

Lecture Notes in Computer Science 6244
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Vladimir P. Gerdt Wolfram Koepf
Ernst W. Mayr Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing

12th International Workshop, CASC 2010
Tsakhkadzor, Armenia, September 6-12, 2010
Proceedings

13

Volume Editors

Vladimir P. Gerdt
Joint Institute for Nuclear Research
141980 Dubna, Moscow region, Russia
E-mail: gerdt@jinr.ru

Wolfram Koepf
Universität Kassel
34109 Kassel, Germany
E-mail: koepf@mathematik.uni-kassel.de

Ernst W. Mayr
Technische Universität München
85748 Garching, Germany
E-mail: mayr@in.tum.de

Evgenii V. Vorozhtsov
Russian Academy of Sciences
Novosibirsk, 630090, Russia
E-mail: vorozh@itam.nsc.ru

Library of Congress Control Number: 2010932428

CR Subject Classification (1998): I.1, G.2, I.3.5, F.2, G.1, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15273-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15273-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Dedicated to

Prof. Ernst W. Mayr
on the occasion of his 60th birthday

Preface

The CASC Workshops are traditionally held in turn in the Commonwealth of
Independent States (CIS) and outside CIS (Germany in particular, but, at times,
also other countries with lively CA communities). The previous CASC Work-
shop was held in Japan, and the 12th workshop was held for the first time in
Armenia, which is one of the CIS republics. It should be noted that more than
35 institutes and scientific centers function within the National Academy of Sci-
ences of Armenia (further details concerning the structure of the academy can
be found http://www.sci.am). These institutions are concerned, in particular,
with problems in such branches of natural science as mathematics, informatics,
physics, astronomy, biochemistry, etc. It follows from the talks presented at the
previous CASC workshops that the methods and systems of computer algebra
may be applied successfully in all the above-listed branches of natural sciences.
Therefore, the organizers of the 12th CASC Workshop hope that the present
workshop will help the Armenian scientists to become even more familiar with
the capabilities of advanced computer algebra methods and systems and to get
in touch with specialists in computer algebra from other countries.

The 11 earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005, CASC 2006,
CASC 2007, and CASC 2009 were held, respectively, in St. Petersburg (Rus-
sia), Munich (Germany), Samarkand (Uzbekistan), Konstanz (Germany), Yalta
(Ukraine), Passau (Germany), St. Petersburg (Russia), Kalamata (Greece),
Chişinău (Moldova), Bonn (Germany), and Kobe (Japan), and they all proved
to be very successful.

The present volume contains revised versions of the papers submitted to the
workshop by the participants and accepted by the Program Committee after a
thorough reviewing process (each paper was reviewed by at least three referees).

The studies in Gröbner bases and their applications belong to traditional
themes of the CASC Workshops. In particular, a new robust method is pre-
sented for an accurate floating-point computation of Gröbner bases, which is
stable to error accumulation. The application of Gröbner bases to the solution
of polynomial equations arising at the solution of the problem of KL-divergence
minimization is presented.

The invited talk by E.W. Mayr surveys a number of relationships between
computer algebra (in particular, polynomial ideals or, more specifically, binomial
ideals) and concepts like Petri nets widely used in computer science for modeling
and analyzing concurrent systems, and also presents some new complexity results
and algorithms for restricted classes of polynomial ideals.

Another traditional topic of the CASC Workshop, polynomial algebra, is rep-
resented by contributions devoted to the construction of irreducible polynomials
over finite fields, multivariate homogeneous polynomial decomposition, greatest

VIII Preface

common divisor (GCD) computations for finding universal denominators, iter-
ative calculation of the approximate GCD for multiple univariate polynomials,
and the REDUCE-based investigation of the convexity of rational functions over
a polyhedral domain by reducing convexity questions to real quantifier elimina-
tion problems.

Two papers deal with the theory of matrices and its application. In one of
them, the algorithms for a fast generalized Bruhat decomposition of the matrix
and for the computation of the inverse matrix are presented. In the other paper,
the minimal faithful matrix representation of filiform Lie algebras is computed
with Maple.

Several papers are devoted to the investigation, with the aid of computer
algebra, of various topics related to the ordinary differential equations (ODEs):
symbolic solution of a third-order ODE, integrability of planar ODE systems
near a degenerate stationary point, the use of differential resultants to investi-
gate completely integrable dynamical systems, and derivation of new numerical
methods for stiff ODE systems.

Investigating oscillations for parametric ODEs has many applications in scien-
ce and engineering but is a very hard problem. The invited lecture by A. Weber
presents a review of some recently developed criteria which give sufficient con-
ditions to exclude oscillations by reducing them to problems on semi-algebraic
sets—for polynomial vector fields. Some examples are given, and possible future
work in the form of problems to be solved is discussed. Some of these prob-
lems might be rather immediate to be solved, some others might pose major
challenges.

Two papers handle the topic of partial differential equations (PDEs): disjoint
decomposition of nonlinear PDE systems of equations and inequations into so-
called simple subsystems, and derivation of semigroup identities for evolution
equations using CAS.

Several papers are devoted to software problems in computer algebra. One of
them deals with the problem of achieving high performance when both symbolic
and numerical computations are required, and it proposes using the Aldor pro-
gramming language to solve this problem. Two other papers are devoted to the
problem of the development of object-oriented computer algebra software and
to functional parallelization of rational multiple-residue arithmetic.

A number of papers deal with the application of symbolic or symbolic-
numerical computations in applied problems of physics, mechanics, and engineer-
ing: computer analysis of spheroidal quantum dot models, the use of symbolic
computations in particle accelerator physics, reduction of nonlinear Lagrange
systems with cyclic coordinates to the linear Routh systems with the aid of the
Legendre transformation, and the use of geometric probabilities to model the
self-healing process in concrete with the aid of capsules containing the healing
agent.

The survey “Computational Science in Armenia” by H. Marandjian and Yu.
Shoukourian is devoted to the development of informatics and computer science
in Armenia. The results in theoretical computer science (algebraic models,

Preface IX

solutions to systems of general form recursive equations, the methods of coding
theory, pattern recognition, and image processing), constitute the theoretical basis
for developing problem-solving-oriented environments. As examples can be men-
tioned: a synthesizer of optimized distributed recursive programs, software tools
for cluster-oriented implementations of two-dimensional cellular automata, and a
grid-aware Web interface with advanced service trading for linear algebra calcula-
tions. In the direction of solving scientific problems that require high-performance
computing resources, examples of completed projects include the field of physics
(parallel computing of complex quantum systems), astrophysics (Armenian
virtual laboratory), biology (molecular dynamics study of human red blood cell
membrane), and meteorology (implementing and evaluating the Weather Research
and Forecast Model for the territory of Armenia). The overview also notes that the
Institute for Informatics and Automation Problems of the National Academy of
Sciences of Armenia has established a scientific and educational infrastructure
uniting computing clusters of scientific and educational institutions of the country
and provides the scientific community with access to local and international com-
putational resources that is a strong support for computational science in
Armenia.

Our particular thanks are due to the members of the CASC 2010 local Or-
ganizing Committee in Armenia, V. Sahakyan and M. Haroutunyan (The Insti-
tute for Informatics and Automation Problems; National Academy of Sciences
of Armenia, Yerevan), who ably handled local arrangements in Yerevan and
Tsakhkadzor. Furthermore, we want to thank the PC Committee for their in-
valuable work. Finally, we are grateful to W. Meixner for his technical help in
the preparation of the camera-ready manuscript for this volume.

June 2010 V.P. Gerdt
W. Koepf

E.W. Mayr
E.V. Vorozhtsov

Organization

CASC 2010 was organized jointly by the Department of Informatics at the Tech-
nische Universität München, Germany, and the Institute for Informatics and
Automation Problems (IIAP) at Yerevan, Armenia.

Workshop General Chairs

Vladimir Gerdt (JINR, Dubna) Ernst W. Mayr (TU München)

Program Committee Chairs

Wolfram Koepf (Kassel, Chair) Evgenii Vorozhtsov (Novosibirsk, Co-chair)

Program Committee

Sergei Abramov (Moscow)
Alkis Akritas (Volos)
Gerd Baumann (Cairo)
Hans-Joachim Bungartz (Munich)
Andreas Dolzmann (Saarbrücken)
Victor Edneral (Moscow)
Ioannis Emiris (Athens)
Jaime Gutierrez (Santander)
Richard Liska (Prague)

Marc Moreno Maza (London, Ontario)
Markus Rosenkranz (Canterbury)
Mohab Safey El Din (Paris)
Yosuke Sato (Tokyo)
Werner Seiler (Kassel)
Doru Stefanescu (Bucharest)
Serguei P. Tsarev (Krasnoyarsk)
Andreas Weber (Bonn)
Eva Zerz (Aachen)

Local Organization

Vladimir Sahakyan (IIAP, Yerevan)
Mariam Haroutunyan (IIAP, Yerevan)

Publicity Chair

Victor G. Ganzha (Munich)

Website

http://wwwmayr.in.tum.de/CASC2010

Table of Contents

Construction of Irreducible Polynomials over Finite Fields 1
Sergey Abrahamyan

Factorization of Polynomials and GCD Computations for Finding
Universal Denominators . 4

Sergei A. Abramov, Amel Gheffar, and Denis E. Khmelnov

A Role of Symbolic Computations in Beam Physics 19
Serge N. Andrianov

Thomas Decomposition of Algebraic and Differential Systems 31
Thomas Bächler, Vladimir Gerdt,
Markus Lange-Hegermann, and Daniel Robertz

On Multivariate Homogeneous Polynomial Decomposition 55
Paula Bustillo and Jaime Gutierrez

Computing Matrix Representations of Filiform Lie Algebras 61
Manuel Ceballos, Juan Núñez, and Ángel F. Tenorio

Type Specialization in Aldor . 73
Laurentiu Dragan and Stephen M. Watt

An Algebraic Implicitization and Specialization of Minimum
KL-Divergence Models . 85

Ambedkar Dukkipati and Joel George Manathara

On Sufficient Conditions for Integrability of a Planar System of ODEs
Near a Degenerate Stationary Point . 97

Victor Edneral and Valery G. Romanovski

Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal
Quantum Dot Models . 106

Alexander A. Gusev, Ochbadrakh Chuluunbaatar,
Vladimir P. Gerdt, Vitaly A. Rostovtsev, Sergue I. Vinitsky,
Vladimir L. Derbov, and Vladislav V. Serov

On Reduction of Lagrange Systems . 123
Valentin Irtegov and Tatyana Titorenko

Series Transformations to Improve and Extend Convergence 134
German A. Kalugin and David J. Jeffrey

Differential Resultant, Computer Algebra and Completely Integrable
Dynamical Systems . 148

Zoia Kostova, Nikolay Kostov, and Vladimir Gerdjikov

XIV Table of Contents

Generic, Type-Safe and Object Oriented Computer Algebra Software . . . 162
Heinz Kredel and Raphael Jolly

Implementing Data Parallel Rational Multiple-Residue Arithmetic in
Eden . 178

Oleg Lobachev and Rita Loogen

Fast Generalized Bruhat Decomposition . 194
Gennadi Malaschonok

Computational Science in Armenia (Invited Talk) . 203
H. Marandjian and Yu. Shoukourian

From Petri Nets to Polynomials: Modeling, Algorithms, and
Complexity (Abstract) (Invited Talk) . 204

Ernst W. Mayr

Supporting Global Numerical Optimization of Rational Functions by
Generic Symbolic Convexity Tests . 205

Winfried Neun, Thomas Sturm, and Stefan Vigerske

Term Cancellations in Computing Floating-Point Gröbner Bases 220
Tateaki Sasaki and Fujio Kako

One Class of Third-Order Linear ODE’s . 232
S.Yu. Slavyanov

GPGCD, an Iterative Method for Calculating Approximate GCD, for
Multiple Univariate Polynomials . 238

Akira Terui

Derivation of Explicit Difference Schemes for Ordinary Differential
Equations with the Aid of Lagrange–Burmann Expansions 250

Evgenii V. Vorozhtsov

Parametric Qualitative Analysis of Ordinary Differential
Equations: Computer Algebra Methods for Excluding Oscillations
(Extended Abstract) (Invited Talk) . 267

Andreas Weber, Thomas Sturm, Werner M. Seiler, and
Essam O. Abdel-Rahman

An Analytical Model for the Probability Characteristics of a Crack
Hitting an Encapsulated Self-healing Agent in Concrete 280

Serguey V. Zemskov, Henk M. Jonkers, and Fred J. Vermolen

Extending Clause Learning of SAT Solvers with Boolean Gröbner
Bases . 293

Christoph Zengler and Wolfgang Küchlin

Author Index . 303

Construction of Irreducible Polynomials over
Finite Fields

Sergey Abrahamyan

Institute of Informatics and Automation Problems,
P. Sevak street 1, Yerevan 0014, Armenia

serj.abrahamyan@gmail.com

Abstract. The aim of this paper is to present an explicit construction
of families of irreducible polynomials over finite fields by applying a poly-
nomial composition method.

1 Introduction

The problem of irreducibility of polynomials over finite fields is a case of spe-
cial interest and plays an important role in modern engineering [1,2,3]. One of
the methods to construct irreducible polynomials is the polynomial composition
method that allows constructions of irreducible polynomials of higher degree
from given irreducible polynomials over finite fields. In this paper we state a
theorem that enables explicit constructions of irreducible polynomials of degree
pm starting from an irreducible polynomial of degree m over IFq. As an exam-
ple of the theorem we give an explicit construction of a family of irreducible
polynomials over IF4. We show that in the proposed construction the number
of operations required to obtain an irreducible polynomial of degree m · p from
a given monic irreducible polynomial of degree m over IFq is O(m2),where m is
the degree of the starting polynomial, and p is the characteristic of the field.

2 Preliminaries

Let IFq be the Galois field of order q = pn, where p is a prime and n is a natural
number, and let f(x) be an irreducible polynomial of degree m over IFq. For
α ∈ IFqm the trace TrIFqm /IFq

(α) of α over IFq is defined by

TrIFqm /IFq
(α) = α+ αq + · · · + αqm−1

.

If IFq is the prime subfield of IFqm , then TrIFqm /IFq
(α) is called the absolute trace

of α and is simply denoted by TrIFqm (α).
We will begin with recalling some basic results on the irreducibility of poly-

nomials that can be found, for example, in [2].

Proposition 1 ([2], Theorem 3.78). Let α ∈ IFq and let p be the character-
istic of IFq. Then the trinomial xp − x − α is irreducible in IFq[x] if and only if
it has no root in IFq.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 1–3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 S. Abrahamyan

Proposition 2 ([2], Corollary 3.79). With the notation of Theorem 3.78, the
trinomial xp − x− α is irreducible in IFq[x] if and only if TrIFq

(α) �= 0.

With these preliminaries, we state a theorem that yields an irreducible polyno-
mial of degree pm over IFq.

Theorem. Let f(x) = xm + a1x
m−1 + · · · + am be an irreducible polynomial of

degree m over IFq and q = pn. Then, if a1 + ap
1 + · · · + apn−1

1 �= 0, the poly-

nomial a−1
m (1 − xp−1)mf∗

(
xp

1−xp−1

)
, where f∗(x) = xmf

(1
x

)
, is an irreducible

polynomial of degree pm over IFq.

Proof. Let α be a root of f(x) = 0 in some extension field IFqm of IFq. So
the elements α, αq , · · · , αqm−1

are the roots of f(x) = 0 and TrIFqm /IFq
(α) =

α + αq + · · · + αqm−1
= −a1, TrIFqm /IFp

(α) = TrIFq/IFp

(
TrIFqm /IFq

(α)
)

=
TrIFq/IFp

(−a1) = −TrIFq/IFp
(a1) �= 0. Thus, according to Corollary 3.79 in [2]

the polynomial g(x) = xp − x − α is irreducible over IFq. It is easy to see that
the polynomial −α−1g∗(x) = −α−1xpg

(1
x

)
= −α−1(1 − xp−1 − αxp) is also ir-

reducible over IFqm . Because α, αq , · · · , αqm−1
are the roots of f(x) = 0 in IFqm ,

we have that the elements α−1, α−q, · · · , α−qm−1
are the roots of f∗(x) in IFqm .

Hence

a−1
m f∗(x) =

m−1∏
u=0

(
x− α−qu

)
.

Substituting xp

1−xp−1 by x in the above expression and multiplying both sides of
it by(1 − xp−1)m, we have

a−1
m

(
1 − xp−1)m · f∗

(
xp

1 − xp−1

)
=

m−1∏
u=0

(
xp − α−qu (

1 − xp−1)) .

As −α−1g∗(x) = xp +α−1xp−1−α−1 is irreducible over IFqm , then, by Theorem

3.7 in [3], the polynomial a−1
m

(
1 − xp−1

)m · f∗
(

xp

1−xp−1

)
is irreducible over IFq.

��
Analytical results indicate that in the proposed construction, the
number of operations needed to generate an irreducible polynomial∑m

i=0 a
−1
m aix

ip
(
1 − xp−1

)m−i =
∑pm

u=0 bux
u from a given monic irreducible poly-

nomial
∑m

i=0 aix
m−i over IFq is O(m2).

The following example is an application of our theorem.

Example. Given IF4 = 0, 1, α, α+ 1, where α is a root of irreducible polynomial
x2 + x + 1 ∈ IF2[x] and f(x) = x3 + αx2 + 1 is irreducible over IF4. Since the
polynomial f(x) = x3+αx2+1 satisfies the conditions of the theorem mentioned
above, we may use f(x) to generate a new irreducible polynomial over IF4. So
we have

Construction of Irreducible Polynomials over Finite Fields 3

(1 + x)3f∗
(

x2

(1 − x)
)

= (1 + x)3
((

x2

(1 + x)

)3

+ α
(

x2

(1 + x)

)
+ 1

)
= x6 + αx2(1 + x)2 + (1 + x)3

= x6 + αx4 + x3 + (α+ 1)x2 + x+ 1.

Thus,
g(x) = x6 + αx4 + x3 + (α+ 1)x2 + x+ 1

is an irreducible polynomial over IF4.

References

1. Albert, A.: Fundamental Concepts of Higher Algebra. University of Chicago Press,
Chicago (1956)

2. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1987)

3. Menezez, A., Blake, I., Gao, X., Mullin, R., Vanstone, S., Yaghoobian, T.: Applica-
tions of Finite Fields. Kluwer Academic Publishers, Boston (1993)

Factorization of Polynomials and GCD
Computations for Finding Universal

Denominators�

S.A. Abramov1, A. Gheffar2, and D.E. Khmelnov1

1 Computing Centre of the Russian Academy of Sciences, Vavilova,
40, Moscow 119991, GSP-1 Russia

sergeyabramov@mail.ru, dennis khmelnov@mail.ru
2 Institute XLIM, Université de Limoges, CNRS, 123, Av. A. Thomas,

87060 Limoges cedex, France
f gheffar@yahoo.fr

Abstract. We discuss the algorithms which, given a linear difference
equation with rational function coefficients over a field k of characteristic
0, compute a polynomial U(x) ∈ k[x] (a universal denominator) such
that the denominator of each of rational solutions (if exist) of the given
equation divides U(x). We consider two types of such algorithms. One
of them is based on constructing a set of irreducible polynomials that
are candidates for divisors of denominators of rational solutions, and on
finding a bound for the exponent of each of these candidates (the full
factorization of polynomials is used). The second one is related to earlier
algorithms for finding universal denominators, where the computation
of gcd was used instead of the full factorization. The algorithms are
applicable to scalar equations of arbitrary orders as well as to systems
of first-order equations.

A complexity analysis and a time comparison of the algorithms
implemented in Maple are presented.

1 Introduction

In the early 1990s, computer algebra researchers and programmers tried not to
use the complete (full) factorization of polynomials unless it was inevitable since
this operation was very costly. Designing an algorithm everybody tried to find a
suitable type of incomplete factorization based on computation of the greatest
common divisors (gcd’s) following classical samples of M.V.Ostrogradsky’s and
Ch.Hermite’s algorithms for extracting the rational part of an indefinite integral
of rational function. But later the situation with full factorization algorithms
changed. Currently very fast and practical algorithms have become known, —
see, e.g., [16]. Of course the complexity of the algorithms for the full factoriza-
tion grows faster than the complexity of the algorithms for computing gcd when
polynomial degrees tend to infinity. But when the degrees are of moderate size
� Supported by ECONET grant 21315ZF.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 4–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Factorization of Polynomials and GCD Computations 5

the full factorization is not costlier than the computation of gcd, e.g., in Maple
system [22]. Thus, an interesting general problem arises, namely the problem of
designing new alternative computer algebra algorithms based on the full factor-
ization instead of numerous calls for the gcd subroutine. The appropriateness of
such alternative algorithms has to be carefully investigated for any particular
relevant computer algebra problem. Such investigation must be supported by
suitable correct experiments.

In this paper, we revisit a problem related to the search for rational solutions
of a linear difference equation with polynomial coefficients. Rational solutions
may be a building block for other types of solutions, and more general, such
algorithms may be a part of various computer algebra algorithms (see [21], [8],
[9], [17], etc.). As a consequence, investigations of new ways to construct such
solutions are quite valuable for computer algebra.

Let k be a field of characteristic 0. We consider systems of the form

Y (x + 1) = A(x)Y (x), (1)

Y (x) = (Y1(x), Y2(x), . . . , Yn(x))T , A(x) = (aij(x)) ∈ Matn(k(x)). It is assumed
that there exists the inverse matrix A−1(x) = (ãij(x)) ∈ Matn(k(x)). If an
inhomogeneous system Y (x + 1) = A(x)Y (x) + G(x) is given and A(x) is as
in (1), G(x) ∈ k(x)n, then by adding to Y (x) an (n + 1)-st component with
value 1, one can transform the given system into a homogeneous system with an
invertible matrix B(x) ∈ Matn+1(k(x)) (see, e.g., [15, Sect. 2.2]). For this reason
we restrict our consideration to (1). At the same time we will consider scalar
equations of the form

y(x+ n) + an−1(x)y(x+ n− 1) + . . . + a1(x)y(x + 1) + a0(x)y(x) = ϕ(x), (2)

ϕ(x), a1(x), . . . , an−1(x) ∈ k(x), a0(x) ∈ k(x) \ {0}, and such an equation is
inhomogeneous if ϕ(x) is a non-zero rational function. By clearing denominators
we can rewrite (2) as

bn(x)y(x + n) + . . . + b1(x)y(x + 1) + b0(x)y(x) = ψ(x), (3)

ψ(x), b1(x), . . . , bn−1(x) ∈ k[x], b0(x), bn(x) ∈ k[x] \ {0}.
Currently, a few algorithms for finding rational (i.e., rational function) solutions

of equations (2), (3) and systems (1) are known. The algorithms from [5,6,11,14]
first construct a universal denominator, i.e., a polynomial U(x) such that in the
scalar case an arbitrary rational solution y(x) of (2) or (3) can be represented as

y(x) =
z(x)
U(x)

, (4)

where z(x) ∈ k[x] (in other words, if (2) has a rational solution f(x)
g(x) which is in

the lowest terms then g(x)|U(x)). In the case of a system an arbitrary rational
solution of (1) can be represented as

Yi(x) =
Zi(x)
U(x)

, i = 1, 2, . . . , n, (5)

where Z1(x), Z2(x), . . . , Zn(x) ∈ k[x].

6 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

The algorithm from [14] is based on constructing a set of irreducible polyno-
mials that are candidates for divisors of denominators of rational solutions, and
on finding in a quite simple way a bound for the exponent of each of these can-
didates. Such algorithms use the full factorization of polynomials. Experiments
with the Maple system show that the full factorization makes some of computer
algebra algorithms significantly faster in comparison with algorithms based on
computations of gcd’s and resultants ([20], [10] etc.).

When a universal denominator is constructed, one can substitute (4), (5) with
undetermined z(x) resp. Zi(x) into the initial equation resp. system to reduce
the problem of searching for rational solutions to the problem of searching for
polynomial solutions. After this, e.g., the algorithms from [2,7] (the scalar case;
see also [13, Sect. 9]) and the corresponding algorithm from [6,11,18] (the case
of a system) can be used.

The algorithm from [15] is applicable to the system (1) when k = C. It finds
n rational functions R1(x), R2(x), . . . , Rn(x) ∈ C(x) which are called bounds for
denominators such that for any rational solution of (1) we have

Yi(x) = Zi(x)Ri(x), i = 1, 2, . . . , n, (6)

where Z1(x), Z2(x), . . . , Zn(x) ∈ C[x] (the numerator of Ri(x) is a factor of the
numerator of the ith entry Yi(x) of any rational solution Y (x)). The substitution
(6) is used instead of (4), (5). The algorithm from [15] can lead to a more “pro-
ductive” substitution. But the general situation is not so simple. This algorithm
is based on matrix operations (matrix entries are in C(x)) which are costly. It
is shown in [14, Th. 2] that there exist such examples when substitutions (5),
(6) are identical, but the algorithm from [15], spends much more time than the
algorithms from [5,6,11,14].

In this paper we concentrate on the approach discussed in [14].
The paper is organized as follows. Section 2 is devoted to a theoretical basis

for algorithms for constructing universal denominators (a short review). Section
3 contains descriptions of the algorithm from [5,6,11,14]. In addition, we pro-
pose an improved version of the algorithm from [14]. In Section 4 we give some
analysis of these algorithms and prove that all of them give the same universal
denominator. A complexity analysis is given as well. In Section 5, we discuss our
implementation of the proposed improved version of the algorithm from [14].
Section 6 contains a time comparison of this algorithm with the algorithms from
[5,6] which are exploited in current versions of Maple. Finally in Section 7 we
make some conclusion remarks.

2 The Dispersion Set

Working with polynomial and rational functions over k we will write f(x)⊥g(x)
for f(x), g(x) ∈ k[x] to indicate that f(x) and g(x) are coprime; if F (x) ∈ k(x),
then denF (x) is the monic polynomial from k[x] such that F (x) = f(x)

denF (x)
for some f(x) ∈ k[x], f(x)⊥ denF (x). In this case we write numF (x) for f(x).

Factorization of Polynomials and GCD Computations 7

The set of monic irreducible polynomials of k[x] will be denoted by Irr(k[x]).
If p(x) ∈ Irr(k[x]), f(x) ∈ k[x], then we define the valuation valp(x)f(x) as
the maximal m ∈ N such that pm(x)|f(x) (valp(x)0 = ∞), and valp(x)F (x) =
valp(x)(numF (x)) − valp(x)(denF (x)) for F (x) ∈ k(x).

Let A(x) be as in (1), then we define

denA(x) =
n

lcm
i=1

n

lcm
j=1

den(aij(x)), denA−1(x) =
n

lcm
i=1

n

lcm
j=1

den(ãij(x)).

If
F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n

then denF (x) = lcmn
i=1 denFi(x), and valp(x)F (x) = minn

i=1 valp(x)Fi(x). A
solution F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n of (1) as well as a solution
F (x) ∈ k(x) of (2), (3) is a rational solution. If denF (x) �= 1 then this solution
is non-polynomial, and polynomial otherwise.

If p(x) ∈ Irr(k[x]), f(x) ∈ k[x] \ {0} then we define the finite set

Np(x)(f(x)) = {m ∈ Z : p(x+m)|f(x)}. (7)

If Np(x)(f(x)) = ∅ then define maxNp(x)(f(x)) = −∞, minNp(x)(f(x)) = +∞.
¿From now on we use the notation

V (x) = bn(x− n), W (x) = b0(x)

for equation (3), and

V (x) = u1(x− 1), W (x) = u0(x),

where u1(x) = denA(x), u0(x) = denA−1(x), for system (1).
The first computer algebra algorithm for finding solutions of (3) which belong

to k(x) was proposed in [3]. One of the statements proven in [3] (and later in [6]
for the case of a system) can be formulated using notation (7) as follows:

Proposition 1. ([3,6]) Let p(x) divide the denominator of a rational solution of
(3) or (1), p(x) ∈ Irr(k[x]). Then maxNp(x)(V (x)) ≥ 0, and minNp(x)(W (x)) ≤
0.

For f(x), g(x) ∈ k[x] \ {0} we define their dispersion set:

ds(f(x), g(x)) = {h ∈ N : deg gcd(f(x), g(x + h)) > 0} (8)

and their dispersion:

dis(f(x), g(x)) = max(ds(f(x), g(x)) ∪ {−∞}). (9)

The dispersion is equal to −∞ iff deg gcd(f(x), g(x+ h)) = 0 for all h ∈ N, and
belongs to N otherwise. The set ds(f(x), g(x)) can be computed as the set of all
integer non-negative roots of the polynomial Resx(f(x), g(x+h)) ∈ k[h]. This set
can be also obtained from the full factorization of f(x) and g(x). Indeed, for given

8 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

w(x), v(x) ∈ Irr(k[x]), degw(x) = deg v(x) = s, one can easily recognize whether
or not exists h ∈ Z such that w(x + h) = v(x): if w(x) = xs + ws−1x

s−1 + . . .,
v(x) = xs+vs−1x

s−1+. . ., then w(x+h) = xs+(wm−1+sh)xs−1+. . . and the only
candidate for h is vs−1−ws−1

s , if this value belongs to Z ([20]). The computation
is faster if one resorts to the approach from [20] based on the full factorization
instead of computing integer roots of a resultant. This is successfully used, e.g.,
in Maple: LREtools[dispersion].

By Proposition 1, if a non-polynomial rational solution exists then the set
ds(V (x),W (x)) is not empty.

3 Algorithms for Constructing Universal Denominators

3.1 The Algorithm AD from [5,6]

The algorithm is as follows:
Find H = ds(V (x),W (x)). If H = ∅ then terminate the algorithm with the

result U(x) = 1 (we suppose below that H = {h1, h2, . . . , hs} and h1 > h2 >
. . . > hs, s ≥ 1). Set U(x) = 1 and successively for m = 1, 2, . . . , s execute the
following group of assignments:
P (x) = gcd(V (x),W (x + hm))
V (x) = V (x)/P (x)
W (x) = W (x)/P (x − hm)
U(x) = U(x)

∏hm

i=0 P (x− i).
The final value of U(x) is a universal denominator for equations (2), (3) or, resp.,
system (1).

We will refer to this algorithm as AD. This algorithm is exploited in current
versions of Maple:

LREtools[ratpolysols], LinearFunctionSystems[UniversalDenominator].

3.2 The Algorithm from [11]

In [11] a more general problem than the search for rational solutions of system (1)
was solved. However, the algorithm from [11, Prop. 3] can be used to compute a
universal denominator u(x) related to (1). Using our notation (setting in addition
h = dis(V (x),W (x))) this algorithm may be represented as follows.

Consider the sequence of polynomials {(Vj(x),Wj(x), Pj(x))} defined induc-
tively as:

V0(x) = V (x), W0(x) =W (x), P0(x) = gcd(V (x),W (x + h)),

and for j = 1, 2, . . . , h,
Vj(x) = Vj−1(x)/Pj−1(x),
Wj(x) =Wj−1(x)/Pj−1(x− h+ j − 1),
Pj(x) = gcd(Vj(x),Wj(x+ h− j)).

Then

u(x) =
h∏

j=0

h−j∏
i=0

Pj(x− i).

Factorization of Polynomials and GCD Computations 9

3.3 The Algorithm AU from [14]

An explicit formula for a lower bound of valp(x)F (x) can be found in [14]: if F (x)
is a rational solution of equation (3) or system (1) then

valp(x)F (x) ≥ −min

⎧⎨⎩∑
l∈N

valp(x+l)V (x),
∑
l∈N

valp(x−l)W (x)

⎫⎬⎭ (10)

for any p(x) ∈ Irr(k[x]).
This formula was used in [14] as a base for the new algorithm AU for com-

puting a universal denominator. This algorithm can be divided into two steps.
In the first step, AU constructs a finite set M of irreducible polynomials that
are candidates for divisors of denominators of rational solutions. At the second
step, for each p(x) ∈M this algorithm computes the value

γp(x) = min

⎧⎨⎩∑
l∈N

valp(x+l)V (x),
∑
l∈N

valp(x−l)W (x)

⎫⎬⎭ . (11)

The product
∏

p(x)∈M pγp(x)(x) gives a universal denominator related to a given
equation or system.

By Proposition 1 we can define

M =
{
p(x) ∈ Irr(k[x]) : minNp(x)(W (x)) ≤ 0, maxNp(x)(V (x)) ≥ 0

}
.

For constructing this set the full factorization of polynomials V (x),W (x) has to
be found. Then we find the finite set Q ⊂ Irr(k[x]) such that q(x) ∈ Q iff

minNq(x)(W (x)) = 0, maxNq(x)(V (x)) ≥ 0.

Let Q �= ∅ and Q = {q1(x), q2(x), . . . , qs(x)}, s ≥ 1. For each 1 ≤ i ≤ s consider

Mqi(x) = {qi(x), qi(x+ 1), . . . , qi(x+ hi)}, (12)

where
hi = maxNqi(x)(V (x)). (13)

We have M =
⋃s

i=1Mqi(x).

3.4 An Improved Version of the Algorithm AU (the Algorithm A′
U)

As it is described above the algorithm AU contains two steps: the construction of
the setM and the computation of γp(x) using (11) for all p(x) ∈M , which results
in the universal denominator. Formula (11) contains the sums by l ∈ N. In spite
of the fact that N is infinite, the sums have only finite number of summands
corresponding to the irreducible factors of V (x) and W (x), which are equal
to non-negative and non-positive shifts of p(x), respectfully (the corresponding
valuations are equal to the exponents of such factors in the factorization of V (x)

10 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

and W (x)). No special way for time saving computing of the exponents γp(x)
was described in [14]. We propose below a possible way of this kind.

It is clear that when we compute (11) for p(x) = qi(x + j) ∈ Mqi(x) (where
Mqi(x) is as in (12)), the corresponding γqi(x+j) might be equal for many succes-
sive j. Indeed if we have computed γqi(x), and after that we compute γqi(x+j) for
j from 1 to hi, then the value can be changed only for those j for which there is
an irreducible factor of V (x) and/orW (x) equal to qi(x+j) (such critical points
can be computed in advance while constructing the set M). The consideration
is a basis for the improved version of the algorithm AU ; the new algorithm is
presented below in details.

The first step is adjusted to compute the following:
– {qi(x)}s

i=1 and {hi}s
i=1 which correspond (12) and (13).

– The sets
Ci,W =

{
c ∈ Z : valqi(x+c)(W (x)) > 0

}
,

Ci,V =
{
c ∈ Z : valqi(x+c−1)(V (x)) > 0

}
of the critical points.

– Di,W =
{
Di,W

c

}
and Di,V =

{
Di,V

c

}
which are the sets of the valuations

corresponding to the critical points: Di,W
c = valqi(x+c)(W (x)) for each c ∈

Ci,W and Di,V
c = valqi(x+c−1)(V (x)) for each c ∈ Ci,V .

Note that all the data are computed simultaneously using the factorizations of
W (x) and V (x).

The second step is performed as a loop by i from 1 to s. For each q(x) = qi(x)
and h = hi execute the following:
– Construct the joint and sorted set of critical points:{

cj : cj ≥ 0, cj ≤ h, cj ∈ Ci,W
⋃
Ci,V

}ni

j=1, with c1 < c2 < . . . < cni .
– Compute the intervals {l0, . . . , l1 − 1}, {l1, . . . , l2 − 1}, . . . {lk−1, . . . , h} of

the same exponents γ1, γ2, . . ., γk and the exponents themselves:
We initialize the computation with k=0, γ0 =−1 and γw =

∑
0>c∈Ci,W Di,W

c ,
γv =

∑
0≥c∈Ci,V Di,V

c . Then for the critical points c = c1, c2, . . . cni we com-
pute the change of the values by γw = γw + Di,W

c (if c ∈ Ci,W) and/or
γv = γv − Di,V

c (if c ∈ Ci,V), which gives a new γk+1 = min(γv, γw). If
γk+1 �= γk then a new interval with the new exponent γk+1 is started from
lk = c (after that k is correspondingly increased by 1).

– Having added lk = h + 1, compute the factor of the universal denominator
that corresponds q(x):
Ui =

∏k
m=1

∏lm−1
j=lm−1

q(x+ j)γm

The final universal denominator is the product of all Ui for i = 1, 2, . . . s.
The algorithm is justified by considering the changes in (11) for computing

γq(x+j) with successive j. Note that γv (i.e.
∑

l∈N valq(x+j+l)V (x)) and γw (i.e.∑
l∈N valq(x+j−l)W (x)) change a bit differently with the increase of j: the first

one may only decrease and the second one may only increase. It leads to the
corresponding differences in the algorithm in the definitions of Ci,W , Ci,V and
the formulas for the initial values of γw, γv and their changes.

We will refer to this detailed (improved) version of AU as A′
U .

Factorization of Polynomials and GCD Computations 11

4 Analysis of the Algorithms

4.1 Equivalence of Results

Proposition 2. The universal denominators computed by the algorithms de-
scribed in Section 3.2 coincide for any given V (x),W (x). Intermediate polyno-
mials computed by AD are also computed as intermediate polynomials by the
algorithm from [11].

Proof. First show that the algorithm from [11] gives the same result and com-
putes all the intermediate polynomials that AD computes. Indeed, replace H
by

H̄ = {h, h− 1, . . . , 0}
h = h1 = dis(V (x),W (x)). This extension of H does not change the result (the
additionally computed gcd’s will be equal to 1). We also enumerate the values
V (x),W (x), P (x), U(x) in AD:

Set U0(x) = 1, V0(x) = V (x),W0(x) =W (x) and successively for j = 0, 1, . . .,
h− 1 execute the following group of assignments:

Pj+1(x) = gcd(Vj(x),W (x + h− j))
Vj+1(x) = Vj(x)/Pj+1(x)
Wj+1(x) = Wj(x)/Pj+1(x− h+ j)
Uj+1(x) = Uj(x)

∏h−j
i=0 Pj+1(x− i).

Evidently triples (Vt(x),Wt(x), Pt(x)) coincide for t = 0, 1, . . .h in both algo-
rithms, and u(x) = Uh(x).

It was proven in [11] that if h = dis(V (x),W (x)) then

u(x) = gcd

(
h∏

i=0

V (x− i),
h∏

i=0

W (x+ i)

)
.

Therefore, the value valp(x)u(x) is equal to the right-hand side of (11) for any
p(x) ∈ Irr(k[x]). This implies that the outputs of the algorithm from 3.2 and
AU coincide. Thus, the outputs of AD and, resp. AU coincide as well. The
coincidence of the outputs of AU and A′

U is evident. ��

4.2 Complexity Comparison

We now give a complexity analysis of AD and A′
U . Let n = max{degV (x),

degW (x)} and h = dis(V (x),W (x)). We compare the complexities TD(n, h) and
TU (n, h) of AD and A′

U . In this context, the complexity is the number of the
field operations in k in the worst case.

Both algorithms perform polynomial multiplications for getting U(x). We do
not specify the used polynomial multiplication algorithm, but suppose that the
worst case is when it is necessary to multiply a big number (which is equal to
degU(x)) of first degree polynomials.

Both algorithms spend the same time to find the full factorization of V (x)
and W (x) and to compute their dispersion set. In addition, A′

U constructs the

12 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

set Q as well as the set of corresponding hi, the set of critical points, and the
set of corresponding valuations. The cost of this computation in the worst case
is O(n) plus the cost of sorting critical points. This gives totally O(n logn).

On the other hand, AD computes gcd’s; if h ≥ n then in the worst case, the
cost of this computation is

∑n
i=0 Tgcd(n− i), where Tgcd(n) is the complexity of

the gcd computation for two polynomials whose maximal degree is n. If 0 < h <
n then the cost in the worst case is

∑h
i=0 Tgcd(n−i). Obviously

∑n
i=0 Tgcd(n−i) =∑n

i=0 Tgcd(i),
∑h

i=0 Tgcd(n − i) =
∑n

i=n−h Tgcd(i), and we have the following
proposition.

Proposition 3. If Tgcd(n)/(n logn)→∞ then the difference TD(n, h)−TU (n, h)
is positive for almost all n, h ∈ N+ and

TD(n, h) − TU (n, h) =

⎧⎨⎩
∑n

i=0 Tgcd(i) +O(n log n), if h ≥ n,∑n
i=n−h Tgcd(i) +O(n log n), if h < n.

(14)

In the next proposition we use the Ω-notation which is very common in complex-
ity theory ([19]). Unlike O-notation which is used for describing upper asymp-
totical bounds, the Ω-notation is used for describing lower asymptotical bounds.

Proposition 4. Let Tgcd(n) = Ω(nd), d > 1. Then the difference TD(n, h) −
TU (n, h) is positive almost all n, h ∈ N+ and is Ω(R(n, h)), where

R(n, h) =

⎧⎨⎩
nd+1, if h ≥ n,

hnd, if h < n.

Proof. The case h ≥ n follows from (14) and d > 1. In the case h < n we can
use the inequality

n∑
i=m

id >
nd(n−m)
d+ 1

(15)

which is valid for any integer 0 < m ≤ n and real d ≥ 1. Takingm = n−h we get
the claimed. To prove (15) note that the function xd is monotonically increasing
when x ≥ 0 and d ≥ 1. This gives for m < n (the case m = n is trivial):

n∑
i=m

id >

n∑
i=m+1

id >

n∑
i=m+1

∫ i

i−1
xd dx =

∫ n

m

xd dx =
nd+1

d+ 1

(
1 −

(m
n

)d+1
)

.

Since in our case 1 − (
m
n

)d+1 ≥ 1 − m
n , we get (15). ��

To the authors’ knowledge Tgcd(n) = Ω(nd), d > 1, for the algorithms now in
use in actual practice for gcd computations.

The fast Euclidean algorithm [12, Ch. 11] has complexity O(n log2 n log logn)
if Fast Fourier Transform is used to multiply polynomials. But this version of

Factorization of Polynomials and GCD Computations 13

the fast Euclidean algorithm is not practical due to a big constant hidden in O.
Nevertheless, if we suppose that the fast Euclidean algorithm is used and the
estimate Ω(n log2 n log logn) (or, even Ω(n log2 n)) is valid for the complexity
of this algorithm then by Proposition 3 the difference TD(n, h) − TU (n, h) is
positive (i.e., TU (n, h) < TD(n, h)) for almost all n, h ∈ N+.

5 Implementation

Below we consider an implementation in Maple of A′
U (Section 5) and demon-

strate the corresponding time comparison with AD (Section 6). As it was shown
in Proposition 2 both algorithms give the same result, and the comparison is
correct. The algorithm from [11] is similar to AD by Proposition 2, and we do
not involve this algorithm into the comparison.

As we mentioned in Section 3.1 the algorithm AD implementation is available
in Maple as an internal procedure of the package LREtools. We implemented
our new algorithm A′

U and performed experimental comparison of the two
algorithms.

The implementation has several peculiarities which are discussed below.

5.1 Full Factorization

The algorithm A′
U (and AU as well) is based on the full factorization of the

given polynomials V (x) and W (x). Our implementation uses the result of the
factorization not only to construct the setM of irreducible polynomials, but also
computes (11) using it. Note that it is not the case for the implementation of the
algorithm AD in Maple. It uses the procedure LREtools[dispersion] to compute
the dispersion of polynomials which implements the algorithm [20], i.e., uses the
full factorization. But the next steps of the algorithm AD are implemented as
presented not exploiting the result of the factorization of the previous step.

5.2 Shift Computation

Our implementation uses vastly the auxiliary procedure, which given p(x), r(x) ∈
Irr(k[x]) computes the shift s ∈ Z such that p(x) = r(x + s) or defines that no
such s exists (actually it is a particular case of computing Np(x)(r(x)) when
r(x) ∈ Irr(k[x])). The procedure is used both to compute the set M and to
compute Ci,W , Ci,V , Di,W , Di,V for further computations of the exponents γ.
The shift computation is implemented efficiently using the main idea of the
algorithm [20] presented in the end of Section 2.

5.3 Computing Universal Denominator

Though we compute the values γ successively, it is better to compute the uni-
versal denominator at once for all qi(x + j), rather than compute the universal
denominator also successively. In the latter case, the intermediate computations
of the preliminary results might be costly at least in Maple.

14 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

6 Three Experiments

Using our implementation of the algorithm A′
U and the implementation of the

algorithms AD that is embedded in Maple, we have performed three experiments
to compare the algorithms.

6.1 Experiment 1

We have applied both algorithms to the following similar inputs:

(a) V (x) = W (x) =
∏l

i=1(x+m+ 1/i)(x−m+ 1/i) for m = 20, 100, 500, 2500,
l = 1, 15, 30, 45, 60;

(b) V (x)=W (x)=
∏l

i=1(x+m+i+1/i)(x−m−i+1/i) form=20, 100, 500, 2500,
l = 1, 15, 30, 45, 60.

The corresponding universal denominators found by both algorithm for the in-
puts are, respectfully, the following:

(a)
∏l

i=1
∏m

j=−m(x− j − 1 + 1/i);
(b)

∏l
i=1

∏m+i
j=−m−i(x − j + 1/i).

The experiment is based on the example from [15], which is transformed to be
more complicated by using l similar pair factors instead of the only one pair.
Tables 1 and 2 show the CPU time1 needed to compute the corresponding univer-
sal denominators by three implementations for each of the pair V (x) and W (x).
The input polynomials are expanded before calling the implementations. The
expansion is needed to create equal conditions for both algorithms (otherwise
the factored input definitely simplifies the work for A′

U). In addition, it has been
found that the implementation of the algorithm [20] in Maple for computing the
dispersion of two polynomials uses some additional preprocessing which leads to
inefficiency for the inputs in the factored form at least in our experiments, so
the expanded input allows eliminating this question in our comparison.

Table 1. Results of the experiment 1(a), in seconds

m=20 m=100 m=500 m=2500
A′

U AD A′
U AD A′

U AD A′
U AD

l=1 0.000 0.016 0.000 0.015 0.015 0.015 0.016 0.031
l=15 0.079 0.141 0.094 0.141 0.172 0.203 0.546 0.438
l=30 0.375 0.547 0.407 0.562 0.547 0.656 1.266 1.109
l=45 0.719 1.140 0.828 1.235 1.172 1.531 3.015 2.531
l=60 2.032 2.875 2.390 3.344 3.000 4.516 5.063 5.704

The results show that the algorithms behave differently with the growth of m
and l. The results of AD are getting relatively worse with the growth of l if we fix
anym, and the results of A′

U are getting relatively worse with the growth ofm if

1 For all the experiments: Maple 13, Windows XP, Pentium 4 1.7 GHz, 512 MB RAM.

Factorization of Polynomials and GCD Computations 15

Table 2. Results of the experiment 1(b), in seconds

m=20 m=100 m=500 m=2500
A′

U AD A′
U AD A′

U AD A′
U AD

l=1 0.016 0.015 0.000 0.000 0.000 0.016 0.031 0.031
l=15 0.078 0.375 0.109 0.422 0.172 0.531 0.578 1.032
l=30 0.359 2.890 0.407 3.063 0.531 3.484 1.266 5.344
l=45 0.860 10.641 0.796 11.547 1.516 13.234 3.078 17.656
l=60 2.406 31.187 2.719 33.484 2.657 37.125 4.766 44.797

we fix any l. The latter observation may be explained if we analyze the structure
of the algorithms in respect to the particular problem in hand: actually, for the
fixed m and given l A′

U performs similar set of operations l times, but AD needs
to perform gcd computations with the polynomials of l times higher degrees.

It is easy to see that the inputs (a) are more convenient for the algorithm
AD: the gcd is computed only once for each input, the number of multiplied
polynomials is 2m+ 1, while for A′

U this number is (2m+ 1)l . In spite of this
handicap the timing of A′

U looks better for the whole experiment (Table 1).
The input (b) corresponds near to the worst case for both algorithms A′

U and
AD (the input size is a pair of numbers as in Section 4.2), and an advantage of
A′

U is evident (Table 2).
We have noted in Section 3.4 that no special way for time saving computing

of the exponents γp(x) was proposed in the description of AU given in [14]. If one
uses formula (11) for each p(x) ∈ M then the total computation time increases
dramatically. We have implemented a straightforward version of AU as well for
the preliminary experiments and, for example, the result of AU for the input of
type (a) with m = 2500, l = 60 is 350 seconds.

6.2 Experiment 2

We have also applied the algorithms to several sets of randomly generated pairs
of polynomials V (x) andW (x). Each set contains 500 pairs, and each polynomial
is generated using Maple command randpoly(x,degree=d,terms=l), i.e., it is a
polynomial of degree up to d and it contains up to l terms. Note that given
such generated polynomials, the universal denominator found by the considered
algorithms is most probably xn for some n ∈ N, and moreover it is just 1 for
most of the cases. Still the experiment is meaningful, since if we try to search
for the rational solution of absolutely arbitrary equations, it would be exactly
like this. 9 sets are generated for d = 10, 20, 30 and l = 2, d/2, d. Table 3 shows
the CPU time needed to compute the corresponding universal denominators
by the implementations for each of the set. We do not need to expand the
input polynomials before calling the implementations in the experiment since
the polynomials are expanded by construction.

The results show that A′
U is better than AD in this experiment for all the

sets.

16 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

Table 3. Results of the experiment 2, in seconds

l=2 l=d/2 l=d
A′

U AD A′
U AD A′

U AD

d=10 1.578 6.016 5.953 9.578 6.734 10.157
d=20 1.750 8.094 8.594 12.938 9.828 13.969
d=30 1.922 10.422 12.235 17.234 13.985 19.375

6.3 Experiment 3

We have also applied the algorithms to several sets of other randomly gener-
ated pairs of polynomials V (x) and W (x). Each set contains again 500 pairs,
but the polynomials are generated differently. Each polynomial is generated as a
product of at most l factors of the form (x− ri)di , where ri is a random integer
between −10 and 10, di is a random integer between 0 and d. Such method of
generation ensures that the found universal denominators will be non trivial. 9
sets are generated for d = 2, 4, 6 and l = 1, 5, 10. Table 4 shows the CPU time
needed to compute the corresponding universal denominators by the implemen-
tations for each of the set. The input polynomials are expanded before calling
the implementations.

Table 4. Results of the experiment 3, in seconds

l=1 l=5 l=10
A′

U AD A′
U AD A′

U AD

d=1 0.219 0.890 1.094 2.453 2.672 6.265
d=3 0.390 1.390 2.953 6.500 5.844 14.937
d=5 0.437 1.609 4.328 9.750 8.313 23.250

The results show that A′
U is better than AD in this experiment for all the sets.

7 Conclusion

Our investigation presented in the paper has confirmed that it might be useful
to revisit the problems which were solved earlier by the algorithms which use
incomplete factorization based on computation of the greatest common divisors
as a result of the desire to avoid the use of the full factorization. The full factor-
ization based algorithm AU (and its new improved version A′

U) for the universal
denominator construction is proved to deliver the same results as the old gcd
computation based algorithm AD, but the implementation of A′

U is shown to be
more efficient. It is especially logical to switch to the new approach, in particu-
lar, in Maple, since the existing Maple implementation of the algorithm AD uses
already the factorization based auxiliary algorithm for computing the dispersion,
i.e., the required factorizations are computed already.

Factorization of Polynomials and GCD Computations 17

Note that new algorithms should not be necessary obtained out of the old
ones just by substituting gcd computations with the corresponding computations
using the results of factorizations. It might be more useful to re-think the whole
algorithm over again based on the new approach. In this way, A′

U utilizes the
new computations based on the new formula (11), and they are implemented
efficiently, e.g., taking into account the fact that when we compute (11) for
p(x) = qi(x + j) ∈ Mqi(x) from (12), the corresponding γqi(x+j) might be equal
for many successive j.

Logically if the basic operations are significantly changed then concepts for
algorithms designing have to be updated.

Acknowledgments. The authors are grateful to M. Barkatou and M. Petkovšek
for interesting discussions, and to anonymous referees for their helpful comments.

References

1. Abramov, S.: On the summation of rational functions. USSR Comput. Math.
Phys. 11, 324–330 (1971); Transl. from Zh. vychisl. mat. mat. fyz. 11, 1071–1075
(1971)

2. Abramov, S.: Problems of computer algebra involved in the search for polynomial
solutions of linear differential and difference equations. Moscow Univ. Comput.
Math. Cybernet. 3, 63–68 (1989); Transl. from Vestn. MGU. Ser. 15. Vychisl. mat.
i kibernet. 3, 53–60 (1989)

3. Abramov, S.: Rational solutions of linear difference and differential equations with
polynomial coefficients. USSR Comput. Math. Phys. 29, 7–12 (1989); Transl. from
Zh. vychisl. mat. mat. fyz. 29, 1611–1620 (1989)

4. Abramov, S.: Rational solutions of linear difference and q-difference equations with
polynomial coefficients. In: ISSAC 1998 Proceedings, pp. 303–308 (1995)

5. Abramov, S.: Rational solutions of linear difference and q-difference equations with
polynomial coefficients. Programming and Comput. Software 21, 273–278 (1995);
Transl. from Programmirovanie 6, 3–11 (1995)

6. Abramov, S., Barkatou, M.: Rational solutions of first order linear difference sys-
tems. In: ISSAC 1998 Proceedings, pp. 124–131 (1998)

7. Abramov, S., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear
operator equations. In: ISSAC 1995 Proceedings, pp. 290–295 (1995)

8. Abramov, S., van Hoeij, M.: A method for the integration of solutions of Ore
equations. In: ISSAC 1997 Proceedings, pp. 172–175 (1997)

9. Abramov, S., van Hoeij, M.: Integration of solutions of linear functional equations.
Integral Transforms and Special Functions 8, 3–12 (1999)

10. Abramov, S., Ryabenko, A.: Indicial rational functions of linear ordinary differ-
ential equations with polynomial coefficients. Fundamental and Applied Mathe-
matics 14(4), 15–34 (2008); Transl. from Fundamentalnaya i Prikladnaya Matem-
atika 14(4), 15–34 (2008)

11. Barkatou, M.: Rational solutions of matrix difference equations: problem of equiv-
alence and factorization. In: ISSAC 1999 Proceedings, pp. 277–282 (1999)

12. Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

13. Gerhard, J.: Modular Algorithms in Symbolic Summation and Symbolic Integra-
tion. LNCS, vol. 3218. Springer, Heidelberg (2004)

18 S.A. Abramov, A. Gheffar, and D.E. Khmelnov

14. Gheffar, A., Abramov, S.: Valuations of rational solutions of linear difference equa-
tions at irreducible polynomials. Adv. in Appl. Maths (submitted 2010)

15. van Hoeij, M.: Rational solutions of linear difference equations. In: ISSAC 1998
Proceedings, pp. 120–123 (1998)

16. van Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number The-
ory 95, 167–189 (2002)

17. van Hoeij, M., Levy, G.: Liouvillian solutions of irreducible second order linear
difference equations. In: ISSAC 2010 Proc. (2010)

18. Khmelnov, D.E.: Search for polynomial solutions of linear functional systems by
means of induced recurrences. Programming and Comput. Software 30, 61–67
(2004); Transl. from Programmirovanie 2, 8–16 (2004)

19. Knuth, D.E.: Big omicron and big omega and big theta. ACM SIGACT News 8(2),
18–23 (1976)

20. Man, Y.K., Wright, F.J.: Fast polynomial dispersion computation and its applica-
tion to indefinite summation. In: ISSAC 1994 Proceedings, pp. 175–180 (1994)

21. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial
coefficients. J. Symbolic Computation 14, 243–264 (1992)

22. Maple online help, http://www.maplesoft.com/support/help/

http://www.maplesoft.com/support/help/

A Role of Symbolic Computations
in Beam Physics

Serge N. Andrianov

Faculty of Applied Mathematics and Control Processes,
Saint Petersburg State University,

198504, Saint Petersburg, Russian Federation
sandrianov@yandex.ru

Abstract. It is known that accelerator physics technology has made es-
sential contributions to other branches of science and technology. Exper-
iments realized on linear and circular accelerators have made remarkable
discoveries about the basic nature of matter. In particular, there are now
two accelerator projects. The first of them is already realized — the Large
Hadron Collider, the second — the pilot project for future dedicated
EDM machine. These and other similar projects (i. e., the project NICA,
JINR, Dubna) demand some special requirements for simulation methods
and technologies. Indeed, the successful functioning of these accelerators
requires essential advancement in theory and technology leading to new
particle accelerators capabilities. The complexity of accelerator physics
problems makes comprehensive use of modern analytical, numerical, and
symbolic methods. Only if we integrate these approaches the correspond-
ing computational technologies will be effective. In the present report,
we discuss some problems of correlation between symbolic and numeri-
cal manipulation. The main approach for beam dynamics is based on Lie
algebraic methods and corresponding matrix formalism as presentation
tools. All suggested approaches are realized using symbolic algorithms,
and the corresponding symbolic formulae are assumed as a basis of nu-
merical algorithms. This approach allows to realize the necessary numer-
ical modeling using parallel and distributed computational systems for
some practical problems.

Keywords: Symbolic algebra, beam physics, code generation, Lie
algebraic methods, parallel and distributed computing.

1 Introduction

One of the main goals of modern computational accelerator physics can be for-
mulated as to give researchers a powerful and efficient tools for nonlinear beam
dynamics modeling.

The use of the Lie algebraic tools [1], in combination with a symbolic alge-
bra system (i. e. MAPLE, MATHEMATICA), enables us to carry out the entire
modeling on a high level. These systems easily handle the elaborate necessary

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 19–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 S.N. Andrianov

computation procedures required to form the equations of motion and then gen-
erate them into such languages as FORTRAN, C, Java, Visual Basic. Besides, the
last version of these packages can export resulting expressions into the MATLAB
package. It should be noted that MATLAB is a well suited package for running
small computational simulations followed by various post processing activities
including graphics. Knowledge of analytical representations for most preliminary
and final expressions gives a researcher very powerful tools for both next numer-
ical computation and qualitative investigation. Indeed, firstly symbolic algebra
systems opened possibility to generate code automatically from formulas, and
secondly — to investigate qualitative properties of model-based systems. The
preliminary scheme of symbolic and numerical modules is presented in Fig. 1.

Fig. 1. The scheme of usage of computer algebra tools

2 Mathematical Background

In this paper, dynamics of beam particles is presented in the form of an operator
form using the Lie nonlinear transformation M (see, for example, [2])

M(t|t0) = T exp

⎛⎝ t∫
t0

LF(τ)dτ

⎞⎠ , (1)

where LF(τ) is a Lie operator associated with some vector function F(τ) =
F(τ ;X,U,B) defining the motion equation for beam particles

dX
dt

= F(t;X,U,B). (2)

A Role of Symbolic Computations in Beam Physics 21

Here X ∈ X , U ∈ U, B ∈ B are the phase vector, the vector of control func-
tions, and the vector of control parameters, respectively. In eq. (1), the beam
propagator M(t|t0) is presented in the form of the so-called time-ordered ex-
ponential operator (see, for example, [1,2]). Eqs. (1) and (2) define a dynamical
system with control functions U = (U1, . . . , Un)T (Uj are electromagnetic field
components corresponding to an external (control) electromagnetic field), con-
trol parameters B = (B1, . . . , Bm)T (here Bk are parameters which can not be
verified during a work-session), and the operator M can be identified with the
dynamical system itself.

For practical modeling the time-ordered operator M(t|t0) in (1) is presented
using the so-called Magnus’s presentation

M(t|t0) = exp
(LG(t|t0)

)
. (3)

The new vector-function G(t|t0) in eq. (3) for the Lie operator LG(t|t0) is cal-
culated using the continuous analogue of the well known CBH-formula [3,6]
symbolically.

2.1 The Symmetry and Explicit Solutions for Dynamical Systems

The above introduced Lie transformation M(t|t0) maps the initial phase man-
ifold (occupied by beam particles) M(t0) onto a current manifold M(t). It is
natural that every dynamical system has some qualitative properties, and these
properties should be preserved during the whole propagation process. Here we
should mention such properties as invariants (kinematic and dynamic, see, for
example, [4] and [5,6]), symmetries. We should especially mention the possibility
of finding explicit solutions for some special types of dynamical systems [7].

In general the retrieval of invariants and symmetries is a very complicated
problem. Taking into account that usually the Lie map can be found using per-
turbation presentation we redefine the conception of invariants and symmetry.
In other words, a researcher finds so-called approximating invariants and sym-
metries. But, in the case of kinematic invariants we should tell about explicit
invariants (compare, for example, with symplectic property, which is inherent
in any Hamiltonian system). For many problems of accelerators physics one has
to accurately track the orbits of beam particles during many thousand turns.
Traditional numerical methods for motion equation integration result in several
artificial effects, which are not allied to real behavior of beam particles. This
urges us to use special numerical methods which guarantee necessary conserva-
tion lows with necessary precision. First of all, here we mean the conservation
problem for symplecticity property when one replaces an exactly symplectic map
(produced by any Hamiltonian system) with approximating map.

At this step, the role of symbolic computation is very important. Indeed, the
approaches suggested in [5,6] can be realized up to necessary order of approx-
imation (for approximating invariants and symmetries) and the algorithm for
explicit solutions in a closed form as described in [7].

22 S.N. Andrianov

2.2 Symbolic Computation Algorithm for the Matrix Formalism

The above approach is based on the so-called matrix formalism for Lie algebraic
tools [6,8] up to necessary order of approximation. Indeed, under the assumption
that the function in Eq. (2) F(X, t) admits the expansion as a Taylor series

F(X, t) =
∞∑

k=0
P1k(t)X[k], we can rewrite required solution of Eq. (2) in terms of

matrices M1k:

X(t) = M(t|t0) ◦ X0 =
∞∑

k=0

M1k(t|t0)X[k]
0 . (4)

Here X[k] is the Kronecker power of the kth order for the phase vector X[k] and
P1k(t), M1k(t) are two-dimensional matrices. Matrices M1k are named aberration
matrices (matrices M1k accumulate all abberations of the kth order). The main
goal of the matrix formalism is to calculate these matrices up to some approx-
imating order N . This order usually is defined taking into account information
about used control elements (for example, usually for quadrupole magnet lenses
it is necessary to know M1k up to third or fifth order).

The Dragt–Finn factorization for the Lie transformations (1) or (3) allows
us to rewrite the corresponding exponential operators as an infinite product of
exponential operators generated by corresponding Lie operators

M = . . . · exp{LH2} · exp{LH1} = exp{LV1} · exp{LV2} · . . . , (5)

where Hk = HT
k X[k], Vk = VT

k X[k] are homogeneous polynomials of the kth
order. The vectors Hk or Vk can be calculated with the help of the continuous
analogue of the CBH- and Zassenhauss formulae and by using the Kronecker
product and Kronecker sum technique for matrices [8]. Moreover, using the ma-
trix representation for the Lie operators one can write a matrix representation
for the Lie map generated by these Lie operators. Here we consider homogeneous
equations of particle motion in a reference orbit neighborhood. So, for any beam
propagator one can write the following matrix representation in the well known
Poincaré–Birkhoff–Witt basis

M· X = M ◦ X∞ = (M11 M12 . . . M1k . . .)X∞ =
∞∑

k=1

M1kX[k], (6)

where X∞ = (XX[2] . . .X[k] . . .)T, and the matrices M1k (solution matrices) can
be calculated according to the recurrence sequence of following formulas [8]:

Mk ◦ X[l] = exp{LGk
} ◦X[l] = X[l]+

+
∞∑

m=1

1
m!

m∏
j=1

G⊕((j−1)(k−1)+l)
m X[m(k−1)+l], (7)

where G⊕l = G⊕(l−1)⊗E+E[l−1]⊗G denotes the Kronecker sum of the lth order.
The algebraical expressions similar to (7) are used for evaluation of aberration

A Role of Symbolic Computations in Beam Physics 23

matrices up to an approximating order N . For this purpose a researcher has to
realize one of the concatenation procedures. For example, we can suggest the
following expressions.

Let us introduce a notation M≤k = Mk ◦Mk−1 ◦ . . . ◦M2 ◦M1. Then we
write for nonlinearities of the third order

M≤3 ◦ X = M11

(
X +

3∑
m=2

∞∑
k=1

Pk1
m

k!
X[k(m−1)+1]+

+
∞∑
l=1

∞∑
k=1

1
k!l!

Pkl
2 Pl (k+1)

3 X[2l+k+1]

)
. (8)

Repeating described procedure we can evaluate M≤k◦X for any k with necessary
calculation accuracy. But, as M≤k is a truncated form of the map M (we use
information about generating function up to the kth order only) then we have
to evaluate up to terms of the kth order for obtaining desired result for M≤k.
So we can write

M≤2 ◦ X ≈ M11X + M12X[2], M12 = M11 P11
2 ,

M≤3 ◦ X ≈ M11
(
X + P11

2 X[2] +
(

P11
3 +

1
2

P21
2

)
X[3]

)
=

= M11X + M12X[2] + M13X[3],

M13 = M11
(

P11
3 +

1
2!

P21
2

)
,

and so on. In the following we act step-by-step by operators Mk, k < m on
the vector X. Here we have to keep terms up to the kth order, and as a re-
sult we obtain a matrix representation of the beam propagator in the basis(
X, X[2], . . . , X[k]

)
. In other words, one can write expression (6) up to some

kth order.
For some special problems one has evaluated above described procedures for

a phase vector moment of the kth order X[m]. Using the Lie map and Kronecker
product properties we can proceed necessary evaluations and write [6]:

M◦ X[m] = (M◦ X)[m] =

(∞∑
k=1

M1k X[k]

)[m]

=

=
∑
k1=1

. . .
∑

km=1
k1+...+km=m

M1k1 X[k1] ⊗ . . . ⊗ M1km X[km] =

=
∑
k1=1

. . .
∑

km=1
k1+...+km=m

(
M1k1 ⊗ . . . ⊗ M1km

)
X[m] =

∑
k1=1

. . .
∑

km=1
k1+...+km=m

MmlX[l], (9)

where Mml =
∑

k1+...+km=l
ki≥1

m⊗
i=1

M1ki , l ≥ m (compare with Eq. (6)).

24 S.N. Andrianov

For the inverse map M−1: X → X0 = M−1 ◦X, one can compute the corre-
sponding block matrices using the generalized Gauss algorithm. We must note
here that one should evaluate the inverse matrix for M11 only. The remaining
block matrices for the inverse matrix demand algebraic operations only.

As one can see, the starting point for all described evaluations are matrices
P1k. Using these matrices (without their content) one can compute aberration
matrices M1k according to the following (or similar) formulae. Here we should
mention that before symbolic or numerical evaluation, a researcher must define
correlations between physical and their mathematical (in our case matrix) rep-
resentation. It is necessary to note that symbolic expressions for above described
matrices can be evaluated in symbolic form for some representative class of time
dependent functions entering linear matrices P11(t) (see, for example, [9]). These
symbolic expressions for elements of P11(t) can be embedded in a data base and
used in the numerical computations on-demand.

2.3 The Numerical Computation Algorithm for the
Matrix Formalism

Above described approach is used for symbolic computation of aberration ma-
trices (and additional formulae which are necessary according to the physical
problem). In the case of more complex time dependence of P11(t), one can use
the numerical solution methods using the following algorithm.

It is necessary to note that we can consider eq. (2) as a starting point for our
beam evolution consideration in the following form

dX
dt

= F(t;X,U,B) =
∞∑

k=1

P1k(t)X[k]. (10)

If we present the solution of (10) using (4), we can write

dX
dt

=
∞∑

k=1

P1k(t)X[k]. (11)

Following [8] one can write the solution of (11) in the following form:

X(t) =
∞∑

k=1

M1k(t|t0)X[k]
0 , (12)

dMik(t|t0)
dt

=
k∑

j=i

Pij(t)Mjk(t|t0), 1 ≤ i < k, Pij = P1(j−i+1)P(i−1)(j−1),

M11(t0|t0) = E, Mkk(t0|t0) = E[k], Mjk(t0|t0) = Ojk, ∀ j �= k,

where E is the identity matrix, Ojk is a null matrix of corresponding order.
Equations (12) can be solved numerically up to necessary order of nonlineari-
ties. This approach can be applied when independent variable t dependence is
complex enough, and corresponding symbolic computation can not be produced.

A Role of Symbolic Computations in Beam Physics 25

3 Symplectification Problem and Invariants Computation

The Hamiltonian formalism is known to be very popular in physics problems, in
particular in accelerator physics. This leads us to the necessity of Hamiltonian
nature requirement. As a consequence this requirement leads us to symplectic
property of our beam propagator M(t|t0) for all t ≥ t0.

It is known that symplectic integrators are very powerful tools implemented
in most of the tracking codes in accelerator physics. The property of area con-
servation is particularly suitable for integrating the equations of particle motion
over thousands and millions of turns for modern accelerators. The symplectic
maps arise from Hamiltonian dynamics because these preserve the loop action.
Thus, for example, the time t map of any Hamiltonian flow is symplectic, as is a
Poincaré return map defined on a cross section. For example, a circular particle
accelerator (storage ring or collider) has a sequence of accelerating and focusing
elements that can be modeled by a composition of symplectic maps.

The most popular approach for the dynamics of the particle is based on rep-
resenting each magnet by a separate Hamiltonian. Its flow M be computed, i. e.,
the map linking the particle coordinates at the entrance, X(t0) and the current,
X(t): X(t) = M(t|t0)X(t0). So the flow of the full ring is then obtained by con-
catenating the flows of each single element of the ring. Above described matrix
formalism is adapted to similar description.

3.1 Two Solution Schemes

Numerical integration algorithms play an essential role in investigation of the
long term beam particle evolution, stability of similar process, and nonlinear
nonintegrable Hamiltonian systems. Transfer maps generated by Hamiltonian
systems obey the symplectic condition, which can be in the following form

MT(t|t0)J0M(t|t0) = J0, ∀ t ≥ t0, (13)

where J0 =
(

O E
−E O

)
is the so-called canonical symplectic matrix, and M denotes

the Jacobian matrix:

M(t|t0) =
∂

∂XT
0

(
M(t|t0) ◦ X0

)
, (14)

Unfortunately, standard numerical integration methods are not symplectic, and
this violation of the symplectic condition (14) can lead to some false effects, for
example, spurious chaotic, dissipative behavior and so on.

There are several approaches devoted to the development of numerical meth-
ods preserving some qualitative structure, which is inherent in the dynamical
system under study. These schemes will be noted as conservative integration
schemes. It is necessary to distinguish two similar types of integration schemes.

The first direction of beam propagator evaluation is based on the universal
exponential identities or relations among Lie algebra because these maps have

26 S.N. Andrianov

all requisite properties. But its numerical realization loses these properties, and
it is necessary to restore desired properties for a numerical variant of this map
too. In this report, we take after the second approach.

The second direction is based on the universal schemes, such as different sym-
plectic variants for traditional numerical integration schemes (see, for example,
works by J.M. San-Serna [10] and others).

As mentioned above, the beam evolution is defined completely by a sequence
of aberration matrices M1k. But for practical calculations, we have to break off
for some aberration order N . After this manipulation, the resulting map — the
restricted map MN loses the symplectic property, which should be recovered.
In other words, we should replace the full map M generated by the sequence
of matrices

(
M11,M12, . . . ,M1k, . . .

)
with reduced map MN generated by finite

sequence
(
M11,M12, . . . ,M1N

)
.

So we have two approaches for map evaluations. The first is based on symbolic
representation for M1k, which can be found for some restricted models of P1j .
This set of models is defined by functions family, for which there are symbolic so-
lutions appropriate for fringe field distribution. Among them the most familiar is
a step function. The symbolic representation for aberration matrices M1k enables
a parametric investigation of the beam propagator. This property is especially
useful for optimization problems (see, e. g., [11]). The second approach is based
on the numerical solution of differential equations for aberration matrices (see
(14)), which can be evaluated for arbitrary forms of fringe fields in the control
elements. Here we lose not only the symbolic-specific flexibility, but possibility
to keep corresponding solutions in data knowledge as LEGO-objects [12].

3.2 Symplectification Procedures

The both (above described) cases demand symplectic property for the restricted
beam propagator MN . Several symplectic integration methods have been pro-
posed in the literature (see, for example, [13]–[15]). A concept of invariants allows
to use the tools of symmetry theory permitting to write any invariant property
as an appropriate symmetry condition [6].

In this paper, we shortly discuss a problem of symplectification procedure for
restricted map generated by Hamiltonian dynamical systems. For this purpose
let us consider the symplectic condition (13) for restricted matrix representation

MNX0 =
N∑

k=1

M1kX[k]
0 . (15)

In contrast to full series (see (12)), the symplectic condition (13) applied to a
short map MN will be violated. As an example let us consider one-dimensional
motion equations with second-order nonlinearities

X(t) = M11X0 + M12X[2]
0 = M11

(
X0 + Q12X[2]

0

)
, dimX = 2. (16)

The symplectic condition leads to linear algebraic homogeneous equations
for matrix elements mk

ij : M1k =
{
mk

ij

}
. Note that the matrix M11 in (16) is

A Role of Symbolic Computations in Beam Physics 27

Fig. 2. The total cycle of the computational experiment

symplectic automatically, and following [8] one can evaluate these equations and
write for matrix Q[2] = {qij} the following:

Q12 =

⎡⎢⎢⎢⎢⎢⎣
q11 q12 q13 q14 q15 q16 q17 q18 q19 q110

q21 q22 q23 q15 q25 q17 q27 q19/2 2 q110 q210

q31 q32 q33 −2 q11 −2 q21 −q12 −q22 q14/2 −q15 q25/2
q32/2 2 q33 q43 −q12 −q22 q32/2 2 q33 q43 −q12 −q22

⎤⎥⎥⎥⎥⎥⎦ . (17)

Similar formulas can be obtained for any order of nonlinearitiesN and dimension
of the phase vector X. In addition, these relations reduce the computational
costs, indeed, in the case of dim X = 4, for 40 elements of Q12 we obtain 24
restrictions, and for 80 elements for Q13 we obtain 60 restrictions of type (17).

28 S.N. Andrianov

3.3 Kinematic and Dynamic Nonlinear Invariants

Any numerical computational process leads to distortion of qualitative properties
(for example, some dynamic and kinematical invariants [4]). These quantities can
be evaluated using, for example, Casimirs operators. According to this theory
for Lie groups generated by dynamical systems we can construct invariants using
special forms and use these data for computational process controlling [8].

The basic types of computational processes are presented in Fig. 2. All pre-
sented modules are not only necessary for correct realization of computational
experiments, but give a researcher efficient tools for these experiments setup.
Usage of symbolic algebra tools give us flexibility and efficiency of the compu-
tational process.

3.4 Additional Procedures for Optimization of the Beam
Dynamical System

The matrix formalism allows us presenting a wide set of optimal demands in
the matrix elements of M1k up to some kth order [6]. The necessary expres-
sions can easily be evaluated by some symbolic procedures and embedded into
computational processes. Moreover, at an initial step of corresponding investi-
gations, the corresponding computational processes can be realized using Maple
or Mathematica tools.

4 Parallel and Distributed Computing in
Accelerator Physics

The choice of a matrix formalism as the basic tool for the beam evaluation
process allows the use of databases of matrix objects prepared in symbolic and/or
numerical modes. Moreover, this aids the construction of efficient numerical and
symbolic codes for computational experiments. Here we describe two concepts:
parallel and distributed computing.

The first type of computational process involves the implementation of ho-
mogeneous operations on a set of homogeneous processors. In the second type,
the operations having different structure can be computed using a heterogeneous
set of processors. This requires to distinguish two types of computational oper-
ations: the first of them corresponds to matrix operations and the second one
to computational flows (see, for example, Fig. 3). This separation allows us to
distribute a computational experiment over several clusters. Every cluster solves
the problems intrinsic in one of the flows. This approach has a bottleneck prob-
lem connected with the synchronization of these flows. This problem can be
solved using a base of homogeneous mathematical tools — the matrix formalism
for Lie methods. The matrix form of practically all required objects allows us to
realize parallel computing in a natural way. First of all, parallel computing is re-
alized at the numerical stage when the matrix representation of the current map
is built. The second parallelization process is connected with the phase beam
portrait construction stage. For this stage, there are several possible approaches

A Role of Symbolic Computations in Beam Physics 29

Fig. 3. The types of basic calculational flows

(see, for example, [8]. Moreover, the matrix formalism and symbolic formulae
for some matrix operations lead us to more efficient computational procedures
for the distributed and parallel computational process.

Additional computational flows are connected with the next two procedures.
The first of them is devoted to visualization of all necessary information including
auxiliary procedures (for example, analysis of images using differential geome-
try methods) and space-charge force computing. Here we can use the methods
proposed in our previous publications (see, for example, [16,17,18]).

5 Conclusions

The most of described computational flows are realized using Message-Passing
Interface (MPI) and deployed on the Linux clusters (placed into the Faculty
of Applied Mathematics and Control Processes, SPbSU). It gives students and
scientists of the Faculty the affordable time for the circle accelerator complex
beam dynamics studies.

30 S.N. Andrianov

References

1. Dragt, A.J.: Lectures on Nonlinear Orbit Dynamics. In: AIP Conf. Proc., vol. 87,
pp. 147–313 (1987)

2. Agrachev, A.A., Gamkrelidze, R.V.: Exponential presentation of flows and chrono-
logical calculus. Matematicheskii Sbornik 107(149), 467–532 (1978) (in Russian)

3. Magnuss, W.: On the exponential solution of differential equations for a linear
operator. Comm. Pure Appl. Math. 7(4), 649–679 (1954)

4. Dragt, A.J., Gluckstern, R.L., Neri, F., Rangarajan, G.: Theory of emittance in-
variants. Lectures Notes Phys. 343, 94–121 (1989)

5. Andrianov, S.N.: Symbolic computation of approximate symmetries for ordinary
differential equations. Mathematics and Computers in Simulation 57(3-5), 147–154
(2001)

6. Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams. In:
SPbSU, Saint Petersburg (2004) (in Russian)

7. Andrianov, S.N.: The explicit form for Lie transformations. In: Proc. Fifth Euro-
pean Particle Accelerator Conference EPAC 1996. SITGES, Barcelona, Spain, pp.
998–1000 (1996)

8. Andrianov, S.N.: Matrix representation of the Lie algebraic methods for design of
nonlinear beam lines. In: AIP Conf. Proc., New York, vol. 391, pp. 355–360 (1997)

9. Antone, T.A., AL-Maaitah, A.A.: Analytical solutions to classes of linear oscillator
equations with time varying frequencies. J. Math. Phys. 33(10), 3330–3339 (1992)

10. Sanz-Serna, J.M., Calvo, M.: Numerical Hamiltonian Problems. Chapman and
Hall, London (1994)

11. Andrianov, S., Edamenko, N., Chernyshev, A., Tereshonkov, Y.: Synthesis of op-
timal nanoprobe. In: EPAC 2008, Genoa, Italy, pp. 2969–2971 (2008)

12. Andrianov, S.N.: LEGO-technology approach for beam line design. In: Proc. Eighth
European Particle Accelerator Conference — EPAC 2002, Paris (France), pp. 1607–
1609 (2002)

13. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669
(1983)

14. Yoshida, H.: Construction of high order symplectic integrators. Phys. Lett. A 150,
262 (1990)

15. Forest, É.: Canonical integration as tracking codes (or How to integrate pertubation
theory with tracking). In: AIP Conf. Proc., New York, Part 1, vol. 184, p. 2 (1989)

16. Andrianov, S.N.: Parallel computing in beam physics problems. In: Proc. Seventh
European Particle Accelerator Conference — EPAC 2000, Vienna (Austria), pp.
1459–1461 (2000)

17. Andrianov, S.N., Edamenko, N.S., Dyatlov, A.A.: Algebraic modeling and parallel
computing. Nuclear Instruments and Methods. Ser. A. 558, 150–153 (2006)

18. Andrianov, S., Edamenko, N., Podzivalov, E.: Some problems of global optimiza-
tion for beam lines. In: Proc. PHYSCON 2009, Catania, Italy, September 1-4,
p. 6 (2009)

Thomas Decomposition of Algebraic and
Differential Systems

Thomas Bächler1, Vladimir Gerdt2, Markus Lange-Hegermann1,
and Daniel Robertz1

1 Lehrstuhl B für Mathematik, RWTH-Aachen University, Germany
thomas@momo.math.rwth-aachen.de, markus@momo.math.rwth-aachen.de,

daniel@momo.math.rwth-aachen.de
2 Joint Institute for Nuclear Research, Dubna, Russia

gerdt@jinr.ru

Abstract. In this paper we consider disjoint decomposition of algebraic
and non-linear partial differential systems of equations and inequations
into so-called simple subsystems. We exploit Thomas decomposition
ideas and develop them into a new algorithm. For algebraic systems sim-
plicity means triangularity, squarefreeness and non-vanishing initials. For
differential systems the algorithm provides not only algebraic simplicity
but also involutivity. The algorithm has been implemented in Maple.

1 Introduction

Nowadays, triangular decomposition algorithms, which go back to the charac-
teristic set method by Ritt [Rit50] and Wu [Wu00], and software implementing
them have become powerful tools for investigating and solving systems of multi-
variate polynomial equations. In many cases these methods are computationally
more efficient than those based on construction of Gröbner bases. As an ex-
ample of such problems one can indicate Boolean polynomial systems arising
in cryptanalysis of stream ciphers. For those systems triangular decomposition
algorithms based on the characteristic set method revealed their superiority over
the best modern algorithms for the construction of Gröbner bases [sGH09].

For terminology, literature, definitions and basic proofs on triangular-decom-
position algorithms for polynomial and differential-polynomial systems we refer
to the excellent tutorial papers [Hub03a, Hub03b] and to the bibliographical
references therein.

Among numerous triangular decompositions the Thomas one stands by itself.
It was suggested by the American mathematician J.M.Thomas in his books
[Tho37, Tho62] and decomposes a finite system of polynomial equations and
inequations into finitely many triangular subsystems that he called simple. Unlike
other decomposition algorithms it yields a disjoint zero decomposition, that is,
it decomposes the affine variety or quasi-affine variety defined by the input into
a finite number of disjoint quasi-affine varieties determined by the output simple
systems. Every simple system is a regular chain.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 31–54, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 T. Bächler et al.

During his research on triangular decomposition, Thomas was motivated by
the Riquier-Janet theory [Riq10, Jan29], extending it to non-linear systems of
partial differential equations. For this purpose he developed a theory of (Thomas)
monomials, which generate the involutive monomial division called Thomas divi-
sion in [GB98a]. He gave a recipe for decomposing a non-linear differential system
into algebraically simple and passive subsystems [Tho37].

Differential Thomas decomposition differs noticeably from that computed by
the famous Rosenfeld-Gröbner algorithm [BLOP09, BLOP95] which forms
a basis of the diffalg and BLAD libraries [BH04, Bou09] as well as from other
differential decompositions (e.g. [BKRM01]). We found that diffalg and BLAD
are optimized and well-suited for ordinary differential equations. However, all
other known methods give a zero decomposition which, unlike that in Thomas

decomposition, is not necessarily disjoint.
A first implementation of the Thomas decomposition was done by Teresa

Gómez-Díaz in AXIOM under the name “dynamic constructible closure” which
later turned out to be the same as the Thomas decomposition [Del00]. Wang
later designed and implemented an algorithm constructing the Thomas decom-
position [Wan98, Wan01, LW99]. For polynomial and ordinary differential sys-
tems Wang’s algorithm was implemented by himself in Maple [Wan04] as part
of the software package εpsilon [Wan03], which also contains implementations of
a number of other triangular decomposition algorithms. A modified algorithmic
version of the Thomas decomposition was considered in [Ger08] with its link to
the theory of involutive bases [GB98a, Ger05, Ger99]. The latter theory together
with some extensions is presented in detail in the recent book [Sei10].

In the given paper we present a new algorithmic version of the Thomas de-
composition for polynomial and (partial) differential systems. In the differential
case the output subsystems are Janet involutive in accordance to the involu-
tivity criterion from [Ger08], and hence they are coherent. Moreover, for every
output subsystem the set of its equations is a minimal Janet basis of the radi-
cal differential ideal generated by this set. The algorithm has been implemented
in Maple for both the algebraic and differential case. For a linear differential
system it constructs a Janet basis of the corresponding differential ideal and
for this case works similarly to the Maple package Janet (cf. [BCG+03]).

This paper is organized as follows. In §2 we sketch the algebraic part of our
algorithm for the Thomas decomposition with its main objects defined in §2.1.
The algorithm itself together with its subalgorithms is considered in §2.2. De-
composition of differential systems is described in §3. Here we briefly introduce
some basic notions and concepts from differential algebra (§3.1) and from the
theory of involutive bases specific to Janet division (§3.2) together with one of
the two extra subalgorithms that extend the algebraic decomposition to the dif-
ferential one. The second such subalgorithm is considered in §3.3 along with the
definition of differential simple systems. Subsection §3.4 contains a description of
the differential Thomas decomposition algorithm. Some implementation issues
are discussed in §4, where we also demonstrate the Maple implementation for

Thomas Decomposition of Algebraic and Differential Systems 33

the differential decomposition using the example of a system related to control
theory.

We omit the proofs for compactness. They will be published elsewhere.

2 Algebraic Systems

The algebraic Thomas decomposition deals with systems of polynomial equa-
tions and inequations. This section introduces the concepts of simple systems and
disjoint decompositions based on properties of the set of solutions of a system.
A pseudo reduction procedure and several splitting algorithms on the basis of
polynomial remainder sequences are introduced as tools for the main algorithm,
which is presented at the end of the section.

2.1 Preliminaries

Let F be a computable field of characteristic 0 and R := F [x1, . . . , xn] the
polynomial ring in n variables. A total order < on the indeterminates of R is
called a ranking. The notation R = F [x1, . . . , xn] shall implicitly define the
ranking x1 < . . . < xn. The indeterminate x is called leader of p ∈ R if x is
the <-largest variable occurring in p and we write ld(p) = x. If p ∈ F , we define
ld(p) = 1 and 1 < x for all indeterminates x. The degree of p in ld(p) is called
rank of p and the leading coefficient init(p) ∈ F [y | y < ld(p)] of ld(p)rank(p)

in p is called initial of p.
For a ∈ Fn

, where F denotes the algebraic closure of F , define the following
evaluation homomorphisms:

φa : F [x1, . . . , xn] → F : xi �→ ai

φ<xk,a : F [x1, . . . , xn] → F [xk, . . . , xn] :
{
xi �→ ai, i < k
xi �→ xi, otherwise

For a polynomial p ∈ R, the symbols p= and p
= shall denote the equation p = 0
and inequation p �= 0, respectively. A finite set of equations and inequations is
called an (algebraic) system over R. Abusing notation, we sometimes treat
p= or p
= as the underlying polynomial p. A solution of a system S is a tuple
a ∈ F

n
such that φa(p) = 0 for all equations p= ∈ S and φa(p) �= 0 for all

inequations p
= ∈ S. The set of all solutions of S is denoted by Sol(S).
Define Sx := {p ∈ S | ld(p) = x}. In a situation where it is clear that

|Sx| = 1, we also use Sx to denote the unique element of Sx. The subset S<x :=
{p ∈ S | ld(p) < x} can be considered a system over F [y | y < x]. Furthermore,
the sets of all equations p= ∈ S and all inequations p
= ∈ S are denoted by S=

and S
=, respectively.
The general idea of the Thomas methods is to use the homomorphism φ<x,a

to treat each polynomial p ∈ Sx as the univariate polynomial φ<x,a(p) ∈ F [x]
for all a ∈ Sol(S<x) simultaneously. This idea forms the basis of our central
object, the simple system:

34 T. Bächler et al.

Definition 2.1 (Simple Systems). Let S be a system.

1. S is triangular if |Sxi | ≤ 1 ∀ 1 ≤ i ≤ n and S ∩ {c=, c
= | c ∈ F} = ∅.
2. S has non-vanishing initials if φa(init(p)) �= 0 ∀ a ∈ Sol(S<xi) and
p ∈ Sxi for 1 ≤ i ≤ n.

3. S is square-free if the univariate polynomial φ<xi,a(p) ∈ F [xi] is square-free
∀ a ∈ Sol(S<xi) and p ∈ Sxi for 1 ≤ i ≤ n.

4. S is called simple if it is triangular, has non-vanishing initials and is square-
free.

Although all required properties are characterized via solutions of lower-ranking
equations and inequations, the Thomas decomposition algorithm does not cal-
culate solutions of polynomials. Instead, it uses polynomial equations and in-
equations to partition the set of solutions of the lower-ranking system to ensure
the above properties.

Remark 2.2. Simplicity of a system guarantees the existence of solutions: If
b ∈ Sol(S<x) and Sx is not empty, then φ<x,b(Sx) is a univariate polynomial
with exactly rank(Sx) distinct roots. When extending b to a solution (b, a) of
S≤x, for an equation in Sx there are rank(Sx) choices for a, whereas for an
inequation or empty Sx all but finitely many a ∈ F give an extension.

To transform a system into a simple system, it is in general necessary to partition
the set of solutions. Instead of an equivalent simple system, this leads to a so-
called decomposition into simple systems.

Definition 2.3. A family (Si)m
i=1 is called decomposition of S if Sol(S) =⋃m

i=1 Sol(Si). A decomposition is called disjoint if Sol(Si)∩Sol(Sj) = ∅ ∀ i �= j.
A disjoint decomposition of a system into simple systems is called (algebraic)
Thomas decomposition.

For any algebraic system S, there exists a Thomas decomposition (cf. [Tho37],
[Tho62], [Wan98]). The algorithm presented in the following section provides
another proof of this fact. First, we give an easy example of a Thomas

decomposition.

Example 2.4. Consider the equation

p = y2 − x3 − x2 .

A Thomas decomposition of {p=} is given by:({(y2 − x3 − x2)=, (x · (x+ 1))
=}, {y=, (x · (x + 1))=}
)

x=(x + 1)=

p=

2.2 Decomposition Algorithms

Our version of the decomposition algorithm in each round treats one system,
potentially splitting it into several subsystems. For this purpose, one polynomial
is chosen from a list of polynomials to be processed. This polynomial is pseudo-
reduced modulo the system and afterwards combined with the polynomial in the

Thomas Decomposition of Algebraic and Differential Systems 35

system having the same leader. To ensure that all polynomials are square-free
and their initials do not vanish, the system may be split into several ones by
initials of polynomials or subresultants.

From now on, a system S is presented as a pair of sets (ST , SQ), where ST

represents a candidate for a simple system while SQ is the queue of elements to
be processed. ST is always triangular and (ST)x denotes the unique equation or
inequation of leader x in ST , if any. ST also fulfills a weaker form of the other
two simplicity conditions, i.e., for any solution a of (ST)<x ∪ (SQ)<x, we have
φa(init((ST)x)) �= 0 and φ<x,a((ST)x) is square-free.

From now on, let prem be a pseudo remainder algorithm1 in R and pquo
the corresponding pseudo quotient algorithm, i.e., for p and q with ld(p) =
ld(q) = x

m · p = pquo(p, q, x) · q + prem(p, q, x) (1)

where degx(q) > degx(prem(p, q, x)) and m ∈ R \ {0} with ld(m) < x and
m | init(q)k for some k ∈ Z≥0. Note that if the initials of p and q are non-zero,
the initial of pquo(p, q, x) is also non-zero. Equation (1) only allows us to replace
p with prem(p, q, x) if m does not vanish on any solution. The below Algorithm
(2.5) and Remark (2.6) require the last property, which, by definition, holds in
simple systems.

The following algorithm employs pseudo remainders and the triangular struc-
ture to reduce a polynomial modulo ST :

Algorithm 2.5 (Reduce).
Input: A system S, a polynomial p ∈ R
Output: A polynomial q with φa(p) = 0 if and only if φa(q) = 0 for each a ∈
Sol(S).
Algorithm:
1: x← ld(p); q ← p
2: while x > 1 and (ST)x is an equation and rank(q) ≥ rank((ST)x) do
3: q ← prem(q, (ST)x, x)
4: x← ld(q)
5: end while
6: if x > 1 and Reduce(S, init(q)) = 0 then
7: return Reduce(S, q − init(q)xrank(q))
8: else
9: return q

10: end if

A polynomial p is called reduced modulo ST if Reduce(S, p) = p. A polynomial
p reduces to q modulo ST if Reduce(S, p) = q.

The result of the Reduce algorithm does not need to be a canonical normal
form. It only needs to detect polynomials that vanish on all solutions of a system:

1 In our context prem does not necessarily have to be the classical pseudo remainder,
but any sparse pseudo remainder with property (1) will suffice.

36 T. Bächler et al.

Remark 2.6. Let p ∈ R with ld(p) = x. Reduce(S, p) = 0 implies φa(p) =
0 ∀ a ∈ Sol(S≤x).

The converse of this remark only holds if (SQ)≤x = ∅, i.e., (ST)≤x is simple. If it
is not simple, but ld(p) = x and (SQ)=<x = ∅ hold, we still have some information.
In particular, Reduce(S, p) �= 0 implies that either Sol(S<x) is empty or there
exists a ∈ Sol(S<x ∪ {(ST)x}) such that φa(p) �= 0.

We now direct our attention to the methods we use to produce disjoint decom-
positions. Since (S ∪ {p
=} , S ∪ {p=}) is a disjoint decomposition of S, we will
use the following one-line subalgorithm as the basis of all the splitting algorithms
described below.

Algorithm 2.7 (Split). Input: A system S, a polynomial p ∈ R
Output: The disjoint decomposition (S ∪ {p
=} , S ∪ {p=}) of S.
Algorithm:
1: return ((ST , SQ ∪ {p
=}) , (ST , SQ ∪ {p=}))

The output of the following splitting algorithms is not yet a disjoint decomposi-
tion of the input. However, the main algorithm Decompose will use this output
to construct a disjoint decomposition. We single out these algorithms to make
the main algorithm more compact and readable. For details we refer to the input
and output specifications of the algorithms in question.

The algorithm InitSplit ensures that in one of the returned systems the prop-
erty 2 in Definition (2.1) holds for the input polynomial. In the other system the
initial of that polynomial vanishes.

Algorithm 2.8 (InitSplit). Input: A system S, an equation or inequation q with
ld(q) = x.
Output: Two systems S1 and S2, where (S1 ∪ {q}, S2) is a disjoint decomposition
of S∪{q}. Moreover, φa(init(q)) �= 0 holds for all a ∈ Sol(S1) and φa(init(q)) = 0
for all a ∈ Sol(S2). Algorithm:
1: (S1, S2) ← Split(S, init(q))
2: if q is an equation then
3: (S2)Q ← (S2)Q ∪ {(q − init(q)xrank(q)

)
=

}
4: else if q is an inequation then
5: (S2)Q ← (S2)Q ∪

{(
q − init(q)xrank(q)

)

=

}
6: end if
7: return (S1, S2)

In Definition (2.1) we view a multivariate polynomial p as the univariate polyno-
mial φ<ld(p),a(p). For ensuring triangularity and square-freeness, we often com-
pute the gcd of two polynomials, which generally depends on the inserted value
a. Subresultants provide a generalization of the Euclidean algorithm useful in
our context and their initials distinguish the cases of different degrees of gcds.

Definition 2.9. Let p, q ∈ R with ld(p) = ld(q) = x, degx(p) = dp > degx(q) =
dq. We denote by PRS(p, q, x) the subresultant polynomial remainder se-
quence (see [Hab48], [Mis93, Chap. 7], [Yap00, Chap. 3]) of p and q w.r.t. x,

Thomas Decomposition of Algebraic and Differential Systems 37

and by PRSi(p, q, x), i < dq the regular polynomial of degree i in PRS(p, q, x)
if it exists, or 0 otherwise. Furthermore, PRSdp(p, q, x) := p, PRSdq(p, q, x) := q
and PRSi(p, q, x) := 0, dq < i < dp.

Define resi(p, q, x) := init (PRSi (p, q, x)) for 0 < i < dp, whereas
resdp(p, q, x) := 1 and res0(p, q, x) := PRS0 (p, q, x). Note that res(p, q, x) :=
res0(p, q, x) is the usual resultant.

Definition 2.10. Let S be a system and p1, p2 ∈ R with ld(p1) = ld(p2) = x.
If |Sol(S<x)| > 0, we call

i :=min{i∈Z≥0 | ∃a∈Sol(S<x) such that degx(gcd(φ<x,a(p1), φ<x,a(p2))) = i}

the fiber cardinality of p1 and p2 w.r.t. S. Moreover, if (SQ)=<x = ∅, then

i′ := min{i ∈ Z≥0 | Reduce(resj(p1, p2, x), ST) = 0 ∀ j < i
and Reduce(resi(p1, p2, x), ST) �= 0}

is the quasi fiber cardinality of p1 and p2 w.r.t. S. A disjoint decomposition
(S1, S2) of S such that

1. degx(gcd(φ<x,a(p1), φ<x,a(p2))) = i ∀ a ∈ Sol ((S1)<x)
2. degx(gcd(φ<x,a(p1), φ<x,a(p2))) > i ∀ a ∈ Sol ((S2)<x)

is called the i-th fibration split of p1 and p2 w.r.t. S. A polynomial r ∈ R with
ld(r) = x such that degx(r) = i and

φ<x,a(r) ∼ gcd(φ<x,a(p1), φ<x,a(p2)) ∀ a ∈ Sol ((S1)<x)

is called the i-th conditional greatest common divisor of p1 and p2 w.r.t.
S, where p ∼ q if and only if p ∈ K∗

q. Furthermore, q ∈ R with ld(q) = x and
degx(q) = degx(p1) − i such that

φ<x,a(q) ∼ φ<x,a(p1)
gcd(φ<x,a(p1), φ<x,a(p2))

∀ a ∈ Sol ((S1)<x)

is called the i-th conditional quotient of p1 by p2 w.r.t. S. By replacing
φ<x,a(p2) in the above definition with ∂

∂x(φ<x,a(p1)), we get an i-th square-
free split and i-th conditional square-free part of p1 w.r.t. S.

The fiber cardinality is often not immediately available, as we may be unable
to take inequations into account. However, we can use all information contained
in the equations using reduction, if all equations are contained in ST . Thus we
require (SQ)=<x = ∅ before doing any reduction.

In this situation, the quasi fiber cardinality is easy to calculate and in many
cases will be identical to the fiber cardinality. Furthermore, if we consider the
system S2 from an i-th fibration split of some polynomials for a system S and
ensure that ((S2)Q)=<x = ∅, then the quasi fiber cardinality of the same polyno-
mials for S2 will be i+ 1. Therefore and due to the following lemma, the quasi
fiber cardinality is good enough for our purposes.

38 T. Bächler et al.

Lemma 2.11. Let |Sol(S<x)| > 0 and (SQ)=<x = ∅. For p1, p2 as in Definition
(2.10) with φa(init(p1)) �= 0 ∀ a ∈ Sol(S<x) and rank(p1) > rank(p2), let i be
the fiber cardinality of p1 and p2 w.r.t. S and i′ the corresponding quasi fiber
cardinality. Then

i′ ≤ i
where the equality holds if and only if |Sol (S<x ∪ {resi′(p1, p2, x)
=})| > 0.

Corollary 2.12. Let |Sol(S<x)| > 0 and (SQ)=<x = ∅. For polynomials p1, p2 as
in Definition (2.10) with φa(init(p1)) �= 0 and φa(init(p2)) �= 0 ∀ a ∈ Sol(S<x),
let i be the fiber cardinality of p1 and p2 w.r.t. S and i′ the quasi fiber cardinality
of p1 and prem(p2, p1, x) w.r.t. S. Then

i′ ≤ i
with equality if and only if |Sol (S<x ∪ {resi′(p1, prem(p2, p1, x), x)
=})| > 0.

The following algorithm calculates the quasi fiber cardinality of two polynomials.
It is used as the basis for all algorithms that calculate a greatest common divisor
or a least common multiple.

Algorithm 2.13 (ResSplit). Input: A system S with (SQ)=<x = ∅, two polyno-
mials p, q ∈ R with ld(p) = ld(q) = x, rank(p) > rank(q) and φa(init(p)) �= 0 for
all a ∈ Sol(S<x).
Output: The quasi fiber cardinality i of p and q w.r.t. S and an i-th fibration
split (S1, S2) of p and q w.r.t. S.
Algorithm:
1: i← min{i ∈ Z≥0 | Reduce(resj(p, q, x), ST) = 0 ∀ j < i

and Reduce(resi(p, q, x), ST) �= 0}
2: return (i, S1, S2) := (i, Split(S, resi(p, q, x)))

Similarly to the InitSplit algorithm (2.8), the following algorithm does not return
a disjoint decomposition, but Decompose uses it to construct one.

Algorithm 2.14 (ResSplitGCD). Input: A system S with (SQ)=<x = ∅, where
(ST)x is an equation, and an equation q= with ld(q) = x. Furthermore rank(q) <
rank((ST)x).
Output: Two systems S1 and S2 and an equation q̃= such that:

a) S2 = S̃2 ∪ {q} where
(
S1, S̃2

)
is an i-th fibration split of (ST)x and q w.r.t.

S
b) q̃ is an i-th conditional gcd of (ST)x and q w.r.t. S.

where i is the quasi fiber cardinality of p and q w.r.t. S.

Algorithm:
1: (i, S1, S2) ← ResSplit (S, (ST)x, q)
2: (S2)Q ← (S2)Q ∪ {q}
3: return S1, S2,PRSi((ST)x, q, x)=

Thomas Decomposition of Algebraic and Differential Systems 39

The following algorithm is similar, but instead of the gcd, it returns the first
input polynomial divided by the gcd. It is used to assimilate an inequation into
a system where there already is an equation with the same leader, or to calculate
the least common multiple of two inequations.

Algorithm 2.15 (ResSplitDivide). Input: A system S with (SQ)=<x = ∅ and two
polynomials p, q with ld(p) = ld(q) = x and φa(init(p)) �= 0 for all a ∈ Sol(S<x).
Furthermore, if rank(p) ≤ rank(q) then φa(init(q)) �= 0.
Output: Two systems S1 and S2 and a polynomial p̃ such that:

a) S2 = S̃2 ∪ {q} where
(
S1, S̃2

)
is an i-th fibration split p and q′ w.r.t. S

b) p̃ is an i-th conditional quotient of p by q′ w.r.t. S

where i is the quasi fiber cardinality of p and q′ w.r.t. S, with q′ = q for rank(p) >
rank(q) and q′ = prem(q, p, x) otherwise.

Algorithm:
1: if rank(p) ≤ rank(q) then
2: return ResSplitDivide(S, p, prem(q, p, x))
3: else
4: (i, S1, S2) ← ResSplit (S, p, q)
5: if i > 0 then
6: p̃← pquo(p,PRSi(p, prem(q, p, x), x), x)
7: else
8: p̃← p
9: end if

10: (S2)Q ← (S2)Q ∪ {q}
11: return S1, S2, p̃
12: end if

Applying the last algorithm to a polynomial p and its partial derivative by its
leader yields an algorithm to make polynomials square-free.

In the above ResSplit-based algorithms, we had the requirement that (SQ)=<x

= ∅. This ensures that all information contained in any equation of a smaller
leader than x will be respected by reduction modulo ST and thus avoids creating
redundant systems. It will also be necessary for termination of the Decompose
algorithm. This motivates the definition of a selection strategy as follows.

Definition 2.16 (Select). Let Pfinite(M) be the set of all finite subsets of a set
M . A selection strategy is a map

Select : Pfinite({p=, p
= | p ∈ R}) −→ {p=, p
= | p ∈ R} :
Q �−→ q ∈ Q

with the following properties:

1. If Select(Q) = q= is an equation, then Q=
<ld(q) = ∅.

2. If Select(Q) = q
= is an inequation, then Q=
≤ld(q) = ∅.

40 T. Bächler et al.

The second property of Select could be weakened further, i.e., Q=
<ld(q) = ∅. How-

ever, this would result in redundant calculations in the Decompose algorithm,
thus we want all equations of the same leader to be treated first.

The following algorithm is trivial. However, it will be replaced with a more
complicated algorithm in §3 when the differential Thomas decomposition is
treated.

Algorithm 2.17 (InsertEquation). Input: A system S and an equation r= with
ld(r) = x satisfying φa(init(r)) �= 0 and φ<x,a(r) square-free for all a ∈ Sol(S<x).
Output: A system S where r= is inserted into ST .
Algorithm:
1: if (ST)x is not empty then
2: ST ← (ST \ {(ST)x})
3: end if
4: ST ← ST ∪ {r=}
5: return S

Now we present the main algorithm. It is based on all above algorithms and
yields an algebraic Thomas decomposition. This algorithm forms the basis of
the differential Thomas decomposition to be discussed in detail in §3.

The general structure is as follows: In each iteration, a system S is selected
from a list P of unfinished systems. An equation or inequation q is chosen from
SQ according to the selection strategy and reduced modulo ST . The algorithm
assimilates q into ST , potentially adding inequations of lower leader to SQ and
adding new systems Si to P that contain a new equation of lower leader in
(Si)Q. This process works differently depending on whether q and (ST)ld(q)
are equations or inequations, but it is based on the InitSplit, ResSplitGcd and
ResSplitDivide methods in all cases. As soon as the algorithm yields an equa-
tion c = 0 for c ∈ F \ {0} or an inequation 0 �= 0 in a system, this system is
inconsistent and thus discarded.

Algorithm 2.18 (Decompose). The algorithm is printed on page 41.

In the next section, we consider an extension of this algorithm to partial differen-
tial systems. Both algorithms have been implemented, and their implementation
aspects are considered in §4.

3 The Differential Thomas Decomposition

The differential Thomas decomposition is concerned with manipulations of poly-
nomial differential equations. The basic idea for a construction of this decom-
position is twofold. On the one hand a combinatorial calculus developed by
Janet takes care of finding unique reductors and all differential consequences
by completing systems to involution. On the other hand the algebraic Thomas

decomposition makes the necessary splits for regularity of initials during the
computation and ensures disjointness.

Thomas Decomposition of Algebraic and Differential Systems 41

Algorithm 2.18 (Decompose)

Input: A system S′ with (S′)T = ∅.
Output: A Thomas decomposition of S′.
Algorithm:
1: P ← {S′}; Result ← ∅
2: while |P | > 0 do
3: Choose S ∈ P ; P ← P \ {S}
4: if |SQ| = 0 then
5: Result ← Result ∪ {S}
6: else
7: q ← Select(SQ); SQ ← SQ \ {q}
8: q ← Reduce(q, ST); x ← ld(q)
9: if q /∈ {0�=, c= | c ∈ F \ {0}} then

10: if x �= 1 then
11: if q is an equation then
12: if (ST)x is an equation then
13: if Reduce(res0((ST)x, q, x), ST) = 0 then
14: (S,S1, p) ← ResSplitGCD(S, q, x); P ← P ∪ {S1}
15: S ← InsertEquation(S, p=)
16: else
17: SQ ← SQ ∪ {q=, res0((ST)x, q, x)=}
18: end if
19: else
20: if (ST)x is an inequationa then
21: SQ ← SQ ∪ {(ST)x}; ST ← ST \ {(ST)x}
22: end if
23: (S, S2) ← InitSplit(S, q); P ← P ∪ {S2}
24: (S, S3, p) ← ResSplitDivide

(
S, q, ∂

∂x
q
)
; P ← P ∪ {S3}

25: S ← InsertEquation(S, p=)
26: end if
27: else if q is an inequation then
28: if (ST)x is an equation then
29: (S, S4, p) ← ResSplitDivide (S, (ST)x, q); P ← P ∪ {S4}
30: S ← InsertEquation(S, p=)
31: else
32: (S, S5) ← InitSplit(S, q); P ← P ∪ {S5}
33: (S, S6, p) ← ResSplitDivide

(
S, q, ∂

∂x
q
)
; P ← P ∪ {S6}

34: if (ST)x is an inequation then
35: (S,S7, r) ← ResSplitDivide (S, (ST)x, p); P ← P ∪ {S7}
36: (ST)x ← (r · p) �=
37: else if (ST)x is empty then
38: (ST)x ← p �=
39: end if
40: end if
41: end if
42: end if
43: P ← P ∪ {S}
44: end if
45: end if
46: end while
47: return Result

a Remember that (ST)x might be empty, and thus neither an equation nor an inequa-
tion.

42 T. Bächler et al.

We start by giving the basic definitions from differential algebra needed for the
algorithms. Afterwards we summarize the Janet division and its combinatorics.
The combinatorics give us a new algorithm InsertEquation to add equations into
systems. Afterwards we review the differential implications of the algebraic de-
composition algorithm and present the algorithm Reduce utilized for differential
reduction. Replacing the insertion and reduction methods from the algebraic case
with these differential methods yields the differential decomposition algorithm.

3.1 Preliminaries from Differential Algebra

Let Δ = {∂1, . . . , ∂n} be the set of derivations (n > 0) and F be a com-
putable Δ-differential field of characteristic zero. This means any ∂j ∈ Δ
is a linear operator ∂j : F → F fulfilling the Leibniz rule. For a differen-
tial indeterminate u consider the Δ-differential polynomial ring F{u} :=
F
[
ui | i ∈ Zn

≥0

]
, a polynomial ring infinitely generated by the algebraically

independent set 〈u〉Δ := {ui | i ∈ Zn
≥0}. The operation of ∂j ∈ Δ on 〈u〉Δ

by ∂jui = ui+ej is extended linearly and by the Leibniz rule to F{u}. Let
U = {u(1), . . . , u(m)} be the set of differential indeterminates. The multivari-
ate Δ-differential polynomial ring is given by F{U} := F{u(1)} . . . {u(m)}. The
elements of 〈U〉Δ :=

{
u

(j)
i | i ∈ Zn

≥0, j ∈ {1, . . . ,m}
}

are called differential
variables.

We remark, that the algebraic closure F of F is a differential field with a dif-
ferential structure uniquely defined by the differential structure of F (cf. [Kol73,
§II.2, Lemma 1]). Let

E :=
m⊕

j=1

F [[z1, . . . , zn]] ∼= F
〈U〉Δ

with indeterminates z1, . . . , zn, where F [[z1, . . . , zn]] denotes the ring of formal
power series. The isomorphism maps coefficients of the power series to function
values of differential variables, i.e.,

α :
m⊕

i=1

F [[z1, . . . , zn]]→F
〈U〉Δ :

⎛⎝ ∑
i∈Z

n
≥0

a
(1)
i
zi

i!
, . . . ,

∑
i∈Z

n
≥0

a
(m)
i
zi

i!

⎞⎠ �→
(
u

(j)
i �→a

(j)
i

)
where i! := i1! · . . . · in! defines the factorial of a multi-index.

In the formulation of the algorithm the direct sum of formal power series E
suffices to give a notion of solutions coherent to the algebraic case: For e ∈ E
we define the F -algebra homomorphism

φe : F{U} → F : u(j)
i �→ α(e)(u(j))

evaluating all differential variables of a differential polynomial at the power series
e. A differential equation or inequation form functions U = {u(1), . . . , u(m)}
in n indeterminates is an element p ∈ F{U} written p= or p
=, respectively. A

Thomas Decomposition of Algebraic and Differential Systems 43

solution of p= or p
= is an e ∈ E with φe(p) = 0 or φe(p) �= 0, respectively.
More generally e ∈ E is called a solution of a set P of equations and inequations,
if it is a solution of each element in P . The set of solutions of P is denoted by
SolE(P) = Sol(P) ⊆ E. Since we substitute elements of F algebraically for the
differential indeterminates, Remark (2.2), which guarantees the continuation of
solutions from lower ranking variables to higher ranking ones, also holds here.

Any differential F -algebra R with a differential embedding of E ↪→ R might
be chosen as universal set of solutions, for example a universal differential field
containing F : Clearly F [[z1, . . . , zn]] embeds into its field of quotients
F ((z1, . . . , zn)), and thus F [[z1, . . . , zn]] also embeds into a universal differen-
tial field containing F , since F ((z1, . . . , zn)) is a finitely generated differential
field extension of F (cf. [Kol73, §II.2 and §III.7]). We denote the set of solutions
in R by SolR(P) ⊆ R.

A finite set of equations and inequations is called a (differential) system
over F{U}. We will be using the same notation for systems as in the algebraic
Thomas decomposition introduced in §2.1 and §2.2, in particular a system S
is represented by a pair (ST , SQ). However, the candidate simple system ST

will also reflect a differential structure using combinatorial methods. We will
elaborate on the combinatorics in the next section.

3.2 The Combinatorics of Janet Division

In this subsection we will focus on the combinatorics of equations, enabling us
to control the infinite set of differential variables appearing as partial derivatives
of differential indeterminates. For this purpose we use Janet division [GB98a]
which defines these combinatorics and also automatizes construction of integra-
bility conditions. An overview of modern development can be found in [Ger05,
Sei10] and the original ideas by Janet are formulated in [Jan29]. This is achieved
by partitioning the set of differential variables into finitely many “cones” and
“free” variables. For creating this partition we present an algorithm for inserting
new equations into an existing set of equations and adjusting the cone decom-
position. Apart from this insertion algorithm the only other adaptation of the
algebraic Decompose algorithm (2.18) will be the reduction algorithm presented
in §3.3.

We fix a (differential) ranking <, which is defined as a total order on the
differential variables such that u(k) < ∂ju

(k) and u(k) < u(l) implies ∂ju
(k) <

∂ju
(l) for all u(k), u(l) ∈ U , ∂j ∈ Δ. For any finite set of differential variables,

a differential ranking is a ranking as defined for the algebraic case in §2.1. This
allows us to define the largest differential variable ld(p) appearing in a differential
polynomial p ∈ F{U} as leader, which is set to 1 for p ∈ F . Furthermore, define
rank(p) and init(p) as the degree in the leader and the coefficient of ld(p)rank(p),
respectively. Again we will assume 1 < u(j)

i for all j ∈ {1, . . . ,m} and i ∈ Zn
≥0.

A set W of differential variables is closed under the action of Δ′ ⊆ Δ if
∂iw ∈ W ∀∂i ∈ Δ′, w ∈ W . The smallest such closed set containing a differen-
tial variable w denoted by 〈w〉Δ′ is called a cone and the elements of Δ′ we shall

44 T. Bächler et al.

call (Janet) admissible derivations2. The Δ′-closed set generated by a set
W of differential variables is defined to be

〈W 〉Δ′ :=
⋂

Wi⊇W

Wi Δ′-closed

Wi ⊆ 〈U〉Δ .

For a finite set W = {w1, . . . , wr}, the Janet division algorithmically assigns
admissible derivations to the elements of W such that the cones generated by
the w ∈W are disjoint. The derivation ∂l ∈ Δ is assigned to the cone generated
by w = u

(j)
i ∈W as admissible derivation, if and only if

il = max
{
i′l | u(j)

i′ ∈W, i′k = ik for all 1 ≤ k < l
}

holds. We remark, that j is fixed in this definition, i.e., when constructing cones
we only take into account other differential variables belonging to the same
differential indeterminate. The admissible derivations assigned to w are denoted
by ΔW (w) ⊆ Δ and we call the cone 〈w〉ΔW (w) the Janet cone of w with
respect to W . This construction ensures disjointness of cones but not necessarily
that the union of cones equals 〈W 〉Δ. For the Janet completion a finite set
W̃ ⊃ W is successively created by adding any w̃ = ∂iwj �∈ ⊎

w∈W̃
〈w〉Δ

W̃
(w) to

W̃ , where wj ∈ W̃ and ∂i ∈ Δ \ Δ
W̃

(wj). This leads to the disjoint Janet

decomposition
〈W 〉Δ =

⊎
w∈W̃

〈w〉Δ
W̃

(w)

that separates a Δ-closed set W into finitely many cones 〈w〉Δ
W̃

(w) after finitely
many steps. For details see [Ger05, Def. 3.4] and [GB98a, Corr. 4.11].

With the Janet decomposition being defined for sets of differential variables,
we will assign admissible derivations to differential polynomials according to their
leaders. In particular, we extend the definitions of ΔW (w) for finite W ⊂ F{U}
and w ∈W by defining ΔW (w) := Δld(W)(ld(w)).

A differential polynomial q ∈ F{U} is called reducible with respect to p ∈
F{U}, if there exists i ∈ Zn

≥0 such that ∂i1
1 · . . . · ∂in

n ld(p) = ld(∂i1
1 · . . . · ∂in

n p) =
ld(q) and rank(∂i1

1 · . . . · ∂in
n p) ≤ rank(q). We call a derivative of an equation

by an admissible derivation an admissible prolongation. When restricting
ourselves to admissible prolongation, we get the following concept: For a finite
set T ⊂ F{U} we call a differential polynomial q ∈ F{U} Janet reducible
with respect to p ∈ T , if there exists i ∈ Zn

≥0 such that ∂i1
1 · . . . · ∂in

n ld(p) = ld(q)
with all proper derivatives being admissible and rank(∂i1

1 · . . . · ∂in
n p) ≤ rank(q)

holds. We shall also say that q is Janet reducible modulo T if there is a p ∈ T ,
such that q is Janet reducible with respect to p ∈ T .

A set of differential variables T ⊂ 〈U〉Δ is called minimal, if for any set
S ⊂ 〈U〉Δ with

⊎
t∈T 〈t〉ΔT (t) =

⊎
s∈S〈s〉ΔS(s) the condition T ⊆ S holds (cf.

2 In [Ger99] and [Sei10, Chap. 7] the admissible derivations are called (Janet) multi-
plicative variables.

Thomas Decomposition of Algebraic and Differential Systems 45

[GB98b, Def. 4.2]). We also call a set of differential polynomials minimal, if the
corresponding set of leaders is minimal.

In addition to the non-zero initials and square-freeness of polynomials in the
candidate set ST for a simple system (as defined in §2.2), the equations in (ST)=

are required to have admissible derivations assigned to them. When an equation
p is not reducible modulo (ST)= it is added to (ST)= and all polynomials in ST

with a leader being a derivative of ld(p) are removed from ST , ensuring minimal-
ity. Furthermore, all non-admissible prolongations are created to be processed.
This is formulated in the following algorithm:

Algorithm 3.1 (InsertEquation).
Input: A system S′ and a polynomial p= ∈ F{U} not reducible modulo (S′

T)=.
Output: A system S, where (ST)= ⊆ (S′

T)= ∪ {p=} is maximal satisfying

{ld(q) | q ∈ (ST) \ {p}} ∩ 〈ld(p)〉Δ = ∅,
SQ = S′

Q ∪ (S′
T \ ST) ∪ {(∂iq)= | q ∈ (ST)=, ∂i �∈ Δ((ST)=)(q)} .

Algorithm:
1: S ← S′

2: ST ← ST ∪ {p=}
3: for q ∈ ST \ {p} do
4: if ld(q) ∈ 〈ld(p)〉Δ then
5: SQ ← SQ ∪ {q}
6: ST ← ST \ {q}
7: end if
8: end for
9: Reassign admissible derivations to (ST)=

10: SQ ← SQ ∪ {(∂iq)= | q ∈ (ST)=, ∂i /∈ Δ((ST)=)(q)}
11: return S

We remark that a non-admissible prolongations might be added to SQ again each
step, even though it has been added before. This can be prevented by simply
storing all previously generated non-admissible prolongations.

3.3 Differential Simple Systems

This section goes on reducing the differential decomposition algorithm to the
algebraic one. We start by introducing partial solutions in order to algebraically
evaluate differential polynomials at them yielding univariate differential poly-
nomials. Then we present a differential reduction algorithm, as the second dis-
tinction from the algebraic decomposition algorithm. At last this section defines
differential simple systems.

For a differential variable x ∈ 〈U〉Δ and a power series e ∈ E define the
F -algebra homomorphism

φ<x,e : F{U} → F [v | v ∈ 〈U〉Δ, v ≥ x] :

{
u

(j)
i �→ α(e)(u(j)), for u(j)

i < x

u
(j)
i �→ u

(j)
i , for u(j)

i ≥ x

46 T. Bächler et al.

evaluating all differential variables of a differential polynomial at e which are
<-smaller than x.

For differential reduction the Janet partition of differential variables provides
the mechanism to get a unique reductor in a fast way (for an algorithm see
[GYB01]) by restricting to admissible prolongations. After finding a reductor we
apply a pseudo remainder algorithm (see Eq. (1)).

We need to ensure that initials (and initials of the derivatives) of equations are
non-zero. Let p ∈ F{U} with x = ld(p) and define the separant sep(p) := ∂p

∂x .
One easily checks (cf. [Kol73, §I.8, lemma 5] or [Hub03b, §3.1]) that the initial
of any derivative of p is sep(p) and the separant of any square-free equation
p is nonzero on Sol(p). So by making the equations square-free, it is ensured
that pseudo reductions are not only possible modulo p, but also modulo its
derivatives. This allows us to formulate the differential reduction algorithm:

Algorithm 3.2 (Reduce).
Input: A differential system S and a polynomial p ∈ F{U}.
Output: A polynomial q that is not Janet reducible modulo ST with φe(p) = 0
if and only if φe(q) = 0 for each e ∈ Sol(S).
Algorithm:
1: x← ld(p)
2: while exists q= ∈ (ST)= and i1, . . . , in ∈ Z≥0 with ij = 0 for ∂j �∈ Δ(ST)=(q)

such that ∂i1
1 · . . . · ∂in

n ld(q) = ld(p) and rank(∂i1
1 · . . . · ∂in

n p) ≥ rank(q) hold
do

3: p← prem(p, ∂i1
1 · . . . · ∂in

n q, x)
4: x← ld(p)
5: end while
6: if Reduce(S, init(p)) = 0 then
7: return Reduce(S, p− init(p)xrank(p))
8: else
9: return p

10: end if

A polynomial p ∈ F{U} is called reduced3 modulo ST if Reduce(S, p) = p. A
polynomial p ∈ F{U} reduces to q modulo ST if Reduce(S, p) = q.

Usually in differential algebra, one distinguishes a (full) differential reduction
as used here and a partial (differential) reduction. Partial reduction only employs
proper derivations of equations for reduction (cf. [Kol73, §I.9] or [Hub03b, §3.2]).
This is useful for separation of differential and algebraic parts of the algorithm
and for the use of Rosenfeld’s Lemma (cf. [Ros59]).

Definition 3.3 (Differential Simple Systems). A differential system S is
(Janet) involutive, if all non-admissible prolongations in (ST)= reduce to zero
by (ST)=.

3 There is a fine difference between not being reducible and being reduced. In the
case of not being reducible the initial of a polynomial can still reduce to zero and
iteratively the entire polynomial.

Thomas Decomposition of Algebraic and Differential Systems 47

A system S is called differentially simple or simple, if S is

a) algebraically simple in the finite set of differential variables appearing in it,
b) involutive,
c) S= is minimal,
d) no inequation is reducible modulo S=.

A disjoint decomposition of a system into differentially simple subsystems is
called (differential) Thomas decomposition.

3.4 The Differential Decomposition Algorithm

The differential Thomas decomposition algorithm is a modification of the alge-
braic Thomas decomposition algorithm. We have already introduced the new
algorithms InsertEquation (3.1) for adding new equations into the systems and
Reduce (3.2) for reduction, that can replace their counterparts in the algebraic
algorithm.

Algorithm 3.4 (DifferentialDecompose).
Input: A differential system S′ with (S′)T = ∅.
Output: A differential Thomas decomposition of S′.
Algorithm: The algorithm is obtained by replacing the two subalgorithms
InsertEquation and Reduce in (2.18) with their differential counterparts (3.1) and
(3.2), respectively.

We give an example taken from [BC99, pp. 597-600]:

Example 3.5 (Cole-Hopf Transformation). For F := R(x, t),Δ = { ∂
∂x ,

∂
∂t},

and U = {η, ζ} consider the heat equation h = ηt +ηxx ∈ F{U}= and Burger’s
equation b = ζt + ζxx +2ζx · ζ ∈ F{U}=. To improve readability, leaders of poly-
nomials are underlined below.

First we claim that any power series solution for the heat equation with a non-
zero constant term can be transformed to a solution of Burger’s equation by
means of the Cole-Hopf transformation λ : η �→ ηx

η . The differential Thomas

decomposition for an orderly ranking with ζx > ηt of

{h=, (η · ζ − ηx)=︸ ︷︷ ︸
⇔ζ=λ(η)

, η
=}

consists of the single system

S = {(ηx − η · ζ)=, (η · ζx + ηt + η · ζ2)=, η
=}

and one checks that Reduce(S, b) = 0 holds. This implies that any non-zero
solution of the heat equation is mapped by the Cole-Hopf transformation to
a solution of Burger’s equation.

In addition we claim that λ is surjective. For the proof we choose an elimi-
nation ranking (cf. [Hub03b, §8.1] or [Bou07]) with η � ζ, i.e., ηi > ζj for all

48 T. Bächler et al.

i, j ∈ (Z≥0)
2. We compute the differential Thomas decomposition of {h=, b=, (η ·

ζ − ηx)=, η
=} which again consists of a single system

S = {(ηx − η · ζ)=, (η · ζx + ηt + η · ζ2)=, b=, ζ
=} .

The properties of a simple system ensure that for any solution of lower ranking
equations there exists a solution of the other equations (cf. (2.2)). The elimina-
tion ordering guarantees that the only constraint for ζ is Burger’s equation b=
and thus for any solution f ∈ Sol(b=) there exists a solution (g, f) ∈ Sol(S).
Furthermore, since h= was added to the input system, g ∈ Sol(h=) holds and
finally the equation (η · ζ − ηx)= implies λ(g) = f .

Remark 3.6. Elements of the differential field are not subjected to splittings,
unless they are modelled as differential indeterminates. For example to model a
differential field F = C(x) with Δ = { ∂

∂x}, we add an extra differential indeter-
minate X to U and replace x by X in all equations and inequations. We subject
X to the relation ∂

∂xX = 1 for X being “generic” or (∂
∂xX − 1) · ∂

∂xX = 0, if we
allow X to degenerate to a point. This will be subject of further study.

4 Implementation

4.1 Algorithmic Optimizations

In the Decompose algorithm, pseudo remainder sequences for the same pairs of
polynomials are usually needed several times. As these calculations are expensive
in general, for avoiding repeated calculations, it is important that the results are
kept in memory and will be reused when the same sequence is requested again.

If a polynomial admits factorization, we can use the it to save computa-
tion time. More precisely, a disjoint decomposition of the system S � {(p ·
q)=} is given by (S ∪ {p=}, S ∪ {p
=, q=}) and the system S � {(p · q)
=} is
equivalent to S ∪ {p
=, q
=}. Let Yi :=

{
xj | xj < xi, (ST)=xj

�= ∅
}

and Zi :={
xj | xj < xi, (ST)=xj

= ∅
}
. If (ST)=xi

is irreducible over the field Fi :=
F (Zi)[Yi]/〈(ST)=<xi

〉F (Zi)[Yi] for all i ∈ {1, . . . , n}, where 〈(ST)=<xi
〉F (Zi)[Yi] is

the ideal generated by (ST)=<xi
in the polynomial ring F (Zi)[Yi], factorization

of polynomials can be performed over Fn instead of F .
Coefficient growth is a common problem in elimination. If possible, polyno-

mials should be represented as compact as possible. Once it is known that the
initial cannot vanish, the content (in the univariate sense) cannot vanish either.
Thus, every time an initial has been added as an inequation to the system, one
can divide the polynomial by its content.

If the ground field F is represented as a field of fractions of a domain D (like
the rationals or a rational function field over the rationals), it also makes sense
to remove the multivariate content, which is an element of F .

When reducing, in addition to reduction modulo the polynomial of the same
leader, reducing the coefficients modulo the polynomials of lower leader can be

Thomas Decomposition of Algebraic and Differential Systems 49

considered. In some cases this leads to a reduction of sizes of coefficients, in other
cases sizes increase. The latter is partly due to whole polynomials being multi-
plied with initials of the reductors. Finding a good heuristic for this coefficient
reduction is crucial for efficiency.

In the algebraic algorithm, polynomials don’t necessarily have to be square-
free when they are inserted into the candidate simple system. Efficiency is some-
times improved greatly by postponing the calculation of the square-free split as
long as possible.

In the differential case application of criteria to avoid useless reduction of
non-admissible prolongations can decrease computation time. The combinatorial
approach used in this paper already avoids many reductions of so-called Δ-
polynomials, as used in other approaches (see [GY06]). Nonetheless, using the
involutive criteria 2-4 (cf. [GB98a, Ger05, AH05] and [BLOP09, §4, Prop. 5])
which together are equivalent to the chain criterion, is valid and helpful.

Another possible improvement is parallelization, since the main loop in line 2
of Decompose (2.18) can naturally be used in parallel for different systems.

4.2 Implementation in Maple

Both algorithms have been implemented in the Maple computer algebra sys-
tem. Packages can be downloaded from [BLH10], documentation and example
worksheets are available there.

The main reason for choosing Maple for the implementation is the collection
of solvers for polynomial equations, ODEs, and PDEs already present. Further-
more, fast algorithms exist for polynomial factorization over finitely generated
field extensions of Q and for gcd computation. Computation of subresultants is
not available in Maple, therefore an algorithm based on [Duc00] is implemented
for that purpose.

Features for the differential package include arbitrary differential rankings,
using functions implemented in Maple as differential field, computation of power
series solutions, and a direct connection to the solvers of Maple for differential
equations.

Example 4.1. Start by loading the current version of our package:

> with(DifferentialThomas):
> ComputeRanking([t],[x2,x1,y,u],"EliminateFunction");

This creates the differential polynomial ring Q{x(2), x(1), y, u} for Δ = { ∂
∂t}.

Here u indicates the input, x(1) and x(2) the state, and y the output of the system.
The chosen ranking “<” is the elimination ranking with x(2) � x(1) � y � u,
i.e., x(2)

i > x
(1)
j > yk > ul for all i, j,k, l ∈ Z≥0.

> L:=[x1[1]-u[0]*x2[0],x2[1]-x1[0]-u[0]*x2[0],y[0]-x1[0]];

L := [x1 1 − u0 x2 0, x2 1 − x1 0 − u0 x2 0, y0 − x1 0]

We follow [Dio92, Ex. 1] and want to compute the external trajectories of a
differential ideal generated by L, i.e. intersect this differential ideal with Q{y, u}.

50 T. Bächler et al.

> res:=DifferentialThomasDecomposition(L,[]);

res := [DifferentialSystem, DifferentialSystem]

We show the equations and inequations of the differential systems not involving
x(1) and not involving x(2). The chosen ranking guarantees that for each differ-
ential system of the output, all constraints holding for lower ranking differential
indeterminates can be read off the equations and inequations only involving
these differential indeterminates, i.e., the systems shown determine the external
trajectories of the system:

> PrettyPrintDifferentialSystem(res[1]):
> remove(a->has(a,x2) or has(a,x1),%);

[−u(t) (d2

dt2 y(t)) + (d
dt y(t))u(t)2 + (d

dt y(t)) (d
dt u(t)) + y(t)u(t)2 = 0, u(t) �= 0]

> PrettyPrintDifferentialSystem(res[2]):
> remove(a->has(a,x2) or has(a,x1),%);

[d
dt y(t) = 0, u(t) = 0]

These systems, having disjoint solution sets, are identical to the ones found in
[Dio92].

4.3 Implementations of Similar Decomposition Algorithms

The RegularChains package [LMX05], which is shipped with recent versions of
Maple, implements a decomposition of a polynomial ideal into ideals repre-
sented by regular chains and a radical decomposition of an ideal into square-free
regular chains. The solution sets of this decomposition are in general not disjoint.
However, there is an extension called comprehensive triangular decomposition
(cf. [CGL+07]) that provides disjointness on the parameters of a parametric
system. The systems of the parameters are not simple systems though. The Reg-
ularChains package contains FastArithmeticTools as a subpackage implementing
asymptotically fast polynomial arithmetic for the modular case.

The εpsilon package ([Wan03]) by Dongming Wang implements different kinds
of triangular decompositions (including a decomposition into regular chains like
above) in Maple. It is the only software package besides our own that im-
plements the Thomas decomposition. It uses the simpler “top-down” approach
that Thomas (cf. [Tho37, Tho62]) suggested, i.e., polynomials of higher leader
are considered first. All polynomials of the same leader are combined into one
common consequence. New systems, which contain conditions on initials of poly-
nomials and subresultants, are created by splitting subalgorithms similar to ours.
All these new conditions of lower leader are not taken into account for now and
will be treated in a later step. Contrary to our approach, one cannot reduce
modulo an unfinished system and hence inconsistency checks are less natural
and more complicated. It is conceivable that this strategy spends too much time
on computations with inconsistent systems. Therefore, εpsilon implements highly
sophisticated heuristics for early detection of inconsistent systems. It achieves
similar performance to our implementation.

Thomas Decomposition of Algebraic and Differential Systems 51

The Maple package diffalg [BH04] deals with ordinary and partial differen-
tial equations as described in [BLOP09]. Its functionalities are used by symbolic
differential equations solvers in Maple. For an input of equations and inequa-
tions it computes a radical decomposition of the differential ideal generated
by the equations and saturated by the inequations. I.e., a description of the
vanishing ideal of the Kolchin closure (cf. [Kol73, §IV.1]) of the solutions is
computed. The output are differential characteristic sets as introduced by Ritt

[Rit50, §I.5]. Computation of differential consequences is driven by reduction of
Δ-polynomials, which are the analogon of s-polynomials in differential algebra.
We found the system being optimized and well-suited for computations with
ordinary differential equations.

Similar algorithms as in diffalg are used in the BLAD-libraries [Bou09]. It
is designed as a stand-alone C-library with an emphasis on usability for non-
mathematicians and extensive documentation. As it is written in C, BLAD is
expected to outperform diffalg for relevant examples.

For future publications, we plan to compare the Thomas decomposition and
our implementation with other decompositions and implementations. We also
plan to further examine applications that benefit from the properties of simple
systems.

Acknowledgements

The contents of this paper profited very much from numerous useful comments
and remarks from Wilhelm Plesken. The authors thank him as well as Dongming
Wang and François Boulier for fruitful discussions. Furthermore, our gratitude
goes to the anonymous referees for valuable comments and for pointing out
informative references. The second author (V.P.G.) acknowledges the Deutsche
Forschungsgemeinschaft for the financial support that made his stay in Aachen
possible. The presented results were obtained during his visits.

References

[AH05] Apel, J., Hemmecke, R.: Detecting unnecessary reductions in an involutive
basis computation. J. Symbolic Comput. 40(4-5), 1131–1149 (2005), MR
MR2169107 (2006j:13026)

[BC99] Buium, A., Cassidy, P.J.: Differential algebraic geometry and differential
algebraic groups: from algebraic differential equations to diophantine ge-
ometry. In: [Kol99], pp. 567–636 (1999)

[BCG+03] Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The
MAPLE Package Janet: I. Polynomial Systems. II. Linear Partial Dif-
ferential Equations. In: Proc. 6th Int. Workshop on Computer Algebra in
Scientific Computing, Passau, Germany, pp. 31–54 (2003),
http://wwwb.math.rwth-aachen.de/Janet

[BH04] Boulier, F., Hubert, E.: DIFFALG : description, help pages and examples
of use, Symbolic Computation Group, University of Waterloo, Ontario,
Canada (1996-2004),
http://www-sop.inria.fr/members/Evelyne.Hubert/diffalg/

http://wwwb.math.rwth-aachen.de/Janet
http://www-sop.inria.fr/members/Evelyne.Hubert/diffalg/

52 T. Bächler et al.

[BKRM01] Bouziane, D., Rody, A.K., Maârouf, H.: Unmixed-dimensional decompo-
sition of a finitely generated perfect differential ideal. J. Symbolic Com-
put. 31(6), 631–649 (2001), MR MR1834002 (2002c:12007)

[BLH10] Bächler, T., Lange-Hegermann, M.: AlgebraicThomas and Differen-
tialThomas: Thomas decomposition for algebraic and differential systems
(2008-2010),
http://wwwb.math.rwth-aachen.de/thomasdecomposition/

[BLOP95] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the
radical of a finitely generated differential ideal. In: ISSAC, pp. 158–166
(1995)

[BLOP09] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representa-
tions for radicals of finitely generated differential ideals. Appl. Algebra En-
grg. Comm. Comput. 20(1), 73–121 (2009), MR MR2496662 (2010c:12005)

[Bou07] Boulier, F.: Differential elimination and biological modelling, Gröbner
bases in symbolic analysis. Radon Ser. Comput. Appl. Math. 2, 109–137
(2007), MR MR2394771 (2009f:12005)

[Bou09] Boulier, F.: BLAD : Bibliothèques lilloises d’algèbre différentielle (2004-
2009),
http://www.lifl.fr/~boulier/BLAD/

[CGL+07] Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehen-
sive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg
(2007)

[Del00] Dellière, S.: D.m. wang simple systems and dynamic constructible closure,
Rapport de Recherche No. 2000–16 de l’Université de Limoges (2000)

[Dio92] Diop, S.: On universal observability. In: Proc. 31st Conference on Decision
and Control, Tucaon, Arizona (1992)

[Duc00] Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Al-
gebra 145(2), 149–163 (2000), MR MR1733249 (2000m:68187)

[GB98a] Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math.
Comput. Simulation 45(5-6), 519–541 (1998), Simplification of systems
of algebraic and differential equations with applications. MR MR1627129
(99e:13033)

[GB98b] Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comput. Sim-
ulation 45(5-6), 543–560 (1998), Simplification of systems of algebraic and
differential equations with applications. MR MR1627130 (99e:13034)

[Ger99] Gerdt, V.P.: Completion of linear differential systems to involution. In:
Computer Algebra in Scientific Computing—CASC 1999, Munich, pp. 115–
137. Springer, Berlin (1999), MR MR1729618 (2001d:12010)

[Ger05] Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In:
Computational Commutative and Non-Commutative Algebraic Geometry,
NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, pp. 199–225. IOS, Ams-
terdam (2005), MR MR2179201 (2007c:13040)

[Ger08] Gerdt, V.P.: On decomposition of algebraic PDE systems into simple
subsystems. Acta Appl. Math. 101(1-3), 39–51 (2008), MR MR2383543
(2009c:35003)

[GY06] Gerdt, V.P., Yanovich, D.A.: Investigation of the effectiveness of involutive
criteria for computing polynomial Janet bases. Programming and Com-
puter Software 32(3), 134–138 (2006), MR MR2267374 (2007e:13036)

http://wwwb.math.rwth-aachen.de/thomasdecomposition/
http://www.lifl.fr/~boulier/BLAD/

Thomas Decomposition of Algebraic and Differential Systems 53

[GYB01] Gerdt, V.P., Yanovich, D.A., Blinkov, Y.A.: Fast search for the Janet
divisor. Programming and Computer Software 27(1), 22–24 (2001), MR
MR1867717

[Hab48] Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzählver-
fahrens. Comment. Math. Helv. 21, 99–116 (1948), MR MR0023796
(9,405f)

[Hub03a] Hubert, E.: Notes on triangular sets and triangulation-decomposition
algorithms. I. Polynomial systems. In: Winkler, F., Langer, U. (eds.)
SNSC 2001. LNCS, vol. 2630, pp. 1–39. Springer, Heidelberg (2003), MR
MR2043699 (2005c:13034)

[Hub03b] Hubert, E.: Notes on triangular sets and triangulation-decomposition
algorithms. II. Differential systems. In: Winkler, F., Langer, U. (eds.)
SNSC 2001. LNCS, vol. 2630, pp. 40–87. Springer, Heidelberg (2003), MR
MR2043700 (2005c:13035)

[Jan29] Janet, M.: Leçons sur les systèmes des équationes aux dérivées partielles.
In: Cahiers Scientifiques IV, Gauthiers-Villars, Paris (1929)

[Kol73] Kolchin, E.R.: Differential algebra and algebraic groups. Pure and Applied
Mathematics, vol. 54. Academic Press, New York (1973), MR MR0568864
(58 #27929)

[Kol99] Kolchin, E.R.: Selected works of Ellis Kolchin with commentary. Ameri-
can Mathematical Society, Providence (1999); Commentaries by Borel, A.,
Singer, M.F., Poizat, B., Buium, A., Cassidy, P.J. (eds.) with a preface by
Hyman Bass, Buium and Cassidy. MR MR1677530 (2000g:01042)

[LMX05] Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in
Maple. SIGSAM Bull. 39(3), 96–97 (2005)

[LW99] Li, Z., Wang, D.: Coherent, regular and simple systems in zero decompo-
sitions of partial differential systems. System Science and Mathematical
Sciences 12, 43–60 (1999)

[Mis93] Mishra, B.: Algorithmic algebra. Texts and Monographs in Computer Sci-
ence. Springer, New York (1993), MR MR1239443 (94j:68127)

[Riq10] Riquier, F.: Les systèmes d’équations aux dérivées partielles (1910)
[Rit50] Ritt, J.F.: Differential Algebra. In: American Mathematical Society Col-

loquium Publications, vol. XXXIII. American Mathematical Society, New
York (1950), MR MR0035763 (12,7c)

[Ros59] Rosenfeld, A.: Specializations in differential algebra. Trans. Amer. Math.
Soc. 90, 394–407 (1959), MR MR0107642 (21 #6367)

[Sei10] Seiler, W.M.: Involution. In: Algorithms and Computation in Mathematics,
vol. 24. Springer, Berlin (2010), The formal theory of differential equations
and its applications in computer algebra. MR MR2573958

[sGH09] shan Gao, X., Huang, Z.: Efficient characteristic set algorithms for equation
solving in finite fields and application in analysis of stream ciphers, Cryp-
tology ePrint Archive, Report 2009/637 (2009), http://eprint.iacr.org/

[Tho37] Thomas, J.M.: Differential systems, vol. XXI. AMS Colloquium Publica-
tions (1937)

[Tho62] Thomas, J.M.: Systems and roots. The William Byrd Press, Inc., Rich-
mond Virginia (1962)

[Wan98] Wang, D.: Decomposing polynomial systems into simple systems. J. Sym-
bolic Comput. 25(3), 295–314 (1998), MR MR1615318 (99d:68130)

[Wan01] Wang, D.: Elimination methods. In: Texts and Monographs in Symbolic
Computation. Springer, Vienna (2001), MR MR1826878 (2002i:13040)

http://eprint.iacr.org/

54 T. Bächler et al.

[Wan03] Wang, D.: εpsilon: description, help pages and examples of use (2003),
http://www-spiral.lip6.fr/~wang/epsilon/

[Wan04] Wang, D.: Elimination practice. Imperial College Press, London (2004),
Software tools and applications, With 1 CD-ROM (UNIX/LINUX, Win-
dows). MR MR2050441 (2005a:68001)

[Wu00] Wu, W.-T.: Mathematics mechanization. In: Mathematics and its Applica-
tions, vol. 489, Kluwer Academic Publishers Group, Dordrecht (2000), Me-
chanical geometry theorem-proving, mechanical geometry problem-solving
and polynomial equations-solving. MR MR1834540 (2003a:01005)

[Yap00] Yap, C.K.: Fundamental problems of algorithmic algebra. Oxford Univer-
sity Press, New York (2000), MR MR1740761 (2000m:12014)

http://www-spiral.lip6.fr/~wang/epsilon/

On Multivariate Homogeneous Polynomial
Decomposition

Paula Bustillo and Jaime Gutierrez

Universidad de Cantabria, Santander, Spain

Abstract. An algorithm for decomposing a list of homogeneous poly-
nomials in several variables of the same degree was given in [2]. We
show that there is a bijective relation among these decompositions and
intermediate IK-algebras of a special kind, but the relation cannot be
extended to intermediate fields. We also try to find the dimension of the
decomposable lists over an algebraically closed field.

1 Introduction

In [9], the authors proposed a new cryptosystem called 2R-scheme inspired by the
C∗-cryptosystem, see [7]. In a 2R-scheme the space of plain texts and ciphertexts
is IFm

q , where IFq is a finite field of q elements. The secret key items are three affine
bijections r, s, t : IFm

q −→ IFm
q and two applications φ, ψ : IFm

q −→ IFm
q given by

m quadratic equations over IFq. The public key is the polynomial representation
of the application t ◦ ψ ◦ s ◦ φ ◦ r : IFm

q −→ IFm
q . This representation consists of

m polynomials of degree 4.
The applications φ and ψ are chosen among easily invertible ones in order to

make decryption easy. For all proposed easily invertible applications at that time,
the one-round schemes were broken, i.e., the analogous cryptosystems with secret
key s ◦ φ ◦ r. Therefore, the security of 2R-schemes was based on the difficulty
of decomposing a list of m polynomials in IK[x] = IK[x1, . . . , xm], where IK is an
arbitrary field. The paper [10] proposed efficient attacks that make the system
insecure if m or m− 1 polynomials in the list are given. Inspired by these ideas,
in [1], the authors presented an algorithm that given a list f = (f1, . . . , fu) of u
homogeneous polynomials of degree 4 in m variables, finds lists g = (g1, . . . , gu)
and h = (h1, . . . , hm) of homogeneous polynomials of degree 2 in m variables
such that fi = gi(h1, . . . , hm) for all i ∈ {1, . . . , u}, under some favourable
circumstances. The algorithm was extended in [2] to a list of polynomials f
of arbitrary degree n = r · s. There is an improvement of the algorithm in
[3], together with an algorithm for a list f of polynomials of degrees r1, . . . , ru
respectively such that s > 1 divides all degrees.

In [4], the dimension of the decomposable univariate polynomials over an
algebraically closed field is counted for each fixed degree n, and similarly in
[5], for the so called uni-multivariate decomposable polynomials, see [6], over an
algebraically closed field.

We aim here at finding the relation among the concept of (r, s)-decomposition
of homogeneous polynomials proposed in [1] and the computation of intermediate

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 55–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

56 P. Bustillo and J. Gutierrez

IK-algebras and intermediate fields, and at counting the dimension of (r, s)-
decomposable polynomials in m variables over an algebraically closed field.

2 Computation of Intermediate IK-Algebras and
(r, s)-Decompositions

We shall start by the definition of (r, s)-decomposable polynomials:

Definition 1. Let f = (f1, . . . , fu) ∈ IK[x]u be a list of homogeneous polyno-
mials of degree n = rs. We say that f is (r, s)-decomposable if there exist a
list g = (g1, . . . , gu) ∈ IK[x]u of homogeneous polynomials of degree r and a
list h = (h1, . . . , hm) ∈ IK[x]m of homogeneous polynomials of degree s such
that fi = gi(h1, . . . , hm), written f = g ◦ h. The tuple (g,h) is called an (r, s)-
decomposition of f .

If A is a regular matrix, then g◦h = g◦A−1◦A◦h. To avoid this ambiguity, two
decompositions (g,h) and (g′,h′) of a polynomial are defined to be equivalent
if there exists a regular matrix A such that h′T = AhT . By this equivalence rela-
tion, we guarantee that two non-equivalent decompositions provide two different
intermediate IK-algebras.

Lemma 1. Let h1, . . . , hm ∈ IK[x] be homogeneous polynomials of degree s and
let f1, . . . , fu ∈ IK[h1, . . . , hm] be homogeneous polynomials of degree n = r · s.
There exist polynomials g1, . . . , gu ∈ IK[x] such that fi = gi(h1, . . . , hm) is an
(r, s)-decomposition of f .

Proof. We can write fi = pi(h1, . . . , hm), for each i ∈ {1, . . . , u}. Let pi = p
(ki)
i +

· · ·+p(1)i +p(0)i be written as the sum of homogeneous polynomials p(j)i of degree j,
ki = deg pi. It is clear that either deg p(j)i (h1, . . . , hm) = j·s or p(j)i (h1, . . . , hm) =
0. Consequently, since fi = p

(ki)
i (h1, . . . , hm)+ · · ·+p(1)i (h1, . . . , hm)+p(0)i , then

ki ≥ r and fi = p
(r)
i (h1, . . . , hm). Take gi = p

(r)
i .

Theorem 1. Non-equivalent (r, s)-decompositions of a list of polynomials f =
(f1, . . . , fu) correspond bijectively to IK-algebras in IK[f] ⊂ IK[x] generated by m
homogeneous polynomials of degree s.

Proof. Let h1, . . . , hm, h
′
1, . . . , h

′
m ∈ IK[x1, . . . , xm] be homogeneous polynomials

of degree s such that IK[f1, . . . , fu] ⊂ IK[h1, . . . , hm] = IK[h′1, . . . , h′m]. By Lemma
1, we have the equality of linear spans: Span (h1, . . . , hm) = Span (h′1, . . . , h

′
m);

and therefore, there exists a regular matrixA such (h′1, . . . ,h
′
m)T=A(h1, . . . , hm)T.

The algorithm of Faugère and Perret only finds an (r, s)-decomposition of f if f
has only one equivalence class of decompositions, i.e., it only finds a decompo-
sition when there is exactly one intermediate IK-algebra (field) in IK[f] ⊂ IK[x]
(in IK(f) ⊂ IK(x)) generated by m homogeneous polynomials of degree s.

This bijective relation does not extend to a bijective relation among the (r, s)-
decompositions of f and the proper fields in IK(f) ⊂ IK(x) generated by a list h
of homogeneous polynomials of degree s in general.

On Multivariate Homogeneous Polynomial Decomposition 57

Example 1. Let
(h1, h2) = (x1

2 S , x1
Sx2

S),
(H1, H2) = (x1

2 S − x2
2 S , x2

2 S + x1
Sx2

S),

for s = 2S even, and let

(h1, h2) = (x1
2 S+1, x1

S+1x2
S),

(H1, H2) = (x1
2 S+1 − x1x2

2 S , x1
S+1x2

S + x1x2
2 S

for s = 2S + 1 odd.
For both s even and odd, it holds that IK[h1, h2] �= IK[H1, H2] because

the linear spans Span(h1, h2) and Span(H1, H2) are different, and IK(h1, h2) =
IK(H1, H2), since

H1 = h1
2−h2

2

h1
, H2 = (h1+h2)h2

h1
, and

h1 = H1
2+2 H1H2+H2

2

H1+2 H2
, h2 = (H1+H2)H2

H1+2 H2
. Moreover, h2

1 + h2
2 +

2h1h2 = H2
1 +H2

2 + 2H1H2.
Therefore, if

f = (h2
1 + h2

2 + 2h1h2)k,
then

((x2
1 + x2

2 + 2x1x2)k, (h1, h2)) and ((x2
1 + x2

2 + 2x1x2)k, (H1, H2))
are non-equivalent (2k, s)-decompositions of f , but their associated fields are the
same.

This counterexample can be easily extended to an arbitrary number m of
variables.

3 The Dimension of (r, s)-Decomposable Polynomials

From now on, IK will denote an algebraically closed field.
Let

Pm,n = {f ∈ IK[x] : f is homogeneous of degree n}
be the vector space of homogeneous polynomials of degree n, whose dimension
is am,n =

(
m+n−1

n

)
.

By arranging the monomials of degree n in m variables with respect to the
lexicographical order >lex, m(1) = xn

1 ,m(2) = xn−1
1 x2, . . . ,m(am,n) = xn

m, we
can identify a polynomial in Pm,n sorted with respect to the lexicographical
order with a tuple in IKam,n , thus identifiying Pm,n with the affine space IKam,n .

For n = rs, we have the composition map

γm,n,r : Pm,r × Pm,s
m −→ Pm,n

(g, h1, . . . , hm) �→ g(h1, . . . , hm)

Clearly, the setDm,n,r of (r, s)-decomposable polynomials of degree n is Im γm,n,r.
The map γm,n,r can be identified with a polynomial map

Γm,n,r : IKam,r × (IKam,s)m −→ IKam,n

that sends the coefficients of g, h1, . . . , hm to the coefficients of g(h1, . . . , hm).
This map identifies Dm,n,r with Decm,n,r = Im Γm,n,r. We aim at finding the
dimension of the Zariski closure of Decm,n,r, Decm,n,r.

58 P. Bustillo and J. Gutierrez

A straightforward way to compute the dimension is to combine a suitable
normalization in (r, s)-decompositions with the following theorem:

Theorem 2. ([8]) Let X,Y be algebraic sets over IK. If f : X −→ Y is a
dominating polynomial map, i.e., such that Y = f(X), then there exists an open
subset U in Y such that f−1(y) has dimension dimX − dimY for all y ∈ U .

As a consequence, if the map Γm,n,r|X : X −→ Decm,n,r is dominating and such
that all polynomials in Decm,n,r�C have a finite number of (r, s)-decompositions,
for a closed set C � Decm,n,r, then dim Decm,n,r = dimX .

It is clear that for X = IKam,r+m·am,s the hypotheses are not satisfied: when-
ever a polynomial f has the (r, s)-decomposition f = g ◦ h, we can decompose
f as f = (g ◦A−1) ◦ (A ◦ h) for every A ∈ GLm(IK).

Clearly, finding the set X for which the hypotheses are satisfied is the key
point to find the dimension of Decm,n,r. In the following, we will discuss the
choice of X .

Assume that f=g(h1, . . . ,hm) is an (r, s)-decomposition of f where h1,. . . ,hm

are linearly independent. Then, the vector space generated by h1, . . . , hm is
also generated by m homogeneous polynomials h′1, . . . , h

′
m of degree s such that

each polynomial is monic with respect to the lexicographical order, lm(h′1) >lex

. . . >lex lm(h′m), and coefflm(h′
i)

(h′j) = 0 for i �= j, where lm(t) denotes the lead-
ing monomial of the polynomial t and coeffm(t) is the coefficient of the monomial
m in the polynomial t. Then, for h′ = (h′1, . . . , h

′
m), there exists an homogenous

polynomial g′ in m variables of degree r such that f = g′ ◦ h′.
Let V (i1, . . . , im) be the set of vector spaces generated by m polynomials

h1, . . . , hm, where i1 < i2 < · · · < im, each hj is monic with leading coefficient
m(ij), and coefflm(hj)

(hi) = 0 if i �= j:

⎛⎜⎜⎝
i1 i2 im

h1 → 0 1 · · · 0 · · · · · · 0 · · ·
h2 → 0 0 0 1 · · · · · · 0 · · ·

0 0 0 0 · · · · · · 0 · · ·
hm → 0 0 0 0 0 0 1 · · ·

⎞⎟⎟⎠
Each vector space in V (i1, . . . , im) can be determined bym·(am,s−m) coefficients
in IK at most, thus identifying V (i1, . . . , im) with IKm·(am,s−m).

Let V̂ = ∪1≤i1<i2<...<im≤am,sV (i1, . . . , im) and V be the algebraic set corre-
sponding to V̂ by the identification between Pm,s and IKam,s . Then, Decm,n,r =
Im Γm,n,r(IKam,r × V̂). Clearly, dim Decm,n,r = dim Im Γ (IKam,r × V) ≤ am,r +
m · (am,s − m). Therefore, if dim Im Γ (IKam,r × V (1, 2, . . . ,m)) = am,r + m ·
(am,s −m) could be proven, then dim Decm,n,r = am,r +m · (am,s −m).

This normalization is proven to be the good one for (2, 2)-decompositions in
two variables by using Gröbner basis computations.

On Multivariate Homogeneous Polynomial Decomposition 59

Example 2. Let r = s = m = 2 and n = 4.
Let V1 = {(x2 + ay2, xy + by2) : a, b ∈ IK}.

Let
f = c1x

4 + c2x3y + c3x2y2 + c4xy3 + c5y4,
g = d1x

2 + d2xy + d3y2,
h1 = x2 + ay2, and
h2 = xy + by2.

If f = g(h1, h2), then d1 = c1 and d2 = c2. Moreover, the equations
c3 − 2c1a− c2b− d3 = 0,
c4 − c2a− 2d3b = 0 and
c5 − c1a2 − c2ab− d3b2 = 0

must be satisfied.
The Gröbner basis G of I = (c3 − 2c1a− c2b− d3, c4 − c2a− 2d3b, c5 − c1a2 −

c2ab − d3b2) with respect to the lexicographical order such that a > b > d3 is
the set of the polynomials

p1 = d3
3 − 2 c3d32 +

(
c4c2 − 4 c1c5 + c32

)
d3 + (c1c42 + c5c22 − c3c2c4)

p2 =
(
c2

3−4 c3c2c1+8 c12c4
)
b+(2 c2c1c4+4 c32c1−16 c12c5+

(−8 c3c1 + c22
)
d3−

c2
2c3 + 4 d32c1) =: q1b + q2

p3 =
(
c2

3 − 4 c3c2c1 + 8 c12c4
)
a + (−c4c22 − 4 c3c1c4 + (4 c1c4 + 2 c3c2) d3 +

8 c2c1c5 − 2 d32c2) =: q3a+ q4

The basis G specifies well for all parameters in IK5 \ C1, where C1 is subset of
tuples of IK5 vanishing in the polynomials q1 and q3, i.e., V (q1, q3).

For each polynomial f there are only 3 possibles values of the parameter
d3. If there are infitine possible values for a or b for the polynomial f , then
(c1, c2, c3, c4, c5) ∈ C2 = V (q1, q2) ∪ V (q2, q3).

Therefore, only for tuples in the closed and proper subset C1 ∪ C2 of IK5

can polynomials have infinite decompositions. That is, the fibers of Γ2,4,2 are
finite except on a closed and proper subset of IK5. Therefore, dim Dec2,4,2 =
a2,2 + 2(a2,2 − 2) = 5 and all polynomials, except those in a closed and proper
subset of IK5, are decomposable.

Counting the dimension of decomposable lists of homogeneous polynomials of
the same degree is completely analogous. Let Decm,n,r,u be the set of lists f of
u homogeneous polynomials in IK[x] of degree n that are (r, s)-decomposable,
and let

Γm,n,r,u : (IKam,r)u × V −→ Decm,n,r,u

be the function that maps the coefficients of the normalized tuple (g,h) to
the coefficients of g ◦ h. If the above normalization were the good one, then the
dimension of Decm,n,r,u = would be dim((IKam,r)u×V) = u·am,r+m·(am,s−m).

60 P. Bustillo and J. Gutierrez

References

1. Faugère, J.C., Perret, L.: Cryptanalysis of 2R− schemes. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 357–372. Springer, Heidelberg (2006)

2. Faugère, J.C., Perret, L.: An efficient algorithm for decomposing multivariate poly-
nomials and its applications to cryptography. Journal of Symbolic Computation 44,
1676–1689 (2009)

3. Faugère, J.C., Perret, L.: High order derivatives and decomposition of multivariate
polynomials. In: Kaltofen, E. (ed.) ISSAC 2009: Proceedings of the 2009 Inter-
national Symposium on Symbolic and Algebraic Computation, Seoul, Korea, pp.
207–214. ACM, New York (2009)

4. Gathen, J.v.z.: The number of decomposable univariate polynomials. In: ISSAC
2009: Proceedings of the 2009 International Symposium on Symbolic and Algebraic
Computation, pp. 359–366. ACM, New York (2009) (extended abstract)

5. von zur Gathen, J.: Counting decomposable multivariate polynomials. Technical
Report arXiv:0811.4726 (2008)

6. von zur Gathen, J., Gutierrez, J., Rubio, R.: Multivariate polynomial decomposi-
tion. Appl. Algebra Engrg. Comm. Comput. 14, 11–31 (2003)

7. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

8. Mumford, D.: The red book of varieties and schemes. In: Thalheim, B. (ed.) Se-
mantics in Databases 1995. LNCS, vol. 1358. Springer, Heidelberg (1998)

9. Patarin, J., Goubin, L.: Asymmetric cryptography wiht s-boxes. In: Han, Y., Quing,
S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 369–380. Springer, Heidelberg (1997)

10. Ye, D., Dai, Z., Lam, K.Y.: Decomposing attacks on asymmetric cryptography
based on mapping compositions. J. Cryptology 14, 137–150 (2001)

Computing Matrix Representations of Filiform
Lie Algebras

Manuel Ceballos1, Juan Núñez1, and Ángel F. Tenorio2

1 Departamento de Geometŕıa y Topoloǵıa, Facultad de Matemáticas, Universidad
de Sevilla, Spain

mceballos@us.es, jnvaldes@us.es
2 Dpto. de Economı́a, Métodos Cuantitativos e Historia Económica, Escuela

Politécnica Superior, Universidad Pablo de Olavide, Ctra. Utrera km. 1.
41013-Seville, Spain
aftenorio@upo.es

Abstract. In this paper, we compute minimal faithful unitriangular ma-
trix representations of filiform Lie algebras. To do it, we use the nilpotent
Lie algebra, gn, formed of n×n strictly upper-triangular matrices. More
concretely, we search the lowest natural number n such that the Lie
algebra gn contains a given filiform Lie algebra, also computing a repre-
sentative of this algebra. All the computations in this paper have been
done using MAPLE 9.5.

Keywords: Filiform Lie Algebra, Minimal Faithful Unitriangular Ma-
trix Representation, Algorithm.

2000 Mathematics Subject Classification: 17B30, 68W40, 68Q25.

1 Introduction

Firstly, we would like to explain the motivation for dealing with filiform Lie
algebras. At present, several aspects of Lie algebras remain unknown. In fact,
the classification of nilpotent Lie algebras is still an open problem, although the
classification of other types of Lie algebras (such as semisimple and simple ones)
were already obtained in 1890. In this way, computing faithful representations of
nilpotent Lie algebras is one of the main open problems in the theory of finite-
dimensional Lie algebras over an algebraically closed field of characteristic zero.
Therefore, it seems to be convenient to reduce this problem by dealing with
filiform Lie algebras, which constitute the most structured Lie algebras in the
nilpotent class. These algebras were introduced by Vergne [13] in the late 1960s.

On the other hand, the research on Lie Theory has a large number of ap-
plications to other sciences such as Applied Mathematics, Engineering, Physics,
Mathematical Finance and Economics. In all of them the representation of Lie
groups and algebras constitute an important subject. For example, in Economics,
Polidoro in [10] studied a financial problem by using representation of nilpotent
Lie groups. Additionally, Solvable and Nilpotent Lie algebras can be used to

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 61–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 M. Ceballos, J. Núñez, and Á.F. Tenorio

deal with problem relative to finance derivatives and other financial and eco-
nomic problem. In this way, the pricing problem of Asian and European options
can be solved using a Lie-algebra and Lie-symmetry approach as can be seen in
[9] and [11]. Consequently, we think that providing explicit representations of
filiform Lie algebra can be useful to tackle these problems.

Regarding the representation of filiform Lie algebras, the following result is
well-known: Given a finite-dimensional nilpotent Lie algebra g, there exists n ∈ N
such that g is isomorphic to a subalgebra of the algebra gn, of n×n strictly upper-
triangular matrices [12, Theorem 3.6.6]. Therefore, an important question is to
compute the minimal n ∈ N such that a finite-dimensional filiform Lie algebra
is contained in gn as a subalgebra.

At this respect, Benjumea et al. [1] already introduced an algorithmic method
to compute minimal faithful unitriangular matrix representations of nilpotent Lie
groups and algebras (including filiform ones), giving some examples of applica-
tion. Later, Benjumea et al. [2] gave the list of minimal faithful unitriangular
matrix representations for nilpotent Lie algebras of dimension less than 6 using
the previous method. Nevertheless, the following question is still unsolved: What
Lie algebras have an n-dimensional representation for arbitrary dimensions? In
this paper, we will determine which filiform Lie algebras satisfy that property,
giving minimal faithful unitriangular representations in the case of both model
and non-model algebras.

Other authors, like Burde [4] or Ghanam et al. [8], studied the minimal dimen-
sion μ(g) for the representations of a given Lie algebra g. However, these authors
considered any faithful g-module instead of the family of Lie algebras gn. Con-
sequently, the value of μ(g) is less than or equal to the dimension which we will
compute and determine in this paper. In particular, Ghanam et al. [8] computed
matrix representations for low dimensional nilpotent Lie algebras, but their min-
imality was not studied. In fact, some representations in [8] were not minimal.

Independently, some authors like Echarte et al. [5] introduced some invariants
of filiform Lie algebras, improving them in [6]. In this paper, we will recall the use
of these invariants to express the law of filiform Lie algebras and to classify them.

The structure of this paper is as follows: after reviewing some well-known re-
sults about Lie Theory in Section 2, Section 3 is devoted to show the method used
to compute a minimal faithful unitriangular matrix representation for filiform Lie
algebras. Due to reasons of length, we only compute explicitly minimal faithful
unitriangular matrix representations for filiform Lie algebras of dimension less
than or equal to six, although the method can be applied to any arbitrary finite-
dimensional filiform Lie algebra provided its law is known, which is not easy for
higher dimensions. Remember that the classifications of filiform Lie algebras are
only known up to dimension 11 (see [3]).

2 Preliminaries

Some preliminary concepts on Lie algebras (including Invariant and Represen-
tation Theories) are recalled in this section. For a general overview, the reader

Computing Matrix Representations of Filiform Lie Algebras 63

can consult [12]. Let us note that only finite-dimensional Lie algebras over the
complex number field C are considered from here on.

2.1 Lie Algebras

The lower central series of a given Lie algebra g is defined by

C1(g) = g, C2(g) = [g, g], C3(g) = [C2(g), g], . . . , Ck(g) = [Ck−1(g), g], . . .

The Lie algebra g is nilpotent when there exists a natural integer m such that
Cm(g) ≡ 0.

Let h be a subalgebra of a Lie algebra g. The centralizer of h in g is the set
of elements of g which commute with all of the elements of h.

Related to the lower central series associated with a subalgebra of g, the
following result holds

Proposition 1. Let h be a subalgebra of a Lie algebra g. Then Ck(h) ⊆ Ck(g),
∀ k ∈ N.

Let us denote by gn the nilpotent matrix algebra formed of all the n×n strictly
upper-triangular matrices, with n > 1. The expression of the vectors in gn is the
following

gn(xr,s) =

⎛⎜⎜⎜⎜⎜⎝
0 x1,2 · · · x1,n−1 x1,n

0 0 · · · x2,n−1 x2,n

...
...

. . .
...

...
0 0 · · · 0 xn−1,n

0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ (xi,j ∈ C).

The dimension of gn is n(n−1)
2 . Fixed i and j such that 1 ≤ i < j ≤ n, a

basis of g is Bn = {Xi,j = gn(xr,s) | [xr,s = 1 ⇔ (r, s) = (i, j)] ∧ [xr,s = 0 ⇔
(r, s) �= (i, j)]}1≤i<j≤n with the law: [Xi,j , Xj,k] = Xi,k, for 1 ≤ i < j < k ≤ n.
Consequently, the dimension of each term in the lower central series of gn is

(dim(gn), dim(gn−1), dim(gn−2), . . . , dim(g2), 0) (1)

A particular family of nilpotent Lie algebras is formed of abelian Lie algebras.
A Lie algebra g is said to be abelian if [v,w] = 0, for all v, w ∈ g. An equivalent
condition is the following: Z(g) = g, where

Z(g) = {X ∈ g | [X,Y] = 0 , ∀Y ∈ g}

is the center of the algebra g. We also consider a second subclass of nilpotent
Lie algebras in this paper: filiform Lie algebras. An n-dimensional Lie algebra g
is filiform if its lower central series satisfies the following

dim(C1(g)) = n, dim(C2(g)) = n − 2, dim(C3(g)) = n − 3, . . . , dim(Cn(g)) = 0. (2)

64 M. Ceballos, J. Núñez, and Á.F. Tenorio

A basis {ei}n
i=1 of the filiform Lie algebra g is called an adapted basis if the

following relations are verified

[e1, eh] = eh−1, for 3 ≤ h ≤ n;
[e2, eh] = 0, for 1 ≤ h ≤ n;
[e3, eh] = 0, for 2 ≤ h ≤ n.

(3)

If {ei}n
i=1 is an adapted basis of an n-dimensional filiform Lie algebra g, then

the vector e2 is the unique element in the center Z(g) of the algebra.
A filiform Lie algebra is called model if the only nonzero brackets in its law

are [e1, eh] = eh−1, for 3 ≤ h ≤ n.

2.2 Invariants of Filiform Lie Algebras

This subsection is devoted to recall the definitions of two invariants for filiform
Lie algebras given in [6]. First, the invariant z1 is defined as follows

z1 = max{k ∈ N |Cg(Cn−k+2(g)) ⊃ C2(g)},

where Cg(h) is the centralizer of a given subalgebra h of g. Let us note that
the set in the previous definition can be empty. In this case, it is easy to prove
that g is a model filiform Lie algebra. Besides, the definition of z1 means that
the ideal Cn−i+2(g) is the greatest one whose centralizer contains C2(g). Let us
note that the previous definition is equivalent to the following: z1 = min {k ≥
2 | [ek, en] �= 0}, which is more convenient for practical use, and where {ei}n

i=1 is
an adapted basis of g.

The invariant z2 is defined as

z2 = max {k ∈ N | Cn−k+1(g) is abelian}.

An immediate consequence of this definition is that the ideal Cn−j+1(g) ≡
〈e2, . . . , ej〉 is the largest abelian subalgebra in the lower central series of g.

3 Computing Minimal Matrix Representations

In this section, we firstly obtain a minimal faithful unitriangular matrix repre-
sentation for each model filiform Lie algebra. Next, we give a method to obtain
such representations for non-model filiform Lie algebras. Finally, we compute
minimal faithful unitriangular matrix representations for filiform Lie algebras of
dimension less than 7.

Given a Lie algebra g, a representation of g in Cn is a homomorphism of Lie
algebras φ : g → gl(Cn) = gl(C, n). The natural integer n is called the dimension
of this representation. Ado’s theorem states that every finite-dimensional Lie
algebra over a field of characteristic zero has a linear injective representation on
a finite-dimensional vector space, that is, a faithful representation.

Computing Matrix Representations of Filiform Lie Algebras 65

Usually, representations are defined by using an arbitrary n-dimensional vec-
tor space V (see [7]) and homomorphisms of Lie algebras from g to gl(V) of
endomorphisms of V ; that is, by using g-modules.

With respect to minimal representations of Lie algebras, Burde [4] introduced
the following invariant for an arbitrary Lie algebra g

μ(g) = min{dim(M) | M is a faithful g-module}.

In this section, matrix representations of filiform Lie algebras are studied. More-
over, we are interested in minimal matrix representations of these algebras with
a particular restriction: the representations have to be contained in gn. In this
way, given a filiform Lie algebra g, we want to compute the minimal value n such
that gn contains a subalgebra isomorphic to g. This value is also an invariant of
g and its expression is given by

μ̄(g) = min{n ∈ N | ∃ subalgebra of gn isomorphic to g}.

Let us note that the invariants μ(g) and μ̄(g) can be different from each
other.

Proposition 2. Let g be an n-dimensional filiform Lie algebra. Then μ̄(g) ≥ n.
Proof. We have to prove that for a given n-dimensional filiform Lie algebra g, it
is not possible to find a subalgebra of gn−1 isomorphic to g.
First, we express the vectors of an adapted basis {ei}n

i=1 of g as linear combina-
tions of the vectors in the basis Bn−1 of gn−1

ek =
∑

1≤i<j≤n−1

λk
i,jXi,j , for 1 ≤ k ≤ n.

We will prove that each coefficient λ2
i,j of e2 ∈ Z(g) has to be zero. Effectively:

from [e1, eh] = eh−1 for 3 ≤ h ≤ n, the following relations are obtained

λh−1
β,β+1=0; λh−1

β,αβ
=

∑
β<p<αβ

(λ1
β,pλ

h
p,αβ

−λ1
p,αβ

λh
β,p), for 1≤β≤n−2 and αβ ≥β+2. (4)

From [e1, e3] = e2, we can conclude that λ2
β,β+1 = 0, for 1 ≤ β ≤ n − 2. Now,

we prove that λ2
l,αl

= 0, for 1 ≤ l ≤ n− 3. To do so, we only need to prove that
λ3

p,αβ
= λ3

β,p = 0.
From [e1, ek] = ek−1 for 3 ≤ k ≤ n − 1, we can affirm that λk−1

β,β+1 = 0 for
1 ≤ β ≤ n− 2. This implies that λ3

p,q = 0 when q − p < n− 4.
If we consider the bracket [e1, en] = en−1, we conclude that λn−1

β,β+1 = 0, and,
therefore, λ3

p,q = 0, where q − p = n− 3.
Consequently, all the coefficients of e2 are null and this comes into

contradiction. �

66 M. Ceballos, J. Núñez, and Á.F. Tenorio

3.1 Model Filiform Lie Algebras

The law of a fixed n-dimensional model filiform Lie algebra g with an adapted
basis {ei}n

i=1 is the following

[e1, eh] = eh−1, for 3 ≤ h ≤ n. (5)

Now, we define the vectors of the adapted basis as linear combinations of the
vectors in the basis Bn of the Lie algebra gn

e1 =
n−2∑
i=1

Xi,i+1, e2 = X1,n, e3 = X2,n, . . . , en = Xn−1,n (6)

In this way, we can define a subalgebra f′n of gn whose elements have the following
form

f ′n(xk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 x1 0 · · · 0 x2
0 0 x1 · · · 0 x3
...

...
...

. . .
...

...
0 0 0 · · · x1 xn−1
0 0 0 · · · 0 xn

0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(xk ∈ C, for k = 1, . . . , n).

The dimension of f′n is n and a basis of f′n is given by the vectors

eh = f ′n(xk), with xk =
{

1, if k = h;
0, if k �= h.

According to Proposition 2, we can affirm that every n-dimensional model fil-
iform Lie algebra has an n-dimensional minimal faithful unitriangular matrix
representation with the representative given in (6).

3.2 Non-Model Filiform Lie Algebras

If the filiform Lie algebra is non-model, then the invariants z1 and z2 exist.
Hence, there exist some additional nonzero brackets to [e1, eh] = eh−1, for 3 ≤
h ≤ n. Consequently, non-model filiform Lie algebras cannot be represented by
the algebras f′n.

Now, we show an algorithmic method to compute minimal faithful unitriangu-
lar matrix representations for non-model filiform Lie algebras. These representa-
tions are minimal in the following sense: Finding a faithful matrix representation
of a given Lie algebra g in gn means that no representations of g can be obtained
in gn−1.

To do so, we give a step-by-step explanation of the method used to determine
these minimal representations for a given filiform Lie algebra g of dimension
n > 4. Let us note that this method is better than the one given in [1] for
filiform Lie algebras, since it uses properties of filiformity and of the invariants
z1 and z2 to simplify and avoid computations.

Computing Matrix Representations of Filiform Lie Algebras 67

1. According to Proposition 1, we compute the first natural integer l such that
the lower central series of gl is compatible with the one associated with g.
By bearing in mind expressions (1) and (2) and Proposition 2 (which is
equivalent to the fact that Z(g) = 〈e2〉 = Cn−1(g) � Cn−1(gn−1)), we will
consider l = n for n-dimensional filiform Lie algebras.

2. In virtue of Proposition 2, we have ruled out the Lie algebras gp with p < l
(in our case, p < n). Hence, we search a subalgebra of gl isomorphic to g.
To do so, an adapted basis {ei}n

i=1 of g is considered and its vectors are
expressed as linear combinations of the basis Bn

eh =
∑

1≤i<j≤n

λh
i,jXi,j , for 1 ≤ h ≤ n.

3. Then, we impose the brackets given in (5). In this way, the relations shown
in (4) are obtained again.

4. After solving the resulting system of equations, we solve the new system
obtained when imposing the rest of nonzero brackets in the law of g.

The solutions of this system depend on the particular Lie algebra studied in each
moment. Hence, we have categorized the solutions in a finite number of cases
using the invariants z1 and z2. The solutions of this system will be computed by
using the symbolic computation package Maple 9.5, with the command solve,
which receives a list of equations and a list of variables as inputs. This command
works efficiently with polynomial equations and returns the algebraic expression
of the solutions as output. To obtain these solutions, a substitution procedure
is used between the algebraic variables. In this way, we will show the family of
representatives under certain conditions for the parameters.

Another point to consider is the number of solutions for the system. To study
it, we will define the set F of polynomial expressions and we will use the com-
mand is finite, which receives as input the set F and determines if the number
of solutions is or not finite. Noether normalization lemma is also very useful to
describe the elements in an algebraic variety.

Furthermore, for computing a particular solution of the previous system, we
will search one whose number of null coefficients is as greater as possible. In this
way, the coefficients can be assumed equal to zero when they do not appear in the
relations obtained. This will be a natural representative of the Lie algebra g.

We will also show some examples. The first of them is about a model filiform
Lie algebra. Next, we apply the previous algorithmic method to compute the
minimal matrix representation of two non-model filiform Lie algebras.

Example 1. Let us consider the model filiform Lie algebra f14 generated by the
vectors {e1, e2, e3, e4} with the law [e1, e3] = e2 and [e1, e4] = e3.
representation of f14 by using the Lie algebra f′4 as it was shown in the previous
subsection. Now, we apply the previous algorithm and determine if the number
of solution is a finite or not for the system so obtained. First, we define the
vectors

68 M. Ceballos, J. Núñez, and Á.F. Tenorio

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + . . . + λ1
3,4X3,4;

e2 = λ2
1,2X1,2 + λ2

1,3X1,3 + . . . + λ2
3,4X3,4;

e3 = λ3
1,2X1,2 + λ3

1,3X1,3 + . . . + λ3
3,4X3,4;

e4 = λ4
1,2X1,2 + λ4

1,3X1,3 + . . . + λ4
3,4X3,4.

Now, we introduce the following commands in Maple

> ec1:=c121*c233-c231*c123-c132:
> ec2:=c121*c243+c131*c343-c241*c123-c341*c133-c142:
> ec3:=c231*c343-c341*c233-c242: ec4:=c122: ec5:=c232:
> ec6:=c342:ec7:=c121*c234-c231*c124-c133:
> ec8:=c121*c244+c131*c344-c241*c124-c341*c134-c143:
> ec9:=c231*c344-c341*c234-c243: ec10:=c123:ec11:=c233:
> ec12:=c343:ec13:=c121*c232-c231*c122:
> ec14:=c121*c242+c131*c342-c241*c122-c341*c132:
> ec15:=c231*c342-c341*c232: ec16:=c122*c233-c232*c123:
> ec17:=c122*c243+c132*c343-c242*c123-c342*c133:
> ec18:=c232*c343-c342*c233: ec19:=c122*c234-c232*c124:
> ec20:=c122*c244+c132*c344-c242*c124-c342*c134:
> ec21:=c232*c344-c342*c234: ec22:=c123*c234-c233*c124:
> ec23:=c123*c244+c133*c344-c243*c124-c343*c134:
> ec24:=c233*c344-c343*c234:

> F:=[ec1,ec2,ec3,ec4,ec5,ec6,ec7,ec8,ec9,ec10,ec11,ec12,
ec13,ec14,ec15,ec16,ec17,ec18,ec19,ec20,ec21,ec22,ec23,ec24];

>is_finite(F);
false

Consequently, there is an infinite number of solutions. However, if we apply
Noether normalization lemma and we intersect the previous set with the alge-
braic variety defined by the system {λi

1,2 = 0}4
i=1, we obtain a finite number of

solutions:

eq1:=c121: eq2:=c122: eq3:=c123: eq4:=c124:

H:=[ec1,ec2,ec3,ec4,ec5,ec6,ec7,ec8,ec9,ec10,ec11,ec12,ec13,ec14,
ec15,ec16,ec17,ec18,ec19,ec20,ec21,ec22,ec23,ec24,eq1,eq2,eq3,
eq4]:

> is_finite(H);
true

Let us note that this reasoning can be done for every model filiform Lie algebra.

Computing Matrix Representations of Filiform Lie Algebras 69

Example 2. We consider the Lie algebra f25 generated by the vectors {ei}5
i=1 with

the following nonzero brackets

[e1, eh] = eh−1, for 3 ≤ h ≤ n; [e4, e5] = e2.

The lower central series of g5 and f25 are compatible

C2(f25) = 〈e2, e3, e4〉 ⊆ C2(g5) = 〈X1,3, X1,4, X1,5, X2,4, X2,5, X3,5〉

C3(f25) = 〈e2, e3〉 ⊆ C3(g5) = 〈X1,4, X1,5, X2,5〉
C4(f25) = 〈e2〉 ⊆ C4(g5) = 〈X1,5〉

When applying Steps 2 and 3, the following vectors are obtained

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + . . . + λ1
3,5X3,5 + λ1

4,5X4,5;

e2 = λ2
1,5X1,5; e3 = λ3

1,4X1,4 + λ3
1,5X1,5 + λ3

2,5X2,5;

e4 = λ4
1,3X1,3 + λ4

1,4X1,4 + λ4
1,5X1,5 + λ4

2,4X2,4 + λ4
2,5X2,5 + λ4

3,5X3,5;

e5 = λ5
1,2X1,2 + λ5

1,3X1,3 + . . . + λ5
3,5X3,5 + λ5

4,5X4,5;

restricted under the following relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ4
3,5 = λ1

3,4λ
5
4,5 − λ1

4,5λ
5
3,4, λ

3
2,5 = λ1

2,3λ
1
3,4λ

5
4,5 − 2λ1

4,5λ
1
2,3λ

5
3,4 + λ1

4,5λ
1
3,4λ

5
2,3,

λ4
1,5 = λ1

1,2λ
5
2,5 + λ1

1,3λ
5
3,5 + λ1

1,4λ
5
4,5 − λ1

4,5λ
5
1,4 − λ1

3,5λ
5
1,3 − λ1

2,5λ
5
1,2,

λ3
1,4 = λ1

1,2λ
1
2,3λ

5
3,4 − 2λ1

1,2λ
1
3,4λ

5
2,3 + λ1

3,4λ
1
2,3λ

5
1,2,

λ2
1,5 = λ1

1,2λ
1
2,3λ

1
3,4λ

5
4,5−3λ1

4,5λ
1
1,2λ

1
2,3λ

5
3,4+3λ1

4,5λ
1
1,2λ

1
3,4λ

5
2,3−λ1

4,5λ
1
3,4λ

1
2,3λ

5
1,2,

λ3
1,5 = λ1

1,2λ
1
2,3λ

5
3,5+λ1

1,2λ
1
2,4λ

5
4,5−2λ1

4,5λ
1
1,2λ

5
2,4−λ1

1,2λ
1
3,4λ

5
2,3+λ1

1,3λ
1
3,4λ

5
4,5−

2λ1
1,3λ

1
4,5λ

5
3,4 + λ1

4,5λ
1
2,4λ

5
1,2 + λ1

4,5λ
1
3,4λ

5
1,3 − λ1

3,5λ
1
1,2λ

5
2,3 + λ1

3,5λ
1
2,3λ

5
1,2,

λ4
1,3 = λ1

1,2λ
5
2,3 − λ1

2,3λ
5
1,2, λ

4
1,4 = λ1

1,2λ
5
2,4 + λ1

1,3λ
5
3,4 − λ1

2,4λ
5
1,2 − λ1

3,4λ
5
1,3,

λ4
2,5 = λ1

2,3λ
5
3,5 + λ1

2,4λ
5
4,5 − λ1

4,5λ
5
2,4 − λ1

3,4λ
5
2,3, λ

4
2,4 = λ1

2,3λ
5
3,4 − λ1

3,4λ
5
2,3.

This system has degree four. It is well-known the existence of efficient methods
in Algebraic Geometry to solve this type of systems. For filiform Lie algebras of
higher dimension, the degree of the system obtained is always one unit less than
the dimension of the algebra considered.

Now, by imposing the bracket [e4, e5] = e2, the following vectors are obtained

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + . . . + λ1
3,5X3,5 + λ1

4,5X4,5;

e2 = λ2
1,5X1,5; e3 = λ3

1,4X1,4 + λ3
1,5X1,5 + λ3

2,5X2,5;

e4 = λ4
1,3X1,3 + λ4

1,4X1,4 + λ4
1,5X1,5 + λ4

2,5X2,5 + λ4
3,5X3,5;

e5 = λ5
1,2X1,2 + λ5

1,3X1,3 + . . . + λ5
1,5X1,5 + λ5

2,4X2,4 + . . . + λ5
4,5X4,5;

70 M. Ceballos, J. Núñez, and Á.F. Tenorio

under these relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ4
1,3 = −λ1

2,3λ
5
1,2, λ

4
3,5 = λ1

3,4λ
5
4,5, λ

2
1,5 = λ1

1,2λ
1
2,3λ

1
3,4λ

5
4,5 − λ1

4,5λ
1
3,4λ

1
2,3λ

5
1,2,

−2λ1
3,4λ

5
4,5λ

5
1,3 = 2λ5

3,5λ
1
2,3λ

5
1,2 − λ5

4,5λ
1
1,2λ

5
2,4 + 2λ5

4,5λ
1
2,4λ

5
1,2 − λ5

1,2λ
1
4,5λ

5
2,4

+λ1
1,2λ

1
2,3λ

1
3,4λ

5
4,5 − λ1

4,5λ
1
3,4λ

1
2,3λ

5
1,2, λ

3
1,4 = λ1

3,4λ
1
2,3λ

5
1,2, λ

3
2,5 = λ1

2,3λ
1
3,4λ

5
4,5,

2λ1
3,4λ

5
4,5λ

4
1,5 = 2λ1

1,2λ
5
2,5λ

1
3,4λ

5
4,5 + 2λ1

1,3λ
5
3,5λ

1
3,4λ

5
4,5 + 2λ1

1,4(λ5
4,5)2λ1

3,4
−2λ1

4,5λ
5
1,4λ

1
3,4λ

5
4,5 + 2λ1

3,5λ
1
2,3λ

5
1,2λ

5
3,5 − λ1

3,5λ
5
4,5λ

1
1,2λ

5
2,4 + 2λ5

4,5λ
1
2,4λ

5
1,2λ

1
3,5

−λ1
4,5λ

1
3,5λ

5
1,2λ

5
2,4+λ1

3,5λ
1
1,2λ

1
2,3λ

1
3,4λ

5
4,5−λ1

3,5λ
1
4,5λ

1
3,4λ

1
2,3λ

5
1,2−2λ1

2,5λ
5
1,2λ

1
3,4λ

5
4,5,

λ4
2,5 = λ1

2,3λ
5
3,5 + λ1

2,4λ
5
4,5 − λ1

4,5λ
5
2,4, 2λ5

4,5λ
4
1,4 = λ5

4,5λ
1
1,2λ

5
2,4 + 2λ5

3,5λ
1
2,3λ

5
1,2

−λ5
1,2λ

1
4,5λ

5
2,4+λ1

1,2λ
1
2,3λ

1
3,4λ

5
4,5−λ1

4,5λ
1
3,4λ

1
2,3λ

5
1,2, −2λ5

4,5λ
3
1,5 =

−2λ1
1,2λ

5
4,5λ

1
2,3λ

5
3,5 − 2λ1

1,2(λ
5
4,5)

2λ1
2,4 + 3λ1

1,2λ
5
4,5λ

1
4,5λ

5
2,4 − 2λ1

1,3λ
1
3,4(λ

5
4,5)

2

+2λ1
4,5λ

5
3,5λ

1
2,3λ

5
1,2−(λ1

4,5)2λ5
2,4λ

5
1,2+λ1

4,5λ
1
1,2λ

1
2,3λ

1
3,4λ

5
4,5−(λ1

4,5)2λ1
3,4λ

1
2,3λ

5
1,2

−2λ1
3,5λ

1
2,3λ

5
1,2λ

5
4,5.

Table 1. Representatives of minimal faithful unitriangular representations of filiform
Lie algebras of dimension ≤ 7

Algebra Nonzero brackets Representation

f13 [e1, e3]=e2. e1 = X1,2, e2 = X1,3, e3 = X2,3.
f14 [e1,e3]=e2, [e1,e4]=e3. e1 = X1,2 + X2,3, e2 = X1,4, e3 = X2,4, e4 = X3,4.

f15 [e1, eh] = eh−1 (h ≥ 3).
e1 = X1,2 + X2,3 + X3,4, e2 = X1,5,

e3 = X2,5, e4 = X3,5, e5 = X4,5.

f25
[e1, eh] = eh−1 (h ≥ 3),

[e4, e5] = e2.
e1 = X1,2 + X2,3 + X3,4, e2 = X1,5, e3 = X2,5,

e4 = X1,4 + X3,5, e5 = X2,4 + X4,5.

f16 [e1, eh] = eh−1 (h ≥ 3).
e1 = X1,2 + X2,3 + X3,4, e2 = X1,5, e3 = X2,5,

e4 = X3,5, e5 = X4,5, e6 = X5,6.

f26
[e1, eh] = eh−1 (h ≥ 3),

[e5, e6] = e2.
e1 =

∑4
i=1 Xi,i+1, e2 = X1,6, e3 = X2,6,

e4 = X3,6, e5 = X1,5 + X4,6, e6 = X2,5 + X4,6.

f36

[e1, eh] = eh−1 (h ≥ 3),
[e4, e6] = e2,
[e5, e6] = e3.

e1 =
∑4

i=1 Xi,i+1, e2 = X1,6, e3 = X2,6,
e4 = X3,6 + X1,5, e5 = X2,5 + X4,6,

e6 = X3,5 + X5,6.

f46

[e1, eh] = eh−1 (h ≥ 3),
[e4, e5] = e2

[e4, e6] = e3,
[e5, e6] = e4.

e1 = X1,2 + X1,3 − 2
3
X1,4 + 7

3
X1,5 + X1,6 + X2,3+

X2,5 + X2,6 − X3,4 + 2X3,5 + X3,6 − X4,5+
X4,6 + X5,6, e2 = 8

3
X1,6, e3 = −2

3
X1,5 + 4

3
X1,6+

2X2,6, e4 = −2
3

X1,4 + 10
3

X1,5 + 7
3
X1,6 + 2X2,6+

2X3,6, e5 = −2
3

X1,3 + 3X1,4 − 4
3
X1,5 + X1,6−

X2,5 + X2,6 − 2X4,6, e6 = −1
3

X1,2 + X1,3+
X1,4 + X1,5 + X1,6 − X2,3 + X2,4 + X2,6+
X3,4 − X3,5 + X3,6 + X4,5 + X4,6 + X5,6.

f56

[e1, eh] = eh−1 (h ≥ 3),
[e4, e5] = e2

[e4, e6] = e3 + e2,
[e5, e6] = e4 + e3.

e1 = −X1,2 + X1,3 + 11
4

X1,4 + X1,5 + X1,6 + X2,3+
X2,4 + X2,5 + X2,6 + X3,4 + X3,5 + X3,6 − X4,5+
X4,6 + X5,6, e2 = 6X1,6, e3 = −3X1,5 − 11X1,6−
3X2,6, e4 = −2X1,4 + 3X1,5 − 13

4
X1,6 + X2,5+

8X2,6 − 2X3,6, e5 = X1,3 − 13
4

X1,5 − 1
4
X1,6 + X2,4−

4X2,5 + 7X2,6 + 7X3,6 − 2X4,6, e6 = X1,2 + X1,3+
X1,4 + X1,5 + X1,6 − 2X2,3 − 3X2,4 + X2,5+

X2,6 − X3,4 − 4X3,5 + X3,6 + X4,5 + X4,6 + X5,6.

Computing Matrix Representations of Filiform Lie Algebras 71

Next, we show a particular solution to obtain a representative for the Lie
algebra f25

e1 = X1,2 +X2,3 +X3,4, e2 = X1,5, e3 = X2,5,

e4 = X1,4 +X3,5, e5 = X2,4 +X4,5.

3.3 Filiform Lie Algebras of Dimension Less than 7

Due to reasons of length, Table 1 only shows minimal faithful unitriangular ma-
trix representations for filiform Lie algebras of dimension less than 7, computing
a natural representative and considering the classification given in [3]. Let us
note that this table is very useful in order to find explicit representations of
these algebras.

4 Conclusions

At present, researchers on Lie and Representation Theories need to deal with
examples of Lie algebras of higher dimensions. The representation of these alge-
bras is a difficult task and, besides, only the classifications of solvable, nilpotent
and filiform complex Lie algebras up to dimension 6, 7 and 12, respectively, are
actually known.

In this paper we have shown a method to obtain minimal faithful unitrian-
gular matrix representations of filiform Lie algebras of any arbitrary dimension.
Therefore, we think that it constitutes a little step forward to tackle the problem
of the classification of these algebras and the obtainment of their representations.

Acknowledgments

The authors want to thank Professor Francisco J. Castro, from the University
of Seville, for some useful suggestions which helped to improve this paper.

References

1. Benjumea, J.C., Echarte, F.J., Núñez, J., Tenorio, A.F.: A method to obtain the
Lie group associated with a nilpotent Lie algebra. Computers & Mathematics with
Applications 51, 1493–1506 (2006)

2. Benjumea, J.C., Núñez, J., Tenorio, A.F.: Minimal linear representations of the low-
dimensional nilpotent Lie algebras. Mathematica Scandinavica 102, 17–26 (2008)

3. Boza, L., Fedriani, E.M., Núñez, J.: A new method for classifying complex filiform
Lie algebras. Applied Mathematics and Computation 121, 169–175 (2001)

4. Burde, D.: On a refinement of Ado’s Theorem. Arch. Math. (Basel) 70, 118–127
(1998)

5. Echarte, F.J., Núñez, J., Ramı́rez, F.: Relations among invariants of complex fili-
form Lie algebras. Applied Mathematics and Computation 147, 365–376 (2004)

72 M. Ceballos, J. Núñez, and Á.F. Tenorio

6. Echarte, F.J., Núñez, J., Ramı́rez, F.: Description of some families of filiform Lie
algebras. Houston Journal of Mathematics 34, 19–32 (2008)

7. Fulton, W., Harris, J.: Representation theory: a first course. Springer, New York
(1991)

8. Ghanam, R., Strugar, I., Thompson, G.: Matrix representations for low dimensional
Lie algebras. Extracta. Math. 20, 151–184 (2005)

9. Lo, C.F., Hui, C.H.: Valuation of financial derivatives with time-dependent param-
eters: Lie-algebraic approach. Quantitative Finance 1, 73–78 (2001)

10. Polidoro, S.: A Nonlinear PDE in Mathematical Finance. In: Brezzi, F., Buffa, A.,
Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Application.
Springer, Heidelberg (2003)

11. Taylor, S., Glasgow, S.: A novel reduction of the simple Asian option and Lie-Group
invariant solutions. Int. J. Theoret. Appl. Finance 12(8), 1197–1212 (2009)

12. Varadarajan, V.S.: Lie Groups, Lie Algebras and Their Representations. Springer,
New York (1984)

13. Vergne, M.: Cohomologie des algèbres de Lie nilpotentes, Application à l’étude
de la variété des algebres de Lie nilpotentes. Bull. Soc. Math. France 98, 81–116
(1970)

Type Specialization in Aldor

Laurentiu Dragan and Stephen M. Watt

Computer Science Department
The University of Western Ontario

London, Canada
{ldragan,watt}@csd.uwo.ca

Abstract. Computer algebra in scientific computation squarely faces
the dilemma of natural mathematical expression versus efficiency. While
higher-order programming constructs and parametric polymorphism pro-
vide a natural and expressive language for mathematical abstractions,
they can come at a considerable cost. We investigate how deeply nested
type constructions may be optimized to achieve performance similar to
that of hand-tuned code written in lower-level languages.

1 Introduction

One of the challenges for computer algebra in scientific computation is to achieve
high performance when both symbolic and numeric computation are required.
Aldor has sought to do this without sacrificing the natural high-level expression
of mathematical algorithms.

Aldor has been designed to provide a rich set of composable abstraction mech-
anisms so that mathematical programs can be written in a natural style. These
mechanisms use dependent types and type-producing functions to allow pro-
grams to be written in their most general form, and then specialized. The Aldor
compiler manages to achieve performance comparable to optimized C or Lisp
for programs that perform numeric or symbolic computations, respectively.

Aldor’s type-producing functions can be used in a similar manner to templates
in C++ or “generics” in Java, but with more natural mathematical structure.
Even though writing generic code is highly desirable from the code re-usability
perspective, programmers often avoid this approach for performance reasons.
Deeply nested generic type constructions (which occur naturally in computer
algebra) can hinder the performance of programs to an extent that entices some
programmers to specialize code by hand. To avoid this, we propose an optimiza-
tion that automatically specializes generic code based on the particular type
instantiations used in a program. Our optimization specializes both the code
and the data representation of the type, producing programs up to an order of
magnitude faster.

Beyond its applicability to computer algebra, this work has implications for
main-stream programming languages. Because programs in languages such as
C++, Java and C# are only now starting to use templates extensively, the per-
formance problems associated with deeply nested generic types have not been
widely recognized in those settings.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 73–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 L. Dragan and S.M. Watt

The contributions of this paper are:

– a compiler optimization that specializes dynamic domain constructors when
instantiations are known at compile time,

– an extension to the type specialization optimization that specializes also the
data representation of the specialized type, and

– some numerical indication of the improvements that can be expected by an
automatic process, and some results for a hand-crafted example.

The remainder of this paper is organized as follows: Section 2 gives a brief
introduction to parametric polymorphism implementations and introduces the
Aldor programming language and its compiler. Section 3 presents the problem
presented by deeply nested type constructions. Section 4 describes the method of
code specialization. Section 5 presents the approach used for data specialization.
Section 6 presents some performance results and Section 7 concludes the paper.

2 Background

Approaches to parametric polymorphism: There are currently two approaches
to implement parametric polymorphism, the homogeneous and heterogeneous
approaches.

The heterogeneous approach constructs a special class for each different use of
the type parameters. For example, with vector from the C++ standard template
library, one can construct vector<int> or vector<long>. This generates two
distinct classes that we may think of as: vector int and vector long. This is
done by duplicating the code of the vector generic class and producing specialized
forms. This is an effective approach from the time efficiency point of view. Two
drawbacks of this method are the size of the code and that all parameters must
be known statically. Another drawback is that constructors may not themselves
be passed as run-time parameters.

The homogeneous approach uses the same generic class for every instance of
the type parameters. This method is used in Java by erasing the type infor-
mation, using the Object class in place of the specialized form, and by type
casting whenever necessary. This method introduces little run-time overhead,
but misses out on the optimizations possible in special cases. More importantly,
the code size is not increased at all. For example, Java’s Vector<Integer> is
transformed to Vector containing Object class objects, and the compiler ensures
that Integer objects are used as elements of the vector.

The Aldor Programming Language: Aldor was originally designed as an exten-
sion programming language for Axiom computer algebra system. It can be used
more generally, but its affinity for computer algebra can be seen in its extensive
algebra related libraries. One of the strengths of Aldor is that functions and
types are first-class values. This way, functions and types can be computed and
manipulated just as any other values. The type system in Aldor is organized on
two levels, “domains” and “categories”. Domains provide datatypes, and cate-
gories provide a sub-type lattice on the domains. More details about the Aldor
programming language can be found elsewhere [1,2,3].

Type Specialization in Aldor 75

The Aldor Compiler: One of the main design goals of the Aldor programming
language was to allow efficient implementation of symbolic and numeric math-
ematical programs. Aldor’s compiler therefore implements many optimizations,
including procedure inlining, data-structure elimination and control flow opti-
mization. The Aldor compiler uses a platform-independent intermediate code,
foam (First Order Abstract Machine), with efficient C and Lisp mappings.

After syntactic and semantic analysis, the compiler performs straightforward
foam code generation, followed by a series of aggressive foam-to-foam opti-
mizations, producing code that is close in performance to optimized C code.

3 Deeply Nested Type Constructions

We now turn our attention to the main problem, that of deeply nested type
constructions. We define the depth of a type construction expression to be the
number of generic constructors along the longest path from the root of the
expression tree to any leaf. An example of a nested type construction is given
by the following expression:

Set (Matrix (Poly (Complex (Fraction(Integer)))))

This expression forms the type of sets whose elements are matrices, the elements
of which are polynomials with complex rational coefficients. This is a fully ex-
plicit nested type expression. Even though Set, Matrix, Poly, Complex and
Fraction are parametric types, the resulting type is no longer parametric. This
kind of fully explicit construction is not very common in Aldor algebra code. It
is more usual to see constructions with a few levels, given explicitly, applied to
a type parameter, and for this type parameter to be given a value at run time
that is a construction of a few levels on another parameter, etc. The result is a
deeply nested tower of constructions, built a few layers at a time. Similarly, with
the expansion of macros and typedefs in C++, deeply nested type constructions
frequently arise.

Continuing with our example above, let us imagine that one would call an
operation from the Set domain to multiply each element by a constant. The set
elements are matrices, which requires calling a function (to multiply a matrix by
a constant) from the Matrix domain. Each element from the matrix is a poly-
nomial which requires invoking the constant multiplication operation from the
Poly domain, and so on. This operation requires many call frame activations and
de-activations. This introduces an overhead that can be avoided by specializing
the domain. After specializing the operations of the domain, it is usually possible
to optimize the resulting operation further, starting with procedure inlining.

It is often the case that the leaves of type expressions are given by parameters,
for example as with the parameter R in

MyConstruction(R: IntegralDomain): Algebra(R) == {
s: Set (Matrix (Poly (Complex (Fraction(R))))) := ...

}

76 L. Dragan and S.M. Watt

This leads us to consider the idea of constructing a specialized domain
constructor:

Set ◦ Matrix ◦ Poly ◦ Complex ◦ Fraction

The functions from this domain constructor could be specialized using functions
from the intermediate domain constructors, even if R is not known.

In Aldor, type constructors may themselves be dynamically bound so it is pos-
sible that we may not know one of the constructors in a deeply nested expression
at compile-time. For example, we may have constructors such as:

Set ◦ Matrix ◦ Poly ◦ Complex ◦X
X ◦ Matrix ◦ Poly ◦ Complex ◦ Fraction
Set ◦ Matrix ◦X ◦ Complex ◦ Fraction

where X is an domain constructor unknown at compile-time. These cases must
also be handled. For example, in the last line above, this means handling the
specialized constructors F = Set◦Matrix and G = Complex◦Fraction to build
F ◦X ◦G at run-time.

4 Code Specialization

As mentioned previously, generic functions and type-constructing functions
(“functors”) in Aldor are implemented using the homogeneous approach. While
this is very flexible, performance can suffer. The goal of present work was to
use a mixture of homogeneous and heterogeneous implementations for deeply
nested type expressions to improve efficiency. What makes this different from
the analogous question in other programming languages is that in Aldor types
are constructed dynamically and, as seen above, both the leaf types and the
constructors themselves may be parameters unknown at compile time.

Some authors, e.g. [4], view partial evaluation as program specialization. Par-
tial evaluators typically specialize whole programs rather than individual func-
tions. For example, a partial evaluator may take program P and some of the
inputs of that program, and produce a residual program R, that takes only the
rest of the inputs of P and produces the same result as P, only faster. We take
a similar approach for type specialization. We take a foam program in the rep-
resentation used by the Aldor compiler and we specialize it according to some
type instantiations.

In our case, we use a partial evaluator that not only specializes the domain
constructor, but also specializes all the exports of that domain, effectively spe-
cializing the code of the type constructed by the functor. This creates operations
of that specialized domain as monolithic operations that are more efficient. The
overhead of the domain creation is more significant, but it does not happen very
frequently. The main part of the speedup does not come from eliminating domain
creation overhead. Rather it comes from from the optimization of the specialized
functions.

Type Specialization in Aldor 77

Domain Specialization

1. Initialize the data structures.
2. Identify the domain declarations.
3. For each program,

(a) If there is a domain constructor, generate a new specialized domain based on
the domain constructor.

(b) Replace the call to the generic domain constructor to a call to the specialized
one.

(c) In the specialized domain try to find the imports from other domains, and
if found, modify the foam representation to help Aldor in-liner identify the
called function.

4. Construct the foam code back from the data structures used by the tower opti-
mizer.

Fig. 1. Algorithm to specialize domain code by foam-to-foam transformation

Our method tries to create specialized forms of the functions of instantiated
domains. These are then used to construct the specialized run-time domains. The
specialized functions should in-line code from domains that are type parameters.
This way the resulting domains will have functions that do not require expensive
function dispatch when executing the code from an instance domain.

Aldor domains are run-time entities, and are therefore not always completely
defined at compile-time. In such cases, a full optimization is not possible. How-
ever, even in these cases parts of the type can be defined statically as in the
examples given in Section 3. In these cases, a partial specialization is still possi-
ble. The algorithm used to transform the foam code is presented in Figure 1.

The foam code corresponding to Aldor source comprises two parts: the decla-
ration of the data and the programs that manipulate that data. The optimization
performs a single scan of all the programs found in foam and looks for functors.
For each functor found, the type information for the original domain is retrieved
as saved by the type analysis phase or it is reconstructed. Then the code for
the type expression (i.e. the domain construction and all its operands) is cloned.
Once all the operations of the original domain have been duplicated, the result-
ing cloned domain is updated by scanning all the operations for imports from the
domains used as parameters. Once a target program has been found, the caller
marks its call site with the address of the callee. This way the usual inliner can
find the target function to be expanded locally. The final decision, whether the
function should actually be expanded locally, remains with the general purpose
inliner. This approach avoids expanding all the functions and it relies on the
rules of the usual inliner to expand only the worthwhile cases.

In many cases not all parts of a type expression are known at compile time. In
this situation, the above procedure is applied to the parts that are known. The
specialized types will preserve the signature of all the exported symbols, so they
can be used instead of the original call without affecting the rest of the caller’s
code. Our specialization is done in pairs of two starting from the innermost to
the outermost domain constructor.

78 L. Dragan and S.M. Watt

Preliminary results, presented in [6], showed that most of the speedup is ob-
tained by specializing the innermost domains. For example, in case of a deeply
nested type Dom4(Dom3(Dom2(Dom1))), most of the speedup is obtained by spe-
cializing Dom2(Dom1). On the other hand, specializing Dom4(Dom3(X)) will not
produce as significant a speedup.

This optimization is restricted to those cases where the type is fully or partly
known at compile time. For those types that are completely dynamically con-
structed at run-time, as is the case with some functions able to generate new
types at run-time, this transformation is not applicable and a dynamic optimizer
must be used.

5 Data Specialization

Another important optimization that can be performed on opaque domains is
data representation specialization. We have found this can have a very significant
performance impact. We see this already in other environments: Even though
parametric polymorphism has been introduced to Java and C#, their perfor-
mance is still not as good as specialized code. We now describe our data special-
ization and how we measured the performance improvement.

While trying to measure the performance, we searched for benchmarks to mea-
sure generic code performance. We found only Stepanov’s abstraction “penalty”
benchmark [9], which is rather simple. To obtain meaningful measurements we
transformed a well-known benchmark for scientific computing (SciMark) to use
generic code (SciGMark) [7]. While constructing SciGMark we experimented
with different types of specializations and discovered that most of the speedup
between the hand specialized code and generic code was achieved when the data
representation was changed from heap allocated to stack allocated structures.

In the process of implementing SciGMark, we noticed that a considerable
speedup was obtained from data representation specialization. This transforma-
tion is possible if the data representation is private, because access to data is
always through accessor functions. This way there is no risk of access to data
through aliases. This is indeed the case with the representation of Aldor domains.

The Aldor compiler already offers an optimization for data structure elimi-
nation, which tries to flatten records, eventually moving heap allocation to the
stack or registers if the objects do not escape local scope. A similar escape anal-
ysis for Java was presented by Choi [8]. Our proposed specialization goes a step
further by eliminating data structures not only in each function, but also across
operations that belong to a specialized domain.

The idea behind this optimization is to incorporate the data structure asso-
ciated with the inner domain into the data structure of the outer domain. Since
the data representation is private to the domain, this change will be invisible to
its clients. The passing or conversion of data will be handled automatically by
the operations of the transformed domain. The rest of the program can remain
unchanged.

To illustrate how this works, we use a simple polynomial multiplication as
example. One usual representation of a polynomial, using a dense representation,

Type Specialization in Aldor 79

sz coeff 0 coeff 1 coeff n−1...

re im re im re im

Fig. 2. Data rep. for polynomial with complex coefficients (before specialization.)

sz re im re im re im...

Fig. 3. Data rep. for polynomial with complex coefficients (after specialization.)

is as an array of coefficients values. A generic polynomial type constructor can
accept different algebraic types for the coefficients. Suppose we use a complex
number type as coefficients. In the same way, the complex type constructor can
be generic, accepting a type for the real and imaginary parts. Suppose we take
these to be integers. This is created in Aldor using Poly(Complex(Integer))
and the data representation is an array similar to Figure 2. If the polynomial is
specialized for such complex numbers, the resulting representation can be seen in
Figure 3. This new representation has a much better memory locality, eliminates
some indirections and more importantly, it eliminates the need to allocate and
manage heap objects.

To illustrate how data representation specialization works, we created a small
example that multiplies two polynomials that use a dense representation for the
coefficients.

The implementation of Ring category and the Complex domain can be seen in
Figure 4. The Ring category declares a type that has operations such as addition,
multiplication, the ability to construct a neutral element and to print on screen.
The Complex domain is an example of a domain that implements a Ring type,
by providing implementations for all the operations declared in Ring.

In Figure 4, the Complex domain is not a parametric domain. In this case,
the data representation used for the real and imaginary part is the domain
MachineInteger. We take this simple approach for this example, because we
shall perform the code and data specialization by hand, without any help from
an automatic system. In this case the type of Complex is a Ring extended with
some extra operations like complex, real and imag. The identifier % (percent)
is the local name of the domain itself, The two macros per and rep are used to
convert between the % type (the abstract type) and the Rep type (the internal
representation). The rest of the code is self explanatory, and the implementa-
tion of the operations is a straight forward implementation of the definition of
addition and multiplication for complex numbers.

The Aldor code for the corresponding Poly domain can be seen in Figure 5.
Again, the Poly domain is a sub-type of Ring, by augmenting the Ring type
with an operation to construct the object. This time the domain is parametric,

80 L. Dragan and S.M. Watt

Ring: Category == with {

+: (%, %) -> %;

*: (%, %) -> %;

0: %;

<<: (TextWriter, %) -> TextWriter;

}

MI ==> MachineInteger;

Complex: Ring with

{ complex: (MI, MI) -> %; real: % -> MI; imag: % -> MI }

== add {

Rep == Record(re: MI, im: MI);

import from Rep;

complex(r: MI, i: MI): % == per [r, i];

real(t: %): MI == rep(t).re;

imag(t: %): MI == rep(t).im;

0: % == complex(0, 0);

(a: %) + (b: %): % == complex(rep(a).re+rep(b).re,

rep(a).im+rep(b).im);

(a: %) * (b: %): % == {

ra := rep.a; rb := rep.b;

r := ra.re*rb.re-ra.im*rb.im; i := ra.re*rb.im+ra.im*rb.re;

complex(r, i);

}

(w: TextWriter) << (t: %): TextWriter == w << rep.t.re << "+i*"

<< rep.t.im

}

Fig. 4. Implementation of a simplified complex domain

requiring the type of the coefficients of the polynomial. The internal representa-
tion, given by Rep, is an Array(C). Here, Array is another parametric domain
that implements the generic collection similar to arrays in other programming
languages. For brevity, we show here only the implementation of the addition be-
tween two polynomials, the multiplication and the display functions are similar.
The Aldor compiler uses type inference to fill the type information when it is not
provided. However, in some cases a disambiguating operator must be used, for
example when we specified that i gets the value 0 (0@MI) from MachineInteger
rather than the one from C or the zero provided by %.

An example of usage of the polynomial operations can be seen in Figure 6.
The domain constructor creates two polynomials with all coefficients 0, of degree
9999 and then in multiplies them.

For the specialized version, the generic type Cwill be replaced with Complex, ac-
cording to the instantiation given on the first line of Figure 6. The specialized im-
plementation can be seen in Figure 7. One can note that parametric Poly domain
has become Poly Complex, the internal representation has changed to
TrailingArray, and Cross is used instead of the Record for complex numbers.
In Aldor, Record is a reference type and Cross is not, so we perform all data

Type Specialization in Aldor 81

Poly(C: Ring): Ring with { poly: Array(C) -> % } == add {

Rep == Array(C);

import from Rep;

import from C;

poly(size: MachineInteger): % == {

res: Array(C) := new(size);

i:=0@MI;

while i < size repeat { res.i := 0@C; i := i + 1; }

per res;

}

(a: %) + (b: %): % == {

c: Array(C) := new(#rep(a));

i := 0@MI;

while i < #rep(a) repeat { c.i := rep(a).i + rep(b).i;

i := i + 1; }

per c;

}

0: % == poly(1);

...

}

Fig. 5. Implementation of a simplified generic polynomial type constructor

import from Poly(Complex);

sz == 10000; a := poly(sz); b := poly(sz); d := a * b;

Fig. 6. Polynomial multiplication

movement locally, without heap allocation. TrailingArray is another data type
supported at the foam level. It models a record possibly with a fixed set of leading
fields, followed by a set of fields that repeats any desired number of times. This can
be used to convert an array of pointers to records to a single structure removing the
indirections. The specialized case is presented in Figure 7. It uses both data spe-
cialization and code specialization specializations. The code specialization is done
by creating a new domain Poly Complex, copying the operations from Complex
into Poly Complex, and finally inlining the code of complex addition and multi-
plication into polynomial addition and multiplication.

Data specialization can not be performed in all the cases. If the size of one
of the fields is not known it is not possible to inline the data. In some cases, it
might be possible to rearrange the field order to keep the variable size structure
at the end, but this would still not help once expanded in the outer domain.

The data specialization optimization is still a work in progress, but we have
seen that it is possible to obtain some significant improvements as a result of
application of this optimization on top of code specialization optimization that
is already implemented.

82 L. Dragan and S.M. Watt

Poly__Complex: Ring with { poly: MI -> % } == add {

T == Cross(re: MI, im: MI);

Rep == TrailingArray(MI, (MI, MI));

import from Rep;

import from T;

poly(size: MI): % == {

i:MI := 1;

res: TrailingArray(s:MI,(re:MI,im:MI)) := [size, size, (0,0)];

while i <= size repeat { res(i, re) := 0; res(i, im) := 0;

i := i + 1; }

per res;

}

(a: %) + (b: %): % == {

local ra: TrailingArray(s:MI,(re:MI,im:MI)) := rep(a);

local rb: TrailingArray(s:MI,(re:MI,im:MI)) := rep(b);

res: TrailingArray((s:MI),(re:MI,im:MI)) := [ra.s, ra.s, (0,0)];

i:MI := 1;

while i <= ra.s repeat {

a1 := (ra(i,re), rb(i,re)); b1 := (ra(i,im), rb(i,im));

aa: Cross(MI, MI) := a1; bb: Cross(MI, MI) := b1;

(ar, ai) := aa; (br, bi) := bb;

res(i, re) := ar+br; res(i, im) := ai+bi;

i := i + 1;

}

return per res;

}

0: % == poly(1);

-- Brought from Complex

local complex(r: MI, i: MI): T == (r, i);

local a__C(a: T, b: T): T == {

aa: Cross(MI, MI) := a; bb: Cross(MI, MI) := b;

(ar, ai) := aa; (br, bi) := bb;

complex(ar+br, ai+bi);

}

...

}

Fig. 7. Specialized polynomial representation

6 Results

We modified the Aldor compiler to perform the specialization of domain con-
structors and exported operations, as described. Table 1 presents the results of
testing this optimization. The results vary from one to several times better. Tests
one to three are only of depth one, and one can see there is no speedup between
the regular Aldor optimizer and our proposed optimization. Tests four to seven

Type Specialization in Aldor 83

Table 1. Speedup obtained by automatically specializing the domains

Test Original Optimized Ratio
Time (s) Time (s)

Test1 87.13 86.24 1.01
Test2 35.66 35.55 1.00
Test3 35.27 35.27 1.00
Test4 37.71 0.17 ∞
Test5 157.78 151.69 1.04
Test6 6.32 0.02 ∞
Test7 12.92 1.54 8.39

Table 2. Time and run-time memory improvement after hand specialization of
polynomial multiplication

Test Original Optimized Ratio
Time (s) 119.19 7.98 14.94
Space (MB) 79.6 3.6 22.11

use deeply nested types made out of domains that contain simple functions. In
test number four, the difference is big because the regular optimizer does not
optimize at all and only our optimization is used. In test five, a simple tower
type is used and thus is also optimized by the regular optimizer of the Aldor
compiler, but there is still a 4% increase in speedup. Tests six and seven con-
struct the same deeply nested types as in four and five, but they are not fully
defined in one place, rather they are constructed in segments. The improvements
for tests four and six are too large to measure. These are places were the regu-
lar optimizer was unable to optimize. The code specialization optimization does
not modify the data representation therefore Table 1 does not mention memory
usage.

The tests presented in Table 1 are simple functions that take full advantage of
the inline expansion optimization. The next step is to see how this optimization
performs on larger functions. An example of the application of this optimization
together with the data specialization optimization can be seen in Figure 7.

The results of the specialization applied to the polynomial multiplication prob-
lem can be seen in Table 2. For the data representation optimization the creation
of objects (mostly temporary objects resulted from arithmetic operations) on the
heap is replaced by stack allocated objects and this should produce a decrease
in memory usage.

All these tests were performed using Aldor compiler version 1.0.3. The back-
end C compiler used by the Aldor compiler was gcc 4.1.1. The CPU was a
Pentium 4 3.2 GHz with 1MB cache and 2GB RAM. The actual hardware spec-
ification is not very important since we are only interested in relative values
presented in the ratio columns.

84 L. Dragan and S.M. Watt

7 Conclusions and Future Work

There are two principal strategies to optimize code: one is from the bottom, as
with peep-hole optimization, and the other is from the top, as whole program
optimization. When the program is taken as a whole and some properties can be
inferred about the code that lead to some very effective optimizations. Program
specialization techniques use the second approach to optimization. This second
approach can provide significant improvements when it can be applied. The
optimization proposed here for Aldor types are of this sort. They could also be
applied to Java or C#, which also use a homogeneous approach to implement
parametric polymorphism.

Our code and data specialization optimizations could be very well imple-
mented by transforming Aldor source code directly. We chose to use the inter-
mediate representation to take advantage of the existing infrastructure. We note
that with nested types the code specialization optimization alone might not bring
much improvement. However, with the help of data representation specialization
and a nice data structure that allows specialization, as was the case with the
polynomial domain, the code can become an order of magnitude faster, even on
shallow types.

We have found these results to be sufficiently encouraging that we believe
it would be of value to integrate the data representation optimization into the
Aldor compiler and to test the compiler using a wider range of real algorithms
used in scientific computation.

References

1. Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Steinbach, J.M., Sutor, R.S.: A
First Report on the A# Compiler. In: Proc. ISSAC 1994, pp. 25–31. ACM Press,
New York (1994)

2. Aldor User Guide (2000), http://www.aldor.org/
3. Watt, S.M.: Aldor. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.) Hand-

book of Computer Algebra, pp. 265–270. Springer, Heidelberg (2003)
4. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation And Automatic Program

Generation. Prentice Hall, Englewood Cliffs (1993), ISBN 0-13-020249-5
5. Watt, S.M., Broadbery, P.A., Iglio, P., Morrison, S.C., Steinbach, J.M.: FOAM:

First Oder Abstract Machine, http://www.aldor.org
6. Dragan, L., Watt, S.M.: Parametric Polymorphism Optimization for Deeply Nested

Types in Computer Algebra. In: Maple Summer Workshop, Waterloo, Canada, pp.
243–259 (2005), ISBN 1-89451-185-9

7. Dragan, L., Watt, S.M.: Performance Analysis of Generics in Scientific Computing.
In: Proceedings of Seventh International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, Timisoara, Romania, pp. 90–100 (2005), ISBN
0-7695-2453-2

8. Choi, J.-D., Gupta, M., Serrano, M., Shreedhar, V.C., Midkiff, S.: Escape Analysis
for Java. In: Proc. OOPSLA 1999, pp. 1–19. ACM Press, New York (1999)

9. Stepanov, A.A.: Appendix D.3 of Technical Report on C++ Performance, ISO/IEC
PDTR 18015 (2003)

http://www.aldor.org/
http://www.aldor.org

An Algebraic Implicitization and Specialization
of Minimum KL-Divergence Models

Ambedkar Dukkipati1 and Joel George Manathara2

1 Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India

ambedkar@csa.iisc.ernet.in

http://www.csa.iisc.ernet.in/~ambedkar/
2 Department of Aerospace Engineering

Indian Institute of Science, Bangalore 560012, India
joel@aero.iisc.ernet.in

Abstract. In this paper we study representation of KL-divergence min-
imization, in the cases where integer sufficient statistics exists, using
tools from polynomial algebra. We show that the estimation of para-
metric statistical models in this case can be transformed to solving a
system of polynomial equations. In particular, we also study the case
of Kullback-Csisźar iteration scheme. We present implicit descriptions
of these models and show that implicitization preserves specialization of
prior distribution. This result leads us to a Gröbner bases method to
compute an implicit representation of minimum KL-divergence models.

Keywords: Gröbner Bases, statistical models, elimination.

1 Introduction

The following Kullback minimum discrimination theorem [1] establishes impor-
tant connections between statistics and information theory.

Theorem 1. Given a probability space, (X,M, R), define a probability measure
P as

P (A) = Z−1
∫

A

exp(T)dR , ∀A ∈ M (1)

where T a real valued function on X such that Z = E[R] exp(T) < ∞. Suppose
T is P integrable then

I(P ′‖R) ≥ I(P‖R) = E[P]T − lnZ ,

where I(P‖R) is known as Kullback-Leibler divergence (KL divergence) defined
as

I(P‖R) =

⎧⎪⎪⎨⎪⎪⎩
∫

X

ln
dP
dR

dP if P ! R ,

+∞ otherwise.

(2)

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 85–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

86 A. Dukkipati and J.G. Manathara

This result also leads to Kullback minimum discrimination principle. Suppose
that the only information we know about a random variable are its prior esti-
mate and some constraints in terms of expected values. The principle tells us
to choose the distribution which minimizes the KL-divergence with prior esti-
mate satisfying given constraints. The resulting models are known as minimum
KL-divergence models.

Considering the well established role of information theory in statistics cf. [1,
2], this paper attempts to treat minimum KL-divergence models with the alge-
braic formalisms that has been recently studied in algebraic statistics.

The use of computational algebra and algebraic geometry in statistics was
initiated in the work of Diaconis and Sturmfels [3] on exact hypothesis tests of
conditional independence in contingency tables, and in the work of Pistone et
al. [4] in experimental design. The term ‘Algebraic Statistics’ was first coined
in the monograph by Pistone et al. [4] and appeared recently in the title of a
book by Pachter and Sturmfels [5].

To extract the underlying algebraic structures in discrete statistical models, al-
gebraic statistics treats statistical models as algebraic varieties. Here, parametric
statistical models are described in terms of a polynomial (or rational) mapping
from a set of parameters to distributions. One can show that many statistical
models, for example independence models, Bernoulli random variables etc., can
be given this algebraic formulation, and such models are referred to as algebraic
statistical models [5].

We organize our paper as follows. In § 2 we discuss KL-divergence models
and show that the estimation of these models can be transformed to solving a
set of polynomial equations. We present our main result, implicit descriptions
of minimum KL-divergence models and specializations, in § 3. We demonstrate
these results with some examples in § 4 and make concluding remarks in § 5.

2 Minimum Divergence Distributions and Multivariate
Polynomial Equations

2.1 Minimum KL-Divergence Models

Let Y be a discrete random variable taking finitely many values from the set
[m] = {1, 2, . . .m}. A probability distribution p of Y is naturally represented as a
vector p = (p1, . . . , pm) ∈ Rm if we fix the order on [m]. The set of all probability
density functions (pdfs) of Y w.r.t counting measure on [m] (we refer to such a
pdf as probability mass functions or pmf) is called the probability simplex

Δm−1 = {p = (p1, . . . , pm) ∈ Rm
≥0 :

m∑
i=1

pi = 1} . (3)

Suppose that the only information available about the pmf p = (p1, . . . , pm), of
Y are the prior estimate r = (r1, . . . , rm) ∈ Δm−1 and observations in the form
of expected values of the functions ti : [m] → R, i = 1, . . . , d (sufficient statistic).
We therefore have

Implicitization and Specialization of Minimum KL-Divergence Models 87

m∑
j=1

ti(j)pj = Ti , i = 1, . . .d, (4)

where Ti, i = 1, . . . , d, are assumed to be known.
In information theoretic approach to statistics, known as Kullback’s Mini-

mum I-divergence principle (generalization of the maximum entropy principle
that considers the cases where a prior estimate of the distribution p is avail-
able), one would choose the pdf p ∈ Δm−1 that minimizes the Kullback-Leibler
divergence (discrete version of (2))

I(p‖r) =
m∑

j=1

pj ln
pj

rj
(5)

with respect to the constraints (4).
The set ⎧⎨⎩p ∈ Δm−1 :

m∑
j=1

ti(j)pj = Ti , i = 1, . . . , d

⎫⎬⎭ ,

if non-empty, is called a linear family of probability distributions. The corre-
sponding Lagrangian Ξ(p, ξ) can be written as

−I(p‖r) − ξ0
⎛⎝ m∑

j=1

pj − 1

⎞⎠−
d∑

i=1

ξi

⎛⎝ m∑
j=1

ti(j)pj − Ti

⎞⎠ .

Holding ξ = (ξ1, . . . , ξd) fixed, the unconstrained maximum of LagrangianΞ(p, ξ)
over all p ∈ Δm−1 is given by an exponential family

pj(ξ) = Z−1(ξ)rj exp

(
−

d∑
i=1

ξiti(j)

)
, j = 1, . . . ,m, (6)

where Z(ξ) is a normalizing constant (or partition function) given by

Z(ξ) =
m∑

j=1

rj exp

(
−

d∑
i=1

ξiti(j)

)
. (7)

This model is an exponential family and is known as minimum KL-divergence
model.

One can show that the Lagrange parameters in (6) can be estimated, when
the values of Ti, i = 1, . . . , d are available, by solving the set of partial differential
equations [6]

∂

∂ξi
lnZ(ξ) = Ti , i = 1, . . . , d, (8)

which has no explicit analytical solution. One could employ Newton-Raphson
procedures to solve (8) or Darroch and Ratcliff’s generalized iterative scaling
algorithm [7].

As shown in [8], one can see that estimating minimum divergence distributions
can be translated to solving polynomial equations, when the feature functions

88 A. Dukkipati and J.G. Manathara

are nonnegative and integer valued. The polynomial system one would solve in
this case is

m∑
j=1

rj(t�(j) − T�)
d∏

i=1

θ
ti(j)
i = 0 , � = 1, . . . , d. (9)

Hence we have the following proposition.

Proposition 1. The estimation of minimum KL-divergence model (6) given the
information in the form of (4) amounts to solving a set of polynomial equations
provided that the sufficient statistic ti, i = 1, . . . , d are nonnegative and integer
valued.

2.2 Kullback-Csisźar Scheme

Estimating minimum divergence distributions involves simultaneously solving a
system of nonlinear equations which is computationally inefficient. Therefore,
one can employ the Kullback-Csisźar scheme where one would estimate the dis-
tribution considering only one constraint at a time. We describe this procedure
as follows.

At the N th iteration, the algorithm computes the distribution p(N) that mini-
mizes I(p(N)‖p(N−1)) with respect to the ith constraint, if N = nd+i (1 ≤ i ≤ d)
for any positive integer n. This iteration will ultimately converge to the minimum
divergence distribution, which is demonstrated for discrete distributions by [9],
and for continuous distributions by [10]. A general and rigorous treatment of
convergence, existence, and uniqueness analysis is given in [11]. (We refer to this
procedure as Kullback-Csiszár scheme.)

In this iterative procedure, we have p(0) = r and p(1) is given by

p
(1)
j = rj

(
Z(1)

)−1
ζ

t1(j)
1 ,

where Z(1) =
∑m

j=1 rjζ
t1(j)
1 . The first constraint in (4) can be estimated by

solving polynomial equation
m∑

j=1

rj(t1(j) − T1)ζ
t1(j)
1 = 0 , (10)

with indeterminate ζ1. Similarly, we have

p
(2)
j = rj

(
Z(1)

)−1(
Z(2)

)−1
ζ

t1(j)
1 ζ

t2(j)
2 ,

where Z(2) =
∑m

j=1 ζ
t2(j)
2 . Considering the first two constrains in (4), the mini-

mum divergence distribution can be estimated by solving
m∑

j=1

rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 , (11)

along with (10).

Implicitization and Specialization of Minimum KL-Divergence Models 89

In general, when N = nd+ i for some positive integer n, p(N)
j is given by

p
(N)
j = rj

(
Z(1)

)−1
. . .

(
Z(N)

)−1
ζ

t1(j)
1 . . . ζ

ti(j)
N , N = 1, 2 . . .

and is determined by the following system of polynomial equations

m∑
j=1

rj(t1(j) − T1)ζ
t1(j)
1 = 0 ,

m∑
j=1

rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 ,

...
m∑

j=1

rj(ti(j) − Ti)ζ
t1(j)
1 ζ

t2(j)
2 . . . ζ

ti(j)
N = 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Note that this system has a triangular structure which makes it easy to solve.
Also, one can observe that the technique of Kullback-Csiszár iteration reflects in
the system of polynomial equations which determines the minimum divergence
distribution.

In this paper, we show that one could alternatively give an ‘implicit’ represen-
tation of minimum KL-divergence models (polynomial equations involving only
p1, . . . , pm).

3 Embedding Minimum KL Divergence Models in
Algebraic Varieties

3.1 Notation and Definitions

Throughout this paper, k represents a field (e.g., R, C). The algebraic closure
of the field k is represented by k̄ (the algebraic closure of R is C). From now on,
k represents the field R and k̄ represents C.

Set of all monomials in indeterminates x1, . . . , xn is denoted by Zn
≥0 (since

set of all monomials is in one-to-one correspondence with Zn
≥0) and set of all

polynomials in indeterminates x1, . . . , xn with coefficients in k is denoted by
k[x1, . . . , xn]. Let f1, . . . , fs ∈ k[x1, . . . , xn]. We use the notation V(f1, . . . , fs) =
V to represent the varieties, where

V = {(c1, . . . cn) ∈ kn : fi(c1, . . . cn) = 0, 1 ≤ i ≤ s} .

V is uniquely determined by the ideal generated by f1, . . . , fs. This ideal is
denoted by 〈f1, . . . , fs〉 and hence we have

V(f1, . . . , fs) = V(〈f1, . . . , fs〉) .

90 A. Dukkipati and J.G. Manathara

In this paper, we use Gröbner bases in the methods we propose. The basic idea
behind Gröbner bases is generalization of the division algorithm in single variable
case (k[x]) to the multivariate case (k[x1, . . . , xn]). To define Gröbner bases, we
need the notion of monomial order.

Definition 1. A monomial order or term order on k[x1, . . . , xn] is a relation ≺
(we use # for the corresponding ‘greater than’) on Zn

≥0 that satisfies following
conditions (i) ≺ is a total (or linear) ordering on Zn

≥0, (ii) if α ≺ β, for α, β ∈
Zn
≥0 then for any γ ∈ Zn

≥0 it holds α+ γ ≺ β + γ, and (iii) ≺ is a well-ordering
on Zn

≥0.

Given such ordering ≺, one can define the leading term of non-zero polynomial
f ∈ k[x1, . . . , xn] as a term of f (the coefficient times its monomial) whose
monomial is maximal for ≺. We denote this leading term by LT≺(f) and the
corresponding monomial is denoted by LM≺(f).

Definition 2. An ideal a ⊂ k[x1, . . . , xn] is said to be a monomial ideal if there
is a set A ⊂ Zn

≥0, possibly infinite, such that a = 〈xα : α ∈ A〉.

Given any ideal a ⊂ k[x1, . . . , xn], the ideal defined as 〈LM≺(f) : f ∈ a〉 is a
monomial ideal and is denoted by LM≺(a), which is known as leading monomial
ideal of a. By Dickson’s lemma [12, p. 69], the ideal LT≺(a) is generated by a
finite set of monomials. Dickson’s lemma and the multivariate division algorithm
leads to a proof of Hilbert bases theorem which states that every polynomial
ideal can be finitely generated, which further lead to a definition of Gröbner
basis [12, § 2.5].

Definition 3. Fix a monomial order ≺ on k[x1, . . . , xn]. A finite subset G =
{g1, . . . , gt} of an ideal a ⊂ k[x1, . . . , xn] is a Gröbner basis if and only if

LT≺(a) = 〈LT≺(g1), . . . ,LT≺(gt)〉.

One of the important results in Gröbner bases theory is the ‘elimination theo-
rem’, which we use in the results presented in this paper. To state this theorem,
we need the notion of elimination ideals.

Definition 4. Given a ⊂ k[x1, . . . , xn], the lth elimination ideal al in the poly-
nomial ring k[xl+1, . . . , xn] is defined as al = a ∩ k[xl+1, . . . , xn].

Now follows the statement of elimination theorem.

Theorem 2. [13, p. 69] Let a⊂k[x1, . . . , xn] be an ideal and let G⊂k[x1, . . . ,xn]
be a Gröbner basis of a with respect a term order {x1, . . . , xl} # {xl+1, . . . , xn}
(for example consider the term order x1 # . . . # xn) for 0 ≤ l ≤ n. Then the set
Gl = G ∩ k[xl+1, . . . , xn] is a Gröbner basis of lth elimination ideal al.

Implicitization and Specialization of Minimum KL-Divergence Models 91

3.2 Embedding Minimum Divergence Model in an Algebraic
Variety

Following equations (6) and (7), given a positive integer valued sufficient statistic
ti, i = 1, . . . , d, we have minimum KL-divergence model as image of rational map

f : kd → km −W
(θ1, . . . , θd) �→

(
r1
∏d

i=1 θ
ti(1)
i∑

m
j=1 rj

∏
d
i=1 θ

ti(j)
i

, . . . ,
rm

∏d
i=1 θ

ti(m)
i∑

m
j=1 rj

∏
d
i=1 θ

ti(j)
i

)
,

(13)

where W = V(
∑m

j=1 rj
∏d

i=1 θ
ti(j)
i). When we specify r ∈ Δm−1 the above map-

ping gives a parametrization in terms of θi, i = 1, . . .d. Note that this is bigger
parametrization as we allow negative probabilities. Also note that the image of
a polynomial map (or rational map) need not be a variety. In this case, the usual
technique employed is to take the Zariski closure (Zariski closure of a set A ⊂ kn

is the smallest variety that contains A [13, §2.5]).
The following lemma will allow us to treat minimum KL-divergence model

(6) as image of a polynomial function rather than image of rational function
(13) (see [8] [14] for more discussion in the context of maximum entropy
models).

Lemma 1. Consider following polynomial map

f̃ : kd+1 → km

(θ0, θ1, . . . , θd) �→
(
r1θ0

∏d
i=1 θ

ti(1)
i , . . . , rmθ0

∏d
i=1 θ

ti(m)
i

)
.

(14)

Then
im(f) = im(f̃) ∩Δm−1 . (15)

Proof. Clearly we have im(f) ⊆ im(f̃)∩Δm−1. Let (a1, . . . , am) ∈ im(f̃)∩Δm−1.
Then ∃(b0, b1, . . . , bd) ∈ kd+1 such that

aj = rjb0

d∏
i=1

b
ti(j)
i , j = 1, . . . ,m.

Since (a1, . . . , am) ∈ Δm−1,
∑m

j=1 aj = 1. This implies

b0
−1 =

m∑
j=1

rj

d∏
i=1

b
ti(j)
i .

Hence (a1, . . . , am) ∈ im(f) and im(f) ⊇ im(f̃) ∩Δm−1. ��
Note that (14) represents unnormalized KL-divergence model. Now, by special-
izing prior distribution r = (r1, . . . , rm) with real values c = (c1, . . . , cm) ∈ Rm,
we get the model (13) as the image of the function

fr→c : kd → km −W
(θ1, . . . , θd) �→

(
c1
∏d

i=1 θ
ti(1)
i∑

m
j=1 cj

∏
d
i=1 θ

ti(j)
i

, . . . ,
cm

∏d
i=1 θ

ti(m)
i∑

m
j=1 cj

∏
d
i=1 θ

ti(j)
i

)
,

(16)

92 A. Dukkipati and J.G. Manathara

where W = V(
∑m

j=1 cj
∏d

i=1 θ
ti(j)
i). Hence one can use the result from [14], to

deduce the implicitization as follows.

Theorem 3. Let fr→c be the rational function defined as above that parametrizes
a minimum KL-divergence model with respect to sufficient statistics ti : R → Z≥0
according to (16). Then

im(fr→c) ⊆ V(ker(f̃∗r→c)) ∩ V(
m∑

j=1

pj − 1) , (17)

where f̃∗r→c is a k-algebra homomorphism

f̃∗r→c : k[p1, . . . , pm] → k[θ0, θ1, . . . , θd]

pj �→ cjθ0

d∏
i=1

θ
ti(j)
i .

(18)

Further, given r ∈ Δm−1, V(ker(f̃∗r→c))∩V(
∑m

j=1 pj − 1) is the smallest variety
that contains the minimum divergence model.

We now show that specialization preserves the implicitization. This gives rise
to a Gröbner basis method to compute the implicit model for arbitrary spe-
cializations. Before we proceed to this result we define following substitution
homomorphism.

η : k[p1, . . . , pm, r1, . . . , rm, θ1, . . . , θd] → k[p1, . . . , pm, θ1, . . . , θd]
pj �→ pj, j = 1, . . . ,m
θi �→ θi, i = 1, . . . , d
rj �→ cj , j = 1, . . . ,m

(19)

where cj ∈ R, j = 1, . . . ,m. It is easy to verify that η is a surjective
homomorphism.

Proposition 2. Consider the rational function (16) that parametrized unnor-
malized minimum KL-divergence model with respect to sufficient statistics ti :
R → Z≥0 . Then

im(fr→c) ⊆ V (η(a ∩ k[p1, . . . , pm, r1, . . . , rm])) ∩ V(
m∑

j=1

pj − 1) (20)

where

a =

〈
pj − rjθ0

d∏
i=1

θ
ti(j)
i : j = 1, . . . ,m

〉
.

Proof. By incorporating substitution homomorphism η (19) we can state
Theorem 3 as

im(fr→c) ⊆ V(ker(η ◦ f̃∗)) ∩ V(
m∑

j=1

pj − 1) (21)

Implicitization and Specialization of Minimum KL-Divergence Models 93

where f̃∗ is a k-algebra homomorphism defined as

f̃∗ : k[p1, . . . , pm] → k[r1, . . . , rm, θ0, θ1 . . . , θd]

pj �→ rjθ0

d∏
i=1

θ
ti(j)
i .

(22)

This implies that we only have to show that

ker(η ◦ f̃∗) = η(a ∩ k[p1, . . . , pm, r1, . . . , rm]) . (23)

Suppose

fj = rjθ0

d∏
i=1

θ
ti(j)
i , j = 1, . . . ,m

We have

η(fj) = η(rj)θ0
d∏

i=1

θ
ti(j)
i , j = 1, . . . ,m

ker
(
η ◦ f̃∗

)
= 〈η(pj − fj) : j = 1, . . . ,m〉 ∩ k[p1, . . . , pm]

= η (〈(pj − fj) : j = 1, . . . ,m〉) ∩ k[p1, . . . , pm]
= η (a) ∩ k[p1, . . . , pm]
= η (a ∩ k[p1, . . . , pm, r1, . . . , rm])

(24)

Note that the steps in (24) are consequence of the fact that η is a surjective
homomorphism. ��
By the elimination theorem (Theorem 2) we can find the generators for ideal
ker

(
η ◦ f̃∗

)
easily by first computing the Gröbner bases for a and removing all

the polynomials involving indeterminates θ0, θ1, . . . , θd and then specializing r
by the substitution homomorphism η.

Corollary 1

im(fr→c) ⊆ V(η (G ∩ k[p1, . . . , pm, r1, . . . , rm])) ∩ V(
m∑

j=1

pj − 1) , (25)

where G is the Gröbner basis of

a =

〈
pj − rjθ0

d∏
i=1

θ
ti(j)
i : j = 1, . . . ,m

〉

with respect to a term order satisfying

{p1, . . . , pm} ≺ {r1, . . . , rm, θ0, θ1, . . . , θd} .

94 A. Dukkipati and J.G. Manathara

4 Example

Consider the following example with sufficient statistic

[ti(j)]((i=1,2)×(j=1,...,7)) =
(

2 1 3 1 5 2 1
1 2 1 4 3 3 1

)
. (26)

The corresponding minimum KL-divergence model with prior distribution r =
(r1, . . . , rm) can be written as

(p1, p2, p3, p4, p5, p6, p7)

=
(
r1θ

2
1θ2
Z

,
r2θ1θ

2
2

Z
,
r3θ

3
1θ2
Z

,
r4θ1θ

4
2

Z
,
r5θ

5
1θ

3
2

Z
,
r6θ

2
1θ

3
2

Z
,
r7θ1θ2
Z

)
, (27)

where Z = r1θ
2
1θ2 + r2θ1θ

2
2 + r3θ

3
1θ2 + r4θ1θ

4
2 + r5θ

5
1θ

3
2 + r6θ

2
1θ

3
2 + r7θ1θ2. The

corresponding unnormalized model is given by the parametrization

p1 = r1θ0θ
2
1θ2 p2 = r2θ0θ1θ

2
2 p3 = r3θ0θ

3
1θ2 p4 = r4θ0θ1θ

4
2

p5 = r5θ0θ
5
1θ

3
2 p6 = r6θ0θ

2
1θ

3
2 p7 = r7θ0θ1θ2

Now let a be the ideal generated by the polynomials

p1 − r1θ0θ21θ2, p2 − r2θ0θ1θ22 , p3 − r3θ0θ31θ2, p4 − r4θ0θ1θ42 ,
p5 − r5θ0θ51θ32 , p6 − r6θ0θ21θ32 , p7 − r7θ0θ1θ2

in k[p1, p2, p3, p4, p5, p6, p7, r1, r2, r3, r4, r5, r6, r7, θ0, θ1, θ2]. By using any soft-
ware that supports algebraic geometric computations (we used Mathematica for
the computations in this paper), the Gröbner basis, G, for the above ideal a with
the term order p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 ≺ p7 ≺ r1 ≺ r2 ≺ r3 ≺ r4 ≺ r5 ≺
r6 ≺ r7 ≺ θ0 ≺ θ1 ≺ θ2 can be found.

From Corollary 1 the minimum KL-divergence model is contained in the va-
riety defined by

∑7
i=1 pi − 1 and G ∩ k[p1, . . . , pm, r1, . . . , rm] specialized under

any substitution homomorphism η.
Often the prior distribution r is specified as an exponential distribution (which

has only one parameter). That is, rj = (1/α) exp (−j/α), j = 1, . . . ,m. Using the
transformation 1/α = lnβ, we have rj = (− lnβ)βj , j = 1, . . . ,m. In this model,
the substitution homomorphism, η, can be specified by fixing the parameter
β. However, to facilitate the computation of Gröbner basis, we introduce two
parameters a = − lnβ and b = β which are fixed by specifying β. With the lex
ordering p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 ≺ p7 ≺ a ≺ b ≺ θ0 ≺ θ1 ≺ θ2, we calculate
the Gröbner basis, G, of the ideal generated by polynomials

p1 − abθ0θ21θ2, p2 − ab2θ0θ1θ22 , p3 − ab3θ0θ31θ2, p4 − ab4θ0θ1θ42 ,
p5 − ab5θ0θ51θ32 , p6 − ab6θ0θ21θ32 , p7 − ab7θ0θ1θ2

Implicitization and Specialization of Minimum KL-Divergence Models 95

For this example, G ∩ k[p1, . . . , pm, a, b] is found as

p21p3p
2
4 − p42p5, p52p

6
3p4 − p81p46, p2p

7
3p

3
4 − p61p5p46,

−p83p54 + p41p
3
2p

2
5p

4
6, −p62p33 + p61p

2
4p7, p21p2p

4
6 − p33p34p7,

−p22p43 + p41p5p7, p41p
4
6 − p32p23p4p5p7, −p53p24 + p21p

2
2p

2
5p7,

p72p
4
6 − p41p54p27, p32p3p

4
6 − p21p34p5p27, p23p

4
6 − p2p4p25p27,

p42p
8
6 − p23p64p5p37, p21p

8
6 − p3p44p25p37, −p32p126 + p74p

3
5p

5
7,

bp92p
7
3 − p111 p4p36p7, −bp32p43p4 + p51p

3
6, −bp53p34 + p31p2p5p

3
6,

p22p
2
3 − bp31p6, −bp42p3p6 + p31p24p7, −bp23p6 + p1p5p7,

p33p
2
4 − bp1p22p5p6, bp1p2p

5
6 − p3p34p5p27, −bp52p56 + p1p23p

5
4p

2
7,

bp42p
9
6 − p1p64p25p47, −bp1p3p96 + p44p

3
5p

4
7, p32p

3
6 − bp1p3p34p7,

−p1p36 + bp2p4p5p7, −p2p43p36 + bp31p4p
2
5p

2
7, −p53p4p36 + bp1p32p

3
5p

2
7,

p22p3p
7
6 − bp1p44p25p37, b2p72p

5
3 − p81p4p26p7, −b2p2p23p4 + p21p

2
6,

−b2p33p34 + p32p5p26, −b2p21p26 + p22p5p7, b2p22p
2
6 − p3p24p7,

b2p2p3p
6
6 − p34p25p37, −p52p3p26 + b2p41p

3
4p7, −p2p23p26 + b2p21p4p5p7,

−p33p4p26 + b2p32p
2
5p7, p22p

6
6 − b2p3p44p5p27, −p2p3p106 + b2p54p

3
5p

4
7,

b3p52p
3
3 − p51p4p6p7, −b3p1p4 + p2p6, −b3p32p5 + p1p3p4p6,

p53p4p6 − b3p31p2p25p7, −b4p32p3 + p21p4p7, b4p23p4 − p2p5p7,
p33p4 − b4p21p2p5, −p46 + b4p24p5p7, b5p1p2p6 − p3p4p7,

b5p1p3p
5
6 − p24p25p37, p33p

3
6 − b5p1p22p25p7, −b6p22p5 + p3p26,

b6p2p3p
2
6 − p4p5p27, b7p22p3 − p1p6p7, b7p31p5 − p33p6,

−b8p21 + p3p7, b9p42p6 − p1p24p27, b9p1p3p6 − p5p27,
b10p2p3p4 − p26p7, −b12p32 + p4p27, b15p1p

2
2 − p6p27

and one can replace the symbols a, b with − lnβ and β. Note that substitution
does not preserve the Gröbner property [15]. This set of polynomial equations
together with

∑7
i=1 pi−1 gives implicit representation of the model in the context

for any specialization of β.

5 Closing Remarks

Given a parametric statistical model, computing the implicit representation of
the model allows one to solve the problem of determining whether a probability
distribution belongs to the given model or not. In this paper we have given
implicit description of minimum KL-divergence models. We also showed that
specialization preserves the implicitization and hence one can compute Zariski
closure of the model, which gives the implicitization, for arbitrary specialization
of prior distribution.

Acknowledgments. Part of this research was conducted when first author was
at EURANDOM, Eindhoven.

96 A. Dukkipati and J.G. Manathara

References

1. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)
2. Csiszár, I., Shields, P.: Information Theory and Statistics: A Tutorial. Foundations

and Trends in Communications and Information Theory, vol. 1. Now Publications
(2004)

3. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional
distributions. Annals of Statistics 26, 363–397 (1998)

4. Pistone, G., Riccomagno, E., Wynn, H.: Algebraic Statistics. In: Computational
Commutative Algebra in Statistics. Chapman and Hall, New York (2001)

5. Pachter, L., Sturmfels, B.: Algebraic Statistics and Computational Biology. Cam-
bridge University Press, Cambridge (2005)

6. Jaynes, E.T.: Prior probabilities. IEEE Transactions on Systems Science and Cy-
bernetics sec-4(3), 227–241 (1968)

7. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. The
Annals of Mathematical Statistics 43(5), 1470–1480 (1972)

8. Dukkipati, A.: On parametric and implicit algebraic descriptions of maximum en-
tropy models. Technical Report 2008-035, EURANDOM, Eindhoven, The Nether-
lands (2008)

9. Ireland, C., Kullback, S.: Contingency tables with given marginals. Biometrika 55,
179–188 (1968)

10. Kullback, S.: Probability densities with given marginals. The Annals of Mathemat-
ical Statistics 39(4), 1236–1243 (1968)

11. Csiszár, I.: I-divergence of probability distributions and minimization problems.
Ann. Prob. 3(1), 146–158 (1975)

12. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer,
New York (1991)

13. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Stud-
ies in Mathematics, vol. 3. American Mathematical Society, Providence (1994)

14. Dukkipati, A.: On embedding maximum entropy models in algebraic varieties by
Gröbner bases methods. In: Proceedings of IEEE International Symposium on
Information Theory (ISIT), pp. 1904–1908. IEEE Press, Los Alamitos (2009)

15. Gianni, P.: Properties of Gröbner bases under specialization. In: Davenport, J.H.
(ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer,
Heidelberg (1989)

On Sufficient Conditions for Integrability of
a Planar System of ODEs

Near a Degenerate Stationary Point

Victor Edneral1 and Valery G. Romanovski2,3

1 Skobeltsyn Institute of Nuclear Physics
of Lomonosov Moscow State University

Leninskie Gory 1, Moscow, 119991, Russia
edneral@theory.sinp.msu.ru

2 CAMTP - Center for Applied Mathematics and Theoretical Physics
University of Maribor, Krekova 2, Maribor SI-2000, Slovenia

3 Faculty of Natural Science and Mathematics, University of Maribor
Koroška cesta 160, SI-2000 Maribor, Slovenia

valery.romanovsky@uni-mb.si

Abstract. We consider an autonomous system of ordinary differential
equations, which is solved with respect to derivatives. To study the local
integrability of the system near a degenerate stationary point we use an
approach based on the Power Geometry Method and on the computa-
tion of resonant normal forms. For a planar system depending on five
parameters we give four series of conditions on parameters of the system
for which it is integrable near the degenerate stationary point.

Keywords: planar ordinary differential equations, integrability, reso-
nant normal form, power geometry, computer algebra.

1 Introduction

We consider an autonomous system of ordinary differential equations

dxi/dt
def= ẋi = ϕi(X), i = 1, . . . , n, (1)

where X = (x1, . . . , xn) ∈ Cn and ϕi(X) are polynomials.
The system (1) is called integrable in a neighborhood U of the stationary

point X = X0 if it has in U the sufficient number m of first integrals of the form

aj(X)/bj(X), j = 1, . . . ,m, (2)

where functions aj(X) and bj(X) are analytic in U . Otherwise we call the system
(1) locally non-integrable in this neighborhood. For integrability of a planar (n =
2) system it is sufficient to have a single first integral of the form (2).

In a neighborhood of the stationary point X = 0, the system (1) can be
written in the form

Ẋ = AX + Φ̃(X), (3)

where Φ̃(X) has no linear terms.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 97–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 V. Edneral and V.G. Romanovski

In [1,2] a method for the analysis of integrability of the system (3) based
on power transformations and computation of normal forms near stationary
solutions of transformed systems has been proposed.

Let λ1, λ2, . . . , λn be eigenvalues of the matrix A. If at least one of λi differs
from 0, then the stationary point X = 0 is called an elementary stationary point.
In this case, the system (3) has a normal form which is a system with a simpler
structure. If all eigenvalues vanish, then the stationary point X = 0 is called a
non-elementary stationary point. In this case, there is no normal form for the
system (3). However using power transformations a non-elementary stationary
point X = 0 can be blown up to a set of elementary stationary points. After
that, it is possible to compute the normal forms and verify that the condition A
[4] is satisfied at each elementary stationary point.

In [5,6], an example of a planar autonomous system of ordinary differential
equations depending on five parameters was considered, and local integrability
in a neighborhood of a degenerate stationary point was studied. For b2 �= 2/3,
the authors found the complete set of necessary conditions on parameters of the
system for which the system is locally integrable near the degenerate stationary
point. The case b2 = 2/3 should be treated separately.

In this paper we prove that the conditions mentioned above are also the suf-
ficient conditions for integrability. We show that for each such domain there
are local first integrals of motion. The study involves laborious computations
which would be impossible to complete without the tools of computer algebra.
To perform most of symbolic computations we use the computer algebra sys-
tem MATHEMATICA, which is very efficient for simplification of algebraic and
non-algebraic expressions, including those with special functions, and integra-
tion. However, MATHEMATICA is rather inefficient tool for solving systems of
multivariate algebraic polynomials, so to find solutions of such systems we use
the computer algebra system SINGULAR, which is a computer algebra system
for polynomial computations, with special emphasis on commutative and non-
commutative algebra, algebraic geometry, and singularity theory (it is free and
open-source under the GNU General Public License developed at the Depart-
ment of Mathematics of the University of Kaiserslautern).

2 The Studied Equation

We study the planar polynomial system

dx/dt = −y3 − b x3y + a0 x
5 + a1 x

2y2,
dy/dt = c x2y2 + x5 + b0 x4y + b1 x y3.

(4)

Systems with a nilpotent matrix of the linear part were thoroughly studied by
Lyapunov and many others (see e.g. [7,8] and references therein). There is no
linear part in (4), i.e., it is degenerate at the stationary point x = y = 0, and
its first approximation is not homogeneous. This is the simplest case of a planar
system without the linear part and with Newton’s open polygon [3] consisting
of a single edge. In general case, such problems have not been studied. However,

On Sufficient Conditions for Integrability of a Planar System of ODEs 99

the system with such support was considered in [9], where the authors studied
the Hamiltonian case.

2.1 The First Quasi-homogeneous Approximation

Let us consider the first quasi-homogeneous approximation of system (4), that
is the system of the form

ẋ = −y3 − b x3 y, ẏ = c x2 y2 + x5. (5)

We study the problem: what are the conditions on parameters of (4) under which
the system has a local analytic first integral. As it was demonstrated in [5,6], (5)
has an integral, but it can be not analytic.

In [5,6], the following statement has been proven.

Theorem 1. In the case D def= (3 b + 2 c)2 − 24 �= 0, the system (5) is locally
integrable if and only if the number

Γ =
3 b− 2 c√

D
(6)

is rational.

The system with the same support was considered for the first time in [9], where
the authors studied the case 3 b−2 c = 0. In this case, the order Γ of (6) is equal
to zero, and the integral of the system (5) is

I = 2 x6 + 4 c x3y2 + 3 y4. (7)

The system in this case is Hamiltonian with the Hamiltonian function H = I/12.
Furthermore, the authors of [9] studied the Hamiltonian case of the full system
under the additional assumption that the Hamiltonian function can be written
as a product of square-free factors.

In this paper, we study another simple particular case, when the order Γ of
(6) is equal to ±1. In this case, c = 1/b and 2 x3 + 3 b y2 is the first integral of
(5). The system in this case is written as

dx/dt = −y3 − b x3y + a0 x
5 + a1 x

2y2,
dy/dt = 1/b x2y2 + x5 + b0 x4y + b1 x y3,

(8)

Like in Theorem 1, the first quasi-homogeneous approximation has an analytic
integral but it is not a Hamiltonian system. The set of necessary conditions of
local integrability of system (8) has been found in [5,6].

3 The Necessary Conditions of Local Integrability

If n = 2 then rationality of the ratio λ1/λ2 and the condition A of [4] are the
necessary and sufficient conditions for local integrability of the system near the
elementary stationary point.

100 V. Edneral and V.G. Romanovski

After the power transformation

x = u v2, y = u v3 (9)

and time rescaling
dt = u2v7dτ,

we obtain from (8) the system

du/dτ = −3 u− (3 b+ 2/b)u2 − 2 u3 + (3 a1 − 2 b1)u2v + (3 a0 − 2 b0)u3v,
dv/dτ = v + (b+ 1/b)u v + u2v + (b1 − a1)u v2 + (b0 − a0)u2v2.

(10)
Under the power transformation (9) the point x = y = 0 blows up into two
straight lines u = 0 and v = 0. Along the line u = 0 the system (10) has a single
stationary point, u = v = 0. Along the second line, v = 0, the system has four
elementary stationary points

u = 0, u = −1
b
, u = −3b

2
, u = ∞. (11)

We look for conditions of local integrability at all stationary points (11), then
it will yield the conditions of local integrability of the system (8) near the point
x = y = 0. We restrict our study to the case b2 �= 2/3 when the linear part of
(10), after the shift u = ũ − 1/b, has non-vanishing eigenvalues. At b2 = 2/3,
the shifted system (10) in new variables ũ and v has the linear part with the
Jordan cell with both eigenvalues equal to zero. This case can be studied by
making use of one more power transformation. Except of this point, where there
can be additional domains of integrability, in [5,6] the complete set of necessary
conditions on parameters of the system for which (8) is locally integrable near
the degenerate stationary point has been found. It consists of the following four
two-dimensional domains in the parameter space:

1) a0 = 0, a1 = −b0 b, b1 = 0,
2) b1 = −2a1, a0 = a1b, b0 = b1b,
3) b1 = 3a1/2, a0 = a1b, b0 = b1b,
4) b1 = 8a1/3, a0 = a1b, b0 = b1b.

(12)

This result was obtained using the power transformation (9) and calculation of
corresponding normal forms by means of the program described in [10].

4 The Sufficient Conditions of Integrability

4.1 The First Domain

If the first of conditions (12), that is, a0 = 0, a1 = −b0 b, b1 = 0, is fulfilled
it is possible to construct the first integral by the method of indeterminate
coefficients. It means that we look for a first integral of (10) near the origin
u = 0, v = 0 in the form of a polynomial (in our case, we took the polynomial of

On Sufficient Conditions for Integrability of a Planar System of ODEs 101

total degree 12) in variables u, v with indeterminate coefficients. We substitute
this polynomial into the equation for the first integral I,

d I

d t
=
∂ I

∂ u
u̇+

∂ I

∂ v
v̇ = 0, (13)

where u̇ and v̇ satisfy equations (10) with condition 1), that is,

du/dτ = −3 u− (3 b+ 2/b)u2 − 2 u3 − b0 (3 b+ 2 u)u2v,
dv/dτ = v + (b+ 1/b)u v + u2v + b0 (b+ u)u v2.

We collect similar terms and equate to zero the coefficients of the monomials
ukvs to obtain a linear system of equations for the indeterminate coefficients.
Solving the system with MATHEMATICA we find

I1(u, v) = u2(3 b+ 2 u)v6. (14)

Using the inversion of the power transformation (9)

u = x3/y2, v = y/x, (15)

we obtain the first integral for the system (8)

I1(x, y) = 2 x3 + 3 b y2. (16)

There is no restriction b2 �= 2/3, and both integrals (14) and (16) are analytic.

4.2 The Second Domain

For the second condition from (12), that is, b1 = −2a1, a0 = a1b, b0 = b1b the
integrals can be found in the same way. The calculation of the first integrals
yields

I2(u, v) = u2 v6 [3 b+ u (2 − 6 a1 b v)],
I2(x, y) = 2 x3 − 6 a1 b x

2 y + 3 b y2.
(17)

There is here also no restriction b2 �= 2/3 in (17), and the integrals are analytic.

4.3 The Third Domain

Under the third condition from (12), that is, b1 = 3a1/2, a0 = a1b, b0 = b1b the
system (10) has the form

du/dτ = −3 u− (3 b+ 2/b+ 2 u)u,
dv/dτ = v + (b + 1/b)u v + u2v + a1

2 (1 + b u)u v2.

Dividing the second equation by the first one we obtain a Bernoulli differential
equation, which can be integrated. The calculations yield the first integrals

I3(u, v) = 4−4a1 u v+35/6a1 2F1(2/3,1/6;5/3;−2u/(3b)) u v (3+2u/b)1/6

u1/3v (3b+2u)1/6 ,

I3(x, y) =
a1x2(−4+35/6

2F1(2/3,1/6;5/3;−2 x3/(3 b y2)) (3+2x3/(b y2))1/6)+4y

y4/3(3 b+2 x3/y2)1/6 ,

(18)
where 2F1 is the hypergeometric series [11].

102 V. Edneral and V.G. Romanovski

We note that cubes of I3(u, v) and I3(x, y) are analytical integrals. Indeed,
in accordance with paragraph 2.1.1 of [11] for the values of parameters of the
hypergeometric series I3(u, v) in (18), the power series is absolutely convergent at
|2 u/(3 b)| = 1, so it is analytic at u = 0. The situation with the series for I3(x, y)
is similar. It is absolutely convergent at point x = 0, y �= 0. However, we need
to study analytic properties at other points, where hypergeometric function (an
analytic continuation of the corresponding series) can have singularity. For the
parameters in (18) 2F1 is proportional to the Legendre function (see paragraph
3.2, formulae (8) of [11])

2F1
(
2/3, 1/6; 5/3;−2 x3/(3 b y2)

) ∼ (3 b y2

2 x3)1/6 (3 b y2

2 x3 +1)5/12 Q
5/6
1/6((− 3 b y2

2 x3)1/2).

The Legendre function has 3 singular points: ±1 and ∞. It is proportional for
the current values of parameters (see paragraph 3.9.2 of [11])

Q
5/6
1/6(z) ∼ (z − 1)−5/12, near z = 1,

Q
5/6
1/6(x) ∼ (x + 1)−5/12, near x = −1,

Q
5/6
1/6(z) ∼ z1/6, near z → ∞.

So, we see that in each case we can represent I3(x, y) as a rational power of a
rational function of x, y. That is, there is a rational power of this function which
satisfies condition (2).

4.4 The Fourth Domain

For the values of parameters corresponding to the last condition of (12), that is,
b1 = 8a1/3, a0 = a1b, b0 = b1b, the system (10) has the form

du/dτ = −u (9 b+ 6 u+ 7 a1 b u v) = U(u, v),
dv/dτ = v (3 b+ 3 u+ 5 a1 b u v) = V (u, v). (19)

We remind that by the definition the Darboux factor of the system

dx/dt = P (x, y), dy/dt = Q(x, y) (20)

is a polynomial f(x, y) such that

∂f

∂x
P +

∂f

∂y
Q = Kf, (21)

with K(x, y) being a polynomial. If P and Q are polynomials in x and y of
degree at most n, then K(x, y) is a polynomial of degree at most n− 1 (Ki(x, y)

On Sufficient Conditions for Integrability of a Planar System of ODEs 103

is called the cofactor). A simple computation shows that if there are Darboux
factors f1, f2, . . . , fk with the cofactors K1,K2, . . . ,Kk satisfying

k∑
i=1

αiKi + P ′
x +Q′

y = 0 (22)

then the system admits the integrating factor

M = fα1
1 · · · fαk

k (23)

(see, e.g., [12] for more details). It is well known that if a system (20) with a
non-degenerate singular point at the origin has an integrating factor of the form
M = 1 + h.o.t, then it also has an analytic first integral (see e.g. [7]).

It is obvious that u = 0 and v = 0 are the Darboux factors of system (19)
with the cofactors

K1 = −(9 b+ 6 u+ 7 a1 b u v)

and
K2 = (3 b+ 3 u+ 5 a1 b u v),

respectively. We then try to find more Darboux factors using the method of
indeterminate coefficients. We look for the factor f3 in the form of the polyno-
mial of degree 4 with indeterminate coefficients ti and si, and for the cofactor
K3 in the form of the polynomial of degree 2 with indeterminate coefficients
si. Substituting f3 and K3 into (21) and equating the coefficients of the same
monomials ukvm we obtain a system of polynomials in si and ti. It turns out
that the system is too difficult to solve with MATHEMATICA, however we can
easily solve it using the package primdec.lib [13] of the computer algebra system
SINGULAR [14]. Performing computations we find

f3 =
1
9
a1

2u2v2 +
2a1uv

3
+

2u
3b

+ 1

with the cofactor
K3 = −2u(3 + 2a1bv).

Solving the equation

α1K1 + α2K2 + α3K3 + U ′
u + V ′

v = 0

we find

α1 = −4
3
, α2 = −2, α3 = −7/6.

Therefore, the system admits the integrating factor

M(u, v) =
1

u4/3v2[6 u+ b (3 + a1 u v)2]7/6 . (24)

104 V. Edneral and V.G. Romanovski

Using the factor we find the first integral of motion in the form

I4(u, v) = u (3+2 a2
1bu)+6 a1 b v

3 u [u3(6+a2
1b u)+6 a2

1b u2v+9 b v2]1/6−
8 a1

√−b
35/3 B

6+a1
√−6 b u+3 v

√
−6 b/u3(5/6, 5/6),

(25)

where Bx(p, q) is an incomplete beta function [11],

Bx(p, q) =
∫ x

0
tp−1(1 − t)q−1dt =

xp

p 2
F1(p, 1 − q; p+ 1;x).

Above 2F1 is a hypergeometric function.
By substitution (15) from I4(u, v) we can obtain the first integral I4(x, y) but

the integrals are not analytic. However, by Theorem 4.13 of [15] if a system (20)
has a Darboux integrating factor of the form

μ = xβ1yβ2(1 + h.o.t)β

then it has an analytic first integral except of the case when both β1 and β2 are
integer numbers greater than 1. Since for the factor (24) β1 = −4/3 is not an
integer, the theorem is applicable and yields the existence of an analytic first
integral (however, we do not know its explicit form). The rational substitution
(15) will not destroy the property of analyticity, so for the fourth domain there
is the first analytic integral of the system (8).

5 Conclusions

To summarize, for planar non-Hamiltonian system (8) depending on five param-
eters with b2 �= 2/3 we have found a set of conditions on parameters at which
the system (8) is integrable near the degenerate point X = 0. The integrable
systems form four two-parametric domains in the space of the parameters of the
system.

The investigation of the cases b2 = 2/3, c = 1/b, and c �= 1/b but with a
rational value of Γ of (6) is still an open problem.

Acknowledgements

The first author was supported by the the Russian Foundation for Basic Re-
search (project 08-01-00082) and the grants of the President of the Russian
Federation for Support of the Leading Scientific Schools NSh.-3159.2010.2 and
NSh.-41422010.2. The second author acknowledges the support by the Slovenian
Research Agency and by the Transnational Access Programme at RISC-Linz of
the European Commission Framework 6 Programme for Integrated Infrastruc-
tures Initiatives under the project SCIEnce (contract no. 026133). The authors
are also grateful to Professor A.D. Bruno for important discussions and useful
advices and to the referees for their valuable remarks which helped to improve
the manuscript.

On Sufficient Conditions for Integrability of a Planar System of ODEs 105

References

1. Bruno, A.D., Edneral, V.F.: Algorithmic analysis of local integrability. Dokl.
Akademii Nauk 424(3), 299–303 (2009) (Russian) = Doklady Mathem. 79(1), 48–52
(2009) (English)

2. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Fizmatlit,
Moscow (1998) (Russian) = Elsevier Science, Amsterdam (2000) (English)

3. Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow
(1979) (Russian) = Springer-Verlag, Berlin (1989) (English)

4. Bruno, A.D.: Analytical form of differential equations (I,II). Trudy Moskov. Mat.
Obsc. 25, 119–262 (1971); 26, 199–239 (1972) (Russian) = Trans. Moscow Math.
Soc. 25, 131–288 (1971); 26, 199–239 (1972) (English)

5. Bruno, A.D., Edneral, V.F.: On Integrability of a Planar System of ODE’s near De-
generate Stationary Point. Zapiski Nauchnykh Seminarov POMI 373, 34–47 (2009)
(Russian)

6. Bruno, A.D., Edneral, V.F.: On Integrability of a Planar ODE System of near
Degenerate Stationary Point. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2009. LNCS, vol. 5743, pp. 45–53. Springer, Heidelberg (2009)

7. Amelkin, V.V., Lukashevich, N.A., Sadovskii, A.P.: Nonlinear Oscillations in Sec-
ond Order Systems. BSU, Minsk (1982) (in Russian)

8. Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles
for the Lyapunov system (I). Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19(11),
3791–3801 (2009)

9. Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar
systems. Nonlinearity 22, 395–420 (2009)

10. Edneral, V.F.: On algorithm of the normal form building. In: Ganzha, V.G., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer,
Heidelberg (2007)

11. Bateman, H., Erdêlyi, A.: Higer Transcendental Functions, vol. 1. McGraw-Hill
Book Company, Inc., New York (1953)

12. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computa-
tional Algebra Approach. Birkhüser, Boston (2009)

13. Decker, W., Pfister, G., Schönemann, H.A.: Singular 2.0 library for computing the
primary decomposition and radical of ideals primdec.lib (2001)

14. Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2005), http://www.singular.uni-kl.de

15. Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and lineariz-
able saddle points for complex quadratic systems in C2. J. Dyn. Control Sys. 9,
311–363 (2003)

http://www.singular.uni-kl.de

Symbolic-Numeric Algorithms for Computer
Analysis of Spheroidal Quantum Dot Models

A.A. Gusev1,2, O. Chuluunbaatar1, V.P. Gerdt1, V.A. Rostovtsev1,2,
S.I. Vinitsky1, V.L. Derbov3, and V.V. Serov 3

1 Joint Institute for Nuclear Research, Dubna, Russia
2 Dubna International University of Nature, Society & Man, Dubna, Russia

3 Saratov State University, Saratov, Russia
gooseff@jinr.ru

Abstract. A computational scheme for solving elliptic boundary value
problems with axially symmetric confining potentials using different sets
of one-parameter basis functions is presented. The efficiency of the pro-
posed symbolic-numerical algorithms implemented in Maple is shown
by examples of spheroidal quantum dot models, for which energy spec-
tra and eigenfunctions versus the spheroid aspect ratio were calculated
within the conventional effective mass approximation. Critical values of
the aspect ratio, at which the discrete spectrum of models with finite-
wall potentials is transformed into a continuous one in strong dimen-
sional quantization regime, were revealed using the exact and adiabatic
classifications.

1 Introduction

To analyze the geometrical, spectral and optical characteristics of quantum dots
in the effective mass approximation and in the regime of strong dimensional
quantization following [1], many methods and models were used, including the
exactly solvable model of a spherical impermeable well [2], the adiabatic ap-
proximation for a lens-shaped well confined to a narrow wetting layer [3] and
a hemispherical impermeable well [4], the model of strongly oblate or prolate
ellipsoidal impermeable well [5], as well as numerical solutions of the boundary
value problems (BVPs) with separable variables in the spheroidal coordinates for
wells with infinite and finite wall heights [6,7,8]. However, thorough comparative
analysis of spectral characteristics of models with different potentials, including
those with non-separable variables, remains to be a challenging problem. This
situation stimulates the study of a wider class of model well potentials with ap-
plication of symbolic-numerical algorithms (SNA) and problem-oriented software
developed by the authors of the present paper during years [9,10,11,12,13,14].

Here we analyse the spectral characteristics of the following models: a spherical
quantum dot (SQD), an oblate spheroidal quantum dot (OSQD), and a prolate
spheroidal quantum dot (PSQD). We make use of the Kantorovich method that
reduces the problem to a set of ordinary differential equations (ODE) [15]. In
contrast to the well-known method of adiabatic representation [16], this method

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 106–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 107

implies neither adiabatic separation of fast and slow variables nor the presence of
a small parameter. We present a calculation scheme for solving elliptical BVPs
with axially-symmetric potentials in cylindrical coordinates (CC), spherical co-
ordinates (SC), oblate spheroidal coordinates (OSC), and prolate spheroidal co-
ordinates (PSC). Basing on the SNA developed for axially-symmetric potentials,
different sets of solutions are constructed for the parametric BVPs related to the
fast subsystem, namely, the eigenvalue problem solutions (the terms and the ba-
sis functions), depending upon the slow variable as a parameter, as well as the
matrix elements, i.e., the integrals of the products of basis functions and their
derivatives with respect to the parameter, which are calculated analytically by
means of elaborated SNA MATRA implemented in MAPLE, or numerically us-
ing the program ODPEVP [13] implementing the finite-element method (FEM).
These terms and matrix elements form the matrices of variable coefficients in the
set of second-order ODE with respect to the slow variable. The BVP for this set
of ODEs is solved by means of the program KANTBP [11], also implementing
the FEM. The efficiency of the calculation scheme and the SNA used is demon-
strated by comparison of the spectra versus the ellipticity of the prolate or oblate
spheroid in the models of quantum dots with different confining potentials, such
as the isotropic and anisotropic harmonic oscillator, the spherical and spheroidal
well with finite or infinite walls approximated by smooth short-range potentials
as well as by constructing the adiabatic classification of the states.

The paper is organized as follows. In Section 2, the calculation scheme for
solving elliptic BVPs with axially-symmetric confining potentials is presented. In
Section 3, SNA MATRA for solving parametric BVP and corresponding integrals
implemented in Maple is described. Section 4 is devoted to the analysis of the
spectra of quantum dot models with three types of axially-symmetric potentials,
including the benchmark exactly solvable models. In Conclusion we summarize
the results and discuss the future applications of our calculation scheme and the
SNA project presented.

2 Problem Statement

Within the effective mass approximation under the conditions of strong dimen-
sional quantization, the Schrödinger equation for the slow envelope of the wave
function Ψ̃(r̃) of a charge carrier (electron e or hole h) in the models of a spher-
ical, prolate or oblate spheroidal quantum dot (SQD, PSQD or OSQD) has the
form

{ ˜̂
H − Ẽ}Ψ̃(r̃) = {(2μp)−1 ˜̂

P
2

+ Ũ(r̃) − Ẽ}Ψ̃(r̃) = 0, (1)

where r̃ ∈ R3 is the position vector of the particle having the effective mass
μp = μe (or μp = μh), ˜̂

P = −i�∇r̃ is the momentum operator, Ẽ is the energy of
the particle, Ũ(r̃) is the axially-symmetric potential confining the particle motion
in SQD, PSQD or OSQD. In Model A, Ũ(r̃) is chosen to be the potential of an

108 A.A. Gusev et al.

isotropic or anisotropic axially-symmetric harmonic oscillator with the angular
frequency ω̃ = γr0�/(μpr̃

2
0), γr0 ∼ π2/3 being an adjustable parameter:

ŨL(r̃) = μpω̃
2(ζ1(x̃2 + ỹ2) + ζ3z̃2)/2, (2)

r0 =
√
ζ1(x̃2

0 + ỹ2
0) + ζ3z̃20 is the radius of a spherical QD (ζ1 = 1, ζ3 = 1) or that

of a spheroidal QD (ζ1 = (r̃0/ã)4, ζ3 = (r̃0/c̃)4), inscribed into a spherical one,
where ã and c̃ are the semiaxes of the ellipse which transforms into a sphere at
ã = c̃ = r̃0. For Model B, Ũ(r̃) is the potential of a spherical or axially-symmetric
well

ŨB(r̃) = {0, 0 ≤ (x̃2 + ỹ2)/ã2 + z̃2/c̃2 < 1; Ũ0, (x̃2 + ỹ2)/ã2 + z̃2/c̃2 ≥ 1}, (3)

with walls of finite or infinite height 1 ! Ũ0 < ∞. For Model C, Ũ(r̃) is taken
to be a spherical or axially-symmetric diffuse potential

ŨC(r̃) = Ũ0
[
1 + exp(((x̃2 + ỹ2)/ã2 + z̃2/c̃2 − 1)/s)

]−1
, (4)

where s is the edge diffusiveness parameter of the function smoothly approximat-
ing the vertical walls of finite height Ũ0. Below we restrict ourselves by consider-
ing Model B with infinite walls Ũ0 → ∞ and Model C with walls of finite height
Ũ0. We make use of the reduced atomic units: a∗B = κ�2/μpe

2 is the reduced
Bohr radius, κ is the DC permittivity, ER ≡ Ry∗ = �2/(2μpa

∗
B

2) is the reduced
Rydberg unit of energy, and the following dimensionless quantities are intro-
duced: Ψ̃(r̃) = a∗B

−3/2Ψ(r), 2Ĥ = ˜̂
H/Ry∗, 2E = Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗,

r = r̃/a∗B, a = ã/a∗B, c̃ = c/a∗B, r0 = r̃0/a
∗
B, ω = γr0/r

2
0 = �ω̃/(2Ry∗). For

an electron with the reduced mass μp ≡ μe = 0.067m0 at κ = 13.18 in GaAs:
a∗B = 102Å= 10.2 nm, Ry∗ = ER = 5.2 meV.

Since the Hamiltonian Ĥ in (1)–(4) commutes with the z-parity operator
(z → −z or η → −η), the solutions are divided into even (σ = +1) and odd
(σ = −1) ones. The solution of Eq. (1), periodical with respect to the azimuthal
angle ϕ, is sought in the form of a product Ψ(xf , xs, ϕ) = Ψmσ(xf , xs)eimϕ/

√
2π,

where m = 0,±1,±2, ... is the magnetic quantum number. Then the function
Ψmσ(xf , xs) satisfies the following equation in the two-dimensional domain Ω =
Ωxf

(xs) ∪Ωxs ⊂ R2\{0}, Ωxf
(xs) = (xmin

f (xs), xmax
f (xs)), Ωxs = (xmin

s , xmax
s):(

Ĥ1(xf ;xs) + Ĥ2(xs) + V (xf , xs) − 2E
)
Ψmσ(xf , xs) = 0. (5)

The Hamiltonian of the slow subsystem Ĥ2(xs) is expressed as

Ĥ2(xs) = Ȟ2(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (6)

and the Hamiltonian of the fast subsystem Ĥ1(xf ;xs) is expressed via the re-
duced Hamiltonian Ȟf (xf ;xs) and the weighting factor g3s(xs):

Ĥ1(xf ;xs) = g−1
3s (xs)Ȟf (xf ;xs), (7)

Ȟf (xf ;xs) = − 1
g1f(xf)

∂

∂xf
g2f (xf)

∂

∂xf
+ V̌f (xf) + V̌fs(xf , xs).

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 109

Table 1. The values of conditionally fast xf and slow xs independent variables, the
coefficients gis(xs), gjf (xf), and the potentials V̌f (xf), V̌s(xs), V̌fs(xf , xs), in Eqs.(5)–
(7) for SQD, OSQD and PSQD in cylindrical (CC), spherical (SC), and oblate & prolate
spheroidal (OSC & PSC) coordinates with (d/2)2 = ±(a2−c2), + for OSC, − for PSC.

CC SC OSC &PSC
OSQD PSQD SQD OSQD & PSQD

xf z ρ η η

xs ρ z r ξ

g1f 1 ρ 1 1
g2f 1 ρ 1 − η2 1 − η2

g1s ρ 1 r2 1
g2s ρ 1 r2 ξ2 ± 1
g3s 1 1 r2 1

V̌f (xf) ω2ζ3z
2 m2/ρ2 + ω2ζ1ρ

2 m2/g2f m2/g2f ± (d/2)2g2f2E

V̌s(xs) m2/ρ2 + ω2ζ1ρ
2 ω2ζ3z

2 0 ∓m2/g2s − ((d/2)2g2s − 1)2E

V̌fs(xf , xs) 0 0 V̌ (r, η) V̌ (ξ, η)

Table 1 contains the values of conditionally fast xf and slow xs independent
variables, the coefficients g1s(xs), g2s(xs), g3s(xs), g1f(xf), g2f(xf), and the
reduced potentials V̌f (xf), V̌s(xs), V̌fs(xf , xs), entering Eqs. (5)–(7) for SQD,
OSQD, and PSQD in cylindrical (x = (z, ρ, ϕ)), spherical (x = (r, η = cos θ, ϕ)),
and oblate/prolate spheroidal (x = (ξ, η, ϕ)) coordinates [17]. In spherical co-
ordinates, the potential V̌ (r, η) in Table 1 using the definitions (2), (4) in the
reduced atomic units, for Model A is expressed as

V̌ (r, η) = 2r2V (r, η) = ω2r4(ζ1(1 − η2) + ζ3η2),

and for Model C as

V̌ (r, η) = 2r2V (r, η) = 2r2U0
[
1 + exp((r2((1 − η2)/a2 + ζ3η2/c2) − 1)/s)

]−1
,

both having zero first derivatives in the vicinity of the origin r = 0 (equlibrium
point). For Model B. the potentials V̌fs are zero, since the potential (3) is refor-
mulated below in the form of boundary conditions with respect to the variables
xf and xs. The solution Ψmσ

i (xf , xs) ≡ ΨEmσ
i (xf , xs) of the problem (5)–(7) is

sought in the form of Kantorovich expansion [15]

ΨEmσ
i (xf , xs) =

jmax∑
j=1

Φmσ
j (xf ;xs)χ

(mσi)
j (E, xs), (8)

using as a set of trial functions the eigenfunctions Φmσ
j (xf ;xs) of the Hamiltonian

Ȟf (xf ;xs) from (7), i.e., the solutions of the parametric BVP{
Ȟf (xf ;xs) − λ̌i(xs)

}
Φmσ

i (xf ;xs) = 0, (9)

110 A.A. Gusev et al.

in the interval xf ∈ Ωxf
(xs) depending on the conditionally slow variable xs ∈

Ωxs as on a parameter. These solutions obey the boundary conditions

lim
xf→xt

f (xs)

(
N

(mσ)
f (xs)g2f (xf)

dΦmσ
j (xf ;xs)
dxf

+D(mσ)
f (xs)Φmσ

j (xf ;xs)
)

=0 (10)

at the boundary points {xmin
f (xs), xmax

f (xs)} = ∂Ωxf
(xs), of the intervalΩxf

(xs).
In Eq. (10), N (mσ)

f (xs) ≡ N (mσ)
f , D(mσ)

f (xs) ≡ D(mσ)
f , unless specially declared,

are determined by the relations N (mσ)
f = 1, D(mσ)

f = 0 at m = 0, σ = +1 (or at

σ = 0, i.e., without parity separation), N (mσ)
f = 0, D(mσ)

f = 1 at m = 0, σ = −1
or at m �= 0. The eigenfunctions satisfy the orthonormality condition with the
weighting function g1f (xf) in the same interval xf ∈ Ωxf

(xs):

〈
Φmσ

i |Φmσ
j

〉
=
∫ xmax

f (xs)

xmin
f (xs)

Φmσ
i (xf ;xs)Φmσ

j (xf ;xs)g1f (xf)dxf = δij . (11)

Here λ̌1(xs) < ... < λ̌jmax(xs) < ... is the desired set of real eigenvalues. The
corresponding set of potential curves 2E1(xs) < ... < 2Ejmax(xs) < ... of Eqs.
(7) is determined by 2Ej(xs) = g−1

3s (xs)λ̌j(xs). Note that for OSC and PSC, the
desired set of real eigenvalues λ̌j(xs) depends on a combined parameter, xs →
p2 = (d/2)22E, the product of spectral 2E and geometrical (d/2)2 parameters
of the problem (5). The solutions of the problem (9)–(11) for Models A and B
are calculated in the analytical form, while for Model C this is done using the
program ODPEVP [13].

Substituting the expansion (8) into Eq. (5) in consideration of (9) and (11),
we get a set of ODEs for the slow subsystem with respect to the unknown vector
functions χ(mσi)(xs, E) ≡ χ(i)(xs) = (χ(i)

1 (xs), ..., χ
(i)
jmax

(xs))T :(
− 1
g1s(xs)

I
d

dxs
g2s(xs)

d

dxs
+ 2E(xs) + IV̌s(xs) − 2IE

)
χ(i)(xs) = (12)

=−
(
g2s(xs)
g1s(xs)

W(xs) +
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+
g2s(xs)
g1s(xs)

Q(xs)
d

dxs

)
χ(i)(xs).

Here 2E(xs) = diag(g−1
3s (xs)λ̌j(xs)), W(xs), and Q(xs) are matrices of the di-

mension jmax × jmax,

Wij(xs) =Wji(xs) =
∫ xmax

f (xs)

xmin
f (xs)

g1f (xf)
∂Φi(xf ;xs)

∂xs

∂Φj(xf ;xs)
∂xs

dxf , (13)

Qij(xs) = −Qji(xs) = −
∫ xmax

f (xs)

xmin
f

(xs)
g1f(xf)Φi(xf ;xs)

∂Φj(xf ;xs)
∂xs

dxf ,

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 111

calculated analytically for Model B and by means of the program ODPEVP [13]
for Model C. Note that for Model A in SC or CC and Model B in OSC or PSC,
the variables xf and xs are separated so that the matrix elements Wij(xs) =
Qij(xs) ≡ 0 are put into the r.h.s. of Eq. (12), and V̌s(xs) are substituted from
Table 1. The discrete spectrum solutions 2E : 2E1 < 2E2 < ... < 2Et < ... that
obey the boundary conditions at points xt

s = {xmin
s , xmax

s } = ∂Ωxs bounding the
interval Ωxs :

lim
xs→xt

s

(
N (mσ)

s g2s(xs)
dχ(mσp)(xs)

dxs
+D(mσ)

s χ(mσp)(xs)
)

= 0, (14)

where N (mσ)
s = 1, D(mσ)

s = 0 at m = 0, σ = +1 (or at σ = 0, i.e without parity
separation), N (mσ)

s = 0, D(mσ)
s = 1 at m = 0, σ = −1 or at m �= 0, and the

orthonormality conditions∫ xmax
s

xmin
s

(χ(i)(xs))T χ(j)(xs)g1s(xs)dxs = δij , (15)

are calculated by means of the program KANTBP [11]. To ensure the prescribed
accuracy of calculation of the lower part of the spectrum discussed below with
eight significant digits we used jmax = 16 basis functions in the expansion (8) and
the discrete approximation of the desired solution by Lagrange finite elements
of the fourth order with respect to the grid pitch Ωp

hs(xs) = [xs
min, x

s
k = xs

k−1 +
hs

k, x
s
max].

3 SNA MATRA for Calculation of the BVP
and Integrals

To calculate the effective potentials of the problem (12)–(15) for each value xs =
xs

k of the FEM grid Ωp
hs(xs)

= [xs
min, x

s
max] we consider a discrete representation

of solutions Φ(xf ;xs) ≡ Φmσ(xf ;xs) of the problem (9) by means of the FEM
on the grid, Ωp

hf (xf)(xs) = [xf
0 =xf

min(xs), x
f
k = xf

k−1 + hf
k , x

f
n̄ =xf

max(xs)], in a
finite sum:

Φ(xf ;xs) =
n̄p∑

μ=0

Φh
μ(xs)Np

μ(xf) =
n̄∑

k=1

p∑
r=0

Φh
r+p(k−1)(xs)N

p
r+p(k−1)(xf), (16)

where Np
μ(xf) are local functions, and Φh

μ(xs) are node values of Φ(xf
μ;xs). The

local functions Np
μ(xf) are piece-wise polynomials of the given order, p equals

one only in the node xf
μ and equals zero in all other nodes xf

ν �= xf
μ of the

grid Ωp
hf (xf)(xs), i.e., Np

ν (xf
μ) = δνμ, μ, ν = 0, 1, . . . , n̄p. The coefficients Φν(xs)

are formally connected with the solution Φ(xfp
k,r ;xs) in a node xf

ν = xfp
k,r , k =

1, . . . , n̄, r = 0, . . . , p:

Φh
ν (xs) = Φh

r+p(k−1)(xs) ≈ Φ(xfp
k,r ;xs), xfp

k,r = xf
k−1 +

hf
k

p
r.

112 A.A. Gusev et al.

The theoretical estimate for the H0 norm between the exact and numerical
solution has the order of

|λ̌j(xs) −λ̌h
j (xs)|≤c1h2p,

∥∥∥Φj(xf ;xs)− Φh
j (xs)

∥∥∥
0
≤c2hp+1, (17)

where hf = max1<j<n̄ h
f
j is the maximal step of the grid, and the constants

c1 > 0, c2 > 0 do not depend on the step hf [19]. It has been shown possible
to construct schemes for solving the BVPs and integrals with high order of
accuracy comparable with that of the computer in accordance with the following
estimations [13]∣∣∣∣∣∂λ̌j(xs)

∂xs
− ∂λ̌h

j (xs)
∂xs

∣∣∣∣∣ ≤ c3h2p,

∥∥∥∥∥∂Φj(xf ;xs)
∂xs

− ∂Φh
j (xs)
∂xs

∥∥∥∥∥
0

≤ c4hp+1, (18)

∣∣Qij(xs) −Qh
ij(xs)

∣∣ ≤ c5h2p,
∣∣Wij(xs) −Wh

ij(xs)
∣∣ ≤ c6h2p, (19)

where hf is the grid step, p is the order of finite elements, i, j are the numbers of
the corresponding solutions, and the constants c3, c4, c5, and c6 do not depend
on the step hf . The proof is straightforward following the scheme of the proof of
estimations (17) in accordance with [19,20]. Verification of the above estimations
is provided by numerical analysis on condensed grids and by comparison with
examples of exact solvable models A and B.

Let us consider the reduction of BVP (9), (11) in the interval Δ : xf
min(xs) <

xf <x
f
max(xs) with the boundary conditions (10) at points xf

min(xs) and xf
max(xs)

rewritten in the form

A(xs)Φj(xf ;xs) = λ̌j(xs)B(xs)Φj(xf ;xs), (20)

where A(xs) is a differential operator, and B(xs) is a multiplication opera-
tor, differentiable with respect to the parameter xs ∈ Ωxs . Substituting the
expansion (16) into (20) and performing integration with respect to xf by
parts in the interval Δ = ∪n̄

k=1Δk, we arrive at a set of linear algebraic
equations

ap
μν(xs)Φh

j,μ(xs) = λ̌h
j (xs)bp

μν(xs)Φh
j,μ(xs), (21)

in the framework of the briefly described FEM. Using the p-order Lagrange ele-
ments [19], we present below Algorithm 1 for constructing the algebraic problem
(21) by the FEM in the form of conventional pseudocode. Its MAPLE realization
allows us to show explicitly the recalculation of indices μ, ν and to test the cor-
responding modules of the parametric matrix problems, derivatives of solutions
by parameter, and calculation of integrals.

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 113

Algorithm 1. Generation of parametric algebraic problems

Input:
Δ = ∪n̄

k=1Δk = [xf
min(xs), xf

max(xs)] is the interval of changing of the indepen-
dent variable xf , whose boundaries depend on the parameter xs = xs

k′ ;
hf

k = xf
k − xf

k−1 is the grid step;
n̄ is the number of subintervals Δk = [xf

k−1, x
f
k];

p is the order of finite elements;
A(xs),B(xs) are the differential operators in Eq. (20);
Output:
Np

μ(xf) are the basis functions in (16);
ap

μν(xs), bp
μν(xs) are the matrix elements in the system of algebraic equations

(21);
Local:
xfp

k,r are the nodes; φp
k,r(xf) are the Lagrange elements; μ, ν = 0, 1, . . . , n̄p ;

1: for k:=1 to n̄ do
for r:=0 to p do
xfp

k,r = xf
k−1 + hf

k

p r
end for;

end for;
2: φp

k,r(xf) =
∏

r′
=r[(xf − xfp
k,r′)(xfp

k,r − xfp
k,r′)−1]

3: Np
0 (xf):= if xf ∈ Δ1 then φp

1,0(xf) else 0;
for k:=1 to n̄ do

for r:=1 to p− 1 do
Np

r+p(k−1)(xf): = if xf ∈ Δk then φp
k,r(xf) else 0;

end for;
Np

kp(xf):= if xf ∈ Δk then φp
k,p(xf)

else if xf ∈ Δk+1 then φp
k+1,0(xf) else 0;

end for;
Np

n̄p(xf):= if xf ∈ Δn̄ then φp
n̄,p(xf) else 0;

4: for μ, ν:=0 to n̄p do
ap

μν(xs) :=
∫
Δ

g1(xf)Np
μ(xf)A(xs)Np

ν (xf)dxf ;

bp
μν(xs) :=

∫
Δ

g1(xf)Np
μ(xf)B(xs)Np

ν (xf)dxf ;

end for;

Remarks:

1. For equation (9), the matrix elements of the operator (7), and V (xf ;xs) =
V̌fs(xf , xs) + V̌f (xf) between the local functions Nμ(xf) and Nν(xf) defined in
the same interval Δj calculated by formula using xf = xf

k−1 + 0.5hf
k(1 + ηf),

q, r = 0, p:

114 A.A. Gusev et al.

(a(xs))μ,ν =
+1∫
−1

{
4

(hf
k)2
g2f (xf)(φp

k,q)
′(φp

k,r)
′ + g1f (xf)V (xf ;xs)φ

p
k,qφ

p
k,r

}
hf

k

2 dηf ,

(b(xs))μ,ν =
+1∫
−1
g1f(xf)φp

k,qφ
p
k,r

hf
k

2 dηf , μ = q + p(k − 1), ν = r + p(k − 1).

2. If the integrals can not be calculated analytically (see, e.g., section 4), then
they are calculated by numerical methods [19], namely, by means of the Gauss
quadrature formulae of the order p+ 1.

3. For OSQD&PSQD model C, the problem (9)–(11) has been solved using
the grid Ωp

hf (xf)(xs)[x
f
min, x

f
max] = −1(20)1 (the number in parentheses denotes

the number of finite elements of order p = 4 in each interval).
Generally, 10-16 iterations are required for the subspace iterations to converge

the subspace to within the prescribed tolerance. If the matrix ap ≡ ap(xs) in
Eq. (21) is not positively defined, the problem (21) is replaced by the following
problem:

ãp Φh = λ̃h bp Φh, ãp = ap − αbp. (22)

The number α (the shift of the energy spectrum) is chosen in such a way that
the matrix ãp is positive. The eigenvector of the problem (22) is the same, and
λ̌h = λ̃h + α, where the shift α is evaluated by Algorithm 2.

Algorithm 2. Evaluating the lower bound for the lowest eigenvalue of the gen-
eralized eigenvalue problem

Generally it is impossible to define the lower bound for the lowest eigenvalue
of Eq. (22) because the eigenvalues λ̌h

1 (xs) < ... < λ̌h
i (xs) < ... < λ̌h

jmax
(xs)

depend upon the parameter xs. However, we can use the following algorithm to
find the lower bound for the lowest eigenvalue λ̌h

1 (xs) at a fixed value of xs:

Step 1. Calculate LDLT factorization of Ap − αBp.
Step 2. If some elements of the diagonal matrix D are less than zero

then put α = α− 1 and go to Step 3, else go to Step 5.
Step 3. Calculate LDLT factorization of Ap − αBp.
Step 4. If some elements of the diagonal matrix D are less than zero

then put α = α− 1 and go to Step 3, else put α = α− 0.5
and go to Step 8.

Step 5. Put α = α+ 1 and calculate LDLT factorization of Ap − αBp.
Step 6. If all elements of the diagonal matrix D are greater than zero

then go to Step 5.
Step 7. Put α = α− 1.5.
Step 8. End.

After using the above algorithm one should find the lower bound for the lowest
eigenvalue, and always λ̌h

1 (xs) − α ≤ 1.5.

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 115

a) b)

Fig. 1. The energies 2E = Ẽ/ER of even σ = +1 lower states for OSQD versus the
minor c, ζca = c/a ∈ (1/5, 1) being the spheroid aspect ratio: a) well with impermeable
walls, b) diffusion potential with 2U0 = 36, s = 0.1, the major semiaxis a = 2.5 and
m = 0. Tine lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential curves.

4 Spectral Characteristics of Spheroidal QDs

Models B and C for Oblate Spheroidal QD. At fixed coordinate xs of the
slow subsystem, the motion of the particle in the fast degree of freedom xf is
localized within the potential well having the effective width

L̃ (xs) = 2c
√

1 − x2
s/a

2, (23)

where L = L̃/a∗B. The parametric BVP (9)–(11) at fixed values of the coor-
dinate xs, xs ∈ (0, a), is solved in the interval xf ∈ (−L (xs) /2, L (xs) /2)
for Model C using the program ODPEVP, and for Model B the eigenvalues
Ẽno (xs) /ER ≡ 2Ei (xs), no = i = 1, 2, ..., and the corresponding parametric
eigenfunctions Φσ

i (xf ;xs), obeying the boundary conditions (10) and the nor-
malization condition (11), are expressed in the analytical form:

2Ei (xs)=
π2n2

o

L2 (xs)
, Φσ

i (xf ;xs)=

√
2

L (xs)
sin

(
πno

2

(
xf

L (xs) /2
− 1

))
, (24)

where the even solutions σ = +1 are labelled with odd no = nzo +1 = 2i−1, and
the odd ones σ = −1 with even no = nzo + 1 = 2i, i = 1, 2, 3, The effective
potentials (13) in Eq. (12) for the slow subsystem are expressed analytically
via the integrals over the fast variable xf of the basis functions (24) and their
derivatives with respect to the parameter xs including states with both parities
σ = ±1:

2Ei(xs) =
a2π2n2

o

4c2(a2 − x2
s)
, Wii(xs) =

3 + π2n2
o

12
x2

s

(a2 − x2
s)2
, (25)

Wij(xs) =
2non

′
o(n

2
o + n′o

2)(1 + (−1)no+n′
o)

(n2
o − n′o2)2

x2
s

(a2 − x2
s)2
,

116 A.A. Gusev et al.

Fig. 2. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model B of OSQD for the major semiaxis a = 2.5 and different values of the minor
semiaxis c (ζca = c/a ∈ (1/5, 1))

Qij(xs) =
non

′
o(1 + (−1)no+n′

o)
(n2

o − n′o2)2
xs

a2 − x2
s

, n′o �= no.

For Model B at c = a = r0 the OSQD turns into SQD with known analytically
expressed energy levels Et ≡ Esp

nlm and the corresponding eigenfunctions

2Esp
nlm =

α2
nr+1,l+1/2

r20
, Φsp

nlm(r, θ, ϕ)=

√
2Jl+1/2(

√
2Esp

nlmr)
r0
√
r|Jl+3/2(αnr+1,l+1/2)|

Ylm(θ, ϕ), (26)

where αnr+1,l+1/2 are zeros of the Bessel function of semi-integer index l +
1/2, numbered in ascending order 0 < α11 < α12 < ... < αiv < ... by the
integer i, v = 1, 2, 3, Otherwise one can use equivalent pairs iv ↔ {nr, l} with
nr = 0, 1, 2, ... numbering the zeros of Bessel function and l = 0, 1, 2, ... being
the orbital quantum number that determines the parity of states σ̂ = (−1)l =
(−1)mσ, σ = (−1)l−m = ±1. At fixed l, the energy levels Ẽnlm/ER = 2Et

degenerate with respect to the magnetic quantum number m, are labelled with

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 117

Fig. 3. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model C of OSQD with 2U0 = 36 and s = 0.1 for the major semiaxis a = 2.5 and
different values of the minor semiaxis c (ζca = c/a ∈ (1/5, 1))

the quantum number n = nr + 1 = i = 1, 2, 3, ... , in contrast to the spectrum
of a spherical oscillator, degenerate with respect to the quantum number λ =
2nr + l. Figures 1, 2, and 3 show the lower part of non-equidistant spectrum
Ẽ(ζca)/ER = 2Et and the eigenfunctions Ψmσ

t from Eq. (8) for even states
OSQD Models B and C at m = 0. There is a one-to-one correspondence rule
no = nzo + 1 = 2n − (1 + σ)/2, n = 1, 2, 3, ..., nρ = (l − |m| − (1 − σ)/2)/2,
between the sets of spherical quantum numbers (n, l,m, σ̂) of SQD with radius
r0 = a = c and spheroidal ones (nξ = nr, nη = l − |m|,m, σ) of OSQD with the
major a and the minor c semiaxes, and the adiabatic set of cylindrical quantum
numbers (nzo, nρ,m, σ) at continuous variation of the parameter ζca = c/a.
The presence of crossing points of the energy levels of similar parity under the
symmetry change from spherical ζca = 1 to axial, i.e., under the variation of the
parameter 0 < ζca < 1, in the BVP with two variables at fixed m for Model B
is caused by the possibility of variable separation in the OSC [17], i.e., the r.h.s.
of Eq. (12) equals zero. The transformation of eigenfunctions occurring in the
course of a transition through the crossing points (marked by circles) in Fig. 1, is
shown in Fig. 2 for model B and in Fig. 3 for model C (marked by arrows). From

118 A.A. Gusev et al.

a) b)

Fig. 4. The energies 2E = Ẽ/ER of even σ = +1 lowest states for PSQD depending
on the minor semiaxis a (ζac = a/c ∈ (1/5, 1) is the spheroid aspect ratio): a) well with
impermeable walls, b) diffusion potential, 2U0 = 36, s = 0.1, for the major semiaxis
c = 2.5 and m = 0. Tine lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential
curves.

comparison of these Figures one can see that if the eigenfunctions are ordered
according to increasing eigenvalues of the BVPs, then for both Models B and C,
the number of nodes [18] is invariant under the variation of parameter c from
c = a = 2.5 to c = 0.5 of potentials (3) and (4). For Model B, such a behavior
follows from the fact of separation of variables of the BVP with potential (3)
in the OSC (see Table 1), while for Model C, further investigation is needed
because the coordinate system, where the variables of the BVP with potential
(4) are separated, is unknown. So, at small value of deformation parameter (ζca

for OSQD or ζac for PSQD) there are nodes only along corresponding major
axis. For Model C, at each value of the parameter a their is a finite number of
discrete energy levels limited by the value 2U0 of the well walls height. As shown
in Fig. 1b, the number of levels of OSQD, equal to that of SQD at a = c = r0,
is reduced with the decrease of the parameter c (or ζca), in contrast to Models
A and B that have countable spectra, and avoided crossings appear just below
the threshold.

Models B and C for Prolate Spheroidal QD. In contrast to OSQD, for
PSQD at fixed coordinate xs of the slow subsystem the motion of the particle is
confined to a 2D potential well with the effective variable radius

ρ0 (xs) = a
√

1 − x2
s/c

2, (27)

where ρ0 (xs) = ρ̃0 (xs) /aB. The parametric BVP (9)–(11) at fixed values of
the coordinate xs from the interval xs ∈ (−c, c) is solved in the interval xf ∈
(0, ρ0 (xs)) for Model C using the program ODPEVP, while for Model B the
eigenvalues Ẽnρp+1 (xs) /ER ≡ 2Ei (xs), nρp + 1 = i = 1, 2, ..., and the cor-
responding parametric basis functions Φmσ=0

i (xf ;xs) ≡ Φm
i (xf ;xs) without

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 119

Fig. 5. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model B of PSQD for the major semiaxis c = 2.5 and different values of the minor
semiaxis a (ζac = a/c ∈ (1/5, 1))

parity separation obeying the boundary conditions (10) and the normalization
condition (11) are expressed in the analytical form:

2Ei (xs) =
α2

nρp+1,|m|
ρ20 (xs)

, Φm
nρp

(xs) =
√

2
ρ0 (xs)

J|m|(
√

2Enρp+1,|m| (xs)xf)

|J|m|+1(αnρp+1,|m|)| , (28)

where αnρp+1,|m| = J̄
nρp+1
|m| are positive zeros of the Bessel function of the first

kind J|m|(xf) labeled in the ascending order with the quantum number nρp+1 =
i = 1, 2, The effective potentials (13) in Eq.(12) for the slow subsystem are
calculated numerically in quadratures via the integrals over the fast variable xf

of the basis functions(28) and their derivatives with respect to the parameter
xs using SNA MATRA from Section 2. Figures 4 and 5 illustrate the lower
part of the non-equidistant spectrum E(ζac)/ER = 2Ẽt and the eigenfunctions
Ψmσ

t from Eq. (8) of even states of PSQD Models B and C. There is a one-
to-one correspondence rule nρp + 1 = np = i = n = nr + 1, i = 1, 2, ... and
nzp = l− |m| between the sets of quantum numbers (n, l,m, σ̂) of SQD with the

120 A.A. Gusev et al.

radius r0 = a = c and spheroidal ones (nξ = nr, nη = l − |m|,m, σ) of PSQD
with the major c and the minor a semiaxes, and the adiabatic set of quantum
numbers (n = nρp+1, nzp,m, σ) under the continuous variation of the parameter
ζac = a/c. The presence of crossing points of similar-parity energy levels in
Fig. 4 under the change of symmetry from spherical ζac = 1 to axial, i.e., under
the variation of the parameter 0 < ζac < 1, in the BVP with two variables at
fixed m for Model B is caused by the possibility of variable separation in the
PSC [17], i.e., r.h.s. of Eq. (12) equals zero. For Model C, at each value of the
parameter c there is also only a finite number of discrete energy levels limited by
the value 2U0 of the well walls height. As shown in Fig. 4b, the number of energy
levels of PSQD, equal to that of SQD at a = c = r0, which is determined by
the product of mass μe of the particle, the well depth Ũ0, and the square of the
radius r̃0, is reduced with the decrease of the parameter ã (or ζac) because of the
promotion of the potential curve (lower bound) into the continuous spectrum, in
contrast to Models A and B having countable spectra. Note that the spectrum
of Model C for PSQD or OSQD should approach that of Model B with the
growth of the walls height U0 of the spheroidal well. However, at critical values
of the ellipsoid aspect ratio it is shown that in the effective mass approximation,
both the terms (lower bound) and the discrete energy eigenvalues in models of
the B type move into the continuum. Therefore, when approaching the critical
aspect ratio values, it is necessary to use models such as the lens-shaped self-
assembled QDs with a quantum well confined to a narrow wetting layer [3] or
if a minor semiaxis becomes comparable with the lattice constant to consider
models (see,e.g.[21]), different from the effective mass approximation.

5 Conclusion

By examples of the analysis of energy spectra of SQD, PSQD, and OSQD mod-
els with thee types of axially symmetric potentials, the efficiency of the developed
computational scheme and SNA is demonstrated. Only Model A (anisotropic har-
monic oscillator potential) is shown to have an equidistant spectrum, while Models
B and C (wells with infinite and finite walls height) possess non-equidistant spec-
tra. In Model C, there is a finite number of energy levels. This number becomes
smaller as the parameter a or c (ζac or ζca) is reduced because the potential curve
(lower bound) moves into the continuum. Models A and B have countable discrete
spectra. This difference in spectra allows verification of SQD, PSQD, and OSQD
models using experimental data [2], e.g., photoabsorption, from which not only
the energy level spacing, but also the mean geometric dimensions of QD may be
derived [5,7,8]. It is shown that there are critical values of the ellipsoid aspect ra-
tio, atwhich in the approximation of effective mass the discrete spectrum ofmodels
with finite-wall potentials turns into a continuous one. Hence, using experimental
data, it is possible to verify different QD models like the lens-shaped self-assembled
QDs with a quantum well confined to a narrow wetting layer [3], or to determine
the validity domain of the effective mass approximation, if a minor semiaxis be-
comes comparable with the lattice constant and to proceed opportunely to more
adequate models such as [21].

Symbolic-Numeric Algorithms for Spheroidal Quantum Dot Models 121

Note a posteriori that the diagonal approximation of the slow-variable ODE
(12) without the diagonal matrix element Wii (so-called rude adiabatic approxi-
mation) provides the lower estimate of the calculated energy levels. With this ma-
trix element taken into account (adiabatic approximation), the upper estimate of
energy is provided, unless in the domain of the energy level crossing points. There-
fore, the Born–Oppenheimer (BO) approximation is generally applicable only for
estimating the ground state at an appropriate value of the small parameter. For
Model B in the first BO approximation 2Ei ≈ E

(0)
i + E

(1)
i is given by the mini-

mal value of the slow subsystem energyEmin
1 (xs) at the equilibrium points xs = 0

(namely, E(0)
i = π2n2

o/(2c)2 from Eq. (24) for OSQD and E(0)
i = α2

nρp+1/a
2 from

Eq. (28) for PSQD), and by the corresponding energy valuesE(1)
i =π(ac)−1no(2nρ

+ |m|+1) and E(1)
i =2(ac)−1αnρp+1,|m|(nz +1/2) of the 2D and 1D harmonic os-

cillator, respectively. It is shown in [4] that the terms Ei(xs) allow high-precision
approximation by the Hulten potential. This can be accomplished by means of
computer algebra software, e.g., Maple, Mathematica, which allows (in the rude
adiabatic approximation) to obtain the lower bound of the spectrum by solving
transcendental equations expressed analytically in terms of known special func-
tions, and to use this approach for further development of our SNA project.

The software package developed is applicable to the investigation of impurity
and exciton states in semiconductor nanostructure models. Further development
of the method and the software package is planned for solving the quasi-2D
and quasi-1D BVPs with both discrete and continuous spectrum, which are
necessary for calculating the optical transition rates, channeling and transport
characteristics in the models like quantum wells and quantum wires.

Authors thank Profs. K.G. Dvoyan, E.M. Kazaryan, and H.A. Sarkisyan for
collaboration in the field and Profs. T. Sturm and C. Philips for support of our
SNA project. This work was done within the framework of the Protocol No.
3967-3-6-09/11 of collaboration between JINR and RAU in dynamics of finite-
dimensional quantum models and nanostructures in external fields. The work
was supported partially by RFBR (grants 10-01-00200 and 08-01-00604), and by
the grant No. MK-2344.2010.2 of the President of Russian Federation.

References
1. Harrison, P.: Quantum Well, Wires and Dots. In: Theoretical and Computational

Physics of Semiconductor Nanostructures. Wiley, New York (2005)
2. Gambaryan, K.M.: Interaction and Cooperative Nucleation of InAsSbP Quan-

tum Dots and Pits on InAs(100) Substrate. Nanoscale. Res. Lett. (2009),
doi:10.1007/s11671-009-9510-8

3. Wojs, A., Hawrylak, P., Fafard, S., Jacak, L.: Electronic structure and magneto-
optics of self-assembled quantum dots. Phys. Rev. B 54, 5604–5608 (1996)

4. Juharyan, L.A., Kazaryan, E.M., Petrosyan, L.S.: Electronic states and interband
light absorption in semi-spherical quantum dot under the influence of strong mag-
netic field. Solid State Comm. 139, 537–540 (2006)

5. Dvoyan, K.G., Hayrapetyan, D.B., Kazaryan, E.M., Tshantshapanyan, A.A.: Elec-
tron States and Light Absorption in Strongly Oblate and Strongly Prolate Ellip-
soidal Quantum Dots in Presence of Electrical and Magnetic Fields. Nanoscale Res.
Lett. 2, 601–608 (2007)

122 A.A. Gusev et al.

6. Cantele, G., Ninno, D., Iadonisi, G.: Confined states in ellipsoidal quantum dots.
J. Phys. Condens. Matt. 12, 9019–9036 (2000)

7. Trani, F., Cantele, G., Ninno, D., Iadonisi, G.: Tight-binding calculation of the
optical absorption cross section of spherical and ellipsoidal silicon nanocrystals.
Phys. Rev. B 72, 075423 (2005)

8. Lepadatu, A.-M., Stavarache, I., Ciurea, M.L., Iancu, V.: The influence of shape
and potential barrier on confinement energy levels in quantum dots. J. Appl.
Phys. 107, 033721 (2010)

9. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S., Rostovtsev, V.A.,
Samoilov, V.N., Tupikova, T.V., Chuluunbaatar, O.: A symbolic-numerical algo-
rithm for the computation of matrix elements in the parametric eigenvalue problem.
Programming and Computer Software 33, 105–116 (2007)

10. Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov,
V., Tupikova, T., Vinitsky, S.: A Symbolic-numerical algorithm for solving the
eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordi-
nates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS,
vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

11. Chuluunbaatar, O., Gusev, A.A., Abrashkevich, A.G., Amaya-Tapia, A., Kaschiev,
M.S., Larsen, S.Y., Vinitsky, S.I.: KANTBP: A program for computing energy lev-
els, reaction matrix and radial wave functions in the coupled-channel hyperspherical
adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)

12. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I.,
Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for com-
puting potential curves and matrix elements of the coupled adiabatic radial equa-
tions for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys.
Commun. 178, 301–330 (2008)

13. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP:
A program for computing eigenvalues and eigenfunctions and their first deriva-
tives with respect to the parameter of the parametric self-adjoined Sturm-Liouville
problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

14. Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Gusev, A.A., Rostovtsev, V.A.:
Symbolic-numerical algorithms for solving parabolic quantum well problem with
hydrogen-like impurity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2009. LNCS, vol. 5743, pp. 334–349. Springer, Heidelberg (2009)

15. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley,
New York (1964)

16. Born, M., Huang, X.: Dynamical Theory of Crystal Lattices. The Clarendon Press,
Oxford (1954)

17. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New
York (1965)

18. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, Chich-
ester (1989)

19. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs (1973)

20. Schultz, M.H.: L2 Error Bounds for the Rayleigh-Ritz-Galerkin Method. SIAM J.
Numer. Anal. 8, 737–748 (1971)

21. Harper, P.G.: Single Band Motion of Conduction Electrons in a Uniform Magnetic
Field. Proc. Phys. Soc. A 68, 874–878 (1955)

On Reduction of Lagrange Systems

Valentin Irtegov and Tatyana Titorenko

Institute for System Dynamics and Control Theory SB RAS,
134, Lermontov str., Irkutsk, 664033, Russia

irteg@icc.ru

Abstract. We consider nonlinear conservative Lagrange systems with
cyclic coordinates, which by means of the Legendre transformation are
reduced to linear Routh systems. The latter allows one to reduce the
problem of qualitative analysis for the nonlinear systems of above type
to linear systems. Such an approach to investigation of the Lagrange
systems is demonstrated by an example of a mechanical system with
two cyclic coordinates and three positional coordinates. Some results of
analysis of the initial system and the reduced one are given. We propose
also a procedure of finding and investigation of qualitative properties
of invariant manifolds (IMs) for the Lagrange systems with a nonlinear
Routh function. The procedure is based on the analysis of stationary
conditions of the “extended” Routh function. The efficiency of the pro-
posed approach is demonstrated by an example of analysis of a concrete
mechanical system.

Most part of the computations represented in this paper have been
conducted with the aid of the computer algebra system “Mathematica”.

1 Introduction

The method of reduction is well-known, mainly as a method of simplification
in solving mechanical problems [1], problems of control theory [2], variational
calculus [3] as well as problems of other areas of natural-scientific knowledge.
This paper considers the conservative Lagrange systems with cyclic coordinates,
which by means of the Legendre transformation are reduced to the linear Routh
systems. It is shown that the inverse problem, which implies reconstruction of the
lagrangian corresponding to the given Routh function, is solved algorithmically
for these systems. In this case, the whole family of the Lagrange equations may
be put in correspondence to the Routh equations. Within the framework of this
consideration, the comparison of the sets of stationary solutions and invariant
manifolds for the Routh problem and the corresponding Lagrange one is of in-
terest. The comparison of qualitative properties of the corresponding stationary
sets is a separate question.

2 On the Systems Reduced to Linear Ones

Let the lagrangian of a mechanical system with m cyclic and n −m positional
coordinates be the quadratic function with respect to the velocities:

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 123–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

124 V. Irtegov and T. Titorenko

2L =
n∑

i=1

n∑
j=1

Fij(qm+1, . . . , qn)q̇iq̇j −
n∑

i=m+1

n∑
j=m+1

cij qiqj . (1)

The Lagrange equations corresponding to (1) have the cyclic integrals, which we
write in the form:

m∑
j=1

Fkj (qm+1, . . . , qn)q̇j = pk −
n∑

j=m+1

Fkj (qm+1, . . . , qn)q̇j ,

pk = const (k = 1, . . . ,m). (2)

Let us state the problem to define the functions Fij(qm+1, . . . , qn) (i, j=1, . . . , n)
in expression (1) so that after the Legendre transformation [4] the Routh function
(the reduced Lagrange function) corresponding to lagrangian (1) would become
a quadratic one with constant coefficients.

For this purpose, find the cyclic velocities q̇i (i = 1, . . . ,m) from equations
(2). It is possible in virtue of the assumption that system (2) is nondegenerate.
Next we construct the Routh function

R = L−
m∑

k=1

pk q̇k = − 1
2Δ

m∑
i=1

m∑
j=1

aij pipj +
1
Δ

n∑
k=m+1

q̇k

m∑
i=1

pi

m∑
j=1

Fjk aji

+
1

2Δ

n∑
l=m+1

q̇l

n∑
k=m+1

q̇k [ΔFlk −
m∑

j=1

Fjl

m∑
r=1

Frk arj]

−1
2

n∑
i=m+1

n∑
j=m+1

cij qiqj , (3)

which corresponds to the initial Lagrange function (1). Here Δ = det‖Fkj‖ is
the determinant of system (2), aij are algebraic complements of the elements
Fij in matrix ‖Fij‖ of system (2). In case when m = 1 we shall suppose that
aij = 1 and Δ = F11.

The Routh function (3) will be quadratic with respect to the variables qm+1,
. . . , qn, q̇m+1, . . . , q̇n when the following conditions

aij

Δ
= (αij m+1qm+1 + . . . + αij nqn)2 + rij = βij (i, j = 1, . . . ,m), (4)

m∑
j=1

Fjk aji = Δ

n∑
l=m+1

ωikl ql = Δsik (k = m+ 1, . . . , n; i = 1, . . . ,m), (5)

1
Δ

[ΔFlk −
m∑

j=1

Fjl

m∑
r=1

Frk arj] = Blk (l = m+ 1, . . . , n; k = m+ 1, . . . , n) (6)

hold. Here αij k, Blk, rij , and ωikl are some constants, βij , sik are the denota-
tions of expressions in (4) and (5).

On Reduction of Lagrange Systems 125

From equations (4)–(6) we can find the values of Fij , what allows us to write
down the explicit form of lagrangian (1) and, hence, to define the class of la-
grangians of type (1), which can be reduced to quadratic ones with the aid of
Legendre’s transformation.

Having used the known relation between the elements of the second adjunct
matrix and the elements of the initial matrix Aij = FijΔ

m−2 as well as the
expression for the determinant of the adjunct matrix

det‖aij‖ = Δm−1 (7)

and (4), we can write Fij (i, j = 1, . . . ,m) as follows:

Fij =
Aij

Δm−2 =
1

Δm−2Dij ||Δβij || =
Δm−1

Δm−2Dij ||βkl|| = ΔDij ||βk l||
(i, j = 1, . . . ,m). (8)

Here, by Dij ||.|| we denote algebraic complements for the elements of the corre-
sponding matrix.

An expression forΔ can easily be obtained from (4) and (7). Indeed, according
to (4) we have aij = Δβij , and hence, det‖aij‖ = det‖Δβij‖ = Δmdet‖βij‖ =
Δm−1. From the latter we can find

Δ =
1

det‖βij‖ . (9)

When solving equations (5) with respect to Fkj (k = 1, . . . ,m; j = m+1, . . . , n),
we obtain the expressions for these coefficients:

Fkj =
m∑

i=1

Fk i sij (k = 1, . . . ,m; j = m+ 1, . . . , n). (10)

Equations (6) allow one to find the expressions for Fkl:

Fkl = Bkl +
m∑

i=1

Fil sik (k = m+ 1, . . . , n; l = k, . . . , n). (11)

Hence, we have shown that system (1) with the lagrangian, whose coefficients
Fij are defined by formulas (8)–(11), can be reduced to the quadratic Routh
function:

2R =
n∑

l=m+1

q̇l

n∑
k=m+1

Blk q̇k + 2
n∑

k=m+1

q̇k

m∑
i=1

pisik −
m∑

i=1

m∑
j=1

βij pipj

−
n∑

i=m+1

n∑
j=m+1

cij qiqj . (12)

Formulas (8)–(12) can easily be implemented with the aid of some general-
purpose computer algebra system, what allows one to construct the Routh func-
tion and the corresponding lagrangian for the systems of above class and of

126 V. Irtegov and T. Titorenko

desired dimension. The latter gives the possibility to investigate properties of
the reduced system and the specificities, which reveal in comparing properties
of the initial equations and the reduced ones, for various models.

Now, we consider a mechanical system, the Lagrange function of which and the
corresponding Routh function belong to the above class. The mechanical system
has two cyclic coordinates (m = 2) and three positional coordinates (n−m = 3).
We use formulas (8)–(12) to construct the lagrangian and the Routh function of
this system.

According to formula (12), the Routh function writes:

2R = 2(ω133q3 + ω134q4 + ω135q5)p1q̇3 + 2(ω233q3 + ω234q4 + ω235q5)p2q̇3
+B33q̇

2
3 + 2(ω143q3 + ω144q4 + ω145q5)p1q̇4 + 2(ω243q3 + ω244q4 + ω245q5)

×p2q̇4 + 2B34q̇3q̇4 +B44q̇
2
4 + 2(ω153q3 + ω154q4 + ω155q5)p1q̇5 + 2(ω253q3

+ω254q4 + ω255q5)p2q̇5 + 2B35q̇3q̇5 + 2B45q̇4q̇5 +B55q̇
2
5 − [2((α123q3

+α124q4 + α125q5)2 + r12)p1p2 + ((α113q3 + α114q4 + α115q5)2 + r11)p21
+((α223q3 + α224q4 + α225q5)2 + r22)p22] − (c33q23 + c44q24 + c55q25). (13)

Here q1, q2 are the cyclic coordinates, q3, q4, and q5 are the positional coordinates,
β11 = (α113q3+α114q4+α115q5)2+r11, β12 = β21 = (α123q3+α124q4+α125q5)2+
r12, β22 = (α223q3+α224q4+α225q5)2+r22, s13 = ω133q3+ω134q4+ω135q5, s14 =
ω143q3 +ω144q4 +ω145q5, s15 = ω153q3 +ω154q4 +ω155q5, s23 = ω233q3 +ω234q4 +
ω235q5, s24 = ω243q3 + ω244q4 + ω245q5, s25 = ω253ω3 + ω254q4 + ω255q5.

We shall seek the Lagrange function corresponding to the Routh function (13)
in the form:

2L = F11q̇
2
1 + 2F12q̇1q̇2 + F22q̇

2
2 + 2F13q̇1q̇3 + 2F23q̇2q̇3 + F33q̇

2
3 + 2F14q̇1q̇4

+2F24q̇2q̇4 + 2F34q̇3q̇4 + F44q̇
2
4 + 2F15q̇1q̇5 + 2F25q̇2q̇5 + 2F35q̇3q̇5

+2F45q̇4q̇5 + F55q̇
2
5 − (c33q23 + c44q24 + c55q25).

According to (9), Δ = [((α113q3 + α114q4 + α115q5)2 + r11)((α223q3 + α224q4 +
α225q5)2 + r22) − ((α123q3 + α124q4 + α125q5)2 + r12)2]−1.

Using formulas (8) we can write down the expressions for F11 = Δ((α223q3 +
α224q4 + α225q5)2 + r22), F12 = −Δ((α123q3 + α124q4 + α125q5)2 + r12), F22 =
Δ((α113q3 + α114q4 + α115q5)2 + r11). The rest of the coefficients Fij may easily
be expressed via the obtained ones with the use of (10), (11).

As a result, we obtain the following Lagrange function:

2L = F11q̇
2
1 + 2F12q̇1q̇2 + F22q̇

2
2 + 2(s13F11 + s23F12)q̇1q̇3 + 2(s13F12 + s23F22)

×q̇2q̇3 + [B33 + s2
13F11 + 2s13s23F12 + s2

23F22]q̇2
3 + 2(s14F11 + s24F12)q̇1q̇4

+2(s14F12 + s24F22)q̇2q̇4 + 2[B34 + s13s14F11 + (s14s23 + s13s24)F12 + s23

×s24F22]q̇3q̇4 + [B44+s2
14F11+2s14s24F12+s2

24F22]q̇2
4 + 2(s15F11+s25F12)

×q̇1q̇5 + 2(s15F12 + s25F22)q̇2q̇5 + 2[B35 + s13s15F11 + (s15s23 + s13s25)F12

+s23s25F22]q̇3q̇5 + 2[B45 + s14s15F11 + (s15s24 + s14s25)F12 + s24s25F22]

×q̇4q̇5 + [B55 + s2
15F11 + 2s15s25F12 + s2

25F22]q̇2
5 − c33q

2
3 − c44q

2
4 − c55q

2
5 . (14)

On Reduction of Lagrange Systems 127

For the purpose of further investigation, we have constructed the Routh equa-
tions of motion, which correspond to the Routh function (13), with the aid of
the software package [5]. These write:

B33q̈3 +B34q̈4 +B35q̈5 +A1p1q̇4 +A2p2q̇4 +A3p1q̇5 +A4p2q̇5 + c33q3
+2α123(α123q3 + α124q4 + α125q5)p1p2 + α113(α113q3 + α114q4 + α115q5)p21
+α223(α223q3 + α224q4 + α225q5)p22 = 0,

B34q̈3 +B44q̈4 +B45q̈5 −A1p1q̇3 −A2p2q̇3 +A5p1q̇5 +A6p2q̇5 + c44q4
+2α124(α123q3 + α124q4 + α125q5)p1p2 + α114(α113q3 + α114q4 + α115q5)p21
+α224(α223q3 + α224q4 + α225q5)p22 = 0,

B35q̈3 +B45q̈4 +B55q̈5 −A3p1q̇3 −A4p2q̇3 −A5p1q̇4 −A6p2q̇4 + c55q5
+2α125(α123q3 + α124q4 + α125q5)p1p2 + α115(α113q3 + α114q4 + α115q5)p21
+α225(α223q3 + α224q4 + α225q5)p22 = 0. (15)

Here A1 = ω134−ω143, A2 = ω234−ω243, A3 = ω135−ω153, A4 = ω235−ω253, A5 =
ω145 − ω154, A6 = ω245 − ω254.

Note, the equations of motion obtained, unlike the case of the Routh function
(13), do not contain the parameters ω133, ω144, ω155, ω233, ω244, ω255. This is the
well-known fact, which means the following: in case of adding the full differential
to the integrand in the variational principle the corresponding Euler–Lagrange
equations do not change. It is substantial here that above parameters not only
enter the Lagrange function (14) but also the corresponding Lagrange equations.
We shall call the Routh function the “extended” one if it contains the parameters
which do not enter the Routh equations.

2.1 Invariant Sets of the Initial and Reduced System

Let us present some results of analysis related to the initial system and the
reduced one for the problem with the characteristic function (14).

Lagrangian (14) is a family of lagrangians parametrized by ω133, ω144, ω155,
ω233, ω244, ω255 (this function has 39 parameters on the whole). After the reduc-
tion, each lagrangian of this family with the cyclic integrals

V1 = F11q̇1 + F12q̇2 + (s13F11 + s23F12)q̇3 + (s14F11 + s24F12)q̇4 + (s15F11

+s25F12)q̇5 = p1, V2 = F12q̇1 + F22q̇2 + (s13F12 + s23F22)q̇3 + (s14F12

+s24F22)q̇4 + (s15F12 + s25F22)q̇5 = p2 (16)

corresponds to a family of quadratic Routh functions (13) with the parameters
p1, p2.

Now, we show that differential equations (15) have a family of IMs with the pa-
rameters ω133, ω144, ω155, ω233, ω244, ω255, and these manifolds may be obtained
algorithmically.

128 V. Irtegov and T. Titorenko

To this end, we write down the stationary conditions R with respect to
q̇3, q3, q̇4, q4, q̇5, q5:

∂R/∂q̇3 = B33q̇3 +B34q̇4 +B35q̇5 +D1q3 +D2q4 +D3q5 = 0,
∂R/∂q3 = D1q̇3 +D4q̇4 +D5q̇5 − (c33 + α2

113p
2
1 + 2α2

123p1p2 + α2
223p

2
2)q3

−(α113α114p
2
1 + 2α123α124p1p2 + α223α224p

2
2)q4 − (α113α115p

2
1

+2α123α125p1p2 + α223α225p
2
2)q5 = 0,

∂R/∂q̇4 = B34q̇3 +B44q̇4 +B45q̇5 +D4q3 +D6q4 +D7q5 = 0,
∂R/∂q4 = D2q̇3 +D6q̇4 +D8q̇5 − (c44 + α2

114p
2
1 + 2α2

124p1p2 + α2
224p

2
2)q4

−(α113α114p
2
1 + 2α123α124p1p2 + α223α224p

2
2)q3 − (α114α115p

2
1

+2α124α125p1p2 + α224α225p
2
2)q5 = 0,

∂R/∂q̇5 = B35q̇3 +B45q̇4 +B55q̇5 +D5q3 +D8q4 +D9q5 = 0,
∂R/∂q5 = D3q̇3 +D7q̇4 +D9q̇5 − (c55 + α2

115p
2
1 + 2α2

125p1p2 + α2
225p

2
2)q5

−(α113α115p
2
1 + 2α123α125p1p2 + α223α225p

2
2)q3 − (α114α115p

2
1

+2α124α125p1p2 + α224α225p
2
2)q4 = 0. (17)

From now on we employ the following denotations: D1 = p1ω133 + p2ω233, D2 =
p1ω134 + p2ω234, D3 = p1ω135 + p2ω235, D4 = p1ω143 + p2ω243, D5 = p1ω153 +
p2ω253, D6 = p1ω144 +p2ω244, D7 = p1ω145 +p2ω245, D8 = p1ω154 +p2ω254, D9 =
p1ω155 + p2ω255.

Having equated the determinant of system (17) to zero we can obtain the
conditions, under which equations (15) have IMs of interest for us. The system
considered is a multiparameter one, and in spite of its small dimension, the
determinant of this system is a rather bulky expression, whose complete analysis
is complicated. In order to simplify computations it is possible to solve the inverse
problem: for a given solution it is necessary to find the conditions imposed on
the parameters, under which this solution satisfies equations (17).

One of the solutions possible will be sought in the form:

q3 = x q̇3, q4 = y q̇4, q5 = z q̇5, (18)

where x, y, z are the coefficients to be determined.
Having removed the variables q3, q4, and q5 from equations (17) with the aid of

(18), as a result, we obtain a system of linear equations with respect to q̇3, q̇4, q̇5.
The conditions, under which the coefficients of these variables vanish, are the
desired conditions. These write:

x = −B33

D1
, y = −B44

D6
, z = −B55

D9
,

B34D1D6 = −B33B44Q1, B35D1D9 = −B33B55Q2, B45D6D9 = −B44B55Q3,

c33 = − D
2
1

B33
+Q4, c44 = − D

2
6

B44
+Q5, c55 = − D

2
9

B55
+Q6,

D1D2 = −B33Q1, D1D3 = −B33Q2, D1D6 = −B44Q1,

D6D7 = −B44Q3, D5D9 = −B55Q2, D8D9 = −B55Q3.

On Reduction of Lagrange Systems 129

Here Q1 = α113α114p
2
1 + (2α123α124p1 + α223α224p2)p2, Q2 = α113α115p

2
1 +

(2α123α125p1 +α223α225p2)p2, Q3 = α114α115p
2
1 +(2α124α125p1 +α224α225p2)p2,

Q4 = α2
113p

2
1 + (2α2

123p1 + α2
223p2)p2, Q5 = α2

114p
2
1 + (2α2

124p1 + α2
224p2)p2,

Q6 = α2
115p

2
1 + (2α2

125p1 + α2
225p2)p2.

Under above conditions, equations (18) write:

D1 q3 +B33q̇3 = 0, D6 q4 +B44q̇4 = 0, D9 q5 +B55q̇5 = 0. (19)

By using the definition of IM [6] we can easily verify that the found solution
is a family of IMs with the parameters ω133, ω144, ω155, ω233, ω244, ω255. This
family can be called stationary because it attributes a stationary value to the
characteristic function R of the system.

If we rewrite equations (15) in terms of deviations from the elements of the
above family of IMs, while introducing the variables y1 = D1 q3 + B33q̇3, y2 =
D6 q4 + B44q̇4, y3 = D9 q5 + B55q̇5, then we can obtain the following equations
of perturbed motion, and, respectively, the Routh function:

B33D
2
1ẏ1−B2

33Q1ẏ2−B2
33Q2ẏ3−D3

1y1+B33D1Q1y2 +B33D1Q2y3 = 0,
B2

44Q1ẏ1−B44D
2
6 ẏ2+B2

44Q3ẏ3−B44D6Q1y1+D3
6y2 −B44D6Q3y3 = 0,

B2
55Q2ẏ1+B2

55Q3ẏ2−B55D
2
9ẏ3−B55D9Q2y1−B55D9Q3y2 +D3

9y3 = 0, (20)

2R =
D2

1

B33
y2
1 − 2Q1y1y2 +

D2
6

B44
y2
2 − 2Q2y1y3 − 2Q3y2y3 +

D2
9

B55
y2
3

−(r11p21 + 2r12p1p2 + r12p22).

Having considered the expression R̄ = 2R+r11p21+2r12p1p2+r12p22 as a Lyapunov
function and computed the derivative due to differential equations (20) for this
expression, we obtain

dR̄

dt
=
D3

1

B2
33
y2
1 − Q1(B44D1 +B33D6)

B33B44
y1y2 +

D3
6

B2
44
y2
2 − Q2(B55D1 +B33D9)

B33B55
y1y3

−Q3(B55D6 + B44D9)
B44B55

y2y3 +
D3

9

B2
55
y2
3 .

When D1 < 0 ∧ D6 < 0 ∧ D9 < 0 ∧ Q1 = 0 ∧ Q2 = 0 ∧ Q3 = 0 ∧ B55 >
0∧B44 > 0∧B33 > 0 the quadratic form R̄ is positive definite, and its derivative
dR̄/dt is negative definite. Hence, due to the well-known theorem of Lyapunov’s
second method, we conclude that elements of the investigated family of IMs are
asymptotically stable under above conditions.

It can easily be verified that elements of the family of IMs (19) are “brought
up into” the phase spaces of Lagrange systems related to the Lagrange function
(14). In this case, for obtaining the IMs equations it is necessary to add equations
(16) to equations of IMs (19).

130 V. Irtegov and T. Titorenko

3 On Stationary Sets of a System with a Nonlinear
Routh Function

Here we consider an example of a mechanical system with a nonlinear Routh
function, for the analysis of which the above technique is used.

Consider the Lagrange problem related to the motion of a rigid body with
a fixed point in a central field of forces (Tisserand’s approximation). Here the
Lagrange function writes:

2L = AΘ̇2 + ψ̇2(A sin2Θ + C cos2Θ) + C(ϕ̇2 + ϕ̇ψ̇ cosΘ) − 2z0 cosΘ
−μ(A sin2Θ + C cos2Θ). (21)

The equations of motion admit the following cyclic integrals:

∂L

∂ψ̇
= ψ̇(A sin2Θ + C cos2Θ) + Cϕ̇ cosΘ = p2,

∂L

∂ϕ̇
= C(ϕ̇ + ψ̇ cosΘ) = p1.

Find ψ̇, ϕ̇ from the latter equations

ψ̇ =
(p2 − p1 cosΘ)
A sin2Θ

, ϕ̇ =
p1(A sin2Θ + C cos2Θ) − p2 cosΘ

AC sin2Θ

and construct the Routh function

R = L− p1ϕ̇− p2ψ̇ =
1
2
AΘ̇2 − z0 cosΘ − 1

2
μ(A sin2Θ + C cos2Θ)

− p
2
1

2C
− (p2 − p1 cosΘ)2

2A sin2Θ

with the aid of the Legendre transformation.
Having added toR the full derivative, we obtain the “extended” Routh function

R̃ = R+mΘ̇f(Θ), m = const.

Obviously, the latter does not change the Routh equations.
Let us write down the stationary conditions for R̃:

∂R̃

∂Θ̇
= AΘ̇ +mf(Θ) = 0,

∂R̃

∂Θ
= mΘ̇f ′(Θ) + z0 sinΘ − 1

2
μ(A− C) sin 2Θ

+
(p2 − p1 cosΘ)(p2 cosΘ − p1)

A sin3Θ
= 0.

Next, we require that the latter equations be dependent. For this purpose we
exclude Θ̇ from the 2nd equation with the aid of the first one. As a result, we
obtain the following condition of degeneration

On Reduction of Lagrange Systems 131

z0 sinΘ − 1
2
μ(A− C) sin 2Θ +

(p2 − p1 cosΘ)(p2 cosΘ − p1)
A sin3Θ

−m
2

A
f(Θ)f ′(Θ) = 0 (22)

for the system.
We consider this relation as a differential equation with respect to f(Θ). It

can be rewritten as

df2(Θ)
dΘ

=
2A
m2

(
z0 sinΘ − 1

2
μ(A− C) sin 2Θ +

(p2 − p1 cosΘ)(p2 cosΘ − p1)
A sin3Θ

)
.

After its integration we have:

f2(Θ) =
2A
m2 (−z0 cosΘ − 1

4
μ(A− C) cos 2Θ +

(2p2p1 cosΘ − p21 − p22)
2A sin2Θ

) +D,

D = const. (23)

Under this value of f(Θ), the Routh equation

d

dt
(
∂R̃

∂Θ̇
) − ∂R̃

∂Θ
= AΘ̈ − z0 sinΘ +

1
2
μ(A− C) cos 2Θ

− (p2 − p1 cosΘ)(p2 cosΘ − p1)
A sin3Θ

= 0, (24)

which is the same for R and R̃, as can easily be verified according to the defini-
tion, has the family of IMs:

AΘ̇ +mf(Θ) = 0 (25)

with parameters m and D. These parameters are not contained in the Routh
equation.

Let us reconstruct the Lagrange function corresponding to the “extended”
function R̃ according to the algorithm of section 2:

2L̃ = (A+
m2f2(Θ)A sin2Θ

(p2 − p1 cosΘ)2
)Θ̇2 + 2

mf(Θ)A sin2Θ

(p2 − p1 cosΘ)
Θ̇ψ̇ + (A sin2Θ

+C cos2Θ)ψ̇2 + Cϕ̇2 + 2C cosΘψ̇ϕ̇− 2z0 cosΘ − μ(A sin2Θ + C cos2Θ).

The cyclic integrals corresponding to L̃ write:

∂L̃

∂ψ̇
=
mf(Θ)A sin2Θ

(p2 − p1 cosΘ)
Θ̇ + ψ̇(A sin2Θ + C cos2Θ) + Cϕ̇ cosΘ = p2,

∂L̃

∂ϕ̇
= C(ϕ̇+ ψ̇ cosΘ) = p1. (26)

132 V. Irtegov and T. Titorenko

Differential equations for L̃ have the form:(
A+

m2f2(Θ)A sin2Θ

(p2 − p1 cosΘ)2
)
Θ̈ + 2

mf(Θ)A sin2Θ

(p2 − p1 cosΘ)
ψ̈ +

m2f(Θ)A sinΘ
(p2 − p1 cosΘ)3

×[(f ′(Θ) sinΘ + f(Θ) cosΘ)(p2 − p1 cosΘ) + f(Θ)p1 sin2Θ
]
Θ̇2

−1
2
(A− C) sin 2Θψ̇2 + C sinΘψ̇ϕ̇− z0 sinΘ +

1
2
μ(A− C) sin 2Θ = 0,

mf(Θ)A sin2Θ

(p2 − p1 cosΘ)
)Θ̈ +A sin2Θψ̈ +

mA sinΘ
(p2 − p1 cosΘ)2

[
(f ′(Θ) sinΘ + 2f(Θ) cosΘ)

×(p2 − p1 cosΘ) −mp1f(Θ) sin2Θ
]
Θ̇2 +A sin 2ΘΘ̇ψ̇ − p1Θ̇ sinΘ = 0. (27)

These contain parameter m, which does not enter Routh equation (24). The
second equation has been obtained here by means of differentiation of the first
cyclic integral (26).

After reducing to the normal form the first equation (27) writes:

Θ̈ =
sinΘ
A

[
A cosΘ

(mf(Θ)Θ̇
p2 − p1 cosΘ

+ ψ̇
)2

− p1
(mf(Θ)Θ̇
p2 − p1 cosΘ

+ ψ̇
)

+z0 − μ(A− C) cosΘ
]
.

Now, let us verify according to the definition of IM the fact that Lagrange
equations in our case assume the family of invariant manifolds:

AΘ̇ +mf(Θ) = 0,
∂L̃

∂ϕ̇
= C(ϕ̇ + ψ̇ cosΘ) = p1,

∂L

∂ψ̇
= A sin2Θ

(mf(Θ)Θ̇
p2 − p1 cosΘ

+ ψ̇
)

+ p1 cosΘ = p2. (28)

To this end, we compute the derivative of the first expression (28) due to the
Lagrange differential equations:

d

dt
(AΘ̇ +mf(Θ)) = AΘ̈ +mf ′(Θ)Θ̇ = sinΘ[A cosΘ

(mf(Θ)Θ̇
p2 − p1 cosΘ

+ ψ̇
)2

−p1
(mf(Θ)Θ̇
p2 − p1 cosΘ

+ ψ̇
)

+ z0 − μ(A− C) cosΘ] +mf ′(Θ)Θ̇. (29)

Having excluded Θ̇, ψ̇ from expression (29) with the aid of equations (28), we
may rewrite (29) as

cosΘ
A sin3Θ

(p2 − p1 cosΘ)2 − p1
A sinΘ

(p2 − p1 cosΘ) + z0 sinΘ

−μ(A− C) cosΘ sinΘ − 1
A
m2f ′(Θ)f(Θ).

Next, we replace the addend A−1m2f ′(Θ)f(Θ) with the expression obtained
from (22). As a result, we find that the latter expression becomes identically
zero.

On Reduction of Lagrange Systems 133

Hence we have shown that Lagrange differential equations in our case possess
the family of IMs defined by equations (28). Therefore, the family of IMs ob-
tained for the Routh equation (24) corresponds to the family of IMs (28) for the
Lagrange equations with the characteristic function L̃. Note that equations (28)
are obtained when we add the cyclic integrals (26) to the equation of IMs (25).
It can easily be verified that the family of manifolds (28) is invariant also for
the Lagrange equations corresponding to lagrangian (21) when f(Θ) is defined
by (23).

4 Conclusion

We have considered a class of the conservative Lagrange systems with cyclic
coordinates, which are reduced to the linear Routh systems with the aid of
the Legendre transformation. The latter allows one to reduce the problem of
qualitative analysis for the nonlinear systems of above type to linear systems.
An algorithm allowing one to reconstruct the lagrangian for the given Routh
function has been proposed.

In the paper, the proposed approach to investigation of the Lagrange sys-
tems has been demonstrated by an example of a mechanical system with two
cyclic coordinates and three positional coordinates. Some results of analysis of
the initial system and the reduced one have been given. In particular, the invari-
ant manifolds of the reduced system, which attribute a stationary value to the
“extended” Routh function of this system and possess the property of asymp-
totic stability, have been obtained. The comparison of IMs and their qualitative
properties both for the Routh system and for the initial one has been conducted.

Using the above technique, we have conducted an analysis of a mechanical
system with a nonlinear Routh function. The procedure of obtaining and in-
vestigation of qualitative properties of IMs both for the Routh system and the
Lagrange system have been applied. This procedure is based on the analysis of
stationary conditions of the “extended” Routh function.

References

1. Borisov, A.V., Mamayev, I.S.: Poisson Structures and Lie Algebras in Hamiltonian
Mechanics. Udmurdsk University, Izhevsk (1999)

2. Elkin, V.I.: Reduction of Nonlinear Control Systems. FAZIS-Computing Center of
RAS, Moscow (2003)

3. Griffits, F.: External Differential Forms and Variational Calculus. NFMI, Novosi-
birsk (1999)

4. Lurier, A.I.: Analytical Mechanics. GIFML, Moscow (1961)
5. Irtegov, V.D., Titorenko, T.N.: Using the system “Mathematica” in problems of

mechanics. Mathematics and Computers in Simulation 3-5(57), 227–237 (2001)
6. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer,

New York (1993)

Series Transformations to Improve and Extend
Convergence

G.A. Kalugin and D.J. Jeffrey

The University of Western Ontario, Department of Applied Mathematics,
London, Ontario, Canada

Abstract. We consider a new invariant transformation of some pre-
viously known series for the Lambert W function. The transformations
contain a parameter p which can be varied, while retaining the basic series
structure. The parameter can be used to expand the domain of conver-
gence of the series. The speed of convergence, that is the accuracy for a
given number of terms, can increase or decrease with p. Theoretical and
experimental investigations that rely heavily on the computer-algebra
system Maple are described.

1 Introduction

The LambertW function is the inverse of the mapping z �→ zez. The inverse is a
multivalued function denoted Wk, and the branches of this multivalued function
are fixed by defining Wk through the equations [1]

∀z ∈ C,Wk(z) exp(Wk(z)) = z , (1)
Wk(z) → lnk z for (z → ∞ . (2)

Here, lnk z is the kth branch of logarithm, namely lnk z = ln z+2πik, where ln z
is the principal branch of natural logarithm [2]. Lambert W and its branches
are important in the study of delay-differential equations. The simplest delay
equation, using the notation ẏ = dy

dt for the derivative with respect to time, is

ẏ(t) = ay(t− 1) ,

subject to the condition on −1 ≤ t ≤ 0 that y(t) = f(t) , a known function. The
solution can be expressed as the sum [3]

y(t) =
∞∑

k=−∞
ck exp (Wk(a)t) ,

where the ck can be determined from the initial conditions. One sees immediately
that the solution will grow exponentially if any of the Wk(a) has a positive
real part, which leads to important stability theorems in the theory of delay
equations. Other applications are given in [1].

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 134–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Series Transformations to Improve and Extend Convergence 135

In this paper, we use the computer-algebra system Maple to investigate the
properties of series expansions for W . We focus on a number of asymptotic
expansions for large z; these are also valid for non-principal branches around
z = 0. One practical application of the series is to provide initial estimates for
the numerical evaluation of W ; these estimates can then be refined using itera-
tive schemes to provide the arbitrary precision computations used in computer
algebra systems. The series also have intrinsic interest. For example, the defi-
nition above of the branches Wk is based on partitioning the plane using the
asymptotic series. Another interest is the fact that the asymptotic series are also
convergent, and the nature of the convergence is one particular interest of this
paper. In this paper, we shall mostly be concerned with the principal branch
k = 0, which is the only branch that is finite at the origin. We shall abbreviate
W0 to W for the rest of the article.

The first asymptotic series is that found by de Bruijn [4] and Comtet [5] as

W (z) = ln z − ln ln z + u , (3)

where u has the series development

u =
∞∑

n=1

n∑
m=1

(−1)n−m

[
n

n−m+ 1

]
σn−mτm

m!
, (4)

where σ = 1/ ln z and τ = ln ln z/ ln z, and where
[

n
n−m+1

]
denotes Stirling Cycle

Numbers, also called the unsigned Stirling numbers of the first kind [6,7]. This
series was rearranged in [8] by introducing the new variable ζ = 1/(1+σ) to get

u =
∞∑

m=1

τm

m!

m−1∑
k=0

{
k +m− 1

k

}
≥2

(−1)k+m−1ζk+m , (5)

where the 2-associated Stirling Subset Numbers [6,7] appear. Two further ex-
pansions introduce the variables Lτ = ln(1 − τ) and η = σ/(1 − τ).

u = −Lτ +
∞∑

n=1

(−η)n
n∑

m=1

(−1)m

[
n

n−m+ 1

]
Lm

τ

m!
, (6)

u = −Lτ +
∞∑

m=1

1
m!
Lm

τ η
m

m−1∑
k=0

{
k +m− 1

k

}
≥2

(−1)k+m−1

(1 + η)k+m
. (7)

All of these expansions are limited in their domain of applicability by the fact
that σ and τ are each singular at z = 1, restricting their utility to z > 1. In
addition to the domain of validity of the variables, there is the question of the
domain of convergence of the series. For example, we show below that for z ∈ R,
series (4) is convergent only for z > e.

In this paper, we consider transformations of the above series. We shall con-
centrate on the properties of the series for z ∈ R. Our aims are to improve
the convergence properties with respect to domain of convergence and with re-
spect to rate of convergence. We shall do this using theoretical and experimental
methods.

136 G.A. Kalugin and D.J. Jeffrey

2 Computer Algebra Tools

We shall be using a number of tools from Maple in the work below. The co-
efficients appearing in the expansions (4) and (5) can be computed from their
generating functions as follows. The 2-associated Stirling subset numbers are
defined by the generating function

(ez − 1 − z)m = m!
∑
n≥0

zn

n!

{
n

m

}
≥2

.

Given numerical values for n and m, we expand the left-hand side symbolically
up to the term of nth order and then extract the appropriate numerical coeffi-
cient. The next lines show an implementation of this procedure with examples
in Maple.

> StirlingSubset2:=proc(n::integer, m::integer)
option remember;
local f,z;
f:=series((exp(z)-1-z)^m , z , n+1);
if n<2*m then

0
else

coeff(f,z,n)*n!/m!;
end if;

end proc;

> StirlingSubset2(6,3),StirlingSubset2(9,4),StirlingSubset2(12,5);
15, 1260, 190575

It can be noted that a similar method to this is used in the standard Maple
library for Stirling Cycle numbers, which are used in (4). In practice, it is more
efficient to store all of the coefficients from any series expansion, but this level of
detail is not shown here. Similar techniques can be used for the Eulerian numbers
used below in (23).

Another important tool from Maple for this paper is computation to arbi-
trary precision. It is a standard topic in numerical analysis that summing series
requires a close watch on the effects of working precision, otherwise one runs the
risk of generating ‘numerical monsters’ which are completely artificial effects of
the computation and do not reflect any actual mathematical properties [9]. In
all of the calculations below, the Maple environment variable Digits was set
and monitored to ensure that the results were reliable.

3 An Invariant Transformation

We reconsider the derivation of (4), replacing (3) with the ansatz

W = ln z − ln(p+ ln z) + u . (8)

Series Transformations to Improve and Extend Convergence 137

Substituting into the defining equation WeW = z, we obtain(
ln z − ln(p+ ln z) + u

)
zeu

p+ ln z
= z

From this, it is clear that if we define

σ =
1

p+ ln z
and τ =

p+ ln(p+ ln z)
p+ ln z

, (9)

then we recover the equation originally given by de Bruijn for u.

1 − τ + σu− e−u = 0 . (10)

The remarkable property is that (10) is invariant with respect to p, with only
the definitions of σ and τ being changed. From (10), the expansion (4) is
derived [5].

We now consider the properties of the transformations for z ∈ R. We shall
start with p ∈ R and later consider briefly one complex value of p. Both σ and
τ are singular at zs = e−p, with the special case p = 0 recovering the previous
observations regarding the singularities at z = 1. We note σ is monotonically
decreasing on z > zs. For τ , we have τ(z0) = 0 at z0 = exp(zs−p), with τ positive
for larger z and negative for smaller. Also we note that τ has a maximum at
z = exp(ezs−p). In Figure 1, we plot σ and τ , defined by (9), for different values
of p. We see that for all z > zs, σ decreases with increasing p, but τ increases. In
view of the form of the double sums above it is not obvious whether convergence
is increased or decreased as a result of these opposed changes. This is what we
wish to investigate here.

Fig. 1. Dependence σ and τ on z for different values of parameter p

138 G.A. Kalugin and D.J. Jeffrey

4 Domain of Convergence

We wish to investigate first the domains of z ∈ R for which the various series
above converge, and how the domains vary with p. We begin with a theoretical
result for p = 0.

Theorem 1. The series (4) converges for p = 0 for all z ≥ e.
Proof. For p = 0, we have τ = −σ lnσ. We write (10) in the form

1 − τ + σu − e−u = g(u) + f(u;σ, τ) = 0 , (11)
g(u) = 1 − e−u and f(u;σ, τ) = σu− τ .

We now consider this equation in the complex plane of u. For any analytic
function F (ζ) with a single isolated zero at ζ = u inside a contour C, we can
use Cauchy’s integral formula to write

u =
1

2πi

∫
C

F ′(ζ)
F (ζ)

ζ dζ . (12)

Thus for our case, we have

u =
1

2πi

∫
C

e−ζ + σ
1 − e−ζ + σζ − τ ζ dζ =

1
2πi

∫
C

e−ζ + σ
g(ζ) + f(ζ;σ, τ)

ζ dζ , (13)

provided we can find the contour C.
For z ≈ e while z > e, we have σ ≈ 1 and σ < 1. We define δ > 0 by σ = (1−δ).

A contour which satisfies the requirements is the rectangular contour

ζ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ + it , −2δ1/2 ≤ t ≤ 2δ1/2 ,

t+ 2δ1/2i , −2 ≤ t ≤ δ ,
−2 + it , −2δ1/2 ≤ t ≤ 2δ1/2 ,

t− 2δ1/2i , −2 ≤ t ≤ δ .

(14)

It is straightforward for Maple show that on this contour |g| > |f |. Rouché’s
theorem states that g and f + g have the same number of zeros within C. Since
g(u) = 0 for u = 0, the function f + g has a single isolated zero as desired.

In addition to satisfying the conditions of the integration, the contour allows
us to evaluate the integral by expanding the denominator of the integrand as an
absolutely and uniformly convergent power series in f/g.

1
1 − e−ζ + σζ − τ =

∞∑
k=0

∞∑
m=0

(1 − e−ζ)−k−m−1ζkσkτm(−1)k+1Cm+k
m . (15)

Substituting this expansion into (13) and integrating term by term, we obtain u
as the sum of an absolutely convergent double power series in σ and τ , provided
z > e.

Series Transformations to Improve and Extend Convergence 139

The domain of convergence cannot be extended to z < e, because the series
for du/dz diverges at z = e. This can be seen by noting that τ = 0 at z = e (for
p = 0). All terms reduce to zero except m = 1 which gives the sum

1
e

∞∑
k=0

(−1)k ,

which is divergent. �
In general, the precise domain of convergence is not of high importance, al-
though its characterization remains an interesting mathematical challenge. The
important point is to establish whether the domain of convergence increases or
decreases, so that numerical procedures can be designed accordingly. Therefore,
rather than devote space here to accumulating formal proofs for all the different
cases, we can use numerical means as a rapid method to ascertain trends in
the domains of convergence for all series. The method is simply to compute the
partial sum of a series to a high number of terms, using extended floating-point
precision as necessary, and then to plot the ratio of the partial sum to the exact
value (the exact value is obtained by means other than series summation). The
edge of the domain of convergence is then signaled by rapid oscillations and by
marked deviations from the desired ratio of 1. Thus for the series just discussed,
namely (4), we have plotted in Figure 2 the partial sum to 40 terms for different
values of p. For p = 0, we see a nice illustration of theorem 1, with the partial
sum becoming unstable in the vicinity of z = e. For positive p, we see the domain
of convergence increased and for negative p it is decreased.

Similar effects can be seen for (5), we plot in Figure 3 the partial sums for
40 terms as p varies. The domain of convergence for each p is clearly seen, and
confirms that the point of divergence moves to larger z for decreasing p and to
the left for increasing p.

Fig. 2. For series (4), the ratio W (40)(z, p)/W (z) as functions of z for p = −1/2, 0, 1

140 G.A. Kalugin and D.J. Jeffrey

Fig. 3. For series (5), the ratio W (40)(z, p)/W (z) as functions of z for p = −1, 0, 1.
Compared with Figure 2, this shows convergence down to smaller z.

Fig. 4. For series (6), the ratio W (40)(z, p)/W (z) against z for p = −1, 0, 1, 2. Compared
with figures 2 and 3, the changes in convergence are no longer monotonic in p.

A similar investigation of series (6) shows an interesting non-monotonic change
in the domain of convergence. In Figure 4 the partial sums are plotted and the
boundary of the domain of convergence moves to the right for p �= 0.

We can summarize these findings by noting that series (5) has the widest
domain of convergence, and the best behaviour with p, while the domains of
convergence for series (4) and (6) become worse in that order.

5 Rate of Convergence

By rate of convergence, we are referring to the accuracy obtained by partial
sums of a series. Given two series, each summed to N terms, the series giving on

Series Transformations to Improve and Extend Convergence 141

Fig. 5. For series (4) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1

Fig. 6. For series (5) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1

average a closer approximation to the converged value is said to converge more
quickly. The qualification ‘on average’ is needed because it will be seen in the
plots below that the error regarded as a function of z can show fine structure
which confuses the search for a general trend. Further, the comparison of rate
of convergence between different series can vary with z and p. For some ranges
of z, one series will be best, while for other ranges of z a different series will be
best. Although one series may converge on a wider domain than another, there
is no guarantee that the same series will converge more quickly on the part of
the domain they have in common. The practical application of these series is to
obtain rapid estimates for W using a small number of terms, and for this the
quickest convergence is best, but this will be dependent on the domain of z.

The previous section showed that positive values of the parameter p extend
the domain of convergence of the series, but its effect on rate of convergence is
different. Figures 5, 6 and 7 show the dependence on z of the accuracy of compu-
tations of the series (4),(5) and (7) respectively with N = 10 for p = −1,−1/2, 0
and 1. One can see that the behaviour of the accuracy is non-monotone with
respect to both z and p although some particular conclusions can be made. For
example, one can observe that for the series (4) at least for z < 30 within the
common domain of convergence the accuracy for p = −1/2, 0 and 1 is higher
than for p = −1. The series (5) and (7) have the same domain of convergence
and a very similar behaviour of the accuracy. Specifically, for these series an
increase of positive values of p reduces a rate of convergence within the common

142 G.A. Kalugin and D.J. Jeffrey

Fig. 7. For series (7) with N = 10, changes in accuracy in z for p = −1,−1/2, 0 and 1

Fig. 8. For series (4), the accuracy as a function of p at fixed point z = 18 for N = 10, 20
and 40

Fig. 9. For series (5), the accuracy as a function of p at fixed point z = 9 for N = 10, 20
and 40

Series Transformations to Improve and Extend Convergence 143

domain of convergence i.e. for z > 1.5. However, at the same time for z > 11
computations with p = −1 are more accurate than those with positive p and for
5 < z < 18 the highest accuracy occurs when p = −1/2.

The next two figures 8 and 9 display the dependence of convergence properties
of the series (4) and (5) respectively on parameter p for different numbers of
terms N = 10, 20 and 40. Again, the curves in these figures confirm that the
accuracy strongly depends on parameter p and is non-monotone and show that
on the whole an increase of the number of terms improves the accuracy. It is
also interesting that there exists a value of p for which the accuracy at the given
point is maximum; this value depends very slightly on N and approximately is
p ≈ −0.75 in Figure 8 and p ≈ −0.5 in Figure 9.

The explained behaviour of the accuracy depending on parameter p shows
that introducing parameter p in the series can result in significant changes in
accuracy. The pointed out non-monotone effects of parameter p on a rate of
convergence can be due to the aforementioned non-monotone behaviour of τ .

6 Branch −1 and Complex p

The above discussion has considered only real values for the parameter p. We
briefly shift our consideration to complex p and to branch −1. For z in the
domain −1/e < z < 0, we have that W−1(z) takes real values in the range
[−1,−∞). The general asymptotic expansion (2) takes the form

W−1(z) = ln(z) − 2πi− ln(ln(z) − 2πi) + u . (16)

This will clearly be very inefficient for z ∈ [−1/e, 0) because each term in the
series will be complex, and yet the series must sum to a real number. If, however,
we utilize the parameter p, we can improve convergence enormously.

We again adopt the ansatz used above to write

Wk(z) = [lnk z + p] − [p+ ln(p+ lnk z)] +
p+ ln(p+ lnk z)

p+ lnk z
+ v , (17)

where v stands for the remaining series which will not be pursued here. By
setting p = iπ, we can rewrite [ln−1 z + iπ] as ln(−z). A numerical comparison
of partial sums can be used to show the improvement. We compare

W
(1)
−1 = ln(z) − 2πi− ln(ln(z) − 2πi) +

ln(ln(z) − 2πi)
ln(z) − 2πi

, (18)

Ŵ−1 = ln(−z) − ln(− ln(−z)) +
ln(− ln(−z))

ln(−z) . (19)

The results are shown in table 1. We note that the transformed series is exactly
correct at z = −1/e and asymptotically correct as z → 0, and therefore the error
is a maximum somewhere in the domain. In contrast the untransformed series
has an error that increases as z → −1/e.

144 G.A. Kalugin and D.J. Jeffrey

Table 1. Numerical comparison of series transformation with p = iπ

z W−1(z) Ŵ−1(z) W
(1)
−1 (z)

−0.01 −6.4728 −6.4640 −6.3210 − 0.04815i
−0.1 −3.5772 −3.4988 −3.4124 − 0.3223i
−0.2 −2.5426 −2.3810 −2.5182 − 0.5153i
−0.3 −1.7813 −1.5438 −2.0087 − 0.6621i
−1/e −1 −1 −1.7597 − 0.7450i

Fig. 10. Errors in approximations (18) and (19) for W−1

The accuracy is also shown graphically in figure 10. Notice that although the
approximation Ŵ−1 given in (19) is exactly equal to W−1 at z = −e−1, the local
behaviour is different. We know that W−1 has a square-root singularity, while
Ŵ−1 is regular there. This is why the maximum error occurs at z = −e−1.

7 Taylor Series

We have seen that the transformation allows us to obtain series valid for a wider
range of z. We now observe that the Taylor series for W (z) around z = 0 is well
known [1]

W (z) =
∞∑

n=1

(−n)n−1

n!
zn. (20)

This converges for |z| < e−1. We can bridge the gap between the series above
and the Taylor series by a series around z = 1. We have [7,10] with ω = W (1)

W (x) = ω +
∞∑

n=1

an(lnx)n (21)

or by setting t = lnx

W (et) = ω +
∞∑

n=1

ant
n, (22)

Series Transformations to Improve and Extend Convergence 145

where

an =
1

n!(1 + ω)2n−1

n−1∑
k=0

〈〈
n− 1
k

〉〉
(−1)kωk+1 . (23)

This formula represents the expansion coefficients in terms of the second-order
Eulerian numbers [6,7]. We now show that these coefficients can also be repre-
sented through the unsigned associated Stirling numbers of the first kind d(m, k)
given by [5]

[ln(1 + v) − v]k = k!
∞∑

m=2k

(−1)m+k d(m, k)
vm

m!
(24)

and the 2-associated Stirling subset numbers used in the series (5).
Both representations can be obtained on the basis of a relation [2]

W (et) + lnW (et) = t (25)

and the Lagrange Inversion Theorem [11]. To apply this theorem it is convenient
to introduce a function that is zero at t = 0. We consider the function

v = v(t) =W (et)/ω − 1 (26)

and write (25) as
t = ω v + ln(1 + v). (27)

Then by the Lagrange Inversion Theorem we obtain

v =
∞∑

n=1

tn

n
[vn−1]

(
ω +

ln(1 + v)
v

)−n

(28)

where the operator [vp] represents the coefficient of vp in a series expansion in
v. Comparing (26),(22) and (28) leads to a formula for the coefficients an, which
after applying the binomial theorem becomes

an =
ω

n(1 + ω)n
[vn−1]

∞∑
k=0

(−1)k

(
n− 1 + k
n− 1

)
[ln(1 + v) − v]k
vk(1 + ω)k

(29)

or by (24)

an =
ω

n!

n−1∑
k=0

(−1)n+k−1 d(n+ k − 1, k)
(1 + ω)n+k

. (30)

If instead of function (26), we take

h = h(t) = W (et) − ω − t (31)

and apply the Lagrange Inversion Theorem to invert a relation

t = (e−h − 1)ω − h (32)

146 G.A. Kalugin and D.J. Jeffrey

coming from (25), then we find in a similar way

an =
1
n!

n−1∑
k=0

{
n+ k − 1

k

}
≥2

(−1)k+1ωk

(1 + ω)n+k
. (33)

Finally, one more representation for the coefficients an can be found in the
following way. Let us consider a function

ψ = ψ(t) = W (et) − t (34)

which is a simplified version of functions (26) and (31): now one does not need
to provide the zero function value at t = 0 and here ψ(0) = ω. Then it follows
from (25) that

t = e−ψ − ψ. (35)

This equation can also be obtained from the fundamental relation (10) by trans-
formation u = ψ + ln t, σ = 1/t and τ = ln t/t.

Differentiating (35) in t and excluding the term e−ψ from the result again
using (35) result in an initial value problem for ordinary differential equation

dψ

dt
= − 1

1 + t+ ψ
. (36)

Searching a solution in the form of series

ψ(t) = ω +
∞∑

n=1

cnt
n (37)

by substituting it into the differential equation and equating coefficients of the
same power in t one can finally find

c1 = − 1
1 + ω

, cn = − 1
n(1 + ω)

(
(n− 1)cn−1 +

n−1∑
k=1

kckcn−k

)
, for n ≥ 2 .

(38)
At length combining (37),(34) and (22) gives

a1 = 1 + c1, an = cn for n ≥ 2. (39)

In practice, computing the coefficients using (38) and (39) is found to be more
effective than using other representations. However, we have found some remark-
able combinatorial identities. For example, equating the right-hand sides of (23)
and (33) we obtain

1
(1 + ω)n−1

n−1∑
k=0

〈〈
n− 1
k

〉〉
(−1)k+1ωk+1 =

n−1∑
k=0

{
n+ k − 1

k

}
≥2

(−1)kωk

(1 + ω)k
.

Series Transformations to Improve and Extend Convergence 147

8 Concluding Remarks

We found an invariant transformation defined by the parameter p and applied
it to the series for the Lambert W function to obtain a family of series. We
studied an effect of parameter p on convergence properties of the transformed
series. It is shown that an increase of p results in an extension of the domain of
convergence of the series and thus the series obtained under the transformation
with positive values of p have a wider domain of convergence than the original
series does. However, at the same time a rate of convergence can be found to
be reduced when the parameter p increases. Therefore in such a case within
the common domain of convergence of the series with different positive values
of p the series with the minimum value of p would be the most effective. The
found relationships can be used, e.g. in evaluating of the Lambert W function
in computer algebra systems.

We also considered the well-known expansion of W (x) in powers of lnx and
found three more forms for a represenation of the expansion coefficients in terms
of the associated Stirling numbers of the first kind (30), the 2-associated Stirling
subset numbers (33) and iterative formulas (39)-(38). As a consequence some
combinatorial identities are obtained.

References

1. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the
Lambert W Function. Advances in Computational Mathematics 5, 329–359 (1996)

2. Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the Lambert
W function. Mathematical Scientist 21, 1–7 (1996)

3. Heffernan, J.M., Corless, R.M.: Solving some delay differential equations with com-
puter algebra. Mathematical Scientist 31(1), 21–34 (2006)

4. de Bruijn, N.G.: Asymptotic Methods in Analysis. North-Holland, Amsterdam
(1961)

5. Comtet, L.: C. R. Acad. Sc., Paris 270, 1085–1088 (1970)
6. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-

Wesley, Reading (1994)
7. Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A Sequence of Series for The Lambert

W Function. In: Proceedings of the ACM ISSAC, Maui, pp. 195–203 (1997)
8. Jeffrey, D.J., Corless, R.M., Hare, D.E.G., Knuth, D.E.: On the inversion of yαey

in terms of associated Stirling numbers. C. R. Acad. Sc., Paris 320, 1449–1452
(1995)

9. Essex, C., Davison, M., Schulzky, C.: Numerical monsters. SIGSAM Bulletin 34(4),
16–32 (2000)

10. Corless, R.M., Jeffrey, D.J.: The wright ω function. In: Calmet, J., Benhamou,
B., Caprotti, O., Hénocque, L., Sorge, V., et al. (eds.) AISC 2002 and Calculemus
2002. LNCS (LNAI), vol. 2385, pp. 76–89. Springer, Heidelberg (2002)

11. Carathéodory, C.: Theory of Functions of a Complex Variable, Chelsea (1954)

Differential Resultant, Computer Algebra and
Completely Integrable Dynamical Systems

Zoia Kostova1, Nikolay Kostov2, and Vladimir Gerdjikov2

1 Meridian 22 Private School, Block 227, Mladost 2, 1799 Sofia
zoia.1959@abv.bg

2 Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
Blvd. Tsarigradsko shousse 72, Sofia 1784, Bulgaria
nakostov@inrne.bas.bg, gerjikov@inrne.bas.bg

Abstract. For a pair of differential operators A and B with periodic
coefficients we construct their differential resultant and derive condition
for their commutativity. By considering this condition as a stationary
Lax representation we are able to treat completely integrable dynamical
systems. As special cases we obtain Hénon-Heiles dynamical systems. We
propose algorithms to do this by using the powerful methods of computer
algebra and performing symbolic calculations in Maple13 and Reduce4.

Keywords: computer algebra, Lax representation, Baker-Akhiezer func-
tion, differential resultant, algebra of commuting differential operators.

1 Introduction

The method of the differential resultant (see the monograph [2] and the references
therein) is an important tool for analyzing the algebras of differential operators.
It has been extensively used for developing algorithms for analytic calculations
for REDUCE, MAPLE and other high level packages. The present paper is an
extension of [3] and [23] and is organized as follows: section 2 describes the
basic facts about Lax representation, Baker-Akhiezer (BA) function Ψ(x, t, λ)
theory for finite–gap integration method. Next we study differential resultant
of ordinary differential operators, section 3. Section 4 is dedicated to extracting
left and right prime divisors of a given LODE and to the related Riccati type
equations. In section 5 we analyze classes of LODE allowing exponential and
polynomial solutions, as well as equations taking the form of exact differentials.
We close our paper with two examples analyzed earlier by Fordy [8]. He relates
the stationary KdV eq. of degree 5 and the stationary Sawada-Kotera equation
to the Hénon-Heiles completely integrable systems interpreted as commutativity
condition for two ordinary differential operators.

2 Preliminaries

We start with some basic facts about Baker–Akhiezer function Ψ(x, t, λ) which
will be used in the sequel. For systematic treatments and proofs, we refer the
reader to [25,4,21,6].

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 148–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Differential Resultant, Computer Algebra 149

Consider the following linear differential equations

AΨ(x, t, λ) = zΨ(x, t, λ), (1)
BΨ(x, t, λ) = λΨ(x, t, λ). (2)

where the differential operators A and B are defined by

A =
n∑

k=0

ak(x, t)Dk, (3)

B =
m∑

l=0

bl(x, t)Dl, D =
d

dx
. (4)

λ is the spectral parameter and z = z(λ). We consider the case when the coeffi-
cient functions ak(x, t) and bl(x, t) are periodic functions of x.

We assume that A and B satisfy the Lax representation [1] of the form:

At = [B,A]. (5)

Eq. (5) means that the system (3) and(
d

dt
−B

)
Ψ(x, t, λ) = λΨ(x, t, λ). (6)

have a common set of fundamental solutions. Of course this is possible only if the
spectral parameters z and λ are functionally related. Using Lax representations
with different choices of the operators A and B has resulted in discovering an
immense number of completely integrable systems, see [6,30,1,14].

The common fundamental solution Ψ(x, t, λ) for the class of periodic poten-
tials is known as the Baker-Akhiezer (BA) function. The BA functions have
been constructed for a wide class of operators A and B in terms of elliptic theta-
functions. They have become an important tool in the theory of finite-gap inte-
gration method for constructing explicit periodic and quasi-periodic solutions of
the nonlinear evolution equations possessing Lax representations (5).

The BA function Ψ(x, t, λ), which is general solution of the system (5), is
meromorphic function on the Riemann surface and has essential singularities of
prescribed form near fixed points on Riemann surface which is defined by

det(RRres(A(x, t)B(x, t)) = 0. (7)

where RResA(x, t)B(x, t)) is the differential resultant of operators A and B
defined below in Section 3.

Another important topic is to study the stationary equations

[B,A] = 0, (8)

which allows one to analyze finite dimensional dynamical systems.
In what follows we will outline on several examples how one can construct

these Riemann surfaces (or algebraic curves) using the ‘algcurve’ package of
Maple13, see [5].

150 Z. Kostova, N. Kostov, and V. Gerdjikov

3 Differential Resultant of Two Differential Operators

Following [2,9] let us consider the differential operators A (3) and B (4) with
coefficients ak ∈ Ck

I and bl ∈ Cl
I where Ck

I (resp. Cl
I) is the set of k-th (resp.

l-th) differentiable functions on the interval I of the real variable x.
We start by defining right resultant RRes (A,B) and left resultant LRes (A,B)

as follows: we act by the operators Dm−1, . . . , D, D0 = 1 on the left on A and
by the operators Dn−1, . . . , D, D0 = 1 on the left on B. Thus we obtain the
systems:

n+s∑
k=0

ak,sy
(k) = 0, s = 0 ÷ (m− 1), (9)

m+p∑
l=0

bl,py
(l) = 0, p = 0 ÷ (n− 1), (10)

where the coefficients ak,s and bl,p are computed by:

ak,s =
s∑

i=0

(
s

i

)
a
(s−i)
k−i , bl,p =

p∑
j=0

(
p

j

)
b
(p−j)
l−j . (11)

The right resultant of operators A and B RRes (A,B) is called the determinant
of the following resultant matrix R of degree (m+ n):

RRes (A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an+m−1,m−1 an+m−2,m−1 a0,m−1
0 an+m−1,m−2 a0,m−1

.
0 an,0 . . . a0,0

bn+m−1,n−1 bn+m−2,n−1 b0,n−1
0 bn+m−2,n−2 b0,n−1

.
0 bm,0 . . . b0,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12)

In order to introduce the left resultant we will need the the conjugated operators
A∗ and B∗ which are defined by:

A∗ =
n∑

r=0

n∑
k=r

(−1)k

(
k

r

)
a
(k−r)
k Dk, (13)

B∗ =
n∑

r=0

n∑
k=r

(−1)k

(
k

r

)
b
(k−r)
k Dk. (14)

Then the left resultant of operators A and B LRes (A,B) is called the resultant
matrix R∗ of degree (m+n), i.e. RRes (A,B) = det(R), LRes (A,B) = det(R∗).
By definition LRes (A,B) = RRes (A∗, B∗), where A∗ and B∗ are the conjugated
operators. The differential resultant answers to the question when the operators

Differential Resultant, Computer Algebra 151

A and B has right(left) divisor i.e. when the overdetermined system Ay = 0,
By = 0 (or A∗y = 0, B∗y = 0) has solution.

We will say that the systems Ay = 0, By = 0 are consistent if det(R) =
RRes (A,B) = 0; otherwise the systems are not consistent.

For applications of differential resultant see for example [2]. The most impor-
tant ones are the following: i) the criterion of existence of the greatest right and
left divisor of the system of operators; ii) the criterion of consistency of the sys-
tem of linear ordinary differential equations with one unknown function; iii) the
criterion of commutation of two linear differential operators; iv) the criterion of
existence of polynomial and exponential solutions of linear differential equations
with variable coefficients; v) the criterion of factorization of operators of degree
n into products of operators of degrees n− 1 and 1.

Example 1. Let us introduce the following equations

L1 ≡ Ay = x2y′′ + xy′ − (x2 + 1/4)y = 0, (15)
L2 ≡ By = 2xy′′ + (3 − 4x)y′ + (2x− 3)y = 0. (16)

Using (12) we obtain

RRes (A,B) =

∣∣∣∣∣∣∣∣
x2 3x −x2 + 3/4 −2x
0 x2 x −x2 − 1/4
2x 5x− 4 2x− 7 2
0 2x 3 − 4x 2x− 3

∣∣∣∣∣∣∣∣
=

9
4
x2(x− 1)(4x− 1)(4x2 − 4x+ 3).

(17)

Problem 1. Find the differential resultant of operatorsA andB introduced above
in eqs. (3) and (4).

Algorithm 1. We solve problem 1 by the procedure DIFRESULT(a, n, b,m, x);
Next we outline the algorithm 1. Using (11) with given coefficients of the differ-
ential operators A and B we compute the elements of the resultant matrix, after
that we find the determinant. The output is RRes (A,B) = det(R), where R is
the resultant matrix.

Input
a is the array of coefficients of differential operator A;
n is the degree of differential operator A;
b is the array of coefficients of differential operator B;
m is the degree of differential operator B;
x is independent variable.
Output: The resultant of two differential operators A and B, (17).

152 Z. Kostova, N. Kostov, and V. Gerdjikov

4 The Generalized Riccati Equation

4.1 Prime Right Divisor of Operator L

Let us consider the differential operator A of degree n (3). A necessary and
sufficient conditions for the following factorization:

A = A2(D − α), ordA2 = n− 1

is given by RRes (A,D − α) = 0.

RRes (A,D − α) =

∣∣∣∣∣∣∣∣∣∣
an an−1 . . . a2 a1 a0

1 −α . . . −(n−1
n−3

)
α(n−3) −(n−1

n−2

)
α(n−2) −α(n−1)

.
0 0 . . . 1 −α −α′

0 0 . . . 0 1 −α

∣∣∣∣∣∣∣∣∣∣
. (18)

Then we find the following generalized Riccati equation of first kind N(α) of
degree (n− 1):

N(α) = L(α) +M(α),

where

L(α) =
n∑

k=0

akα
k,

and L(α) is called the pseudo-characteristic Riccati equation of first kind

M(α) =
n∑

k=1

akMk−1, Mk−1 = (D + α)k−1 − α(k−1)

and M(α) = 0 is called the reduced Riccati equation of first kind. When n = 2
the generalized Riccati equation of first kind has the form

N(α) ≡ a2α
′ + a2α

2 + a1α+ a0 = 0.

N(α) = 0 -generalized Riccati M(α) = 0 -reduced Riccati

4.2 Prime Left Divisor of Operator L

Consider again the differential operator A of degree n (3). The necessary and
sufficient conditions for the factorization of the form:

L = (D − α)L1, ord L1 = n− 1

is LRes (L,D − α) = RRes (L∗, D + α), i.e.∣∣∣∣∣∣∣∣∣∣
a∗n a

∗
n−1 . . . a∗2 a∗1 a∗0

1 α . . .
(
n−1
n−3

)
α(n−3)

(
n−1
n−2

)
α(n−2) α(n−1)

. .
0 0 . . . 1 α α′

0 0 . . . 0 1 α

∣∣∣∣∣∣∣∣∣∣
= 0.

Differential Resultant, Computer Algebra 153

Thus we obtain the generalized Riccati equationN∗(α) of second kind and degree
(n− 1):

N∗(α) ≡ L∗(α) +M∗(α) = 0,

where

L∗(α) ≡ L =
n∑

r=0

n∑
k=r

(−1)k

(
k

r

)
a
(k−r)
k αk = L∗

1(D + α). (19)

Then L∗(α) = 0 is the pseudo-characteristic Riccati equation of second kind and
M∗(α) = 0 is the reduced Riccati equation of second kind, where

M∗(α) =
n∑

r=1

n∑
k=r

(−1)k

(
k

r

)
a
(k−r)
k Mr−1, Mr = (D + α)r − α(r), (20)

When n = 2 the generalized Riccati equation of second kind has the form,

N∗(α) ≡ a2α
′ + a2α

2 + (−a1 + 2a′2)α+ a0 − a′1 + a′′2 = 0

As a consequence of problem 1 we have:

Problem 2. Let the operators L1 and L∗
1 are defined by the right hand sides of

eqs. (3) and (13). Find the generalized Riccati equation of first kind,

N1(α) = RRes (L1, D − α) = 0

and the generalized Riccati equation of second kind,

N∗
2 (α) = RRes (L∗

1, D + α)) = 0.

Algorithm 2. We solve the problem 2 by the procedure RICCATI(a, n, pp, x).

Input
a is the array of coefficients of differential operator L1;
n is the degree of differential operator L1;
pp is the kind of the Riccati equation (pp = 1 and pp = 2);
x is the independent variable.
Output: The generalized Riccati equation of first kind (pp = 1) and of second

kind (pp = 2).
R1: If pp = 1 then go to R2 else go to R3;
R2: ! L2 = (D − α)y;

b is the array of coefficients of operator L2;
m := 1 ; N1(α) := DIFRESULT(a, n, b,m, x); return N1(α) �;

R3: ! L∗
1 is

L∗
1 ≡

n∑
r=0

n∑
k=r

(−1)k

(
k

r

)
a
(k−r)
k y(k),

a∗ is the array of coefficients of differential operator L∗
1, L∗

2 = (D + α)y;
b∗ is the array of the coefficients of differential operator L∗

2;
m := 1 ; N2(α) := DIFRESULT(a∗, n, b∗,m, x); return N2(α) �;

154 Z. Kostova, N. Kostov, and V. Gerdjikov

5 ODE Resolved by Algebraic Means

5.1 Linear Differential Equations with Exponential Solutions of
Type y = exp(−αx), α = const

The necessary and sufficient conditions for existence of such solutions is the
pseudo-characteristic Riccati equation of first kind L(α) = 0 and of second kind
L∗(α) to have solution α = const, i.e. RRes (L,D+α) = 0 or RRes (L∗, D−α) =
0. Then the linear differential equation

Ly =
n∑

k=0

akD
ky = 0, an �= 0, ak ∈ Ck

I . (21)

takes the form Ly = L2(D + α)y, where L2 is differential operator, ord (L2) =
n − 1, and the differential equation has exponential solution of the type y =
exp(−αx). In the case of linear equation of second order

Ly = a2(x)y′′ + a1(x)y′ + a0(x)y = 0, ak �= 0, ak ∈ Ck
I , k = 0÷ 2, (22)

the problem is to find the coefficients of factorization α1, α2 in Ly = (D −
α1)(D − α2)y = 0, where α1 = const or α2 = const. i.e. we consider the classes
of equations for which the associated Riccati equation of first type or of second
type in terms of α has constant solutions.

Problem 3. Consider eq. (21) with LODE of degree n. Find conditions which
ensure that eq. (21) has exponential solution y = exp(−αx), where α = const..

Algorithm 3. In our program the problem 3 is solved by the procedure

LIVDIF(a, d, n, x).
Input
a is the array of coefficients of operator L;
d is nonhomogeneous part of equation Ly;
n is the degree of differential operator L;
x is the independent variable.
Output If we find the particular solution of the form y = e−αx, α = const and

the differential equation is of degree two, then the coefficients of factorization
α1, α2 and the fundamental system of solutions y1(x), y2(x) are obtained. If
the degree of LODE is n > 2, then the degree of LODE is reduced by 1. If
the equation has no exponential solution the message is received.

D1: Algorithm 2 for finding the generalized Riccati equation of first type N1(α),
N1(α) := RICCATI(a, n, 1, x);

D2: L1(α) =
∑n

k=0 akα
(k) = 0 is the pseudo-characteristic equation of first

kind;
D3: M1(α) = N1(α) − L1(α) = 0; M1(α) - reduced equation of first kind;
D4: Subalgorithm for finding constant solution of algebraic

equation L1(α) in terms of α.
Output: constant solution α0, or
obtain message that the solution of this type does not exist,

Differential Resultant, Computer Algebra 155

D5: If α0 exists and is solution of M1(α) = 0 then go to D11 else go to D6;
D6: Algorithm 2 for finding the generalized Riccati equation of second type

N2(α) := RICCATI(a, n, 2, x);
D7:

L2(α) =
n∑

r=0

n∑
k=r

(−1)k

(
k

r

)
a
(k−r)
k αk (23)

(L2(α)-pseudo-characteristic equation of second type)
D8:

M2(α) = N2(α) − L2(α) (24)

(M2(α)-reduced Riccati equation of second type)
D9: Subalgorithm of finding constant solution of algebraic equation L2(α) in

terms of α
Output: the constant solution α0, or a message that such a solution does not
exist)

D10: If α0 exists and is solution of M2(α) = 0 then go to D11 else go to D13;
D11: If n = 2 then go to D12 else go to D13;
D12: ! α2 = α0; α1 = −(a1 + α2);

y1 = exp(D−1α1), y2 = y1D
−1 exp(D−1(α2 − α1)); (25)

Message ”The coefficients of factorization α1 and α2 and fundamental solu-
tions y1 and y2 are obtained ”;

D13: ! y1 = exp(D−1α0), Message ”The degree of differential equation is
reduced by 1”; New LODE := Sub(y = y1D

−1z, Ly); In equation

Ly =
n∑

k=0

akD
ky = 0, an �= 0, ak ∈ Ck

I (26)

we make the change of variables y = y1D
−1z where z is new variable) Return

New LODE ;
D14: Message ”The solution of exponential type does not exist”.

Algorithm 4. Subalgorithm for finding of constant solution of algebraic equation
L(α) in terms of α. In our program this subalgorithm is realized by procedure
HAREQ(L(α), α, x);
Output: The constant solution α0 of the equation L(α), or a message that such
solution does not exists.

Example 2

Ly = y′′ + (8 + sin(x)2)y′ + 8 sin(x)2y = 0; (′) = d/dx (27)

In the array a(n), n = 0 ÷ 2, we write the coefficients of the equation

a(2) := 1; a(1) := 8 + sin(x)2; a(0) := 8 sin(x)2; n := 2; d := 0; (28)

156 Z. Kostova, N. Kostov, and V. Gerdjikov

Using the procedure LIVDIF(a, d, n, x); we seek for a particular solution of the
following type y = exp(−αx), where α = const., and if the differential equation
is of degree n = 2 , then we find the coefficients of factorization α1, α2 and the
fundamental system of solutions y1(x), y2(x), also the general solution. Then
we have the solution of differential equation of type y = exp(−8x), and the
coefficients of factorization are

α1 = 8; α2 = sin(x)2, (29)

and due to the fact that the equation is of second degree we may also find a
second solution

y2 = y1D
−1 exp(D−1(α2 − α1)), (30)

and general solution
y = C1y1 + C2y2. (31)

5.2 LODE with Polynomial Solutions

A necessary and sufficient conditions which ensures that the equation (21) allows
polynomial solutions of degree p ≤ m is RRes(L,Dm+1) = 0. Thus using the
differential resultant of operators L and Dm+1 we find the degree of the poly-
nomial solution of LODE (it it exists). After that by the method of indefinite
coefficients we find the coefficients of this polynomial and if the degree of LODE
is n = 2 we may obtain the general solution; when n > 2 we reduce by 1 the
degree of LODE.

Problem 4. Consider eq. (21) with LODE of degree n and find its polynomial
solution.

Algorithm 5. To solve the problem 4 we apply the procedure
POLDIF(a,n,x,hs);

Input
a is the array of coefficients of LODE Ly = 0,
n is the degree of differential operator L,
x is independent variable,
hs is the maximal degree of the polynomial solution,
Output:

If there exists polynomial solution of degree p ≤ hs, then in the case of n = 2
we find the general solution, and when n > 2 the degree is reduced by 1. If there
is no solution one gets the message that polynomial solution does not exist.

P1: i := 1;
P2: Algorithm 1 for finding the differential resultant RRes (L,Di);
P3: If RRes (L,Di) = 0, then go to P6 else go to P4;
P4: If i > hs then go to P12 else go to P5;
P5: ! i := i+ 1; go to P2 �;
P6: P:= i− 1;

Differential Resultant, Computer Algebra 157

P7: Message “P is the degree of polynomial solution”;
P8: Subalgorithm for finding the coefficients of the polynomial solution (Output-

polynomial solution)
P9: If n = 2 then go to P10 else go to P11;
P10: Find the fundamental system of LODE.

! y1 = polynomial solution;

y2 = y1D
−1 exp

(−D−1a1
)
y−2
1

Return y2, y1 �;
P11: The degree of LODE is reduced by 1.

! y1 = polynomial solution;
New LODE := Sub(y = y1D

−1z, Ly), where in equation

Ly =
n∑

k=0

akD
ky = 0, an �= 0, ak ∈ Ck

I (32)

we make the change of variables y = y1D
−1z where z is the new variable

Return New LODE �;
P12: Message “The polynomial solution of the LODE ”;

Algorithm 6. Subalgorithm for finding the coefficients of the polynomial solution
of the LODE.

In our program this subalgorithm is realized by the procedure
DEPOLDIF(a, n, x, p);

Input:
a is the array of coefficients of the differential equation Ly = 0
n is the degree of differential operator L,
x is independent variable,
p is the degree of polynomial solution of Ly = 0.
Output: The coefficients of the polynomial solution of by the method of indef-

inite coefficients.

Example 3
Ly = x2(ln(x) − 1)y′′ − xy′ + y = 0,

The array a(n), n = 0 ÷ 2, contain the coefficients of the given LODE.

a(2) := x2(ln(x) − 1); a(1) := −x; a(0) := 1; n := 2; hs := 3;

By using the procedure POLDIF(a, n, x, hs) we find the fundamental system of
solution y1 := x; y2 := − ln(x). Then the general solution is given by: y :=
C1x+ C2 ln(x);

158 Z. Kostova, N. Kostov, and V. Gerdjikov

5.3 The Equations in Terms of Exact Differentials

The equation (21) will be expressed in terms of exact differentials if it has the
following form

Ly = D

n−1∑
k=0

bkD
ky = 0, (33)

where
an = bn−1(x), a0 = b′0(x), ak+1 = (bk + b′k+1(x)), (34)

and k take values from 0 to n− 2. The necessary and sufficient conditions that
the left hand side of the equation Ly = 0 becomes exact differential is

n∑
k=0

(−1)ka
(k)
k (x) = 0. (35)

If the equation (21) is expressed in terms of exact differentials, and if n = 2
we may find the general solution of this equation. For n > 2 we may find first
integral.

Problem 5. Consider eq. (21) with LODE of degree n. Check if this LODE takes
the form of exact differentials. If this is true then find the general solution (when
n = 2) or a first integral (when n > 2).

Algorithm 7. To solve the problem 5 we apply the procedure
EQDIF(a,n,f(x),x);

Input:
a is the array of coefficients of LODE
n is the degree of differential operator L,
dl is the nonhomogeneous part of given LODE
x is independent variable,
Output:

Check if the given equation is in exact differentials. If this is true find the general
solution in the case n = 2 and first integral if n > 2; otherwise output the message
that the equation is not in exact differentials

E1:

∂ :=
n∑

k=0

(−1)ka
(k)
k (x) = 0, (36)

E2: If ∂ = 0 then go to E4 else go to E3;
E3: Message: ”This equation is not in exact differentials”.
E4: ! b(n− 1) := a(n); For k := (n− 2) Step (-1) Until 0 Do

b(k) := a(k + 1) − b′(k + 1). � (37)

E5: If n = 2 Then Go To E6 Else Go To E7;

Differential Resultant, Computer Algebra 159

E6:

y = exp
(−D−1a(1))(C2 +D−1(D−1f(x) + C1) exp(D−1a(1))

)
; (38)

(C1, C2 - are constants of integration, y - general solution of LODE)
E7:

L2y = D

n−1∑
k=0

bkD
ky. (39)

6 Differential Resultant and Algebra of Commuting
Differential Operators

The important results about the algebra of commuting differential operators
(ACDO) are outlined in [25,4,21,6,2,9]. The relation of ACDO with the hierar-
chy of stationary soliton equations are discussed in [30,29,24,26,27,28]. For basic
introductory course to hierarchy of stationary soliton equations we highly rec-
ommend the new book [14]. The fundamental relation of completely integrable
dynamical systems and algebraic curves are outlined in [7,10,1,16,12,13,15]. The
relation of a great number of completely integrable dynamical systems to Hill’s
equation are discussed in [22]. The investigation of soliton equations using com-
puter algebra is given in great details in [19,20,17,18]. We follow these results in
considering our basic examples.

Example 4. Fordy example, stationary KdV equation of degree 5 [8,14].

H =
1
2
(
p21 + p22

)
+

1
2
q1q

2
2 + q31 . (40)

The Hénon-Heiles system with Hamiltonian (40) allows stationary Lax represen-
tation (8) with

A = D2 + q1 − z, (41)
B = 16D5 + 40q1D3 + 60p1D2 − (120q21 + 25q22)D − 60q1p1 − 15q2p2 − λ.

The relevant algebraic curve is

z2 = −256λ5 − 32Eλ2 + 8Kλ (42)

E =
1
2
(
p21 + p22

)
+ q13 +

1
2
q1q

2
2 , K = q2p1p2 − q1p22 + q42 + 1/2q21q

2
2 .

This example show the abilities of the differential resultant to find the first
integrals and algebraic curve associated to given linear differential operators.

Example 5. Fordy example, stationary Sawada-Kotera equation [8].

H =
1
2
(
p21 + p22

)
+

1
2
q1q

2
2 − 1

6
q31 . (43)

160 Z. Kostova, N. Kostov, and V. Gerdjikov

We associate to this Hamiltonian (43) the following linear differential operators

A = D3 + q1D − z, (44)
B = 9D5 + 15q1D3 + 15p1D2 − (5q21 + 10q22)D − 60q1p1 − 15q2p2 − λ,

The associated algebraic curve obtained by differential resultant method has the
form

z3 = 729λ5 − 162Eλ3 +K2λ,

E =
1
2
(
p21 + p22

)
+

1
6
q13 +

1
2
q1q

2
2 , K = 3p1p2 +

3
2
q2q

2
1 +

1
2
q32 .

7 Conclusion

We have described briefly the solutions by REDUCE4 and MAPLE13 to sev-
eral problems of constructing commuting LODE. More details can be found by
downloading the file https://stardust.inrne.bas.bg/code/diff-res-pack.pdf or
https://stardust.inrne.bas.bg/code/diff-res-pack.tex.

Acknowledgements

We are grateful to anonymous referees for careful reading of the manuscript and
for useful suggestions.

References

1. Ablowitz, M.J., Clarkson, P.A.: Solutions, Nonlinear Evolution Equations and In-
verse Scattering. London Mathematical Society Lecture Notes on Mathematics,
vol. 149. Cambridge University Press, Cambridge (1991)

2. Berkovich, L.M., Berkovich, F.L.: Transformation and factorization of second order
linear ordinary differential equations and its implementation in Reduce, Samara
(2002)

3. Berkovich, L.M., Gerdt, V.P., Kostova, Z.T., Nechaevsky, M.L.: Second Order Re-
ducible Linear Differential Equations. In: Applied Packages. Software for Methe-
matical Simulation, pp. 9–24. Nauka Publishers, Moscow (1992)

4. Cherednik, I.V.: Differential equations of the Baker–Akhiezer functions of algebraic
curves. Funct. Anal. Appl. 12, 195–203 (1978)

5. Deconinck, B., Heil, M., Bobenko, A., van Hoeij, M., Schmies, M.: Computing
Riemann Theta Functions. Mathematics of Computation 73, 1417–1442 (2004)

6. Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of the KdV
type, finite gap linear operators and abelian varieties. Uspekhi Matem. Nauk 31(1),
55–135 (1976)

7. Enol’skii, V.Z., Kostov, N.A.: On the geometry of elliptic solitons. Acta Appl.
Math. 36, 57–86 (1994)

8. Fordy, A.P.: The Hénon-Heiles system revisited. Physica 52D, 201–210 (1991)
9. Ganzha, V.G., Vorozhtsov, E.V.: Computer-aided analysis of difference schemes

for partial differential equations. Wiley, Chichester (1996)

Differential Resultant, Computer Algebra 161

10. Gesztesy, F.: On the Modified Korteweg–de-Vries Equation. In: Goldstein, J.A.,
Kappel, F., Schappacher, W. (eds.) Differential Equations with Applications in
Biology, Physics, and Engineering, pp. 139–183. Marcel Dekker, New York (1991)

11. Gesztesy, F., Weikard, R.: Spectral deformations and soliton equations. In: Ames,
W.F., Harrell II, E.M., Herod, J.V. (eds.) Differential Equations with Applications
to Mathematical Physics, pp. 101–139. Academic Press, Boston (1993)

12. Gesztesy, F., Weikard, R.: Treibich-Verdier potentials and the stationary (m)KdV
hierarchy. Math. Z. 219, 451–476 (1995)

13. Gesztesy, F., Weikard, R.: On Picard potentials. Diff. Int. Eqs. 8, 1453–1476 (1995)
14. Gesztesy, F., Holden, H.: Soliton equations and their algebro-geometric solutions.

In: (1+1)-dimensional continuous models Cambridge Studies in Advanced Mathe-
matics, vol. 79. Cambridge University Press, Cambridge (2003)

15. Gesztesy, F., Weikard, R.: Floquet theory revisited. In: Knowles, I. (ed.) Differen-
tial Equations and Mathematical Physics, pp. 67–84. International Press, Boston
(1995)

16. Gesztesy, F., Weikard, R.: Lamé potentials and the stationary (m)KdV hierarchy.
Math. Nachr. 176, 73–91 (2006)

17. Hereman, W., Angenent, S.: The Painleve test for nonlinear ordinary and partial
differential equations. MACSYMA Newsletter 6, 11–18 (1989)

18. Hereman, W., Zhuang, W.: Symbolic computation of solution with MACSYMA. In:
Ames, W.F., van der Houwen, P.J. (eds.) Computational and Applied Mathematics
II: Differential Equations, pp. 287–296. North-Holland, Amsterdam (1992)

19. Hereman, W.: Review of symbolic software for the computation of Lie symmetries
of differential equations. Euromath Bulletin 1(2), 45–82 (1994)

20. Hereman, W.: Symbolic software for Lie symmetry analysis. In: Ibragimov, N.H.
(ed.) CRC Handbook of Lie Group Analysis of Differential Equations, ch. 13, vol. 3.
CRC Press, Boca Raton (1995) (in Press)

21. Its, A.R.: Inversion of hyperelliptic integrals, and integration of nonlinear differen-
tial equations. Vest. Leningr. Gos. Univ. 7(2), 37–46 (1976)

22. Kostov, N.A.: Quasi-periodical solutions of the integrable dynamical systems re-
lated to Hill’s equation. Lett. Math. Phys. 17, 95–104 (1989)

23. Kostov, N.A., Kostova, Z.T.: Nonlinear waves, differential resultant, computer al-
gebra and completely integrable dynamical systems, arXiv:solv-int/9904015

24. Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic
geometry. Funct. Anal. Appl. 11, 12–26 (1977)

25. Krichever, I.M.: Methods of algebraic geometry in the theory of non-linear equa-
tions. Russ. Math. Surv. 32(6), 185–213 (1977)

26. Krichever, I.M.: Elliptic solutions of the Kadomtsev-Petviashvili equation and in-
tegrable systems of particles. Funct. Anal. Appl. 14, 282–290 (1980)

27. Krichever, I.M.: Nonlinear equations and elliptic curves. Revs. Sci. Technology 23,
51–90 (1983)

28. Krichever, I.M.: Elliptic solutions of nonlinear integrable equations and related
topics. Acta Appl. Math. 36, 7–25 (1994)

29. Li, Z., Schwarz, F., Tsarev, P.: Factoring systems of linear PDEs with finite-
dimensional solution spaces. Journal of Symbolic Computation, Special issue: Inter-
national symposium on symbolic and algebraic computation (ISSAC 2002) archive
36(3-4), 443–471 (2003)

30. Mikhailov, A.V., Shabat, A.B., Sokolov, V.V.: The symmetry approach to classifi-
cation of integrable equations. Uspekhi Math. Nauk 42, 3–53 (1987)

Generic, Type-Safe and Object Oriented
Computer Algebra Software

Heinz Kredel and Raphael Jolly

IT-Center, University of Mannheim, Germany and Databeans, Paris, France
kredel@rz.uni-mannheim.de, raphael.jolly@free.fr

Abstract. Advances in computer science, in particular object oriented
programming, and software engineering have had little practical impact
on computer algebra systems in the last 30 years. The software design
of existing systems is still dominated by ad-hoc memory management,
weakly typed algorithm libraries and proprietary domain specific inter-
active expression interpreters. We discuss a modular approach to com-
puter algebra software: usage of state-of-the-art memory management
and run-time systems (e.g. JVM) usage of strongly typed, generic, ob-
ject oriented programming languages (e.g. Java) and usage of general
purpose, dynamic interactive expression interpreters (e.g. Python) To
illustrate the workability of this approach, we have implemented and
studied computer algebra systems in Java and Scala. In this paper we
report on the current state of this work by presenting new examples.

1 Introduction

The great success of computer algebra systems like Maple or Mathematica in en-
gineering and science has lead to reduced efforts in the construction of software
components suitable for algorithmic and software engineering research. Maple
and Mathematica and numerical systems like Matlab, are currently required in
the daily work of many engineers and scientists. Therefore, the focus, market-
ing and presentation of these systems is oriented to the needs of engineers and
scientists: tool boxes with strong emphasis on documentation and education.
On the other side there is demand for software systems suitable for algorithmic
and software engineering research. For this research it is essential to control ev-
ery aspect of the software. The critique on systems like Mathematica or Maple
from this research groups vary from inappropriate or insufficient implementa-
tions of algorithms without the ability to repair or extend the code by better
implementations [1] to insufficient data type support [2,3], and requirements for
object oriented implementations [4]. The design chosen 30 years ago makes it
moreover difficult to evolve these systems according to current needs or ideas
[5,6]. Furthermore, the concepts of Maple and Mathematica are challenged by
Google web-application developments [7] in the same way as Microsoft Word is
challenged by Google web documents and toolkits [8]. The Eclipse Rich Client
Platform [9] is yet another alternative [10]. Additionally the software architec-
ture of these systems may not be suited for multi-CPU and Grid-Computing
with 10.000 to 100.000 processing nodes.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 162–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Generic, Type-Safe and Object Oriented Computer Algebra Software 163

Contemporary open source computer algebra software like Singular ([11,12]),
Kant, PariGP, Gap and others partially suffer from similar software architec-
tural origins as Maple or Mathematica. These systems are monolithic, highly
integrated software systems with nearly no public interfaces besides the com-
mand line shell. The low-level run-time system which provides mainly memory
management with automatic garbage collection is tightly coupled with the next
level of arithmetic algorithm implementations like integer arithmetic or polyno-
mial arithmetic. This structure is a great obstacle in the reuse of parts of the
implementations in other systems or projects. Nevertheless there is a very clever
attempt to provide a common interface to some of these systems with the Sage
project [13].

In this situation we undertook the experiment to rewrite major portions of a
computer algebra system in object oriented programming languages. We could
have joined efforts with Axiom/Aldor to a certain extent for our object oriented
approach. However, our two main motivations to use Java and Scala are: first,
to explore to which extent these programming languages are realy suited for this
task and second, have platforms which support Cloud computing (e.g. [14]) and
Smart devices (e.g. [15]).

1.1 Related Work

There is not much work published on object oriented programming for algebraic
or symbolic algorithm implementation. There is more work published on type
systems for computer algebra or abstract data type (ADT) approaches to com-
puter algebra. The main question is the expressiveness required to implement al-
gebraic algorithms. However, the requirements for libraries and interactive parts
are constantly mangled and not cleanly separated as in our approach. A first pa-
per on CAS with SmallTalk [16] and the ongoing work of the Axiom developers
can to some extend be viewed as object oriented [3]. Newer approaches start with
[17] in Common Lisp, then using C++ [1,18]. Early considerations of Java in
computer algebra and symbolic computation [19,20,21]. Newer approaches using
Java are [22,23] or [24,25], or our approaches starting with [26,27]. An object ori-
ented but non-Java approach to computer algebra exists as part of the Focalize
project [28]. Type-safe design considerations in computer algebra are described
in [29,30,3,31,32,17]. Generic programming issues are discussed for example in
[33,34,35] and the references therein. Interoperability via OpenMath is discussed
in [36,37,38,39,40]. Further thoughts on the future of computer algebra systems
see [6,5]. Further related work is mentioned in the paper as required, and in the
section on future work.

1.2 Outline

In section 2 we discuss design considerations for object oriented computer alge-
bra and symbolic computation software. Examples for the construction of such
systems are presented in section 3. Section 4 shows some future work and the
final section draws some conclusions.

164 H. Kredel and R. Jolly

2 Design Considerations

The proposed software architecture builds on other software projects as much
as possible. Only the parts specific to computer algebra are to be implemented.
We identify three major parts for computer algebra software.

– run-time infrastructure with memory management,
– statically typed object oriented algorithm libraries,
– dynamic interactive scripting interpreters.

We discuss the first points in the following subsections. For the third point see
our articles [41,42].

2.1 Run-Time Systems

Run-time systems with automatic memory management can be taken from vir-
tual machines, like the Java JVM or the .NET CLR. Advantages of virtual
machines:

– constant maintenance and improvements,
– more opportunities for code optimization with just-in-time compilers,
– memory management with automatic garbage collection,
– exception and security constraint handling,
– independence of computer hardware and optimization requirements,
– suitable for multi-CPU and distributed computing.

Disadvantages of virtual machines are the dependency on the chosen platform.
Software development in computer algebra must deal with unpredictable dy-

namic memory requirements of the algebraic and symbolic objects occurring in
a computation, so a crucial necessity is the availability of automatic memory
management in the run-time system.

2.2 Object Oriented Software

The second building block for the design and implementation of computer alge-
bra systems, is object oriented programming methodology. It can be characterized
as follows

– usage of contemporary (object oriented) software engineering principles,
– modular software architecture, consisting of

• usage of existing implementations of basic data structures like integers
or lists

• generic type safe algebraic and symbolic algorithm libraries
• thread safe and multi-threaded library implementations
• algebraic objects transportable over the network

– high performance implementations of algorithms with state of the art asymp-
totic complexity but also fast and efficient for small problem sizes,

– minimizing the ‘abstraction penalty’ which occurs for high-level program-
ming languages compared to low-level assembly-like programming languages.

Generic, Type-Safe and Object Oriented Computer Algebra Software 165

Our research in this new direction is the design and the construction of object
oriented computer algebra libraries in Java and Scala, called JAS and ScAS.
The main concepts and achievements have recently been presented and pub-
lished in a series of computer science and computer mathematics conferences
[27,43,44,45,46,47,48,49,50] and on the projects Web-pages [51,26].

3 Examples

In this section we discuss some examples of the object oriented approach to com-
puter algebra software. First we discuss the design of the basic interfaces and
classes for algebraic structures, namely rings and polynomials. We present the
ScAS design, as the similar JAS design has been presented elsewhere. In the next
sub-section, we discuss the design of algorithms for polynomial factorization. For
the performance of Java implementations of multivariate polynomial arithmetic,
greatest common divisor computation and comprehensive Gröbner bases con-
struction see [45,47,48]. Problems of object oriented programming for which we
have not found satisfactory solutions yet will be covered in a subsequent publi-
cation. Some knowledge of Java and Scala is required for the understanding of
this section.

3.1 Ring Elements and Polynomials

The type-safe design of the basic structural interfaces in ScAS makes use of
”traits”, the Scala equivalent of Java’s interfaces (i.e. with multiple inheritance),
but with the added feature that some methods can be implemented, thus tak-
ing code re-use a step further. These traits are type-parametrized, which pro-
vides modularity while forbidding arithmetic operations on incompatible types
at compile time. The root of the hierarchy is the trait Element. Each trait in
the hierarchy comes with a Factory which is used to obtain new instances of its
type and do various operations on these.

object Element {
trait Factory[T <: Element[T]] {
def random(numbits: Int)(

implicit rnd: scala.util.Random): T
}

}
trait Element[T <: Element[T]] extends Ordered[T] { this: T =>
val factory: Element.Factory[T]
def equals(that: T) = this.compare(that) == 0
def ><(that: T) = this equals that
def <>(that: T) = !(this equals that)

}

The notation this: T => is called a self-type and is used to specify the future
type of “this” which is currently not known as the type is abstract and cannot be

166 H. Kredel and R. Jolly

instantiated. The definitions of >< and <> must be made because the operators ==
and !=, which in Scala are normally routed to equals, are not type-parametrized
and have an argument of type Any. Next we have traits for commutative (abelian)
additive groups, (multiplicative) semi-groups, and monomials. Scala provides
operator overloading, resulting in a natural mathematical notation.

object AbelianGroup {
trait Factory[T <: AbelianGroup[T]] extends Element.Factory[T] {
def zero: T

}
}
trait AbelianGroup[T <: AbelianGroup[T]]

extends Element[T] { this: T =>
override val factory: AbelianGroup.Factory[T]
def isZero = this >< factory.zero
def +(that: T): T
def -(that: T): T
def unary_+ = this
def unary_- = factory.zero - this
def abs = if (signum < 0) -this else this
def signum: Int

}

Some methods like abs can already be implemented in terms of other ones which
remain abstract for now (signum, -). If signum is meaningful in the respective
ring depends on the ring. It is a design decision, explained for example in [47],
to let interfaces define methods which may fail in certain rings.

trait SemiGroup[T <: SemiGroup[T]] extends Element[T] { this: T =>
def *(that: T): T

}

Semigroup has no corresponding Factory as there is no additional feature
compared to Element. Thus Monoid.Factory below will inherit directly from
Element.Factory, whereas Monoid inherits from SemiGroup:

object Monoid {
trait Factory[T <: Monoid[T]] extends Element.Factory[T] {
def one: T

}
}
trait Monoid[T <: Monoid[T]] extends SemiGroup[T] { this: T =>
override val factory: Monoid.Factory[T]
def isUnit: Boolean
def isOne = this >< factory.one
def pow(exp: BigInt) = {
assert (exp >= 0)

Generic, Type-Safe and Object Oriented Computer Algebra Software 167

(factory.one /: (1 to exp.intValue)) {
(l, r) => l * this

}
}

}

The method isOne tests exactly for the 1 in the ring, isUnit tests if the element
is an associate of 1 (whence if it is invertible). pow is implemented here, which
will save these lines of code everywhere Monoid will be inherited. Note, such
elegant solutions are not possible with Java interfaces and Java abstract classes
are also of no help in such situations. Binary exponentiation is not shown to
simplify the example.

object Ring {
trait Factory[T <: Ring[T]]

extends AbelianGroup.Factory[T] with Monoid.Factory[T] {
def characteristic: BigInt

}
}
trait Ring[T <: Ring[T]] extends AbelianGroup[T]

with Monoid[T] { this: T =>
override val factory: Ring.Factory[T]

}

Ring inherits multiply from AbelianGroup and Monoid, and declares a charac-
teristic. Below we outline the implementation of a Polynomial class from the
basic structures we have just defined.
object Polynomial {
class Factory[C <: Ring[C]](val ring: C,

val variables: Array[Variable],
val ordering: Comparator[Int])
extends Ring.Factory[Polynomial[C]] {

def generators: Array[Polynomial[C]]
def apply(value: SortedMap[Array[Int], C])

= new Polynomial(this)(value)
override def toString: String

}
}
class Polynomial[C <: Ring[C]](

val factory: Polynomial.Factory[C])(
val value: SortedMap[Array[Int], C])
extends Ring[Polynomial[C]] {

def elements: Iterator[Pair[Array[Int], C]]
def headTerm = elements.next
def degree: Int
def isUnit = this.abs.isOne
override def toString: String

}

168 H. Kredel and R. Jolly

To be really accurate, the above Polynomial definition in ScAS is abstract and
is in fact a trait, just like Ring from which it inheritates. This is be able to
sublclass it to a SolvablePolynomial (i.e. non-commutative) in addition to a
regular Polynomial. The abstract Polynomial has a self-type parameter like the
other abstract types, in order to preserve type-safety. The definitions are then
sketched as follows:

object Polynomial {
trait Factory[T <: Polynomial[T, C],

C <: Ring[C]] extends Ring.Factory[T] {
def multiply(w: T, x: Array[Int], y: C) = { // commutative
}

}
}
trait Polynomial[T <: Polynomial[T, C], C <: Ring[C]]

extends Ring[T]

object SolvablePolynomial {
trait Factory[T <: Polynomial[T, C], C <: Ring[C]]

extends Polynomial.Factory[T, C] {
override def multiply(w: T, x: Array[Int], y: C) = {

// non-commutative case
}

}
}

The various mechanisms above allow multiple options to be combined mostly
independently with minimal code duplication. Among the possible dimensions
of parametrization, we have implemented:

– the coefficient type (C, above)
– the underlying data structure (array, list, tree) of the polynomial, involving

the type of the “value” field (SortedMap[Array[Int], C] above) which can
be parametrized trough a Scala abstract type member

– the type of the exponents (P in ScAS code, not shown)
– we have made a prototype implementation of polynomials with different

algorithms for gcd computation : the type of the polynomial (factory) tells
whether the gcd algorithm is of simple, primitive, or subresultant kind. This
is intended as an improvement on JAS, see the next section for how this is
implemented there.

– whether or not the polynomial is a SolvablePolynomial

We are studying the implementation for:

– an improved parametrization of the type of the exponents. It is typically
Int or Long, so this is a Java primitive type. Unlike Java, Scala allows to
parametrize over these. But this is currently made through boxing and un-
boxing, with performance impact. Scala 2.8 will provide “type specialization”

Generic, Type-Safe and Object Oriented Computer Algebra Software 169

whereby a class with a primitive type as parameter will be implemented in
an optimized way.

– the list of variables and the ordering. Currently it is possible to arithmeti-
cally mix polynomials in different sets of variables, which is not optimal.
Parameterizing this item requires some kind of dependent type, as described
in section 7.3 of [47].

3.2 Unique Factorization Domains

To further exemplify the usefulness of object oriented computer algebra software
development we studied the implementation of some non-trivial examples for li-
brary design. We limit the discussion to algorithms for multivariate polynomials
in (constructive) unique factorization domains. Examples, like Gröbner bases,
comprehensive Gröbner bases, univariate power series and elementary integra-
tion of rational functions are discussed elsewhere [51,49,48]. For the mathemati-
cal background see some text books on the topic, like [52]. We give an overview of
the respective interfaces and classes of JAS and then compare it to the approach
of Scratchpad (now Axiom) [29,30].

Figure 1 shows an UML overview diagram of the involved interfaces and
classes for the computation of greatest common divisors of multivariate poly-
nomials. In case an algorithm is only meaningful for univariate polynomials, the

C

«interface»

GreatestCommonDivisor

+ content(P : GenPolynomial<C>) : GenPolynomial<C>

+ primitivePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ gcd(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ lcm(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ resultant(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ coPrime(A : List<GenPolynomial<C>>) : List<GenPolynomial<C>>

+ isCoPrime(A : List<GenPolynomial<C>>) : boolean

C

GreatestCommonDivisorAbstract

+ baseContent(P : GenPolynomial<C>)

+ basePrimitivePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ baseGcd(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ content(P : GenPolynomial<C>) : GenPolynomial<C>

+ primitivePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ gcd(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ lcm(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ resultant(P : GenPolynomial<C>, S : GenPolynomial<C>) : GenPolynomial<C>

+ coPrime(A : List<GenPolynomial<C>>) : List<GenPolynomial<C>>

+ isCoPrime(A : List<GenPolynomial<C>>) : boolean

C

GreatestCommonDivisorPrimitive

C

GreatestCommonDivisorSimple

C

GreatestCommonDivisorSubres GreatestCommonDivisorModular

GreatestCommonDivisorModEvalGreatestCommonDivisorHensel

Fig. 1. Greatest common divisor classes

170 H. Kredel and R. Jolly

respective implementations convert the polynomials to univariate polynomials
in the main variable with multivariate coefficients. There are implementations
for such recursive representations, which are not shown. We start with an in-
terface GreatestCommonDivisor. It defines the method names for a ring with
gcd algorithm. First there is the method gcd() itself, together with the method
lcm() to compute the least common multiple of two polynomials. With the
help of gcd() the algorithms for the content content() and the primitive part
primitivePart() computation can be implemented. The methods coPrime()
compute lists of co-prime polynomials from given lists of polynomials.

The abstract super class for the implementations is called GreatestCommon-
DivisorAbstract. It implements nearly all methods defined in the
GreatestCommonDivisor interface. The abstract methods are baseGcd() and
recursiveUnivariateGcd(). The method gcd() first checks for the recursion
base, and eventually calls baseGcd(). Otherwise it converts the input polyno-
mials to recursive representation, as univariate polynomials with multivariate
polynomial coefficients, and calls method recursiveUnivariateGcd().

The concrete implementations come in two flavors. The first flavor implements
only the methods baseGcd() and recursiveUnivariateGcd(), using the setup
provided by the abstract super class. There are implementations for various poly-
nomial remainder sequence (PRS) algorithms: simple, monic, primitive and the
sub-resultant algorithm (in the respective classes). These implementations are
generic for any (UFD) coefficient ring. The second flavor directly implements
gcd() without providing baseGcd() and recursiveUnivariateGcd(). The al-
gorithms compute gcds first modulo some suitable prime numbers and then
interpolate the result using Chinese remainder algorithms, or in the Hensel case
via powers of the prime number. The later versions are only valid for integer or
modular coefficient classes BigInteger, ModInteger or ModLong.

An overview for the classes for the squarefree decomposition of multivariate
polynomials is shown in figure 2. Again, there is an interface Squarefree and
an abstract class SquarefreeAbstract. The other classes are for coefficients
from rings or fields of characteristic zero, and for finite and infinite fields of
characteristic p > 0. Method squarefreeFactors() of the interface decomposes
a polynomial into squarefree parts. Method squarefreePart() computes the
squarefree part of a polynomial. Method isSquarefree() test the respective
property for a polynomial. isFactorization() tests if a given map or list is
actually a squarefree decomposition for a given polynomial. The interface has
additionally methods coPrimeSquarefree() to compute lists of co-prime and
squarefree polynomials from given lists of polynomials.

The abstract class SquarefreeAbstract implements most of the methods
specified in the interface. There are four methods which remain abstract and
have to be implemented in sub-classes. For multivariate polynomials the methods
squarefreeFactors() and squarefreePart() and for univariate polynomials
the methods baseSquarefreeFactors() and baseSquarefreePart(). The im-
plementation has to distinguish three major and two sub cases: coefficient fields
of characteristic zero, class SquarefreeFieldChar0, and coefficients not from a

Generic, Type-Safe and Object Oriented Computer Algebra Software 171

C

SquarefreeAbstract

engine : GreatestCommonDivisorAbstract<C>

+ SquarefreeAbstract(engine : GreatestCommonDivisorAbstract<C>)

+ squarefreePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ isSquarefree(P : GenPolynomial<C>) : boolean

+ isSquarefree(L : List<GenPolynomial<C>>) : boolean

+ squarefreeFactors(P : GenPolynomial<C>) : SortedMap<GenPolynomial<C>,Long>

+ coPrimeSquarefree(A : List<GenPolynomial<C>>) : List<GenPolynomial<C>>

+ isCoPrimeSquarefree(B : List<GenPolynomial<C>>) : boolean

+ isFactorization(P : GenPolynomial<C>, F : List<GenPolynomial<C>>) : boolean

C

SquarefreeRingChar0

C

SquarefreeFieldChar0

C

SquarefreeFieldCharP

C

«interface»

Squarefree

+ isSquarefree(P : GenPolynomial<C>) : boolean

+ isSquarefree(L : List<GenPolynomial<C>>) : boolean

+ squarefreePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ squarefreeFactors(P : GenPolynomial<C>) : SortedMap<GenPolynomial<C>,Long>

+ isFactorization(P : GenPolynomial<C>, F : List<GenPolynomial<C>>) : boolean

+ isFactorization(P : GenPolynomial<C>, F : SortedMap<GenPolynomial<C>,Long>) : boolean

+ isCoPrimeSquarefree(B : List<GenPolynomial<C>>) : boolean

+ coPrimeSquarefree(A : List<GenPolynomial<C>>) : List<GenPolynomial<C>>

C

SquarefreeFiniteFieldCharP

C

SquarefreeInfiniteFieldCharP

Fig. 2. Squarefree decomposition classes

field SquarefreeRingChar0. For coefficient fields of characteristic non-zero, class
SquarefreeFieldCharP, we need two sub-classes for finite and infinite fields,
classes SquarefreeFiniteFieldCharP and SquarefreeInfiniteFieldCharP.

Figure 3 shows the class layout of an interface, two abstract and several con-
crete classes for multivariate polynomial factorization. The interface Factori-
zation defines the most useful factorization methods. The method factors()
computes a complete factorization with no further preconditions and returns a
SortedMap, which maps polynomials to the exponents of the polynomials occur-
ring in the factorization. The method factorsSquarefree() factors a square-
free polynomial. It returns a list of polynomials since the exponents will all be 1.
Method factorsRadical() computes a complete factorization, but returns a list
of polynomials, that is, all exponents are removed. Methods isIrreducible()
and isReducible() test the respective properties for a polynomial. isFactori-
zation() tests if a given map is actually a factorization for a given polynomial.

The abstract class FactorAbstract implements all of the methods specified
in the interface. Only baseFactorSquarefree() for the factorization of a

172 H. Kredel and R. Jolly

C

FactorAbstract

+ FactorAbstract(cfac : RingFactory<C>)

+ isIrreducible(P : GenPolynomial<C>) : boolean

+ isReducible(P : GenPolynomial<C>) : boolean

+ isSquarefree(P : GenPolynomial<C>) : boolean

+ factorsSquarefree(P : GenPolynomial<C>) : List<GenPolynomial<C>>

+ factorsRadical(P : GenPolynomial<C>) : List<GenPolynomial<C>>

+ factors(P : GenPolynomial<C>) : SortedMap<GenPolynomial<C>,Long>

+ squarefreePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ primitivePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ squarefreeFactors(P : GenPolynomial<C>) : SortedMap<GenPolynomial<C>,Long>

+ isFactorization(P : GenPolynomial<C>, F : List<GenPolynomial<C>>) : boolean

+ isFactorization(P : GenPolynomial<C>, F : SortedMap<GenPolynomial<C>,Long>) : boolean

MOD

FactorModular

C

«interface»

Factorization

+ isIrreducible(P : GenPolynomial<C>) : boolean

+ isReducible(P : GenPolynomial<C>) : boolean

+ isSquarefree(P : GenPolynomial<C>) : boolean

+ factorsSquarefree(P : GenPolynomial<C>) : List<GenPolynomial<C>>

+ factors(P : GenPolynomial<C>) : SortedMap<GenPolynomial<C>,Long>

+ factorsRadical(P : GenPolynomial<C>) : List<GenPolynomial<C>>

+ squarefreePart(P : GenPolynomial<C>) : GenPolynomial<C>

+ squarefreeFactors(P : GenPolynomial<C>) : SortedMap<GenPolynomial<C>,Long>

+ isFactorization(P : GenPolynomial<C>, F : List<GenPolynomial<C>>) : boolean

+ isFactorization(P : GenPolynomial<C>, F : SortedMap<GenPolynomial<C>,Long>) : boolean

C

FactorAbsolute

+ FactorAbsolute(cfac : RingFactory<C>)

+ isAbsoluteIrreducible(P : GenPolynomial<C>) : boolean

+ factorsAbsolute(P : GenPolynomial<C>) : FactorsMap<C>

+ factorsAbsoluteIrreducible(P : GenPolynomial<C>) : Factors<C>

+ isAbsoluteFactorization(facs : Factors<C>) : boolean

FactorRational

C

FactorAlgebraic

MOD

FactorInteger

C

FactorQuotient

C

FactorComplex

Fig. 3. Polynomial factorization classes

square-free univariate polynomial is declared abstract and must be implemented
for each coefficient ring. For multivariate polynomials Kronecker’s algorithm is
used to reduce this case to a univariate problem and to reassemble multivariate
factors from univariate ones. This algorithm is not particularly fast and will be
accompanied by a multivariate Hensel algorithm in the future.

The absolute factorization of a polynomial, that is, a factorization over an
algebraically closed coefficient field, is implemented in class FactorAbsolute.
The main method is baseFactorsAbsoluteIrreducible for the factorization of
a polynomial which is irreducible over the given coefficient field. This method
constructs a field extension of the ground field from the given irreducible poly-
nomial. The given polynomial is then factored in this algebraic field extension

Generic, Type-Safe and Object Oriented Computer Algebra Software 173

with the algorithms from class FactorAlgebraic. Then there are classes which
implement factorization for particular coefficient rings, for example modular in-
tegers, integers and rational numbers as well as generic algorithms for algebraic
numbers and quotients of polynomials.

We come to a comparison with the “categorical view of factorization” in
Scratchpad and Axiom. There factorization is attached to the generic univariate
polynomial ‘class’, named SparseUnivariatePolynomial. The ‘method’ called
factorPolynomial() computes the factorization of a given polynomial. ‘Cate-
gorical’ then means, that it will compute a factorization of multivariate polyno-
mials over any coefficient ring which has itself a constructive implementation of
factorization of univariable polynomials over itself.

The building blocks for factorization in JAS, the computation of greatest
common divisors and the squarefree decomposition are fully generic in this sense
(except the special implementations for integers and integers modulo primes).
They only require coefficient rings which themselves have constructive greatest
common divisors (for univariate polynomials over itself). Also for squarefree
decomposition all cases for coefficient fields of characteristic zero, respectively
finite and infinite fields of characteristic p > 0 are implemented generically.

Multivariate polynomial factorization reduction to univariate polynomial fac-
torization is fully generic by the Kronecker substitution algorithm. Univariate
polynomial factorization for specific coefficient rings, namely BigInteger, Mod-
Integer and BigRational is obviously not generic. However, FactorAlgebraic
and FactorQuotient is generic for coefficients rings which allow constructive
univariate polynomial factorization. The selection of appropriate factorization
algorithms (as well as squarefree decomposition and gcd algorithms) is provided
in class FactorFactory (respectively SquarefreeFactory and GCDFactory) by
method getImplementation(RingFactory r). It takes a factory for the coeffi-
cient ring r as parameter and returns a suitable implementation (if one is avail-
able or exists [30]). The returned implementation is of type FactorAbstract<C>
which must at least contain a method to factor univariate polynomials over the
ring r. For example we can factor polynomials with coefficients from the ring
Q(

√
2)(x)(

√
x). In summary we have shown, that very general approaches like

the categorical approach of Scratchpad can be implemented in a generic, type-
safe way in Java.

4 Future Work

With the described software stack, computer algebra software can make use of
many modern computing and presentation environments. For example, using
existing rich client platforms like Eclipse by MathEclipse [10]. Or for using web-
service and Cloud computing platforms, like Google App Engine by Symja [53].
This approach is moreover interesting as it has a parser for the Mathematica
programming language. A further example is computer algebra on portable de-
vices: we have a version of the JSCL library compiled for the Palm platform [26],
and we plan to use the scripting ability of Android to make computer algebra
available on this system [54].

174 H. Kredel and R. Jolly

The JVM infrastructure enables moreover a new lower level of interaction
between computer algebra systems. It complements the most general high level
interoperation between computer algebra systems using OpenMath [37] and the
intermediate level interoperation using Python like the Sage project [13]. Open-
Math builds on very general interfaces defining algebraic and symbolic expres-
sions whereas Sage takes an agnostic approach and completely ignores common
interfaces for the integrated computer algebra systems.

Examples for a tight interoperation on the JVM are the linear algebra library
of Apache Commons Math [55] or the linear algebra library JLinAlg [56]. Using
adaptors for ring elements it is possible to use generic implementations of lin-
ear algebra algorithms with JAS algebraic objects and vice-versa. The various
adaptor classes between generic computer algebra libraries could be avoided if we
could define (and agree on) a common interface for ring elements and implement
it in each system.

A more loose integration is based on the Java scripting framework specified in
JSR 223 [57] and was outlined in jscl-meditor to combine several scripting engines
accessed from a common mathematical editor [26]. Further interoperation of
computer algebra systems is investigated with a Maxima port to ABCL common
lisp on the JVM [58]. There is also a Reduce on the JVM [59,21] which could
be accessed via JSR 223 (with some effort in code rearrangement). Combining
OpenMath and Java is studied in Popcorn and Wupsi [36,39,40,37,38].

5 Conclusions

We have shown how computer algebra software can be designed and implemented
leveraging 30 years of advances in computer science. Our approach concentrates
on mathematical aspects by re-using software components developed by other
projects. Namely, the Java programming language together with the JVM run-
time system and interactive scripting languages, for example Python. The JVM
infrastructure opens new ways of interoperability of computer algebra systems on
Java byte-code level. This infrastructure gives also new opportunities to provide
computer algebra software on new computing devices, software as a service,
distributed or cloud computing. Our object oriented approach with the Java
and Scala programming languages makes it possible to implement non-trivial
algebraic structures in a type-safe way which can be stacked and plugged together
in unprecedented ways.

Acknowledgments

We thank Thomas Becker for discussions on the implementation of a polynomial
template library. JAS itself has improved by requirements from Axel Kramer
and Georg Thimm. We thank our colleagues W. K. Seiler, Dongming Wang and
Thomas Sturm for various discussions and for encouraging our work. Thanks
also to the referees for the suggestions to improve the paper.

Generic, Type-Safe and Object Oriented Computer Algebra Software 175

References

1. Frink, A., Bauer, C., Kreckel, R.: Introduction to the GiNaC framework for sym-
bolic computation within the C++ programming language. J. Symb. Comput.
(2002)

2. Stansifer, R., Baumgartner, G.: A Proposal to Study Type Systems for Computer
Algebra. Technical Report 90-07, Johannes Kepler University, Linz, Austria (1990)

3. Jenks, R., Sutor, R. (eds.): Axiom The Scientific Computation System. Springer,
Heidelberg (1992)

4. Calmet, J., Seiler, W.M.: Computer algebra and field theories. Mathematics and
Computers in Simulation 45, 33–37 (1998)

5. Watt, S.M.: On the future of Computer Algebra Systems at the threshold of 2010. In:
Proceedings ASCM-MACIS 2009, pp. 422–430. Kyushu University, Fukuoka (2009)

6. Wolfram, S.: WolframAlpha. Technical report (2009),
http://www.wolframalpha.com/ (accessed January 2010)

7. Certik, O.: SymPy Python library for symbolic mathematics. Technical report
(since 2006), http://code.google.com/p/sympy/ (accessed November 2009)

8. GWT Developers: Google Web Toolkit consists of a Java - to - JavaScript compiler,
user interface API, and related tools. Technical report (2008),
http://code.google.com/webtoolkit/ (accessed November 2009)

9. Eclipse Developers: Eclipse rich client platform (RCP). Technical report (2008),
http://www.eclipse.org/ (accessed November 2009)

10. Kramer, A.C.: MathEclipse is usable as an online Java computer algebra system or
Eclipse plugin. Technical report (2009, since 2002), http://www.matheclipse.org/
(accessed November 2009)

11. Greuel, G., Pfister, G., Schönemann, H.: Singular - A Computer Algebra Sys-
tem for Polynomial Computations. In: Computer Algebra Handbook, pp. 445–450.
Springer, Heidelberg (2003)

12. Greuel, G., Pfister, G.: A Singular introduction to commutative algebra. Springer,
Heidelberg (2007)

13. Stein, W.: SAGE Mathematics Software (Version 2.7). The SAGE Group (since
2005), http://www.sagemath.org (accessed November 2009)

14. AppEngine Developers: Google App Engine enables you to build and host web
apps on the same systems that power Google applications. Technical report (2010),
http://code.google.com/appengine (accessed June 2010)

15. Android Developers: Android is a software stack for mobile devices including
an operating system, middleware and key applications. Technical report (2008),
http://code.google.com/android/ (accessed November 2009)

16. Abdali, S.K., Cherry, G.W., Soiffer, N.: An object-oriented approach to algebra
system design. In: Char, B.W. (ed.) Proc. SYMSAC 1986, pp. 24–30. ACM Press,
New York (1986)

17. Zippel, R.: Weyl computer algebra substrate. In: Miola, A. (ed.) DISCO 1993.
LNCS, vol. 722, pp. 303–318. Springer, Heidelberg (1993)

18. Parisse, B.: Giac/Xcas, a free computer algebra system. Technical report, Univer-
sity of Grenoble (2008)

19. Bernardin, L., Char, B., Kaltofen, E.: Symbolic computation in Java: an appraise-
ment. In: Dooley, S. (ed.) Proc. ISSAC 1999, pp. 237–244. ACM Press, New York
(1999)

20. Bernardin, L.: A Java framework for massively distributed symbolic computing.
SIGSAM Bull. 33(3), 20–21 (1999)

http://www.wolframalpha.com/
http://code.google.com/p/sympy/
http://code.google.com/webtoolkit/
http://www.eclipse.org/
http://www.matheclipse.org/
http://www.sagemath.org
http://code.google.com/appengine
http://code.google.com/android/

176 H. Kredel and R. Jolly

21. Norman, A.C.: Further evaluation of Java for symbolic computation. In: ISSAC
2000: Proc. International Symposium on Symbolic and Algebraic Computation
2000, pp. 258–265. ACM, New York (2000)

22. Niculescu, V.: A design proposal for an object oriented algebraic library. Technical
report, Studia Universitatis “Babes-Bolyai” (2003)

23. Niculescu, V.: OOLACA: an object oriented library for abstract and computational
algebra. In: OOPSLA Companion, pp. 160–161. ACM, New York (2004)

24. Whelan, C., Duffy, A., Burnett, A., Dowling, T.: A Java API for polynomial arith-
metic. In: Proc. PPPJ 2003, pp. 139–144. Computer Science Press, New York (2003)

25. Platzer, A.: The Orbital library. Technical report, University of Karlsruhe (2005),
http://www.functologic.com/

26. Jolly, R.: jscl-meditor - Java symbolic computing library and mathematical editor.
Technical report (since 2003), http://jscl-meditor.sourceforge.net/ (accessed
November 2009)

27. Kredel, H.: A systems perspective on A3L. In: Proc. A3L: Algorithmic Algebra
and Logic 2005, pp. 141–146. University of Passau (April 2005)

28. Focalize Developers: Focalize is a software distribution for program certification.
Technical report (2005-2010), http://focalize.inria.fr/ (accessed June 2010)

29. Davenport, H.J., Trager, B.M.: Scratchpad’s view of algebra I: Basic commutative
algebra. In: Miola, A. (ed.) DISCO 1990. LNCS, vol. 429, pp. 40–54. Springer,
Heidelberg (1990)

30. Davenport, H.J., Gianni, P., Trager, B.M.: Scratchpad’s view of algebra II: A cat-
egorical view of factorization. In: Proc. ISSAC 1991, Bonn, pp. 32–38 (1991)

31. Davenport, H.J.: Abstract data types in Computer Algebra. In: Nielsen, M., Rovan,
B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 21–35. Springer, Heidelberg (2000)

32. Bronstein, M.: Sigmait - a strongly-typed embeddable computer algebra library.
In: Limongelli, C., Calmet, J. (eds.) DISCO 1996. LNCS, vol. 1128, pp. 22–33.
Springer, Heidelberg (1996)

33. Musser, D., Schupp, S., Loos, R.: Requirement oriented programming - concepts,
implications and algorithms. In: Jazayeri, M., Musser, D.R., Loos, R.G.K. (eds.)
Dagstuhl Seminar 1998. LNCS, vol. 1766, pp. 12–24. Springer, Heidelberg (2000)

34. Schupp, S., Loos, R.: SuchThat - generic programming works. In: Jazayeri, M.,
Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp.
133–145. Springer, Heidelberg (2000)

35. Dragan, L., Watt, S.: Performance Analysis of Generics in Scientific Computing.
In: Proceedings of Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 90–100. IEEE Computer Society, Los
Alamitos (2005)

36. Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D.: Symbolic compu-
tation software composability protocol (SCSCP) specification, version 1.3. Techni-
cal report, SCIEnce Consortium (2009)

37. OpenMath Consortium: OpenMath, version 2.0. Technical report, OpenMath
Consortium (2004),
http://www.openmath.org/standard/om20-2004-06-30/omstd20html-0.xml

(accessed January 2010)
38. SCIEnce Consortium: Symbolic computation infrastructure for Europe. Technical

report, SCIEnce Consortium (2009)
39. Horn, P., Roozemond, D.: The Popcorn OpenMath representation, version 1.0.

Technical report, SCIEnce EU Project (2009)

http://www.functologic.com/
http://jscl-meditor.sourceforge.net/
http://focalize.inria.fr/
http://www.openmath.org/standard/om20-2004-06-30/omstd20html-0.xml

Generic, Type-Safe and Object Oriented Computer Algebra Software 177

40. Horn, P., Roozemond, D.: WUPSI universal Popcorn SCSCP interface, version 1.0.
Technical report, SCIEnce EU Project (2009)

41. Jolly, R., Kredel, H.: How to turn a scripting language into a domain specific
language for computer algebra. Technical report (2008),
http://arXiv.org/abs/0811.1061

42. Jolly, R., Kredel, H.: Symbolic script programming for Java. Technical report
(2009), http://arXiv.org/abs/0906.2315

43. Kredel, H.: On the Design of a Java Computer Algebra System. In: Proc. PPPJ
2006, pp. 143–152. University of Mannheim (2006)

44. Kredel, H.: Evaluation of a Java Computer Algebra System. In: Kapur, D. (ed.)
ASCM 2007. LNCS (LNAI), vol. 5081, pp. 59–62. Springer, Heidelberg (2008)

45. Kredel, H.: Evaluation of a Java computer algebra system. In: Kapur, D. (ed.)
ASCM 2007. LNCS (LNAI), vol. 5081, pp. 121–138. Springer, Heidelberg (2008)

46. Kredel, H.: Multivariate greatest common divisors in the Java Computer Algebra
System. In: Proc. Automated Deduction in Geometry (ADG), pp. 41–61. East
China Normal University, Shanghai (2008)

47. Kredel, H.: On a Java Computer Algebra System, its performance and applications.
Science of Computer Programming 70(2-3), 185–207 (2008)

48. Kredel, H.: Comprehensive Gröbner bases in a Java Computer Algebra System. In:
Proceedings ASCM 2009, pp. 77–90. Kyushu University, Fukuoka (2009)

49. Kredel, H.: Distributed parallel Gröbner bases computation. In: Proc. Workshop on
Engineering Complex Distributed Systems at CISIS 2009. University of Fukuoka,
Japan (2009), CD–ROM

50. Kredel, H.: Distributed hybrid Gröbner bases computation. In: Proc. Workshop on
Engineering Complex Distributed Systems at CISIS 2010. University of Krakow,
Poland (2010), CD–ROM

51. Kredel, H.: The Java algebra system (JAS). Technical report (since 2000),
http://krum.rz.uni-mannheim.de/jas/

52. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer Academic Publishers, Dordrecht (1993)

53. Kramer, A.C.: Symja a symbolic math system written in Java based on the MathE-
clipse libraries. Technical report (since 2009), http://code.google.com/p/symja/
(accessed January 2010)

54. Android Scripting Developers: Android Scripting brings scripting languages to an-
droid. Technical report (2009), http://code.google.com/p/android-scripting/
(accessed June 2010)

55. Apache Software Foundation: Commons-Math: The Jakarta mathematics library.
Technical report (2003-2010), http://commons.apache.org/ (accessed November
2009)

56. Keilhauer, A., Levy, S.D., Lochbihler, A., Ökmen, S., Thimm, G.L., Würzebesser,
C.: JLinAlg: a Java-library for linear algebra without rounding errors. Technical
report (2003-2010), http://jlinalg.sourceforge.net/ (accessed January 2010)

57. Sun Microsystems, Inc.: JSR 223: Scripting for the Java platform. Technical report
(2003-2006), http://scripting.dev.java.net/ (accessed November 2009)

58. ABCL Developers: Armed bear common lisp (ABCL) - common lisp on the JVM.
Technical report (2003-2010), http://common-lisp.net/project/armedbear/

(accessed January 2010)
59. Reduce Developers: REDUCE interactive system for general algebraic computa-

tions. Technical report (1968-2010), http://www.reduce-algebra.com/ (accessed
January 2010)

http://arXiv.org/abs/0811.1061
http://arXiv.org/abs/0906.2315
http://krum.rz.uni-mannheim.de/jas/
http://code.google.com/p/symja/
http://code.google.com/p/android-scripting/
http://commons.apache.org/
http://jlinalg.sourceforge.net/
http://scripting.dev.java.net/
http://common-lisp.net/project/armedbear/
http://www.reduce-algebra.com/

Implementing Data Parallel Rational
Multiple-Residue Arithmetic in Eden�

Oleg Lobachev and Rita Loogen

Philipps–Universität Marburg, Fachbereich Mathematik und Informatik
Hans–Meerwein–Straße, D–35032 Marburg, Germany
{lobachev,loogen}@informatik.uni-marburg.de

Abstract. Residue systems present a well-known way to reduce compu-
tation cost for symbolic computation. However most residue systems are
implemented for integers or polynomials. This work combines two known
results in a novel manner. Firstly, it lifts an integral residue system to
fractions. Secondly, it generalises a single-residue system to a multiple-
residue one. Combined, a rational multi-residue system emerges. Due to
the independent manner of single “parts” of the system, this work enables
progress in parallel computing. We present a complete implementation
of the arithmetic in the parallel Haskell extension Eden. The paralleli-
sation utilises algorithmic skeletons. A non-trivial example computation
is also supplied.

Keywords: residue system, rational reconstruction, EEA, CRT, homo-
morphism, parallelisation, functional programming, parallel functional
software, implementation report.

1 Introduction

A common approach to reduce computation complexity of symbolic compu-
tations, i.e. intermediate expression swell, is a residue arithmetic. We regard
residues of integers in this paper. A residue system w.r.t. some prime m is
the field Z/〈m〉. The addition and multiplication are the usual operations in Z,
combined with an integer division by m. The actual result is the residue of the
division. The focus of this paper lies on systems with a) using multiple residues
at the same time, b) capable of representing fractions. If we have an a priori up-
per bound on the result of our computation, then we can perform it in a certain
residue class with the result remaining exact. The benefit is reduced computa-
tion time, especially for intermediate expressions, which might be significantly
larger than the bound [13]. Using the Chinese Residue Theorem we can split
a single large residue class into multiple smaller residue classes. The latter can
be designed to fit into a machine word, making the single operation in a small
residue class a constant time one. Thus we can obtain arbitrary precision by
increasing the numbers of small residue classes.
� Supported by DFG grant LO 630-3/1.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 178–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 179

The approach mentioned above is traditionally implemented for integer arith-
metic. However, it is possible to represent certain subsets of rational numbers
as integers in a residue class—and to recover the rational numbers from inte-
gers. This property holds for a bound on the input rational numbers and output
residue class [5].

Eden. This paper presents a parallel Haskell programmer’s approach to a ra-
tional multiple-residue arithmetic. We develop it in the broader context of the
SPICA project1, an implementation of selected computer algebra algorithms us-
ing novel parallelisation techniques, i.e. algorithmic skeletons. Such skeletons
implement common patterns of parallel computation like process farms, divide-
&-conquer schemes, etc. The source code is written in Haskell [10] with GHC
extensions. The parallelism constructs reside in a controlled subset of the code
base. It is written in the parallel Haskell extension called Eden [9]. The latter in-
corporates explicit process creation and implicit communication. An algorithmic
skeleton library is available for Eden [8]. Contrary to the typical imperative ap-
proach, the skeletons are implemented in Eden itself, as they are just higher-order
functions. The skeleton library contains, for instance, a parallel process farm,
implemented as a statically load-balanced parallel map. This function applies its
first argument which is a function to each element of its second argument which
is a list. The farm skeleton divides the input list into packages of almost equal
size which are processed in parallel. Using only skeleton calls for parallelism,
we can refrain from using parallel primitives in Eden programs. Eden is imple-
mented as a distributed memory language, but it performs also well on multicore
SMP machines. Haskell and thus Eden is a statically typed language with poly-
morphism. Each language object has a type, obtained with Hindley-Milner type
inference. We denote the type with object :: type.

Plan of the Paper. The next section presents the rational-to-integer and inte-
ger-to-rational mappings. Section 3 presents in short an integer multiple-residue
arithmetic. Section 4 is the actual focus of the paper. Subsections 4.1 and 4.2
present the rational multiple-residue arithmetic, whereas Subsection 4.3 de-
scribes our approach to parallelism. Section 5 presents an example implementa-
tion using the arithmetic. Section 6 presents related work. Section 7 concludes.

2 From Fractions to Integers and Back

Definition 1 (Residues and division). We denote integer division with a =
cm + r as c = a div m and r = a mod m. The latter forms a residue class for
given m. We define (Zm,⊕,*) := (Z,+, ·)/〈m〉. If m prime, (Zm,⊕,*) is a
field with x� y = (x ◦ y) mod m for x, y ∈ Zm and ◦ ∈ {+,−, ·, /}. An element
of Zm = {0, . . . ,m − 1}, denoted with |a|m, is a mod m. With a small abuse
of notation, we write in further simply Zm for (Zm,⊕,*). Further, if in the
division above r = 0, then we write m | a, else m � a. A residue class modulo
1 http://www.mathematik.uni-marburg.de/~lobachev/

180 O. Lobachev and R. Loogen

multiple residues β = [m1,m2, . . . ,mn] is defined as Zβ := Zm1 × · · · × Zmn .
The corresponding arithmetic operations will be defined later.

The well-known notion of an extended euclidean algorithm (EEA) in a matrix-
vector form can be represented as follows.

Algorithm 1 (Standard EEA)

Input: seed matrix
(
a1 b1
a2 b2

)
.

1. If a2 = 0, return [a1, b1].
2. Let t = a1 div a2. Set pairwise (a1, a2) ← (a2, a1 − ta2) and (b1, b2) ←

(b2, b1 − tb2). Go to step 1.

Output: [a1, b1].

We implement Algorithm 1 in Figure 7 in the appendix, see top of the figure. The
2 × 2 matrix is represented by a nested pair of pairs. The Integral type class
is a Haskell notion for ring Z, which abstracts from the integer representation.

Definition 2. We define the residue-based representation of the rationals |a/b|m
as elements of Q̂m per [5]. The elements of Q̂m are integers in the m-modular
residue arithmetic. The notion of |a/b|m stands for an integer modulo m, con-
gruent to |a|m * |b−1|m. Here * denotes the multiplication modulo m.

We can compute |a/b|m efficiently, using EEA.

Algorithm 2 (Rational-to-integer mapping)
Input: A fraction a/b, an integer m with m � a, m � b.
Start Algorithm 1 with input matrix(

m 0
b a

)
.

Return the second element of the output vector.
Output: an integer, representing |a/b|m.

Algorithm 2 returns the desired recoverable result if a bound onm and a/b holds.
It is rigorously discussed [4,14,15,6,5]. We summarise.

Definition 3 (Farey fractions). All vulgar fractions a/b satisfying |a| ≤ N ,
|b| ≤ N are called Farey fractions of order N .

Proposition 4. If

N ≤
√
m

2
(1)

holds, it is possible to recover the original Farey fraction a/b of order N from
integer |a/b|m.

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 181

data Mod a = Z a a
makeZ :: Integral a ⇒ a → a → Mod a
lift2z :: Integral a ⇒ (a → a → a) → Mod a → Mod a → Mod a
lift2z f (Z a p) (Z b q)

| p
= q = error "Different residue classes !"
| otherwise = makeZ (f a b) p

-- P.+ denotes (+) instances for Integral type class
-- from the Prelude . It corresponds to the ring Z.
instance (Integral a) ⇒ Num (Mod a) where

(+) = lift2z (P.+)
(−) = lift2z (P.-)
(∗) = lift2z (P.∗)

instance (Integral a) ⇒ Fractional (Mod a) where
(/) (Z a p) (Z b q) = -- use EEA

Fig. 1. Required function types for single-residue arithmetic in Eden

Algorithm 3 (Integer to Farey fraction)
Input: an integer x = |a/b|m, m.

1. Compute N from m per (1).
2. Start Algorithm 1 with seed matrix(

m 0
x 1

)
.

3. In each step of the algorithm check, whether |a1| and |b1| are both smaller
than N . If so, return the fraction b1/a1 (sic). If Algorithm 1 terminates
without producing such a pair of numbers, fail.

Output: either a Farey fraction a/b or a failure.

The correctness of Algorithm 3, the uniqueness of the fraction b1/a1, and the
criteria for the input of the algorithm, needed to succeed, are proved in [5]. The
first proof known to us is in [15]. We name the mapping “rational reconstruction”
per [13]. We show Eden implementations of Algorithms 2 and 3 on Figure 7.
Further, we need a way to refer to a single residue arithmetic in Z/〈m〉 = Zm.
The details are well-known, we present source code signatures in Figure 1.

3 An Integer-Based Multiple-Residue Arithmetic

Let us consider a multiple-residue system Zβ with more than one residue. Hence,
β is a vector. For the sake of simplicity we consider elements of β to be prime
numbers. Then for β = [m1,m2, . . . ,mn] single residue classes are Zm1 , . . . ,Zmn .
With M = m1 · · ·mn, it holds that

Zm1 × · · · × Zmn = Zβ
∼= ZM . (2)

The equation (2), read from left to right, is widely known as Chinese Residue
Theorem, which we abbreviate to CRT. There are many different proofs of the

182 O. Lobachev and R. Loogen

type IMods a = [Mod a]
makeIZ ′ :: (Integral a, Integral b) ⇒ a → [a] → IMods b
makeIZ ′ value primes = map (makeZ value) primes
instance (Integral a) ⇒ Num (IMods a) where

(+) = zipWith (+)
-- and so on...

Fig. 2. Implementing the multiple-residue integer arithmetic

CRT; some of the constructive ones allow the algorithmic construction of the
“large” residue. We call such proofs implementations of CRT, the other name in
the literature is “Chinese Residue Algorithm”, cf. [13].

Further (2) facilitates a background for forth and backwards mappings be-
tween Zβ and ZM as well as for defining the arithmetic. We will present this
known result with a notion from functional programming.

Definition 5 (Map function). For all functions operating on single elements:
f :: a → b, we define a function map, which takes as its arguments such f and
a collection of type [a] of elements of type a. The function map applies f to each
element of its input collection and combines the results of each such application to
its output collection of type [b]. Hence, map has the type (a → b) → [a] → [b]
and a partial application map f has the type [a] → [b]. So we write
map :: (a → b) → [a] → [b]
map f xs = [f x | x ∈ xs]

Corollary 6 (ZipWith function). We define a binary version of map.
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith f xs ys = [f x y | x ∈ xs | y ∈ ys]

Now we can define all four integral multiple-residue arithmetic operation on Zβ

as a kind of map of their single-residue counterparts. Because map applies f to each
single element in an independent manner, such definition of a multiple-residue
arithmetic underlines its strength for vectorisation. All of the computation within
a single “residue element” can be done independent from other residue elements.
This will be the basis for the parallel implementation in Subsection 4.3. The
implementation of the arithmetic falls back to zipWith—a variant of map for
binary functions. Hence, the type for the multiple-residue system is just a list of
single-residues. See Figure 2 for details. Now we can sketch the following.

Algorithm 4 (To integral multiple-residue)
Input: vector of primes β, integer x with no common factors with elements of β.
Compute |x|mi for all elements mi of β.
Output: |x|β
Algorithm 5 (From integral multiple-residue)
Input: |x|β .
Compute |x|M with an implementation of CRT.
Output: |x|M .

We omit the implementation here for the sake of brevity.

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 183

data FSingleMod a = FM (Mod a) a
type FMods a = [FSingleMod a]

nFromM , mFromN :: Integral i ⇒ i → i
-- convert M to n per (1)
makeFZ :: Integral i ⇒ Fraction i → FMods i
-- forth mapping , see Figure 4
restoreFZ :: Integral i ⇒ FMods i → Maybe (Fraction i)
-- backwards mapping , see Figure 5

Fig. 3. Basic outline of rational multiple-residue implementation in Eden

4 A Rational Multiple-Residue System

4.1 The Mappings

Definition 7 (Elements). We define an element of a rational multiple-residue
system Wβ as follows. Let n be the length of prime list β. Then such element is
a list of pairs

[(ui, vi) : i = 1, . . . , n] .

Here the components ui are the residues and vi are the powers of corresponding
elements of β.

The implementation is in Figure 3. The authors of [5] define a similar residue sys-
tem, we call Mβ here. Its elements are similar to those of Wβ and the arithmetical
operations definitions coincide. The major difference lies in how the forth and
backwards mappings are defined. Noteworthy, [4,6] define a yet another residue
system, which differs from both Mβ and Wβ in not separating out the powers of
primes vi from the residues ui. It is the predecessor of Mβ .

Given a fraction a/b and β = [m1,m2, . . . ,mn], satisfying (1) and (3), we can
state the following.

Algorithm 6 (Outline of forth mapping)
Input: fraction a/b, residues β = [m1, . . . ,mn].

1. Extract common factors vi of all mi and a/b. Remember v1, . . . , vn.
2. Convert the resulting fraction to an integer modulo M = m1 · · ·mn with

Algorithm 2.
3. Convert the resulting integer to a multiple-residue system modulo β with

Algorithm 4. Store the results in a list [u1, . . . , un].

Output: rational multiple-residue representation of a/b being [(u1, v1), . . . ,
(un, vn)].

The key difference between our approach and Mβ is in

a(1)

b(1)
=
a

b
mv1

1
a(2)

b(2)
=
a

b
mv2

2 . . .
a(n)

b(n) =
a

b
mvn

n . (3)

With these equations, the forth mapping for Wβ takes in step 2 the value a(i)/b(i)

for i-th residue class in the system. The forth mapping for Mβ extracts all factors

184 O. Lobachev and R. Loogen

detectPower :: (Integral i, Num n) ⇒ i → i → (n, i)
-- Code omitted . Example : detectPower 40 2 = (3, 5)

convertFraction :: (Integral i) ⇒ i → i → i → Mod i
-- Code omitted . Converts fraction to integer modulo m

extractFactors :: (Integral i, Num n) ⇒ i → [i] → [(n, i)]
extractFactors x ps = map (detectPower x) ps

makeFZ ′ :: Integral i ⇒ i → i → [i] → FMods i
makeFZ ′ a b ps | gcd a b == 1

= let (ws, ys) = unzip $ extractFactors a ps
(qs, zs) = unzip $ extractFactors b ps
vs = zipWith (−) ws qs -- well -defined
cs = zipWith3 convertFraction ys zs ps

in zipWith FM (cs) vs
| otherwise = -- recursive call

makeFZ :: Integral i ⇒ Fraction i → FMods i
makeFZ = -- a trivial constructor expansion

Fig. 4. Forward mapping (Algorithm 7)

from the input fraction for all residue classes. Unfortunately, this leads to an
instable addition. Our approach does not have such a problem. We will show
an example, underlying the difference of both approaches after the definition of
arithmetic operations as Example 12 on page 186.

Algorithm 7 (Forth mapping)
Input: fraction a/b, residues β = [m1, . . . ,mn].
Execute Algorithm 6 with (3) in Step 2.
Output: rational multiple-residue representation of a/b as an element of Wβ.

The implementation of this algorithm is on Figure 4. Note that in Algorithm 7 we
convert each fraction a(i)/b(i) separately, resulting in up to n calls of Algorithm 2.
The backward mapping is defined as follows.

Algorithm 8 (Backward mapping)
Input: [(u1, v1), . . . , (un, vn)] ∈ Wβ, β = [m1, . . . ,mn]

1. Compute M = m1 · · ·mn and N =
√
M/2.

2. Compute a′/b′ = mv1
1 · · ·mvn

n .
3. For i ∈ {1, . . . , n} distort the values of ui. Let

ûi := ui/
∏
j
=i

m
vj

j .

4. Regard [û1, . . . , ûn] an integer multiple-residue value in Zβ. Find its repre-
sentation q in ZM with an implementation of CRT (Algorithm 5).

5. Find fraction a/b of order N , such that |a/b|M = q with Algorithm 3. If it
succeeds, continue. Else fail.

Output: aa′/bb′ or failure.

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 185

getM :: Integral i ⇒ FMods i → Integer
-- returns the product of all primes in the system

stripPowers :: Integral i ⇒ FMods i → (i, i, FMods i)
-- set vi = 0 for all i and compensate

restoreFZ ′ :: Integral i ⇒ FMods i → (Maybe (i,i), (i,i))
restoreFZ ′ x = let m = getM x

n = nFromM m
(nom, denom , strips) = stripPowers x
z = convertToIntResidues strips
r = toIntegral $ restoreIZ ′ z
e = eeaSearch ((m, r), (0, 1)) n

in (e, (nom, denom))

restoreFZ :: Integral i ⇒ FMods i → Maybe (Fraction i)
restoreFZ =-- compute in Maybe monad the product of fraction e with nom/denom

Fig. 5. The outline of the backwards mapping (Algorithm 8)

Implementation of the latter algorithm is presented on Figure 5. How does the
input set of Algorithm 7 look like? This set consists of Farey fractions of corre-
sponding order N and their products with powers v1, . . . , vn of m1, . . . ,mn. For
the restricted values of vi the shape of this set is shortly discussed in [7]. If we
do not restrict the values of vi, then it is infinite. Further questions on the shape
of this set are open.

4.2 The Arithmetic

Now we have to define the actual arithmetic on Wβ . Each operation is defined
for a single residue (use map! The rational system is still independent in its
components). These definitions coincide with ones for Mβ from [5], but not with
ones from [4]. We begin with the definition of multiplication, since it is the
simplest operation in the system.

Definition 8 (Multiplication). The product of (u, v) and (μ, ν) modulo m is
defined as (|uμ|m, v + ν).

The implementation is straightforward:

(FM u1 v1) ∗ (FM u2 v2) = FM (u1∗u2) (v1+v2)

Definition 9 (Multiplicative Inverse). The inverse of (u, v) is (|u|−1
m ,−v).

Note, it is easy and well-known, how to compute |u|−1
m , the multiplicative inverse

of u modulo m with EEA, Algorithm 1, for such u and m, that gcd(u,m) = 1.
It coincides with computing an integer representation of a fraction 1/u with Al-
gorithm 2, a standard approach in residue rings. The sum of (u, v) and (μ, ν)
modulo m is (|u + μ|m, v) if v = ν and just (u, v) for |v| < |ν| with a single ex-
ception for sum of something with zero being the non-zero summand, regardless
of the power of m. A more formal definition follows.

186 O. Lobachev and R. Loogen

Definition 10 (Addition). The sum of (u, v) and (μ, ν) modulo m is defined
as follows. Let u⊕μ = |u+μ|m. We write in this table v for positive values, −v
for negative and 0 for zero.

+ (0, z) (u, v) (u, 0) (u,−v)
(0, ζ) (0, 0) (u, v) (u, 0) (u,−v)
(μ, ν) (μ, ν) A (u, 0) (u,−v)
(μ, 0) (μ, 0) (μ, 0) (u⊕ μ, 0) (u,−v)

(μ,−ν) (μ,−ν) (μ,−ν) (μ,−ν) B

The two subcases are:

A =

⎧⎪⎨⎪⎩
(u, v) if v < ν
(u⊕ μ, v) if v = ν

(μ, ν) if v > ν
B =

⎧⎪⎨⎪⎩
(u,−v) if − v < −ν
(u⊕ μ, v) if v = ν

(μ, ν) if − v > −ν
It is z, ζ ∈ Z. The zero element is not unique because of (0, z) with z �= 0, but we
norm it to the standard representation (0, 0). The Theorem 14 shows that this
causes no problems.

Definition 11 (Additive Inverse). The additive inverse of (u, v) modulo m
is (| − u|m, v).
The actual arithmetic operations on Wβ are defined by lifting the above single-
element operations with zipWith to lists:
instance (Integral a) ⇒ Num (FMods a) where

(+) = zipWith (+)
(−) = zipWith (−)
(∗) = zipWith (∗)

instance (Integral a) ⇒ Fractional (FMods a) where
(/) = zipWith (/)

The code for addition, the most complicated operation even for single-element
inputs, is presented in Figure 8 in Appendix.

Now, given the arithmetic, we can show that our approach is better than Mβ

from [5]. Regard an example computation [7].

Example 12 (Counterexample for Mβ). Let a = 1/21 and b = 1/3. We com-
pute in Mβ modulo β = [5, 7, 11, 13]. Per (1), all fractions of order 50 are on the
safe side. As Mβ needs to extract all factors of elements of β from all elements
of the residue system, we obtain representations [(2, 0), (5,−1), (4, 0), (9, 0)] for a
and [(2, 0), (5, 0), (4, 0), (9, 0)] for b. The sum is [(4, 0), (5,−1), (8, 0), (5, 0)], we
obtain 2/21 as the result, contrary to the correct result 8/21. The same exam-
ple with Wβ of the same scale results in [(1, 0), (5,−1), (10, 0), (5, 0)] for a and
[(2, 0), (5, 0), (4, 0), (9, 0)] for b. The sum is [(3, 0), (5,−1), (3, 0), (1, 0)], yielding
the correct result 8/21.

Theorem 13 (Well-definiteness). The arithmetic operations in Wβ produce
correct results.

The proof is in the appendix.

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 187

Theorem 14. Wβ is a field.

The mainly technical proof is given in the appendix.

Theorem 15 (Correctness). The algorithms 7 and 8 are correct.

Proof (Idea). Each of the two algorithms is a composition of homomorphic map-
pings. The mappings defined by Algorithms 2, 3, 4 and 5 are known to be ho-
momorphic. Show that the mapping

a

b
mv →

(∣∣∣a
b

∣∣∣
m
, v
)

with arithmetic from Section 4.2 is a homomorphism. Further, this mapping is
invertible for Farey fractions a/b. Their order is bound by (1). †

4.3 Parallelism

Multiple-residue arithmetic is known for its data parallelism potential. We com-
pute with different residues in a fully independent manner, without a need for a
communication in-between. As our implementation of rational multiple-residue
arithmetic conforms to this principle, we can immediately make a step from a
(sequential) Eden implementation to (parallel) Eden code.

Suppose, we have some function f :: FMods Int → FMods Int. This func-
tion could be implemented in Eden as f = map g, where g :: FSingleMod Int
→ FSingleMod Int. It suffices to write f = farm g to obtain a parallel Eden
implementation. The skeleton farm implements a parallel map behaviour and is
part of Eden’s skeleton library.

A further advantage is provided by the Eden type system. As both FMods and
FSingleMod are instances of the standard Num and Fractional type classes,
we could use the standard arithmetical notation of +,−, ·, / in the implemen-
tation of the function g from above. Even more: the generalised type of g is
g :: (Num a, Fractional a) ⇒ a → a. This means, that we can use g for
any arithmetic of our choice: be it the standard one, or the one presented above.
In terms of computer algebra, one says that g is symbolic.

5 Testing the Arithmetic

In order to have a large enough task, we use matrix computations for testing the
arithmetic. We choose the LU decomposition of matrices as our test problem.

We have implemented distributed determinant computation of permuted,
scaled with 1/3 Pascal matrices, using the above approach. As a Pascal ma-
trix is unimodular, the final result is always known. The arithmetic of a right
scale always performed correctly in our tests. A visualisation of the parallel pro-
gram execution with EdenTV [1] is depicted in Figure 6. In the diagram, the
horizontal axis indicates the time, the vertical axis shows PEs. The bars show
process activity over time. Multiple processes can be placed on one PE. The

188 O. Lobachev and R. Loogen

Fig. 6. A fragment of the runtime diagram of the test executable

colours correspond to a traffic light: red • (dark grey in a black and white ver-
sion) is blocked, i.e. waiting for input. Yellow • (light grey) is “runnable”, but not
running, typical causes are garbage collection and communication in progress.
Green • (grey) stands for running.

The initial delay of 1.3–1.5 second is due to the generation of the input matrix.
Probably, some part of this computation is also due to the boilerplate code for
parallelisation. Each parallel residue computation, seen from 1.25 second to 2.5–
2.6 second perform for about 1.3 seconds. Then, the needed results—only the
diagonal of the whole matrix!—are sent back to the PE 1. After a very short post-
processing phase the program terminates. The visualised run was performed on a
eight-core Intel Xeon machine with a 2.5 GHz CPU and 16 GB RAM. We used no
special memory management and fixed the message buffer at 2 MB pro PE. The
input matrix size was 100×100, we used 8 residues with primes of size ≈ 5 ·104.
The bound on fraction size was ≈ 1017, the determinant was a Farey fraction
of order ≈ 5 · 1047. We stress that the matrix operations’ implementation is a
prototype one. The essence of this example is not to make performance records,
but to show that the arithmetic produces correct results in practice.

6 Related Work

Any decent system implements residue-based approach for reducing the interme-
diate expression swell. A lot of work on rational residue systems was done in [5]
and preceding papers [4,14,15,6,11]. The earliest approaches to rational residues
known to us are [12] and [2]. Our own work on this topic is [7].

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 189

7 Conclusions and Future Work

We have presented a rational multiple-residue arithmetic and its parallel imple-
mentation in Eden. We constructed a test case and provided a visualisation of the
program execution. We present in this paper concise source code for almost all
operations. The omitted parts are straightforward. Nevertheless, the complete
source code package is available from the project homepage2.

Further direction is the development of a parallel benchmark, based on the
presented implementation, coupled with certain test input. Another point for
future work would be an attempt for an adaptive computation. It would be
interesting to see a Maple implementation of our approach. A distributed im-
plementation, based on the remote data concept [3] should improve the speedup
values of our implementation.

Acknowledgements. We would like to thank Tomas Sauer for supervising the
first author’s diploma thesis on a similar topic [7]. This paper’s theoretical
background relies heavily on this thesis and on an excellent book by Gregory
and Krishnamurthy [5]. We are grateful to the anonymous referees for their
comments.

References

1. Berthold, J., Loogen, R.: Visualizing Parallel Functional Program Executions: Case
Studies with the Eden Trace Viewer. In: ParCo 2007. IOS Press, Amsterdam (2007)

2. Borosh, I., Fraenkel, A.S.: Exact solutions of linear equations with rational coeffi-
cients by congruence techniques. Math. Comp. 20(93), 107–112 (1966)

3. Dieterle, M., Horstmeyer, T., Loogen, R.: Skeleton composition using remote data.
In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 73–87. Springer,
Heidelberg (2010)

4. Gregory, R.T.: Error-free computation with rational numbers. BIT Numerical
Mathematics 21(2), 194–202 (1981)

5. Gregory, R.T., Krishnamurthy, E.V.: Methods and Applications of Error–Free
Computation. Springer, Heidelberg (1984)

6. Kornerup, P., Gregory, R.T.: Mapping integers and Hensel codes onto Farey frac-
tions. BIT Numerical Mathematics 23(1), 9–20 (1983)

7. Lobachev, O.: Multimodulare Arithmetik, Justus-Liebig-Universität Gießen. Diplo-
marbeit (March 2007) (in German),
http://www.mathematik.uni-marburg.de/~lobachev/diplom.pdf

8. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Parallelism Ab-
stractions in Eden. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and Skeletons for
Parallel and Distributed Computing. Springer, Heidelberg (2003)

9. Loogen, R., Ortega-Mallén, Y., Peña-Marí, R.: Parallel Functional Programming
in Eden. Journal of Functional Programming 15(3), 431–475 (2005)

10. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, Cambridge (December 2003)

2 http://www.mathematik.uni-marburg.de/~lobachev/code/multimod/

190 O. Lobachev and R. Loogen

11. Rao, T.M., Gregory, R.T.: Conversion of Hensel codes to rational numbers. Comp.
Math. 10(2), 185–189 (1984)

12. Svoboda, A., Valach, M.: Rational system of residue classes. In: Stroje na Zprac-
corani Informaci, Sbornik, Nakl, CSZV, Prague, pp. 9–37 (1957)

13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

14. Wang, P.S.: A p-adic algorithm for univariate partial fractions. In: Proc. ACM
Symposium on Symbolic and Algebraic Computation, pp. 212–217. ACM, New
York (1981)

15. Wang, P.S., Guy, M.J.T., Davenport, J.H.: p-adic reconstruction of rational num-
bers. ACM SIGSAM Bulletin 16(2), 3 (1982)

Appendix

Proof (of Theorem 13). We consider again the element-wise operations.

1. The addition works, despite looking somewhat strange. Let (|a/b|m, v) and
(|α/β|m, ν) be the summands. The trivial case for summation with zero is
clear. The case of v = ν is also not endearing. All left is the complicated
case v �= ν. Without loss of generality, let |v| < |ν|. Now we have three non-
trivial sub-cases for different signs of v and ν, all other cases can be seen
as one of those with places swapped. Let us consider one of them: the case
“0 < v < ν”.

amv

b
+
αmν

β
=
amv

b
+
αmν−vmv

β
=
amv

b
+
αmv

β
mν−v.

If we extract all we can, namely mv, the summand with further factor of m
turns into zero modulo m, we have exactly (|a/b|m, v) remaining. All other
cases are analogue.

2. The additive inverse is correct. Changing the sign changes not the factors,
thus no change at v. The addition of (u, v) and (| − u|m, v) returns (0, v),
which is zero.

3. The multiplication is straight-forward. It follows
a

b
mv · α

β
mν =

aα

bβ
mv+ν ,

which is exactly what we see.
4. The multiplicative inverse is also correct:

(u, v) · (|u|−1
m ,−v) = (|u · u−1|m, v − v) = (1, 0).

��
Proof (Proof of Theorem 14). We show the field axioms. We refrain to a single
element of the list [(u1, v1), . . . , (un, vn)] ∈ Wβ . We call it (u, v) without the
indices. We think about u as of an element of the residue ring Zm with prime m.
If needed, we index v with u, like: (u, vu). We begin with commutativity and
save the associativity of the addition at the very end. Let (a, va), (b, vb), (c, vc)
be in the same projection of Wβ to the single element modulo m, so-to-say, let
(a, va), (b, vb), (c, vc) be elements of Wm.

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 191

– Addition is commutative. Regard (a, va) + (b, vb). If va = vb, then the result
follows from commutativity of Zm. Else assume w.l.o.g. va < vb. Then the
result of the addition is (a, va). As the addition table is symmetric, (b, vb) +
(a, va) produces the same result.

– The neutral element is (0, 0). The non-unique representation (a, v)+(−a, v) =
(0, v) can be normalised with the convention that any (0, v) should be normed
to (0, 0).3 In further we write (0, 0) and say “zero” for all representations of
the neutral element. The normed zero is unique.

– The existence of an additive inverse follows from the same fact in Zm. The
uniqueness: assume (b, vb) and (c, vc) are two distinct inverses of (a, va), then
(b, vb) = (b, vb)+ (a, va) + (c, vc)︸ ︷︷ ︸

=(0,v′)

= (b, vb) + (a, va)︸ ︷︷ ︸
=(0,v′′)

+(c, vc) = (c, vc). Both v′

and v′′ can be normed to 0 ∈ Z per above.
Assuming there exists an inverse (b, vb) of (a, va) �= (0, 0) with vb �= va.
Assume w.l.o.g. that vb < va. Then (a, va) + (b, vb) = (b, vb), hence (a, va)
is the neutral element. This is a contradiction.

– Multiplication is associative: ((a, va)(b, vb))(c, vc) = (|ab|m, va + vb)(c, vc) =
(|abc|m, va + vb + vc) = (a, va)(|bc|m, vb + vc) = (a, va)((b, vb)(c, vc)).

– Multiplication is commutative because the multiplication in Zm and addition
in Z are commutative.

– The unity is (1, 0). It is unique.
– The existence of the multiplicative inverse follows from the fact that Zm is

a field for prime m and that Z is a ring. By the way |a/b|−1
m = |b/a|m, we

have the same limit on m. The uniqueness is a consequence of the fact that
inverses in Zm and Z are unique.

– Left distributive law: Show (a, va)((b, vb) + (c, vc)) = (a, va)(b, vb) + (a, va)
(c, vc). If vb = vc, the result follows from the left distributivity in Zm:
(a, va)((b, vb) + (c, vb)) = (a, va)(|b + c|m, vb) = (|a(b + c)|m, va + vu) =
(|ab+ac|m, va +vb) = (a, va)(b, vb)+(a, va)(c, vc). Now assume w.l.o.g. that
vb < vc. Then (b, vb)+ (c, vc) = (b, vb) holds, resulting in (a, va)(b, vb) on the
LHS of the law. The RHS has va+vb < va+vc, thus resulting in (a, va)(b, vb).
The right distributive law follows analogue.

– Now the associativity of addition follows from Proposition 16. ��
Proposition 16. For a projection Wm of Wβ to a single entry holds that its
elements are associative w.r.t. addition.

Proof. We need to show that for (a, va), (b, vb), (c, vc) ∈ Wm holds (a, va) +
((b, vb) + (c, vc)) = ((a, va) + (b, vb)) + (c, vc). The case va = vb = vc is trivial
and follows from the associativity of Zm and of Z. The case, where only one
pair is equal, is a reduced form of the following considerations and of the trivial
case. So, the interesting case is that of distinct va, vb, vc. As we know, for, say
a + b and va < vb, the result is a for non-zero a and b. So, we need to regard
3 In fact, the next addition silently does exactly that. However the next multiplication

will propagate the non-standard representation further.

192 O. Lobachev and R. Loogen

eeaStep :: (Integral a) ⇒ ((a, a), (a, a)) → ((a, a), (a, a))
eeaStep ((a1 , a2), (b1 , b2)) = ((a2 , a3), (b2 , b3))

where t = a1 ‘div‘ a2
a3 = a1 ‘mod‘ a2
b3 = b1 - t∗b2

eea :: (Integral a) ⇒ ((a, a), (a, a)) → ((a, a), (a, a))
eea ((a1 , a2), (b1 , b2))

| a2 == 0 = ((a1 , a2), (b1 , b2))
| otherwise = eea $ eeaStep ((a1 , a2), (b1 , b2))

convertFraction :: (Integral i) ⇒ Fraction i → i → Mod i
convertFraction (F x y) p

= let ((d,_),(r,_)) = eea ((p,y),(0,x))
in if d
= 1 then error "convertFraction" else makeZ r p

-- Type Mod i and function makeZ are explained on Figure 1.

eeaSearch :: (Integral a) ⇒ ((a, a), (a, a)) → a → Maybe (a, a)
eeaSearch ((a1 , a2), (b1 , b2)) n

| a2==0 = Nothing
| a2
=0 ∧ ¬(criteria a2 b2 n)

= flip eeaSearch n $ eeaStep ((a1 , a2), (b1 , b2))
| otherwise = Just (a2 , b2)
where criteria x y n = abs x < n ∧ abs y < n

restoreFraction :: (Integral i) ⇒ i → i → Maybe (i, i)
restoreFraction a m = eeaSearch ((a, m), (0, 1)) n

where n = nFromM m -- converts m to n per (1), see Figure 3.

Fig. 7. A generic (Algorithm 1) and two special (Algorithms 2 and 3) implementations
of extended euclidean algorithm in Eden

instance (Integral a) ⇒ Num (FSingleMod a) where
(+) x y = addSingle x y
(−) x y = x + (additiveInverseSingle y)
-- etc.

addSingle :: (Integral a) ⇒ FSingleMod a → FSingleMod a → FSingleMod a
addSingle (FM (Z 0 p) _) (FM (Z 0 p ′) _) | p==p ′ = FM (Z 0 p) 0
addSingle (FM (Z 0 _) _) y = y
addSingle x (FM (Z 0 _) _) = x
addSingle (FM u 0) (FM u ′ 0) = FM (u+u ′) 0
addSingle (FM u v) (FM u ′ 0) | v >0 = FM u ′ 0

| v <0 = FM u v
addSingle (FM u 0) (FM u ′ v ′) | v ′>0 = FM u 0

| v ′<0 = FM u ′ v ′

addSingle (FM u v) (FM u ′ v ′) | v<v ′ = FM u v
| v>v ′ = FM u ′ v ′

| v==v ′ = FM (u+u ′) v
addSingle _ _ = error "Bad case!" -- never happened

additiveInverseSingle (FM (Z u p) v) = FM (Z (p-u) p) v

Fig. 8. Additive operations in a single fractional residue class

Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden 193

different relations between va, vb, vc, as they lead to different results. However,
we show that the result of the addition is the same in both cases, provided
the case constellation of va, vb, vc. However, the trick is that (in some cases) the
particular order of the addition provides us with more information, than another.

We assume the commutativity of the addition, see the above proof. We write
down the results in a table, were we represent the pairs of v’s with the relation
between them. We mean here < just as per above. The boxed values show the
relation of addition, which can be deduced from the relations in the given case.
There are some further cases, like c < b < a and like c < a, c < b, but all the

(a + b) + c a + (b + c)

1.

va vb vc

va = < <
vb = ?
vc =

⇐
va vb vc

va = < <
vb = <
vc =

2.

va vb vc

va = <
vb = <
vc =

⇔
va vb vc

va = <
vb = <
vc =

1’.

va vb vc

va = < >

vb = <
vc =

⇒
va vb vc

va = ? >
vb = <
vc =

2’.

va vb vc

va = >
vb = <
vc =

⇔
va vb vc

va = >
vb = <
vc =

Relation Case
a < b < c 1.
b < c < a w.l.o.g. 1.
c < b < a w.l.o.g. 1.
a < c < b commutativity 1.
c < a < b 1’.

a < b, a < c 2.
b < a, b < c 2’. (w.l.o.g. 2.)
c < a, c < b w.l.o.g. 2.

cases with swapped symbols hold as we can fix the order of the entries w.l.o.g.
We see, that f.e. the cases 1’. and 2’. correspond to cases 1. and 2. The case 1’.
results from both w.l.o.g. and commutativity of case 1. So it is sufficient to
regard two cases. In the first, the relations are different, but the total order on
the one side implies the relation needed on the other side. In the other case, the
relations are partial, but equal. ��

Fast Generalized Bruhat Decomposition

Gennadi Malaschonok�

Tambov State University,
Internatsionalnaya 33, 392622 Tambov, Russia

malaschonok@gmail.com

Abstract. The deterministic recursive pivot-free algorithms for com-
puting the generalized Bruhat decomposition of the matrix in the field
and for the computation of the inverse matrix are presented. This method
has the same complexity as algorithm of matrix multiplication, and it is
suitable for the parallel computer systems.

1 Introduction

An LU matrix decomposition without pivoting is a decomposition of the form
A = LU , a decomposition with partial pivoting has the form PA = LU , and
decomposition with full pivoting (Trefethen and Bau) has the form PAQ =
LU , where L and U are lower and upper triangular matrices, P and Q is a
permutation matrix.

French mathematician Francois Georges René Bruhat was the first who
worked with matrix decomposition in the form A = V wU , where V and U are
nonsingular upper triangular matrices and w is a matrix of permutation. Bruhat
decomposition plays an important role in algebraic group theory. The general-
ized Bruhat decomposition was introduced and developed by D.Grigoriev[1],[2].
He uses the Bruhat decomposition in the form A = V wU , where V and U are up-
per triangular matrices but they may be singular when the matrix A is singular.
In the papers [3] and [4], there was analyzed the sparsity pattern of triangular
factors of the Bruhat decomposition of a nonsingular matrix over a field.

Fast matrix multiplication and fast block matrix inversion were discovered by
Strassen [5]. The complexity of Strassen’s recursive algorithm for block matrix
inversion is the same as the complexity of an algorithm for matrix multiplica-
tion. But in this algorithm it is assumed that principal minors are invertible and
leading elements are nonzero as in the most of direct algorithms for matrix in-
version. There are known other recursive methods for adjoint and inverse matrix
computation, which have the complexity of matrix multiplications([6]-[8]).

In a general case, it is necessary to find suitable nonzero elements and to
perform permutations of matrix columns or rows. Bunch and Hopkroft suggested
such algorithm with full pivoting for matrix inversion [9].

The permutation operation is not a very difficult operation in the case of se-
quential computations by one processor, but it is a difficult operation in the case
� Supported by the Sci. Program Devel. Sci. Potent. High. School, RNP.2.1.1.1853.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 194–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Generalized Bruhat Decomposition 195

of parallel computations, when different blocks of a matrix are disposed in differ-
ent processors. A matrix decomposition without permutations is needed for par-
allel computation for construction of efficient and fast computational schemes.

The problem of obtaining pivot-free algorithm was studied in [10],[11] by S.
Watt. He presented the algorithm that is based on the following identity for
a nonsingular matrix: A−1 = (ATA)−1AT . Here AT is the transposed matrix
to A, and all principal minors of the matrix ATA are nonzero. This method is
useful for making an efficient parallel program with the help of Strassen’s fast
decomposition of inverse matrix for dense nonsingular matrix over the field of
zero characteristic when field elements are represented by the float numbers.
Other parallel matrix algorithms are developed in [12] - [15].

This paper is devoted to the construction of the pivot-free matrix decompo-
sition method in a common case of singular matrices over a field of arbitrary
characteristic. The decomposition will be constructed in the form LAU = E,
where L and U are lower and upper triangular matrices, and E is a truncated
permutation matrix, which has the same rank as the matrix A. Then the gen-
eralized Bruhat decomposition may easily be obtained using the matrices L, E,
and U . This algorithm has the same complexity as matrix multiplication and
does not require pivoting. For singular matrices, it allows the obtaining of a
nonsingular block of the biggest size, the echelon form, and kernel of matrix.
The preliminary variants of this algorithm were developed in [16] and [17].

2 Preliminaries

We introduce some notations that will be used in the following sections.
Let F be a field, Fn×n be an n× n matrix ring over F , Sn be a permutation

group of n elements. Let Pn be a multiplicative semigroup in Fn×n consisting of
matrices A having exactly rank(A) nonzero entries, all of them equal to 1. We
call Pn the permutation semigroup because it contains the permutation group
of n elements Sn and all their truncated matrices.

The semigroup Dn ⊂ Pn is formed by the diagonal matrices. So |Dn|=2n and
the identity matrix I is the identity element in Dn, Sn and Pn.

LetWi,j ∈ Pn be a matrix, which has only one nonzero element in the position
(i, j). For an arbitrary matrix E of Pn, which has the rank n − s (s = 0, ..n)
we shall denote by iE = {i1, .., is} the ordered set of zero row numbers and
jE = {j1, .., js} the ordered set of zero column numbers.

Definition 1. Let E ∈ Pn be the matrix of the rank n − s, let iE = {i1, .., is}
and jE = {j1, .., js} are the ordered set of zero row numbers and zero columns
number of the matrix E. Let us denote by E the matrix

E =
∑

k=1,..s

Wik,jk

and call it the complimentary matrix for E. For the case s = 0 we put E = 0.

196 G. Malaschonok

It is easy to see that ∀E ∈ Pn : E + E ∈ Sn, and ∀I ∈ Dn : I + I = I.
Therefore, the map I �→ I = I− I is the involution, and we have II = 0. We can
define the partial order on Dn: I < J ⇔ J − I ∈ Dn. For each matrix E ∈ Pn

we shall denote by
IE = EET and JE = ETE

the diagonal matrix: IE , JE ∈ Dn. The unit elements of the matrix IE show
nonzero rows of the matrix E and the unit elements of the matrix JE show
nonzero columns of the matrix E. Therefore, we have several zero identities:

ET IE = IEE = EJE = JEE
T = 0. (1)

For any pair I, J ∈ Dn let us denote the subset of matrices Fn×n

Fn×n
I,J = {B : B ∈ Fn×n, IBJ = B}.

We call them (I, J)-zero matrix. It is evident that Fn×n = Fn×n
I,I , 0 ∈ ∪I,JF

n×n
I,J ,

and if I2 < I1 and J2 < J1 then Fn×n
I2,J2

⊂ Fn×n
I1,J1

.

Definition 2. We shall call the factorization of the matrix A ∈ Fn×n
I,J

A = L−1EU−1, (2)

LEU -decomposition if E ∈ Pn, L is a nonsingular lower triangular matrix, U is
an upper unitriangular matrix, and

L− IE ∈ Fn×n
I,IE

, U − JE ∈ Fn×n
JE ,J . (3)

If (2) is the LEU -decomposition we shall write

(L,E,U) = LU(A),

Sentence 1. Let (L,E,U) = LU(A) be the LEU -decomposition of matrix A ∈
Fn×n

I,J then
L = IE + ILIE , U = JE + JEUJ, E ∈ Fn×n

I,J , (4)

L−1 = IE + L−1IE , U
−1 = JE + JEU

−1.

Proof. The first and second equalities follow from (3). To prove the property of
matrix E we use the commutativity of diagonal semigroup Dn:

E = LAU = (IE + ILIE)IAJ(JE + JEUJ) = I(IE + LIEI)A(JE + JJEU)J.

To prove the property of matrix L−1 let us consider the identity

I = L−1L = L−1(IE + LIE) = L−1IE + IIE

Therefore, L−1IE = IE and L−1 = L−1(IE + IE) = IE + L−1IE . The proof of
the matrix U−1 property may be obtained similarly.

Fast Generalized Bruhat Decomposition 197

Sentence 1 states the property of matrix E, which may be written in the form
IE < I, JE < J . We shall call it the property of immersion. On the other hand,
each zero row of the matrix E goes over to the unit column of matrix L and
each zero column of the matrix E goes over to the unit row of matrix U .

Let us denote by En the permutation matrix W1,n +W2,n−1 + .. +Wn,1 ∈ Sn.
It is easy to see that if the matrix A ∈ Fn×n is lower-(upper-) triangular, then
the matrix EnAEn is upper- (lower-) triangular.

Sentence 2. Let (L,E,U) = LU(A) be the LEU -decomposition of matrix A ∈
Fn×n, then the matrix EnA has the generalized Bruhat decomposition V1wV2 and

V1 = En(L−1 − IE)En, w = En(E + E), V2 = (U−1 − JE).

Proof. As far as L−1 is a lower triangular matrix, and U−1 is an upper triangular
matrix we see that V1 and V2 are upper triangular matrices. Matrix w is a product
of permutation matrices so w is a permutation matrix. One easily checks that
V1wV2 = EnL

−1EU−1 = EnA.

Examples

For any matrix I ∈ Dn, E ∈ Pn, 0 �= a ∈ F the product (aI + I)I I is a
LEU decompositions of matrix aI and the product (aIE + IE)E I is a LEU
decompositions of matrix aE.

3 Algorithm of LEU Decomposition

Theorem 1. For any matrix A ∈ Fn×n of size n = 2k, k ≥ 0 a LEU -
decomposition exists. For computing such decomposition it is enough to com-
pute 4 LEU -decompositions, 17 multiplications and several permutations for the
matrices of size n = 2k−1.

Proof. For the matrix of size 1×1, when k = 0, we can write the following LEU
decompositions

LU(0) = (1, 0, 1) and LU(a) = (a−1, 1, 1), if a �= 0.

Let us assume that for any matrix of size n we can write a LEU decomposition,
and let the given matrix A ∈ F 2n×2n

I,J have the size 2n. We shall construct a
LEU decomposition of matrix A.

First of all we shall subdivide the matrices A, I, J and a desired matrix E
into four equal blocks:

A =
[
A11 A12
A21 A22

]
, I = diag(I1, I2), J = diag(J1, J2), E =

[
E11 E12
E21 E22

]
,

and denote
Iij = EijE

T
ij , Jij = ET

ijEij ∀i, j ∈ {1, 2}. (6)

198 G. Malaschonok

Let
(L11, E11, U11) = LU(A11), (7)

denote the matrices
Q = L11A12, B = A21U11, (8)

A1
21 = BJ11, A

1
12 = I11Q, A

1
22 = A22 −BET

11Q. (9)

Let
(L12, E12, U12) = LU(A1

12) and (L21, E21, U21) = LU(A1
21), (10)

denote the matrices

G = L21A
1
22U12, A

2
22 = I21GJ12. (11)

Let us put
(L22, E22, U22) = LU(A2

22), (12)

and denote

W = (GET
12L12 + L21BE

T
11), V = (U21E

T
21GJ12 + ET

11QU12), (13)

L =
(

L12L11 0
−L22WL11 L22L21

)
, U =

(
U11U21 −U11V U22

0 U12U22

)
. (14)

We have to prove that
(L,E,U) = LU(A). (15)

As far as L11, L12, L21, L22 are lower triangular nonsingular matrices, and U11,
U12,U21,U22 are upper unitriangular matrices we can see in (10) that the matrixL
is a lower triangular nonsingular matrix and the matrix U is upper unitriangular.

Let us show that E ∈ P2n. As far as E11, E12, E21, E22 ∈ Pn and A11 =
I1A11J1, A1

21 = BJ11, A1
12 = I11Q, A2

22 = I21GJ12 and due to the Sentence 1
we obtain E11 = I11E11J11, E21 = E21J11, E12 = I11E12, E22 = I21E22J12.

Therefore, the unit elements in each of the four blocks of the matrix E are
disposed in different rows and columns of the matrix E. So E ∈ P2n, and next
identities hold

E11E
T
21 = E11J21 = J11E

T
21 = J11J21 = 0, (16)

ET
12E11 = ET

12I11 = I12E11 = I12I11 = 0, (17)

E12E
T
22 = E12J22 = J12E

T
22 = J12J22 = 0, (18)

ET
22E21 = ET

22I21 = I22E21 = I22I21 = 0. (19)

We have to prove that E = LAU . This equation in block form consists of four
block equalities:

E11 = L12L11A11U11U21;
E12 = L12L11(A12U12 −A11U11V)U22;
E21 = L22(L21A21 −WL11A11)U11U21;
E22 = L22((L21A22 −WL11A12)U12 − (L21A21 −WL11A11)U11V)U22.

(20)

Therefore, we have to prove these block equalities.

Fast Generalized Bruhat Decomposition 199

Let us note that from the identity A11 = I1A11J1 and Sentence 1 we get

L11 = I11 + I1L11I11, U11 = J11 + J11U12J1. (21)

Sentence 1 together with equations A1
12 = I11L11A12, A1

21 = A21U11J11, A2
22 =

I21L21(A22 − A21U11E
T
11L11A12)U12J12 give the next properties of L- and U-

blocks:
L12 = I12 + I11I1L12I12, U12 = J12 + J12U12J2,
L21 = I21 + I2L21I21, U21 = J21 + J21U12J1J11,
L22 = I22 + I21I2L22I22, U22 = J22 + J22U22J2J12.

(22)

The following identities can easily be checked now:

L12E11 = E11, L12I11 = I11, (23)

E11U21 = E11, J11U21 = J11, (24)

E12U22 = E12, J12U22 = J12, (25)

L22E21 = E21, L22I21 = I21. (26)

We shall use the following equalities,

L11A11U11 = E11, L12A
1
12U12 = E12, L21A

1
21U21 = E21, L22A

2
22U22 = E22, (27)

which follow from (7),(10), and (12), the equality

E11V = I11QU12, (28)

which follows from the definition of the block V in (13), (24), (16) and (6), the
equality

WE11 = L21BJ11, (29)

which follows from the definition of the block W in (13), (23), (17) and (6).

1. The first equality of (20) follows from (27), (23) and (24).
2. The right-hand side of the second equality of (20) takes the form L12(I −

I11)QU12U22 due to (8), (27) and (28). To prove the second equality we use the
definition of the blocks B and A1

12 in (8) and (9), then the second equality in
(27) and identity (25): L12(I − I11)QU12U22 = L12A

1
12U12U22 = E12U22 = E12.

3. The right-hand side of the third equality of (20) takes the form L22L21B(I−
J11)U21 due to definition of the block B (8), the first equality in (27) and (29).
To prove the third equality we use the definition of the blocks A1

21 in (9), then
the third equality in (27) and identity (26): L22L21BJ11U21 = L22L21A

1
21U21 =

L22E21 = E21.
4. The identity

ET
12L12 = ET

12L12(I11 + I11) = ET
12L12I11 (30)

follows from (23) and (17).

200 G. Malaschonok

We have to check that (L21A22 − WL11A12)U12 = (L21A22 − (GET
12L12 +

L21BE
T
11)Q)U12 = L21(A22 − BET

11Q)U12 − GET
12L12QU12 = L21A

1
22U12 −

GET
12L12I11QU12 = G − GET

12L12A
1
12U12 = G − GET

12E12 = GJ12, using the
definitions of the blocks W in (13), A1

22 and A1
12 in (9), identity (28), the second

equality in (27), and definition (6).
We have to check that

−(L21A21 −WL11A11)U11V = −(L21A21U11 −WE11)V
= (−L21B + L21BJ11)V = −L21BJ11V

= −L21BJ11(U21E
T
21GJ12 + ET

11QU12) = −L21A
1
21U21E

T
21GJ12 = −I21GJ12

using the first equality in (27), the identity (29), the definitions of the blocks V
in (13), (1), then the third equality in (27) and definition (6).

To prove the fourth equality we have to substitute obtained expressions into
the right-hand side of the fourth equality:

L22(GJ12 − I21GJ12)U22 = L22I21GJ12U22 = L22A
2
22U22 = E22.

For the completion of the proof of this theorem we have to demonstrate the
special form of the matrices U and L: L− IE ∈ FI,IE and U − JE ∈ FJE ,J .

The matrix L is invertible and IE < I, therefore, we have to prove that
L = IE + ILIE , where IE = diag(I11 + I12, I21 + I22), IE = diag(I11I12, I21I22),
I = diag(I1, I2).

This matrix equality for matrix L (14) is equivalent to the four block equalities:
L12L11 = I1L12L11(I11 + I12) + I11I12, 0 = I10(I21 + I22),

−L22WL11 = −I2L22WL11(I11 + I12), L22L21 = I2L22L21(I21 + I22) + I21I22.

To prove the first block equalities we have to multiply its left-hand side by the
unit matrix in the form I = (I1 + I1) from the left side and by the unit matrix
in the form I = (I11 + I12)+ I11I12 from the left side. Then we use the following
identities to obtain in the left-hand side the same expression as in the right-hand
side: L11I11 = I11, L12I12 = I12, I1L12L11 = I1, I1(I11 + I12) = 0. The same
idea may be used for proving the last block equality, but we must use other
forms of unit matrix: I = (I2 + I2), I = (I21 + I22) + I21I22.

The second block equality is evident.
Let us prove the third block equality. We have to multiply the left-hand side

of the third block equality by the unit matrix in the form I = (I2 + I2) from the
left side and by the unit matrix in the form I = (I11 + I12) + I11I12 from the
right side.

The block W is equal to the following expression by definitions (13), (11),
and (8):

W = (L21(A22 −A21U11E
T
11Q)U12E

T
12L12 + L21A21U11E

T
11).

We have to use in the left-hand side the equations I2L22 = I2, I2L21 = I2,
I2A22 = 0, I2A21 = 0, and L11I11 = I11, L12I12 = I12, ET

12I12 = 0, ET
11I11 = 0.

The property of the matrix U : U − JE ∈ FJE ,J may be proved in the same
way as the property of the matrix L.

Fast Generalized Bruhat Decomposition 201

Theorem 2. For any matrix A of size s(s ≥ 1), an algorithm of LEU -decompo-
sition exists, which has the same complexity as matrix multiplication.

Proof. We have proved an existence of LEU -decomposition for matrices of size
2k, k > 0. Let A ∈ F s×s

I,J be a matrix of size 2k−1 < s < 2k, A′ be a matrix of
size 2k, which has in the left upper corner the submatrix equal to A, and all
other elements equal zero. We can construct LEU -decomposition of matrix A′:
(L′, E′, U ′) = LU(A′). According to the Sentence 1 the product L′A′U ′ = E′

has the form (
L 0
0 I

)(
A 0
0 0

)(
U 0
0 I

)
=
(
E 0
0 0

)
Therefore, LAU = E is a LEU decomposition of matrix A.

The total amount of matrix multiplications in (7)-(15) is equal to 17, and
total amount of recursive calls is equal to 4. We do not consider multiplications
of the permutation matrices, we can do these multiplications due to permutation
of pointers for the blocks which are disposed at the local processors.

We can compute the decomposition of the 2 × 2 matrix by means of 5 multi-
plicative operations. Therefore, we obtain the following recurrence equality for
complexity

t(n) = 4t(n/2) + 17M(n/2), t(2) = 5.

Let γ and β be constants, 3 ≥ β > 2, and letM(n) = γnβ +o(nβ) be the number
of multiplication operations in one n× n matrix multiplication.

After summation from n = 2k to 21 we obtain

17γ(402β(k−1) + . . . + 4k−22β1) + 4k−25 = 17γ
nβ − 2β−2n2

2β − 4
+

5
16
n2.

Therefore, the complexity of the decomposition is

∼ 17γnβ

2β − 4
.

If A is an invertible matrix, then A−1 = UETL, and a recursive block algorithm
of matrix inversion is written in expressions (7)–(15). This algorithm has the
complexity of matrix multiplications.

4 Conclusion

The algorithms for finding the generalized Bruhat decomposition and matrix
inversion are described. These algorithms have the same complexity as matrix
multiplication and do not require pivoting. For singular matrices, they allow to
obtain a nonsingular block of the biggest size. These algorithms may be used in
any field, including real and complex numbers, finite fields and their extensions.

The proposed algorithms are pivot-free and do not change the matrix block
structure. So they are suitable for parallel hardware implementation.

202 G. Malaschonok

References

1. Grigoriev, D.: Analogy of Bruhat decomposition for the closure of a cone of Cheval-
ley group of a classical serie. Soviet Math. Dokl. 23(2), 393–397 (1981)

2. Grigoriev, D.: Additive complexity in directed computations. Theoretical Com-
puter Science 19, 39–67 (1982)

3. Kolotilina, L.Y.: Sparsity of Bruhat decomposition factors of nonsingular matrices.
Notes of Scientific Seminars of LOMI 202, 5–17 (1992)

4. Kolotilina, L.Y., Yemin, A.Y.: Bruhat decomposition and solution of linear alge-
braic systems with sparse matrices. Sov. J. Numer. Anal. and Math. Model. 2,
421–436 (1987)

5. Strassen, V.: Gaussian Eelimination is not optimal. Numerische Mathematik 13,
354–356 (1969)

6. Malaschonok, G.I.: Effective matrix methods in commutative domains. In: Formal
Power Series and Algebraic Combinatorics, pp. 506–517. Springer, Berlin (2000)

7. Malaschonok, G.I.: Matrix Computational Methods in Commutative Rings. Tam-
bov State University, Tambov (2002)

8. Akritas, A., Malaschonok, G.: Computation of adjoint matrix. In: Alexandrov,
V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS,
vol. 3992, pp. 486–489. Springer, Heidelberg (2006)

9. Bunch, J., Hopkroft, J.: Triangular factorization and inversion by fast matrix mul-
tiplication. Mat. Comp. 28, 231–236 (1974)

10. Watt, S.M.: Pivot-free block matrix inversion. In: Maple Conf. 2006, Waterloo,
Canada, July 23-26 (2006),
http://www.csd.uwo.ca/~watt/pub/reprints/2006-mc-bminv-poster.pdf

11. Watt, S.M.: Pivot-free block matrix inversion. In: Proc. 8th International Sympo-
sium on Symbolic and Numeric Algorithms in Symbolic Computation (SYNASC),
pp. 151–155. IEEE Computer Society, Los Alamitos (2006)

12. Eberly, W.: Efficient parallel independent subsets and matrix factorization. In:
Proc. 3rd IEEE Symposium on Parallel and Distributed Processing, Dallas, USA,
pp. 204–211 (1991)

13. Kaltofen, E., Pan, V.: Processor-efficient parallel solution of linear systems over an
abstract field. In: Proc. 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 180–191. ACM Press, New York (1991)

14. Kaltofen, E., Pan, V.: Processor-efficient parallel solution of linear systems II: The
general case. In: Proc. 33rd IEEE Symposium on Foundations of Computer Science,
Pittsburgh, USA, pp. 714–723 (1992)

15. Kaltofen, E., Pan, V.: Parallel solution of Toeplitz and Toeplitz-like linear systems
over fields of small positive characteristic. In: Proc. PASCO 1994: First Interna-
tional Symposium on Parallel Symbolic Computation, pp. 225–233. World Scientific
Publishing, Singapore (1994)

16. Malaschonok, G.I.: Parallel Algorithms of Computer Algebra. In: Proc. Conference
Dedicated to the 75 Years of the Mathematical and Physical Dept. of Tambov State
University, November 22-24, pp. 44–56. Tambov State Univ., Tambov (2005)

17. Malaschonok, G.I., Zuyev, M.S.: Generalized algorithm for computing of inverse
matrix. In: 11th Conf. “Derzhavinskie Chteniya”, February 2-6, pp. 58–62. Tambov
State Univ., Tambov (2006)

http://www.csd.uwo.ca/~watt/pub/reprints/2006-mc-bminv-poster.pdf

Computational Science in Armenia
(Invited Talk)

H. Marandjian and Yu. Shoukourian

Institute for Informatics and Automation Problems
National Academy of Science of Republic Armenia

Abstract. This survey is devoted to the development of informatics
and computer science in Armenia. The results in theoretical computer
science (algebraic models, solutions to systems of general form recursive
equations, the methods of coding theory, pattern recognition and im-
age processing), constitute the theoretical basis for developing problem-
solving-oriented environments. As examples can be mentioned: a
synthesizer of optimized distributed recursive programs, software tools
for cluster-oriented implementations of two-dimensional cellular
automata, a grid-aware web interface with advanced service trading for
linear algebra calculations. In the direction of solving scientific prob-
lems that require high-performance computing resources, examples of
completed projects include the field of physics (parallel computing of
complex quantum systems), astrophysics (Armenian virtual laboratory),
biology (molecular dynamics study of human red blood cell membrane),
meteorology (implementing and evaluating the Weather Research and
Forecast Model for the territory of Armenia). The overview also notes
that the Institute for Informatics and Automation Problems of the Na-
tional Academy of Sciences of Armenia has established a scientific and
educational infrastructure, uniting computing clusters of scientific and
educational institutions of the country and provides the scientific com-
munity with access to local and international computational resources,
that is a strong support for computational science in Armenia.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, p. 203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Petri Nets to Polynomials: Modeling,
Algorithms, and Complexity

(Abstract) (Invited Talk)

Ernst W. Mayr

Institut für Informatik,
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
mayr@in.tum.de

Abstract. Petri nets are a widely-used model for parallel and distributed
systems of concurrent systems using common resources. They admit a pre-
cise algebraic formalization as vector addition or vector replacement sys-
tems. If one considers symmetric VRS’s, it turns out that they are
equivalent to finitely presented commutative semigroups or to binomial
ideals in a multivariate ring over Q.

We outline and survey the interaction between these domains of com-
putational algebra, system modeling and verification, and, in particu-
lar, complexity theory. While many of the fundamental computational
problems in these areas turn out to be very complex (i.e., EXPSPACE-
complete or even worse, we also present some new results concerning
better complexity for restricted subclasses of the problems.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, p. 204, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Supporting Global Numerical Optimization of
Rational Functions by Generic Symbolic

Convexity Tests�

Winfried Neun1, Thomas Sturm2, and Stefan Vigerske3

1 Zuse Institute Berlin, Takustraße 7
14195 Berlin, Germany

neun@zib.de
2 Dpto. de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria

39071 Santander, Spain
sturmt@unican.es

3 Department of Mathematics, Humboldt University Berlin, Unter den Linden 6
10099 Berlin, Germany

stefan@math.hu-berlin.de

Abstract. Convexity is an important property in nonlinear optimiza-
tion since it allows to apply efficient local methods for finding global
solutions. We propose to apply symbolic methods to prove or disprove
convexity of rational functions over a polyhedral domain. Our algorithms
reduce convexity questions to real quantifier elimination problems. Our
methods are implemented and publicly available in the open source com-
puter algebra system Reduce. Our long term goal is to integrate Reduce
as a “workhorse” for symbolic computations into a numerical solver.

Keywords: Nonlinear Global Optimization, Hybrid Symbolic-Numeric
Computation, Convex Functions, Real Quantifier Elimination, Imple-
mentation, Reduce.

1 Introduction

Convexity is an important property in nonlinear optimization since it allows
to apply efficient local methods for finding global solutions. However, proving
convexity of a general nonlinear function is a non-trivial task, for which no gen-
eral methods are known. In this paper we propose to apply methods originated
in computer logic to prove or disprove convexity in the special case of rational
functions.

A nonlinear optimization problem (NLP) is a problem of the following form:

minimize g0(x), (P)
such that gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ X,
� This work was supported by the DFG Research Center Matheon Mathematics for

key technologies in Berlin, http://www.matheon.de

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 205–219, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

206 W. Neun, T. Sturm, and S. Vigerske

where X ⊆ Rn is polyhedral and gi : Rn → R, i = 0, . . . ,m, are functions that
are differentiable for all x ∈ X . The function g0 is the objective function, and
the gi(x) ≤ 0 for i = 1, . . . ,m are constraints. The feasible set of (P) is the set
of feasible points in X that satisfy all constraints. In the following we assume
that the feasible set is non-empty.

Nonlinear optimization problems arise in various applications, e.g., engineer-
ing design, logistics, manufacturing, and the chemical and biological sciences
[1,2,3,4,5].

We recall that a set A is called convex, if for all x, y ∈ A and for all λ ∈ [0, 1]
we have λx + (1 − λ)y ∈ A. Further, a function f : Rn → R is called convex on
a convex set A ⊆ Rn if for all x, y ∈ X and for all λ ∈ [0, 1] we have

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

A feasible point x̄ of (P) is said to be a global optimum of (P), if there is no
other feasible point that has a lower objective value than x̄. Further, a feasible
point x̄ is said to be a local optimum of (P), if there exists no other feasible
point in a neighbourhood of x̄ which has a lower objective value than x̄. Clearly,
every global optimum of (P) is also a local optimum. However, in general, not
every local optimum is also a global optimum.

Under some regularity conditions, there exist efficient numerical algorithms
to find a local optimum of (P) [6]. On the other hand, finding a global optimum
solution of (P) is very difficult in general. However, if the set of feasible points is
convex and the objective function g0(x) is convex on the feasible set, then it can
be easily seen that also every local optimum of (P) is a global optimum. Thus,
in case that an NLP is known to be convex, methods for finding local optima
can be applied for the global optimization of an NLP. A sufficient condition for
the feasible set to be convex is that every function gi(x), i = 1, . . . ,m, is convex
on X .

Even algorithms for solving nonconvex NLPs [7,5] can profit from information
about convexity of a subset of the constraint functions. Such methods usually
construct a convex relaxation of (P), the optimal value of which yields a lower
bound on the global optimum of (P). The lower bound allows to evaluate the
quality of a feasible solution of (P) and to direct the search for a better solution.
The convex relaxation is thereby obtained by replacing each function gi(x), i =
0, . . . ,m, by a convex underestimator ği(x) that is convex and pointwise less than
or equal to gi(x) on X . The tighter these underestimators are, the better are
the lower bounds that can be expected. Unfortunately, there exists no method
to construct a tightest convex underestimator for a given function in general.
Clearly, if the algorithm knows that a function gi(x) is already convex, then
ği(x) can be chosen to equal gi(x).

Existing deterministic methods for proving or disproving the convexity of a
function (given as composition of elementary expressions) with respect to bounds
on its variables are based on

Supporting Global Numerical Optimization of Rational Functions 207

– walking an expression tree and applying convexity rules for function compo-
sitions [8], or

– estimating the spectra of the Hessian matrix or its sign in case of a univariate
function [9,10], or

– deciding positive semidefiniteness of the interval Hessian [10].

All these approaches may give inconclusive results. For example, the method
from [8]—even though very fast—may fail to detect convexity of the function
f(x) = −x/(1 + x) on the set X = [0, 1], since it includes no rules for con-
cluding convexity of a quotient of two non-constant functions. Formulating the
function as f(x) = 1/(1+ x)− 1, however, convexity is proven, since the numer-
ator of 1/(1 + x) is a positive constant, and the denominator 1 + x is concave.
The second and third method, in contrast, have no problem in proving convex-
ity for f(x), since they only need to prove positivity of the second derivative
f ′′(x) = 2/(1 + x)3.

Nevertheless, for the function f(x) = 2x7−7x4 +84x2 +42 a method like [10]
may fail to prove convexity of f(x) on the interval [−1, 2]. In this example the
second derivative is f ′′(x) = 84(x5 − x2 + 2). Replacing each occurrence of x by
[−1, 2] and applying rules for interval arithmetic yields f ′′(x) ∈ 84 · ([−1, 32] −
[0, 4] + [2, 2]) = 84 · [−3, 34], which allows no conclusive result.

Finally, when proving or disproving convexity of a function over a set all these
methods can consider only simple bound constraints on the variables xi. These
are constraints directly bounding xi by a number. For instance, the function
f(x) = (x− y)3 is obviously convex on the set

X = { (x, y) ∈ R2 | x, y ∈ [0, 1], x ≥ y }.
However, [8] would fail to prove convexity of f(x, y) since it only considers the
simple bounds x, y ∈ [0, 1] and thus does not “see” that x− y ≥ 0 on X .

In this paper, we present a novel symbolic method to prove or disprove convex-
ity of rational functions over polyhedral sets. The key idea is to reduce convexity
problems to first-order sentences over the reals and to decide these sentences by
quantifier elimination methods. Our original contributions are the following:

– We devise a new complete symbolic method for deciding the convexity of
rational functions over polyhedral domains.

– Unlike existing methods, our approach is not restricted to simple bound
constraints but can process arbitrary multi-linear constraints.

– We apply positive quantifier elimination, which has been successfully used
for existential problems in the past [11,12], to universal problems.

– All our methods discussed throughout the paper are efficiently implemented
and publicly available in the open-source computer algebra system Reduce.

– We provide and discuss a comprehensive set of benchmark computations to
demonstrate the feasibility of our method for established benchmark suites
from the NLP community.

The plan of the paper is as follows: In Section 2 we make precise the special case
of the convexity problem addressed in this paper. In Section 3 we motivate and

208 W. Neun, T. Sturm, and S. Vigerske

develop our various reductions of the problem to suitable first-order sentences.
In Section 4 we introduce the concept of positive quantifier elimination and
provide an algorithmic reduction of certain convexity problems to make these
accessible to this more efficient variant of quantifier elimination. In Section 5 we
give asymptotic upper bounds on the time complexity of our method. Section 6
illuminates our work from a software systems point of view and discusses some
future plans for our project. In Section 7 we discuss and analyze comprehensive
benchmarks carried out for our method. In Section 8 we finally summarize and
evaluate our results.

2 Problem Definition

We are now going to precisely state the particular problem addressed in the
remainder of our paper. Recall that the exact role of this problem for nonlinear
global optimization has been made explicit in the Introduction.

We consider rational functions f ∈ Q(x1, . . . , xn) as formal objects that es-
tablish defining terms for real functions f : Rn → R. The domain of f = p/q ∈
Q(x1, . . . , xn), denoted by domf , is the set of all points x ∈ Rn for which the
denominator q does not vanish. Note that every real function defined in term
of sums, products, and divisions of variables and rational constants can be de-
scribed by a rational function.

A set X ⊆ Rn is called polyhedral, if it can be written as the intersection of
finitely many halfspaces

X = { x ∈ Rn | Ax ≤ b }, A ∈ Qn×m, b ∈ Qm.

A rational function f is called convex on a polyhedral set X if for all x, y ∈ X
and for all λ ∈ [0, 1] we have

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (1)

The question we aim to answer is the following: Given a rational function f ∈
Q(x1, . . . , nn) and a polyhedral set X ⊆ domf ⊆ Rn, decide whether or not f is
convex on X.

3 Method

We are going to encode various criteria for convexity into first-order sentences
over the language (0, 1,+,−, ·) of ordered rings, which is also known as the
Tarski algebra [13]. These sentences are then checked automatically using real
quantifier elimination procedures.

Recall our problem statement in the previous section: We are given f ∈
Q(x1, . . . , xn), which has got integer coefficients. In addition, we are given X ⊆
domf polyhedral, which is naturally described by a conjunction γ of linear con-
straints, i.e. a quantifier-free formula in our language. To start with, our defini-
tion (1) above can be directly translated into a first-order formula:

Supporting Global Numerical Optimization of Rational Functions 209

Lemma 1 (Naive Convexity Condition). Consider a function f = p
q ∈

Q(x1, . . . , xn) and a formula γ in x1, . . . , xn describing a polyhedral set X =
{ x ∈ Rn | γ(x) } ⊆ domf . Let y1, . . . , yn, λ be new variables, and denote:

δ = γ[y1/x1, . . . , yn/xn],
f0 = f(λx1 + (1 − λ)y1, . . . , λxn + (1 − λ)yn),
f1 = λf + (1 − λ)f(y1, . . . , yn),

where f0, f1 are obtained via evaluation homomorphisms into

Q(x1, . . . , xn, y1, . . . , yn)

and computation in that field. Denote by N and D the numerator and the de-
nominator of f0 − f1, respectively. Then f is convex on X if and only if the
following first-order sentence holds:

Φ1(f, γ) = ∀x1 . . . ∀xn∀y1 . . . ∀yn∀λ(γ∧δ −→ ND ≤ 0). ��

This formulation has got 2n + 1 universal quantifiers. As we will make precise
in theory in Section 5 and demonstrate by means of comprehensive example
computations in Section 7, the number of quantifiers is the dominant measure
of complexity for real quantifier elimination in our case.

As a first optimization we are now going to reduce the number of quantifiers
from 2n+ 1 to n+ 1. Under some natural conditions, convexity of f is directly
related to certain properties of its Hessian ∇2f . Recall that a matrix A ∈ Rn×n

is positive semidefinite if zAz ≥ 0 and positive definite if zAz > 0 for all z ∈ Rn.
Assume now that f is twice continuously differentiable on X . Then the following
are equivalent:

(i) f is convex on X ,
(ii) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n is positive semidefinite,
(iii) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n has got exclusively non-negative

eigenvalues.

This gives rise to the following algorithm, which produces an alternative first-
order sentence describing convexity:

Subalgorithm 1 (Non-negative Eigenvalues)

Input a formula γ in variables x1, . . . , xn and a function f = p
q ∈ Q(x1, . . . , xn)

that is twice continuously differentiable on X = { x ∈ Rn | γ(x) } ⊆ domf ,
which must be polyhedral.

Output a first-order sentence that is equivalent to true if and only if f is convex
over X.

1. Compute ∇2f ∈ Q(x1, . . . , xn)n×n. Notice that due to the differentiation
rules, the denominators of the entries of ∇2f are powers of q.

210 W. Neun, T. Sturm, and S. Vigerske

2. Compute the characteristic polynomial

χ = det(∇2f − λI) ∈ Q(x1, . . . , xn)[λ]

where I denotes the n× n unit matrix.
3. Since χ is a linear combination of products of the entries of the matrix ∇2f−
λI ∈ Q(x1, . . . , xn)[λ]n×n, it follows that all denominators occurring in the
coefficients of χ are once more powers of the denominator q of f and thus do
not vanish over X. Let Δ denote the gcd of all these coefficient denominators
and rewrite χ = χ̃

Δ , where χ̃ ∈ Q[x1, . . . , xn, λ], Δ ∈ Q[x1, . . . , xn]. Then for
any choice x1, . . . , xn ∈ X we have χ(λ) = 0 if and only if χ̃(λ) = 0.

Altogether we finally obtain:

Φiii(f, γ) := ∀x1 . . .∀xn∀λ(γ −→ λ < 0 −→ χ̃ �= 0). ��

Recall from the problem statement in the previous section our definition (1) of
convexity of a function f : Rn → R on a convex set X ⊆ domf . Similarly to this,
f is called strictly convex on X if for all x, y ∈ X with x �= y and all λ ∈ [0, 1]
we have

f(λx+ (1 − λ)y) < λf(x) + (1 − λ)f(y). (2)

It is easy to see that strict convexity implies convexity. We are now going to
exploit this fact for a heuristic test that requires only n quantifiers.

Quite naturally, a similar equivalence as above holds for strict positiveness,
but here yet another equivalent enters the stage, which is most interesting from
an algorithmic point of view:

(i′) f is strictly convex on X ,
(ii′) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n is positive definite,
(iii′) for all x ∈ X the matrix (∇2f)(x) ∈ Rn×n has got exclusively positive

eigenvalues,
(iv′) for all x ∈ X the determinants of all principal subminors of (∇2f)(x) ∈

Rn×n are positive.

This new condition (iv′) can then be effectively expressed as a first-order formula
in the Tarski algebra, which gives rise to the following algorithm:

Subalgorithm 2 (Positive Principal Subminors)

Input a formula γ in variables x1, . . . , xn and a function f = p
q ∈ Q(x1, . . . , xn)

such that f is twice continuously differentiable on X = { x ∈ Rn | γ(x) } ⊆
domf , which must be polyhedral.

Output a first-order sentence that is equivalent to true if and only if f is strictly
convex over X.

1. Compute ∇2f ∈ Q(x1, . . . , xn)n×n. Notice that due to the differentiation
rules, the denominators of the entries of ∇2f are powers of q.

Supporting Global Numerical Optimization of Rational Functions 211

2. Compute the determinants u1
v1

, . . . , un

vn
∈ Q(x1, . . . , xn) of the principal sub-

minors of ∇2f .
3. From the Leibniz formula for the determinant it is clear that the denomina-

tors v1, . . . , vn are again powers of q. Since f is differentiable on X it is
in particular continuous. Consequently q does not vanish on X and neither
do the v1, . . . , vn. Hence for x1, . . . , xn ∈ X a condition ui

vi
> 0 can be

equivalently rewritten as uivi > 0.

Altogether we finally obtain:

Φiv′(f, γ) := ∀x1 . . .∀xn

(
γ −→

n∧
i=1

uivi > 0

)
. ��

On the basis that this algorithm yields only a sufficient condition for convexity,
the improvement from n + 1 to n quantifiers might not appear too striking.
There is, however, another measure of complexity that turns Subalgorithm 2
considerably superior to Subalgorithm 1: The degrees of the terms in the formula.
The degrees in Φiv′ only depend on the degrees in the input f and γ. In Φiii, in
contrast, there is additionally the numerator χ̃ of the characteristic polynomial,
the degree of which is bounded from below by the number n of variables.

The degrees are well-known to be a relevant measure for the complexity of
real quantifier-elimination [14]. Even more important, low degrees are crucial for
the success of the efficient virtual substitution methods [15,16] primarily used by
our implementation. If these methods fail, our implementation has to fall back
to partial cylindrical decomposition methods [17], which are not only single but
double exponential in the number of universal quantifiers.

Our main algorithm now combines the two subalgorithms in the obvious way:

Algorithm 1 (Convexity)

Input a formula γ in variables x1, . . . , xn and a function f = p
q ∈ Q(x1, . . . , xn)

such that f is twice continuously differentiable on X = { x ∈ Rn | γ(x) } ⊆
domf , which must be polyhedral.

Output true if f is convex over X, false else.

1. Φ := Φiv′(f, γ) by Subalgorithm 2.
2. Φ′ := realQuantifierElimination(Φ)
3. if Φ′ = true then return true.
4. Φ := Φiii(f, γ) by Subalgorithm 1.
5. Φ′ := realQuantifierElimination(Φ)
6. return Φ′ ��

4 Positive Quantifier Elimination for Universal Formulas

As indicated in the previous section, we employ quantifier elimination proce-
dures contained in the Redlog [18] package of the open source computer algebra

212 W. Neun, T. Sturm, and S. Vigerske

system Reduce to finally decide our sentences. The default real quantifier elim-
ination procedure there applies virtual substitution methods [15,16] as long as
the degrees of the quantified variables admit this and then falls back to partial
cylindrical algebraic decomposition [17]. We are going to refer to this procedure
as QE in the following.

Besides QE, we take an alternative novel approach: We use a dual version
of positive quantifier elimination. Positive quantifier elimination had been orig-
inally developed by the second author for existential sentences. This original
version has been successfully applied for discovering oscillations in gene regula-
tory networks in the area of algebraic biology, where it clearly outperformed QE
by all means [11,12].

The essential idea of positive quantifier elimination is to consider problems,
where all contained variables are known to be positive. Within virtual substitu-
tion methods this knowledge can be heuristically exploited in numerous ways;
see [11,12] for details. For the partial cylindrical algebraic decomposition [17] we
exploit positivity to some extent as well though much less systematically so far.
In the following we are going to refer to positive quantifier elimination as PQE.

In the situation of this paper, we can systematically arrive at a positive situ-
ation in many cases:

Lemma 2 (Shift to the 1. Hyper-Quadrant). Consider a function f ∈
Q(x1, . . . , xn) and a formula γ in x1, . . . , xn describing a polyhedral set X =
{ x ∈ Rn | γ(x) } ⊆ domf . Assume that γ bounds xi from below by some a ∈ Q.
We set γ̂ = γ[xi −a/xi]∧xi > 0 silently dropping a (positive) denominator after
substitution and obtain f̂ ∈ Q(x1, . . . , xn) by plugging xi − a for xi into f . Then
xi is positive on the polyhedral set X̂ described by γ̂, and f̂ is convex on X̂ if
and only if f is convex on X.

Proof. If xi is strictly bounded from below by a, then we have just moved our
problem along the xi-axis via a simple linear transformation. If, in contrast, γ
guarantees only a ≤ xi then we have turned this in addition into a strict order
relation. Since, however, f is smooth on domf , convexity—in contrast to strict
convexity—remains invariant. ��
Of course the argument about the smoothness of f in the proof could be avoided
by shifting by a+ 1 instead of a. We have observed, however, that this leads to
slightly more complicated terms, which can be disadvantageous for the quantifier
elimination procedures.

By iterative application of the lemma, we finally arrive at a completely positive
situation provided that all variables are explicitly bounded from below. As our
examples in Section 7 will demonstrate this is frequently the case for NLP.

In the positive case, we in addition have to take care of the variables λ in
Φ1 from Lemma 1 and in Φiii from Subalgorithm 1. To Φ1 we conjunctively add
within the scope of the quantifiers the case λ = 0 via substitution. In Φiii we
substitute within the scope of the quantifiers −λ for λ.

Supporting Global Numerical Optimization of Rational Functions 213

5 Complexity

The complexity of our method is dominated by the quantifier elimination step.
This is asymptotically bounded by an exponential function in the number of
quantifiers, i.e. essentially the dimension n of the domain Rn of f . As there are no
quantifier alternations in our case, that bound is only single exponential [19,15].
Notice that when we have to use Subalgorithm 1 in contrast to Subalgorithm 2,
the additional quantifier ∀λ contributes exponentially to the complexity. Either
do the quantifiers ∀y1, . . . , ∀yn with the naive approach according to Lemma 1.

6 System Architecture

The computations of the entities needed here, such as derivatives, matrices, and
Hessians are done using the computer algebra system Reduce. The system is
the well-known host of the Redlog1 software system which is essential for the
algorithms presented above. Reduce is free software since January 2009 which
allows us to manage the communication between several independent tasks, e.g.,
by modifications and technical add-ons to the base system. The system is hosted
at SourceForge2. Information on the Reduce system in general can be found at
its website3. It is considered to make the PSL-based Reduce system available
also as a linkable library in the near future, which could be easily used by other
(e.g. numerical) software systems.

For the experiments that are discussed in the next section, we have let a nu-
merical optimization software write the function f and the linear inequalities
that state the set X into a file, which is then read in by Reduce. The interpre-
tation of the generated outputs is done automatically by using standard Linux
tools. However, to allow a seamless integration of Reduce as a service for sym-
bolic computations in an optimization software, a more efficient mechanism for
communication is currently developed. We have chosen as basis to send binary
objects via shared memory, which avoids the overhead of coding and decoding
character strings. In our case the data send to Reduce is relatively large (f and
X) compared to the results (convex, strictly convex, not convex, or unknown).

It is an interesting option to run this software on a parallel system, since the
evaluations of convexity issues for multiple formulas are independent from each
other. In fact, we have run our examples on a 16 processors (2.8 GHz each)
x86 64 machine with 256 GB of memory under Linux.

7 Examples

In order to evaluate our different convexity test methods, we assembled a test
set of NLPs and MINLPs from various sources; an MINLP is an NLP where
some variables are additionally restricted to take only integer variables.
1 http://www.redlog.eu
2 http://reduce-algebra.sourceforge.net
3 http://www.reduce-algebra.com

http://www.redlog.eu
http://reduce-algebra.sourceforge.net
http://www.reduce-algebra.com

214 W. Neun, T. Sturm, and S. Vigerske

Firstly, the COPS testset [20] is a collection of difficult NLP models which
have their origin in various applications. It is frequently used to benchmark NLP
solvers. From COPS, we selected instantiations of the models bearing, catmix,
gasoil, glider, robot, and rocket.

Secondly, we picked some models from the “CMU-IBM Cyber-Infrastructure
for MINLP” webpage4, which collects MINLP models from real-world applica-
tions. We selected the models “Periodic Scheduling of Continuous Multiproduct
Plants” (#34), “Stabilizing controller design and the Belgian chocolate problem”
(#57), “The Delay Constrained Routing Problem” (#63), and “Simultaneous
Cyclic Scheduling and Control of a Multiproduct CSTR” (#71).

Thirdly, we took two instances from a recent paper on solvers for convex
MINLPs [21] and one instance from the MINLPLib [22]. These are a constrained
layout problem (clay), a stochastic service system design problem (sssd), and
the instance du-opt5. Further, we selected a formula for so-called “second-order
isotherms” as they appear in the modeling of chromatographic separation pro-
cesses [1].

Finally, we added the three convex functions that were mentioned in the
Introduction as counterexamples to the completeness of existing approaches.

For each NLP, we selected those constraints that are nonlinear and rational
functions. For equational constraints gi(x) = 0 we considered also −gi(x) in
order to check for concavity of gi(x) too. Sets of functions that differ only in the
naming of the variables were replaced by one representative.

For each example obtained this way, we have proceeded as follows:

1. (a) Compute Φ1 according to Lemma 1, and apply QE.
(b) Compute Φiv′ according to Subalgorithm 2, and apply QE.
(c) If Φiv′ did not yield true, i.e. strict convexity, then compute Φiii according

to Subalgorithm 1, and apply QE.
2. If the variables in the example are bounded from below, then move the

problem to the first hyper-quadrant, and proceed as in 1. (a)–1. (c) but with
PQE instead of QE.

For every single computation 1. (a), . . . , 2. (c) we imposed a timelimit of 10 min-
utes after which non-finished computations were automatically interrupted. The
steps (b) and (c) reflect our proposed Algorithm 1, while the steps (a) are sup-
posed to demonstrate that our algorithmic ideas formulated in Subalgorithm 1
and Subalgorithm 2 outperform the naive approach from Lemma 1. Finally, by
considering 1. vs. 2., we are able to judge the efficiency of PQE compared to
regular QE.

In Table 1 there are results given for all examples, where PQE is used whenever
possible and regular QE else. The columns example and function show the names
of the NLP and the function f = p/q in the NLP that are considered in this line,
respectively. The columns n, deg p, and deg q show the number of variables in f ,
the total degree of the polynomial p, and the total degree of the polynomial q,

4 http://www.minlp.org

http://www.minlp.org

Supporting Global Numerical Optimization of Rational Functions 215

respectively. The column curvature shows whether f was proven to be strictly
convex, convex, not convex. It states “unknown”, if no method was able to
give a result within the time limit. Column PQE indicates whether there was
positive quantifier elimination applied. The columns Φ1, Φiv′ , Φiii present the
corresponding running times in milliseconds, while “⊥” is printed if the method
hit the time limit of 10 minutes. Recall that Φiii is not considered if Φiv′ already
yields that the function is strictly convex. In that case we have “–” instead of a
running time.

Note that our method was able to prove convexity for all examples mentioned
in the introduction including the example f = (x− y)3, where convexity is only
given on the region defined by the linear condition x − y ≥ 0. Furthermore, we
were able to decide convexity for the formulas in the instances catmix100 and
robot50, whereas [8] reported inconclusive results.

For those examples, where PQE could be used and Table 1 thus gives PQE
timings instead of QE timings, Table 2 explicitly compares the computation
times of PQE and regular QE.

Table 1. Results and timings of tests for convexity. All times are given in milliseconds,
⊥ indicates computations that did not finish within 10 minutes of CPU time.

example function n deg p deg q curvature PQE Φ1 Φiv′ Φiii

Introduction
intro −x/(1 + x) 1 1 1 strictly convex � 20 10 –

2x7 − 7x4 + 84x2 + 42 1 7 0 convex � ⊥ < 10 10
(x1 − x2)3 2 3 0 convex � 100 10 < 10

COPS test set [20]
bearing e10_0 3 5 0 not convex � 3610 < 10 ⊥

e10_1 1 2 0 strictly convex � 10 < 10 –
e13 2 2 0 not convex � 10 < 10 < 10
e2 2 2 0 not convex � 20 10 10
e3_1 2 2 0 not convex � 10 < 10 < 10
e4 2 2 0 not convex � < 10 < 10 10
e5_0 3 3 0 not convex � 210 10 590
e6 4 2 0 not convex � 290 < 10 < 10
-e13 2 2 0 not convex � 20 < 10 < 10
-e2 2 2 0 not convex � 20 < 10 10
-e3_1 2 2 0 not convex � 10 < 10 10
-e4 2 2 0 not convex � < 10 < 10 < 10
-e5_0 3 3 0 not convex � 2060 < 10 180
-e6 4 2 0 not convex � 120 10 10

catmix100 e103 6 2 0 not convex – 10 < 10 < 10
e3 6 2 0 not convex – 20 10 < 10
-e103 6 2 0 not convex – 10 10 10
-e3 6 2 0 not convex – 20 < 10 10

gasoil50 e1100_0 2 3 0 not convex – 20 < 10 < 10
e1100_1 2 2 0 not convex – 10 < 10 10
e899 194 2 0 unknown – ⊥ ⊥ ⊥
e900 3 3 0 not convex – 40 < 10 < 10
-e1100_0 2 3 0 not convex – 20 < 10 < 10
-e1100_1 2 2 0 not convex – 10 10 < 10
-e900 3 3 0 not convex – 30 < 10 10

continued on next page

216 W. Neun, T. Sturm, and S. Vigerske

continued from previous page

example function n deg p deg q curvature PQE Φ1 Φiv′ Φiii

glider50 e207 2 4 0 not convex � 3650 < 10 30
e307 2 3 0 not convex � 30 < 10 < 10
e309 5 2 1 not convex – 60 10 10
e3 1 2 0 not convex � 10 10 < 10
e561 4 2 0 not convex – 10 10 10
e610 3 2 0 not convex – < 10 10 10
-e207 2 4 0 not convex � 149570 < 10 30
-e307 2 3 0 not convex � 40 < 10 < 10
-e309 5 2 1 not convex – 40 10 10
-e3 1 2 0 strictly convex � < 10 < 10 –
-e561 4 2 0 not convex – 20 < 10 < 10
-e610 3 2 0 not convex – 10 10 < 10

robot50 e203 5 3 2 not convex – 4790 < 10 ⊥
e3 3 2 0 not convex – 10 < 10 10
e400 1 2 0 not convex � 10 < 10 < 10
-e203 5 3 2 not convex – 60840 < 10 ⊥
-e3 3 2 0 not convex – < 10 < 10 < 10
-e400 1 2 0 strictly convex � < 10 < 10 –

rocket50 e105 3 2 0 not convex � 10 < 10 < 10
e154 6 3 1 not convex � 760 10 480
e253 3 2 0 not convex � 20 < 10 < 10
e53 1 0 2 not convex � 30 < 10 < 10
-e105 3 2 0 not convex � 10 < 10 < 10
-e154 6 3 1 not convex � 760 < 10 480
-e253 3 2 0 not convex � 10 < 10 < 10
-e53 1 0 2 strictly convex � 30 < 10 –

minlp.org
minlp_org_34a balrecs_i1_k2_t1_ 3 2 1 not convex � 20 < 10 50

balrecs_i1_k2_t4_ 4 2 1 not convex � 50 < 10 900
-balrecs_i1_k2_t1_ 3 2 1 not convex � 60 < 10 80
-balrecs_i1_k2_t4_ 1 1 0 unknown � ⊥ ⊥ ⊥
-balrecs_i1_k2_t5_ 4 2 1 not convex � 30 10 640
-object 45 2 0 unknown – ⊥ 3010 ⊥
object 45 2 0 unknown – ⊥ 2810 ⊥

minlp_org_34b defrate_i1_k2_ 3 2 0 not convex � 10 < 10 < 10
-defrate_i1_k2_ 3 2 0 not convex � 10 < 10 10
-object 11 3 0 unknown – ⊥ 50 ⊥
object 11 3 0 unknown – ⊥ 50 ⊥

minlp_org_57 defrx_3_1_ 3 2 1 not convex � 50 < 10 720
-defrx_3_1_ 3 2 1 not convex � 30 < 10 360
-polyy2 6 3 0 not convex � 810 < 10 ⊥
-polyy3 7 4 0 unknown � ⊥ 20 ⊥

minlp_org_71 fecolc_1_1_1_ 4 2 0 not convex – 20 40 100
-fecolc_1_1_1_ 4 2 0 not convex – 20 40 110
-obj 611 3 1 unknown � ⊥ ⊥ ⊥
-odec_20_3_5_ 2 3 0 not convex � 20 < 10 10
odec_20_3_5_ 2 3 0 not convex � 140 < 10 10

miscellaneous [1,21,22]
clay0203h e107 3 3 1 strictly convex � ⊥ 10 –

e110 3 3 1 strictly convex � ⊥ 170 –
sssd-8-4-3 e30 1 1 1 strictly convex � 10 10 –
du-opt5 e1 18 2 0 strictly convex � ⊥ 180 –
isotherms isotherm 2 2 2 not convex � ⊥ 670 2320

-isotherm 2 2 2 not convex � ⊥ 660 2290

Supporting Global Numerical Optimization of Rational Functions 217

Table 2. Times of regular vs. positive quantifier elimination. All times are given in
milliseconds, ⊥ indicates computations that did not finish within 10 minutes of CPU
time.

example function n deg p deg q curvature Φ1 Φiv′ Φiii
QE PQE QE PQE QE PQE

Introduction
intro −x/(1 + x) 1 1 1 str. conv. 10 20 10 10 – –

2x7 − 7x4 + 84x2 + 42 1 7 0 conv. ⊥ ⊥ 10 < 10 10 10
(x1 − x2)3 2 3 0 conv. 100 100 < 10 10 < 10 < 10

COPS test set [20]
bearing e10_0 3 5 0 not conv. 3640 3610 < 10 < 10 ⊥ ⊥

e10_1 1 2 0 str. conv. < 10 10 < 10 < 10 – –
e13 2 2 0 not conv. 10 10 10 < 10 < 10 < 10
e2 2 2 0 not conv. 10 20 10 10 10 10
e3_1 2 2 0 not conv. < 10 10 < 10 < 10 < 10 < 10
e4 2 2 0 not conv. 10 < 10 < 10 < 10 < 10 10
e5_0 3 3 0 not conv. 230 210 < 10 10 600 590
e6 4 2 0 not conv. 390 290 10 < 10 10 < 10
-e13 2 2 0 not conv. 10 20 10 < 10 < 10 < 10
-e2 2 2 0 not conv. 20 20 < 10 < 10 10 10
-e3_1 2 2 0 not conv. < 10 10 < 10 < 10 < 10 10
-e4 2 2 0 not conv. < 10 < 10 10 < 10 < 10 < 10
-e5_0 3 3 0 not conv. 1970 2060 < 10 < 10 200 180
-e6 4 2 0 not conv. 150 120 10 10 10 10

glider50 e207 2 4 0 not conv. 3760 3650 < 10 < 10 30 30
e307 2 3 0 not conv. 30 30 < 10 < 10 10 < 10
e3 1 2 0 not conv. < 10 10 < 10 10 < 10 < 10
-e207 2 4 0 not conv. 150280 149570 < 10 < 10 20 30
-e307 2 3 0 not conv. 50 40 < 10 < 10 10 < 10
-e3 1 2 0 str. conv. < 10 < 10 < 10 < 10 – –

robot50 e400 1 2 0 not conv. < 10 10 < 10 < 10 < 10 < 10
-e400 1 2 0 str. conv. < 10 < 10 10 < 10 – –

rocket50 e105 3 2 0 not conv. 10 10 < 10 < 10 < 10 < 10
e154 6 3 1 not conv. 750 760 10 10 500 480
e253 3 2 0 not conv. 10 20 < 10 < 10 10 < 10
e53 1 0 2 not conv. 30 30 < 10 < 10 < 10 < 10
-e105 3 2 0 not conv. 10 10 < 10 < 10 10 < 10
-e154 6 3 1 not conv. 720 760 10 < 10 460 480
-e253 3 2 0 not conv. 20 10 < 10 < 10 < 10 < 10
-e53 1 0 2 str. conv. 40 30 < 10 < 10 – –

minlp.org
minlp_org_34a balrecs_i1_k2_t1_ 3 2 1 not conv. 20 20 10 < 10 50 50

balrecs_i1_k2_t4_ 4 2 1 not conv. 50 50 < 10 < 10 1160 900
-balrecs_i1_k2_t1_ 3 2 1 not conv. 50 60 < 10 < 10 80 80
-balrecs_i1_k2_t4_ 1 1 0 unknown ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
-balrecs_i1_k2_t5_ 4 2 1 not conv. 40 30 < 10 10 790 640

minlp_org_34b defrate_i1_k2_ 3 2 0 not conv. < 10 10 10 < 10 < 10 < 10
-defrate_i1_k2_ 3 2 0 not conv. 10 10 10 < 10 10 10

minlp_org_57 defrx_3_1_ 3 2 1 not conv. 40 50 10 < 10 700 720
-defrx_3_1_ 3 2 1 not conv. 40 30 < 10 < 10 360 360
-polyy2 6 3 0 not conv. 860 810 10 < 10 ⊥ ⊥
-polyy3 7 4 0 unknown ⊥ ⊥ 30 20 ⊥ ⊥

minlp_org_71 -obj 611 3 1 unknown ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
-odec_20_3_5_ 2 3 0 not conv. 20 20 < 10 < 10 10 10
odec_20_3_5_ 2 3 0 not conv. 150 140 < 10 < 10 10 10

miscellaneous [1,21,22]

continued on next page

218 W. Neun, T. Sturm, and S. Vigerske

continued from previous page

example function n deg p deg q curvature Φ1 Φiv′ Φiii
QE PQE QE PQE QE PQE

clay0203h e107 3 3 1 str. conv. ⊥ ⊥ < 10 10 – –
e110 3 3 1 str. conv. ⊥ ⊥ 70 170 – –

sssd-8-4-3 e30 1 1 1 str. conv. 10 10 < 10 10 – –
du-opt5 e1 18 2 0 str. conv. ⊥ ⊥ 1480 180 – –
isotherms isotherm 2 2 2 not conv. ⊥ ⊥ 620 670 2180 2320

-isotherm 2 2 2 not conv. ⊥ ⊥ 610 660 2210 2290

8 Conclusions

Our benchmarking has confirmed that our proposed Algorithm 1 is the most
suitable combination of the methods introduced throughout this paper. Further-
more, PQE should probably be used rather than regular QE, although the dif-
ference in performance is not at all as striking as with the examples previously
reported in the literature [11,12]. Of course, we do not consider our symbolic
method a stand-alone solution which should replace more efficient though in-
complete approaches. We think that it would be a reasonable scheme to first
try the very fast convexity rules from [8], then to try to disprove convexity nu-
merically, and finally—in the case of rational functions—apply our Algorithm 1.
A conclusive result on nonconvexity can be obtained numerically by computing
the Hessian H in some points of X , and using a robust numerical algorithm to
find a vector z such that zTHz < 0 [8, Sec. 5]. Altogether we consider our work
described here an encouraging milestone in our research on integrating Reduce
as a symbolic library with state-of-the-art numerical NLP solvers.

References

1. Ballerstein, M., Michaels, D., Seidel-Morgenstern, A., Weismantel, R.: A theoretical
study of continuous counter-current chromatography for adsorption isotherms with
inflection points. Computers & Chemical Engineering 34(4), 447–459 (2010)

2. Grossmann, I.E. (ed.): Global Optimization in Engineering Design. Kluwer Aca-
demic Publishers, Dordrecht (1996)

3. Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: A survey of
algorithms and applications. In: Conn, A., Biegler, L., Coleman, T., Santosa, F.
(eds.) Large-Scale Optimization with Applications, Part II: Optimal Design and
Control. Springer, Heidelberg (1997)

4. Jüdes, M., Tsatsaronis, G., Vigerske, S.: Optimization of the design and partial-
load operation of power plants using mixed-integer nonlinear programming. In:
Kallrath, J., Pardalos, P., Rebennack, S., Scheidt, M. (eds.) Optimization in the
Energy Industry. Springer, Heidelberg (2009)

5. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Soft-
ware, and Applications. Kluwer Academic Publishers, Dordrecht (2002)

6. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2000)
7. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-

differentiable problems. Journal of Global Optimization 9, 23–40 (1997)

Supporting Global Numerical Optimization of Rational Functions 219

8. Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., Schichl, H.: Convexity and
concavity detection in computational graphs: Tree walks for convexity assessment.
INFORMS Journal on Computing 22(1), 26–43 (2009)

9. Mönnigmann, M.: Efficient calculation of bounds on spectra of Hessian matrices.
SIAM Journal on Scientific Computing 30(5), 2340–2357 (2008)

10. Nenov, I.P., Fylstra, D.H., Kolev, L.V.: Convexity determination in the Microsoft
Excel solver using automatic differentiation techniques. Technical report, Frontline
Systems Inc. (2004)

11. Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation
problems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg
(2008)

12. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science 2(3), 493–515 (2009)

13. Tarski, A.: A decision method for elementary algebra and geometry. Prepared for
publication by J.C.C. McKinsey. RAND Report R109, August 1 (1948) (revised
May 1951); Second Edition, RAND, Santa Monica, CA (1957)

14. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity
of quantifier elimination. Journal of the ACM 43(6), 1002–1045 (1996)

15. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1&2), 3–27 (1988)

16. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)

18. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

19. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Jour-
nal of Symbolic Computation 5(1-2), 29–35 (1988)

20. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking optimization software with
COPS 3.0. Technical Report ANL/MCS-273, Mathematics and Computer Science
Division, Argonne National Laboratory (2004),
http://www.mcs.anl.gov/~more/cops

21. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed
integer nonlinear programs (2009), Optimization Online,
http://www.optimization-online.org/DB_HTML/2009/10/2429.html

22. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—A Collection of Test Mod-
els for Mixed-Integer Nonlinear Programming. INFORMS Journal on Comput-
ing 15(1), 114–119 (2003), http://www.gamsworld.org/minlp/minlplib.htm

http://www.mcs.anl.gov/~more/cops
http://www.optimization-online.org/DB_HTML/2009/10/2429.html
http://www.gamsworld.org/minlp/minlplib.htm

Term Cancellations in Computing Floating-Point
Gröbner Bases

Tateaki Sasaki1 and Fujio Kako2

1 Professor emeritus, University of Tsukuba,
Tsukuba-city, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp
2 Department of Info. and Comp. Sci., Nara Women’s University,

Nara-city, Nara 630-8506, Japan
kako@ics.nara-wu.ac.jp

Abstract. We discuss the term cancellation which makes the floating-
point Gröbner basis computation unstable, and show that error accumu-
lation is never negligible in our previous method. Then, we present a new
method, which removes accumulated errors as far as possible by reducing
matrices constructed from coefficient vectors by the Gaussian elimina-
tion. The method manifests amounts of term cancellations caused by
the existence of approximate linearly dependent relations among input
polynomials.

1 Introduction

Although floating-point Gröbner bases are indispensable in scientific computa-
tion, they have been scarcely used so far. The reason is that the computation is
so unstable that it is very difficult to obtain desired results.

There are two kinds of floating-point Gröbner bases. The first kind is that the
coefficients of the input polynomials are exact (say algebraic numbers or tran-
scendental numbers) but we utilize the floating-point numbers for some reasons.
The second kind is that the coefficients of input polynomials are inexact hence
we inevitably express the coefficients by floating-point numbers. If the numeri-
cal errors increase during the computation, we can replay the computation with
higher precision for the first kind, however, for the second kind, we must devise a
method to preserve the initial accuracies of input polynomials as far as possible.
In this paper, we deal with the second kind. We should emphasize that, since
the errors in the input polynomials are unknown, the algorithm should return
the bases which do not critically depend on the input errors.

The first kind of floating-point Gröbner bases were studied by Shirayanagi and
Sweedler [16,17,18]. The second kind of floating-point Gröbner bases were studied
by Stetter [19], Kalkbrener [6], Fortuna, Gianni and Trager [3], Traverso and
Zanoni [24], Traverso [23], Weispfenning [25], Kondratyev, Stetter and Winkler
[8], Gonzalez-Vega, Traverso and Zanoni [4], Stetter [21], Bodrato and Zanoni
[1], and so on. Recently, Suzuki [22] and Nagasaka [11] proposed to compute
Gröbner bases by reducing large numerical matrices by Gaussian elimination. In

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 220–231, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Term Cancellations in Computing Floating-Point Gröbner Bases 221

spite of these studies, computation of floating-point Gröbner bases of the second
kind has been a serious problem; the computation was so unstable in most cases
if performed naively. This seriousness forced European researchers to study the
so-called “border bases” [9,10,5], see also [2].

The key point of stabilizing the floating-point Gröbner basis computation is
how to control the errors caused by term cancellation; see Sect. 2 for details.
We classify the term cancellation into two classes, systematic and accidental.
These four years, the present authors have studied this theme and presented the
symbolic coefficient method [14] and the high-precision method [15]. The high-
precision method is quite stable and useful so long as the accidental cancellations
do not occur. However, the method has a weakness: although the coefficients are
computed pretty accurately, the estimation of intrinsic errors occurred on the
coefficients is very bad. Here, by “intrinsic errors” we mean errors caused by
ill-conditionedness of the input basis, which cannot be reduced by the compu-
tational techniques. For example, suppose there exists an approximate linearly
dependent relation among input polynomials, then, when the relation is com-
puted, the errors of its coefficients will inevitably be increased. Knowing the
amounts of intrinsic errors is very important for the Gröbner bases with inex-
act coefficients. Therefore, we want to develop a method which informs us the
amounts of intrinsic errors. In this paper, we present such a method. The idea is
to improve the estimation of errors of polynomials which are computed by our
previous method, by reducing coefficient matrices by Gaussian elimination.

Since many readers will be unfamiliar with the phenomenon of term cancel-
lation, we will explain our method as elementally as possible using examples.

2 Term Cancellation and Its Monitoring

By F , G, etc., we denote polynomials in IF[x, y, . . . , z], where IF denotes the
floating-point numbers of a fixed precision. By ‖F‖ we denote the norm of F ;
we employ the infinity norm in this paper. The power product is the product of
powers of variables. By supp(F) we denote the support of F , i.e., the set of all
the power products appearing in F . By lt(F) and rt(F), we denote the leading
term and the rest terms, of F , respectively, with respect to a given order #;
F = lt(F) + rt(F). By Spol(F,G) and Lred(F,G), we denote the S-polynomial
of F and G and the leading-term reduction of F by G, respectively. We express
Lred(F,G) also as F G−→. By F G−→→ F̃ , we denote successive leading-term
reductions of F by G so that lt(F̃) is no longer reducible by G.

If the error of a floating-point number f starts at the (l+1)-st bit then we say
that the accuracy of f is 1/2l, and we call the leading l bits the significant ones.
Let c1T and c2T be monomials, where c1, c2 ∈ IF. If leading l bits of c1 and c2 are
the same but the (l+1)-st ones are not then the l bits are lost in the subtraction
c1T − c2T . We call this term cancellation of amount 2l, and the relative error of
c1−c2 increases by 2l compared with c1 and c2. If the resulting c1−c2 has no
significant bit then we call the cancellation exact, otherwise inexact. If the term
cancellation is exact, we call the resulting term (c1−c2)T a fully-erroneous term.

222 T. Sasaki and F. Kako

We may classify the term cancellation as follows.⎧⎪⎪⎪⎨⎪⎪⎪⎩
systematic

{
exact cancellation

inexact cancellation

accidental

{
exact cancellation

inexact cancellation

We explain the difference between systematic and accidental cancellations. Let
a polynomial Q be contained in both P1 and P2 such as Pi = P ′

i+ciQ (i = 1, 2).
If c1 , c2 then c1Q and c2Q cancel in the subtraction P1−P2. This is a typical
systematic cancellation. The cancellation is exact if c1 and c2 cancel exactly,
otherwise the cancellation is inexact. We also call the case ‖P1−P2‖ ! ‖P1‖
systematic cancellation. This case occurs, for example, if there exists an approx-
imate linear dependence among polynomials in the initial or intermediate bases.
Let P1 and P2 contain c1T and c2T , respectively, where these terms originate
from different initial terms. If c1 , c2 then the term cancellation occurs in the
subtraction P1−P2. This is the accidental cancellation. The actual term cancella-
tion is complicated because other term c′T may be mixed before the subtraction
of c1T and c2T . We call (c1+c′)T−c2T and c1T−c2T the term cancellation with
and without mixing, respectively.

The systematic exact cancellation occurs frequently in polynomial linear al-
gebra, such as the computation of determinants with polynomial entries and the
polynomial remainder sequences. Similarly, it occurs frequently in the computa-
tion of Gröbner bases, as shown in [14,15,13]. If the systematic exact cancellation
is caused by polynomials with small leading terms, we usually encounter large
cancellation errors. On the other hand, the accidental cancellation occurs rarely,
especially if the input polynomials are generated randomly or determined by
experiments. In the rest of this section, we survey our previous work briefly.

If a fully-erroneous term appears as the leading term then the subsequent com-
putation becomes meaningless. Therefore, we must remove the fully-erroneous
terms completely. So far, two ideas have been proposed to do so. Shirayanagi
[16,17,18] proposed to represent the input coefficients by intervals and remove
the fully-erroneous terms by replacing the interval by 0 if it contains 0. The
present authors devised the so-called effective floating-point numbers, or efloats
in short [7], so as to detect the cancellation errors automatically but approxi-
mately. We represent the efloat number as #E(f, e), where f is a floating-point
number representing the value of this number, and e is a short floating-point
number representing the error of f . We call f and e as value-part and error-part,
respectively. For the arithmetic of efloats, see [7].

Let εcal be the precision of floating-point numbers employed; we have εcal ,
2×10−16 in the double-precision arithmetic. In our algebra system, the error-part
of efloat is set slightly larger than εcal|f |: we set e to 10−15|f | in the double-
precision arithmetic, and to 100 εcal|f | in the high-precision arithmetic. If the
input coefficient f contains relative error εinit, then we may set the error-part
to 5 εinit|f |, say. Our algebra system sets the efloat #E(f, e) to 0 if |f | < e.

Term Cancellations in Computing Floating-Point Gröbner Bases 223

The exact term cancellation with mixing is not so simple. Suppose we have
|c1| � c′ in ((c1+c′)−c2)T , then the cancellation of amount |c1/c′| occurs in the
resulting c1+c′−c2. Fortunately, if the exact cancellation is systematic, we can
preserve the initial accuracy in c1+c′−c2. The idea is to convert all the input
coefficients to high precision floating-point numbers [15]. Then, since c1 and c2
originate from a single coefficient c of an input polynomial, their errors are the
same initially and subsequent computation contaminates only some lower bits
of them. Suppose � lower bits of c1 and c2 are contaminated at most. Then, the
significant part of c′ is safe so long as the precision has been increased initially
by more than 2�. This is the essence of the high-precision method.

3 Accidental Cancellations and Current Problems

In this section, we consider accidental cancellations. For simplicity, we assume
that the input coefficients are accurate to εinit at most; if the coefficients are of
different accuracies, we set εinit to the maximum of the accuracies. It is natural
to assume that εinit � εcal.

If accidental exact cancellation without mixing occurs then all the bits above
εinit are lost. The resulting term is also fully-erroneous, and we must remove such
terms, too. This removal can be done easily if we represent coefficients by efloats.
Suppose the accidental exact cancellation occurs in c1T −c2T , hence c1−c2 is
fully-erroneous. Since c1 and c2 originate from different coefficients, c1−c2 will
be a number of relative error ∼ εinit, and we assumed that εinit � εcal. We can
detect this fully-erroneous term by monitoring the corresponding efloat. Thus,
we can remove such a fully-erroneous term by replacing an efloat #E[f, e] by 0
if we have |f | < ngεinit e/(100 εcal), where ng is a guard number, say 10.

Example 1 (Fully-erroneous term by accidental exact cancellation). We consider
the following system with the lexicographic order.⎧⎪⎨⎪⎩

F1 =x2 (2yz + 1)/2.0,
F2 =(x (3xz − 2) − (2yz + 1))/3.0,
F3 =(yz (3xz − 2))/2.0.

We first convert the coefficients into double-precision floats. Note that F3 is input
by dividing by 2.0, not by 3.0. This artificial trick introduces different errors into
yz terms of F2 and F3. Computing the floating-point Gröbner basis by the high-
precision method with 30 decimal precisions, we obtain { 1 }. Investigating the
computation process, we found the following intermediate polynomial.

#E(8.43749999999999945356 · · ·e−1, 4.2e−28)x2z
− #E(3.70074341541718836536 · · ·e−17, 6.7e−28)xy2

+ #E(1.12499999999999994795 · · ·e−0, 3.0e−28)xyz
+ · · · · · ·

The above second term is fully erroneous, caused by the accidental cancellation.
This term is very small but the result depends on it critically. �
We show a weakness of our previous method by an example.

224 T. Sasaki and F. Kako

Example 2 (Large errors in the result). We computed an unreduced Gröbner
basis w.r.t. the total-degree order, of the above system, obtaining⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G1 = #E(9.99999999999999999999 · · ·e−1, 1.9e−25)x
+ #E(1.33333333333333348136 · · ·e−0, 2.5e−25) y,

G2 = #E(9.99999999999999999999 · · ·e−1, 1.0e−28) yz
+ #E(5.81395348837208978910 · · ·e−2, 3.7e−27)x
+ #E(7.75193798449612428019 · · ·e−2, 4.9e−27) y
+ #E(5.00000000000000019525 · · ·e−1, 6.7e−27).

G2 can be reduced by G1 and we obtain the same Gröbner basis as that in
Example 1. We, however, find that the errors of the above result are large com-
pared with those in Example 1; error-parts of G1 are about 103 larger than its
initial values (the value-parts are accurate to O(10−16) relatively.) The origin of
these large errors can be understood by considering syzygies (ai1, ai2, ai3) for Gi

(i=1, 2):Gi = ai1F1+ai2F2+ai3F3. Normalizing the leading coefficients of G1 to
1, we find that a11, a12, a13 contain 49, 54 and 40 terms, of norms 5109/5, 560 and
4439/10, respectively, and we have max{‖a11F1‖, ‖a12F2‖, ‖a13F3‖} = 10218/5.
The largeness of ‖aij‖ (1 ≤ i ≤ 2; 1 ≤ j ≤ 3) implies that, during Buchberger’s
procedure, corresponding polynomials are multiplied by large monomials but
they will cancel later because the final polynomials are of norm O(1). Therefore,
big errors were induced in the final basis. �

Summarizing the above discussions, we have the following problems to solve.
1) Remove the errors caused by accidental exact cancellation with mixing.
2) Remove the errors caused by accidental inexact cancellation.
Furthermore, in our high-precision method, small cancellation errors accumulate
gradually but steadily to error-parts of efloats, as Example 2 shows. Therefore,
we must solve the following problem, too.
3) Reduce the gradually accumulating errors as far as possible.

4 Our Idea: Reduce the Errors by a Matrix Method

In this paper, we restrict the reduction of polynomials only to the leading-term
reduction: we compute the Gröbner bases by constructing S-polynomials and
performing only the leading-term reductions successively. If we need the reduced
Gröbner basis then we perform the reduction of non-leading terms after com-
puting an unreduced Gröbner basis.

The problems given in Sect. 3 are quite difficult to solve algebraically. For
example, the problem 3) is inevitable so long as Buchberger’s procedure is em-
ployed. We note that problems 1) and 2) are common in numerical computation,
and numerical analysts developed excellent techniques to suppress the increase
of errors. In the case of matrix computation, the QR-decomposition is one of
such techniques. On the other hand, our high-precision method can compute
floating-point Gröbner bases stably. Therefore, we will reduce numerically the
errors of the results computed by the high-precision method.

Term Cancellations in Computing Floating-Point Gröbner Bases 225

Let Φk = {F (k)
1 , . . . , F

(k)
r } and Φl = {F (l)

1 , . . . , F
(l)
s } be intermediate bases

appearing in the computation of Gröbner basis by Buchberger’s procedure, where
Φk is a basis computed before Φl (Φk may be the initial basis). Then, each
polynomial F (l)

i in Φl can be expressed in terms of the elements of Φk, as follows:

F
(l)
i = ai1F

(k)
1 + · · · + airF

(k)
r . (1)

We call the tuple (ai1, . . . , air) a syzygy for F (l)
i . In order to reduce the errors

occurred during the computation from Φk to Φl, we utilize the syzygies.
Let Ri (1 ≤ i ≤ s) and Cij (1 ≤ j ≤ r) be sets of power-products defined as

follows.

Ri = ∪r
j=1supp(aijF

(k)
j) def= {T1, T2, . . . , Tn̄}, T1 # T2 # · · · # Tn̄,

Cij = supp(aij)
def= {Sij,1, Sij,2, . . . , Sij,mj}, Sij,1 # Sij,2 # · · · # Sij,mj .

(2)

We express F (l)
i and F (k)

j as follows.

F
(l)
i = f

(l)
i1 Ti1 + f (l)

i2 Ti2 + · · · , Ti1 # Ti2 # · · · ,
F

(k)
j = f

(k)
j1 Tj1 + f (k)

j2 Tj2 + · · · . Tj1 # Tj2 # · · · .
(3)

Since {Sij,mTj1, . . . , Sij,mTjnj} ⊂ {T1, T2, . . . , Tn̄} for any j ∈ {1, . . . , r} and
m ∈ {1, . . . ,mj}, (1) assures that we can express the coefficient vector of F (l)

i

in terms of a sum of coefficient vectors of Sij,mF
(k)
j (1 ≤ j ≤ r; 1 ≤ m ≤ mj),

expanded in power-products T1, T2, . . . , Tn̄.
We put m̄ = m1 + · · · +mj . We define an m̄ × n̄ matrix Mi, which we call

reduction matrix, as follows.

Mi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

coefficient vector of Si1,1F
(k)
1

coefficient vector of Si1,2F
(k)
1

.
coefficient vector of Si2,1F

(k)
2

coefficient vector of Si2,2F
(k)
2

.
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

Let M(L)
i be the submatrix of Mi, composed of the columns located in the left

side of the power product Ti1. We eliminate the columns of M(L)
i , by transform-

ing the rows of Mi simultaneously. This elimination gives us a row of Mi, of
the form (0, . . . , 0, ", ∗, . . . , ∗), where " is not zero and it stands at Ti1, while ∗
may be zero. Then, (", ∗, . . . , ∗) is a coefficient vector of F (l)

i .

Example 3 (Reduction matrix M2 for G2 in example 1). The G2 was computed

as F1
F2−→ F ′

1, F2
F ′

1−→ F ′
2, F3

F ′
2−→ F ′

3, F
′
2

F ′
3−→ G2. The corresponding syzygy is

226 T. Sasaki and F. Kako

(a2,1 = −3yz2 + 3/2z, a2,2 = 2y2z2 − 1/2, a2,3 = 4/3y). By this, we can easily
obtain the following minimal power-product set for G2:

R2 = (x2y2z3, x2yz2, x2z, xy2z2, x, y3z3, y2z2, y2z, yz, 1)

Then, the reduction matrix M2 for G2, expressed by F1, F2, F3, is as follows.⎛⎜⎜⎜⎜⎜⎜⎝
x2y2z3 x2yz2 x2z xy2z2 x y3z3 y2z2 y2z yz 1

yz2F1 1.0 0.5
zF1 1.0 0.5

y2z2F2 1.0 −2/3. −2/3. −1/3.
1F2 1.0 −2/3. −2/3. −1/3.
yF3 3/2. −1.0

⎞⎟⎟⎟⎟⎟⎟⎠
Here, M(L)

2 is the matrix composed of the left four columns. �

Remark 1. It is obvious that the rows in M(L)
i are linearly dependent. However,

the dimension of null space may be greater than 1. Even if the dimension is
1, the corresponding vector in Mi may be different from the coefficient vector
of F (l)

i , because the matrix reduction is rarely the same as the corresponding
reductions in Buchberger’s method. �

Our idea solves problem 3). The systematic exact cancellation is analogous to
that occurs in naive Gaussian elimination of numerical matrices: if a row of
small pivot is used to eliminate columns then there occur large cancellations in
subsequent eliminations. We can avoid such cancellations almost completely by
pivoting. We show this by Example 4, below. Furthermore, the matrix method
mentioned above decreases the risk of accidental cancellations largely.

Example 4 (Reducing the errors in G1, G2 in Example 2). Eliminating reduction
matrices for G1, G2, we obtained the following improved G1, G2.⎧⎪⎪⎨⎪⎪⎩

G1 = x+ #E(1.333333333333333407348201641677e−0, 2.7e−28) y
G2 = yz + #E(4.999999999999999722444243843710e−1, 1.0e−28)x

+ #E(6.666666666666666666666666666666e−1, 1.3e−28) y
+ #E(5.000000000000000000000000000000e−1, 1, 5e−29) .

Almost no cancellation occurred in the computation of the above G1, G2. �

Remark 2. The above G2 is different from that in Example 2. The matrix M2
for G2 is of size 112× 88, and 84 columns are eliminated. When the elimination
finished, we have 21 nonzero rows (the left 84 elements are zero). These 21 rows
are linear combinations of the following two vectors

(0 · · · 0 3.30 · · · 0.00 0.00 1.65 · · ·),
(0 · · · 0 0.00 3.60 · · · 4.80 · · · 0.00).

These vectors correspond to yx+1/2 and x+4/3y, respectively. Hence, the ideal
itself is the same. �

Term Cancellations in Computing Floating-Point Gröbner Bases 227

Example 5 (Case of large systematic exact cancellation). We compute an unre-
duced Gröbner basis w.r.t. the total-degree order, of the following system.⎧⎨⎩

F1 = x3/30.0 + x2y + y2/3.0,
F2 = x2y2/3.0 − xy2 − xy/3.0,
F3 = y3/20.0 + x2.

The high-precision method gives us the following unreduced Gröbner basis.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G2 = #E(9.99999999999999999999 · · ·e−1, 1.7e−18) y2,
G4 = #E(9.99999999999999999999 · · ·e−1, 2.2e−19)xy

+ #E(8.44022550452195867628 · · ·e−2, 1.8e−20) y2,
G5 = #E(9.99999999999999999999 · · ·e−1, 1.0e−28)x2

+ #E(7.14849689746270700639 · · ·e−0, 1.7e−18)xy
+ #E(5.73716139524645722576 · · ·e−1, 1.3e−19) y2.

We see that there occurred large cancellations of amounts O(1010). Applying the
matrix method, we obtained the following result (we omit G2).⎧⎨⎩

G4 = xy + #E(8.44022550452195867628 · · ·e−2, 3.7e−29) y2,

G5 = x2 + #E(7.14849689746270700639 · · ·e−0, 3.6e−26)xy
+ #E(5.73716139524645722576 · · ·e−1, 2.7e−27) y2.

We see that the error-parts of the efloats are improved drastically. (The value-
parts are the same up to the double-precision, showing that the high-precision
method is trusty). �
We next consider intrinsic errors. From the viewpoint of matrix method, the
intrinsic errors are regarded as errors occurring in reducing ill-conditioned ma-
trices, hence they cannot be reduced by the matrix method; we need some pre-
conditioning operation to reduce the errors.

Example 6 (Case of intrinsic errors). We compute an unreduced Gröbner basis
w.r.t. the total-degree order, of the following system. Note that we have the
relation ‖56/57 yzF1 − 57/56 xzF3 − 2F2‖ = 0.000041.⎧⎨⎩

F1 = 57/56 x2y + 68/67 xz2 − 79/78 xy+ 89/88 x,
F2 = xyz3 − xy2z + xyz,
F3 = 56/57 xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y.

Using the high-precision method of 30 decimal precision, we found that the
following polynomials were generated in the computation.

G6 = #E(9.99999999999999999999 · · ·e−1, 1.23e−23)x2y2

− #E(2.99543694773255264453 · · ·e−0, 3.68e−23)xy2

− #E(1.00207821651237482576 · · ·e−0, 1.23e−23) y3

+ #E(1.99832546917372451401 · · ·e−0, 2.45e−23)xy
+ #E(1.00352171725641447536 · · ·e−0, 1.23e−23) y2,

F ′ = #E(9.99999999999999999999 · · ·e−1, 6.33e−13)xy2

− #E(568.429046071616395538 · · ·e−0, 3.60e−10)xz2

+ #E(565.429585271231326003 · · ·e−0, 3.58e−10)xy
− #E(566.434224887207346419 · · ·e−0, 3.59e−10)x.

228 T. Sasaki and F. Kako

G6 is changed only a little by the matrix method: the error-parts of the coeffi-
cients of G6 are changed only in the third digits.

The F ′ does not appear in the final basis, but if we discard F ′ just when it
is generated, the resulting basis becomes very different from the basis over Q.
The F ′ suggests that, once the intrinsic errors of considerable amounts occur,
the computation will become unstable. �

We mentioned in 1 that we want to know the amounts of intrinsic errors. If the
errors due to the systematic exact cancellations are eliminated completely, then
the resulting errors are intrinsic. We can expect that the matrix method will
avoid the systematic exact cancellations almost completely. Then, we may say
that the matrix method informs us the amounts of intrinsic errors.

5 Actual Implementation and Discussions

In this section, by “quality improvement of a polynomial” we mean reducing the
error-parts of the polynomial coefficients by the matrix method.

In examples in 4, qualities of final polynomials were improved directly from
the initial ones. In this approach, we must often handle matrices of very large
sizes. For example, in Example 4, we handled matrices of sizes 143 × 109 and
112× 88, and the cost of matrix reduction is about twice of that of the Gröbner
basis computation itself. Furthermore, in this approach, we know the amounts
of intrinsic errors only at the final stage, where initial accuracies of some poly-
nomials may be lost at all. Therefore, we improve the qualities of polynomials
not only in the final but also in intermediate bases.

We divide the whole computation into many stages, the initial stage, the 1-st
stage, the 2-nd stage, and so on. In the beginning of the k-th stage, we have a set
of starting polynomials {F (k)

1 , . . . , F
(k)
rk }. At the end of the k-th stage, we improve

the qualities of all the existing polynomials, and the improved polynomials are
used as the starting polynomials of the (k+1)-st stage:

Φ0 = {F (0)
1 , . . . , F (0)

r0
} −→ · · · −→ Φk = {F (k)

1 , . . . , F (k)
rk

} −→ · · · . (5)

Each stage is closed and the next stage begins when a systematic cancellation of
amount Csmall or more is detected or when the cancellations accumulate to Cmed
or more (Csmall = 100 and Cmed = 1000 in the current program). The quality
improvement is performed by the following two procedures.

improvePols(Φ): this procedure is called at the end of each stage, and it im-
proves the quality of every polynomial in the basis Φ, intermediate or final.
Each polynomial is then replaced by the improved one.

improvePol(P): this procedure improves a single polynomial P and checks
whether P is actually reduced to 0. This procedure is called when the can-
cellation of Cbig or more is detected in Spol(P1, P2) or P ′ Q−→→ P (Cbig = 106

in the current program).

Term Cancellations in Computing Floating-Point Gröbner Bases 229

One important notice in this approach is that the systematic exact cancel-
lation may not be removed inside a single stage. A typical mechanism of sys-
tematic exact cancellation is as follows. Suppose polynomials P1 and P2 are
reduced by Q the leading term of which is small: Pi

Q−→ P̃i (i= 1, 2) (P1 and
P2 may be reduced by Q1, . . . , Qk). Then, Pi ≈ −(lt(Pi)/lt(Q)) rt(· · · rt(Q) · · ·),
and the multiples of rt(· · · rt(Q) · · ·) cancel exactly in subsequent Spol(P̃1, P̃2)
or Lred(P̃1, P̃2). In [14,15], we called P̃1 and P̃2 clones of Q, and the subsequent
cancellation self-reduction. Suppose the clones are generated in the k-th stage
and the self-reduction of the clones occurs in the l-th stage. If k = l then the
quality improvement at the end of the l-th stage will remove the systematic ex-
act cancellation. If, however, k < l then we must back to the k-th stage so as to
remove the cancellation occurred in the l-th stage. On the other hand, for the
systematic inexact cancellation, we need not back to previous stages.

Another important notice is on how to express polynomials in the l-th stage
by the starting polynomials in the k-th stage when l > k+1. One may think that
we can do this by connecting syzygies in the k-th to l-th stages. This is true if no
quality improvement is made in the stages. However, in many cases, the quality
improvement changes the polynomial structure; some terms may be missing and
some terms may be added by the improvement. Therefore, we compute the
polynomials in the l-th stage as follows: first, compute the starting polynomials
of the (k+1)-st stage by using the syzygies, then compute the polynomial in the
l-th stage by applying Buchberger’s procedure to the starting polynomials in the
(k+1)-st stage.

So far, we have tested only a preliminary version which does not back stages.
We show some timing data on Lenovo IdeaPad U450p (1.2GHz, 1MB), where we
used efloats of 30 decimal precision. Each Gröbner basis computed is the same
as that over Q up to double precision.

(unit: milliseconds)
(datum 1180 for Katsura-4 is by the computation over Q)

sample high-prec. method with quality-improve
Example-4 3.6 10.4
Example-5 1.8 7.6
Example-6 2.4 28.0
Katsura-4 [1180 (+320GC)] 824 (+112GC)

Katsura-4 contains 4 polynomials of total-degree 2 and 1 polynomial of
total-degree 1, in 5 variables. The Gröbner basis w.r.t. the total-degree
order is composed of 16 polynomials of total-degrees 1 to 5.

We found the following features of our method.
1. Gaussian elimination with partial pivoting which selects a row is often fail

to reduce the errors well, but the full pivoting which selects the maximum
magnitude element works well. We also tested matrix reduction by the Givens
rotation, and found that this reduction method is much more expensive than
the Gaussian elimination.

230 T. Sasaki and F. Kako

2. Procedure improvePol(P) is quite effective for detecting whether P should
be regarded as 0.

3. If a considerable amounts of intrinsic errors occur on a polynomial P , then
the errors propagate to other polynomials via Spol(P, P ′) and F P−→→ F̃ ,
and the computation becomes unstable soon. (In Katsura-4, we encountered
no intrinsic cancellation.)

We must comment on the above point 3. One may think that the point 3. implies
a severe limitation of our method. Our opinion is completely different. We note
that we have tested polynomials of limited accuracies: we have converted the
coefficients of given polynomials into double-precision floating-point numbers,
which introduces O(10−16) relative errors, then converted them into efloats of
30 decimal precision. When handling polynomials of limited accuracies, the bases
computed have no meaning if the initial accuracies are lost during the compu-
tation. Therefore, in order to obtain some meaningful results, we must discard
polynomials the accuracies of which were lost largely. That is, we must define
“approximate Gröbner bases” so that the polynomials of very low accuracies are
discarded by some criteria derived theoretically.

In [14], we have tried to define approximate Gröbner bases by using syzygies.
However, the definition in [14] is too immature. We explain this by consideringG2
in Example 2. The syzygy computed by Buchberger’s procedure contains a term
of magnitude O(104), which does not mean that the intrinsic cancellations of
magnitude O(104) occur in the computation of G2. In fact, Example 4 shows that
no intrinsic cancellation occurred on G2. Therefore, we must define approximate
Gröbner bases without using syzygies. We are now trying to define approximate
Gröbner bases more appropriately.

References

1. Bodrato, M., Zanoni, A.: Intervals, syzygies, numerical Gröbner bases: a mixed
study. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS,
vol. 4194, pp. 64–76. Springer, Heidelberg (2006)

2. Chen, Y., Meng, X.: Border bases of positive dimensional polynomial ideals. In:
Proceedings of SNC 2007, Symbolic Numeric Computation, London, Canada, pp.
65–71 (2007)

3. Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. J. Pure
Appl. Algebra 164, 153–164 (2001)

4. Gonzalez-Vega, L., Traverso, C., Zanoni, A.: Hilbert stratification and parametric
Gröbner bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005.
LNCS, vol. 3718, pp. 220–235. Springer, Heidelberg (2005)

5. Kreuzer, M., Kehrein, A.: Computing border bases. J. Pure Appl. Alg. 200, 279–295
(2006)

6. Kalkbrener, M.: On the stability of Gröbner bases under specialization. J. Symb.
Comput. 24, 51–58 (1997)

7. Kako, F., Sasaki, T.: Proposal of “effective” floating-point number. Preprint of
Univ. Tsukuba (May 1997) (unpublished)

Term Cancellations in Computing Floating-Point Gröbner Bases 231

8. Kondratyev, A., Stetter, H.J., Winkler, S.: Numerical computation of Gröbner
bases. In: Proceedings of CASC 2004, Computer Algebra in Scientific Computing,
St. Petersburg, Russia, pp. 295–306 (2004)

9. Mourrain, B.: A new criterion for normal form algorithms. LNCS, vol. 179, pp.
430–443. Springer, Heidelberg (1999)

10. Mourrain, B.: Pythagore’s dilemma, symbolic-numeric computation, and the bor-
der basis method. In: Symbolic-Numeric Computations, Trends in Mathematics,
pp. 223–243. Birkhäuser Verlag, Basel (2007)

11. Nagasaka, K.: A study on gröbner basis with inexact input. In: Gerdt, V.P., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 248–258. Springer,
Heidelberg (2009)

12. Sasaki, T.: A practical method for floating-point Gröbner basis computation.
In: Proceedings of ASCM 2009, Asian Symposium on Computer Mathematics,
Fukuoka, Japan, Math-for-industry series, vol. 22, pp. 167–176. Kyushu Univ.
(2009)

13. Sasaki, T.: A subresultant-like theory for Buchberger’s procedure, 17 p. Preprint
of Univ. Tsukuba (March 2010)

14. Sasaki, T., Kako, F.: Computing floating-point Gröbner base stably. In: Proceed-
ings of SNC 2007, Symbolic Numeric Computation, London, Canada, pp. 180–189
(2007)

15. Sasaki, T., Kako, F.: Floating-point Gröbner basis computation with ill-
conditionedness estimation. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI),
vol. 5081, pp. 278–292. Springer, Heidelberg (2008)

16. Shirayanagi, K.: An algorithm to compute floating-point Gröbner bases. In:
Mathematical Computation with Maple V. Ideas and Applications, pp. 95–106.
Birkhäuser, Basel (1993)

17. Shirayanagi, K.: Floating point Gröbner bases. Mathematics and Computers in
Simulation 42, 509–528 (1996)

18. Shirayanagi, K., Sweedler, M.: Remarks on automatic algorithm stabilization. J.
Symb. Comput. 26, 761–765 (1998)

19. Stetter, H.J.: Stabilization of polynomial systems solving with Gröbner bases. In:
Proceedings of ISSAC 1997, Intern’l Symposium on Symbolic and Algebraic Com-
putation, pp. 117–124. ACM Press, New York (1997)

20. Stetter, H.J.: Numerical Polynomial Algebra. SIAM Publ., Philadelphia (2004)
21. Stetter, H.J.: Approximate Gröbner bases – an impossible concept? In: Proceedings

of SNC 2005, Symbolic-Numeric Computation, Xi’an, China, pp. 235–236 (2005)
22. Suzuki, A.: Computing Gröbner bases within linear algebra. In: Gerdt, V.P., Mayr,

E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 310–321. Springer,
Heidelberg (2009)

23. Traverso, C.: Syzygies, and the stabilization of numerical Buchberger algorithm.
In: Proceedings of LMCS 2002, Logic, Mathematics and Computer Science, RISC-
Linz, Austria, pp. 244–255 (2002)

24. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Gröbner basis
computation. In: Proceedings of ISSAC 2002, Intern’l Symposium on Symbolic
and Algebraic Computation, pp. 262–269. ACM Press, New York (2002)

25. Weispfenning, V.: Gröbner bases for inexact input data. In: Proceedings of CASC
2003, Computer Algebra in Scientific Computing, Passau, Germany, pp. 403–411
(2003)

One Class of Third-Order Linear ODE’s

S.Yu. Slavyanov

St. Petersburg State University, Dept. of Comput.Phys.
slav@SS2034.spb.edu

Abstract. A classification of equations originated by Fuchsian third-
order equation with three regular points is proposed. Links to general-
ized hypergeometric equation are discussed.

Keywords:Fuchsian equation, third-orderODE’s, polynomial coefficients.

Introduction

The aim of this presentation is to give a classification of linear homogeneous
third-order equations arising as a result of confluence or reduction from the
Fuchsian third-order equation with three regular singularities. The merging of
two singularities accompanied by limiting transform in the space of parameters is
meant by confluence. Specification of parameters resulted in change of solution
characteristics is meant by reduction. The set of the equations arising from
the above-mentioned Fuchsian equation comprises the class M3

3 according to
[1]. Different types of equations belonging to M3

3 are distinguished. Relation to
generalized hypergeometric functions pFq is discussed.

Our study is based on the generalization of the notion of the s-rank of a
singularity and of the s-multisymbol of an equation proposed in [2] and [3] for
the second-order equations.

The Fuchsian third-order equation with two regular singularities at z1 = 0,
z2 = 1 and a regular singularity at z3 = ∞ can be exposed with the help of its
symbol – a polynomial TC in two variables: z and D

TC(z,D) := (ζ)3D3 + ζ2P1(z)D2 + ζP2(z)D + P3(z), (1)

where D is the differentiation operator, and z is the operator of multiplication
by independent variable, ζ = z(1 − z), Pk are polynomials of degrees k.

The following well-known lemma holds.

Lemma. There exists a transform of the dependent variable converting the
canonical form TC of a Fuchsian equation into normal form with the symbol

TN(z,D) := SU (TC) = ζ3D3 + ζQ2(z)D +Q3(z), (2)

where ζ3 has triple roots in two regular singularities 0, 1.
Practical classification of singularities of a third-order equation with polyno-

mial coefficients can be constructed on the basis of the notion of the s-rank of
the singularity. At analytical study of roots of symbolic characteristic equation

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 232–237, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

One Class of Third-Order Linear ODE’s 233

TN(z,D) = 0. (3)
its solutions can be presented in the vicinity of a singularity as Puiseux series of
the form

Dm(zj) = Cmj(z − zj)−μj

∞∑
k=0

hk(z − zj)kσ ,

Cmj �= 0,m = 1, 2, 3, j = 1, 2, 3

Dm(∞) = Cm∞zμ∞−2
∞∑

k=0

hkz
−kσ, Cm∞ �= 0.

with integer or fractional μj satisfying

1
3
≤ μj ≤ 3 (4)

and σj taking the values 1, 1/2, and 1/3. The first term of these equations deter-
mines the behavior of the logarithmic derivative of solutions of differential equation
related to the symbol (1) in the vicinity of the corresponding singularity.

| lnw(z)| ≤ K|z − zj|−μj−ε for μj ≥ 1 ε ≥ 0; (5)

with corresponding positive constant K determined by coefficients of polynomi-
als in (1) (see also [3] page 9).

It is important that μj = 1 for generating regular singularities.

Definition. The set of numbers {μ1, μ2, μ∞} is termed the s-multisymbol of the
studied equation. Two equations belong to one type if and only if they have the
same s-multisymbol.

A Fuchsian equation with n regular singularities is characterized by s-multi-
symbol consisting of n unities. We keep unity as the s-rank for regular singularity
below. However, at confluence of two singularities the s-multisymbol changes
decreasing by one element while two corresponding μj generate a new element
numerically equal or less to the sum of original elements. The possible numerical
value can be either integer or half-integer or be multiple of 1/3.

Starting from a Fuchsian equation with n regular singularities, the following
question arises: how many different types of equations in the frame of proposed
classification (that is having different s-multisymbols) can be obtained by means
of confluence and specialization of coefficients.

The following theorem holds for second-order equation [5].

Theorem. The number of different types of equations, which can be obtained
by confluence and reduction of Fuchsian second order equation with n regular
singularities at n ≥ 3, according chosen classification in terms of s-multisymbol
is equal to nth coefficient of Taylor series at zero for the function

exp
∑
j>0

2zj

j(1 − zj)
=

1 + 2z + 5z2 + 10z3 + 20z4 + 36z5 + 65z6 + 110z7 + 185z8 +O(z9).

234 S.Y. Slavyanov

Our object in this publication is to count the number of types of equations and
to expose the equations themselves and their multisymbols for the class M3

3 .

Classification

The initial equation is the Fuchsian equation with three regular singularities the
solutions of which depend on 7 parameters – six singular parameters and one
accessory parameter.

{1, 1, 1} [z3(1 − z)3D3 + z(1 − z)(p2z2 + p1z + p0)D +
(q3z3 + q2z2 + q1z + q0)]y = 0. (6)

By singular parameters are meant those parameters, which characterize local
solutions of the equation in the vicinity of a regular singularity namely data
of lateral connection problem. Because of the Fuchs theorem the number of
parameters corresponding to infinity z3 = ∞ is equal to two as in the case
of singularities z1 = 0, z2 = 1. The relation between characteristic exponents
ρm(zj), m = 1, 2, 3 and the coefficients of equation can be obtained from the
third-order algebraic characteristic equations

ρ(z1)(ρ(z1) − 1)(ρ(z1 − 2) + p0ρ(z1) + q0 = 0,
ρ(z3)(ρ(z3) + 1)(ρ(z3) + 2) + p2ρ(z3) + q3 = 0,

ρ(z2)(ρ(z2) − 1)(ρ(z2) − 2) + ρ(z2)
2∑

i=0

pi +
3∑

i=0

qi = 0. (7)

The accessory parameter determines the solution of global central connection
problem which is part of general monodromy data. Since the sum q1 + q2 is fixed
in (7) the following combination can be taken

θ = q1 − q2 (8)

as the accessory parameter. Thus, p0, p1, p2, q0.q3, q0 + q1 + q2 + q3 are singular
parameters of (6). The Fuchs relation for (6) reads

3∑
j=1

3∑
m=1

ρm(zj) = 3. (9)

The confluent equation is originated by (6) at limiting confluence process when
the regular singularity z2 tends to infinity in (6) accompanied by appropri-
ate tending to infinity of the characteristic exponents at this singularity. So-
lutions depend upon 6 parameters - five singular parameters and one accessory
parameter.

{1, 2} [z3D3 + z(z2 + p1z + p0)D + (q3z3 + q2z2 + q1z + q0)]y = 0. (10)

The characteristic equation at z1 = 0 is the same as in (7)

ρ(z1)(ρ(z1) − 1)(ρ(z1 − 2) + p0ρ(z1) + q0 = 0.

One Class of Third-Order Linear ODE’s 235

However, at infinity the behavior of solutions would be

ym(z) ∼ exp(κmz)z−αm

∞∑
n=0

cmnz
−n. (11)

That leads to characteristic equations for κm and αm

κ3 + κ+ q3 = 0,
−α(3κ2 + 1) + p1κ+ q2 = 0. (12)

As the result of equalities

κ1 + κ2 + κ3 = 0, κ1κ2 + κ1κ3 + κ2κ3 = 1, (13)

which in their turn follow from (12), it holds

α1 + α2 + α3 = 0 (14)

and
3∑

m=1

ρm(0) +
3∑

m=1

αm = 3. (15)

This is an extension of the Fuchs theorem formulated in terms of s-rank. Namely,
the sum of appropriate characteristic exponents over all singularities is equal to
sum of all s-ranks. This statement can be regarded as a possible conjecture.

Under the process of confluence when the regular singularity z1 = 0 in (10)
is driven to infinity with corresponding changes in characteristic exponents we
arrive at the double confluent equation. Solutions of it depend upon five param-
eters – four singular parameters and one accessory parameter.

{3} [D3 + (−z2 + p0)D + q3z3 + q2z2 + q1z + q0]y = 0. (16)

The behavior of solutions at irregular point z = ∞ with the s-rank equal to 3 is
determined by asymptotics

y(z) ∼ exp(κz2/2 + γz)z−α. (17)

The characteristic exponents ρm, γm and αm satisfy the following characteristic
equations

κ3 − κ+ q3 = 0,
γ(3κ2 − 1) + q2 = 0,
α(3κ2 − 1) = 3γ2κ+ κp0 + q1. (18)

From the first of these equations it follows that

m∑
i=1

κi = 0,
3∑

i=1

k2
i = 1,

3∑
i=1,l=1,i
=l

κiκl = −1. (19)

236 S.Y. Slavyanov

Several other equalities can be derived from (18) and (19). Manipulations with
MAPLE lead to one more equality

3∑
i=1

γi = 0. (20)

However, we were unable to prove that

3∑
i=1

αi = 3 (21)

what corresponds to our conjecture.
Several reduced confluent equations (with non-integer s-rank) can also be

studied. These are

{1, 5
3
} [z3D3 + p0zD + (z2 + q1z + q0)]y = 0

{1, 3
2
} [z3D3 + z(z + p0)D + (q1z + q0)]y = 0

{1, 4
3
} [z3D3 + p0zD + (z + q0)]y = 0

{8
3
} [D3 + (p1z + p0)D + z2 + q1z]y = 0

{5
2
} [D3 + (−z + p0)D + q1z]y = 0

{7
3
} [D3 + p0D + z]y = 0.

Their detailed investigation is beyond the frame of this presentation.

Application to Generalized Hypergeometric Equation

The generalized hypergeometric equation in particular cases is also a third-order
equation either it is a Fuchsian equation or confluent equation or double conflu-
ent equation. The main difference lays in absence of accessory parameters. The
generalized hypergeometric function reads as

pFq

(
α1, ..., αp; z
ρ1, ..., ρq

)
=p Fq(αr; ρt; z) =

∞∑
n=0

(α1)n...(αp)n

(ρ1)n...(ρq)n

zn

n!
(22)

with

(α)0 = 1, (α)n =
Γ (α+ n)
Γ (α)

.

Let δ = z d
dz , then u =p Fq satisfies ODE:

[δ(δ + ρ1 − 1)...(δ + ρq − 1) − z(δ + α1)...(δ + αp)]u = 0. (23)

One Class of Third-Order Linear ODE’s 237

If p = 3, q = 2 then equation (23) belongs to M3
3 .

The equivalent equation reads:

z2(z − 1)D3v +
2∑

n=1

zn−1(anz − bn)Dnv + a0v = 0, (24)

where D = d
dz , and an, bn are constants.

The substitution
v = e(−

∫
a
3 dz)u

transforms the equation
[
D3 + a(z)D2 + b(z)D + c(z)

]
v = 0 to the following[

D3 + (−a(z)
2

3
− a′(z) + b(z))D+

(−a
′′(z)
3

+
2
27
a(z)3 − a(z)b(z)

3
+ c(z))

]
u = 0,

where
a(z) =

a2z − b2
z(z − 1)

, b(z) =
a1z − b1
z2(z − 1)

, c(z) =
a0

z2(z − 1)
,

which is the particular case of (6). In the same way the cases with other p and
q namely p = 3, q + 1 and p = 3, q = 0 can be examined.

Conclusion

The question which arises in relation with proposed classification is the following.
Are some of the listed equations related to one another by integral transforms,
especially for particular values of parameters? This complicated problem can be
solved by tools of Computer Algebra.

The possible particular solutions in terms of second-order equation can be
found by methods developed in [6]. For those equations which have only one
accessory parameter an open problem is also the existence of the corresponding
Painlevé equation.

References

1. Akopyan, A.M., Pirozhnikov, A.V., Slavyanov, S.Y., Zolotarev, V.I.: Elements of
data base on special functions. In: Conference: Theoretical, Applied and Computa-
tional Celestial Mechanics, ITA RAN, St.-Petersburg (1993)

2. Seeger, A., Lay, W., Slavyanov, S.Y.: Confluence of Fuchsian second-order differen-
tial equations. Theor. and Math. Phys. 104(2), 233–247 (1995)

3. Slavyanov, S.Y., Lay, W.: Special Functions: a Unified Theory Based on Singulari-
ties. Oxford University Press, Oxford (2000)

4. Slavyanov, S.Y., Lay, W., Seeger, A.: Classification. In: Ronveaux, A. (ed.) Heun’s
Differential Equation. Oxford University Press, Oxford (1995)

5. Salvy, B., Slavyanov, S.Y.: A combinatorial problem in the classification of second-
order linear ODE’s, INRIA, Report RR-2600 (1995)

6. Hoeij, M.: Solving third order linear differential equations in terms of second order
equations. In: ISSAC 2007 Proc., pp. 355–360 (2007)

GPGCD, an Iterative Method for Calculating
Approximate GCD, for Multiple Univariate

Polynomials

Akira Terui

Graduate School of Pure and Applied Sciences
University of Tsukuba

Tsukuba, 305-8571, Japan
terui@math.tsukuba.ac.jp

Abstract. We present an extension of our GPGCD method, an iterative
method for calculating approximate greatest common divisor (GCD) of
univariate polynomials, to multiple polynomial inputs. For a given pair
of polynomials and a degree, our algorithm finds a pair of polynomials
which has a GCD of the given degree and whose coefficients are perturbed
from those in the original inputs, making the perturbations as small as
possible, along with the GCD. In our GPGCD method, the problem of
approximate GCD is transferred to a constrained minimization problem,
then solved with the so-called modified Newton method, which is a gen-
eralization of the gradient-projection method, by searching the solution
iteratively. In this paper, we extend our method to accept more than two
polynomials with the real coefficients as an input.

1 Introduction

For algebraic computations on polynomials and matrices, approximate algebraic
algorithms are attracting broad range of attentions recently. These algorithms
take inputs with some “noise” such as polynomials with floating-point number
coefficients with rounding errors, or more practical errors such as measurement
errors, then, with minimal changes on the inputs, seek a meaningful answer
that reflect desired property of the input, such as a common factor of a given
degree. By this characteristic, approximate algebraic algorithms are expected to
be applicable to more wide range of problems, especially those to which exact
algebraic algorithms were not applicable.

As an approximate algebraic algorithm, we consider calculating the approxi-
mate greatest common divisor (GCD) of univariate polynomials, such that, for a
given pair of polynomials and a degree d, finding a pair of polynomials which has
a GCD of degree d and whose coefficients are perturbations from those in the
original inputs, with making the perturbations as small as possible, along with
the GCD. This problem has been extensively studied with various approaches
including the Euclidean method on the polynomial remainder sequence (PRS)
([1], [2], [3]), the singular value decomposition (SVD) of the Sylvester matrix ([4],

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 238–249, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GPGCD, an Iterative Method for Calculating Approximate GCD 239

[5]), the QR factorization of the Sylvester matrix or its displacements ([6], [7],
[8]), Padé approximation [9], optimization strategies ([10], [11], [12], [13], [14]).
Furthermore, stable methods for ill-conditioned problems have been discussed
([6], [15], [16]).

Among methods in the above, we focus our attention on optimization strate-
gies. Already proposed algorithms utilize iterative methods including the Leven-
berg-Marquardt method [10], the Gauss-Newton method [14] and the structured
total least norm (STLN) method ([11], [12]). Among them, STLN-based methods
have shown good performance calculating approximate GCD with sufficiently
small perturbations efficiently.

In this paper, we discuss an extension of the GPGCD method, proposed by
the present author ([17], [21]), an iterative method with transferring the original
approximate GCD problem into a constrained optimization problem, then solv-
ing it by the so-called modified Newton method [18], which is a generalization
of the gradient-projection method [19]. In the previous papers ([17], [21]), we
have shown that our method calculates approximate GCD with perturbations
as small as those calculated by the STLN-based methods and with significantly
better efficiency than theirs. While our previous methods accept two polynomials
with the real or the complex coefficients as inputs and outputs, respectively, we
extend it to handle more than two polynomial inputs with the real coefficients
in this paper.

The rest part of the paper is organized as follows. In Section 2, we transform
the approximate GCD problem into a constrained minimization problem for the
case with the complex coefficients. In Section 3, we show details for calculating
the approximate GCD, with discussing issues in minimizations. In Section 4, we
demonstrate performance of our algorithm with experiments.

2 Formulation of the Approximate GCD Problem

Let P1(x), . . . , Pn(x) be real univariate polynomials of degree d1, . . . , dn, respec-
tively, given as

Pi(x) = p
(i)
di
xdi + · · · p(i)1 x+ p(i)0 ,

for i = 1, . . . , n, with min{d1, . . . , dn} > 0. We permit Pi and Pj be relatively
prime for any i �= j in general. For a given integer d satisfying min{d1, . . . , dn} >
d > 0, let us calculate a deformation of P1(x), . . . , Pn(x) in the form of

P̃i(x) = Pi(x) +ΔPi(x) = H(x) · P̄i(x),

where ΔPi(x) is a real polynomial whose degrees do not exceed di, respec-
tively, H(x) is a polynomial of degree d, and P̄i(x) and P̄j(x) are pairwise rel-
atively prime for any i �= j. In this situation, H(x) is an approximate GCD of
P1(x), . . . , Pn(x). For a given d, we try to minimize ‖ΔP1(x)‖2

2+· · ·+‖ΔPn(x)‖2
2,

the norm of the deformations.

240 A. Terui

For a real univariate polynomial P (x) represented as P (x) = pnx
n+· · ·+p0x0,

let Ck(P) be a real (n+ k, k + 1) matrix defined as

Ck(P) =

⎛⎜⎜⎜⎜⎜⎜⎝

pn

...
. . .

p0 pn

. . .
...
p0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
︸ ︷︷ ︸

k+1

and let p be the coefficient vector of P (x) defined as

p = (pn, . . . , p0). (1)

In this paper, for a generalized Sylvester matrix, we use a formulation by Rup-
precht [20, Sect. 3]. Then, a generalized Sylvester matrix for P1, . . . , Pn becomes
as

N(P1, . . . , Pn) =

⎛⎜⎜⎜⎝
Cd1−1(P2) Cd2−1(P1) 0 · · · 0
Cd1−1(P3) 0 Cd3−1(P1) · · · 0

...
...

. . .
...

Cd1−1(Pn) 0 · · · 0 Cdn−1(P1)

⎞⎟⎟⎟⎠ , (2)

and the k-th subresultant matrix (with min{d1, . . . , dn} > k ≥ 0) is also defined
similarly as

Nk(P1, . . . , Pn)

=

⎛⎜⎜⎜⎝
Cd1−1−k(P2) Cd2−1−k(P1) 0 · · · 0
Cd1−1−k(P3) 0 Cd3−1−k(P1) · · · 0

...
...

. . .
...

Cd1−1−k(Pn) 0 · · · 0 Cdn−1−k(P1)

⎞⎟⎟⎟⎠ , (3)

with
rk = d1 + d2 + · · · + dn − (n− 1)k + (n− 2)d1 (4)

rows and
ck = d1 + d2 + · · · + dn − n · k (5)

columns.
Calculation of GCD is based on the following fact.

Proposition 1 (Rupprecht [20, Proposition 3.1]). Nk(P1, . . . , Pn) has full
rank if and only if deg(gcd(P1, . . . , Pn)) ≤ k.
Thus, for a given degree d, if Nd−1(P̃1, . . . , P̃n) is rank-deficient, then there exist
real univariate polynomials U1(x), . . .,Un(x) of degree at most d1 − d,. . . ,dn − d,
respectively, satisfying

U1P̃i + UiP̃1 = 0, (6)

GPGCD, an Iterative Method for Calculating Approximate GCD 241

for i = 2, . . . , n. In such a case, if Ui and Uj are pairwise relatively prime for
any i �= j, then H = P̃1

U1
= − P̃2

U2
= · · · = − P̃n

Un
becomes the expected GCD.

Therefore, for given polynomials P1, . . . , Pn and a degree d, our problem is to
find perturbations ΔP1, . . . , ΔPn along with cofactors U1, . . . , Un satisfying (6)
with making ‖ΔP1(x)‖2

2 + · · · + ‖ΔPn(x)‖2
2 as small as possible.

By representing P̃i(x) and Ui(x) as

P̃i(x) = p̃
(i)
di
xdi + · · · + p̃(i)1 x+ p̃(i)0 ,

Ui(x) = u
(i)
di−dx

di−d + · · · + u(i)
1 x+ u(i)

0 ,
(7)

we express the objective function and the constraint as follows. For the objective
function, ‖ΔP1(x)‖2

2 + · · · + ‖ΔPn(x)‖2
2 becomes as

‖ΔP1(x)‖2
2 + · · · + ‖ΔPn(x)‖2

2 =
n∑

i=1

⎧⎨⎩
di∑

j=0

(
p̃
(i)
j − p(i)j

)2

⎫⎬⎭ . (8)

For the constraint, (6) becomes as

Nd−1(P̃1, . . . , P̃n) · t(u1, . . . ,un) = 0, (9)

where ui is the coefficient vector of Ui(x) defined as in (1). Furthermore, we add
another constraint for the coefficient of Ui(x) as

‖U1‖2
2 + · · · + ‖Un‖2

2 = 1, (10)

which can be represented together with (9) as(
u1 · · · un −1

Nd−1(P̃1, . . . , P̃n) 0

)
· t(u1, . . . ,un, 1) = 0, (11)

where (10) has been put on the top of (9). Note that, in (11), we have total of

d̄ = d1 + · · · + dn − (n− 1)(d− 1) + (n− 2)d1 + 1 (12)

equations in the coefficients of polynomials in (7) as a constraint, with the j-th
row of which is expressed as gj = 0.

Now, we substitute the variables

(p̃(1)d1
, . . . , p̃

(1)
0 , . . . , p̃

(n)
dn
, . . . , p̃

(n)
0 , u

(1)
d1−d, . . . , u

(1)
0 , . . . , u

(n)
dn−d, . . . , u

(n)
0), (13)

as x = (x1, . . . , x2(d1+···+dn)+(2−d)n), then (8) and (11) become as

f(x) = (x1 − p(1)d1
)2 + · · · + (xd1 − p(1)0)2 + · · ·

· · · + (xd1+···+dn−1+n − p(n)
dn

)2 + · · · + (xd1+···+dn−1+dn+n − p(n)
0)2, (14)

g(x) = t(g1(x), . . . , gd̄(x)) = 0, (15)

respectively, where d̄ in (15) is defined as in (12). Therefore, the problem of
finding an approximate GCD can be formulated as a constrained minimization
problem of finding a minimizer of the objective function f(x) in (14), subject to
g(x) = 0 in (15).

242 A. Terui

3 The Algorithm for Approximate GCD

We calculate an approximate GCD by solving the constrained minimization
problem (14), (15) with the gradient projection method by Rosen [19] (whose ini-
tials become the name of our GPGCD method) or the modified Newton method
by Tanabe [18] (for review, see the author’s previous paper [17]). Our preceding
experiments ([17, Sect. 5.1], [21, Sect. 4]) have shown that the modified Newton
method was more efficient than the original gradient projection method while
the both methods have shown almost the same convergence property, thus we
adopt the modified Newton method in this paper.

In applying the modified Newton method to the approximate GCD problem,
we discuss issues in the construction of the algorithm in detail, such as

– Representation of the Jacobian matrix Jg(x) and certifying that Jg(x) has
full rank (Sect. 3.1),

– Setting the initial values (Sect. 3.2),
– Regarding the minimization problem as the minimum distance problem

(Sect. 3.3),
– Calculating the actual GCD and correcting the coefficients of P̃i (Sect. 3.4),

as follows.

3.1 Representation and the Rank of the Jacobian Matrix

By the definition of the constraint (15), we have the Jacobian matrix Jg(x) (with
the original notation of variables (13) for x) as

Jg(x) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0

Cd1(U2) Cd2(U1) 0 · · · 0
Cd1(U3) 0 Cd3(U1) 0

...
...

. . .
...

Cd1(Un) 0 · · · 0 Cdn(U1)

2 · tu1 2 · tu2 2 · tu3 · · · 2 · tun

Cd1−d(P2) Cd2−d(P1) 0 · · · 0
Cd1−d(P3) 0 Cd3−d(P1) 0

...
...

. . .
...

Cd1−d(Pn) 0 · · · 0 Cdn−d(P1)

⎞⎟⎟⎟⎟⎟⎠ ,

which can easily be constructed in every iteration. Note that the number of rows
in Jg(x) is equal to d̄ in (12), which is equal to the number of constraints, while
the number of columns is equal to 2(d1 + · · ·+ dn) + (2 − d)n, which is equal to
the number of variables (see (13)).

In executing iterations, we need to keep that Jg(x) has full rank: otherwise,
we are unable to decide proper search direction. For this requirement, we have
the following observations.

GPGCD, an Iterative Method for Calculating Approximate GCD 243

Proposition 2. Assume that we have deg d < min{d1, . . . , dn}−1 and degUi ≥
1 for i = 1, . . . , n. Let x∗ ∈ Vg be any feasible point satisfying (15). Then, if
the corresponding polynomials do not have a GCD whose degree exceeds d, then
Jg(x∗) has full rank.

Proof. Let

x∗ = (p̃(1)d1
, . . . , p̃

(1)
0 , . . . , p̃

(n)
dn
, . . . , p̃

(n)
0 , u

(1)
d1−d, . . . , u

(1)
0 , . . . , u

(n)
dn−d, . . . , u

(n)
0)

as in (13), with its polynomial representation expressed as in (7) (note that this
assumption permits the polynomials P̃i(x) to be relatively prime in general). To
verify our claim, we show that we have rank(Jg(x∗)) = d̄ = d1 + · · ·+ dn − (n−
1)(d− 1)+ (n− 2)d1 +1 (see (12)). Let us divide Jg(x∗) into two column blocks
such that Jg(x∗) =

(
JL | JR

)
, where JL and JR are expressed as

JL =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0

Cd1(U2) Cd2(U1) 0 · · · 0
Cd1(U3) 0 Cd3(U1) 0

...
...

. . .
...

Cd1(Un) 0 · · · 0 Cdn(U1)

⎞⎟⎟⎟⎟⎟⎠ ,

JR =

⎛⎜⎜⎜⎜⎜⎝
2 · tu1 2 · tu2 2 · tu3 · · · 2 · tun

Cd1−d(P2) Cd2−d(P1) 0 · · · 0
Cd1−d(P3) 0 Cd3−d(P1) 0

...
...

. . .
...

Cd1−d(Pn) 0 · · · 0 Cdn−d(P1)

⎞⎟⎟⎟⎟⎟⎠ ,

respectively. Then, we have the following lemma.

Lemma 1. We have rank(JL) = d̄ = d1 + · · ·+ dn − (n− 1)(d− 1) + (n− 2)d1.

Proof. Let J̄ be a submatrix of JL by eliminating the top row. Since the number
of rows in JL is equal to d̄ = d1 + · · ·+ dn − (n− 1)(d− 1) + (n− 2)d1, we show
that J̄ has full rank.

For i = 2, . . . , n, let us divide column blocks Cd1(Ui) and Cdi(U1) as

Cd1(Ui) =

d+1︷ ︸︸ ︷ d1−d︷ ︸︸ ︷(
Cd1(Ui)L Cd1(Ui)R

)
,

Cd1(Ui)L =

(
Cd(Ui)

0

)
}d1−d

, Cd1(Ui)R =

(
0

Cd1−d−1(Ui)

)
}d+1

}d1+di−2d
, (16)

Cdi(U1) =

d+1︷ ︸︸ ︷ d1−d︷ ︸︸ ︷(
Cdi(U1)L Cdi(U1)R

)
,

Cdi(U1)L =

(
Cd(U1)

0

)
}d1−d

, Cdi(U1)R =

(
0

Cdi−d−1(U1)

)
}d+1

}d1+di−2d
, (17)

244 A. Terui

respectively, thus J̄ is expressed as

J̄ =

⎛⎜⎜⎜⎝
Cd1(U2)L Cd1(U2)R Cd2(U1)L Cd2(U1)R 0 0 · · ·
Cd1(U3)L Cd1(U3)R 0 0 Cd3(U1)L Cd3(U1)L

...
...

...
...

.
Cd1(Un)L Cd1(Un)R 0 0 0 0 · · ·

· · · 0 0 0 0
.

...
...

Cdn−1(U1)L Cdn−1(U1)R 0 0
· · · 0 0 Cdn(U1)R Cdn(U1)R

⎞⎟⎟⎟⎠ .

Then, by exchanges of columns, we can transform J̄ to Ĵ =
(
ĴL ĴR

)
, where

ĴL =

⎛⎜⎜⎜⎝
Cd1(U2)L Cd2(U1)L 0 · · · 0
Cd1(U3)L 0 Cd3(U1)L 0

...
...

. . .
...

Cd1(Un)L 0 · · · 0 Cdn(U1)L

⎞⎟⎟⎟⎠ ,

ĴR =

⎛⎜⎜⎜⎝
Cd1(U2)R Cd2(U1)R 0 · · · 0
Cd1(U3)R 0 Cd3(U1)R 0

...
...

. . .
...

Cd1(Un)R 0 · · · 0 Cdn(U1)R

⎞⎟⎟⎟⎠ .

We see that nonempty rows in ĴR consist ofN(U1, . . . , Un), a generalized Sylvester
matrix for U1, . . . , Un (see (2)). By the assumption, U1, . . . , Un are pairwise rel-
atively prime, thus, by Prop. 1, rank(ĴR) is equal to the number of nonempty
rows in ĴR, which is equal to d2 + · · ·+ dn +(n− 1)(d1− 2d) (see (16) and (17)).

On the other hand, in ĴL, column blocks Cd2(U1)L, Cd3(U1)L, . . . , Cdn(U1)L
are lower triangular matrices with d + 1 diagonal elements, which shows that
rank(ĴL) is equal to the sum of the number of columns in Cd2(U1)L, Cd3(U1)L, . . .,
Cdn(U1)L, which is equal to (n− 1)(d+ 1).

Furthermore, we see that the row position of diagonal elements in Cd2(U1)L,
Cd3(U1)L, . . . , Cdn(U1)L correspond to the position of the empty rows in ĴR,
thus the columns in Cd2(U1)L, Cd3(U1)L, . . . , Cdn(U1)L are linearly independent
along with the columns in ĴR. Therefore, we have

rank(J̄) = rank(ĴL) + rank(ĴR) = d1 + · · · + dn − (n− 1)(d− 1) + (n− 2)d1,

which proves the lemma.

Proof of Proposition 2 (continued). By the assumptions, we have at least
one nonzero coordinate in the top row in JR, while we have no nonzero coordinate
in the top row in JL, thus we have rank(Jg(x)) = d1 + · · · + dn − (n − 1)(d −
1) + (n− 2)d1 + 1, which proves the proposition. ��
Proposition 2 says that, under certain conditions, so long as the search direction
in the minimization problem satisfies that corresponding polynomials have a

GPGCD, an Iterative Method for Calculating Approximate GCD 245

GCD of degree not exceeding d, then Jg(x) has full rank, thus we can safely
calculate the next search direction for approximate GCD.

3.2 Setting the Initial Values

At the beginning of iterations, we give the initial value x0 by using the singu-
lar value decomposition (SVD) [22] of Nd−1(P1, . . . , Pn) (see (3)) as Nd−1 =
U Σ tV, U = (w1, . . . ,wcd−1), Σ = diag(σ1, . . . , σcd−1), V = (v1, . . . ,vcd−1),
where wj ∈ Rrd−1 , vj ∈ Rcd−1 with rk and ck as in (4) and (5), respectively,
and Σ = diag(σ1, . . . , σcd−1) denotes the diagonal matrix with the j-th di-
agonal element of which is σj . Note that U and V are orthogonal matrices.
Then, by a property of the SVD [22, Theorem 3.3], the smallest singular value
σcd−1 gives the minimum distance of the image of the unit sphere Scd−1−1, given
as Scd−1−1 = {x ∈ Rcd−1 | ‖x‖2 = 1}, by Nd−1(P1, . . . , Pn), represented as
Nd−1 · Scd−1−1 = {Nd−1x | x ∈ Rcd−1 , ‖x‖2 = 1}, from the origin, along with
σcd−1wcd−1 as its coordinates. Thus, we have Nd−1 · vcd−1 = σcd−1wcd−1 . For
vcd−1 = t(ū(1)

d1−d, . . . , ū
(1)
0 , . . . , ū

(n)
dn−d, . . . , ū

(n)
0), let Ūi(x) = ū

(i)
di−dx

di−d + · · · +

ū
(i)
0 x

0 for i = 1, . . . , n. Then, Ū1(x), . . . , Ūn(x) give the least norm of U1Pi+UiP1
satisfying ‖U1‖2

2 + · · · + ‖Un‖2
2 = 1 by putting Ui(x) = Ūi(x) in (7).

Therefore, we admit the coefficients of P1, . . . , Pn, Ū1, . . . , Ūn as the initial
values of the iterations as

x0 = (p(1)d1
, . . . , p

(1)
0 , . . . , p

(n)
dn
, . . . , p

(n)
0 , ū

(1)
d1−d, . . . , ū

(1)
0 , . . . , ū

(n)
dn−d, . . . , ū

(n)
0).

3.3 Regarding the Minimization Problem as the Minimum Distance
(Least Squares) Problem

Since we have the object function f as in (14), we have

∇f(x) = 2 · t(x1 − p(1)d1
, . . . , xd1 − p(1)0 , . . . ,

xd1+···+dn−1+n − p(n)
dn
, . . . , xd1+···+dn−1+dn+n − p(n)

0 , 0, . . . , 0).

However, we can regard our problem as finding a point x ∈ Vg which
has the minimum distance to the initial point x0 with respect to the
(x1, . . . , xd1+···+dn−1+dn+n)-coordinates which correspond to the coefficients in
Pi(x). Therefore, as in the case for two polynomials (see the author’s previous
papers ([17], [21])), we change the objective function as f̄(x) = 1

2f(x), then
solve the minimization problem of f̄(x), subject to g(x) = 0.

3.4 Calculating the Actual GCD and Correcting the Deformed
Polynomials

After successful end of the iterations, we obtain the coefficients of P̃i(x) and
Ui(x) satisfying (6) with Ui(x) are relatively prime. Then, we need to compute

246 A. Terui

the actual GCD H(x) of P̃i(x). Although H can be calculated as the quotient of
P̃i divided by Ui, naive polynomial division may cause numerical errors in the
coefficient. Thus, we calculate the coefficients of H by the so-called least squares
division [14], followed by correcting the coefficients in P̃i by using the calculated
H , as follows.

For polynomials P̃i, and Ui represented as in (7) and H represented as

H(x) = hdx
d + · · · + h0x

0,

solve the equations HUi = P̃i with respect to H as solving the least squares
problems of a linear system

Cd(Ui) t(hd . . . , h0) = t(p(i)di
, · · · , p(i)0). (18)

Let Hi(x) ∈ R[x] be a candidate for the GCD whose coefficients are calculated
as the least squares solutions of (18). Then, for i = 2, . . . , n, calculate the norms
of the residues as

ri =
n∑

j=1

‖Pj −HiUj‖2
2,

and set the GCD H(x) be Hi(x) giving the minimum value of ri so that the
perturbed polynomials make the minimum amount of perturbations in total.

Finally, for the chosenH(x), correct the coefficients of P̃i(x) as P̃i(x) = H(x)·
Ui(x) for i = 1, . . . , n.

4 Experiments

We have implemented our GPGCD method on the computer algebra system
Maple and compared its performance with a method based on the structured
total least norm (STLN) method [11] for randomly generated polynomials with
approximate GCD. The tests have been carried out on Intel Core2 Duo Mobile
Processor T7400 (in Apple MacBook “Mid-2007” model) at 2.16 GHz with RAM
2GB, under MacOS X 10.5.

In the tests, we have generated random polynomials with GCD then added
noise, as follows. First, we have generated a monic polynomial P0(x) of degree
m with the GCD of degree d. The GCD and the prime parts of degree m − d
are generated as monic polynomials and with random coefficients c ∈ [−10, 10]
of floating-point numbers. For noise, we have generated a polynomial PN(x) of
degree m− 1 with random coefficients as the same as for P0(x). Then, we have
defined a test polynomial P (x) as P (x) = P0(x) + eP

‖PN(x)‖2
PN(x), scaling the

noise such that the 2-norm of the noise for P is equal to eP . In the present test,
we set eP = 0.1.

In this test, we have compared our implementation against a method based on
the structured total least norm (STLN) method [11], using their implementation
(see Acknowledgments). In their STLN-based method, we have used the proce-
dure R_con_mulpoly which calculates the approximate GCD of several polyno-
mials in R[x]. The tests have been carried out on Maple 13 with Digits=15

GPGCD, an Iterative Method for Calculating Approximate GCD 247

Table 1. Test results for (m, d, n): n input polynomials of degree m with the degree
of approximate GCD d. See Section 4 for details.

Ex. (m, d, n) #Fail Error #Iterations Time (sec.)
STLN GPGCD STLN GPGCD STLN GPGCD STLN GPGCD

1 (10, 5, 3) 0 0 2.31e−3 2.38e−3 5.50 11.2 1.17 0.45
2 (10, 5, 5) 0 0 5.27e−3 5.22e−3 4.70 13.5 3.10 1.53
3 (10, 5, 10) 0 0 5.48e−3 5.62e−3 4.40 17.9 12.49 8.59
4 (20, 10, 3) 0 0 5.17e−3 5.40e−3 4.50 12.0 3.35 1.52
5 (20, 10, 5) 0 0 5.89e−3 5.85e−3 4.40 12.7 10.37 4.97
6 (20, 10, 10) 0 1 6.31e−3 6.20e−3 4.00 25.6 44.62 43.16
7 (40, 20, 3) 0 0 5.32e−3 5.39e−3 4.90 12.8 13.60 5.83
8 (40, 20, 5) 0 0 6.01e−3 5.97e−3 4.30 12.1 41.46 17.92
9 (40, 20, 10) 0 0 6.41e−3 6.25e−3 4.10 8.90 200.88 60.21

executing hardware floating-point arithmetic. For every example, we have gen-
erated 10 random test cases as in the above. In executing the GPGCD method,
we set u = 100 and a threshold of the 2-norm of the “update” vector in each
iteration ε = 1.0×10−8; in R_con_mulpoly, we set the tolerance e = 1.0×10−8.

Table 1 shows the results of the test. In each test, we have given several
polynomials of the same degree as the input. The second column with (m, d, n)
denotes the degree of input polynomials, degree of GCD, and the number of input
polynomials, respectively. The columns with “STLN” are the data for the STLN-
based method, while those with “GPGCD” are the data for the GPGCD method.
“#Fail” is the number of “failed” cases such as: in the STLN-based method, the
number of iterations exceeds 50 times (which is the built-in threshold in the
program), while, in the GPGCD method, the number of iterations exceeds 100
times. All the other data are the average over results for the “not failed” cases:
“Error” is the sum of perturbation

∑n
i=1 ‖P̃i − Pi‖2

2, where “ae− b” denotes
a× 10−b; “#Iterations” is the number of iterations; “Time” is computing time
in seconds.

We see that, in the most of tests, both methods calculate approximate GCD
with almost the same amount of perturbations. In the most of tests, the GPGCD
method runs faster than STLN-based method. However, running time of the
GPGCD method increases as much as that of the STLN-based method in some
cases with relatively large number of iterations (such as Ex. 6). There is a case
in which the GPGCD method does not converge (Ex. 6). Factors leading to such
phenomena is under investigation.

5 Concluding Remarks

Based on our previous research ([17], [21]), we have extended our GPGCD
method for more than two input polynomials with the real coefficients. We have
shown that, at least theoretically, our algorithm properly calculates an approxi-
mate GCD under certain conditions for multiple polynomial inputs.

248 A. Terui

Our experiments have shown that, in the case that the number of iterations is
relatively small, the GPGCD method calculates an approximate GCD efficiently
with almost the same amount of perturbations as the STLN-based method.
However, computing time of the GPGCD method increases as the number of it-
erations becomes larger; it suggests that we need to reduce the computing time
of each iteration in the GPGCD method for the cases with relatively large num-
ber of iterations. It is desirable to have more detailed experiments for analyzing
stability, performance for input polynomials of larger degree, etc.

For the future research, generalizing this result to polynomials with the com-
plex coefficients will be among our next problems. It is also an interesting prob-
lem how the choice of P1 affects the performance of the algorithm. Furthermore,
one can also use arbitrary linear combination to transform gcd(P1, P2, . . . , Pn) to
gcd(P1, a2P2 + · · ·+ anPn). This will reduce the size of the generalized Sylvester
matrix and will be another approach for calculating approximate GCD.

Acknowledgments

We thank Professor Erich Kaltofen for making their implementation for comput-
ing approximate GCD available on the Internet. We also thank the anonymous
reviewers for their valuable suggestions.

References

1. Beckermann, B., Labahn, G.: A fast and numerically stable Euclidean-like al-
gorithm for detecting relatively prime numerical polynomials. J. Symbolic Com-
put. 26(6), 691–714 (1998), Symbolic numeric algebra for polynomials

2. Sasaki, T., Noda, M.T.: Approximate square-free decomposition and root-finding
of ill-conditioned algebraic equations. J. Inform. Process. 12(2), 159–168 (1989)

3. Schönhage, A.: Quasi-gcd computations. J. Complexity 1(1), 118–137 (1985)
4. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decom-

position for polynomial systems. In: Proceedings of the 1995 International Sym-
posium on Symbolic and Algebraic Computation, pp. 195–207. ACM, New York
(1995)

5. Emiris, I.Z., Galligo, A., Lombardi, H.: Certified approximate univariate GCDs. J.
Pure Appl. Algebra 117/118, 229–251 (1997), Algorithms for algebra (Eindhoven,
1996)

6. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate
approximate polynomials. IEEE Trans. Signal Process. 52(12), 3394–3402 (2004)

7. Zarowski, C.J., Ma, X., Fairman, F.W.: QR-factorization method for computing
the greatest common divisor of polynomials with inexact coefficients. IEEE Trans.
Signal Process. 48(11), 3042–3051 (2000)

8. Zhi, L.: Displacement structure in computing approximate GCD of univariate poly-
nomials. In: Computer mathematics: Proc. Six Asian Symposium on Computer
Mathematics (ASCM 2003), River Edge, NJ. Lecture Notes Ser. Comput., vol. 10,
pp. 288–298. World Sci. Publ. (2003)

9. Pan, V.Y.: Computation of approximate polynomial GCDs and an extension. In-
form. and Comput. 167(2), 71–85 (2001)

GPGCD, an Iterative Method for Calculating Approximate GCD 249

10. Chin, P., Corless, R.M., Corliss, G.F.: Optimization strategies for the approximate
GCD problem. In: Proceedings of the 1998 International Symposium on Symbolic
and Algebraic Computation, pp. 228–235. ACM, New York (1998) (electronic)

11. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of sev-
eral polynomials with linearly constrained coefficients and singular polynomials.
In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic
Computation, pp. 169–176. ACM, New York (2006)

12. Kaltofen, E., Yang, Z., Zhi, L.: Structured low rank approximation of a Sylvester
matrix. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation. Trends in
Mathematics, pp. 69–83. Birkhäuser, Basel (2007)

13. Karmarkar, N.K., Lakshman, Y.N.: On approximate GCDs of univariate polyno-
mials. J. Symbolic Comput. 26(6), 653–666 (1998), Symbolic numeric algebra for
polynomials

14. Zeng, Z.: The approximate GCD of inexact polynomials, Part I: a univariate algo-
rithm (extended abstract), 8 p. (2004) (preprint)

15. Ohsako, N., Sugiura, H., Torii, T.: A stable extended algorithm for generating
polynomial remainder sequence. Trans. Japan Soc. Indus. Appl. Math. 7(3), 227–
255 (1997) (in Japanese)

16. Sanuki, M., Sasaki, T.: Computing approximate GCDs in ill-conditioned cases. In:
SNC 2007: Proceedings of the 2007 International Workshop on Symbolic-Numeric
Computation, pp. 170–179. ACM, New York (2007)

17. Terui, A.: An iterative method for calculating approximate GCD of univariate
polynomials. In: Proceedings of the 2009 International Symposium on Symbolic
and Algebraic Computation, pp. 351–358. ACM Press, New York (2009)

18. Tanabe, K.: A geometric method in nonlinear programming. J. Optim. Theory
Appl. 30(2), 181–210 (1980)

19. Rosen, J.B.: The gradient projection method for nonlinear programming. II. Non-
linear constraints. J. Soc. Indust. Appl. Math. 9, 514–532 (1961)

20. Rupprecht, D.: An algorithm for computing certified approximate GCD of n uni-
variate polynomials. J. Pure Appl. Algebra 139, 255–284 (1999)

21. Terui, A.: GPGCD, an iterative method for calculating approximate GCD of uni-
variate polynomials, with the complex coefficients. In: Proceedings of the Joint
Conference of ASCM 2009 and MACIS 2009. COE Lecture Note., Faculty of Math-
ematics, vol. 22, pp. 212–221. Kyushu University (December 2009)

22. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia (1997)

Derivation of Explicit Difference Schemes for
Ordinary Differential Equations with the Aid of

Lagrange–Burmann Expansions

Evgenii V. Vorozhtsov

Khristianovich Institute of Theoretical and Applied Mechanics, Russian Academy of
Sciences, Novosibirsk 630090, Russia

vorozh@itam.nsc.ru

Abstract. We propose to derive the explicit multistage methods of the
Runge–Kutta type for ordinary differential equations (ODEs) with the
aid of the expansion of grid functions into the Lagrange–Burmann se-
ries. New explicit first- and second-order methods are derived, which are
applied to the numerical integration of the Cauchy problem for a mod-
erately stiff ODE system. It turns out that the L2 norm of the error of
the solution obtained by the new numerical second-order method is 50
times smaller than in the case of the classical second-order Runge–Kutta
method.

1 Introduction

Ordinary differential equations are of great importance at the modeling of many
applied problems. To find the solution of ODEs one has, as a rule, to use the ap-
proximate methods. The finite-difference methods have gained here a widespread
acceptance. But at the use of these methods one has to account for the accu-
racy and stability problems. Stability problems become especially complicated
in the case of the stiff ODE systems, which are typical of the chemical kinetics
problems. It was proved in [6] that the explicit linear multistage method can-
not be A-stable. One can then derive the implicit multistep methods as well as
the implicit Runge–Kutta methods, which possess the A-stability property, but
these methods require iterations [7]. In this connection, there are in the litera-
ture the investigations, whose purpose is the obtaining of explicit methods of the
Runge–Kutta type with an extended stability region [8,1,2,9,12]. In particular, it
was proposed for the first time in [8] to derive the explicit second-order Runge–
Kutta methods with an extended stability region on the negative real axis by
using the shifted Chebyshev polynomials of the first kind; these explicit meth-
ods were termed the Runge–Kutta–Chebyshev (RKC) methods. Abdulle [1,2]
has constructed also the families of the second- and fourth-order RKC methods.
A review of the RKC methods may be found in [9,12]. A shortcoming of the RKC
methods is that they need large computer time expenses for their implementa-
tion. This is related to the fact that the RKC methods require the execution of
several dozens of stages at one step; for example, the RKC method proposed in

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 250–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Derivation of Explicit Difference Schemes for ODEs 251

[12] requires up to 320 stages. Therefore, there is a need in a search for other
possibilities of deriving the explicit methods, which possess an extended stability
region and, at the same time, a higher local accuracy.

We will consider in the following the Cauchy problem of the form

du

dx
= f(x, u), x ∈ [x0, X], (1)

u(x0) = u0, (2)

where x is the independent variable, f(x, u) is a given scalar function, x0 < X ,
x0, X , and u0 are the given quantities. The expansion of the solution of the
Cauchy problem under consideration into the truncated Taylor series is the most
widespread approach to the derivation of difference methods of various orders for
solving equation (1). The Taylor series is a series in the powers of function x−x0.
Thus, the truncated Taylor series is a polynomial. It is, however, known from the
theory of the approximation of functions by polynomials (see, for example, [14])
that such approximations result in the oscillations of the interpolating function
in the neighborhood of the discontinuities of the original function as well as in
the regions of large solution gradients.

On the other hand, it is known that one can expand the function also in the
power series of general form, that is in the powers of some function ϕ(x − x0).
One can then choose the function ϕ(x) in such a way that the amplitude of
numerical solution oscillations reduces. The task of the expansion of a function
into the series in powers of other function is solved efficiently with the aid of
the Lagrange–Burmann formula [3,11]. It was proposed for the first time in
[18] to apply the Lagrange–Burmann expansion for constructing the difference
schemes for the numerical integration of partial differential equations of the
hyperbolic type, in particular, the Euler equations governing the flows of an
inviscid compressible non-heat-conducting gas. It turned out that the difference
schemes derived in this way suit well for the numerical computation of gas flows
with shock waves and other strong discontinuities despite the fact that neither
the artificial viscosity nor TVD limiters were introduced in the derived schemes.

It was proposed in [18] to use the explicit Runge–Kutta schemes to ensure
the required approximation order of the constructed schemes in time. Thus, the
difference schemes derived in [18] combined the Lagrange–Burmann formula for
the approximation of partial derivatives with respect to spatial variables with the
Taylor expansion formula for the approximation of derivatives with respect to
time. One can, however, use the Lagrange–Burmann expansion formula also for
the approximation of the derivatives with respect to time. In the present work,
the difference schemes are derived for the numerical solution of the Cauchy prob-
lem (1),(2), which have the local orders of accuracy p = 1 and 2. In Section 2,
we discuss the Lagrange–Burmann expansion formula. In Section 3, we present
the general procedure for deriving the explicit methods of the Runge–Kutta
type of a finite order with the aid of the expansions of grid functions into the
Lagrange–Burmann series. In Section 4, an analog of the Euler explicit method
is derived with the aid of the Lagrange–Burmann expansion. In Section 5, an

252 E.V. Vorozhtsov

explicit second-order method of the Runge–Kutta type is derived, and the ex-
amples of the numerical solution of a moderately stiff ODE system with the aid
of new explicit methods are presented.

2 The Lagrange–Burmann Expansion Formula

Let u(x) be an infinitely differentiable function and let y = g(x), y0 = g(x0),
g′(x0) �= 0. Then the Lagrange–Burmann expansion formula may be written in
the form [3]

u(x) = u(x0) +
∞∑

k=1

(y − y0)k

k!

{
dk−1

dxk−1

[
u′(x)

(
x− x0

g(x) − y0

)k
]}

x=x0

. (3)

It is obvious that in the particular case g(x) = x, y0 = x0 the Lagrange–Burmann
formula (3) goes over to the Taylor formula

u(x) = u(x0) +
∞∑

k=1

{
dku(x)
dxk

}
x0

(x − x0)k

k!
. (4)

It will be convenient for the following to rewrite formula (3) in the form, which
is maximally similar to the Taylor formula (4). Let us introduce the function ϕ
by formula ϕ(x − x0) = g(x) − y0. Then ϕ(x − x0) = ϕ(0) at x = x0, and we
must require that ϕ(0) = 0, ϕ′(0) �= 0, that is the point x = 0 is the zero of
the first order of the function ϕ(x). Upon introducing the function ϕ(x) we can
rewrite the Lagrange–Burmann formula (3) in the form

u(x) = u(x0) +
∞∑

k=1

[ϕ(x − x0)]k

k!

{
dk−1

dxk−1

[
u′(x)

(
x− x0

ϕ(x− x0)

)k
]}

x=x0

. (5)

Thus, formula (5) enables the expansion of the function u(x) into the series in
powers of the function ϕ(x− x0).

Let us denote by bk the coefficient affecting [ϕ(x − x0)]k in (5), that is

bk =
1
k!

{
dk−1

dxk−1

[
u′(x)

(
x− x0

ϕ(x− x0)

)k
]}

x=x0

, k = 1, 2, (6)

In particular,

b1 =
[
u′(x)

x− x0

ϕ(x− x0)

]
x=x0

= u′(x0)
0
0

.

It is seen that there is an uncertainty of the form 0/0 in the expression for b1.
To resolve this uncertainty we make use of the following representation of the
coefficients bk [11]:

bk = lim
x→x0

1
k!

{
dk−1

dxk−1

[
u′(x)

(
x− x0

ϕ(x− x0)

)k
]}

, k = 1, 2, (7)

Derivation of Explicit Difference Schemes for ODEs 253

In particular, we have at k = 1:

b1 = lim
x→x0

[
u′(x)

x− x0

ϕ(x − x0)

]
=
[

lim
x→x0

u′(x)
]
·
[

lim
x→x0

x− x0

ϕ(x − x0)

]
=
u′(x0)
ϕ′(0)

. (8)

We have used the L’Hospital’s rule at the computation of the second limit. The
complexity of the computation of limits in expressions (7) for bk grows nonlin-
early with increasing k. The application of the CAS Mathematica has proved to
be very useful here. Note that the Mathematica function Limit[...] was unable
to calculate even the simple limit (8). Therefore, at the realization of the com-
putation of coefficients bk in the Mathematica system we have at first expanded
the function ϕ(x) into the truncated Maclaurin series. The limit (7) was then
found simply by substituting x = 0 into the obtained rational expressions. Here
is the corresponding program in the language of the Mathematica system:

m = 4; Phi[x_] := x*Sum[(D[fi[x], {x, k}] /. x -> 0)*x^(k - 1)/k!,

{k, m}]; Do[b = (1/k!)*D[u’[x + x0]*(x/Phi[x])^k, {x, k - 1}];

b = b /. x -> 0; b = Expand[b];

Print["b(", k, ") = ", TraditionalForm[b]], {k, m}];

As a result of computations by the above Mathematica program we have obtained
formula (8) for b1, and we have obtained the following expressions for b2, b3, b4:

b2 =
u′′(x0)
2ϕ′(0)2

− u′(x0)ϕ′′(0)
2ϕ′(0)3

, (9)

b3 =
u′(x0)ϕ′′(0)2

2ϕ′(0)5
− u′′(x0)ϕ′′(0)

2ϕ′(0)4
+
u(3)(x0)
6ϕ′(0)3

− u′(x0)ϕ(3)(0)
6ϕ′(0)4

, (10)

b4 = −5u′(x0)ϕ′′(0)3

8ϕ′(0)7
+

5u′′(x0)ϕ′′(0)2

8ϕ′(0)6
− u(3)(x0)ϕ′′(0)

4ϕ′(0)5
+

5u′(x0)ϕ(3)(0)ϕ′′(0)
12ϕ′(0)6

− u′′(x0)ϕ(3)(0)
6ϕ′(0)5

+
u(4)(x0)
24ϕ′(0)4

− u′(x0)ϕ(4)(0)
24ϕ′(0)5

. (11)

If in the particular case one sets in formulas (8)–(11) ϕ(x) = x, then it is easy
to see that the obtained expressions for coefficients bk go over to the coefficients
affecting (x− x0)k in the Taylor formula (4).

3 General Procedure of the Explicit Methods
of the Runge–Kutta Type

This procedure is intended for an approximate numerical solution of the Cauchy
problem (1),(2). We at first introduce the grid as a finite setGh ={x0, x1, . . . , xN}
of the nodes x = xj , j = 0, 1, . . . , N in the interval [x0, X], and x0 < x1 < · · · <
xN = X . The approximate values of the solution u(xj) are found within the
framework of the Runge–Kutta methods sequentially for the increasing numbers
j starting from j = 0. Let the value u(xj) be known. The solution value in the
next node xj+1 is then computed by the formula

u(xj+1) = u(xj) +Δuh,j. (12)

254 E.V. Vorozhtsov

The formula for computing Δuh,j depends on the number of stages of the em-
ployed Runge–Kutta method. In the general case of the (q + 1)-stage method,
one computes at first sequentially the quantities

g0 = ϕj(hj)f(x, u),
g1 = ϕj(hj)f(x+ α1hj , u+ β10g0),
g2 = ϕj(hj)f(x+ α2hj , u+ β20g0 + β21g1), (13)

. . .

gq = ϕj(hj)f(x+ αqhj , u+ βq0g0 + βq1g1 + · · · + βq,q−1gq−1),

where hj = xj+1 − xj , j = 0, . . . , N − 1, q ≥ 0, α1, . . . , αq; β10, β20, β21, . . . , βq0,
βq1, . . . , βq,q−1 are the parameters of the Runge–Kutta method. The solution
increment Δuh,j is then computed by formula

Δuh,j =
q∑

i=0

Aigi, (14)

where A0, A1, . . . , Aq are the parameters of the method.
Along with the approximate formula (14) for the solution increment we can

write down the “exact” formula for solution incrementΔu by using the Lagrange–
Burmann expansion formula (5):

Δuj = u(xj + hj) − u(xj) =
m∑

k=1

hk
j

k!
·
{
dk−1

dxk−1

[
u′(x)

(
x− xj

ϕj(x− xj)

)k
]}

x=xj

,

(15)
where m is a given finite natural number, m ≥ q + 1. We now compose the
difference

δuj = Δuj −Δuh,j (16)

and require the satisfaction of the relation δuj = O(hp
j), where p is the max-

imum possible exponent for the given number of stages q. The maximization
of exponent p is carried out at the expense of an appropriate selection of the
parameters (α), (β), (A) in (13),(14).

Note that the form of the function ϕj(·) entering (13) can change at a passage
from the jth node to the (j+1)th node. At the expense of this, one can reach an
increase in the accuracy and stability of the method of the Runge–Kutta type
(12),(13),(14).

In the simplest case of a uniform grid when xj+1 − xj = h = const ∀j one
can also take the same function ϕ(x) in all grid nodes. One can then compute
the value ϕ(h) once, prior to the computations by the Runge–Kutta method
(12),(13),(14). Then it follows from (13) that the proposed method will require
an amount of computations, which does not exceed the amount of computations
by the classical Runge–Kutta method, for which ϕ(h) = h.

Derivation of Explicit Difference Schemes for ODEs 255

4 The First-Order Method

At m = 1 in (15) we obtain from (13) with regard for (8) the formula

u(xj + hj) = u(xj) +
u′(xj)
ϕ′

j(0)
· ϕj(hj). (17)

With regard for (1) we can rewrite equality (17) in the form

u(xj + hj) = u(xj) +
ϕj(hj)
ϕ′

j(0)
· f(xj , u(xj)). (18)

In the particular case ϕj(x) = x the difference scheme (18) goes over to the
well-known explicit first-order Euler method [7,10,4]

u(xj + hj) = u(xj) + hj · f(xj , u(xj)). (19)

One can, therefore, consider the scheme (18) as an analog of the Euler method
(19). We will refer to the method (18) for the sake of brevity as to the LB1
method (that is this is the first-order method obtained by using the expansion
of the grid function into the Lagrange–Burmann series).

Let us introduce the notation

γ =
ϕj(hj)
hjϕ′

j(0)
=
hjϕ̃j

(
x−xj

hj

)∣∣∣
x=xj+hj

h2
j

[
d
dx ϕ̃j

(
x−xj

hj

)]∣∣∣
x=xj

. (20)

Using the coefficient γ we can rewrite scheme (18) as

u(xj + hj) = u(xj) + γhj · f(xj , u(xj)). (21)

To have the possibility of using the LB1 method in practical computations it is
necessary to specify the function ϕ(x). The following function was used in [18]
for gas-dynamic computations:

ϕj(x− xj) = hjϕ̃j(ξ), (22)

where ξ = (x− xj)/hj ,
ϕ̃j(ξ) = tanh(βξ), (23)

β is a positive user-specified constant. The choice of the function tanh(βξ) is due
to that it can simulate both fast and slow solution components at the expense
of the choice of the constant β. The presence of these two different components
is typical of stiff ODE systems. Then we obtain in the case of specifying the
function ϕ̃j(ξ) by formula (23): γ = tanh(β)

β .
To estimate the local error of the LB1 method we set m = 2 in (15):

u(xj + hj) = u(xj) +
u′(xj)
ϕ′

j(0)
ϕj(hj) + r2 + O(h3), (24)

256 E.V. Vorozhtsov

where according to (9)

r2 =
[u′′(xj)
2ϕ′

j(0)2
− u′(xj)ϕ′′

j (0)
2ϕ′

j(0)3
]
ϕ2

j (h). (25)

It is seen from (25) that in the general case when the function ϕj(x) is neither
even nor odd and when ϕ′′

j (0) �= 0 the local error r2 of the LB1 method may be
both higher and lower than in the case of the Euler method (19), which depends
both on the choice of the function ϕj(x) and on the local behavior of the solution
u(x). We now consider the particular case when ϕj(x) is an odd function. Then
the following equalities are known to be satisfied: ϕ(2m)(0) = 0, m = 1, 2,
Note that the function ϕj(x) = x used in the Taylor expansion is also odd. Thus,
in the case of the odd function ϕj(x) formula (25) simplifies to

r2 = (1/2)u′′(xj)[ϕj(hj)/ϕ′
j(0)]2. (26)

In the case of the method (19), the corresponding error has the form r2,RK1 =
(h2

j/2)u′′(xj). Consider the ratio r2/r2,RK1 = [ϕj(hj)/(ϕ′
j(0)hj)]2. To ensure the

satisfaction of the inequality r2/r2,RK1 < 1 it is necessary that

ϕj(hj)/[ϕ′(0)hj] < 1. (27)

Let us take, for example, the function ϕj(x) in the form (22)–(23). With regard
for (10), the product ϕ(3)(0)ϕ3

j (hj) will enter the term of the order of small-
ness O(ϕ3

j (hj)). But if one uses for ϕj(x) formulas (22)–(23), then one obtains:

ϕ
(3)
j (0) = −2β3/(h2

j), consequently, ϕ(3)
j (0)ϕ3

j (hj) = O(hj). In order to ensure
that the given product has the order of smallness O(h3

j) it is sufficient to ensure
that ϕ(3)(0) = O(1). We will proceed as follows: let us assume that the nondimen-
sionalization was carried out in equation (1) in such a way that X − x0 = O(1).
Instead of the function (22)–(23) we introduce the following function:

ϕj(x) = b(x+ b1x3), (28)

where b and b1 are constants, and b > 0. Then ϕ(3)
j (0) = 6bb1, ϕ

(k)
j = 0, k > 3.

Let us choose the constant b1 from the requirement that ϕj(h) > 0. To this end
the constant b1 must satisfy the inequality b1 > −h−2. To ensure the satisfaction
of inequality (27) it is necessary that b1 < 0 in (28).

Consider the Dahlquist’s equation [7,16]

u′(x) = λu(x), u(x0) = u0, λ ∈ C. (29)

Applying the method (21) to equation (29) we obtain:

u(xj + hj) = (1 + γhjλ)u(xj). (30)

Let z = λhj and R(z) = 1 + γz. Then we can rewrite (30) in the form

u(xj + hj) = R(z)u(xj). (31)

Derivation of Explicit Difference Schemes for ODEs 257

The region of absolute stability is defined as a region in the complex z-plane,
in which |R(z)| ≤ 1. Polynomial R(z), which arises at the application of the
Runge–Kutta method to equation (29), is called the stability polynomial. In
particular, we obtain from the condition |1 + γz| ≤ 1 the following condition of
the absolute stability of the LB1 scheme on the negative real axis: −2 ≤ γz ≤ 0.
This implies the inequalities

0 ≤ h ≤ 2
γ|λ| . (32)

We obtain from here that in order to ensure a larger region of the absolute
stability of the LB1 method than in the case of the RK1 method the following
inequalities must be satisfied:

0 < γ < 1. (33)

Let us now find those values of b and b1 in (28) at which inequalities (33) will
be satisfied. Using formula (20), we obtain from (33) the inequalities

− 1 < b1h2 < 0. (34)

To obtain the limitation from above for |b1| we substitute in (32) the quantity
γ = 1 + b1h2 and neglect the term b1h

2. We then obtain that the value of step
h, which is maximally admissible from the viewpoint of the absolute stability,
is hmax = 2/|λ|. Substituting this value instead of h in (34), we obtain the
inequalities

− (1/4)|λ|2 < b1 ≤ 0. (35)

5 The Second-Order Method

Consider the two-stage Runge–Kutta method. For this purpose we set q = 1 in
(13). The increment Δuh,j in (12) is then computed with regard for (14) as

Δuh,j = A0g0 +A1g1, (36)

where
g0 = ϕj(hj)f(x, u), g1 = ϕj(hj)f(x+ α1hj , u+ β10g0). (37)

In order to compare (36) with quantity (15) let us expand g1 into the Lagrange–
Burmann series at point (x, u) as a function of two variables in the powers of
functions ϕj(x − xj) and ϕj(u − uj) (note that at the derivation of the clas-
sical explicit Runge–Kutta methods, the function g1(x, u) is expanded into the
Taylor series in powers of the variables (x− xj) and (u− uj), see, for example,
[7,10]). The general formula of the expansion of a bivariate function into a se-
ries in powers of two other arbitrary functions of two variables is presented, for
example, in [5]. In accordance with the construction (13) of the method of the
Runge–Kutta type, which was proposed in Section 3, in our case it is necessary
to expand the function g1(x, u) into the series in powers of the same function

258 E.V. Vorozhtsov

ϕ(·), but with different arguments. The general Lagrange formula then simplifies
greatly:

g1(x, u) = g1(xj , uj)+
∑m

l=0
∑m

k=0
l+k>0

Bl,k(xj , uj)· [ϕ(x− xj)]l · [ϕ(u − uj)]k

l!k!
, (38)

where we have introduced, for the sake of brevity, the notation ϕ(·) ≡ ϕj(·),
and

Bl,k(xj , uj) =

{
Dl−1

1 Dk−1
2

[(
x− xj

ϕ(x− xj)

)l(
u− uj

ϕ(u− uj)

)k

D1D2g1(x, u)

]}
x=xj,

u=uj

.

(39)
Here and in the following, D1 = ∂/∂x, D2 = ∂/∂u. It is seen from formulas
(38) and (39) that the complexity of the computation of the Lagrange expan-
sion of a bivariate function grows nonlinearly with increasing m. The use of
the system Mathematica has proved to be very efficient here. However, at the
symbolic computation of coefficients Bl,0 (l ≥ 1) and B0,k (k ≥ 1) there arises
the difficulty related to the presence of the negative-order derivatives in (39).
To solve this problem let us present the sum standing on the right-hand side of
equality (38) in the form of three sums: g1(x, u) = g1(xj , uj) + S1 + S2 + S3,
where

S1 =
m∑

l=1

Bl,0
[ϕ(x− xj)]l

l!
, S2 =

m∑
k=1

B0,k
[ϕ(u − uj)]k

k!
,

S3 =
m∑

l=1

m∑
k=1

Bl,k
[ϕ(x− xj)]l[(ϕ(u − uj)]k

l!k!
.

We now transform the formula for Bj,0 by using the relation

D−1
2 D1D2 = D−1

2 D2D1 = D1.

Bl,0 =

{
Dl−1

1 D−1
2

[(
x− xj

ϕ(x− xj)

)l

D1D2g1

]}
x=xj,u=uj

=

{
Dl−1

1

[(
x− xj

ϕ(x− xj)

)l

D1g1

]}
x=xj,u=uj

, l ≥ 1. (40)

Similarly,

B0,k =

{
Dk−1

2

[(
u− uj

ϕ(u − uj)

)k

D2g1

]}
x=xj,u=uj

, k ≥ 1. (41)

Owing to formulas (40) and (41) the symbolic computation of the entire ex-
pansion (38) becomes a straightforward matter. For the sake of brevity, we

Derivation of Explicit Difference Schemes for ODEs 259

present a fragment of the Mathematica code, which calculates the entries Bl,k

in S3:

m = 2; B = Table[0, {j, m + 1}, {k, m + 1}];

Phi[x_]:= x*Sum[(D[fi[x], {x, k}] /. x -> 0)*x^(k - 1)/k!, {k, m + 1}];

w[x , y , j , k]:= (x/Phi[x])̂ j * (y/Phi[y])̂ k * f(1,1)[x, y];

Do[Do[b = D[w[x, y, j, k], {x, j - 1}, {y, k - 1}];

b = b /. {x-> 0, y -> 0}; B[[j + 1, k + 1]] = b, {j, m}], {k, m}];

B = B/. {f(i ,j)[0, 0] -> f(i,j)[x0, u0]};
After that, the quantity (36) is computed with the aid of the following Mathe-
matica commands:

g0 = fi[h]*f[x0,u0]; g1 = fi[h]*df/. {x-> x0 + a1*h, u-> u0 + b10*g0};

g1 = g1/. {fi[b10 f[x0, u0] fi[h]]-> fi’[0]*b10*f[x0, u0]*fi[h],

fi[a1 h] -> fi’[0]*a1*h}; duh = Expand[A0*g0 + A1*g1];

The quantity Δuj (15) was calculated with the aid of a compact recursive Ma-
thematica program presented in [17].

As a result of symbolic computations, the following expression was obtained
for the quantity (16):

δuj = r1ϕ(h) + r2ϕ2(h) + r3ϕ3(h), (42)

where we have introduced, for the sake of brevity, the notation h ≡ hj, and

r1 = −A0 −A1 + [ϕ′(0)]−1, r2 = r2,0f + r2,1fx + r2,2ffu,

r3 = r30f + r31fxx + r32ffxu + r33f2fuu + r34ffu + r35ff2
u

+ r36f
2fu + r37fx + r38fxfu. (43)

Here

r2,0 = − ϕ′′(0)
2[ϕ′(0)]3

, r2,1 =
1

2[ϕ′(0)]2
− α1A1h

ϕ(h)
, r2,2 =

1
2[ϕ′(0)]2

−A1β10,

r3,0 =
[ϕ′′(0)]2

2[ϕ′(0)]5
− ϕ(3)(0)

6[ϕ′(0)]4
, r3,1 =

1
6[ϕ′(0)]3

− 1
2
α2

1A1
h2

ϕ2(h)
,

r3,2 =
1

3[ϕ′(0)]3
− α1A1β10

h

ϕ(h)
, r3,3 =

1
6[ϕ′(0)]3

− 1
2
A1β

2
10, (44)

r3,4 =
ϕ′′(0)

2[ϕ′(0)]4
; r35 =

1
6[ϕ′(0)]3

, r3,6 =
A1β

2
10ϕ

′′(0)
2ϕ′(0)

,

r3,7 =
ϕ′′(0)

2[ϕ′(0)]4
+
α2

1A1h
2ϕ′′(0)

2ϕ2(h)ϕ′(0)
, r3,8 =

1
6[ϕ′(0)]3

.

To ensure the satisfaction of the relation δuj = O(h3) we require that the pa-
rameters A0, A1, α1, β10 satisfy the equations r1 = 0, r21 = r22 = 0. We will

260 E.V. Vorozhtsov

assume that ϕ(x) is an odd function. Then we obtain the following determining
equations for parameters A0, A1, α1, β10 from (44):

A0 + A1 =
1

ϕ′(0)
; α1A1h =

ϕ(h)
2[ϕ′(0)]2

; A1β10 =
1

2[ϕ′(0)]2
. (45)

The number of these equations is less than the number of unknowns. Following
[10], let us express A0, α1, β10 as the functions of parameter A1:

A0 =
1

ϕ′(0)
−A1; α1 =

ϕ(h)
2[ϕ′(0)]2A1h

; β10 =
1

2A1[ϕ′(0)]2
. (46)

We will call the family of schemes (36),(37),(46) the LB2 method. In the par-
ticular case when ϕ(x) = x, equalities (46) go over to the equalities obtained in
[10] for the classical explicit second-order Runge–Kutta method.

We can now try to find A1 from the requirement of the minimization of the
term r3 in (42). To this end we substitute in r3,1 and r3,2 the expressions for
α1 and β10 and require that r3,1 = r3,2 = 0. We obtain from here the following
expression for A1: A1 = 3/[4ϕ′(0)]. At this value of A1 we also obtain that
r33 = 0, and then, in the case of the odd function ϕ(x), the expression for r3
simplifies to the form: r3 = r3,0f + r35f2

uf + r38fxfu.
In the case of the classical Runge–Kutta second-order method and A1 = 3/4,

the local error has the form [10] r3,RK2 = (h3/6)fu(fx + ffu). Consider the
ratio r3ϕ3(h)/r3,RK2. Then, as in the case of the LB1 method, we arrive at the
conclusion that the above-described family of the second-order methods of the
Runge–Kutta type has under the satisfaction of inequality (27) a lower local
error than the classical Runge–Kutta method with A1 = 3/4.

Returning to the second-order method being optimal in terms of accuracy
(36),(37),(46) with A1 = 3/[4ϕ′(0)], we can write the computational formulas of
this method in the form:

g0 = ϕ(h)f(x, u), g1 = ϕ(h)f
(
x+

2ϕ(h)
3ϕ′(0)

, u+
2

3ϕ′(0)
g0

)
, Δuh =

g0 + 3g1
4ϕ′(0)

.

(47)
The stability polynomial R(z) for the second-order scheme under considera-

tion has the following form with regard for (45) and the notation (20)

R(z) = 1 + (A0 +A1)
ϕ(h)
h
z +A1

[ϕ(h)
h

]2
β10z

2 = 1 + γz +
1
2
γ2z2. (48)

Note that at γ < 1 the coefficients of polynomial (48) affecting zk decrease with
increasing k faster than in the case of the classical second-order Runge–Kutta
method (for which γ = 1). As was pointed out in [9], this is a prerequisite for an
increased interval of absolute stability on the negative real axis. We obtain from
inequality |R(z)| ≤ 1 the following condition of the absolute stability of the LB2
method on the negative real axis:

− (2/γ) ≤ Re (λh) ≤ 0. (49)

Derivation of Explicit Difference Schemes for ODEs 261

For example, at γ = 0.1 we obtain a stability interval, which is ten times larger
than in the case of the classical second-order Runge–Kutta method.

As an example let us consider the system [15]:

du/dt = Ju, (50)

where t is the time, J is the 2 × 2 matrix,

J =
(−1000 999

1 −2

)
. (51)

The eigenvalues of matrix J are as follows: λ1 = −1001, λ2 = −1. Thus, system
(50),(51) is the example of a moderately stiff problem. The solution u = (n1, n2)
of system (50), (51) has the form:

n1(t) = 0.999(n1(0) − n2(0))e−1001t + (0.001n1(0) + 0.999n2(0))e−t,

n2(t) = −0.001(n1(0) − n2(0))e−1001t + (0.001n1(0) + 0.999n2(0))e−t. (52)

Dividing the first equation of system (50), (51) by 103, we obtain

10−3dn1

dt
= −n1 + 0.999n2, (53)

dn2

dt
= n1 − 2n2. (54)

Equation (53) contains a small parameter ε = 10−3. The degenerate equation
corresponding to equation (53) is obtained in the limit as ε→ 0:

− n1 + 0.999n2 = 0. (55)

We have from (55):
n1 = 0.999n2. (56)

Substituting this value in (54), we obtain the ordinary differential equation

dn2/dt = −1.001n2. (57)

It is obvious that λ1 = −1.001 < 0. The condition Reλj < 0 is sufficient for
the stability of the solution of the degenerate system. For a sufficiently small
parameter ε, the tangents to the integral curves are nearly parallel with the n1-
axis. That is the gradient |dn1/dt| is large. The integral curve n1 = n1(t) has
two intervals of a different behavior. The first interval with a rapid change of the
sought function shows that the integral curve tends to the graph of the function
n̄1 = n̄1(t), which was obtained from the solution of the degenerate system (56),
(57). This interval is called the boundary layer.

In the second interval the solution derivatives are much less, and the integral
curve practically coincides with the graph of n̄1(t).

Let us return to solution (52). Inside the boundary layer the variable n1
behaves much more actively than n2. Therefore, n1(t) is sometimes called the

262 E.V. Vorozhtsov

fast component, and n2(t) is called the slow component. After the passage of the
boundary layer the derivatives of the solution vector are relatively small and are
determined by the exponential function with exponent λ2.

We have carried out the numerical computations of problem (50)–(51) by the
LB2 method (47) and, for comparison, by the classical Runge–Kutta method
obtained from (47) in the particular case when ϕ(x) = x:

g0 = hf(x, u), g1 = hf (x+ 2h/3, u+ 2g0/3) , Δuh = (g0 + 3g1)/4. (58)

In the case of system (50),(51), u is a column vector, u = (n1, n2)T , where T
is the transposition operation. We will call method (58) the RK2 method. The
computations by the both methods were carried out on the same uniform grid
in the interval 0 ≤ t ≤ 0.2. Since the optimal expressions for the error terms in
(42) were obtained for the case when the function ϕj(x) belongs to the class of
odd functions, we have used in our numerical computations by the LB2 method
the odd function ϕj(x) defined by equation (28). The grid step was specified
with regard for (49) by formula

h = 2θ/λmax, (59)

where θ is the safety factor, 0 < θ ≤ 1, λmax = max(|λ1, |λ2|) = 1001.
As our computations of the model problem (50), (51) showed, the accuracy

of the numerical solution was especially sensitive to the variation of b1 in (28).
We have implemented the algorithm for the choice of b1, which was based on the
inequalities (35). The coefficient b1 was computed by formula b1 = −(θ1/4)λ2

max,
where the factor θ1 was chosen within the interval 0 < θ1 < 1, see Table 2.

For the purpose of executing the computations by both methods on the same
grid we have not implemented any strategy of the computation of the variable
step hj = tj+1−tj, tj = jh (some of these strategies are mentioned, for example,
in [7,12]). Let nex

1 (t), nex
2 (t) be the exact solution (52) of system (50),(51). Let

us introduce the absolute local errors δn1j , δn2j by formulas:

δnkj = |nkj − nex
kj |, k = 1, 2, j = 0, . . . , N, (60)

as well as the grid analogs of the L2 norm of the numerical solution errors:

Δnk = ||nk − nex
k ||2 =

[1
tN − t0

N−1∑
j=0

(nkj − nex
kj)

2(tj+1 − tj)
]0.5

, k = 1, 2. (61)

When using the value θ = 0.8 in (59) the following values of the errors (61) were
obtained by the RK2 method (58): Δn1 = 4.11 · 10−2, Δn2 = 8.89 · 10−5.

Table 1. The influence of the coefficient b1 on the accuracy of the LB2 method

b1 − 104 − 5 · 104 − 7.5 · 104 − 105

Δn1 3.77 · 10−2 3.00 · 10−2 2.89 · 10−2 3.02 · 10−2

Δn2 1.98 · 10−3 1.03 · 10−2 1.56 · 10−2 2.09 · 10−2

Derivation of Explicit Difference Schemes for ODEs 263

Table 1 presents the values of errors (61) at a fixed value b = 4 in (28), but
at different b1. It is seen from this table that the error Δn1 at first drops with
increasing |b1| and reaches its minimum at b1 ≈ −7.5 · 104, and it remains for
all b1 lower than in the case of the classical RK2 method. At the same time, the
error Δn2 is much higher than in the case of the RK2 method.

0.05 0.1 0.15 0.2

0.2
0.3
0.4
0.5
0.6
0.7
0.8 t

(a)

0.05 0.1 0.15 0.2

0.2
0.3
0.4
0.5
0.6
0.7
0.8 t

(b)

�0.05 0.05 0.1 0.15 0.2

�15

�12.5

�10

�7.5

�5

�2.5

t

lo
g

1
0
�Δ

n
j�

(c)

Fig. 1. Numerical solution of problem (50),(51): (a) the RK2 method (58); (b) the
LB2 method (47) at b = 4, b1 = −104 in (28); (c) the local errors (60) obtained at the
computation by the RK2 method

The functions n1 and n2 are shown in Fig. 1, (a),(b) by the solid and dashed
lines, respectively. The error δn1 is shown in Fig. 1, (c) by the solid line, and
the error δn2 is shown by the dashed line.

For the purpose of a further increase in the accuracy of the LB2 method (47)
we now consider its following minor modification. In the case of the odd function
ϕ(x) we have: ϕ(h) = ϕ′(0)h+O(h3). Then ϕ′(0) = ϕ(h)

h +O(h2). Let us replace
ϕ′(0) in the expression for Δuh in (47) by formula ϕ′(0) = ϕ(h)/h:

g0 = ϕ(h)f(x, u), g1 = ϕ(h)f
(
x+

2ϕ(h)
3ϕ′(0)

, u+
2

3ϕ′(0)
g0

)
, Δuh =

(g0 + 3g1)h
4ϕ(h)

.

(62)
It is clear that such a substitution does not reduce the order of local approxima-
tion of the LB2 method. We will call the method (62) the LB2M method, that
is the modified LB2 method.

Table 2. The influence of the coefficient b1 on the accuracy of the LB2M method

b1 − 104 − 5 · 104 − 105 − 1.47 · 105 − 2 · 105

Δn1 3.66 · 10−2 2.24 · 10−2 9.60 · 10−3 8.10 · 10−4 9.61 · 10−4

Δn2 8.85 · 10−5 9.02 · 10−5 9.62 · 10−5 1.04 · 10−4 1.13 · 10−4

Table 2 presents the values of errors (61) at a fixed value b = 4 in (28), but
at different b1. It is seen from this table that the slow solution component n2 is
computed with the same accuracy as at the use of the classical RK2 method. The
accuracy of the computation of the fast component n1 is much higher than in
the case of the RK2 method. It follows from Table 2 that the error Δn1 reaches
its minimum at b1 = −1.47 · 105, and it is then about 50 times lower than in the
case of the RK2 method.

264 E.V. Vorozhtsov

�0.05 0.05 0.1 0.15 0.2

�15

�12.5

�10

�7.5

�5

�2.5

t

lo
g

1
0
�Δ

n
1
�

Fig. 2. Local error δn1 for the RK2 method (solid line) and the LB2M method (dashed
line) at b = 4, b1 = −1.47 · 105 in (28)

Figure 2 shows the local error δn1 for the cases of the RK2 and LB2M methods.
It can be seen that the both errors practically coincide outside the boundary
layer. In the boundary layer region, the behavior of the local error is monotonous
in the case of the LB2M method in contrast to the RK2 method, and the integral
gain of the LB2M method in terms of the integral error Δn1 is obtained right
at the expense of a low local error of this method inside the boundary layer.

In [16], the package OrderStar was presented, which enables the obtaining
of the graphical image of the regions of the absolute stability of both explicit
and implicit methods for numerical integration of ODEs. The application of the
package OrderStar to the RK2 method and to the LB2M method (at b = 4,
b1 = −1.47 · 105 in (28)) has been implemented with the use of the Mathematica
commands presented in [16].

LB2M

RK2

Fig. 3. Regions of the absolute stability of the RK2 and LB2M methods

Figure 3 shows the obtained regions of absolute stability. The absolute stabil-
ity region of the LB2M method can be seen to be much larger than the absolute
stability region of the RK2 method. The absolute stability interval of the LB2
and LB2M methods on the negative real axis increases with increasing |b1|.

We now would like to discuss a number of aspects in connection with the com-
puter implementation of the above-proposed methods LB2 and LB2M. First of
all, these methods need the information about the local value of the eigenvalue
of the Jacobi matrix J , which is largest in absolute value, so that the quantities
hjλi for all i, for which Re(λi) < 0, must lie inside the region of absolute stabil-
ity [13]. This need is caused by the fact that the proposed methods are explicit,

Derivation of Explicit Difference Schemes for ODEs 265

therefore, their regions of absolute stability are finite (although they may be
much larger than in the case of the classical explicit Runge–Kutta methods).
On the other hand, there are at present several numerical algorithms, which
enable the determination of the largest eigenvalue of a matrix without comput-
ing all eigenvalues. For example, the call to the built-in Mathematica function
Eigenvalues[J,1] gives the eigenvalue that is largest in absolute value. In the
case of a big ODE system to be solved, the computation of the largest eigenvalue
may be carried out not at every node tj to reduce the amount of computational
work [13]. Knowing the largest eigenvalue one can use automatic step size control
in the computer codes implementing the Lagrange–Burmann methods.

Besides, one can estimate the local error of the proposed methods LB2 and
LB2M with the aid of the Richardson’s extrapolation similarly to the case of the
classical Runge–Kutta methods [7].

And, finally, there is a question on the optimal choice of the form of the
function ϕj(x). The specification of this function in the form of a polynomial
involving only the odd degrees of the variable x appears to be advantageous due
to the fact that the coefficients of polynomial ϕj(x) will then enter explicitly the
expressions for the local error of the Lagrange–Burmann method (see, e.g., for-
mulas (44)). For example, at the derivation of the one-step Lagrange–Burmann
fourth-order method, the derivative ϕ(5)

j (0) will enter the local error formulas,
and it will be advisable to take ϕj(x) in the form ϕj(x) = b0x+ b1x3 + b2x5.

References

1. Abdulle, A.: Chebyshev methods based on orthogonal polynomials. Ph.D. Doctoral
Dissertation No. 3266, Dept. Math., Univ. of Geneva (2001)

2. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J.
Sci. Comput. 23, 2041–2054 (2002)

3. Abramowitz, M., Stegun, I.A.: Hanbook of Mathematical Functions. National Bu-
reau of Standards (1964)

4. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Wiley,
Chichester (1987)

5. Consul, P.C., Famoye, F.: Lagrangian Probability Distributions. Birkhäuser, Basel
(2006)

6. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3,
27–43 (1963)

7. Hall, G., Watt, J.M. (eds.): Modern Numerical Methods for Ordinary Differential
Equations. Clarendon Press, Oxford (1976)

8. van der Houwen, P., Sommeijer, B.: On the internal stability of explicit, m-stage
Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60, 479–485
(1980)

9. Hundsdorfer, W., Verwer, J.: Numerical Solutions of Time-Dependent Advection-
Diffusion-Reaction Equations, 2nd edn. Springer, Heidelberg (2007)

10. Krylov, V.I., Bobkov, V.V., Monastyrnyi, P.I.: Numerical Methods, Nauka,
Moscow, vol. II (1977) (in Russian)

11. Lavrentiev, M.A., Shabat, B.V.: Methods of the Theory of Functions of Complex
Variable, 4th edn., Nauka, Moscow (1973) (in Russian)

266 E.V. Vorozhtsov

12. Martin-Vaquero, J., Janssen, B.: Second-order stabilized explicit Runge–Kutta
methods for stiff problems. Computer Phys. Communications 180, 1802–1810
(2009)

13. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, New York
(1987)

14. Pinchukov, V.I., Shu, C.-W.: Numerical Methods of Higher Orders for Fluid Dy-
namics Problems. Published by the Siberian Branch of the Russian Acad. Sci.,
Novosibirsk (2000) (in Russian)

15. Rakitskii, Y.V., Ustinov, S.M., Chernorutskii, I.G.: Numerical Methods for Solving
Stiff Systems, Nauka, Moscow (1979) (in Russian)

16. Sofroniou, M.: Order stars and linear stability theory. J. Symbolic Computation 21,
101–131 (1996)

17. Strampp, W., Ganzha, V., Vorozhtsov, E.: Höhere Mathematik mit Math-
ematica. In: Band 3: Differentialgleichungen und Numerik. Vieweg, Braun-
schweig/Wiesbaden (1997)

18. Vorozhtsov, E.V.: Construction of difference schemes for hyperbolic conservation
laws with the aid of the Lagrange–Bürmann expansions. In: Mikhailov, G.A., Ilyin,
V.P., Laevsky, Y.M. (eds.) Proc. Int. Conf. on Numerical Mathematics, Pt. I. Price-
Courier, Novosibirsk, pp. 443–448 (2004) (in Russian)

Parametric Qualitative Analysis of Ordinary
Differential Equations:

Computer Algebra Methods for Excluding
Oscillations (Extended Abstract) (Invited Talk)

Andreas Weber1, Thomas Sturm2, Werner M. Seiler3,
and Essam O. Abdel-Rahman1

1 Institut für Informatik II, Universität Bonn, Römerstr. 164, 53117 Bonn, Germany
{weber,essam}@cs.uni-bonn.de

2 Departamento de Matemáticas, Estad́ıstica y Computación, Facultad de Ciencias,
Universidad de Cantabria, 39071 Santander, Spain

sturmt@unican.es
3 Institut für Mathematik, Universität Kassel, Heinrich-Plett-Straße 40

34132 Kassel, Germany
seiler@mathematik.uni-kassel.de

1 Introduction

Investigating oscillations for parametric ordinary differential equations (ODEs)
has many applications in science and engineering but is a very hard problem. Al-
ready for two dimensional polynomial systems this question is related to Hilbert’s
16th problem, which is still unsolved [1].

Using the theory of Hopf-bifurcations some non-numeric algorithmic methods
have been recently developed to determine ranges of parameters for which some
small stable limit cycle will occur in the system [2,3,4,5,6,7,8]. These algorithms
give exact conditions for the existence of fixed points undergoing a Poincaré-
Andronov-Hopf bifurcation that give birth to a small stable limit cycle under
some general conditions which can be made algorithmic, too. If these conditions
are not satisfied, one can be sure that there are no such fixed points, but unfor-
tunately one cannot conclude that there are no limit cycles—which could arise
by other means. Nevertheless, it is tempting to conjecture even in these cases
that there are no oscillations, as has been done e.g. in [5,6].

However, the ultimate goal of finding exact algorithmic conditions for the
existence of oscillations, i. e. for determining for which parameter values there are
non-constant limit cycles for a given system of parametric ordinary differential
equations is a major challenge, so that considerable work has been spent—and
will be also be invested in the future—for investigating sub-problems.

In this paper we deal with computer algebra methods for some of these sub-
problems. Our techniques will be along the line of work reducing problems on the
qualitative analysis of ordinary differential equations to semi-algebraic problems.
This possibility might seem to be surprising on first sight, as even the description
of flows induced by the simplest linear ordinary differential equations involves

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 267–279, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

268 A. Weber et al.

exponential functions. However, a significant part of the study of the qualitative
behavior of differential equations can be done in the realm of algebraic or semi-
algebraic sets: Starting from the rather trivial observation that for polynomial
vector fields the study of the equilibria of the vector field is purely algebraic, also
questions of the stability of the equilibria can in general be reduced to decidable
questions on semi-algebraic sets (for polynomial vector fields) via the well known
Routh-Hurwitz criterion [9]). Also the parametric question (for a parameterized
polynomial vector field) whether fixed points undergo a Hopf bifurcation is not
only known to be decidable but also lies within the realm of semi-algebraic sets
[8,10,3].

We review some recently developed criteria which give sufficient conditions
to exclude oscillations by reducing them to problems on semi-algebraic sets—for
polynomial vector fields—we will give some examples and we will discuss possible
future work in the form of problems to be solved. Some of these problems might
be rather immediate to be solved, some others might pose major challenges.

2 Preliminaries

2.1 The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields

Consider an autonomous planar vector field

dx

dt
= F (x, y),

dy

dt
= G(x, y), (x, y) ∈ R2.

Bendixson in 1901 [11] was the first to give a criterion yielding sufficient con-
ditions for excluding oscillations. For a modern proof we refer to [12, Theo-
rem 1.8.2].

Theorem 1 (Bendixson’s criterion). If div(F,G) = ∂(F)
∂x + ∂(G)

∂y is not iden-
tically zero and does not change sign on a simply connected region D ⊆ R2, then
(F,G) has no closed orbits lying entirely in D.

Dulac in 1937 [13] was able to generalize the result of Bendixson as follows:

Theorem 2 (Dulac’s criterion). Let B(x, y) be a scalar continuously differ-
entiable function defined on a simply connected region D ⊂ R2 with no holes in
it. If ∂(BF)

∂x + ∂(BG)
∂y is not identically zero and does not change sign in D, then

there are no periodic orbits lying entirely in D.

Dulac’s criterion is a generalization of Bendixson’s criterion, which corresponds
to B(x, y) = 1.

2.2 Quantifier Elimination and Positive Quantifier Elimination over
the Ordered Field of the Reals

In order to summarize the basic idea of real quantifier elimination, we introduce
first-order logic on top of polynomial equations and inequalities.

Parametric Qualitative Analysis of Ordinary Differential Equations 269

We consider multivariate polynomials f(u, x) with rational coefficients, where
u = (u1 . . . , um) and x = (x1, . . . , xn). We call u parameters and we call x vari-
ables. Equations will be expressions of the form f = 0, inequalities are of the
form f ≤ 0, f < 0, f ≥ 0, f > 0, or f �= 0. Equations and inequalities are called
atomic formulae. Quantifier-free formulae are Boolean combinations of atomic
formulae by the logical operators “∧,” “∨,” and “¬.” Existential formulae are of
the form ∃x1 . . . ∃xnψ(u, x), where ψ is a quantifier-free formula. Similarly, uni-
versal formulae are of the form ∀x1 . . .∀xnψ(u, x). A general (prenex) first-order
formula has several alternating blocks of existential and universal quantifiers in
front of a quantifier-free formula.

The real quantifier elimination problem can be phrased as follows: Given a
formula ϕ, find a quantifier-free formula ϕ′ such that both ϕ and ϕ′ are equivalent
in the domain of the real numbers. A procedure computing such a ϕ′ from ϕ is
called a real quantifier elimination procedure.

Although real quantifier elimination is known to be a computationally hard
problem [14,15], there has been considerable and quite successful research on
efficient implementations during the past decades, which has resulted in three
major systems:

1. The commercial computer algebra system Mathematica includes an efficient
implementation of CAD-based real quantifier elimination by Strzebonski
[16,17], the development of which started around 2000.

2. Qepcad b [18], which implements partial cylindrical algebraic decomposi-
tion (CAD). The development of Qepcad b started with the early work of
Collins and his collaborators on CAD around 1973 and continues until today.
Qepcad b is supplemented by another software called Slfq for simplifying
quantifier-free formulas using CAD. Both Qepcad b and Slfq are freely
available.1

3. redlog2 [19,20], which had been originally driven by the efficient imple-
mentation of quantifier elimination based on virtual substitution methods
[14,21,22]. Meanwhile redlog includes also CAD and Hermitian quantifier
elimination [23,24,25] for the reals as well as quantifier elimination for var-
ious other domains [26] including the integers [27,28]. The development of
redlog has been started in 1992 by one of the authors (T. Sturm) of this
paper and continues until today. redlog is included in the computer algebra
system reduce, which is open source.3

Besides regular quantifier elimination methods for the reals, redlog includes
several variants of quantifier elimination. This includes in particular extended
quantifier elimination [29], which yields in addition sample solutions for existen-
tial quantifiers, and positive quantifier elimination [4,2], which includes powerful
simplification techniques based on the knowledge that all considered variables
are restricted to positive values.

1 http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
2 http://www.redlog.eu/
3 http://reduce-algebra.sourceforge.net/

http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
http://www.redlog.eu/
http://reduce-algebra.sourceforge.net/

270 A. Weber et al.

As in many applications the region of interest is the positive cone of the
state variables, and also the parameters of interest are known to be positive, the
positive quantifier elimination is of special importance and will be used for many
of the examples given below.

3 Some Algorithmic Global Criteria for Excluding
Oscillations

The algorithmic criteria discussed in the following can be seen as generaliza-
tions of the Bendixson-Dulac criterion for 2-dimensional vector fields to arbitrary
dimensions.

3.1 Muldowney’s Criteria

The following theorem was proved by Muldowney [30, Theorem 4.1]: Suppose
that one of the inequalities

μ

(
∂f [2]

∂x

)
< 0, μ

(
−∂f

[2]

∂x

)
< 0 (1)

holds for all x ∈ Rn. Then the autonomous system with vector field f : Rn −→
Rn has no nonconstant periodic solutions. Here μ is some Lozinskĭı norm and
f [2] is one of the “compound matrices” of the Jacobian of the vector field f
defined in [30]. As as also shown in [30] the criterion given in [30, Theorem 4.1]
also holds when x ∈ C, where C ⊆ Rn is open and convex.

Remark. When n = 2, ∂f [2]/∂x = Trace ∂f/∂x = divf , so that [30, Theorem 4.1]
gives the results of Bendixson, i.e. the criterion of Muldowney can be seen as
a generalization of the criterion of Bendixson from the planar case to arbitrary
dimensions.

According to [30, (2.2)], any of the following expressions may be used as
μ
(
∂f [2]/∂x

)
in [30, Theorem 4.1].

max
{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q
=r,s

∣∣∣∣ ∂fq

∂xr

∣∣∣∣+ ∣∣∣∣∂fq

∂xs

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
, (2)

max
{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q
=r,s

∣∣∣∣ ∂fr

∂xq

∣∣∣∣+ ∣∣∣∣ ∂fs

∂xq

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
. (3)

Thus for a formula γ over the reals defining an open convex subset C of Rn and
an autonomous polynomial vector field f : Rn → Rn the following first-order
formula over the real closed field defines a sufficient condition such that the
vector field defined by f has no non-constant periodic solution on C:

Parametric Qualitative Analysis of Ordinary Differential Equations 271

ϕ ≡ ∀x1∀x2 · · · ∀xn

(
γ =⇒ (4)

max
{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q
=r,s

∣∣∣∣ ∂fq

∂xr

∣∣∣∣+ ∣∣∣∣∂fq

∂xs

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
< 0

)

∨ ∀x1∀x2 · · · ∀xn

(
γ =⇒

max
{
− ∂fr

∂xr
− ∂fs

∂xs
+
∑

q
=r,s

∣∣∣∣ ∂fq

∂xr

∣∣∣∣+ ∣∣∣∣∂fq

∂xs

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
< 0

)

∨ ∀x1∀x2 · · · ∀xn

(
γ =⇒

max
{
∂fr

∂xr
+
∂fs

∂xs
+
∑

q
=r,s

∣∣∣∣ ∂fr

∂xq

∣∣∣∣+ ∣∣∣∣ ∂fs

∂xq

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
< 0

)

∨ ∀x1∀x2 · · · ∀xn

(
γ =⇒

max
{
− ∂fr

∂xr
− ∂fs

∂xs
+
∑

q
=r,s

∣∣∣∣ ∂fr

∂xq

∣∣∣∣+ ∣∣∣∣ ∂fs

∂xq

∣∣∣∣ : r, s = 1, . . . , n, r �= s

}
< 0

)
.

The maximum and absolute value functions are included in the language of
ordered rings as it is commonly used for real quantifier elimination. They are,
however, definable.

In [31] the problem of efficient automatic resolution of maxima and absolute
values is addressed and computation examples are given.

3.2 An Algorithmic Global Criterion Excluding Oscillations Based
on Algebraic First-Integrals

Computing algebraic first-integrals. Another algorithmic method to para-
metrically investigate the absence of oscillations relies on the possibility to com-
pute algebraic first integrals of polynomial vector fields. Those do not necessarily
exist, but if there exists such first integrals up to a certain degree these can be
computed by the following method described in the book by Goriely [32].

Consider an n-dimensional polynomial vector field G of degree d. In general,
this vector field may depend on a certain number of parameters, say (ν1, . . . , νp).
The problem consists of finding the values of (ν1, . . . , νp) such that the vector
field admits a time-independent polynomial first integral of a given degree D.

1. Start with D = 1.
2. Consider the most general form of a polynomial first integral of degree D

I(x) =
|i|=D∑
i,|i|=1

cixi. (5)

272 A. Weber et al.

3. Compute the time derivative of I(x).

δGI =
|i|=D+d−1∑

i,|i|=0

Qix
i. (6)

4. Since we are looking for I such that δGI = 0, we have Qi = 0. This system
of equations is a linear system for the coefficients ci of dimension at most(
n+ d+D − 1

n

)
. So, if there exist values of the parameter (ν1, . . . , νp) and

a set of constants ci that are not all zero, such that Qi = 0 for all i, then
I(x) is a first integral. Otherwise increase D by 1 and return to Step 2.

Notice that the linear system of equations constructed above are under deter-
mined in general, so that several different first integrals might arise when solving
these systems.
A generalization of the Bendixson-Dulac criterion involving first-
integrals. For our algorithmic criteria we use the following generalization of the
Bendixson-Dulac criterion for 2d-vector-fields to arbitrary dimensions proved by
Tóth [33, Theorem 3.1]:

Theorem 3. Let M ∈ {2, 3, 4, . . .} and let T ⊂ R × RM−1 be a domain such
that for all x̄ ∈ R the set

/(x̄) := {y ∈ RM−1 | (x̄, y) ∈ T }
is convex. Let J : T −→ RM be continuous and suppose that there exists a
sufficiently smooth function P = (P1, , ..., PM−1) : T −→ RM−1 such that its
coordinate functions are (global) first integrals of the equation

ẋ = J ◦ x, (7)

and let us suppose that for all x̄ ∈ R and y1, ..., yM−1 ∈ /(x̄)∣∣∣∣∣∣∣
∂2P1(x̄, y1)

...
∂2PM−1(x̄, yM−1)

∣∣∣∣∣∣∣ �= 0 (8)

Then the differential equation (7) has no periodic solution.

If the convex set /(x̄) is semi-algebraic and one can compute sufficiently many
algebraic first-integrals then Theorem 3 yields a quantifier elimination problems
over the ordered field of the reals.

4 Computation Examples

We have extended the Maple library Qehopflib4 implementing the methods in
[8] by the following algorithmic methods:
4 http://cg.cs.uni-bonn.de/project-pages/symbolicanalysis/

http://cg.cs.uni-bonn.de/project-pages/symbolicanalysis/

Parametric Qualitative Analysis of Ordinary Differential Equations 273

1. Algorithms to produce from a system of ordinary differential equations es-
sentially a formula corresponding to ϕMuldowney as described by Equation
(4). The formula can be generated for arbitrary vector fields, its symbolic
analysis by quantifier elimination over the reals is only possible for systems
of differential equations with a vector field described by parameterized mul-
tivariate rational functions.

2. Algorithms trying to compute algebraic first integrals up to a degree bound
and to produce from a system of ordinary differential equations essentially a
formula corresponding to the universally quantified condition in Theorem 3.
Let us call this formula ϕToth. The formula can be generated only for vector
fields of dimension n which have at least n− 1 algebraic first integrals up to
the used degree bound d. Notice that the vector field can be described by
parameterized multivariate rational functions.

In the examples discussed below we use the positive cone of the real n-space as
convex subset, or the entire real n-space.

Actually, we produce the logical negation ¬ϕ of ϕ rather than ϕ itself (for
ϕMuldowney as well as for ϕToth), since the implementation of positive quantifier
elimination in the current stable branch of redlog is restricted to existential
formulas. It is, however, not hard to see that applying positive quantifier elimi-
nation to ¬ϕ yielding, say, ψ and then positively simplifying ¬ψ, which involves
re-adding the positivity conditions on all variables, yields exactly the desired
result of applying to ϕ quantifier elimination subject to positivity assumptions
on all variables. We are usually going to refer to this final result as ϕ′.

4.1 A Non-parametric Example

As a first simple example we take the following simple reaction that was already
studied in [33]:

Simple reaction system: It is the induced kinetic differential equation (cf.
[34]) of the reaction

3 OH 1−→ H2O + HO2, H2O + HO2
1−→ 3OH (9)

i.e.
ẋ = −3x3 + 3yz, ẏ = x3 − yz, ż = x3 − yz (10)

where the concentrations of the components are denoted by x, y and z with
x := [OH], y := [H2O], z := [HO2].

This model does not seem to have oscillatory behavior. Although it does not
depend on parameters the question of a proof that there are no oscillations for any
values of the concentrations of the reactants, i.e. the state variables, is already
beyond the scope of pure numerical computations.

Using the undetermined coefficients method one find two first-integrals of
degree one algorithmically. The generated first-order formula ϕToth describing
the negation of the criterion of Tóth can be reduced by redlog to false within

274 A. Weber et al.

eq1:=diff(x(t),t)=y(t);

eq2:=diff(y(t),t)=z(t);

eq3:=diff(z(t),t)=-alpha*y(t) - beta*z(t);

fun:={x(t),y(t),z(t)};

par:={alpha,beta};

paramcondlist:={};

DELimitCycleMuldowney({eq1,eq2,eq3},fun,par,[],paramcondlist);

degpoly:=4:; dime:=nops(fun):

DELimitCycleToth({eq1,eq2,eq3},fun,par,[],paramcondlist,degpoly);

Fig. 1. A Maple script for generating the first-order formulas ¬ϕ discussed in Sec-
tion 3.1 and Section 4.2

some milliseconds on a current standard PC. Thus this example can be solved
fully algorithmically by the method computing first integrals.

Using the criterion of Muldowney [30, Theorem 4.1] (for the L1 norm and
L∞ norm) one can also come up easily with a first order-formula (describing the
negation of the Muldowney criterion for excluding oscillations). This formula
ϕMuldowney can be reduced by redlog to true within a few milliseconds, which
unfortunately is the non-conclusive answer: one cannot prove the absence of
oscillations in this way—a result not contradicting the result stated above, as
the Muldowney criterion is a sufficient but not a necessary condition for the
absence of oscillations.

4.2 A Parametric Example

The question whether there are oscillations or not is a parametric question in gen-
eral. As the generated formula ϕ′ can be parametric and the result of the quanti-
fier elimination procedure will be a condition on the parameters in general—i.e.
a first-order formula involving the parameters only.

Simple parametric example: Let us consider the system

ẋ = y, ẏ = z, ż = −αy − βz (11)

The global criteria excluding the presence of oscillations can be generated by
the Maple script in Figure 1.

We find 5 (independent) polynomial first integrals of degree 4 for this sys-
tem. The generated first-order formula can be shown to be equivalent to false—
independent of the values of the parameters—by redlog within less than 1 sec
of computation time using standard quantifier elimination. Thus we can exclude
the possibility of oscillations all parameter values.

In the hand computations done in [33] only one linear first-integral is found,
so that some further theoretical development was undertaken.

Using the criterion of Muldowney [30, Theorem 4.1] (for the L1 norm and L∞

norm) in its negated form the generated formula can be reduced by redlog to true
within a few milliseconds, which unfortunately is again the non-conclusive answer.

Parametric Qualitative Analysis of Ordinary Differential Equations 275

eq1 := diff(x(t),t) = s - mu*x(t) - beta*x(t)*v(t);

eq2 := diff(y(t),t) = beta*x(t)*v(t) - alpha*y(t);

eq3 := diff(v(t),t) = c*y(t)-gamma1*v(t);

fcns:={x(t),y(t),v(t)};

params:={s,mu,beta,alpha,c,gamma1};

paramcondlist:={s>0,mu>0,beta>0,alpha>0,c>0,gamma1>0};

DELimitCycleMuldowney({eq1,eq2,eq3},

fcns,params,{},paramcondlist);

od;

Fig. 2. A Maple script for generating the first-order formulas ¬ϕ for the three-
component model of viral dynamics from [35].

Although this example is simple—in fact it consists of a linear system—the
criterion of Muldowney (for the L1 norm and L∞ norm) was too weak to give
useful insights in this case.

However, in the following much more complex example the situation is different.

4.3 Models of Genetic Circuits

For the family of examples arising out of a simple quasi-steady state approxima-
tion of a model of genetic circuits investigated in [5] the Muldowney criteria in
its realization of the framework of [31] can proof the absence of oscillations for
several relevant values of parameters. We refer to [5,31] for an exposition of the
models and to [31] for the results.

Using the first-integral based method described in this paper we could not
come up with any conclusive result for any of the examples from [5].

4.4 A Model of Viral Dynamics

The following example is also discussed in more depth in [31]. It consists of a
simple mathematical model for the populations dynamics of the human immun-
odefficiency type 1 virus (HIV-1) investigated in [35]. There a three-component
model is described involving uninfected CD4 + T-cells, infected such cells and
free virus, whose densities at time t are denoted by x(t), y(t), v(t).

In [35] a simplified two-component model employed by Bonhoeffer et al. [36]
is investigated analytically.

For the two-component model the equilibria are computed analytically for
biologically relevant non-negative parameter values and their local stability
properties are parametrically investigated in [35]. Moreover, using the general
Bendixson-Dulac criteria for 2D-vector fields with an ad hoc Dulac function
B(x, y) = 1/y it is shown that there are no periodic solutions for the system
for positive parameter values and positive values of the state variables, i.e. the
biologically relevant ones.

Using our algorithms, we can easily construct the formula for the Muldowney
criteria even for the three-component model, cf. Figure 2—but we could not
compute first-integrals for this system. Using redlog quantifier elimination

276 A. Weber et al.

and formula simplification of the obtained first-order formula can be performed
within some milliseconds. Unfortunately, the obtained result for the negated
Muldowney criteria is a non-parametric true, i. e. the non-conclusive answer, as
they give sufficient conditions for excluding oscillations, but no indication about
a necessary condition.

Also when applying our framework to the two-component model, we obtain
the non-conclusive true within some milliseconds of computation time.

In our framework we can easily use Dulac functions for 2D-cases, too. When
using the Dulac function B(x, y) = 1/y for the two-component model, we obtain
the conclusive false as an answer, i.e. we can prove that there are no oscillations
for the two-component model (for any values of the parameters).

So the hand computations using Dulac functions can be widely simplified
by our framework—one just has to specify the Dulac function in addition to
the vector field. Unfortunately, finding a suitable Dulac function is still a non-
algorithmic step—although testing various possibilities is now easily possible.

5 Some Possible Future Directions

In the examples given above sometimes one of the given criteria was successful,
sometimes the other one, and very often none of them. So a first problem is the
following.

Problem 1. What is the relative strength of the Muldowney criteria for different
norms? What are their combined strengths compared to the criteria involving
first integrals?

In one of our computation examples (cf. Sect. 4.4) it was necessary to use an
appropriate Dulac function in order to come up with a criterion proving the
absence of oscillations.

An inspection of the proof of [30, Theorem 4.1] seems to indicate that the
answer to the following problem is “yes”.

Problem 2. Are there generalizations of the criterion of Muldowney involving
Dulac functions?

In the positive case one might ask how to find appropriate Dulac functions.
For polynomial functions (or rational functions) one could use the approach to
specify those with undetermined coefficients up to a certain degree—and then
use these in the quantifier-elimination step. However, in its naive realization
the computational complexity does not only seem to be prohibitive under worst
case considerations, but also for most but the most trivial cases. So the following
problem occurs:

Problem 3. Are there constructive and efficient ways for generating appropriate
Dulac functions for the criterion of Muldowney?

The Bendixson-Dulac criteria are not only generalizable using first-integrals as
has been done in [33] or also e.g. in [37], but also to systems with invariant
hypersurfaces.

Parametric Qualitative Analysis of Ordinary Differential Equations 277

Problem 4. Specify algorithmic methods for excluding oscillations using alge-
braic invariant hypersurfaces.

A standard technique for excluding oscillations in hand computations is to find
Lyapunov functions, which also prohibit the existence of oscillations. As the
existence of Lyapunov functions of certain form can also be proven by quantifier
elimination techniques [38] the following problem shall be formulated:

Problem 5. Are there constructive and efficient ways for generating appropri-
ate Lyapunov functions? Can these be defined semi-algebraically for polynomial
vector fields?

Finally the following problems, which are presumably much more challenging,
shall be posed:

Problem 6. For autonomous polynomial vector fields are there algorithmic cri-
teria that are sufficient and necessary for excluding oscillations?

All of the questions also generalize to differential algebraic equations [39,40].
Although having an additional “algebraic part” seems to be compatible with
the semi-algebraic context, which the qualitative investigations of the ODEs
have been reduced to, many new definitional and theoretical problems arise. Of
particular interest is here the possibility of various forms of singularities [41]
leading for example to singularity induced bifurcations.

Problem 7. Generalize the problems to differential algebraic equations (possibly
with singularities).

Acknowledgement

We are grateful to Vladimir Gerdt for several helpful discussions.

References

1. Ilyashenko, Y.: Centennial history of Hilbert’s 16th Problem. Bull. Am. Math. Soc.,
New Ser. 39(3), 301–354 (2002)

2. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic
and logical algorithms to solve Hopf bifurcation problems in algebraic biology.
Mathematics in Computer Science, Special issue on ‘Symbolic Computation in
Biology’ 2(3), 493–515 (2009)

3. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems.
Mathematics in Computer Science 1(3), 507–539 (2008)

4. Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation
problems in algebraic biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 200–215. Springer, Heidelberg
(2008)

278 A. Weber et al.

5. Boulier, F., Lefranc, M., Lemaire, F., Morant, P., Ürgüplü, A.: On proving the
absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K.,
Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)

6. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Applying a rigorous quasi-
steady state approximation method for proving the absence of oscillations in models
of genetic circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida,
H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008)

7. El Kahoui, M., Weber, A.: Symbolic equilibrium point analysis in parameterized
polynomial vector fields. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
Computer Algebra in Scientific Computing (CASC 2002), Yalta, Ukraine, pp. 71–
83 (September 2002)

8. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination
in a software-component architecture. Journal of Symbolic Computation 30(2),
161–179 (2000)

9. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. Jour-
nal of Symbolic Computation 24(2), 161–187 (1997)

10. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze
hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6),
1361–1382 (2005)

11. Bendixson, I.: Sur les curbes définiés par des équations différentielles. Acta
Math. 24, 1–88 (1901)

12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer,
Heidelberg (1983)

13. Dulac, H.: Recherche des cycles limites. CR Acad. Sci. Paris 204, 1703–1706 (1937)
14. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic

Computation 5(1&2), 3–27 (1988)
15. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Jour-

nal of Symbolic Computation 5(1-2), 29–35 (1988)
16. Strzebonski, A.: Solving systems of strict polynomial inequalities. Journal of Sym-

bolic Computation 29(3), 471–480 (2000)
17. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics.

J. Symb. Comput. 41(9), 1021–1038 (2006)
18. Brown, C.W.: QEPCAD B: A system for computing with semi-algebraic sets via

cylindrical algebraic decomposition. ACM SIGSAM Bulletin 38(1), 23–24 (2004)
19. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic.

ACM SIGSAM Bulletin 31(2), 2–9 (1997)
20. Sturm, T.: Redlog online resources for applied quantifier elimination. Acta

Academiae Aboensis, Ser. B 67(2), 177–191 (2007)
21. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and

beyond. Applicable Algebra in Engineering Communication and Computing 8(2),
85–101 (1997)

22. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

23. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic
Decomposition. Texts and Monographs in Symbolic Computation, pp. 376–392.
Springer, Wien (1998)

24. Gilch, L.A.: Effiziente Hermitesche Quantorenelimination. Diploma thesis, Univer-
sität Passau, D-94030 Passau, Germany (September 2003)

Parametric Qualitative Analysis of Ordinary Differential Equations 279

25. Dolzmann, A., Gilch, L.A.: Generic Hermitian quantifier elimination. In: Buch-
berger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 80–93.
Springer, Heidelberg (2004)

26. Sturm, T.: New domains for applied quantifier elimination. In: Ganzha, V.G., Mayr,
E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 295–301. Springer,
Heidelberg (2006)

27. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the
integers. A uniform generalization of Presburger arithmetic. Applicable Algebra in
Engineering, Communication and Computing 18(6), 545–574 (2007)

28. Lasaruk, A., Sturm, T.: Weak integer quantifier elimination beyond the linear
case. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS,
vol. 4770, pp. 275–294. Springer, Heidelberg (2007)

29. Weispfenning, V.: Simulation and optimization by quantifier elimination. Jour-
nal of Symbolic Computation, Special issue on applications of quantifier elimina-
tion 24(2), 189–208 (1997)

30. Muldowney, J.S.: Compound matrices and ordinary differential equations. Rocky
Mt. J. Math. 20(4), 857–872 (1990)

31. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for exclud-
ing oscillations. Bulletin of Mathematical Biology (2010); Accepted for publication.
Special issue on “Algebraic Biology”

32. Goriely, A.: Integrability and nonintegrability of dynamical systems. World Scien-
tific, Singapore (2001)

33. Tóth, J.: Bendixson-type theorems with applications. Z. Angew. Math. Mech. 67,
31–35 (1987)

34. Hars, V., Tóth, J.: On the inverse problem of reaction kinetics. In: Farkas, M. (ed.)
Colloquia Mathematica Societatis Janos Bolyai, Qualitative Theory of Differential
Equations, Szeged, Hungary, pp. 363–379 (1981)

35. Tuckwell, H.C., Wan, F.Y.M.: On the behavior of solutions in viral dynamical
models. BioSystems 73(3), 157–161 (2004)

36. Bonhoeffer, S., Coffin, J.M., Nowak, M.A.: Human immunodeficiency virus drug
therapy and virus load. The Journal of Virology 71(4), 3275 (1997)

37. Feckan, M.: A generalization of Bendixson’s criterion. Proceedings American Math-
ematical Society 129(11), 3395–3400 (2001)

38. She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic
stability analysis. Nonlinear Analysis: Hybrid Systems 3(4), 588–596 (2009)

39. Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-
algebraic equations. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical
Analysis, vol. VIII, pp. 183–540. North-Holland, Amsterdam (2002)

40. Riaza, R.: Differential-Algebraic Systems. World Scientific, Hackensack (2008)
41. Seiler, W.M.: Involution — The Formal Theory of Differential Equations and its

Applications in Computer Algebra. In: Algorithms and Computation in Mathe-
matics, vol. 24. Springer, Berlin (2009)

An Analytical Model for the Probability
Characteristics of a Crack Hitting

an Encapsulated Self-healing Agent in Concrete

Serguey V. Zemskov, Henk M. Jonkers, and Fred J. Vermolen

Delft University of Technology
s.zemskov@tudelft.nl

Abstract. The present study is performed in the framework of the in-
vestigation of the potential of bacteria to act as a catalyst of the self-
healing process in concrete, i.e. their ability to repair occurring cracks
autonomously. Spherical clay capsules containing the healing agent (cal-
cium lactate) are embedded in the concrete structure. Water entering
a freshly formed crack releases the healing agent and activates the bac-
teria which will seal the crack through the process of metabolically
mediated calcium carbonate precipitation. In the paper, an analytic for-
malism is developed for the computation of the probability that a crack
hits an encapsulated particle, i.e. the probability that the self-healing
process starts. Most computations are performed in closed algebraic form
in the computer algebra system Mathematica which allows to perform
the last step of calculations numerically with a higher accuracy.

1 Introduction

Self-healing materials [10] are smart materials with the capability to repair
themselves autonomously after being damaged. Since cracks are common in
materials like concrete, polymers, etc., a self-healing mechanism is crucial for
the sustainability of the material.

Since the pioneering paper by White et al. [5] on the self-healing of fracture
surfaces in epoxy systems containing spherical encapsulated particles filled with
a healing agent, there has been a lot of research on materials based on this
principle. A key principle is the concept of spherical particles (containing self-
healing agent) that break if they are intersected by a crack. Once the capsules
are broken, they start releasing the healing agent by which the crack is healed.
The amount of healing agent, i.e., the self-healing capacity, is determined by
the number of capsules per unit of volume and capsule size. Applications are for
epoxies and polymers [7,9] as well for concrete [1], where capsules are filled with
nutrients for dispersed bacteria that convert nutrients into limestone, thereby
sealing off the crack and protecting the steel reinforcement from corrosion.

To increase the healing capacity several studies using cylindrical particles and
artificial vascular systems have been investigated as an alternative to spherical
particles. A disadvantage of using a vascular system [4, 6] is the possibility

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 280–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Analytical Model for the Probability Characteristics of a Crack 281

of bleeding, that is an excessive release of self-healing agent such that later
occurring cracks cannot be healed. However, the use of ellipsoidal and cylindrical
particles, when arranged in the right orientation, increases the probability that
an occurring crack is healed. A probabilistic study using Monte Carlo simulations
to predict the release of healing agent for liquid-based self-healing systems when
comparing cylindrical particles with spherical ones was carried out by Mookhoek
et al [2].

Probabilistic simulations can give insight into the behavior of the probability
that capsules are hit by a crack in terms of capsule density, capsule size, and
crack length. These simulations will give directions for the manufacturing of self-
healing materials with encapsulated pebbles or particles containing the healing
agent.

Self-healing polymer systems are mostly based on microcapsules (2–8 μm).
By such a size, the most important factor of crack healing is the total volume of
healing agent flowing out into the crack plane. In self-healing concrete, however,
macrocapsules of diameter 2–4 mm are used. So, even one capsule hit by a (rel-
atively) small crack may release a sufficient amount of the healing agent to seal
off the crack.

In this paper, an analytic formalism is developed for the computation of
the probability that a crack hits an encapsulated macroparticle. This analytic
model is applicable to the spherical particles and is based on elementary princi-
ples from probability and geometry, though it is original in its form and applica-
tion. Most computations are performed in closed algebraic form in the computer
algebra system Mathematica [8]. Further, the method has been validated using
Monte Carlo techniques (implemented by the authors in Mathematica too),
which, in turn, allow a broader range of particle geometries and orientations.
However, an advantage of the currently developed analytical model is the lack
of need of expensive Monte Carlo simulations and the direct availability of
the probability as an explicit function of parameters like particle size, crack size,
and healing agent content ratio. By this direct availability of the probability as
a function of the parameters involved, a sensitivity analysis and optimization
can be carried out easily. Hence, this method increases the amount of theoret-
ical insight of the hitting probability and, therefore, it can be used easily for
the design of materials with optimal self-healing properties.

2 Basic Notions and Model

Let us consider a cubic region containing spherical capsules (Fig. 1 (left)).
We denote the total volume of the cube by V , and the integrated volume of
incorporated capsules by Vn. It is assumed that the ratio

p =
Vn

V

is known, as well as the average capsule volume:

Vc =
4
3
πr3 .

282 S.V. Zemskov, H.M. Jonkers, and F.J. Vermolen

Fig. 1. Concrete cube with spatially dispersed spherical capsules and its right section

Then, the average number of capsules in the cube is

ncube(V) =
Vn

Vc
=

3
4
pV

πr3
.

Let Ω be a square with side length V 1/3 representing a right section of the con-
crete cube described above (Fig. 1 (right)). For the calculations, it is convenient
to use an integer number of capsules in the cube: ncube = n3, n ∈ N. The volume

V =
4
3
πn3r3

p
, n ∈ N , (1)

satisfies this condition.
In order to develop the model for the probability of a crack hitting a capsule,

we make the following simplifying assumptions:

– all capsules are identical full-spheres of radius r and distributed homoge-
neously within the cube of the volume V fulfilling (1);

– all capsule sections in Ω are equal and have the radius R < r;
– for the two-dimensional model, N = n2 capsule sections are considered in

the square

Ω =
[
−V

1/3

2
,
V 1/3

2

]
×
[
−R, V 1/3 −R

]
⊂ R2 ,

sketched in Fig. 2;
– the transverse section of the crack is a line segment of a given length (crack

depth) l which is perpendicular to the concrete surface (Fig. 2);

An Analytical Model for the Probability Characteristics of a Crack 283

Fig. 2. Two-dimensional model of the crack in the concrete cube

Since Ω contains an integer number of capsules (circles of radius R), we may
denote a geometric locus of all possible centers of capsules as Ω1 (dashed square
with side length L = V 1/3 − 2R in Fig. 2).

To complete our model, we consider a domain A such that any capsule with
the center from A is hit by the crack. We denote the intersection of A and Ω1
by A1 = A

⋂
Ω1 (dark gray region in Fig. 2).

Under the assumption that there is only one capsule in Ω, the geometric
probability [3] of hitting this capsule by the crack is

P1 =
S(A1)
S(Ω1)

=
2R (l −R) + πR2

2

(V 1/3 − 2R)2
, (2)

where S(·) denotes the area of the corresponding domain.
It should be noted that S(A1) in (2) is calculated for l � R. From now on, we

assume that the crack depth exceeds the capsule radius. Calculations for l < R
are similar with due regard to another type of geometry of A1.

Having N capsules in Ω, we denote their centers belonging to Ω1 as

xi = (xi, yi), i = 1, ..., N .

The stochastic event that xi ∈ A1 (i.e., hitting ith capsule by the crack) is
denoted by

ΛN
i = ΛN

i (x1, ...,xN) .

284 S.V. Zemskov, H.M. Jonkers, and F.J. Vermolen

So, for N random points x1, ...,xN ∈ Ω1 occurrence of ΛN
i (x1, ...,xN) means:

– xi = (xi, yi) ∈ A1;
– xj = (xj , yj) ∈ Ω1 for j �= i;
– d(xj ,xk) =

√
(xj − xk) + (yj − yk) ∈ [2R,

√
2L] for j, k = 1, ..., N .

The latter constituent of the event results from the fact that the capsules are not
allowed to overlap and, therefore, the distance between any two capsule centers
can not be less than 2R.

Then the eventHN of hitting any capsule by the crack is equal to the following
union:

HN =
N⋃

i=1

ΛN
i .

The geometric probability of this event can be expressed in the following way:

P (HN) = P

(
N⋃

i=1

ΛN
i

)
=

N∑
k1=1

P (ΛN
k1

) −
∑

k1<k2

P (ΛN
k1

∩ ΛN
k2

) +

∑
k1<k2<k3

P (ΛN
k1

∩ ΛN
k2

∩ ΛN
k2

) − . . . + (−1)N−1P (ΛN
k1

∩ . . . ∩ ΛN
N) . (3)

Within the framework of the described 2D model, (3) represents a general
theoretical solution of the problem of hitting any capsule by the crack.

In case of two capsules in Ω, the probability (3) takes the following form:

P (H2) = P (Λ2
1) + P (Λ2

2) − P (Λ2
1 ∩ Λ2

2) , (4)

where P (Λ2
1) = P (Λ2

2) (note that in general P (Λk
i) = P (Λk

j) for any i, j = 1, ..., k
due to symmetry).

For N = 3, (3) looks like

P (H3) = P (Λ3
1) + P (Λ3

2) + P (Λ3
3) −

P (Λ3
1 ∩ Λ3

2) − P (Λ3
1 ∩ Λ3

3) − P (Λ3
2 ∩ Λ3

3) + P (Λ3
1 ∩ Λ3

2 ∩ Λ3
3) , (5)

where, for example,
Λ3

1 = Λ3
1(x1,x2,x3) ,

means

– x1 = (x1, y1) ∈ A1;
– x2,x3 ∈ Ω1;
– d(xj ,xk) =

√
(xj − xk) + (yj − yk) ∈ [2R,

√
2L] for j, k = 1, 2, 3 ,

which, in turn, means the simultaneous occurrence of three joint events for each
pair of capsule centers:

Λ3
1(x1,x2,x3) = Λ2

1(x1,x2) ∩ Λ2
1(x1,x3) ∩ M2(x2,x3) , (6)

An Analytical Model for the Probability Characteristics of a Crack 285

in which M2(x2,x3) is a stochastic event for two poins within Ω1 consisting in

d(x2,x3) =
√

(x2 − x3) + (y2 − y3) ∈ [2R,
√

2L] .

In a similar way, we may express the other combination of events from (5) in
terms of Λ2

i . For example:

Λ3
1 ∩ Λ3

2 = Λ3
1(x1,x2,x3) ∩ Λ3

2(x1,x2,x3) =

(Λ2
1(x1,x2) ∩ Λ2

2(x1,x2)) ∩ Λ2
1(x1,x3) ∩ Λ2

1(x2,x3) .

In a similar manner, the probability formulae for any number of capsules may
theoretically be written using the probabilities of events Λ2

i . So, once the compo-
nents of (4) are evaluated, they can be used to find the probability for the case
of more capsules in Ω.

3 Computational Aspects of the Probabilities

In this section we are going to present, as an example, the calculation sequence
that leads to finding probability of the stochastic event Λ2

1.

3.1 Theoretical Formula of the Probability

The probability of the event Λ2
1(x1,x2) for x1, x2 ∈ Ω1 is equal to the probabil-

ity of the following intersection of events:

P (Λ2
1(x1,x2)) = P

(
(x1 ∈ A1) ∩ (d(x1,x2) � 2R)

)
.

First, we rewrite the probability of the intersection of events using the concept
of conditional probability:

P
(
(x1 ∈ A1) ∩ (d(x1,x2) � 2R)

)
=

P (d(x1,x2) � 2R | x1 ∈ A1) · P (x1 ∈ A1) . (7)

As was already mentioned, the probability of hitting the only capsule by the
crack (i.e., second factor in the right-hand side of (7)) can be evaluated easily
by (2).

In order to find the conditional probability from (7) we consider new stochastic
variables

X = x1 − x2 ∈
[
−L

2
−R, L

2
+R

]
and Y = y1 − y2 ∈ [−L, l]

for x1 = (x1, y1) ∈ A1, x2 = (x2, y2) ∈ Ω1.
The rectangular domain D of possible pairs (X,Y) is shown in Fig. 3 (left).

The length of a radius vector of any point (X,Y) = (x1 − x2, y1 − y2) from this
domain is equal to the distance between (x1, y1) and (x2, y2) (Fig. 3 (right)).

286 S.V. Zemskov, H.M. Jonkers, and F.J. Vermolen

Fig. 3. Two points (x1−x2, y1−y2) and (x3−x4, y3−y4) in the domain D (left), and the
corresponding pairs of random points x1 ∈ A1, x2 ∈ Ω1 and x3 ∈ A1, x4 ∈ Ω1 (right)

So, the fulfillment of the condition d(x1,x2) � 2R is equivalent to the location
of (X,Y) being outside the circle of radius 2R with the center in the origin.
Hence,

P (d(x1,x2) � 2R | x1 ∈ A1) =
∫∫

(X,Y)∈D,

X2+Y 2>4R2

fX(X)fY (Y) dX dY , (8)

where fX and fY are distribution densities of X and Y , respectively.

3.2 Distribution Densities of Coordinates of Capsule Centers

It is known that for absolutely continuous independent random variables ξ1
and ξ2 with distribution densities fξ1 and fξ2 the distribution density of their
sum ξ1 + ξ2 is equal to the convolution of their densities:

fξ1+ξ2(t) =
∫ ∞

−∞
fξ1(u)fξ2(t− u) du .

Then in our case we obtain:

fX(t) =
∫ ∞

−∞
fx1(u)f−x2(t− u) du, fY (t) =

∫ ∞

−∞
fy1(u)f−y2(t− u) du , (9)

where fx1 , fx2 , fy1 , and fy2 are distribution densities for coordinates x1, x2, y1,
and y2, respectively.

We find first the explicit formulae for distribution densities fx1 , fx2 , fy1, and
fy2 , and then use them to evaluate integrals (9) in symbolic form, which includes,

An Analytical Model for the Probability Characteristics of a Crack 287

besides independent variable t, capsule radius R, healing agent content ratio p,
and crack depth l as parameters.

For (x2, y2) ∈ Ω1, the non-zero parts of the density functions are the same:

fx2(t) =
1
L
, t ∈

[
−L

2
− R, L

2
+R

]
, fy2(t) =

1
L
, t ∈ [0, L] .

To obtain the density functions for x1 and y1 we assume that A1 is situated
symmetrically with respect to the vertical axis x = 0. Then the non-zero parts
of the density functions fx1 and fy1 are, respectively, as follows:

fx1(t) =
d

dt

(
1

S(A1)

∫ t

−R

√
R2 − x2 + (l −R) dx

)
=

2
(
l −R+

√
R2 − t2)

R (4 l+R (π − 4))
, t ∈ [−R,R] ,

and

fy1(t) =

⎧⎪⎨⎪⎩
f

(1)
y1 (t), t ∈ [0, l −R];

f
(2)
y1 (t), t ∈ [l −R, l] ,

where

f (1)
y1

(t) =
4

4 l+R (π − 4)
, f (2)

y1
(t) =

4
√

(t− l)(l − 2R− t)
R (4 l +R (π − 4))

.

3.3 Finding fX(t) and fY (t)

Integrals (9) are to be evaluated with regard to different combinations of alge-
braic expressions appearing on the corresponding intervals of integration as t
runs over

[−L
2 −R, L

2 +R
]
. For the distribution density fX we obtain:

fX(R, p, l, t) =
∫ ∞

−∞
fx1(u)f−x2(t− u) du =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞,−L/2−R) ;∫ t+L/2
−R

fx1(u) · 1
L du, t ∈ [−L/2 −R,−L/2 +R) ;∫ R

−R fx1(u) · 1
L du, t ∈ [−L/2 +R,L/2−R) ;∫ R

t−L/2 fx1(u) · 1
L du, t ∈ [L/2 −R,L/2 +R) ;

0, t ∈ [L/2 +R,∞) ,

288 S.V. Zemskov, H.M. Jonkers, and F.J. Vermolen

and for fY :

fY (R, p, l, t) =
∫ ∞

−∞
fx1(u)f−x2(t− u) du =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞,−L) ;∫ t+L

0 f
(1)
y1 (u) · 1

L du, t ∈ [−L,−L+ l −R) ;∫ l−R

0 f
(1)
y1 (u) · 1

L du +
∫ t+L

l−R
f

(2)
y1 (u) · 1

L du, t ∈ [−L+ l −R,−L+ l) ;∫ l−R

0 f
(1)
y1 (u) · 1

L du +
∫ l

l−R
f

(2)
y1 (u) · 1

L du, t ∈ [−L+ l, 0) ;∫ l−R

t f
(1)
y1 (u) · 1

L du +
∫ l

l−R f
(2)
y1 (u) · 1

L du, t ∈ [0, l−R) ;∫ l

t f
(2)
y1 (u) · 1

L du, t ∈ [l −R, l) ;
0, t ∈ [l,∞) .

Plots of fX(t) and fY (t) for some given values of R, p, and l are shown in Fig. 4.
As an example, the resulting formulae for fY (t) are explicitly given in Appendix
A.

Similar computations are performed to evaluate the distribution densities
pairs fX∗(t), fY ∗(t) and fX∗∗(t), fY ∗∗(t) when both points (x1, y1), (x2, y2)
belong to A1 and Ω1, respectively.

Fig. 4. Plots of distribution densities of X = x1 − x2 (left) and Y = y1 − y2 (right),
(x1, y1) ∈ A1, (x2, y2) ∈ Ω1, for R = 1.5 mm, p = 0.18, l = 7 mm

Up to now, all calculations have been performed algebraically and we obtained
the expressions for fX(t) and fY (t) in exact form that includes variables R, p,
and l as well. To find the conditional probability (8), the resulting integral is to
be evaluated numerically for each given set of values of R, p, and l because the
exact calculations on this last step are a matter of some difficulty (and seem not
to be practical). However, from behind of preliminary result in symbolic form
the last integration can be done with any desirable accuracy.

The probability of the stochastic event Λ2
1(x1,x2) can now be evaluated

according to (7).
In a similar way, we find numerically the probabilities of Λ2

1∩Λ2
2 from (4) and

M2 from (6).

An Analytical Model for the Probability Characteristics of a Crack 289

4 Results and Conclusions

We considered the concrete cube containing ncube = 27 capsules (n = 3) with
the healing agent. The number of capsule sections in the square Ω in this case
is equal to N = 9.

The hitting probability function

P (H9) = f(R, p, l)

is evaluated numerically, and its plots for various values of p are shown in Fig. 5.
The obtained probability function allows to obtain the expected value of

hitting probability for different combinations of parameter values. For example,
the plot in Fig. 5 for p = 0.18 (black one) shows that the crack of depth equal
to five average capsule radii will hit at least one capsule (or in other words, will
start the process of self-healing) with the mean probability about 95% (more
exactly 0.956421%).

Fig. 5. Plots of the probability function P (H9) normalized with respect to the capsule
section radius R for different values of healing agent content ratio p

At each step the calculations performed were validated with numerical Monte
Carlo tests. One example of results of such a test is presented in Fig. 6 together
with the plot of the probability function for corresponding values of parame-
ters. It can be seen that a good agreement with the Monte Carlo simulations
is obtained.

Thus, the mathematical model to calculate the probability of hitting a capsule
with healing agent by the crack is developed and implemented successfully for
two-dimensional case. We are going to generalize the model for three-dimensional
case what is expected to allow to get rid of some simplifying assumptions and
reach better physical reliability.

290 S.V. Zemskov, H.M. Jonkers, and F.J. Vermolen

Fig. 6. Plot of the probability function P (H9) for R = 1.5 mm, p = 0.18 in comparison
with results of numerical test (500 experiments for each value of crack depth l from
0.05 mm to 9.8 mm with step 0.05 mm)

References

1. Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E.: Application
of Bacteria as Self-Healing Agent for the Development of Sustainable Concrete.
Ecological Engineering 36(2), 230–235 (2010)

2. Mookhoek, S.D., Fischer, H.R., Zwaag, S.v.d.: A Numerical Study into the
Effects of Elongated Capsules on the Healing Efficiency of Liquid-Based Systems.
Computational Materials Science 47(2), 506–511 (2009)

3. Rényi, A.: Wahrscheinlichkeitsrechnung, 2. Aufl., Berlin (1966)
4. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moor, J.S., White, S.R.: Self-Healing

Materials with Microvascular Networks. Nature Materials 6, 581–585 (2007)
5. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram,

S.R., Brown, E.N., Viswanathan, S.: Autonomic Healing of Polymer Composites.
Nature 409, 794–797 (2001)

6. Williams, G., Trask, R., Bond, I.: A Self-Healing Carbon Fibre Reinforced
Polymer for Aerospace Applications. Composites Part A: Applied Science and
Manufacturing 38(6), 1525–1532 (2007)

7. Wilson, G.O., Moore, J.S., White, S.R., Sottos, N.R., Andersson, H.M.: Autonomic
Healing of Epoxy Vinyl Esters via Ring Opening Metathesis Polymerization.
Advanced Functional Materials 18(1), 44–52 (2008)

8. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Inc. (2003)
9. Yin, T., Rong, M.Z., Zhang, M.Q., Yang, G.C.: Self-Healing Epoxy Composites —

Preparation and Effect of the Healant Consisting of Microencapsulated Epoxy and
Latent Curing Agent. Composites Science and Technology 67, 201–212 (2007)

10. Zwaag, S.v.d.: Self Healing Materials: An Alternative Approach to 20 Centuries of
Materials Science. Springer Series in Materials Science, vol. 100 (2007)

Appendix A
The distribution density for the stochastic variable

Y = y1 − y2, (x1, y1) ∈ A1, (x2, y2) ∈ Ω1

An Analytical Model for the Probability Characteristics of a Crack 291

is given by

fY (R,p, l, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞,−L) ;
f

(1)
Y (R,p, l, t), t ∈ [−L,−L + l − R) ;

f
(2)
Y (R,p, l, t), t ∈ [−L + l − R,−L + l) ;

f
(3)
Y (R,p, l, t), t ∈ [−L + l, 0) ;

f
(4)
Y (R,p, l, t), t ∈ [0, l − R) ;

f
(5)
Y (R,p, l, t), t ∈ [l − R, l) ;

0, t ∈ [l,∞) ,

where

f
(1)
Y (R,p, l, t) =

4
((

36π
p

)1/3

R − 2R + t

)
(4l + R(π − 4))

((
36π
p

)1/3

R − 2R

) ,

and

f
(2)
Y (R,p, l, t) =

2((
36π
p

)1/3

− 2
)

R(4l + R(π − 4))
×

⎛⎜⎜⎜⎜⎜⎝ − Ri

⎛⎜⎜⎜⎜⎝2R2 ln

⎛⎝
√√√√l − t − R

(
36π

p

)1/3

+

√√√√l − t + R

(
2 −

(
36π

p

)1/3
)⎞⎠ +

√√√√l − t − R

(
36π

p

)1/3

√√√√l − t + R

(
2 −

(
36π

p

)1/3
)

×

(
t − l + R

((
36π

p

)1/3

− 1

))⎞⎟⎟⎟⎟⎠ + 2(l − R) + iR(ln(1 + i) + ln R)

⎞⎟⎟⎟⎟⎟⎠ ,

and

f
(3)
Y (R, p, l, t) =

4l − 4
((

36π
p

)1/3

R − 2R

)
+
(

π − 12 + 4
(

36π
p

)1/3
)

R

(4l + R(π − 4))
((

36π
p

)1/3

R − 2R

) ,

and

f
(4)
Y (R, p, l, t) =

1 − 4t
4l+R(π−4)(

36π
p

)1/3

R − 2R

,

292 S.V. Zemskov, H.M. Jonkers, and F.J. Vermolen

and

f
(5)
Y (R,p, l, t) =

2((
36π
p

)1/3

− 2
)

R2(4l + (π − 4)R)
×

((
−i ln(2R) − 2i ln

(√
l − t +

√
l − 2R − t

)
+ π

)
R2 +

(R + t − l)
√

(l − t)(t + 2R − l)
)

.

Extending Clause Learning of SAT Solvers with
Boolean Gröbner Bases

Christoph Zengler and Wolfgang Küchlin

Symbolic Computation Group, W. Schickard-Institute for Informatics,
Universität Tübingen, Germany

{zengler,kuechlin}@informatik.uni-tuebingen.de
http://www-sr.informatik.uni-tuebingen.de

Abstract. We extend clause learning as performed by most modern
SAT Solvers by integrating the computation of Boolean Gröbner bases
into the conflict learning process. Instead of learning only one clause per
conflict, we compute and learn additional binary clauses from a Gröbner
basis of the current conflict. We used the Gröbner basis engine of the
logic package Redlog contained in the computer algebra system Reduce
to extend the SAT solver MiniSAT with Gröbner basis learning. Our
approach shows a significant reduction of conflicts and a reduction of
restarts and computation time on many hard problems from the SAT
2009 competition.

1 Introduction

In the last years SAT solvers became a vital tool in computing solutions for
problems e.g. in computational biology [1,2] or formal verification [3,4]. The
vast majority of SAT solvers successfully applied to real-world problems uses the
DPLL [5] approach. DPLL is basically a complete search in the search space of all
2n variable assignments with early cuts in the search tree when an unsatisfiable
branch is detected.

It has been observed in the past that it can be profitable to enrich pure DPLL-
style SAT-solving by some deduction. The extra effort of deducing new lemmas
pays off when the lemmas prune the original DPLL search-tree enough to yield
a net profit. However, it is clear that unrestricted deduction will choke a solver
with useless clauses. This situation suggests research into suitable combinations.

Both deduction by Resolution and by the computation of Gröbner bases have
been applied in the literature. The use of Resolution goes back to the original
Davis-Putnam approach [5], and Buchberger’s algorithm [6] has been used for
theorem-proving at least since 1985 [7]. The combination approaches have been
either static (in a preprocessing step) or dynamic (in the course of the search),
and there are several schemes for confining deduction.

An important break-through was the development of clause learning SAT
solvers (see [8, chapter 4]), which use an optimized form of resolution dynamically
in conflict situations to deduce (“learn”) a limited number of lemmas, so called
conflict clauses. Resolution may deduce valuable (short) clauses as lemmas but

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 293–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www-sr.informatik.uni-tuebingen.de

294 C. Zengler and W. Küchlin

may blow up memory, DPLL style SAT-Solving leaves memory constant but may
fail to find valuable lemmas, while BDDs, or BGBs compile an axiom system at
great cost in both memory and time into an efficient canonical form for repeated
use in proving theorems. Today, the dominating scheme for clause learning is 1-
UIP clause learning where a single conflict clause is derived which is guaranteed
to prune the backtracking tree immediately (non-chronological backtracking).

Van Gelder [9] combined conflict driven backjumping with dynamic resolution
based deduction, confined to variable-elimination resolution and binary-clause
resolution, and he identified (and eliminated) equivalent literals. Bacchus [10]
added binary hyper-resolution and refined the implementation. Condrat and
Kalla [11] take a static approach using Gröbner basis computations in a pre-
processing step. They convert all derived polynomials to clauses, but confine
deduction to computationally feasible subsets of the input clauses.

In contrast, we experiment with a dynamic approach, where Gröbner ba-
sis computations are confined to conflict situations and only short polynomials
are kept as clauses. We start with the clauses associated with the conflict and
compile them into a suitable Boolean Gröbner basis (BGB). The idea is that
the interreduction process, which is inherent in the Gröbner basis algorithm and
which assures that the Gröbner basis is in (minimal) canonical form with respect
to a variable ordering, will also yield short (and therefore valuable) lemmas. The
approach is sound because the computation of a Boolean Gröbner basis produces
only Boolean polynomials which are valid consequences of the input. Our exper-
iments with problems from the 2009 SAT competition show that the approach
is valuable on many hard problems, by yielding small clauses as lemmas which
reduce conflicts and therefore save time in the DPLL search.

Clearly, both the learning of additional clauses and the use of BGBs for deduc-
tion have been investigated in the past. The approach of Condrat and Kalla [11]
seems to be most similar to ours. However, they only compute BGBs before
executing the DPLL solver and therefore have only static information about the
problem, while we use dynamically derived conflicts. We also use a variant of
polynomial algebra which is better suited for representing clauses. Dershowitz
et al. [12] propose an approach for satisfiability solving based on Boolean rings.
This method does not incorporate learning but relies on heavy simplification
of the formula during the solving process. However, they do not compare their
results with state of the art SAT solvers on real problems. In [13] they describe
a method for quantifier elimination in Boolen Algebras where SAT solving is a
special case. To the best of our knowledge, our specific approach proposed here
is novel and merits further research.

The plan of this paper as follows: In Section 2 and Section 3 we summarize
the important properties of DPLL-style SAT solving and Boolean Gröbner bases
up to an extent necessary to follow the rest of the paper. Section 4 presents
our approach of integrating the computation of Boolean Gröbner bases in the
SAT solving process. We show extensive benchmarks of our implementation in
Section 5. Section 6 finally points at some future research directions.

Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases 295

2 SAT Solving

We use the standard notation of propositional logic with propositional variables
from an infinite set V , Boolean operators ¬, ∨, ∧, and Boolean constants “T”
and “F.” An assignment is a partial function α : V → {0, 1} mapping variables
to truth values. We write x ← b for α(x) = b. vars(ϕ) denotes the finite set
of variables occurring in a formula ϕ. A conjunctive normal form (CNF) is
a conjunction of clauses (λ1 ∨ · · · ∨ λn). Each literal λi is either a variable
xi ∈ V or its logical negation ¬xi. It is convenient to identify a CNF with
the set of all clauses contained in it. An empty clause is a clause where all
xi have been assigned truth values in such a way that all corresponding λi

evaluate to 0 and therefore the whole clause is 0. It is obvious that once reaching
an empty clause, no extension of the corresponding assignment can satisfy the
CNF formula containing that clause. We call the occurrence of an empty clause
a conflict. A unit clause is a clause where all but one xi have been assigned,
all λj for j �= i evaluate to 0, and therefore in order to satisfy the clause the
remaining unit variable xi must be assigned such that λi becomes 1. The process
of detecting unit clauses and fixing the corresponding values for the unit variables
is called unit propagation, which plays an important role in modern SAT solvers.
Algorithm 1 summarizes the basic algorithm.

Input: C, a set of clauses
Output: SAT or UNSAT
level := 0;1

α := ∅;2

while true do3

unitPropagation();4

if C contains an empty clause then5

level := analyseConflict();6

if level = 0 then7

return UNSAT8

backtrack(level);9

else10

if formula is satisfied then11

return SAT12

level := level + 1;13

choose an x ∈ vars(C) \ dom(α);14

α := α ∪ {x← 0};15

Algorithm 1. The basic SAT solving algorithm

For each variable we save its decision level starting with level 1 and incre-
menting with each assignment. If a conflict occurs at level 0, i.e. before any
assignment, the formula is obviously not satisfiable. If a conflict occurs at a
higher level, the method analyseConflict() is used to compute a backtrack level

296 C. Zengler and W. Küchlin

Original clauses:
r1 = (u ∨ ¬w)
r2 = (¬u ∨ ¬z)
r3 = (w ∨ ¬y)
r4 = (w ∨ ¬x)
r5 = (x ∨ y ∨ z)

Conflict:
(x,¬x)

New learned clause:
¬(u ∧ ¬w) = (¬u ∨ w)

Fig. 1. An example implication graph for a given set of clauses

and the corresponding non-chronological backtrack is performed. If no conflict
is detected and the formula is not yet satisfied, then the next variable is chosen
and assigned a truth value. The method analyseConflict() is the place where the
clause learning is actually implemented. In Figure 1 we illustrate the situation
by means of an implication graph [8, chapter 4]. A node x indicates a current as-
signment x← 1, and a node ¬x indicates a current assignment of x← 0. Nodes
without incoming edges (white nodes) are variables which were chosen by the
algorithm in line 14; they are referred to as decision nodes. Nodes with incoming
edges (grey nodes) result from unit propagations (line 4). The clause annotated
to each edge is the clause which caused the unit propagation. For example when
assigning u ← 1 the clause r2 = (¬u ∨ ¬z) is the reason that z ← 0 during
unit propagation. The two black nodes indicate conflicting nodes since from the
current assignment of the variables it can be concluded that x has to be assigned
0 as well as 1. To learn a new clause which avoids this assignment for the future
we have to find a cut dividing the conflicting nodes from the decision nodes. The
dashed line in Figure 1 shows one example for such a cut. According to this cut
we have to avoid the simultaneous assignment u ← 1 and w ← 0 in order to
avoid the conflicting nodes x and ¬x. We thus add to our set of clauses the new
clause (¬u∨w), which is equivalent to the more natural condition ¬(u∧¬w). In
general, new learned clauses are obtained via resolution over all clauses on the
paths from conflict nodes to decision nodes.

Following the 1-UIP strategy, the backtrack level returned by
analyseConflict() is determined in such a way that the new learned clause
turns out to be a unit clause after backtracking to this level and therefore is
used for unit propagation immediately. For more details on clause learning and
different strategies to compute the cut between conflict nodes and decision
nodes see [14]. After a certain number of conflicts, all assignments are taken
back (learnt clauses are preserved) and the SAT solver is restarted.

Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases 297

3 Boolean Gröbner Bases

A Boolean Ring B is a ring in which every element a ∈ B is idempotent, i.e. a2 =
a. Both B⊕ = (⊕,∧,F,T) and B↔ = (↔,∨,T,F) with universes {0, 1} are
Boolean rings.1 Let x = (x1, . . . , xn). Recall that polynomials are elements of
a polynomial ring R[x] over a coefficient ring R. Important rings of Boolean
polynomials are B⊕[x], the ring of Stone polynomials [15] in xor normal form
XNF, and B↔[x], the ring of polynomials in equivalence normal form ENF. For
our presentation here we consider the ring B↔[x1, . . . , xn]/ Id(x2

1 + x1, . . . , x
2
n +

xn). In contrast to the polynomial rings mentioned above, this residue class ring
is a Boolean ring itself. Since the basis of the ideal Id(x2

1 + x1, . . . , x
2
n + xn)

is a Gröbner basis, a reduction with this basis yields unique normal forms. It
is easy to see that the corresponding normal forms have a degreebound of one
on every single variable. We choose these normal forms as representatives for
our residue classes. For a given ordering of variables, both XNF and ENF are
canonical normal forms: A ≡ B if, and only if, AXNF = BXNF, and likewise
AENF = BENF.

Let Af be an expression denoting f . For the algebraic approach, we may
convert Af into AXNF

f or into AENF
f . In our case we start with a set C of clauses,

representing the conjunction Af =
∧

ci∈C ci. In this case it is not useful to
convert the entire Af into a single polynomial: Using Stone polynomials, all
occurrences of x1 ∨ x2 in the clauses must be eliminated by the transformation
x1 +x2 +x1 ·x2, while the outer conjunctions lead to an analogous blow-up when
using ENF-polynomials. Therefore we only convert each clause

ci = (x1∨· · ·∨xn∨¬y1∨· · ·∨¬ym) = (x1∨· · ·∨xn∨(y1 ↔ F)∨· · ·∨(ym ↔ F))

into a separate ENF-polynomial

pENF(ci) = x1 · . . . · xn · (y1 + 1) · . . . · (ym + 1),

and then compute a Boolean Gröbner basis AEGB
f for the set {pENF(ci) | ci ∈ C}.

Note that using Stone polynomials for the clauses (as in [7,11]) would lead to a
blow-up in the polynomials prior to the Gröbner basis computation.
AEGB

f is a canonical representative for the variety (the set of common roots) of
the polynomials pENF(ci). Hence AEGB

f represents the associated Boolean func-
tion f in a minimal way, according to some ordering. In this application, we are
not interested in the canonical form produced, but rather in the deduction of new
polynomials in the course of the Gröbner basis computation. These are always
reduced and therefore show some promise of representing small and valuable
lemmas. Every new polynomial g introduced by the Gröbner basis computation
must have its roots in the original variety. In logical terms, this means that
f =

∧
ci ≡

∧
ci ∧ g. Hence

∧
ci ⇒ g, i.e. Gröbner basis computation produces

valid lemmas [7].

1 ⊕ denotes the XOR operator.

298 C. Zengler and W. Küchlin

Recently, significant progress has been made in efficient custom implementa-
tions of BGBs [16]. For this initial study, however, we used a standard implemen-
tation of Buchberger’s algorithm for general polynomial rings. This is possible
by adding, for each variable xi, an idempotency polynomial x2

i + xi to the set
of clause polynomials. The mathematics for our specific approach is discussed
in [17]. All general mathematical background can be found in [18,19].

4 Combining SAT Solving and Gröbner Bases

In Section 2 we demonstrated how a new clause c is deduced from a current
conflict by means of an implication graph. As mentioned before new learned
clauses are obtained via resolution over all clauses on the paths from conflict
nodes to decision nodes. In order to perform these resolutions, solvers store a
reason clause r(x) for each variable x implied by unit propagation. We perform
learning as usual (following the 1-UIP strategy) and add for each (unsubstituted)
reason clause r(x)i involved in the conflict at hand its corresponding polynomial
pENF(r(x)i) to a set R. After learning the 1-UIP clause, we compute a Gröbner
basis G = gb(R ∪ F), where F is the set of idempotency polynomials x2

i + xi

for all variables xi in
⋃

p∈R vars(p). We collect all polynomials pi ∈ G \ R with
| vars(pi)| = 2 and add their corresponding clause representation clause(pi) to a
set L. At the next restart of the solver, we add all clauses of L to the original
clause set C. We have seen in the last section that this step does not change the
semantics of the original clause set C.

Experiments have shown that current Gröbner basis packages cannot cope
with large polynomial systems. Therefore we have to restrict the set R in number
and length of polynomials. Instead of computing gb(R), we compute only gb(R′)
with R′ = {pi ∈ R | 2 ≤ | vars(pi)| ≤ 8} ⊆ R. Additionally we only perform the
computation gb(R′) when 4 ≤ |R′| ≤ 6. This means we compute only Gröbner
bases of subsets R′ ⊆ R, where there are between 4 and 6 underlying clauses
with 2 – 8 literals.

We found these numbers by extensive testing. Choosing more or larger rea-
son clauses often leads to long BGB computations and therefore slows down the
overall solving process. Taking fewer or shorter reason clauses does often not
produce new binary clauses and therefore does not speed up the solving pro-
cess. However, we assume that these numbers strongly dependend on the chosen
Gröbner basis package.

Furthermore we do not compute the Gröbner basis for every R′ where the
condition holds. Our tests showed that for large problems these calls to the
Gröbner basis algorithm are too expensive. Therefore we only compute each 2n-
th Gröbner basis where n is the number of restarts. These two heuristics turned
out to be best performing among all alternatives and therefore were chosen for
the following benchmarks.

Remark 1. The additional clauses computed by the Gröbner basis algorithm
could also be deduced by resolution. But there are two important points why we
use Boolean Gröbner bases at this point. First, we make use of the interreduction

Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases 299

process, which is inherent in the Gröbner basis algorithm and which assures
that the Gröbner basis is in (minimal) canonical form with respect to a variable
ordering. Second, in our line of research (see also Section 6) we plan to interweave
SAT solving and Boolean Gröbner bases more extensively. If one computes a
Gröbner basis of clauses of more than one conflict, the result cannot be yielded
by resolution anymore. At this point Gröbner bases can play off their strength.

Original clauses:
r1 = (y ∨ f)
r2 = (¬f ∨ g)
r3 = (¬f ∨ ¬g ∨ ¬h)
r4 = (¬u ∨ ¬m ∨ h)
r5 = (¬u ∨ ¬f ∨ m)

Conflict:
(m,¬m)

Fig. 2. An example for the Gröbner basis integration

Example 2 (Learning binary clauses with Gröbner bases). We consider a con-
flict with an implication graph like in Figure 2 and reason clauses r1, . . . , r5.
We translate each of these clauses ri into its corresponding Boolean polyno-
mial pENF(ri) and obtain the set R = {y · f, (f + 1) · g, (f + 1) · (g + 1) ·
(h+ 1), (u+ 1)·(m+1)·h, (u+1)·(f+1)·m}. Obviously in this case R′ = R. F =
{y2 + y, u2 + u, f2 + f,m2 +m,h2 + h, g2 + g}. We compute the Gröbner basis
G of R∪F and get G\R = {y·(u+1), y·g, y·(h+1), (u+1)·(f+1), (f+1)·(h+1)}.
For all five polynomials pi it holds that | vars(pi)| = 2. We add their correspond-
ing clauses (y ∨ ¬u), (y ∨ g), (y ∨ ¬h), (¬u ∨ ¬f), and (¬f ∨ ¬h) to L and add
them to the clause set C at the beginning of the next restart. ��

5 Implementation and Benchmarks

The publically available 2007 version of MiniSat2 [20] served as a basis for our
implementation MiniSat+GB. For the Gröbner bases computations we used the
package cgb with lexicographical term ordering for all computations. cgb is im-
plemented in the open-source Computer Algebra system Reduce3 and it is used
within the logic package Redlog [21] for various quantifier elimination proce-
dures and for a simplifier based on Gröbner bases. So far we used cgb as a black
box and therefore other (more efficient Boolean) Gröbner basis implementations
could easily be substituted. However, with the current heuristics, we spend only
about 1/1000 of the overall time in the Gröbner basis computations.

For our benchmarks we used PSL-based Reduce and version 070721 of Mini-
Sat on one core of an Apple Mac Pro (with two 2.8 GHz Quad-Core Intel Xeon
2 http://minisat.se/MiniSat.html
3 http://reduce-algebra.sourceforge.net

http://minisat.se/MiniSat.html
http://reduce-algebra.sourceforge.net

300 C. Zengler and W. Küchlin

Table 1. Comparison between MiniSat and MiniSat+GB

MiniSat MiniSat+GB % saved
benchmark # inst time conflicts time conflicts time conflicts
aprove09 17 62.5 129782 51.8 96765 17.1 25.4
bioinf 17 5245.4 5373507 4899.4 5165204 6.6 3.9
bitverif 12 7382.9 4857477 5317.7 4126969 28.0 15.0
c32sat 4 11921.9 2435435 8539.3 1891845 28.4 22.3
crypto 10 3167.9 408098 2917.6 397982 7.9 2.48
palacios/uts 6 1949.9 1179959 1395.9 926299 28.4 21.5
parity-games 18 2418.4 2220381 1469.7 1707849 39.2 23.1

Processors). MiniSat+GB calls the C library libreduce, which in turn commu-
nicates via sockets with a separate Reduce process.

Table 1 presents the results. As benchmark set we chose all instances of the
SAT 2009 competition4, which could be solved by MiniSat in less than 10000 s.
These are 84 instances over all. We give the name of the benchmark family, the
number of instances in this set, the CPU time in seconds and the number of
conflicts for both MiniSat and MiniSat+GB. The last two columns state the
percentage of saved time and saved conflicts.

One can clearly see that MiniSat+GB outperforms MiniSat w. r. t. the accu-
mulated time for each benchmark family. This is mainly because MiniSat+GB
performs especially well on the large and hard instances of every family. Taking
all instances of all benchmark families, we produce 13.8% fewer conflicts and
therefore save 23.5% of solving time.

Figure 1 gives a diagram of all instances we benchmarked. We can observe
three interesting areas: ➀ For instances taking less than 1 s of CPU time the
overhead of computing the Gröbner bases bears no relation to the saved conflicts.
Therefore our implementation always performs worse than MiniSat. ➁ These
are instances from the bioinf benchmark, where we could not learn any new
binary clauses at all. ➂ For all instances taking more than 1000 s of CPU time
MiniSat+GB clearly outperforms MiniSat (note the logarithmic scale). One of
the clearest examples is the minxorminand064 benchmark where we achieved a
speedup factor of 3.3 (621.2 s vs. 2195.3 s).

6 Future Work

There are still many open questions. Are there better heuristics when to compute
a Gröbner basis, based not only on the number and length of clauses? Can we
profit from results [11] about the impact of term orderings? Can we learn slightly
longer clauses that are still useful? How much improvement is possible by going
to a dedicated implementation of Boolean Gröbner bases? We want to compute
the Gröbner bases not only of the clauses of one conflict but also of the collected
clauses of different conflicts, or of the most active clauses. These Gröbner bases
4 http://www.satcompetition.org/2009/

http://www.satcompetition.org/2009/

Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases 301

Fig. 3. Graphical comparison between MiniSat and MiniSat+GB

could then be used to perform simplifications of the problem as described in [12].
Our approach also provides an opportunity for parallel SAT solving where one
machine performs the basic SAT solving and other machines compute Gröbner
bases which they communicate to the SAT solving process. On the application
side we want to examine the impact of our improvements on incremental SAT
solving and parametric SAT solving [22].

Acknowledgment

Our undergraduate student Wolfgang Braun provided valuable help with the
implementation.

References

1. Lynce, I., Marques da Silva, J.P.: SAT in bioinformatics: Making the case with
haplotype inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 136–141. Springer, Heidelberg (2006)

2. Bonet, M.L., John, K.S.: Efficiently calculating evolutionary tree measures using
SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer, Hei-
delberg (2009)

3. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods in System Design 19(1), 7–34 (2001)

4. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. In: Zelkowitz, M. (ed.) Highly Dependable Software. Advances in Computers,
vol. 58. Academic Press, San Diego (2003)

302 C. Zengler and W. Küchlin

5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

6. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universität
Innsbruck (1965)

7. Kapur, D., Narendran, P.: An equational approach to theorem proving in first-order
predicate calculus. ACM SIGSOFT Notes 10(4), 63–66 (1985)

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

9. Van Gelder, A.: Combining preorder and postorder resolution in a satisfiability
solver. Electronic Notes in Discrete Mathematics 9, 115–128 (2001)

10. Bacchus, F.: Enhancing davis putnam with extended binary clause reasoning. In:
18th National Conference on Artificial Intelligence, pp. 613–619. AAAI Press,
Menlo Park (2002)

11. Condrat, C., Kalla, P.: A gröbner basis approach to CNF-formulae preprocessing.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631.
Springer, Heidelberg (2007)

12. Dershowitz, N., Hsiang, J., Huang, G.S., Kaiss, D.: Boolean rings for intersection-
based satisfiability. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 482–496. Springer, Heidelberg (2006)

13. Seidl, A.M., Sturm, T.: Boolean quantification in a first-order context. In: Proceed-
ings of the CASC 2003. Institut für Informatik, Technische Universität München,
Garching, pp. 329–345 (2003)

14. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. JAIR 22(1), 319–351 (2004)

15. Stone, M.H.: The theory of representations for boolean algebras. Transactions of
the American Mathematical Society 40, 37–111 (1936)

16. Brickenstein, M., Dreyer, A., Greuel, G.M., Wedler, M.: New developments in the
theory of gröbner bases and applications to formal verification. Journal of Pure
and Applied Algebra 213, 1612–1635 (2009)

17. Küchlin, W.: Canonical hardware representation using Gröbner bases. In: Proceed-
ings of the A3L 2005, Passau, Germany, pp. 147–154 (2005)

18. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Com-
mutative Algebra. Springer, New York (1993)

19. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer,
New York (2007)

20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

21. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

22. Sturm, T., Zengler, C.: Parametric quantified SAT solving. In: Proceedings of the
ISSAC 2010. ACM, New York (2010)

Author Index

Abdel-Rahman, Essam O. 267
Abrahamyan, Sergey 1
Abramov, Sergei A. 4
Andrianov, Serge N. 19

Bächler, Thomas 31
Bustillo, Paula 55

Ceballos, Manuel 61
Chuluunbaatar, Ochbadrakh 106

Derbov, Vladimir L. 106
Dragan, Laurentiu 73
Dukkipati, Ambedkar 85

Edneral, Victor 97

Gerdjikov, Vladimir 148
Gerdt, Vladimir P. 31, 106
Gheffar, Amel 4
Gusev, Alexander A. 106
Gutierrez, Jaime 55

Irtegov, Valentin 123

Jeffrey, David J. 134
Jolly, Raphael 162
Jonkers, Henk M. 280

Kako, Fujio 220
Kalugin, German A. 134
Khmelnov, Denis E. 4
Kostova, Zoia 148
Kostov, Nikolay 148
Kredel, Heinz 162
Küchlin, Wolfgang 293

Lange-Hegermann, Markus 31
Lobachev, Oleg 178
Loogen, Rita 178

Malaschonok, Gennadi 194
Manathara, Joel George 85
Marandjian, H. 203
Mayr, Ernst W. 204

Neun, Winfried 205
Núñez, Juan 61

Robertz, Daniel 31
Romanovski, Valery G. 97
Rostovtsev, Vitaly A. 106

Sasaki, Tateaki 220
Seiler, Werner M. 267
Serov, Vladislav V. 106
Shoukourian, Yu. 203
Slavyanov, S.Yu. 232
Sturm, Thomas 205, 267

Tenorio, Ángel F. 61
Terui, Akira 238
Titorenko, Tatyana 123

Vermolen, Fred J. 280
Vigerske, Stefan 205
Vinitsky, Sergue I. 106
Vorozhtsov, Evgenii V. 250

Watt, Stephen M. 73
Weber, Andreas 267

Zemskov, Serguey V. 280
Zengler, Christoph 293

	Title
	Preface
	Organization
	Table of Contents
	Construction of Irreducible Polynomials over Finite Fields
	Introduction
	Preliminaries
	References

	Factorization of Polynomials and GCD Computations for Finding Universal Denominators
	Introduction
	The Dispersion Set
	Algorithms for Constructing Universal Denominators
	The Algorithm AD from [5,6]
	The Algorithm from [11]
	The Algorithm AU from [14]
	An Improved Version of the Algorithm A$_U$ (the Algorithm A'$_U$)

	Analysis of the Algorithms
	Equivalence of Results
	Complexity Comparison

	Implementation
	Full Factorization
	Shift Computation
	Computing Universal Denominator

	Three Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion
	References

	A Role of Symbolic Computations in Beam Physics
	Introduction
	Mathematical Background
	The Symmetry and Explicit Solutions for Dynamical Systems
	Symbolic Computation Algorithm for the Matrix Formalism
	The Numerical Computation Algorithm for the Matrix Formalism

	Symplectification Problem and Invariants Computation
	Two Solution Schemes
	Symplectification Procedures
	Kinematic and Dynamic Nonlinear Invariants
	Additional Procedures for Optimization of the Beam Dynamical System

	Parallel and Distributed Computing in Accelerator Physics
	Conclusions
	References

	Thomas Decomposition of Algebraic and Differential Systems
	Introduction
	Algebraic Systems
	Preliminaries
	Decomposition Algorithms

	The Differential Thomas Decomposition
	Preliminaries from Differential Algebra
	The Combinatorics of Janet Division
	Differential Simple Systems
	The Differential Decomposition Algorithm

	Implementation
	Algorithmic Optimizations
	Implementation in Maple
	Implementations of Similar Decomposition Algorithms

	References

	On Multivariate Homogeneous Polynomial Decomposition
	Introduction
	Computation of Intermediate IK-Algebras and (r,s)-Decompositions
	The Dimension of (r,s)-Decomposable Polynomials
	References

	Computing Matrix Representations of Filiform Lie Algebras
	Introduction
	Preliminaries
	Lie Algebras
	Invariants of Filiform Lie Algebras

	Computing Minimal Matrix Representations
	Model Filiform Lie Algebras
	Non-Model Filiform Lie Algebras
	Filiform Lie Algebras of Dimension Less than 7

	Conclusions
	References

	Type Specialization in Aldor
	Introduction
	Background
	Deeply Nested Type Constructions
	Code Specialization
	Data Specialization
	Results
	Conclusions and Future Work
	References

	An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models
	Introduction
	Minimum Divergence Distributions and Multivariate Polynomial Equations
	Minimum KL-Divergence Models
	Kullback-Csisźar Scheme

	Embedding Minimum KL Divergence Models in Algebraic Varieties
	Notation and Definitions
	Embedding Minimum Divergence Model in an Algebraic Variety

	Example
	Closing Remarks
	References

	On Sufficient Conditions for Integrability of a Planar System of ODEs Near a Degenerate Stationary Point
	Introduction
	The Studied Equation
	The First Quasi-homogeneous Approximation

	The Necessary Conditions of Local Integrability
	The Sufficient Conditions of Integrability
	The First Domain
	The Second Domain
	The Third Domain
	The Fourth Domain

	Conclusions
	References

	Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models
	Introduction
	Problem Statement
	SNA MATRA for Calculation of the BVP and Integrals
	Spectral Characteristics of Spheroidal QDs
	Conclusion
	References

	On Reduction of Lagrange Systems
	Introduction
	On the Systems Reduced to Linear Ones
	Invariant Sets of the Initial and Reduced System

	On Stationary Sets of a System with a Nonlinear Routh Function
	Conclusion
	References

	Series Transformations to Improve and Extend Convergence
	Introduction
	Computer Algebra Tools
	An Invariant Transformation
	Domain of Convergence
	Rate of Convergence
	Branch -1 and Complex p
	Taylor Series
	Concluding Remarks
	References

	Differential Resultant, Computer Algebra and Completely Integrable Dynamical Systems
	Introduction
	Preliminaries
	Differential Resultant of Two Differential Operators
	The Generalized Riccati Equation
	Prime Right Divisor of Operator L
	Prime Left Divisor of Operator L

	ODE Resolved by Algebraic Means
	Linear Differential Equations with Exponential Solutions ofType y = exp(−αx), α = const
	LODE with Polynomial Solutions
	The Equations in Terms of Exact Differentials

	Differential Resultant and Algebra of Commuting Differential Operators
	Conclusion
	References

	Generic, Type-Safe and Object Oriented Computer Algebra Software
	Introduction
	Related Work
	Outline

	Design Considerations
	Run-Time Systems
	Object Oriented Software

	Examples
	Ring Elements and Polynomials
	Unique Factorization Domains

	Future Work
	Conclusions
	References

	Implementing Data Parallel Rational Multiple-Residue Arithmetic in Eden
	Introduction
	From Fractions to Integers and Back
	An Integer-Based Multiple-Residue Arithmetic
	A Rational Multiple-Residue System
	The Mappings
	The Arithmetic
	Parallelism

	Testing the Arithmetic
	Related Work
	Conclusions and Future Work
	References
	Appendix

	Fast Generalized Bruhat Decomposition
	Introduction
	Preliminaries
	Algorithm of LEU Decomposition
	Conclusion
	References

	Computational Science in Armenia(Invited Talk)
	From Petri Nets to Polynomials: Modeling,Algorithms, and Complexity (Abstract) (Invited Talk)
	Supporting Global Numerical Optimization of Rational Functions by Generic Symbolic Convexity Tests
	Introduction
	Problem Definition
	Method
	Positive Quantifier Elimination for Universal Formulas
	Complexity
	System Architecture
	Examples
	Conclusions
	References

	Term Cancellations in Computing Floating-Point Gr¨obner Bases
	Introduction
	Term Cancellation and Its Monitoring
	Accidental Cancellations and Current Problems
	Our Idea: Reduce the Errors by a Matrix Method
	Actual Implementation and Discussions
	References

	One Class of Third-Order Linear ODE’s
	References

	GPGCD, an Iterative Method for Calculating Approximate GCD, for Multiple Univariate Polynomials
	Introduction
	Formulation of the Approximate GCD Problem
	The Algorithm for Approximate GCD
	Representation and the Rank of the Jacobian Matrix
	Setting the Initial Values
	Regarding the Minimization Problem as the Minimum Distance (Least Squares) Problem
	Calculating the Actual GCD and Correcting the Deformed Polynomials

	Experiments
	Concluding Remarks
	References

	Derivation of Explicit Difference Schemes for Ordinary Differential Equations with the Aid of Lagrange–Burmann Expansions
	Introduction
	The Lagrange–Burmann Expansion Formula
	General Procedure of the Explicit Methods of the Runge–Kutta Type
	The First-Order Method
	The Second-Order Method
	References

	Parametric Qualitative Analysis of Ordinary Differential Equations:Computer Algebra Methods for Excluding Oscillations (Extended Abstract) (Invited Talk)
	Introduction
	Preliminaries
	The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields
	Quantifier Elimination and Positive Quantifier Elimination over the Ordered Field of the Reals

	Some Algorithmic Global Criteria for Excluding Oscillations
	Muldowney's Criteria
	An Algorithmic Global Criterion Excluding Oscillations Based on Algebraic First-Integrals

	Computation Examples
	A Non-parametric Example
	A Parametric Example
	Models of Genetic Circuits
	A Model of Viral Dynamics

	Some Possible Future Directions
	References

	An Analytical Model for the Probability Characteristics of a Crack Hitting an Encapsulated Self-healing Agent in Concrete
	Introduction
	Basic Notions and Model
	Computational Aspects of the Probabilities
	Theoretical Formula of the Probability
	Distribution Densities of Coordinates of Capsule Centers
	Finding f$_X$(t) and f$_Y$(t)

	Results and Conclusions
	References
	Appendix A

	Extending Clause Learning of SAT Solvers with Boolean Gr¨obner Bases
	Introduction
	SAT Solving
	Boolean Gröbner Bases
	Combining SAT Solving and Gröbner Bases
	Implementation and Benchmarks
	Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

