Vincent Moulton
Mona Singh (Eds.)

Algorithms
in Bioinformatics

10th International Workshop, WABI 2010
Liverpool, UK, September 2010
Proceedings

LNBI 6293

@ Springer

Lecture Notes in Bioinformatics 6293
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Vincent Moulton Mona Singh (Eds.)

Algorithms
1in Bioinformatics

10th International Workshop, WABI 2010
Liverpool, UK, September 6-8, 2010
Proceedings

@ Springer

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Vincent Moulton

University of East Anglia

School of Computing Sciences

Norwich, NR4 7TJ, UK

E-mail: vincent.moulton @cmp.uea.ac.uk

Mona Singh

Princeton University

Lewis-Sigler Institute for Integrative Genomics
Department of Computer Science

Princeton, NJ 08544, USA

E-mail: mona@cs.princeton.edu

Library of Congress Control Number: 2010932425

CR Subject Classification (1998): J.3, F.1,1.2, F2.2, H.2.8, E.1
LNCS Sublibrary: SL 8 — Bioinformatics

ISSN 0302-9743
ISBN-10 3-642-15293-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15293-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

We are pleased to present the proceedings of the 10th Workshop on Algorithms
in Bioinformatics (WABI 2010) which took place in Liverpool, UK, Septem-
ber 6-8, 2010. The WABI 2010 workshop was part of the four ALGO 2010
conference meetings, which, in addition to WABI, included ESA, ATMOS, and
WAOA. WABI 2010 was hosted by the University of Liverpool Department of
Computer Science, and sponsored by the European Association for Theoretical
Computer Science (EATCS) and the International Society for Computational
Biology (ISCB). See http://algo2010.csc.liv.ac.uk/wabi/ for more details.

The Workshop in Algorithms in Bioinformatics highlights research in algo-
rithmic work for bioinformatics, computational biology and systems biology. The
emphasis is mainly on discrete algorithms and machine-learning methods that
address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and
tested in simulations and on real datasets. The goal is to present recent research
results, including significant work-in-progress, and to identify and explore direc-
tions of future research.

Original research papers (including significant work-in-progress) or state-of-
the-art surveys were solicited for WABI 2010 in all aspects of algorithms in
bioinformatics, computational biology and systems biology. In response to our
call, we received 83 submissions for papers and 30 were accepted. In addition,
WARBI 2010 hosted distinguished lectures by Eran Halperin, of Tel Aviv Univer-
sity and ICSI, Berkeley, and, together with ESA, Paolo Ferragina of University
of Pisa. We would like to sincerely thank the authors of all submitted papers
and the conference participants. We also thank the Program Committee and
their sub-referees for their hard work in reviewing and selecting papers for the
workshop.

We would espcially like to thank Bernard Moret and Tandy Warnow for all
of their advice and support in carrying out the role of being Co-chairs.

Thanks once again to all who participated in making WABI’s 10th anniver-
sary such a success. For us it has been an exciting and rewarding experience.

June 2010 Vincent Moulton
Mona Singh

Program Committee

Tatsuya Akutsu
Bonnie Berger
Tanya Berger-Wolf
Mathieu Blanchette
Sebastian Bocker
Magnus Bordewich
Mike Brudno
Philipp Bucher
Benny Chor

Anne Condon
Lenore Cowen
Keith Crandall
Bhaskar Das Gupta
Nadia El-Mabrouk
Liliana Florea
Olivier Gascuel
Barbara Holland
Katharina Huber
Daniel Huson
Lydia Kavraki
Junhyong Kim

Carl Kingsford
Mehmet Koyuturk
Jens Lagergren
Chris Langmead
Ryan Lilien

Ton Mandiou

Joao Meidanis
Satoru Miyano
Bernard M.E. Moret

Burkhard Morgenstern
Vincent Moulton
Gene W. Myers

Mihai Pop

Teresa Przytycka
Cenk Sahinalp

David Sankoff

Organization

Kyoto University, Japan

MIT, USA

University of Illinois, USA

McGill University, Canada

University of Jena, Germany

University of Durham, UK

University of Toronto, Canada

EPFL, Switzerland

Tel Aviv University, Israel

University of British Columbia, Canada

Tufts University, USA

Brigham Young University, USA

University of Illinois, USA

University of Montreal, Canada

University of Maryland, USA

University of Montpellier, France

Massey University, New Zealand

University of East Anglia, UK

University of Tuebingen, Germany

Rice University, USA

University Penn, USA

University of Maryland, USA

Case Western, USA

KTH, Sweden

CMU, USA

University of Toronto, Canada

University of Connecticut, USA

Campinas University, Brazil

Tokyo University, Japan

Swiss Federal Institute of Technology,
Switzerland

University of Gottingen, Germany

University of East Anglia, UK, Co-chair

Janelia Farms, USA

University of Maryland, USA

NIH, USA

Simon Fraser University, USA

University of Montréal, Canada

VIII Organization

Russell Schwartz CMU, USA

Joao Setubal Virginia Tech., USA

Mona Singh Princeton University, USA, Co-chair

Jens Stoye University of Bielefeld, Germany

Glenn Tesler UCSD, USA

Olga Vitek Purdue University, USA

Lusheng Wang City University Hong Kong, Hong Kong
Tandy Warnow University of Texas Austin, USA

Chris Workman Technical University of Denmark, Denmark

Louxin Zhang National University of Singapore, Singapore

Table of Contents

Biomolecular Structure: RNA, Protein and
Molecular Comparison

A Worst-Case and Practical Speedup for the RNA Co-folding Problem
Using the Four-Russians Idea......
Yelena Frid and Dan Gusfield

Sparse Estimation for Structural Variability
Raghavendra Hosur, Rohit Singh, and Bonnie Berger

Data Structures for Accelerating Tanimoto Queries on Real Valued
Ve 0TS © ot
Thomas G. Kristensen and Christian N.S. Pedersen

Sparsification of RNA Structure Prediction Including Pseudoknots
Mathias Mohl, Raheleh Salari, Sebastian Will, Rolf Backofen, and
S. Cenk Sahinalp

Prediction of RNA Secondary Structure Including Kissing Hairpin
MoOtifs . oo
Corinna Theis, Stefan Janssen, and Robert Giegerich

Reducing the Worst Case Running Times of a Family of RNA and
CFG Problems, Using Valiant’s Approach
Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson

Comparative Genomics

Reconstruction of Ancestral Genome Subject to Whole Genome
Duplication, Speciation, Rearrangement and Loss
Denis Bertrand, Yves Gagnon, Mathieu Blanchette, and
Nadia El-Mabrouk

Genomic Distance with DCJ and Indels.
Marilia D.V. Braga, Eyla Willing, and Jens Stoye

Listing All Sorting Reversals in Quadratic Time
Krister M. Swenson, Ghada Badr, and David Sankoff
Haplotype and Genotype Analysis

Discovering Kinship through Small Subsets..........................
Daniel G. Brown and Tanya Berger-Wolf

X Table of Contents

Fixed-Parameter Algorithm for Haplotype Inferences on General
Pedigrees with Small Number of Sites 124
Duong D. Doan and Patricia A. Evans

Haplotypes versus Genotypes on Pedigrees 136
Bonnie Kirkpatrick

Haplotype Inference on Pedigrees with Recombinations and
Mutations.o 148
Yuri Pirola, Paola Bonizzoni, and Tao Jiang

High-throughput Data Analysis: Next Generation
Sequencing and Flow Cytometry

Identifying Rare Cell Populations in Comparative Flow Cytometry 162
Ariful Azad, Johannes Langguth, Youhan Fang, Alan Qi, and
Alex Pothen

Fast Mapping and Precise Alignment of AB SOLiD Color Reads to
Reference DNA 176
Miklos Csiirés, Szilveszter Juhos, and Attila Bérces

Design of an Efficient Out-of-Core Read Alignment Algorithm 189
Arun S. Konagurthu, Lloyd Allison, Thomas Conway,
Bryan Beresford-Smith, and Justin Zobel

Estimation of Alternative Splicing Isoform Frequencies from RNA-Seq
Data ..o 202
Marius Nicolae, Serghei Mangul, Ion Mandoiu, and Alex Zelikovsky

Networks

Improved Orientations of Physical Networks.............. 215
Iftah Gamzu, Danny Segev, and Roded Sharan

Enumerating Chemical Organisations in Consistent Metabolic

Networks: Complexity and Algorithms 226
Paulo Vieira Milreu, Vicente Acuna, Etienne Birmelé,
Pierluigi Crescenzi, Alberto Marchetti-Spaccamela,
Marie-France Sagot, Leen Stougie, and Vincent Lacroix

Efficient Subgraph Frequency Estimation with G-Tries................ 238
Pedro Ribeiro and Fernando Silva

Table of Contents

Phylogenetics

Accuracy Guarantees for Phylogeny Reconstruction Algorithms Based
on Balanced Minimum Evolution
Magnus Bordewich and Radu Mihaescu

The Complexity of Inferring a Minimally Resolved Phylogenetic
SUPETTTEE . . . ot
Jesper Jansson, Richard S. Lemence, and Andrzej Lingas

Reducing Multi-state to Binary Perfect Phylogeny with Applications to
Missing, Removable, Inserted, and Deleted Data
Kristian Stevens and Dan Gusfield

An Experimental Study of Quartets MaxCut and Other Supertree
Methods ..ot
M. Shel Swenson, Rahul Suri, C. Randal Linder, and Tandy Warnow

An Efficient Method for DNA-Based Species Assignment via Gene Tree
and Species Tree Reconciliationo o ..
Louzin Zhang and Yun Cui

Sequences, Strings and Motifs

Effective Algorithms for Fusion Gene Detection
Dan He and Eleazar Eskin

Swiftly Computing Center Strings.
Franziska Hufsky, Léon Kuchenbecker, Katharina Jahn,
Jens Stoye, and Sebastian Bécker

Speeding Up Exact Motif Discovery by Bounding the Expected Clump
Sz vt
Tobias Marschall and Sven Rahmann

Pair HMM Based Gap Statistics for Re-evaluation of Indels in
Alignments with Affine Gap Penalties
Alexander Schonhuth, Raheleh Salari, and S. Cenk Sahinalp

Quantifying the Strength of Natural Selection of a Motif Sequence
Chen-Hsiang Yeang

Author Index

XI

250

262

274

288

300

312

325

337

350

A Worst-Case and Practical Speedup for the
RNA Co-folding Problem Using the

Four-Russians Idea

Yelena Frid and Dan Gusfield

Department of Computer Science, U.C. Davis

Abstract. The computational formulation for finding the optimal si-
multaneous alignment and fold (optimal Co-fold) of RNA sequences was
first introduced by Sankoff in 1985. Since then the importance of Co-
Folding has grown as conservation of structure and its relationship to
function have been widely observed in RNA. For two sequences, the
computation time of Sankoff’s Algorithm is §(N°®). Existing literature
on cofolding attempts to improve efficiency through simplifying the orig-
inal problem formulation.

‘We present here a practical and worst-case speed up using the Four-
Russians method, without placing any added constraints on the types
of alignments or folds allowed. Our algorithm, Fast Cofold, finds the
optimal Co-fold in O(N°®/log(N?))-time, a speedup which is observed in
practice.

Because the solution matrix produced by our algorithm is identical
to the one produced by the Sankoff algorithm, the contribution of the
algorithm lays not only in its standalone practicality but also in the
ability to implement it alongside heuristic speed ups leading to even
greater reductions in time.

1 Introduction

The algorithmic goal of finding alignments together with structure prediction is
motivated by the understanding that RNA structure helps to determine func-
tion. It has been observed particularly that in eukaryotic genomes ncRNA (Non
coding RNA) function is seen more clearly from conserved structure then from
alignment alone [I7JI3JT6]. In trRNAs, srpRNA and tRNAs there are also ob-
served relationships between structure and function. Alignment methods that
take structure into account can also allow biologists to identify non-functional
transcripts as well as structure motifs for RNA[M4].

Algorithms that produce both folds and alignments can be classified into
three groups:(1) folding methods that use aligned sequences as input to find a
common structure [TTJI8T2/T5];(2) algorithms that compute structure and then
align [8]; and (3) cofolding algorithms i.e. those that do alignment and folding
simultaneously [T4U7U3I9I5ITIT].

Sankoff’s Algorithm was the first dynamic programming algorithm to simul-
taneously find alignment and RNA folding for a set of sequences [14]. For L

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 1{IZ] 2010.
© Springer-Verlag Berlin Heidelberg 2010

2 Y. Frid and D. Gusfield

sequences of equal length N the algorithm required O(N3E)-time and O(N2E)-
space[14].

Because of the large run-time and space requirement of Sankoff’s solution,
his original problem formulation has often been restricted to allow for greater
efficiency, but at the cost of not solving the original problem[7[3l9I5]. Prob-
lem simplification and restrictions on the recurrences were explored by [7I319l/5].
FoldAlign[7] removed the possibility of a branch in the recurrences, achieving an
O(N*%) time algorithm. Dynalign [9] constrained the distance d between aligned
nucleotides, thereby reducing the computation time to O(N? * d*). Eddy et al.
used covariance models to achieve O(N? * r) run-time where |r| is the number
of states in the model [5]. Consan[3] used pairSCFG to constrain the algorithm
leading to an asymptotic time between O(N%) and O(N?).

Ziv-Ukelson et al. introduced a time reduction algorithm that retained the
Sankoff style recurrence. Based on some simple pruning of the branching points,
the algorithm was able to achieve practical time reduction and asymptotic bound
O(N* x K where K is constrained by N < K < N? and converges to O(N)
when assuming the polymer folding model[19]. An O(N3+Z)space algorithm
was developed based on the pruning formulation by Backofen et al. [2]. While Z
ranges from N2 to N4, in practice it was seen to be lower then N*.

Surprisingly, the Four Russians method, which is widely used and known to
speed up dynamic programming, has not previously been applied to the cofolding
problem. Traditionally the Four-Russians method performs some preprocessing
for a subset of all possible inputs and then computes using that preprocessing.
We take advantage of the idea discussed in Frid and Gusfield [6] interleaving the
computation and preprocessing to create a speedup.

The algorithm as presented by Sankoff does not easily lend itself to subset
precomputation, and we reorganized the order of evaluation. We also create a
function that choose the optimal subset size that leads to the greatest speedup.

The Fast Cofold algorithm presented in this paper formulates a Four Rus-
sians speed up to the Sankoff’s original cofolding problem and reduces the asymp-
totic computation time to O(N®/log(N?)).

2 Sankoff Algorithm for Two Sequences

Let sl and s2 be two RNA sequences over the four-letter alphabet {A,U,C,G},
where each letter in the alphabet represents an RNA nucleotide. We are inter-
ested in finding the optimal cofold or optimal alignment and common structure
of the two sequences, using a scoring scheme that accounts for alignment, fold-
ing, and substitutions that conserve structure. We will make use of a modified
version of Sankoff’s Algorithm for cofolding as described by Ziv-Ukelson et al.
[19] . That version restricts the original algorithm to computing the optimal
cofold of two sequences(L = 2) by maximizing the pair contributions to the fold
instead of minimizing energy of a fold.

! Still O(N®) time in terms of the length N.

A Worst-Case and Practical Speedup for the RNA Co-folding Problem 3

The basic optimal Alignment problem. Define a scoring scheme « such that

a(x,y) is the score for substituting nucleotide x for y where z,y € {A,U,C,G,—}.

Let s1 and s2 be two RNA sequences of length N over the four-letter alphabet

{A,U,C,G}. Alignment sequences s1’ and s2’ of s1, s2 are created by inserting

gaps or’ ’ into each sequence such that |s1’| = [s2/| and {—Fi|s1'[i] = s2'[i] =’ ’}.
|s1']

Let AligScore = Z a(s1'[i], s2[i]) be the score associated with the alignment

i=0
sequences s1’,s2'.

The optimal alignment problem: Given sl and s2 find alignment sequences s1’
and s2' for which AligScore is maximum. Alignments can also be enhanced by
creating more complicated scoring schemes, for example adding larger penalties
for introducing gaps versus extending gaps.

The basic optimal Folding Problem. We present below the maximum match-
ing folding problem as introduced by Nussinov et al.[10]. However, it is slightly
modified to incorporate sequences that have gaps as characters. A nucleotide
pair (x,y) is a permitted pair if (z,y) or (y,x) € {(A,U), (C,G), (G,U), (,)}
For a given sequence seq of length N over the alphabet {AU,C,G, } we de-
fine the folding set M as a set containing disjoint permitted pairs of sites in
sequence seq, such that for any ¢,7, 7,5 where i < i’ < j < j', M does not
contain both pairs (7, j) and (¢, j'). Let 3 be a scoring scheme such that 3(z,y)
returns the contribution of pairing nucleotide at site x with the nucleotide at
site y. The basic scoring scheme sets 3(z,y) equal to one if (z,y) is a permitted
pair with |y — x| > d and set 5(z,y) to zero otherwise. However, richer scoring
schemes as those formulated by the cofold problem, allow non-permitted pairs
to match. Let foldScore be the score associated with a folding set M where
foldScore = Z B(seqli], seq[j])-
(i,5)eM
The optimal folding problem: Find the set M for which foldScore is maximum.

The Optimal Cofolding Problem. The cofold of s1 and s2 consists of align-
[s1’]
ment sequences s1’, s2', and a folding set M [19]. Let cofoldScore = Z a(s1'[i],
i=0
sPi) + Y BVl sU[]) + B(s2'[d), 52'[]) + 7(s1'[a], 51 [1], 2'[1], s2'[])
(i,5)eM

where 7(s1'[i], s1'[4], s2[i], s2[4]) is a score for aligning s1’[i] for s2’[i] and substi-
tuting s1’[j] for s2’[j] taking into account compensator mutations that preserve
structure. In general all the scoring schemes «, 3 and 7 can be modified to fit
richer biological models.

The optimal cofold problem: Find the M and alignment sequences s1’ and s2’
for which the cofoldScore is maximum.

4 Y. Frid and D. Gusfield

Recurrences for finding the Optimal Co-fold. Let S[i, j; k,1] contain the
score for the optimal cofold of subsequence s1(s.. j)ﬁ and subsequence s2(k...l).
S is therefore a four dimensional matrix and optimal cofold score for the entire
sequence is equal to S[1,n;1,n].

We make use of the following recurrences derived from Sankoff’s algorithm
in [19].

Rule a. S[i+1,j;k, 1] + a(s1[d], =)
Rule b. S[i,j;k+ 1,1 + a(s2[k],) ')
Rule c. S[i,j — 1;k,1] + a(s1[5],) —')
Rule d. Sliy g kol — 1] + a(s2[1],” =)
ule e. S[i+1,j;k+ 1,1 + a(sl][i], s2[k])
ule f. S[i,j — 1;k,1 — 1] + a(s1]j], s2[1])
Rule g. S[i+1,j — 15k, 1] + B(s1[i], s1[j]) + a(s1[i],) =) + a(s1[5], =)
Rule h. S[i,j;k+ 1,1 — 1] 4 B(s2[k], s2[1]) + a(s2[k],” =) + a(s2[1], =)
Rule i. S[i+1,j — 1;k+ 1,1 — 1] + B(s1[i], s1[5]) + B(s2[k], s2[1]) + 7(s1[i], s1[4], s2[k], s2[1])
Rule j. max;<m<jrk<n<i{S[i, m;k,n] + S[m+1,5;n+1,1]}
(1)

Rules a to d account for the possibility of placing gaps and not adding any new
pair to folding set M. Rules e and f account for the possibility of aligning either
the right, or left end of the sequences but not adding any pair to the folding set
M. Rules g and h account for the possibility of adding a pair to folding set M
where the characters of the pair in one sequence are aligned with inserted gaps
in the other subsequence B. Rule i accounts for adding a pair to folding set M
and aligning both ends of the sequences.

Let us call Rule j the Branch Rule. The Branch Rule covers the case where
the optimal solution comes from breaking up sl at index m, breaking up s2 at
index n and cofolding s1(i..m) with s2(k..n) and sl(m+1..5) with s2(n+1..0)
or S[i,m;k,n] + S[m+1,7;n+1,1]. The branching rule looks at all combina-
tion of m and n and finds the combination which maximizes S[i,m;k,n| +
SIm+1, j;n+1,1].

We will call every break up index a branch point and call S[i,m;k,n] the head
of the branch and S[m+1,j;n+1,]] the tail. We will call each possible {m,n} a
branch point combination.

S[i, j; k, 1] = max %

2.1 Cofold Algorithm

The S matrix can be computed by an algorithm that goes through all the possible
subsequences of s1 and s2 and finds the optimal cofold for each pair. There are
O(N*) such pairs of subsequences . For each pair a branch function computes
the Branching Rule in an O(N?) time, searching through the possible branch
point combinations.

As shown in Cofold Algorithm below, the recurrences are evaluated in increas-
ing order of the right endpoints of s1 and s2.

2 Notational note: All subsequences will be represented as seq(a..b) where a is the
starting index of the subsequence and b is the index of the of the final character in
that subsequence.

3 Constraint: Rule g is applicable only if (s1(i +1),s1(j — 1)) € folding set M. Rule
h is applicable only if (s2(k + 1), s2(l — 1)) € folding set M.

A Worst-Case and Practical Speedup for the RNA Co-folding Problem 5

Cofold Algorithm
for j=1 to N do
for /=1 to N do
for i=j —1to 1 do
for k=l — 1 to 1 do

const oper maz=max(Rules a to i)
branch maz= branch function(i,j;k,1)
S[i,j;k,]|=max(const oper max, branch max)

branch function(i,j;k,0)::
for m=j—1toi+1do
for n=l —1to k+1do
cur maz= max(cur maz,S[i,m;k,n]+S[m+1,j;n+11])
return cur maz

This algorithm is correct based on the following facts.

Fact 1. During computation of S[i, j; k, [] we have already computed the optimal
solution for S[¢#’, j/;k',l'] where j' <j—1,I'<l—1and(¢ <j and k' <)

Fact 2. For a particular ¢ and k at the time S[i, j; k, [] is computed all S[¢', j; &,]
have been computed where i’ > ¢ and k' > k.

It is clear that the Cofold Algorithm takes O(N®) time operations to compute
the solution matrix S. We present a method that produces the identical solution
matrix S as the the above O(N) time algorithm. Moreover, we will reduce
the asymptotic time to O(N®/log,(N?)), by speeding up the branch function
through the adaptation of the Four-Russians method.

3 Conceptually Speeding Up the Branch function

For s1(i..j) and s2(k..l) let {m*,n*} be the branch point combination that
maximizes S[i, m; k,n] + S[m+ 1, j;n+ 1,1] over all possible branch point com-
binations {m,n} where m belongs to the set {i +1,i +2,i+3,...; — 1} and n
belongs to the set {k+ 1,k +2,...1 — 1}.

Overall there are there are O(N?) branch points combinations to evaluate i.e.
{i+1L,k+1}{i+1,k+2}..{i+2,k+1}...{j — 1,1 — 1}. Therefore, the time to
a compute branch function for a fixed i, j, k, and [is O(N?).

The Four Russians method applied to the branch function lowers the compu-
tation to O(N?2/q?). The value of ¢ will play an important role in the speedup
and will be examined in the time analysis section.

We conceptually divide all the possible branch points of sl into sets of size
q called Mgroups. Let M,_q be the first such group that contains the possible
branch points {0,1,...g— 1}, let M,—; contain {g,...2¢ — 1} and so on ... the last
group of which M,_, /; = {n —¢q,..n — 1}. We will also conceptually divide all
the possible branch points of s2 into sets of size q called Ngroups such that
Ng—o=1{0,1,...,¢ — 1} and so on. In general:

My ={g9*qg*xq+1,..gxq+q—1}
Ny={g *q,g'vq+1,..g'xq+q—1}

6 Y. Frid and D. Gusfield

Let {mg, n; } be the branch point combination that maximizes the sum
Sli,m; k,n]+ Sm+1,5,n+ 1, L] such that m € M, and n € Ng.
Let {M*,N*} be equal to the pair {m;,n;,} where S[i, m, k,n;,] + S[mj +

. 21 7
ngl 7 }’ k+1 l 1}

1, j, 541, 1] is maximum for all My, Ny sets g,¢"in {7 °, ..., . g g

respectively.

Fact 8. {m*,n*} = {M* N*}.
Based on Fact 3. we change the Branch Rule from
MAX{ {1 n} me{it1,...j—1}AnE{k+1,....1—1}}S[1, m; K, n] + S[m + 1, j,n + 1,1]

to
max{{m;,nwge{itl,m,j;l}Ag,e{kT,...,121}}s[i,mg,k,ng,] +S[mg +1,j,n5 +1,1]
Now assume there is a precomputed table R? that returns {m, ng }in O(1) time
for any 4, j, k,l. Such a table would reduce computation of the branch function
to O(N?/q¢?) time.
3.1 Implementing the Branch Function with Table R?

Encoding. For a particular j,1, let V, o+ be a ¢ by ¢ matrix that contains the
possible tails for the branches in Mgy, Ng. Where V o (1,1) = S[gg+1, j; ¢'q+1, 1]
- Vo9 (1,q) = S[gq + q,j59'q + q,1] and so on.

More precisely Vg o(m+1—gg,n+1—g¢'q) = S[m+1, j;n+1,1] (see Figure 1).

1 2 ' q

, | Sleasd,, S[ga+ly , Sl gg+1,5 , | Sl gg+l,j . - 3
| gedl.g®2 | 4 g2, 47" a'gé3. 4 a'a+q. 4
S[ga+2; , {
g'qed, 4%y

5[ag+3,;
[og+3; , 2 >q

o'qel,. 1
q | 50 9a+ay . [gg+g,: g'a+q. 4
| _gqdd.g | = base]|)
~ e

q

Fig. 1. The example V matrix shown in figure 1 is for Mgroup g and Ngroup g’ and
some j,l. The integers x,y,z,y’, x’ are example values in V; ;. These values equal the
designated values of the S matrix. The base= S[gq + q,7;9'q + ¢, |==.

Optimal cofold scores stored in S|i, j; k,] and S[i + 1, j; k, I] can differ by the
effect of only one more nucleotide i.e. s1[i]. Therefore we can observe that for
the scoring scheme and the recurrences of the Colfold Algorithm, |S[i, j; k,1] —
S[i+1,j; k,1]| belongs to a finite set of differences D, where D is the set of scores
created by combinations of scores from the sets «, 3, and 7. The cardinality or
size of D is O(1) as a function of N. Clearly, |S[i,j; &k — 1,1] — S[¢, j; k,]| also
belongs to D.

A Worst-Case and Practical Speedup for the RNA Co-folding Problem 7

1 S q

i o=z =W-X =y-x i
2 =y'_x
; >a
a I 0)
— _—
q

Fig. 2. The corresponding E matrix to V, , in figure 1. A few example values are
shown i.e. Ey o[1,1]=V, ,[1,1]-base=z —x € D.

Let Slgq+4¢, j; g'q+q, k] be called the base of V; o and let E be ¢ by ¢ matrix
of differences from the base. We define Eg o/(x,y) = (Sla+x,j;b+y, 1] — Sla +
¢,J;b+ q,1]), where Sla+q,j;b+q,]] is the base of Vj o and a = gg and b = ¢'q.

For a particular j,1 we can create and store matrices Fy 4 as soon as the
corresponding values in the S matrix are computed. Once computed, retrieval of
any desired E clearly takes O(1) time. The overall overhead for encoding the S
matrix into a set of E matrices for the entire algorithm requires an addition of
O(N*) time.

Theorem 1. Given E; , and the base we can reconstruct all the values of Vg g4 .
Proof. Vy q(e, f)= E; i(e, f)+base

Fact 4. For a specific i, j, k,l and g, ¢, if {m, n} is the branch point combination
that leads to the maximum of the sum of S[i, m; k, n]+E, o (m+1—gq,n+1—¢'q)
where m € Mg and n € Ng then {mj,n;,} = {mn}.

3.2 R? Table Integration into Branching

The fast branch function below calculates the new Branch Rule. Taking advan-
tage of the precomputed R? table as well as the precomputed and stored E
matrices, the total time for this function will be O(N?/¢?).

fast branch function(i,j;k,1)::
for g= =1l o L+l go
q q
for ¢'=""1 to ¥+ go
q q

retrieve By o/

{m; n;’ }:Rz(i» k» 9, glv Eg,g’)

cur maz= max(cur maz, S[i,mg; k,ny |+ S[my +1,5;ny, +1,1])
return cur mazx

8 Y. Frid and D. Gusfield

4 Precomputing the R? Table

Finally we present how to precompute table R? for all possible variations of E.
For simplicity of exposition we reorganize the Cofolding Algorithm as follows.

for g=0 to N/q do
for ¢'=0 to N/q do
for j=g+qtogqg+q—1do
for I=¢g’qto g¢q+q—1do
for i=j —1to 1 do
for k=l —1to 1 do
const_oper_maz=max(Rules a to i)
branch-maz= branch_function (i, j; k,1)
S[i,j;k,]|=max(const_oper_mazx, branch_-maxz)

Note that neither the run-time nor accuracy is affected by this change. Also note
that facts 1,and 2, still hold true.

Assume we have completed the iteration of algorithm above where g = 0 and
¢’ = 0 and have the optimal solutions for all i,k S[i,m’; k,n'] where m’ < ¢
and n/ < ¢. At this point we have computed all the heads for branch points in
Mgroup My, and Ngroup Ny (¢ = 0, = 0). For any matrix E the following
algorithm computes {mg, ng}.

for each matrix v of size q by q such v[z,y] € D do
compute (E from v) *
for each i such that i <g—1 do
for each k such that Kk < ¢—1 do
R2(i,k,g = 0,9’ = 0, E) is the to the branch combination {m,n} such that
S[i, m; k,n] + E[m+ 1,n + 1] is maximum.

We can generalize this algorithm for any g,g’, by creating an update table
function that is called once any ¢’ iteration is complete.

update_table function(g,g’) ::
for each matrix size q by q v such v[z,y] € D do
compute F from v
for each i such that i < gg—1 do
for each k such that k < ¢'¢q—1 do
R2(i,k, g, g, E) is set to branch combination {m,n} such that S[i, m; k, n]+
Em+1—g*qn+1—g q)is maximum.

4.1 Fast Cofold Algorithm

We present the speedup algorithm combining both preprocessing and use of table
R2.
i J
4 For example compute E from v function sets E(i,) = Z v[z, q] + Z vl[i, y].
r=q—1 y=q—1

A Worst-Case and Practical Speedup for the RNA Co-folding Problem 9

Fast Cofold Algorithm
for g=0 to N/q do
for ¢'=0to N/q do
for j=g+qtogg+q—1do
for I=¢g'qto g¢q+q—1do
for i=j —1to 1 do
for k=l —1to 1 do
const_oper_maz=max(Rules a to i)
branch-maz= fast_branch_function(i, j; k,1)
Sl[i,j;k,]|=max(const_oper_maz, branch_-maz)
update_table(g,g’)

Boundary case for branch function. We define the boundary case of the
fast branch function(i,j,k,1) the case where ¢ = j/q and/or ¢’ = I/q. Because,
the update table function has not yet precomputed {m;, n;,} in this case, we
must explicitly compute {m;, n;,} comparing all g> branch point combinations.
The fast branch function including the Boundary case is shown below.

fast_branch_function(i,j;k,1)::
for g:L‘_1J to L do
q q

for g’:% to L do

if (boundary case) compute {my,n;,} directly; continue

retrieve Ey g

{m} n;' }:R2 (4,k, 9, q, Eg,g’)

cur-maz=max (cur-maz, S[i,my, k;ny,]+ S[my +1,5;n;, + 1,1])
return cur_maz

5 Asymptotic Time Analysis

The Fast-Cofold algorithm can be grouped into 3 sections: (1)The computations
of Rules a-i, (2) the computation of Branch Rule j or the Fast Branch function,
(3)the preprocessing done by the update table function.

The loops g and ¢ are each called O(N/q) times, loops j and [are each called
O(q) times, loops 7 and k are each called O(N) time. Therefore, the computation
time of Fast Cofold Algorithm for Rules a-i equals to O(g * g xq*xq*x N *
N)=0(N*) and remains unchanged from the Cofolding algorithm.

The fast branch function is called O(N?) times. In the branch function, loops
for g and g’ will reference the R? table a total of O(N?/¢?) times. There are
O(N/q+ N/q) boundary cases during each call to the fast branch function that
take O(q?) time to compute. Therefore, each call to the fast branch function
takes O(N?/q? + (2N/q) * (¢?)) = O(N?/q? + 2qN) time.

In the Fast Cofold algorithm the Branch Rule j is computed in total O(N° /g% +
2¢N°®) time.

The update table function is called for every new Mgroup, Ngroup combi-
nation completed, or on every iteration of loop ¢’. In total there are N?/q¢?

10 Y. Frid and D. Gusfield

such iterations. With in the wupdate table function we have three loops. The
outer loop iterates over every possible E matrix of which there are D . The
next two loops then maximize for every ik taking O(N?) time to do O(¢?)
maximizations. Therefore, the asymptotic time of the update table function is
O(N?/q% % DT % N? % ¢%)= O(N* x D?’).

The entire Fast Cofold algorithm algorithm has a runtime of O(N®/q?+2qN°)
+O(N* % D7) + O(N*).

Theorem 2. The Fast Cofold algorithm has an asymptotic time bound of
O(N®/logy(N?)) if g=+/log,(N2) where the log base b is is constrained by D <
b<N.

Proof. If q is set to \/log,(N2) then the algorithm takes O(NS/log, (N?) +
21log, (N2) % N®) +O(N*/log,(N?) Do (N*)) 4 O(N*) time.

So if O(N* % D'8» (MQ)): O(N®/logy(N?)) then Fast Cofold algorithm
computes in O(N®/log, (N?)) time.

Let N/ = N? and Q' = ¢? then the Fast Cofold Algorithm has an asymp-
totic time of O(N’2 x D?'). Base on theorem 1. in Frid and Gusfield O(N"? «
D?)=0(N"/log,(N")) for D < b < N [6]. Therefore, O(N"3/log,(N")) =
O((N?)?/log,(N?)) = O(N°/log,(N?)) q.e.d.

5.1 Memory

Unchanged from Sankoff’s algorithm, the Fast Cofold algorithm will also require
O(N*)-space to store matrix S. However, there is an additional memory cost of
O(N*/q? « DqQ)—space for storing Table RZ.

6 Empirical Results

We compare our Fast Cofold Algorithm with the Sankoff Cofold Algorithm for
two sequences described in the paper. The purpose of these empirical results is
to show that our algorithm not only achieves a theoretical speedup but can also
lead to practical improvements. As discussed above we produce the same solution
matrix S produced by the O(N®) algorithm. Therefore, we don’t test different
values for the scoring schemes «, 3, 7, but do test the change in cardinality
D. Our algorithm also performs identically for randomly generated and real
sequences geneBank sequences of the same length N. In fact the practicality
and speed up of the Fast Cofold algorithm is dependent only on the size of the
sequence N, the base of the log b, and the cardinality of set D. An optimization
function was created that sets base b to the value that would create the greatest
speedup. The function calculated the optimal b for a set D, sequence length n
and the memory constraints of the computer. We report the results in Table 1 for
average times in seconds for 30 random generated and 10 geneBank sequences
(standard deviation for all tests is less than .5 seconds).

A Worst-Case and Practical Speedup for the RNA Co-folding Problem 11

Table 1. Empirical Results

|D| base b Size (N) Cofold Algorithm run-time(seconds) Fast Cofold Algorithm (seconds) ratio

7 9 150 21307.45 12085.9 1.76
3 4 150 21307.45 7446.04 2.88
2 4 150 21307.45 5866.39 3.66
3 4 100 1770.33 733.502 2.42
2 3 100 1770.33 631.525 2.80
5 6 50 24.41 20.79 1.17
3 4 50 24.41 18.58 1.31
2 3 50 24.41 10.63 2.30

7 Conclusion and Future Work

The Fast Cofold algorithm presented formulates Four Russians speedup for the
problem of finding an optimal simultaneous alignment and fold. The algorithm
produces the same solution matrix S as the modified Sankoff’s Cofolding algo-
rithm but in the reduced time of O(N®/log,(N?)) from O(N®). This compatibil-
ity makes it possible to apply other speed ups and memory reduction algorithms
alongside the Four Russians speedup. As discussed in the introduction Ziv-Ukelson
et al. [I9] and Backofen et al. [2] improved computation time and lowered memory
costs by filtering the branch points that the branch function examines. Excluding
groups that don’t have any members that are co-terminus co-folding from com-
putation in the update table function and branch function would lead to an addi-
tional speedup of O(N*W) where W is the number of group combinations that
contain co-terminus co-co folding members. W is constrained by loglzl N < W<

min(K, logI;\Z\/') . There is also interest in extending the speedup to the algorithms
that compute cofolds for more than two sequences, and algorithms that compute
local alignments. We also note that based on Theorem 2 Mgroupsand Ngroupsdon’t
have to be the same size. In fact Theorem 2 holds for Q' = g1 * g2 where ¢1 is the
size of any Mgroup and g2 of any Ngroup. The variation in group sizes can be im-
plemented with a few small changes to the algorithm leading to an even greater
speedup.

Acknowledgments
This research was partially supported by grants SEI-BIO 0513910 and IIS-
0803564 from the National Science Foundation.
References
1. Backofen, R., Landau, G.M., M6hl, M., Tsur, D., Weimann, O.: Fast RNA structure

alignment for crossing input structures. In: Kucherov, G., Ukkonen, E. (eds.) CPM
2009. LNCS, vol. 5577, pp. 236-248. Springer, Heidelberg (2009)

® K is constrained by N < K < N? [19].

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Y. Frid and D. Gusfield

Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and
space efficient algorithms. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS,
vol. 5577, pp. 249-262. Springer, Heidelberg (2009)

Dowell, R., Eddy, S.: Efficient pairwise RNA structure prediction and alignment
using sequence alignment constraints. BMC Bioinformatics 7(1), 400 (2006)

. Eddy, S.R.: Computational genomics of noncoding RNA genes. Cell 109(2), 137—

140 (2002)
Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucl.
Acids Res. 22(11), 2079-2088 (1994)

Frid, Y., Gusfield, D.: A simple, practical and complete O(n3 /log(n)) -time algo-
rithm for RNA folding using the four russians speedup. In: Salzberg, S.L., Warnow,
T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 97-107. Springer, Heidelberg (2009)
Gorodkin, J., Heyer, L.J., Stormo, G.D.: Finding common sequence and structure
motifs in a set of RNA sequences. In: ISMB, pp. 120-123 (1997)

Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S.L., Tacker, M., Schus-
ter, P.: Fast folding and comparison of RNA secondary structures. Chemical
Monthly 125, 167188 (1994)

Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary
structure common to two RNA sequences. Journal of Molecular Biology 317(2),
191203 (2002)

Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop
matchings. STAM Journal on Applied Mathematics 35(1), 68-82 (1978)

Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K., Lander,
E.S., Kent, J., Miller, W., Haussler, D.: Identification and classification of conserved
RNA secondary structures in the human genome. PLoS Comput Biol. 2(4), €33
(2006)

Rivas, E., Eddy, S.: Noncoding RNA gene detection using comparative sequence
analysis. BMC Bioinformatics 2(1), 8 (2001)

Rose, D., Hackermuller, J., Washietl, S., Reiche, K., Hertel, J., FindeiSZ, S.,
Stadler, P., Prohaska, S.: Computational rnomics of drosophilids. BMC Ge-
nomics 8(1), 406 (2007)

Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protose-
quence problems. STAM Journal on Applied Mathematics 45(5), 810-825 (1985)
Seemann, S.E., Gorodkin, J., Backofen, R.: Unifying evolutionary and thermody-
namic information for RNA folding of multiple alignments. In: NAR (2008)
Torarinsson, E., Yao, Z., Wiklund, E.D., Bramsen, J.B., Hansen, C., Kjems,
J., Tommerup, N., Ruzzo, W.L., Gorodkin, J.: Comparative genomics beyond
sequence-based alignments: RNA structures in the encode regions. Genome
Res. 18(2), 242-251 (2008)

Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and
clustering of RNA sequences. Bioinformatics 23(8), 926-932 (2007)

Washietl, S., Hofacker, I.L.: Consensus folding of aligned sequences as a new mea-
sure for the detection of functional RNAs by comparative genomics. Journal of
Molecular Biology 342(1), 19-30 (2004)

Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA
co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI),
vol. 5251, pp. 174-185. Springer, Heidelberg (2008)

Sparse Estimation for Structural Variability

Raghavendra Hosur!3, Rohit Singh', and Bonnie Berger®:?*

! Computer Science and Artificial Intelligence Laboratory, MIT
Massachusetts Institute of Technology
Cambridge MA 02139
2 Dept. Of Mathematics, MIT
3 Dept. Of Materials Science and Eng., MIT
bab@csail.mit.edu

Abstract. Proteins are dynamic molecules that exhibit a wide range
of motions; often these conformational changes are important for pro-
tein function. Determining biologically relevant conformational changes,
or true variability, efficiently is challenging due to the noise present in
structure data. In this paper we present a novel approach to elucidate
conformational variability in structures solved using X-ray crystallogra-
phy. We first infer an ensemble to represent the experimental data and
then formulate the identification of truly variable members of the en-
semble (as opposed to those that vary only due to noise) as a sparse
estimation problem. Our results indicate that the algorithm is able to
accurately distinguish genuine conformational changes from variability
due to noise. We validate our predictions for structures in the Protein
Data Bank by comparing with NMR experiments, as well as on syn-
thetic data. In addition to improved performance over existing methods,
the algorithm is robust to the levels of noise present in real data. In the
case of Ubc9, variability identified by the algorithm corresponds to func-
tionally important residues implicated by mutagenesis experiments. Our
algorithm is also general enough to be integrated into state-of-the-art
software tools for structure-inference.

1 Introduction

A central tenet of molecular biology is that a protein’s three-dimensional (3-
D) structure is crucial to its function. Indeed the structural genomics initiative
is producing ever increasing number of structures at high resolution, providing
accurate coordinates for each atom in the structure [2]. A protein’s structure,
however, is rarely static. Proteins are dynamic molecules, capable of exhibiting
a wide range of motions and conformational variability [ITJ2I]. Such conforma-
tional changes are important in biological functions such as enzymatic catalysis,
cellular transport, and signaling [27/8]. It has been postulated that even subtle
conformational changes may have important functional consequences [16].

A multi-conformer model, or ensemble, attempts to model variability by ex-
plaining the data using an ensemble of conformers, rather than just one con-
former. Indeed, conformational variability in a protein might be present even

* Corresponding author.

V. Moulton and M. Singh (Eds.): WABI 2010, LNBI 6293, pp. 13 127] 2010.
© Springer-Verlag Berlin Heidelberg 2010

14 R. Hosur, R. Singh, and B. Berger

in a single experiment, where the observed data is an average over multiple
conformations [6/9]. Multi-conformer approaches have long been the norm when
modeling NMR data. It has been suggested that, for an accurate representation
of the physical heterogeneity in a protein, such multiple-conformer models also
be used to explain X-ray crystallography data [9J24/14].

An open problem— and the focus of this paper— is understanding the nature
of conformational variability implied by experimental data. The key challenge
here is to distinguish variability resulting due to noise in experimental data
from functionally relevant physical motion [24J20/5]. The problem is particularly
difficult to solve with single-conformer approaches, given their limited ability
to model the data. Indeed, this issue has been a driving force in the efforts
toward ensemble approaches [9]. Even with the current ensemble approaches, it
is difficult to disentangle a protein’s physical motion (e.g. hinge or loop motions)
from other kinds of protein motion (e.g., vibrational motion). The key problem
is that limited sampling (i.e. number of conformations) and multiplicity of the
problem make for weak statistical estimates [O[T4/T2]. While a growing number of
tools address the problem of using ensembles to implicitly model conformational
variability [6/T4[5], they generally do not distinguish between variability due to
noise vs. physical motion.

There have been some attempts to analyze structural variability, but using
pairs of structures rather than ensembles. Conventional parameters such as tor-
sional angle differences, temperature factors and root-mean-squared-distance
(RMSD) values have been used to identify flexible regions. But they combine
estimation noise and true variability into a single quantity; thus, they are of lim-
ited usefulness under noisy data (e.g. for low-to-medium resolution structures)
(see Related Work, [20]). More importantly, conformational variability is best de-
scribed over a population (i.e ensemble) of conformations; pairwise comparison
between structures implies such limited sampling of the conformational space
that it may be unreliable for all but the least noisy datasets.

In this paper, we take a different approach to analyzing variability. Our ap-
proach is inspired by recent developments in regression-based predictive models
in machine learning. The basic intuition behind the approach is to construct an
ensemble of conformers that explain the experimental data and then use sparse
estimation to distinguish between conformers that are just noisy versions of a
base conformation (e.g., the PDB structure) and those that capture true confor-
mational variability (relative to the base). Accordingly, structures sampled from
a Gaussian distribution about the base structure should be more predictive of
the base structure than structures displaying true variability. This allows us to
separate out the biologically relevant variability due to physical motion using a
feature selection technique, Lasso [25]. Lasso, which stands for “least absolute
shrinkage and selection operator”, is a regularized regression technique in which
only the most significant predictor features are selected [25]. We illustrate the
approach on X-ray crystallographic data, as it is the most common source of
structural data. Our results demonstrate that the method compares favorably
with previous approaches. It is more robust to specific parameter choices and

Sparse Estimation for Structural Variability 15

produces fewer false positives and false negatives (see Comparative Analysis).
In contrast to conventional approaches of pairwise structure comparison, we use
Electron Density Maps (EDM) for identification of true variability; this allows us
greater power in accurately identifying true structural outliers without the need
for any artificial parameters to model noise [13]. Finally, our predictions of true
variable regions are in good agreement with the dynamics inferred from solution
NMR experiments; the latter are presumably closer to the physical reality.

One of the key contributions of our work is in framing the problem as a
sparse estimation problem, in a way that allows a wealth of machine learning
knowledge to be applied to it. In particular, the problem of identifying sparse
models that can be physically interpreted has recently gained much attention
in machine learning, data mining and statistics due to the exponential growth
in publicly available data [I0]. We show here that identification of true variable
regions in an ensemble is naturally formulated as a sparse learning problem via
Lasso. This formulation allows us to rigorously deal both with noise in the exper-
imental data and uncertainty associated with the structure-building process. Our
approach of using Lasso is quite general, and can be applied to any structural
data. Application of our method to proteins of interest may reveal interesting
conformational changes that might go unnoticed due to the absence of alternate
structural evidence, i.e. independently solved alternate conformations, which are
still expensive and cumbersome to obtain.

A key intuition driving our approach is as follows: to identify true variabil-
ity in a protein fragment, rather than performing a per-atom statistical test,
we perform a whole-model statistical test. A per-atom test will essentially ig-
nore correlated motions (even if small) between neighboring atoms; in contrast,
a whole-model test will be able to identify even small correlated motions. We
formalize this approach using the Lasso-based test. We exploit the idea of bor-
rowing information from all the samples to make a reliable statistical inference on
a particular sample. In contrast, a pairwise t-statistic approach uses information
from only a single sample to make a decision [12].

2 Related Work

Coordinate-based methods using pairwise comparisons have had reasonable suc-
cess in identifying flexible regions [20]. However these techniques were designed
to identify true flexibility in conformations that have been solved independently,
where there is already some evidence of variability. Nigham et al. give a statis-
tical test based on pairwise RMSD to identify regions showing true variability
in the presence of noise. Key to their method is the assumption of a uniform,
normal independent n