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Preface

The CASC Workshops are traditionally held in turn in the Commonwealth of
Independent States (CIS) and outside CIS (Germany in particular, but, at times,
also other countries with lively CA communities). The previous CASC Work-
shop was held in Japan, and the 12th workshop was held for the first time in
Armenia, which is one of the CIS republics. It should be noted that more than
35 institutes and scientific centers function within the National Academy of Sci-
ences of Armenia (further details concerning the structure of the academy can
be found http://www.sci.am). These institutions are concerned, in particular,
with problems in such branches of natural science as mathematics, informatics,
physics, astronomy, biochemistry, etc. It follows from the talks presented at the
previous CASC workshops that the methods and systems of computer algebra
may be applied successfully in all the above-listed branches of natural sciences.
Therefore, the organizers of the 12th CASC Workshop hope that the present
workshop will help the Armenian scientists to become even more familiar with
the capabilities of advanced computer algebra methods and systems and to get
in touch with specialists in computer algebra from other countries.

The 11 earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, CASC 2004, CASC 2005, CASC 2006,
CASC 2007, and CASC 2009 were held, respectively, in St. Petersburg (Rus-
sia), Munich (Germany), Samarkand (Uzbekistan), Konstanz (Germany), Yalta
(Ukraine), Passau (Germany), St. Petersburg (Russia), Kalamata (Greece),
Chisindu (Moldova), Bonn (Germany), and Kobe (Japan), and they all proved
to be very successful.

The present volume contains revised versions of the papers submitted to the
workshop by the participants and accepted by the Program Committee after a
thorough reviewing process (each paper was reviewed by at least three referees).

The studies in Grébner bases and their applications belong to traditional
themes of the CASC Workshops. In particular, a new robust method is pre-
sented for an accurate floating-point computation of Grobner bases, which is
stable to error accumulation. The application of Grobner bases to the solution
of polynomial equations arising at the solution of the problem of KL-divergence
minimization is presented.

The invited talk by E.W. Mayr surveys a number of relationships between
computer algebra (in particular, polynomial ideals or, more specifically, binomial
ideals) and concepts like Petri nets widely used in computer science for modeling
and analyzing concurrent systems, and also presents some new complexity results
and algorithms for restricted classes of polynomial ideals.

Another traditional topic of the CASC Workshop, polynomial algebra, is rep-
resented by contributions devoted to the construction of irreducible polynomials
over finite fields, multivariate homogeneous polynomial decomposition, greatest
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common divisor (GCD) computations for finding universal denominators, iter-
ative calculation of the approximate GCD for multiple univariate polynomials,
and the REDUCE-based investigation of the convexity of rational functions over
a polyhedral domain by reducing convexity questions to real quantifier elimina-
tion problems.

Two papers deal with the theory of matrices and its application. In one of
them, the algorithms for a fast generalized Bruhat decomposition of the matrix
and for the computation of the inverse matrix are presented. In the other paper,
the minimal faithful matrix representation of filiform Lie algebras is computed
with Maple.

Several papers are devoted to the investigation, with the aid of computer
algebra, of various topics related to the ordinary differential equations (ODEs):
symbolic solution of a third-order ODE, integrability of planar ODE systems
near a degenerate stationary point, the use of differential resultants to investi-
gate completely integrable dynamical systems, and derivation of new numerical
methods for stiff ODE systems.

Investigating oscillations for parametric ODEs has many applications in scien-
ce and engineering but is a very hard problem. The invited lecture by A. Weber
presents a review of some recently developed criteria which give sufficient con-
ditions to exclude oscillations by reducing them to problems on semi-algebraic
sets—for polynomial vector fields. Some examples are given, and possible future
work in the form of problems to be solved is discussed. Some of these prob-
lems might be rather immediate to be solved, some others might pose major
challenges.

Two papers handle the topic of partial differential equations (PDEs): disjoint
decomposition of nonlinear PDE systems of equations and inequations into so-
called simple subsystems, and derivation of semigroup identities for evolution
equations using CAS.

Several papers are devoted to software problems in computer algebra. One of
them deals with the problem of achieving high performance when both symbolic
and numerical computations are required, and it proposes using the Aldor pro-
gramming language to solve this problem. T'wo other papers are devoted to the
problem of the development of object-oriented computer algebra software and
to functional parallelization of rational multiple-residue arithmetic.

A number of papers deal with the application of symbolic or symbolic-
numerical computations in applied problems of physics, mechanics, and engineer-
ing: computer analysis of spheroidal quantum dot models, the use of symbolic
computations in particle accelerator physics, reduction of nonlinear Lagrange
systems with cyclic coordinates to the linear Routh systems with the aid of the
Legendre transformation, and the use of geometric probabilities to model the
self-healing process in concrete with the aid of capsules containing the healing
agent.

The survey “Computational Science in Armenia” by H. Marandjian and Yu.
Shoukourian is devoted to the development of informatics and computer science
in Armenia. The results in theoretical computer science (algebraic models,
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solutions to systems of general form recursive equations, the methods of coding
theory, pattern recognition, and image processing), constitute the theoretical basis
for developing problem-solving-oriented environments. As examples can be men-
tioned: a synthesizer of optimized distributed recursive programs, software tools
for cluster-oriented implementations of two-dimensional cellular automata, and a
grid-aware Web interface with advanced service trading for linear algebra calcula-
tions. In the direction of solving scientific problems that require high-performance
computing resources, examples of completed projects include the field of physics
(parallel computing of complex quantum systems), astrophysics (Armenian
virtual laboratory), biology (molecular dynamics study of human red blood cell
membrane), and meteorology (implementing and evaluating the Weather Research
and Forecast Model for the territory of Armenia). The overview also notes that the
Institute for Informatics and Automation Problems of the National Academy of
Sciences of Armenia has established a scientific and educational infrastructure
uniting computing clusters of scientific and educational institutions of the country
and provides the scientific community with access to local and international com-
putational resources that is a strong support for computational science in
Armenia.

Our particular thanks are due to the members of the CASC 2010 local Or-
ganizing Committee in Armenia, V. Sahakyan and M. Haroutunyan (The Insti-
tute for Informatics and Automation Problems; National Academy of Sciences
of Armenia, Yerevan), who ably handled local arrangements in Yerevan and
Tsakhkadzor. Furthermore, we want to thank the PC Committee for their in-
valuable work. Finally, we are grateful to W. Meixner for his technical help in
the preparation of the camera-ready manuscript for this volume.

June 2010 V.P. Gerdt
W. Koepf

E.W. Mayr

E.V. Vorozhtsov
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Construction of Irreducible Polynomials over
Finite Fields

Sergey Abrahamyan

Institute of Informatics and Automation Problems,
P. Sevak street 1, Yerevan 0014, Armenia
serj.abrahamyan@gmail.com

Abstract. The aim of this paper is to present an explicit construction
of families of irreducible polynomials over finite fields by applying a poly-
nomial composition method.

1 Introduction

The problem of irreducibility of polynomials over finite fields is a case of spe-
cial interest and plays an important role in modern engineering [TJ2I3]. One of
the methods to construct irreducible polynomials is the polynomial composition
method that allows constructions of irreducible polynomials of higher degree
from given irreducible polynomials over finite fields. In this paper we state a
theorem that enables explicit constructions of irreducible polynomials of degree
pm starting from an irreducible polynomial of degree m over IF,. As an exam-
ple of the theorem we give an explicit construction of a family of irreducible
polynomials over IF4. We show that in the proposed construction the number
of operations required to obtain an irreducible polynomial of degree m - p from
a given monic irreducible polynomial of degree m over IF, is O(m?),where m is
the degree of the starting polynomial, and p is the characteristic of the field.

2 Preliminaries

Let IF, be the Galois field of order ¢ = p”, where p is a prime and n is a natural
number, and let f(z) be an irreducible polynomial of degree m over IF,. For
a € IFgm the trace Trp,_,, /1, (@) of a over IF is defined by
Tr]Fq'm /]Fq (a) =« + aq + e + aqm71

If IF, is the prime subfield of IF ym , then T'r_,, /i, (@) is called the absolute trace
of o and is simply denoted by T, .. ().

We will begin with recalling some basic results on the irreducibility of poly-
nomials that can be found, for example, in [2].

Proposition 1 ([2], Theorem 3.78). Let o € IF, and let p be the character-
istic of IF,. Then the trinomial P — x — « is irreducible in ¥ [x] if and only if
it has no root in IF,.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 1[3.]2010.
© Springer-Verlag Berlin Heidelberg 2010



2 S. Abrahamyan

Proposition 2 ([2], Corollary 3.79). With the notation of Theorem 3.78, the
trinomial 7 — x — a is drreducible in y[x] if and only if Try, () # 0.

With these preliminaries, we state a theorem that yields an irreducible polyno-
mial of degree pm over IF,.

Theorem. Let f(z) = 2™ 4+ a12™ ! + -+ an, be an irreducible polynomial of
n—1
degree m over IF, and ¢ = p™. Then, if a1 +af + ---+al  # 0, the poly-

nomial a,,}(1 — xP~1)m f* (1_”;2,1), where f*(x) = a™f (i), is an irreducible

polynomial of degree pm over IF,.

Proof. Let o be a root of f(x) = 0 in some extension field Fgm of IF,. So
the elements o, ad,--- 70[qu1 are the roots of f(z) = 0 and Trp . /r,(a) =
a4al+ 4o = —a, Trip mw, (@) = Tre,w, (TrE,.F, (@) =
Try,/r,(—a1) = —Trp,/¥,(a1) # 0. Thus, according to Corollary 3.79 in [2]
the polynomial g(x) = z? — x — « is irreducible over IF,. It is easy to see that
the polynomial —a~'g*(z) = —a~taPg (1) = —a7 (1 — 2P~ — aaP) is also ir-
reducible over IF,m. Because o, a?, - - - ,oﬂm_l are the roots of f(z) =0in IFym,

we have that the elements o'

Hence

m—1 .
a1l are the roots of f*(x) in IFym.

m—1

alf*(z) = H (.T - ofqu> .
u=0

Substituting 1_”;;,1 by x in the above expression and multiplying both sides of
it by(1 — 2P~1)™, we have

m—1
(=) () T ) = T (o ).

u=0

As —a~tg*(z) = 2P + o 'zP~! — a7 is irreducible over IFym, then, by Theorem

3.7 in [3], the polynomial a;,! (1 —a?=1)™ . f* (1_521;_1) is irreducible over TF,.
O

Analytical results indicate that in the proposed construction, the
number of operations needed to generate an irreducible polynomial

m -1 . ip o pfl m—1i _ pm u . . . .
Yoo O a;% (1 T ) = u_p bux® from a given monic irreducible poly-
nomial Y .~ a;z™ " over IF, is O(m?).

The following example is an application of our theorem.

Example. Given F4 = 0,1, a,a + 1, where « is a root of irreducible polynomial
2?2 + 2+ 1 € Fafr] and f(z) = 23 + az? + 1 is irreducible over IF,. Since the
polynomial f(z) = 23 +ax?+1 satisfies the conditions of the theorem mentioned
above, we may use f(x) to generate a new irreducible polynomial over IF4. So
we have
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e (0, =t <(<1fx>)3 (1) “)

=25+ ar?(1+2)? + (1 +2)3
=25 +axt + 23+ (a+ 122+ 2+ 1.
Thus,
g@) =28 +axt +2° + (a+ D2+ +1

is an irreducible polynomial over IFy.

References
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Chicago (1956)

2. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
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Factorization of Polynomials and GCD
Computations for Finding Universal
Denominators*

S.A. Abramov!, A. Gheffar?, and D.E. Khmelnov!

! Computing Centre of the Russian Academy of Sciences, Vavilova,
40, Moscow 119991, GSP-1 Russia
sergeyabramov@mail.ru, dennis khmelnov@mail.ru
2 Institute XLIM, Université de Limoges, CNRS, 123, Av. A. Thomas,
87060 Limoges cedex, France
f gheffar@yahoo.fr

Abstract. We discuss the algorithms which, given a linear difference
equation with rational function coefficients over a field k of characteristic
0, compute a polynomial U(xz) € k[z] (a universal denominator) such
that the denominator of each of rational solutions (if exist) of the given
equation divides U(z). We consider two types of such algorithms. One
of them is based on constructing a set of irreducible polynomials that
are candidates for divisors of denominators of rational solutions, and on
finding a bound for the exponent of each of these candidates (the full
factorization of polynomials is used). The second one is related to earlier
algorithms for finding universal denominators, where the computation
of ged was used instead of the full factorization. The algorithms are
applicable to scalar equations of arbitrary orders as well as to systems
of first-order equations.

A complexity analysis and a time comparison of the algorithms
implemented in Maple are presented.

1 Introduction

In the early 1990s, computer algebra researchers and programmers tried not to
use the complete (full) factorization of polynomials unless it was inevitable since
this operation was very costly. Designing an algorithm everybody tried to find a
suitable type of incomplete factorization based on computation of the greatest
common divisors (ged’s) following classical samples of M.V.Ostrogradsky’s and
Ch.Hermite’s algorithms for extracting the rational part of an indefinite integral
of rational function. But later the situation with full factorization algorithms
changed. Currently very fast and practical algorithms have become known, —
see, e.g., [16]. Of course the complexity of the algorithms for the full factoriza-
tion grows faster than the complexity of the algorithms for computing ged when
polynomial degrees tend to infinity. But when the degrees are of moderate size

* Supported by ECONET grant 21315ZF.

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 4[18] 2010.
© Springer-Verlag Berlin Heidelberg 2010
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the full factorization is not costlier than the computation of gcd, e.g., in Maple
system [22]. Thus, an interesting general problem arises, namely the problem of
designing new alternative computer algebra algorithms based on the full factor-
ization instead of numerous calls for the ged subroutine. The appropriateness of
such alternative algorithms has to be carefully investigated for any particular
relevant computer algebra problem. Such investigation must be supported by
suitable correct experiments.

In this paper, we revisit a problem related to the search for rational solutions
of a linear difference equation with polynomial coefficients. Rational solutions
may be a building block for other types of solutions, and more general, such
algorithms may be a part of various computer algebra algorithms (see [21], [8],
[9], [I7], etc.). As a consequence, investigations of new ways to construct such
solutions are quite valuable for computer algebra.

Let k& be a field of characteristic 0. We consider systems of the form

Y(z+1) = A@)Y (2), (1)

Y(z) = (Yi(z),Ya(),...,Ya(z)T, A(x) = (a;j(x)) € Mat, (k(z)). It is assumed
that there exists the inverse matrix A='(z) = (a;;(x)) € Mat,(k(z)). If an
inhomogeneous system Y (x + 1) = A(2)Y (z) + G(x) is given and A(z) is as
in (), G(x) € k(z)™, then by adding to Y (z) an (n + 1)-st component with
value 1, one can transform the given system into a homogeneous system with an
invertible matrix B(z) € Maty4+1(k(z)) (see, e.g., [15], Sect. 2.2]). For this reason
we restrict our consideration to ([J). At the same time we will consider scalar
equations of the form

y(@+n) +ana(@)y(@+n—1)+... +a(x)y(z+1) +ao(r)y(r) = o(z), (2)

o(x),a1(x),...,an—1(x) € k(z), ao(z) € k(x) \ {0}, and such an equation is
inhomogeneous if p(z) is a non-zero rational function. By clearing denominators
we can rewrite (2)) as

bo(z)y(x +n) + ...+ bi(z)y(x + 1) + bo(2)y(z) = ¥ (), (3)
(), b1(x),. .., bp_1(x) € k[z], bo(x), by (x) € k[z] \ {0}.

Currently, a few algorithms for finding rational (i.e., rational function) solutions
of equations (@), (@) and systems ({Il) are known. The algorithms from [BIGITTII4]
first construct a universal denominator, i.e., a polynomial U(x) such that in the
scalar case an arbitrary rational solution y(z) of ) or ([B]) can be represented as

v = ;o @

where z(x) € k[z] (in other words, if ([2)) has a rational solution 5 E;’)) which is in

the lowest terms then g(z)|U(x)). In the case of a system an arbitrary rational
solution of () can be represented as

Zi(x)
Ul)
where Z1(x), Za(x), ..., Zn(x) € klx].

Y—z(l’): ) 7:21727"'777’7 (5)
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The algorithm from [I4] is based on constructing a set of irreducible polyno-
mials that are candidates for divisors of denominators of rational solutions, and
on finding in a quite simple way a bound for the exponent of each of these can-
didates. Such algorithms use the full factorization of polynomials. Experiments
with the Maple system show that the full factorization makes some of computer
algebra algorithms significantly faster in comparison with algorithms based on
computations of ged’s and resultants ([20], [10] etc.).

When a universal denominator is constructed, one can substitute (@), (&) with
undetermined z(z) resp. Z;(x) into the initial equation resp. system to reduce
the problem of searching for rational solutions to the problem of searching for
polynomial solutions. After this, e.g., the algorithms from [2[7] (the scalar case;
see also [I3] Sect. 9]) and the corresponding algorithm from [GITTIIR] (the case
of a system) can be used.

The algorithm from [15] is applicable to the system () when k& = C. It finds
n rational functions Ry (x), Ra(x),. .., R,(z) € C(z) which are called bounds for
denominators such that for any rational solution of ({Il) we have

Yi(z) = Z;(x)Ri(x), i=1,2,...,n, (6)

where Z1(z), Z2(z), ..., Zn(x) € C[z] (the numerator of R;(x) is a factor of the
numerator of the ith entry Y;(x) of any rational solution Y (x)). The substitution
([ is used instead of @), (@). The algorithm from [I5] can lead to a more “pro-
ductive” substitution. But the general situation is not so simple. This algorithm
is based on matrix operations (matrix entries are in C(x)) which are costly. It
is shown in [I4, Th. 2] that there exist such examples when substitutions (&),
() are identical, but the algorithm from [I5], spends much more time than the
algorithms from [BI6ITIITA].

In this paper we concentrate on the approach discussed in [14].

The paper is organized as follows. Section ] is devoted to a theoretical basis
for algorithms for constructing universal denominators (a short review). Section
contains descriptions of the algorithm from [BIGJITIT4]. In addition, we pro-
pose an improved version of the algorithm from [14]. In Section F] we give some
analysis of these algorithms and prove that all of them give the same universal
denominator. A complexity analysis is given as well. In Section B, we discuss our
implementation of the proposed improved version of the algorithm from [I4].
Section [0l contains a time comparison of this algorithm with the algorithms from
[506] which are exploited in current versions of Maple. Finally in Section [1l we
make some conclusion remarks.

2 The Dispersion Set

Working with polynomial and rational functions over k we will write f(z)Lg(x)
for f(x),g(z) € k[x] to indicate that f(z) and g(x) are coprime; if F(z) € k(z),

then den F'(x) is the monic polynomial from k[z] such that F(z) = derfl(;zz)

for some f(z) € k[z], f(x)L den F(x). In this case we write num F(x) for f(x).
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The set of monic irreducible polynomials of k[z] will be denoted by Irr(k[z]).
If p(x) € Trr(k[x]), f(x) € klz], then we define the valuation val,f(z) as
the maximal m € N such that p™(2)|f(z) (val,)0 = 00), and val,,) F(z) =
val, () (num F(z)) — valy,)(den F(z)) for F(x) € k().

Let A(x) be as in (), then we define

den A(x) = 1&{1 1(:7;r11 den(a;j(z)), den A~!(z) = 1&{1 1(:7;r11 den(a;;(x)).
i=1 j= i=1 j=

If
F(x) = (Fy(x), Fa(z), ..., Fy(x)T € k(z)"
then den F(z) = lemi_, den F(z), and valyg)F(x) = minj_; valy) Fi(z). A
solution F(z) = (Fi(x), Fa(z),..., F.(z))T € k(z)" of () as well as a solution
F(z) € k(x) of @), @) is a rational solution. If den F(x) # 1 then this solution
is non-polynomial, and polynomial otherwise.
If p(z) € Irr(k[x]), f(z) € kx] \ {0} then we define the finite set

No@) (f(@)) ={m € Z : p(x +m)|f(x)}. (7)

If Np(o)(f(x)) = 0 then define max N, (f(z)) = —o0, min Np ) (f(x)) = +00.
(From now on we use the notation

V(z) =bn(x —n), W(x)=bo(x)
for equation (B]), and
V(z) =w(z—1), W(z)=uo(z),

where u; (z) = den A(x), ug(r) = den A~ (z), for system ().

The first computer algebra algorithm for finding solutions of (B which belong
to k(x) was proposed in [3]. One of the statements proven in [3] (and later in [0]
for the case of a system) can be formulated using notation () as follows:

Proposition 1. ([3l6]) Let p(x) divide the denominator of a rational solution of
@) or @), p(x) € Irr(k[z]). Then max Ny (V(x)) > 0, and min Ny (W (z)) <
0.

For f(x),g(z) € k[z] \ {0} we define their dispersion set:

ds(f(2),9(x)) = {h € N : degged(f (), g(z + h)) > 0} (8)
and their dispersion:
dis(f(x), g(x)) = max(ds(f (), g(x)) U{—oc}). 9)

The dispersion is equal to —oo iff deg ged(f(x),g(z +h)) =0 for all h € N, and
belongs to N otherwise. The set ds(f(z), g(z)) can be computed as the set of all
integer non-negative roots of the polynomial Res, (f(z), g(x+h)) € k[h]. This set
can be also obtained from the full factorization of f(z) and g(z). Indeed, for given
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w(x),v(x) € Irr(k[z]), degw(x) = degv(x) = s, one can easily recognize whether
or not exists h € Z such that w(z + h) = v(z): if w(zr) = 2% + we_12°~ 1 + ..,
v(z) = 24w 125 1+ .. then w(z+h) = 25+ (wp—1+sh)z*~1+. .. and the only
candidate for h is **7'_**~' if this value belongs to Z ([20]). The computation
is faster if one resorts to the approach from [20] based on the full factorization
instead of computing integer roots of a resultant. This is successfully used, e.g.,
in Maple: LREtools[dispersion].

By Proposition [ if a non-polynomial rational solution exists then the set
ds(V(x), W(z)) is not empty.

3 Algorithms for Constructing Universal Denominators

3.1 The Algorithm Ap from [5,6]

The algorithm is as follows:

Find H = ds(V(z), W(z)). If H = 0 then terminate the algorithm with the
result U(x) = 1 (we suppose below that H = {hi1,ha,...,hs} and hy > hy >
...> hg, s > 1). Set U(x) = 1 and successively for m = 1,2,...,s execute the
following group of assignments:

P(x) = ged(V(z), W(z + him))

V(z) =V(x)/P(x)

W(z) = W(z)/P(x — hm)

Uw) = Ux) [112 Pz — ).

The final value of U(z) is a universal denominator for equations (2), [@B]) or, resp.,
system ().

We will refer to this algorithm as A p. This algorithm is exploited in current
versions of Maple:

LREtools[ratpolysols], LinearFunctionSystems[UniversalDenominator].

3.2 The Algorithm from [17]

In [I1] a more general problem than the search for rational solutions of system ()
was solved. However, the algorithm from [I1l Prop. 3] can be used to compute a
universal denominator u(x) related to (). Using our notation (setting in addition
h = dis(V(z), W(x))) this algorithm may be represented as follows.

Consider the sequence of polynomials {(V(x), W;(x), P;(x))} defined induc-
tively as:

Vo(x) = V(x), Wo(x) =W(zx), Po(r)=ged(V(z), W(z+h)),

and for j =1,2,...,h,
V,(2) = Vi (@)/ Py (@),
Wj(@) = Wy (2)/Pya (2 — bt j — 1),
Pj(z) = ged(Vj(z), Wj(x + h — j)).

Then
h

u(x) =[] [] Pz )

§=0 i=0

<.
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3.3 The Algorithm Ay from [14]

An explicit formula for a lower bound of val,,) F'(x) can be found in [I4]: if F'(x)
is a rational solution of equation ([B]) or system (I]) then

val, () F(z) > —min Z val, 1)V (), Z val, iy W(z) (10)
ieN ieN

for any p(x) € Irr(k[z]).

This formula was used in [I4] as a base for the new algorithm Ay for com-
puting a universal denominator. This algorithm can be divided into two steps.
In the first step, Ay constructs a finite set M of irreducible polynomials that
are candidates for divisors of denominators of rational solutions. At the second
step, for each p(x) € M this algorithm computes the value

Tp(z) = min Z Valp(IJrl)V(l‘), Z Valp(z,l)W(l‘) . (11)
1eN 1eN
The product Hp(x) e PP® (x) gives a universal denominator related to a given

equation or system.
By Proposition [l we can define

M = {p(x) € Irr(k[z]) : min N,y (W(x)) <0, maxNy)(V(x)) > 0}.

For constructing this set the full factorization of polynomials V' (x), W(x) has to
be found. Then we find the finite set @ C Irr(k[z]) such that ¢(z) € Q iff

min Ny, (W (z)) = 0, max Ny (V(z)) > 0.
Let @ # 0 and Q = {q1(2), ¢2(x),...,qs(x)}, s > 1. For each 1 < i < s consider

MqL(I) = {Qi(x)’Qi(x_'_1)""7Qi(x+hi)}’ (12)

where
hi = max Ny, (o) (V(z)). (13)

We have M = Ule Mq&,(w)’

3.4 An Improved Version of the Algorithm Ay (the Algorithm Agf;))

As it is described above the algorithm A contains two steps: the construction of
the set M and the computation of ~,,) using () for all p(z) € M, which results
in the universal denominator. Formula (Il contains the sums by I € N. In spite
of the fact that N is infinite, the sums have only finite number of summands
corresponding to the irreducible factors of V(x) and W (x), which are equal
to non-negative and non-positive shifts of p(z), respectfully (the corresponding
valuations are equal to the exponents of such factors in the factorization of V' (z)
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and W (x)). No special way for time saving computing of the exponents 7y,
was described in [I4]. We propose below a possible way of this kind.

It is clear that when we compute () for p(x) = qi(z + j) € Mg, (z) (where
M, (z) is as in (I2)), the corresponding 7y, (,+;) might be equal for many succes-
sive j. Indeed if we have computed 7y, (), and after that we compute v, (445 for
j from 1 to h;, then the value can be changed only for those j for which there is
an irreducible factor of V(z) and/or W (x) equal to g;(z+ j) (such critical points
can be computed in advance while constructing the set M). The consideration
is a basis for the improved version of the algorithm Ay ; the new algorithm is
presented below in details.

The first step is adjusted to compute the following:

— {qi(z)};_, and {h;};_, which correspond (I2) and (I3).
— The sets
oW = {C SY/% valqi(w+c)(W(x)) > 0} R
O ={ceZ:val,pic1)(V(z)) >0}
of the critical points.
- DWW = {D?W} and D%V = {D?V} which are the sets of the valuations

corresponding to the critical points: D2 = valy, ;1) (W (z)) for each ¢ €
C*W and DYV = valy, (z4+c—1)(V(z)) for each ¢ € C*V.

Note that all the data are computed simultaneously using the factorizations of
W (z) and V(z).

The second step is performed as a loop by ¢ from 1 to s. For each ¢(z) = ¢;(x)
and h = h; execute the following:

— Construct the joint and sorted set of critical points:

{c;:¢;>0,¢; <hye; € Ci,WUCi,V};‘;l, with ¢; <2 < ... < cp,.

— Compute the intervals {lo,...,l1 — 1}, {l1,...,l2 = 1}, ... {lk—1,...,h} of
the same exponents 71, o, ..., 7x and the exponents themselves: ‘
We initialize the computation with =0,v0=—1and v =) (s cciw DLW
Yo = D o>ecciV D5V, Then for the critical points ¢ = ¢1, ca, . .. ¢,, We com-
pute the change of the values by v, = 7w + DLW (if ¢ € C*W) and/or
Yo = Y — DV (if ¢ € C%Y), which gives a new 11 = min(vyy, ). If
Ye+1 7 Yk then a new interval with the new exponent 711 is started from
I, = c (after that k is correspondingly increased by 1).

— Having added I = h + 1, compute the factor of the universal denominator

that corresponds ¢(z):
Ui = e 20, ale +5)7
The final universal denominator is the product of all U; for i = 1,2,...s.

The algorithm is justified by considering the changes in ([l for computing
Yq(z+5) With successive j. Note that v, (i.e. ZleNvalq(zHH)V(a:)) and 7, (i.e.
Zle N valg(z4j—1yW(z)) change a bit differently with the increase of j: the first
one may only decrease and the second one may only increase. It leads to the
corresponding differences in the algorithm in the definitions of C*"', C%" and
the formulas for the initial values of =, 7, and their changes.

We will refer to this detailed (improved) version of Ay as AJ;.
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4 Analysis of the Algorithms

4.1 Equivalence of Results

Proposition 2. The universal demominators computed by the algorithms de-
scribed in Section [32 coincide for any given V(x), W (x). Intermediate polyno-
mials computed by Ap are also computed as intermediate polynomials by the
algorithm from [11]].

Proof. First show that the algorithm from [I1] gives the same result and com-
putes all the intermediate polynomials that Ap computes. Indeed, replace H
by

H={h,h—1,...,0}

h = hy = dis(V(x), W(z)). This extension of H does not change the result (the
additionally computed ged’s will be equal to 1). We also enumerate the values
V(z), W(x), P(z),U(z) in Ap:

Set Up(z) = 1, Vo(x) = V(x), Wo(z) = W (x) and successively for j =0,1,...,
h — 1 execute the following group of assignments:

Pjp1(z) = ged(V; (z), W(z + h — j))

Vo1 (@) = Vy (@) P (a)

Wisi(z) = W;(@)/Pjyr(x — h+j)

Ujsi(z) = Ui (@) [Ti2 P (@ — ).
Evidently triples (Vi(z), Wi(x), Pi(x)) coincide for ¢ = 0,1,...h in both algo-
rithms, and u(x) = Uy (2).

It was proven in [I1] that if h = dis(V(z), W(z)) then

h h
u(x) = ged (H V(z —1i), H Wz + z)) .

=0 =0

Therefore, the value val,(,)u(x) is equal to the right-hand side of (Il for any
p(z) € Irr(k[z]). This implies that the outputs of the algorithm from and
Ay coincide. Thus, the outputs of Ap and, resp. Ay coincide as well. The
coincidence of the outputs of Ay and Aj; is evident. a

4.2 Complexity Comparison

We now give a complexity analysis of Ap and Ajp,. Let n = max{degV (),
deg W (x)} and h = dis(V(x), W(z)). We compare the complexities Tp(n, h) and
Tu(n,h) of Ap and Ay,. In this context, the complexity is the number of the
field operations in k in the worst case.

Both algorithms perform polynomial multiplications for getting U(z). We do
not specify the used polynomial multiplication algorithm, but suppose that the
worst case is when it is necessary to multiply a big number (which is equal to
degU(x)) of first degree polynomials.

Both algorithms spend the same time to find the full factorization of V(z)
and W(z) and to compute their dispersion set. In addition, A}, constructs the
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set @ as well as the set of corresponding h;, the set of critical points, and the
set of corresponding valuations. The cost of this computation in the worst case
is O(n) plus the cost of sorting critical points. This gives totally O(nlogn).

On the other hand, A p computes ged’s; if h > n then in the worst case, the
cost of this computation is Y7 Tged(n — ), where Tyeq(n) is the complexity of
the ged computation for two polynomials whose maximal degree is n. If 0 < h <
n then the cost in the worst case is Z?:o Tyea(n—1i). Obviously >0 Tyea(n—i) =
S o Taca(i), Zz o0 Teca(n — i) = Y0, Teea(i), and we have the following
proposition.

Proposition 3. If T,.q(n)/(nlogn)— oo then the difference Tp(n, h)—Ty(n, h)
is positive for almost all n, h € N* and

St o Tyea(i) + O(nlogn),  if h>n,
Tp(n,h) —Ty(n,h) = (14)
> Teca(i) + O(nlogn), if h < n.

i=n—h

In the next proposition we use the {2-notation which is very common in complex-
ity theory ([I9]). Unlike O-notation which is used for describing upper asymp-
totical bounds, the {2-notation is used for describing lower asymptotical bounds.

Proposition 4. Let Tyca(n) = 2(n?), d > 1. Then the difference Tp(n,h) —
Ty (n, h) is positive almost all n, h € N and is 2(R(n,h)), where

ndtl if b > n,
R(n,h) =
hn?, if h < n.

Proof. The case h > n follows from (I4]) and d > 1. In the case h < n we can

use the inequality
—m)
15
Z Z d +1 (15)

which is valid for any integer 0 < m < n and real d > 1. Taking m = n—h we get
the claimed. To prove () note that the function 2% is monotonically increasing
when z > 0 and d > 1. This gives for m < n (the case m = n is trivial):

n n d+1 d+1
. o d _n m
Zz Zz> Z / ¥ dz = /xdx—d+1(l—<n) )
i=m i=m+1 i=m+1

L m d+1 m

Since in our case 1 — (7)™ > 1—"", we get ([H). a

To the authors’ knowledge Tyea(n) = £2(n?), d > 1, for the algorithms now in
use in actual practice for gcd computations.

The fast Euclidean algorithm [T2], Ch. 11] has complexity O(n log® n loglog n)
if Fast Fourier Transform is used to multiply polynomials. But this version of
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the fast Euclidean algorithm is not practical due to a big constant hidden in O.
Nevertheless, if we suppose that the fast Euclidean algorithm is used and the
estimate 2(n log?n loglogn) (or, even 2(n log®n)) is valid for the complexity
of this algorithm then by Proposition [B] the difference Tp(n,h) — Ty(n,h) is
positive (i.e., Ty (n,h) < Tp(n, h)) for almost all n,h € N

5 Implementation

Below we consider an implementation in Maple of A}, (Section ) and demon-
strate the corresponding time comparison with Ap (Section[d]). As it was shown
in Proposition 2] both algorithms give the same result, and the comparison is
correct. The algorithm from [I1] is similar to Ap by Proposition 2 and we do
not involve this algorithm into the comparison.

As we mentioned in Section BIlthe algorithm A p implementation is available
in Maple as an internal procedure of the package LREtools. We implemented
our new algorithm A}, and performed experimental comparison of the two
algorithms.

The implementation has several peculiarities which are discussed below.

5.1 Full Factorization

The algorithm A}, (and Ay as well) is based on the full factorization of the
given polynomials V(z) and W (). Our implementation uses the result of the
factorization not only to construct the set M of irreducible polynomials, but also
computes () using it. Note that it is not the case for the implementation of the
algorithm A p in Maple. It uses the procedure LREtools[dispersion] to compute
the dispersion of polynomials which implements the algorithm [20], i.e., uses the
full factorization. But the next steps of the algorithm Ap are implemented as
presented not exploiting the result of the factorization of the previous step.

5.2 Shift Computation

Our implementation uses vastly the auxiliary procedure, which given p(x),r(z) €
Irr(k[z]) computes the shift s € Z such that p(x) = r(z + s) or defines that no
such s exists (actually it is a particular case of computing Ny, (r(x)) when
r(z) € Irr(k[z])). The procedure is used both to compute the set M and to
compute C*W CHV | DWW DV for further computations of the exponents .
The shift computation is implemented efficiently using the main idea of the
algorithm [20] presented in the end of Section

5.3 Computing Universal Denominator

Though we compute the values y successively, it is better to compute the uni-
versal denominator at once for all ¢;(z + j), rather than compute the universal
denominator also successively. In the latter case, the intermediate computations
of the preliminary results might be costly at least in Maple.
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6 Three Experiments

Using our implementation of the algorithm A}, and the implementation of the
algorithms A p that is embedded in Maple, we have performed three experiments
to compare the algorithms.

6.1 Experiment 1
We have applied both algorithms to the following similar inputs:

(a) V(z) = W(z) = [T._,(z +m+ 1/i)(x — m+ 1/i) for m = 20,100, 500, 2500,
I =1,15,30,45, 60;

(b) V(z)=W(z) :Hi-zl(x—i—m—i—i—i—l/i)(ac—m—i—!—l/i) for m=20, 100, 500, 2500,
1 =1,15, 30,45, 60.

The corresponding universal denominators found by both algorithm for the in-
puts are, respectfully, the following:

(a) Thiy T (= 5 = 1+ 1/i);
(0) TTie TT (e — G+ 1/i).

The experiment is based on the example from [I5], which is transformed to be
more complicated by using [ similar pair factors instead of the only one pair.
TablesMandPlshow the CPU timd] needed to compute the corresponding univer-
sal denominators by three implementations for each of the pair V(x) and W (z).
The input polynomials are expanded before calling the implementations. The
expansion is needed to create equal conditions for both algorithms (otherwise
the factored input definitely simplifies the work for Aj;). In addition, it has been
found that the implementation of the algorithm [20] in Maple for computing the
dispersion of two polynomials uses some additional preprocessing which leads to
inefficiency for the inputs in the factored form at least in our experiments, so
the expanded input allows eliminating this question in our comparison.

Table 1. Results of the experiment 1(a), in seconds

m=20 m=100 m=500 m=2500

A, Ap A, Ap A, Ap A, Ap
I=1 0.000 0.016 0.000 0.015 0015 0.015 0.016 0.031
=15 0.079 0.141 0.094 0.141 0.172 0.203 0.546 0.438
1=30 0.375 0.547 0.407 0.562 0.547 0.656 1.266 1.109
1=45 0.719 1.140 0.828 1.235 1.172 1531 3.015 2.531
1=60 2.032 2.875 2.390 3.344 3.000 4.516 5.063 5.704

The results show that the algorithms behave differently with the growth of m
and [. The results of Ap are getting relatively worse with the growth of [ if we fix
any m, and the results of A}, are getting relatively worse with the growth of m if

! For all the experiments: Maple 13, Windows XP, Pentium 4 1.7 GHz, 512 MB RAM.
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Table 2. Results of the experiment 1(b), in seconds

m=20 m=100 m=500 m=2500
Ay, Ap A, Ap A, Ap A, Ap
=1 0.016 0.015 0.000 0.000 0.000 0.016 0.031 0.031
=15 0.078 0.375 0.109 0422 0.172 0531 0578 1.032
1=30 0.359 2.890 0.407 3.063 0.531 3.484 1.266 5.344
1=45 0.860 10.641 0.796 11.547 1.516 13.234 3.078 17.656
1=60 2.406 31.187 2.719 33.484 2.657 37.125 4.766 44.797

we fix any [. The latter observation may be explained if we analyze the structure
of the algorithms in respect to the particular problem in hand: actually, for the
fixed m and given I A}, performs similar set of operations [ times, but A p needs
to perform ged computations with the polynomials of [ times higher degrees.

It is easy to see that the inputs (a) are more convenient for the algorithm
Ap: the ged is computed only once for each input, the number of multiplied
polynomials is 2m + 1, while for Aj; this number is (2m + 1)! . In spite of this
handicap the timing of A}, looks better for the whole experiment (Table [J).

The input (b) corresponds near to the worst case for both algorithms Ay, and
A p (the input size is a pair of numbers as in Section 2)), and an advantage of
A}, is evident (Table [2)).

We have noted in Section [3.4] that no special way for time saving computing
of the exponents 7,(,) was proposed in the description of Ay given in [14]. If one
uses formula (1)) for each p(z) € M then the total computation time increases
dramatically. We have implemented a straightforward version of Ay as well for
the preliminary experiments and, for example, the result of Ay for the input of
type (a) with m = 2500, [ = 60 is 350 seconds.

6.2 Experiment 2

We have also applied the algorithms to several sets of randomly generated pairs
of polynomials V(z) and W (z). Each set contains 500 pairs, and each polynomial
is generated using Maple command randpoly(x,degree=d,terms=1), i.e., it is a
polynomial of degree up to d and it contains up to [ terms. Note that given
such generated polynomials, the universal denominator found by the considered
algorithms is most probably z” for some n € N, and moreover it is just 1 for
most of the cases. Still the experiment is meaningful, since if we try to search
for the rational solution of absolutely arbitrary equations, it would be exactly
like this. 9 sets are generated for d = 10,20, 30 and [ = 2,d/2,d. Table [ shows
the CPU time needed to compute the corresponding universal denominators
by the implementations for each of the set. We do not need to expand the
input polynomials before calling the implementations in the experiment since
the polynomials are expanded by construction.

The results show that Aj; is better than Ap in this experiment for all the
sets.
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Table 3. Results of the experiment 2, in seconds

1=2 1=d/2 1=d

A, Ap A, Ap A, Ap
d=10 1.578 6.016 5.953 9.578 6.734 10.157
d=20 1.750 8.094 8.594 12.938 9.828 13.969
d=30 1.922 10.422 12.235 17.234 13.985 19.375

6.3 Experiment 3

We have also applied the algorithms to several sets of other randomly gener-
ated pairs of polynomials V(x) and W (x). Each set contains again 500 pairs,
but the polynomials are generated differently. Each polynomial is generated as a
product of at most I factors of the form (x — r;)%, where r; is a random integer
between —10 and 10, d; is a random integer between 0 and d. Such method of
generation ensures that the found universal denominators will be non trivial. 9
sets are generated for d = 2,4,6 and | = 1,5,10. Table @ shows the CPU time
needed to compute the corresponding universal denominators by the implemen-
tations for each of the set. The input polynomials are expanded before calling
the implementations.

Table 4. Results of the experiment 3, in seconds

1=1 1=5 1=10

A, Ap A, Ap A, Ap
d=1 0219 0.890 1.094 2.453 2.672 6.265
d=3 0.390 1.390 2.953 6.500 5.844 14.937
d=5 0.437 1.609 4.328 9.750 8.313 23.250

The results show that Aj; is better than A p in this experiment for all the sets.

7 Conclusion

Our investigation presented in the paper has confirmed that it might be useful
to revisit the problems which were solved earlier by the algorithms which use
incomplete factorization based on computation of the greatest common divisors
as a result of the desire to avoid the use of the full factorization. The full factor-
ization based algorithm Ay (and its new improved version Ay, ) for the universal
denominator construction is proved to deliver the same results as the old ged
computation based algorithm A p, but the implementation of Af; is shown to be
more efficient. It is especially logical to switch to the new approach, in particu-
lar, in Maple, since the existing Maple implementation of the algorithm A p uses
already the factorization based auxiliary algorithm for computing the dispersion,
i.e., the required factorizations are computed already.
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Note that new algorithms should not be necessary obtained out of the old
ones just by substituting gcd computations with the corresponding computations
using the results of factorizations. It might be more useful to re-think the whole
algorithm over again based on the new approach. In this way, A}, utilizes the
new computations based on the new formula (IIJ), and they are implemented
efficiently, e.g., taking into account the fact that when we compute (1) for
p(z) = qi(x + j) € My, (g from ([I2), the corresponding 7y, (,+,) might be equal
for many successive j.

Logically if the basic operations are significantly changed then concepts for
algorithms designing have to be updated.
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Abstract. It is known that accelerator physics technology has made es-
sential contributions to other branches of science and technology. Exper-
iments realized on linear and circular accelerators have made remarkable
discoveries about the basic nature of matter. In particular, there are now
two accelerator projects. The first of them is already realized — the Large
Hadron Collider, the second — the pilot project for future dedicated
EDM machine. These and other similar projects (i. e., the project NICA,
JINR, Dubna) demand some special requirements for simulation methods
and technologies. Indeed, the successful functioning of these accelerators
requires essential advancement in theory and technology leading to new
particle accelerators capabilities. The complexity of accelerator physics
problems makes comprehensive use of modern analytical, numerical, and
symbolic methods. Only if we integrate these approaches the correspond-
ing computational technologies will be effective. In the present report,
we discuss some problems of correlation between symbolic and numeri-
cal manipulation. The main approach for beam dynamics is based on Lie
algebraic methods and corresponding matrix formalism as presentation
tools. All suggested approaches are realized using symbolic algorithms,
and the corresponding symbolic formulae are assumed as a basis of nu-
merical algorithms. This approach allows to realize the necessary numer-
ical modeling using parallel and distributed computational systems for
some practical problems.

Keywords: Symbolic algebra, beam physics, code generation, Lie
algebraic methods, parallel and distributed computing.

1 Introduction

One of the main goals of modern computational accelerator physics can be for-
mulated as to give researchers a powerful and efficient tools for nonlinear beam
dynamics modeling.

The use of the Lie algebraic tools [I], in combination with a symbolic alge-
bra system (i.e. MAPLE, MATHEMATICA), enables us to carry out the entire
modeling on a high level. These systems easily handle the elaborate necessary
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computation procedures required to form the equations of motion and then gen-
erate them into such languages as FORTRAN, C, Java, Visual Basic. Besides, the
last version of these packages can export resulting expressions into the MATLAB
package. It should be noted that MATLAB is a well suited package for running
small computational simulations followed by various post processing activities
including graphics. Knowledge of analytical representations for most preliminary
and final expressions gives a researcher very powerful tools for both next numer-
ical computation and qualitative investigation. Indeed, firstly symbolic algebra
systems opened possibility to generate code automatically from formulas, and
secondly — to investigate qualitative properties of model-based systems. The
preliminary scheme of symbolic and numerical modules is presented in Fig. 1.
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Fig. 1. The scheme of usage of computer algebra tools

2 Mathematical Background

In this paper, dynamics of beam particles is presented in the form of an operator
form using the Lie nonlinear transformation M (see, for example, [2])

M(tltg) = Texp /EF(T)dT , (1)
to
where Lg(;) is a Lie operator associated with some vector function F(7) =
F(7;X,U,B) defining the motion equation for beam particles
dX

- =F(:EX,UB). 2)



A Role of Symbolic Computations in Beam Physics 21

Here X € X, U € 4, B € B are the phase vector, the vector of control func-
tions, and the vector of control parameters, respectively. In eq. (), the beam
propagator M (t|tg) is presented in the form of the so-called time-ordered ex-
ponential operator (see, for example, [1I2]). Eqs. () and (@) define a dynamical
system with control functions U = (Uy,..., Un)T (U; are electromagnetic field
components corresponding to an external (control) electromagnetic field), con-
trol parameters B = (B, ..., By)" (here By are parameters which can not be
verified during a work-session), and the operator M can be identified with the
dynamical system itself.

For practical modeling the time-ordered operator M(t|tg) in () is presented
using the so-called Magnus’s presentation

M(t[to) = exp (»CG(tlto)) . (3)

The new vector-function G(t[to) in eq. @) for the Lie operator Lg ) is cal-
culated using the continuous analogue of the well known CBH-formula [3]6]
symbolically.

2.1 The Symmetry and Explicit Solutions for Dynamical Systems

The above introduced Lie transformation M (t|tg) maps the initial phase man-
ifold (occupied by beam particles) Mi(to) onto a current manifold Mi(¢). It is
natural that every dynamical system has some qualitative properties, and these
properties should be preserved during the whole propagation process. Here we
should mention such properties as invariants (kinematic and dynamic, see, for
example, [4] and [5l6] ), symmetries. We should especially mention the possibility
of finding explicit solutions for some special types of dynamical systems [7].

In general the retrieval of invariants and symmetries is a very complicated
problem. Taking into account that usually the Lie map can be found using per-
turbation presentation we redefine the conception of invariants and symmetry.
In other words, a researcher finds so-called approximating invariants and sym-
metries. But, in the case of kinematic invariants we should tell about explicit
invariants (compare, for example, with symplectic property, which is inherent
in any Hamiltonian system). For many problems of accelerators physics one has
to accurately track the orbits of beam particles during many thousand turns.
Traditional numerical methods for motion equation integration result in several
artificial effects, which are not allied to real behavior of beam particles. This
urges us to use special numerical methods which guarantee necessary conserva-
tion lows with necessary precision. First of all, here we mean the conservation
problem for symplecticity property when one replaces an exactly symplectic map
(produced by any Hamiltonian system) with approximating map.

At this step, the role of symbolic computation is very important. Indeed, the
approaches suggested in [Bl6] can be realized up to necessary order of approx-
imation (for approximating invariants and symmetries) and the algorithm for
explicit solutions in a closed form as described in [7].
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2.2 Symbolic Computation Algorithm for the Matrix Formalism

The above approach is based on the so-called matrix formalism for Lie algebraic
tools [6I8] up to necessary order of approximation. Indeed, under the assumption
that the function in Eq. @) F(X,t) admits the expansion as a Taylor series

F(X,t) = Z P ()X ¥ we can rewrite required solution of Eq. (@) in terms of

matrices Mlk.
o0

X(t) = M(tlty) o Xo = Y M (t[to) X[}, (4)
k=0

Here X!*! is the Kronecker power of the kth order for the phase vector X¥ and
P'F(t), M'*(t) are two-dimensional matrices. Matrices M'* are named aberration
matrices (matrices M** accumulate all abberations of the kth order). The main
goal of the matrix formalism is to calculate these matrices up to some approx-
imating order N. This order usually is defined taking into account information
about used control elements (for example, usually for quadrupole magnet lenses
it is necessary to know M'* up to third or fifth order).

The Dragt-Finn factorization for the Lie transformations () or @) allows
us to rewrite the corresponding exponential operators as an infinite product of
exponential operators generated by corresponding Lie operators

M= exp{lm}-exp{lm} = expfLu}-exp{l} -, (5)

where Hj, = HEX[’“], Vi = VEX[’“] are homogeneous polynomials of the kth
order. The vectors Hy or V can be calculated with the help of the continuous
analogue of the CBH- and Zassenhauss formulae and by using the Kronecker
product and Kronecker sum technique for matrices [8]. Moreover, using the ma-
trix representation for the Lie operators one can write a matrix representation
for the Lie map generated by these Lie operators. Here we consider homogeneous
equations of particle motion in a reference orbit neighborhood. So, for any beam
propagator one can write the following matrix representation in the well known
Poincaré-Birkhoff-Witt basis
oo
M- X =MoX® = M"M? .. M*  )X*®=> M"*XH (6)
k=1

where X = (X XPI .. X )T and the matrices M'* (solution matrices) can
be calculated according to the recurrence sequence of following formulas [8]:

My, o X = exp{Lg,} o XU = x4

o

Z H GEU=DE-DH) R In—1+1 - (7)

m=1

where G®! = G®U-D@E+E!1®G denotes the Kronecker sum of the Ith order.
The algebraical expressions similar to () are used for evaluation of aberration
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matrices up to an approximating order N. For this purpose a researcher has to
realize one of the concatenation procedures. For example, we can suggest the
following expressions.

Let us introduce a notation M<j = My o Mg_10...0 Mgo M;. Then we
write for nonlinearities of the third order

3 ™ PF1
_ it m ~¢ [k(m—1)+1]

MczoX =M (X+ZZMX +

m=2 k=1

v Lo pL+D) X [20+k1]
+ZZWP . (8

=1 k=1

Repeating described procedure we can evaluate M<joX for any k with necessary
calculation accuracy. But, as M« is a truncated form of the map M (we use
information about generating function up to the kth order only) then we have
to evaluate up to terms of the kth order for obtaining desired result for M.
So we can write

Moo X~ MMX + MP2XE M2 =M Py,
1
Moz oX ~ M <X + P x4 <IP>§1 + 2P§1> X[3J> —
= M"X + M"2XE 4 MEXE
1
MIS _ Mll <P;’1 + 2']}»%1) ,

and so on. In the following we act step-by-step by operators My, kK < m on
the vector X. Here we have to keep terms up to the kth order, and as a re-
sult we obtain a matrix representation of the beam propagator in the basis
(X, Xk X[k]). In other words, one can write expression (B up to some
kth order.

For some special problems one has evaluated above described procedures for
a phase vector moment of the kth order X", Using the Lie map and Kronecker
product properties we can proceed necessary evaluations and write [6]:

- [m]
Mo XM — (Mo X)) = (Z Mk X[’f]> =

k=1

k1 ye[ki1] Lk ¢ lkm] —
Z ZM ®...®M"*» X

ki1=1 km=1
ki+...+km=m

=) .. ) MPe.. oM =)y M (9)

ki=1  km=1 k=1 ,,,_1
kit...tkm=m kit tkm=
where M™ = > ® M i [ >m (compare with Eq. (6)).

kit thkm=l j=
ky>1
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For the inverse map M~1: X — Xy = M~! o X, one can compute the corre-
sponding block matrices using the generalized Gauss algorithm. We must note
here that one should evaluate the inverse matrix for M'! only. The remaining
block matrices for the inverse matrix demand algebraic operations only.

As one can see, the starting point for all described evaluations are matrices
P!, Using these matrices (without their content) one can compute aberration
matrices M'* according to the following (or similar) formulae. Here we should
mention that before symbolic or numerical evaluation, a researcher must define
correlations between physical and their mathematical (in our case matrix) rep-
resentation. It is necessary to note that symbolic expressions for above described
matrices can be evaluated in symbolic form for some representative class of time
dependent functions entering linear matrices P!1(t) (see, for example, [9]). These
symbolic expressions for elements of P*!(¢) can be embedded in a data base and
used in the numerical computations on-demand.

2.3 The Numerical Computation Algorithm for the
Matrix Formalism

Above described approach is used for symbolic computation of aberration ma-
trices (and additional formulae which are necessary according to the physical
problem). In the case of more complex time dependence of P!1(t), one can use
the numerical solution methods using the following algorithm.

It is necessary to note that we can consider eq. [2)) as a starting point for our
beam evolution consideration in the following form

dX

=F&X,UB) =Y PRp)XH, 1
dt (t;X,U,B) ; (t) (10)

If we present the solution of (I0) using (@), we can write

CZ( = PHe)xH. (11)
k=1

Following [§] one can write the solution of (1) in the following form:

X(t) =3 M (t[to) X}, (12)
k=1
M (¢t LI . . o o
dfﬁ ) S Bl (M (), 1< i <k, P = PLG-HDRO-DG-D),

Jj=t
M (tolto) = E, M* (toto) = EIFl,  MI*(to]to) = O, Vj # k,

where E is the identity matrix, 07 is a null matrix of corresponding order.
Equations ([I2)) can be solved numerically up to necessary order of nonlineari-
ties. This approach can be applied when independent variable ¢ dependence is
complex enough, and corresponding symbolic computation can not be produced.
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3 Symplectification Problem and Invariants Computation

The Hamiltonian formalism is known to be very popular in physics problems, in
particular in accelerator physics. This leads us to the necessity of Hamiltonian
nature requirement. As a consequence this requirement leads us to symplectic
property of our beam propagator M(t|to) for all ¢ > ¢g.

It is known that symplectic integrators are very powerful tools implemented
in most of the tracking codes in accelerator physics. The property of area con-
servation is particularly suitable for integrating the equations of particle motion
over thousands and millions of turns for modern accelerators. The symplectic
maps arise from Hamiltonian dynamics because these preserve the loop action.
Thus, for example, the time ¢ map of any Hamiltonian flow is symplectic, as is a
Poincaré return map defined on a cross section. For example, a circular particle
accelerator (storage ring or collider) has a sequence of accelerating and focusing
elements that can be modeled by a composition of symplectic maps.

The most popular approach for the dynamics of the particle is based on rep-
resenting each magnet by a separate Hamiltonian. Its flow M be computed, i.e.,
the map linking the particle coordinates at the entrance, X(¢g) and the current,
X(t): X(t) = M(t|to)X(to). So the flow of the full ring is then obtained by con-
catenating the flows of each single element of the ring. Above described matrix
formalism is adapted to similar description.

3.1 Two Solution Schemes

Numerical integration algorithms play an essential role in investigation of the
long term beam particle evolution, stability of similar process, and nonlinear
nonintegrable Hamiltonian systems. Transfer maps generated by Hamiltonian
systems obey the symplectic condition, which can be in the following form

M (t|to)ToM(t[to) = Jo, Yt > to, (13)

where Jo = <—@IE g) is the so-called canonical symplectic matrix, and M denotes

the Jacobian matrix:

0
Unfortunately, standard numerical integration methods are not symplectic, and
this violation of the symplectic condition (I4]) can lead to some false effects, for
example, spurious chaotic, dissipative behavior and so on.

There are several approaches devoted to the development of numerical meth-
ods preserving some qualitative structure, which is inherent in the dynamical
system under study. These schemes will be noted as conservative integration
schemes. It is necessary to distinguish two similar types of integration schemes.

The first direction of beam propagator evaluation is based on the universal
exponential identities or relations among Lie algebra because these maps have
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all requisite properties. But its numerical realization loses these properties, and
it is necessary to restore desired properties for a numerical variant of this map
too. In this report, we take after the second approach.

The second direction is based on the universal schemes, such as different sym-
plectic variants for traditional numerical integration schemes (see, for example,
works by J.M. San-Serna [10] and others).

As mentioned above, the beam evolution is defined completely by a sequence
of aberration matrices M'®. But for practical calculations, we have to break off
for some aberration order N. After this manipulation, the resulting map — the
restricted map MY loses the symplectic property, which should be recovered.
In other words, we should replace the full map M generated by the sequence
of matrices (M, M2, ... M _..) with reduced map My generated by finite
sequence (MM, M2, ... M),

So we have two approaches for map evaluations. The first is based on symbolic
representation for M'*, which can be found for some restricted models of P,
This set of models is defined by functions family, for which there are symbolic so-
lutions appropriate for fringe field distribution. Among them the most familiar is
a step function. The symbolic representation for aberration matrices M'* enables
a parametric investigation of the beam propagator. This property is especially
useful for optimization problems (see, e.g., [I1]). The second approach is based
on the numerical solution of differential equations for aberration matrices (see
(), which can be evaluated for arbitrary forms of fringe fields in the control
elements. Here we lose not only the symbolic-specific flexibility, but possibility
to keep corresponding solutions in data knowledge as LEGO-objects [12].

3.2 Symplectification Procedures

The both (above described) cases demand symplectic property for the restricted
beam propagator M. Several symplectic integration methods have been pro-
posed in the literature (see, for example, [13]-[I5]). A concept of invariants allows
to use the tools of symmetry theory permitting to write any invariant property
as an appropriate symmetry condition [6].

In this paper, we shortly discuss a problem of symplectification procedure for
restricted map generated by Hamiltonian dynamical systems. For this purpose
let us consider the symplectic condition (I3]) for restricted matrix representation

N
MyXo = > M*xpd. (15)
k=1
In contrast to full series (see (I2)), the symplectic condition (I3) applied to a
short map My will be violated. As an example let us consider one-dimensional
motion equations with second-order nonlinearities

X(t) = M'X, +me([)z] — Mt (Xo n Q12X([)2]) , dimX = 2. (16)

The symplectic condition leads to linear algebraic homogeneous equations
for matrix elements mj; : M'* = {m};}. Note that the matrix M'" in (I0) is
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symplectic automatically, and following [8] one can evaluate these equations and
write for matrix Q! = {g;;} the following:

q11 q12 4913 Q14 q15 die  q17 q18 419 {d110

le _ g21 422 423 Q15 q25 qi7 Q27 Q19/2 24110 q210 (17)
g1 g32 433 —2q11 —2G¢21 —q12 —G22 q14/2 —qi5 G25/2

932/22q33 Qa3 —qi2 —Q22 932/22G33 Qa3 —qi2 —Qa2

Similar formulas can be obtained for any order of nonlinearities N and dimension
of the phase vector X. In addition, these relations reduce the computational
costs, indeed, in the case of dim X = 4, for 40 elements of Q'? we obtain 24
restrictions, and for 80 elements for Q'® we obtain 60 restrictions of type (7).
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3.3 Kinematic and Dynamic Nonlinear Invariants

Any numerical computational process leads to distortion of qualitative properties
(for example, some dynamic and kinematical invariants [4]). These quantities can
be evaluated using, for example, Casimirs operators. According to this theory
for Lie groups generated by dynamical systems we can construct invariants using
special forms and use these data for computational process controlling [§].

The basic types of computational processes are presented in Fig.2. All pre-
sented modules are not only necessary for correct realization of computational
experiments, but give a researcher efficient tools for these experiments setup.
Usage of symbolic algebra tools give us flexibility and efficiency of the compu-
tational process.

3.4 Additional Procedures for Optimization of the Beam
Dynamical System

The matrix formalism allows us presenting a wide set of optimal demands in
the matrix elements of M'* up to some kth order [6]. The necessary expres-
sions can easily be evaluated by some symbolic procedures and embedded into
computational processes. Moreover, at an initial step of corresponding investi-
gations, the corresponding computational processes can be realized using Maple
or Mathematica tools.

4 Parallel and Distributed Computing in
Accelerator Physics

The choice of a matrix formalism as the basic tool for the beam evaluation
process allows the use of databases of matrix objects prepared in symbolic and /or
numerical modes. Moreover, this aids the construction of efficient numerical and
symbolic codes for computational experiments. Here we describe two concepts:
parallel and distributed computing.

The first type of computational process involves the implementation of ho-
mogeneous operations on a set of homogeneous processors. In the second type,
the operations having different structure can be computed using a heterogeneous
set of processors. This requires to distinguish two types of computational oper-
ations: the first of them corresponds to matriz operations and the second one
to computational flows (see, for example, Fig.3). This separation allows us to
distribute a computational experiment over several clusters. Every cluster solves
the problems intrinsic in one of the flows. This approach has a bottleneck prob-
lem connected with the synchronization of these flows. This problem can be
solved using a base of homogeneous mathematical tools — the matrix formalism
for Lie methods. The matrix form of practically all required objects allows us to
realize parallel computing in a natural way. First of all, parallel computing is re-
alized at the numerical stage when the matrix representation of the current map
is built. The second parallelization process is connected with the phase beam
portrait construction stage. For this stage, there are several possible approaches
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(see, for example, [§]. Moreover, the matrix formalism and symbolic formulae
for some matrix operations lead us to more efficient computational procedures
for the distributed and parallel computational process.

Additional computational flows are connected with the next two procedures.
The first of them is devoted to visualization of all necessary information including
auxiliary procedures (for example, analysis of images using differential geome-
try methods) and space-charge force computing. Here we can use the methods
proposed in our previous publications (see, for example, [LTGTTITE]).

5 Conclusions

The most of described computational flows are realized using Message-Passing
Interface (MPI) and deployed on the Linux clusters (placed into the Faculty
of Applied Mathematics and Control Processes, SPbSU). It gives students and
scientists of the Faculty the affordable time for the circle accelerator complex
beam dynamics studies.
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Abstract. In this paper we consider disjoint decomposition of algebraic
and non-linear partial differential systems of equations and inequations
into so-called simple subsystems. We exploit THOMAS decomposition
ideas and develop them into a new algorithm. For algebraic systems sim-
plicity means triangularity, squarefreeness and non-vanishing initials. For
differential systems the algorithm provides not only algebraic simplicity
but also involutivity. The algorithm has been implemented in MAPLE.

1 Introduction

Nowadays, triangular decomposition algorithms, which go back to the charac-
teristic set method by Ritt [Rit50] and Wu [Wu00], and software implementing
them have become powerful tools for investigating and solving systems of multi-
variate polynomial equations. In many cases these methods are computationally
more efficient than those based on construction of GROBNER bases. As an ex-
ample of such problems one can indicate BoOLean polynomial systems arising
in cryptanalysis of stream ciphers. For those systems triangular decomposition
algorithms based on the characteristic set method revealed their superiority over
the best modern algorithms for the construction of GROBNER bases [sGHO09).

For terminology, literature, definitions and basic proofs on triangular-decom-
position algorithms for polynomial and differential-polynomial systems we refer
to the excellent tutorial papers [Hub03a, [Hub03b| and to the bibliographical
references therein.

Among numerous triangular decompositions the THOMAS one stands by itself.
It was suggested by the American mathematician J.M.Thomas in his books
[Tho37, [Tho62] and decomposes a finite system of polynomial equations and
inequations into finitely many triangular subsystems that he called simple. Unlike
other decomposition algorithms it yields a disjoint zero decomposition, that is,
it decomposes the affine variety or quasi-affine variety defined by the input into
a finite number of disjoint quasi-affine varieties determined by the output simple
systems. Every simple system is a regular chain.
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During his research on triangular decomposition, Thomas was motivated by
the RIQUIER-JANET theory [Riql0, Jan29|, extending it to non-linear systems of
partial differential equations. For this purpose he developed a theory of (THOMAS)
monomials, which generate the involutive monomial division called THOMAS divi-
sion in [(GB98a]. He gave a recipe for decomposing a non-linear differential system
into algebraically simple and passive subsystems [Tho37].

Differential THOMAS decomposition differs noticeably from that computed by
the famous ROSENFELD-GROBNER algorithm [BLOP09, BLOP95| which forms
a basis of the diffalg and BLAD libraries [BHO4, [BouQ9] as well as from other
differential decompositions (e.g. [BKRMO0I]). We found that diffalg and BLAD
are optimized and well-suited for ordinary differential equations. However, all
other known methods give a zero decomposition which, unlike that in THOMAS
decomposition, is not necessarily disjoint.

A first implementation of the THOMAS decomposition was done by Teresa
Gomez-Diaz in AXIOM under the name “dynamic constructible closure” which
later turned out to be the same as the THOMAS decomposition [Del00]. Wang
later designed and implemented an algorithm constructing the THOMAS decom-
position [Wan98, Wan01l, LW99|. For polynomial and ordinary differential sys-
tems Wang’s algorithm was implemented by himself in MAPLE [Wan04] as part
of the software package epsilon [Wan03|, which also contains implementations of
a number of other triangular decomposition algorithms. A modified algorithmic
version of the THOMAS decomposition was considered in [Ger(08| with its link to
the theory of involutive bases [GB98al, [Ger05, |[Ger99]. The latter theory together
with some extensions is presented in detail in the recent book [Seil(].

In the given paper we present a new algorithmic version of the THOMAS de-
composition for polynomial and (partial) differential systems. In the differential
case the output subsystems are JANET involutive in accordance to the involu-
tivity criterion from [Ger08|, and hence they are coherent. Moreover, for every
output subsystem the set of its equations is a minimal JANET basis of the radi-
cal differential ideal generated by this set. The algorithm has been implemented
in MAPLE for both the algebraic and differential case. For a linear differential
system it constructs a JANET basis of the corresponding differential ideal and
for this case works similarly to the MAPLE package Janet (cf. [BCGT03]).

This paper is organized as follows. In §2] we sketch the algebraic part of our
algorithm for the THOMAS decomposition with its main objects defined in §2.11
The algorithm itself together with its subalgorithms is considered in §2.21 De-
composition of differential systems is described in §3l Here we briefly introduce
some basic notions and concepts from differential algebra (§3.I]) and from the
theory of involutive bases specific to JANET division (§3.2)) together with one of
the two extra subalgorithms that extend the algebraic decomposition to the dif-
ferential one. The second such subalgorithm is considered in §3.3] along with the
definition of differential simple systems. Subsection §3.4] contains a description of
the differential THOMAS decomposition algorithm. Some implementation issues
are discussed in §4] where we also demonstrate the MAPLE implementation for
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the differential decomposition using the example of a system related to control
theory.
We omit the proofs for compactness. They will be published elsewhere.

2 Algebraic Systems

The algebraic THOMAS decomposition deals with systems of polynomial equa-
tions and inequations. This section introduces the concepts of simple systems and
disjoint decompositions based on properties of the set of solutions of a system.
A pseudo reduction procedure and several splitting algorithms on the basis of
polynomial remainder sequences are introduced as tools for the main algorithm,
which is presented at the end of the section.

2.1 Preliminaries

Let F be a computable field of characteristic 0 and R := F[z1,...,2,] the
polynomial ring in n variables. A total order < on the indeterminates of R is
called a ranking. The notation R = Fl[z1,...,z,] shall implicitly define the
ranking z; < ... < x,. The indeterminate z is called leader of p € R if z is
the <-largest variable occurring in p and we write ld(p) = z. If p € F, we define
ld(p) = 1 and 1 < z for all indeterminates z. The degree of p in 1d(p) is called
rank of p and the leading coefficient init(p) € F[y | y < 1d(p) ] of 1d(p)r2k(»)
in p is called initial of p.

For a € F", where F denotes the algebraic closure of F', define the following
evaluation homomorphisms:

Ga: Floy,... xn] = F i ai— a

T a1 < k
xr; — x;, otherwise

P<apat Flor, .., an] = Flag, ... an] : {

For a polynomial p € R, the symbols p— and p- shall denote the equation p = 0
and inequation p # 0, respectively. A finite set of equations and inequations is
called an (algebraic) system over R. Abusing notation, we sometimes treat
p= or px as the underlying polynomial p. A solution of a system S is a tuple
a € F" such that @a(p) = 0 for all equations p— € S and ¢a(p) # 0 for all
inequations px € S. The set of all solutions of S is denoted by Sol(.S).

Define S, := {p € S | 1ld(p) = z}. In a situation where it is clear that
|Sz| = 1, we also use S, to denote the unique element of S,.. The subset S<, :=
{pe€ S| 1d(p) < z} can be considered a system over F[y | y < x |. Furthermore,
the sets of all equations p— € S and all inequations p+ € S are denoted by S=
and S7, respectively.

The general idea of the THOMAS methods is to use the homomorphism ¢4 a
to treat each polynomial p € S, as the univariate polynomial ¢, a(p) € F|x]
for all a € Gol(S<,) simultaneously. This idea forms the basis of our central
object, the simple system:
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Definition 2.1 (Simple Systems). Let S be a system.

1. Sis triangular if |S,,| <1V 1<i<nand SN{c=,cx |ce F} =0.

2. S has non-vanishing initials if ¢,(init(p)) # 0 V a € Gol(S<,,) and
pE Sy, for 1 <i<n.

3. Sis square-free if the univariate polynomial ¢<4, a(p) € F|z;] is square-free
VaeGol(Sc,,) and pe Sy, for 1 <i<mn.

4. S is called simple if it is triangular, has non-vanishing initials and is square-
free.

Although all required properties are characterized via solutions of lower-ranking
equations and inequations, the THOMAS decomposition algorithm does not cal-
culate solutions of polynomials. Instead, it uses polynomial equations and in-
equations to partition the set of solutions of the lower-ranking system to ensure
the above properties.

Remark 2.2. Simplicity of a system guarantees the existence of solutions: If
b € Gol(S<;) and S, is not empty, then ¢, p(Sz) is a univariate polynomial
with exactly rank(S;) distinct roots. When extending b to a solution (b,a) of
S<g, for an equation in S, there are rank(S;) choices for a, whereas for an
inequation or empty S, all but finitely many a € F' give an extension.

To transform a system into a simple system, it is in general necessary to partition
the set of solutions. Instead of an equivalent simple system, this leads to a so-
called decomposition into simple systems.

Definition 2.3. A family (S;)/", is called decomposition of S if Gol(S) =
U™, S0l(S;). A decomposition is called disjoint if Sol(S5;)NGol(S;) =0V i # j.
A disjoint decomposition of a system into simple systems is called (algebraic)
THOMAS decomposition.

For any algebraic system S, there exists a THOMAS decomposition (cf. [Tho37],
[Tho62|, [Wan98]). The algorithm presented in the following section provides
another proof of this fact. First, we give an easy example of a THOMAS
decomposition.

Example 2.4. Consider the equation

+1
p=y? 23— 2% . (z+1)

A THOMAS decomposition of {p_} is given by:

({? —2® —2®)=, (& (x + 1)}, {y=, (z - (2 +1))=})

2.2 Decomposition Algorithms

Our version of the decomposition algorithm in each round treats one system,
potentially splitting it into several subsystems. For this purpose, one polynomial
is chosen from a list of polynomials to be processed. This polynomial is pseudo-
reduced modulo the system and afterwards combined with the polynomial in the
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system having the same leader. To ensure that all polynomials are square-free
and their initials do not vanish, the system may be split into several ones by
initials of polynomials or subresultants.

From now on, a system S is presented as a pair of sets (Sr,Sg), where St
represents a candidate for a simple system while Sg is the queue of elements to
be processed. St is always triangular and (S7), denotes the unique equation or
inequation of leader x in Sp, if any. St also fulfills a weaker form of the other
two simplicity conditions, i.e., for any solution a of (St)<z U (S¢)<sz, we have
a(init((S7)z)) # 0 and ¢z a((ST)s) is square-free.

From now on, let prem be a pseudo remainder algorithnﬂ in R and pquo
the corresponding pseudo quotient algorithm, i.e., for p and ¢ with ld(p) =
ld(q) ==

m - p = pquo(p, q,x) - ¢ + prem(p, ¢, x) (1)

where deg,(q) > deg,(prem(p,q,z)) and m € R\ {0} with 1ld(m) < z and
m | init(q)* for some k € Zs¢. Note that if the initials of p and ¢ are non-zero,
the initial of pquo(p, g, ) is also non-zero. Equation (D)) only allows us to replace
p with prem(p, ¢, z) if m does not vanish on any solution. The below Algorithm
[23) and Remark (2.6]) require the last property, which, by definition, holds in
simple systems.

The following algorithm employs pseudo remainders and the triangular struc-
ture to reduce a polynomial modulo St:

Algorithm 2.5 (Reduce).

Input: A system S, a polynomial p € R

Output: A polynomial ¢ with ¢,(p) = 0 if and only if ¢a(q) = 0 for each a €
Sol(S).

Algorithm:

Lz —1d(p); g —p

2: while z > 1 and (S7), is an equation and rank(q) > rank((St),) do
3: g« prem(q, (ST)s, )

4:  x«1d(q)

5: end while

6: if > 1 and Reduce(sS, init(g)) = 0 then
7. return Reduce(S,q — init(g)z"*"k(@)
8: else

9: return ¢
10: end if

A polynomial p is called reduced modulo St if Reduce(S, p) = p. A polynomial
p reduces to ¢ modulo Sy if Reduce(S,p) = q.

The result of the Reduce algorithm does not need to be a canonical normal
form. It only needs to detect polynomials that vanish on all solutions of a system:

! In our context prem does not necessarily have to be the classical pseudo remainder,
but any sparse pseudo remainder with property () will suffice.
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Remark 2.6. Let p € R with 1d(p) = x. Reduce(S,p) = 0 implies ¢a(p) =
0V ac Gol(S<,).

The converse of this remark only holds if (Sg)<, = 0, i.e., (S7)<s is simple. If it
is not simple, but 1d(p) = « and (Sg)Z, = 0 hold, we still have some information.
In particular, Reduce(S, p) # 0 implies that either Sol(S<,) is empty or there
exists a € Gol(S<, U{(ST)s}) such that ¢a(p) # 0.

We now direct our attention to the methods we use to produce disjoint decom-
positions. Since (S U {p.},SU{p=}) is a disjoint decomposition of S, we will
use the following one-line subalgorithm as the basis of all the splitting algorithms
described below.

Algorithm 2.7 (Split). Input: A system S, a polynomial p € R
Output: The disjoint decomposition (S U {px},SU{p=}) of S.
Algorithm:

L: return ((S7,So U{p+}),(St,SqU{p=}))

The output of the following splitting algorithms is not yet a disjoint decomposi-
tion of the input. However, the main algorithm Decompose will use this output
to construct a disjoint decomposition. We single out these algorithms to make
the main algorithm more compact and readable. For details we refer to the input
and output specifications of the algorithms in question.

The algorithm InitSplit ensures that in one of the returned systems the prop-
erty [ in Definition (Z.I)) holds for the input polynomial. In the other system the
initial of that polynomial vanishes.

Algorithm 2.8 (InitSplit). Input: A system S, an equation or inequation g with
1d(q) = «.
Output: Two systems S7 and Sz, where (S7 U {q}, S2) is a disjoint decomposition
of SU{q}. Moreover, ¢, (init(q)) # 0 holds for all a € Gol(S1) and ¢, (init(q)) =0
for all a € Sol(Ss). Algorithm:
: (S1,82) « Split(S, init(q))
if ¢ is an equation then

(S2)q « (S2)@ U {(q — init(q)z™" (V) _}
else if g is an inequation then

(S2)q « (S2)q U { (¢ — init(g)ar@) }
end if
return (51, S2)

—_

In Definition ([Z1]) we view a multivariate polynomial p as the univariate polyno-
mial ¢14(p),a(p). For ensuring triangularity and square-freeness, we often com-
pute the ged of two polynomials, which generally depends on the inserted value
a. Subresultants provide a generalization of the EUCLIDean algorithm useful in
our context and their initials distinguish the cases of different degrees of gcds.

Definition 2.9. Let p,q € R with 1d(p) = 1d(¢q) = =, deg,(p) = dp, > deg,(q) =
dgy. We denote by PRS(p, ¢, z) the subresultant polynomial remainder se-
quence (see [Hab4§|, [Mis93, Chap. 7|, [Yap00, Chap. 3|) of p and ¢ w.r.t. z,
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and by PRS;(p,q, ), i < d4 the regular polynomial of degree ¢ in PRS(p, ¢, z)
if it exists, or 0 otherwise. Furthermore, PRSy, (p, ¢, %) := p, PRSq,(p, ¢, ) := ¢
and PRS;(p, ¢, z) :=0, dg < i < dp.

Define res;(p, ¢, ) := init (PRS; (p,q,z)) for 0 < i < djp, whereas
resq,(p,q,xz) = 1 and reso(p,q,z) := PRSq (p,q,z). Note that res(p,q,z) :=
reso(p, ¢, ) is the usual resultant.

Definition 2.10. Let S be a system and p1,p2 € R with 1d(p;) = ld(p2) = .
If |Gol(S<z)| > 0, we call

i:=min{i€Z>o| 3a€Gol(5<;) suchthat deg,(gcd(d<z.a(p1), P<a.a(p2))) = i}

the fiber cardinality of p; and ps w.r.t. S. Moreover, if (Sg)Z, = 0, then

i’ :=min{i € Z>( | Reduce(res;(p1,p2, ), S7) =0V j <i
and Reduce(res;(p1, p2, z), ST) # 0}

is the quasi fiber cardinality of p; and p; w.r.t. S. A disjoint decomposition
(S1,52) of S such that

1. deg,(ged(d<z,a(p1); P<ra(p2))) =iV ac Sol((S1)<x)
2. deg,(ged(p<a,a(p1); d<a,a(p2))) > iV a € Gol((S2)<a)

is called the i-th fibration split of p; and py w.r.t. S. A polynomial r» € R with
1d(r) = x such that deg,(r) =i and

¢<:z:,a('r) ~ ng(¢<z,a(pl)7 ¢<z,a(p2)) Vac 60[((Sl)<w)

is called the i-th conditional greatest common divisor of p; and ps w.r.t.
S, where p ~ ¢ if and only if p € K ¢. Furthermore, ¢ € R with ld(¢) =  and
deg,(q) = deg,(p1) — i such that

~ ¢<z,a(p1)
G<z,a(q) 6cd(en a(p1). dena(p2)) VacGol((S)<s)

is called the i-th conditional quotient of p; by ps w.r.t. S. By replacing
¢<w.a(p2) in the above definition with ;x(¢<x,a(p1)), we get an i-th square-
free split and i-th conditional square-free part of p; w.r.t. S.

The fiber cardinality is often not immediately available, as we may be unable
to take inequations into account. However, we can use all information contained
in the equations using reduction, if all equations are contained in Sp. Thus we
require (Sg)Z, = 0 before doing any reduction.

In this situation, the quasi fiber cardinality is easy to calculate and in many
cases will be identical to the fiber cardinality. Furthermore, if we consider the
system Sy from an i-th fibration split of some polynomials for a system S and
ensure that ((S2)g)=, = 0, then the quasi fiber cardinality of the same polyno-
mials for Sy will be i + 1. Therefore and due to the following lemma, the quasi
fiber cardinality is good enough for our purposes.
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Lemma 2.11. Let |Sol(S<,)| > 0 and (Sg)Z, = 0. For py, p2 as in Definition
EI0) with ¢a(init(p1)) # 0V a € Sol(S<,) and rank(p;) > rank(ps), let i be
the fiber cardinality of p; and py w.r.t. S and i’ the corresponding quasi fiber
cardinality. Then

i’ <i
where the equality holds if and only if |Sol(S<, U {resy (p1,p2,x)£})| > 0.

Corollary 2.12. Let |Sol(S<;)| > 0 and (Sg)=Z, = 0. For polynomials py, ps as

in Definition (2I0) with ¢a(init(p1)) # 0 and ¢a(init(p2)) # 0V a € Gol(S<,),
let 7 be the fiber cardinality of p; and ps w.r.t. S and ¢’ the quasi fiber cardinality
of p; and prem(pz,p1,x) w.r.t. S. Then

i’ <i
with equality if and only if |Sol(S<, U {resy (p1, prem(p2, p1,z),x)£})| > 0.

The following algorithm calculates the quasi fiber cardinality of two polynomials.
It is used as the basis for all algorithms that calculate a greatest common divisor
or a least common multiple.

Algorithm 2.13 (ResSplit). Input: A system S with (Sg)Z, = 0, two polyno-
mials p, ¢ € R with 1d(p) = 1d(q) = «, rank(p) > rank(q) and ¢, (init(p)) # 0 for
all a € Gol(S<y).

Output: The quasi fiber cardinality ¢ of p and ¢ w.r.t. S and an i-th fibration
split (S1,.52) of p and g w.r.t. S.
Algorithm:

1: ¢« min{i € Z>q | Reduce(res;(p, ¢, ), S7) =0V j <1

and Reduce(res;(p, q,x), ST) # 0}
2: return (4,57, 52) := (i, Split(S, res;(p, ¢, x)))

Similarly to the InitSplit algorithm (2.8]), the following algorithm does not return
a disjoint decomposition, but Decompose uses it to construct one.

Algorithm 2.14 (ResSplitGCD). Input: A system S with (Sg)Z, = 0, where
(ST). is an equation, and an equation g— with 1d(¢) = x. Furthermore rank(q) <
rank((St)z)-

Output: Two systems S; and Se and an equation g— such that:

a) So = §2/ U {q} where (Sl, :?;) is an i-th fibration split of (S7), and g w.r.t.
S
b) ¢ is an i-th conditional ged of (S7), and ¢ w.r.t. S.

where i is the quasi fiber cardinality of p and ¢ w.r.t. S.

Algorithm:
1: (4,571, S2) < ResSplit (S, (S7)z,q)

2: (S2)q < (S2)Q U{q}
3: return 5,55, PRS;((S7)z,q,7)=
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The following algorithm is similar, but instead of the gcd, it returns the first
input polynomial divided by the ged. It is used to assimilate an inequation into
a system where there already is an equation with the same leader, or to calculate
the least common multiple of two inequations.

Algorithm 2.15 (ResSplitDivide). Input: A system S with (Sg)Z, = 0 and two
polynomials p, ¢ with 1d(p) = 1d(q) = = and ¢a(init(p)) # 0 for all a € Sol(S<,).
Furthermore, if rank(p) < rank(q) then ¢, (init(q)) # 0.

Output: Two systems S; and So and a polynomial p such that:

a) So = Sy U {q} where (Sl, §;) is an ¢-th fibration split p and ¢ w.r.t. S
b) P is an é-th conditional quotient of p by ¢’ w.r.t. S

where 7 is the quasi fiber cardinality of p and ¢’ w.r.t. S, with ¢’ = ¢ for rank(p) >
rank(q) and ¢’ = prem(q, p, ) otherwise.

Algorithm:
1: if rank(p) < rank(q) then
2:  return ResSplitDivide(S, p, prem(q, p, x))
3: else
4:  (1,81,82) < ResSplit (S, p, q)
5. if ¢ > 0 then
6: p < pquo(p, PRS;(p, prem(q, p, ), ), z)
7. else
8 p—p
9: end if
10: (S2)q@ < (52)@ U{q}
11:  return Si,59,p
12: end if

Applying the last algorithm to a polynomial p and its partial derivative by its
leader yields an algorithm to make polynomials square-free.

In the above ResSplit-based algorithms, we had the requirement that (Sg)Z,
= (). This ensures that all information contained in any equation of a smaller
leader than x will be respected by reduction modulo St and thus avoids creating
redundant systems. It will also be necessary for termination of the Decompose
algorithm. This motivates the definition of a selection strategy as follows.

Definition 2.16 (Select). Let Papite(M) be the set of all finite subsets of a set
M. A selection strategy is a map

Select : Panite({p=,px | p € R}) — {p=,p= |p € R} :
Qr—qeQ

with the following properties:

1. If Select(Q) = ¢= is an equation, then Qzld(q) = 0.
2. If Select(Q)) = g« is an inequation, then led(q) = (.



40 T. Béchler et al.

The second property of Select could be weakened further, i.e., led(q) = (). How-
ever, this would result in redundant calculations in the Decompose algorithm,
thus we want all equations of the same leader to be treated first.

The following algorithm is trivial. However, it will be replaced with a more
complicated algorithm in §3] when the differential THOMAS decomposition is
treated.

Algorithm 2.17 (InsertEquation). Input: A system S and an equation r— with
1d(r) = x satisfying ¢, (init(r)) # 0 and ¢« a(r) square-free for alla € Sol(S<,).
Output: A system S where r— is inserted into St.
Algorithm:
if (S7), is not empty then
St — (St \ {(57)=})
end if
: Sp— Spu{r=}

return S

QU @

Now we present the main algorithm. It is based on all above algorithms and
yields an algebraic THOMAS decomposition. This algorithm forms the basis of
the differential THOMAS decomposition to be discussed in detail in §3

The general structure is as follows: In each iteration, a system S is selected
from a list P of unfinished systems. An equation or inequation ¢ is chosen from
Sq according to the selection strategy and reduced modulo S7. The algorithm
assimilates ¢ into St, potentially adding inequations of lower leader to Sg and
adding new systems S; to P that contain a new equation of lower leader in
(Si)q@- This process works differently depending on whether ¢ and (St )ia(q)
are equations or inequations, but it is based on the InitSplit, ResSplitGed and
ResSplitDivide methods in all cases. As soon as the algorithm yields an equa-
tion ¢ = 0 for ¢ € F'\ {0} or an inequation 0 # 0 in a system, this system is
inconsistent and thus discarded.

Algorithm 2.18 (Decompose). The algorithm is printed on page A1l

In the next section, we consider an extension of this algorithm to partial differen-
tial systems. Both algorithms have been implemented, and their implementation
aspects are considered in §l

3 The Differential Thomas Decomposition

The differential THOMAS decomposition is concerned with manipulations of poly-
nomial differential equations. The basic idea for a construction of this decom-
position is twofold. On the one hand a combinatorial calculus developed by
JANET takes care of finding unique reductors and all differential consequences
by completing systems to involution. On the other hand the algebraic THOMAS
decomposition makes the necessary splits for regularity of initials during the
computation and ensures disjointness.
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Algorithm [2.T8] (Decompose)

Input: A system S’ with (S")r = 0.
Output: A THOMAS decomposition of S’.
Algorithm:

1: P« {S'}; Result — 0

2: while |P| > 0 do

3 Choose S € P; P — P\ {S}
4 if |Sqg| = 0 then
5 Result <+ Result U {S}
6: else
7: q < Select(Sq); Sq < So \ {q}
8: q < Reduce(q, St);  — 1d(q)
9 if ¢ ¢ {0%,c= | c € F\{0}} then
10 if z # 1 then
11: if ¢ is an equation then
12: if (S7)z is an equation then
13: if Reduce(reso((ST)z,q,2),ST) =0 then
14: (S, S1,p) < ResSplitGCD(S, q,z); P «— PU{S1}
15: S « InsertEquation(S, p=)
16: else
17: Sq «— Sq U{g=,reso((S7)a,q, )=}
18: end if
19: else
20: if (S7)s is an inequatiorﬁ then
21: Sq — S U{(S7)z}; S — ST\ {(S1)=}
22: end if
23: (S, S2) < itSplit(S, q); P — PU{S2}
24: (S, Ss,p) — ResSplitDivide (S, q, 2 q); P — PU{Ss}
25: S «— InsertEquation(.S, p=)
26: end if
27: else if ¢ is an inequation then
28: if (S7)s is an equation then
29: (S, S4,p) < ResSplitDivide (S, (S1)«, q); P «— PU{S4}
30: S « InsertEquation (.S, p=)
31: else
32: (S, S5) « InitSplit(S, q); P «— PU{Ss}
33: (S, S, p) — ResSplitDivide (S, q, 2 q); P — P U{Se}
34: if (St)s is an inequation then
35: (S, S7,7) < ResSplitDivide (S, (S1)«, p); P «+— PU{S7}
36: (Sr)e — (rp)
37: else if (S7), is empty then
38: (S1)a < p
39: end if
40: end if
41: end if
42: end if
43: P—PU{S}
44: end if
45: end if

46: end while
47: return Result

¢ Remember that (St), might be empty, and thus neither an equation nor an inequa-
tion.
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We start by giving the basic definitions from differential algebra needed for the
algorithms. Afterwards we summarize the JANET division and its combinatorics.
The combinatorics give us a new algorithm InsertEquation to add equations into
systems. Afterwards we review the differential implications of the algebraic de-
composition algorithm and present the algorithm Reduce utilized for differential
reduction. Replacing the insertion and reduction methods from the algebraic case
with these differential methods yields the differential decomposition algorithm.

3.1 Preliminaries from Differential Algebra

Let A = {01,...,0,} be the set of derivations (n > 0) and F be a com-
putable A-differential field of characteristic zero. This means any 9; € A
is a linear operator 0; : F' — F fulfilling the LEIBNIZ rule. For a differen-
tial indeterminate u consider the A-differential polynomial ring F{u} :=
F [ u |ieZz, ], a polynomial ring infinitely generated by the algebraically
independent set (u)a := {u; | i € Z%,}. The operation of 9; € A on (u)a
by dju;i = uite, is extended linearly and by the LEIBNIZ rule to F{u}. Let
U = {uM, ..., ul™} be the set of differential indeterminates. The multivari-
ate A-differential polynomial ring is given by F{U} := F{u™M} ... {u(™}. The
elements of (U)a = {ui(j) |[ieZy,,j€ {1,...,m}} are called differential
variables.

We remark, that the algebraic closure F' of F is a differential field with a dif-
ferential structure uniquely defined by the differential structure of F' (cf. [Kol73,
§II.2, Lemma 1]). Let

m

E=@F[a,...,z]] 2 F72
j=1
with indeterminates z1, ..., z,, where F[[z1,..., 2,]] denotes the ring of formal

power series. The isomorphism maps coefficients of the power series to function
values of differential variables, i.e.,

m

) A 2 ; ,
@ Fler ozl = FO 3 a3 (W )
i=1 ez, iezz,,
where il := 41! -...-4,! defines the factorial of a multi-index.

In the formulation of the algorithm the direct sum of formal power series £
suffices to give a notion of solutions coherent to the algebraic case: For e € F
we define the F-algebra homomorphism

¢ F{U} — F: ui(j) — afe)(u)
evaluating all differential variables of a differential polynomial at the power series

e. A differential equation or inequation for m functions U = {u(®, ... u(™}
in n indeterminates is an element p € F{U} written p— or px, respectively. A
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solution of p— or px is an e € E with ¢.(p) = 0 or ¢.(p) # 0, respectively.
More generally e € F is called a solution of a set P of equations and inequations,
if it is a solution of each element in P. The set of solutions of P is denoted by
Golg(P) = Gol(P) C E. Since we substitute elements of F' algebraically for the
differential indeterminates, Remark (Z2]), which guarantees the continuation of
solutions from lower ranking variables to higher ranking ones, also holds here.
Any differential F-algebra R with a differential embedding of F < R might
be chosen as universal set of solutions, for example a universal differential field

containing F: Clearly F[[z1,...,2,]] embeds into its field of quotients
F((21,...,2n)), and thus FJ[z1,..., z,]] also embeds into a universal differen-
tial field containing F', since F'((z1,...,2y)) is a finitely generated differential

field extension of F' (cf. [Kol73| §I1.2 and §III.7]). We denote the set of solutions
in R by Golg(P) C R.

A finite set of equations and inequations is called a (differential) system
over F{U}. We will be using the same notation for systems as in the algebraic
THOMAS decomposition introduced in 211 and §22 in particular a system S
is represented by a pair (St,Sq). However, the candidate simple system St
will also reflect a differential structure using combinatorial methods. We will
elaborate on the combinatorics in the next section.

3.2 The Combinatorics of Janet Division

In this subsection we will focus on the combinatorics of equations, enabling us
to control the infinite set of differential variables appearing as partial derivatives
of differential indeterminates. For this purpose we use JANET division [GB98a]
which defines these combinatorics and also automatizes construction of integra-
bility conditions. An overview of modern development can be found in [Ger(5,
Seil0] and the original ideas by JANET are formulated in [Jan29]. This is achieved
by partitioning the set of differential variables into finitely many “cones” and
“free” variables. For creating this partition we present an algorithm for inserting
new equations into an existing set of equations and adjusting the cone decom-
position. Apart from this insertion algorithm the only other adaptation of the
algebraic Decompose algorithm (2-I8)) will be the reduction algorithm presented
in §3.3

We fix a (differential) ranking <, which is defined as a total order on the
differential variables such that u(®) < 8ju(k) and u® < u® implies 8ju(k) <
djull) for all u® O e U, 0; € A. For any finite set of differential variables,
a differential ranking is a ranking as defined for the algebraic case in §2.11 This
allows us to define the largest differential variable 1d(p) appearing in a differential
polynomial p € F{U} as leader, which is set to 1 for p € F. Furthermore, define
rank(p) and init(p) as the degree in the leader and the coefficient of 1d(p)r22k(r)|

respectively. Again we will assume 1 < ui(j) forall j € {1,...,m} and i € ZZ,.
A set W of differential variables is closed under the action of A’ C A if
Ow € W V9; € A',w € W. The smallest such closed set containing a differen-

tial variable w denoted by (w) s is called a cone and the elements of A’ we shall
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call (JANET) admissible derivations?. The A'-closed set generated by a set
W of differential variables is defined to be

W)a= (] Wi € (U)a .
W; DWW
W; A’-closed
For a finite set W = {w1,...,w,}, the JANET division algorithmically assigns

admissible derivations to the elements of W such that the cones generated by
the w € W are disjoint. The derivation 9; € A is assigned to the cone generated
©)

by w = vu;”” € W as admissible derivation, if and only if

iy = max {if | u?) € Wi}, =ix for all 1 < k <1}

holds. We remark, that j is fixed in this definition, i.e., when constructing cones
we only take into account other differential variables belonging to the same
differential indeterminate. The admissible derivations assigned to w are denoted
by Aw(w) € A and we call the cone (w)a,, () the JANET cone of w with
respect to W. This construction ensures disjointness of cones but not necessarily
that the union of cones equals (IW)a. For the JANET completion a finite set
,VK D Wis succesively created by adding any @ = d;w; & W, (W) a, () to
W, where w; € W and 9; € A\ Ay (w;). This leads to the disjoint JANET
decomposition
<W>A = H‘J <w>AW(w)
weWw

that separates a A-closed set W into finitely many cones (w) Agy (w) after finitely
many steps. For details see [Ger05, Def. 3.4] and [GB98al, Corr. 4.11].

With the JANET decomposition being defined for sets of differential variables,
we will assign admissible derivations to differential polynomials according to their
leaders. In particular, we extend the definitions of Ay (w) for finite W C F{U}
and w € W by defining Aw (w) := Aoy (1d(w)).

A differential polynomial ¢ € F{U} is called reducible with respect to p €
F{U}, if there exists i € ZZ2 such that 9} - ... 0 1d(p) =1d(9}* - ... Olrp) =
1d(q) and rank(d¥ - ... - dinp) < rank(q). We call a derivative of an equation
by an admissible derivation an admissible prolongation. When restricting
ourselves to admissible prolongation, we get the following concept: For a finite
set T C F{U} we call a differential polynomial ¢ € F{U} JANET reducible
with respect to p € T, if there exists i € Z2, such that 8} -...-di» 1d(p) = 1d(q)
with all proper derivatives being admissible and rank(di* - ... - di»p) < rank(q)
holds. We shall also say that ¢ is JANET reducible modulo T if thereisap € T,
such that ¢ is JANET reducible with respect to p € T.

A set of differential variables T' C (U)a is called minimal, if for any set
S C (U)a with W,cr(t)are) = Woes(5)as(s) the condition T C S holds (cf.

% In [Ger99] and [Seil(], Chap. 7] the admissible derivations are called (JANET) multi-
plicative variables.
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[GBI8bL Def. 4.2]). We also call a set of differential polynomials minimal, if the
corresponding set of leaders is minimal.

In addition to the non-zero initials and square-freeness of polynomials in the
candidate set St for a simple system (as defined in §2.2)), the equations in (S7)=
are required to have admissible derivations assigned to them. When an equation
p is not reducible modulo (S7)~ it is added to (S7)~ and all polynomials in St
with a leader being a derivative of 1d(p) are removed from S, ensuring minimal-
ity. Furthermore, all non-admissible prolongations are created to be processed.
This is formulated in the following algorithm:

Algorithm 3.1 (InsertEquation).
Input: A system S’ and a polynomial p— € F{U} not reducible modulo (5%)=.
Output: A system S, where (S7)= C (S%)~ U {p=} is maximal satisfying

{ld(q) | ¢ € (S7) \ {p}} N {d(p))a =0,

Sq =S U (S7\ 1) U{(9ig)= | ¢ € (S1)7,0i & Asp~ (@)} -
Algorithm:
: S5
St — Sru {p:}
: for ¢ € St \ {p} do
if 1d(q) € (1d(p))a then
Sq — SqUig}
St — St \ {4}
end if
end for
Reassign admissible derivations to (St)~
Sq — S U{(9ig)=1q € (57)7,0: & A(sr)=)(0)}

11: return S

© XSy

,_.
e

We remark that a non-admissible prolongations might be added to Sg again each
step, even though it has been added before. This can be prevented by simply
storing all previously generated non-admissible prolongations.

3.3 Differential Simple Systems

This section goes on reducing the differential decomposition algorithm to the
algebraic one. We start by introducing partial solutions in order to algebraically
evaluate differential polynomials at them yielding univariate differential poly-
nomials. Then we present a differential reduction algorithm, as the second dis-
tinction from the algebraic decomposition algorithm. At last this section defines
differential simple systems.

For a differential variable z € (U)a and a power series e € E define the
F-algebra homomorphism

u? s ale)(u?)), for W < g

: F{U F e {Ua,v> : iy ) i
b<ze { }—> [U"U ( >AU—'T] {u(j)v—wﬁ-(j) fOI'U(j)Z.T

i i i
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evaluating all differential variables of a differential polynomial at e which are
<-smaller than .

For differential reduction the JANET partition of differential variables provides
the mechanism to get a unique reductor in a fast way (for an algorithm see
[GYBO1]) by restricting to admissible prolongations. After finding a reductor we
apply a pseudo remainder algorithm (see Eq. ().

We need to ensure that initials (and initials of the derivatives) of equations are
non-zero. Let p € F{U} with = ld(p) and define the separant sep(p) := gi.
One easily checks (cf. [Kol73| §I.8, lemma 5] or [Hub03bl §3.1]) that the initial
of any derivative of p is sep(p) and the separant of any square-free equation
p is nonzero on Gol(p). So by making the equations square-free, it is ensured
that pseudo reductions are not only possible modulo p, but also modulo its
derivatives. This allows us to formulate the differential reduction algorithm:

Algorithm 3.2 (Reduce).

Input: A differential system S and a polynomial p € F{U}.

Output: A polynomial ¢ that is not JANET reducible modulo St with ¢.(p) =0
if and only if ¢e(¢) = 0 for each e € Gol(5).

Algorithm:

1: z <« 1d(p)

2: while exists g— € (S7)~ and iy,...,i, € Zxo with i; = 0 for 9; € A(s,=(q)
such that 8 - ... 1d(q) = 1d(p) and rank(d:" - ... - di»p) > rank(q) hold
do

3 p<—prem(p,3i1 ... Ong, )

4 x «— 1d(p)

5: end while

6: if Reduce(S,init(p)) = 0 then

7. return Reduce(S,p — init(p)z"*"k®))

8: else

9 return p

10: end if

A polynomial p € F{U} is called reducedd modulo Sy if Reduce(S,p) = p. A
polynomial p € F{U} reduces to ¢ modulo St if Reduce(S,p) = q.

Usually in differential algebra, one distinguishes a (full) differential reduction
as used here and a partial (differential) reduction. Partial reduction only employs
proper derivations of equations for reduction (cf. [Kol73| §1.9] or [HubO3b), §3.2]).
This is useful for separation of differential and algebraic parts of the algorithm
and for the use of ROSENFELD’s Lemma (cf. [Ros59]).

Definition 3.3 (Differential Simple Systems). A differential system S is
(JANET) involutive, if all non-admissible prolongations in (S7)~ reduce to zero
by (ST):.

3 There is a fine difference between not being reducible and being reduced. In the
case of not being reducible the initial of a polynomial can still reduce to zero and
iteratively the entire polynomial.



Thomas Decomposition of Algebraic and Differential Systems 47

A system S is called differentially simple or simple, if S is

a) algebraically simple in the finite set of differential variables appearing in it,
b) 1nv01ut1ve
¢) ST is minimal,

d) no inequation is reducible modulo S=

A disjoint decomposition of a system into differentially simple subsystems is
called (differential) THOMAS decomposition.

3.4 The Differential Decomposition Algorithm

The differential THOMAS decomposition algorithm is a modification of the alge-
braic THOMAS decomposition algorithm. We have already introduced the new
algorithms InsertEquation (B) for adding new equations into the systems and
Reduce ([B2) for reduction, that can replace their counterparts in the algebraic
algorithm.

Algorithm 3.4 (DifferentialDecompose).

Input: A differential system S’ with (S")r = 0.

Output: A differential THOMAS decomposition of S’.

Algorithm: The algorithm is obtained by replacing the two subalgorithms
InsertEquation and Reduce in (ZI8) with their differential counterparts (B1]) and

B2), respectively.
We give an example taken from [BC99, pp. 597-600]:

Example 3.5 (Cole-Hopf Transformation). For F' := R(z,t), A = {aw, S b
and U = {n, (} consider the heat equation h = 1; 41y, € F{U}~ and BURGER’s
equation b = {; + (pz + 2(, - ¢ € F{U}~. To improve readability, leaders of poly-
nomials are underlined below.

First we claim that any power series solution for the heat equation with a non-
zero constant term can be transformed to a solution of BURGER’s equation by
means of the COLE-HOPF transformation A : 7 +— "; . The differential THOMAS
decomposition for an orderly ranking with ¢, > n; of

{h:v (77 : C - 772?):77775}
~ ~ -
<C=A(n)

consists of the single system
S={(e—n Q= Ctm+n )=}

and one checks that Reduce(S,b) = 0 holds. This implies that any non-zero
solution of the heat equation is mapped by the COLE-HOPF transformation to
a solution of BURGER’s equation.

In addition we claim that X is surjective. For the proof we choose an elimi-
nation ranking (cf. [Hub03bl §8.1] or [Bou07]) with n > (, ie., n; > ¢ for all
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i,je (Z20)2. We compute the differential THOMAS decomposition of {h—,b_, (-
¢ —Mz)=, Nz} which again consists of a single system

S={(e—n¢)= (- C+me+n-¢*=b_,C} .

The properties of a simple system ensure that for any solution of lower ranking
equations there exists a solution of the other equations (cf. (Z2])). The elimina-
tion ordering guarantees that the only constraint for ¢ is BURGER’s equation b—
and thus for any solution f € Gol(b=) there exists a solution (g, f) € Sol(S).
Furthermore, since h— was added to the input system, g € Gol(h=) holds and
finally the equation (- ¢ — 1, )= implies A(g) = f.

Remark 3.6. Elements of the differential field are not subjected to splittings,
unless they are modelled as differential indeterminates. For example to model a
differential field F' = C(z) with A = { aax}v we add an extra differential indeter-
minate X to U and replace z by X in all equations and inequations. We subject
X to the relation é?xX =1 for X being “generic” or (;wX -1)- é?xX =0, if we
allow X to degenerate to a point. This will be subject of further study.

4 Implementation

4.1 Algorithmic Optimizations

In the Decompose algorithm, pseudo remainder sequences for the same pairs of
polynomials are usually needed several times. As these calculations are expensive
in general, for avoiding repeated calculations, it is important that the results are
kept in memory and will be reused when the same sequence is requested again.

If a polynomial admits factorization, we can use the it to save computa-
tion time. More precisely, a disjoint decomposition of the system S W {(p -
g)=} is given by (S U {p=},S U {p+£,¢=}) and the system S {(p-q)x} is
equivalent to S U {px,q+}. Let V; := {wj | z; < s, (ST)7, # @} and Z; :=

J
{a;j | zj < i, (S7)5, = @}. If (S7)7, is irreducible over the field F; :=
F(Z)[Yi]/((ST)Za, ) r(zoyva for all i € {1,...,n}, where ((S7)2; )F(z)v;) is
the ideal generated by (St)Z,, in the polynomial ring F'(Z;)[Y;], factorization
of polynomials can be performed over F), instead of F.

Coefficient growth is a common problem in elimination. If possible, polyno-
mials should be represented as compact as possible. Once it is known that the
initial cannot vanish, the content (in the univariate sense) cannot vanish either.
Thus, every time an initial has been added as an inequation to the system, one
can divide the polynomial by its content.

If the ground field F is represented as a field of fractions of a domain D (like
the rationals or a rational function field over the rationals), it also makes sense
to remove the multivariate content, which is an element of F'.

When reducing, in addition to reduction modulo the polynomial of the same
leader, reducing the coefficients modulo the polynomials of lower leader can be
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considered. In some cases this leads to a reduction of sizes of coefficients, in other
cases sizes increase. The latter is partly due to whole polynomials being multi-
plied with initials of the reductors. Finding a good heuristic for this coefficient
reduction is crucial for efficiency.

In the algebraic algorithm, polynomials don’t necessarily have to be square-
free when they are inserted into the candidate simple system. Efficiency is some-
times improved greatly by postponing the calculation of the square-free split as
long as possible.

In the differential case application of criteria to avoid useless reduction of
non-admissible prolongations can decrease computation time. The combinatorial
approach used in this paper already avoids many reductions of so-called A-
polynomials, as used in other approaches (see [GY06]). Nonetheless, using the
involutive criteria 2-4 (cf. [GB98al [Ger05, [AHO5] and [BLOPQ9, §4, Prop. 5])
which together are equivalent to the chain criterion, is valid and helpful.

Another possible improvement is parallelization, since the main loop in line
of Decompose ([ZI8)) can naturally be used in parallel for different systems.

4.2 Implementation in MAPLE

Both algorithms have been implemented in the MAPLE computer algebra sys-
tem. Packages can be downloaded from [BLHI10|, documentation and example
worksheets are available there.

The main reason for choosing MAPLE for the implementation is the collection
of solvers for polynomial equations, ODEs, and PDEs already present. Further-
more, fast algorithms exist for polynomial factorization over finitely generated
field extensions of Q and for gcd computation. Computation of subresultants is
not available in MAPLE, therefore an algorithm based on [Duc00] is implemented
for that purpose.

Features for the differential package include arbitrary differential rankings,
using functions implemented in MAPLE as differential field, computation of power
series solutions, and a direct connection to the solvers of MAPLE for differential
equations.

Example 4.1. Start by loading the current version of our package:

> with(DifferentialThomas):
> ComputeRanking([t], [x2,x1,y,u] ,"EliminateFunction");

This creates the differential polynomial ring Q{z,z() y, u} for A = {gt}.

Here u indicates the input, () and z(?) the state, and y the output of the system.
The chosen ranking “<” is the elimination ranking with z(? > 2 > y > u,

&> a2V >y > for all i,j,k, 1€ Zso.

> L:=[x1[1]-ul[0]*x2[0],x2[1]-x1[0]-u[0]*x2[0],y[0]-x1[0]];

L= [{L'_Zl —UO{L'Q(), {L'21 - x]() — Up x,?o, Yo —{L'_Zo]

ie., x

We follow [Dio92, Ex. 1] and want to compute the external trajectories of a
differential ideal generated by L, i.e. intersect this differential ideal with Q{y, u}.
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> res:=DifferentialThomasDecomposition(L, []);

res := [DifferentialSystem, DifferentialSystem]

We show the equations and inequations of the differential systems not involving
1) and not involving 2(?). The chosen ranking guarantees that for each differ-
ential system of the output, all constraints holding for lower ranking differential
indeterminates can be read off the equations and inequations only involving
these differential indeterminates, i.e., the systems shown determine the external
trajectories of the system:

> PrettyPrintDifferentialSystem(res[1]):
> remove(a->has(a,x2) or has(a,x1),%);

[—u(®) (g ¥(8) + (g y(@) (6 + ( ¥(6) ( u(t) +y()u(t)? =0, u(t) # 0]
> PrettyPrintDifferentialSystem(res[2]):
> remove(a->has(a,x2) or has(a,x1),%);

[ ¥(t) = 0, u(t) = 0]

These systems, having disjoint solution sets, are identical to the ones found in
[Dio92].

4.3 Implementations of Similar Decomposition Algorithms

The RegularChains package [LMX05], which is shipped with recent versions of
MAPLE, implements a decomposition of a polynomial ideal into ideals repre-
sented by regular chains and a radical decomposition of an ideal into square-free
regular chains. The solution sets of this decomposition are in general not disjoint.
However, there is an extension called comprehensive triangular decomposition
(cf. |CGL™07|) that provides disjointness on the parameters of a parametric
system. The systems of the parameters are not simple systems though. The Reg-
ularChains package contains FastArithmeticTools as a subpackage implementing
asymptotically fast polynomial arithmetic for the modular case.

The epsilon package ([Wan03]) by Dongming Wang implements different kinds
of triangular decompositions (including a decomposition into regular chains like
above) in MAPLE. It is the only software package besides our own that im-
plements the THOMAS decomposition. It uses the simpler “top-down” approach
that Thomas (cf. [Tho37, [Tho62|) suggested, i.e., polynomials of higher leader
are considered first. All polynomials of the same leader are combined into one
common consequence. New systems, which contain conditions on initials of poly-
nomials and subresultants, are created by splitting subalgorithms similar to ours.
All these new conditions of lower leader are not taken into account for now and
will be treated in a later step. Contrary to our approach, one cannot reduce
modulo an unfinished system and hence inconsistency checks are less natural
and more complicated. It is conceivable that this strategy spends too much time
on computations with inconsistent systems. Therefore, epsilon implements highly
sophisticated heuristics for early detection of inconsistent systems. It achieves
similar performance to our implementation.
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The MAPLE package diffalg [BHO4] deals with ordinary and partial differen-
tial equations as described in [BLOPQ9]. Its functionalities are used by symbolic
differential equations solvers in MAPLE. For an input of equations and inequa-
tions it computes a radical decomposition of the differential ideal generated
by the equations and saturated by the inequations. I.e., a description of the
vanishing ideal of the KOLCHIN closure (cf. [Kol73, §IV.1]) of the solutions is
computed. The output are differential characteristic sets as introduced by RITT
[Rit50, §1.5]. Computation of differential consequences is driven by reduction of
A-polynomials, which are the analogon of s-polynomials in differential algebra.
We found the system being optimized and well-suited for computations with
ordinary differential equations.

Similar algorithms as in diffalg are used in the BLAD-libraries [Bou09]. It
is designed as a stand-alone C-library with an emphasis on usability for non-
mathematicians and extensive documentation. As it is written in C, BLAD is
expected to outperform diffalg for relevant examples.

For future publications, we plan to compare the THOMAS decomposition and
our implementation with other decompositions and implementations. We also
plan to further examine applications that benefit from the properties of simple
systems.
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On Multivariate Homogeneous Polynomial
Decomposition

Paula Bustillo and Jaime Gutierrez

Universidad de Cantabria, Santander, Spain

Abstract. An algorithm for decomposing a list of homogeneous poly-
nomials in several variables of the same degree was given in [2]. We
show that there is a bijective relation among these decompositions and
intermediate IK-algebras of a special kind, but the relation cannot be
extended to intermediate fields. We also try to find the dimension of the
decomposable lists over an algebraically closed field.

1 Introduction

In [9], the authors proposed a new cryptosystem called 2R-scheme inspired by the
C*-cryptosystem, see [7]. In a 2R-scheme the space of plain texts and ciphertexts
is IF;", where IF, is a finite field of ¢ elements. The secret key items are three affine
bijections r, s, : IF* — IF/" and two applications ¢, : I'* — IF[" given by
m quadratic equations over IF,. The public key is the polynomial representation
of the application toyosopor: ;" — IF;". This representation consists of
m polynomials of degree 4.

The applications ¢ and @ are chosen among easily invertible ones in order to
make decryption easy. For all proposed easily invertible applications at that time,
the one-round schemes were broken, i.e., the analogous cryptosystems with secret
key s o ¢ or. Therefore, the security of 2R-schemes was based on the difficulty
of decomposing a list of m polynomials in IK[x] = K[z1,. .., Z,], where K is an
arbitrary field. The paper [I0] proposed efficient attacks that make the system
insecure if m or m — 1 polynomials in the list are given. Inspired by these ideas,
in [I], the authors presented an algorithm that given a list f = (f1,..., fu) of u
homogeneous polynomials of degree 4 in m variables, finds lists g = (g1, .., gu)
and h = (hq,..., ) of homogeneous polynomials of degree 2 in m variables
such that f; = gi(h1,...,hy) for all ¢ € {1,...,u}, under some favourable
circumstances. The algorithm was extended in [2] to a list of polynomials f
of arbitrary degree n = r - s. There is an improvement of the algorithm in
[3], together with an algorithm for a list f of polynomials of degrees ry,..., 7,
respectively such that s > 1 divides all degrees.

In [4], the dimension of the decomposable univariate polynomials over an
algebraically closed field is counted for each fixed degree m, and similarly in
[5], for the so called uni-multivariate decomposable polynomials, see [6], over an
algebraically closed field.

We aim here at finding the relation among the concept of (r, s)-decomposition
of homogeneous polynomials proposed in [I] and the computation of intermediate
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K-algebras and intermediate fields, and at counting the dimension of (r,s)-
decomposable polynomials in m variables over an algebraically closed field.

2 Computation of Intermediate IK-Algebras and
(r, s)-Decompositions

We shall start by the definition of (r, s)-decomposable polynomials:

Definition 1. Let f = (f1,..., fu) € K[x]|“ be a list of homogeneous polyno-
mials of degree n = rs. We say that £ is (r,s)-decomposable if there exist a
list g = (91,---,94) € K[X]" of homogeneous polynomials of degree r and a
listh = (h1,...,hm) € KK[X]™ of homogeneous polynomials of degree s such
that f; = gi(h1, ..., hm), written £ = goh. The tuple (g,h) is called an (r,s)-
decomposition of f.

If A is a regular matrix, then goh = go Ao Aoh. To avoid this ambiguity, two
decompositions (g, h) and (g’,h’) of a polynomial are defined to be equivalent
if there exists a regular matrix A such that h’ T = AnT. By this equivalence rela-
tion, we guarantee that two non-equivalent decompositions provide two different
intermediate IK-algebras.

Lemma 1. Let hy,..., hy, € IK[X] be homogeneous polynomials of degree s and
let fi,..., fu € K[h1,...,hm] be homogeneous polynomials of degree n = r - s.
There exist polynomials g1, ..., g, € K[x] such that f; = gi(h1,...,hm) is an
(r, s)-decomposition of f.

Proof. We can write f; = p;(h1,...,hp), foreachi € {1,...,u}. Let p; = pz(-ki) +

.. '+p§1)+pz('0) be written as the sum of homogeneous polynomials pgj ) of degree j,

k; = deg p;. It is clear that either degpz(j)(hl, coshim) =35 orpz(j)(hl, coishim) =
0. Consequently, since f; = pgki)(hh cosh)+ e +pz(~1)(h1, ceoshi) +p§0), then
ki >rand f; = pzm(hl, ooy hy). Take g; = pz(r).
Theorem 1. Non-equivalent (r, s)-decompositions of a list of polynomials £ =
(f1,- -+, fu) correspond bijectively to IK-algebras in K[f] C IK[x] generated by m
homogeneous polynomials of degree s.

Proof. Let hy,...,hym, by, ...,k € K[z1,...,2,] be homogeneous polynomials
of degree s such that IK[f1,. .., fu] C Kh1,...,hn] =K[h,...,h,,]. By Lemma
[ we have the equality of linear spans: Span (hy,...,h,) = Span (h},...,h! );
and therefore, there exists a regular matrix A such (b}, ...kl )T=A(h1,..., hm)T

The algorithm of Faugere and Perret only finds an (r, s)-decomposition of f if f
has only one equivalence class of decompositions, i.e., it only finds a decompo-
sition when there is exactly one intermediate IK-algebra (field) in K[f] C K]x]
(in IK(f) C IK(x)) generated by m homogeneous polynomials of degree s.

This bijective relation does not extend to a bijective relation among the (r, s)-
decompositions of f and the proper fields in IK(f) C IK(x) generated by a list h
of homogeneous polynomials of degree s in general.
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Ezxample 1. Let
(hl, hz) = (1‘125733153325)7
(Hl,Hz) — ($12S _ .7;225,.73225 _|_.7J,1S$2S)7

for s = 25 even, and let

(h1,he) = (21251 25 3, 9),
(H17H2) _ ($123+1 _x1x223’$15+1$23 +x1x225

for s =25+ 1 odd.

For both s even and odd, it holds that K[hy,hs] # IK[H;, Hz] because
the linear spans Span(hi, he) and Span(H;, Hg) are different, and IK(hq, he) =
K(H,, H2), since

_ h1?—ho? _ (h1+h2)ha
H1 = hy : H2 = ha : and

_ H{242H,Hy+Hj? _ (Hi1+H2)H» 2 2
hy = 142 Ha che = Yo%, - Moreover, hi + h3 +

2h1ho = H + H3 + 2H, H>.
Therefore, if
f=(h%+ h3+2hiha)",

then

(22 + 22 + 2z122)%, (h1, ho)) and ((z2 + 22 + 2z120)%, (Hy, Ha))
are non-equivalent (2k, s)-decompositions of f, but their associated fields are the
same.

This counterexample can be easily extended to an arbitrary number m of
variables.

3 The Dimension of (r, s)-Decomposable Polynomials

From now on, IK will denote an algebraically closed field.
Let
Py ={f € K[x]: f is homogeneous of degree n}
be the vector space of homogeneous polynomials of degree n, whose dimension
is am,n = (mt?_l).

By arranging the monomials of degree n in m variables with respect to the
lexicographical order >je,, m(1) = a2, m(2) = «7 'z, ..., mam.,) = 7, we
can identify a polynomial in P, , sorted with respect to the lexicographical
order with a tuple in IK™ ", thus identifiying P, , with the affine space IK*™.

For n = rs, we have the composition map

. m
Ym,n,r * Pm,r X Pm,s ’ Pm,n

(g,hl,...,hm) = g(hl,...,hm)

Clearly, the set Dy, p» of (r, s)-decomposable polynomials of degree n is Im vy, 5, -
The map v, »,» can be identified with a polynomial map

Fm,n,r KOG % (IKam,s)m L K %mn
that sends the coefficients of g, hi, ..., h,, to the coefficients of g(hi,..., hy).
This map identifies D, . with Decy, ., = Im I3, 5, . We aim at finding the
dimension of the Zariski closure of Decy, 1, r, DeCry 1.
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A straightforward way to compute the dimension is to combine a suitable
normalization in (r, s)-decompositions with the following theorem:

Theorem 2. ([8]) Let X,Y be algebraic sets over K. If f : X — Y is a
dominating polynomial map, i.e., such that Y = f(X), then there exists an open
subset U in'Y such that f~1(y) has dimension dim X — dimY for all y € U.

As a consequence, if the map Iy, pr|x : X — DeCpy p,» is dominating and such
that all polynomials in Decy, . »~\C have a finite number of (r, s)-decompositions,
for a closed set C' C Decyy, r,,r, then dim Decy,, 5, » = dim X.

It is clear that for X = K™ %m.« the hypotheses are not satisfied: when-
ever a polynomial f has the (r, s)-decomposition f = g o h, we can decompose
fas f=(goA 1) o(Aoh) for every A € GL,,(IK).

Clearly, finding the set X for which the hypotheses are satisfied is the key
point to find the dimension of Decy, p . In the following, we will discuss the
choice of X.

Assume that f=g(h1,...,hy) is an (r, s)-decomposition of f where hq,... k.,
are linearly independent. Then, the vector space generated by hi,..., hy, is
also generated by m homogeneous polynomials hf,...,h., of degree s such that
each polynomial is monic with respect to the lexicographical order, Im(h}) >c.
oo > Im(R))), and coeﬁlm(h;)(h;) = 0 for i # j, where lm(t) denotes the lead-

ing monomial of the polynomial ¢ and coeff,, () is the coefficient of the monomial
m in the polynomial ¢. Then, for h' = (h),... h.)), there exists an homogenous
polynomial ¢’ in m variables of degree r such that f = g’ oh’.

Let V(i1,...,im) be the set of vector spaces generated by m polynomials
hi,...,hm, where i1 < i3 < --- < i, each h; is monic with leading coefficient
m(Z;), and coeﬁlm(hj)(hi) =0if ¢ # j:

11 12 tm

hi— (0 1 -+ 0 0

hg— |0 0 0 1 0

00 0 O - e 0

hm—\0 O 0 0 0 0 1
Each vector space in V (i1, . . ., i) can be determined by m-(a,, s—m) coefficients

in IK at most, thus identifying V (i, ..., ) with K" (@m.s=m)

Let V = Ul<iy <ig<...<im<am.. V (i1, ..., im) and V be the algebraic set corre-

sponding to 1% by the identification between P, s and IK*™*. Then, Decp, n» =
Im [y, 0 (K" x V). Clearly, dim Dec,y, ., = dimIm I'(IK®™" X V) < @y +
m -+ (am,s — m). Therefore, if dimIm I'(IK“™" x V(1,2,...,m)) = am, +m -
(@m,s —m) could be proven, then dimDecp, nr = am,r +m - (@m,s — M).

This normalization is proven to be the good one for (2, 2)-decompositions in
two variables by using Grobner basis computations.
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Ezample 2. Let r=s=m =2 and n = 4.
Let Vi = {(2% + ay?, 2y + by?) : a,b € IK}.
Let
[ =azt + ey + csa?y? + cazy® + sy,
g = dix® + dawy + dsy?,
hi = 2% + ay?, and
ho = zy + by?.
If f=g(hi,hs), then di = ¢; and do = co. Moreover, the equations
C3 — 261(1 - Cgb - dg = 0,
¢4 — coa — 2d3zb =0 and
cs — c1a® — coab — dsbh?> =0
must be satisfied.
The Grobner basis G of I = (c3 — 2c1a — cab — d3, ¢4 — coa — 2d3b, c5 — c1a® —
caab — d3b?) with respect to the lexicographical order such that a > b > d3 is
the set of the polynomials

p1 = d33 — 203d32 + (6462 —4cies + 032) ds + (61042 + 05622 — 630264)
P2 = (623—4030261 +8 01264) b+(2 coc1cat+4 63261—16 612C5+(—8 c3cy + 022) ds—
co?es +4dds’er) = b+ g

ps = (023 — 4 c3coc1 + 801264) a + (—64622 — 4czcie4 + (4 ci1c4 + 26362) ds +
8cacies — 2ds’co) = gsa+ qu

The basis G specifies well for all parameters in IK® \ C1, where C is subset of
tuples of IK® vanishing in the polynomials ¢; and gs, i.e., V(q1,q3).

For each polynomial f there are only 3 possibles values of the parameter
ds. If there are infitine possible values for a or b for the polynomial f, then
(c1,¢2,¢3,c4,¢5) € Co = V(q1,92) UV (g2, q3)- )

Therefore, only for tuples in the closed and proper subset C; U Cy of IK°
can polynomials have infinite decompositions. That is, the fibers of I 42 are
finite except on a closed and proper subset of IK®. Therefore, dim Decy 4o =
az,2 + 2(az2 —2) = 5 and all polynomials, except those in a closed and proper
subset of IK®, are decomposable.

Counting the dimension of decomposable lists of homogeneous polynomials of
the same degree is completely analogous. Let Dec,, », . be the set of lists f of
u homogeneous polynomials in IK[x] of degree n that are (r, s)-decomposable,
and let

Fmvnﬂ",u : (]Kam,r)u XV — Decm,n,r,u
be the function that maps the coefficients of the normalized tuple (g, h) to

the coefficients of g o h. If the above normalization were the good one, then the
dimension of Decy, 1 7o, = would be dim((IK*™ )" X V) = w- @y r+m- (A, s —m).
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Abstract. In this paper, we compute minimal faithful unitriangular ma-
trix representations of filiform Lie algebras. To do it, we use the nilpotent
Lie algebra, gn, formed of n x n strictly upper-triangular matrices. More
concretely, we search the lowest natural number n such that the Lie
algebra g,, contains a given filiform Lie algebra, also computing a repre-
sentative of this algebra. All the computations in this paper have been
done using MAPLE 9.5.

Keywords: Filiform Lie Algebra, Minimal Faithful Unitriangular Ma-
trix Representation, Algorithm.
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1 Introduction

Firstly, we would like to explain the motivation for dealing with filiform Lie
algebras. At present, several aspects of Lie algebras remain unknown. In fact,
the classification of nilpotent Lie algebras is still an open problem, although the
classification of other types of Lie algebras (such as semisimple and simple ones)
were already obtained in 1890. In this way, computing faithful representations of
nilpotent Lie algebras is one of the main open problems in the theory of finite-
dimensional Lie algebras over an algebraically closed field of characteristic zero.
Therefore, it seems to be convenient to reduce this problem by dealing with
filiform Lie algebras, which constitute the most structured Lie algebras in the
nilpotent class. These algebras were introduced by Vergne [I3] in the late 1960s.

On the other hand, the research on Lie Theory has a large number of ap-
plications to other sciences such as Applied Mathematics, Engineering, Physics,
Mathematical Finance and Economics. In all of them the representation of Lie
groups and algebras constitute an important subject. For example, in Economics,
Polidoro in [10] studied a financial problem by using representation of nilpotent
Lie groups. Additionally, Solvable and Nilpotent Lie algebras can be used to
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deal with problem relative to finance derivatives and other financial and eco-
nomic problem. In this way, the pricing problem of Asian and European options
can be solved using a Lie-algebra and Lie-symmetry approach as can be seen in
[9] and [I1]. Consequently, we think that providing explicit representations of
filiform Lie algebra can be useful to tackle these problems.

Regarding the representation of filiform Lie algebras, the following result is
well-known: Given a finite-dimensional nilpotent Lie algebra g, there exists n € N
such that g is isomorphic to a subalgebra of the algebra g,,, of nxn strictly upper-
triangular matrices [I2], Theorem 3.6.6]. Therefore, an important question is to
compute the minimal n € N such that a finite-dimensional filiform Lie algebra
is contained in g,, as a subalgebra.

At this respect, Benjumea et al. [I] already introduced an algorithmic method
to compute minimal faithful unitriangular matrix representations of nilpotent Lie
groups and algebras (including filiform ones), giving some examples of applica-
tion. Later, Benjumea et al. [2] gave the list of minimal faithful unitriangular
matrix representations for nilpotent Lie algebras of dimension less than 6 using
the previous method. Nevertheless, the following question is still unsolved: What
Lie algebras have an n-dimensional representation for arbitrary dimensions? In
this paper, we will determine which filiform Lie algebras satisfy that property,
giving minimal faithful unitriangular representations in the case of both model
and non-model algebras.

Other authors, like Burde [4] or Ghanam et al. [§], studied the minimal dimen-
sion u(g) for the representations of a given Lie algebra g. However, these authors
considered any faithful g-module instead of the family of Lie algebras g,,. Con-
sequently, the value of p(g) is less than or equal to the dimension which we will
compute and determine in this paper. In particular, Ghanam et al. [§] computed
matrix representations for low dimensional nilpotent Lie algebras, but their min-
imality was not studied. In fact, some representations in [8] were not minimal.

Independently, some authors like Echarte et al. [5] introduced some invariants
of filiform Lie algebras, improving them in [6]. In this paper, we will recall the use
of these invariants to express the law of filiform Lie algebras and to classify them.

The structure of this paper is as follows: after reviewing some well-known re-
sults about Lie Theory in Section 2, Section 3 is devoted to show the method used
to compute a minimal faithful unitriangular matrix representation for filiform Lie
algebras. Due to reasons of length, we only compute explicitly minimal faithful
unitriangular matrix representations for filiform Lie algebras of dimension less
than or equal to six, although the method can be applied to any arbitrary finite-
dimensional filiform Lie algebra provided its law is known, which is not easy for
higher dimensions. Remember that the classifications of filiform Lie algebras are
only known up to dimension 11 (see [3]).

2 Preliminaries

Some preliminary concepts on Lie algebras (including Invariant and Represen-
tation Theories) are recalled in this section. For a general overview, the reader
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can consult [I2]. Let us note that only finite-dimensional Lie algebras over the
complex number field C are considered from here on.

2.1 Lie Algebras

The lower central series of a given Lie algebra g is defined by

Cl(g) = g, C*(g) = lo, 0], C*(a) = [C*(0). g, ---. C*(a) = [C""(9). g, ---
The Lie algebra g is nilpotent when there exists a natural integer m such that
C™(g) =0.

Let h be a subalgebra of a Lie algebra g. The centralizer of h in g is the set
of elements of g which commute with all of the elements of b.

Related to the lower central series associated with a subalgebra of g, the
following result holds

Proposition 1. Let b be a subalgebra of a Lie algebra g. Then C*(h) C C*(g),
VkeN.

Let us denote by g,, the nilpotent matrix algebra formed of all the n x n strictly
upper-triangular matrices, with n > 1. The expression of the vectors in g, is the
following

012" Tin-1 Tin
0 0 - 2on-1 T2
gn(xr,S) =1 + - (3321 c0).
00 - 0 @nin
0 0 0 0
n(n—1)

The dimension of g, is . Fixed i and j such that 1 < i < j < n, a
basis of g is B, = {Xi; = gn(zrs)|[2rs =1 < (r,8) = (;,§)]| AN [zrs =0 &
(rys) # (4, 5)] Ji<i<j<n with the law: [X; ;, X, = Xip, for 1 <i<j<k<n.
Consequently, the dimension of each term in the lower central series of g, is

(dim(gy,), dim(gn_1), dim(gn_2), ..., dim(gs), 0) (1)

A particular family of nilpotent Lie algebras is formed of abelian Lie algebras.
A Lie algebra g is said to be abelian if [v,w] = 0, for all v, w € g. An equivalent
condition is the following: Z(g) = g, where

Z(g={Xeg | [X,Y]=0,VY eg}

is the center of the algebra g. We also consider a second subclass of nilpotent
Lie algebras in this paper: filiform Lie algebras. An n-dimensional Lie algebra g
is filiform if its lower central series satisfies the following

dim(C'(g)) = n, dim(C*(g)) =n — 2, dim(C*(g)) =n — 3, ...,dim(C"(g)) = 0. (2)
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A basis {e;}I"; of the filiform Lie algebra g is called an adapted basis if the
following relations are verified

[61,6},} =ep_1, for 3 < h <mn;
[e2, en] =0, for 1 <h<mn; 3)
[637 6},} =0, for 2 < h < n.

If {e;}, is an adapted basis of an n-dimensional filiform Lie algebra g, then
the vector eg is the unique element in the center Z(g) of the algebra.

A filiform Lie algebra is called model if the only nonzero brackets in its law
are [e1,ep] = ep_1, for 3 < h < n.

2.2 Invariants of Filiform Lie Algebras

This subsection is devoted to recall the definitions of two invariants for filiform
Lie algebras given in [6]. First, the invariant z; is defined as follows

21 = max{k € N|Cy(C"*"2(g)) D C?(g)},

where Cy(h) is the centralizer of a given subalgebra h of g. Let us note that
the set in the previous definition can be empty. In this case, it is easy to prove
that g is a model filiform Lie algebra. Besides, the definition of z; means that
the ideal C"~%*2(g) is the greatest one whose centralizer contains C?(g). Let us
note that the previous definition is equivalent to the following: z; = min {k >
2| [ex, en] # 0}, which is more convenient for practical use, and where {e;}, is
an adapted basis of g.
The invariant zo is defined as

29 = max {k € N|C"*"1(g) is abelian}.

An immediate consequence of this definition is that the ideal C"~i*+1(g) =
(€2, ...,e;) is the largest abelian subalgebra in the lower central series of g.

3 Computing Minimal Matrix Representations

In this section, we firstly obtain a minimal faithful unitriangular matrix repre-
sentation for each model filiform Lie algebra. Next, we give a method to obtain
such representations for non-model filiform Lie algebras. Finally, we compute
minimal faithful unitriangular matrix representations for filiform Lie algebras of
dimension less than 7.

Given a Lie algebra g, a representation of g in C" is a homomorphism of Lie
algebras ¢ : g — gl(C") = gl(C, n). The natural integer n is called the dimension
of this representation. Ado’s theorem states that every finite-dimensional Lie
algebra over a field of characteristic zero has a linear injective representation on
a finite-dimensional vector space, that is, a faithful representation.
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Usually, representations are defined by using an arbitrary n-dimensional vec-
tor space V (see [7]) and homomorphisms of Lie algebras from g to gl(V) of
endomorphisms of V; that is, by using g-modules.

With respect to minimal representations of Lie algebras, Burde [4] introduced
the following invariant for an arbitrary Lie algebra g

w(g) = min{dim(M) | M is a faithful g-module}.

In this section, matrix representations of filiform Lie algebras are studied. More-
over, we are interested in minimal matrix representations of these algebras with
a particular restriction: the representations have to be contained in g,. In this
way, given a filiform Lie algebra g, we want to compute the minimal value n such
that g, contains a subalgebra isomorphic to g. This value is also an invariant of
g and its expression is given by

fi(g) = min{n € N | 3 subalgebra of g,, isomorphic to g}.

Let us note that the invariants p(g) and fi(g) can be different from each
other.

Proposition 2. Let g be an n-dimensional filiform Lie algebra. Then fi(g) > n.

Proof. We have to prove that for a given n-dimensional filiform Lie algebra g, it
is not possible to find a subalgebra of g,,—1 isomorphic to g.

First, we express the vectors of an adapted basis {e;}_; of g as linear combina-
tions of the vectors in the basis B,,_1 of g,_1

e = Z )\f’in’j, forl1 <k<n.

1<i<j<n—1

We will prove that each coefficient )\ij of e2 € Z(g) has to be zero. Effectively:
from [e1,ep] = ep—1 for 3 < h < n, the following relations are obtained

A5 =0; Ag;jﬁ = > (Mbpras —ApagAip), for 1ISB<n—2 and ag>p+2. (4)

p,ag P,
B<p<ag

From [e1, e3] = ea, we can conclude that )\%ﬁﬂ =0, for 1 < <n-—2. Now,
we prove that )\lzm =0, for 1 <1 <n—3. To do so, we only need to prove that
A oy = A5, =0.

From [eq,ex] = ex—1 for 3 < k < n — 1, we can affirm that /\’5,_@11 = 0 for
1 < 8 <n — 2. This implies that )‘?J,q =0 when ¢ —p <n —4.

If we consider the bracket [e1, e,] = e,—1, we conclude that )\Zgﬂ =0, and,
therefore, )‘i,q =0, where ¢ —p=n— 3.

Consequently, all the coefficients of ey are null and this comes into
contradiction. O
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3.1 Model Filiform Lie Algebras

The law of a fixed n-dimensional model filiform Lie algebra g with an adapted
basis {e;}7; is the following

[e1,en] = ep—1, for 3<h <n. (5)
Now, we define the vectors of the adapted basis as linear combinations of the
vectors in the basis B,, of the Lie algebra g,

n—2

e1=> Xiit1, e2=X1n, €3 =Xom, ..., en=Xn 1 (6)
i=1

In this way, we can define a subalgebra f/, of g,, whose elements have the following

form

0z1 0 -+ 0 =2
00z1--- 0 =x3

foleg)=| = - S (zx €C, for k=1,...,n).
00 0 - 2y 1
000 -0 =z
000---0 O

The dimension of §/, is n and a basis of f/, is given by the vectors

. 1,if k = h;
€n = fTIL('Tk)v with Tk = {0 if k 7£ h.

According to Proposition 2, we can affirm that every n-dimensional model fil-
iform Lie algebra has an n-dimensional minimal faithful