, then T.in[i] = T.out[i] (and in fact
T.out is not even stored in memory). We will also use T.cond to denote the set
of conditions that break symmetries for the descendant nodes that correspond
to a full graph. T.root denotes the g-trie root node and T.isGraph indicates if
the node is the end vertex of a graph (in fig. 1 this corresponds to all leaf nodes).

3.2 Exact Subgraph Frequency

Given a g-trie T and a graph G, the g-trie matching algorithm will find the
occurrences of all graphs of T as subgraphs of G, as shown in [17]. The basic idea
is to find a set of vertices of G that match completely with a path in T , and we
heavily constraint our search by using the information stored about connections
and symmetry breaking conditions. For the sake of clarity, we show the matching
algorithm, in Algorithm 1, with a subtle modification. It encapsulates some of the
work in the matchingVertices() function, thus allowing for a logical separation
of the recursion calls and the isomorphic matching.

At any stage, Vused represents the currently partial match of graph vertices to
a g-trie path. We start with the g-trie root children nodes and call the recursive
procedure match() with an initial empty matched set (line 2). The later proce-
dure starts by creating a set of vertices that completely match the current g-trie
node (line 4). We then traverse that set (line 5) and recursively try to expand
it through all possible tree paths (lines 7 and 8). If the node corresponds to a
full subgraph, then we have found an occurrence of that subgraph (line 6). Note
that at this time no isomorphic test is needed, since this was implicitly done as
we were matching the vertices.

Generating the set of matching vertices is done in the matchingVertices()
procedure. The efficiency of the algorithm heavily depends on the above men-
tioned constraints as they help in reducing the search space. To generate the
matching set, we start by creating a set of candidates (Vcand). If we are at a root
child, then all graph vertices are viable candidates (line 10). If not, we select
from the already matched vertices that are connected to the new vertex (line
12), the one with the smallest neighborhood (line 13), reducing the possible can-
didates (line 14). Then, we traverse the set of candidates (line 16) and if one
respects all connections to ancestors (lines 17 to 19), and respects at least one
set of symmetry breaking conditions for a possible descendant subgraph (line
19), we add it to the set of matching vertices (line 20).
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Algorithm 1. Finding subgraphs of g-trie T in graph G.
1: procedure matchAll(T, G)
2: for all children c of T.root do match(c, ∅)
3: procedure match(T, Vused)
4: V = matchingVertices(T,Vused)
5: for all vertex v of V do
6: if T.isGraph then foundMatch()
7: for all children c of T do
8: match(c, Vused ∪ {v})
9: function matchingVertices(T,Vused)

10: if Vused = ∅ then Vcand := V (G)
11: else
12: Vconn = {v : v = Vused[i], T.in[i] ∨ T.out[i], i ∈ [1..|Vused|]}
13: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
14: Vcand := {v ∈ N(m) : v 
∈ Vused}
15: V ertices = ∅
16: for all v ∈ Vcand do
17: if ∀i∈[1..|Vused|]:
18: T.in[i] = GAdj [Vused[i]][v] ∧ T.out[i] = GAdj [v][Vused[i]] then
19: if ∃C ∈ T.cond : Vused + v respects C then
20: V ertices = V ertices ∪ {v}
21: return V ertices

3.3 Uniform Sampling

Algorithm 1 creates an exhaustive and complete enumeration of all subgraph
occurrences. Our contribution to the existing g-tries methods is to sample only
a fraction of all the occurrences. Similarly to what was done in [23], we will be
trading accuracy for execution speed. The main idea is that each search branch
is only chosen with a certain probability as depicted in Algorithm 2. Note that it
is exactly the same as the previous algorithm with the exception of the indicated
lines 3 and 9.

Algorithm 2 . Sample subgraphs of g-trie T in graph G. Probability of each
occurence is P , with P =

∏
Pd, where Pd is probability of depth d.

1: procedure sampleAll(T, G)
2: for all children c of T.root do
3: With probability P0 do sample(c, ∅) � changed line

4: procedure sample(T, Vused)
5: V = matchingVertices(T,Vused)
6: for all node v of V do
7: if T.isGraph then foundMatch()
8: for all children c of T do
9: With probability PT.depth do sample(c, Vused ∪ {v}) � changed line
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In order to follow a probabilistic approach, the algorithm uses a set of prob-
abilities associated to each g-trie depth:, {P0, P1, . . . , Pgtrie max depth} where
0 ≤ Pi ≤ 1. Any given node of depth d will therefore only be reached with
probability P0 × . . .×Pd−1. With this, we can produce an unbiased estimator of
the frequency count of a single subgraph. Let Pi be the probability associated
with depth i and Fsample(Gk) be the number of occurrences of the k-subgraph
Gk found in G by the sampleAll() procedure of Algorithm 2. Then, an unbiased
estimator F̂ (Gk, G) of the total number of occurrences of Gk in G is given by
the following equation:

F̂ (Gk, G) =
Fsample(Gk, G)

P0 × P1 × . . . × Pk−1
(1)

We say that the estimator is unbiased because any occurrence of Gk can be
found with equal probability, and as we increase the probabilities, the estimator
gets closer to the real value. In fact, if we choose Pi = 1 for all i, then the result
is the same as the original complete algorithm.

As seen, the parameters Pi control the search. Regarding the accuracy, we
should avoid small values of probability for lower depths, closer to the root. Its
effect is to increase the variance of the result because any disregarded branch
in lower depths may correspond to entire parts of the graph, and therefore may
correspond to a higher number of subgraph occurrences not found. As to the
execution time, the opposite happens. Very high probabilities in the lower depths
will increase the execution time, since more parts of the search tree will have to
be computed. For example, in the extreme case of having all probabilities equal
to one except the last one, in the higher possible depth d, means that in practice
we will explore all possible subgraphs of depth d − 1.

Picking the parameters is therefore a delicate choice that will influence both
the accuracy and speed of our method. Section 4 gives more details on actual
useful real parameters. Note that if only k-subgraphs are being sought, than all
complete subgraphs of the tree will correspond to leaf nodes and therefore the
probability at depth k should always be 1 since when we are at that point, all
computation needed to identify the occurrence is already made (no isomorphism
test is needed after that), and choosing any value smaller than 1 would only
decrease the number of samples without any gain in execution time.

The main benefit of our sampling algorithm regarding previous ones, is that
it is able to sample only the desired set of subgraphs (mfinder and ESU can only
sample the entire set of possible k-subgraphs and MODA can only sample the
occurrences of a particular single subgraph). To our best knowledge, this is the
first algorithm doing that.

The quality of the estimation depends on many factors. A fully fledged ana-
lytical determination of tight bounds on error margins is very complicated since
we do not know beforehand the distribution of the subgraphs that we are looking
for. For example, if the subgraph is very well spread in the entire subgraph, we
will have less variance than if all occurrences are clustered in a small number
of nodes, where a search branch not followed can imply a significant number of
occurrences not found.
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3.4 Network Motif Discovery

With the algorithms previously defined we can discover all network k-motifs
in the following way: first we find all k-subgraphs that occur in the original
graph using another algorithm (for example ESU). Then we build a g-trie with
those k-subgraphs and only search that particular set in the similar ensemble of
randomized networks. Eventually, if we have other conditions, like a minimum
frequency in the original graph, we can already discard some subgraphs and take
advantage of the fact that we can search only for the ones that interest us.

4 Results

In order to evaluate the performance of our proposed algorithm (which from
now on we will call RAND-GTRIE) we implemented it using C++. Isomorphisms
and canonical labellings were computed using the nauty tool [14]. All tests were
made on a computer with an Intel Core 2 6600 (2.4GHz) with 2GB of memory.
We used four different biological networks from different domains, with varied
topological features that are summarized in Table 1.

Table 1. Networks used for experimental testing of RAND-GTRIE

Network Nodes Edges Directed Description Source
Social 62 159 no Social network of a community of dolphins [13]
Neural 297 2345 yes Neural network of C. elegans [22]

Metabolic 453 2025 yes Metabolic network of C. elegans [6]
Protein 2361 6646 no Protein-protein inter. of S. cerevisiae [2]

In all tests the construction of the g-trie in itself was a very small fraction of the
execution time, and we could even store and reuse canonical labellings on other
program runs. On the network discovery problem, the g-trie can be computed
once, at the beginning, and then reused for the ensemble random networks. Given
this, we chose to leave the g-trie creation out of the picture when stating execution
time. For the purposes of this section, we also limited the choice of probability pa-
rameters to three levels of quality. In order to sample a fraction f of all k-subgraph
occurrences, we can opt for one of the following levels:

– high: {P0 = 1, . . . , Pk−3 = 1, Pk−2 = f, Pk−1 = 1}
– medium: {P0 = 1, . . . , Pk−4 = 1, Pk−3 =

√
f, Pk−2 =

√
f, Pk−1 = 1}

– low: {P0 = k−1
√

f, . . . , Pk−2 = k−1
√

f, Pk−1 = 1}
Our first test was to analyze the speed at which RAND-GTRIE is able to generate

samples. For that we counted how many k-subgraphs per second it was able to
generate, both with a complete enumeration (all Pi = 1) and with only 10% of the
k-subgraphs obtained by sampling with high quality level. We also compared
the performance with RAND-ESU, the present most efficient network centric
method that also allows sampling in a way similar to ours. For that, the publicly
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available FanMod tool was used, with the same probabilities at the same depths.
FanMod is also implemented in C++ and uses nauty for isomorphism. All sizes
between 3 (the minimum acceptable for a subgraph to be taken in account)
and 6 (the maximum that guarantees computation in a matter of a few hours)
were used. We first used ESU to discover all the k-subgraphs in the original graph,
constructed a g-trie with those and then used it to estimate the frequency (as we
would do with the randomized networks if we were discovering motifs). Figure 2
details the results obtained.
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Fig. 2. Sampling speed of RAND-GTRIE and RAND-ESU

The main aspect to note is that RAND-GTRIE is always faster, being an order
of magnitude faster. This was also the case for all other networks tested, with
the more extreme speedup bigger than 100×, for a power grid network [22].
RAND-GTRIE also appears to scale well with an increasing subgraph size, as is
the case with RAND-ESU, since the sampling rate is sustained. Mfinder, the other
major alternative for sampling, was shown to be much slower than RAND-ESU
and it does not scale well [23].

In order to test the accuracy of our algorithm, we applied all levels of sampling
quality, while increasing the fraction of subgraphs being sampled, taking note
of the percentage of subgraphs correctly identified. We considered an estimate
to be accurate when it was within a 20% error margin of the correct perfect
value. We took 100 samples for each fraction and level and only considered the
estimate correct when at least 80 of those samples were accurate. The results
for two of the networks are shown on fig. 3. As expected, higher probabilities in
lower depths correspond to better sampling quality (less variance).

If we measure the execution time for the exact same tests, we can see that
the opposite happens, with better quality sampling taking more execution time
as detailed in fig. 4. All quality levels have an execution growth proportional
to the percentage of samples, but higher quality levels have a minimum time
bigger than lower quality minimum time. For example, on the protein network,
sampling just 0.1% of the subgraphs in high level of quality takes more then 6%
of the time it takes to do a full enumeration. This is because we are traversing
the entire tree up to depth k − 2. Judging by our empirical tests, 10% on high
level exhibits a good balance between execution time and sampling quality, but
depending on the situation, any other values can be used.
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Fig. 3. Accuracy of RAND-GTRIE for 5-subgraphs, measured in percentage of correctly
estimated subgraphs as the percentage of samples grows
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Fig. 4. Execution time of RAND-GTRIE for 5-subgraphs, relative to the time a full enu-
meration with g-tries takes (i.e., with Pi = 1 for every i)

If we take a closer look to what RAND-GTRIE is computing, we can see that the
more rare subgraphs are the ones with less estimating quality. This is because
a smaller number of occurrences will obviously imply more variance in the esti-
mated values (a “miss” has more weight). For example, with high level setting
and 10% of samples on the metabolic network we have 84.27% subgraph classes
estimated correctly. Almost all of the ones not identified appear less than 100
times in the sample, and therefore are estimated to appear less than 1000 times
in the original network. On the other hand, with the same high level setting
and only 0.1% of samples, the 7.49% that were estimated correctly correspond
to subgraph classes that were sampled at least 1000 times, which means that
they are estimated to occur more than one million times in the original graph.

Finally, regarding motifs, we experimented to discover all motifs of sizes 3 to
6 in the four networks, using 10% sampling with high quality level, and we were
able to find more than 90% of the motifs that a full enumeration would find. More
than that, we spend on average less than 20% of the time it would take using g-
tries full enumeration. If we take into account that g-tries are themselves a more
efficient data structure than previous methods, we can magnify even more the
speedup and potentially reach previously unfeasible network and subgraph sizes.
Note that since we can choose the subgraphs that we are looking for, we can
even experiment with different probability parameters for different subgraphs,
thus paving the way for a more adaptive algorithm.
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5 Conclusion

In this paper we presented a novel sampling algorithm for discovering network
motifs. It employs as a basis the g-trie data structure, an efficient specialized
tree that uses common topologies in subgraphs in order to heavily constraint
the search. By associating a probability with each tree depth, it is able to uni-
formly traverse a fraction of the whole search space. With this it provides an
unbiased estimator for the real frequency of the associated subgraphs, and a way
of efficiently discovering motifs.

Our algorithm offers many parametrization choices and it is also capable of
sampling subgraphs solely from a predefined set, in opposition to having to
sample among all of the subgraphs of a determined size, or only sampling one
individual subgraph. This has a direct beneficial impact on the execution time
and we are able to produce accurate results spending less execution time than
previously existent methods.

In the future we intend to exploit even more this property and create an adap-
tive version of our sampling algorithm that is able to make an initial estimation
and then keep refining it for the subgraphs that do not have enough estimation
quality. For example, one could remove all frequent subgraphs from the g-trie
and only repeat the search for the more rare ones, with an higher fraction of
samples. We also intend to study the impact of the original graph labeling on
the sampling quality, since our symmetry breaking conditions rely on this order.

Finally, we will also apply our methodology in real-life problems, analyzing
networks at scales that were not possible before, attempting to unveil new larger
network motifs.
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Abstract. Distance based phylogenetic methods attempt to reconstruct
an accurate phylogenetic tree relating a given set of taxa from an esti-
mated matrix of pair-wise distances between taxa. This paper examines
two distance based algorithms (GreedyBME and FastME) which are
based on the principle of trying to minimise the balanced minimum evo-
lution (BME) score of the output tree in relation to the given estimated
distance matrix. We show firstly that these algorithms will both recon-
struct the correct tree if the input data is quartet consistent, and secondly
that if the maximum error in any individual distance estimate is ε, then
both algorithms will output trees containing all edges of the true tree
that have length at least 3ε. That is to say the algorithms have edge
safety radius 1/3. In contrast, quartet consistency of the data is not suf-
ficient to guarantee Neighbor Joining (NJ) reconstructs the correct tree,
and moreover NJ has edge safety radius of 1/4, which is strictly worse.

1 Introduction

We analyse two algorithms for inferring phylogenetic trees from distance
matrices, based on the balanced minimum evolution (BME) principle [4]. The
optimality criterion (BME score) used is to minimize Pauplin’s tree-length esti-
mate [13] relative to the given distance matrix. The algorithms we consider are
GreedyBME and FastME. GreedyBME is the greedy algorithm for recon-
structing a tree taxon-by-taxon. We start with three taxa arranged in a star tree
topology and iteratively add each remaining taxon, inserting them at the loca-
tion that minimises the BME score of the tree restricted to the taxa inserted so
far. So GreedyBME builds a binary phylogenetic tree taxon-by-taxon, starting
from the star on three taxa, greedily minimising the BME score at each step.
It is interesting to note that Gascuel and Steel, in an excellent review [8], have
shown that NJ [14] also is a greedy algorithm which minimises the BME score
at each step. The difference is that NJ starts at a star topology on all taxa and
iteratively chooses two leaves and agglomerates them (effectively regrafts them
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as a cherry attached to the root), where the leaves are chosen to minimise the
BME score of the resulting tree on all taxa which still has a central vertex of
high degree.

FastME is a local topology search hill-climbing algorithm that takes the
output of GreedyBME and iteratively searches through local topologies (those
trees differing from the current tree by one topological rearrangement operation)
and moves to the topology that minimises the BME score. This approach is im-
plemented in a software called FastME [4]. The two topological rearrangement
operations available in the latest release of FastME are: the balanced subtree
prune and regraft (BSPR) algorithm [9] and the balanced nearest neighbor in-
terchange (BNNI) algorithm [4]. FastME has been shown experimentally [4,5]
to be a fast and accurate method for tree inference, compared to other popu-
lar distance-based methods such as NJ, BIONJ [7], FITCH [6] or WEIGHBOR
[3]. The results in this paper provide further theoretical support for using this
approach.

Atteson [1] studied the NJ algorithm and gave a condition, the safety radius
of the algorithm, for accurate reconstruction of the true tree. Atteson showed
that NJ has safety radius of 1/2, i.e. if the maximum error in the estimated
distance matrix is at most 1/2 the minimum edge length in the true tree, then NJ
will correctly reconstruct the entire tree. Moreover, no distance based method
can have safety radius greater than 1/2. More recently Bordewich et al. [2]
analysed FastME and showed that it has safety radius at least 1/3 (when using
BSPR) and Shigezumi [16] has shown that GreedyBME has safety radius 1/2.
Note that FastME and GreedyBME are heuristics for finding a tree that
minimises BME score. Pardi et al. [12] have shown that the BME principle
itself, or equivalently the algorithm that returns the tree that globally minimises
BME score, has safety radius 1/2.

The results described above relate the minimum edge length in the entire
tree to the maximum allowed error, so a single short edge can massively affect
the permitted error across all estimated distances for the guarantee of correct
reconstruction to hold. In contrast, in this paper we consider the edge safety
radius, which guarantees that sufficiently long edges will be correctly recon-
structed even if other edges of the true tree are very short, relative to the error.
An algorithm that is guaranteed to output a tree topology containing all those
edges of the true tree that have length at least l, whenever the the maximum
error in the estimated distance matrix is at most rl, is said to have edge safety
radius r. Atteson conjectured that NJ has an edge safety radius of 1/4, which
has recently been proved by Mihaescu et al. [11]. The main result of this paper
is to show that GreedyBME and FastME each have edge safety radius 1/3.
We also show that under a weaker condition than safety radius 1/2, namely
quartet consistency (which we will define below), GreedyBME and FastME

will correctly reconstruct the true tree. Note that having maximum error at
most 1/2 the minimum edge length guarantees quartet consistency, but a dis-
tance matrix may be quartet consistent with the true tree while not satisfying
the safety radius condition. In related work, Mihaescu [10] has shown that the
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BME principle also reconstructs the true tree on quartet consistent inputs, but
is strictly weaker than its two heuristic versions (GreedyBME and NJ) in edge
safety radius, having an asymptotic edge safety radius of 1/(2n) on n taxa.

Our results show strict superiority of GreedyBME over NJ in two ways. It
has been shown that quartet consistency is not a sufficient condition for NJ to
correctly reconstruct the true tree [11]. Thus GreedyBME will correctly recon-
struct the whole true tree under a weaker condition than NJ. Also, GreedyBME

will correctly reconstruct all edges of the true tree having length at least 3 times
the maximum error in the input matrix, whereas NJ sometimes fails to recon-
struct edges up to 4 times the maximum error [1].

2 Basics, Definitions and Notation

The notation and terminology largely follows [15]. A phylogenetic tree is a tree
whose leaves are bijectively labelled by the elements of some finite set X . A
binary phylogenetic tree is a phylogenetic tree in which every internal vertex has
degree exactly three. The set X usually denotes a set of species or taxa, and the
tree T represents the evolutionary relationships between them. Unless stated
otherwise, from now on X will denote a finite set and all trees considered will be
phylogenetic trees. Throughout we consider phylogenetic trees as unweighted,
i. e. they do not have intrinsic edge lengths, with the exception of the true tree
T ∗ which does have edge lengths (or weights). Furthermore, capital letters will
be used in all figures to represent subtrees.

A matrix of pair-wise distances δ∗ = [δ∗ij ] is a tree-metric if there is a unique
phylogenetic tree T ∗ with positive edge lengths l(e) so that, for each x, y ∈ X ,
the distance δ∗xy is the sum of the lengths of edges on the path between x and
y in T ∗. The input to our algorithms is an estimated pair-wise distance matrix
δ = [δij ], and the error ε of δ with respect to δ∗ is maxx,y∈X(|δxy − δ∗xy|).

We next define the BME score of a phylogenetic tree T . This is equivalent to
the tree length formula of Pauplin [13]. Given two nodes i, j ∈ V (T ), we denote
by PT (i, j) the set of all the internal nodes of T which lie on the (closed) path
between i, j in T . In particular, if i or j are internal, then they also belong to
PT (i, j). Similarly for two nodes i, j of T , internal or not, we let

pT
ij =

∏
v∈P T (i,j)

(deg(v) − 1)−1.

The Balanced Minimum Evolution score of T relative to δ is the quantity

BME(δ, T ) =
∑

i,j∈X

pT
ijδij .

A split S = {A, B} on a taxa set X is a bipartition of X into two non-empty
disjoint subsets A, B ⊆ X whose union is X . For ease of notation, we will write
A|B or, equivalently B|A for the split {A, B}. In general, a collection of splits
of X is called a split system of X .
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Suppose that T is a phylogenetic tree on X . Each edge e of T corresponds
to a split of A|B of X , which may be obtained by deleting e and letting A be
the leaf-label set of one of the resulting connected components and B be the
leaf-label set of the other. The set of splits corresponding to edges of T are said
to the be the splits of T . A clade of T is any subset C ⊂ X such that C|X − C
is a split of T . The clade is said to be rooted at the vertex c in T which is the
end of the edge e which induces split C|X − C closest to the leaves in C.

A quartet of T is a partial split ab|cd, where a, b, c, d ∈ X and there is a split
A|D of T such that a, b ∈ A and c, d ∈ D. We say that a dissimilarity map δ is
consistent with a quartet (ab|cd) if δab + δcd < δac + δbd, δad + δbc. We say that δ
is consistent with an edge e = A|D of T , if δ is consistent with all quartets ab|cd
of T such that a, b ∈ A and b, c ∈ D. We say that δ is quartet consistent with a
phylogenetic tree T if δ is consistent with all the quartets of T .

Given a dissimilarity map δ and two disjoint clades A, B of tree T , rooted at
a, b ∈ V (T ) respectively, we define the average clade distance, or clade distance
for short, as

δAB =
∑

i∈A,j∈B

δijp
T
ij/

∑
i∈A,j∈B

pT
ij =

∑
i∈A,j∈B

δijp
T
iapT

jb.

Note that the clade distance thus only depends on the rooted topologies T |A
and T |B and not on the entire topology T .

3 Results

We now formally state the main results of this paper. The first concerns the algo-
rithm GreedyBME, and gives sufficient conditions for accurate reconstruction
of edges of the true tree.

Theorem 1. Let T ∗ be a binary phylogenetic tree with induced distance ma-
trix δ∗. Let input matrix δ have error ε with respect to δ∗. Then the algorithm
GreedyBME will return a binary phylogenetic tree T such that

1. T contains an edge with split A|B for all edges e = A|B in T ∗ with l(e) > 3ε,
i.e. GreedyBME has edge-safety radius 1/3. Furthermore, this bound is
asymptotically tight.

2. if δ is quartet consistent with T ∗ then T = T ∗.

The second result concerns the local topology search phase of FastME. We
show that if a local search is conducted from a tree T that already contains
certain edges from the true tree T ∗, then the end result is guaranteed to also
contain these edges of T ∗. The two forms of local topology search considered are
those topologies within one NNI or one SPR operation of the current tree; for
details of the definitions of NNI and SPR operations as used in FastME see for
example [2].

Theorem 2. Let T ∗ be a binary phylogenetic tree with induced distance ma-
trix δ∗. Let input matrix δ have error ε with respect to δ∗. Let T be a binary
phylogenetic tree and let e = A|B be an edge common to T and T ∗. Then
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1. if l(e) > 2ε then for any T ′ that may be obtained in one NNI operation from
T such that BME(δ, T ′) < BME(δ, T ), e must be an edge of T ′;

2. if l(e) > 3ε and T ′ is the tree at most one SPR operation from T which
minimises BME(δ, T ′) then e must be an edge of T ′; and

3. if δ is consistent with e then for any T ′ that may be obtained in one NNI
operation from T such that BME(δ, T ′) < BME(δ, T ), e must be an edge
of T ′.

Combining the above two theorems we obtain the following immediate corollary.

Corollary 1. FastME using an initial tree generated by GreedyBME and a
local search based on NNI or SPR operations has edge safety radius 1/3.

Note that in the local topology using NNI operations, it would not matter if
the algorithm jumped immediately to the first tree found with shorter length,
or completed the search of all neighbouring trees and moved to the best one.
However for an SPR based local topology search we have the restriction that
all neighbouring trees are checked, and the best of those selected for the next
iteration.

4 Proofs

4.1 GreedyBME

We shall make use of the following lemmas. The first is Lemma 5.1 of [2], which
gives a formula for the difference in BME score between two trees of certain
structure. The second lemma gives a five point condition on the distance matrix
δ, which is extended to clades.

Lemma 1 (Lemma 5.1 of [2]). Let T A and T B be the trees given in Fig. 2.
Then BME(δ, T A) − BME(δ, T B) =(

1
2
− 1

2t

)
(δA′xk

− δxkBt)+
t−1∑
i=1

[
1

2t−i+1 (δBiBt − δBixk
) − 1

2i+1 (δA′Bi − δBixk
)
]

.

Lemma 2. Let T ∗ be a phylogenetic tree on X and let T ∗ have a split e = A|B
of length l(e). Let δ be a matrix of pairwise distances that has error at most
ε < l(e)/3. Then for A0, A1 disjoint subsets of A, and Bi, Bj , Bk disjoint subsets
of B, and for any tree T with clades A0, A1, Bi, Bj, Bk we have:

(δA0A1 + δA0Bi − δA1Bi) − (δA0Bj + δA0Bk
− δBjBk

) < 0.

Proof. Let a0, a1, bi, bj , bk be leaves in clades A0, A1, Bi, Bj , Bk respectively. The
true topology T ∗ restricted to these five leaves must be one of the three topologies
shown in Fig. 1, where the edge e′ depicted represents a path in T ∗ that contains
edge e.
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a0bk

bja1 bi

Case (a)

yx e′

Case (b)

bk

bia1 bj

x ye′

Case (c)

bj

bia1 bk

x ye′
a0 a0

Fig. 1. Possible true topologies relating the leaves a0, a1, bi, bj , bk

In each case the true distances satisfy

(δ∗a0a1
+ δ∗a0bi

− δ∗a1bi
) − (δ∗a0bj

+ δ∗a0bk
− δ∗bjbk

) = 2δ∗xy

< 2l(e),

where x and y are the corresponding internal vertices of T ∗. Since each entry in
the estimated distance matrix has an error of at most ε, we have

(δa0a1 + δa0bi − δa1bi) − (δa0bj + δa0bk
− δbjbk

) < −2l(e) + 6ε

< 0.

Note that for any clade C with root rc we have
∑

c∈C pT
crc

= 1. So we may sum
all terms over the leaves in all clades. Thus,

(δA0A1 + δA0Bi − δA1Bi) − (δA0Bj + δA0Bk
− δBjBk

)

=
∑

pT
a0r0

pT
a1r1

pT
biri

pT
bjrj

pT
bkrk

[(δa0a1 + δa0bi − δa1bi) − (δa0bj + δa0bk
− δbjbk

)]

< 0,

where the summation is over all leaves a0, a1, bi, bj , bk in A0, A1, Bi, Bj and Bk

respectively, and r0, r1, ri, rj , rk are the roots of the clades A0, A1, Bi, Bj and Bk

in T respectively. ��
We can now present the proof of Theorem 1.

Proof (Theorem 1). First we prove that the edge safety radius of the algorithm
GreedyBME is at least 1/3. Let T ∗ be the true tree, and let e = A|B be a split
in T ∗ of length l(e) > 3ε. Let δ be an estimated pairwise distance matrix with
maximum error at most ε. The proof is by induction on the size of X . If |X | = 3,
then trivially GreedyBME will return the true tree, since there is only one tree
topology on three taxa.

Suppose now that the theorem holds for all trees on taxa sets of size at most
k − 1, and let |X | = k. Let xk be the last taxa added by GreedyBME, and
consider the tree T ′∗ obtained from T ∗ by removing xk and its pendent edge.
Note that δ′ obtained from δ by removing the row and column corresponding
to xk gives a pairwise distance matrix for T ′∗ with maximum error at most
ε. Without loss of generality we assume xk ∈ A. If A = {xk}, then trivially
GreedyBME will construct a tree containing the split A|B. Now we assume
A′ = A − xk �= ∅. Then T ′∗ has split e′ = A′|B and the length of e′ is at least
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l(e). By the inductive hypothesis GreedyBME applied to δ′ will construct a
tree containing the split e′ = A′|B. Thus GreedyBME applied to δ will also
construct a tree T ′ on X − xk containing the split e′ = A′|B after k − 1 steps.

We must now show that after the addition of xk the split A|B is present in the
resulting tree T . GreedyBME will position xk at the point which minimises
BME(δ, T ). Suppose for contradiction that there is some position in clade B of
T ′ which minimises this, as depicted in Fig. 2(b), where B = B1 ∪B2 ∪ . . .∪Bt,
resulting in tree T B. We will show that tree T A obtained by attaching xk between
the clades A′ and B, as depicted in Fig. 2(a), must obtain a smaller BME score,
giving the required contradiction.

xk

(a) Tree TA (b) Tree TB

A′
Bt

B1 Bt−1xk

A′
Bt

B1 Bt−1

Fig. 2. Possible positions for attaching the final leaf xk

By Lemma 1, we can express the difference in BME score between T A and
T B as follows: BME(δ, T A) − BME(δ, T B) =(

1
2
− 1

2t

)
(δA′xk

− δxkBt) +
t−1∑
i=1

[
1

2t−i+1 (δBiBt − δBixk
) − 1

2i+1 (δA′Bi − δBixk
)
]

=
t−1∑
i=1

1
2i+1

[
(δA′xk

+ δBixk
− δA′Bi) − (δxkBt + δBt−ixk

− δBt−iBt)
]
. (1)

We may now apply Lemma 2 to each term in the summation (setting A0 =
xk, A1 = A′, Bi = Bi, Bj = Bt−i and Bk = Bt) to see that each term is less than
zero, and hence BME(δ, T A) < BME(δ, T B). This contradicts the assumption
that xk will be inserted in clade B, and completes the inductive step.

We now show that the edge safety radius of GreedyBME is no more than 1/3.
For contradiction assume the edge safety radius is r > 1/3. Consider a caterpillar
tree T ∗ in which a′, xk is a cherry separated from the rest of the tree by an edge
of length l, as depicted in Fig. 2(a), taking the clades A′, Bi, i = 1, . . . , t to be
singleton leaves a′, b1, . . . , bt, and t to be odd. Let ε = rl. We will assume the sum
of all other edge lengths in the tree is at most ν for some very small ν > 0. Define
δ = [δxy] as follows: δa′xk

= δ∗a′xk
+ ε; for i = 1 to t− 1 we define δa′bi = δ∗a′bi

− ε
and δbibt = δ∗bibt

+ ε; for i = 1 to (t − 1)/2 we define δxkbi = δ∗xkbi
+ ε; and for

i = (t − 1)/2 + 1 to t − 1 we define δxkbi = δ∗xkbi
− ε.

For brevity we omit the details, but it can be shown that, saving the insertion
of xk until last, GreedyBME will build the correct tree on X − {xk}. For
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any r > 1/3 we can choose t large enough (and ν small enough) that xk can
then be inserted in an incorrect position at lower BME score than T ∗. Hence
GreedyBME will fail to reconstruct the correct tree. This gives part 1 of the
theorem.

We now prove part 2. Let T be a binary phylogenetic tree and let δ be an
estimated pairwise distance matrix which is quartet consistent with T . The proof
is similar to part 1, and is again by induction on the size of X . If |X | = 4, then
it is easy to check that GreedyBME will return the true tree.

Suppose now that the theorem holds for all trees on taxa sets of size at most
k − 1, and let |X | = k. Let xk be the last taxa added by GreedyBME, and con-
sider the tree T ′ obtained from T by removing xk and its pendent edge. Note that
δ′ obtained from δ by removing the row and column corresponding to xk, gives a
pairwise distance matrix which is quartet consistent with the topology T ′. With-
out loss of generality we assume the correct position for xk to be inserted is as a
pendent leaf regrafted to some edge e = A′|B in T ′. By the inductive hypothe-
sis GreedyBME applied to δ′ will construct T ′ correctly. Thus GreedyBME

applied to δ will also construct T ′ on X − xk after k − 1 steps.
GreedyBME will position xk at the point which minimises the BME(δ, T ).

Suppose for contradiction that there is some position other than as a pendent
leaf grafted to e which minimises BME score. Without loss of generality we may
assume that the position is in clade B of T ′, as depicted in Fig. 2(b), where
B = B1 ∪ B2 ∪ . . . ∪ Bt, resulting in tree T B. We will show that tree T , as
depicted in Fig. 2(a), must obtain a smaller BME score, giving the required
contradiction.

We will first assume that t is odd: a small adjustment will be needed if t is
even. Using Equation (1), we may express the difference in BME score between
T A and T B as BME(D, T A) − BME(D, T B) =

(t−1)/2∑
i=1

1
2i+1

[
(δA′xk

+ δBixk
− δA′Bi) − (δxkBt + δBt−ixk

− δBt−iBt)
]

+
1

2t−i+1

[
(δA′xk

+ δBt−ixk
− δA′Bt−i) − (δxkBt + δBixk

− δBiBt)
]
. (2)

Note that in contrast to the proof of Theorem 1 part 1, in this case we know
that the internal topology of the clade B is the same in T ′ as in T . For each set
of leaves a ∈ A′, bi ∈ Bi, bt−i ∈ Bt−i and bt ∈ Bt, we define

f(a, bi, bt−i, bt) =
1

2i+1

[
(δaxk

+ δbixk
− δabi) − (δxkbt + δbt−ixk

− δbt−ibt)
]

+
1

2t−i+1

[
(δaxk

+ δbt−ixk
− δabt−i) − (δxkbt + δbixk

− δbibt)
]
.

By applying quartet consistency conditions one can show that the first square
bracketed term is less than zero. If the second term is also negative, then
f(a, bi, bt−i, bt) < 0. Otherwise

f(a, bi, bt−i, bt) <
1

2i+1

[
(2δaxk

+ δbibt + δbt−ibt − 2δxkbt − δabi − δabt−i)
]
.
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In this case by applying quartet consistency conditions one can again show that
f(a, bi, bt−i, bt) < 0. In either case f(a, bi, bt−i, bt) < 0, hence (by summing over
the leaves in each clade) we see that each term of the main summation (2) above
is less than zero. If t is even, then we need to take into account an extra term
in Equation (2), corresponding to i = t − i = t/2. This term may similarly be
shown to be less than zero.

Thus BME(δ, T A) < BME(δ, T B) which contradicts the placement of xk in
clade B. This completes the proof of Theorem 1. ��

4.2 Local Topology Search

We first show that an NNI based search will never destroy an edge which has
length at least twice the maximum error.

Lemma 3. Let T, T ∗ be binary phylogenetic trees with some common edge e =
A|B. Let δ have maximum error ε < l(e)/2 relative to δ∗. Then any tree T ′ one
NNI operation from T which does not contain e must have larger BME score
than T .

Proof. Consider an NNI move that could destroy the split A|B. Let A1, A2, B1
and B2 be the subclades of A and B obtained by dividing A and B at the point
of attachment of e, as in Fig. 3. The only way e can be destroyed by an NNI
is, without loss of generality, by swapping clades A2 and B2, as shown by T ′ in
Fig. 3. By Lemma 1

BME(δ, T )− BME(δ, T ′) =
1
4
[(δA1A2 + δB1B2) − (δA1B2 + δB1A2)].

For any leaves a1, a2, b1, b2 in A1, A2, B1, B2 we have

(δa1a2 + δb1b2) − (δa1b2 + δb1a2) ≤ (δ∗a1a2
+ δ∗b1b2) − (δ∗a1b2 + δ∗b1a2

) + 4ε

≤ (δ∗a1b2 + δ∗b1a2
− 2l(e)) − (δ∗a1b2 + δ∗b1a2

) + 4ε

= 4ε − 2l(e)
< 0.

Summing over all leaves in A1, A2, B1, B2 we see that BME(δ, T )−BME(δ, T ′) <
0. Thus any NNI which removes e leads to an increase in BME score and will not
be accepted. ��

e

T

B2A2

A1 B1 A1 B1

B2 A2

T ′

Fig. 3. An NNI operation that breaks split e = A1 ∪ A2|B1 ∪ B2
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Next we show that as long as we check all trees within one SPR operation of
the current tree, and choose the best of these, we will never destroy an edge e
which has length at least 3 times the maximum error.

Lemma 4. Let T, T ∗ be binary phylogenetic trees with some common edge e =
A|B. Let δ have maximum error ε < l(e)/3 relative to δ∗. Then any tree T ′ one
SPR operation from T which does not contain e must have larger BME score
than a tree T A which preserves e and is also within one SPR operation of T .

Proof. This proof follows the proof that GreedyBME has safety radius 1/3,
and is omitted for reasons of brevity. ��
We finally show that if δ is consistent with some edge e in T , then an NNI based
local topology search will not remove e.

Lemma 5. Let T, T ∗ be binary phylogenetic trees with some common edge e =
A|B. Let δ be a distance matrix consistent with e. Then NNI starting from T
will never break the edge A|B.

Proof. As in the proof of Lemma 3, consider an NNI move that could destroy
the split A|B. Let A1, A2, B1 and B2 be the subclades of A and B obtained by
dividing A and B at the point of attachment of e, as in Fig. 3. The only way e
can be destroyed by an NNI is, without loss of generality, swapping clades A2
and B2, as shown by T ′ in Fig. 3. By Lemma 1

BME(δ, T )− BME(δ, T ′) =
1
4
[(δA1A2 + δB1B2) − (δA1B2 + δB1A2)].

For any leaves a1, a2, b1, b2 in A1, A2, B1, B2 we have

(δa1a2 + δb1b2) − (δa1b2 + δb1a2) < 0.

by the consistency of δ with any quartet spanning A|B. Summing over all leaves
in A1, A2, B1, B2 we see that BME(δ, T ) − BME(δ, T ′) < 0. Thus any NNI
which removes e leads to an increase in BME score and will not be accepted. ��
Theorem 2 follows from Lemmas 3, 4 and 5.

5 Conclusion

In this work we have shown that GreedyBME is a more robust method of
inferring a phylogeny than Neighbor Joining in two rigorous senses. Firstly
GreedyBME has an edge safety radius of 1/3 and secondly GreedyBME

will correctly reconstruct the true tree given a distance matrix that is quar-
tet consistent with the true tree. Both conditions are strict improvements over
Neighbor Joining.

The significance of proving bounds on the edge safety radius is that any suf-
ficiently long edge is correctly reconstructed from the distance matrix (edges
longer than three times the maximum error), even in the presence of very short
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edges elsewhere in the tree. In contrast, with results on safety radius we can
only guarantee that the whole tree is correctly reconstructed if all edges are
sufficiently long, otherwise we cannot guarantee anything.

Minimum evolution, and in particular balanced minimum evolution, has been
proposed by several authors as a basic principle for inferring phylogenies (for ref-
erences and discussion see [4]). Moreover the underlying reason for the accuracy of
certain phylogenetic algorithms, including Neighbor Joining, has been attributed
to their relationship to the balancedminimum evolutionprinciple [8,11]. It is there-
fore counterintuitive that a heuristic for minimising BME score, GreedyBME,
has an edge safety radius of 1/3, when the underlying principle (i.e. an algorithm
that selects the tree of globally minimum BME score) has a weaker edge safety ra-
dius, which even approaches zero for large trees [10]. Further work on understand-
ing this issue, as well as extending the robustness guarantees to more reasonable
models of error in distance matrices, will help improve distance based phylogenetic
inference in the future.
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Abstract. A recursive algorithm by Aho, Sagiv, Szymanski, and Ull-
man [1] forms the basis for many modern rooted supertree methods em-
ployed in Phylogenetics. However, as observed by Bryant [4], the tree
output by the algorithm of Aho et al. is not always minimal; there may
exist other trees which contain fewer nodes yet are still consistent with
the input. In this paper, we prove strong polynomial-time inapproxima-
bility results for the problem of inferring a minimally resolved supertree
from a given consistent set of rooted triplets (MinRS). We also present
an exponential-time algorithm for solving MinRS exactly which is based
on tree separators. It runs in 2O(n log k) time when every node is required
to have at most k children which are internal nodes and where n is the
cardinality of the leaf label set of the input trees.

Keywords: Phylogenetic tree; rooted triplet; minimally resolved su-
pertree; NP-hardness; tree separator.

1 Introduction

Phylogenetic trees are leaf-labeled trees which are used to represent tree-like
evolutionary history. To infer a reliable phylogenetic tree containing a large
number of leaves is often a difficult task because of the computational complex-
ity of the underlying optimization problems. One approach which has become
increasingly popular in recent years is the divide-and-conquer-based supertree
approach [2,6,9,12], which first uses a computationally intense method to recon-
struct highly accurate trees for small, partially overlapping subsets of the leaf
label set, and then applies a combinatorial algorithm to merge the small trees
into one large tree called a supertree.

One of the common criticisms of supertrees is that they make statements
about evolutionary relationships among leaves that are not always directly sup-
ported by any one of the input trees, which can create false groupings in the
form of “spurious novel clades” [2]. Therefore, a natural idea is to try to avoid
making more such statements than necessary to obtain a supertree, and thus
to introduce as little unsupported branching information as possible. For this
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reason, minimally resolved supertrees, i.e., trees that contain as few internal
nodes as possible while still being consistent with the input, are important in
Bioinformatics.

Several alternative supertree methods whose formal definitions differ have
been developed; see, e.g., the survey paper by Bininda-Emonds [2] for an ex-
tensive list of references. A classic algorithm by Aho, Sagiv, Szymanski, and
Ullman [1] named BUILD (see Section 2.2 below for a short description) can be
used to merge a given set of non-conflicting rooted phylogenetic trees. Due to
its simplicity and efficiency, it is used as a starting point of many rooted su-
pertree methods such as the ones presented in [8,14,15,16] for combining a set of
conflicting trees. These methods imitate the behavior of BUILD until a conflict
occurs, at which point the so-called auxiliary graph consists of a single connected
component which is then split into smaller components by removing some edges
(different methods use different rules to do this), and then the method is ex-
ecuted recursively on each newly created component. Typically, such methods
will all yield the same output as BUILD in the ideal case where the input set of
trees contains no conflicts; hence, to understand these methods, it is important
to fully understand the properties of the trees which are output by BUILD.

A surprising fact about BUILD is that it does not always produce a tree
with the minimum possible number of internal nodes. This was first observed by
Bryant in [4]. We generalize Bryant’s example in Section 2.3 below to show that
BUILD may in fact output a tree containing Ω(n) times more internal nodes
than necessary, where n is the cardinality of the leaf label set of the input trees.

A binary phylogenetic tree with exactly three leaves is called a rooted triplet.
Rooted triplets are a special case of phylogenetic trees, so hardness results con-
cerning the computational complexity of inferring supertrees from rooted triplets
will directly carry over to the corresponding problems for general inputs. More-
over, as explained in [9], the branching information contained in any rooted,
binary phylogenetic tree with m leaves can be represented by a set of O(m)
rooted triplets (one rooted triplet per edge in the tree). From here on, we there-
fore focus on inputs which consist of rooted triplets.

1.1 Our Results and Organization of the Paper

We study the computational complexity of the problem of inferring a minimally
resolved supertree from a given consistent set of rooted triplets over a leaf label
set of cardinality n, called MinRS for short.

The paper is organized as follows. Section 2 defines the MinRS problem for-
mally and surveys previous work. Section 3 proves two strong negative results:
(1) the decision version of MinRS is NP-hard for any fixed number of internal
nodes larger than or equal to 4; and (2) MinRS cannot be approximated within
n1−ε for any constant 0 < ε < 1 in polynomial time, unless P = NP. Then, Sec-
tion 4.1 describes a simple algorithm for the decision version of MinRS which
runs in O∗(f(q) · qn) time, where q is the allowed number of internal nodes and
f(q) is the number of rooted, unlabeled trees with q nodes. Section 4.2 presents
a more sophisticated exponential-time exact algorithm based on tree separators
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that runs in 2O(n log k) time, where every node is required to have at most k
children which are internal nodes. Section 5 contains some final remarks.

2 Preliminaries

2.1 Basic Definitions

We will use the following definitions and notation.
To simplify the presentation, any node in a tree is considered to be an ancestor

as well as a descendant of itself. For any nodes u, v in a tree, in case u is a
descendant of v and u �= v then we write u ≺ v and call u a proper descendant
of v. The lowest common ancestor of u and v, denoted by lca(u, v), is the node w
such that both u and v are descendants of w and w ≺ x holds for every other
node x which is an ancestor of both u and v. The set of leaves in a tree T is
denoted by Λ(T ).

A phylogenetic tree is a rooted, unordered tree whose leaves are distinctly
labeled. Since the leaves in a phylogenetic tree are uniquely labeled, we will refer
to them by referring to their labels. A rooted triplet is a phylogenetic tree with
exactly three leaves in which every internal node has exactly two children, and
we let xy|z denote the rooted triplet having leaf label set {x, y, z} that satisfies
lca(x, y) ≺ lca(x, z) = lca(y, z).

Let T be a phylogenetic tree. For any {x, y, z} ⊆ Λ(T ), if the relation lca(x, y)
≺ lca(x, z) = lca(y, z) holds in T then the rooted triplet xy|z is said to be
consistent with T . A given set R of rooted triplets and a given phylogenetic
tree T are consistent if every t ∈ R is consistent with T . Lastly, any given set R
of rooted triplets is called consistent if there exists a tree which is consistent
with R (otherwise, R is called inconsistent).

When R is given, we denote the set of all leaf labels which occur in R by L, i.e.,
we define L =

⋃
t∈R Λ(t). Throughout the paper, we use the notation n = |L| and

k = |R|. Given an input set R of rooted triplets, it is possible to efficiently check
whether R is consistent and if so, to construct a phylogenetic tree consistent
with R, by a classic algorithm of Aho, Sagiv, Szymanski, and Ullman [1] named
BUILD. The algorithm is described in Section 2.2 below.

Finally, for any consistent set R of rooted triplets, we say that a phylogenetic
tree which is consistent with R and contains as few internal nodes as possible is
a minimally resolved supertree for R.

2.2 The Algorithm of Aho et al. [1] (BUILD)

In this subsection, we briefly review the algorithm of Aho, Sagiv, Szymanski,
and Ullman [1]. The algorithm, referred to as BUILD, constructs a phylogenetic
tree consistent with an input set R of rooted triplets over a leaf label set L, if
such a tree exists. In case such a tree does not exist, the algorithm outputs null.

BUILD is a top-down, recursive algorithm. The main idea of the algorithm is
to first partition the leaf set L into blocks according to the rooted triplets in R.
Then, the algorithm outputs a tree consisting of a root node whose children are
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the roots of the trees obtained by recursing on each block. The base case of the
recursion is when the leaf set consists of a single leaf.

To perform the partitioning into blocks for any subset L′ ⊆ L with |L′| > 1,
BUILD uses an auxiliary graph G(L′). The auxiliary graph for any L′ ⊆ L is
defined as G(L′) = (L′, E), where E contains the edge {x, y} if and only if there
is some rooted triplet of the form xy|z in R with x, y, z ∈ L′. After construct-
ing G(L′), the algorithm computes the connected components in G(L′) and lets
each such connected component define one block of L′. If, at any point of its
execution, |L′| > 1 yet L′ contains just one block, then BUILD terminates and
outputs null. This approach is motivated by Proposition 1 below together with
the key observation that for any rooted triplet xy|z consistent with a phyloge-
netic tree T , the leaves labeled by x and y cannot descend from two different
children of the root of T , i.e., x and y must belong to the same block. (For a
formal proof of correctness, see [1].)

Proposition 1 (Aho, Sagiv, Szymanski, and Ullman [1]). If G(L) has
only one connected component and |L| > 1 then R is not consistent with any
phylogenetic tree.

The running time of the original implementation of BUILD [1] was O(nk), where
n = |L| and k = |R|. Henzinger et al. [9] later presented a faster implementation
of this algorithm, and replacing the dynamic graph connectivity data structure
used by [9] by a more recent one [10] further reduces the complexity of the
algorithm to min{O(n + k log2 n), O(k + n2 log n)} time [11].

2.3 Definition of MinRS

Bryant [4] noted that the BUILD algorithm of Aho et al. [1] does not always
produce a minimally resolved supertree consistent with a given set of rooted
triplets. In the example provided in Section 2.5.2 of [4], Bryant considered the
set R = {bc|a, bd|a, ef |a, eg|a}. As demonstrated in Figure 13 in [4], BUILD
will construct a tree consistent with R which contains three internal nodes (a
root node along with two internal nodes which are the parents of the leaves b, c, d
and e, f, g, respectively), whereas the optimal solution is a tree containing two
internal nodes (a root node and an internal node to which the leaves b, c, d, e, f, g
are directly attached).

We can simplify Bryant’s example to {bc|a, ef |a}. Then, if we extend the
example as follows:

R = {x1x2|x0, x3x4|x0, . . . , x2i−1x2i|x0)},
we obtain a consistent set of rooted triplets for which BUILD will construct a
tree having i+1 internal nodes. However, the tree consisting of a root node with
two children c1 and c2, where c1 is a leaf labeled by x0 and c2 is an internal node
with 2i children which are leaves labeled by x1, x2, . . . , x2i, contains exactly two
internal nodes and is also consistent with R. This shows that asymptotically,
the BUILD algorithm of Aho et al. may produce a tree with Ω(n) times more
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internal nodes than the minimally resolved supertree, where n is the cardinality
of the leaf label set.

From this observation, a natural question arises: When a consistent set of
rooted triplets R is given, how efficiently can one construct a minimally resolved
supertree consistent with R? Formally, we define:

The Minimally Resolved Supertree Consistent with Rooted

Triplets Problem (MinRS)

Instance: A set R of rooted triplets with leaf set L.
Output: A rooted, unordered tree whose leaves are distinctly labeled by L

which has as few internal nodes as possible and which is consistent with
every rooted triplet in R, if such a tree exists; otherwise, null.

2.4 Related Work

Besides Bryant [4], other authors such as Henzinger, King, and Warnow [9]
have also previously considered the problem of inferring a minimally resolved
supertree from a set of rooted triplets. Unfortunately, Henzinger et al. [9] incor-
rectly assumed that the BUILD algorithm of Aho et al. [1] always constructs a
minimally resolved supertree. According to the proof of Theorem 4 in [9], the
tree constructed by Algorithm A’ of Henzinger et al. [9] is identical to the tree
constructed by the BUILD algorithm; therefore, our example from Section 2.3
above also implies that Algorithm A’ may output a tree with Ω(n) times more
internal nodes than a minimally resolved supertree. This means that the mini-
mality claim in Theorem 4 in [9] is not correct.

A fan triplet is a a phylogenetic tree consisting of a root node to which three
leaves are directly attached. For any phylogenetic tree T and any {x, y, z} ⊆
Λ(T ), if lca(x, y) = lca(x, z) = lca(y, z) holds in T then the fan triplet with
leaves x, y, z is consistent with T . In Section 2.6.3 of [4], Bryant studied a kind
of “dual” problem to MinRS called Most Resolved Compatible Tree, in
which the input is a consistent set R of (rooted and fan) triplets on a leaf set L,
and the objective is to construct a phylogenetic tree leaf-labeled by L with the
largest possible number of internal edges which is consistent with R. (Here, trees
containing an internal node with a single child are not allowed.) Note that if R
contains rooted triplets only then the problem is trivial since any binary tree
which is consistent with R will give an optimal solution. However, in the general
case, Most Resolved Compatible Tree is NP-hard [4].

For a recent survey of other optimization problems related to rooted triplets
consistency (for example, computing a maximum cardinality subset R′ of an in-
consistent set R of rooted triplets such that R′ is consistent), see Section 2 in [5].

3 Polynomial-Time Inapproximability of MinRS

In this section, we establish a strong polynomial-time inapproximability result
for MinRS, namely that MinRS cannot be approximated within n1−ε for any



The Complexity of Inferring a Minimally Resolved Phylogenetic Supertree 267

constant 0 < ε < 1 in polynomial time, unless P = NP. We will obtain this result
by reducing the Chromatic Number problem to MinRS.

First, recall that for any undirected graph G = (V, E) and any positive inte-
ger K, a K-coloring of G is a partition of V into (possibly empty) disjoint sub-
sets V1, V2, . . . , VK called color classes such that for any {v, w} ∈ E, it holds that
v and w belong to different color classes. A graph G is called K-colorable if there
exists a K-coloring of G. The Chromatic Number problem is defined as:

Chromatic Number

Instance: An undirected graph G = (V, E).
Output: The smallest integer K such that G is K-colorable.

Zuckerman [17] proved that Chromatic Number is NP-hard to approximate
within |V |1−ε for every 0 < ε < 1. Moreover, the decision version of the problem,
i.e., to determine if an undirected graph G is K-colorable for a particular value
of K, is easily solvable in polynomial time when K = 2 but known to be NP-hard
for any fixed positive integer K ≥ 3; see, e.g., [7].

We now describe the reduction. Let G = (V, E) be any given instance of
Chromatic Number. Without loss of generality, we assume that V contains
at least two vertices and that G is connected. Construct an instance of MinRS

as follows. Let L = {v1, v2 : v ∈ V } be a set of 2|V | new leaf labels and define
R = {v1v2|w1, v1v2|w2, w1w2|v1, w1w2|v2 : {v, w} ∈ E}. Clearly, the reduction
can be carried out in polynomial time.

Then we have:

Lemma 1. If G is K-colorable then there exists a tree which is consistent with R
and contains K + 1 internal nodes.

Proof. Since G = (V, E) is K-colorable, we can partition the vertex set V of G
into K disjoint color classes V1, V2, . . . , VK . Order the color classes so that V1, V2,
. . . , Vj are non-empty and Vj+1 = · · · = VK = ∅, where j ≤ K. Define a tree T
having exactly K + 1 internal nodes as follows. (See Fig. 1 for an illustration.)

– Let the root of T be one end of a path of length K − j and let a0 be the
other end of the path. Let a0 have j children a1, a2, . . . , aj .

– For each i ∈ {1, 2, . . . , j} and each v ∈ Vi, attach two leaves labeled by v1
and v2 to the node ai.

Consider any rooted triplet in R. It is of the form v1v2|w1, where {v, w} ∈ E;
furthermore, since {v, w} ∈ E, both of the vertices v and w cannot belong to
the same color class Vi. Thus, the parent of the leaves v1 and v2 in T is different
from the parent of the leaves w1 and w2, and so v1v2|w1 is consistent with T .
Therefore, R is consistent with T . ��
Lemma 2. If there exists a tree which is consistent with R and contains K + 1
internal nodes then G is K-colorable.
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v21v

T:

a0

a1 ai aj

Fig. 1. Illustrating the proof of Lemma 1. In this example, there is one empty color
class (i.e., K − j = 1), so the path from the root of T to the internal node a0 has
length 1. For each vertex v ∈ V , where v belongs to the color class Vi, the leaves v1,
v2 in T are directly attached to the internal node ai.

Proof. Let T be a tree with K + 1 internal nodes which is leaf-labeled by L
and consistent with R. Let c0 be the root of T and denote the other internal
nodes of T by c1, c2, . . . , cK arbitrarily. For every i ∈ {0, 1, . . . , K}, associate a
(possibly empty) subset Ci ⊆ V with the internal node ci, defined as follows: for
each v ∈ V , if lca(v1, v2) = ci in T then let v ∈ Ci. It follows directly that for
any i, j ∈ {0, 1, . . . , K} with i �= j, the subsets Ci and Cj are disjoint.

Observe that every v ∈ V belongs to at least one edge in E of the form {v, w}
(otherwise, the graph G would not be connected), and thus, by the construction
of R, the rooted triplets v1v2|w1, v1v2|w2, w1w2|v1, and w1w2|v2 belong to R.
Since v1v2|w1 is consistent with T , it holds that lca(v1, v2) is a proper descendant
of lca(v1, w1), i.e., lca(v1, v2) cannot be the root of T . We have just shown that
C0 = ∅.

Next, we claim that for any two vertices v, w ∈ V , if {v, w} ∈ E then v
and w cannot belong to the same subset Ci. For the purpose of obtaining
a contradiction, suppose that v, w ∈ Ci. Then lca(v1, v2) and lca(w1, w2) are
the same node in T according to the definition of Ci. By transitivity, at least
one of lca(v1, w1), lca(v1, w2), lca(v2, w1), and lca(v2, w2) is also equal to this
node. However, since T is consistent with the rooted triplets v1v2|w1, v1v2|w2,
w1w2|v1, and w1w2|v2, it follows from the definition of “consistent with” that the
node lca(v1, v2) is a proper descendant of (and hence different from) lca(v1, w1)
as well as of lca(v1, w2), and in the same way that lca(w1, w2) is a proper descen-
dant of lca(v2, w1) and of lca(v2, w2). This yields a contradiction, so the claim
must hold.

Thus, the partition of V into disjoint subsets C1, C2, . . . , CK gives a K-
coloring of G, and so G is K-colorable. ��
Theorem 1. MinRS cannot be approximated within n1−ε for any constant 0 <
ε < 1 in polynomial time, unless P = NP.
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Proof. Follows from Lemmas 1 and 2 together with the fact that Chromatic

Number is NP-hard to approximate within |V |1−ε for every 0 < ε < 1 [17]. ��
Since the decision version of Chromatic Number is NP-hard for any fixed
positive integer K ≥ 3 (see, e.g., [7]), using the above reduction and applying
Lemmas 1 and 2 also yields:

Corollary 1. The decision version of MinRS is NP-hard for any fixed positive
integer q ≥ 4, where q is the allowed number of internal nodes.

4 Exact Algorithms for MinRS

4.1 A Brute-Force Algorithm

We can solve the decision version of MinRS with a simple brute-force algorithm
as follows.

• Let q be the allowed number of internal nodes.
• Generate all possible trees having q nodes and for each one try all qn ways

of attaching the n leaves in L to the q different nodes. For each obtained
tree, check if it is consistent with R in polynomial time. If at least one such
tree exists then output “yes”; otherwise, output “no”.

This yields:

Theorem 2. For any given positive integer q, the decision version of MinRS

can be solved in O∗(f(q) ·qn) time, where f(q) is the number of rooted, unlabeled
trees with q nodes.

It is known that f(q) ∼ c ·dq ·q−3/2, where c = 0.439924 . . . and d = 2.955765 . . .
[13]. Thus, the algorithm runs in exponential time for q = O(1).

4.2 An Exponential-Time Algorithm for a Restricted Case of
MinRS

The derivation of our main result in this section relies on the following variant
of the tree separator theorem. A non-leaf child of a node v in a tree is a child
of v which is an internal node, and for any rooted tree T and node v in T , the
notation Tv means the subtree of T rooted at v.

Lemma 3. Let T be a rooted tree with n leaves. There is a node v such that the
subtree Tv contains strictly greater than n

2 leaves but for each non-leaf child w
of v, the subtree Tw has at most n

2 leaves.

Proof. We start from the root of T and perform the following procedure. If the
root satisfies the condition then we set v to it and stop. Otherwise, we set v to
the child of the root with the largest number of leaves and iterate the procedure
for Tv.

Note that whenever a new iteration is applied to Tv then Tv has to have
more than n

2 leaves. It follows from the finiteness of T that eventually a node v
satisfying the condition will be found. ��
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We now use Lemma 3 to design a 2O(n log k)-time procedure for the variant of
MinRS where every internal node is allowed to have at most k non-leaf children.

The procedure is recursive. We enumerate all partitions of the leaf set L
corresponding to the condition in Lemma 3. Then, we recursively apply the
procedure on the resulting leaf subsets, possibly augmented by a dummy leaf,
modifying the rooted triplets accordingly.

A partition Q corresponding to the condition in Lemma 3 has two levels. See
Fig. 2. Firstly, it splits the set L of leaves into a set L′ corresponding to Tv of
size strictly greater than n

2 and its complement L \ L′ corresponding to T \ Tv.
Secondly, Q splits L′ into k′ ≤ k sets L′

1, . . . , L
′
k′ corresponding to the non-leaf

children of v in the condition, each of the sets of size at most n
2 , and a number

of singletons corresponding to the leaves pending on v.

T ’
1

L’|    | < <

a

T ’’

T ’

L’k’|     |

k’

1

n/2

n/2 n/2

|         |L \ L’ <

Fig. 2. According to Lemma 3, T has a node whose removal would divide the leaf set L
into a subset L′ containing strictly more than n

2
leaves and its complement L \L′, and

L′ would be further partitioned into subsets L′
1, . . . , L

′
k′ of at most n

2
leaves each as

well as a number of singletons.

If there is a rooted triplet xy|z where x, z ∈ L′ and y ∈ L \ L′ then we
can disregard Q. On the other hand, if x, y ∈ L′ and z ∈ L \ L′ then xy|z is
satisfied by Q and the triplet can be disregarded. As for the sets L′

1, . . . , L
′
k′

and the remaining leaf singletons, for each rooted triplet of the form xy|z where
x, y, z ∈ L′, if x, y are not in the same set L′

l then we can also disregard Q.
Otherwise, we augment L \ L′ by a dummy leaf a and for each rooted triplet

of the form xy|z where x, z ∈ L\L′ and y ∈ L′, we form the rooted triplet xa|z.
Analogously, for each rooted triplet of the form xy|z where x, y ∈ L \ L′ and
z ∈ L′, we form the rooted triplet xy|a.

For each such remaining partition Q, we run our procedure recursively on
L \ L′ ∪ {a} with the original set R of rooted triplets restricted to L \ L′ and
the set of additional rooted triplets containing the dummy leaf a. Let T ′′ be the
tree returned by the procedure.
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We run also our procedure on each of the sets L′
1, . . . , L

′
k′ obtaining trees

T ′
1, T

′
2, . . . , T

′
k′ . Then, we make the trees as well as the singleton leaves children

of the leaf a in the tree T ′′, and put the resulting tree on a candidate list.
Finally, we return the tree on the candidate list which has the smallest number

of internal nodes.
The correctness of our procedure follows from Lemma 3 and the fact that we

can join T ′′ with T ′
1, T

′
2, . . . , T

′
k′ in the described way at the dummy leaf a. The

additional rooted triplets with a representing any leaf in L′ satisfied by T ′′ make
the join possible.

Let us estimate the time complexity T (n) of our procedure in terms of the
number of leaves n. Note that the number of rooted triplets is O(n3). The number
of partitions considered and the time needed to generate them are trivially O((k+
2)n) = 2O(n log k). Each of the at most k + 1 recursive calls is applied to a set
of leaves of size at most n

2 . Thus, the total time complexity of processing the
partitions is 2O(n log k)((k+1)T (n

2 )+nO(1)). By the inequality 2αn log k2c( n
2 ) log k ≤

2cn log k for c ≥ 2α, k ≥ 2, and n ≥ 3, we obtain T (n) = 2O(n log k).

Theorem 3. The problem of constructing a minimally resolved tree consistent
with a set R of rooted triplets on a leaf set L under the restriction that each node
has at most k non-leaf children, where k ≥ 2, is solvable in 2O(n log k) time.

Any tree with n leaves which is consistent with R can easily be converted into
a tree consistent with R where each node has at most k non-leaf children by
increasing the number of internal nodes by an O(logk n) multiplicative factor.
(Simply connect each internal node v to its non-leaf children Cv via a k-ary tree
of depth O(logk n) having Cv as leaves.) Hence, we obtain the following corollary.

Corollary 2. MinRS can be approximated within a O(logk n) factor in time
2O(n log k).

5 Concluding Remarks

Recall that at each recursion level, the BUILD algorithm of Aho et al. [1] par-
titions the leaf set into blocks by computing the connected components in the
auxiliary graph, and then represents each block by one node in the tree. A simple
idea to reduce the number of internal nodes in the tree produced by BUILD is
to merge blocks while ensuring that no rooted triplets are violated as follows:

Proceed as in BUILD, but after computing the blocks (i.e., the connected
components in G(L′)), construct an undirected graph H whose vertices
are the blocks and where {A, B} is an edge in H if and only if R contains
some rooted triplet of the form xy|z where either x, y ∈ A and z ∈ B, or
x, y ∈ B and z ∈ A. Compute a minimum coloring of H and merge all
blocks whose vertices in H received the same color. Then, continue the
execution of BUILD.
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The above step can be implemented in O∗(2j) time by applying an exact al-
gorithm for Chromatic Number [3], where j is the number of vertices in H .
Summation over all recursive calls yields a total running time of O∗(2n). An
interesting question is if this method minimizes the number of internal nodes,
i.e., whether or not it always gives an optimal solution for MinRS.
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ing evolutionary trees. Journal of Combinatorial Optimization 3(2-3), 183–197
(1999)

9. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomor-
phic subtrees, with applications to computational evolutionary biology. Algorith-
mica 24(1), 1–13 (1999)

10. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. Journal of the ACM 48(4), 723–760 (2001)

11. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement
supertrees. Algorithmica 43(4), 293–307 (2005)

12. Kearney, P.: Phylogenetics and the quartet method. In: Jiang, T., Xu, Y., Zhang,
M.Q. (eds.) Current Topics in Computational Molecular Biology, pp. 111–133. The
MIT Press, Massachusetts (2002)

13. Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)



The Complexity of Inferring a Minimally Resolved Phylogenetic Supertree 273

14. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI
2002. LNCS, vol. 2452, pp. 537–552. Springer, Heidelberg (2002)

15. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Applied Math-
ematics 105(1-3), 147–158 (2000)

16. Snir, S., Rao, S.: Using Max Cut to enhance rooted trees consistency. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 3(4), 323–333 (2006)

17. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique
and Chromatic Number. Theory of Computing 3(1), 103–128 (2007)



Reducing Multi-state to Binary Perfect
Phylogeny with Applications to Missing,
Removable, Inserted, and Deleted Data

Kristian Stevens and Dan Gusfield

Department of Computer Science
University of California, Davis

Abstract. Multi-State Perfect Phylogeny is an extension of Binary Per-
fect Phylogeny where characters are allowed more than two states. In
this paper we consider four problems that extend its utility: In the Miss-
ing Data (MD) Problem some entries in the input are missing and the
question is whether (bounded) values can be imputed so that the result-
ing data has a multi-state Perfect Phylogeny; In the Character-Removal
(CR) Problem we want to minimize the number of characters to remove
from the data so that the resulting data has a multi-state Perfect Phy-
logeny; In the Missing-Data Character-Removal (MDCR) Problem we
want to impute values for the missing data to minimize the solution to
the resulting Character-Removal Problem; In the Insertion and Deletion
(ID) Problem insertion and deletion mutational events spanning multiple
characters are also allowed.

In this paper, we introduce a new general conceptual solution to these
four problems. The method reduces k-state problems to binary problems
with missing data. This gives a new conceptual solution to the multi-
state Perfect Phylogeny problem, and conceptual solutions to the MD,
CR, MDCR and ID problems for any k significantly improving previous
work. Empirical evaluations of our implementations show that they are
faster and effective for larger input than previously established methods
for general k.

1 Introduction and Background

A current and central problem in the study of evolution concerns the reconstruc-
tion of a sample’s evolutionary history in the form of a phylogenetic tree. Extant
organisms (taxa) correspond to the tree leaves, while internal nodes correspond
to hypothetical ancestral taxa. Each node is labeled with a series of features or
traits in the form of characters. Each character takes on one of several possible
states. Each edge in the tree describes a mutational event.

Under a commonly used model of evolution, the infinite-sites model of pop-
ulation genetics, characters are binary and only mutate once in the history of
the sample. Phylogenetic reconstruction under this model is referred to as the
Perfect Phylogeny problem (PP) and can be solved in linear time [5].

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 274–287, 2010.
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1,2,1 1,3,3

1,3,1

2,3,1

2,3,2 2,1,1 3,3,1

1   2   1
1   3   3
2   1   1
2   3   2
3   3   1

Characters

Ta
xa

Fig. 1. A Perfect Phylogeny for a 3-state matrix M with 3 characters from [4]. Extant
taxa (square) are given in M and ancestral taxa (rounded) are inferred.

This paper concerns an important generalization of the binary Perfect Phy-
logeny problem that relaxes the constraint on the number of states and the
number of mutational events per character. Under the infinite-alleles model of
population genetics a character may take on up to k-states but the mutation
that originates a state different from the root occurs only once in the sam-
ple’s evolutionary history. This mutational constraint is referred to as convexity,
which we will more formally define. In the biological literature, violating con-
vexity is referred to as homoplasy. We refer to the phylogeny under this model
as a k-state Perfect Phylogeny. Historically this problem has been motivated
by qualitative data mostly of morphological origin. However, today informative
multi-state data of molecular and genomic origin is widely available.

We are given a matrix M of input data for m characters on n taxa. We will
use c to denote a particular character, Ac to denote the set of observed states
for c, and α to denote a particular state in Ac. We use t to denote the length m
vector of states corresponding to a particular taxon, and c(t) denote the state of
c for taxon t. Similarly, we use c(v) to denote the state of c for node v in a tree.
We use the symbol ? to represent that the state is unknown. A character is said
to be incomplete if it c(t) = ? for some extant taxon, otherwise it is complete.
To denote the set of taxa labeled with state α of character c we use c(α).

Definition 1 (k-State Perfect Phylogeny). Assume |Ac| ≤ k for every char-
acter c in M , a k-state Perfect Phylogeny for M is a tree T with n leaves, where
each leaf is labeled by a distinct taxon t in M . Each internal node of T is labeled
by a distinct taxon t, which might not appear in M , where c(t) ∈ Ac for each
character c. Furthermore, all characters must satisfy the following convexity re-
quirement on T . A character c is convex with respect to T , if for every state α
in Ac, the subgraph induced by the nodes labeled with α is a connected subtree of
T which we denote as Tc(α).

Figure 1 shows an example 3-state Perfect Phylogeny. The k-State Perfect Phy-
logeny problem is to find and construct a k-State Perfect Phylogeny for M or
determine there is none. If neither k nor n nor m is fixed, so k may grow with n,
then the k-state Perfect Phylogeny problem is NP-complete [18]. In contrast, if k
is any fixed integer, independent of n and m, then the k-state Perfect Phylogeny
Problem can be solved in time that is polynomial in n and m [1,11,12].
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In this paper we consider the following four variants that extend the biological
utility of the basic k-state Perfect Phylogeny model.

Missing Data Problem (MD). In this realistic variant, some of the characters
are incomplete. For an m× n input matrix M with incomplete characters, a fill
is a setting of the missing values that replaces each ? of every character c with
a state in Ac. We are interested in determining if any fill of the missing values
of M gives data with a k-state Perfect Phylogeny. We will refer to such a fill as
a convex fill.

The MD problem is motivated by the reality of missing entries in biological
datasets. In many phylogenetic applications, missing data in the 30% range is not
uncommon. While genotyping platforms usually produce missing data at a rate
less than 10%, meta-genomic and population-genomic applications using whole
genome shotgun for obtaining genotypes can have very high missing data rates.
We will show the method presented here can handle missing entries at substan-
tially higher rates than those considered in [6]. Even for binary data this problem
is NP-complete, although the directed version of it can be solved in polynomial
time [14]. The problem we address here has the biologically meaningful and com-
putationally challenging constraint that missing values be selected from the set
of observed states. The MD problem has a simple formulation if O(n) additional
states can be assigned [16]. Solutions to the binary MD problem were shown in
[7] using integer linear programming (ILP) and in [15] using a more specialized
algorithm. A general solution for the k-state MD problem using chordal graph
theory was shown in [6] but is practical for much smaller problems.

Character Removal Problem (CR). If M has no missing entries and does
not have a k-state Perfect Phylogeny, what is the minimum number of characters
to remove so that the resulting matrix does have a k-state Perfect Phylogeny?
Even for binary data this problem is NP-complete.

Missing Data Character Removal Problem (MDCR). If M contains
missing entries and does not have a k-state Perfect Phylogeny, how should the
missing values be set in order to minimize the solution to the resulting CR
problem? Another way of looking at the objective function is to minimize the
number of characters removed such that the resulting MD problem has a Perfect
Phylogeny.

The aforementioned CR and MDCR problems are motivated by the common
practice in phylogenetics of removing characters when the existing data does
not fit the Perfect Phylogeny model. This is most often done when the data is
binary, but the problem and practice also arise for non-binary data [4,6]. An ILP
formulation to the CR problem for the specific cases of k=3, 4, 5 was presented
in [6]. An ILP formulation to the binary MDCR problem was shown in [7] and
for k=3 in [6]. Recently it was shown that the chordal-graph approach of [6] can
be extended to the CR and MDCR problems for general k [8]. Here we present
a new conceptually simple solution to the CR and MDCR problems for general
k and a corresponding implementation that is effective for large matrices.
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Insertions and Deletions (ID). Frequently in nature, molecular sequences
will undergo insertion and deletion events, the effect of which is to either insert
a novel substring between two existing characters in a biological sequence or to
delete an existing interval of characters from the sequence. We collectively refer
to these intervals of spaces as indels, consistent with the fact that we do not know
if one is caused by an insertion or a deletion, unless the known tree is rooted
and the ancestral taxon is known. Indels can be used as phylogenetic characters.
The importance of these characters to phylogenetic reconstruction arises from
the fact that they occur frequently enough to be informative, and yet there is a
wide acceptance that indels have a lower potential for homoplasy than do point
mutations [13]. Both large and small indels are becoming a readily available
source of mutational information from resequencing data. Indels are an example
of the utility of our reduction for imposing restrictions on state transitions.
Additional utility for restricted state transitions on multi-state characters is
shown in [2] for the gain and loss of characters in the evolution of gene structure.

2 Reducing k-States to Binary

In this section we formally present a central result of the paper on which the
other results are based, that every instance of k-state Perfect Phylogeny can be
reduced to an instance of binary Perfect Phylogeny with missing data.

We now give an alternative definition of convexity for a character c with
respect to a more general class of trees with labels only on the leaves. Given a
leaf-labeled tree T , a character c, and a state α of c, and let Ic(α) denote the
minimal subtree of T that connects the set of leaves labeled by the taxa in set
c(α). Then c is convex with respect to T if for any two states αi and αj in Ac,
subtrees Ic(αi) and Ic(αj) are node disjoint. Any leaf labeled tree that satisfies
this definition also has an internal labeling that satisfies our previous definition.

The following lemmas directly follow from our two definitions of convexity
and apply to the more general class of leaf labeled trees:

Lemma 1 (Convexity). A character c is convex with respect to a leaf-labeled
tree T if for every unique pair of nodes in T labeled with the same state α of c,
all labeled nodes on the unique path between them are labeled with state α or not
labeled by a state. More formally, if vi, . . . vk . . . vj is a path on tree T , c(vi) �= ?,
c(vj) �= ?, and c(vk) �= ? then c(vi) = c(vj) =⇒ c(vi) = c(vj) = c(vk).

Lemma 2 (Non Convexity). If vi, . . . vk . . . vj is a path on the leaf-labeled tree
T , c(vi) �= ?, c(vj) �= ?, c(vk) �= ?, and c(vi) = c(vj) but c(vk) �= c(vj) then the
character c is not convex with respect to T and T can not be Perfect Phylogeny
for M .

A state tree can be constructed for c from a completely labeled tree T by merging
all nodes that have state α for each α ∈ Ac. A state tree can be constructed
for c from a leaf labeled tree T by merging all nodes in the subtree with leaves
labeled with state α for each α ∈ Ac.
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Lemma 3 (State Tree). If a character c is convex with respect to a tree T ,
the state tree has exactly |Ac| nodes, and each node corresponds to Tc(α) for any
α in Ac.

2.1 Reducing k-State Perfect Phylogeny to Binary
Perfect Phylogeny with Missing Data

Given an instance of the k-state Perfect Phylogeny problem in matrix M we will
derive a matrix M ′ of binary characters such that a tree T can be labeled to be
a Perfect Phylogeny for M ′ if and only if it can also be labeled to be a Perfect
Phylogeny for M . In Figure 2, we present our algorithm for reducing k-state
problems which forms the basis of Theorem 1 and its subsequent proof.

Theorem 1. Every instance of the k-state Perfect Phylogeny problem corre-
sponds to an instance of the binary Perfect Phylogeny problem with missing
data.

M ′ = ∅
FOREACH character c ∈ M

FOREACH pair of states (αi, αj) ∈ Ac such that αi < αj .
FOREACH taxon t ∈ M

c′(t) =

⎧⎪⎨⎪⎩
0 if c(t) = αi

1 if c(t) = αj

? otherwise
Append c′ to M ′.

ENDFOR
ENDFOR

ENDFOR

Fig. 2. Algorithm: Convert k-state M to binary M ′

Proof. For the m × n k-state input matrix M and the binary matrix M ′, we
denote the finite and countable space of all candidate trees with n leaves as T n.

First we show that if a tree T ∈ T n can be a Perfect Phylogeny for M it can
also be a Perfect Phylogeny for M ′. If T can be a Perfect Phylogeny for M then
each character c in M is convex with respect to T and a state tree exists for c
with respect to T . We now describe how to fill each c′ in the expanded binary
matrix M ′ so that they will also satisfy the convexity condition with respect
to T . For the state pair αi and αj corresponding to the binary character c′,
choose an arbitrary edge on the path between αi and αj in the state tree for
c ∈ M and remove it. We then label all taxa t ∈ c′ where c′(t) = ? as follows:
If t appears in the component containing αi it is labeled with 0 otherwise if t
appears in the component containing αj it is labeled with 1. Now we prove that
the filled character c′ is convex by contradiction. If c′ was not convex then by
Lemma 2 there must exist a path vi . . . vk . . . vj , where vi, vj , and vk are labeled
with states, c′(vi) = c′(vj) = α, and c′(vk) �= α. This would require that c(vk)
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be in the other component of the state tree, a violation of the convexity of c.
This proves we can fill in each c′ in such a way that is convex with respect to T .

Next we show that if a tree T ∈ T n can not a Perfect Phylogeny for M it
can also not be a Perfect Phylogeny for any fill of M ′. If T can not be a Perfect
Phylogeny for M then by Definition 1 there must exist a character c that is not
convex. By Lemma 2 there must exist a path vi, . . . vk . . . vj , where vi, vj , and vk

are labeled with states, such that c(vi) = c(vj) but c(vk) �= c(vj). Without loss
of generality, assume αi = c(vk) and αj = c(vj) and αi < αj . By the reduction
algorithm there is a character c′ in M ′ corresponding to the relabeling of αi

as 0 and αj as 1. Because these states are fixed, regardless of the fill of c′, the
following will also hold c′(vi) = c′(vj) but c′(vk) �= c′(vj) proving that c′ cannot
be convex and T cannot be a Perfect Phylogeny for M ′.

It remains to prove that if there is a Perfect Phylogeny for a fill of M ′ there
always exists a Perfect Phylogeny for M . This also introduces the labeling al-
gorithm for the missing taxa in M . Suppose there is a Perfect Phylogeny T ′ for
M ′. We will create a Perfect Phylogeny T for M where the unlabeled, undirected
trees T and T ′ are identical, and where the mapping from leaves of T ′ to taxa
of M ′ is identical to the mapping from leaves of T to taxa of M. We start with
the tree T , with each leaf only labeled by the taxon mapped to it. Next, for any
character c of M and every state αi of c, label every leaf f of T with state αi of
character c if and only if taxon f has state αi for character c, in M . Let Ic(αi)
be the induced subtree of T that spans the leaves with state αi for character c
in M . We claim that for any character c and two states αi and αj of c, Ic(αi)
and Ic(αj) do not intersect. If they do intersect at a node v in T , then consider
character c′ in M ′ corresponding to the state pair (αi, αj) of c, and suppose
αi < αj . Then all of the leaves with state αi for c in M will have state 1 for
character c′ of M ′, and all of the leaves with state αj for c in M will have 0 for
character c′ of M ′. But then the subtree of T ′ that spans all of the leaves with
state 1 for c′ will contain node v, as will the subtree of T ′ that spans all of the
leaves with state 0 for c′, and so character c′ will not be convex in T ′. Hence
Ic(αi) and Ic(αj) do not intersect in T . So, for each state α of each character c of
M , label each of the nodes in Ic(α) with state α of c. To complete the labeling of
T to create a convex fill of M , let u be a node of T which is not labeled with a
state for a character c. Do a breadth first search in T from u until some node v
is reached which is labeled by a state αk of character c, and label all of the nodes
on the shortest path from u to v with state αk. Repeat until all of the nodes
are labeled with a state of each character. The result is a Perfect Phylogeny T
for M . ��
The following corollary of Theorem 1 arises as a generalization for arbitrary k
of the often practiced removal of redundant characters for binary data.

Theorem 2 (k-state Character Redundancy). A character c contains re-
dundant information and can be removed from M for the purposes of solving
the Perfect Phylogeny problem if for every pair of states αi and αj in the set of
allowed states Ac, the partitions c(αi) and c(αj) appear together in characters
remaining in M .
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Proof. When the reduction algorithm is applied to M , characters in M ′ created
by character c are created from remaining characters in M . ��

2.2 Extension to k-State Perfect Phylogeny with Missing Data

Theorem 3. Theorem 1 can be extended to the case of incomplete characters.

Proof. For an m × n input matrix M◦ with incomplete characters, a fill is a
setting of the missing values, that independently replaces ?’s with states from
Ac for every incomplete character c in M◦. The reduction algorithm from M
to M ′ applies without modification to M◦. In Theorem 1 we established that if
there is no Perfect Phylogeny for M there is no Perfect Phylogeny for M ′ and
this can be applied to all fills of M◦. In Theorem 1 we also established if there
is a Perfect Phylogeny for M there is a Perfect Phylogeny for M ′ and this can
be applied toall fills of M◦.

It remains to show that we cannot have a convex fill for M ′ and not M◦.
By contradiction, suppose there is a convex fill for M ′ that results in a Perfect
Phylogeny T ′. Because T ′ is not a Perfect Phylogeny for M◦ there must exist
some character c ∈ M◦ that is non-convex with respect to T ′. We showed previ-
ously in Theorem 1 the existence of a non-convex character in the fill of M◦ with
respect to a tree T ′ implies the existence of one or more non convex characters
in M ′ with respect to T ′ violating Perfect Phylogeny. Hence if T ′ is a Perfect
Phylogeny for M ′ it is also a Perfect Phylogeny for M◦ and using the tree T ′

and the labeling algorithm of Theorem 1, we can fill the missing entries of M◦

so that all characters are convex with respect to T ′. ��

3 Solving the MD Problem for Arbitrary k

In this section we will describe how to effectively solve k-state MD and present
our empirical results. To restate, our objective is to fill the binary matrix M ′

containing missing values in such a way that that it has a Perfect Phylogeny or
note that it is not possible. This problem is NP-hard, but it has previously been
shown to be solvable in an effective manner via ILP [7].

Before proceeding we first note a well-known necessary and sufficient condition
for a Perfect Phylogeny on complete binary characters commonly referred to as
the four-gamete condition. A gamete is an ordered state pair ci(tk), cj(tk) for
characters ci and cj over taxon tk.

Theorem 4 (Splits-Equivalence Theorem [3,16]). There is an tree for a
collection of binary characters if and only if no pair of characters contain all
four of the gametes {0, 0; 0, 1; 1, 0; 1, 1}.
A pair of binary characters containing all four gametes is referred to as incom-
patible. Our objective is to fill the matrix M ′ in such a way that Theorem 4
is satisfied and no pair of characters is incompatible. We briefly describe the
program from the top level down.
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ILP Formulation. For each missing value in M ′, we create a variable Y (i, j)
that indicates the imputed state in cell M ′(i, j). For each pair of characters (p, q)
where, because of missing data, there is a potential for four gametes we have a
variable C(p, q). For each of the missing gametes g in the character pair (p, q)
we add a variable B(p, q, g) and an inequality that forces it to 1 for settings of
the Y variables that create the missing gamete. We add an inequality for each
C variable that forces it to 1 when all missing gametes are present as indicated
by its corresponding B variables. The overall optimization objective is find a
setting of the Y variables that minimizes the number of incompatible character
pairs given by

∑
p,q∈M ′ C(p, q).

Early Termination and Problem Size Reduction

Once the problem has been reduced to a binary matrix a number of effective
heuristics based on the four gamete condition can be applied to decrease the
problem size or terminate if it is observed early that no Perfect Phylogeny exists.
The heuristics below are repeatedly applied in succession until the binary matrix
M ′ can no longer be modified.

Forbidden Gametes. We examine each pair of characters ci and cj in M ′ where
i < j. If a pair of columns contains the four gametes {0, 0; 0, 1; 1, 0; 1, 1} we may
terminate early knowing no Perfect Phylogeny exists. Let ci(tk), cj(tk) be the
gamete for taxon tk. If a pair of columns contains exactly three gametes then
we can uniquely identify the remaining forbidden gamete fi, fj that must not
appear if there is a Perfect Phylogeny for M ′. We apply the following two rules
to impute missing values for each taxon tk:

ci(tk) equal to fi implies cj(tk) must be 1 − fj

cj(tk) equal to fj implies ci(tk) must be 1 − fi

Logic similar to this has been previously used to impute missing values [9,15].

Character Nesting. For every unordered pair of characters ci and cj in M ′. If
ci(αi) ⊆ cj(αj) and ci(1 − αi) ⊆ cj(1 − αj) for some αi ∈ 0, 1 and αj ∈ 0, 1
we can remove ci from M ′. To see this, consider a third character ck. After
imputation, any setting of the missing values for cj and ck that results in fewer
that four gametes can be used to compute a valid setting for ci with fewer that
four gametes when paired with ck. In detail, the missing entries are set so that
either ci is identical to cj or for every 1 in ci we have a 0 in cj and for every 0
in ci we have a 1 in cj .

Taxon Nesting. For every unordered pair of taxa tk and tl in M ′. If ci(tk) =
ci(tl) or ci(tl) = ? for all 1 ≤ i ≤ m then tl can be removed from from M ′. To
see this, for any pair of characters ci and cj the gamete for tl is either identical
to the gamete for tk or it can be set to be identical to tk without increasing the
total number of gametes in the character pair.
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Table 1. Illustrative execution times for our implementation of k-state Perfect Phy-
logeny problems. We compare to the implementation alternative for general k using
chordal graphs described in [6]. We report the median of 10 executions on a 2.8 GHz
Intel Core 2 Duo with 8 Gb of memory. A dash “−” indicates an instance where the
program did not terminate with a result.

Problem Size Missing = 0% Missing = 25% Missing = 50%
chars×taxa MD MD CR MD MD imput. MDCR MD MD imput. MDCR

states [6] k → 2 k → 2 [6] k → 2 error k → 2 [6] k → 2 error k → 2
100 × 100

k = 3 6.7s 0.0s 0.1s 6.9s 0.0s 1.6% 0.1s 13s 0.0s 2.7% 0.1s
k = 5 10s 0.1s 0.3s 9.8s 0.1s 1.9% 0.3s 75s 0.1s 4.0% 0.2s
k = 10 25s 0.2s 2.1s 1m3s 0.6s 5.0% 1.9s − 0.8s 7.8% 1.3s

100 × 200
k = 3 1m14s 0.1s 0.3s 1m21s 0.1s 1.3% 0.3s 2m09s 0.1s 2.1% 0.2s
k = 5 1m34s 0.5s 1.2s 2m12s 0.4s 2.2% 1.0s − 0.3s 3.4% 0.7s

200 × 400
k = 3 − 0.6s 1.4s − 0.5s 0.5% 1.3s − 0.5s 0.9% 1.1s
k = 5 − 4.4s 9.1s − 3.7s 1.0% 9.6s − 2.6s 1.3% 5.6s

1000 × 1000
k = 3 − 20s 45s − 18s 0.1% 42s − 17s 0.2% 34s
k = 5 − 2m22s 5m48s − 2m16s 0.2% 5m7s − 1m36s 0.3% 4m0s

Trivial Characters. Characters that do not contain more than one 0 or more
than one 1 can be set in such a way that there is only one 0 or one 1. Such a
character can never contain all four gametes when paired with any other char-
acter. These trivial characters are removed from M ′ for later re-insertion if a
Perfect Phylogeny is found.

Empirical Results. Multi-state data was simulated with R. Hudson’s ms pro-
gram [10] using an application developed in [6] for converting instances of k = 2
to realistic instances where k > 2 both with and without Perfect Phylogenies.
Table 1 presents our results and compares them to the alternative method for
general k introduced in [6]. A few trends are noteworthy. In comparison to the
method for solving k-state MD described in [6] based on chordal graphs, our
implementation is faster and effective for much larger problems. We increasingly
outperform the alternative method as the size of the matrix and the amount of
missing data increases. The space requirements of the alternative method rapidly
increase with the number of states and the amount of missing data eventually
exhausting available resources. Both methods slow down for a matrix of fixed
size as the number of states k increases. We also include the error rate for im-
puted states as an indication of how this method might perform when used to
impute missing values when the data originates from a tree. The results indicate
that the ability to recover the correct state is diminished as the number of states
increases, the number of characters decreases, and the amount of missing data
increases.

4 Solving the CR and MDCR Problems for Arbitrary k

Our reduction allows us to adapt, to the case of general k, the ILP formulation
for the binary CR and MDCR problems introduced in [7].
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ILP Formulation. D(i) is a binary variable used to indicate whether or not
character ci in M ′ will be removed. For each pair of characters (p, q) that is
already incompatible we add the inequality D(p) + D(q) ≥ 1 which requires at
least one of them be removed.

For each pair of characters (p, q) where, because of missing data, there is a
potential for incompatibility we add the inequality D(p) + D(q) − C(p, q) > 0.
This forces either D(p) or D(q) to 1 if missing values are imputed such that the
pair is incompatible as indicated by a value of 1 for C(p, q).

Next we formalize the concept of a character group G. In the reduction from
M to M ′ each k-state character ci in M creates a group Gi of up to

(
k
2

)
binary

characters in M ′. Instead of minimizing the number of characters from M ′ be-
ing removed, we are interested in minimizing the number of character groups
associated with binary characters removed from M ′. For each character group
Gi we create a variable G(i) that will be forced to 1 if any of its associated
binary characters are removed from M ′. To do this we use an inequality that is
essentially a logical OR: |Gi|G(i) ≥ ∑j∈Gi

D(j). The overall objective function
for the ILP is to minimize

∑
i∈M ′ G(i). The setting of the G(i) variables tell us

which characters to remove from M .
The taxon nesting and trivial character heuristics for reducing the problem

size can be applied as described in Section 3. The remaining two heuristics de-
scribed in Section 3 are not applied because it is not known which characters
will ultimately be present in the subsequent MD problem. Because not all the
reduction tools are available, the resulting size of an MDCR ILP is much larger
in practice than a comparable MD ILP. Most of the size of an MDCR ILP comes
from B and C inequalities associated with potential pairwise incompatibilities.
For instance, in our empirical results for 5 state 100x100 MDCR ILPs these in-
equalities always account for over 95% of its total size. This allows us to use an
effective approach for determining the optimal solution to large MDCR problems
utilizing our ability to quickly solve problem MD. Recall that the MDCR prob-
lem is to find the minimum number of characters to remove from M such that
the resulting matrix has a Perfect Phylogeny as determined by problem MD.
We also note that a solution to a relaxed MDCR minimization problem provides
a lower bound on the number of characters that must be removed as well as a
candidate list of characters to remove. Rather than solve the full MDCR ILP, we
successively solve more constrained relaxations of the full MDCR ILP. To gener-
ate a relaxed MDCR ILP we impose a minimum cutoff q on number of gametes
observed in a pair of characters before the associated B and C inequalities for
that pair are generated. We can test if a candidate list of removal characters is
an optimal solution using our approach to problem MD. We decrease q from 4 to
0, applying successively greater constraint, until we verify a solution is optimal.

Empirical Results. Illustrative total execution times are given in Table 1.
Strikingly the times are of the same order of magnitude as the corresponding MD
problems. The rate of homoplasy was set so that roughly 10% of the characters
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were removed in the optimal solution. Asserting the validity of our approach,
the program only went below the cutoff q = 3 in the case of 10 states with 25%
or more missing data.

5 Insertions and Deletions as Phylogenetic Characters

In the k-state Perfect Phylogeny problem with Insertions and Deletions (ID)
we are given data with indels and want to construct a Perfect Phylogeny or
determine that one does not exist, considering the indels as phylogenetic charac-
ters. The locations of insertions or deletions are ultimately revealed in a multiple
alignment of the sequences. In this setting insertions and deletions are identically
coded as a contiguous interval of spaces ’-’ in the taxa that do not contain the
inserted or deleted characters. Figure 3 shows a data matrix containing indels en-
coded by spaces derived from a hypothetical multiple alignment, where identical
characters have been removed. Such a matrix is the input to problem ID.

If each space in an indel is treated as an independent character, rather than
considering the contiguous interval of spaces as a one single character, then com-
mon ancestry will be incorrectly inferred when two indels overlap. For an exam-
ple of this see character 2 in Figure 3. To address this problem, Simmons and
Ochoterena describe an encoding of indels using multi-state characters (MCIC)
that is maximally informative for phylogenetic construction by parsimony [17].
However, a multi-state character alone is not enough to represent all the phylo-
genetic information, and MCIC provides additional information to the phyloge-
netic reconstruction algorithm in the form of a transition matrix. Six rules that
implement the MCIC encoding for all situations with up to 3 overlapping indels
are described in [17]. We present here a more rigorous multi-state encoding of
indels for the ID problem that captures all the phylogenetic information in the
MCIC model. Our multi-state encoding is simple to describe and implement.
Moreover through reduction we will ultimately derive a binary encoding and
demonstrate an equivalency between binary and multi-state encodings under
the Perfect Phylogeny model. We show that one additional binary character per
indel is a sufficiently informative encoding for the Perfect Phylogeny problem
and that Perfect Phylogeny with indels is inherently a missing data problem.
Finally, we provide a method for obtaining the optimal solution that explicitly
handles the missing data.

We are given a matrix M of non-redundant characters where some entries
contain spaces ’-’. We can assume, because of their low homoplasy, that the
interval of spaces is unique to each indel event. To encode indels as multi-state
characters, we first assign each unique contiguous interval of spaces to a state
α that is not yet present in M , and denote its interval as the set span(α). We
then assign state α to the associated spaces in all taxa containing that indel.
This corrects the problem that overlapping spaces incorrectly suggest shared
ancestry. We note that even though the state α associated with a unique indel
event may span multiple characters, we do not need to explicitly require that
the state arise at the same location in the tree for all characters in span(α). If a
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Perfect Phylogeny exists, this constraint arises naturally from the edge-induced
partitions of the taxa. The tree will have n − 1 edges each corresponding to a
unique subset of the taxa. Convexity ensures one edge must correspond to the
set of taxa c(α) which is the same for all characters c in span(α).

At this point we have a multi-state Perfect Phylogeny problem, but we have
not yet restricted the possible state trees for characters with indel states. For the
most part, an indel should be a leaf in the state tree, since under the model a
character does not exist before it is inserted or after it is deleted. The exception
to this is when one indel contains another, an example of which is when one
sequence of characters is inserted within another inserted sequence of characters.
To be specific, one indel is said contain another indel, denoted by αi ⊃ αj , if
span(αi) ⊃ span(αj). An indel state must be a leaf in the state tree or adjacent
to an indel state in which it can be contained. This imposes a partial ordering
restriction on the state tree. We can use the reduction presented in Figure 2
and apply post-processing to the binary matrix M ′ to accomplish the desired
restrictions.

1   2 6   1
3 4 4 4
1 4 4 4
2   1   1   1
2   2   1   2
5 5   1   1

1 6 4

There are only two possible state trees for 
character 3 where indel state 4 must either be a 
leaf or attached to indel state 6 which it contains.

6 1 4

1   2 -   1
3 - - -
1 - - -
2   1   1   1
2   2   1   2
- -   1   1

Fig. 3. For problem ID, an example of the original data, a multi-state encoded matrix,
and the state tree restrictions on character 3

We now describe our algorithm for reducing the search space using M ′. Recall
that for any character c′ in M ′ we have a corresponding character c in M and
a pair of states αi and αj in Ac corresponding to filled taxa. We visit each
character c′ in M ′ where either αi or αj corresponds to an indel state. Without
loss of generality, assume that αi is an indel state and that αi in c corresponds
to 0 in c′ for all taxa c(αi). We first assume the simple case where αi is a leaf
on the state tree and that by convexity all taxa not in c(αi) can be set to 1 in
c′. We then examine each taxon t of character c′ to find any containing indel
states. If c(t) is an indel state which can contain αi, we set c′(t) = ?.

Theorem 5. k-state ID reduces to k-state MD.

Proof. Note that the aforementioned algorithm can be implemented by modi-
fying the matrix M as follows: For each unique indel state α we add a binary
character cα indicating it’s presence or absence. Then we set cα(t) = ? for all
taxa t with an indel that contains α. Finally, all spaces ’-’ in M are set to ?.
Both the original and modified matrices will reduce to the same matrix M ′. ��

Discussion of the ID Results. We see that Problem ID must be posed as
a missing data problem. The missing data in this case corresponds to the ac-
tual sequence of states that were deleted or inserted which, by the convexity
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requirement, can be filled into the missing entries. Perhaps not surprisingly the
additional binary characters introduced by indels into the reduced matrix corre-
spond to a simple indel encoding (SIC) proposed by Simmons and Ochoterena as
a less phylogenetically informative alternative to MCIC. By showing an equiva-
lency between the binary and multi-state encoding schemes, we clarify that this
assertion does not apply under the Perfect Phylogeny model. Using this con-
ceptually simple extension of our implementation of problem MD we provide a
rigorous method of determining the optimal solution to problem ID for general
k. We leave open the complete characterization of the associated MD, CR, and
MDCR problems in the presence of indels.
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Abstract. Although many supertree methods have been developed in the last few
decades, none has been shown to produce more accurate trees than the popular
Matrix Representation with Parsimony (MRP) method. In this paper, we evaluate
the performance of several supertree methods based upon the Quartets MaxCut
method of Snir and Rao. We show that two of these methods usually outperform
MRP and all other supertree methods we studied under many realistic model
conditions. In addition, we show that the popular criterion of minimizing the total
topological distance to the source trees is only weakly correlated with topological
accuracy, and therefore that evaluating supertree methods on biological datasets
is problematic.

1 Introduction

Supertree methods comprise one approach to reconstructing large molecular phyloge-
nies given a set (called a profile) of estimated trees (called source trees) for overlapping
subsets of the entire set of taxa. Source trees are combined into a single supertree on the
full set of taxa using various algorithmic techniques. Because of the computational dif-
ficulties in estimating large phylogenies, many computational biologists think that the
only feasible strategy to estimating the Tree of Life will involve a divide-and-conquer
approach where trees are estimated on subsets of taxa and a supertree method is used
to assemble a tree on the entire taxon set from the source trees. While there are many
supertree methods, only MRP is used regularly in supertree constructions on biological
datasets (4); furthermore, no other supertree method has been shown to produce trees
that are comparable in accuracy to MRP under the standard bipartition metric (5).

One version of the supertree estimation problem uses quartet amalgamation methods.
Each estimated source tree is encoded by an appropriately chosen subset of its induced
quartet trees, and the set of quartets (the union of the chosen subsets for each source
tree) is used to estimate a supertree. Quartet amalgamation methods can thus be used to
assemble supertrees from source trees of arbitrary size.

The Maximum Quartet Consistency (MQC) problem is a natural optimization prob-
lem, in which the input is a set of quartet trees and a supertree is sought that displays the
maximum number of quartet trees. MQC is NP-hard, and generally hard to approximate
except in special cases (3; 15; 6; 11). Theoretical results and heuristics for the special
case where the input set contains a tree on every quartet appear in (24; 20; 14; 16; 22).
In a recent paper (21), Snir and Rao presented Quartets MaxCut (QMC), a heuristic for
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MQC that can be applied to arbitrary sets of quartet trees (i.e., ones that may not con-
tain a tree on every quartet). Snir and Rao showed that by encoding the source trees as
quartet trees, QMC could be used as a generic supertree method. They then constructed
supertrees using this QMC-based supertree method for a number of biological supertree
profiles. Since the true supertree was not known, they could not evaluate the topological
accuracy of the supertrees they constructed; instead, they compared the QMC supertree
to the source trees to produce two different average similarity measures for each su-
pertree. A comparison between QMC-based supertrees and MRP supertrees showed
that QMC had higher average similarity to the source trees under one criterion, and
lower average similarity with respect to another. QMC’s failure to outperform MRP as
a supertree method with respect to the average similarity to the source trees should not
be considered a serious limitation for two reasons. First, average similarity to the source
trees is not the same as accuracy with respect to the true tree (a phenomenon we investi-
gate directly in this paper). Second, QMC depends critically upon the specific technique
used to encode each source tree as a set of quartet trees. In other words, QMC might be
producing highly accurate trees even though the average similarity is lower than MRP,
and it might produce more accurate trees if other encodings of the source trees were
used.

In this paper, we report results from a study in which we employ several encodings
of the source trees by quartet trees and apply QMC to the resultant sets of quartet trees.
We compare the accuracy of QMC using different encodings to MRP and five other su-
pertree methods: Robinson-Foulds Supertrees (1), Q-Imputation (13), MinFlip (8; 7; 9),
SFIT (10), and PhySIC (19). We find that the topological accuracy of QMC supertrees
computed on different encodings varies substantially. Two QMC-based supertree meth-
ods, QMC(All) and QMC(Exp+TSQ) (differing only in how the source trees are en-
coded), perform similarly and outperform all the other supertree methods under many
realistic model conditions, and have comparable accuracy under most others. However,
MRP outperforms all QMC methods on the largest (1000-taxon) datasets. Finally, we
find that using topological similarity to source trees as a proxy for topological accuracy
with respect to the true tree is of limited use, and can be misleading. Thus, evaluat-
ing supertree methods on biological datasets is problematic, and supertree methods that
seek to minimize topological distance to source trees may not have the best accuracy.

2 Basics

Supertree Datasets. Because of the taxon sampling strategies used by biologists, source
trees tend to be focused either on intensively sampled, smaller subgroups, like big cats,
or on larger, sparsely sampled groups, like all vertebrates. The first type is called a clade
source tree, and the second type is called a scaffold. Supertree profiles include scaffolds
to ensure sufficient overlap among the clade trees.

The input to the supertree problem is a set of source trees, {t1, t2, . . . , tk}, on sub-
sets of a set S of taxa. Source trees are often estimated using biomolecular sequence
datasets. Each source tree is estimated on its aligned sequence dataset using computa-
tionally intensive methods–e.g., maximum parsimony or maximum likelihood heuris-
tics like RAxML (23). A supertree method combines the source trees into a tree on the
full dataset.
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Matrix Representation with Parsimony. Matrix representation with parsimony (MRP)
(2; 18) is currently the most widely used supertree method. It encodes source trees
as a matrix of partial binary characters: all entries in the matrix are 0, 1, or ?, with
each column in the matrix defined by a single edge in a source tree. The matrix is then
analyzed using a heuristic for the NP-hard maximum parsimony problem (12).

Quartets MaxCut (QMC). QMC is a quartet amalgamation method, operating in poly-
nomial time and providing no guarantees with respect to its optimization problem,
MQC. The source trees are encoded by sets of quartet trees, and QMC is applied to
the union of these sets.

Quartet Encodings of Source Trees. Here, we explore several techniques for represent-
ing source trees by sets of quartet trees. Two of these techniques use random sampling
strategies (21), which are based upon computation of the topological distance between
leaves in the source tree. The topological diameter of a quartet tree q with respect to a
source tree t is the maximum of its leaf-to-leaf topological distances within the source
tree and is denoted diamt(q). The quartet encoding strategies used in (21) also include
calculation of the Topologically-Short Quartet (TSQ) trees, defined as follows: For each
edge in a source tree, pick the topologically nearest leaves in each of the subtrees around
the edge. If two or more leaves within a subtree have the same topological distance to
the edge, pick all such leaves. The set of quartet trees formed by picking one such leaf
from each subtree forms the TSQs around that edge. The union of all these is the set of
TSQ trees.

We tested five strategies for encoding a source tree t by a set of quartet trees:

All quartets: include all induced four-taxon trees.
k-short: a generalization of the TSQs: for each edge in a source tree, pick the k topo-

logically nearest leaves in each of the subtrees around that edge. The (approxi-
mately) k4 quartets of leaves are the k-short quartet trees around that edge, and the
set of all such k-short quartet trees (unioning over all the internal edges) forms the
set k-short. In this study, we let k = 5 and k = 25.

Geo+TSQ: include a quartet q with probability d−3 where d = diamt(q), and add the
TSQ trees (this was studied in (21)).

Exp+TSQ: compute the topological distance between every pair of leaves, include a
quartet with probability 1.5−d where d = diamt(q), and add the TSQ trees (this
was also studied in (21)).

3 Performance Study

We performed a study using simulated datasets to evaluate QMC-based supertree meth-
ods in comparison to MRP and other supertree methods. Simulations are used to eval-
uate phylogeny estimation methods, because the true tree is known exactly. For our
simulations, we used the SMIDGen (25) methodology, and used datasets with 100, 500
and 1000 taxa. We used SMIDGen to produce supertree datasets of mixed source trees,
consisting of one scaffold dataset (produced by a random selection of taxa from the
entire dataset) and many clade-based datasets (focused, dense taxon sampling within a
rooted subtree).
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Simulation Study Design: For this study, we used simulated datasets generated for an-
other study (25), and, therefore, describe the methodology only in brief. The simulated
datasets are produced by simulating evolution under a GTR+Gamma+I process, down
pure-birth model trees, deviated from a clock, and containing up to 1000 leaves. We
generated 30 replicates for each 100- and 500-taxon model condition, and 10 repli-
cates for each 1000-taxon model condition. Each model condition is indicated by the
density of the scaffold dataset, which is the percentage of the entire taxon set in the
scaffold dataset, with scaffold densities ranging from 20% to 100%. We used RAxML
(23) to estimate phylogenetic trees. We performed the MP search in the MRP analy-
ses, using a very effective heuristic search technique called the Ratchet (17), and com-
puted a greedy consensus (gMRP) tree for the set of most parsimonious trees found
during this search. We also computed supertrees based upon five ways of encoding
the source trees as sets of quartet trees and then applying QMC, as described above.
Finally, we computed supertrees using several other methods, including Q-imputation
(Q-Imp), Robinson-Foulds Supertrees (RFS), MinFlip, SFIT, and PhySIC, all in their
default settings. For RFS, MinFlip, and PhySIC, methods that require rooted trees, we
used mid-point rooting to root the source trees, a method commonly used to root un-
rooted trees and particularly appropriate because our source trees were not strongly
deviated from ultrametricity. We computed three types of topological error rates for
each estimated supertree when compared with the model tree: false positive rates, false
negative rates, and Robinson-Foulds rates. We also computed the total topological dis-
tance of each supertree to the estimated source trees, using FN (false negative), FP
(false positive) and RF (bipartition distance) errors modified so that we could handle
trees on different taxon datasets. We restricted the supertree to the subset of taxa for the
source tree, and then compute the topological distances between the two trees. We note
that the bipartition distance, also known as the “Robinson-Foulds” (RF) distance, is the
standard metric used in most studies. In our study, we show both FN and FP as well,
thus providing a more nuanced description of error. Because QMC failed to return trees
on some inputs, we restricted our results to datasets for which all the reported methods
returned trees. This reduced the number of replicates for some model conditions. We
also recorded the running time of each method on each dataset. Because the analyses
were run under Condor (a distributed software environment (26)), running times (for
the larger datasets, especially) are inexact and are larger than if they had been run on a
dedicated processor. Running times are, therefore, an approximation of the time needed
to perform these analyses.

4 Results

4.1 Exploring QMC under Different Source Tree Encodings

We compared the performance of the QMC variants and gMRP (Fig. 1). For a given
model condition, we include only those methods that successfully completed on at least
one third of the replicates, and display results for only those replicates on which every
selected method successfully completed. We report performance with respect to FN
rates, but the performance with respect to FP and RF rates is almost identical.
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Fig. 1. Average topological error (False Negative (FN) rates) with standard error regions on
mixed source-tree datasets. We use shaded regions in place of standard error bars as it better
demonstrates overlap; however, the shading between data points for a method is not intended as
an interpolation of error for scaffold factors not tested. Results are reported for the QMC variants
and gMRP, as a function of the scaffold factor and by number of taxa. Points are graphed for a
method if it had at least six datasets that completed in common with all other methods.

On the mixed 100-taxon datasets, QMC(All) and QMC(Exp+TSQ) were essentially
tied as the best methods, followed by gMRP. Furthermore, QMC(All) and QMC(Exp+
TSQ) had the greatest advantage over gMRP for the sparse scaffold cases. The other
QMC variants had worse accuracy. On a large number of the 500- and 1000-taxon
datasets, many of the QMC variants failed to complete, indicating that computational
requirements can limit QMC’s utility. On the 500-taxon datasets for which QMC(Exp+
TSQ) could be run, it produced topologically more accurate trees than gMRP, giving the
biggest advantage on the sparse scaffold datasets. For the 1000-taxon datasets, gMRP
outperformed all the QMC variants that completed. However, most QMC variants failed
to return trees on most inputs.

4.2 Comparing QMC(Exp+TSQ) to Other Supertree Methods

We compared QMC(Exp+TSQ) to six other supertree methods: gMRP, Q-Imp, SFIT,
MinFlip, PhySIC, and Robinson-Foulds Supertrees (RFS).

All of these methods could be run on the 100-taxon datasets, but some failed to run
on the larger datasets. For this reason, we obtained results for all seven methods on the
100-taxon datasets, but only five methods on the 500-taxon datasets (where SFIT and
Q-Imp failed to run, due to computational limitations), and only four methods on the
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Fig. 2. We report False Negative (FN) rates (means with standard error regions) for QMC
(Exp+TSQ), gMRP, SFIT, MinFlip, RFS, and Q-Imp, as a function of the scaffold factor, for
100-, 500- and 1000-taxon model conditions

1000-taxon datasets (where we did not try to run PhySIC, since it was computationally
intensive for the 500-taxon datasets). In addition, QMC(Exp+TSQ) failed to run on
some datasets; we therefore only report results for those datasets on which all reported
methods were able to run. PhySIC gives by far the worst results, producing completely
unresolved trees except when the scaffold density is 100%, at which point it produces
results that are still worse than the other methods. Because of it is not competitive with
other methods, we omit PhySIC from our graphs.

The experiments show that three methods–QMC(Exp+TSQ), Q-Imp, and gMRP–
generally outperform the remaining methods with respect to topological accuracy (Fig.
2). As with Fig. 1, in Fig. 2 we only include results for replicates for which all dis-
played methods were able to complete. Since Fig. 2 includes a different collection of
methods, the results for a different collection of replicates are used. On the 100-taxon
datasets, QMC(Exp+TSQ) and Q-Imp both gave higher accuracy than gMRP and all
other methods (except on the 100% scaffold datasets, where they were equal to gMRP).
On the 500-taxon datasets with sparse scaffolds, QMC(Exp+TSQ) performed better
than all methods, with only a slight advantage over gMRP. On the 500-taxon datasets
with dense (75% and 100%) scaffolds, QMC(Exp+TSQ) and gMRP were the most ac-
curate, and had essentially the same accuracy. On the 1000-taxon datasets, gMRP had
an advantage over QMC(Exp+TSQ) and other methods, and QMC(Exp+TSQ) failed
to run on the dense scaffold datasets (QMC fails to run on profiles with large source
trees, due to computational reasons). The remaining methods–PhySIC, SFIT, MinFlip,
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and RFS–are generally less accurate than QMC(Exp+TSQ), Q-Imp, and gMRP, and
some (i.e., PhySIC and SFIT) cannot be run on large datasets. Interestingly, RFS out-
performs QMC(Exp+TSQ) on the 1000 taxon datasets, where it matches the accuracy
on the sparse scaffold datasets and (unlike QMC(Exp+TSQ)) is able to run on the dense
scaffold datasets.

4.3 Evaluating Supertree Methods on Biological Datasets

For biological datasets, the true tree is not available, so evaluations of accuracy have
tended to use average or total topological distance to the source trees (for example, (1;
21)). To test whether this is a good proxy for the quality of the supertree, we computed
three distances for each supertree T to the profile T of source trees:

– SumFN is defined as follows: SumFN(T, T ) =
∑

t∈T (FN(T,t))
M , where

FN(T, t) is the number of edges in t that do not appear in T , and
M =

∑
t∈T mt, where mt is the number of internal edges in t.

– SumFP and SumRF are defined similarly, with FP(T, t) and RF(T, t) replacing
FN(T, t), respectively. Here, FP denotes the false positive distance and RF denotes
the Robinson-Foulds (“bipartition”) distance. Each distance is normalized to pro-
duce a value between 0 and 1. The false positive distance between a supertree T and
a source tree t in the profile T is the number of edges in T that do not appear in t,
and the Robinson-Foulds distance is the total number of missing and false positive
edges.

Note that if the supertree and all source trees are binary, then for each source tree t,
RF(T, t) = 2FN(T, t) = 2FP(T, t), and after normalization all three distances are
equal.

We examined how closely measurements of this sort are correlated to actual topo-
logical accuracy, that is, how closely SumFN, SumFP, or SumRF are correlated to the
FN, FP or RF distance to the true tree. We found the correlations to be largely indepen-
dent of the choice of topological distance to source trees (SumFN, SumFP, or SumRF)
or topological error (FN, FP or RF). The reason for this was that the true supertree
was fully resolved or nearly so, and all the computed supertrees were either fully re-
solved or nearly so. We therefore present results focusing on the correlation between
SumFN (topological distance to the source trees) and FN (topological distance to the
true tree).

To assess whether SumFN, SumFP or SumRF is a good optimality criterion, we
calculated Spearman rank-correlations for each of the 100-taxon simulated datasets for
the six supertree methods that consistently perform reasonably well (MinFlip, gMRP,
Q-Imp, QMC(All), QMC(Exp+TSQ), and RFS). Correlations were calculated for each
of these measures of distance to source trees and each of FN, FP and RF (calculated
by comparing the supertree estimated by each of the methods with the true tree). The
statistics were calculated this way to test whether the rank-order of the topological
distances to source trees correlated strongly with the true rank-order of the supertrees,
in terms of topological accuracy with respect to the true tree.
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Table 1. Results of Spearman rank-order correlations of SumFN, SumFP, and SumRF with the
true FN, FP, and RF measures of supertrees estimated using six supertree methods

FN FP RF
scaffold optimality
factor criterion mean range mean range mean range

SumFN 0.401 -0.890, 0.939 0.376 -0.890, 0.926 0.391 -0.890, 0.926
25 SumFP 0.421 -0.890, 0.939 0.421 -0.890, 0.926 0.426 -0.890, 0.926

SumFN 0.406 -0.890, 0.939 0.395 -0.890, 0.926 0.406 -0.890, 0.926
SumFN 0.544 -0.203, 1.000 0.536 -0.348, 0.971 0.541 -0.203, 0.971

50 SumFP 0.546 -0.143, 1.000 0.539 -0.257, 0.971 0.543 -0.143, 0.971
SumRF 0.546 -0.143, 1.000 0.539 -0.257, 0.971 0.543 -0.143, 0.971
SumFN 0.593 -1.000, 0.986 0.589 -1.000, 0.986 0.591 -1.000, 0.986

75 SumFP 0.593 -1.000, 0.986 0.589 -1.000, 0.986 0.591 -1.000, 0.986
SumRF 0.593 -1.000, 0.986 0.589 -1.000, 0.986 0.591 -1.000, 0.986
SumFN 0.447 -0.789, 1.000 0.447 -0.789, 1.000 0.447 -0.789, 1.000

100 SumFP 0.447 -0.789, 1.000 0.447 -0.789, 1.000 0.447 -0.789, 1.000
SumRF 0.447 -0.789, 1.000 0.447 -0.789, 1.000 0.447 -0.789, 1.000

The results (Table 1) show clearly that attempting to optimize the total distance to the
source trees is of limited use in producing accurate supertrees. None of the optimality
criteria averaged better than 60% correlation with measures of true accuracy for a given
scaffold factor, and for some datasets, the criteria were negatively correlated with the
true quality of the supertrees that were estimated.

Thus, the correlation between topological distance to source trees and topological
error (i.e., distance to the true tree) tends to be only weakly positive, so that while, in
general, supertrees with smaller topological distance to the source trees are more ac-
curate, there can be more accurate supertrees with higher topological distance to the
source trees. These results suggest that the highest accuracy supertrees may not opti-
mize SumFN (or any other topological distance to source trees).

This observation has two consequences for supertree analyses. First, directly trying
to optimize the topological distance is not likely to produce the most accurate trees,
since better trees are being produced through other means. Secondly, because the true
tree is not known for biological supertree datasets, it is difficult to evaluate supertree
methods using biological datasets.

These conclusions are clearly based upon the conditions of this experiment, in which
the source trees were reasonably, but not extremely, accurate. However, when source
trees have no error at all, the true tree is guaranteed to minimize the distance to the
source trees. Under this condition, MRP will also be guaranteed to return the true tree
as one of the solutions. Thus, for very highly accurate source trees, both MRP and
minimizing the total topological distance may be very good optimality criteria; the issue
is how well supertree methods perform under more realistic conditions, where source
trees have error.
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4.4 Scalability

We now discuss running time issues on simulated data. Fig. 3 gives the results for the
QMC variants and gMRP, and Fig. 4 gives results for QMC(Exp+TSQ), gMRP, and the
other (not QMC-based) supertree methods.

Supertree methods on the simulated datasets showed some differences in running
times. First, gMRP was faster than the accurate QMC variants for most of the model
conditions, and the degree of improvement ranged from very small (a few seconds) to
several hours. In general, we saw that profiles with large source trees were particularly
difficult for QMC(Exp+TSQ) and QMC(All), and that for such datasets, gMRP had a
running time advantage.

We note that the running times of QMC(Geo+TSQ), QMC(Exp+TSQ), and QMC(All)
are directly impacted by the size of the source trees, since each four-tuple of taxa must
be examined to produce the quartet trees. Thus, for large source trees, we expect these
three methods to suffer computational limitations.

5 Conclusions

This study makes several important contributions. First, we show that while MRP is
still the most accurate supertree method for the largest datasets, both QMC(Exp+TSQ)
and Q-Imp produce more accurate supertrees than MRP and other supertree methods
for the smaller (100- and 500-taxon) datasets. Therefore, an effort should be made to
produce scalable and robust implementations of the quartet methods, QMC(Exp+TSQ)
and Q-Imp. Each of these methods produces, at some point, a quartet encoding of the
source trees. Scalable implementations of these methods will require not using all the
quartets in these encodings, as such approaches simply will fail on large datasets.

The second important contribution of this study is that the total topological distance
to the source trees only provides limited information about topological accuracy, and
that reliable comparisons can only be made between supertrees that have very different
total topological distances. Consequently, previous studies that have explored perfor-
mance of supertree methods using total topological distance to the source trees need to
be revisited.
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Abstract. DNA-based species assignment and delimitation are two im-
portant problems in systematic biology. In a recent work of O’Meara,
species delimitation is investigated through coupling it with species tree
inference in the framework of gene tree and species tree reconciliation. We
present a polynomial time algorithm for splitting individuals into species
to minimize the deep coalescence cost of the gene tree and species tree
reconciliation, a species assignment problem arises from species delimi-
tation via gene tree and species tree reconciliation. How to incorporate
this proposed algorithm into the heuristic search strategy of O’Meara for
species delimitation is also discussed. The proposed algorithm is imple-
mented in C++.

Keywords: DNA barcoding, species delimitation, gene tree and species
tree reconciliation, deep coalescence, dene duplication and loss.

1 Introduction

DNA sequencing of living organisms holds great promise in species identification
and delimitation, two important but difficult tasks in taxonomy. Based on the
premise that genetic difference between species exceeds that within species, DNA
information is currently being used for species assignment (“DNA barcoding”,
[12,13]). To identify which species an individual belongs in, one retrieves a short
DNA sequence - the barcode - from some gene region from the individual and
compares it with reference barcoding sequences for known species under the
current Linnean system. The species membership of the individual is determined
based on the degree of sequence similarity using pairwise similarity [29] or a
statistical method [12,21,22].

DNA information also provides a way for discovering new species (equivalent
to species delimitation) from poorly studied individuals [5,27,16,30]. However,
establishing the association of DNA sequence information with a species (which
is a group of individuals) is extremely challenging due to intraspecies DNA
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variation [20,31], the possible discord of gene and species histories [8,9,10,25],
and inconsistency of species concepts [1,3,6]. For DNA species delimitation, one
needs to adopt a species concept and choose a criterion to apply this concept to
DNA sequence information.

A set of methods have been developed for deciding whether new individuals
belong in existing species [12,21,22,29]. These methods typically use DNA in-
formation at a single locus or multiple loci where the assignment of individuals
to species is only partially known, but the species history is of little interest.
In this paper, inspired by a work [23] of O’Meara, we suggest a new combina-
torial method for DNA barcoding via gene tree and species tree reconciliation.
One main cause for the gene tree and species tree discord is lack of coalescence
of intraspecific sequences between speciation event. Hence, the total number of
“extra” gene lineages that fails to coalesce on a species tree is proposed to mea-
sure gene tree and species tree difference [19]. If gene tree is considered as a
neutral coalescent tree, the most probable gene tree matches the species tree
except for extreme cases involving short internal branches [7,14]. Hence, we pro-
pose to assign species to individuals by minimizing deep coalescence events in
the reconciliation of the gene tree, estimated from sampled sequences, and the
species tree. Such a method takes advantage of the species history and is also
efficient.

Gene trees are often used to discover new species from poorly studied organ-
isms [3,14,23,26,27]. However, unlike other works, O’Meara proposed to infer
species boundaries by coupling species delimitation with species tree inference
[23]. In the approach, gene trees are estimated from sampled sequences and then
the considered individuals are split into putative species by minimizing the struc-
ture cost of the gene and species tree reconciliation. As joint species delimitation
and species tree inference is more general than species tree inference, the com-
plexity study in [18] and [33] suggests that this problem is unlikely solvable in
polynomial time. In this work, we shall also discuss how to improve the heuristic
strategy presented in [23] using our species assignment algorithm.

2 Species Assignment Problems

Assume that there are a set of species whose phylogenetic tree is known and a
set of individuals whose taxonomic classification is unknown. To identify which
species each individual belongs in, one obtains a gene sequence from these indi-
viduals as well as from some other individuals that belong to the species under
consideration and builds a gene tree over these sampled sequences. The gene tree
is partially leaf labeled in the sense that a leaf representing a sequence sampled
from an individual whose species is known is labeled by the species whereas a
leaf representing a sequence from an individual whose species needs to be identi-
fied is unlabeled. Applying the parsimony principle, we split the individuals into
species to minimize the cost of the reconciliation of the resulting fully leaf la-
beled gene tree and the species tree. Formally, the species identification problem
is modeled as the following algorithmic problem.
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gene loss

duplication
Failure to coalesce

Fig. 1. Illustration of gene tree and species tree reconciliation

Species Assignment Problem
Input: A species tree S for a set of species and a partially leaf-labeled gene tree
G, and a reconciliation cost function c(, ).
Solution: A labeling L of unknown leaves of G that minimizes the reconciliation
cost c(GL, S).

The discord of gene tree and the containing species tree is caused by lin-
eage sorting, gene duplication and loss, or horizontal gene transfer shown in
Figure 1. The importance of these causes depends on the considered genes and
species. The gene duplication/loss [10,24] and deep coalescence costs [19] (to be
defined later) are proposed to study the gene tree and species tree relationship.
In species identification content, the deep coalescence cost is probably more suit-
able as multiple genes’ persistence without coalescence before the divergence of
the containing species is a key mutational process to be considered. However,
the duplication-plus-loss cost is closely related to the deep coalescence cost [33].
Therefore, we shall study the species assignment problem for each of them.

When multilocus sequence data are used for species assignment, the multi-
locus species assignment problem arises, in which there are a set of partially
leaf-labeled gene trees and a species tree S and the goal is to find a labeling that
minimizes the total reconciliation cost.

In the study of environmental samples of fungi or other group of unknown
individuals for which there are no taxonomic hypotheses [27], the species tree
assumed in the Species Assignment problem simply does not exist and so species
delimitation is formulated as the joint species delimitation and species tree in-
ference problem in [23], which we call:

Species Assignment With Unknown Species
Input: A set of partially leaf-labeled gene tree G(1), G(2), · · · , G(t), and a recon-
ciliation cost function c(, ).
Solution: A species tree S and a labeling L minimizing

∑
i c(G(i)

L , S).

3 Basic Concepts and Notation

Both gene tree and species tree are rooted fully binary trees. In a species tree, the
leaves represent extant species and are labeled with the corresponding species.
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In a gene tree, each leaf may or may not be labeled; if a leaf is labeled, its
label represents the species of the individual from which the corresponding gene
sequence is sampled; if a leaf is unlabeled, the corresponding gene sequence is
sampled from an individual whose species is to be identified. Let T be a gene or
species tree,

• Leaf(T ) denotes the set of leaves of T ;
• L(T ) denotes the set of leaf labels. If no leaf of T is labeled, we simply write

L(T ) = φ;
• |T | denotes the number of the nodes of T ;
• ‖ T ‖ denotes the number of the leaves of T ;
• the notation t ∈ T denotes that t is a node of T ;
• the notation A ⊆ L(T ) denotes that A is a subset of the label set L(T ); and
• finally, ta and tb denote the two children of an internal node t ∈ T .

For a node t ∈ T , any node in the unique path from the root of T to t is called an
ancestor of t; and any node below t is called a descendant of t. For any two nodes
t′, t′′ ∈ T , their least common ancestor, denoted by lca(t′, t′′), is the ancestor of
t′ and t′′ whose children are not an ancestor of either t′ or t′′.

For a node x ∈ T , we use Tx to denote the subtree consisting of x and its
descendants.

For a subset A ⊆ Leaf(T ), the restriction of T on A is the smallest subtree
of T containing A as its leaf set, denoted by T |A. In general, T |A may not be
a full binary tree as it may contain non-root degree-2 nodes and its root is the
least common ancestor of the nodes of A. Let L ⊆ L(T ) be a leaf label subset.
For simplicity, we use T |L to denote the restriction of T on the leaves having a
label in L.

4 Measuring Gene Tree and Species Tree Reconciliation

Let G be a fully leaf labeled gene tree and S a species tree such that L(G) ⊆ L(S).
To reconcile G and S, each node g ∈ G is mapped to a unique node M(g) ∈ S
as

M(g) =
{

the corresponding leaf with the same label, if g ∈ Leaf(G),
lca (M(ga), M(gb)) , if g �∈ Leaf(G).

The node M(g) with which g is associated is called the image of g (with respect
to M). The mapping M was first considered in [10] and then formulated in [24].
We call M the reconciliation (map) of G within S.

4.1 Gene Duplication and Loss

Let G be a gene tree and g ∈ G. For any descendant g′ of g, M(g′) is equal
to either M(g) or a descendant of M(g) in the reconciliation M of G within
a species tree S such that L(G) ⊆ L(S). If M(ga) = M(g) or M(gb) = M(g),
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then we say that a duplication occurs at M(g) (or more exactly in the lineage
entering M(g)) in S and also say that it is associated with g. The total number of
duplications is defined as the duplication cost of the reconciliation of G within S,
which is denoted by cdup(G, S). Note that the duplication cost is an asymmetric
measure for tree comparison.

For any two nodes s′ and s′′ such that s′′ is an ancestor of s′, we use P (s′, s′′)
to denote the unique path from s′ to s′′ and define

d(s′, s′′) = (No. of nodes s (�= s′, s′′) on the path P (s′, s′′)) . (1)

Then, the number of losses lg associated to g is defined as

lg =

⎧⎨⎩
0, if M(g) = M(ga) = M(gb),
d (M(ga), M(g)) + 1, if M(ga) ⊂ M(g) = M(gb),∑

h=ga,gb
d (M(h), M(g)) , if M(ga), M(gb) ⊂ M(g).

The gene loss cost of the reconciliation of G within S, denoted by closs(G, S), is
defined as the total number of losses

∑
g∈G lg (see [11,24]).

The gene duplication plus loss cost is equal to the sum of the gene duplication
and gene loss costs, is denoted by cdl(G, S). The gene duplication plus loss cost
is also called the mutation cost in [11].

4.2 Deep Coalescence

Let G be a gene tree and S a species tree such that L(G) ⊆ L(S). In the
reconciliation M of G within S, if a branch e of S is in the k(≥ 2) paths from
M(gi) to M(g′i), where gi ∈ G (1 ≤ i ≤ k) and g′i is a child of gi, then we
say that there are k − 1 ‘extra’ lineages on e failing to coalesce on e. The deep
coalescence cost is defined as the total number of the ‘extra’ lineages on all the
branches of S in the reconciliation M of G within S (see [19]), which is denoted
as cdc(G, S).

The deep coalescence cost is closely related to the gene duplication and loss
costs. It is not hard to see that, in the reconciliation of G within S such that
L(G) ⊂ L(S), G is mapped onto S|L(G). We have the following equation.

Theorem 1. ([33]) Let G be a fully leaf-labeled gene tree and S a species tree
such that L(G) ⊆ L(S). Then, for the reconciliation of G within S,

cdc(G, S) = closs(G, S) − 2cdup(G, S) +
(|G| − | S|L(G) |

)
, (2)

where |T | is the number of the nodes of T for T = G, S|L(G).

5 Solving the Species Assignment Problem in Poly. Time

In this section, we shall present a polynomial-time algorithm for the species as-
signment problem for both the deep coalescence and duplication plus loss costs.
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Here, we use the latter only as a reconciliation cost function as inferred duplica-
tion or loss events have no biological meaning when gene tree and species tree are
reconciled for the purpose of species assignment and delimitation. Additionally,
the algorithm for the duplication plus loss cost could find applications in other
fields where gene tree and species tree are compared.

5.1 Algorithm for the Duplication Plus Loss Cost

Let S be a species tree and G a partially leaf-labeled gene tree such that L(G) ⊆
L(S). We use UL(G) to denote the set of unlabeled leaves of G. Hence, Leaf(G)−
UL(G) is the set of labeled leaves in G, denoted as LF (G).

Let x ∈ G and y ∈ S. Obviously, each labeling L: UL(Gx) → L(S) induces
a reconciliation ML of Gx within Sy if and only if x is mapped to y under
ML. For such a labeling L: UL(Gx) → L(S), we use cdl,L(Gx, Sy) to denote the
duplication-plus-loss cost of the resulting reconciliation of Gx within Sy, and
further define

Cdl(x, y) = min
L:ML(x)=y

cdl,L(Gx, Sy). (3)

If it is impossible to reconcile Gx within Sy with the condition that x is mapped
to y, we simply write Cdl(x, y) = ∞.

If each labeled leaf in Gx has the same label as y, then labeling all unlabeled
leaves in Gx by the label l(y) results in a reconciliation with the gene duplication
cost ‖ Gx ‖ −1 but no gene loss. Hence, for any leaf y ∈ S,

Cdl(x, y) =
{‖ Gx ‖ −1, if any f ∈ LF (Gx) has the label l(y),
∞, otherwise (4)

where LF (Gx) is the set of the labeled leaves of Gx. In particular, if x is an
unlabeled leaf of G and y a leaf of S, we have that Cdl(x, y) = 0.

Let y be an arbitrary internal node of S and x ∈ G. Recall that ta and tb
denote the children of t for t = x, y. In a reconciliation ML of Gx within Sy such
that x is mapped to y, one of the following cases holds:

C1. Both xa and xb are mapped to y;
C2. The node xa is mapped to y, but xb is mapped to a descendant of y;
C3. The node xb is mapped to y, but xa is mapped to a descendant of y;
C4. The node xa is mapped to a descendant of y in Sya , and xb is mapped to a

descendant of y in Syb
;

C5. The node xa is mapped to a descendant of y in Syb
, and xb is mapped to a

descendant of y in Sya .

Assume that ML has the minimum duplication plus loss cost over all the recon-
ciliations of Gx within Sy. If the case C1 holds, one duplication and 0 loss are
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associated with x in ML. Define dg = 1 if a duplication is associated with g ∈ G
and 0 otherwise. Then,

Cdl(x, y) = closs,L(Gx, Sy) + cdup,L(Gx, Sy)

=
∑

g∈Gxa

(lg + dg) +
∑

g∈Gxb

(lg + dg) + (lx + dx)

= Cdl(xa, y) + Cdl(xb, y) + 1.

If the case C2 holds, we may assume that xb is mapped to z, a descendant of y.
Then, a duplication is associated with x and the gene loss lx associated with x
is 1 + d(z, y), where d(, ) is defined by Eqn. (1) in Section 4.1, and so

Cdl(x, y) =
∑

g∈Gxa

(lg + dg) +
∑

g∈Gxb

(lg + dg) + (lx + dx)

= Cdl(xa, y) + Cdl(xb, z) + l(z, y) + 1,

in this case.
If the C3 holds, we similarly have

Cdl(x, y) = Cdl(xa, z) + Cdl(xb, y) + d(z, y) + 2,

where z is the image of xa.
If the case C4 or C5 hold, no duplication occurs at y and we have

Cdl(x, y) = Cdl(xa, z1) + Cdl(xb, z2) + d(z1, y) + d(z2, y),

where z1 and z2 are the images of xa and xb, respectively.
In summary, we obtain that

Cdl (x, y) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cdl(xa, y) + Cdl(xb, y) + 1,
Cdl (xa, y) + miny �=z∈Sy (Cdl(xb, z) + d(z, y)) + 2,
miny �=z∈Sy (Cdl(xa, z) + d(z, y) + 2) + Cdl (xb, y) ,
minz1∈Sya

f(xa, z1) + minz2∈Syb
f(xb, z2),

minz1∈Syb
f(xa, z1) + minz2∈Sya

f(xb, z2),

(5)

where f(x′, z) = Cdl(x′, z) + d(z, y) for an internal node z below y and a child
x′ of x.

Eqn. (4)-(5) lead to a dynamic programming algorithm of time complexity
O(‖ G ‖ · ‖ S ‖2).

It is not hard to see that the above idea can be used to obtain an efficient
algorithm for the species assignment problem with the duplication cost. Actually,
a quadratic-time algorithm for this problem is known for the duplication cost [2]
due to the fact that duplication events can be counted effectively.

5.2 Algorithm for the Deep Coalescence Cost

The dynamic programming algorithm presented in Section 5.1 is based on the
following two facts:
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(a) For a node g ∈ G, labeling the leaves below a child of g is independent of
labeling the leaves below the other child of g.

(b) For the duplication-plus-loss cost, finding the best labeling for the leaves
below g is equivalent to finding the best labeling for the leaves below each
child of g given that the images of the children are fixed.

Unfortunately, the fact (b) does not hold for the deep coalescence cost since
different labelings for the leaves below the two children of g may induce different
number of extra lineages on each branch in the subtree below the image of g.
However, Eqn. (2) can be used to develop a dynamic programming algorithm
which takes polynomial time for the gene tree G and species tree S such that
L(G) = L(S), that is, if a reference sequence is present in the gene tree for each
species under consideration.

Let S be a species tree and G a partially leaf-labeled gene tree such that
L(G) = L(S). Assume that x ∈ G and y ∈ S. Similar to the duplication plus
loss cost case, we define

Cdc(x, y) = min
L:ML(x)=y

cdc,L(Gx, Sy). (6)

Again, we write Cdc(x, y) = ∞ if it is impossible to reconcile Gx within Sy with
the condition that x is mapped to y.

Let rG and rS be the root of G and S respectively. By assumption that
L(G) = L(S), we have that

S|L(G) = S, |G| − | S|L(G) | = 2(‖ G ‖ − ‖ S ‖).

Thus, Eqn. (2) becomes

Cdc(rG, rS) = min
L:ML(rG)=rS

[closs(G, S) − 2cdup(G, S) + 2(‖ G ‖ − ‖ S ‖)] . (7)

Hence, we only need to compute minL:ML(rG)=rS
closs(G, S) − 2cdup(G, S) since

‖ G ‖ − ‖ S ‖ is fixed and independent of labelings.
For each x ∈ G and y ∈ S, we define

F (x, y) = min
L:ML(x)=y

[closs(Gx, Sy) − 2cdup(Gx, Sy)] . (8)

Recall that we use l(y) to denote the label of y ∈ Leaf(S). If y is a leaf of S
and each labeled leaf in Gx has the same label as y, then labeling all unlabeled
leaves in Gx by l(y) results in a reconciliation having 0 gene loss and ‖ Gx ‖ −1
gene duplications. Hence, for any x ∈ G and y ∈ Leaf(S)

F (x, y) =
{

2(1− ‖ Gx ‖), if any f ∈ LF (Gx) has the label l(y),
∞, otherwise. (9)
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Furthermore, we can obtain the following recurrence formula for computing
F (x, y) in the same way as for the duplication plus loss cost:

F (x, y) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (xa, y) + F (xb, y) − 2,
F (xa, y) + miny �=z∈Sy (F (xb, z) + d(z, y) − 1) ,
miny �=z∈Sy (F (xa, z) + d(z, y) − 1) + F (xb, y) ,
minz1∈Sya

V (xa, z1) + minz2∈Syb
V (xb, z2),

minz1∈Syb
V (xa, z1) + minz2∈Sya

V (xb, z2),

(10)

where V (x′, z) = F (x′, z) + d(z, y) for an internal node z below y and a child x′

of x.
Eqn. (7)-(10) give us a desired dynamic programming algorithm that takes

O(‖ G ‖ · ‖ S ‖2) basic operations for a gene tree G and a species trees S such
that L(G) = L(S).

Finally, we remark that it is not clear whether there is a polynomial time al-
gorithm for the species assignment problem for an arbitrary partially leaf labeled
gene tree G and a species tree S such that L(G) ⊆ L(G) or not.

5.3 Implementation Issues of the Dynamic Algorithms

We employ a two-dimensional matrix to implement each of the dynamic pro-
gramming algorithms presented in this section. The detail description of this
part can be found in the journal version of this paper.

5.4 Generalization to the Species Phylogenetic Networks

Genomes evolved vertically and horizontally [4,32]. Acyclic directed network is
sought as a model of the evolution of genomes or species, called a phylogenetic
network, to capture not only speciation events but also recombination and hor-
izontal gene transfer events.

In a phylogenetic network, non-leaf tree nodes correspond to speciation events
whereas reticulation nodes correspond to recombination or horizontal gene trans-
fer events. In this study, we will not distinguish these two events. Note that a
tree is a network not containing reticulation nodes. By analogy to trees, we say
that a node u is an ancestor of a node v or equivalently v is a descendant of u if
u is on a path from the root to v in the network; we also say that u is a common
ancestor of a set of nodes if it is an ancestor of each node in the set.

In a tree, there is the least common ancestor for any set of nodes. However,
there may be two or more common ancestors that do not contain one another
in a network. We say a common ancestor u of a set of nodes is minimal if any
descendant of u is not a common ancestor of the nodes.

Given a gene tree G and a phylogenetic network N such that L(G) ⊆ L(N ),
where L(N ) denotes the set of leave labels in N . We can reconcile G within N
by mapping a leaf of G to the corresponding leave of N and an internal node v
to a minimal common ancestor of the images of the leaves in Gv. It is possible
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that more than one reconciliation exist for G and N . For a reconciliation M
of G within N , its duplication, duplication-plus-loss and deep coalescence costs
can be defined in the same way as for gene tree and species tree except for not
counting reticulation nodes when the gene loss associated with an internal node
is computed [33], which are denoted by cdup(M), cdl(M) and cdc(M) respectively.
Let R(G,N ) denote all of the possible reconciliations of G within N . For each
cost function c(, ), we define the cost of the reconciliation of G within N as

c(G,N ) = min
M∈R(G,N )

c(M). (11)

Since recurrence equations similar to (4)–(5) can be established for the dupli-
cation and duplication-plus-loss costs in the case of gene tree vs species phylo-
genetic network reconciliation, the dynamic programming technique leads to a
polynomial time algorithm for

(a) Computing cdup(G,N ) or cdl(G,N ) for a gene tree G and a species network
N , and

(b) Solving the species assignment problem for a partially leaf-labeled gene tree
and a species network with the duplication or duplication-plus-loss cost.

Thesealgorithmsaredescribed indetail in the journal versionof thiswork.However,
it is not clear whether the same result hold for the deep coalescence cost or not.

6 Species Assignment with Unknown Species Is Hard

The species tree inference problem is, given a set of fully labeled gene trees Gi

(1 ≤ i ≤ n), to find a species tree S minimizing the total cost
∑

1≤i≤n c(Gi, S)
for a reconciliation cost function c(, ). In [18] and [33], the species tree inference
problem is proved to be NP-hard for each of the duplication, duplication-plus-
loss, and deep coalescence costs. As a matter of fact, the species tree inference
problem is a special case of the species assignment with unknown species problem
in which an instance contains just fully leaf-labeled gene trees. By proof by
restriction, the problem of species delimitation with unknown species is NP-hard
for each of the reconciliation costs mentioned above.

7 Conclusion

We have presented an efficient systematic approach for species identification. In
this approach, identifying species membership for a set of individuals is modeled
as the species assignment problem in the framework of gene tree and species tree
reconciliation, in the spirit of the work [23]. The dynamic programming technique
has been applied to different problems in tree comparison [2,17,28]. Using this
powerful technique, we develop a cubic-time algorithm for solving the species
assignment problem for the duplication-plus-loss and deep coalescence costs.
These algorithms have been implemented in C++ and the program package is
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available upon request. Hence, our proposed method takes advantage of species
history and is efficient. As our on-going work, we shall evaluate the performance
of this bioinformatic approach on some benchmark DNA barcoding data.

We remark that the species assignment with unknown species is NP-hard.
This means that there is unlikely a polynomial time algorithm for it. We have
discussed how to incorporate our solution to the species assignment problem into
the heuristic search method proposed in [23] for the problem. Without doubt,
this problem deserves more investigation.

The species assignment problem also arises from tree comparison in ligand
and receptor pairing [2]. Exploring its application in it and other research fields
is definitely worthy further study.

Finally, several algorithmic problems arise from this work. First, we have
presented a polynomial time algorithm for the species assignment problem when
the deep coalescence cost is used if the input gene tree contains at least one
reference sequence for each considered species. This is probably good enough for
the species identification purpose. However, it is of theoretical interest whether
the species assignment problem is polynomial time solvable or not for arbitrary
gene trees and species trees for the deep coalescence cost. Secondly, we have
generalized the polynomial time algorithm for the species assignment problem
from species tree to species network. The study of various cost functions for
gene network and species network reconciliation and algorithms for the species
assignment problem in the network case are open for investigation.
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Abstract. Chromosomal rearrangements which shape the genomes of
cancer cells often result in fusion genes. Several recent studies have pro-
posed using oligo microarrays targeting fusion junctions to detect fusion
genes present in a sample. These approaches design a microarray targeted
to discover known fusion genes by using a probe for each possible fusion
junction. The hybridization of a sample to one of these probes suggests
the presence of a fusion gene. Application of this approach is impractical
to detect de-novo gene fusions due to the tremendous number of possi-
ble fusion junctions. In this paper we develop a novel approach related
to string barcoding which reduces the number of probes necessary for
de-novo gene fusion detection by a factor of 3000. The key idea behind
our approach is that we utilize probes which match multiple fusion genes
where each fusion gene is represented by a unique combination of probes.

Keywords: Fusion Gene, Suffix Tree, Minimum Set Cover, Integer Lin-
ear Programming.

1 Introduction

Chromosomal rearrangements which shape the genomes of cancer cells often
result in fusion genes. These genes arise when a rearrangement occurs within
genomic regions of two distinct genes creating a novel gene which contains a
mixture of the exons of the two genes. The cancer cell transcribes the “fused”
genomic regions of the two genes and then the splicing mechanism of the cell
removes the introns resulting in a mRNA transcript consisting of several exons
from one gene followed by exons from the other gene. Since as long as the rear-
rangement happens within the same introns which are often considerably sized
genomic regions, the same fusion gene will be created. Characteristic fusion genes
are found in a variety of cancers including hematological cancers, sarcomas and
prostate cancer [10], [17].

Discovery of fusion genes in cancer cells is a difficult process traditionally in-
volving karyotyping analysis to identify regions where a fusion gene may occur
and then following up these regions using FISH and RT-PCR[16]. This process
is both time consuming and difficult and can often fail for many cancer sam-
ples. Recently, several groups have proposed using high throughput sequencing
technologies to identify fusion genes[9]. Unfortunately, despite tremendous ad-
vances in sequencing technologies, the cost of sequencing a tumor sample is still
expensive and time consuming.

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 312–324, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Several recent studies have proposed using oligo microarrays targeting fusion
junctions to detect fusion genes present in a sample[16,15,4,8,11,12]. The basic
idea behind these studies is that they attempt to identify a presence of a junction
between two exons which are originally in different genes. Extracted mRNA from
a cancer sample is hybridized to an array which contains probes spanning the
boundaries of each possible pair of fused exons. Most of these studies focus on
a small set of candidate fusions[15,4,8,11,12]. In their study, Skotheim et al[16],
generate a microarray which can identify all currently known fusion genes (371 at
the time of their publication) using 59,381 probes spanning the junctions. Each
potential fusion gene corresponds to one of these probes. Unfortunately, direct
application of this technique to discover new fusion genes is impractical because
it requires too many probes. A direct application of this approach to cover all
possible fusion genes requires approximately 25 billion probes, each covering a
specific pair of fused exons.

We want to design a smaller set of probes to identify all these possible junc-
tions of fusion exons. The fusion junction detection problem is very challenging
in the following aspects:

– The probes need to detect all possible fusion junctions, which is a very large
number. Given n exons, the number of possible fusion junctions is O(n2).
This number is very large if the number of exons n > 100, 000. Even just
iterating through the 25 billion possible fusion junctions is not feasible.

– The probes can only detect the potential fusion junctions but due to possible
contamination of the sample, must not match the normal genes, including
normal junctions between exons of the same gene. This is because if the
probe also detects the normal gene, the prediction of the probe will always
hybridize in the experiments and thus won’t provide any useful information.

– The probes must detect each fusion junctions uniquely.

The fusion junction detection problem is similar to the well-known String Barcod-
ing problem, introduced by Rash and Gusfield [13]. In their problem settings, they
have a large amount of genomic sequences and they want to identify certain uniden-
tified sequences using aminimumset of probes.Given a set of probes andanuniden-
tified genomic sequence, a probe reports the presence of the substring if it matches
exactly the substringof the sequenceandreports absence ifnot. Ifwe consider“pres-
ence” and “absence” as bits 1, 0, respectively, the unidentified sequence can be de-
tectedby a binary string, or barcode, as outputs fromthe set of probes. Thebarcode
for each unidentified sequence needs to be unique such that each sequence can be
detected uniquely, namely for each pair of genomic sequences si, sj , there exists at
least one probe which is a substring of either si or sj but not of both.

Many algorithms have been proposed for this problem. Rash and Gusfield [13]
proposed an integer programming algorithm to try to minimize the number of
probes. They also use suffix tree to conduct efficient probe construction. Borne-
man et al. [1] used Lagrangian relaxation and simulated annealing to achieve
similar results. DasGupta et al. [6] described a greedy algorithm which has high
scalability to the whole-genome sequence. Their algorithm selects the probe in
each iteration which distinguishes the largest number of not yet distinguished
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pairs of genomic sequences. Lancia and Rizzi [7] showed the string barcoding
problem is NP-complete for even binary alphabets and the problem is as hard
to approximate as the Set Cover problem.

There are three key differences between the string barcoding problem and our
fusion gene detection problem: (1) The transcriptome (the set of possible mRNA
sequences) is relatively small and with the requirement of probes of a minimum
length due to technological constraints, most probes will match the transcriptome
uniquely. (2) All probes are potentially valid in the string barcoding problem,
while in the fusion gene detection problem, probes matching normal junctions or
sequences within exons can not be used. (3) Probes with gap or mismatch posi-
tions are allowed. This leads to much more flexibility for our problem.

In this paper we present a novel approach to this problem which requires
significantly fewer probes to cover all possible fusion genes. Our approach reduces
the number of required probes to discover all putative fusion genes in the genome
to only 9 million probes, a reduction by a factor close to 3,000. The key idea
behind our approach is that we make use of “unbalanced” probes which unevenly
span the junction of two exons, uniquely matching the exon on one side of the
junction and extending only a few bases onto the exon on the other side.

2 Methods

2.1 Problem Statement

Assume gene i contains 5 exons (ei
1, e

i
2, e

i
3, e

i
4, e

i
5). For illustration purpose, here

we assume each gene contains only 5 exons, each typically is of length less than a
few hundred bases. There are 4 junctions between adjacent exons (ei

1|ei
2, e

i
2|ei

3, e
i
3|

ei
4, e

i
4|ei

5). We call these junctions normal junctions. Here we exclude the proba-
bility of alternative splicing which can be easily addressed by adding additional
normal junctions. Given any pair of genes i and j with exons (ei

1, e
i
2, e

i
3, e

i
4, e

i
5),

(ej
1, e

j
2, e

j
3, e

j
4, e

j
5), where ei

k denotes the kth exon of gene i, one exon of a gene
may be fused, or concatenated with an exon of the other gene, for example, ei

2
is concatenated with ej

3, we call the resulting gene (ei
1, e

i
2, e

j
3, e

j
4, e

j
5) fusion gene,

call the junction “ei
2|ej

3” fusion junction, call “ei
2” the left exon of the fusion

junction (left exon for simplicity), call “ej
3” the right exon of the fusion junction

(right exon). The same two exons can be fused in two different ways to form two
different fusion junctions, namely “ei

k|ej
l ” and “ej

l |ei
k”. Any exon of a gene can

be fused to any exon of another gene, with the exception that the first exon of
a gene can not be fused as the right exon and the last exon of a gene can not
be fused as the left exon. A length h probe is a string of length h. We say a
probe identifies a junction if the probe spans the junction and the left half of
the probe (we call it left probe) matches exactly the suffix of the left exon, the
right half of the probe (we call it right probe) matches exactly the prefix of the
right exon. A probe identifies a normal string if the probe matches the string
exactly. The left probe and the right probe don’t need to be of the same length,
but the sum of their length needs to be h. Given all this notation, the fusion
gene probe selection problem can be formally stated as following:
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Given f genes, each having various number of exons, a solution to the fusion
gene probe selection problem is a set of probes which may contain gaps such that
each fusion junction can be identified by the set of probes uniquely, under the
constraint that all the non-junction regions as well as normal junctions of the genes
(we call these regions normal regions) will not match any probe sequences. We
define an optimal solution as the solution using the smallest number of probes.

We note that in practice the constraint of a minimum length h has a large effect
on the problem. For microarrays probes to perform effectively, often h has to be in
the range of 30−40. Such a long probe will most likely be unique in the transcrip-
tome making it difficult to construct probes which match in multiple locations.

2.2 Naive Algorithm

Assuming there are totally n exons, the number of fusion junctions is O(n2) since
any exon of a gene can be fused with any exon of another gene. A naive way of de-
signing probes is to design one probe to uniquely identify one fusion junction for
each fusion junction. The probe simply spans the fusion junction and matches both
the left and right exons. This algorithm requires O(n2) probes. We shown an exam-
ple in Figure 1 where we have two genes (ACTCA|GTCAG|AGTAG|AAACT )
and (GCTCG|CGTGA|TAGCA|CCTAT ). For illustration purpose, each gene
contains only 4 exons, each of length 5. There are 8 possible fusion junctions as
shown in Figure 1 (remember that the first exon of a gene can not be the right
exon and the last exon of a gene can not be the left exon). Assuming the probe
length is 6, according to the naive algorithm, we design one probe for each fusion
junction and these probes are shown in Figure 1 as the “Naive Probe Selection”
column. As we can see, in this example, these probes identify one fusion junction
uniquely and they don’t match the normal regions of the genes.

Fusion Junction Set Naive Probe Selection Unbalanced Probe Selection (Greedy)
ACTCA|CGTGA TCA|CGT TCA|C − −;− − A|CGT
ACTCA|TAGCA TCA|TAG TCA|T − −;−CA|TAG
ACTCA|CCTAT TCA|CCT TCA|C − −; TCA|CCT
GTCAG|CGTGA CAG|CGT CAG|C − −;−AG|CGT
GTCAG|TAGCA CAG|TAG CAG|T − −;− − G|TAG
GTCAG|CCTAT CAG|CCT CAG|C − −;− − G|CCT
AGTAG|CGTGA TAG|CGT TAG|C − −;−AG|CGT
AGTAG|TAGCA TAG|TAG TAG|T − −;− − G|TAG
AGTAG|CCTAT TAG|CCT TAG|C − −;− − G|CCT
GCTCG|GTCAG TCG|GTC TCG|G − −;− − G|GTC
GCTCG|AGTAG TCG|AGT TCG|A − −;−CG|AGT
GCTCG|AAACT TCG|AAA TCG|A − −;−CG|AAA
CGTGA|GTCAG TGA|GTC TGA|G − −;−GA|GTC
CGTGA|AGTAG TGA|AGT TGA|A − −;− − A|AGT
CGTGA|AAACT TGA|AAA TGA|A − −;− − A|AAA
TAGCA|GTCAG GCA|GTC GCA|G − −; GCA|GTC
TAGCA|AGTAG GCA|AGT GCA|A − −;− − A|AGT
TAGCA|AAACT GCA|AAA GCA|A − −;− − A|AAA

Fig. 1. An example of probe selection for two genes
(ACTCA|GTCAG|AGTAG|AAACT ) and (GCTCG|CGTGA|TAGCA|CCTAT ),
where “−” denotes a gap
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2.3 Unbalanced Probe Selection Algorithm

The naive algorithm is very simple, however, the number of probes by the naive
algorithm is O(n2) which is obviously very large for large n greater than 100,000.
Therefore the naive algorithm is too expensive for practical use.

However, since each probe must be length h, usually larger than 30 − 40 for
current microarray technologies, even most sequences of length h/2 will occur
only at most once within the set of exons. This greatly constrains our ability
to select probes that match multiple fusion junctions. Our key idea is to take
advantage of “unbalanced” junction probes which span a junction in a way that
the majority of the probe is on one exon and a small portion of the probe is on
the second exon. The probe will uniquely match one of the exons, but will match
many possible fusion genes that include the first exon and any exons that match
the small portion of the probe. We note that if we use balanced probes with h/2
length sequences on each side of the junction, it is likely that both the right and
left probes match the sequence uniquely and these probes are equivalent to the
probes used in the naive solution.

For simplicity, we first consider the case where the probes are contiguous,
meaning that we disallow gaps or mismatch positions within the probes. Thus
the left probe must exactly match the suffix of the left exon and the right probe
must exactly match the prefix of the right exon.

In our unbalanced solution, each true fusion will match two probes. The first
probe will match the suffix of the left exon uniquely and matches a set of possible
right exons. The second probe will match the prefix of the right exon uniquely
and a set of possible left exons. Observing the combination of these two probes
uniquely defines a fusion junction.

For example, consider the probe TCAC for the example above. The prefix of
the probe, TCA, matches the exon ACTCA uniquely. The suffix of the probe
C matches both the exons CGTGA and CCTAT . The probe TCAG would not
be valid because it matches the normal junction between exons ACTCA and
GTCAG. Similarly, consider the probe ACGT , where the suffix CGT matches
the prefix of exon CGTGA and the prefix A matches both exons ACTCA
and CGTGA. A pair of unbalanced probes uniquely identifies a single fusion
junction. If we observe hybridization at both probes TCAC and ACGT , then
that uniquely identifies the presence of the fusion between exons ACTCA and
CGTGA. We refer to the different type of probes as forward and backward
unbalanced probes.

Now consider the fusion between exons ACTCA and CCTAT . The same probe
from above TCAC will match the suffix of ACTCA and the prefix of CCTAT .
However, care must be taken to construct the probe that matches the suffix of
CCTAT and the prefix of ACTCA. The probe ACCT unfortunately is not valid
since it matches the normal junction between exons TAGCA and CCTAT . Simi-
larly CACCT is also invalid for the same reason. Instead, we use the probe
TCACCT to represent this fusion junction. Any shorter probe would match the
normal exon. Specifically, the length of the shorter portion of the fusion junction
probe is the shortest length that does not match the normal junction.
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Greedy Algorithm for Contiguous Probes. Instead of directly examin-
ing each of the 25 billion fusion junctions and create probes to identify these
junctions, we leverage these insights to directly efficiently construct the optimal
probeset for contiguous unbalanced probes of the type described above using a
greedy algorithm.

It is obvious that for contiguous probes, we must construct a set of forward
probes for each left exon that can be part of a fusion and backward probes for
each right exon that can be part of a fusion. This set of probes must contain a
portion that uniquely matches the exon and contains prefixes (or suffixes) that
match each possible fusion exon but none of the normal exons. The algorithm
below constructs such a minimal set.

For each exon, without loss of generality, assume it is the left exon in the
normal junction. We construct the unbalanced probes where the long portion
matches the exon uniquely. In the meanwhile, the short portions of the probes
match all the exons which can be potentially fused to the current exon and do not
match the corresponding right exon in the same normal junction. To construct
the short portions of the unbalanced probes, we build a suffix tree for the prefix of
all potential fusion exons as well as the right exon in the same normal junction.
In the suffix tree, the leaf nodes are the exons and a path from the root to
the leaf corresponds to the sequence of the prefixes of the corresponding exon
sequences. The depth of the suffix tree is bounded by the length of the right
probe. We then search along the suffix tree for the normal junction. Whenever
we see a new branch differ from the current search path, we create a right
probe (n1, n2, . . . , nk, fk+1,−,−, ...), where n1, n2, . . . , nk are the symbols on the
current search path and fk+1 is the first symbol in the new branch. This probe
covers all the fusion exons in the subtree of the branch since all these vertices
have the same prefix (n1, n2, . . . , nk, fk+1). We keep on searching along the suffix
tree until the normal destination vertex is reached, which corresponds to the last
symbol of the normal junction exon in the suffix tree. All fusion junction exons
will thus be covered. Therefore, for each normal junction, we need to construct a
set of right probes to match all potential fusion exons but not the right exon in
the normal junction. We show an example in the left graph of Figure 2. The right
exon of the normal junction has prefix as ATTGAA. The symbol besides the
triangle denotes the first symbol of a branch. Each triangle denotes a subtree of
the corresponding branch. According to our algorithm, we design 5 right probes
(G−−−−−), (ATC−−−), (ATTGC−−), (ATTGAT−), (ATTGAG−). As we
can see, these right probes cover all the fusion junction exons in the subtrees of
their corresponding branches but not the normal destination vertices. We need
to repeat the same process for each exon to generate both forward and backward
unbalanced probes for the case the exon is left exon and the case the exon is
right exon, respectively.

For each internal node in the suffix tree along the path from root to the normal
destination vertex, there can be at most 3 new branches, which leads to at most
3 new right probes. Therefore, the number of right probes is bounded by 3 ×
length(right probe) in our algorithm. As we need to repeat the process for every
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Fig. 2. (left) Example of probe selection with a suffix tree. (right) The initial set of
probes starting at position 0, 1, . . ., s − t + 1 in the short portion of the probe, which
is the right probe in this example. The minimum non-gap symbols threshold is t. The
boxes are the t contiguous non-gap symbols. The dot lines are gaps.

exon as a forward and backward unbalanced probe, the total number of probes
is bounded by O(3×2× h

2 ×n), where n is the number of exons, h is the length of
the probe and we assume the left probe and the right probe are of equal length.
Since only two suffix trees are needed for the whole selection process, one for all
left exons and one for all right exons, the probe selection process for each exon
is linear with the size of the probe. Therefore, our algorithm takes O(n×h) time
complexity, where n is the number of exons, h is the length of the probe.

When a forward and a backward unbalanced probe are used to identify
uniquely a fusion junction, the greedy algorithm can produce the optimal so-
lution for contiguous sequences. This is because any longer probes will require
adding additional probes without covering any additional fusion junctions since
they would already be covered by these shorter probes. Shorter probes other than
the ones we already picked will be invalid since they match normal junctions.

We summarize the probes required by our unbalanced probe algorithm for
each fusion junction in the above example in Figure 1. As we can see, the number
of probes required is 25, which actually exceeds the number of probes required
by the naive algorithm as 18. This is because as we showed before, the number
of probes of the naive algorithm is O(n2), while the the number of probes of the
greedy algorithm is O(3×2× h

2 ×n), where n is the number of exons and h is the
length of the probes. In the example of Figure 1, the length of probes h is 6, while
number of exons n is 8. Therefore, the number of probes of the greedy algorithm
is greater than the corresponding number of the naive algorithm. Thus when the
total number of exons is too small, the probe sets from the “unbalanced” probe
design may not be optimal. However, for much longer exons, as shown later in
our experiments, the unbalanced probe algorithm requires many fewer probes
than the naive algorithm does.

One problem of this design is cross-hybridization, namely if the short portion
of a probe is too short, it may bind to other exon junctions. To address this
problem, we may need to set a minimum length threshold for the short portion.
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The greedy algorithm can be easily adapted to integrate this threshold t such
that the left or right probe need to contain no fewer than t symbols.

Minimum Set Cover Conversion. While the greedy algorithm can produce
the optimal solution for contiguous sequences, although not necessarily when
we allow for gaps in the probe sequences. To allow for gaps in the sequence,
we reformulate the problem. We construct a graph where each exon is a vertex,
each probe is then a set covering certain vertices, corresponding to the exons the
probe matches, the problem of seeking minimum number of probes matching
all exons can be converted to the problem of minimum set cover on the graph.
Minimum Set Cover problem is known to be NP-complete. We thus format the
problem into the following ILP (integer linear programming) problem and solve
it optimally with an ILP solver CPLEX [5].

Minimize :
N∑
i

Si

Subject to :
∑

j∈Covk

Sj ≥ 1 for each Vk

Sj ∈ {0, 1}

Where Si is the ith set, corresponding to the ith probe, Vk is the kth vertex,
corresponding to the kth exon, Covk is the set of sets covering vertex Vk, and
all Sj ’s are binary. Therefore we require each vertex to be covered by at least
one set.

The Minimum Set Cover problem, however, requires knowing the initial set of
probes which must first be determined. Since we allow gaps, assuming the short
portion of the probe is of length s and the minimum number of non-gap symbols
in the short portion is l2. There are a total of s choose l2 ways of choosing
non-gap symbols for the probes, where the non-gap symbols are intervened with
gaps such that the total length of the short portion is s. However, to avoid
cross-hybridization, we require the non-gap symbols in the short portion to be
contiguous. Gaps are only allowed between the non-gap symbols of the long
portion and the non-gap symbols of the short portion. Therefore, given the short
portion of the probe with length s, the minimum number of non-gap symbols
in the short portion as l2, the possible ways of choosing non-gap symbols is
s− l2 + 1 instead of s choose l2. Again, we can set a minimum non-gap symbols
threshold t. Then the initial set of probes are the probes having t contiguous
non-gap symbols which start at position 0, 1, . . ., s− l2 + 1 in the short portion
of the probe, respectively. We show an example in the right graph of Figure 2,
where the non-gap symbols need to be contiguous.

We do not use probes with more than t non-gap symbols because a probe
always covers more vertices than another probe which contains all the non-gap
symbols contained by the first probe as well as some extra non-gap symbols. For
example, the probe ACTT always matches more exons than the probe ACTTC
or TACTT . The t contiguous non-gap symbols of a probe must have at least
one different symbol from the length t substring of the normal junction exon
starting at the same position. This is to guarantee that the probes matches to
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all fusion junction exons but not the normal junction exon. For example, for
normal junction exon ACTACCCTT , assuming t=2, then at position 0, we can
have all possible length two probes AA, AT, AG, . . ., etc., but not AC. Similarly,
at position 1, we can have all possible length two probes but not CT . Therefore,
for each normal junction, we need to initialize a set of probes whose size is
(s− t+1)×(4t−1), where 4t−1 means the probe can be any combination of the
four characters but not the one from the normal junction exon. Then CPLEX
can be applied to find the optimal set of probes.

3 Experimental Results

3.1 Synthetic Gene Sequences

We first evaluate the performance of our algorithm on synthetic gene sequences.
We randomly generate a set of gene sequences, each with 5 exons. The exon
length is 100. We vary the number of genes as 500, 1000, 2000, 4000, 8000,
16000. and for each set of parameters we conduct our experiments 10 times and
show the average performance. We set the probe length as 30 and we set left
probe and right probe both as length 15 such that the probes are long enough
to uniquely identify any exon. We set the minimum non-gap symbols threshold
as 1. We compare the number of probes generated by our greedy algorithm and
by the naive algorithm. We also show the run time of our algorithm. The results
are shown in Figure 3.

As we can see in Figure 3, as gene number increases, the exon number in-
creases and the probe number required by both algorithms increases. However,
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Fig. 3. Comparison between the naive algorithm and the unbalanced probe algorithm
for randomly generated gene sequences. The gene numbers vary as 500, 1000, 2000,
4000, 8000, 16000. Each gene contains 5 exons of length 100 each.
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the probe number by the naive algorithm increases quadratically, while the probe
number by our unbalanced probe algorithm increases linearly. The probe num-
ber by naive algorithm far exceeds that by our unbalanced probe algorithm.
The ratio of the probe number by naive algorithm versus the probe number by
unbalanced probe algorithm increases linearly as gene number increase, indicat-
ing unbalanced probe algorithm is more efficient when the number of exons is
large. For example, for 16000 genes, namely 80000 exons, the number of probes
using the naive algorithm is 1400 times larger than the number of probes using
the unbalanced probe algorithm. The run time increases almost linearly as the
number of genes increases, indicating the unbalanced probe algorithm is time
efficient and is scalable to large data set.

3.2 Complete Human Gene Sequences

We next download the complete human gene sequences from the UCSC genome
browser [2]. The gene number is 23,754 and the total exon number is 183,249.
Each gene roughly contains 7.7 exons. Again, we set probe length to 30 and left
and right probe length to 15. We set the minimum non-gap symbols threshold
as 1. Our greedy algorithm runs on these gene sequences for 30 minutes and
generates approximately 9 million probes. The naive algorithm, however, gener-
ates approximately 26 billion probes, which is approximately 3000 times larger
than the number of probes generated by our algorithm. This again indicates our
method generates a lot fewer probes and is time efficient.

To address cross-hybridization, in the following experiment, we vary the min-
imum non-gap symbols threshold for the short portion of the probe from 1 to 5
and the number of probes required for each threshold are 8,944,202, 11,836,694,
26,299,154, 87,041,486, 330,814,516, respectively. As we can see, the numbers of
required probes for non-gap symbols thresholds 1,2, and 3 are close to each other,
all very low, but the number increases dramatically for thresholds 4 and 5, in-
dicating the feasible non-gap symbols threshold needs to be under 5. This again
confirms our previous claim that we need to design unbalanced probe where the
short portion needs to be short enough, otherwise the number of required probes
is too large. Given a non-gap symbols threshold of 5, our method still requires
only 1/60 of the probes required by the naive method.

We can convert the problem into ILP problem and solve it with the solver
CPLEX. However, in our experiments, the number of exons is too large. CPLEX
can not find the optimal solution in a reasonable amount of time, especially when
the minimum non-gap symbols threshold is greater than one. Therefore, we set
a time limit for CPLEX as 20 minutes for each ILP problem. With a longer
time limit, the results may be better. Again, we vary the minimum non-gap
symbols threshold for the short portion of the probe from 1 to 5. Since for each
normal junction, we need to design a set of probes, to illustrate the effects of
error correction on the number of required probes, we randomly select 15 normal
junctions. For each junction, we compare the number of required probes for the
greedy algorithm and for CPLEX. Again, due to cross-hybridization, we require
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Fig. 4. Comparison of the number of required probes for t (minimum non-gap symbols
threshold) for the short portion of the probe as 1, 2, 3, 4, 5, on randomly selected
normal junctions in human gene sequences for the greedy algorithm and CPLEX

all contiguous portions of the probe to be of length no less than the minimum
non-gap symbols threshold t.

We show the results in Figure 4. As we can see, CPLEX successfully reduced
the number of required probes to around half of what would be needed compared
to the greedy algorithm. However, as t increases, the differences between the
number of required probes by CPLEX and by the greedy algorithm decrease,
especially when t = 5, CPLEX performs almost the same as the greedy algorithm
does. This behavior is reasonable for the following two reasons: (1) We set time
limit for CPLEX as only 20 minutes. As t gets bigger, almost all the solutions
from CPLEX are not optimal. Using a longer time limit should lead to better
performance of CPLEX. (2) As t increases, the number of vertices, or exons,
covered by each probe, decreases sharply. Therefore, there is not much flexibility
with introducing gaps. The gaped probes perform almost the same well as the
none-gaped probes.

4 Discussion

In this paper, we study the fusion gene probe selection problem where each pos-
sible fusion junctions needs to be uniquely identified by a set of probes and none
of the normal regions including normal junctions of the genes can be identified by
these probes. We first propose an efficient greedy algorithm which is linear time
in the number of exons. We show our algorithm requires many fewer probes than
the naive algorithm does. The number of probes generated by our algorithm is
small enough for practical use. We next convert the problem of seeking minimum
number of probes into the Minimum Set Cover problem and we show the prob-
lem can be solved optimally with an ILP (Integer Linear Programming) solver
such as CPLEX.
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There are several technological limitations related to the use of microarrays
for detection of fusion genes. First, the technology is limited to identify fusion
genes which are expressed in the cancer sample. Fusion genes which have very low
expression will not be detected with any probe in the array. Second, due to dif-
fering hybridization properties of the probes, different probes will have different
baseline levels of intensity. One possible approach to mitigate this problem is to
hybridize both a tumor sample as well as a normal sample to the array and com-
pare the differential expression. Finally, single nucleotide polymorphisms will
affect our approach if they are present within the probe sequences. However,
databases such as dbSNP now contain the majority of these polymorphisms and
it is straightforward to exclude these positions from our probe design.

We also tried introducing error-correction mechanism in the probe selection
process to address the problem of possible failures of the probes due to cross-
hybridyzation. Given at most k failures are allowed, the ILP formula can be
easily revised to incorporate error-corrections, where each vertex (probe) needs
to be covered at least k times, and each set can be selected multiple times. Due
to space limit, we do not show the experimental results for error-correction in
the paper.

An alternate strategy for detecting fusion genes is to take advantage of high-
throughput sequencing technologies[14] to directly sequencing the transcriptome
of a cancer sample and then look for fusion junctions among the sequence
reads[3]. Although these technologies have great promise, they are still being
developed and it is not clear how soon they will be ready for wide scale clini-
cal use due to several logistical issues. The sequencing machines are extremely
expensive and require large computational and bioinformatics infrastructure for
analysis. In addition, to reduce the cost, many samples must be combined in the
same sequencing run at the same time which creates logistical challenges.
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Abstract. The center string (or closest string) problem is a classical
computer science problem with important applications in computational
biology. Given k input strings and a distance threshold d, we search for
a string within Hamming distance d to each input string. This problem
is NP-complete. In this paper, we focus on exact methods for the prob-
lem that are also fast in application. First, we introduce data reduction
techniques that allow us to infer that certain instances have no solution,
or that a center string must satisfy certain conditions. Then, we describe
a novel search tree strategy that is very efficient in practice. Finally, we
present results of an evaluation study for instances from a biological ap-
plication. We find that data reduction is mandatory for the notoriously
difficult case d = dopt − 1.

1 Introduction

The Center String problem (also called Closest String problem) is de-
fined as follows: Given k strings of length L over an alphabet Σ and a distance
threshold d, find a string of length L that has Hamming distances at most d to
each of the given strings.

The Center String problem has been studied extensively in theoretical
computer science and particularly in computational biology [5,9], and has various
applications such as degenerate PCR primer design [10] or motif finding [2,5]. We
are particularly interested in its application as part of finding approximate gene
clusters: The increasing speed of genome sequencing and the resulting number of
available data offers the possibility of comparing gene order of whole genomes.
During the course of evolution, speciation results in the divergence of genomes
that initially have the same gene order and content. Conserved gene order is
evidence for some biological signal [11]. Approximate gene cluster models account
for reordering inside the gene cluster, as well as additional and missing genes in
the compared genomes [8, 1]. The center gene cluster model limits the distance
between the gene cluster and each of the approximate occurrences. For given
approximate occurrences, finding the center gene cluster is equivalent to finding
a center string for binary input strings.
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Previous Work. The Center String problem is NP-complete even for three
strings [3, 5], hence no polynomial time algorithm can exist unless P = NP. Dif-
ferent approaches have been studied for the problem: Ma and Sun [7] presented a
polynomial time approximation scheme with time complexity O(nO(ε−2)) for an
approximation ratio of 1+ ε for any ε > 0. Also, heuristics and parallel implemen-
tations with good practical running times have been developed [6]. The drawback
of these approaches is that they cannot guarantee to find an exact solution.

Parameterized algorithms use a parameter to describe the complexity of a
problem instance and restrict the running time using this parameter, while at the
same time guarantee to find optimal solutions. Parameters that have been stud-
ied in the literature for the Center String problem are the distance threshold
d and the number of input strings k. For the latter parameter, Gramm et al. [4]
showed that the problem is fixed-parameter tractable using an Integer Linear
Program. Evaluations indicate that this approach is of theoretical interest only
and impractical for k ≥ 5. Regarding the distance threshold d, in the same paper
an algorithm was given with running time O(kL+kdd+1). Later, Ma and Sun [7]
presented an algorithm with running time O

(
kL + kd · 16d (|Σ| − 1)d

)
. Recently,

Wang and Zhu [9] improved the running time to O
(
kL+kd ·9.53d (|Σ|−1)d

)
. All

of these algorithms are based on the search tree paradigm. Note that for binary
strings the term (|Σ| − 1)d vanishes.

Our Contribution. In this paper, we focus on exact methods that are also swift
in application. We have developed an advanced preprocessing to quickly filter
out unsolvable instances. Additionally, we compute rules that can be used within
search tree algorithms to bound the search space, excluding unsolvable instances.
We show how to integrate this information into the algorithms from [4, 7]. We
then present a new search tree strategy called MismatchCount that, despite its
bad worst case running time, works extremely well in practice. We implemented
all three algorithms to evaluate their performance in combination with our pre-
processing. We then present results of our experimental evaluation, showing that
preprocessing and the novel algorithm improve running times by several orders
of magnitude. We find that particularly the case d = dopt − 1 is notoriously
difficult for all approaches, where dopt is the smallest distance value for which a
solution exists.

2 Preliminaries

Given a string s over a finite alphabet Σ, let s[i] indicate the ith character of s
and s[i, j] the substring of s starting at position i and ending at position j. The
length of s is denoted by |s|.

The Hamming distance dH(s, t) of two strings s and t of the same length L
is the number of positions p with s[p] �= t[p]. Let R = {p1, . . . , pm} ⊆ {1, . . . , L}
be a set of positions such that pi < pi+1 for all 1 ≤ i < m. Then s|R :=
s[p1] . . . s[pm] denotes the subsequence of s restricted to the positions in R. We
define the Hamming distance of two strings s and t restricted to R as dR

H(s, t) :=
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dH(s|R, t|R). For two strings s and t, let Ds,t :=
{
p : s[p] �= t[p]

} ⊆ {1, . . . , L}
denote the set of positions where s and t differ, and let Es,t :=

{
p : s[p] =

t[p]
}

= {1, . . . , L} \Ds,t be the set of positions where s and t are identical. Note
that d

Ds,t

H (s, t) = dH(s, t). For k input strings s1, . . . , sk, we write Di,j := Dsi,sj

and Ei,j := Esi,sj . For strings over the binary alphabet Σ = {0, 1}, which is our
default, we define s[p] = 1 − s[p].

The Center String problem is defined as follows: Given strings s1, . . . , sk

of length L over an alphabet Σ, and a distance threshold d, find a string ŝ of
length L, called center string, that has Hamming distances at most d to each of
the given strings.

For k strings s1, . . . , sk and distance threshold d, we can construct a näıve
kernel as follows [4]: A position p is called clean if all sequences coincide at this
position, i.e. si[p] = sj [p] for all 1 ≤ i < j ≤ k, otherwise it is called dirty.
One can easily see that there can be at most kd dirty positions if an instance
allows for a center string of distance d. If a position is not dirty, then all strings
share the same character at this position, and the center string will also share
this character. So, we can remove all positions but the dirty ones, and get an
instance of length L ≤ kd.

In our algorithms, we assume a distance threshold d to be given. In applications,
we might not know the distance threshold d in advance, but instead search for a
center string minimizing d. We can do so by calling our algorithms repeatedly,
increasing d = 0, 1, 2, . . . until a solution is found for d = dopt. Both in theory and
in our experimental evaluation, we find that the running time of this iteration is
governed by the last subroutine calls with d = dopt − 1 and d = dopt. That is why
in our evaluations we will put special focus on these two cases.

In the following, we present a data reduction that will often allow us to con-
clude that no solution can exist for a particular distance threshold d. But in case
we cannot rule out the existence of a center string by data reduction (what is
obviously the case when d = dopt) we still have to decide whether a valid center
strings exists. All algorithms for doing so, such as [4,7,9] and the MismatchCount
algorithm presented below, are based on the search tree paradigm: In principle,
we scan through all 2L possible binary strings and test whether any such string
is a center string of the input. The algorithms differ in the order in which they
process the 2L strings and, in particular, how they constrain the search space to
speed up computations.

3 Data Reduction

Our data reduction is based on the pairwise comparison of the input strings.
Given an instance s1, . . . , sk and d of the Center String problem, we can
divide all pairs of strings {si, sj} into three groups: pairs with distance less than
2d − 1, greater than 2d, or equal to 2d or 2d − 1. If there exist two strings si,
sj with Hamming distance dH(si, sj) > 2d, then the instance has no solution.
This follows from the fact that a center string ŝ can have at most distance d
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to each of si and sj and, hence, dH(si, sj) ≤ dH(si, ŝ) + dH(ŝ, sj) ≤ 2d. So,
d ≥ 1

2 maxi,j dH(si, sj) must hold for the instance to have a solution.

Solving Trivial Positions. Some positions of the solution string can be trivially
solved. This is based on the following observation:

Lemma 1. Given strings s1, . . . , sk and a center string ŝ with distance d. For
two strings si, sj such that dH(si, sj) = 2d or dH(si, sj) = 2d − 1, we have

ŝ[p] = si[p] = sj [p] for all p ∈ Ei,j .

Proof. A center string with distance at most d to all strings is located central
between the two strings si and sj with distance 2d and hence has distance d
to both of them. Thus, all positions fixed between si and sj must also be fixed
in ŝ. Our reasoning can be extended to string pairs with distance 2d − 1: We
need to change, in at least one of the strings, d positions and Ei,j is the set of
equal positions between both strings, hence we are still not allowed to change
any position p ∈ Ei,j . ��
As a reduction rule, if we find two strings si, sj with dH(si, sj) ≥ 2d−1, then we
can set ŝ[p] := si[p] for all p ∈ Ei,j and mark these positions as “permanent”.
Let P denote this set of permanent positions. By doing this for all si, sj with
dH(si, sj) = 2d or dH(si, sj) = 2d − 1, we may run into conflicting situations
where we have to permanently set a certain position to ‘0’ and ‘1’ simultaneously.
We call such a situation a conflict and infer that the instance has no solution
for the current choice of d. If we do not have a conflict, then applying this data
reduction results in a partially solved solution string ŝ with ŝ[p] = c ∈ Σ fixed
for all p ∈ P , whereas all positions not in P still have to be decided.

Computation of Position Subsets. We next focus on pairs of strings si, sj with
dH(si, sj) = δ < 2d − 1. For a given center string ŝ we define

Xi,j(ŝ) :=
{
p ∈ Ei,j : si[p] = sj [p] �= ŝ[p]

}
as the set of positions where si and sj agree, but disagree with the center string ŝ.
We extend the reasoning behind Lemma 1 as follows:

Lemma 2. Given strings s1, . . . , sk and a center string ŝ with distance d. For
two strings si, sj such that dH(si, sj) < 2d − 1, we have

|Xi,j(ŝ)| ≤ d − 1
2dH(si, sj) .

Proof. Let D := Di,j . Regarding the distances between ŝ|D and si|D as well
as sj |D, we can state that ŝ|D has to at least one of the strings si|D or sj |D a
distance at least 1

2dH(si, sj):

max {dH(si|D, ŝ|D), dH(sj |D, ŝ|D)} ≥ 1
2dH(si, sj) .

This is true since dH is a metric and the triangle inequality holds, dH(si|D) ≤
dH(si|D, ŝ|D) + dH(sj |D, ŝ|D). Since we need a distance of at least 1

2dH(si, sj) to
solve the positions from D, a distance of at most d− 1

2dH(si, sj) remains to solve
the positions from E. ��
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Lemma 2 implies that the maximum number of positions p ∈ Ei,j we are allowed
to choose in the center string with ŝ[p] �= si[p] is bounded by d− 1

2dH(si, sj). We
can transform this observation into a reduction rule as follows: When, during
search tree traversal or by other reduction rules, we have a partially solved
solution string ŝ such that

|Xi,j(ŝ)| > d − 1
2dH(si, sj)

for any pair si, sj, then we can infer that ŝ cannot be extended to a solution for
the current choice of d. For each pair si, sj , we therefore set xi,j := d− 1

2dH(si, sj)
and store all tuples (Ei,j , xi,j) in an array T .

Removing redundant information from T may lead to further trivially solved
positions. This is done by removing, for all 1 ≤ i < j ≤ k, all positions p ∈
P ∩ Ei,j from Ei,j . Moreover, if ŝ[p] �= si[p] then we decrease xi,j by one.

For xi,j = 0 we set all positions p from Ei,j to “permanent” and include them
in P . Since P has changed, we continue our data reduction again until there is
no tuple (Ei,j , xi,j) with xi,j = 0 in T . For xi,j < 0 we can easily infer that
there must exist a conflict and, hence, the instance has no valid solution for this
distance threshold d.

Cascading. To further enlarge the number of solved positions we consider all
pairs of strings si, sj with xi,j = 1 and use cascading. A valid center string ŝ has
to agree with si in at least |Ei,j |−1 positions from Ei,j , hence for binary strings
at most one position p ∈ Ei,j can be set to ŝ[p] = si[p].

To this end, we test for all positions p ∈ Ei,j what we can infer from setting
ŝ[p] = si[p]. This implies xi,j = 0, hence the remaining positions q ∈ Ei,j , q �= p,
are added to P and the tuple set T is reduced. If we run into a conflict during
this reduction, we know that setting ŝ[p] = si[p] cannot result in a valid solution.
In this case, we infer ŝ[p] = si[p] and permanently set position p.

Unfortunately, if not running into a conflict, setting ŝ[p] = si[p] is not manda-
tory. However, we get a partially solved solution string ŝp,v and a set of “po-
tentially permanent” positions Pp,v depending on the position p and the value
v = si[p]. We store this information in a set of rules R.

We can use the set of rules R when solving the remaining instance by, say,
a search tree algorithm. If, during the search tree traversal, we decide to set
ŝ[p] = v for the solution string ŝ, then we can immediately start the above data
reduction: For all positions q ∈ Pp,v \P , we set the solution string ŝ[q] = ŝp,v[q].
For the remaining positions q ∈ Pp,v ∩ P , the condition ŝ[q] = ŝp,v[q] must be
met, otherwise we run into a conflict and, thus, this branch of the search tree
does not lead to a valid solution.

4 Integration into Search Tree Algorithms

We can use the information derived during preprocessing, stored in the sets
P , T ,R, to speed up the algorithms of Ma and Sun [7] and Gramm et al. [4].
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Integrating the set of solved positions P into the algorithm of Ma and Sun is
straightforward, as this algorithm tackles the more general Neighbor String

problem. In all other cases, it is necessary to interweave the use of P , T ,R with
the actual search tree algorithms. Here, we use the information from P , T ,R to
shrink the search tree, by excluding search tree branches which cannot lead to
a valid solution. To do so, we simply test if the (partial) string candidate of the
search tree is already conflicting with this information. The integration of P , T ,R
is somewhat different for the algorithms of Ma and Sun and Gramm et al., we
defer the technical details to the full version of this paper. Unfortunately, the
use of P , T ,R does not change the worst-case running times of both algorithms.
But our preprocessing, as an algorithm engineering technique, allows us to speed
up the algorithms in practice, as demonstrated in Sect. 6.

5 Algorithm MismatchCount

After we have applied our data reduction rules, we have to solve the remaining
instance using a search tree algorithm, like those from [7,4]. In this section we
present another such procedure, MismatchCount, that is very efficient in practice,
as we will show below. Given binary strings s1, . . . , sk of length L and a distance
threshold d, the MismatchCount algorithm solves the Closest String problem
as follows: We iterate through all strings s with distance at most d to a chosen
string si — without loss of generality, we may choose that string to be s1. This
leaves us with a search space of size

∑d
d′=0

(
L
d′
)
. We present an enumeration

scheme for those s that allows efficient testing for the center condition on each
candidate, and that makes it possible to skip large areas of the search space
based on information gained while checking those candidates.

The mismatch positions for d mismatches in s1 (and therefore the center string
candidates s) are enumerated, equivalently to generating all binary numbers of
length m with d bits set to 1, in reverse order.

An example for the placement of at most three mismatches is shown in Fig. 1.
For every s, its Hamming distance to the remaining strings s2, s3, . . . , sk has
to be checked. Rather than recomputing these distances entirely new for each
candidate, the Hamming distances from the previous candidate s′ are updated by
increasing (resp. decreasing) the distances according to the changed positions.
The running time for verifying a center candidate s is therefore bounded by
O(g · k), where g is the number of positions changed from s′ to s.

The overall number of changes performed during the enumeration of all center
candidates can be determined like this: using the presented enumeration scheme,
each position p in s is changed once to ‘1’ and once to ‘0’ for every configuration
of s[1, p − 1] with at most d mismatches to s1[1, p − 1]. There are

(
p−1
d′
)

such
configurations for each d′ = 1, 2, . . . , d. Summing over all possible combinations
of p and d′, the number of bit changes performed can be bounded by O(2L).
Since for each character change in s, k Hamming distances need to be updated,
the overall worst-case running time of the algorithm is bounded by O(k · 2L).
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dH(s, s1) = 0

0 0 0 0 0

dH(s, s1) = 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

dH(s, s1) = 2

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

dH(s, s1) = 3

1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

Fig. 1. Enumeration scheme for all strings s with Hamming distance at most 3 to a
bit string s1 of length 5. The ‘0’s denote matches between s and s1 at the respective
positions, while ‘1’s denote mismatches.

However, this worst-case analysis refers to the exploration of all legal mis-
match configurations of s. As already mentioned above, the enumeration scheme
enables us to skip large areas of that search space. Using the maximum Ham-
ming distance dmax = maxi=2,...,k(dH(s, si)) computed in each iteration, we can
derive a lower bound for the number of positions that have to be changed in
s in order to fulfill the center condition. Therefore, for each candidate s taken
into consideration, we compute cmin =

⌈
dmax−d

2

⌉
, where 2 · cmin is the mini-

mum number of positions in s that have to be changed when its successor is
generated. This bound can be used in two ways: We cannot change 2 · cmin
positions in s by changing the positions of less than cmin mismatches. There-
fore, if currently all candidates s with dH(s1, s) = d are enumerated and we
encounter a candidate that reveals a cmin > d, we can proceed to the generation
of candidates with dH(s1, s) = cmin, omitting the enumeration for all s with
dH(s1, s) ∈ {d, d + 1, . . . , c − 1}.

Furthermore, even if cmin does not exceed d for a currently observed candidate,
we can use that bound to skip the enumeration of certain candidates. Since we
know that we have to change at least 2 · cmin positions in s, we can omit all
enumeration steps that involve less than cmin mismatch positions.

Applying the data reduction to this algorithm is straightforward. Let Q :=
{1, . . . , L} \P be the set of positions that are not permanent. Then, the reduced
instance is s1|Q, . . . , sk|Q. When estimating for every candidate s its Hamming
distance to each remaining string si, the additional amount dH(ŝ|P , si|P) has to
be added to the distances of the reduced strings. This is done only once at the
beginning, since the Hamming distances are updated during the algorithm.

6 Computational Results

We performed our tests on a data set obtained by applying the approximate
gene cluster algorithm described in [1] to five γ-proteobacteria genomes from
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Table 1. Five γ-proteobacteria from the NCBI Genome database, used for detection of
approximate gene clusters to generate biological instances of the center string problem.
‘Refseq’ denotes reference sequence from NCBI Genome database, ‘PC’ number of
protein-coding genes.

Species name Refseq Genes PC
Buchnera aphidicola str. APS NC 002528 607 564
Escherichia coli str. K-12 substr. MG1655 NC 000913 4493 4149
Haemophilus influenzae Rd KW20 NC 000907 1789 1657
Pasteurella multocida subsp. multocida str. Pm70 NC 002663 2092 2015
Xylella fastidiosa 9a5c NC 002488 2838 2766

the NCBI Genome database1, see Tab. 1. The gene classification is based on
COG2 functional categories.

The generation of center string instances from gene cluster predictions works
as follows: Each gene cluster consists of five approximate occurrences, one on
each genome, that are transformed into binary strings based on their gene com-
position. Since the instances generated from a single cluster are too short to
evaluate the performance of our algorithms, larger instances are created by con-
catenation until the length L is reached. Additional strings are constructed in
the same fashion, incorporating further cluster occurrences.

We created 50 instances for each combination of k and L with k = 20, 30, 40, 50
and L = 250, 300, . . . , 500. The origin of our data, based on finding approximate
gene clusters, results in many clean columns that are trivially solved. We keep
only the dirty columns, representing the “hard part” of the instances. In our
dataset, there were between 36.2% and 57.7% dirty columns. We stress that
results in the following sections are reported for this näıve kernel. In the further
evaluation we examine only the 567 instances with dopt ≤ 40 and we concentrate
on the computation of center strings for d = dopt and d = dopt − 1, since these
are the computationally hard instances, see Fig. 3 below. For the search tree
algorithms evaluated below, the search tree size grows (super-) exponentially
with increasing d, hence the algorithms’ running times are usually dominated by
these cases.

Excluding Unsolvable Instances by Preprocessing. Our preprocessing allows us
to exclude unsolvable instances more efficiently than the näıve kernel, when d
is too small for a center string to exist. This is of particular interest as here
search tree algorithms have to scan the complete search tree to ensure that no
solution exists. Recall that the näıve kernel tests if there exist more than kd
dirty columns, in which case the instance cannot have a solution for this choice
of d. Table 2 shows the number of excluded instances via preprocessing, for
d = dopt − 1. Our improved preprocessing always filters out more instances than
the näıve kernel does. For different k, we can exclude between 15.9 % and 44.4 %
of instances that have not been filtered by the näıve kernel. We note that for
1 http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome
2 http://www.ncbi.nlm.nih.gov/COG/

http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome
http://www.ncbi.nlm.nih.gov/COG/
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Table 2. Percentage of instances excluded by preprocessing, for d = dopt − 1

number of sequences k 20 30 40 50
näıve kernel (%) 56.5 59.1 67.4 68.4
our preprocessing, from remaining (%) 24.3 15.9 36.4 44.4
total excluded instances (%) 67.1 65.6 79.3 82.4

d = dopt − 2, more than 99 % of the instances are rejected by the näıve kernel or
since d < 1

2 maxi,j dH(si, sj). Clearly, no instances are rejected for d = dopt.

Solving Trivial Positions by Preprocessing. The second advantage of our method
is the computation of positions that can be trivially solved during preprocessing,
see Fig. 2. The percentage of fixed positions is especially high for the important
case d = dopt. In fact, an average of 41.0 % of the positions was fixed for these
instances during preprocessing. We also observe that there is no “twilight zone”
of fixed positions: In 57.8 % of the instances, more than 40 % of positions were
fixed; in 38.5 % the data reduction did not fix any positions; and in less than
3.7 % of the instances we observed a fixation of 0–40 % of positions.
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Fig. 2. Percentage of trivially solved positions in P for d = dopt, plotted against the
length L of the instance. Crosses represent individual instances, solid line is average
percentage for intervals of width 20.

Running Times. We have implemented the algorithms of Gramm et al. [4],
Ma and Sun [7], and the MismatchCount algorithm from Sect. 5, referred to
as “Gramm”, “MaSun” and “MismatchCount”, respectively. These algorithms
do not include any preprocessing beyond the näıve kernel. Name suffix “RT”
indicates that preprocessing, algorithm engineering, and the use of R and T
are enabled. For the MismatchCount algorithm, only the information from P is
used, denoted as name suffix “P”.

All algorithms have been implemented in Java and compiled with the Sun Java
Standard Edition compiler version 1.6. All computations were done on a quad-
core 2.2 GHz AMD Opteron processor with 5 GB of main memory under the
Solaris 10 operating system. The presented running times are the core running
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Fig. 3. Average running times for the 395 instances with dopt ≤ 35. Running times are
depicted in dependency on varying d around dopt.

times of the algorithms and do not include I/O or removal of clean columns. We
set a time limit of ten minutes per instance.

We first show that running times of all algorithms are truly dominated by
the cases d = dopt − 1 and d = dopt. To this end, we consider the 395 instances
with dopt ≤ 35 of length 57 ≤ L ≤ 243 after removing clean columns. Results
are shown in Fig. 3. It is clearly visible that it is sufficient to concentrate on
the two cases d = dopt − 1 and d = dopt. Algorithms MaSun and Gramm show
large running times for both of these cases, whereas MismatchCount reaches its
maximum running times for d = dopt−1 while it is faster for d = dopt. Note that
we cannot circumvent calling the algorithm with d = dopt−1 to ensure that dopt
is truly optimal.

We now show the dependency of running times on the parameter dopt. There-
fore, we pooled the instances with respect to the optimum center distance dopt.
For d = dopt − 1 we excluded all instances where d < L/k after removing clean
columns, or d < 1

2 maxi,j dH(si, sj), as these obviously have no solution, leaving
us with 241 instances. In Tab. 3, we show the percentage of instances that were
rejected in less than 600 s, all other instances remain undecided by the algo-
rithm. Running times for both d = dopt − 1 and d = dopt are depicted in Fig. 4.
Note that the unmodified algorithms of Gramm et al. and Ma and Sun usually
run into the time limit at 600 s, true running times are expected to be much
higher. We also see that the MismatchCount algorithm is much faster for the
case d = dopt than for d = dopt − 1.

Table 3. Percentage of instances rejected within different time limits, for d = dopt −1.
‘MC ’ denotes MismatchCount algorithm.

MCP MC MaSunRT MaSun GrammRT Gramm

time limit 600 s (%) 49.4 14.9 51.9 5.4 48.1 0
time limit 1 s (%) 45.6 12.4 44.0 4.1 43.6 0
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Fig. 4. Average running times for varying dopt. Running times for the original (left)
and improved implementations (right) for d = dopt − 1 (top) and d = dopt (bottom).
Logarithmic scale for running times.

7 Conclusion

We have presented an improved preprocessing for the Center String problem.
This is based on the observation that for strings with an optimal center at
distance d, there usually exist many pairs of strings with distance close or equal
to 2d. Our data reduction allows us to reject more instances that do not have a
valid center string, and to draw conclusions about certain positions of a center
string. We show how this information can be used in the search tree algorithms
of Gramm et al. and Ma and Sun. We have also presented the MismatchCount
algorithm for binary alphabets. In our experimental evaluation, we could show
that our data reduction is very efficient and that the MismatchCount algorithm
outperforms the other two in practice. Our data reduction is particularly helpful
for tackling the case d = dopt − 1, where the MismatchCount algorithm has
maximum running times, as we can exclude more instances.

Currently, the MismatchCount algorithm does not use information encoded
in R and T . We are working on a modified version of the algorithm that will
allow us to approach even larger instances in reasonable running time, as it will
speed up computations for the “neuralgic” case d = dopt − 1.
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Abstract. The overlapping structure of complex patterns, such as IU-
PAC motifs, significantly affects their statistical properties and should
be taken into account in motif discovery algorithms. The contribution
of this paper is twofold. On the one hand, we give surprisingly simple
formulas for the expected size and weight of motif clumps (maximal over-
lapping sets of motif matches in a text). In contrast to previous results,
we show that these expected values can be computed without matrix in-
versions. On the other hand, we show how these results can be algorith-
mically exploited to improve an exact motif discovery algorithm. First,
the algorithm can be efficiently generalized to arbitrary finite-memory
text models, whereas it was previously limited to i.i.d. texts. Second,
we achieve a speed-up of up to a factor of 135. Our open-source (GPL)
implementation is available at http://www.rahmannlab.de/software .

1 Introduction

The motif discovery problem consists of finding extraordinary patterns (motifs)
in a given set of strings (texts). A common application in computational biol-
ogy is the discovery of transcription factor binding sites. Much attention has
been given to this problem, resulting in hundreds of published (mostly heuristic)
algorithms. For an overview, refer to the review articles [1,2,3,4]. Most algo-
rithms can be classified as being either alignment driven or pattern driven. The
former algorithms align a (fixed or variable) number of motif occurrences from
which a position weight matrix (PWM) is constructed [5,6,7]; that means, the
search space is the space of all alignments of motif occurrences. In contrast,
pattern-driven algorithms search the space of all patterns [8,9,10,11]. To allow
approximate matches, either a generalized alphabet (including wildcards) like the
IUPAC alphabet is used or a Hamming neighborhood is added to the patterns.
Pattern-driven algorithms theoretically allow computing a globally optimal motif
by enumerating all patterns. The benefit of knowing the global optimum, how-
ever, varies with the used objective function. In a recent article (ISMB’09, [11]),
we verified that the compound Poisson approximation to the pattern’s p-value
is accurate, and we developed a pattern-driven motif discovery algorithm that

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 337–349, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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returns the optimal motif with respect to this objective. We demonstrated the
algorithm’s performance on a benchmark set [12] and on the non-coding regions
of Mycobacterium tuberculosis’ genome. Here, we substantially speed up this
algorithm and generalize it to higher-order text models.

Notation. For concreteness, we define Σ := {A, C, G, T} as the nucleotide alpha-
bet. All indexing starts at 0, that means w = w0 . . . w�−1 for w ∈ Σ�. Define
Λ := 2Σ \{∅}, where 2Σ is the power set of Σ, and note that each g ∈ Λ uniquely
maps to a IUPAC one-letter code; e.g. {A, G} corresponds to the IUPAC code R.
Each m ∈ Λ∗ is called generalized string. We define a motif of length � to be
an element of Λ�. We say w ∈ Σ� matches m ∈ Λ�, written w � m, if wi ∈ mi

for 0 ≤ i < �. The distribution of a random variable X is denoted by L(X).
Row and column vectors are written 〈x| and |y〉, respectively. All elements of
the column vector |1〉 are 1. The identity matrix is denoted by 1. For a matrix A,
the row-sum norm is denoted by ‖A‖∞ := maxi=1,...,n

∑n
j=1 |Aij |.

Random Texts. Let a word w ∈ Σ∗ be given. Assume that w occurs k times
in a given text (or genome). Then, its p-value is the probability that it occurs k
or more times in a random text of the same length. To compute this p-value, a
text model has to be given. The simplest possibility is an i.i.d. model, that is, a
distribution over the alphabet Σ. For genomic sequences, more elaborate models
are necessary. In Markovian text models, the character distribution depends on a
finite history. Character-emitting hidden Markov models (HMMs) are even more
sophisticated. These three types of text models are all special cases of finite-
memory text models. Formally, a random text is a stochastic process (St)t∈N0 ,
where St is a random variable giving the t-th character.

Definition 1 (Finite-memory text model). A finite-memory text model is a
tuple (C, c0, Σ, ϕ), where C is a finite state space (called context space), c0 ∈ C a
start context, Σ an alphabet, and ϕ : C×Σ×C → [0, 1] with

∑
σ∈Σ, c′∈C ϕ(c, σ, c′)

= 1 for all c ∈ C. The random variable giving the context after t steps is
denoted Ct with C0 :≡ c0. A probability measure is now induced by stipulating

P(S0 . . . Sn−1 = s, C1 = c1, . . . , Cn = cn) :=
n−1∏
i=0

ϕ(ci, si, ci+1) (1)

for all n ∈ N0, s ∈ Σn, and (c1, . . . , cn) ∈ Cn. We require the context process
(Ct)t∈N0 to converge to an equilibrium distribution.

The intuition behind this definition is that when in context c, we make a random
choice to emit the next text character σ and transit to the next context c′, the
corresponding probability being ϕ(c, σ, c′). It follows that the probability for a
text of length n is given by P(S0 . . . Sn−1 = s) :=

∑
c1,...,cn

∏n−1
i=0 ϕ(ci, si, ci+1),

where c0 is the fixed start context. This sum can be efficiently computed by
dynamic programming. Similar models are used in [13] where they are called
probability transducers. In this article, all analyses and algorithms are valid for
arbitrary finite-memory text models.
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Compound Poisson Distribution. The difficulty in computing the distribu-
tion of the number of word occurrences lies in possible self-overlaps. Although
exact algorithms, for example using finite automata [14,15,16], are known, it
remains infeasible to compute the exact p-values for a large set of motifs. This
problem can be overcome by using a compound Poisson approximation. The idea
is to decompose the set of motif occurrences into clumps of overlapping occur-
rences. Formally, a clump is a maximal set of overlapping motif occurrences. For
example, the string AAACACACTGACAT contains two clumps of the word ACA (un-
derlined). The random variable Zi gives the size, i.e. the number of contained
occurrences, of the i-th clump in the random text (St)t∈N0 . If no i-th clump
exists, we set Zi := 0; this happens with zero probability for infinite texts.
The number of occurrences is now given by

∑Nn−1
i=0 Zi (ignoring border effects),

where Nn is the number of clumps in a text of length n. The compound Poisson
approximation assumes that Nn is Poisson distributed. This approximation is
accurate for rare words [17].

Example 1 (Influence of clumping). Consider a random text of length 10,000
over Σ = {A, C, G, T} where each character is distributed independently and uni-
formly. The expected number of occurrences for the two patterns AAAAAAAAAA
and AAAAAAAAAC equals 0.0095 in both cases, but the probabilities of observing
10 or more occurrences differ greatly and amount to 2.982·10−8 and 1.546·10−27,
respectively. The different behavior is reflected in the expected clump sizes that
equal 4/3 and 1, respectively. When computing the compound Poisson approxi-
mations of these p-values, we obtain 2.986 · 10−8 and 1.685 · 10−27, respectively.

Definition 2 (Expected Clump Size). The expected clump size ψ is

ψ := lim
i→∞

E(Zi) . (2)

Note that ψ is well-defined as the existence of limit (2) follows from the assumed
convergence of the text model to an equilibrium distribution.

Results. Clumps and compound Poisson approximations to the occurrence
count distribution of words have been studied extensively [18,19,20,21]. For the
first time, however, we give a simple and general formula for the expected clump
size that holds for sets of patterns and arbitrary finite-memory text models that
are equivalent to character-emitting HMMs (Theorem 1). The formula is short
and involves no laborious operations like matrix inversions. Furthermore, it can
readily be generalized to the case where each pattern is given a weight (Theo-
rem 2), which is useful to handle reverse complements in DNA motifs.

In [11], we introduced a motif discovery algorithm that finds (within a given
motif space) the optimal motif with respect to its p-value (in compound Poisson
approximation). Based on the new formula for the expected clump size, we derive
bounds for the expected clump size for partially known patterns. These bounds
allow us to improve our motif discovery algorithm in two respects. First, finding
the globally optimal motif with respect to arbitrary finite-memory text models
is now possible; before, the search was restricted to i.i.d. models. Second, the
algorithm is substantially faster than before.
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Before we compute and bound the expected clump size, Section 2 explains
how motif discovery can benefit from such a procedure. In Section 3, formulas
for expected clump size and expected clump weight are given and proved. Subse-
quently, in Section 4, bounds for partially known motifs are derived. Experiments
showing the practical benefit are presented in Section 5.

2 Efficient Motif Discovery with Clump Size Bounds

The idea of performing a pattern-driven search by walking a suffix tree has long
been known [8]. We took up this idea in [11] and furthered it to optimize p-values
of degenerate motifs rather than their number of occurrences. The basic idea is
to enumerate all candidate motifs from a given motif space in lexicographic order
and skip parts of the search space that cannot contain motifs of interest. This is
done by examining the suffix tree nodes that correspond to the prefixes of the
current motif. If a prefix does not occur frequently enough to be interesting, all
motifs sharing this prefix can be skipped. When optimizing p-values, we need to
answer the following question: Given a motif space M to be searched, a motif
prefix and the number of occurrences of this prefix, compute a lower bound for
the p-value of all m ∈ M with this prefix. If this lower bound is too large, we
can discard the prefix along with all its continuations.

Obviously, the number of occurrences is greater than or equal to the number
of clumps. By compound Poisson approximation, the number of clumps has
a Poisson distribution with motif-specific mean λm. Write Pλ(i) := e−λλi/i!.
Assume that the motif m is observed n times, then

p-value(m) ≥
∞∑

i=n

Pλm(i) ≥
∞∑

i=n

Pλ′(i) for λm ≥ λ′ ,

where the right inequality follows from the monotonicity of the cumulative Pois-
son distribution function in its parameter. Therefore, the problem is reduced to
computing a lower bound λ′ ≤ λm for the expected number of clumps

λm =
expected number of occurrences of m

expected clump size of m
.

To find a λ′ ≤ λm, we require a lower bound for the expected number of occur-
rences and an upper bound for the expected clump size.

In [11], the first problem was approached by partitioning the motif space into
subsets containing motifs with equal expectation and computing the expectation
exactly, which is easy for i.i.d. text models, but not practical for more complex
text models. For the expected clump size, a global upper bound of 3 was used,
which lead to long runtimes. Here, we present a more efficient strategy based on
motif prefixes instead of whole motifs. Better individual bounds on the clump
size will allow to prune larger parts of the search space.

A lower bound for the expected number of occurrences for all continuations of
a partially known motif from M can be obtained by computing the equilibrium
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probability of the prefix and using the lowest possible continuation probability
for each unknown character. This probability can be efficiently precomputed by
examining, for all combinations of characters σ and text model contexts c, the
probability that, starting from context c, character σ is generated.

We now derive a formula for the exact expected clump size and use it in
Section 4 to derive the desired bound.

3 Computing the Expected Clump Size

In the following, we assume a length � ≥ 2 and a pattern set W ⊂ Σ� to be given.
Each IUPAC motif can be represented as such a set W . A length-� substring of
the random text (St)t∈N0 is written S�

t := St . . . St+�−1.
In finite-memory text models, it is not sufficient to look at strings S�

t only,
but we simultaneously need to keep track of the context. To shorten notation,
we define Xt := (S�

t , Ct); so Xt = (w, c) means that word w ∈ Σ� starts at
position t in S, and before generating its first letter, we are in context c, i.e.,
S�

t = w and Ct = c. We say that “word w occurs in context c at position t”.
Furthermore, we define X :=

{
(w, c) ∈ W × C : limt→∞ P

(
Xt = (w, c)

)
> 0
}

.
Restricting attention to X is sufficient as pairs (w, c) with zero occurrence prob-
ability do not contribute to the expected clump size ψ (cf. Definition 2). To
derive a formula for ψ, we need several definitions.

Definition 3 (Overlap probability function). The overlap probability func-
tion κ : X × X → [0, 1] is defined by

κ
(
(w1, c1), (w2, c2)

)
:=

�−1∑
i=1

P
(
Xt+i = (w2, c2), S�

t+i−1, . . . , S
�
t+1 /∈ W |Xt = (w1, c1)

)
.

By definition of finite-memory text models, the involved conditional probabilities
do not depend on t.

Intuitively, κ
(
(w1, c1), (w2, c2)

)
is the probability that, having seen w1 in context

c1, there follows another word from W in the same clump and that the next such
word is w2 in context c2.

Example 2 (Overlap probability function). Let Σ = {A, B} and consider an i.i.d.
text model, that means a finite-memory text model with only one context c0.
Let the character probabilities be given by pA = 0.1, pB = 0.9. Let further W :=
{AAA, AAB, ABA}. We obtain κ

(
(AAA, c0), (AAA, c0)

)
= 0.1, κ

(
(AAA, c0), (AAB, c0)

)
=

0.9, and κ
(
(AAA, c0), (ABA, c0)

)
= 0. The last probability is zero as ABA cannot

right-overlap AAA without first creating an occurrence of AAB.

It is useful to view κ as a matrix. Thus, we define a bijective mapping ι :
X → {0, . . . , |X | − 1} and denote the resulting matrix as overlap matrix K =(
kι(w,c),ι(w′,c′)

) ∈ R|X |×|X |, where kι(w,c),ι(w′,c′) := κ
(
(w, c), (w′, c′)

)
. As all re-

sults hold independent of the choice of ι, we use pairs (w, c) ∈ X as indices.
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Definition 4 (Word and clump start distributions). The word distribu-
tion vector, denoted |p〉 =

(
p(w,c)

) ∈ R|X |, is given by

p(w,c) := lim
t→∞

P
(
Xt = (w, c) |S�

t ∈ W) .

It is the equilibrium probability to see word w in context c, given that a word
from W is seen. The clump start distribution vector

∣∣pstart
〉

=
(
pstart
(w,c)

)
∈ R|X |

is given by

pstart
(w,c) := lim

t→∞
P
(
Xt = (w, c) |S�

t ∈ W , S�
t−1, . . . , S

�
t−�+1 /∈ W) . (3)

It is the equilibrium probability to see word w in context c, given that a word
from W is seen and starts a clump of such words.

Theorem 1 (Expected clump size). Let a pattern set W ⊂ Σ� be given such
that ‖K‖∞ < 1. Then, its expected clump size is finite and given by

ψ =
〈
pstart

∣∣(1− K)−1
∣∣1〉 =

1
1 − 〈p|K|1〉 .

The first equality is not surprising, and similar formulas have been known. The
second equality, to our knowledge, is new and our first main result. To prove the
theorem, we need additional definitions and an auxiliary lemma.

Definition 5 (Clump end vector). The clump end vector, denoted |f〉 =(
f(w,c)

) ∈ Rm, is given by

f(w,c) := P
(
S�

t+1, . . . , S
�
t+�−1 /∈ W |Xt = (w, c)

)
,

which is the conditional probability that, when seeing word w in context c, no
further word from W follows in the same clump. Here f(w,c) does not depend on
t due to conditioning on Ct = c.

We express f in terms of the overlap probability matrix:

f(w,c) = 1 −
∑

(w′,c′)∈X
k(w,c),(w′,c′) or |f〉 = (1 − K)|1〉. (4)

Definition 6 (Backward overlap function and matrix). The backward
overlap function ←−κ : X × X → [0, 1] is defined by

←−κ ((w1, c1), (w2, c2)
)

:=

lim
t→∞

�−1∑
i=1

P
(
Xt−i = (w2, c2), S�

t−i+1, . . . , S
�
t−1 /∈ W |Xt = (w1, c1)

)
.

Intuitively, ←−κ ((w1, c1), (w2, c2)
)

is the equilibrium probability that, observing w1
in context c1, there exists a preceding word from W in the same clump and that
the immediately preceding such word is w2 in context c2. Note the symmetry to
Definition 3; however, the conditional probability may depend on t, so we take
the equilibrium limit. The backward overlap matrix

←−
K is defined accordingly.
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Lemma 1. For all (w1, c1), (w2, c2) ∈ X ,

p(w1,c1)k(w1,c1),(w2,c2) = p(w2,c2)
←−
k (w2,c2),(w1,c1).

This is a “detailed balance” between p, K and
←−
K : The equilibrium probability

of seeing a word-context pair (w1, c1) followed by (w2, c2) in the same clump
equals the equilibrium probability of (w2, c2) preceded by (w1, c1). It can be
verified directly from the definitions.

Proof (Theorem 1, first part). Every clump can be uniquely decomposed into a
sequence of overlapping occurrences of words from W : A clump of size z starts
with a word-context pair x1 = (w1, c1) ∈ X , and makes z − 1 transitions to
following word-context pairs xj = (wj , cj). The transition probabilities are given
by the corresponding entries of K. The clump ends with a word-context pair
xz = (wz , cz). In equilibrium,

lim
i→∞

P(Zi = z) =
∑
x1

· · ·
∑
xz

pstart
x1

kx1,x2 · · · kxz−1,xz fxz = 〈pstart|Kz−1|f〉;

ψ = lim
i→∞

E(Zi) =
∞∑

z=1

z · 〈pstart|Kz−1|f〉 = 〈pstart|
( ∞∑

z=1

zKz−1
)
|f〉 (5)

= 〈pstart|
( ∞∑

z=0

Kz
)2

|f〉 = 〈pstart| (1− K)−2 |f〉 (6)

= 〈pstart| (1− K)−1 |1〉, (7)

where the rearrangement from (5) to (6) is allowed as both series converge ab-
solutely because ‖K‖∞ < 1. Equation (6) uses the value of a geometric series of
matrices (see [22], Proposition 9.4.13) and (6)=(7) follows from (4). ��

Proof (Theorem 1, second part). We now rewrite |pstart〉:

pstart
(w,c) = lim

t→∞
P
(
Xt =(w, c)

∣∣S�
t ∈ W , S�

t−1, . . . , S
�
t−�+1 /∈ W)

= lim
t→∞

P
(
Xt =(w, c), S�

t−1, . . . , S
�
t−�+1 /∈ W)

P
(
S�

t ∈ W , S�
t−1, . . . , S

�
t−�+1 /∈ W)

= lim
t→∞

P
(
S�

t−1, . . . , S
�
t−�+1 /∈ W ∣∣Xt = (w, c)

)
P
(
Xt =(w, c)

)∑
(w1,c1) P

(
S�

t−1, . . . , S
�
t−�+1 /∈ W ∣∣Xt =(w1, c1)

)
P
(
Xt =(w1, c1)

)
=

(
1 −∑(w′,c′)

←−
k (w,c),(w′,c′)

)
· p(w,c)∑

(w1,c1)

(
1 −∑(w2,c2)

←−
k (w1,c1),(w2,c2)

)
· p(w1,c1)

(8)

=
p(w,c) −

∑
(w′,c′) p(w′,c′)k(w′,c′),(w,c)∑

(w1,c1)

(
p(w1,c1) −

∑
(w2,c2) p(w2,c2)k(w2,c2),(w1,c1)

) , (9)
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where (8)=(9) follows from Lemma 1. Thus

〈pstart| =
〈p|(1− K)

〈p|(1 − K)|1〉 =
〈p|(1 − K)
1 − 〈p|K|1〉 .

The proof is completed by combining the above expression with (7) and noting
that 〈p|1〉 = 1, since p is a probability distribution. ��

Weighted Patterns. We defined the clump size as the number of occurrences
of words from W in a clump. That means, we assigned a weight of 1 to each
occurrence. In this section, we permit individual weights for each w ∈ W by
defining a weight function ν : W → R. This weighted case is important when
patterns over the DNA alphabet are considered and the reverse complement is
taken into account.

Example 3. Consider the DNA alphabet Σ = {A, C, G, T} and the pattern set
W = {AAT, ACT, ATT}. Adding all reverse complements, we obtain the multiset
W ′ = {{AAT, ACT, ATT, ATT, AGT, AAT}} and thus weights ν(AAT) = 2, ν(ATT) = 2,
ν(ACT) = 1, and ν(AGT) = 1.

Definition 7 (Weight vector and expected clump weight). We define the
weight vector |v〉 ∈ R|X | by v(w,c) := ν(w) for (w, c) ∈ X . For a given weight
vector |v〉, the random variable Wi denotes the weight of the i-th clump, i.e. the
sum of the weights of the words forming the clump. The expected clump weight
is defined as ψv := limi→∞ E(Wi).

Theorem 2 (Expected clump weight). Given a pattern set W ⊂ Σ� such
that ‖K‖∞ < 1 and a weight vector |v〉, then the expected clump weight is

ψv = 〈p|v〉 · ψ =
〈p|v〉

1 − 〈p|K|1〉 < ∞.

Proof (Sketch). The idea is to combine a scaling and a homogeneity argument:
The (asymptotic) expected number of occurrences of W per text character, say
μ = 〈p|1〉·μ, changes to 〈p|v〉·μ when weights are assigned, as p is the equilibrium
distribution restricted to W . In equilibrium, all clumps have the same stochastic
properties, and the distribution of words from W in clumps is p as well, because
by definition words only occur in clumps. Hence the expected clump weight is
〈p|v〉 · ψ, and the result follows from Theorem 1. ��

4 Bounding the Expected Clump Size of Motifs

We assume a motif space M ⊆ Λ� to be defined by giving constraints on the
number of allowed wildcard characters. For example, we might use the motif
space given in [11], defined by � = 10 and allowing at most six g ∈ Λ with
|g| = 2 (IUPAC codes R, Y, W, S, K, M), zero characters with |g| = 3 (IUPAC
codes B, D, H, V), and at most two characters with |g| = 4 (IUPAC code N). This
space covers many biologically relevant motifs (see [11]).
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The following theorem translates the results from the last section into bounds
for the expected clump size of IUPAC motifs. We assume that text model and
all motifs are such that the overlap probability matrix K for each motif satisfies
‖K‖∞ < 1, which means that there is zero probability for infinitely large clumps.

Theorem 3. Consider a text model that converges to an equilibrium context
distribution. Let a motif m ∈ Λ� and a bound P < 1 be given such that

Bm := max
c∈C

�−1∑
i=1

P
(
S�

t+i � m |S�
t � m, Ct = c

) ≤ P, (10)

where Bm is independent of t due to conditioning on Ct.
Then, the expected clump size ψm satisfies ψm ≤ 1/(1 − Bm) ≤ 1/(1 − P ).

Here Bm, and thus also P , are upper bounds for the conditional probability that
a given occurrence of m is right-overlapped by another occurrence.

Proof. Let W := {w ∈ Σ� : w � m}. Applying the definitions of |p〉 and K,

〈p|K|1〉 =
∑

(w,c)∈X

∑
(w′,c′)∈X

p(w,c) k(w,c),(w′,c′)

= lim
t→∞

∑
(w,c)

∑
(w′,c′)

�−1∑
i=1

P
(
Xt+i = (w′, c′), S�

t+i−1, . . . , S
�
t+1 /∈ W ∣∣Xt = (w, c)

)
· P(Xt = (w, c)

∣∣S�
t � m

)
≤ lim

t→∞

∑
(w,c)

∑
(w′,c′)

�−1∑
i=1

P
(
Xt+i = (w′, c′)

∣∣Xt = (w, c)
)

P
(
Xt = (w, c)

∣∣S�
t � m

)
= lim

t→∞

∑
(w,c)

∑
(w′,c′)

�−1∑
i=1

P
(
Xt+i = (w′, c′), Xt = (w, c) | S�

t � m
)

= lim
t→∞

�−1∑
i=1

P
(
S�

t+i � m |S�
t � m

)
= lim

t→∞

∑
c∈C

(
�−1∑
i=1

P
(
S�

t+i � m |S�
t � m, Ct = c

)) · P
(
Ct = c |S�

t � m
)

≤ Bm · lim
t→∞

∑
c∈C

P
(
Ct = c |S�

t � m
)

= Bm · 1 ≤ P < 1 .

Applying Theorem 1 yields the claimed result, as x "→ 1/(1−x) is increasing. ��
Given only a length-�′ motif prefix m0 . . .m�′−1, we derive a bound P for Theo-
rem 3 that is valid for all possible continuations of this prefix within M. To be
useful in motif discovery as sketched in Section 2, fast calculation of the bound
must be possible. We approach the problem by computing bounds P1, . . . , P�−1
for each possible shift separately such that
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Fig. 1. Different overlap situations of partially known motifs are illustrated. The first
part of the motif (gray) is known, while the second part (white) is unknown. Left: Shift
of 1, the aligned known IUPAC characters must be compatible. Middle: Shift of 4, no
known characters align, but the diagonal lines emphasize that, although unknown, the
characters in the top motif are the same as the ones in the bottom motif. Right: Shift
of 6, the known characters right of the previous occurrence must be present.

max
m�′ ,...,m�−1∈Λ: m∈M

max
c∈C

P
(
S�

t+i � m |S�
t � m, Ct = c

) ≤ Pi .

Then, P := P1 + . . . + P�−1 is a valid bound, i.e., P ≥ Bm for all continua-
tions m�′ . . . m�−1 of m0 . . . m�′−1.

Computing the bound Pi for shift i. There are different strategies for obtaining
good bounds for different shifts.

For short shifts, where many known IUPAC characters overlap (Figure 1, left),
we can bound the conditional probability that text character St matches the
intersection of the overlapping IUPAC characters. For this, we use a precomputed
table Pmax of worst-case conditional probabilities (with respect to all possible
contexts), and define for g, g′ ∈ Λ

Pmax(g | g′) := max
c∈C

P(St � g |St � g′, Ct = c) ,

a quantity that does not depend on t by Definition 1. Note that for incompatible
IUPAC characters, i.e. g ∩ g′ = ∅, an overlap is impossible and Pmax(g | g′) = 0.

The strategy of considering every position separately does not work effectively
for longer shifts, as shown in Figure 1 (middle). For each position, the unknown
character can be chosen unfavorably, such that a probability bound equals 1.
To obtain a meaningful bound, we have to take into account that the top and
bottom motifs are the same, and therefore unknown positions cannot be chosen
independently. The idea is to partition the columns into groups such that each
top character is the bottom character in the next column in that group, as
illustrated in Figure 2. The groups defined in that way can then be bounded
jointly. To this end, we precompute so-called telescope bounds for each (initial)
IUPAC character: For all g ∈ Λ, define

Ptel(g) := max
M∈Λ∗: M0=g

⎛⎝|M|−2∏
i=0

Pmax(Mi|Mi+1)

⎞⎠ Pmax(M|M|−1|Σ) .

In the example in Figure 2, we bound the telescope product for M = m2m4m6
by Ptel(m2) and the product for M = m3m5m7 by Ptel(m3). To compute these
bounds, we need not check all M ∈ Λ∗, but can restrict our attention to those M
with Mi � Mi+1 for 0 ≤ i < |M |−1. It can be shown that the maximum over all
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A A A BBB

m0 m1 m2 m3 m4 m5 m6 m7

m0 m1 m2 m3 m4 m5 m6 m7

Fig. 2. For each set of columns labeled with the same letter (A or B), a bound can be
obtained. For group A, a bound is given by Pmax(m2 |m4)Pmax(m4 |m6)Pmax(m6 |Σ).
For group B, it is given by Pmax(m3 |m5)Pmax(m5 |m7)Pmax(m7 |Σ). Assuming that
the characters m4, . . . , m7 are unknown (white background), the maximum over all
possible values of m4, . . . , m7 must be used.

M ∈ Λ∗ is attained for an M with this property (proof omitted). Thus, Ptel(g)
can be precomputed for all g ∈ Λ. In the i.i.d. model, the telescope bound takes
a particularly simple form because of cancellations: Ptel(g) = limt→∞ P(St � g),
the equilibrium probability of g.

In the right part of Figure 1, some of the known characters do not overlap the
previous motif occurrence. For such a character g, the bound Pmax(g|Σ) can be
used. Based on the motif space and its constraints on the multiplicity of wildcard
characters, the approach may also apply to columns where unknown characters
do not overlap the previous occurrence. When, for example, the known characters
are ANNT and at most two wildcards are allowed, the unknown characters must
be from Σ = {A, C, G, T} and the bound maxσ∈Σ Pmax(σ|Σ) can be used.

Depending on the motif prefix and the shift i, the above three ideas can
be combined in different ways to produce a bound Pi. There are several case
distinctions, which we omit in this extended abstract. Instead, we exemplarily
consider the situation in Figure 2 (i.e. � = 8 and shift 2) for the motif prefix
ARRA and calculate bound P2. Recall that R = {A, G}. In two columns, known
characters overlap and we use bounds from Pmax for them. For the groups A and
B, as shown in Figure 2, we employ the telescope bounds. Assuming an i.i.d. text
model with uniform character distribution, we get

P2 = Pmax(A|R) · Pmax(R|A) · Ptel(R) · Ptel(A) =
1
2
· 1 · 1

2
· 1
4

=
1
16

.

Calculations for the other shifts yield P1 = 1/8, P3 = 1/16, and P4 = P5 =
P6 = P7 = 1/64. We obtain P = P1 + . . . + P7 = 5/16 and a bound for the
expected clump size of 1/(1−P ) = 16/11 ≈ 1.45. For all possible continuations,
the largest exact expected clump size is 1.3144 (for the motif ARRANNNN).

So far, we discussed only bounds for single IUPAC motifs. By virtue of The-
orem 2, jointly handling a motif and its reverse complement poses no principal
difficulties but involves several more case distinctions. Again, we omit the details
in this extended abstract.
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5 Experiments and Conclusions

Using the new bounds, we improve the IUPAC motif discovery algorithm pre-
sented in [11], where we assessed the quality of results and compared it to other
algorithms. We only discuss runtimes here. Because of new compute cluster hard-
ware (quad-core CPUs at 2.66 GHz), we re-ran the old experiment (twice as fast)
to report comparable results in Table 1.

Table 1. Running times of M. tuberculosis motif discovery in non-coding regions using
different algorithms, text models and restrictions. Times are single-core hours, i.e.
running the algorithm on a single core would have taken this time. The p-value bound
was given as 10−50. In some cases, the search was restricted to motifs with 100 expected
occurrences to avoid highly degenerate motifs and to reduce runtime. The motif space
was chosen as in [11], defined by a motif length of 10, allowing at most six g ∈ Λ with
|g| = 2, zero with |g| = 3, and at most two with |g| = 4. (Runtime with * is estimated
based on searching 2% of the motif space.)

Text model Expectation Runtime of Runtime of Speed-up
restriction original alg. improved alg. factor

i.i.d. ≤ 100 127.2 h 21.2 h 6x
i.i.d. none *56,000.0 h 412.5 h 135x
Markov order 1 ≤ 100 not possible 118.3 h —
Markov order 2 ≤ 100 not possible 800.3 h —
Markov order 3 ≤ 100 not possible 6,364.4 h —

Formerly, one key to feasibility was bounding the expected number of motif
occurrences by 100 in addition to setting a strict p-value bound of 10−50. This
restriction is no longer necessary. Even with the restriction, a speed-up factor of
6 is observed. Without the restriction, time is reduced by a factor of 135 with the
new bounds. This shows that the new bounds are especially effective for more
degenerate motifs. Additionally, direct optimization under a Markov text model
was not feasible before.

As far as we are aware, our method is the only practically efficient algorithm
that finds provably optimal IUPAC motifs in general finite-memory text models.
Runtimes of several hundred single-core hours pose no practical problem on a
medium sized cluster. Topics for future work are further engineering and fine-
tuning the implementation, e.g. on massively-parallel hardware like GPUs.

References

1. Tompa, M., Li, N., Bailey, T.L., et al.: Assessing computational tools for the dis-
covery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144
(2005)

2. Sandve, G.K., Drabløs, F.: A survey of motif discovery methods in an integrated
framework. Biology Direct 1(1), 11 (2006)

3. Das, M., Dai, H.K.: A survey of DNA motif finding algorithms. BMC Bioinformat-
ics 8(suppl. 7), S21 (2007)



Speeding Up Exact Motif Discovery by Bounding the Expected Clump Size 349

4. Narlikar, L., Ovcharenko, I.: Identifying regulatory elements in eukaryotic genomes.
Briefings in Functional Genomics and Proteomics 8(4), 215–230 (2009)

5. Bailey, T.L., Williams, N., Misleh, C., Li, W.W.: MEME: discovering and analyzing
DNA and protein sequence motifs. Nucleic Acids Research 34(suppl.2), W369–
W373 (2006)

6. Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statisti-
cally significant alignments of multiple sequences. Bioinformatics 15(7-8), 563–577
(1999)

7. Rahmann, S., Marschall, T., Behler, F., Kramer, O.: Modeling evolutionary fitness
for DNA motif discovery. In: Rothlauf, F. (ed.) Genetic and Evolutionary Compu-
tation Conference (GECCO), Montreal, Québec, Canada, pp. 225–232. ACM, New
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Abstract. Although computationally aligning sequence is a crucial step in the
vast majority of comparative genomics studies our understanding of alignment
biases still needs to be improved. To infer true structural or homologous regions
computational alignments need further evaluation. It has been shown that the
accuracy of aligned positions can drop substantially in particular around gaps.
Here we focus on re-evaluation of score-based alignments with affine gap penalty
costs. We exploit their relationships with pair hidden Markov models and de-
velop efficient algorithms by which to identify gaps which are significant in terms
of length and multiplicity. We evaluate our statistics with respect to the well-
established structural alignments from SABmark and find that indel reliability
substantially increases with their significance in particular in worst-case twilight
zone alignments. This points out that our statistics can reliably complement other
methods which mostly focus on the reliability of match positions.

1 Introduction

Having been introduced over three decades ago [20] the sequence-alignment problem
has remained one of the most actively studied topics in computational biology. While
the vast majority of comparative genomics studies crucially depend on alignment qual-
ity inaccuracies abundantly occur. This can have detrimental effects in all kinds of
downstream analyses [16]. Still, our understanding of the involved biases remains rather
rudimentary [14, 17]. That different methods often yield contradictory statements [8]
further establishes the need for further investigations into the essence of alignment bi-
ases and their consequences [14].

While the sequence-alignment problem virtually is that of inferring the correct place-
ment of gaps, insertions and deletions (indels) have remained the most unreliable parts
of the alignments. For example, Lunter et al. [17], in a whole-genome alignment study,
observe 96% alignment accuracy for alignment positions which are far away from gaps
while accuracy drops down to 56% when considering positions closely surrounding
gaps. They also observe a downward bias in the number of inferred indels which is due
to effects termed gap attraction and gap annihilation. Decreased numbers of inferred
indels were equally observed in other recent studies [15, 23]. This points out that num-
bers and size of computationally inferred indels can make statements about alignment
quality.

� Joint first authorship.
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The purpose of this paper is to systematically address such questions. We develop a
statistical framework by which to efficiently compute probabilities of the type

P(Id,A(x, y) ≥ k |LA(x, y) = n, SimA(x, y) ∈ [σ1, σ2]) (1)

where (x, y) has been randomly sampled from an appropriate pool of protein pairs. In
the following pools contain protein pairs which have a (either false or true positive)
structural SABMark [27] (see below) alignment. In case of, for example, all pairs of
human proteins, (1) would act as null distribution for human. A is a local or global op-
timal, score-based alignment procedure with affine gap penalties such as the affine gap
cost version of the Needleman-Wunsch (NW) algorithm [20,12] or the Smith-Waterman
(SW) algorithm [29, 31], LA(x, y) is the length of the alignment, SimA(x, y) denotes
alignment similarity that is the fraction of perfectly matching and “well-behaved” mis-
matches vs. ”bad” mismatches (as measured in terms of biochemical affinity [21]) and
gap positions. Id,A(x, y) finally denotes the length of the d-th longest gap in the align-
ment. In summary, (1) can be read as the probability that a NW resp. SW alignment
of length n and similarity between σ1 and σ2 contains at least d gaps of length k and
the reasoning is that gaps which make part of significant such gap combinations are
more likely to reflect true indels. Significance is determined conditioned on the length
L(x, y) of the alignment as well as alignment similarity Sim(x, y). The reasoning be-
hind this is that longer alignments are more likely to accumulate spurious indels such
that only increased gap length and multiplicity are significant signs of true indels. In-
creased similarity Sim(x, y), however, indicates that already shorter and less gaps are
more likely to reflect true indels simply because an alignment of high similarity is an
overall more trustworthy statement. In summary, we provide a statistically sound, sys-
tematic approach to answering questions such as “Am I to believe that 4 gaps of size at
least 6 in an alignment of length 200 and similarity 50 are likely to reflect true indels”
as motivated by the recent studies [15, 17, 23].

We opted to address these questions for score-based alignments with affine gap costs
for two reasons:

1. To employ score-based such alignments still is a most popular option among most
bioinformatics practitioners.

2. Such alignments can be alternatively viewed as Viterbi paths in pair HMMs. While
exact statistics on Viterbi paths are hard to obtain and beyond the scope of this study
we obtain reasonable approximations by “Viterbi training” sensibly modified versions
of the hidden Markov chains which underlie the pair HMMs.

We evaluate our statistics on the well-established SABmark [27] alignments. SAB-
mark is a database of structurally related proteins which cover the entire known fold
space. The “Twilight Zone set” was particularly designed to represent the worst case
scenario for sequence alignment. While we obtain good results also in the more be-
nign “Superfamilies set” of alignments it is that worst case scenario of twilight zone
alignments where our statistics prove their particular usefulness. Here significance of
gap multiplicity is crucial while significance of indel length alone does not necessarily
indicate enhanced indel quality.

Related Work: [18] re-evaluate match (but not indel) positions in global score-based
alignments by obtaining reliability scores from suboptimal alignments. Similarly, [28]
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derive reliability scores also for indel positions in global score-based alignments. How-
ever, the method presented in [28] reportedly only works in the case of more than 30%
sequence identity. Related work where structural profile information is used is [30]
whereas [6] re-align rather than re-evaluate.

Posterior decoding algorithms (see e.g. [9, 17, 3] for most recent approaches) are re-
lated to re-evaluation of alignments insofar as posterior probabilities can be interpreted
as reliability scores. However, how to score indels as a whole by way of posterior decod-
ing does not have a straightforward answer. We are aware of the potential advantages
inherent to posterior decoding algorithms—it is work in progress of ours to combine the
ideas of pair HMM based posterior decoding aligners with the ideas from this study1.

To assess statistical significance of alignment phenomena is certainly related to the
vastly used Altschul-Dembo-Karlin statistics [13, 7, 1] where score significance serves
as an indicator of protein homology.

To devise computational indel models still remains an area of active research (e.g. [24,
5, 4, 17, 19]). However, the community has not yet come to a final conclusion.

Last but not least, the algorithms presented here are related to the algorithms devel-
oped in [25] where the special case of d = 1 for only global alignments in (2) was
treated to explore the relationship of indel length and functional divergence. The ad-
vances achieved here are to provide null models also for the more complex case of local
alignments and to devise a dynamic programming approach also for the case d > 1
which required to develop generalized inclusion-exclusion arguments.

Just like in [25] note that empirical statistics approaches fail for the same reasons
that have justified the development of the Altschul-Dembo-Karlin statistics: sizes of
samples are usually much too small. Here samples (indels in alignments) are subdivided
into bins of equal alignment similarity and then further into bins of equal length n and
d-th longest indel size k.

1.1 Summary of Contributions

As above-mentioned, our work is centered around computation of probabilities

P(Id(x, y) ≥ k |L(x, y) = n, Sim(x, y) ∈ [σ1, σ2]). (2)

We refer to this problem as Multiple Indel Length Problem (MILP) in the following.
Our contributions then are as follows:

1. We are the first ones to address this problem and derive appropriate Markov chain
based null models from the pair HMMs which underlie the NW resp. SW algorithms to
yield approximations for the probabilities (2).

2. Despite having a natural formulation, the inherent Markov chain problem had no
known efficient solution. We present the first efficient algorithm to solve it.

3. We demonstrate the usefulness of such statistics by showing that significant gaps
in both global and local alignments indicate increased reliability in terms of identifying
true structural indel positions. This became particularly obvious for worst-case twilight
zone alignments of at most 25% sequence identity.

1 Note that although we derive statistical scores for indels as a whole our evaluation in the
Results section will refer to counting individual indel positions.
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(a) Standard pair HMM

(b) Markov Chain

Fig. 1. Standard pair HMM corresponding to local Smith-Waterman alignments and the Markov
Chain whose generative statistics, after Viterbi training, approximate the Viterbi statistics of the
pair HMM for local alignments

4. Thereby we deliver statistical evidence of that computational alignments are bi-
ased in terms of numbers and sizes of gaps as described in [17, 23]. In particular too
little numbers of gaps can reflect alignment artifacts.

5. Re-evaluation of indels in score-based both local and global alignments had not
been explicitly addressed before, in particular, reliable solutions for worst-case twilight
zone alignments were missing. Our work adds to (rather than competes with) the above-
mentioned related work.

In summary, we have complemented extant methods for score-based alignment re-
evaluation. Note that none of the existing methods explicitly addresses indel reliability
but rather focus on the reliability of substitutions.

2 Methods

2.1 Pair HMMs and Viterbi Path Statistics

In the following we only treat the more complex case of local Smith-Waterman align-
ments. See [25] for the case of global Needleman-Wunsch like alignments where in the
following the statistical models derived in [25] have to be, mutatis mutandis, plugged
into the computations of the subsequent subsections.

A local Smith-Waterman alignment with affine gap penalties of two sequences x =
x1...xw, y = y1...yz is associated with the most likely sequence of hidden states (i.e. the
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Viterbi path) in the pair HMM of Fig. 1(a) [10]. The path of hidden states translates to
an alignment of the two sequences by emitting the necessary symbols along the run.
Statistics on Viterbi paths in HMMs pose hard mathematical problems and have not
been fully understood. In analogy to [25], we construct a Markov chain whose com-
mon, generative statistics mimick the Viterbi statistics of interest here. Hence probabil-
ities derived from this Markov chain serve as approximations of (2). We do this by the
following steps:

1. We take the Markov chain of the pair HMM in Fig. 1(a) as a template.
2. We add two match states M1, M3. The original match state is M2.
3. We merge the initial resp. terminal regions into one start resp. end state.
4. We collapse states X and Y into one indel state I .

The Markov chain approach is justified by the fact that consecutive runs in Viterbi
paths are approximately governed by the geometric distribution which is precisely what
a Markov chain reflects. The second point is to take into account the non-stationary
character of the original Markov chain. Note that in local alignments, initial and final
consecutive stretches of (mis)matches are longer than intermediate (mis)match stretches
which translates to q1, q6 > q5 in Fig. 1(a). See an extended version of this paper
[26] for more detailed discussions and tables. Point 3 merely reflects that we are only
interested in statistics on alignment regions. Point 4 finally accounts for that we do
not make a difference between insertions and deletions due to the involved symmetry
(relative to exchanging sequences).

2.2 Algorithmic Solution of the MILP

We define Cn,k,d to be the set of sequences over the alphabet B, M1, I, M2, M3, E (for
Begin, Match1, Indel, Match2, Match3 and End) of length n that contain at least d con-
secutive I stretches of length at least k. Let An := {Xn = M3, Xn+1 = E} be the
set of sequences with an alignment region of length n. We then suggest the following
procedure to compute approximations of the probabilities (2) where T (σ1, σ2) is sup-
posed to be a pool of protein pairs (x, y) whose alignments exhibit alignment similarity
Sim(x, y) ∈ [σ1, σ2].

1: Compute alignments for all sequence pairs in T (σ1, σ2).
2: Infer parameters q1, q2, q3, q4, q5, q6 of the Markov chain by Viterbi training it

with the alignments.
3: n ← length of the alignment of x and y
4: Compute P(Cn,k,d∩An) as well as P(An), the probabilities that the Markov chain

of Fig. 1(b) generates sequences from Cn,k,d ∩ An and An

5: Output

P(Cn,k,d |An) =
P(Cn,k,d ∩ An)

P(An)
(3)

as an approximation for (2).
The idea of step 1 and 2 is to specifically train the Markov chain to gener-

ate alignments from the pool T (σ2, σ2). In our setting, Viterbi training translates to
counting M1-to-M1, M1-to-I , I-to-I , I-to-M2, M2-to-M2 and M3-to-M3 transitions
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in the alignments under consideration to provide maximum likelihood estimates for
q1, q2, q3, q4, q5 and q6.

2.3 Efficient Computation of P(Cn,k,d ∩ An)

The problem of computing probabilities of the type (2) has been made the problem of
computing the probability that the Markov chain generates sequences from Cn,k,d∩An

and An. While computing P(An) = P(Xn = M3) · P(Xn+1 = E |Xn = M3) is an
elementary computation, the question of efficient computation and/or closed formulas
for probabilities of the type P(Cn,k,d∩An) had not been addressed in the mathematical
literature and poses a last, involved problem.

The approach taken here is related to the one taken in [25], which treated the special
case of single consecutive runs (i.e. d = 1) in the context of the two-state Markov chains
which reflect null models for global alignments. We generalize this in two aspects.
First, we provide a solution for more than two states (our approach applies for arbitrary
numbers of states). Second, we show how to deal with multiple runs.

The probability event design trick inherent to our solution was adopted from that
of [22]. The solution provided in [22] can be used for the (rather irrelevant) case of
global alignments with linear gap penalties, i.e. gap opening and extension are identi-
cally scored. See also [11, 2] for related mathematical treatments of the i.i.d. case.

In the following, let i, j ∈ {B, M1, I, M2, M3, E} be indices ranging over the alpha-
bet of Markov chain states. Let ei ∈ R6 be the standard basis vector of R6 having a 1
in the i-th component and zero elsewhere. For example, eI = (0, 0, 1, 0, 0, 0), eM3 =
(0, 0, 0, 0, 1, 0). We furthermore denote the standard scalar product on R6 by 〈. , .〉.

Efficient computation of the probabilities P(Cn,k,d ∩ An) is obtained by a dynamic
programming approach. As usual, we collect the Markov chain parameters (in accor-
dance with Fig. 1(b)) into a state transition probability matrix

P = (pij := P(Xt = i |Xt−1 = j))i,j∈{B,M1,I,M2,M3,E} (4)

such that, for example pI,M3 = 1− q3− q4 and an initial probability distribution vector
π = eB = (1, 0, 0, 0, 0, 0)T . The initial distribution reflects that we start an alignment
from the ’Begin’ state. More formally, P(X0 = B) = 1. For example, according to the
laws that govern a Markov chain, the probability of being in the indel state I at position
t in a sequence generated by the Markov chain is

P(Xt = I) = 〈eI , P
tπ〉 = 〈eI , P

teB〉. (5)

It can be seen that naive approaches to computing P(Cn,k,d ∩ An) result in runtimes
that are exponential in n, the length of the alignments, which is infeasible. Efficient
computation of these probabilities is helped by adopting the event design trick of [22].
In detail, we define

Dt,k := {Xt = I, ..., Xt+k−1 = I, Xt+k �= I} (6)

to be the set of sequences that have a run of state I of length k that stretches from
positions t to t + k − 1 and ends at position t + k − 1, that is, the run is followed by a
visit of state different from I at position t + k.
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We further define

πI :=
1

(1 − pI I)
· (pBI, pM1I, 0, pM2I, pM3I, pEI)T (7)

which can be interpreted as the state the Markov chain is in if we know that the Markov
chain has left state I at the time step before. Consider P(Xt+s = I |Xt−1 = I, Xt �= I)
as the probability that the Markov chain is in state I at period t + s after having been
in the state πI at period t (note that this probability is independent of t as we deal with
a homogeneous Markov chain). Similarly P(At+k+s |Dt,k) is the probability that the
Markov chain transits from state M3 to state E at position t + k + s + 1 while it has a
run of state I of length k that stretches from positions t to t+ k− 1 and ends at position
t + k − 1. Lastly, we introduce the variables

Ql,m :=
∑

1≤s1,...,sm≤l
s1+...+sm=l

P(Xs1 = I)
m∏

i=2

P(Xt+si = I |Xt−1 = I, Xt �= I) (8)

RL,m :=
L∑

l=m

Ql,mP(At+k+L−l |Dt,k), 1 ≤ m ≤ L ≤ n (9)

for 1 ≤ m ≤ l ≤ n where the sum reflects summing over partitions of the integer l into
m positive, not necessarily different, integers si. We then obtain the following lemma
a proof of which needs a generalized inclusion-exlusion argument. See an extended
version of this paper [26] for the proof.

Lemma 1.

P(Cn,k,d ∩ An) =
� n

k+1 �∑
m=1

(−1)m+d

(
m − 1
d − 1

)
· (pk−1

II (1 − pII))
m · Rn−mk,m. (10)

The consequences of the above considerations can be summarized in the following
theorem.

Theorem 1. A full table of values P(Cn,k,d ∩ An), k ≤ n ≤ N can be computed in
O(N3) runtime.

Proof. Observing the recursive relationship

Ql,m =
l−m+1∑

s=1

P(Xt+s = I |Xt−1 = I, Xt �= I)Ql−s,m−1, m > 1 (11)

yields a standard dynamic programming procedure by which the ensemble of the Ql,m

and the RL,m (1 ≤ m ≤ l, L ≤ N ) can be computed in O(N3) runtime. This also
requires that the values P(Xs = I), P(Xt+s = I |Xt−1 = I, Xt �= I) have been
precomputed which can be done in time linear in N . After computation of the Ql,m

and the RL,m, computation of the P(Cn,k,d ∩ An), 1 ≤ k ≤ n ≤ N then equally
requires O(N3) time which follows from lemma 1. +
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Fig. 2. Precision-Recall curves for the different sets of computational alignments. Recall is low-
ered through lowering the significance threshold θ for the strategies SigD(θ) (θ = 1.0 for max-
imal recall of 1.0) and for raising indel length in the baseline strategy Const (length = 1 for
maximal recall of 1.0).

3 Results

Data. We downloaded both the “Superfamilies” (Sup) and “Twilight Zone” (Twi)
datasets together with their structural alignment information from SABmark 1.65 [27],
including the suggested false positive pairs (that is structurally unrelated, but apparently
similar sequences, see [27] for a detailed description). While Sup is a more benign set of
structural alignments where protein pairs can be assumed to be homologous and which
contains alignments of up to 50% identity, Twi is a worst case scenario of alignments
between only 0-25 % sequence identity where the presence of a common evolutionary
ancestor remains unclear.

To calculate pairwise global resp. local alignments we used the “GGSEARCH”
resp. ”LALIGN” tool from the FASTA sequence comparison package [21]. As a sub-
stitution matrix, BLOSUM50 (default) was used. GGSEARCH resp. LALIGN imple-
ment the classical Needleman-Wunsch (NW) resp. Smith-Waterman (SW) alignment
algorithm both with affine gap penalties. We subsequently discarded global resp. local
alignments of an e-value larger than 10.0 resp. 1.0, as suggested as a default threshold
setting [21], in order to ensure to only treat alignments which can be assumed not to be
entirely random.

We then subdivided the resulting 4 groups (NW Twi, NW Sup, SW Twi and SW
Sup) of computational alignments into pools of alignments of similarity in [σ, σ + 10]
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where σ ranged from 20 to 90. We then trained parameters (using also the false positive
SABmark alignments in order to obtain unbiased null models) for the 36 = 4 × 9
different Markov chains (2-state as in [25] resp. 6-state as described here for global
resp. local) and computed probability tables as described in the Methods section. After
computation of probability tables, false positive alignments were discarded. See [26]
for Markov chain parameters and plots.

The remaining (non false-positive) NW Twi, NW Sup, SW Twi and SW Sup align-
ments contained 179018, 407629, 20853 and 86233 gap positions contained in 122701,
276082, 17776 and 68513 gaps. In the global alignments this includes also initial and
end gaps.

3.1 Evaluation Strategies

Based on efficient computation of probabilities of the type (2) we devise strategies
SigD(θ) for predicting indel reliability in NW and SW alignments where D = 1, 4, 7.
Let K be the length of the L-th longest indel in the NW resp. SW alignment of proteins
x, y. In strategy SigD(θ), this indel is classified as reliable if

SigD(θ) : P(Imin(D,L)(x, y) ≥ K |L(x, y), Sim(x, y)) ≤ θ. (12)

In other words, we look up whether it is significant that an alignment of length L(x, y)
and similarity Sim(x, y) contains at least L resp. D, in case of D > L resp. D ≤
L, indels of size K . Note that in strategy Sig1(θ) that is for D = 1, since L ≥ 1
hence min(D, L) = 1, an indel of length K is evaluated as reliable if and only if the
indel is significantly long without considering its relationship with the other gaps in the
alignment. This is different for strategy Sig7(θ) where, for example, the 6-th longest
indel is evaluated as reliable if it is significant to have at least 6 indels of that length
(min(D, L) = 6) whereas the 8-th longest indel is supposed to be reliable if there are
at least 7 indels of that length (min(D, L) = 7). Note that in strategy Sig7(θ) already
shorter indels are classified as reliable in case that there are many indels of that length
in the alignment which is not the case in strategy Sig1(θ). Clearly, raising D beyond 7
might make sense. For sake of simplicity only, we restricted our attention to D = 1, 4, 7.

As a simple baseline method we suggest Const which considers an indel as reliable
if its length exceeds a constant threshold. Both raising the constant length threshold
in Const and lowering θ in SigD(θ) lead to reduced amounts of indels classified as
reliable.

Evaluation Measures. We found that for both global and local alignments further eval-
uation of gaps of length at most 4 and length greater than 30 (global) resp. 20 (local) did
not make much sense. See the extended version [26] for some basic statistics on such
gaps. However, for gaps of length ranging from 5 to 20 resp. 30 in local resp. global
alignments a significance analysis made sense.

We evaluated the indel positions in gaps of length 5 − 20 resp. 5 − 30 in local
resp. global alignments by defining a true positive (TP) to be a computational gap
position which is classified as reliable (meaning that it is found to be significant by
SigD(θ), D = 1, 4, 7 or long enough by Const) and coincides with a true structural
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Table 1. Relationship between Recall and θ (displayed as − log(θ)) for strategies SigD and indel
length (= IL) for strategy Const (= Con)

Recall − log(θ) IL −log(θ) IL − log(θ) IL −log(θ) IL
1.0 0.0 0.0 0.0 5 0.0 0.0 0.0 5 0.0 0.0 0.0 5 0.0 0.0 0.0 5

0.75 2.0 2.0 1.0 5 2.0 2.0 1.0 6 19.0 18.5 6.5 6 21.0 19.5 7.0 6
0.5 2.5 2.5 1.5 6 3.0 3.0 1.5 7 28.0 24.0 10.5 8 30.0 27.0 11.5 8

0.25 3.5 3.5 2.5 8 4.5 4.5 3.0 10 38.5 33.0 16.0 11 41.5 36.0 18.0 11
Sig7 Sig4 Sig1 Con Sig7 Sig4 Sig1 Con Sig7 Sig4 Sig1 Con Sig7 Sig4 Sig1 Con

SW Twi SW Sup NW Twi NW Sup

indel position in the reference structural alignment as provided by SABmark. Corre-
spondingly, a false positive (FP) is a gap position classified as reliable which cannot be
found in the reference alignment. A true negative (TN) is a gap position not classified
as reliable and not a structural indel position and a false negative (FN) is not classified
as reliable but refers to a true structural indel position. Recall, as usual, is calculated
as TP/(TP + FN) whereas Precision (also called PPV=Positive Predictive Value) is
calculated as TP/(TP + FP ).

3.2 Discussion of Results

Results are displayed in Figure 2 where we have plotted Precision vs. Recall while low-
ering θ for the strategies SigD(θ) and increasing indel length for the baseline method
Const. While Recall = 1.0 relates to θ = 1.0 in the strategies SigD maximal recall re-
lates to indel length 5 in the strategy Const. Table 1 displays further supporting statistics
on the relationship between choices of θ resp. indel length and Recall.

A first look reveals that indel reliability clearly increases for increasing indel length—
longer indels are more likely to contain true indel positions. However, further improve-
ments can be achieved by classifying indels as reliable according to significance. For the
Sup alignments improvements over the baseline method are only slight. For both local
and global alignments strategy Sig1 is an option in particular when it comes to achiev-
ing utmost precision which can be raised up to 0.8. For the Twi alignments differences
are obvious. More importantly, just considering indel length without evaluating multi-
plicity does not serve to achieve substantially increased Precision. Here, multiplicity is
decisive which in particular confirms the findings on twilight zone alignments reported
in [23]. In the Twi alignments Precision can be raised up to about 0.7. Note that [28]
achieve 0.7 Precision on both match and gap positions for structural alignments (not
from SABmark) of 25 − 30% identity while reporting that their evaluation does not
work for alignments of less than 25% identity which renders it not applicable for the
Twi alignments. The posterior decoding aligner FSA which outperformed all other mul-
tiple aligners in terms of Precision on both (mis)match and gaps in the entire SABmark
dataset, comprising both Sup and Twi [3] report Precision of 0.52 (all other aligners
fall below 0.5) without further re-evaluation of their alignments. This lets us conclude
that our statistical re-evaluation makes an interesting complementary contribution to
alignment re-evaluation.
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4 Conclusion

Most recent studies have again pointed out that computational alignments of all kinds
need further re-evaluation in order to avoid detrimental effects in downstream analyses
of comparative genomics studies. While exact gap placement is at the core of aligning
sequence positive prediction rates are worst within or closely around inferred indels.
Here we have systematically addressed that indel size and multiplicity can serve as
indicators of alignment artifacts. We have developed a pair HMM based statistical eval-
uation pipeline which can soundly distinguish between spurious and reliable indels in
alignments with affine gap penalties by measuring indel significance in terms of in-
del size and multiplicity. As a result we are able to reliably identify indels which are
more likely to enclose true structural indel positions as provided by SABmark, rais-
ing positive prediction rates up to 0.7 even for worst-case twilight zone alignments of
maximal 25% sequence identity. Since previous approaches predominantly addressed
re-evaluation of match/mismatch positions we think that we have made a valuable, com-
plementary contribution to the issue of alignment re-evaluation. Future work of ours is
concerned with re-evaluation of pair HMM based posterior decoding aligners which
have proven to be superior over score-based aligners in a variety of aspects.
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Abstract. Quantification of selective pressures on regulatory sequences
is a central question in studying the evolution of gene regulatory net-
works. Previous methods focus primarily on single sites rather than mo-
tif sequences. We propose a method of evaluating the strength of natural
selection of a motif from a family of aligned sequences. The method is
based on a Poisson process model of neutral sequence substitutions and
derives a birth-death process of the motif occurrence frequencies. The
selection coefficient is treated as a penalty for the motif death rate. We
demonstrate that the birth-death model closely approximates statistics
generated from simulated data and the Poisson process assumption holds
in mammalian promoter sequences. Furthermore, we show that a con-
siderably higher portion of known transcription factor binding motifs
possess high selection coefficients compared to negative controls with
high occurrence frequencies on promoters. Preliminary analysis supports
the potential applications of the model to identify regulatory sequences
under selection.

Summary

Motivation
Many sequence motifs –such as transcription factor binding sites – are present in
multiple locations of the genomes. Due to their functional constraints, selective
pressures are often exerted on the evolution of sequence motifs. Quantification of
selective pressures on motifs is a powerful tool to study the evolution of biolog-
ical systems and to identify functionally important motifs from sequence data.
However, most existing methods either target specific sites (rather than motif
sequences) or apply only to two species. Consequently, a quantitative model and
algorithm to evaluate the selective strength of motif sequences from multiple
species need to be developed.

Main results
We propose a simple model of neutral (i.e., selection-free) evolution of motif se-
quences. The model hypothesizes that each position undergoes an independent
random sequence substitution. The occurrence of a motif results from stochas-
tic additions (birth) and removals (death) based on sequence substitutions. We
derive the neutral and selective models of motif evolution and propose an al-
gorithm to quantify the selective strength of a motif based on the two models.
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To validate its utility we demonstrate a considerably higher portion of known
transcription factor binding motifs possess strong selective strengths compared
to random controls. In contrast, a conservation score fails to separate functional
motifs and the short random motifs that occur frequently on promoters.

Significance
Initial analysis indicates that the birth-death model is adequate for the neutral
evolution of motifs. Furthermore, selective coefficients outperform conservation
scores in separating functional motifs from random sequences. The results justify
the use of our model and algorithm in studying the evolution of functional motifs
and identifying de novo functional motifs.

1 Introduction

High sequence similarity of protein-coding genes between distant species has led
to the shift of focus in studying the evolution of non protein-coding regions. One
central issue in this area is to gauge the selective pressure of a sequence motif.
Cis-regulatory elements or regulatory RNAs may possess strong sequence speci-
ficity and resist random drifts. It is therefore possible to identify these elements
from the sequences of multiple genes and organisms. One can align the promoter
sequences of orthologous genes and apply motif-finding algorithms to identify the
conserved motifs [1]. Conservation alone, however, may not confer natural selec-
tion since it also depends on the rate of neutral evolution, sequence length and
complexity, population structure, and other factors. A variety of methods have
been proposed to detect/quantify natural selection from sequences, including
the ratios of non-synonymous to synonymous substitution rates Ka

Ks
, [2], like-

lihood scores from a background sequence substitution model [3], comparison
of intra-specific variation versus inter-specific divergence [4], deviation between
heterozygosity and number of segregation sites [5], and comparison of SNP fre-
quencies in distinct haplotype groups [6]. Despite the rich literature in detecting
natural selection from sequences, the majority of the studies consider the evolu-
tion of single sites instead of motifs. Furthermore, most of these models require
intra-specific polymorphism data which may not be available, and the Ka

Ks
test

applies only to protein-coding regions.
To overcome these drawbacks, we propose a method of evaluating the strength

of natural selection of a motif from aligned sequences. The method is based on a
simple neutral model of sequence substitution: what is the distribution of motif
occurrences in a sequence of fixed length if each position undergoes an inde-
pendent sequence substitution? The rate of sequence substitution, the entire
sequence length, evolutionary distances of sampled species and sequence com-
plexity of the motif determine the rates of addition (birth) and deletion (death)
of motifs in neutral evolution. In contrast, a motif under purifying selection such
as a transcription factor binding site often populates on promoters and resists
deletions. We quantify natural selection by a coefficient penalizing the rate of
motif deletions, and develop an algorithm to estimate the maximum-likelihood
selection coefficient.
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Our model resembles the probabilistic model of promoter evolution in [7] as
both models define a motif as a collection of fixed-length sequences and em-
ploy continuous-time Markov processes on sequence substitutions. However, our
model differs from [7] by discarding sequence-specific substitution rates, consid-
ering the evolution of the motif occurrence frequencies, and being applied to the
aligned sequences of more than two species.

The birth-death model approximates the empirical distributions derived from
simulated data. Analysis on the 5kb upstream promoters of 34 mammalian
genomes also validates the underlying hypothesis of the model – Poisson pro-
cess of sequence substitution. We then calculate the selection coefficients of 388
known transcription factor binding motifs and random sequences. The selection
coefficient distribution of known motifs is significantly tilted to high values com-
pared to random controls, suggesting the tendency of positive selection of many
transcription factor binding motifs. In contrast, the magnitudes of conservation
(fraction of species containing the motif) on transcription factor binding motifs
are not higher than random controls.

2 Methods

2.1 Overview

Our method is based on a neutral model of independent sequence substitution
in each position. The distribution of motif counts depends on (1)the rate of
sequence substitution, (2)the time interval of interest, (3)the promoter sequence
length, (4)the degeneracy and complexity of the motif in the sequence space.

In the neutral model a Poisson process is employed to the sequence substitu-
tion of each position. The instantaneous rates of additions (birth) and deletions
(death) of the motif can be derived from the sequence substitution model. In
contrast, if purifying selection occurs to the motif then the death rate is penal-
ized by a constant. The evolution of motif occurrence frequency distributions is
thus expressed as a system of differential-difference equations parameterized by
the penalty constant and the four factors described above. We can calculate the
motif count distributions by simulating the differential-difference equations. Fur-
thermore, according to the simulated distributions we apply binary search to find
the penalty constant that maximizes the likelihood score of aligned sequences.
The penalty constant characterizes the strength of natural selection.

2.2 A Poisson Process Model of Sequence Substitution

A Poisson process is probably the simplest model of sequence substitution [8]. In
an infinitesimal time interval dt the nucleotide sequence of a position transitions
to another base with probability λdt. Denote nP (t) the cumulative number of
sequence changes at time t. The transitions from t to t + dt follow

P (nP (t + dt) = N + 1|nP (t) = N) = λdt.
P (nP (t + dt) = N |nP (t) = N) = 1 − λdt.

(1)
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and the conditional probability at a finite time interval t is

P (nP (t) = N |nP (0) = 0) = (λt)N

N ! e−λt. (2)

Poisson processes are Markovian as conditional probabilities are invariant with
time shifts. Suppose nP (t) is observed at time points t′is with interval T ′

is:

ti+1 = ti + Ti. (3)

Denote mi ≡ nP (ti+1) − nP (ti) as the number of sequence changes in time
interval (ti, ti+1]. The log likelihood of the data is

L(λ) =
∑

i log P (nP (ti+1) − nP (ti) = mi)
=
∑

i mi log(λTi) − λTi + C.
(4)

By taking the derivative of L(λ) with respect to λ the maximum likelihood rate
is

λ̂ = N
T . (5)

where N is the total number of changes along each time interval and T is the
sum of all time intervals.

In this work we assume the Poisson process rate λ is identical in all positions
and across all lineages and estimate λ from a family of aligned sequences and their
phylogenetic tree. The parsimonious sequences of the internal nodes of the tree
are inferred by a dynamic programming algorithm [9]. In brief, for the aligned
sequences at each position we construct a cost function of assigning a sequence
configuration to the internal nodes of the tree as the total number of sequence
substitutions along each branch of the tree. The cost function along a tree can
be recursively computed. Denote v as an internal node and u ∈ B ≡ {A, C, G, T }
as a nucleotide. The cost function of v = u becomes

C(v = u) =
∑

i maxui∈B[C(vi = ui) + d(u, ui)]. (6)

where each vi is a child of v and d(u, ui) denotes the distance between bases u
and ui. The reconstructed ancestral sequences maximize equation 6 and can be
recursively computed using dynamic programming.

2.3 A Birth-Death Model for the Neutral Evolution of Motif
Occurrences

The major contribution of this study is a neutral model of motif evolution. Motif
occurrences can be modeled as a birth-death process [10]. The birth and death
rates are determined by the sequence substitution rate and the degeneracy of
the motif sequences.

A motif M ⊂ Bl is defined as a collection of nucleotide sequences of length l.
Degenerate symbols in IUPAC format are allowed in M. For instance, R denotes
purines (A or G) and Y denotes pyrimidines (C or T). Given a promoter sequence
S of length ls and the sequence substitution rate λ at each position, we want to
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model the distributions of n(t), the frequency of motif occurrences in sequence
S at time t.

We first consider the sequence evolution in a window of length l. There are
4l possible sequences, and each sequence s ∈ Bl can be labeled as either a
member of the motif (s ∈ M) or not (s �∈ M). These sequences comprise an
undirected graph G = (V, E), where a node v ∈ V denotes a sequence and an
edge e = (v1, v2) denotes the two sequences v1 and v2 differing at one position.
M constitutes a subset of nodes in G, and the evolution of the sequences in an
l-mer window can be viewed as a Markov random walk on G. In an infinitesimal
time interval a sequence is allowed only to transition to neighboring nodes in
G. The overall rate of transitions is the sequence substitution rate of the entire
window λl. With an independent and identically distributed (iid) assumption
this rate is equally divided among all the neighboring nodes.

We are interested in the transition rate from a non-motif sequence to a motif
sequence or vice versa. In principle this rate depends on the initial and final states
of each transition and is quite complicated. To simplify the model we use two
numbers to characterize the average fraction of motif → non-motif transitions
and vice versa.

r01 = |{(v1,v2)∈E:v1 �∈M,v2∈M}|
|{(v1,v2)∈E:v1 �∈M}| .

r10 = |{(v1,v2)∈E:v1∈M,v2 �∈M}|
|{(v1,v2)∈E:v1∈M}| .

(7)

r01 is the fraction of all non-motif → motif transitions among all transitions
from non-motifs. For simplicity we expect the non-motif → motif transitions and
non-motif → non-motif transitions are distributed by a ratio r01

1−r01
. A reciprocal

argument applies to the motif → non-motif transitions for r10.
An equal transition rate to each sequence may not be an adequate assumption

as the distribution of vertebrate genes has a strong bias in the CpG islands [11].
Consequently, we calibrate the ratios r01 and r10 by the background frequencies
of nucleotides (PA, PC , PG, PT ):

r01 =
∑

{(v1,v2)∈E:v1 �∈M} w(v1,v2)δ(v2∈M)∑
{(v1,v2)∈E:v1 �∈M} w(v1,v2) .

r10 =
∑

{(v1,v2)∈E:v1∈M} w(v1,v2)δ(v2 �∈M)∑
{(v1,v2)∈E:v1∈M} w(v1,v2) .

(8)

where w(v1, v2) is the nucleotide background probability of v2 at the position
where v1 and v2 differ. For instance, w(AGGC, AGTC) = PT . δ(.) is an indicator
function. r01 and r10 are weighted by the background nucleotide frequencies such
that more transitions are allocated to GC-rich sequences.

Summarizing the discussions above the transitions of motif occurrence of an
l-mer window conform with the following equations:

P (n(t + dt) = 1|n(t) = 0) = λlr01dt.
P (n(t + dt) = 0|n(t) = 1) = λlr10dt.

(9)

We then extend the analysis to the entire promoter sequence of length ls. In
an infinitesimal time interval dt, n(t) = n can only increase/decrease by 1 or
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remain intact. Assuming the motif instances on the promoter do not overlap,
there are ln positions occupied by existing motifs and ls − ln free positions. The
ln occupied positions are divided into n independent windows, and the motif
→ non-motif transitions of each window follow equation (9.2). Thus the “death
rate” of motif occurrence on the entire sequence is multiplied by n:

P (n(t + dt) = n − 1|n(t) = n) = λlr10ndt. (10)

The “birth rate” of motif occurrence is more difficult to analyze because the
number of windows depends on the actual positions of existing motifs and these
windows are not independent. For simplicity we approximate the number of
independent l-mer windows among free positions by ls − ln + l + 1, the number
of l-mer windows in ls − ln consecutive positions. Thus the “birth rate” of motif
occurrence on the entire sequence is multiplied by ls − ln + l + 1:

P (n(t + dt) = n + 1|n(t) = n) = λlr01(ls − ln + l + 1)dt. (11)

Equations (11) and (10) specify the birth and death rates of motif occurrences
in an infinitesimal time interval. The distribution Pn(t) ≡ P (n(t) = n) of motif
occurrences over time can be expressed as the differential-difference equations:

dP0(t)
dt = μ(1)P1(t) − λ(0)P0(t).

dPn(t)
dt = λ(n − 1)Pn−1(t) + μ(n + 1)Pn+1(t) − (λ(n) + μ(n))Pn(t).

λ(n) = λlr01(ls − ln + l + 1).
μ(n) = λlr10n.

(12)

2.4 A Birth-Death Model of the Selective Evolution of Motif
Occurrences

The purpose of constructing a neutral model of motif evolution is to identify the
motif sequences that undergo purifying selection. Intuitively, purifying selection
penalizes decrements of a functional motif on the promoter. Thus we divide the
death rates by a selection coefficient:

μ′(n) = μ(n)
s . (13)

When s > 1, the process of motif deletion slows down and more motifs are accu-
mulated. This phenomenon is consistent with purifying selection. s is different
from the conventional definition of selection coefficients in population genetics,
which denotes the deviation of genotype frequencies from the neutral model.

2.5 Evaluating the Selection Coefficient of the Birth-Death Model

To evaluate the strength of purifying selection we apply both neutral and selec-
tive models to aligned sequences. Figure 1 outlines the algorithm of evaluating
the selection coefficient.
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Inputs: Motif M, phylogenetic tree T = (VT , ET ) of k species, n orthologous families
of aligned promoter sequences, sij denotes the aligned sequence of gene i in species j.
Outputs: Selection coefficient of M on the aligned sequences.

1. Reconstruct the ancestral sequences of the internal nodes using equation (6).
2. Infer the Poisson rate λ using equation (5).
3. Split a promoter sequence into multiple segments of fixed length ls = 30l.
4. Count the motif occurrence in each segment of both terminal and internal species.
5. Count the empirical conditional frequency along each branch.
6. Apply binary search to find the selection coefficient that maximizes the log likeli-

hood score.

Fig. 1. Evaluating the selection coefficient of a motif

The inputs of the algorithm are the phylogenetic tree T = (VT , ET ) of k
species, n orthologous families of aligned sequences, and a sequence motif M.
We first apply dynamic programming to reconstruct sequences of internal nodes
of T and infer the Poisson rate λ using equation (5). For simplicity we assume
the sequence substitution rates of all families are identical.

The birth-death models in equations (11) and (10) apply to sequences of any
lengths as long as ls , l. In practice, longer sequences are computationally chal-
lenging for the following reasons. First, due to frequent recombinations, inser-
tions and deletions, more gaps will appear in a long stretch of aligned sequences.
Gaps add complexities in evaluating likelihood scores hence are undesirable. Sec-
ond, longer sequences accommodate more motif instances by random sequence
substitution. Hence more terms in equation (12) need to be considered. We di-
vide the promoter sequence into segments of length ls = 30l. A segment with
more than 10% gaps in a species is treated as a missing data and discarded.

Motif occurrences in a segment are counted by sliding a window of length l
along the segment. Denote sijk the aligned sequence of the kth segment of gene
i in species j, and nijk the motif count of the corresponding segment. The motif
occurrences of internal nodes can be inferred from their reconstructed sequences.

The joint log likelihood of the observed and reconstructed motif counts is

L =
∑

i

∑
k

∑
(v,w)∈ET

log P (n(t(v,w)) = niwk|n(0) = nivk) + C. (14)

where summation is over indices of gene i, segment k and edge (v, w) in T . t(v,w)
denotes the branch length of edge (v, w). Resembling EM, our method fills the
missing data of internal nodes with reconstructed motif counts and avoids the
cumbersome evaluation of the marginal likelihood.

The log likelihood can also be expressed as

L =
∑

t

∑
n0

∑
n1

f(t, n0, n1) log P (n(t) = n1|n(0) = n0) + C. (15)

where f(t, n0, n1) denotes the frequency of the instances where the motif counts
in the parent and child nodes are n0 and n1 and the branch length is t. These
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empirical frequencies can be directly obtained from the observed and recon-
structed data. P (n(t) = n1|n(0) = n0) is the conditional probability derived
from the birth-death model of the neutral or selective evolution (equations (12)
and (13)). In this work we solve the transient responses Pn(t) numerically by sim-
ulating the differential-difference equations. Given the relatively short segments
(30l) only the first few equations in equation (12) are needed.

The only free parameter of the log likelihood is the selection coefficient s.
We want to find the s that maximizes equation (15). Because s is integrated in
equation (15) in a complex form and P (n(t) = n1|n(0) = n0) has no analytic
solutions, we apply a binary search to find the optimum value of s over the
interval [0, 20].

3 Results

3.1 The Birth-Death Model Agrees with Simulation Data

We first verified that the birth-death model approximated the motif count dis-
tribution derived from a Poisson sequence substitution process with simulation
data. A random 100-base initial sequence and 20 random 4-base motifs were
constructed. 1000 instances with the identical initial sequence underwent inde-
pendent Poisson sequence substitutions with λ = 0.2 and T = 4.0. The empirical
data were compared to the conditional probabilities predicted by equations (12)
and (13). The birth-death model strongly agreed with the simulated data. Figure
2 shows the time evolution of motif count distributions of 3 motifs with 0, 1 and
2 instances in the initial sequence respectively. The predicted models (dashed
lines) closely follow the empirical distributions (solid lines) in each case. The
results indicate the birth-death model accurately describes motif count distribu-
tions in a Poisson process of sequence substitution.

3.2 Sequence Substitutions on Mammalian Promoters Follow a
Poisson Process

Aligned 5kb upstream sequences of 27667 orthologous gene families from 34
mammalian species were extracted from the UCSC Genome Browser [12]. The
maximum likelihood rate of the Poisson process was obtained from the proce-
dures described in the Method Section. Figure 3 compares the distributions of
sequence substitutions from the data and the Poisson process with the maximum-
likelihood rate λ = 0.8937. For each position, the empirical number of sequence
substitutions between two species is the number of sequence changes along the
path connecting the two species in the phylogenetic tree. The predicted Pois-
son distributions closely resembled the empirical distributions at various time
intervals, suggesting that promoter sequence substitutions in mammals follow a
Poisson process.
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Fig. 2. Comparison of empirical and predicted distributions of motif counts in simu-
lated data. Conditional probabilities of motif counts at 6 time points are shown. Solid
lines indicate empirical distributions of 3 motifs with 0 (left bump), 1 (middle bump)
and 2 (right bump) instances in the initial sequence respectively. Dashed lines are the
distributions derived from equation (12).

3.3 Known Transcription Factor Binding Motifs Have Higher
Selection Coefficients Than Random Sequences with High
Occurrence Frequencies

388 transcription factor binding motifs were extracted from the TRANSFAC
database [13]. Motif lengths ranged from 5 to 15 nucleotides and the mean length
was 10.66 nucleotides. We applied the algorithm in Figure 1 to evaluate the
selection coefficient of each motif on the 5kb promoters of 27667 orthologous
families in 34 mammals. In addition to selection coefficients, we also evaluated
the magnitudes of conservation by counting the fractions of species containing
the motifs among 34 mammals and averaging the scores over all segments in
all the gene families. As a negative control we generated 10000 random motif
sequences (in IUPAC format) of 5 and 10 nucleotides and selected the top 500
sequences according to their occurrence frequencies on mammalian promoters.
The left diagram of Figure 4 shows the distributions of selection coefficients in
TRANSFAC motifs and two negative control sets. Intriguingly, there are many
more high-scoring TRANSFAC motifs than the negative controls. About one
quarter (96 of 388) of known motifs have selection coefficients ≥ 4.0. In contrast,
only 11 and 24 of 500 5-mer and 10-mer control motifs pass the same threshold.
The fraction of high-scoring motifs may be over-estimated as some transcription
factors possess multiple similar motifs. By grouping motifs by their transcription
factors, the same conclusion was reached (results not shown).
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Fig. 3. Sequence substitutions on 5kb promoters of mammalian genes. Empirical distri-
butions of sequence substitutions (solid lines) are obtained by the numbers of sequence
changes along the paths connecting each pair of species in each position. Predicted
distributions (dashed lines) are calculated by a Poisson process with λ = 0.8937. The
distributions at 6 time intervals are shown.

The right diagram of Figure 4 shows the distributions of conservation mag-
nitudes in TRANSFAC motifs and two negative control sets. The conservation
mangitude of a motif on a promoter is the fraction of the species containing
the motif. We report the average of the conservation magnitudes over the genes
where the motif appears at least in one species. Clearly, natural selection is not
revealed by conservation alone, as the conservation magnitudes of most TRANS-
FAC motifs are smaller than those of the control motifs. Moreover, unlike selec-
tion coefficients conservation magnitudes of control motifs are sensitive to their
lengths. The results are sensible in two aspects. First, the “random motifs” in
Figure 4 are the sequences with high occurrence frequencies. They often con-
tain multiple degenerate sequences and are thus expected to appear in more
species by chance. The birth-death model can eliminate these spurious motifs as
the volumes of motif sequences are taken into account. Second, conservation of
motifs is sensitive to sequence length as short sequences are likely to appear in
more species by chance. The birth-death model also takes sequence length into
account. Therefore, the selection coefficient distributions of 5-mer and 10-mer
control motifs are similar.

These sequences in the negative control set occur more frequently on mam-
malian promoters thus are more likely to be conserved by chance. Alternatively,
we also selected random sequences without ranking them by occurrence fre-
quencies as the negative controls. The distributions of selection coefficients and
conservation scores are similar to Figure 4. Thus the superiority of the selection
coefficients in detecting TRANSFAC motifs sustains.
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Fig. 4. Left: Distributions of selection coefficients of 388 TRANSFAC motifs (solid),
500 frequent 5-mer random motifs (dashed), and 500 frequent 10-mer random motifs
(broken). Right: Distributions of conservation magnitudes of 388 TRANSFAC motifs
(solid), 500 frequent 5-mer random motifs (dashed), and 500 frequent 10-mer random
motifs (broken).

4 Discussions

In this work we propose a model and an algorithm to evaluate the strength of
natural selection of a sequence motif from aligned sequences across gene fam-
ilies and species. The neutral model of motif occurrence distributions is based
on a simple assumption that each position undergoes an independent Poisson
process of sequence substitution. We consequently derive a birth-death model
of motif occurrences according to the sequence substitution rate, motif sequence
degeneracy and total sequence length. The selection coefficient is the penalty on
the rate of motif deletion in the birth-death model. Predictions derived from the
neutral model fit both simulated data and the statistics of random motifs on the
aligned promoters of 34 mammals. In addition, many more known transcription
factor binding motifs have high selection coefficients relative to negative controls,
suggesting many of them are under purifying selection.

Despite the success in the preliminary study the current model and algorithm
have several limitations. First, the model (and many other models of natural
selection) focuses on sequence substitution and does not take other types of mu-
tations – insertions/deletions, recombinations – into account. This simplification
yields false negatives when there are gaps in the motifs. Second, the model con-
siders a ubiquitous selection along each branch of phylogeny and discards lineage
specific selection. Third, the model also discards the gene-specific selection on
promoters and only considers the overall effects on all gene families. Fourth,
numerical simulations and binary search of the algorithm are time-consuming.
Analytic approximations to the transient responses of the birth-death model
should be developed. Fifth, the inverse problem of this work – identify the motif



Quantifying the Strength of Natural Selection of a Motif Sequence 373

sequences with high selection coefficients – is yet to be tackled. In spite of these
limitations our model serves as a reasonable tool to validate the computationally
or experimentally discovered candidate motifs.
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Braga, Maŕılia D.V. 90
Brown, Daniel G. 111

Conway, Thomas 189
Crescenzi, Pierluigi 226
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